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Abstract 

 

An efficient stochastic dynamics framework for response  

determination, reliability assessment, and performance  

based design of nonlinear structural systems 
 

by 

Ioannis P. Mitseas 

 

An approximate analytical technique for determining the survival probability and first-

passage probability density function (PDF) of nonlinear multi-degree-of-freedom 

(MDOF) structural systems subject to an evolutionary stochastic excitation vector is 

developed. The proposed technique can be construed as a two-stage approach. First, 

relying on statistical linearization and utilizing a dimension reduction approach the 

nonlinear n-degree-of-freedom system is decoupled and cast into (n) effective single-

degree-of-freedom (SDOF) linear time-varying (LTV) oscillators corresponding to each 

and every DOF of the original MDOF system. Second, utilizing the effective SDOF LTV 

oscillator time-varying stiffness and damping elements in conjunction with a stochastic 

averaging treatment of the problem, the MDOF system survival probability and first-

passage PDF are efficiently determined. Applications regarding MDOF structural 

systems exhibiting highly nonlinear behavior subject to stochastic excitations possessing 

separable as well as non-separable evolutionary power spectra (EPS) are included. 

Furthermore, a computationally efficient methodology for conducting fragility 

analysis of nonlinear/hysteretic MDOF structural systems is developed. Specifically, 
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fragility surfaces are estimated for nonlinear/hysteretic MDOF structural systems subject 

to evolutionary stochastic earthquake excitations. An approximate nonlinear stochastic 

dynamics formulation which consist the core of the developed methodology, allows for 

the efficient computation of structural system fragilities in a straightforward manner 

while it keeps the computational cost for the corresponding analyses at a minimum level. 

Nonlinear MDOF structural systems exhibiting a hysteretic restoring force-displacement 

Bouc-Wen feature, serve as numerical examples for demonstrating the efficiency of the 

proposed methodology. Comparisons with pertinent Monte Carlo simulations are 

included as well demonstrating the satisfactory level of the exhibited accuracy. 

Appended to the above, a novel integrated approach for structural system optimal 

design considering life cycle cost (LCC) is developed. Specifically, a performance-based 

multi-objective design optimization framework for nonlinear/hysteretic MDOF structural 

systems subject to non-stationary stochastic excitations is formulated. The developed 

approach encompasses an efficient analytical nonlinear stochastic dynamics approach for 

the determination of the response EPS as well as the non-stationary inter-story drift ratio 

(IDR) amplitude PDFs, circumventing computationally intensive numerical integrations 

of the nonlinear equations of motion. It is notable that the proposed framework complies 

with the most contemporary performance-based earthquake engineering (PBEE) 

provisions proposed by the Pacific Earthquake Engineering Research (PEER) center. 

Although the herein developed framework is tailored specifically for earthquake 

engineering related applications, it can be readily modified to account for other hazard 

kinds as well. Nonlinear building structures comprising the versatile Bouc-Wen 

(hysteretic) model serve as numerical applications for demonstrating the efficiency of the 

developed methodology. 
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Chapter 1 

Introduction 

1.1 Motivation and objectives 

In the general area of structural dynamics, an interesting and challenging branch has 

always been the efficient analysis of nonlinear systems subject to evolutionary 

excitations. Regarding the complexity that characterizes the majority of the today's 

engineering systems and structures, the rather simplified analysis approach that neglects 

any effect stemming from nonlinearities seems particularly inadequate for a realistic 

study of system behaviour. Although, the inclusion of nonlinear effects leads to an 

increasing of the complexity of the problem, a possible disregard can have considerably 

adverse consequences on the quality and the accuracy of the system analysis. 

Specifically, in the field of structural engineering, it is common for structural systems to 

be subjected to extreme seismic ground motion excitations. Therefore large system 

responses may reasonably occur. Clearly, in the earthquake engineering field structural 

systems become nonlinear and inelastic, exhibiting restoring forces that depend on the 

response history. This kind of behaviour is described in the literature by the term 

hysteresis. In this setting, the notion of conducting a realistic structural system analysis is 

weaved with the necessity of employing a nonlinear dynamics analysis extended to the 

challenging class of hysteretic systems. Available techniques oriented to earthquake 

engineering applications can be found in Iwan (1974). 

Aseismic code provisions promote the utilization of inelastic design in conjunction 

with equivalent linear dynamic behaviour due to their simplicity and precedent. However 

in cases of designing complex structural systems of critical importance or including non 

conventional means of protection against seismic hazard the code regulations prescribe 
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nonlinear dynamic response history analysis to be performed. A degree of empiricism is 

inherent in the initial approach while the consideration of nonlinearity on the latter case 

increases the complexity of the problem as well as the associated computational cost 

which stems from the numerical integration of the governing nonlinear equations of 

motion. This interesting complementarity reveals the overriding need of conducting 

reliable structural system analyses considering the presence of nonlinearities under an 

integrated and efficient context. 

Over the last decades particular interest has arisen for considering also stochasticity in 

problems related to the nonlinear system response determination.  One major reason for 

this interest stems from the fact that seismic excitations are usually so complex that they 

can only be described in a stochastic sense (e.g., Spanos, 1976). In this regard, a 

reasonably fair treatment for problems related to the above kind, passes indispensably 

from the area of nonlinear stochastic dynamics. In conceptual agreement with the 

necessity of considering stochasticity in the formulation of problems related to structural 

system analysis and design, performance-based engineering (PBE) frameworks (e.g., 

Cornell and Krawinkler, 2000;  Ellingwood, 2001; Porter, 2003; Mohle and Deierlein, 

2004; Der Kiureghian, 2005; Ciampoli and Petrini, 2012; Barbato and Petrini, 2013) were 

recently emerged by the structural engineering community. In general, PBE frameworks 

aim at facilitating risk-based decision making via performance assessment and design 

methods that properly account for the presence of uncertainties. Typically, a general 

probabilistic framework for PBE analysis involves a number of analysis components such 

as: (i) stochastic hazard analysis; (ii) stochastic structural/damage analysis; and (iii) 

stochastic loss analysis reflecting the effect of the underlying uncertainties on a 

quantifiable decision variable. 

Normally, performing nonlinear stochastic dynamic analysis includes the numerical 

integration of the governing nonlinear equations of motion, whereas the input seismic 

excitations are represented by real recorded or synthetic earthquake time-histories. Over 

the past few decades, a number of methods for nonlinear stochastic dynamic analysis 

have been developed. Monte Carlo simulation (MCS) (e.g., Rubinstein, 1981; Spanos and 
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Zeldin, 1998; Schueller and Spanos, 2000; Proppe et al., 2003; Gamerman, 2006; 

Rubinstein and Kroese, 2008; Rubino and Tuffin, 2009) stands as the most potent method 

for conducting nonlinear stochastic dynamic analysis. Despite its wide applicability, it 

remains particularly cumbersome due to its significant associated computational cost. 

More recently, advanced simulation methods using variance-reduction techniques have 

been emerged. Among them, one can find i) importance sampling (e.g., Melchers, 1989; 

Song, 1997), ii) latin hypercube sampling (e.g., McKay et al., 1979; Florian, 1992), iii) 

adaptive sampling (e.g., Bucher, 1988; Mori and Ellingwood, 1993), iv) descriptive 

sampling (e.g., Saliby, 1990), v) line sampling (e.g., Koutsourelakis et al., 2004), vi) 

antithetic variates (e.g., Fishman and Huang, 1983), vii) directional simulation (e.g., Nie 

and Ellingwood, 2004; Nie and Ellingwood, 2005) and viii) subset simulation (e.g., Au 

and Beck, 2001b). The above MCS-based approaches are characterized by a significant 

computational advantage comparing to the conventional MCS method, however they still 

require a significant number of nonlinear dynamic analyses. 

As an alternative during the same decades, random variable-based methods have been 

developed as well. In general, the above methods include the adoption of one or more 

limit-state functions involving a number of random variables. The first- and second-order 

reliability methods (FORM and SORM respectively), are usually employed for this class 

of problems. Some recent accounts of these methods can be found in Ditlevsen and 

Madsen (1996). It is noteworthy that these methods can also be used to nonlinear 

stochastic dynamic problems (e.g., Li and Der Kiureghian, 1995; Zhang and Der 

Kiureghian, 1997;  Der Kiureghian, 2000; Franchin, 2004; Koo et al., 2005;  Barbato and 

Conte, 2006; Jensen and Capul, 2006). Note in passing that the associated computational 

cost remains considerably high also in this case, rendered even prohibitive for cases 

where complex nonlinear large-scale MDOF structural systems are considered. 

Clearly, the field of nonlinear stochastic dynamics is weaved with significant 

computational demands, thus it is an ideal area for exploiting the considerable abilities of 

nonlinear stochastic dynamics/random vibration based techniques. In this setting, 

analytical/approximate methods for determining the response statistics of simple linear 
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and nonlinear structural models under stochastic excitation have been proposed in the 

literature over the last decades (e.g., Nigam, 1983; Lin and Cai, 1995; Roberts and 

Spanos, 2003; Lutes and Sarkani, 2004). These include methods using perturbation, 

statistical linearization, Fokker-Planck equation, stochastic averaging and moment 

closure. It is noteworthy that among the above methods the statistical linearization 

method is the one that is characterized by the greater versatility and applicability. 

Regarding the other methods it should be noted that these are largely restricted to 

specialized nonlinear systems or forms of the excitation, and thus particularly 

cumbersome to apply in structural engineering problems of the common practice. 

Incorporation of stochastic approaches of the above kind in the analysis and design of 

structural systems can be found in (e.g., Crandall, 1958; Crandall, 1963; Crandall and 

Mark, 1963; Soong, 1973, Newland, 1993; Soong and Grigoriu, 1993, Preumont, 1994; 

Elishakoff, 1999; Roberts and Spanos, 2003; Lutes and Sarkani, 2004; Li and Chen, 

2009).  

To this end a significant part of this dissertation is concerned with the utilization of 

nonlinear stochastic dynamics/random vibration based techniques to the study of 

problems considering nonlinear dynamic MDOF structural systems of the hysteretic kind 

subject to stochastic excitations of the evolutionary kind. In this regard, several novel 

methods were developed for proposing efficient solutions to important structural 

engineering problems related to the exposure of structures to seismic hazard. Among 

them the efficient determination of the first-passage problem, namely the determination 

of the probability the response of the nonlinear MDOF system reaches a predetermined 

barrier level for the first time, can be found. Further, a novel methodology for 

determining the seismic fragilities regarding realistic hysteretic multi-story building 

structures under non-stationary stochastic excitations is proposed. An analysis/design 

framework regarding structural system's robustness which allows for the simultaneous 

treatment of different performance features defined in the joint time-frequency domain is 

also part of this thesis. Finally a novel efficient integrated approach for dealing with the 

performance-based earthquake engineering (PBEE) problem in one of the most 
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demanding formulations has been developed. In the section that follows the organization 

of this thesis is given explicitly. 

1.2 Organization of the thesis 

The thesis comprises eight chapters followed by the list of cited references. Excluding 

the first chapter, which plays an introductory role, and the final one, which contains the 

concluding remarks, each of the remaining chapters are self-contained and include a 

separate introductory section followed by the pertinent theoretical background and 

integrated by sections presenting numerical results, as well as verification by digital 

simulations in cases it is deemed appropriate. 

Chapter 1 provides an introduction to the thesis and outlines the motivation and the 

objectives of the current research effort. A brief requisite review of the methods for 

conducting nonlinear stochastic dynamic analysis with emphasis to the ones that have 

been applied to the field of structural dynamics is also included. Furthermore, the 

contents of the thesis are briefly outlined. 

Chapter 2 contains a presentation of the seismic excitation models that utilized 

throughout this thesis for the stochastic representation of the seismic action. 

Phenomenological stochastic seismic excitation models of both separable and non-

separable kind as well as a more sophisticated stochastic seismological model that is 

commonly applied in the earthquake engineering field are included. 

In Chapter 3 an alternative analytical/approximate method to the type of nonlinear 

stochastic dynamic analysis is presented. Specifically, relying firstly on an evolutionary 

spectral matrix analysis approach and on statistical linearization second order response 

statistics of a MDOF nonlinear system subject to a stochastic excitation vector with an 

evolutionary broad-band power spectrum matrix are derived. Further, a system dimension 

reduction/decoupling approach is introduced by determining an effective auxiliary LTV 

SDOF system corresponding to each degree of freedom. Subsequently, relying on a 

stochastic averaging treatment the time-varying response amplitude PDFs of the 
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corresponding LTV SDOF systems are efficiently determined. Note that the approach can 

handle readily stochastic excitations of arbitrary non-separable EPS forms that exhibit 

strong variability in both the intensity and the frequency content. 

In chapter 4 an approximate analytical technique for determining the survival 

probability and first-passage PDF of nonlinear MDOF structural systems subject to a 

non-stationary stochastic excitation vector is developed. The proposed technique can be 

construed as a two-stage approach. First, relying on statistical linearization and utilizing a 

dimension reduction approach the nonlinear n-degree-of-freedom system is decoupled 

and cast into (n) effective SDOF LTV oscillators corresponding to each and every DOF 

of the original MDOF system. Second, utilizing the effective SDOF LTV oscillator time-

varying stiffness and damping elements in conjunction with a stochastic averaging 

treatment of the problem, the non-stationary marginal, transition, joint response 

amplitude PDFs as well as the MDOF system survival probability and first-passage PDF 

are determined. Overall, the developed technique appears to be efficient and versatile 

since it can handle readily, at a low computational cost, a wide range of 

nonlinear/hysteretic behaviors as well as various stochastic excitation forms, even of the 

fully non-stationary in time and frequency kind. A 3-DOF structural system exhibiting 

hysteresis following the Bouc-Wen model is included in the numerical examples section. 

Comparisons with pertinent Monte Carlo simulations demonstrate the reliability of the 

technique. 

In chapter 5 a novel methodology for determining the seismic fragility of nonlinear 

MDOF structural systems is developed based on an efficient approximate stochastic 

dynamics technique. Specifically, fragility surfaces are determined for 

nonlinear/hysteretic MDOF structural systems subject to earthquake excitations 

compatible with a specific stochastic seismological model of the sophisticated type. Note 

that the employed intensity measure (IM) comprises two parameters, namely the 

earthquake moment magnitude      and the epicentral distance    ; that is, the distance 

from the system site to the epicentre of the earthquake. Further, based on the concepts of 

stochastic averaging and of statistical linearization the response amplitude envelope is 
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modelled as a one-dimensional Markov process. Further, relying on the Fokker-Planck 

(F-P) equation and on the associated first-order stochastic differential equation the 

response amplitude envelope PDFs are obtained efficiently without resorting to numerical 

integration of the nonlinear equations of motion. This attribute is of particular importance 

since the computational cost of the corresponding analyzes is significantly limited. 

Further, a direct transformation of the response amplitude envelope PDF yields the non-

stationary IDR amplitude envelope PDF. Then, considering the IDR as the selected 

engineering demand parameter (EDP) and appropriately defined damage states structural 

system related fragility surfaces are determined at a low computational cost. Building 

structures serve as numerical examples for demonstrating the efficiency and robustness of 

the proposed methodology. Moreover, appropriate Monte Carlo analyses are conducted to 

determine the accuracy of the approach. 

Chapter 6 includes an efficient robust design optimization (RDO) framework for linear  

MDOF structural systems subject to evolutionary stochastic earthquake excitations. A 

significant feature of the developed RDO framework relates to the consideration of both 

inter-story drift and absolute floor acceleration second order statistics as performance 

measures. Further, an efficient frequency domain approach is utilized for determining the 

system response EPS matrix circumventing computationally intensive Monte Carlo 

simulations. Furthermore, the optimization problem is solved by employing a Genetic 

Algorithm based approach. An illustrative numerical example is included to demonstrate 

the efficiency and robustness of the proposed framework. 

In chapter 7 a novel and comprehensive approach for structural system optimal 

stochastic design considering LCC is developed. Specifically, a performance-based 

multi-objective design optimization framework for nonlinear/hysteretic MDOF structural 

systems subject to evolutionary stochastic excitations is formulated. Although the 

developed PBE framework is tailored specifically for earthquake engineering related 

applications in general agreement with the PBEE framework proposed by the PEER 

center, it can be readily modified to account for other hazard kinds as well. The core of 

the developed framework is the efficient approximate dimension reduction/decoupling 
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technique based on the concepts of statistical linearization and of stochastic averaging for 

determining the non-stationary system response amplitude PDFs; thus, computationally 

intensive Monte Carlo simulations are circumvented. Next, the convolution between the 

derived closed-form expressions for the non-stationary IDR amplitude PDFs with the 

appropriately defined damage measures, leads to the computation of the system related 

fragility curves corresponding to every DOF. Then a weighted integral of the fragility 

curves over the derivative of the hazard rate function provides the annual rates of the 

seismic demand exceeding specified levels of damage which in turn can be expressed in 

design life rates. Upon obtaining the design life rates, the computation of the expected 

value of the LCC due to seismic hazard can be done in a straightforward manner and at a 

considerable low computational cost. Further, in the developed LCC formulation the 

expected value of the seismic losses serves as the decision variable (DV), whereas the 

coherent attribute of considering every DOF's behavior leads to better account for the 

system overall performance in the formulation of the optimization problem. Finally, the 

structural system stochastic design optimization problem is formulated as a multi-

objective one to be solved by a Genetic Algorithm based approach. Certain remarks 

regarding the formulation of the problem, involve the concept of implementing 

appropriate stochastic constraints for avoiding ''moving resonance'' phenomena. A 

reinforced concrete building structure comprising the versatile Bouc-Wen (hysteretic) 

model serves as a numerical example for demonstrating the efficiency of the proposed 

methodology. 

Concluding remarks along with suggestions for future work are provided in chapter 8. 

Further, Appendix A briefly reviews an efficient random field simulation method used in 

various applications in this thesis for simulating time-histories as samples of an 

underlying stochastic process characterized by a given power spectrum. Finally, a list of 

cited references is provided while a list of the author’s publications follows. 
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Chapter 2 

Stochastic representation of the seismic action 

2.1 Models of the seismic excitation 

In the field of structural engineering, performing nonlinear dynamic analysis 

presupposes the definition of the seismic excitation in the form of acceleration time-

histories. Commonly, these belong to the following three broad categories 

 realizations of a stochastic process 

 real recorded seismic accelerograms 

 accelerograms from stochastic seismological models 

Note in passing that throughout this thesis acceleration time-histories generated from the 

first as well as the third category have been utilized.  

2.2 Stochastic process modeling 

A sustained challenge for the seismological society has always been the definition of 

realistic models for the seismic action. The observed statistical stability regarding the 

frequency content of real ground motions records under similar conditions led to the 

consideration of accelerograms as realizations of random processes. In this setting, 

several stochastic models of varying complexity have been proposed over the last 

decades. 
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2.2.1 Phenomenological seismic stationary models 

Given an earthquake occurs, the seismic wave produced by the seismic source is a 

time process. Actually, the shape of the seismic wave through its propagation in the earth 

media will undergo complex changes (Li and Chen, 2009). In applications related to 

earthquake engineering, one of the most widely used stationary seismic models is the one 

of Kanai-Tajimi (K-T) (Kanai, 1957). Based on empirical data the K-T model take into 

account the dependence of the power spectrum      on local soil conditions and the 

corresponding dominant frequency. Real earthquake records show that the time history of 

the seismic motion accelerations usually includes three stages of vibrations: the initial, 

the strong, and the attenuating stages. Clearly, the ground motion is a typical non-

stationary process and the assumption of stationarity cannot capture its modulation in 

time. In cases where a stationary seismic model is adopted, it is assumed that this only 

reflects the strong stage of the ground motion.  

The seismic motion on the surface can be seen as a filtered white noise. In this setting, 

if the ground motion on the bedrock is assumed as a zero mean white-noise process with 

amplitude   , and the soil surface is simulated as a linear single-degree-of-freedom 

(SDOF) system, then the proposed stationary power spectrum (PS) for the K-T model is 

given as 

         

  
       

   
   

   
          

   
   

                                          

where    and    are the damping factor of the soil and the fundamental natural 

frequency, respectively. Note that for the specific case of a zero-mean, stationary 

Gaussian process the complete definition of the stochastic process can be done once its 

power spectrum is specified. Meanwhile, the K-T model was found to exaggerate 

inappropriately at the low frequency content of the ground motions. To overcome this 

shortcoming, Clough and Penzien (1993) modified it appropriately by incorporating a 

second-order high-pass filter to eliminate the presence of low-frequency content allowed 
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by the K-T form. The Clough-Penzien (C-P) spectrum model is assumed to have the 

following form 

         

      
 

                 
        

  
       

   
   

   
          

   
   

          

where    and    are parameters describing the Clough-Penzien filter (Clough and 

Penzien, 1993). For the parameters values                                 

           and input white noise intensity                  and                  

the resulting power spectra are shown in Fig.(2.1).  

 

 

Figure 2.1. Clough-Penzien power spectra for various levels of the amplitude of the 

bedrock excitation spectrum   . 

 

Next, the spectral representation method of Shinozuka and Deodatis (1991) can be 

employed to generate PS compatible excitation realizations; see also Appendix A. 

Fig.(2.2) shows typical realizations of the ground acceleration stochastic process for the 

two considered cases of different amplitude   . 
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Figure 2.2. Typical realizations of the ground acceleration stationary stochastic 

process based on the C-P spectrum model for various levels of the amplitude   . 

 

2.2.2  Phenomenological seismic non-stationary models: separable and non-

separable form 

Dealing with the non-stationarity of the ground motion, the necessity to capture the 

rising and decaying sections of the seismic motion led to the introduction of time-

modulated non-stationary stochastic processes of the form 

                                                                                

where       stands for a stationary process and       is a deterministic time function. 

Regarding the modulated time envelope function many different forms have been 

proposed (Amin and Ang, 1968; Clough and Penzien, 1993; Mitseas et al, 2014b). 

Throughout this thesis whenever a separable non-stationary seismic model is adopted, the 

time-modulating envelope function is assumed to have the following form  

                                                                              

where    and    are parameters of the envelope function; and k is a normalization 

constant so that          . Then, the excitation evolutionary power spectrum (EPS) 

can be defined as a product of the deterministic function      and the stationary PS 

      . In this setting the  EPS     
      takes the following separable form 
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Considering the following values        and        for the envelope function the 

resulting EPS for the case of input white noise intensity                 is given in 

Fig.(2.3) 

 

 

Figure 2.3. Clough-Penzien evolutionary power spectrum     
     . 

Further, excitation realizations compatible with the EPS of Eq.(2.5) are generated based 

on the spectral representation technique (e.g. Shinozuka and Deodatis 1991). In Fig.(2.4), 

typical realizations of the ground acceleration non-stationary stochastic process are 

depicted for different values of amplitude   . 

 

Figure 2.4. Typical realizations of the ground acceleration non-stationary stochastic 

process for various levels of the amplitude   .  
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Furthermore, evolutionary stochastic excitation models of the non-separable form 

have been introduced as well. Clearly, excitations acting upon structural systems such as 

wind, wave, and seismic loads commonly exhibit strong variability in both the intensity 

and the frequency content. However, over the last decades the study of the available 

recorded ground motion data was mainly focused on the frequency content of the ground 

motion in terms of the modulation in time of the ground motion and to a less degree to 

the evolution in time of the frequency content. One of the main characteristics of the 

seismic shaking that of the decreasing of the dominant frequency with respect to time 

(e.g., Liu, 1970; Spanos and Solomos, 1983) is comprised by the non-separable EPS 

    
         

 

   
 

 

         
 

   
 
 
                                             

where    stands for the amplitude of the bedrock excitation spectrum and   is a 

parameter of the model. Note in passing that the calibration of such non-separable models 

that take into account this frequency-content time dependence versus statistical data has 

proven to be a rather difficult task. Notable contributions towards this direction can be 

found in (e.g., Conte and Peng, 1997; Lungu and Giaralis, 2013). In Fig.(2.5) the non-

separable EPS     
      is given for the case of              and      . 

 

Figure 2.5. Non-separable excitation evolutionary power spectrum     
     . 
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2.3 Stochastic seismological model 

In this section the most important elements of the stochastic seismological model 

developed in Boore (2003) are presented. This seismological model is characterized 

primarily by the radiation spectrum           and the envelope function          , 

where   denotes the frequency expressed in Hz. 

2.3.1 Radiation spectrum determination 

The radiation spectrum           of the ground motion at a site can be construed as 

the composition of several contributions from various factors such as the earthquake 

source (E), the path (P), the site (G), and the type of motion (I); this is expressed as 

                                                                           

where the equivalent two point-source spectrum developed by Atkinson and Silva (2000) 

is adopted for the source E in the form 

              
   

         
  

 

         
                                 

In Eq.(2.8), the symbol    stands for the seismic moment (in dyn-cm), given by (e.g., 

Kanamori, 1977; Hanks and Kanamori, 1979) 

                                                                                

Clearly the seismic moment    and the moment magnitude    are related via a unique 

mapping. Further, the constant   is given by the relationship 

  
    

        
                                                                      

where    is the average radiation pattern,   is a coefficient to account for the partition of 

waves into two horizontal components, F is the free surface amplification;    and    are 

the shear-wave velocity and density in the vicinity of the seismic source; and    is a 
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reference distance. Next, the lower and upper corner frequencies    and    in Eq.(2.8) are 

given by the relationships                       and               

        (in Hz), respectively. The weighting parameter   is described by the expression 

                    . Further, the path component of the process that affects the 

radiation spectrum of ground motion at a particular site is given by 

       
 

 
                                                                      

where          is the radial distance from the earthquake source to the site, with   

representing a moment dependent, nominal pseudo-depth (in km), given by the  

expression                   . The employed regional quality factor      is given 

by  

                                                                                  

whereas the modification of seismic waves by local site conditions is considered through 

the expression 

                                                                             

where         ; and    is a near-surface amplification factor described via empirical 

curves for generic rock sites (e.g., Boore and Joyner, 1997). As a simplification it is 

usually assumed that    is equal to a constant value (e.g., Au and Beck, 2003). Next, 

considering the acceleration as the utilized type of ground motion yields    , and the 

filter      takes the form  

                                                                                  

In Fig.(2.6) the radiation spectra for various values of moment magnitude    and a 

constant value of the epicentral distance   equal to      are plotted. Regarding the 

parameters of the seismological model the following values are considered herein: 

       ,       , F = 4,            and            ,       , and 

      . Note in passing that in the following the radiation spectra are expressed in 

terms of angular frequency  ; thus, the radiation spectrum takes the form          .  
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Figure 2.6. Radiation spectrum           for various    and       . 

 

2.3.2 Time-envelope function determination 

The envelope function           for the earthquake excitations is given by  

                                                                               

where  

                                                                         

                                                                                    

                                                                                    

and 

                                                                                 

In Eq.(2.16)   and   take the values     and      respectively; and    is related to the 

duration of the envelope function (Boore, 1983). In Fig.(2.7) envelope functions for 

various values of    and a constant value of the epicentral distance         are 

plotted. 



 18 

 

 

Figure 2.7. Envelope function            for various    values and       . 

 

Further, seismic ground acceleration realizations at a site with moment magnitude    

and epicentral distance r can be readily generated through the utilization of the derived 

EPS by multiplying the radiation spectrum           with the envelope function 

         ; i.e., 

    
                                                                          

Next, the spectral representation method of Shinozuka and Deodatis (1991) can be 

employed to generate EPS compatible excitation realizations. Figs.(2.8-2.10) show 

typical realizations of the ground acceleration stochastic process as well as the associated 

EPS for site and earthquake conditions depicted in Figs. (2.6-2.7).  
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Figure 2.8. EPS and sample ground motion for        and        

 

 

Figure 2.9. EPS and sample ground motion for        and       . 
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Figure 2.10. EPS and sample ground motion for        and        
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Chapter 3 

An alternative analytical/approximate method to the type of 

nonlinear stochastic dynamic analysis 

3.1. Preliminary remarks 

In this section, a recently developed approximate dimension reduction/decoupling 

technique (Kougioumtzoglou and Spanos, 2013) for determining the non-stationary 

response amplitude probability density function (PDF) of a nonlinear MDOF system 

subject to evolutionary stochastic excitation is presented; see also Spanos and Lutes 

(1980).  

3.2. Statistical linearization approximation 

Consider an n-degree-of-freedom nonlinear structural system governed by the 

equation  

                                                                         

where    denotes the response acceleration vector,    is the response velocity vector,   is 

the response displacement vector;  ,   and   denote the       mass, damping and 

stiffness matrices, respectively;           is an arbitrary nonlinear       vector function 

of the variables  ,    and  .                             is a       zero mean, non-

stationary stochastic excitation vector process defined as              where 

                is an arbitrary       vector of constant weighting coefficients,   is 

the unit column vector, and      is a non-stationary process with an EPS        . In this 

regard,      possesses the EPS matrix 
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The diagonality which characterizes the EPS matrix of the excitation process stems from 

the assumption of lumped masses regarding the system under consideration (e.g., Roberts 

and Spanos, 2003). Further, the non-stationary stochastic excitation process is regarded to 

be a filtered stationary stochastic process according to the concept proposed by Priestley 

(1965); see also Dahlhaus (1997). The excitation EPS matrix of Eq.(3.2) takes the form 

                                                                              

where the superscripts (T) and (*) denote matrix transposition and complex conjugation, 

respectively;        is the modulating matrix which serves as a time-variant filter; and 

       is the power spectrum matrix corresponding to the stationary stochastic vector 

process      . Note that both separable and non-separable EPS can be defined considering 

Eq.(3.3). In this manner, excitations exhibiting variability in both the intensity and the 

frequency content can be modelled. Focusing next on the frequency domain, the response 

determination problem is defined as seeking the corresponding system response EPS 

matrix of the form 

        

 
 
 
 
 

 

     
           

                                                 
     

      
            

                                                                

                                                                                   
     

     
                                        

                  
      

 
 
 
 

              

According to the statistical linearization method (e.g., Soong and Grigoriu, 1993; 

Crandall, 2000; Roberts and Spanos, 2003; Li and Chen, 2009), a linearized version of 

Eq.(3.1) takes the form 
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The     and     are deterministic matrices that are to be determined through the 

minimization of the expected value of the difference between Eqs.(3.1) and (3.5) in a 

least square sense. The difference   may be written as  

                                                              

Furthermore, it is also assumed that the statistics and especially the variances of the 

process   and   are equal (Roberts and Spanos, 2003; Crandall 2001). Next, adopting the 

standard assumption that the response processes are Gaussian and considering the above 

minimization criterion, the time-dependent elements of the equivalent linear matrices     

and     are given by the expressions 

    
  

   
           

    
                                                                    

and 

    
  

   
           

   
                                                                    

Further, for a linear MDOF system subject to evolutionary stochastic excitation a matrix 

input-output spectral relationship of the form  

                           
  

                                                   

can be derived (e.g., Roberts and Spanos, 2003; Li and Chen, 2009), where 

                 
 

 

                                                         

In Eq.(3.10)      denotes the impulse response function matrix. Furthermore, the time 

dependent cross–variance of the response can be evaluated by the expression 

              

  

  

                                                                

It can be readily seen that Eqs.(3.7-3.11) constitute a coupled nonlinear system of 

algebraic equations to be solved numerically for the system response covariance matrix. 
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Analytical expressions (e.g., Li and Chen, 2009) for the impulse response function 

handling cases where the excitation process is of the non-stationary kind could have been 

utilized; leading to the computation of the convolution integral of Eq.(3.10). However, 

omitting the convolution of the impulse response function matrix with the modulating 

matrix can lead to substantial reduction of computational effort, especially for the case of 

MDOF systems (e.g., Kougioumtzoglou and Spanos, 2013; Mitseas et al., 2014c). In this 

manner, Eq.(3.10) takes the form 

                                                                                

where      is the frequency response function (FRF) matrix defined as 

                             
  

                              

Consequently, taking into account Eqs.(3.3) and (3.12), Eq. (3.9) becomes 

                                                                            

Further, Eq.(3.14) is a straightforward generalization of the celebrated spectral 

relationship based on stationarity and on the Wiener-Khinchin theorem. Thus, the above 

expression can be regarded as a quasi-stationary approximate relationship which, in 

general, yields satisfactory accuracy in cases of relatively stiff systems (e.g., Hammond, 

1968,1973; Jangid and Datta, 1999). Note in passing that the spectral input-output 

relationship of Eq.(3.14) is exact for the case of stationary processes (e.g., Soon and 

Grigoriu, 1993; Roberts and Spanos, 2003; Li and Chen, 2009). Further, adopting the 

aforementioned quasi-stationary approach, it can be readily seen that for the i-th degree 

of freedom, using Eq.(3.2), Eq.(3.11) and Eq.(3.14) yields 

    
                   

               
  

  

  

                                

and 
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Eqs.(3.15) and (3.16) hold true in the approximate quasi-stationary sense delineated 

earlier. Clearly, Eq.(3.14) constitutes an approximate formula for determining the MDOF 

system response EPS matrix at a low computational cost; thus, circumventing 

computationally intensive Monte Carlo simulations.  

3.3. Dimension reduction and effective SDOF time-variant oscillator 

Following next the system dimension reduction/decoupling approach developed in 

Kougioumtzoglou and Spanos (2013), an auxiliary effective SDOF LTV system 

corresponding to the i-th degree of freedom can be defined as 

                       
                                                         

where the time-varying equivalent stiffness and damping elements of the effective LTV 

system can be determined by equating the variances of the response displacement and 

velocity expressed utilizing the quasi-stationary FRF of Eq.(3.17) with the corresponding 

ones determined via Eqs.(3.15-3.16); this yields  

 

    
        

 

       
                       

 
  

  

  
                         

and 

     
          

 

       
                       

 
  

  

  
                      

Clearly, Eqs.(3.18) and (3.19) in conjunction with Eqs.(3.15) and (3.16) constitute a 

nonlinear system of two algebraic equations to be solved for the evaluation of the LTV 

system time-varying equivalent stiffness       
     and damping           coefficients.  
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3.4. Stochastic averaging treatment 

Next, a stochastic averaging technique (e.g., Spanos and Lutes, 1980;  

Kougioumtzoglou and Spanos, 2013) is applied for casting the second-order stochastic 

differential equation (SDE) of Eq.(3.1) into a first-order SDE governing the evolution in 

time of the response amplitude      . In this regard, and based primarily on the 

assumption of light damping, it can be argued that the response       of the effective LTV 

system of Eq.(3.17) exhibits a pseudo-harmonic behavior described by the equations 

                                                                           

and 

                                                                           

In Eq.(3.20) the response amplitude       is a slowly varying function with respect to 

time defined as  

  
       

      
      

         
 

 

                                                   

whereas       stands for the phase of the response      . Further, relying on a 

combination of deterministic and stochastic averaging (e.g., Kougioumtzoglou and 

Spanos, 2013) a first-order SDE governing each and every degree-of-freedom response 

amplitude process       takes the form 

        
 

 
               

                

            
    

 
                 

         
                   

In Eq.(3.23),      stands for a stationary, zero mean and delta correlated Gaussian white 

noise process of unit intensity, i.e.,          ; and                   , with      

being the Dirac delta function. Note that the response amplitude       is considered to be 

a Markovian process. Further, associated with the above SDE (Eq.(3.23)) is the Fokker-
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Planck partial differential equation governing the evolution of the non-stationary 

response amplitude PDF         corresponding to the i-th degree of freedom; that is, 

 

  
         

 

   
   

 

 
            

                

         
    

          

 
 

 

  

   
 
  

                

      
    

                                                   

Next, the system non-stationary response amplitude    is assumed to follow a time-

dependent Rayleigh distribution of the form (e.g., Spanos, 1978; Spanos and Solomos, 

1983; Kougioumtzoglou and Spanos, 2013) 

        
  

     
     

  
 

      
                                                  

where       accounts for the non-stationary response variance of the LTV system of 

Eq.(3.16). Substituting Eq.(3.24) into the F-P Eq.(3.23), yields a first-order ODE of the 

form 

                       
                

      
    

                                          

to be solved via standard numerical integration schemes such as the Runge-Kutta; 

Overall, it can be readily seen that the presented approximate analytical technique not 

only determines the original MDOF system response amplitude PDF         for each and 

every DOF in an efficient manner by circumventing computationally demanding Monte 

Carlo simulations, but also decouples the original system providing with effective time-

varying stiffness and damping elements corresponding to the i-th DOF.  
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Chapter 4 

Survival probability and first-passage PDF determination of 

nonlinear MDOF systems subject to evolutionary stochastic 

excitations 

4.1 Preliminary remarks 

Excitations acting upon structural systems such as wind, wave, and seismic loads 

commonly exhibit evolutionary features. For instance, structural systems in seismic prone 

areas are subject to stochastic excitations that exhibit strong variability in both the 

intensity and the frequency content. This fact necessitates the representation of this class 

of structural loads by non-stationary stochastic processes. Further, structural systems 

under severe excitations can exhibit significant nonlinear behavior of the hysteretic kind. 

Thus, of particular interest to the structural dynamics community is the development of 

techniques for determining the response and assessing the reliability of 

nonlinear/hysteretic systems subject to evolutionary stochastic excitations (e.g., Soon and 

Grigoriu, 1993; Roberts and Spanos, 2003; Li and Chen, 2009).  

Further, in engineering dynamics, the evaluation of the probability that the system 

response stays within prescribed limits for a specified time interval is advantageous for 

reliability based system design applications. In this regard, the first-passage problem, that 

is, the determination of the above time-variant probability known as survival probability, 

has been a persistent challenge in the field of stochastic dynamics for many decades. 

In general, although the SDOF oscillator has been used extensively to model a wide 

range of systems of engineering interest, in many cases the complexity of the system 

and/or the requirement for enhanced accuracy necessitate modeling of the system as a 
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MDOF one. In this regard, note that for the first-passage problem, analytical exact 

solutions have not been possible even for the case of a SDOF linear oscillator under 

stationary excitation. Clearly, the level of difficulty rises as the number of DOF increases, 

or complex nonlinear behaviors are considered.  

Monte Carlo simulation techniques are among the most potent tools for assessing the 

reliability of a system (e.g. Schueller et al., 2004). Nevertheless, there are cases where the 

computational cost of these techniques can be prohibitive, especially when large-scale 

complex systems are considered; thus, rendering the development of alternative efficient 

approximate analytical/numerical techniques for addressing the first-passage problem 

necessary. Indicatively, one of the early approaches, restricted to linear systems, relies on 

the knowledge of the mean up-crossing rates and on Poisson distribution based 

approximations (e.g., Corotis et al., 1972; Vanmarcke, 1975; Barbato and Conte, 2001). 

Further attempts to address the first-passage problem range from analytical ones (e.g., 

Kovaleva, 2009) to numerical ones (e.g., Solomos and Spanos, 1983). Furthermore, 

techniques based on the concepts of the numerical path integral (e.g., Iourtchenko et al., 

2006; Naess et al., 2011; Kougioumtzoglou and Spanos, 2013; Kougioumtzoglou and 

Spanos, 2014), of the probability density evolution (e.g., Li and Chen, 2009), or of 

stochastic averaging/linearization (e.g. Spanos and Kougioumtzoglou, 2014) constitute 

some of the more recent approaches. 

In this chapter, an approximate analytical technique for determining the survival 

probability and first-passage PDF of nonlinear MDOF structural systems subject to an 

evolutionary stochastic excitation vector is developed. The proposed technique can be 

construed as a two-stage approach. First, relying on statistical linearization and utilizing a 

dimension reduction approach the nonlinear n-degree-of-freedom system is decoupled 

and cast into (n) effective SDOF LTV oscillators corresponding to each and every DOF 

of the original MDOF system. Second, utilizing the effective SDOF LTV oscillator time-

varying stiffness and damping elements in conjunction with a stochastic averaging 

treatment of the problem, the MDOF system survival probability and first-passage PDF 

are determined at a low computational cost. 
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The remainder of this chapter is organized as follows: In section 4.2 the mathematical 

formulation of the problem is given. Specifically, in section 4.2.1 the statistical 

linearization based dimension reduction approach delineated in chapter 2 is appropriate 

modified to facilitate the first stage of the developed technique. Next, in section 4.2.2 it is 

shown that the nonlinear MDOF system non-stationary marginal, transition and the joint 

response amplitude PDFs can be approximated by closed-form expressions. Further, 

section 4.3 provides analytical closed-form expressions for the time-dependent survival 

probability of the nonlinear MDOF structural system as well as for the corresponding 

first-passage PDF. In section 4.4, illustrative examples comprising a 3-DOF structural 

system exhibiting Bouc-Wen hysteresis and subject to evolutionary stochastic earthquake 

excitations are considered. Pertinent MCS data demonstrate the reliability of the proposed 

technique. 

4.2 Mathematical formulation 

In this section, the mathematical formulation of the approximate analytical technique 

for determining the survival probability and first-passage PDF of nonlinear MDOF 

structural systems subject to an evolutionary stochastic excitation vector is presented.  

4.2.1 Statistical linearization based dimension reduction approach 

An n-degree-of-freedom nonlinear structural system governed by the Eq.(3.1) is 

considered herein. It is noteworthy that the first stage of the proposed technique lies on 

the utilization of the approximate dimension reduction/decoupling approach analytically 

presented in chapter 3. Note in passing that instead of the frequency domain Wiener-

Khinchin relationship of Eq.(3.9), a state-variable formulation can be adopted yielding a 

system of differential equations of the Lyapunov kind (e.g., Gajic and Qureshi, 1995; 

Roberts and Spanos, 2003) for the system response covariance matrix. Nevertheless, 

although a pre-filtering treatment can be applied for considering non-stationary stochastic 

excitation processes of the separable kind (Roberts and Spanos, 2003), excitations 
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possessing a non-separable EPS (e.g. realistic cases of earthquake excitations) cannot be 

accounted for, at least in a straightforward manner.  

Further, associated with the SDE of Eq.(3.23) is the Fokker-Planck (F-P) partial 

differential equation governing the response amplitude transition PDF of the Markovian 

process   ; that is, 

 

  
                    

 

   
   

 

 
            

                

         
    

                     

 
 

 

  

   
 
  

                

      
    

                                                         

Specifically, considering the case                              ), the marginal 

system response amplitude PDF has been shown to follow the time-dependent Rayleigh 

distribution of the form of Eq.(3.25). 

4.2.2 Transition and Joint Nonlinear System Response PDFs 

Taking into account that no change of state can occur if the transition time is zero i.e., 

                                and following a similar analysis as the one in Spanos 

and Solomos (1983), the transition response amplitude PDF                    for the i-th 

degree-of-freedom of the original MDOF system is assumed to be of the form 

                   
    

         
      

    
    

        

          
    

             

         
              

where           and           are functions to be determined and    represents the 

modified Bessel function of the first kind and of zero order. Next,substituting Eq.(4.2) 

into the F-P Eq.(4.1) and manipulating (see also Spanos and Solomos, 1983; Solomos and 

Spanos, 1983; Spanos and Kougioumtzoglou, 2014) yields the linear first-order ODEs 

          

   
                            

                         

      
            

              

and 
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Relying on the assumption that the equivalent damping and stiffness coefficients of the 

effective LTV system follow a slowly varying with respect to time behavior, the 

following approximations over a small time interval               are introduced; i.e., 

                         and                          for                . Next, based on 

the slowly varying with time behavior of the EPS,         is also treated as a constant 

over the interval              . Further, based on the above assumptions, introducing the 

variable                 , and applying a first-order Taylor expansion around point 

      , Eqs.(4.3-4.4) become 

                
                          

      
         

                                           

and 

                                                                                  

Furthermore, considering Eqs.(3.26) and (4.5) and applying a first-order Taylor 

expansion for the response variance       around point          yields  

                                                                               

Relying next on the Markovian assumption for the process   , the joint-response 

amplitude PDF                        is given by  

                                                                                  

Utilizing Eqs.(3.25) and (4.2), Eq.(4.8) becomes 
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Further, setting 

    
  

          

        
                                                                

Eq.(4.7) yields 

                               
                                                 

Next, considering Eqs.(4.5-4.6) and Eqs.(4.10-4.11), the joint response amplitude PDF 

                           of Eq.(4.9) is given in the form  

                           
          

                         
  

  

     
    

                  
         

                          
  

   

 

 
              

                          
  

 

                      

4.3 Nonlinear MDOF system reliability assessment 

In this section the approximate analytical technique developed in Spanos and 

Kougioumtzoglou (2014) for nonlinear SDOF survival probability determination is 

generalized herein to account for MDOF systems by utilizing the statistical linearization 

based dimension reduction approach. 

In this regard, the survival probability   
  is defined as the probability that the system 

response amplitude    stays below a prescribed barrier   over the time interval      , 
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given that          . Further, the first-passage PDF   
     and the survival 

probability   
  are related according to the expression 

  
      

   
    

  
                                                               

Next, adopting the discretization scheme employed in Solomos and Spanos (1983) yields 

intervals of the form 

                                                                  
              

 
           

where the response amplitude    is assumed to be constant over               due to its 

slowly varying in time behavior. In Eq.(4.14)        represents the effective LTV system 

equivalent natural period given by 

          
  

         
                                                               

Note in passing that a smaller time interval can be chosen if higher accuracy is required. 

In this regard, the survival probability   
  is assumed to have a constant value over the 

same time interval as well. Obviously, the survival probability is given by 

  
             

                                                           

 

   

 

where     
  is defined as the probability that the response amplitude    will exceed the 

prescribed barrier   over the time interval              , given that no crossings have 

occurred prior to time       . Next, invoking the Markovian property of the response 

amplitude   , one gets 

    
  

                             

                  
 

        
 

      
 

                                 

where   denotes the intersection symbol. Utilizing Eq.(3.25)       
  can be determined 

analytically in a straightforward manner; that is, 
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whereas         
  is defined as a double integral of the form 

        
                                                                         

 

 

 

 

 

Further, taking into account Eq.(4.12) and expanding the Bessel function       in the 

form (e.g., Abramowitz and Stegun, 1970)   

       
       

        

 

   

                                                  

analytical treatment of the involved integrals is possible yielding  

        
            

 

   

                                                         

where 
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with 



 36 

                 
   

               
  

   
        

  

                  
  

 

                             
   

 

       

  
  

               
  

 

  

        

        
  

                
  

                                                              

In Eq.(4.24)         represents the incomplete Gamma function defined as         

          
 

 
.  

Concisely, the developed technique comprises the following steps: 

i. Determination of the MDOF system non-stationary response covariance matrix 

(Eqs.(3.11) and (3.14)) via a statistical linearization treatment of the problem.   

ii. Determination of the equivalent linear time-varying elements           and 

          by solving the system of algebraic equations (Eqs.(3.18-3.19)). 

iii. Determination of       via numerically integrating the first-order ODE Eq.(3.26). 

iv. Determination of the equivalent natural period           (Eq.(4.15)) and 

discretization  of the time domain via Eq.(4.14). 

v. Determination of the parameters       
  and         

  via Eqs.(4.18) and (4.19). 

vi. Determination of the survival probability   
     via Eq.(4.16) and of the 

corresponding  first-passage PDF   
     via Eq.(4.13). 
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4.4 Numerical applications 

4.4.1 MDOF Bouc-Wen hysteretic building structure 

In this section, a nonlinear three-degree-of-freedom structural system following the 

Bouc-Wen hysteretic model (e.g., Wen, 1980;  Ikhouane and Rodellar, 2007) subject to 

evolutionary stochastic earthquake excitation is considered to demonstrate the reliability 

of the technique. A side view of the MDOF building structure can be seen in Fig.(4.1). 

 

 

Figure 4.1. Hysteretic three-DOF structural system. 

 

The survival probabilities and the first-passage PDFs obtained via the developed 

approximate technique are compared with survival probability and first-passage PDF 

estimates obtained via pertinent Monte Carlo simulations (10,000 realizations). The 

Monte Carlo simulations were conducted by utilizing a spectral representation 

methodology; additional details can be found in Shinozuka and Deodatis (1991). 

Further, a standard fourth-order Runge-Kutta numerical integration scheme is 

employed for solving the nonlinear system differential equation of motion (Eq.(3.1)), 

whereas the barrier level   is expressed as a fraction   of the maximum over time and 

over DOF value of the non-stationary response displacement standard deviation., i.e. 

                     . Considering inter-story drifts    as well as the additional states 

   introduced by the Bouc-Wen model, the 3-DOF nonlinear structural system is 

governed by Eq.(3.1) where 
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where 
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Further,  

   
      

      
                                                                   

where 
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In Eqs.(4.30-4.31)   stands for the rigidity ratio which can be viewed as a form of post-

yield to pre-yield stiffness ratio      corresponds to the linear system  . Further, the 
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damping matrix of the structural system   is assumed to be proportional to the stiffness 

matrix; that is, 

   
      

      
                                                                     

where 

                                                                               

         
   
   
   

                                                           

and 

     
   
   
   

                                                                   

In Eq.(4.34)    is taken equal to         . For the specific example        , and the 

loading vector becomes 

                                                                                   

Further, 

                                                                                 

In the Bouc-Wen model the additional state    is associated with the displacement    via 

the equation 

                                                                                   

where 

                          
            

                                           

The parameters       and   are capable of representing a wide range of hysteresis loops 

(e.g., Wen, 1980; Song and Der Kiureghian, 2006; Ikhouane and Rodellar, 2007). In this 

example the values       ,         ,     and     are considered. The 
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equivalent linear matrices take the form (e.g., Soong and Grigoriu, 1993; Roberts and 

Spanos, 2003; Li and Chen, 2009)  
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Further, 
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The elements     
 and     

in Eqs.(4.43) and (4.46) are given by the expressions 

    
  

 

 

 
 
 
 

 
        

      
  

       
  

 
 
 
 

                                        

and 
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respectively.  

An interesting development can be found in Song and Der Kiureghian (2006) where a 

flexible model of the Bouc–Wen class is proposed for use in nonlinear random vibration 

analysis by the equivalent linearization method. The model is characterized by the ability 

to describe highly asymmetric hysteresis loops in a straightforward manner. In this 

setting, closed-form expressions are derived also in this case for the coefficients of the 

equivalent linear system in terms of the second moments of the response quantities. 

4.4.2 Hysteretic 3-DOF structural system under evolutionary stochastic excitation 

of the separable form 

In this example, the excitation EPS     
      takes the form of Eq.(2.5) where        

represents the widely used in earthquake engineering applications  Clough-Penzien power 

spectrum (e.g., Clough and Penzien, 1993) and      denotes the time-modulating 

envelope function given in Eq.(2.4). The parameters values used are            , 

                                        ,        and       . The total 

duration of the excitation is       onds. Further, the hysteretic 3-DOF structural system 

has the following properties                                       

                                                   and    

              . 
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Figure 4.2. Non-stationary separable excitation power spectrum     
     . 

 

 

Figure 4.3. Time-varying equivalent natural frequency           of the effective LTV 

system. 
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Figure 4.4. Time-varying equivalent damping coefficient           of the effective LTV 

system. 

 

 

Figure 4.5. Survival probability for various values of the parameter λ for the first DOF; 

comparisons with MCS (10,000 realizations). 
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Figure 4.6. First-passage PDF for various values of the parameter λ for the first DOF; 

comparisons with MCS (10,000 realizations). 

 

 

Figure 4.7. Survival probability for various values of the parameter λ for the second 

DOF; comparisons with MCS (10,000 realizations). 
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Figure 4.8. First-passage PDF for various values of the parameter λ for the second DOF; 

comparisons with MCS (10,000 realizations). 

 

 

Figure 4.9. Survival probability for various values of the parameter λ for the third DOF; 

comparisons with MCS (10,000 realizations). 
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Figure 4.10. First-passage PDF for various values of the parameter λ for the third DOF; 

comparisons with MCS (10,000 realizations). 

In Figs.(4.3) and (4.4) the equivalent time-varying natural frequency           and the 

damping element           corresponding to each DOF are plotted, respectively. Note that 

the hysteretic behavior of the structural system is captured by the decreasing with time 

trend of the stiffness element, as well as the increasing with time trend of the damping 

element. Further, in Figs.(4.5) and (4.6) the survival probabilities   
     and the 

corresponding first-passage PDFs   
     for the first DOF of the hysteretic MDOF 

structural system are plotted for various barrier levels, respectively. The value      is 

chosen regarding the number of terms to be included in Eq.(4.21). Comparisons between 

the analytical approximate technique and MCS data (10,000 realizations) demonstrate a 

satisfactory degree of agreement. Note that the irregular/non-smooth shape of the 

approximate technique based first-passage PDFs is due to the differentiation of the 

survival probability (Eq.(4.13)). In this regard, the survival probability Eq.(4.16) is 

assumed to have constant values over the time intervals               resulting in a non-

smooth representation. Obviously, the level of non-smoothness increases when 

differentiation takes place. Furthermore, in Figs. (4.7), (4.8), (4.9) and (4.10) the survival 

probabilities   
     as well as the associated first-passage PDFs   

     corresponding to 
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the second and third DOF of the system are plotted for various barrier levels. 

Comparisons with MCS demonstrate a satisfactory degree of accuracy for these cases as 

well. 

4.4.3 Hysteretic 3-DOF structural system under evolutionary stochastic excitation 

of the non-separable form 

The excitation EPS     
      is assumed to have the non-separable form given in Eq.(2.6) 

where    and   are taken to be equal to          and     respectively. This spectrum 

comprises some of the main characteristics of seismic shaking, such as decreasing of the 

dominant frequency with respect to time (e.g., Liu, 1970; Spanos and Solomos, 1983). 

Further, the hysteretic 3-DOF structural system parameters take the values    

                                                           

      ,                  and                 . 

 

Figure 4.11. Non-separable excitation evolutionary power spectrum     
     . 
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Figure 4.12. Time-varying equivalent natural frequency           of the effective LTV 

system. 

 

 

Figure 4.13. Time-varying equivalent damping coefficient           of the effective LTV 

system. 

 



 49 

 

Figure 4.14. Survival probability for various values of the parameter λ for the first DOF; 

comparisons with MCS (10,000 realizations). 

 

 

Figure 4.15. First-passage PDF for various values of the parameter λ for the first DOF; 

comparisons with MCS (10,000 realizations). 
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Figure 4.16. Survival probability for various values of the parameter λ for the second 

DOF; comparisons with MCS (10,000 realizations). 

 

 

Figure 4.17. First-passage PDF for various values of the parameter λ for the second DOF; 

comparisons with MCS (10,000 realizations). 
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Figure 4.18. Survival probability for various values of the parameter λ for the third DOF; 

comparisons with MCS (10,000 realizations). 

 

 

Figure 4.19. First-passage PDF for various values of the parameter λ for the third DOF; 

comparisons with MCS (10,000 realizations). 

 

In Figs.(4.12) and (4.13) the equivalent time-varying natural frequency           and 

damping           elements corresponding to each DOF are plotted, respectively. 

Underlying the analytical approximate approach is the ability to capture the time 
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evolution as well as the essential characteristics of the frequency content of the nonlinear 

structural system response. Note that the ability of the technique to provide with time-

varying natural frequencies           can be of particular importance if seen in 

conjunction with recent theoretical developments regarding the concept of the mean 

instantaneous frequency (MIF) (e.g., Qian, 2002; Kijewski-Correa and Kareem, 2006; 

Spanos et al., 2007). In this regard,           together with the MIF of the seismic 

excitation can be potentially employed for evaluating the effects of temporal non-

stationarity in the frequency content of the seismic excitation on the structural system 

response as well as for tracking moving resonance phenomena (e.g., Beck and 

Papadimitriou, 1993; Tubaldi and Kougioumtzoglou, 2014). Further, in Figs.(4.14) and 

(4.15) the survival probabilities   
     and the corresponding first-passage PDFs   

     

for the first DOF of the hysteretic MDOF structural system are plotted for various barrier 

levels, respectively; comparisons with MCS (10,000 realizations) demonstrate a 

satisfactory degree of accuracy. Considering Figs.(4.16), (4.17), (4.18) and (4.19) which 

correspond to the second and third DOF, the same conclusion regarding the accuracy of 

the approach can be drawn. 
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Chapter 5 

Efficient fragility analysis within a PBEE framework for 

nonlinear MDOF structural systems  

5.1 Preliminary remarks 

Structural systems are often subjected to earthquake excitations that exhibit 

evolutionary characteristics such as strong variability in both the intensity and the 

frequency content. This fact necessitates the representation of this class of loads by non-

stationary stochastic processes (e.g., Soong and Grigoriu, 1993; Roberts and Spanos, 

2003; Li and Chen, 2009; Spanos and Kougioumtzoglou 2012). Further, structural 

systems can behave in a nonlinear/hysteretic manner with restoring forces depending on 

the time history of the response when subjected to severe excitations such as earthquakes 

(e.g., Mayergoyz, 2003; Ikhouane and Rodellar, 2007). Thus, a sustained challenge in the 

area of earthquake engineering has been the efficient response analysis of 

nonlinear/hysteretic structures under evolutionary stochastic excitations. 

In general, PBEE serves as a potent framework for facilitating seismic risk decision-

making for engineering structures, while properly accounting for the underlying 

uncertainties. In this regard, the Pacific Earthquake Engineering Research (PEER) Center 

proposed a general probabilistic framework for PBEE analysis (e.g., Der Kiureghian, 

2005), which involves a number of analysis components such as: (i) stochastic hazard 

analysis; (ii) stochastic structural/damage analysis; and (iii) stochastic loss analysis 

reflecting the effect of the underlying uncertainties on a quantifiable decision variable, 

commonly expressed in economic terms. In the ensuing analysis focus is placed on 

component (ii) that constitutes the most computationally demanding one. 
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Over the last few decades, several approaches have been developed for performing 

fragility analysis and for generating the corresponding homonymous curves; i.e. 

probabilities of exceeding specified damage states (DS) given an intensity measure (IM) 

value (e.g., Hwang and Jaw, 1990; Hwang and Huo, 1994; Porter et al., 2007). 

Indicatively, a limited number of nonlinear time-history analyses with prescribed IM 

level compatible scaled real earthquake records (e.g., Vamvatsikos and Cornell, 2002) are 

typically employed in conjunction with a statistical analysis of the response statistics. 

Alternatively, in cases where an appropriate stochastic model exists for the excitation 

(e.g., evolutionary power spectrum), standard, or efficient Monte Carlo simulation (MCS) 

based methodologies such as importance/line sampling, and subset simulation (e.g., 

Hammersley and Handscomb, 1964; Au and Beck, 2003; Schueller et al., 2004) can be 

utilized. Clearly, in the former case the accuracy of the results is undermined by the 

limited number of samples, whereas in the latter case the computational cost involved can 

be significantly high, or even prohibitive.  

In this regard, it can be argued that there is a need for developing approximate 

analytical and/or numerical techniques for determining efficiently the response and the 

related fragilities of nonlinear structural systems subject to evolutionary stochastic 

excitations. Nevertheless, although there is a considerable body in the literature referring 

to the development of such stochastic response determination techniques (e.g. Roberts 

and Spanos, 2003; Lutes and Sarkani, 2004; Li and Chen, 2009) there are limited results 

related to utilizing such techniques for efficient fragility analysis applications. An 

interesting contribution in this regard is the work by Der Kiureghian and Fujimura (2009) 

where an efficient tail-equivalent linearization based approach was applied for fragility 

analysis of a nonlinear building structure (see also Fujimura and Der Kiureghian, 2007). 

Further, Kafali and Grigoriu (2007) performed structural system fragility analysis 

utilizing the crossing theory for the cases of linear and nonlinear oscillators, whereas 

Tubaldi et al. (2014) employed a combination of analytical and simulation techniques to 

assess fragilities for adjacent steel buildings connected by linear and nonlinear viscous 

dampers. 
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The fragility analysis methodology developed herein differs, as compared with a 

typically applied fragility analysis implementation, in the following three aspects: (i) the 

ground motion is modeled as a stochastic process rather than a suite of scaled real 

earthquake records; (ii) instead of the commonly employed scalar IMs of the peak ground 

acceleration (PGA) or spectral acceleration, a vector-valued IM consisting of two 

parameters (e.g., Baker and Cornell, 2005), namely the earthquake moment magnitude 

   and the epicentral distance   (i.e. the distance from the epicentre to system site), is 

adopted herein; (iii) a recently developed efficient approximate analytical stochastic 

dynamics technique is utilized for determining the system fragilities; thus, circumventing 

computationally demanding MCS. The proposed methodology is characterized by a 

number of attributes that can be construed as significant advantages. Specifically, the 

challenge of selecting and scaling earthquake records is conveniently avoided; note in 

passing that the above issue remains highly controversial in the relevant literature (e.g., 

Luco and Bazzuro, 2007; Der Kiureghian and Fujimura, 2009; Grigoriu, 2011, Giaralis 

and Vamvatsikos, 2014). Further, due to the nature of the adopted IM, depicting system 

fragilities versus the employed IM leads to producing fragility surfaces instead of the 

usual two-dimensional fragility curves. Clearly, the fragility surfaces provide with 

enhanced information and with a more comprehensive perspective of the system 

fragilities for various levels of damage (see also Kafali and Grigoriu, 2007; 

Koutsourelakis, 2010).  

In this chapter a novel methodology for conducting efficient fragility analysis of 

nonlinear/hysteretic multi-degree-of-freedom (MDOF) structural systems subject to 

evolutionary stochastic earthquake excitations is formulated. First, an appropriate 

seismological model is used for describing the probability law of ground motion for 

various values of    and  . Next, a recently developed efficient approximate dimension 

reduction/decoupling technique based on the concepts of statistical linearization and of 

stochastic averaging for determining the non-stationary system response statistics is 

employed; thus, computationally demanding Monte Carlo simulations are circumvented. 

Further, approximate closed-form expressions are derived for the non-stationary response 
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amplitude PDFs of the IDRs corresponding to each and every DOF. In this regard, 

considering appropriately defined levels of damage structural system related fragilities 

are determined at a low computational cost. Overall, the proposed framework appears to 

be highly efficient for performing fragility analysis, reducing significantly the 

computational burden for this task.  

Following the introductory section, in section 5.2 the mathematical formulation as 

well as the efficient fragility analysis framework are delineated whereas in section 5.3 

illustrative examples comprising the versatile Bouc-Wen (hysteretic) model are 

considered for demonstrating the efficiency of the proposed approach. Comparisons with 

pertinent MCS are included as well indicating a satisfactory level of accuracy exhibited 

by the proposed technique. 

5.2 Mathematical formulation 

5.2.1 Statistical linearization based dimension reduction approach 

Consider an n-degree-of-freedom nonlinear structural system governed by the Eq.(3.1) 

where       and   denote the response acceleration, velocity and displacement vectors, 

respectively, defined in relative coordinates; namely that the vector   contains the inter-

story drifts. Focusing next on the joint time-frequency domain and following the 

approximate/analytical statistical linearization based dimension reduction/decoupling 

approach delineated in chapter 3 the determination of the effective auxiliary LTV SDOF 

time-dependent parameter       is efficiently achieved via the corresponding first-order 

ODE of Eq.(3.26) at a low computational cost (e.g., Spanos and Lutes, 1980; 

Kougioumtzoglou and Spanos, 2009; Kougioumtzoglou, 2013). Note in passing that in 

the herein analysis, the EPS excitation     
      is assumed to have the form given in 

Eq.(2.20). 
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5.2.2 Efficient fragility analysis framework 

Clearly, the development of a fragility analysis methodology involves the definition of 

suitable levels of damage that are correlated with the structural performance. Typically, 

the DS for reliability analysis purposes are defined in terms of the overall inelastic 

deformation or the maximum inter-story drift of the structural system (e.g., Ellingwood, 

2001). In the ensuing analysis, DS are defined through the inter-story drift ratio (IDR), 

i.e. the difference of the horizontal displacements between two successive stories, 

normalized by the inter-story height  . In this setting, IDRs act as the engineering 

demand parameters (EDPs) for monitoring the structural performance. Note in passing 

that the IDR constitutes one of the most reliable measures of structural damage due to its 

close relationship to plastic rotation demands for individual beam-column connection 

assemblies.  

Next, considering the IDR amplitude              , a direct transformation (e.g., 

Ang and Tang, 2007) of the response amplitude PDF         (see Eq.(3.25)) yields the 

non-stationary IDR amplitude PDF in the form 

          
  

     
     

    
 

      
                                                

Further, of particular interest from a reliability assessment perspective is the time instant 

where the IDR amplitude reaches its most critical value, i.e.                    . In 

the following, this is assumed to be the time when       reaches its peak value, and thus, 

the PDF of Eq.(5.1) takes its most broad-band form yielding higher failure probabilities. 

In this regard, the non-stationary IDR amplitude PDF         can be directly related to 

the considered DS leading to the efficient estimation of structural system fragilities. 

Specifically, the structural system fragility    defined as the probability of exceeding a 

specific level of damage     conditioned upon the earthquake moment magnitude    

and the epicentral distance  , is expressed as 
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Considering Eq.(5.1), and integrating analytically Eq.(5.2) yields   

                                
    

      
                                  

In this setting, structural system fragilities for various DS can be readily computed 

rendering the proposed methodology highly efficient computationally. 

Note that the above determined seismic fragility of Eq.(5.3) should not be confused 

with the first-passage kind failure probability, which is uniquely defined by satisfying a 

failure criterion for the first time. In fact, several approximate analytical and/or numerical 

techniques have been developed over the past few decades for addressing the first-

passage problem in stochastic dynamics with varying degrees of success (e.g., 

Vanmarcke, 1975; Solomos and Spanos, 1983; Au and Beck, 2001; Barbato and Conte, 

2001; Naess et al., 2011; Kougioumtzoglou and Spanos, 2013b; Kougioumtzoglou and 

Spanos, 2014; Spanos and Kougioumtzoglou, 2014; Mitseas et al., 2014b). However, it 

can argued that for the herein considered structural systems the drift ratio amplitude may 

cross a prescribed damage level several times during an earthquake event without leading 

to total collapse of the structure; thus, rendering, perhaps, the fragility definition of 

Eq.(5.3) more relevant. The first-passage kind failure definition may, perhaps, be 

appropriate for the most severe damage state or for brittle masonry structures, where 

potential exceedance may lead to total collapse. In the herein proposed methodology, 

only failure definitions of the form of Eq.(5.3) are considered, whereas incorporation of 

first-passage kind failure criteria is identified as a topic of potential future work. 

Concisely, the proposed fragility methodology comprises the following components: 

i. Determination of the earthquake excitation stochastic process EPS via Eq.(2.20) 

for specific values of moment magnitude    and of epicentral distance  . 
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ii. Determination of the MDOF system non-stationary response variances 

(Eqs.(3.15-3.16)) via an evolutionary spectral matrix analysis approach and a 

statistical linearization treatment of the problem.   

iii. Determination of the equivalent linear time-varying elements           

and           by solving the two-by-two system of algebraic equations (Eqs.(3.18-

3.19)).  

iv. Determination of       via numerically integrating the first-order ODE Eq.(3.26).  

v. Structural system fragilities determination for various levels of damage 

conditioned upon the moment magnitude    and the epicentral distance    via 

Eq.(5.3). 

Note that the proposed methodology can be readily adapted to account for alternative 

other stochastic seismological models as well (e.g., Rezaeian and Der Kiureghian 2008). 

5.3 Numerical applications 

In this section, a nonlinear three-degree-of-freedom structural system following the 

Bouc-Wen hysteretic model (e.g., Wen, 1980; Ikhouane and Rodellar, 2007) is 

considered for demonstrating the efficiency and reliability of the proposed methodology. 

5.3.1 MDOF Bouc-Wen hysteretic building structure 

A three-DOF lumped parameter model is considered for representing a three-story 

reinforced concrete building whose floors are assumed to be rigid with a constant height 

equal to 3m, whereas the masses of its plates are constant for all floors with a value 

                . Further, a Young’s modulus of            and mass density 

of                are considered. Columns’ square cross-section dimensions for a 

given floor are assumed to be equal and thus, the vector of the considered design 

variables   has one component for every story, i.e. the width of the cross-section. A side 

view of the 3-DOF building structure is shown in Fig.(5.1). 
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Figure 5.1. Nonlinear 3-DOF structural system. 

 

Considering inter-story drifts    as well as the additional states    introduced by the 

Bouc-Wen model, the 3-DOF nonlinear structural system is governed by Eq.(3.1) where 

                                                                                

The Bouc-Wen formulation related to MDOF systems unfolded in Eqs.(4.26-4.48) is 

adopted herein. Considering the parameters of the model the following values are 

employed:         ,    ,          , and    . In order to estimate the 

accuracy of the developed methodology structural systems characterized by different 

level of nonlinearity are considered; the rigidity ratio   is taken equal to      and      

for the case studies I and II, respectively. 

5.3.2 Fragility surfaces considering a hysteretic MDOF building structure (case 

study I) 

In this study, as well as in various PBEE studies, discrete DS are considered (e.g, 

Tubaldi et al., 2014). The DOF that possesses the most critical non-stationary IDR 

amplitude PDF         according to the definition given in section 5.2.2 serves as the 

global EDP while the employed relationship between the EDP and the DS is based on the 

work by Ghobarah (2004) related to ductile reinforced concrete (RC) moment resisting 

frames (see Table. 5.1).  
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Damage States     (%) 

(I)-Moderate         

(II)-Heavy         

(III)-Major         

(IV)-Destroyed         

Table 5.1: Damage states (DS) and the associated inter-story drift ratio limits (   ). 

Further, the seismic fragility surfaces that serve as a quantitative measure of the 

structural system vulnerability are evaluated for the considered damage levels following 

the methodology presented in section 5.2.2. The seismic fragilities are efficiently 

determined by simply integrating the critical non-stationary response IDR amplitude PDF 

        of the DOF that exhibits the maximum           value; see Eq.(5.2). Notably, 

the fragility surfaces for various damage levels are determined at a minimum 

computational cost via Eq.(5.3).  

Next, approximate technique based fragility estimates are compared with pertinent 

Monte Carlo simulation based estimates utilizing 5,000 realizations. Specifically, 

excitation realizations compatible with the EPS of Eq.(2.20) are generated based on the 

spectral representation technique (e.g. Shinozuka and Deodatis 1991). Next, the nonlinear 

equation of motion (Eq.(3.1)) is numerically integrated via a standard fourth order 

Runge-Kutta scheme, and finally, system response statistics as well as structural system 

fragilities are obtained based on the ensemble of the response realizations. In Figs.(5.2-

5.9), the fragility surfaces determined via the approximate nonlinear stochastic dynamics 

technique are compared with corresponding MCS data for a given design vector 

                    (in m). Specifically, in Figs.(5.2) and (5.3) the fragility surfaces 

corresponding to damage state (I) “Moderate” are plotted based on the approximate 

technique and on MCS, respectively. Similarly, Figs.(5.4-5.5) correspond to damage state 

(II) “Heavy”, Figs.(5.6-5.7) correspond to damage state (III) “Major”, and Figs.(5.8-5.9) 

correspond to damage state (IV) “Destroyed”.  
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Figure 5.2. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via the 

proposed approximate methodology for damage state (I) “Moderate”. 

 

 

Figure 5.3. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via 

MCS (5,000 realizations) for damage state (I) “Moderate”. 

 



 63 

 

Figure 5.4. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via the 

proposed approximate methodology for damage state (II) “Heavy”. 

 

 

Figure 5.5. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via 

MCS (5,000 realizations) for damage state (II) “Heavy”. 
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Figure 5.6. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via the 

proposed approximate methodology for damage state (III) “Major”. 

 

 

Figure 5.7. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via 

MCS (5,000 realizations) for damage state (III) “Major”. 
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Figure 5.8. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via the 

proposed approximate methodology for damage state (IV) “Destroyed”. 

 

 

Figure 5.9. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via 

MCS (5,000 realizations) for damage state (IV) defined as ''Destroyed''. 
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Further, in Fig.(5.10) computed fragilities of the considered 3-DOF Bouc-Wen hysteretic 

system for a constant value of epicentral distance        are presented. 

Analytical/approximate as well as MCS data (5,000 realizations) are given for every 

considered damage state. In this setting fragilities for the case of treating the moment 

magnitude as a constant parameter are given as well in Fig.(5.11). 

 

Figure 5.10. Fragility curves of a 3-DOF Bouc-Wen hysteretic system (      ) for a 

constant value of epicentral distance       . Analytical/approximate as well as MCS 

data (5,000 realizations) are presented for every considered damage state. 
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Figure 5.11. Fragility curves of a 3-DOF Bouc-Wen hysteretic system (      ) for a 

constant value of moment magnitude     . Analytical/approximate as well as MCS 

data (5,000 realizations) are presented for every considered damage state. 

 

5.3.3 Fragility surfaces considering a hysteretic MDOF building structure (case 

study II) 

Seismic fragilities are computed for the case of a hysteretic MDOF structural system 

characterized by a rigidity ratio   equal to     . Specifically, in Figs.(5.12) and (5.13) the 

fragility surfaces corresponding to damage state (I) “Moderate” are plotted based on the 

approximate technique and on MCS, respectively. Similarly, Figs.(5.14-5.15) correspond 

to damage state (II) “Heavy”, Figs.(5.16-5.17) correspond to damage state (III) “Major”, 

and Figs.(5.18-5.19) correspond to damage state (IV) “Destroyed”.   
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Figure 5.12. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via the 

proposed approximate methodology for damage state (I) “Moderate”. 

 

 

Figure 5.13. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via 

MCS (5,000 realizations) for damage state (I) “Moderate”. 
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Figure 5.14. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via the 

proposed approximate methodology for damage state (II) “Heavy”. 

 

 

Figure 5.15. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via 

MCS (5,000 realizations) for damage state (II) “Heavy”. 
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Figure 5.16. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via the 

proposed approximate methodology for damage state (III) “Major”. 

 

 

Figure 5.17. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via 

MCS (5,000 realizations) for damage state (III) “Major”. 
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Figure 5.18. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via the 

proposed approximate methodology for damage state (IV) “Destroyed”. 

 

 

Figure 5.19. Fragility surface of a 3-DOF Bouc-Wen hysteretic system (      ) via 

MCS (5,000 realizations) for damage state (IV) “Destroyed”. 

 

Further, in Fig.(5.20) computed fragilities of the considered 3-DOF Bouc-Wen hysteretic 

system for a constant value of epicentral distance        are presented. 



 72 

Analytical/approximate as well as MCS data (5,000 realizations) are given for every 

considered damage state. In this setting, fragilities for the case of treating the moment 

magnitude as a constant parameter are given as well in Fig.(5.21). 

 

Figure 5.20. Fragility curves of a 3-DOF Bouc-Wen hysteretic system (      ) for a 

constant value of epicentral distance       . Analytical/approximate as well as MCS 

data (5,000 realizations) are presented for every considered damage state. 

 

Figure 5.21. Fragility curves of a 3-DOF Bouc-Wen hysteretic system (      ) for a 

constant value of moment magnitude     . Analytical/approximate as well as MCS 

data (5,000 realizations) are presented for every considered damage state.  
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It can be readily seen that the proposed seismic fragility methodology demonstrates a 

satisfactory degree of accuracy regardless the magnitude of the imposed IDR limit (   ) 

and the level of the considered nonlinearity. Further, fragilities are efficiently depicted 

versus the two basic parameters of the stochastic seismological model rather than a 

commonly used scalar IM such as the PGA or the spectral acceleration. The achieved 

accuracy in conjunction with the related low computational cost renders the proposed 

methodology, hopefully, useful for efficient structural system fragility analysis and 

design applications, at least at a preliminary level. 
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Chapter 6 

Robust design optimization of linear MDOF structural 

systems controlling both displacement and acceleration 

features 

6.1 Preliminary remarks 

Most often structural systems in seismic prone areas are subject to earthquake 

excitations that exhibit strong variability in both intensity and frequency content. 

Therefore, a realistic system analysis and design necessitates the representation of this 

class of structural loads by non-stationary stochastic processes (e.g., Spanos and 

Kougioumtzoglou, 2012). Non-stationary stochastic processes are commonly regarded to 

be filtered stationary stochastic processes according to the concept first proposed by 

Priestley (1965) and later refined by Dahlhaus (1997), introducing the class of locally 

stationary processes. Further, the dynamical structural system itself represents another 

potential source of randomness. In the current state of practice, usually an idealized 

mathematical/mechanical model of a structural system is adopted. Due to the uncertainty 

in the system parameters, mechanical/material properties are most generally modeled as 

non-homogeneous stochastic fields.  

In conventional structural optimization, the random nature of a structure’s 

mechanical/material properties and construction imperfections, as well as the inherent 

stochasticity in the seismic input process are most often neglected. In this regard, only 

fairly recently, the study of structural optimization problems within a probabilistic 

framework has attracted the attention of an increasingly large number of researchers. 

Depending on the model of uncertainty and on the definition of the objective functions 
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and constraints in the optimization problem, various optimization frameworks have been 

developed such as reliability-based optimization, fuzzy optimization, and robust 

optimization (e.g., Gasser and Sch eller, 1997; Au, 2005; Jensen, 2006; Beer and 

Liebscher, 2008). 

Further, optimal structural design strategies require the adoption of appropriate 

performance measures to characterize the stochastic dynamic response, as well as an 

efficient probabilistic optimization methodology yielding the most favorable design. 

Clearly for a more comprehensive treatment of the stochastic structural design attention 

should be placed in considering and controlling both inter-story drifts and absolute floor 

accelerations features. In this regard, it is of significant importance for the decision maker 

to appreciate the tradeoffs between these two performance measures, which often 

constitute conflicting design requirements. 

Note that in the current state of practice, stochastic structural optimization frameworks 

employ mainly maximum inter-story drift statistics as a single measure for quantifying 

the performance of a dynamical structural system. Maximum absolute acceleration 

statistics that represent an additional pertinent measure for evaluating the system 

performance are usually neglected. In this regard, a commonly employed stochastic 

structural optimization design approach yielding small values for the inter-story drifts 

may result in substantial accelerations; thus, yielding potentially significant damage to 

non-structural building components. Therefore, it can reasonably be argued that 

performance measures based on system response acceleration should also be embodied in 

stochastic structural design optimization frameworks.  

The importance of considering acceleration as a measure for assessing potential 

damage of non-structural components and building contents has been demonstrated in a 

number of research efforts. An interesting contribution in this regard is the work by Viti 

et al. (2006) where a retrofit strategy based on weakening techniques with supplemental 

damping was proposed for reducing both relative displacements and absolute 

accelerations. More recently, Cimellaro (2007) proposed an interesting optimal design 
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methodology for controlling displacement as well as acceleration features of a multi-story 

building structure under dynamic actions.  

In this chapter, an evolutionary methodology for the efficient solution of structural 

design optimization problems involving linear systems under non-stationary stochastic 

excitation is proposed. A Genetic Algorithm-based structural optimization solution 

procedure is proposed featuring constraints of both inter-story drift and absolute floor 

acceleration. A MDOF building structure is included as a numerical example to 

demonstrate the benefits of the proposed stochastic structural design optimization 

framework. 

Following the introductory section, in section 5.2 the mathematical formulation of the 

evolutionary spectral matrix analysis is presented. In section 5.3 a brief description of the 

optimal design problem is provided whereas in section 5.4 an illustrative example is 

considered for demonstrating the efficiency of the proposed approach. Comparisons with 

pertinent MCS are included as well indicating a satisfactory level of accuracy exhibited 

by the proposed technique. 

6.2 Mathematical formulation 

6.2.1 Evolutionary spectral matrix analysis  

Consider an n-degree-of-freedom linear structural system governed by the equation  

                                                                           

where       and   denote the response acceleration, velocity and displacement vectors, 

respectively, defined in absolute coordinates; namely that the vector   contains the 

relative floor displacements with respect to the ground motion.  M, C and K denote the 

      mass, damping and stiffness matrices, respectively; 

                            is a       zero mean, non-stationary stochastic vector 

process defined as                where   is the unit column vector, 

                is an arbitrary       vector of constant weighting coefficients, and 
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       is the stochastic non-stationary seismic excitation process;      possesses an 

evolutionary power spectrum (EPS) matrix         of the form of Eq.(3.2).  

The non-stationary stochastic process is regarded to be a filtered stationary stochastic 

process according to studies already cited in chapter 3. Focusing on the joint time-

frequency domain , the response determination problem is defined as seeking the system 

response EPS matrix of the form 

        

 
 
 
 
 

     
           

                                                
     

     
          

                                                              

                                                                                   
     

     
                                        

                  
      

 
 
 
 

               

In the general case of a linear MDOF system under evolutionary excitation, the quasi-

stationary approach delineated in section 3.2 through the Eqs.(3.9-3.11) in conjunction 

with the expression of the FRF which for the case of a linear structure takes the form  

                                                                   

lead to the following expressions considering the  -th degree-of-freedom,  
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Clearly, the approximate frequency domain approach provides an efficient 

methodology for determining the response of MDOF systems in terms of various 

performance measures circumventing computationally intensive Monte Carlo simulations 

(see also Kougioumtzoglou and Spanos, 2013, Mitseas et al., 2014a). 
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6.3 Formulation of the optimal design problem  

6.3.1 Single-objective optimization  

Admittedly, uncertainties are ubiquitous in any dynamical structural system of 

engineering interest. Therefore, there is a necessity for taking uncertainties into 

consideration during the design process. The continuing tendency to reduce the weight of 

structures in conjunction with explicit consideration of uncertainties has yielded a variety 

of stochastic optimization frameworks. In this regard, a general stochastic optimization 

formulation focusing on the determination of a vector   of design variables to minimize 

an objective function takes the form 

                                                                               

where 

                   
                                            

subject to system response level constraints of the form 

        
           

              
                                       

In the case of a stochastic objective function   
         and   

         are employed. 

  
         and   

         are the maximum over time non-stationary values of the mean 

and standard deviation of the objective function           respectively, evaluated at the 

design variables vector  ;         is a deterministic objective function evaluated at the 

design variables vector  ; in case of a stochastic response constraint,    

         and 

   

         stand for the maximum over time non-stationary values of the mean and 

standard deviation of the response function   
         respectively, evaluated at the design 

variables vector  ;   
       is a deterministic response level constraint evaluated at the 

design variables vector  ; and      is the vector of the constraint functions of the 
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optimization problem under consideration.   is a given set that contains the boundary 

constraints for the vector of design variables  . 

6.3.2 Genetic algorithms  

Genetic algorithms (GAs) belong to the category of Evolutionary algorithms (EAs) 

which constitute a widely used class of methods for solving optimization problems 

(Holland, 1975; Goldberg, 1989; Bäck and Schwefel, 1993). The standard GAs imitate 

the biological evolution in nature and have three significant advantages that make them 

very efficient: the use of randomized operators, working with population of design points 

in design variables space as well as the ability to handle continuous, discrete or even 

mixed optimization problems. In general, GAs appear to be less vulnerable to being 

trapped in local optima and thus, GAs are considered to be quite robust and reliable in 

obtaining the global optimum for non-convex constrained optimization problems. Next, 

the basic GA components are briefly reviewed: (i) initialization component: an initial 

population of vectors of the design variables   is randomly generated; (ii) fitness 

evaluation component: each member of the population is evaluated by computing the 

representative penalized objective and the corresponding fitness functions, using an 

appropriate penalty function; (iii) selection component: a selection operation is applied to 

the current population, leading to the definition of a ''temporary population''; (iv) 

generation component: crossover and mutation operators are applied to the ''temporary 

population'' to create the next population; (v) fitness evaluation component: applied to the 

''temporary population'', and (vi) convergence check component.  
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6.4 Numerical application 

6.4.1 MDOF linear building structure 

In this section, the proposed methodology is applied to a linear three-DOF structural 

system subjected to a non-stationary stochastic excitation. All floors have a constant 

height equal to 3m, leading to a total height of 9m. The masses of the plates regarded as 

constant for all floors               . Further, the young modulus   and the mass 

density   are assumed to be equal to          and              respectively; the 

weighting coefficients vector   is assumed to be equal to     . A side view of the 

structural model can be seen in Fig.(6.1).  

 

 

Figure 6.1. Linear 3-DOF structural system. 

 

Considering relative floor displacements with respect to the ground motion, the three-

DOF linear structural system is governed by Eq.(6.1) where 

                                                                               

   
     
    
    

                                                                 

and 
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Next, a Rayleigh damping model is assumed. The damping matrix is expressed as a linear 

combination of the mass and stiffness matrices according to the expression 

                                                                            

where        and          . Further, the loading vector takes the form 

                                                                                      

Results obtained using the quasi-stationary approach are validated based on 

comparisons with pertinent Monte Carlo simulation data. In this regard, a set of 5,000 

ground motion records compatible with a given EPS are generated according to the 

spectral representation method (Shinozuka and Deodatis, 1991). The excitation EPS 

    
      is assumed to have the separable form given by Eq.(2.5) in which a=0.1 and 

b=0.3; In Fig.6.2, for amplitude              , the power spectrum (PS) of the 

embedded stationary process as well as the EPS of the stochastic excitation are plotted. 

The following values of the parameters are used:                            

40 rad/s.  

 

Figure 6.2. PS        and EPS     
       of the imposed stochastic excitation. 
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The duration of the considered excitation is taken equal to    seconds. Hereinafter, 

this earthquake excitation model is utilized.  In Figs.(6.3-6.4), analytical estimates based 

on the quasi-stationary approach (see Eqs.(6.4-6.6)) are compared with MCS data 

demonstrating a high level of accuracy. Further, note that the quasi-stationary approach 

provides a conservative estimate of the response standard deviation peak values. Next it 

is deemed appropriate to recall the relation between relative floor displacements with 

respect to the ground motion and inter-story drifts i.e., 

                                                                            

 

Figure 6.3. Analytical response estimates of the standard deviation of the relative 

displacements via the quasi-stationary approach compared to MCS data for a set of 5000 

realizations (                        ). 
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Figure 6.4. Analytical response estimates of the standard deviation of the absolute 

accelerations via the quasi-stationary approach compared to MCS data for a set of 5000 

realizations (                        ). 

6.4.2 Performance measures for the determination of the response of a linear 

MDOF structural system  

As discussed earlier, for structural systems under seismic excitation, inter-story drift 

and absolute floor acceleration become key performance measures for assessing the 

performance of the structural system. Commonly, structural optimization design 

approaches yield optimal designs that present very limited inter-story drifts, neglecting 

the effect of floor acceleration on generating a wide range of failures, mainly related to 

mechanical, electrical, and hydraulic equipment. Consider next the defined three-degree-

of-freedom structural system excited by the evolutionary stochastic seismic excitation. 

Utilizing the analytical/approximate approach (see Eqs.(6.4), (6.6) and (6.15)), maximum 

over time non-stationary values of the standard deviation of inter-story drifts as well as 

absolute floor accelerations are determined specifically for the first floor. In this section, 

the aim is to demonstrate the interaction and identify potential trade-offs when choosing 

constraints related to both system response displacement and acceleration. Next, it is 

assumed that the superstructure (greater than first floor) columns’ cross-sections remain 
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constant over this parametric study. Focus is directed next on the performance measures 

associated with the first floor. 

Considering Fig.(6.5) it can reasonably be argued that increasing the corresponding 

structural elements stiffness reduces the response displacement drift. However, it results 

in higher values of the corresponding floor absolute acceleration.  

 

 

Figure 6.5. Performance measures trade-offs. 

 

To elaborate further, it can be readily seen that although the amplitude of the 

frequency response function (FRF) Fig.(6.6) close to resonance decreases with increasing 

the stiffness (larger cross-section dimensions), the response acceleration variance given 

by Eq.(6.6) increases for a certain range of cross-section dimensions. This is due to the 

trade-off between the FRF and the term ω
4
. For high values of the stiffness the decrease 

in the FRF dominates over the effect of ω
4
 yielding a decreasing trend in the response 

acceleration. 
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Figure 6.6. Frequency response functions considering the first floor of the structure. 

6.4.3 Robust design optimization problem considering various performance 

measures statistics  

A deterministic objective function is chosen for the robust design optimization 

problem corresponding to the total weight of the column elements plus that of plates. The 

response of the structural system is constrained in terms of the maximum over time non-

stationary values of the standard deviation of inter-story drifts and absolute floor 

accelerations. The design variables are the dimensions of the square cross-section of the 

column elements. Columns’ cross-section dimensions for a given floor are assumed to be 

equal, and thus the vector of design variables   has three components, one for every 

story. Assume an initial design                       and boundary constraints 

              expressed in    . The problem under consideration is written as 

                                                                                                                   

subject to the following stochastic constraints 
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Next,      is defined as the building structure weight which includes the weight of the 

column elements plus the weight of the plates evaluated at the design variables vector  ; 

        stands for the vector of the maximum over time non-stationary values of the 

standard deviation of the inter-story drifts while          represents the vector of the 

maximum over time non-stationary values of the standard deviation of the absolute floor 

accelerations. Upper bounds for the constraints are imposed as follows:   
    

         (0,2% of the inter-story height) and    
                     where 

           . The selection of the upper bound threshold for the absolute floor 

accelerations was made based on reasonable conclusions of the work of Elenas and 

Mescouris (2001). 

Cross section's dimensions and response statistics regarding the initial and the 

proposed optimal design are shown in Table.6.1. Interpreting the results, adjusting 

properly the dimensions of the columns leads to a design solution that guarantees a quite 

robust structural performance with respect to both performance measures. Note that the 

crucial response statistics remain controllable under the design imposed constraints. 

 

Initial design Proposed optimal design 

      
             

               
             

         

(m) (10
-3

 m) (m/s
2
) (m) (10

-3
 m) (m/s

2
) 

0.350 4.13 14.01 0.281 5.9 12.25 

0.250 7.81 8.38 0.283 5.9 11.89 

0.150 13.91 4.57 0.294 6.0 10.08 

Structural weight (kg):     

3.311x10
4
  3.368x10

4
  

Table 6.1. Initial and optimal design solution. 

In Figs.(6.7-6.8) the time-varying standard deviations of inter-story drifts and absolute 

floor accelerations are plotted. It is noteworthy that the proposed optimal design's second 

order statistics strictly comply with the imposed design constraints for the whole duration 

of the seismic excitation.  
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Figure 6.7. Non-stationary values of the standard deviation of inter-story drifts for the 

initial and optimal design solution. 

 

 

Figure 6.8. Non-stationary values of the standard deviation of the absolute floor 

acceleration for the initial and optimal design solution. 

 

In general, a framework for the efficient solution of structural robust design 

optimization problem has been proposed which features controlling both inter-storey drift 

and absolute floor acceleration non-stationary second order statistics. However, 
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incorporation of design variables in damping elements as well, via the placement of 

nonlinear dampers would allow to highlight further the potentials of the proposed 

framework in the joint time-frequency domain. Notably, the extension of the herein 

framework for considering structural systems with nonlinearities via a statistical 

linearization approach and perhaps in conjunction with compatible excitation power 

spectra to current aseismic code provisions (e.g, Giaralis and Spanos, 2012) is identified 

as part of future work. 
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Chapter 7 

Structural  system performance-based multi-objective 

optimum design determination considering life-cycle cost 

7.1 Preliminary remarks 

Most structures and civil infrastructure systems are subject to excitations that exhibit 

strong variability in both the intensity and the frequency content. Clearly, a realistic 

system analysis and design necessitates the representation of this class of loads by non-

stationary stochastic processes (e.g., Soong and Grigoriu, 1993; Roberts and Spanos, 

2003; Li and Chen, 2009; Spanos and Kougioumtzoglou, 2012). Further, structural 

systems under severe excitations, such as earthquakes, can behave in a nonlinear manner 

exhibiting a hysteretic restoring force-displacement characteristic. Thus, a sustained 

challenge in the area of structural dynamics has been the efficient analysis and design of 

nonlinear/hysteretic systems/structures under evolutionary stochastic excitation. 

Further, due to the apparent limitations of a purely deterministic treatment of the 

structural design optimization problem, several optimization frameworks considering 

uncertainty have been developed such as robust, reliability-, and risk-based optimization 

(e.g., Gasser and Sch eller, 1997; Au and Beck, 2003; Jensen, 2009; Beck and Gomes, 

2012). In general, a stochastic approach to the structural design optimization problem 

constitutes a rational framework for providing design configurations that perform in a 

desirable and consistent manner over the entire design life of the structure. Note, 

however, that a comprehensive treatment of the stochastic design optimization problem 

can be a complex task due to inter-related challenges associated with uncertainty 

treatment. These may include (i) uncertainty modeling, i.e. stochastic 

representation/modeling of structural system parameters/properties and/or excitation, (ii) 
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uncertainty propagation, i.e. efficient structural system response statistics determination, 

and (iii) the solution of an inverse stochastic problem, i.e. an efficient design optimization 

procedure. 

In this regard, the PBE framework aims at providing information for facilitating risk-

based decision-making via performance assessment and design methods that properly 

account for the presence of uncertainties (e.g., Ellingwood, 2001; Porter, 2003). 

Depending on the hazard kind considered, several PBE-based frameworks have been 

developed recently in various fields of structural engineering such as earthquake, wind, 

hurricane, and fire engineering (e.g., Cornell and Krawinkler, 2000;  Ellingwood, 2001; 

Porter, 2003; Ciampoli and Petrini, 2012; Barbato and Petrini, 2013). Although the herein 

developed PBE framework is tailored specifically for earthquake engineering related 

applications in general agreement with the PBEE framework proposed by the PEER 

center (e.g., Cornell and Krawinkler, 2000; Mohle and Deierlein, 2004; Der Kiureghian, 

2005), it can be readily modified to account for other hazard kinds as well.  

Further, as far as the decision variable (DV) is concerned, the seismic LCC accounting 

for the structure lifetime expected damage costs is commonly adopted (e.g., Wen and 

Kang, 2001). Indicatively, Kong and Frangopol (2003) addressed the bridge maintenance 

schedule optimal design problem and estimated the life-cycle cost performance. Further, 

adopting a median global Park-Ang damage index, Ang and Lee (2001) considered repair 

costs for various ground motion intensity levels for the case of reinforced concrete 

buildings. In Fragiadakis et al. (2006) and Liu et al. (2003) a probabilistic multi-objective 

optimization framework was applied for the life-cycle cost optimal seismic design of 

steel structures. Further, Taflanidis and Beck (2009) focused on assessing the 

performance of passive dissipative devices by utilizing an efficient simulation approach 

within a performance-based seismic design framework that optimized the expected life 

cycle cost of structural systems. Next, Takashi et al. (2004) relied on a Monte Carlo 

simulation approach for assessing the life-cycle cost of a structural system equipped with 

damping devices. 
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Regarding the uncertainty associated with the seismic ground motion this is normally 

described by a probability distribution of a seismic IM such as the spectral acceleration or 

the PGA. Focusing on the latter case, a mean seismic hazard curve is routinely provided 

specifying the annual probability of exceeding various levels of PGA. Further, several 

approaches have been developed for relating the seismic hazard to the system fragility 

and for producing corresponding fragility curves, i.e. probabilities of exceeding specified 

damage states given an IM value. These range from the ones that employ a limited 

number of nonlinear time-history analyses with prescribed IM level compatible scaled 

real earthquake records (e.g., Vamvatsikos and Cornell, 2002), to the ones that employ 

standard or efficient Monte Carlo simulation (MCS) based methodologies such as 

importance/line sampling, and subset simulation (e.g., Rubinstein, 1981; Au and Beck, 

2003; Schueller et al., 2004). Nevertheless, note that there are cases where the 

computational cost of the MCS based techniques can be significantly high; thus, 

rendering their use computationally cumbersome, or even prohibitive.  

Clearly, there is a need for developing approximate analytical and/or numerical 

techniques for determining efficiently the response and reliability statistics of nonlinear 

systems subject to stochastic excitation; see (e.g., Soong and Grigoriu, 1993; Roberts and 

Spanos, 2003; Lutes and Sarkani, 2004; Fujimura and Der Kiureghian, 2007; 

Kougioumtzoglou and Spanos, 2013) for some recent references. Nevertheless, although 

there is a considerable body in the literature referring to the development of such 

techniques there are limited results related to utilizing such techniques. An interesting 

contribution in this regard is the work by Der Kiureghian and Fujimura (2009) where an 

efficient tail-equivalent linearization based approach was applied for fragility analysis of 

a nonlinear building structure. 

In this chapter, a PBE multi-objective design optimization framework for 

nonlinear/hysteretic MDOF structural systems subject to evolutionary stochastic 

earthquake excitation is formulated. The developed framework is based on an efficient 

approximate analytical dimension reduction approach for determining the system 

response EPS matrix based on the concepts of statistical linearization and stochastic 
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averaging; thus, computationally intensive Monte Carlo simulations are circumvented. 

Note that the approach can handle readily stochastic excitations of arbitrary EPS forms, 

even of the non-separable kind. Further, approximate closed-form expressions are derived 

for the non-stationary response amplitude PDFs of the IDRs corresponding to each and 

every DOF. In this regard, considering appropriately defined damage measures structural 

system related fragilities are determined at a low computational cost as well. Further, 

note that the multi-objective optimization (e.g., Jensen, 2009) allows for objectives that 

exhibit potentially conflicting requirements to be treated simultaneously. In the present 

formulation, solving the multi-objective optimization problem typically suggests the 

determination of a set of Pareto optimal solutions (Pareto front). Each solution of the 

Pareto front constitutes an acceptable design configuration compromising the potentially 

conflicting sub-objectives of the problem. 

Overall, the proposed framework appears to be highly efficient for performing 

stochastic design optimization, reducing significantly the computational burden for this 

task. Further, in the proposed design methodology, for the first time in the literature an 

efficient approximate nonlinear stochastic dynamics technique, which can handle readily 

cases of nonlinear/hysteretic systems and of non-stationary stochastic excitations of 

arbitrary evolutionary power spectrum forms, is incorporated in a robust PBE-based 

framework for addressing the so called LCC stochastic design optimization problem; 

thus, circumventing computationally intensive Monte Carlo simulations. 

Following this introductory section, in section 7.2 the developed PBEE framework is 

unfolded. Specifically, the mathematical formulation is provided in sections 7.2.1 and 

7.2.2. In section 7.3 the formulation of the stochastic multi-objective optimization 

problem is delineated. In section 7.4 an illustrative example comprising the versatile 

Bouc-Wen (hysteretic) model is considered for demonstrating the efficiency of the 

proposed approach. Comparisons with pertinent Monte Carlo simulations are included as 

well demonstrating a satisfactory level of accuracy exhibited by the proposed technique. 
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7.2 Mathematical formulation 

7.2.1 Statistical linearization based dimension reduction approach 

Consider an n-degree-of-freedom nonlinear structural system governed by the Eq.(3.1) 

where       and   denote the response acceleration, velocity and displacement vectors, 

respectively, defined in relative coordinates; namely that the vector   contains the inter-

story drifts. M, C and K denote the       mass, damping and stiffness matrices, 

respectively;           is assumed to be an arbitrary nonlinear       vector function of 

the variables  ,    and  ; and                            is a       zero mean, non-

stationary stochastic vector process defined in Eq.(3.2) where       . Regarding the 

excitation EPS     
     , it is assumed to have the separable form given in Eq.(2.5). 

Further, utilizing the statistical linearization approach presented in section 3.2 the 

following expressions regarding the variances of the response displacement and velocity 

are defined 

   

                  
               

  
  

  

    
                             

and 

    
                    

               
  

  

  

    
                        

Next, following the dimension reduction/decoupling approach in conjunction with 

the stochastic averaging treatment delineated analytically in section 3.3 and 3.4 

respectively, the efficient determination of the time-dependent response amplitude PDF is 

achieved through the Eqs.(3.25-3.26). Note in passing that the computational cost is kept 

at a minimum level. Further, it can be readily seen that the approximate analytical 

nonlinear stochastic dynamics technique presented in chapter 3 not only determines the 

original MDOF system response amplitude PDF         for each and every DOF in an 

efficient manner by circumventing computationally demanding MC simulations, but also 
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decouples the original system providing with effective time-varying stiffness and 

damping elements corresponding to the i-th DOF. The latter feature is especially 

important for a number of reasons such as determining peak system response estimates 

based on design spectrum compatible excitation power spectra (e.g., Giaralis and Spanos, 

2010; Spanos and Giaralis 2013), tracking and avoiding moving resonance phenomena 

(e.g., Tubaldi and Kougioumtzoglou, 2014), and developing efficient approximate 

techniques for determining nonlinear system survival probabilities and first-passage 

PDFs (e.g., Solomos and Spanos, 1983; Spanos and Kougioumtzoglou, 2014; Mitseas et 

al., 2014b). 

Furthermore, the herein considered damage states (DS) are expressed in terms of the 

IDR that is defined as the difference of the horizontal displacements between two 

successive stories, normalized by the inter-story height  . Considering in the ensuing 

analysis the IDR amplitude      , a direct transformation (e.g. Ang and Tang, 2007) of 

the response amplitude PDF         (see Eq.(3.25)) yields the non-stationary IDR 

amplitude PDF in the form 

          
  

     
     

    
 

      
                                              

Further, of particular interest from a reliability assessment perspective is the time instant 

where the IDR amplitude reaches its most critical value, i.e.                    . In 

the following, this is assumed to be the time where       reaches its peak value, and thus, 

the PDF of Eq.(7.3) takes its most broad-band form yielding higher failure probabilities. 

Specifically, the failure probability    defined as the probability of exceeding various 

levels of damage     conditioned upon the peak ground acceleration (PGA), is expressed 

as 

                       
                     

  
 

 

              

Considering Eq.(7.3), and integrating analytically Eq.(7.4) yields   
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It is deemed appropriate to note that the above determined failure probability of 

Eq.(7.5) should not be confused with the first-passage kind failure probability. The 

former does not pose any restriction to the number of times failure can occur, whereas the 

latter is uniquely defined by satisfying a failure criterion for the first time, or in other 

words the interest lies in the first time that failure occurs. It can be argued that the failure 

definition of Eq.(7.5) is more relevant to the herein considered applications since the drift 

ratio amplitude may cross a prescribed damage level several times during an earthquake 

event without leading to total collapse of the structure.  

7.2.2 Life-cycle cost PBE framework 

The PBE methodology serves as a potent stochastic framework for assessing the 

performance of engineering structural systems subject to various hazards via an 

appropriately defined DV. For the specific case of PBEE (e.g., Cornell and Krawinkler, 

2000; Mohle and Deierlein, 2004; Der Kiureghian 2005), the evaluation of a DV 

typically depends on a number of analysis components such as (i) stochastic hazard 

analysis treating the uncertainty in the seismic input IMs; the seismic hazard is usually 

described by the annual probabilities of exceeding various levels of IMs, (ii) stochastic 

structural analysis associated with the uncertainty of the engineering demand parameter 

(EDP) used to monitor the structural response conditional on the IMs; the IDR is a 

commonly selected EDP for building structures, (iii) stochastic damage analysis relating 

the EDPs to DS, which in turn describe the generated damage, and (iv) stochastic loss 

analysis reflecting the effect of the underlying uncertainties on a quantifiable DV. 

The uncertainty in seismic ground motions is normally described in terms of the 

probability distribution of a seismic intensity measure, such as the PGA. In this regard, 

the seismic hazard is presented as a mean seismic hazard curve        , which provides 

the annual probability of exceeding specified levels of PGA (e.g., Cornell et al., 2002; 

Tubaldi et al., 2014); that is, 
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In various PBEE studies (e.g. Liu et al., 2003; Fragiadakis et al., 2006) as well as in the 

ensuing analysis, discrete DS are considered. The non-stationary IDR amplitudes       

serve as global EDPs while the employed relationship between the EDP and the DS is 

based on the work by Ghobarah (2004) related to ductile reinforced concrete (RC) 

moment resisting frames (see Table. 7.1). Note that IDR constitutes one of the most 

reliable measures of structural damage due to its close relationship to plastic rotation 

demands for individual beam-column connection assemblies. Typically, the damage 

states for reliability analysis purposes are defined in terms of the overall inelastic 

deformation or the maximum inter-story drift of the structural system (Ellingwood, 

2001). 

 

Damage State Inter-Story Drift (%)  Cost (% Cin) 

(I)-None              0 

(II)-Slight             0.5 

(III)-Light             5 

(IV)-Moderate             20 

(V)-Heavy             45 

(VI)-Major             80 

(VII)-Destroyed         100  

Table 7.1. Damage states (DS), Inter-story drift ratio limits     and associated costs. 

 

Further, the seismic fragility curves serving as a quantitative tool of the structure 

vulnerability are evaluated for various damage levels. Specifically, based on the 

approximate nonlinear stochastic dynamics technique briefly outlined in section 7.2.1, the 

seismic fragility curves are efficiently determined by simply integrating the critical non-

stationary response IDR amplitude PDF         for the time instant    ; see Eqs.(7.3-

7.4). In this regard, the probability of the i–th DOF exceeding various levels of damage 

given a specified PGA value, i.e.                        
  , can be efficiently 

computed via Eq.(7.5).  
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Notably, the fragility curves corresponding to each and every DOF for various damage 

levels are determined at a minimum computational cost via Eq.(7.5). Next, considering 

the i-th DOF of the MDOF system, the annual probability of exceeding a given state of 

damage can be defined as  

                             
   

        

     
                                

In the herein study, the earthquake occurrence is assumed to follow a Poisson process 

(e.g., Ellingwood and Wen, 2005). Further, the expected value of the life-cycle cost 

(LCC) due to seismic hazard can be expressed in the form 

                
 

   

                 

                 
                      

                            

   

   

    

   

 

where     is the total number of damage states considered;      is the number of degrees 

of freedom of the MDOF system,   is a constant discount rate/year,    is the design life 

of the structure,    is the cost associated with the  -th damage state, given in Table 7.1 

as a percentage of the initial cost;      
 refers to the  -th DOF and represents the   -year 

probability of exceeding the  -th damage state given by the expression 

     
                                                                   

Furthermore, it is assumed that the structure is restored to its initial undamaged state 

after each earthquake occurrence, whereas losses due to fatalities and building downtime 

are ignored in this study. 

Note that in the herein proposed LCC model the contribution of each and every DOF 

is considered resulting in a better account of the system overall performance; this is not 

the case with commonly used LCC models in PBEE studies where the system 

performance is associated with the most critical component only (e.g., Ellingwood, 2001; 

Liu et al., 2003; Fragiadakis et al., 2006). Considering cases where the roof drift is 
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employed as an EDP, the corresponding damage analysis cannot account for the 

distribution of damage along the height of the structure, or take into account soft stories 

phenomena (e.g., Ghobarah, 2004). Further, the adoption of the maximum value of the 

induced inter-story drifts as an EDP leads to a stochastic damage analysis based on 

information corresponding to a specific story only. Thus, information regarding the 

response behavior of the rest of the stories and their contribution to damage is 

disregarded. 

Overall, in the herein novel proposed LCC formulation the expected value of the 

seismic losses given by Eq.(7.8) serves as the DV, whereas the attribute of considering 

     EDPs is expected to better account for the system overall performance in the 

formulation of the multi-objective optimization problem in the following section.  

7.3 Formulation of the optimal design problem 

7.3.1 Multi-objective optimization 

In the field of structural system optimization, most often several conflicting objectives 

need to be treated simultaneously. In this regard, a multi-objective optimization problem 

is formulated yielding a compromise between various objective functions. A general 

stochastic multi-objective optimization formulation for the determination of a vector   of 

design variables to minimize a vector of objective functions takes the form 

                                                                             

where 

        
           

              
                   

                   
                                             

subject to system response level constraints of the form 
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In the case of a stochastic objective function    
         and    

         are employed. 

   
         and    

         are the maximum over time non-stationary values of the mean 

and standard deviation of the objective function   
         respectively, evaluated at the 

design variables vector  ;   
       is a deterministic objective function evaluated at the 

design variables vector  ; in case of a stochastic response constraint,    
         and 

   
         stand for the maximum over time non-stationary values of the mean and 

standard deviation of the response function   
         respectively, evaluated at the design 

variables vector  ;   
       is a deterministic response level constraint evaluated at the 

design variables vector  ; and      is the vector of the constraint functions of the 

optimization problem under consideration. D is a given set that contains the boundary 

constraints for the vector of design variables  . 

Further, a linear combination of the aforementioned quantities, which is the case in 

most practical applications (e.g., Jensen, 2009), is considered in the herein work as well. 

In this regard, a single parameterized objective function under several optimization runs 

with different parameter settings is responsible for the generation of the Pareto optimal 

set (e.g., Deb et al., 2002).  

Considering next a combination of stochastic and deterministic objective functions 

     is defined as a weighted linear combination of the individual objective components, 

i.e. 

       
    

    
   

         
    

    
   

         

    
     

   

   
  

  
  
       

    
   

   

                

where     ,      are weights and     ,      are scale factors for the mean and standard 

deviation of the stochastic objective components   
        ,           

     ;    and    

are the weight and scale factor of the deterministic objective components   
         

     objdet. Regarding the weighting factors   the following normalization is 

employed; that is, 
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The weighting factors can be adjusted appropriately, according to the importance of each 

objective and therefore the trade-off between the objectives can be readily studied. Any 

combination of the weighting factors corresponds to a single Pareto optimal solution 

(e.g., Liu et al., 2003; Fragiadakis et al., 2006; Jensen, 2009). Thus, by performing a set 

of optimization processes utilizing various weighting factors combinations it is possible 

to generate the full set of the Pareto optimal solutions. 

Since the generation of the Pareto optimal set involves performing a number of 

optimization procedures, the selection of an optimization algorithm with considerable 

advantages specifically tailored to meet the characteristics of the herein problem 

formulation is of particular importance. Specifically, an outer loop that systematically 

varies the weighting factors of the parameterized objective function and an inner loop 

that features a standard genetic algorithm (GA) based optimization process are utilized 

for solving the multi-objective optimization problem. Regarding GAs, they belong to the 

class of Evolutionary algorithms (EAs) and they appear to be quite robust in the sense 

that they are less vulnerable to being trapped in local optima; and thus, more likely to 

obtain the global optimum for a non-convex constrained optimization problem (e.g., Bäck 

T., Schwefel, 1993). 

7.4 Numerical application 

In this section, the proposed methodology is applied to a 3-story reinforced concrete 

building which is modeled as a nonlinear/hysteretic 3-DOF structural system subject to 

evolutionary stochastic earthquake excitation. All floors are assumed to be rigid and have 

a constant height equal to 3m, whereas the masses of the plates are considered to be 

constant for all floors with a value                 . A Young’s modulus of 

           and mass density of                are considered herein. The 
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nonlinearity is assumed to be in the form of the Bouc-Wen hysteretic model (e.g., Wen, 

1980; Ikhouane and Rodellar, 2007). Columns’ square cross-section dimensions for a 

given floor are assumed to be equal, and thus, the vector of design variables   has one 

component for every story, i.e. the width of the cross-section.  

 

Figure 7.1. Nonlinear 3-DOF building structure. 

7.4.1 Three-story Bouc-Wen hysteretic building structure 

Considering displacements defined in relative coordinates, the 3-DOF nonlinear 

structural system is governed by Eq.(3.1) where 

                                                                                

The Bouc-Wen formulation related to MDOF systems which is unfolded in Eqs.( 4.26-

4.48) is also adopted herein. Considering the parameters of the model the following 

values are employed:       ,        ,    ,          , and    . 

Regarding the excitation EPS     
     , it is assumed to have the separable form given in 

Eq.(2.5) where        and       ; the weighting coefficients vector   is assumed to 

be equal to     . The parameters values chosen are                           

   f=12.5 rad/s. The duration of the earthquake excitation    is assumed to be equal to 

          . Note in passing that in the ensuing analysis the following definition for the 

     is adopted; i.e., 

                                                                    

Thus, to provide with a mapping between the      and the modulated C-P excitation 

spectrum intensity factor   , several MCS are conducted for various    values via the 
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spectral representation approach of Shinozuka and Deodatis (1991). For each ensemble of 

excitation realizations Eq.(7.16) is applied for determining the value      that 

corresponds to the given   . In this manner, repeating this process for various values of 

   the relationship          depicted in Fig.(7.2) is obtained. 

 

 

Figure 7.2. Mapping between the amplitude          of the excitation spectrum and 

    . 

 

In Fig.(7.3), the EPS of     
      is plotted for                 which corresponds to 

an acceleration of the earthquake input      equal to       according to the definition of 

Eq.(7.16). 
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Figure 7.3. Clough-Penzien Evolutionary Power Spectrum     
     . 

 

Note that the herein utilized C-P spectrum has been widely used in earthquake 

engineering applications, also as an excitation power spectrum model compatible with the 

seismic design spectrum (e.g., Giaralis and Spanos, 2010). Of course, more sophisticated 

than the C-P earthquake excitation models can be used if deemed necessary such as the 

ones in Boore (2003) or Rezaeian and Der Kiureghian (2008).  

Next, the seismic hazard curve of Eq.(7.6) is expressed in the approximate form used 

in Cornell et al. (2002) and Tubaldi et al. (2014), i.e., 

                            
                                       

where for               and          the site hazard curve takes the form 

shown in Fig.(7.4). 
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Figure 7.4. Site hazard curve        . 

 

Note that when dealing with the evaluation of the expected value of LCC (see 

Eq.(7.8)), and for the purpose of taking into account all possible earthquake scenarios a 

structure is anticipated to encounter during its lifetime, all seismic events with 

acceleration input      values between     and    are considered. In this setting, a wide 

range of imposed seismic inputs      is regarded while neglecting those with ground 

acceleration less than      that are not expected to cause significant damage to the 

structure. 

Approximate technique based data are compared in this regard with pertinent Monte 

Carlo simulation data utilizing 10,000 realizations. Specifically, excitation realizations 

compatible with the EPS of Eq.(2.2) are generated based on the spectral representation 

technique of Shinozuka and Deodatis (1991). Next, the nonlinear equation of motion 

(Eq.(3.1)) is numerically integrated via a standard fourth order Runge-Kutta scheme, and 

finally, system response statistics are obtained based on the ensemble of the response 

realizations. In Figs.(7.5-7.7), the non-stationary response IDR amplitude PDFs 

determined via the technique presented in section 7.2 are compared with corresponding 

MCS data for a design variables vector    . The seismic excitation intensity level    is 

selected to yield a     value equal to      ; see Fig.(7.3). It can be readily seen that the 
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proposed approximate stochastic dynamics technique demonstrates a satisfactory degree 

of accuracy. 

 

Figure 7.5a. Non-stationary response IDR amplitude PDF of the first DOF of the 

hysteretic MDOF system (                                   ) via the 

analytical approach. 

 

 

Figure 7.5b. Non-stationary response IDR amplitude PDF of the first DOF of the 

hysteretic MDOF system (                                   ) via Monte 

Carlo data (10,000 realizations). 
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Figure 7.6a. Non-stationary response IDR amplitude PDF of the second DOF of the 

hysteretic MDOF system (                                   ) via the 

analytical approach. 

 

 

Figure 7.6b. Non-stationary response IDR amplitude PDF of the second DOF of the 

hysteretic MDOF system (                                   ) via Monte 

Carlo data (10,000 realizations). 

 



 107 

 

Figure 7.7a. Non-stationary response IDR amplitude PDF of the third DOF of the 

hysteretic MDOF system (                                   ) via the 

analytical approach. 

 

 

Figure 7.7b. Non-stationary response IDR amplitude PDF of the third DOF of the 

hysteretic MDOF system (                                   ) via Monte 

Carlo data (10,000 realizations). 
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Further, in Figs. (7.8a) and (7.8b) the most critical (as defined in section 7.2.1) 

response IDR amplitude PDFs                     are plotted for two distinct   

design variables values and compared with MCS data demonstrating a reasonable degree 

of accuracy.  

 

Figure 7.8a. Non-stationary response IDR amplitude PDF of every DOF of the hysteretic 

MDOF system; comparison with MCS for                         . 

 

 

Figure 7.8b. Non-stationary response IDR amplitude PDF of every DOF of the hysteretic 

MDOF system; comparison with MCS for                          . 
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Comparing Figs.(7.8a) and (7.8b) it can be readily seen that a slightly higher level of 

accuracy is observed in Fig.(7.8b). To explain this, note that in Fig.(7.8b) the chosen 

value                          yields a relatively stiffer structure than the one 

depicted in Fig.(7.8a), where                          . As pointed out in chapter 

3 and explained in detail in Hammond (1973), Jangid and Datta (1999) and 

Kougioumtzoglou and Spanos (2013) the approximation induced by considering 

Eq.(3.14) instead of Eq.(3.9) implies a relatively lower level of accuracy for softer 

systems. Nevertheless, as shown in Fig.(7.8a), even in cases where the technique deviates 

slightly from the exact value, it still provides with conservative estimates; thus, rendering 

itself well-suited for structure design applications.  

Next, in Figs. (7.9-7.11) the fragility curves for each damage state are plotted for the 

first, the second and the third DOF of the MDOF system, respectively; see also Table 7.1. 

 

 

Figure 7.9. Fragility curves for the first DOF of the hysteretic MDOF system considering 

each damage state (                        ). 
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Figure 7.10. Fragility curves for the second DOF of the hysteretic MDOF system 

considering each damage state (                        ). 

 

 

Figure 7.11. Fragility curves for the third DOF of the hysteretic MDOF system 

considering each damage state (                        ). 
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7.4.2 Multi-objective optimal designs - Pareto optimal set 

The objective function is defined as a weighted linear combination of the initial cost 

function and of the expected value of the LCC. Further, the response of the structural 

system is constrained in terms of the modes (i.e. most probable values) of the non-

stationary response IDR amplitude PDFs of every DOF of the hysteretic MDOF system. 

The design variables are the dimensions of the square cross-section of the column 

elements. Columns’ cross-section dimensions for a given floor are assumed to be equal, 

and thus the vector of design variables   has three components, one for every story. Next, 

assuming an initial design                          and boundary constraints 

  
        

             , where                          the optimization 

problem takes the form 

                                                                        

where the conflicting sub-objectives are normalized as 

   
   

    
  
         

          

  
             

          
                                     

In this regard,      takes the form  

       

                 

                     
          

                                   

                                       
                             

under the stochastic constraints 

       
       

      

 
    

                                                      

and 

           
                                  

                                      

and the deterministic constraint 
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In Eq.(7.20)        stands for the initial cost which is assumed to be directly proportional 

to the building structure weight; this includes the weight of the column elements plus the 

weight of the plates evaluated at the design variables vector  ;                 is the 

expected value of the LCC, evaluated at the design variables vector  . In Eq.(7.21) 

       
       is a vector of the modes (i.e. most probable values) of the non-stationary 

response IDR amplitude PDFs of every DOF of the hysteretic MDOF system for the 

whole duration    of the seismic excitation with intensity factor   
 , evaluated at the 

design variables vector  . The structure design service life    is considered to be equal to 

fifty years while the discount ratio,  , is taken to be equal to   . Regarding the 

stochastic constraints of Eqs.(7.21) and (7.22) the critical excitation was selected to be 

the one with intensity factor   
  yielding an earthquake input      equal to      ; see 

Fig(7.3). The rationale behind this choice lies in the fact that the above chosen value for 

     represents a relatively severe earthquake event which is characterized by a low 

annual probability of occurrence according to the hazard curve depicted in Fig.(7.4); thus, 

highly appropriate for applying constraints considering safety issues (e.g., Porter, 2003; 

Fragiadakis et al. 2006). In this setting, the imposed stochastic constraint of Eq.(7.21) 

ensures that the vector of the modes of the non-stationary response IDR amplitude PDFs 

of every DOF of the hysteretic MDOF system for the whole duration    of the seismic 

excitation with intensity factor   
  will not exceed a preselected limit    

      which is 

taken equal to      and corresponds to a specific damage state according to the defined 

IDR limits of Table 7.1. 

Further, regarding the constraint of Eq.(7.22), it efficiently exploits one of the 

significant features of the approximate technique. Specifically, the technique not only 

provides with the system response amplitude PDF for each and every DOF, but also 

decouples the original  -DOF system of Eq.(3.1) into   SDOF LTV oscillators of the 

form given in Eq.(3.17) yielding time-varying effective stiffness       
     and damping 

          elements. This important additional output of the technique is exploited in the 
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constraint of Eq.(7.22) for avoiding “moving resonance” phenomena (e.g., Tubaldi and 

Kougioumtzoglou, 2014). In this regard, it facilitates the optimization process to avoid 

unnecessary optimal design searching in areas where surely optimal designs do not exist.  

Specifically, considering the quasi-stationary treatment of the LTV oscillator expressed 

by the following form  

   

       
 

       
                       

 
  

  

  
     

                        

it can be reasonably argued that the maximum response variance of the original MDOF 

system occurs when the excitation EPS     
      resonates with the LTV oscillator 

equivalent natural frequency          . Thus, to avoid this resonance phenomenon, the 

constraint of Eq.(7.22) is formulated so that           is kept outside a critical range in 

the frequency domain [              where the excitation EPS     
      takes its largest 

values. In this regard, the expression  

      
              

                                                         

is adopted, where       
      is a selected EPS value given as a percentage   of the peak 

EPS value       

       corresponding to the time instant where         takes its peak 

value; see Figs.(7.3) and (7.12). In the herein considered application,   was taken equal to 

   . 

 

  

Figure 7.12. Depiction of the imposed stochastic constraint (two and three dimensions). 
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Note that the deterministic constraints of Eq.(7.23) ensure that the optimization procedure 

will provide applicable design solutions from a practical viewpoint. Further, the expected 

value of the total cost, the initial cost and the expected value of the LCC are related 

according to the following expression (e.g., Wen and Kang, 2001) 

                                                                     

The Pareto front curves for both the expected value of the LCC and the expected value of 

the total cost with respect to the initial cost are presented in Fig.(7.13). 

 

 

Figure 7.13. Pareto front curves for the expected values of LCC and total cost against the 

initial cost. 

 

Next, to highlight the flexibility of the proposed methodology, the compromise design 

solution from the Pareto front curve exhibiting the lowest expected value of the total cost, 

as well as the ones corresponding to the two tails (see Fig.(7.13)) are presented in Table 

7.2. 
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Designs x(m) Cin(x)                                    

Design A 1
st
 

2
nd

 

3
rd

 

0.3892 

0.3701 

0.3294 

 

           

 

 

             

 

 

           

Design B 1
st
 

2
nd

 

3
rd

 

0.4750 

0.4749 

0.3981 

 

           

 

            

 

           

Design C 1
st
 

2
nd

 

3
rd

 

0.5492 

0.5489 

0.5471 

 

           

 

            

 

           

Table 7.2. Synoptically presented results regarding three different design solution 

configurations from the Pareto front curves (Designs A, B and C). 

 

Moreover it was deemed appropriate to present also the non-stationary response IDR 

amplitude PDFs determined by the analytical technique regarding the design variables 

vector   that corresponds to the compromise solution named ''Design B''; see Figs.(7.14-

7.16). The presented results corresponds to the case where the imposed intensity factor is 

taken equal to   
 . 

 

 

Figure 7.14. Non-stationary response IDR amplitude PDF of the first DOF of the 

hysteretic MDOF system via the analytical approach (compromise solution-Design B). 
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Figure 7.15. Non-stationary response IDR amplitude PDF of the second DOF of the 

hysteretic MDOF system via the analytical approach (compromise solution-Design B). 

 

 

Figure 7.16. Non-stationary response IDR amplitude PDF of the third DOF of the 

hysteretic MDOF system via the analytical approach (compromise solution-Design B). 
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In this setting, the designer/analyst possesses a considerable amount of information for 

every compromise solution configuration regarding the initial cost as well as the expected 

values of both the LCC and the total cost. This is of particular importance for an educated 

decision-making analysis where the final optimal design will be the compromise solution 

that best balances the initial cost, the LCC cost, and the total cost according to the project 

stakeholders’ perspective. 
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Chapter 8 

Concluding remarks 

In this chapter, the main conclusions along with pertinent remarks associated with the 

analytical formulations and the numerical results considered in this thesis are presented 

and discussed. Also, potential directions for future research work are outlined. 

In chapter 1 a conspectus of the objectives and tools of this thesis is provided as well 

as a brief review of methods for nonlinear stochastic dynamic analysis. 

In chapter 2, various stochastic models for the representation of the seismic action are 

provided. These include phenomenological seismic stationary as well as non-stationary 

stochastic models of both the separable and non-separable form. Further, a seismological 

model (Boore, 2003) of the more sophisticated kind that is based on two basic 

parameters, namely the earthquake moment magnitude and the epicentral distance is also 

presented. 

In chapter 3, a review of an alternative analytical/approximate method to the type of 

nonlinear stochastic dynamic analysis, recently proposed by Kougioumtzoglou and 

Spanos (2013) is given. The analytical approach based on the concepts of statistical 

linearization and of stochastic averaging has been developed for determining the 

evolutionary stochastic response of MDOF nonlinear systems.  

In chapter 4 an approximate analytical technique for determining the time-varying 

survival probability and associated first-passage PDF of nonlinear/hysteretic MDOF 

structural systems subject to evolutionary stochastic excitation has been developed. 

Specifically, based on an efficient dimension reduction approach and relying on the 

concepts of stochastic averaging and statistical linearization, the original nonlinear n-

degree-of-freedom system has been decoupled and cast into (n) effective SDOF LTV 

oscillators corresponding to each and every DOF. In this regard, time-varying effective 
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stiffness      
     and damping          elements corresponding to each and every DOF 

have been defined and computed, while the non-stationary marginal, transition and joint 

response amplitude PDFs have been efficiently determined in closed-form expressions. 

Finally, the MDOF system survival probability and first-passage PDF have been 

determined approximately in a computationally efficient manner. Overall, the developed 

technique exhibits enhanced versatility since it can handle readily a wide range of 

nonlinear behaviors as well as various stochastic excitations with arbitrary non-separable 

EPS forms that exhibit strong variability in both the intensity and the frequency content. 

A 3-DOF structural system exhibiting hysteresis following the Bouc-Wen model subject 

to evolutionary stochastic excitation of both separable and non-separble kind has been 

included in the numerical examples. Comparisons with pertinent Monte Carlo 

simulations have demonstrated the reliability of the technique. Future work may include 

adaptation of the proposed theoretical framework to count for reliability assessment of 

sensitive complex systems of engineering interest. 

In chapter 5 a novel methodology for determining the seismic fragility of nonlinear 

MDOF structural systems has been presented that can be potentially used in conjunction 

with a PBEE analysis framework. Specifically, fragility surfaces are determined for 

nonlinear/hysteretic MDOF structural systems subject to earthquake excitations 

compatible with a prescribed stochastic seismological model. Note that the employed 

vector-valued IM comprises two parameters, namely the earthquake moment magnitude 

(Mm) and the epicentral distance (r). The developed framework relies on an efficient 

approximate dimension reduction/decoupling technique for determining the non-

stationary system response amplitude PDFs based on the concepts of statistical 

linearization and of stochastic averaging; thus, computationally intensive Monte Carlo 

simulations are circumvented. Further, considering the inter-story drift ratio as the 

selected damage measure and appropriately defined damage states structural system 

related fragility surfaces are determined at a low computational cost as well.  

This attribute renders the proposed methodology, hopefully, useful for efficient 

structural system fragility analysis and design applications, at least at a preliminary level. 
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A building structure comprising the versatile Bouc-Wen (hysteretic) model has served as 

a numerical example for demonstrating the reliability of the proposed fragility analysis 

methodology. Future work may stem from the combination of the chapters 4 and 5 by 

proposing an efficient fragility analysis framework regarding fragilities of the first-

passage kind. The first-passage kind failure definition may, perhaps, be appropriate for 

the most severe damage state. The choice of this bound as a threshold for considering the 

first-passage problem is absolutely justified since the first violation of this barrier leads to 

a collapse. Considering hysteretic multi-story building structures and relying on the 

proposed theoretical developments, fragility surfaces regarding first-passage kind 

fragilities could be obtained in a straightforward manner and at considerable low 

computational cost. 

In chapter 6 a framework for the efficient solution of structural robust optimization 

problems has been proposed which features controlling both inter-story drift and absolute 

floor acceleration non-stationary second order statistics. It can be viewed as a systematic 

and efficient methodology for providing optimal robust design solutions.  Due to the joint 

consideration of displacement and acceleration constraints, the framework provides 

robust design solutions even in cases where potentially incurred damages are associated 

with non-structural components. An important feature of the proposed framework relates 

to the utilization of an efficient approximate frequency domain approach for determining 

the system response non-stationary second-order statistics; thus, circumventing 

computationally intensive MCS. The proposed stochastic structural design methodology 

can be used in a straightforward manner in structural design problems involving systems 

with a large number of DOFs and subject to stochastic earthquake excitation even of the 

non-separable kind.  

Future work may include the extension of the herein stochastic design methodology to 

structural systems equipped with nonlinear energy dissipation devices. A potential 

direction for future work could include as well stochastic earthquake excitations of the 

non-separable kind which comprise some of the main characteristics of seismic shaking, 
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such as decreasing of the dominant frequency with respect to time (Liu, 1970; Spanos 

and Solomos, 1983). 

In chapter 7 a performance-based multi-objective design optimization framework 

considering LCC has been developed for nonlinear/hysteretic MDOF structural systems 

subject to evolutionary stochastic excitations. Although the developments herein have 

been tailored specifically for earthquake engineering related applications, they can be 

readily modified to account for other hazard kinds as well. The developed framework 

relies on an efficient approximate dimension reduction technique for determining the 

non-stationary system response amplitude PDFs based on the concepts of statistical 

linearization and of stochastic averaging; thus, computationally intensive Monte Carlo 

simulations are circumvented. Note that the technique not only provides with the system 

response amplitude PDF for each and every DOF, but also decouples the original  -DOF 

system into   SDOF LTV oscillators yielding time-varying effective stiffness       
     

and damping           elements corresponding to each and every DOF. This important 

additional output has been exploited in the formulation of the optimization problem for 

avoiding “moving resonance” phenomena. Further, the framework can readily account 

for excitations with arbitrary non-separable EPS forms that exhibit strong variability in 

both the intensity and the frequency content. 

In this regard, considering appropriately defined damage measures structural system 

related fragility curves for each story are determined at a low computational cost as well. 

Finally, the structural system design optimization problem is formulated as a multi-

objective one to be solved by a Genetic Algorithm based approach; thus, various 

compromise solutions are obtained providing the designer with enhanced flexibility 

regarding decision-making analysis. A building structure comprising the versatile Bouc-

Wen (hysteretic) model serves as a numerical example for demonstrating the efficiency 

of the proposed methodology. Future work may include the adaptation of the developed 

framework for the study of the advantageous contribution of passive vibration control 

devices such as tuned-mass-dampers, base isolators and viscous dampers on a realistic 

hysteretic multi-story building structure.  
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The proposed development contributes substantially to promoting well-established 

random vibration theory techniques in current problems related to the challenging area of 

nonlinear structural dynamics. Hopefully, such approaches will further contribute to 

familiarizing the structural engineering community with well-established and 

theoretically solid concepts from the random vibration field. 
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Appendix A 

Spectral representation method for simulating time-histories as  

samples of a stochastic process with a given power spectrum 

Consider an one-dimensional, uni-variate, stationary, Gaussian stochastic process       

with mean value equal to zero, autocorrelation function      
    and two-sided power 

spectrum      
   . The stochastic process       can be simulated by the following series 

as     

                      

   

   

                                               

where 

          
                                                         

                                                                              

and 

   
  

 
                                                                         

with 

     
                                                                       

In Eq.(A.4)    represents an upper cut-off frequency beyond which the power 

spectrum      
    may be reasonably assumed to be zero for either mathematical or 

physical reasons.  
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