
Decentralised Coalition Formation Methods

for

Multi-Agent Systems

Thesis submitted in accordance with the requirements of
the University of Liverpool for the degree of Doctor in Philosophy by

Luke Riley

May 2015

Contents

Notations xiii

Preface xvii

Abstract xix

Acknowledgements xxi

1 Introduction 3
1.1 Agents and Multi-Agent Systems . 3
1.2 Coalition Formation . 4
1.3 Research Question . 7
1.4 Thesis Outline and Contributions . 8
1.5 Published Work . 11

2 Literature Review 15
2.1 Characteristic Function Games . 15
2.2 Cooperative Game Theory Solution Concepts 18

2.2.1 Classical Core Based Solution Concepts 19
2.2.2 Other Classical Solution Concepts . 24
2.2.3 Coalition Structure Stability Solution Concepts 25

2.3 Non-Classical Types of Coalitional Games . 27
2.3.1 Non-Transferable Utility Games . 28
2.3.2 Valuation Disagreements in Coalitional Games 28

2.4 The Three Stages of Coalition Formation . 30
2.4.1 Coalition Value Calculations . 31

Compact Representation Schemes . 35
2.4.2 Coalition Structure Generation . 36
2.4.3 Payoff Distribution . 38

Payoff Transfer Schemes . 40
Coalitional Bargaining . 42

2.5 Agent Communication . 43
2.5.1 Speech Acts . 44
2.5.2 Dialogue Games . 45
2.5.3 Dialogue Games used for Coalition Formation 46

2.6 Argumentation . 48

iii

2.6.1 Argumentation Frameworks . 48
2.6.2 Value-Based Argumentation Frameworks 50
2.6.3 Argumentation Schemes . 53
2.6.4 Value-based Alternating Transition Systems 56
2.6.5 Reasoning Over Current Beliefs . 58
2.6.6 Argumentation Applied to Coalition Formation 59

2.7 Summary and Conclusions . 61

3 Forming Coalitions with Argumentation Schemes and Critical Questions 65
3.1 Finding the State of the World . 66

3.1.1 Comparing States . 67
3.2 The Practical Reasoning Model . 67
3.3 Using Dialogues for Inquiry and Persuasion to Form Coalitions 69

3.3.1 Extending the Formalisation of Critical Questions 73
3.4 The Dialogue Protocols . 79

3.4.1 Defining the Inquiry Protocol . 79
3.4.2 Extending the pAct Protocol . 81

3.5 Coalition Argument Evaluation . 84
3.6 Dialogue and Argument Evaluation Example 88

3.6.1 Example Preliminaries . 88
3.6.2 Inquiry Dialogues . 89
3.6.3 Persuasion Dialogue . 91
3.6.4 Argument Evaluation . 95

3.7 Summary . 98

4 Distributing Coalition Value Calculations 103
4.1 Preliminaries and Introductory Example . 104

4.1.1 The New Ordering Method . 104
4.1.2 Example . 105
4.1.3 A Distributed Method for Coalition Generation 106

4.2 The Distributed Coalition Generation (DCG) Algorithm 107
4.3 Discussion . 112
4.4 Performance Evaluation . 115
4.5 Towards Distributed Coalition Formation . 118

5 A Distributed Search for the Superadditive Cover Least Core 121
5.1 Guaranteeing Stable Solutions . 122
5.2 Finding a Superadditive Cover Least Core Solution 125

5.2.1 The Filtering Method . 125
5.2.2 The Distributed Dynamic Programming (DDP) Algorithm 127

5.3 Lowering the Communication Costs . 131
5.4 A DDP Algorithm Example . 133
5.5 Evaluation . 135

5.5.1 The Communicated Information . 136
5.5.2 Agent Split Operations . 137
5.5.3 Solution Concept Success Rate . 140

5.6 Summary . 142

iv

6 Valuation Disagreement Coalitional Games 147
6.1 The Proposed Solution . 148

6.1.1 The Valuation Disagreement Coalitional Game Model 149
6.1.2 Valuation Disagreement Stability Concepts 152
6.1.3 Valuation-Disagreement Coaltional Game Properties 154
6.1.4 Example . 156

6.2 The Exposure to Debt/Distribution of Risk . 158
6.2.1 Contract Functions . 159

6.3 Experimental Evaluation . 160
6.4 Summary . 163

7 Conclusions and Future Work 167
7.1 Summary of Contributions . 167
7.2 Future Directions . 169

A Proof for the Distributed Coalition Generation Algorithm 173
A.1 Definitions . 173
A.2 Theorems . 174

Bibliography 189

v

Illustrations

List of Figures

2.1 Example of a 4 agent, fully connected graph, used to form coalitions. 35

2.2 A VBFR list of all possible coalitions that can be formed from the fully connected

graph of Figure 2.1 . 35

2.3 An argumentation framework, used in the examples of Section 2.6.1, which has one

preferred extension of {a1, a2, a4}. 49

2.4 An argumentation framework that has two preferred extensions of {a1, a3} and

{a2}, as described in example 17. 50

2.5 A example value-based argumentation framework, described in example 18. The

social-value associated with the argument is present outside and adjacent to that

argument. For example, argument a1 promotes social-value v1. 51

2.6 A value-based argumentation framework (VAF), used within the examples of Sec-

tion 2.6.2. This VAF extends the argumentation framework of Figure 2.3 to include

social-values. The social-value associated with the argument is present outside and

adjacent to that argument. For example, argument a1 promotes social-value v2. . . 52

2.7 An example Value-based Alternating Transition System for an agent i. The rectan-

gles represent the different states and contain the propositions true or false at that

state. Each state is given an identifier that is adjacent to that state, for example the

left most state has the identifier qi0. The arrows represent the transitions between

the states and are labeled by the joint action needed for the transition and the social-

value promoted/demoted by the transition. For example the lower arrow requires

joint-action µ2 to be performed and this transition will promote social-value v2. . . 57

2.8 An example coalition structure framework. 60

3.1 Illustration of a cq2-argument (Definition 58). Agent 2 uses a cq2-argument as it

thinks that the joint-action µ = µ′ will not bring about the consequences [p] from

[¬p]. 74

3.2 Illustration of a cq3-argument (Definition 59). Agent 2 uses a cq3-argument as it

thinks that the joint-action µ = µ′ used at [¬q] ≈ [¬p,¬q] will not bring about a

state that includes the goal p because τ2([¬q], µ) = [q]. 75

3.3 Illustration of a cq4-argument (Definition 60). Agent 2 uses a cq4-argument as

it thinks that the joint-action µ = µ′ used at state [¬p] ≈ [¬p] to achieve state

[p] ≈ [p] does not promote the social-value v = v′, i.e. δ2([¬p], [p], v) 6= +. 75

3.4 Illustration of a cq5-argument (Definition 61). Agent 2 uses a cq5-argument as it

thinks that there is another joint-action µ 6= µ′ that can be used from its current

state [¬p, q] to achieve state [p, q] ≈ [p, q]. 75

3.5 Illustration of cq6-argument (Definition 62). Agent 2 uses a cq6-argument as it

thinks that there is another joint-action µ 6= µ′ that can be used from its current

state [¬p,¬q] to achieve state [p, q] ≈ [p] while promoting a different value v 6= v′. 76

vii

3.6 Illustration of cq7-argument (Definition 63). Agent 2 uses a cq7-argument as it

thinks that there is another joint-action µ 6= µ′ that can be used from its current

state [¬p,¬q] to achieve state [¬p, q] 6= [p,¬q] while achieving the social-value

v = v′. 76

3.7 Illustration of a cq8-argument (Definition 64). Agent 2 uses a cq8-argument as

it thinks that the joint-action µ = µ′ from its current state [¬p,¬q] will produce

the side effect of q in state [p, q] ≈ [p], which agent 1 did not recognise, that will

demote the social-value v = v′. 76

3.8 Illustration of a cq9-argument (Definition 65). Agent 2 uses a cq9-argument as it

thinks that the joint-action µ = µ′ from the its current state [¬p,¬q] will produce

the side effect of q in state [p, q] ≈ [p], which agent 1 did not recognise, that will

demote the social-value v 6= v′. 77

3.9 Illustration of cq10-argument (Definition 66). Agent 2 uses a cq10-argument as

it thinks that the joint-action µ = µ′ from the state [¬p,¬q] will achieve state

[p, q] ≈ [p] and will promote the social-value v 6= v′. 77

3.10 Illustration of a cq11-argument (Definition 67). Agent 2 uses a cq11-argument as it

thinks that performing the joint-action µ′ will preclude µ being used (where µ 6= µ′)

to achieve a different state [¬p, q] 6= [p, q], which will promote a social-value v 6= v′. 77

3.11 Illustration of a cq13-argument (Definition 68). Agent 2 uses a cq13-argument as it

does not recognise that joint-action µ = µ′ is possible. 78

3.12 Illustration of a cq14-argument (Definition 69). Agent 2 uses a cq14-argument as

it shares the propositions p and q with agent 1, yet thinks agent 1’s end state [p, q]

can never be achieved. 78

3.13 Illustration of a cq15-argument (Definition 70). Agent 2 uses a cq15-argument

as even though it recognises p as a valid proposition, it believes that p cannot be

achieved in any state. 78

3.14 Illustration of a cq16-Argument (Definition 71). Agent 2 uses a cq16-argument as

it does not recognise social-value v = v′ as a valid social-value. 78

3.15 Illustration of a cq17-Argument (Definition 72). Agent 2 uses a cq17-argument as

it has reason to doubt that the joint-action µ = µ′ will be executed because agent 2

doubts an agent j will perform its action in the coalition as described in ξ. Instead

agent 2 expects the joint-action µ′′ = µ− AgAction(j, ξ) to be performed. Where

this doubt comes from is left undefined, be it from a trust issue or something else. . 79

3.16 Agent 1’s VATS1 (left side) and agent 2’s VATS2 (right side). 88

3.17 Agent 3’s VATS3 (left side) and agent 4’s VATS4 (right side). 88

3.18 Agent 1’s VAF taken from the example C-pAct dialogue. Each node is labeled

with the argument ID and the associated value. If there is no associated value then

the label > is attached to the node to indicate the social-value ’truth’. 95

3.19 Agent 2’s VAF taken from the example C-pAct dialogue. Each node is labeled

with the argument ID and the associated value. 96

viii

3.20 Agent 3’s VAF taken from the example C-pAct dialogue. Each node is labeled

with the argument ID and the associated value. If there is no associated value then

the label > is attached to the node to indicate the social-value ’truth’. 97

3.21 Agent 4’s VAF taken from the example C-pAct dialogue. Each node is labeled

with the argument ID and the associated value. If there is no associated value then

the label > is attached to the node to indicate the social-value ’truth’. 97

4.1 This graph shows, for an n agent game, the percentage of coalitions in all CVi∈N
that include agent i (for all sizes 1 ≤ s ≤ n). It was produced from a java im-

plementation of all the algorithms, where each agent kept a count of each coalition

assigned to itself that included itself. 114

4.2 This graph shows the computation time for the agents calculating their coalition

values using different possible algorithms, when the cost of calculating each coali-

tion’s value is O(s). 116

4.3 This graph shows the computation time for the agents calculating their coalition

values using different possible algorithms, when the cost of calculating each coali-

tion’s value is O(s2). 117

4.4 This graph shows, the computation time for the agents calculating their coalition

values using different possible algorithms, when the cost of calculating each coali-

tion’s value is O(2s). 117

4.5 This graph shows the number of canonical representative IAs. 118

5.1 This figure shows the percentage of coalition values communicated for the uniform,

normal and NDCS coalition-value distributions. A 95% confidence interval was used.136

6.1 This figure shows how a simple contract changes agent ag1 and ag2’s payoff given

different possible future valuations of the coalition {ag1, ag2}, where ag1 requires

a payoff of 4 (or more) when the coalition is valued at 5 (or more) and ag2 requires

a payoff of 6 (or more) when the coalition is valued at 10 (or more). 151

6.2 Shows the potential payoffs for the agents in the example game Gv1 using two dif-

ferent contracts functions κ1 and κ2. 158

6.3 This figure shows the increase in the total expected payoff of the agents when using

the LVC solution instead of the CSB solution. A 95% confidence interval was used. 161

6.4 This figure shows the percentage number of times a stable coalition structure oc-

curred in the LVC solution that was not in the CSB solution. A 95% confidence

interval was used. 162

6.5 This figure shows the percentage of agents who increased their expected payoff in

the experiments, using a LVC solution instead of a CSB solution. A 95% confidence

interval was used. 163

List of Tables

1.1 Comparing different organisational paradigms. 5

ix

2.1 A DCVC list of all possible coalitions for 6 agents in the form: agent to calculate
value [coalition. The value α holds the value of the agent that should calculate the

next additional coalition value above n× b |Ls|
n c. The α pointer is set α = 1 before

any list is divided. The value of the α pointer at the end of each list, is recorded at

the end of that list’s column. The α assigned coalitions are separated from the other

coalitions by a horizontal line. 33

2.2 This table details a characteristic function game for the set of agentsN = {1, 2, 3, 4}.
The optimal coalition structure is found through the DP algorithm. 39

2.3 The full list of critical questions associated with argumentation schema AS1. . . . 55

3.1 The format for moves used in this dialogue, where N represents the full set of

agents of the coalitional game, i is the agent making the move and i ∈ N . Then

either θ = C-pAct and γ is a proposition (representing the dialogue goal), or θ =

C-inq and γ is a set of propositions (that i is inquiring over). The set Υ is either

a set of C-arguments and critical questions (if θ = C-pAct) or Υ is a set of B-

arguments, defeasible facts and defeasible rules (if θ = C-inq). 70

3.2 The moves available to the agents . 73

3.7 The instantiated argumentation schemes asserted in the example C-pAct dialogue

of Section 3.6.3, where the attack column lists all the calculated attacks, found once

the C-pAct dialogue has been completed successfully. 92

4.1 Coalition value calculation shares (CV) for all s = 3 agent coalitions in an n = 6

agent coalition-game. 105

4.2 A summary of the comparison between the DCVC, VBFR, SK and DCG algorithms

that distribute coalition value calculations. 115

5.1 This table details the number of bits needed to represent the best two-set partition

of a coalition, where: two-set partitions represent the total number of ways to split

a coalition of size s into two partitions, found using the formula 2s−1 − 1; C bits is

the worst case number of bits to explicitly represent each agent of one coalition of

size b s2c, found using the formula b s2c × dlog2(s)e; and Indexing bits is the worst

case number of bits using the indexing method of the totalposn function. 133

5.2 This table details a characteristic function game for the set of agentsN = {1, 2, 3, 4}.
The agents find a stable least-weak-CS core+ solution in a decentralised manner

when using the DDP algorithm. The array f1 is set to the lowest possible index

value for each coalition. 134

5.3 This table gives the number of split operations occurring in the DDP algorithm

for different n values where: Total Operations is the total split operations by all the

agents; Highest Ag Ops gives the maximum number of split operations an agent will

perform; Lowest Ag Ops gives the lowest; Difference gives the difference between

highest and lowest; while Operations for N gives the number of split operations

required for the grand coalition. 137

x

5.4 This table explicitly details the deterministic operation vectors for the DDP and

DDP∗ algorithm, where the range columns detail the numbers of operations an

agent has to perform as a percentage of the total operations (where the total opera-

tion number is found from Table 5.3). 139

6.1 All the coalition valuations not equal to zero for the valuation disagreement coali-

tional game Gv1 and the coalitional game with beliefs Gb1, where wi(C) is agent i’s

valuation of C in Gv1 and ui(C) is agent i’s valuation of C in Gb1. 157

A.1 Values of ti(r−1)+j implied by (12)–(14), s = m× b, (r − 1) = v × b 181

xi

Notations

The following notations and abbreviations are found throughout this thesis:

Chapter 2
G = 〈N, v〉 A characteristic function game

N The set of agents

v The characteristic function

C A coalition

v(C) The value of the coalition C

CS A coalition structure

CS∗ The optimal coalition structure

v(CS) The value of the coalition structure CS

x A payoff vector

xi The payoff for agent i

x(C) The payoff for the coalition C

Imp(N, v) The full set of imputations for the characteristic function game

G = 〈N, v〉
〈CS, x〉 The outcome of a characteristic function game

εs(C, x) The strong excess of coalition C given the payoff vector x

εw(C, x) The weak excess of coalition C given the payoff vector x

εs The maximum strong excess in the characteristic function

game

εw The maximum weak excess in the characteristic function game

δ(x) The deficit vector of the payoff vector x

di The percentage-based demand of agent i to join a coalition

d The percentage-based demand of all agents to join a coalition

Ls A list of all coalitions of size s

Mi A list of all coalitions whose smallest agent ID is i

W The coalitions of the synergy coalitional group representation

f1[C] The most valuable partition of C

f2[C] The numeric value of the most valuable partition of C

AF An argumentation framework

R(ax, ay) An attack by argument ax onto argument ay
V AF A value-based argumentation framework

xiii

V AFi An audience specific value-based argumentation framework

for agent i

Chapter 3
C-inq A coalition inquiry dialogue

C-pAct A coalition persuasion to action dialogue

Qi The finite set of states recognised by agent i

qi0 The designated initial state of agent i

Aci The finite set of single actions recognised by agent i

ac A single action

µ A joint action comprising single actions

Avi The finite set of social-values recognised by agent i

ρi(µ) The set of states agent i believes µ may be executed from

τ i(qx, µ) The state that agent i believes would result from the perfor-

mance of joint action µ from state qx
Φi The set of propositions that agent i uses to represent the world

π(qi) The propositions true in the state qi
δi(qx, qy, v) The status (promoted (+), demoted (−), or neutral (=)) of a

social-value v ascribed by agent i to the transition between

states qx and qy
ζi(j, ac) Whether agent i believes if agent j will perform the given ac-

tion ac or not

ξ A tuple matching agents to single actions

C = 〈qx, µ, ξ, qy, p, v, s〉 A C-argument

A A C-argument or a critical question

θ The dialogue type; either C-inq or C-pAct

γ A proposition representing the dialogue goal (if θ = C-pAct)

or a set of propositions that is being inquired over (θ = C-inq)

Υ Either a set of C-arguments and critical questions or a set of

B-arguments, defeasible facts and defeasible rules

Dtr A dialogue beginning at time-point r and currently at time-

point t

mt The dialogue move at time-point t

Ω The collection of all on-going dialogues

CoStti The commitment store of agent i at time-point t

CoStt The combined commitment store of all the agents at time-

point t

φ A defeasible fact

λ A defeasible rule

B = 〈Φ, φ〉 A B-argument

Σi Agent i’s belief base

xiv

Chapter 4
t An increment array

Ls,t A two dimensional list of coalitions of size s that can be gen-

erated with the increment array t

I An integer partition

I(n− s) All the integer partitions that total (n− s)
π(t) The length of the repeating period within t

C(i, t) The coalition generated by agent i from the increment array t

r The number of agents to use each increment array

Chapter 5
v∗ The superadditive cover of the characteristic function v

CVi The coalition value calculation share for agent i

Γi The information communicated by agent i

totalposn(C, n, s) Returns the index of coalition C of size s, given the full set of

agents n

totalposn−1(m,n) Returns the coalition that corresponds to the index m for the

full set of agents n

op The operation vector for the DDP algorithm

op∗ The operation vector for the DDP∗ algorithm

Chapter 6
Gv A valuation disagreement coalitional game

Gb A coalitional game with beliefs

pi The expected payoff of agent i in a coalitional game with be-

liefs

wi The coalition valuation function for agent i in valuation dis-

agreement coalitional games

wi(C) The valuation of coalition C by agent i in the valuation dis-

agreement coalitional game model

w(C) All the valuations of coalition C by the members of C in the

valuation disagreement coalitional game model

w The vector of all agents’ coalition valuation functions in valu-

ation disagreement coalitional games

ui(C) The valuation of coalition C in the coalitional game with be-

liefs model

π(C, i) The set of agents who value the coalition C less than or equal

to agent i

e The estimated payoff vector

ei The estimated payoff of agent i

xv

e(C) The estimated payoff for the agents of C

εv(C, e) The estimated excess of the coalition C given the estimated

payoff vector e

εv The maximum estimated excess of the uncertainty coalitional

game

κ A contract function

κ(〈C, e(C), w(C), v(C)〉) Returns the payoff vector for the agents of C, given the esti-

mated payoff vector e(C), the agent valuations w(C) and the

true value of the coalition v(C)

xvi

Preface

This thesis is primarily my own work. The sources of other materials are identified.

xvii

Abstract

Coalition formation is a process whereby agents recognise that cooperation with others can

occur in a mutually beneficial manner and therefore the agents can choose appropriate temporary

groups (named coalitions) to form. The benefit of each coalition can be measured by: the goals

it achieves; the tasks it completes; or the utility it gains. Determining the set of coalitions that

should form is difficult even in centralised cooperative circumstances due to: (a) the exponential

number of different possible coalitions; (b) the “super exponential” number of possible sets of

coalitions; and (c) the many ways in which the agents of a coalition can agree to distribute its

gains between its members (if this gain can be transfered between the agents). The inherent

distributed and potentially self-interested nature of multi-agent systems further complicates the

coalition formation process.

How to design decentralised coalition formation methods for multi-agent systems is a signif-

icant challenge and is the topic of this thesis. The desirable characteristics for these methods to

have are (among others): (i) a balanced computational load between the agents; (ii) an optimal

solution found with distributed knowledge; (iii) bounded communication costs; and (iv) to allow

coalitions to form even when the agents disagree on their values.

The coalition formation methods presented in this thesis implement one or more of these

desirable characteristics. The contribution of this thesis begins with a decentralised dialogue

game that utilise argumentation to allow agents to reason over and come to a conclusion on

what are the best coalitions to form, when the coalitions are valued qualitatively.

Next, the thesis details two decentralised algorithms that allow the agents to complete the

coalition formation process in a specific coalition formation model, named characteristic func-

tion games. The first algorithm allows the coalition value calculations to be distributed between

the agents of the system in an approximately equal manner using no communication, where each

agent assigned to calculate the value of a coalition is included in that coalition as a member. The

second algorithm allows the agents to find one of the most stable coalition formation solutions,

even though each agent has only partial knowledge of the system.

The final contribution of this thesis is a new coalition formation model, which allows the

agents to find the expected payoff maximising coalitions to form, when each agent may disagree

on the quantitative value of each coalition. This new model introduces more risk to agents

valuing a coalition higher than the other agents, and so encourages pessimistic valuations.

xix

Acknowledgements

I would like to start by thanking my family, and especially my parents Marion and Joesph Riley,

for all the help and support they have given me over the long long time I have been studying!

Even though it is still an open mystery regarding where I inherited my love for technology from,

I know I could not have done it without you both; therefore this thesis is as much mine as it is

yours. One day I hope to implement my new found knowledge for pressing family matters, such

as making sure dad is always connected on-the-line to his cricket scores, or making sure mum

can take, send and edit as many digital photographs as she could ever imagine. I would also like

to specifically thank the Declas family (Caterina, Jacques, Amy, Jasmine, Mattis and Solene)

for your general encouragement and excitability about life. There is always so much going on

with you all, long may it continue!

Moving on to my academic life, I would like to thank all my supervisors over the years (this

list is surprising long). Firstly Katie Atkinson, I very much appreciate the time and effort you

put into guiding me through my studies and providing valuable feedback whenever possible,

especially considering you were juggling pregnancy and a significant number of other PhD

students! Luckily for me your guidance will now continue into my KTP associate job, I look

forward to continuing our productive working relationship! Secondly Terry Payne, I am grateful

for you stepping in as my second supervisor early on and actually turning out to be my longest

serving supervisor! When you get going analysing my work, your attention to detail is always

very beneficial. The different perspective to my research that you brought has definitely been

valuable. Thirdly Trevor Bench-Capon, thanks so much for covering my supervision maternity

year, it was interesting to listen and learn from your extensive experience. May you have a

long and enjoyable retirement! Finally Peter McBurney, I thank you for kickstarting my thesis

journey and for helping me to acclimatise the academic environment! I hope we continue to

bump into each other at various events to catch up.

I would also like to thank all the support I have received from members of the Computer

Science Department at the University of Liverpool. A big mention here must go to Paul Dunne,

who significantly helped me to cleanly convert my ideas and experimental implementation of the

algorithm of Chapter 4 into theory form. Also Paul’s work on an indexing scheme also became

useful in Chapter 5 to help minimise communication costs. Thanks a lot Paul! Additionally

I would like to acknowledge the effort of my thesis examiners Simon Parsons and Sarvapali

Ramchurn whose comments definitely improved the quality of the final version of my thesis,

thanks!

xxi

Furthermore I would like to acknowledge the funding support I received from the Engineer-

ing and Physical Sciences Research Council (EPSRC). Without their funding I would not have

been able to undertake my PhD study, so this support was very much appreciated.

Finally I would like to thank all my friends over the PhD study years who have supported me

directly, through general or specific advice, or indirectly by helping to take my mind off work.

Big mentions must go to David Willmer and Dave Taymouri (aka the tripod) - we had some good

parties back in the day! Back to the department, and the day-to-day long hard slog was made all

the better having such nice (i.e. sounnnd) office mates over the years such as Anton Minnion,

Martyn Lloyd-Kelly, Adam Wyner, Muhammad Khan, Jodi Schneider, Maya Wardeh, Daan

Bloembergen and anyone else who stopped by. Its been a pleasure serving this time with you

ladies and gentlemen. Then there is every member of the computer science renegade football

team past and present, its been a good experience to help the team grow and evolve. Hopefully

we will win more trophies in the future! Into my last year now, and a shout out needs to go

to the Bethelona lads: John Farrell, Si Crockett and Matt Morris. You lads have always been

supportive, even when I’m strolling home at 11pm ready for the lateshift to begin. Last but not

least, a big big thank you to Matoula Kotsialou, who has supported me very much over the last

year (how did I manage beforehand?!). Meeting you has definitely improved my life, I even

listen to people who talk about theory now!

P.S. If you’re reading this and thinking I’ve forgotten you, don’t worry I haven’t, I am grate-

ful to you as well! ;-)

xxii

Chapter 1

1

Chapter 1

Introduction

In this section the two main topics of this thesis will be outlined: agents and multi-agent systems

in Section 1.1 followed by coalition formation in Section 1.2. Next the research question and

research objectives will be detailed in Section 1.3. After that, the thesis outline and contributions

will be provided in Section 1.4. Finally the published work (to date) related to this thesis will

be detailed in Section 1.5.

1.1 Agents and Multi-Agent Systems

This thesis concerns the branch of artificial intelligence known as multi-agent systems. Multi-

agent systems contain many single agents, defined in [134, 136] as:

Definition 1: An agent is a computer system that is situated in some environment, and is capable

of autonomous action in this environment in order to meet its design objectives.

The autonomy in this definition is on a spectrum. As detailed in [136], an agent that always

seeks assistance from its user (the lower bound of the autonomy spectrum) will be unhelpful,

while an agent that never seeks assistance (the upper bound of the autonomy spectrum) will

probably also be useless, because there is no opportunity for its user to update the agent’s objec-

tives. Finding the correct level of autonomy can be a difficult task, it may even be advantageous

to have adjustable autonomy [107].

A special class of agents are intelligent agents. To be classified as intelligent, the following

capabilities detailed in [134, 136] should be satisfied:

• Reactivity: Intelligent agents should respond in a timely fashion to changes in the envi-

ronment in order to satisfy their design objectives.

• Proactiveness: Intelligent agents should exhibit goal-directed behaviour by taking the

initiative to satisfy their design objectives.

• Social ability: Intelligent agents should be capable of interacting with other agents in

order to satisfy their design objectives.

3

Chapter 1. Introduction 4

There can be different levels of intelligent behaviour in agents. The field of game theory

[83] studies the most rational strategy an agent should perform to give itself a maximum ex-

pected utility-value, and so game theory gives one definition of a very specific type of optimal

intelligence. Additionally, the field of argumentation [87] studies how agents, given possibly

conflicting information, should find the most rational conclusion, and so provides another def-

inition of a type of optimal intelligence. In this thesis, agents use methods from both fields to

guide their decision making.

Finding the most rational strategy or conclusion is not a simple task, especially when: (a)

agents may have partial knowledge; (b) the environment may be uncertain; and (c) agents may

have different preferences. How agents deal with these issues, while still displaying a form of

optimal intelligence, is a central theme of this thesis.

In a multi-agent system the agents may be cooperative or self-interested. Cooperative agents

aim to work together to maximise the social welfare of the entire system (i.e. maximise the

global benefit), with little (or perhaps no) regard to the benefit they themselves gain. Self-

interested agents on the other hand aim to work (possibly in groups) to maximise their own

personal benefit, with little (or perhaps no) regard to the benefit of the whole society.

Additionally it is possible that self-interested agents may act strategically (e.g. by misreport-

ing information). Mechanism design [80] can be used to incentivise agents to act in a certain

manner (e.g. to truthfully reveal private information), usually by having a mediator promise to

give each agent a certain monetary transfer that is maximised only when the agent acts as the

mediator requires.

It is typical to consider cooperative agents to be developed by a single designer and self-

interested agents to be developed by multiple different agent designers with competing interests.

In both single and multiple agent designer cases, it may be desirable for the agents to act to

achieve their design objectives in a decentralised manner, without a centralised body dictating

every decision. Without a centralised dictating authority there can be (as stated in [73]): no

centralised bottleneck; increased robustness against failure; and reduced overall computation

time. Decentralised methods for multi-agent systems is investigated within this thesis for the

specific process of coalition formation, introduced in the next section.

1.2 Coalition Formation

In a multi-agent system, the agents can interact with each other to fulfill their objectives and

improve their performance. These interactions will typically involve a form of cooperation,

coordination and/or negotiation in an organisational paradigm, such as the following (as stated

in [63]):

• Coalitions: Where the agents are arranged into short lived temporary groups that are goal-

directed and have a flat organisational structure.

• Congregations: Where the agents are arranged into long term groups with no specific goal

in mind. They also have a flat organisational structure.

Chapter 1. Introduction 5

Model Key
Characteristic

Benefits Weaknesses

Coalitions Dynamic, goal-
directed

Exploit strength in
numbers

Short term benefits may not
outweigh organisation costs

Congregations Long-lived Facilitates agent discovery The groups may be overly
restrictive

Federations Middle-agents Matchmaking, brokering,
translation services; facili-
tates dynamic agent pool

Intermediaries become
bottlenecks

Hierarchy Decomposition Maps to many common do-
mains; handles scale well

Potentially brittle; can lead to
bottlenecks or delays

Holarchy Decomposition
with
autonomy

Exploit autonomy of
functional units

Must organise holons to
begin with; lack of pre-
dictable performance

Markets Competition
through pricing

Good at allocation;
increased utility through
centralization; increased
fairness through bidding

Potential for collusion and
malicious behavior;
allocation decision complex-
ity can be high

Martrix Multiple
managers

Resource sharing;
multiple agents can be
influenced

Potential for conflicts; need
for increased agent sophisti-
cation

Societies Open system Public services;
well defined conventions

Potentially complex, agents
may require additional
society-related capabilities

TABLE 1.1: Comparing different organisational paradigms.

• Federations: Where the agents are arranged into groups and have ceded some amount of

autonomy to a single delegate that represents each group.

• Hierarchies: Where the agents are arranged in a tree-like structure, with each agent (apart

from the root agent), having a single parent named the manager (this assumption is relaxed

in the Matrix paradigm).

• Holarchies: Where the agents are arranged in multi-leveled, grouped hierarchies.

• Markets: Where the agents are arranged into a producer-consumer system, with some

agents buying products, some agents selling products and some agents doing both.

• Matrix: Where the agents are arranged into some form of a grid, where each agent may

have to report to multiple managers.

• Societies (including markets): Where the agents are arranged into an inherently open

system with a defined set of laws, where different agents may enter and leave as they

please but the society continues to exist.

Each of these paradigms has its own strength and weaknesses, as summarised in Table 1.1

(taken from [63]). The coalition organisational paradigm is one of the most popular in multi-

agent systems and is becoming increasingly important due to its natural fit to many scenarios

Chapter 1. Introduction 6

where there may be no central authority, especially when economies of scale can be exploited

[63, 88].

In more detail, Coalition formation is a process whereby agents recognise that cooperation

with others can occur in a mutually beneficial manner and therefore the agents have the capa-

bility to choose appropriate temporary groups (named coalitions) to form. The benefit of each

coalition can be measured by: the goals it achieves; the tasks it completes; and/or the utility it

gains. The reason that a self-interested agent joins a coalition, is that it will benefit more by

working with the other agents in the coalition compared to staying alone by: achieving more

goals; completing more tasks; or gaining more utility. A cooperative agent will join a coalition,

if the coalition increases the social welfare of the multi-agent system. Throughout this thesis, it

will generally be assumed that coalition formation takes place within coalitional games, which

is an abstract model for the complicated interactions and agreements required during the process

of coalition formation.

Coalition formation in multi-agent systems has a wide range of potential applications. Ac-

cording to [32, 36, 88], current or proposed applications include:

• Communication networks: Where coalitions of nodes can form in a network to reduce its

power consumption, reduce transmission costs or even increase network security.

• Distributed vehicle routing: Where coalitions of delivery companies can be formed to

reduce transportation costs by sharing deliveries.

• Electronic auctions/market places: Where coalitions of buyers can form to buy in bulk

and take advantage of price discounts.

• Grid computing: Where coalitions of agents can form to receive optimal resource alloca-

tions from the grid.

• Multi-agent planning: Where coalitions of agents can form to achieve mutually beneficial

goals.

• Sensor networks: Where coalitions of sensors can form to track targets.

• Smart grid: Where coalitions of distributed energy resources (electronic storage devices

or energy generators) can form: to meet power generation targets (in the case of coali-

tions consisting of renewable energy providers); balance power supply and demand (for

coalitions of storage devices and energy provides); or to exploit economies of scales (for

coalitions of storage devices).

Regardless of the application of coalition formation, the main points of interest tend to centre

around the following two issues:

1. What set of coalitions should form?

2. How should the benefit of each coalition be divided to its members?

Chapter 1. Introduction 7

Yet investigating these issues is a difficult task, due to: (i) the exponential number of differ-

ent possible coalitions; (ii) the “super exponential” number of possible sets of coalitions; (iii)

the possible self-interested behaviour of the agents; and (iv) the many ways in which the agents’

of a coalition can agree to distribute the benefit of each coalition around the coalition’s members

(if this benefit can be transferable).

The two previously highlighted issues are not just important in the multi-agent systems

domain, since the process of coalition formation can be seen in economic, political and social

settings [96], such as: cartel formation; political party/government formation; customs unions;

and public goods provisions. Therefore coalition formation has also been studied extensively by

economists and sociologists.

The formal theory of coalitional games for more than two people was first proposed within

the economic game theory field in John von Neumann and Oskar Morgenstern’s book The The-

ory of Games and Economic Behaviour [79] (1944). Prior to this point, modern game theory

research had focused on two player games [47].

Even though the formal theory of coalitional games are a modern creation, economic game-

theoretic insights can be traced back to ancient times. The stand out coalitional game example

being the Talmud’s1 recommendation that a recently deceased man’s estate be divided to its

creditors according to the coalitional game solution concept named the nucleolus [16], even

though the nucleolus was formally described only in 1969 [108].

Modern work in the multi-agent systems field on coalition formation differs from work in

other fields, because it focuses on the computational and communication aspects of coalition

formation. Simplistically, the different fields’ approaches to coalition formation can be viewed

as the manner in which they investigate the two previously highlighted issues: economists would

detail exactly what solutions satisfy the issues; sociologists would attempt to describe why these

solutions satisfy the issues; while computer scientists would detail how the agents would find

these satisfying solutions. Of course this is a simplistic overview, as researchers from the dif-

ferent fields can and do overlap in their approaches depending on the circumstances of their

research.

As the multi-agent system approach to coalition formation is generally different than other

field’s approaches, new interesting research questions are appearing, as described in the next

section.

1.3 Research Question

In multi-agent systems, some of the traditional assumptions of game-theoretic coalition forma-

tion may not be appropriate. This generally relates to the distributed nature of multi-agent sys-

tems, where there are distributed computational resources and the individual agents may have:

(a) partial knowledge of the system; (b) uncertainty over certain sections of the system; and (c)

communication costs when forming a coalition.
1The Talmud serves as a basis of Jewish law and is a collection of ancient law and tradition from the first five

centuries A.D.

Chapter 1. Introduction 8

In a recent book on the computational aspects of coalition formation in multi-agent sys-

tems [36], it was highlighted that an interesting current research question is “how can decen-

tralised coalition formation protocols with desirable characteristics for multi-agent systems be

designed?”. This potential research question requires a definition of desirable characteristics.

Some desirable characteristics for multi-agent systems coalition formation protocols are:

(i) Balanced computational load: How can the required computation of the coalition forma-

tion protocol be distributed approximately evenly between the agents?

(ii) Distributed knowledge will not affect results: How can optimal results be found when

each agent has only partial knowledge on the values of the potential coalitions?

(iii) Bounded communication costs: What are the communication costs when forming coali-

tions and can they be bounded or eradicated?

(iv) Valuation disagreements can be handled: How can the agents form coalitions when they

disagree on the value of some or all of the coalitions?

Given these preliminaries, the research question of this thesis can be introduced:

How can decentralised coalition formation methods be designed that: (i) balance the com-

putational load; (ii) do not allow distributed knowledge to affect results; (iii) bound the commu-

nication costs; and (iv) handle valuation disagreements of a quantitative or qualitative manner?

Not all of the desirable characteristics are fulfilled by every coalition formation method in-

troduced in this thesis. This is because (in general) the complexity level of the design increases,

when more desirable criteria are added. Additionally, given the environment the agents are in,

all of the given desirable criteria may not need to be satisfied. For example, in an environment

where certain values on each coalition is guaranteed, then valuation disagreements do not have

to be considered.

Regardless, the integration of more desirable criteria into a single coalition formation method,

compared to what has been managed within this thesis, is left as an open challenge.

1.4 Thesis Outline and Contributions

The process of coalition formation studied in this thesis consists of three stages [104]:

1. Finding the value of each possible coalition;

2. Agreeing on the set of coalitions to form;

3. Agreeing on how the benefit of each coalition should be distributed to the individual

agents (if there are different possible ways that it can be distributed).

Chapter 1. Introduction 9

For the first stage, the agents may value coalitions in a quantitative or qualitative manner.

In Chapter 3, the qualitative coalition valuation style is investigated. Chapter 3 assumes that

the different agents’ qualitative valuations of the coalitions comes from the agents using (pos-

sibly different) instantiations of the Value-based Alternating Transition System environmental

model [135]. Allowing different instantiations of the environmental model naturally allows for

the possibility of conflicting information to occur. In Chapter 3, a well known argumentation

scheme for practical reasoning, named AS1 and given in [13], is extended to allow for logical

reasoning over conflicting information on what coalitions should form. To use this new argu-

mentation scheme to find acceptable coalitions to form, critical questions are also presented that

are modifications of the critical questions in [13]. Instantiations of these argumentation scheme

are then communicated between the agents through an inquiry and persuasion argumentation-

based dialogue game that is a modified version of the dialogue games of [22] and [21]. Finally,

new definitions of argument acceptability were defined for Value-based Argumentation Frame-

works [19], so that the agents can be informed on the strength of the different coalition formation

arguments.

Additionally in the first stage of coalition formation, the agents may value the coalitions in

a quantitative manner. If the quantitative value of a coalition is defined by a formula that is the

same for any agent, then the process of calculating the value of every possible coalition can be

shared between all the agents. Sharing the burdening of the coalition value calculations is useful

because the number of possible coalitions grows at a rate of 2n − 1 (where n is the number

of agents). In Chapter 4, a new algorithm, named the distributed coalition generation (DCG)

algorithm, for distributing the coalition value calculations around the agents is presented that: (a)

requires no communication; (b) gives each agent an approximately equal share of coalition value

calculations; (c) allows every coalition’s value to be calculated; (d) allows no coalition’s value

to be calculated more than once; (e) requires any two agents who have equal value calculation

shares to have an equal number of operations to perform; and (f) assigns each agent a coalition

value to calculate only if that agent is a member of the coalition. It is in fact (e) and (f) which

are the unique elements of the DCG algorithm, as (a to d) are achieved in [90].

The DCG algorithm is faster than an agent calculating the value of every coalition that in-

cludes itself (named in this thesis as the AgentInAll algorithm), if the complexity of the value

calculation function is greater than linear according to the size of the coalition. For instance,

for 25 agents and a coalition value calculation function of O(s2) complexity (where s is the

coalition’s size), an agent using the AgentInAll algorithm took approximately 3.5 seconds to

calculate all of its assigned coalitions, while an agent using the DCG algorithm took approx-

imately 1 second2. The performance of DCG against AgentInAll gets better the higher the

complexity of the coalition value calculation function. For instance, for 25 agents and a coali-

tion value calculation function of O(2s) complexity (where s is the coalition’s size), an agent

using the AgentInAll algorithm took approximately 101
2 minutes, while an agent using the DCG

algorithm took approximately 4 seconds.
2The PC on which the simulations were run had a processor: Intel(R) Core(TM) i7-4810MQ 2.80 GHz, with

8GB of RAM.

Chapter 1. Introduction 10

Once the agents have calculated each coalition’s value, then they can use this information

to find: the utility maximising set of coalitions to form (referred to as an optimal solution);

and a manner in which to divide the benefit of each coalition between the agents so that no

single agent can object to this division (known as a stable solution). In Chapter 5, a distributed

algorithm named the decentralised dynamic programming (DDP) algorithm, takes distributed

coalition value calculations as input and guarantees that an optimal and most stable solution will

be found that is equivalent to the full knowledge solution (under the specific weak least core+

definition of stability, defined in Chapter 5). This guarantee is provided by: (i) an extension

to a theorem from [41] to proof that the synergy coalitional group (SCG) representation of

[41] always includes the necessary coalitions for a weak least core+ solution to be found; and

(ii) a modification to the DP algorithm of [138] so that all the SCG coalitions are definitely

found. Just using the SCG representation to find a stable outcome can be beneficial, because

the SCG representation can be a lot smaller than the full exponential representation for certain

standard coalition value distributions. For example, for 12 agents and a normal coalition value

distribution, the experiments of Chapter 5 found that approximately 6% of the coalitions in the

exponential representation were present in the SCG representation.

Finally even when the agents value the coalitions quantitatively, there can still be valuation

disagreements. This issue was investigated in Chapter 6, that introduced the valuation disagree-

ment coalitional game (VCG) model. The associated stability solution concepts of this model

allow the agents to be more satisfied with their expected payoff than in the stability solution

concepts of models that solves the valuation disagreement issue with a single percentage based

agreement on the division of the gains of the coalition, such as [34]3. For instance, for 7 agents

using a uniform coalition value distribution, the valuation disagreement model offered the agents

approximately 18% more expected payoff compared to using a single percentage based model

(given the same reported valuations for each agent in both models). Additionally the VCG model

allows coalitions to cooperate that models using the single percentage based agreement method

do not. For instance for 7 agents using a uniform coalition value distribution, in 90% of the

experiments conducted, coalitions were formed using the VCG model that the single percent-

age based model did not allow to cooperate. Finally the solution concepts of VCG encourage

pessimistic coalition valuations. Pessimistic valuations mean the agent’s expected payoffs will

be less likely to be above their true payoff and so the agents are more likely to be in profit over

their expected payoffs once the true values of the coalitions are revealed.

To summarise, this thesis is structured into seven chapters outlined as follows:

Chapter 2 presents a literature review on the topics related to coalition formation in multi-

agent systems and the various coalition formation methods detailed within this thesis.

Chapter 3 presents two decentralised dialogue game protocols, named the coalition in-

quiry (C-inq) and the coalition persuasion to action (C-pAct) dialogue games. These dialogue
3An example of a single percentage based agreement is the following: if a coalition of agent i and agent j is to

form, then agent i will take 60% of the coalition’s gain, while agent j will take 40%

Chapter 1. Introduction 11

games can be used together to allow agents to reason over the best coalitions to form, using an

argumentation-based method. The agents using these two protocols may have conflicting pref-

erences, views of the world and coalition valuations, all described in a qualitative manner.

Chapter 4 presents a new decentralised algorithm, named the distributed coalition gener-

ation (DCG) algorithm. The DCG algorithm distributes the coalition value calculations to the

agents of the system in a manner that gives no redundant coalition value calculations and every

coalition assigned to an agent, includes that agent as a member.

Chapter 5 presents two new decentralised algorithms, the decentralised dynamic program-

ming (DDP) algorithm and the DDP∗ algorithm (which is a slight modification of DDP). These

algorithms, designed for characteristic function games, allow the agents to find the optimal coali-

tion structure and a stable payoff vector (i.e. complete the coalition formation process), given

distributed coalition value calculations.

Chapter 6 presents a new coalitional game model, named the valuation disagreement coali-

tional game model, with associated solution concepts, for situations where the agents can value

their coalitions differently in a quantitative manner. This model increases the total expected

payoff of the agents compared to using a model that divides the gains of each coalition via a

single percentage demand vector.

Chapter 7 presents the thesis conclusions and identifies possible future research paths.

Additionally an appendix has been included. Appendix A is a proof, developed with Profes-

sor Paul Dunne, to show that the DCG algorithm of Chapter 4 achieves the properties claimed.

1.5 Published Work

The research presented in this thesis has been developed under the supervision of Dr. Katie

Atkinson, Dr. Terry Payne and Professor Trevor Bench-Capon. A summary of the publications

(to date) relating to the work presented in this thesis is as follows:

• The contributions of the C-inq protocol, C-pAct protocol and critical questions of Chap-

ter 3, builds on work undertaken with Katie Atkinson, Terry Payne and Elizabeth Black

and was published as “An Implemented Dialogue System for Inquiry and Persuasion” in

the first International Workshop on the Theory and Applications of Formal Argumentation

(TAFA), in Barcelona, Spain, 2011, [101].

• The contributions of the argumentation scheme of Chapter 3 and the application of the

critical questions of [101] to coalition formation, builds on work published as “A Persua-

sive Dialogue Game for Coalition Formation” in the inaugural Imperial College Student

Workshop (ICCSW), in London, UK, 2011, [98].

Chapter 1. Introduction 12

• The contribution of the DCG algorithm for the distribution of coalition value calculations

of Chapter 4, initially builds on work undertaken with Terry Payne, Trevor Bench-Capon

and Katie Atkinson and was published as an extended abstract “Distributing Coalition

Value Calculations to Self-Interested Agents” in the thirteenth International Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS), in Paris, France, 2014,

[102].

• The contribution of the DCG algorithm for the distribution of coalition value calculations

of Chapter 4 additionally builds on work undertaken with Katie Atkinson, Paul Dunne and

Terry Payne and was published as “Distributing Coalition Value Calculations to Coalition

Members” in the twenty-ninth Conference on Artifical Intelligence (AAAI), in Austin,

Texas, USA, 2015, [99].

Chapter 2

13

Chapter 2

Literature Review

In this literature review, the topics of coalitional games, cooperative game theory, coalition

formation in multi-agent systems, agent communication and argumentation are discussed. Dis-

cussing these topics allows the background of coalition formation to be detailed and the limita-

tions of current multi-agent system coalition formation methods to be described, thus showing

where the motivation for this thesis’s research question occurs from.

The literature review commences by detailing the formal foundations of coalitional games

in Sections 2.1, 2.2 and 2.3. Section 2.4 goes on to describe, with examples, how multi-agent

systems operate within these formal foundations to form coalitions. Later in this thesis, Chap-

ters 4 and 5 offer new methods for agents to form coalitions within these predefined quantitative

coalitional game foundations, while Chapter 6 gives a new formal quantitative coalitional game

definition.

The literature review concludes with Sections 2.5 and 2.6 that discuss models of agent com-

munication and argumentation, including how agents can communicate effectively and reason

logically over possibly conflicting qualitative information. Later in this thesis, these models are

built on in Chapter 3 to give a new method for agents to form coalitions using these predefined

qualitative foundations.

2.1 Characteristic Function Games

In the seminal work of [79], von Neumann and Morgenstern constructed the theory of n-person

cooperative games, where groups of agents can join together to form coalitions. They detailed n-

person cooperative games in characteristic function form, where each coalition has an associated

real numeric utility value that it can achieve:

Definition 2: A characteristic function game is denoted G = 〈N, v〉, where N is the set

of agents in the game and v is the characteristic function that maps every potential coalition

C ⊆ N to a real numeric value (i.e. v(2N) → R). By default an empty coalition receives no

utility payoff (i.e. v(∅) = 0).

In the literature, some assumptions on characteristic function games are made (see Section

2.3 for discussion on alternatives to these assumptions):

15

Chapter 2. Background 16

• The characteristic function formula is not detailed in the formalism.

• The characteristic function formula is agreed on by all the agents beforehand.

• All the agents have perfect information to use the characteristic function formula to get

an accurate utility value for each coalition.

• The value v(C) returned by the characteristic function is the largest value that coalition

C could achieve.

• Each coalition’s utility value is independent of what non-members do.

• The value of each coalition does not change over time.

• The value of each coalition can be distributed to its members in any manner. Games with

this property are known as transferable utility games.

Additionally, it is traditionally assumed that in characteristic function games the coalition of

all agents (known as the grand coalition) forms.

Definition 3: A coalitionC is the grand coalition for a characteristic function game G = 〈N, v〉
iff C = N .

It is rational to assume that the grand coalition will form in superadditive games [106]:

Definition 4: A characteristic function game G = 〈N, v〉 is superadditive if for any two disjoint

coalitions D and E, where D,E ⊂ N and D ∩ E = ∅, v(D ∪ E) > v(D) + v(E).

Traditionally the grand coalition is assumed to form in any characteristic function game

because it is argued that at worst the agents in the larger coalition can behave as if they were in

smaller coalitions [104]. Yet [104] details the reasons that this classical assumption should not

always be assumed in multi-agent systems: (i) there maybe a coordination overhead for forming

the grand coalition, e.g. communication costs or anti-trust penalties; (ii) finding the optimal

manner the grand coalition can work together maybe more costly than finding out how a group

of smaller coalitions can optimally work together; and (iii) if time is limited, the agents may

not be able to carry out the communication and computation required to coordinate effectively

within the larger coalition. Therefore in multi-agent systems it may be beneficial to form a set

of coalitions, known as a coalition structure [104], defined as:

Definition 5: A coalition structure (CS) is the set of coalitions in a system, denoted: CS =

{C1, ..., Ck}. In a characteristic function game G = 〈N, v〉, the coalition structure has the

following properties:

k⋃
j=1

Cj = N and (2.1)

Ci ∩ Cj = ∅ for any i, j ∈ {1, ..., k} where i 6= j. (2.2)

Chapter 2. Background 17

The first condition states that the union of all the coalitions must equal the total set of agents

of the game. The second condition states that each agent should only be a member of a single

coalition. Overlapping coalitional games (e.g. [35, 42]) relax the second condition, yet they are

not addressed here as they are outside the scope of this thesis. Throughout the thesis v(CS) is

written to denote the total value of a coalition structure CS, i.e. v(CS) =
∑

C∈CS v(C). A

special type of coalition structure, measured by it’s social welfare (i.e. the sum of the values of

all the coalitions in the coalition structure), is as follows:

Definition 6: An optimal coalition structure (CS∗) is a coalition structure that maximises social

welfare, i.e.: ¬∃CS′ where v(CS′) ≥ v(CS∗).

Finding an optimal coalition structure (CS∗) that maximises social welfare is known as the

coalition structure generation problem [104], discussed in Section 2.4.2.

Example 1: Consider the characteristic function game G = 〈N, v〉 where N = {1, 2, 3} and

the characteristic function v gives the following valuations: v({1}) = 2 (i.e. the utility value,

of agent 1 by itself, is 2), v({2}) = 1, v({3}) = 2, v({1, 2}) = 10 (i.e. the utility value of the

coalition, containing agents 1 and 2, is 10), v({1, 3}) = 8, v({2, 3}) = 9 and v({1, 2, 3}) =

10 (i.e. the utility value, of the grand coalition, is 10). Then CS∗ = {{1, 2}, {3}} because

v(CS∗) = v({1, 2}) + v({3}) = 10 + 2 = 12, and no other valid coalition structure can give

a higher total value for the game G.

Finding an acceptable coalition structure is only half the requirement in characteristic func-

tion games. Agents also need to be motivated to join a coalition. In characteristic function

games, this motivation comes from the transferable utility that each agent in the coalition re-

ceives. A payoff vector x is used to distribute the total utility value of the coalition structure to

the individual agents [79].

Definition 7: A payoff vector is denoted: x = (x1, ...xn) ∈ Rn where xi ≥ 0 for all i ∈ N and

xi corresponds to the utility payoff assigned to agent i. Throughout the thesis, notation will be

abused by using x(C) to denote the component of the payoff vector x that has individual payoffs

only for agents of the coalition C, i.e. x(C) =
∑

i∈C xi.

Given a payoff vector, the worst payoff any agent can receive is zero. An example payoff

vector is x(1, 4, 5, 2), where the coalition {1, 4} receives x({1, 4}) = x1 + x4 = 1 + 2 = 3

total payoff. Traditionally all the payoff of a coalition can only be divided between agents of

that coalition, i.e. traditionally side payments between coalitions are not allowed [83]. Yet

there exists some research in multi-agent systems that is starting to relax the assumption of this

property (e.g. [2, 66]).

A problem with some payoff vectors is that they may not satisfy the requirements of all the

agents of the system. The most obvious requirement for a payoff vector is the following [83]:

Definition 8: A payoff vector is individually rational if all agents receive at least as much

utility payoff as they would receive by themselves, i.e. ∀i ∈ N , xi ≥ v({i}).

A payoff vector that satisfies individual rationality is known as an imputation and is defined

as [83]:

Chapter 2. Background 18

Definition 9: An imputation is a payoff vector that satisfies individual rationality. The full set

of imputations of a characteristic function game is denoted Imp(N, v).

Two different imputations may not be of the same quality, which motivates the next defini-

tion [83]:

Definition 10: Given two payoff vector imputations xp and xq, xp is said to dominate xq if

there is a non-empty coalition S such that ∀i ∈ S, xpi > xqi and xp(S) ≤ v(S).

The notion of dominance is used by the core and stable sets definitions (described in Sec-

tion 2.2), which detail the acceptable payoff vectors for self-interested agents.

Example 2: Consider the characteristic function game G = 〈N, v〉 whereN = {1, 2, 3} and the

characteristic function v gives the following valuations v({1}) = 1, v({2}) = 2, v({3}) = 2,

v({1, 2}) = 4, v({1, 3}) = 6, v({2, 3}) = 5 and v({1, 2, 3}) = 9. The optimal coalition

structure of this game isCS∗ = {{1, 2, 3}}. The following payoff vectors, dividing v(CS∗) = 9

between the agents, are imputations: x1(3, 3, 3); and x2(2, 5, 2) (where x1 dominates x2 via

coalition {1, 3} because x1
1 > x2

1, x1
3 > x2

3 and x1({1, 3}) ≤ v({1, 3})). The following payoff

vectors are not imputations: x4(0, 4, 5) because x4
1 < v({1}); x5(4, 1, 4) because x5

2 < v({2});

and x6(0, 9, 0) because x6
1 < v({1}) and x6

3 < v({2}).

Given the above information, the outcome of a characteristic function game can now be

detailed [104]:

Definition 11: An outcome of a characteristic function game G = 〈N, v〉 for n agents is a

coalition structure and payoff vector pair, denoted: 〈CS, x〉 where CS is a set of k coalitions,

denoted {C1, ..., Ck} and x is the payoff vector, denoted x(x1, ..., xn).

Example 3: Consider the characteristic function gameG = 〈N, v〉whereN = {1, 2, 3} and the

characteristic function v gives the following valuations: v({1}) = 1, v({2}) = 2, v({3}) = 2,

v({1, 2}) = 4, v({1, 3}) = 6, v({2, 3}) = 5 and v({1, 2, 3}) = 9. Example outcomes to this

game are: 〈{{1, 2, 3}}, x(3, 3, 3)〉; 〈{{1, 2}, {3}}, x(2, 2, 2)〉; and 〈{{1, 3}, {2}}, x(2, 2, 4)〉.
Some outcomes are favoured more than others for reasons of social welfare or individual

self-interest. The next section looks at methods to reason over what are the ‘best’ characteristic

function game outcomes.

In this thesis, characteristic function games are used in Chapters 4 and 5. Chapter 4 details

an algorithm to distribute the calculation of the coalition values around the agents of the system.

Chapter 5 describes a distributed algorithm, that finds characteristic function game outcomes

that are ‘best’, given a specific definition on what a ‘best’ solution is.

2.2 Cooperative Game Theory Solution Concepts

Game theory [83] studies the theory of optimal decision making in environments populated by

self-interested agents and has two strands: cooperative game theory, where the agents are al-

lowed to form temporary binding contracts for cooperative behaviour (thereby creating a coali-

tion); and non-cooperative game theory, where the agents cannot create these contracts.

In cooperative game theory, the cooperative element of the game does not imply that each

agent will definitely do what the other agents want. Instead the cooperative element refers to

Chapter 2. Background 19

the agents cooperating in temporary coalitions towards a common goal, if this is in each agent’s

best interest. Therefore, similar to non-cooperative game theory, the agents of a characteristic

function game are motivated by utility maximisation.

Cooperative game theory has many solution concepts that detail what outcomes of the coali-

tional game are desirable, based on the properties of fairness or stability. Generally, the process

of finding an outcome in a solution concept is not detailed in its definition. When a solution

concept focuses on the property of stability, the solution concept relies on the idea that a subset

of agents might “object” to an outcome and so become a blocking coalition for this outcome.

An outcome has a blocking coalition if there is an alternative outcome for that coalition that

improves the payoff of at least one of its members and does not worsen the payoff of the other

members. Alternatively, when a solution concept focuses on the property of fairness, the solu-

tion concept aims to give each agent a payoff that reflects its full potential contribution to the

game as a whole.

The concern of this thesis is stability solution concepts due to the possible self-interest of the

agents using the decentralised methods presented within the subsequent chapters. This reasoning

is expanded on at the end of Section 2.2.1, after the formal introduction of various stability

solution concepts.

2.2.1 Classical Core Based Solution Concepts

In this section, the classical definitions of stability solution concepts for characteristic function

games are detailed, where the grand coalition is assumed to form. In Section 2.2.3, these clas-

sical definitions are modified for the possible formation of different coalition structures within

characteristic function games. In Section 2.3, some solution concepts for other coalitional game

types are discussed.

This section begins with the following general definition of stability, taken from [136]:

Definition 12: A coalitional game is stable if all the agents have no valid objection to the

coalitional game outcome. Stability is a necessary but not sufficient condition for a payoff vector

(or coalition structure) to be agreed, because there could be multiple possible stable outcomes.

The idea of a valid objection changes depending on which stability concept is used. Perhaps

the most intuitive stability based solution concept is known as the core. The core was introduced

in [58] (defined below) and is the set of stable outcomes where no subset of agents have an

incentive to deviate, i.e., there is no payoff distribution that would make at least one member of

a deviating coalition better off, without negatively affecting the other members of the deviating

coalition.

Definition 13: The core:- For a set of agents N , a payoff vector x = (x1, ..., xn) for the grand

coalition is in the core iff: ∑
i∈N

xi = v(N)∑
i∈C

xi ≥ v(C),∀C ⊂ N

Chapter 2. Background 20

The payoff vector must be feasible and efficient. The payoff vector must be feasible in

the sense that the total value of the payoff vector should not be above the value of the grand

coalition and the payoff vector must be efficient in the sense that the grand coalition payoff

should be totally shared between the agents of the coalitional game (i.e. x(N) = v(N)). Ad-

ditionally there must be no blocking coalition, meaning there should be no coalition who could

deviate from the grand coalition and get more payoff by dividing v(C) between themselves

(i.e.
∑

i∈C xi ≥ v(C),∀C ⊂ N)1. For the core solution concept with a coalition structure see

Section 2.2.3.

Example 4: Consider a characteristic function game G = 〈N, v〉 where N = {1, 2, 3, 4} and

the characteristic function v gives the following valuations: v({1, 2}) = 12, v({3, 4}) = 10,

v({2, 3}) = 8, v({1, 2, 3, 4}) = 24 and v(C) = 0 for every other possible coalition C. In

the traditional definition of the core, the grand coalition {1, 2, 3, 4} forms. A payoff vector in

the core has to give every potential deviating coalition C ′ a payoff x(C ′) greater than or equal

to its value v(C ′). Example payoff vectors that satisfy these restrictions are: (i) x(6, 6, 6, 6);

(ii) x(7, 7, 5, 5); and (iii) x(7, 6, 2, 9). Example payoff vectors that violate these restrictions are:

(iv) x(5, 5, 7, 7) because x({1, 2}) < v({1, 2}); (v) x(8, 8, 4, 4) because x({3, 4}) < v({3, 4});

and (vi) x(10, 4, 2, 8) because x({2, 3}) < v({2, 3}).

A problem with the core is that it can sometimes be empty. To tackle this issue, the concept

of the ε-core is introduced, where the ε-core is a more general case of the core. Two different

definitions of the ε-core were introduced in [114], named the strong ε-core and the weak ε-core.

Both concepts rely on the idea of coalitional excess:

Definition 14: The strong excess of a coalition C for a payoff vector x is denoted εs(C, x) and

calculated by:

εs(C, x) = v(C)−
∑
i∈C

xi

Definition 15: The weak excess of a coalition C for a payoff vector x is denoted εw(C, x) and

calculated by:

εw(C, x) =
v(C)−

∑
i∈C xi

|C|

Positive excess for a potential coalition C means that C has a higher utility value (i.e. v(C))

than the combined payoff the members of C currently receive (i.e.
∑

i∈C xi). In this case, the

members ofC will benefit ifC forms (providing there is no penalty on forming a new coalition).

Negative excess for a potential coalition C, means that C has a lower utility value (i.e. v(C))

than the combined payoff the members of C currently receive (i.e.
∑

i∈C xi). In this case, the

1Remember that sometimes in the thesis, notation will be abused by using x(C) to denote
∑

i∈C xi.

Chapter 2. Background 21

members of C will not benefit if C is formed. The maximum strong or weak excess, denoted εs

and εw respectively, of all the possible coalitions C ⊂ N , is formalised as [114]:

Definition 16: The maximum strong excess εs of a characteristic function game is the follow-

ing:

εs = max
C⊂N

(
v(C)−

∑
i∈C

xi

)

Definition 17: The maximum weak excess εw of a characteristic function game is the follow-

ing:

εw = max
C⊂N

(
v(C)−

∑
i∈C xi

|C|

)

The ε-cores are useful as they can relax the strict conditions of the core solution concept.

The ε-cores are the set of stable outcomes where no subset of agents has an incentive to deviate

when the subset has to pay a penalty for deviation [114]:

Definition 18: The strong ε-core:- For a characteristic function game G = 〈N, v〉 and a value

ε, a payoff vector x = (x1, ..., xn) for the grand coalition is in the strong ε-core iff:∑
i∈N

xi = v(N) (2.3)∑
i∈C

xi ≥ v(C)− ε, ∀C ⊂ N (2.4)

Definition 19: The weak ε-core:- For a characteristic function game G = 〈N, v〉 and a value ε,

a payoff vector x = (x1, ..., xn) for the grand coalition is in the weak ε-core iff:∑
i∈N

xi = v(N) (2.5)∑
i∈C

xi ≥ v(C)− |C|ε, ∀C ⊂ N (2.6)

The difference between the strong and weak ε-cores is that under the weak definition, the

penalty of forming a new coalition is dependent on the size of that coalition, while the penalty

for forming a new coalition under the strong definition is a fixed amount for any coalition.

When ε = 0, the ε-core definitions are the same as the core. If ε is positive then the ε-cores

are a wider version of the core whereas if ε is negative then they are tighter versions of the core.

Again like the core, an ε-core payoff vector must be feasible and efficient (i.e. 2.3 and 2.5).

Additionally there must be no blocking coalition, which means there should be no coalition

who could deviate from the grand coalition, pay the deviation penalty and get more payoff by

dividing the remaining payoff between themselves (i.e. 2.4 and 2.6). Like core solutions, ε-core

solutions can only be defined over the grand coalition, for the ε-core solution concept with a

coalition structure see Section 2.2.3.

Chapter 2. Background 22

Example 5: Consider a characteristic function game G = 〈N, v〉 where N = {1, 2, 3, 4} and

the characteristic function v gives the following valuations: v({1, 2}) = 16, v({3, 4}) = 14,

v({2, 3}) = 8, v({1, 2, 3, 4}) = 24 and v(C) = 0 for every other possible coalition C. In the

traditional definition of the ε-cores, the grand coalition {1, 2, 3, 4} forms. A payoff vector in the

ε-core has to give every potential deviating coalition C ′ a payoff x(C ′) greater than or equal to

its value v(C ′) minus the deviation penalty. Example payoff vectors (that are indexed via their

superscript) in different ε-cores are: (i) x1(10, 0, 1, 13) where εs = 7 because x1({2, 3}) +

7 = v({2, 3}), while εw = 3.5 because v({2,3})−x1({2,3})
|{2,3}| = 3.5; (ii) x2(8, 8, 4, 4) where εs =

6 because x2({3, 4}) + 6 = v({3, 4}), while εw = 3 because v({3,4})−x2({3,4})
|{3,4}| = 3; and

(iii) x3(8, 4, 4, 8) where ε = 4 because x3({1, 2}) + 4 = v({1, 2}), while εw = 2 because
v({1,2})−x3({1,2})

|{1,2}| = 2.

There are an infinite number of possible ε-cores. The least core is the smallest, non-empty

ε-core, and so again there are two different definitions [114]:

Definition 20: The strong least core:- For a characteristic function game G = 〈N, v〉, a payoff

vector x = (x1, ..., xn) is in the strong least core iff:

x is in the strong ε-core

∀ε′ < ε, the strong ε′-core is empty

Definition 21: weak least core:- For a characteristic function game G = 〈N, v〉, a payoff vector

x = (x1, ..., xn) is in the weak least core iff:

x is in the weak ε-core

∀ε′ < ε, the weak ε′-core is empty

A payoff vector in the least cores minimises the maximum dissatisfaction of any coalition.

The least cores therefore contain the payoff vectors that are ‘least objectionable’, under the

strong or weak ε-core definition of objectionable. If the core of a characteristic function game

is empty, the value of the least cores can be viewed as the minimum deviation penalty that is

needed to stop a potential coalition from deviating from the grand coalition under the strong or

weak ε core definition [109]. For the least core with coalition structure, see Section 2.2.3.

Example 6: Consider a characteristic function game G = 〈N, v〉 where N = {1, 2, 3, 4} and

the characteristic function v gives the following valuations: v({1, 2}) = 12, v({3, 4}) = 10,

v({2, 3}) = 8, v({1, 2, 3, 4}) = 20 and v(C) = 0 for every other possible coalition C. In

the traditional definition of the least-cores, the grand coalition {1, 2, 3, 4} forms. A payoff

vector in the least cores minimises the maximum strong or weak excess every potential deviating

coalition C ′ has. Example payoff vectors that satisfy these restrictions are: (i) x(6, 5, 5, 4); (ii)

x(4, 7, 2, 7); and (iii) x(5.5, 5.5, 4.5, 4.5), all of which give the minimal εs = 1 or εw = 0.5

value, which are the least core values of this game. These are the least core values of the game

Chapter 2. Background 23

because: (a) εs({1, 2}) = εs({3, 4}) = 1 and εw({1, 2}) = εw({3, 4}) = 0.5; (b) any transfer

of payoff from an agent of coalition {1, 2} to an agent of coalition {3, 4} (or vice versa) will

result in the excess value of one potential coalition increasing; and (c) any transfer of payoff

between the agents of the coalition {1, 2} (or between the agents of the coalition {3, 4}) will

not result in the excess value of either coalition decreasing. Example payoff vectors that are

not in the least core are: (iv) x(2, 5, 7, 6) because εs({1, 2}) = 12 − (2 + 5) = 5 > 1 and

εw({1, 2}) = 12−(2+5)
|{1,2}| = 2.5 > 0.5; (v) x(6, 6, 4, 4) because εs({3, 4}) = 10 − (4 + 4) =

2 > 1 and εw({3, 4}) = 10−(4+4)
|{3,4}| = 1 > 0.5; and (vi) x(10, 0, 0, 10) because εs({2, 3}) =

8− (0 + 0) = 8 > 1 and εw({2, 3}) = 8−(0+0)
|{2,3}| = 4 > 0.5.

The nucleolus, introduced by Schmeidler [108], is a further refinement of the strong least

core (even though it could easily be modified to be a refinement of the weak least core). The nu-

cleolus is a single payoff vector and is referred to as the “most stable point” inside the core/strong

least core. To find the nucleolus, as detailed in [36], all of the strong excesses of each coalition

can be organised into an deficit vector δ(x) = (εs(x,C1), ..., εs(x,C2n)), where the coalitions

C1, ..., C2n is the ordering of all the possible coalitions from largest excess to smallest, i.e.

εs(x,Ci) ≥ εs(x,Cj) where i < j. The nucleolus is the payoff vector that has the lexicograph-

ically smallest deficit vector. A deficit vector δ(x) for the payoff vector x is lexicographically

smaller then the deficit vector δ(y) for the payoff vector y, i.e. δ(x) <lex δ(y) if the first

i ∈ {0, ..., 2n−1} entries of the deficit vectors are equal and then the i + 1 entry of δ(x) is

smaller than the i+ 1 entry of δ(y).

Definition 22: The nucleolus:- For a characteristic function game G = 〈N, v〉, a payoff vector

x = (x1, ..., xn) for the grand coalition is the nucleolus of the game iff:

x ∈ Imp(N, v)

δ(x) <lex δ(y) for all y ∈ Imp(N, v) where x 6= y

The first condition states that the nucleolus has to be an imputation payoff vector (one that

satisfies individual rationality for all agents). The second condition states that the nucleolus

must be lexicographically smaller than any other possible imputation payoff vector. If the same

definition is used, except with all possible payoff vectors (i.e. not just imputations) then the

pre-nucleolus is found.

Example 7: Consider a characteristic function game G = 〈N, v〉 where N = {1, 2, 3} and

the characteristic function v gives the following valuations: v({1, 2}) = 12, v({1, 3}) = 10,

v({2, 3}) = 8, v({1, 2, 3}) = 15 and v(C) = 0 for every other possible coalition C. In the tra-

ditional definition of the nucleolus, the grand coalition {1, 2, 3} forms. There is only one payoff

vector (that is also an imputation) in the nucleolus. The nucleolus for this game is: x(7, 5, 3)

that gives the strong least core value εs = 0 and the deficit vector of δ(x) = (εs(x, {1, 2}) =

0, εs(x, {1, 3}) = 0, εs(x, {2, 3}) = 0, εs(x, {3}) = −3, εs(x, {2}) = −5, εs(x, {1}) = −7).

It can be seen that x is in fact the nucleolus because any payoff transfer from any xi to an-

other xj will raise the strong excess value of the coalition including i and not j over the current

Chapter 2. Background 24

maximum excess value of zero.

This thesis uses solution concepts based on the core, ε-cores and least cores, yet does not

use the solution concept of the nucleolus. The reason for this decision is that the nucleolus

is significantly more computationally intensive to find due to the deficit vector containing all

C ⊆ N coalitions, compared to the core/ε-cores/least cores solution concepts that need to only

consider the coalition at the start of the deficit vector. Therefore, in decentralised environments,

with the possibility of agents not having full coalitional value knowledge, finding the nucleolus

will require much more communication in the majority of cases compared to searching for a

variation of the core or least-core.

The reasoning for not using the nucleolus, also applies for not using the most fair cooperative

game solution concept, named the Shapley value [113]. Like the nucleolus the Shapley value

is computationally intensive to find, as the Shapley value requires multiple calculations per

coalition (after the coalition value has been found), to calculate the marginal contribution of

each agent to each potential coalition it is a member of. Additionally the Shapley value may not

even assign a payoff vector that is individually rational [49], which self-interested agents should

not agree with.

2.2.2 Other Classical Solution Concepts

The solution concepts mentioned in detail so far are the main core-related solution concepts. In

this section, the other main stability solution concepts for characteristic function games will be

detailed, and the reasons for not using them in this thesis will be explained.

• When the core is empty, the ε-core or least core definition allows stability to be recovered.

An alternative method to recover stability in an empty core game is through the cost of

stability solution concept [18]. The cost of stability solution concept finds the minimum

payment ∆ needed to give to the agents of a characteristic function game in order for the

core to be non-empty. The least core value of a characteristic function game corresponds

to the upper bound on ∆ [18].

The cost of stability is not used in this thesis as it requires a benevolent external party to

pay ∆ and this thesis does not make the assumption that such a party exists.

• The kernel introduced in [45] is another stability solution concept. It measures the strength

(surplus) of the agents by the maximum excess they can obtain by forming a new coalition.

An agent i compares the strength of itself with the strength of another agent j in its current

coalition by comparing i’s surplus in coalitions that do not include j with j’s surplus in

coalitions that do not include i. The comparison between agents indicates whether the

current payoff distribution is acceptable or not. Unlike the core, the kernel always exists.

The kernel was not used in this thesis since it is not linked directly to an optimal coalition

structure [2]. The work of this thesis is not restricted to self-interested agents and so a

socially optimal coalition structure may be an important outcome. For instance, Chapter 5

explores how to get a socially optimal yet stable coalition structure. As kernel-stable

Chapter 2. Background 25

payoff vectors can be found for many coalition structures, it cannot be guaranteed that

the agents will find the optimal coalition structure. Also in a fully distributed algorithm

with self-interested agents, it cannot be guaranteed that agents will be motivated to find

a kernel-stable payoff vector for any coalition structure, as self-interested agents may

benefit from hiding information [1]. Yet the distributed algorithm detailed in Chapter 5

motivates agents to reveal new information when looking for a payoff vector in a variant

of the least core.

• The stable set (also known as the von Neumann and Morgenstern solution) [79] is based

on the idea of payoff vector dominance (as introduced in Section 2.1) and is, unlike the

other solution concepts, a multi-set solution concept. If the core is non-empty, then the

core is contained in all stable sets. While it was initially believed at least one stable set

always existed, a complicated 10-agent counter example was produced in [69] showing a

stable set may not always exist for every characteristic function game. Stable sets are not

used in this thesis as the core set of results can be quite large as it is, and the core coincides

nicely with other complementary non-empty solution concepts such as the strong and

weak least core, the coalition structure-least core (introduced in Section 2.2.3), and the

valuation-disagreement least core (introduced in Chapter 6).

• The bargaining set [15], which is always non empty, relaxes the stability requirements

of the core. It is based on the idea of objections and counter objections. An agent i can

object to a payoff vector x and ask for payoff from agent j. This objection can only occur

if there is a coalition C not currently formed that includes i yet excludes j, where the

proposed payoff for every agent in C is greater than or equal to what it received in x. Yet

this objection is ineffective for the bargaining set if agent j can find a counter objection.

This counter objection can only occur if there is an coalition C not currently formed that

excludes i yet includes j, where the payoff for every agent in C is greater than or equal to

what it received in x and agent i’s objection.

The bargaining set was not used in this thesis because this thesis relaxes the requirements

of the core through its least core variants.

2.2.3 Coalition Structure Stability Solution Concepts

In multi-agent systems, the classical assumption that the grand coalition always forms can be

discarded [104], because as previously stated: (i) there maybe a coordination overhead for form-

ing the grand coalition, e.g. communication costs or anti-trust penalties; (ii) finding the optimal

manner the grand coalition can work together maybe more costly than finding out how a group

of smaller coalitions can optimally work together; and (iii) if time is limited, the agents may

not be able to carry out the communication and computation required to coordinate effectively

within the larger coalition. Therefore the classical definitions of the stability solution concepts

need to be modified. In this section, stability solutions from Section 2.2.1 are modified to include

coalition structures.

Chapter 2. Background 26

Firstly the coalition structure-core (CS-core) is presented, which is a modified version of

the core [14]:

Definition 23: The CS-core:- For a set of agentsN , a coalition structure CS and a payoff vector

pair 〈CS, x〉 is in the CS-core iff: ∑
i∈C

xi = v(C),∀C ∈ CS∑
i∈C

xi ≥ v(C),∀C ⊆ N

CS-core solutions allow any coalition structure to form and not just the grand coalition. If

the core is non-empty then the CS-core is also non-empty, i.e. if x is a core stable solution

then 〈N, x〉 is a CS-core stable solution [55]. But the core can be empty when the CS-core is

non-empty, as [112] shows with the following example:

Example 8: Consider a characteristic function game G = 〈N, v〉 where N = {1, 2} and the

characteristic function v gives the following valuations: v(C) = 1, ∀C ⊆ N . Then there exists

no solution in the core because each agent can get the value of the grand coalition by itself. Yet

the solution 〈{{1}, {2}}, x(1, 1)〉 (i.e. where agent 1 and 2 are both by themselves and both

receive a utility value of 1) is in the CS-core because the only alternative is to form the grand

coalition but forming the grand coalition will decrease the utility value that one or both of the

agents receive.

Just like the core, the CS-core can sometimes be empty. Therefore the solution concepts of

the ε-CS-core and CS-least core were introduced, which are modifications of the strong ε-core

and strong least core respectively [112].

Definition 24: The ε-CS-core:- For a set of agents N and a value ε, a coalition structure and

payoff vector pair 〈CS, x〉 is in ε-CS- core iff:∑
i∈C

xi = v(C), ∀C ∈ CS∑
i∈C

xi ≥ v(C)− ε,∀C ⊆ N

Every coalition in an ε-CS-core stable coalition structure must have its full utility value

divided between its members. The ε value can be viewed as a penalty for deviation from the

given coalition structure. When ε = 0, the ε-CS-core definition is the same as the CS-core.

Example 9: Consider a characteristic function game G = 〈N, v〉 where N = {1, 2, 3, 4} and

the characteristic function v gives the following valuations: v({1, 2}) = 16, v({3, 4}) = 14,

v({2, 3}) = 8, v({1, 4}) = 20, v({1, 2, 3, 4}) = 24 and v(C) = 0 for every other possible

coalition C. An outcome in the ε-CS-core has to give every potential deviating coalition C ′ a

payoff x(C ′) greater than or equal to its value v(C ′) minus the deviation penalty ε. Example

outcomes in different ε-CS-cores are: (i) 〈{{1, 2}, {3, 4}}, x(8, 8, 7, 7)〉 where ε = 5 because

x({1, 4}) + 5 = v({1, 5}); (ii) 〈{{1, 2, 3, 4}}, x(9, 1, 3, 11)〉 where ε = 6 because x({1, 2}) +

Chapter 2. Background 27

6 = v({1, 2}); and (iii) 〈{{2, 3}, {1, 4}}, x(10, 4, 4, 10)〉 where ε = 2 because x({1, 2}) + 2 =

v({1, 2}).

There are an infinite number of possible ε-CS-cores, yet the smallest non-empty ε-CS-core

is known as the CS-least core [112]:

Definition 25: CS-Least core:- For a set of agents N , a coalition structure and payoff vector

pair 〈CS, x〉 is in CS-least core iff:

〈CS, x〉 is in the ε-CS-core

∀ε′ < ε, the ε′-CS-core is empty

Like the classical definition of the least core, if the CS-core of a coalitional game is empty,

the CS-least core value can be viewed as the minimum deviation penalty that is needed to stop a

potential coalition from deviating from the given coalition structure. The coalition structures in

the CS-least core may or may not contain optimal social welfare maximising coalition structures,

as the following example from [112] shows:

Example 10: Consider a characteristic function game G = 〈N, v〉 where N = {1, 2, 3} and the

characteristic function v gives the following valuations: v(C) = 10 if |C| = 1, v(C) = 30 if

|C| = 2, and v({1, 2, 3}) = 39. A solution in the CS-least core minimises the maximum excess

every potential deviating coalition C ′ has. The optimal social welfare coalition structures in

this game consist of two coalitions, of size one and two respectively, e.g. CS∗ = {{1}, {2, 3}}.
The most stable payoff vector for this coalition structure is x(10, 15, 15) giving the ε value of

5 (i.e. x({1, 2}) + 5 = v({1, 2})). Yet the coalition structure CS = {{1, 2, 3}} can give

the payoff vector x(13, 13, 13) which gives the CS-least core value of 4 (e.g. x({1, 2}) + 4 =

v({1, 2})). Therefore the optimal coalition structure is not contained within the CS-least core

in this example.

In this thesis, coalition structure stability solution concepts are used within in Chapter 6.

2.3 Non-Classical Types of Coalitional Games

So far we have discussed the traditional coalitional game type: characteristic function games.

Yet characteristic function games make three big assumptions: (i) the value of the coalition can

be split up in any manner between the agents of the coalition; (ii) the value of each coalition

is the same for all the agents of the coalition; and (iii) a coalition’s value is not affected by

the other coalitions that form. However these assumptions do not necessarily hold for certain

types of coalitional games, described below. Assumption (i) is discarded in non-transferable

utility games. Assumption (ii) is discarded in coalitional game models for uncertainty/valuation

disagreements. Assumption (iii) is discarded in partition function games. A variant of a non-

transferable utility game, a coalitional game model for valuation disagreements and a partition

function game is considered in Chapter 3 of this thesis. While another variant of a coalitional

Chapter 2. Background 28

game model for valuation disagreements, where assumptions (i) and (ii) hold, is considered in

Chapter 6 of this thesis.

2.3.1 Non-Transferable Utility Games

When the utility of a coalition is not transferable between the agents, then this coalitional game

is a non-transferable utility game. Examples include qualitative coalition games, coalition

Boolean games and hedonic games [26, 51, 132, 133]. Two non-transferable utility coalitional

games that most relate to the work of Chapter 3 are now briefly discussed.

Firstly, qualitative coalitional games (QCGs) [132] model the payoff of a coalition in terms

of goal sets that the coalition can achieve by performing a certain choice. The incentive for

an agent to join a coalition in a QCG is to achieve a goal that it would not be able to achieve

individually. In QCGs, agents have a set of goals they want to achieve (yet have no preference

order over), and the formation of one coalition does not affect the goal sets that another coalition

can achieve. A coalition C is in the core of a QCG if: (i) C can successfully achieve the goal

set G; (ii) this goal set satisfies all agents of C; (iii) C is minimal (otherwise some agents could

defect to form other coalitions and achieve other goals at the same time as G is achieved).

Several approaches have extended the idea of qualitative coalition games by adding pref-

erences to the goals to be achieved [28, 40, 52]. Rephrasing the stability definition of these

approaches (to incorporate coalition structures): a coalition C, that can achieve the goal set

G, is in the core of a QCG (with preferences), if: there does not exist a coalition S (where

S ∩C 6= ∅) that can achieve a goal set G′, which all the members of S favour compared to their

current coalition goal sets.

In this thesis, Chapter 3 investigates a variant of QCGs where the goals that coalitions can

achieve are linked to social-values (social-values are described in Section 3.5). In Chapter 3, un-

like QCGs, the formation of a coalition can affect the goals that another coalition could achieve.

Secondly, coalition resource games (CRGs) model where the choices of coalitions in QCGs

come from. The choices of a coalition in a CRG depend on the resources available to the agents

of that coalition, and the amount each agent has of these resources. CRGs are a modification of

QCGs. CRGs can always be mapped to a QCG; whereas a QCG cannot always be mapped to

a CRG [133]. In Chapter 3, the choices of each coalition are the joint-actions that the coalition

can undertake, given the current capabilities of its member agents.

2.3.2 Valuation Disagreements in Coalitional Games

In many systems, it is reasonable to believe that agents may only have partial, incomplete knowl-

edge of their environment, including knowledge of the abilities of other agents, and on the

potential effects of individual and coalitional actions. Therefore these environments require a

coalitional game model that allows agents to hold different opinions on each coalition’s value.

Finding solutions to a coalitional game in an environment with partial agent knowledge involves

trying to satisfy all agents as much as possible, with respect to their own beliefs on the value of

each coalition.

Chapter 2. Background 29

Various studies have introduced solution concepts that find stable coalition structures and/or

payoff vectors for coalitional games with uncertain valuations or valuation disagreements, e.g:

[33, 34, 65, 77, 78]. The use of mechanism design for coalition formation was introduced in

[77], where the first Bayesian model of coalitional games was detailed. In the Bayesian model

of [77], each agent has probabilistic beliefs regarding the capabilities of the other agents and

so is uncertain regarding each coalition’s true value. This coalition formation process in this

Bayesian model is completed via a centralised and trusted mediator that chooses the coalitions

to form and the manner in which the payoff should be distributed. In this model it is essential

that the agents only communicate with the mediator, otherwise information may be leaked to

other agents, who may use this information to their own strategic advantage.

The most closely related coalitional game model, compared to the valuation disagreement

coalitional game model introduced in this thesis, is found in [34]. Chalkiadakis et al. [34]

proposed a transferable utilty coalitional game model that allows agents to have single point

beliefs on the predicted coalition values. A single point belief represents an agent’s best guess

on each coalition’s value but can lead to possible valuation disagreements between the agents.

Another method of modeling beliefs involves assigning a probability to a distribution of differ-

ent possible coalition values. Yet, as stated in [34], the single point belief assumption is helpful

because: probabilistic beliefs may not be available; single point beliefs are easier to form; rea-

soning over single point beliefs is computationally less complex; and single point beliefs are a

natural assumption in many real-world situations.

In the model of [34], agent types are used, where each agent i has a set of possible types,

denoted Λi, where
−→
Λ denotes (Λ1, ...,Λn). An agent’s type encapsulates all the information

possessed by the agent that is not common knowledge, e.g. the agent’s knowledge of its own

type, its beliefs of its own payoff and its beliefs over other agents’ payoffs [119]. Each agent i

has point beliefs on every other agent’s type, denoted bi = (bi(1), ..., bi(n)) where
−→
b denotes

(b1, ..., bn). The utility function is denoted u. The utility value of a coalition C, using agent

i’s beliefs on the types of C, denoted bi(C), can be found by u(bi(C)) (which is written in

this thesis simply as ui(C)). Given these preliminaries, the model presented in [34] can be

formalised as:

Definition 26: A coalitional game with beliefs is Gb = (N ;
−→
Λ ;u;

−→
b) where N is the set

of agents,
−→
Λ is the collection of possible agent types, u is the utility function, and

−→
b is the

collection of agent beliefs.

To find an acceptable outcome to a coalitional game with beliefs, fixed percentage-based

demand vectors are used [33, 37, 122]. In this model, to make a demand from a coalition C, an

agent first finds the numeric value xi it requires, then finds what percentage xi is of its valuation

of the coalition (i.e. xi
ui(C)). This percentage value becomes the demand.

Definition 27: A demand vector, denoted d = 〈d1, ..., dn〉, for a coalition structure CS =

{C1, ..., Ck} in a game Gb, satisfies di ≥ 0 for all i ∈ N and
∑

i∈C di = 1 for each C ∈ CS.

Using d, the expected payoff for an agent i ∈ C ∈ CS is given by di × ui(C). The demand

vector of a coalition C is denoted d(C). The expected payoff for n agents using d is denoted

p = (p1, ..., pn).

Chapter 2. Background 30

Example 11: Consider a coalitional game with beliefs where N = {1, 2, 3} and the utility

function u gives the following valuations: u3({3}) = 2, u1({1, 2}) = 12 and u2({1, 2}) = 24.

In this example the beliefs of an agent i is encapsulated within i’s utility function ui. If the

coalition structure {{1, 2}, {3}} formed, then a valid demand vector would be d1(0.25, 0.75, 1)

because for all i ∈ N then di > 0, while d1
1 + d1

2 = 1 and d1
3 = 1. This demand vector gives

the expected payoff for the agents of p(3, 18, 2) because u1({1, 2}) × d1
1 = 12 × 0.25 = 3,

u2({1, 2}) × d1
2 = 24 × 0.75 = 18 and u3({3}) × 1 = 2. An invalid demand vector would be

d2(0.1, 0.4, 1) because d2
1 + d2

2 6= 1.

The solution concept proposed by Chalkiadakis et al. [34] to find stable coalition structures

is the CS-core for Beliefs (CSB):

Definition 28: The CS-core for Beliefs for a game Gb consists of all pairs 〈CS, d〉 such that

for any coalition S /∈ CS and an associated demand vector d′, there exists an i ∈ S such that

d′i× ui(S) ≤ pi (where ui is the utility function of agent i and pi is the expected payoff of agent

i given d).

Therefore a pair 〈CS, d〉 is in the CSB if no coalition S not inCS can provide a new demand

vector d′ that gives a higher expected payoff compared to d for all agents of S.

Example 12: Consider a coalitional game with beliefs where N = {1, 2, 3} and the utility

function u gives the following valuations: u1({1}) = u2({2}) = u3({3}) = 2, u1({1, 2}) =

12, u2({1, 2}) = 24, u1({1, 3}) = 8, u3({1, 3}) = 20 and ui(C) = 0 for any other coalition C

and agent i ∈ {1, 2, 3}. In this example the beliefs of an agent i is encapsulated within i’s utility

function ui. Then 〈{{1, 2}, {3}}, d(0.75, 0.25, 1)〉, giving the expected payoff p(9, 6, 2), would

be in the CS-core for beliefs because: (i) agent 1 believes that it could earn no more than 9 in

another coalition, as it believes 100% of the payoff of coalitions {1} and {1, 3} would only give

2 and 8 respectively; (ii) agent 2 believes that it could not earn more than 6 in another coalition,

as its only other option is {2} which gives a payoff of 2; and (iii) due to parts (i) and (ii), agent

3 cannot tempt any other agent into a coalition with it.

On the other hand, the solution 〈{{1, 2}, {3}}, d(0.25, 0.75, 1)〉, giving the expected payoff

p(3, 18, 2), would not be in the CS-core for beliefs because: the coalition {1, 3} can improve

the expected payoff of both agents through, for example, d1 = 0.75 and d3 = 0.25, giving the

expected payoffs of p1 = 6 and p3 = 5.

The CSB solution concept restricts the agents to one percentage demand per coalition (this

is also the case in [33, 37, 122]). In Chapter 6, this thesis investigates the advantages of allowing

different percentage demands for different potential values of the same coalition.

2.4 The Three Stages of Coalition Formation

In multi-agent systems, coalition formation can be broken down into the following three stages

[88, 104]:

1. Coalition value calculations - This involves calculating the value of each possible coali-

tion (usually each subset of n agents, which is an exponential number of possible coali-

tions).

Chapter 2. Background 31

2. Coalition structure generation - This involves partitioning the agents into a set of coali-

tions. This coalition structure should preferably be either: (i) the optimal social welfare

maximising coalition structure; or (ii) a stable coalition structure (where no agent wants to

defect to another coalition). Sometimes, a coalition structure may be found that satisfies

both (i) and (ii), yet this is not always the case [27, 112].

3. Determining the payoff distribution - This involves deciding how to divide the coali-

tions’ overall payoff between the participating agents of the coalitional game (if the given

coalitional game has transferable utility). In self-interested agent domains, it is preferable

that the payoff is distributed between the agents in a manner that is stable, i.e. no agent

should be able to rationally object to the distribution, where a rational objection is defined

by a stability solution concept.

All of the three stages above have high computation costs due to the exponential number

of possible coalitions and the theoretically infinite manner with which to divide a transferable

utility payoff between the agents of the game. Yet multi-agent systems have the capability to

spread the costs of computation of these three stages between the agents of the system.

In this section, various approaches for multi-agent systems to complete each of these three

stages are surveyed. For simplicity, each stage will be discussed from the transferable utility

characteristic function game model perspective.

2.4.1 Coalition Value Calculations

The first stage of coalition formation requires the agents to calculate the utility value of each

coalition. If all possible coalitions from N agents can form, then the calculation of all of the

coalitions’ values becomes an exponentially intense task due to the 2n − 1 possible coalitions

[43, 90, 104]. Additionally, the complexity of calculating an individual coalition’s value can

vary, and potentially be exponential itself [106]. If each agent i calculates the value of all

coalitions it is a member of, such as in the models of [23, 118], there will be a significant

overlap of calculations and thus significant unnecessary computation costs for the system.

Instead of each agent calculating each coalition value in which it is a member, Shehory

and Kraus introduced a method (named SK), in the series of papers [115–117], where agents

negotiated over which coalition values to calculate. Yet as noted in [88, 90], SK suffers from the

following disadvantages:

• SK requires many messages to be sent between the agents, some of which are exponen-

tially large.

• SK does not guarantee that every coalition value is calculated once and only once. Yet SK

does have the weaker guarantee that every coalition value is guaranteed to be calculated

at least once.

• SK provides no guarantees on the quality of its distribution; i.e. SK does not guarantee

that the agents’ coalition value calculation shares are approximately equal.

Chapter 2. Background 32

• SK has a memory requirement that grows exponentially with the number of agents.

Therefore SK utilitises the resources of the system inefficiently. This inefficiency motivated

Rahwan and Jennings to introduce the distributed coalition value calculation algorithm (that

they name DCVC) [89, 90]. The DCVC algorithm groups coalitions into lists, and then uses a

decentralised method to divide the lists into shares, one for each agent. The DCVC algorithm

has the following properties:

• DCVC requires no communication between any agents.

• DCVC gives the agents’ coalition value calculation shares that are exhaustive and disjoint;

i.e. each coalition’s value is calculated once and only once.

• DCVC gives the agents’ coalition value calculation shares that are approximately equal.

The shares are exactly equal if the number of coalitions is exactly divisible by the number

of agents, else the difference in share sizes is a maximum of one coalition.

• DCVC has minimal memory requirements.

• DCVC is fully decentralised, requiring no centralised arbitrator for any part.

The DCVC algorithm achieves these properties by firstly representing all the feasible coali-

tions in structured lists Ls∈N , where each Ls contains all coalitions of size s ordered in reverse

lexicographical order, i.e. the first coalition in the list Ls is {n− s+ 1, ..., n} and the last coali-

tion in the list Ls is {1, ..., s}. This means that the agents know how Ls is ordered although they

do not actually maintain Ls. Each agent is then assigned a share of b |Ls|
n c coalition values to

calculate from each list, where the first agent has the first share, the second agent has the second

share, etc. The index of the last coalition of agent i’s coalition value calculation share is found

by: indexs,i = i× b |Ls|
n c. Therefore an agent i calculates the value of the coalition at indexs,i

and all coalitions previous to it in Ls, until b |Ls|
n c coalition values are calculated.

For lists that contain a number of coalitions that are not an integer multiple of the number

of agents, each agent must maintain a value α indicating the agent that should calculate the next

additional coalition above n × b |Ls|
n c. The value α is incremented for each further additional

coalition (if α goes above n, it will be reset to 1). The same α is used for all lists so that the

maximum difference between the number of coalitions computed by the agents will never be

more than one. The distribution of the lists begins at list L1, so that all agents recognise the

correct agents to calculate the α assigned coalitions in each list. See Table 2.1 for a DCVC

example.

Finally, DCVC uses a function, that will be referred to here as GenerateCoalition, that takes

an index value and returns a coalition. Using GenerateCoalition, an agent can find the last

coalition C in its main share2. Coalition C can then be used to find the other coalitions in its

main share, because each agent knows that it now needs to generate the next b |Ls|
n c−1 coalitions

in lexicographical order (from C) to complete its main share. This GenerateCoalition function
2Where ’main share’ refers to the coalitions not assigned by the α pointer.

Chapter 2. Background 33

L1 L2 L3 L4 L5 L6

1 [6 1 [5,6 1 [4,5,6 1 [3,4,5,6 1 [2,3,4,5,6 3 [1,2,3,4,5,6
2 [5 1 [4,6 1 [3,5,6 1 [2,4,5,6 2 [1,3,4,5,6
3 [4 2 [4,5 1 [3,4,6 2 [2,3,5,6 3 [1,2,4,5,6
4 [3 2 [3,6 2 [3,4,5 2 [2,3,4,6 4 [1,2,3,5,6
5 [2 3 [3,5 2 [2,5,6 3 [2,3,4,5 5 [1,2,3,4,6
6 [1 3 [3,4 2 [2,4,6 3 [1,4,5,6 6 [1,2,3,4,5

4 [2,6 3 [2,4,5 4 [1,3,5,6
4 [2,5 3 [2,3,6 4 [1,3,4,6
5 [2,4 3 [2,3,5 5 [1,3,4,5
5 [2,3 4 [2,3,4 5 [1,2,5,6
6 [1,6 4 [1,5,6 6 [1,2,4,6
6 [1,5 4 [1,4,6 6 [1,2,4,5
1 [1,4 5 [1,4,5 6 [1,2,3,6
2 [1,3 5 [1,3,6 1 [1,2,3,5
3 [1,2 5 [1,3,5 2 [1,2,3,4

6 [1,3,4
6 [1,2,6
6 [1,2,5
4 [1,2,4
5 [1,2,3

α = 1 α = 4 α = 6 α = 3 α = 3 α = 4

TABLE 2.1: A DCVC list of all possible coalitions for 6 agents in the form: agent to calculate
value [coalition. The value α holds the value of the agent that should calculate the next
additional coalition value above n × b |Ls|

n c. The α pointer is set α = 1 before any list is
divided. The value of the α pointer at the end of each list, is recorded at the end of that list’s
column. The α assigned coalitions are separated from the other coalitions by a horizontal line.

can also be used to find any additional coalitions assigned to an agent via the α pointer. The

basic version of the DCVC algorithm is detailed in Algorithm 1.

Although the basic DCVC algorithm (henceforth referred to as DCVC1) distributes the

coalitions evenly among the agents of the system, DCVC1 does not evenly distribute the in-

dividual operations (of comparisons and additions) to generate all the coalitions in each agent’s

share. This is because the number of operations to find the next coalition in each agent’s share

may fluctuate. The range of operations performed by the agents using DCVC1 grows as more

agents are used [90]. A modified version of DCVC1 was introduced in [90] to minimise (but not

totally eradicate) this issue, henceforth named DCVC2. The difference of DCVC2 over DCVC1

is that DCVC2 assigned 60% of an agent’s main coalition value calculation share to the begin-

ning of the list and 40% of the main share to the end of the list (prior to the assignment of the

additional set of coalitions).

In a follow-up study to [90], Michalak et al. [73], looked at how another DCVC variant

(henceforth named DCVC3) could be used as input to a decentralised algorithm to efficiently

find the optimal coalition structure. As DCVC3 assigns the agents’ shares in difference percent-

ages and at different points in the list to DCVC2, it does not minimise the difference between

the number of individual operations for each agent.

Chapter 2. Background 34

Algorithm 1: The basic DCVC algorithm to be run by every agent.
1: function DCVC(N)
2: Input: 〈N〉; where N is the set of agent IDs.
3: begin;
4: Set α = 1;
5: for For every s ∈ S do
6: if |Ls| ≥ n then
7: Find the size of your share: b |Ls|

n c;
8: Find the index of the last coalition in your share: indexs,i = i× b |Ls|

n c;
9: Calculate the coalition corresponding to indexs,i;

10: Calculate every coalition previous to indexs,i until your share is complete;
11: Find the number of extra coalitions to calculate: c = |Ls| − (n× b |Ls|

n c);
12: else
13: Find the number of extra coalitions to calculate: c = |Ls|;
14: end if
15: if c > 0 then
16: Find the sequence of agents A′ to calculate an additional value, by:
17: if α+ c− 1 ≤ n then
18: A′ = (α, α+ 1, ..., α+ c− 1);
19: else
20: A′ = (α, α+ 1, ..., n, 1, ..., α+ c− 1− n);
21: end if
22: Every agent A′i calculates the i’th additional coalition’s value.
23: if α+ c ≤ n then
24: α = α+ c;
25: else
26: α = α+ c− n;
27: end if
28: end if
29: end for
30: end;

Another variant of DCVC was the D-SlyCE algorithm [127]. D-SlyCE is an algorithm to

distribute coalition value calculations when the agents are represented as nodes on a graph,

where an edge between them represents some synergistic link. When the graph is fully con-

nected (i.e. the graph resembles a characteristic function game), then D-SlyCE mimics the

operations of DCVC [127].

The only paper that subsequently gave a new algorithm for distributing coalition value calcu-

lations to agents in an exhaustive and disjoint manner (that the author is aware of) is Vinyals et al.

[126] (where this new algorithm is henceforth named VBFR). The VBFR algorithm distributes

the calculation of coalition values when agents are connected in a network and a coalition has to

include member agents that are connected together in a graph. In Figure 2.1, an example is given

where the agents are fully connected to each other so that comparisons can be made between

VBFR and DCVC. The VBFR algorithm casts the problem of generating all possible coalitions

on a graph as the problem of enumerating all possible subgraphs. VBFR uses an ordering among

the agents to partition the set of possible coalitions into disjoint (leading) sets Mi, where every

Chapter 2. Background 35

FIGURE 2.1: Example of a 4 agent, fully
connected graph, used to form coalitions.

M1 M2 M3 M4

1,2,3,4 2,3,4 3,4 4
1,3,4 2,4 3
1,2,4 2,3
1,2,3 2
1,4
1,3
1,2
1

FIGURE 2.2: A VBFR list of all possi-
ble coalitions that can be formed from the

fully connected graph of Figure 2.1

coalition in Mi has i as the smallest agent ID of that coalition, i.e. ∀C ∈ Mi, ¬∃j ∈ C where

j < i. Then agent i is assigned the coalition value calculation share of Mi. See Figure 2.2 for

an example of how the coalition value calculations would be shared around the agents of the

system using VBFR.

As can be seen in Figure 2.2, VBFR does not fairly distribute the coalition value calcu-

lations; the higher an agent’s ID is, the less calculations an agent has to perform. This is a

weakness of the VBFR algorithm [126] compared to the DCVC algorithm [90]. Yet the VBFR

algorithm (as with the SK algorithm before it) has an interesting property: the constraint that

all coalitions distributed to an agent i’s calculation share should include agent i. The VBFR

algorithm was created for the smart grid domain, where it is involved in a larger algorithm to see

if forming coalitions with other ‘virtual electricity consumers’ will provide the coalition with

a discount on electricity through collective buying. Thus if an agent i was given a coalition C

in its value calculation share, where i /∈ C (as is possible in the DCVC algorithm), it would

have no incentive to calculate that value because C would not personally give i a discount on

electricity price.

Compact Representation Schemes

So far, it has been assumed that all coalition values for a given size have to be calculated. This

results in an exponential number of possible coalition value calculations to perform where one

value calculation by itself could be exponential to compute [106].

However characteristic functions that appear in practical applications can often be repre-

sented more concisely by a set of rules [81]. Possible compact representation schemes are

marginal contribution nets [64], synergy coalition groups [41, 81] and weighed voting games

[55]. Here, the synergy coalition group (SCG) representation is discussed because: (i) it can

fully represent a characteristic function game; and (ii) it is used as a basis to develop a decen-

tralised algorithm to find a stable payoff vector in Chapter 5. The following is the SCG definition

[41]:

Chapter 2. Background 36

Definition 29: A synergy coalition group W consists of a set of pairs of the form: (C, v(C)).

The singleton coalitions are assumed to always be represented within W . For any coalition

C ∈ (C, v(C)) ∈W , the value of C is v(C). For any coalition C ′ /∈W , the value of C ′ is:

v(C ′) = max{
∑

Cj∈PC′

v(Cj)}

Where PC′ = {C1, C2, ..., Ck} is a partition of C ′ such that:

k⋃
i=1

Ci = C ′ (a)

Ci ∩ Cj = ∅ for any i, j ∈ {1, ..., k} where i 6= j (b)

(Cj , v(Cj)) ∈W, for all Cj ∈ {C1, ..., Ck} (c)

Therefore if a coalition C ′ is not explicitly represented within W , then its value comes from

the highest valued set of coalitions (referred to here as a partition), as long as this partition has

the following properties: (a) all the agents of C ′ are in a coalition of the partition and there are

no additional agents in the partition; (b) each agent of C ′ occurs in only one coalition of the

partition; and (c) each coalition in the partition is represented within W .

Example 2.1. Consider the characteristic function game G = 〈N, v〉 where N = {1, 2, 3, 4}
and the SCG representationW gives the following valuations: W = {({1}, 2), ({2}, 1), ({3}, 1),

({4}, 2), ({1, 2}, 5)} (i.e. the utility value of agent 1 by itself is 2, while the utility value of the

coalition, of agents 1 and 2, is 5) . Example values of coalitions not explicitly represented are:

v({3, 4}) = v({3}) + v({4}) = 1 + 2 = 3; v({{1, 2, 3}) = v({1, 2}) + v({3}) = 5 + 1 = 6;

and v({1, 2, 3, 4}) = v({1, 2}) + v({3}) + v({4}) = 5 + 1 + 2 = 8.

2.4.2 Coalition Structure Generation

The coalition structure generation (CSG) problem is the problem of finding an optimal social

welfare maximising coalition structure [94, 104]. The coalition structure generation problem is

mostly in the domain of cooperative agents because optimising social welfare may conflict with

an individual agent’s best interests. The required coalition structure for self-interested agents

is one that is stable, where stability is influenced by the payoff distribution, as described in the

next section.

In this section, the focus is on algorithms that find the optimal social welfare maximising

coalition structure, without regard to strategic self-interested decision making.

These algorithms, as described in [73], can be separated into 3 main classes:

• Dynamic programming - This is the collection of algorithms where the main problem is

solved by dividing it up into subproblems and then solving the smallest first. The answers

to the smallest problems help with the working out of the larger problems [44]. Some

dynamic programming CSG algorithms are given in: [91, 138].

Chapter 2. Background 37

• Heuristics - Heuristic algorithms are algorithms that return good solutions quickly, but

have no guarantees on the quality of the solution and the optimal solution may not be

returned. Some heuristic CSG algorithms are given in: [111, 117].

• Anytime optimal algorithms - Anytime algorithms can return a solution at anytime,

where the quality of this solution gets better over time (in some well behaved manner).

Thus, an anytime algorithm can be terminated prematurely whilst still returning a solution

that is guaranteed to be within a bound from the optimal solution [94]. Some anytime

optimal CSG algorithms are given in: [43, 73, 94, 104].

The biggest advantage of dynamic programming algorithms is that they run in O(3n) time

compared to the O(nn) time that an anytime algorithm could run in (where n is the number of

agents) [91, 104]. But in practice anytime optimal algorithms can run significantly faster than

dynamic programming algorithms for a variety of possible coalition value distributions. This

result is true for when any possible coalition could form (i.e. the full exponential characteristic

function representation has been used).

Additionally it should be mentioned that great speed ups can occur in the coalition structure

generation process if not all of the exponential number of coalitions are considered able to

form (i.e. some compact representation method has been used). For example, if the agents are

represented on a graph, and a coalition can form only if the agents are connected together on a

graph, than the DyCE [127] or CFSS algorithm [20] could be used for significant speed ups.

Furthermore modeling the CSG process as a distributed constraint optimization problem

(DCOP) [74] allows for an approximation algorithm that can find a coalition structure (with

certain quality guarantees compared to the optimal coalition structure), to be found in polyno-

mial time [124]. But unfortunately if the optimal coalition structure is required to be guaranteed

then modeling the CSG problem as a DCOP is not very helpful as an NP-hard problem needs to

be solved just to obtain the value of a single coalition, so O(2n) DCOP problem instances are

required to find the value of every coalition (where n is the number of agents) [124].

The CSG algorithms generally do not consider the payoff distribution of the agents. In

Chapter 5, two decentralised algorithms named DDP and DDP∗, guarantee that agents locate

the optimal coalition structure and one of the “least objectionable” payoff vectors. The DDP

algorithms are based on the centralised Dynamic Programming (DP) algorithm of [138].

The DP algorithm takes a table of coalition values as input (where v[C] indicates the value

of coalition C). DP uses the input table to compute two other tables, f1 and f2, that have a

single entry per coalition C, denoted f1[C] and f2[C] respectively.

As summarised in [91], the DP algorithm (given in Algorithm 2) computes f1[C] and f2[C]

as follows. Firstly, DP evaluates all possible ways of splittingC into two partitions and compares

the highest evaluation with v[C] to see if it is beneficial to split C into a two set partition (lines

10 and 11). If it is beneficial then f1[C] stores this best partition and f2[C] stores the value of

this best partition (line 14). If a split is not beneficial then f1[C] becomes equal to the coalition

C and f2[C] becomes equal to the value of the coalition C (line 12). An evaluation of a split of

a coalition C = {C ′, C ′′} is evaluated by f2[C ′] + f2[C ′′]. Therefore the DP algorithm must

evaluate the coalitions in size order (line 8).

Chapter 2. Background 38

Algorithm 2: The DP algorithm to find an optimal coalition structure.
1: function DP(v,N)
2: Input: 〈v,N〉; where v is the input table of values, where v[C] is coalition C’s value, and
N is the set of agent IDs.

3: Output: 〈CS∗〉; where CS∗ is the optimal coalition structure.
4: begin;
5: for i ∈ N do
6: set f1[{i}] := {i} and f2[{i}] := v[{i}];
7: end for
8: for s := 2 to n do
9: for each C ⊆ N where |C| = s do

10: f2[C] := max{f2[C ′] + f2[C\C ′] : C ′ ⊂ C and 1 ≤ |C ′| ≤ 1/2|C|};
11: if f2[C] < v[C] then
12: set f1[C] := C and f2[C] := v[C];
13: else
14: set f1[C] := C∗ where C∗ maximises f2[C];
15: end if
16: end for
17: end for
18: set CS∗ := {N}
19: for each C ∈ CS∗ do
20: if f1[C] 6= C then
21: set CS∗ := (CS∗\{C}) ∪ {f1[C]};
22: restart this for loop;
23: end if
24: end for
25: return 〈CS∗〉;
26: end;

After f1 and f2 are computed, the optimal coalition structure CS∗ is found recursively. This

is performed by first setting the optimal coalition structure equal to the grand coalition (line

18) and then performing a loop (lines 19 to 24) where all the coalitions in the optimal coalition

structure are checked to see if they can be broken down into smaller more valuable coalitions

by checking the f1 table (line 20). The loop stops when no more splittings are beneficial. An

example of the data manipulated by the algorithm can be seen in Table 2.2, where the optimal

coalition structure {{3}, {1, 2, 4}} is found with a value of 3.5.

2.4.3 Payoff Distribution

Once the coalitions that will form have been decided (i.e. the coalition structure generation prob-

lem has been solved), the agents now need to decide how to divide the reward (i.e. payoff) of

each coalition between themselves. The payoff of a coalition can be distributed to its members

in multiple ways if the coalitional game has transferable utility. In Section 2.2, stability solution

concepts for transferable utility characteristic function games were defined. These stability so-

lution concepts describe what the stable outcomes of a transferable utility characteristic function

Chapter 2. Background 39

s C The evalations perform before setting f1 and f2 f1 f2

1 {1} v[{1}] = 0.5 {1} 0.5
{2} v[{2}] = 0.4 {2} 0.4
{3} v[{3}] = 0.7 {3} 0.7
{4} v[{4}] = 0.1 {4} 0.1

2 {1, 2} v[{1, 2}] = 1.8 f2[{1}] + f2[{2}] = 0.9 {1, 2} 1.8
{1, 3} v[{1, 3}] = 1.1 f2[{1}] + f2[{3}] = 1.2 {1}{3} 1.2
{1, 4} v[{1, 4}] = 1.9 f2[{1}] + f2[{4}] = 0.6 {1, 4} 1.9
{2, 3} v[{2, 3}] = 1.0 f2[{2}] + f2[{3}] = 1.1 {2} {3} 1.1
{2, 4} v[{2, 4}] = 1.2 f2[{2}] + f2[{4}] = 0.5 {2, 4} 1.2
{3, 4} v[{3, 4}] = 1.6 f2[{3}] + f2[{4}] = 0.8 {3, 4} 1.6

3 {1, 2, 3} v[{1, 2, 3}] = 2.1
f2[{2}] + f2[{1, 3}] = 1.6

f2[{1}] + f2[{2, 3}] = 1.6
f2[{3}] + f2[{1, 2}] = 2.5

{3}{1, 2} 2.5

{1, 2, 4} v[{1, 2, 4}] = 2.8
f2[{2}] + f2[{1, 4}] = 2.3

f2[{1}] + f2[{2, 4}] = 1.7
f2[{4}] + f2[{1, 2}] = 1.9

{1, 2, 4} 2.8

{1, 3, 4} v[{1, 3, 4}] = 2.5
f2[{3}] + f2[{1, 4}] = 2.6

f2[{1}] + f2[{3, 4}] = 2.1
f2[{4}] + f2[{1, 3}] = 1.3

{3}{1, 4} 2.6

{2, 3, 4} v[{2, 3, 4}] = 2.4
f2[{3}] + f2[{2, 4}] = 1.9

f2[{2}] + f2[{3, 4}] = 2
f2[{4}] + f2[{2, 3}] = 1.2

{2, 3, 4} 2.4

4 N v[{1, 2, 3, 4}] = 3.4
f2[{2}] + f2[{1, 3, 4}] = 3
f2[{4}]+f2[{1, 2, 3}] = 2.6
f2[{1, 3}]+f2[{2, 4}] = 2.4

f2[{1}]+f2[{2, 3, 4}] = 2.9
f2[{3}]+f2[{1, 2, 4}] = 3.5
f2[{1, 2}]+f2[{3, 4}] = 3.4
f2[{1, 4}] + f2[{2, 3}] = 3

{3}{1, 2, 4} 3.5

TABLE 2.2: This table details a characteristic function game for the set of agents N =
{1, 2, 3, 4}. The optimal coalition structure is found through the DP algorithm.

game are, but they do not describe how agents can work together to find a stable outcome. How

a stable solution is found in a collaborative manner is discussed in this section.

Payoff distribution is usually only of interest if the agents have multiple designers and thus

competing interests, although not all systems with a single agent designer should discard the

consideration of the payoff distribution of its agents [38]. In the study of Chapman et al. [38],

self-interested agents are used to provide the degree of robustness and flexibility needed for a

large scale distributed application. These agents are designed to act on their local knowledge so

that improvements to their own payoffs increase the global solution quality.

Algorithms for agents to collaboratively work to find a payoff distribution that no single

agent can object to, can broadly be placed into two different categories:

1. Payoff transfer schemes: This is the collection of algorithms where an agent i takes as

input the current coalitional game outcome 〈CS′, x′〉 and performs some operation θ on

it, to give a new coalitional game outcome 〈CS, x〉 where CS′ 6= CS and/or x′ 6= x. In

this category of algorithms, θ is fixed and agent i does not consider how the other agents

will react to the new outcome, meaning these algorithms are myopic.

2. Coalitional bargaining: This is the collection of algorithms where an agent i takes as

input the current coalitional game outcome 〈CS′, x′〉 and performs some operation θ on it

to give a new coalitional game outcome 〈CS, x〉 where CS′ 6= CS and/or x′ 6= x. In this

Chapter 2. Background 40

category of algorithms, θ is not fixed and is chosen by agent i from a set Θ of possible

operations to the coalitional game outcome. Therefore agent i can consider how all the

other agents will react to every possible θ′ ∈ Θ, and so pick the optimal operation θ ∈ Θ

for itself (providing the other agents act in the predicted manner).

Payoff Transfer Schemes

Payoff transfer schemes take a coalitional game outcome, iteratively apply an operation to it, and

gradually the resulting outcome will converge to a member of a cooperative game theory solution

concept. Transfer schemes have been proposed for many cooperative game solution concepts

such as: the kernel [121]; the nucleolus [59]; and the core [30, 67, 137]. They reduce the

cognitive demands placed on the agents, as can be seen with the following motivating example.

When the core is non-empty, to guarantee locating a payoff vector of the core, the payoff vector

used to find the optimal solution to the following linear program (LP) can be returned:

min ε

xi ≥ 0 for each i ∈ N (a)∑
i∈N

xi = v(N) (b)∑
i∈S

xi ≥ v(S)− ε for each S ⊂ N (c)

This linear program is centralised and has 2n+n+1 constraints because there are 2n possible

coalitions S ⊂ N in (c), |x| = n in (a) and one v(N) in (b). Therefore finding a solution to

this problem is usually a highly complex computational task for characteristic function games

(unless a compact coalitional game representation is used to reduce the complexity).

However, payoff transfer schemes for the core find core solutions without the agents actually

solving the defining system of linear equalities [137]. The payoff transfer schemes of [30, 137]

(that converge a payoff vector x onto a pre-selected strong ε-core), are detailed in Algorithm 3.

The strong εs-core transfer scheme of [30, 137] repeats lines 7 to 22 until it converges on a

solution in the required strong εs-core. To do this, firstly a starting payoff vector is chosen (line

5), then all the coalition’s strong excess values are calculated (line 9). If there exists coalitions

with a higher strong excess p than the required εs, then a coalition with this maximum highest

strong excess is chosen (line 14) and the payoff of every member of that coalition is incremented

by an equal division of p − εs (lines 15 to 17). Finally the payoff of every non-member of the

chosen coalition is decremented by an equal division of p − εs (lines 18 to 20). It is this equal

increment/decrement that allows the payoff vector to converge on the pre-selected strong εs-

core value with a relativity simple calculation (compared to the linear programming method).

Unfortunately it is also this equal gain/loss which means that it is only possible to guarantee that

the payoff vector converges to the pre-selected strong εs-core value as the number of transfers

approaches infinity (yet there exist many finite cases).

Example 13: Consider a characteristic function game 〈N, v〉 where N = {1, 2, 3, 4} and the

characteristic function v gives the following valuations: v({2, 3}) = 12, v({3, 4}) = 14,

Chapter 2. Background 41

Algorithm 3: The payoff vector transfer scheme algorithm presented in [30, 137].
1: function CoreTS(v,N,εs)
2: Input: 〈v,N, εs〉; where v is the characteristic function, N is the set of agent IDs and
εs is the required strong ε-core value.

3: Output: 〈x〉; where x is an εs stable payoff vector.
4: begin;
5: Choose a starting payoff vector x that distributes fully v(N);
6: boolean complete := false;
7: repeat
8: Set x′ := x;
9: Compute all the quantities εs(S, x) for all S ⊂ N where S 6= ∅;

10: Set p equal to the largest εs(S, x) found
11: if p == εs then
12: complete := true
13: else
14: Select a coalition C ⊂ N such that εs(C, x) = p
15: for i ∈ C do
16: xi = x′i + p−εs

|C|
17: end for
18: for j /∈ C do
19: xj = x′j −

p−εs
|N |−|C|

20: end for
21: end if
22: until complete == true
23: return 〈x〉;
24: end;

v({1, 2, 3, 4}) = 20 and for any other coalition C then v(C) = 0. This game is known to

have a non-empty core (i.e. the strong εs-core is stable when εs = 0) and so εs = 0 is given

as input to the CoreTS algorithm. Given a starting payoff vector of x1(5, 5, 5, 5), that fully

distributes the value of the grand coalition, the coalition C1 = {3, 4} has the maximum excess

of εs({3, 4}, x1(5, 5, 5, 5)) = 14 − (5 + 5) = 4. Therefore p = 4 and p − εs = 4 − 0 = 4

needs to be incremented and decremented from the agents of C1 and the agents of N\C1 re-

spectively. Adding an equal split of the value p − εs to the payoff of the agents of C1 while

taking an equal split of the value p − εs from the agents of N\C1, gives the payoff vector

x2(3, 3, 7, 7). repeating the process again, the coalition C2 = {2, 3} has the maximum excess

of εs({2, 3}, x2(3, 3, 7, 7)) = 12 − (3 + 7) = 2, meaning p = 2 and p − εs = 2 − 0 = 2. In-

crementing and decrementing p from the correct agents, gives the payoff vector of x3(2, 4, 8, 6).

Repeating the process again, and each coalition C now has εs(C, x3) ≤ 0. As the required

strong εs-core value was εs = 0 then complete == true and the CoreTS algorithm termi-

nates.

Unfortunately, these core locating transfer schemes do not fully deal with the issues that

arise in multi-agent system coalition formation because: the algorithms are not decentralised

(in terms of distributed coalition value calculation input and distributed payoff vector finding

operations); the grand coalition is assumed to form, therefore the optimal coalition structure of

Chapter 2. Background 42

the agents is assumed; the algorithms presented are only guaranteed to converge on the core/εs-

core should payoff vector corrections be made “infinitely often”, so there is no theoretical upper

bound on the running time; the εs value must be chosen before runtime (and so must be known

in advance of any coalition formation calculations) or the transfer scheme could develop cycles

and not converge [31]; and the least core is only guaranteed to be found if the least core value is

known before calculations begin [30, 137].

A payoff transfer scheme for the kernel, initially introduced in [121], has been applied to

multi-agent systems in [118]. However, the communication cost issues were not considered and

full coalition value knowledge for every agent was assumed.

Another payoff transfer scheme in the multi-agent systems domain is the one presented in

[59] to find the nucleolus. This transfer scheme has the advantage of leading to the single

point solution in the least core, known as the most stable point in the strong least core. Yet the

disadvantages of this transfer scheme are that an optimal coalition structure is already considered

to have been formed, full knowledge for each agent regarding the coalition values is assumed

and the communication costs are not considered.

Coalitional Bargaining

Coalitional Bargaining is a specific type of general agent bargaining game and comprises the

following, as discussed in [136]:

• A negotiation set, representing all the possible proposals that the agents can make.

• A protocol, defining the legal proposals the agents can make, given the history of propos-

als.

• A collection of strategies, one for each agent, that determines what proposals the agents

will make.

• An rule that determines when a deal has been stuck, where the deal is known as an agree-

ment deal.

Coalitional bargaining is a research area that describes how stable coalition outcomes can

occur via a process of non-cooperative bargaining and outlines equilibrium concepts that char-

acterize the agents’ behaviours in these games. The general approach in a coalitional bargaining

game extends the two agent alternating offers bargaining model of [103]. The agents first take

turns to offer proposals of a coalition and a payoff vector for that coalition, then the other agents

of the coalition have a chance to accept or reject the proposal. If all agents of a coalitional bar-

gaining game accept some proposal, then that coalition abandons the game and the other agents

carry on making proposals to the remaining agents in the system. When a coalitional bargaining

game is discounted (coalition values decrease over time by a discount factor) then agents need

to place more emphasis on strategic considerations (otherwise they will lose some payoff in the

future).

The coalitional bargaining papers of [39, 56, 82] detail how non-cooperative game the-

ory solution concepts match the cooperative solution concept of the core/CS-core, giving the

Chapter 2. Background 43

core/CS-core a non-cooperative justification. But these studies do not detail what cooperative

game solution concept is found when the core/CS-core is empty. This is a disadvantage for

multi-agent systems, as ideally agents will want to know before runtime what cooperative game

solution concept will be found.

Additionally, the majority of coalitional bargaining game studies assume each agent has

complete knowledge on the coalition values [32], which can be time consuming to calculate

or even impossible for every agent to determine. The coalitional bargaining papers that do not

assume full knowledge for every agent introduce new solution concepts to deal with these prob-

lems, such as: the Bayesian core [37]; the coarse/fine core [131]; the virtual utility core [78]; and

the credible core [54]. Yet these new solution concepts only overlap with the complete knowl-

edge core/CS-core solution concepts under specific conditions relating to: what information is

correctly known; and how different the agents’ beliefs are.

2.5 Agent Communication

A key feature of multi-agent systems is the communication between each agent. Communication

involves the transmission of information in an attempt to change the internal state of another

agent and possibly get that other agent to perform some action. In this thesis, communication

between the agents is centered on whether to form a coalition or not.

As detailed in [119], agents communicate through the transmission of information either

through their ‘physical’ actions (i.e. talking by doing) or via ‘communicative’ actions (i.e. doing

by talking), both of which can influence another agent. The doing by talking method involves

an agent revealing to others, information that it hopes will allow it to achieve its goals. Whereas

the talking by doing method refers to those cases where an agent performs an action and thus

signals to the other agents some new information about itself.

As each agent is an autonomous entity, there is no guarantee that communication directed

towards it will perform the desired affect. However, a rational agent may respond to communica-

tion regarding the formation of a coalition that will benefit it. Agent communication is therefore

a central topic within this thesis as the formation of a coalition, and working within one, is a

social process where agents look to find the best solution for themselves that the other agents of

the potential coalition will accept.

In this thesis, the agents can communicate: (i) their valuations of coalitions; (ii) their propos-

als for the formation of a coalition; and (iii) the reasons for accepting or rejecting these coalition

formation proposals. Chapter 3 shows how agents can communicate rational arguments on the

possible formation of different coalitions, whereas Chapter 5 shows how communication within

a decentralised algorithm can be used to find which coalitions should rationally form.

The structure of this section is as follows: firstly in Section 2.5.1 the theory of speech acts

will be introduced, which dialogue games (introduced in Section 2.5.2) build upon. Finally in

Section 2.5.3, examples of dialogue games being used for multi-agent system coalition forma-

tion will be discussed.

Chapter 2. Background 44

2.5.1 Speech Acts

The theory of speech acts arose from the work of Austin [17], who realised that some communi-

cation between individuals, known as utterances, can be viewed as actions that change the state

of the world, and agents can use these utterances to further their goals. Yet speech acts change

the state of the world in a more subtle way than physical actions. Physical actions involve the

movement of objects which the traditional human senses of sight and (possibly) touch and hear-

ing can detect. Speech acts on the other hand, (should) affect the mental state of the participants

to which the speech act has been communicated.

There are many possible speech acts that can change the state of the world in profound ways

for an individual or a community, for example: the statement “I declare war” sets in motion

a sequence of events that will greatly impact on many lives; the statement “I sentence you to

life imprisonment” has vast negative consequences on the person being sentenced; while the

statement “I declare you husband and wife” should (hopefully) be one of the happiest memories

of a couple’s lives. Austin noted that speech acts can be identified by a number of performative

verbs such as: accept, advise, assert, christen, object, order, resign, testify, etc.

Austin detailed three different parts of a speech act: (i) the locutionary act, being the trans-

mission of the utterance; (ii) the illocutionary act, which is the intended force that the utterer

wants to convey on the receiver, for example, an utterance may be viewed as a request to the

receiver (e.g. “pass me the sugar”) or information for the receiver (e.g. “I am a vegetarian”);

and finally (iii) the perlocution, which brings about the effect on the receiver as a result of the

utterance, for example, the receiver would pass the utterer the sugar or the receiver would not

give the utterer a meal including meat.

Speech acts may or may not be successful. For a speech act to be successful it needs to pass

a number of felicity conditions, as summarised in Allan [3]:

1. A preparatory condition - This condition requires the circumstances of the speech act

and the participants in it (i.e. speaker and hearers) to be appropriate, for example a child

cannot declare a war for the United Kingdom.

2. An executive condition - This condition concerns whether or not the speech act has been

properly executed, for example were the marriage vows correctly recited?

3. A sincerity condition - This condition requires the speaker to really want the perlocu-

tionary affect to occur, else the utterance will negatively affect the speaker.

4. A fulfillment condition - This condition requires the intended perlocutionary effect of

the speech act to occur, for example if an speaker asks for milk, then the hearer will give

the utterer milk.

Searle refined Austin’s work by classifying the possible types of speech acts in the following

manner [110]:

• Assertives that commit the speaker to the truth of the expressed proposition, for example:

asserting, announcing, confirming, informing and stating.

Chapter 2. Background 45

• Directives that are an attempt to cause the hearer to take a certain action, for example:

asking, begging, ordering, permitting and requesting.

• Commissives commit the speaker to some future action, for example: agreeing to, guar-

anteeing that, offering to, promising and volunteering.

• Expressives express the speaker’s attitude and emotions, for example: apologising, con-

gratulating, greeting, thanking and welcoming.

• Declarations immediately change the reality with relation to the propositional content of

the speech act, for example: baptising, declaring war, sacking an employee, marrying

someone and sentencing someone.

As detailed in [119], speech acts have many practical applications in multi-agent systems

including intelligent dialogue systems, workflow systems, agent communication languages and

rational programming. In this thesis, speech acts are used within dialogue games, which are

introduced in the next section.

2.5.2 Dialogue Games

Conversations are sequences of messages between two (or more) agents who are doing by talk-

ing. These sequences can be restricted using a completely fixed protocol which states exactly

which message should come next. Alternatively, conversations can also be seen as completely

free sequences of messages, where agents can decide at any moment what will be the next mes-

sage they send. Yet a completely free sequence of messages would put an extremely high com-

putational load on each agent when deciding what message to send (especially in the coalition

formation domain, due to the high number of options over which coalition to form). Dialogue

games allow conversations to be structured, but allow agents to have some freedom in the ex-

ecution, limiting the number of possible responses at each point, but not completely fixing the

sequence of messages [46]. As dialogue games follow a certain structure, it is possible to prove

that in given circumstances the dialogue results in a certain outcome [46].

Dialogue games have been studied since Aristotle [6] and typically consist of a set of com-

municative acts (called moves), a set of rules stating which moves are legal for any point of the

dialogue (the protocol), a set of rules defining the syntax and semantics of a move, and a set of

rules that determine when a dialogue terminates. When an agent makes a dialogue move, this

move is referred to as an utterance.

When an agent uses an utterance, new information can be revealed. This information can be

recorded in a publicly readable committment store, derived from Hamblin’s study of fallacious

reasoning [61]. The statements placed in the commitment store do not have to represent each

agent’s true individual beliefs, yet agents should defend them. If they don’t, this can lead to

accusations of inconsistent reasonings or an attempted manipulation of the dialogue. In this

thesis, an agent can show inconsistent reasoning by not joining the coalition that gives it the best

offer.

Chapter 2. Background 46

In the field of Artificial Intelligence, the main application of dialogue games to date has been

to design protocols for interaction between agents. Work on agent-based dialogue systems has

been greatly influenced by the dialogue typology of Walton and Krabbe [129], who categorised

dialogues as falling within one of six main dialogue types (though they do not claim this list is

exhaustive) [71, 129]:

1. Information-Seeking Dialogues - Where one participant is ignorant of some knowledge

and so asks a question to another to find out this information.

2. Inquiry Dialogues - Where the participants of the dialogue work together to answer a sin-

gle question or multiple questions, the answers to which are not known to any individual

participant.

3. Persuasion Dialogues - Where one participant seeks to persuade another to accept a

proposition that the other does not currently endorse.

4. Negotiation Dialogues - Where the participants bargain over the division of some scarce

resource.

5. Deliberation Dialogues - Where the participants collaborate to decide what action or plan

should be adopted in some situation.

6. Eristic Dialogue - Where participants quarrel verbally as a substitute for physical fighting

to vent perceived grievances.

A number of proposals have been set out for dialogue systems that encompass the main

dialogue categories, for example: inquiry dialogues [22]; negotiation [86]; persuasion [85]; and

deliberation [70]. Nesting of dialogues can also occur, for example: a negotiation dialogue

inside a persuasion dialogue (e.g. [130]); or an inquiry dialogue inside a persuasion dialogue

(e.g. [21, 101]).

This thesis introduces a new dialogue game to apply within multi-agent system coalition

formation, which is an inquiry dialogue inside a persuasion dialogue that allows the agents to

reason qualitatively over what coalitions should form (introduced in Chapter 3);

2.5.3 Dialogue Games used for Coalition Formation

Dialogue games (or variations of dialogue games) have previously been shown to be a useful

way to organise coalition formation (e.g. in [4, 24, 46, 62, 95]). These coalition formation

dialogue games allow for more flexibility for the agents’ decision making and communications,

compared to a protocol with fixed steps. An example of a protocol with fixed steps is the

Contract Net [120], which has been proposed to allocate agents tasks, and so can be used to

form teams/coalitions [105].

Coalition (or team) formation via a dialogue game was first proposed by Dignum et al.

[46]. Dignum et al. used the belief, desire and intentions (BDI) architecture to describe the

interactions of the agents when forming coalitions. In [46] the necessary communication was

Chapter 2. Background 47

divided into two different dialogue types: (i) An information seeking dialogue so that agents can

form beliefs on the abilities, opportunities and willingness of other agents to work together; and

(ii) a persuasion dialogue where an agent aims to persuade others to want to join a coalition to

achieve some goal G.

The information seeking dialogue of (i) consists of an agent i asking another agent j about

some proposition ψ representing a possible ability, opportunity or willingness of agent j. Agent

j can respond in any of the following ways:

1. It can ignore i and not reply.

2. It can state that it is not willing to disclose information on ψ.

3. It can state that it does not have enough information to have a single point belief on ψ.

4. It can assert that it believes ψ to be true or false.

Additionally, the persuasion dialogue consists of three stages: information exchange, rigor-

ous persuasion and completion. Information exchange consists of the agents making clear their

stance towards a coalition being formed to achieve the proposed goal G. Only when a conflict

between two agents’ stance is found does a rigorous persuasion dialogue start. Rigorous per-

suasion is adapted from [129] and involves a proponent P and an opponent O taking it in turns

to challenge, question and state information relating to the conflicting data. Finally the rules for

completion of the persuasion dialogue must be pre-defined.

While Dignum et al. developed a method for coalition formation by dialogue where each

coalition is valued in a qualitative manner, Ramchurn et al. [95] developed a negotiation protocol

(which could easily be recast as a negotiation dialogue game), for coalition formation in social

networks where each coalition is valued in a quantitative manner. In this protocol the agents

exploit the following four illocutionary actions: Propose, Counter, Accept and Reject, to discuss

offers from an agent i to an agent j that state: the coalition to join; the actions of the coalition;

the action of agent j to perform in this coalition; and the payoff xj for agent j. Ramchurn et al

use a notion of offer commitment, which is akin to the commitment store of the dialogue game

literature. The full protocol given in [95] leads to the creation of a coalitional game outcome

(i.e. a coalition structure and payoff vector pair), which differs from the work of Dignum et al.

that only discusses the formation of a single coalition.

However, issues in coalition formation dialogue games still remain. For instance:

• Some dialogue games (e.g. [4, 46]) only provide a two-agent dialogue game, and do

not detail how the full coalition structure can be found. The dialogue game presented in

Chapter 3 are for multiple agents.

• In [46], the uncertainty only comes from the agents’ possible capabilities, yet there may

be other environmental factors affecting the uncertainty. This issue is discussed in Chap-

ter 3 through the newly introduced inquiry dialogue game and in Chapter 6 through the

introduction of new stability solution concepts for coalitional games.

Chapter 2. Background 48

• A more thorough handling of a persuasion dialogue game in a qualitative environmental

model, compared to the one in [46], can be created as introduced in Chapter 3.

2.6 Argumentation

Argumentation is the process of attempting to reason over what to believe and what to do, when

information or beliefs are contradictory [87]. Therefore argumentation provides the techniques

for deciding and justifying what to believe when inconsistency arises.

In this section two abstract argumentation systems, named argumentation frameworks and

value-based argumentation frameworks will be detailed in Sections 2.6.1 and 2.6.2 respectively.

Both systems are concerned with the overall structure of sets of arguments and consistency

within these sets, rather than the internals of each argument.

The internals of each argument take the form of an instantiated argumentation scheme, in-

troduced in Section 2.6.3. In Section 2.6.4, Value-Based Alternating Transition Systems are

introduced, which detail the environmental model used in Chapter 3, for agents to exchange

practical reasoning arguments for/against coalitions to undertake a joint-action. In Section 2.6.5,

an argumentation model that allows agents to reason over the current state of the environment

is described. This argumentation model helps the agents reason over the correct current beliefs,

so that arguments exchanged are more likely to be applicable to the current world state. Finally

in Section 2.6.6, previous argumentation methods to form coalitions are reviewed.

2.6.1 Argumentation Frameworks

Abstract argumentation systems (otherwise known as argumentation frameworks) [50] are a

means to represent and reason with different, possibly conflicting data, to come to some reason-

able conclusion. In such argumentation frameworks, each abstract argument represents some

data, propositions, premises and/or conclusions. An abstract argument a1 may attack another

abstract argument a2 if a1 conflicts in some manner with a2. Argumentation frameworks can be

represented by a directed graph of nodes and arcs, where the nodes represent abstract arguments,

having no internal structure, and the arcs represent attacks between the arguments. The formal

definition is as follows:

Definition 30: An Argumentation Framework is a tuple AF = (Args, R) where Args is a set

of arguments and R is a binary attack relation R ⊆ Args×Args.
There are various notions relating to the status of different subsets of arguments in argumen-

tation frameworks; here are the main ones as defined in [50]:

Definition 31: For an AF, a set of arguments S ⊆ Args is conflict free (i.e. cf(S) holds true),

iff ¬∃ax, ay ∈ S where R(ax, ay).

As noted in [50], the notion that a set of arguments is conflict free can be thought of as

the most basic requirement for a rational position, i.e. an argument set S should be internally

consistent. Therefore no two arguments in a rational argument set S should attack each other.

Chapter 2. Background 49

FIGURE 2.3: An argumentation framework, used in the examples of Section 2.6.1, which has
one preferred extension of {a1, a2, a4}.

Example 14: Consider the example argumentation framework in Figure 2.3. The argument sets

that are conflict free are: ∅, {a1}, {a2}, {a3}, {a4}, {a5}, {a1, a2}, {a1, a4}, {a1, a5}, {a2, a4},
{a2, a5}, {a1, a2, a4} and {a1, a2, a5}. The empty set is included because, even though it has

no arguments, it satisfies the conflict free definition.

Definition 32: For an AF, an argument ax is acceptable wrt. a set S ⊆ Args (i.e. acceptable(ax, S)

holds true) iff ∀ay ∈ Args, where R(ay, ax) then ∃az ∈ S where R(az, ay).

Therefore an argument ax is acceptable to a set S, if every attacker ay of ax is attacked by

an element az of S, i.e. az defends ax. Note that an argument can defend itself, i.e. it is possible

that az = ax.

Example 15: Consider the example argumentation framework in Figure 2.3. Some possible

acceptable arguments are: a1 for the set S = {a1, a2, a3, a4, a5}; a2 for the set S = {a1, a2};
and a4 for the set S = {a2, a4}. The argument a3 is not acceptable for any conflict free set

because there are no arguments that attack the attackers of a3, which are a1 and a2. Likewise,

the argument a5 is not acceptable for any conflict free set because, even though an argument

a3 exists that defends a5 from the attack of a4, there still exists no arguments to defend a3 from

attack.

Definition 33: For an AF, a set of arguments S ⊆ Args is admissible (i.e. admissible(S)

holds true) iff cf(S) holds and ∀ax ∈ S then acceptable(ax, S).

Therefore, an admissible set is a collection of acceptable arguments.

Example 16: Consider the example argumentation framework in Figure 2.3. The argument sets

that are admissible are: ∅, {a1}, {a2}, {a4}, {a1, a2}, {a1, a4}, {a2, a4} and {a1, a2, a4}. The

empty set is again included because it again satisfies the admissible definition.

Definition 34: For an AF, a set of arguments S ⊆ Args is a preferred extension (i.e. preferred(S)

holds true) iff admissible(S) holds and S is a maximal (with respect to set inclusion) admissible

set of arguments.

As detailed in [50], a preferred extension S has the property that no additional argument ax
can be added to S and for the set S ∪ ax to be admissible. Therefore each preferred extension is

“as large as possible” wrt. admissibility.

Example 17: Consider the example argumentation framework in Figure 2.3. There is only one

preferred extension which is: {a1, a2, a4}. No more arguments can be added to this preferred

extension whilst ensuring that the resulting set is admissible. Some argumentation frameworks

Chapter 2. Background 50

FIGURE 2.4: An argumentation framework that has two preferred extensions of {a1, a3} and
{a2}, as described in example 17.

can have multiple (or zero) preferred extensions. For example the preferred extensions of Fig-

ure 2.4 are: {a1, a3} and {a2}.

2.6.2 Value-Based Argumentation Frameworks

Argumentation Frameworks were extended by Bench-Capon in [19] to include social-values3,

giving a Value-based Argumentation Framework (VAF). In VAFs each argument is given an

associated social-value. Therefore, although Argumentation Frameworks are concerned with

beliefs, VAFs enable reasoning through consideration of subjective preferences that justify dif-

ferent agents’ conclusions. The attacks between the arguments in a VAF succeed or fail for an

audience depending on the audience’s preference ordering over these social-values. A VAF is

defined in [19] as follows:

Definition 35: A Value-based Argumentation Framework (VAF) is a 5-tuple:

VAF = 〈Args,R, V, val, P 〉 where Args and R remains the same as in an AF, V is a non empty

set of social-values, val is a function mapping from each element of Args to an element of V ,

and P is the set of possible audiences (i.e. the total possible orders on V).

When one possible audience considers the content of a VAF, it is known as an Audience

Specific VAF (AVAF), defined as:

Definition 36: An Audience specific Value-based Argumentation Framework (AVAF), for

audience i is a 5-tuple: VAFi = 〈Args,R, V, val, V alPrefi〉 where Args, R, V and val re-

main the same as in a VAF, and V alPrefi ⊆ V ×V reflecting the value preferences of audience

i. V alPrefi is the set of preferences derivable from the ordering i ∈ P in the associated VAF.

As each difference audience uses a difference preference order over the valuations V , then

a notion of an attack succeeding or failing occurs. In AFs, all attacks are given the same prior-

ity. Whereas in VAFs, attacks from an argument ax associated with a social-value val(ax), on

an argument ay associated with a social-value val(ay), will only succeed for an audience i if

val(ax) is equal or higher than val(ay) in the preference order V alPrefi, i.e.:

Example 18: Consider the example value-based argumentation framework in Figure 2.5, where

there are three arguments Args = {a1, a2, a3}, three values V = {v1, v2, v3} and the mapping

of arguments to values is as follows: val(a1) = v1, val(a2) = v2 and val(a3) = v3. The

possible audiences of these valuations are P = {v1 � v2 � v3, v1 � v3 � v2, v2 � v1 � v3,

v2 � v3 � v1, v3 � v1 � v2, v3 � v2 � v1}. If the value preference used was V alPrefi =

{(v1, v2), (v3, v2), (v3, v1)} then a1 would defeat a2 but a1 would not defeat a3. Whereas if the

3The term “social-values” is hyphenated in this thesis, to distinguish the qualitative interpretation of the word
‘value’ from a quantitative definition of ‘value’ used so far in this thesis to represent a coalition’s utility value.

Chapter 2. Background 51

FIGURE 2.5: A example value-based argumentation framework, described in example 18. The
social-value associated with the argument is present outside and adjacent to that argument. For

example, argument a1 promotes social-value v1.

value preference used was V alPrefj = {(v1, v2), (v1, v3), (v2, v3)} then a1 would defeat both

a2 and a3.

Definition 37: For a VAFi, an argument ax ∈ Args defeats an argument ay ∈ Args for an
audience i (i.e. defeatsi(ax, ay) holds true) iffR(ax, ay) and (val(ay), val(ax)) /∈ V alPrefi.

As the defeat definition has been modified for VAFs compared to the one introduced for AFs

in Section 2.6.1, the definitions relating to the properties of the arguments of the VAF need to

be modified from AFs as well:

Definition 38: For a VAFi, a set of arguments S ⊆ Args is conflict free for audience i (i.e.

cfi(S) holds true), iff ¬∃ax, ay ∈ S where R(ax, ay) and (val(ay), val(ax)) /∈ V alPrefi.
The notion that a set of arguments is conflict free in an AVAF is a modified version of the

conflict free definition for an AF, such that it also includes social-values. Unlike in an AF,

arguments in a conflict free set S for an AVAF can attack each other, but only if those attacks

fail due to the value ordering.

Example 19: To show the difference between AFs and VAFs for the conflict free definition,

values have been added to the AF of Figure 2.3. Consider the Audience specific Value-based

Argumentation Framework VAFi based on the VAF of Figure 2.6, with the preference order

V alPrefi = {(v1, v2), (v1, v3), (v2, v3)}. The argument sets that are conflict free are firstly the

same as those produced from the AF of Figure 2.3: ∅, {a1}, {a2}, {a3}, {a4}, {a5}, {a1, a2},
{a1, a4}, {a1, a5}, {a2, a4}, {a2, a5}, {a1, a2, a4} and {a1, a2, a5}. However, the additional

argument sets that are conflict free for audience i are: {a3, a4}, {a3, a5}, {a4, a5}, {a1, a4, a5},
{a2, a4, a5}, {a3, a4, a5} and {a1, a2, a4, a5}. These additional conflict free argument sets oc-

cur because even though the arguments in the additional conflict free sets attack each other,

none of the attacks succeed as the social-value associated with the attacking arguments are not

ranked equal or higher than the social-value associated with the arguments being attacked.

Definition 39: For a VAFi, an argument ax is acceptable for audience i wrt. a set S ⊆ Args

(i.e. acceptablei(ax, S) holds true) iff ∀ay ∈ Args, where defeatsi(ay, ax) there exists az ∈ S
where defeatsi(az, ay).

Example 20: Consider the Value-based Argumentation Framework of Figure 2.6. Some pos-

sible acceptable arguments for different audiences for this VAF are: a1 for any audience and

Chapter 2. Background 52

FIGURE 2.6: A value-based argumentation framework (VAF), used within the examples of
Section 2.6.2. This VAF extends the argumentation framework of Figure 2.3 to include social-
values. The social-value associated with the argument is present outside and adjacent to that

argument. For example, argument a1 promotes social-value v2.

an example argument set S = {a1, a2, a3, a4, a5}; a2 for any audience and an example argu-

ment set S = {a1, a2}; a3 for the audience i with V alPrefi = {(v3, v2), (v3, v1), (v2, v1)}
and the example argument set S = {a1, a2, a3}; a4 for the the audience j with V alPrefj =

{(v1, v2), (v1, v3), (v2, v3)} and the example argument set S = {a2, a4}; and a5 for the au-

dience k with V alPrefk = {(v1, v2), (v1, v3), (v2, v3)} and the example argument set S =

{a4, a5}. Therefore the notion of a set of arguments in a VAF being conflict free can allow more

arguments to be acceptable than the same graph in AF form.

Definition 40: For a VAFi, a set of arguments S ⊆ Args is admissible for audience i (i.e.

admissiblei(S) holds true) iff cfi(S) holds and ∀ax ∈ S then acceptablei(ax, S).

Thus similar to AFs, AVAF admissible sets are a collection of acceptable arguments (where

AVAFs consider acceptability for a specific audience).

Example 21: Consider the Value-based Argumentation Framework given in Figure 2.6. The ad-

missible arguments for a VAFi based on Figure 2.6 with the V alPrefi = {(v2, v1), (v2, v3), (v1, v3)}
are: ∅, {a1}, {a2}, {a4}, {a1, a2}, {a1, a4}, {a2, a4} and {a1, a2, a4}. The admissible argu-

ments for a VAFj based on Figure 2.6 with the V alPrefj = {(v3, v1), (v3, v2), (v2, v1)} are ∅,
{a1}, {a2}, {a3}, {a1, a2}, {a1, a3}, {a2, a3} and {a1, a2, a3}.

Definition 41: For a VAFi, a set of arguments S ⊆ Args is a preferred extension for audience
i (i.e. preferredi(S) holds true) iff admissiblei(S) holds and S is a maximal (with respect to

set inclusion) admissible set of arguments.

Example 22: Consider the Value-based Argumentation Framework of Figure 2.6. The preferred

extension for a VAFi based on Figure 2.6 with the V alPrefi = {(v2, v1), (v2, v3), (v1, v3)} is

preferredi({a1, a2, a4}), which is the same preferred extension as the equivalent AF. The pre-

ferred extension for a VAFj based on Figure 2.6 with the V alPrefj = {(v3, v1), (v3, v2), (v2, v1)}
is preferredj({a1, a2, a3}).

Given that the preferred extensions of different audiences can vary, the following two defi-

nitions were introduced to find out what arguments are acceptable to the audiences [19]:

Definition 42: For a VAF = 〈Args,R, V, val, P 〉, an argument ax ∈ Args is objectively
acceptable iff ∀i ∈ P , ax is in every preferred extension preferredi.

Chapter 2. Background 53

Definition 43: For a VAF = 〈Args,R, V, val, P 〉, an argument ax ∈ Args is subjectively
acceptable iff ∃j ∈ P , where ax is in some preferred extension preferredj .

For an argument to be objectively acceptable requires the argument to be included by all

audiences in all their possible preferred extensions of the considered VAF. Subjective acceptance

is weaker instead requiring the argument to be accepted by at least one audience.

Example 23: Consider the Value-based Argumentation Framework of Figure 2.6. If there are

only two audiences i and j, where the preferred extension for a VAFi is preferredi ({a1, a2, a4})
and the preferred extension for a VAFj is preferredj({a1, a2, a3}), then arguments a1 and a2

are objectively acceptable, while arguments a3 and a4 are subjectively acceptable.

In Chapter 3 of this thesis, value-based argumentation frameworks and preferred extensions

over audience specific value-based argumentation frameworks are used to find solutions to a

variant of qualitative coalitional games.

2.6.3 Argumentation Schemes

Abstract argumentation frameworks are useful for evaluating the acceptability of arguments

based on the attack relations between them. However, abstract arguments themselves are not

useful for representing instantiated arguments; i.e., arguments with some internal structure or

content. To reason over the best coalition structure to form, argumentation schemes will be

instantiated in Chapter 3, and the arguments yielded will be organised into a value-based argu-

mentation framework.

An argumentation scheme is a form of inference from premises to a conclusion that rep-

resents a pattern of deductive, inductive or defeasible reasoning [97]. An instantiated argu-

mentation scheme provides justification for the particular conclusion of the scheme [21]. Ar-

gumentation schemes allow for arguments to be represented within a particular context, and

take into account the fact that the reasoning presented within them may be altered if new evi-

dence is found [8]. Schemes are necessary for identifying arguments, finding missing premises,

analysing arguments and evaluating the arguments [97]. Many computational models based

on argumentation schemes exists (e.g. [60, 68, 84, 123]). Moreover there are many types of

argumentation schemes have been studied (e.g. [128] lists over 30 types), some examples are:

• Argument from Analogy, for instance: Generally, case C1 is similar to case C2. A is true

in case C1. Therefore A is true in C2.

• Argument from Commitment, for instance: a is committed to proposition A. Therefore in

this case a should support A.

• Argument from Evidence to Hypothesis, for instance: If A is true (hypothesis) then B will

be observed to be true (evidence). B has been observed to be true in a given instance.

Therefore in this instance A is true.

• Argument from Expert Testimony, for instance: E is an expert in domainD. E asserts that

A is known to be true. A is within D. Therefore A may plausibly be taken to be true.

Chapter 2. Background 54

• Argument from Popularity, for instance: If a large majority accept C to be true, then there

exists a (defeasible) presumption in favour of C. A large majority accepts C as true.

Therefore there exists a presumption in favour of C.

The tool used to evaluate an argumentation scheme is a set of appropriate critical questions

[97]. An instantiation of an argumentation scheme asx attacks another instantiation of an argu-

mentation scheme asy under pre-defined conditions, which attack either the premises, inference

rules or conclusions of the scheme asy. The attack by asx to asy can be described as a critical

question to ay, which if left unanswered will lead to the defeat of asy.

Argumentation schemes can be used to reason over what action or joint-action to perform.

Argumentation schemes can also be used to reason over what to belief (this will be discussed in

more detail in Section 2.6.5). The following is a definition of practical reasoning provided by

Walton in [128]:

Definition 44: Practical Reasoning is a goal directed sequence of linked practical inferences

that seeks out a prudent line of conduct for an agent in a set of particular circumstances known

by the agent.

Walton went on to describe two basic types of practical inferences related to practical rea-

soning (where NCS is a special type of SCS [13]):

• The necessary condition scheme (NCS): G is a goal for agent i. Doing action A is neces-

sary for agent i to carry out goal G. Therefore agent i ought to do action A.

• The sufficient condition scheme (SCS):G is a goal for agent i. Doing actionA is sufficient

for agent i to carry out goal G. Therefore agent i ought to do action A.

There are four critical questions regarding these two schemes:

• CQ1: Are there alternative ways of realising goal G?

• CQ2: Is it possible to do action A?

• CQ3: Does agent i have goals other than G which should be taken into account?

• CQ4: Are there other consequences of doing actionAwhich should be taken into account?

In [13] it was argued that the NCS/SCS argumentation schemes needed elaboration because

the notion of a goal is ambiguous, potentially referring indifferently to any direct results of the

action, the consequences of those results, and the reasons why those consequences are desired.

Therefore in [13], the SCS scheme was expanded on to give another practical reasoning argu-

mentation scheme (labeled AS1) with associated critical questions:

Chapter 2. Background 55

ID Critical Question
CQ1 Are the believed circumstances true?
CQ2 Assuming the circumstances, does the action have the stated consequences?
CQ3 Assuming the circumstances and that the action has the stated consequences,

will the action bring about the desired goal?
CQ4 Does the goal realise the social-value stated?
CQ5 Are there alternative ways of realising the same consequences?
CQ6 Are there alternative ways of realising the same goal?
CQ7 Are there alternative ways of promoting the same social-value?
CQ8 Does doing the action have a side effect which demotes the social-value?
CQ9 Does doing the action have a side effect which demotes some other social-

value?
CQ10 Does doing the action promote some other social-value?
CQ11 Does doing the action preclude some other action which would promote some

other social-value?
CQ12 Are the circumstances as described possible?
CQ13 Is the action possible?
CQ14 Are the consequences as described possible?
CQ15 Can the desired goal be realised?
CQ16 Is the social-value indeed a legitimate social-value?
CQ17 Is the agent guaranteed to perform its part of the joint-action?

TABLE 2.3: The full list of critical questions associated with argumentation schema AS1.

Definition 45: The AS1 scheme for practical reasoning is as follows:

In the current circumstances R

We should perform action A

Which will result in new circumstances S

Which will realise goal G

Which will promote the social-value V

This scheme uses social-values to describe a social interest that an agent has, which will be

promoted by moving to a state in which goal G becomes true [19]. An agent may propose an

action (the conclusion of the scheme) and its justification by instantiating this scheme. Other

agents can then challenge instantiations by posing critical questions (CQ) associated with the

scheme. Seventeen critical questions are associated with the above scheme [10, 12], which raise

potential issues with: the validity of the elements instantiated in the scheme; the connections

between the elements of the scheme; the side effects of the action; and the possible alternative

actions. These seventeen critical questions are provided in Table 2.3.

Each of these critical questions identifies a source of disagreement between two or more

agents concerning an instantiation of the argumentation scheme AS1. Some critical questions

disagree with the premises of the scheme, for example CQ14 disagrees with the premise of the

Chapter 2. Background 56

new consequences. Other critical questions offer an alternative conclusion, for example, CQ6

offers a new action to achieve the required goal.

The disagreements highlighted by critical questions against an argumentation scheme can

be modeled in a value-based argumentation framework or simply an argumentation framework

(if no social-values were used), to reason logically over what is the best conclusion. In the

AS1 case, value-based argumentation frameworks would be used to reason over what is the best

action to perform. A modified version of AS1 and its associated seventeen critical questions

are used later in Chapter 3 for agents to persuade others to form a coalition to undertake a

joint-action.

2.6.4 Value-based Alternating Transition Systems

To help with the generation of argumentation schemes, a Value-based Alternating Transition

System (VATS) can be used, because VATS model the environment using propositions and state

transitions that can be formalised into argumentation schemes, such as in the models of [9, 21].

A VATS is a modified version of an Action-based Alternating Transition System (AATS) [135],

which has been extended to enable the inclusion of social-values. When the agents are using the

same environmental model (the VATS), argumentation schemes instantiated from parts of each

agents VATS can be used to reason over possibly contradictory information. A VATS is defined

as:

Definition 46: A VATS for an agent i, denoted VATSi, is a 9-tuple

〈Qi, qi0, Aci, Avi, ρi, τ i,Φi, πi, δi〉 s.t.:

• Qi is a finite set of states;

• qi0 ∈ Qi is the designated initial state;

• Aci is a finite set of single actions;

• Avi is a finite set of social-values;

• ρi : 2Ac
i 7→ 2Q

i
is an action precondition function, which for each joint-action µ =

〈acx, ..., acy〉 (where ∀acx ∈ µ, acx ∈ Aci), defines the set of states ρ(µ) from which µ

may be executed;

• τ i : Qi × 2Ac
i 7→ Qi is a partial system transition function, which defines the state

τ i(qx, µ) that would result from the performance of joint-action µ = 〈acx, ..., acy〉 from

state qx. As this function is partial, not all joint-actions are possible in all states;

• Φi is a finite set of atomic propositions;

• πi : Qi 7→ 2Φi
is an interpretation function, which gives the set of primitive propositions

satisfied in each state: if p ∈ πi(qy), then this means that the propositional variable p is

satisfied (equivalently, true) in state qy; and

Chapter 2. Background 57

FIGURE 2.7: An example Value-based Alternating Transition System for an agent i. The
rectangles represent the different states and contain the propositions true or false at that state.
Each state is given an identifier that is adjacent to that state, for example the left most state has
the identifier qi0. The arrows represent the transitions between the states and are labeled by the
joint action needed for the transition and the social-value promoted/demoted by the transition.
For example the lower arrow requires joint-action µ2 to be performed and this transition will

promote social-value v2.

• δi : Qi×Qi×Avi 7→ {+,−,=} is a valuation function which defines the status (promoted

(+), demoted (−), or neutral (=)) of a social-value v ∈ Avi ascribed by the agent to the

transition between two states; i.e. δi(qx, qy, v) labels the transition between qx and qy
with respect to the value v ∈ Avi.

Note, Qi = ∅ ↔ Aci = ∅ ↔ Avi = ∅ ↔ Φi = ∅.

Figure 2.7 illustrates an example VATS for an agent iwith: three states (i.e. Qi = {qi0, qi1, qi2});
one designated initial state qi0; four single actions (i.e. Aci = {ac1, ac2, ac3, ac4} that combine

to give two possible joint-actions µ1 = 〈ac1, ac2〉 and µ2 = 〈ac3, ac4〉); two social-values (i.e.

Avi = {v1, v2}); two pre-conditions (i.e. ρ(µ1) = qi0 and ρ(µ2) = qi0); two transition functions

(i.e. τ(qi0, µ
1) = qi1 and ρ(qi0, µ

2) = qi2); two propositions p and t (i.e. Φ = {p, t}); three

interpretations (i.e. π(qi0) = {¬p,¬t}, π(qi1) = {p,¬t} and π(qi2) = {p, t}); and two valuation

functions (i.e. δ(qi0, q
i
1, µ

1) = − and ρ(qi0, q
i
2, µ

2) = +).

VATS can be used to formally instantiate argumentation schemes. For example, the AS1

scheme for practical reasoning introduced in the previous section can now formally become:

Definition 47: An AS1-argument constructed by an agent i from its VATSi is a 6-tuple AS1 =

〈qx, µ, qy, p, v, s〉 s.t.: the current circumstances are qx = qi0; the proposed action is µ; the new

circumstances will be τ i(qx, µ) = qy; the goal realised is p ∈ πi(qy); the value is v ∈ Avi; and

the value will be affected by δx(qx, qy, v) = s where s ∈ {+,−,=}.
In Chapter 3, VATS are used to allow agents to create new instantiated argumentation

schemes that allow the agents to logically argue for/against a coalition to form to undertake

a joint-action.

Chapter 2. Background 58

2.6.5 Reasoning Over Current Beliefs

When reasoning over what to do, agents may need to inquire about beliefs on the current state

of the world, especially when their environment is represented in some qualitative form. To

do this, agents can have epistemic knowledge (beliefs). One popular approach for representing

such beliefs is Garcia and Simari’s Defeasible Logic Programming (DELP) [57]. The following

definitions from [21], which makes use of DELP, provide a formal framework for modeling

beliefs:

Definition 48: A defeasible rule λ is denoted α1∧. . .∧αn−1 → αn where αi is a literal for 1 ≤
i ≤ n. A defeasible fact is denoted α where α is a literal. A belief is either a defeasible rule or a

defeasible fact. The following functions are defined: DefeasibleSection(λ) = {α1, . . . , αn−1};
DefeasibleProp(λ) = αn.

Definition 49: A belief base of an agent j is represented as a set denoted Σj , which contains

all the defeasibled rules or defeasible facts that an agent is aware of.

Example 24: An example defeasible rule is r∧s→ t where the following could hold: r = grass

is wet, s = no garden sprinklers and t = it has been raining. Additionally r and s can be viewed

as defeasible facts if they are known to be true. For instance, if there were two agents i and j,

their belief bases could be: Σi = {r ∧ s → t} and Σj = {r, s}. If the two belief bases were

combined then t would be found to hold.

The definition of a defeasible derivation is adapted from [57] in [21], to work with the

assumption that all beliefs are defeasible:

Definition 50: Let Ψ be a set of beliefs and α a literal. A defeasible derivation of α from Ψ,

denoted Ψ |∼ α, is a finite sequence α1, α2, . . . , αn of literals s.t.: αn is α; and each literal

αm (1 ≤ m ≤ n) is in the sequence because either αm is a defeasible fact in Ψ, or there exists

a defeasible rule β1 ∧ . . . ∧ βj → αm in Ψ s.t. every literal βi (1 ≤ i ≤ j) is an element αk
preceding αm in the sequence (k < m).

Example 25: An example defeasible derivation is Ψ = {r, s, q, r ∧ s→ t, q → t, t→ α} |∼ α

where the following could hold: r, s and t remain the same as the previous example; q = john

saw it rain; and α = the garden does not need hosing.

A b-argument is a minimally consistent set of beliefs from which a claim can be defeasibly

derived.

Definition 51: A B-argument is denoted B = 〈Φ, φ〉 where φ is a defeasible fact and Φ is a set

of beliefs s.t.: 1) Φ |∼ φ; 2) ∀φ, φ′ s.t. Φ |∼ φ and Φ |∼ φ′, it is not the case that φ ∪ φ′ `⊥
(where ` represents classical implication); and there is no subset of Φ satisfying (1 and 2). Φ is

called the support of the b-argument and φ is called the claim.

Example 26: An example B-argument given the defeasible derivation of the previous example

is 〈Φ, φ〉, where Φ = {q, q → t, t → α} |∼ α, φ = α, and q, t and α remain the same as the

previous example.

In Chapter 3 of this thesis, defeasible rules, defeasible facts, defeasible derivations and B-

arguments are used to allow the agents to find their state of the world before they argue and

reason over what coalitions to form.

Chapter 2. Background 59

2.6.6 Argumentation Applied to Coalition Formation

Several studies have combined argumentation with coalition formation (e.g. [4, 24, 25, 28, 29,

50]); two of the papers that are most relevant to the work presented in this thesis are discussed

here.

Firstly, in Dung’s seminal paper that introduced the notion of Argumentation Frameworks

(AFs) [50], he used characteristic function games to demonstrate the correctness of AFs. He

showed that AFs can be used to represent core and von Neumann-Morgenstein stable solution

concepts (where the grand coalition is assumed to form). The following theorem was given:

Theorem 2.1. Let Imp be the set of imputations of a coalitional game G and let attacks be

the corresponding domination relation between them4. Given the argumentation framework

AF = (Imp, attacks), then the core of G coincides with all acceptable imputations defended

by the empty set.

This Theorem details how all the core solutions can be found for a characteristic function

game with transferable utility. Amgoud expanded on Dung’s work to show how argumenta-

tion frameworks can be used to reason over what coalition structures to form [4]. The formal

framework was as follows:

Definition 52: A Coalition Structure Framework (CSF): is a framework for generating coali-

tion structures denoted 〈C,R,�〉. In this framework: C is a set of possible coalitions; R is a

binary relation R ⊆ C × C representing the attack relationship between coalitions (the rea-

soning for the attack is left undefined); and � is a (partial or complete) pre-ordering on C,

representing the preferences of the coalitions, where a coalition Cx that attacks Cy only defeats

Cy if Cy � Cx does not hold.

Due to the nature of argumentation frameworks, Amgoud outlined three classes of coali-

tions:

1. The class AR,� of acceptable coalitions.

2. The classRR,� of rejected coalitions.

3. The class BR,� of coalitions neither accepted or rejected, the so-called class of coalitions

in abeyance, where BR,� = C\(AR,� ∪RR,�).

These three classes can be described as follows: the acceptable coalitions are coalitions that

are not attacked or coalitions defended by other acceptable coalitions; the set of coalitions in

abeyance are not defeated by the acceptable coalitions but may conflict with each other; and

the rejected coalitions are the set defeated by the acceptable coalitions. A two agent dialogue

game was also detailed to determine whether a coalition is acceptable or not, which allowed

one coalition’s acceptability to be checked without having to know the full set of acceptable

coalitions.

Sometimes the set of acceptable coalitions may be empty. Additionally choosing a subset

of coalitions, from the coalitions in abeyance, to join with the acceptable coalitions to create a
4See Section 2.1 for the definition of domination and imputations.

Chapter 2. Background 60

FIGURE 2.8: An example coalition structure framework.

coalition structure may not be an obvious task. To help with these issues, Amgoud introduced

semantics for the coalition structure framework, as well as a modified definition of how a set of

arguments are conflict free:

Definition 53: For a CSF, a set of coalitions S ⊆ C is conflict free, iff ¬∃Cx, Cy ∈ S where

R(Cx, Cy) and it is not the case that Cy � Cx.

Definition 54: For a CSF, a set of coalitions S ⊆ C is a preferred extension, iff:

• S is conflict free

• S defends all its elements

• S is maximal (wrt set inclusion).

Each CSF has at least one preferred extension:

Example 27: Consider the following coalition structure framework, represented in Figure 2.8:

〈C,R,�〉 where C = {C1, C2, C3, C4, C5}, R = {(C2, C1), (C2, C3), (C2, C4), (C3, C2),

(C4, C5)}, C2 � C1, C4 � C2 and C4 � C5 (as the � relationship is partial, all pairs of

coalitions not given a preference order are assumed to have equal preference). The following

set of coalitions are conflict free: ∅, {C1}, {C2}, {C3}, {C4}, {C5}, {C1, C3}, {C1, C4},
{C1, C5}, {C2, C4}, {C2, C5}, {C3, C4}, {C3, C5}, {C1, C3, C4} and {C1, C3, C5} . There

exists two preferred extensions: {C1, C3, C4} (because the three coalitions do not attack each

other and defend themselves from attacks) and {C2, C4} (because even though C2 does attack

C4, this attack does not succeed because C4 � C2).

The class of acceptable coalitions is therefore AR,� = {C4} because C4 can never be

defeated. The class of rejected coalitions is RR,� = {C5} because C5 is defeated by an

acceptable coalition. This leaves the coalitions in abeyance BR,� = {C1, C2, C3} because

these coalitions may or may not be part of the chosen coalition structure, depending on what

other coalitions of the abeyance class are chosen.

Coalition Structure Frameworks are based on preference-based argumentation theory (PBAT)

[48]. The key computational issues from PBAT that relate to Coalition Structure Frameworks

are:

Chapter 2. Background 61

• Theorem 4 of [48] states that deciding whether an argument a is accepted by at least one

preference order in a PBAT is NP-hard. In the context of CSFs, this means that finding

out if a coalition is accepted given at least one preference order is NP-Hard.

• Proposition 3 of [48] states that deciding whether an argument a is accepted by all prefer-

ence orders in a PBAT is coNP-hard. In the context of CSFs, this means that finding out

if a coalition is accepted given all the possible preference orders is coNP-Hard.

• In Section 5 of [48] it is shown that a stable extension of arguments can be found in a

PBAT, given a single preference order, in polynomial time. In the context of CSFs, this

means that finding a set of coalitions that are stable can be found in polynomial time.

In summary, there are issues that still remain in argumentation methods for coalition forma-

tion:

• Detailing an individual imputation as one argument, as done in [50], can create a vastly

complex argumentation framework, as a real value utility of a coalition can be distributed

in a theoretically infinite number of ways (which, due to rounding, becomes a computa-

tionally very large but finite number of ways).

• Additionally, [50] does not detail how agents can collaboratively choose one payoff vector

imputation out of all the possible core (or von-Neuman Morgenstein) stable solutions (in

a possibly decentralised manner).

• Amgoud [4] does not detail what happens if the agents have their own individual prefer-

ences over which coalition to join, only one static system wide preference order is used.

• In [4], how the single static system wide preference order is found is not detailed.

• Finally, [4] does not detail what happens if the payoff is transferable, thus preferences

between the agents over which coalition to join can change, depending on their received

payoff.

2.7 Summary and Conclusions

In this chapter, topics within the fields of characteristic function games, cooperative game theory,

coalition formation in multi-agent systems, agent communication and argumentation relevant to

the research in this thesis have been presented. The remaining chapters focus on the creation

of new methods for decentralised coalition formation, drawing on the research presented within

this literature review. Work within decentralised environments suggest that methods for coalition

formation should be presented that (among other properties): (i) make use of the distributed

computational resources; (ii) minimise costly communication; (iii) deal with possibly conflicting

information between the agents; and (iv) find solutions that a centralised arbiter with complete

knowledge would prescribe.

Chapter 2. Background 62

The following chapters are organised as follows. Chapter 3 begins with an investigation

into how argumentation and dialogue game tools (detailed in Section 2.6 and Section 2.5 re-

spectively) can be used for the agents to reason over conflicting information in qualitatively

described environments, to find a conclusion over what coalitions to form. Additionally Chap-

ter 3 has parallels to the non-transferable utility game literature of Section 2.3.1.

Chapter 4 shows how the distributed computational resources of agents can be exploited

when calculating all of the coalitions’ values. It describes the problem as a characteristic func-

tion game, as described in Section 2.1, and focuses in depth on the literature of distributed

coalition value calculation algorithms, detailed in Section 2.4.1. Chapter 5, builds on Chap-

ter 4’s work to show how cooperative game theory stable solutions can be found with distributed

knowledge and minimal communication. Chapter 5 uses the characteristic function game model

of Section 2.1, the cooperative game theory solution concepts of Section 2.2, and draws on the

literature of coalition structure generation and payoff distribution, as described in Sections 2.4.2

and Sections 2.4.3 respectively.

Finally Chapter 6 details a new formal model of coalitional games when the agent differ

on their predicted coalition values. Chapter 6 focuses in detail on the valuation disagreement

coalitional game literature, described in Section 2.3.2.

For a discussion on each Chapter’s contributions compared to the related work, see Sec-

tion 1.4.

Chapter 3

63

Chapter 3

Forming Coalitions with
Argumentation Schemes and Critical
Questions

This chapter discusses an argumentation-based method that agents can use to form coalitions

in a decentralised manner. In this method, the agents can: (i) engage in an inquiry dialogue,

where they can use arguments over beliefs to find the current state of the world; and (ii) engage

in a persuasion dialogue, where they can use arguments over actions to persuade others over

whether or not to form a coalition. Both of these dialogue types are multi-agent dialogues. This

chapter focuses on situations where the agents represent their world in qualitative terms by a

set of propositions, where coalitions can achieve qualitative changes in the environment through

joint-actions between the agents of the coalition. The qualitative representation of the world is

assumed to be in Value-based Alternating Transition System (VATS) form1, which itself was an

extended version of AATS [135]. In the model of this chapter, the use of joint-actions (orginally

embedded within the AATS themselves) allows the agents to reason over which coalitions may

conflict with each others capability.

Due to the qualitative representation, inquiry and persuasion dialogues were chosen to allow

the agents to form coalitions. The contributions of this chapter are an inquiry dialogue over

beliefs that allows the agents (with possible heterogeneous knowledge bases) to reason over the

current state of the world. Once a logical conclusion over the state of the world is found, the

next contribution is a persuasion dialogue that will allow the agents to complete the coalition

formation process by reasoning over what coalitions to form and what joint-actions these coali-

tions should undertake. Both dialogues are defined in the style of a dialogue game. Dialogue

games usually consist of a set of communicative acts called moves, a set of rules detailing the

moves that are legal to make at any time in a dialogue (the protocol), a set of rules stating the

effect of making each move, and a set of rules that detail when a dialogue terminates (e.g. [72]).

In this chapter, the contribution of the inquiry dialogue (which is an extension of the Black

& Hunter model of [22]) includes: (a) clarification on how the agents compare their current
1See Section 2.6.4 for the formal definition of a VATS.

65

Chapter 3. 66

states; and (b) the definition of a protocol that agents can use to find the set of legal moves in

the dialogue. Both of these contributions were presented within [101]. Furthermore, the con-

tribution of the persuasion dialogue (which is an extension of the Black & Atkinson model of

[21]) includes: (i) an argumentation scheme to allow for coalitions to perform joint-actions; (ii)

the formalisation of the critical questions associated with the scheme of (i); (iii) a full protocol

that allows the agents to find the set of legal moves in the dialogue; and (iv) a model specific ar-

gument evaluation method to find the acceptable coalitions to form. Contribution (i) is based on

[98], influenced by the argumentation scheme of [10]. Contribution (ii) is based on [101]. Con-

tribution (iii) is an extended and modified version of the protocol in [21]. Finally, contribution

(iv) is a modified version of the acceptability definitions presented in [19].

This chapter is structured as follows: Section 3.1 details how the agents find their state of

the world. Section 3.2 details the practical reasoning model used. Section 3.3 details the inquiry

and persuasion dialogues, including the formalisation of all the critical questions. Section 3.4

gives a protocol for the inquiry dialogue and a protocol for the persuasion dialogue, where

both protocols find all the legal moves for an agent in their respective dialogues. Section 3.5

details the method to evaluate the practical reasoning arguments communicated in the persuasion

dialogue, to find the acceptable coalitions. Section 3.6 gives a full example of both dialogues

and the argument evaluation method. Finally Section 3.7 concludes.

3.1 Finding the State of the World

Before reasoning qualitatively over what coalition to join, it is reasonable to suggest that each

agent will want to find the current state of the world. This requires each agent to inquire over

the true value of the propositions it uses to represent the world that are likely to influence it’s

preference over which coalition to join. The inquiry dialogue, formally detailed in Section 3.3,

allows the agents to communicate defeasible facts, defeasible rules and B-arguments2. The

result of these inquiries will identify B-arguments that each agent should use to find a conclusion

over the current state of the world.

Reasoning over theseB-arguments may be complicated because scenarios could arise whereby

B-arguments may claim logical contradictions (e.g. p and ¬p). In a decentralised environment,

it is possible that some agents would put forth B-arguments that are due to an erroneous knowl-

edge base or a manipulation attempt. In this situation, the agents could be equipped with a

weighting system based on trust to help resolve which agent’s arguments should be prioritised.

The exact details of this system is out of the scope of this thesis.

To find a conclusion for each inquired proposition, the agents can look at the corresponding

B-arguments for and against the proposition’s correct Boolean value being true to find the most

likely Boolean valuation of each proposition. For the purposes of simplifying the discussion in

the rest of the chapter, it is assumed that no contradictions on the Boolean value of a proposition

occur.
2See Section 2.6.5 for the formal definition of defeasible facts, defeasible rules and B-arguments.

Chapter 3. 67

3.1.1 Comparing States

One particular issue that arose when implementing the inquiry dialogue was the need for a

method to clarify how agents using different propositions to represent the state of the world can

accurately compare states (since agents’ VATS reflect only an individual’s representation of the

world). The solution is described in this subsection.

Two agents, i and j can compare their respective current states (qi and qj), using their respec-

tive propositional representation of the world (Φi and Φj), and assume they are equal (denoted

qi ≈ qj) iff π(qi) ∩ Φj = π(qj) ∩ Φi. Otherwise the states are different (denoted qi 6= qj).

This equality test utilises an intersection to eliminate propositions that reside in only one of

the agent’s propositional representations of the world. When the above approximation holds,

the two states qi and qj cannot reasonably be said to be different, as both states will agree for

each shared proposition. However, these two states may not be identical since the same con-

clusion can be reached irrespective of the Boolean assignments of the distinct propositions. If

the comparison does not hold, then the states are definitely different due to both agents holding

inconsistent Boolean values for their shared propositions. This comparison requires: either each

agent to have an internal model of the other agent’s beliefs; or for the agents to make (at least

some) of the Boolean values of Φi public. In this chapter the latter option is chosen due to the

revelation of each agent’s current state being a requirement of the practical reasoning argumen-

tation scheme (introduced in the next section). If any agent i has any privacy concerns over some

propositions that it uses to represent its state, then i can choose to not make these propositions

public. But privacy concerns should be balanced with knowledge accuracy concerns, because

the fewer propositions communicated by i, the more likely other agents will believe they are in

different states to i, yet will not be able to form B-arguments to indicate this, because i did not

reveal enough information to trigger a B-argument construction.

The following example shows how the state comparison definition works, when every agent

reveals all their propositions:

Example 28: Consider the following propositional representations of the world and the current
states for agents i and j: Φi = {p, q, r, t}; Φj = {p, r, v}; qi = [p,¬q,¬r, t]; and qj =

[p,¬r, v]. Given the state comparison definition π(qi) ∩ Φj = π(qj) ∩ Φi, the substitution

{p, t} ∩ {p, r, v} = {p, v} ∩ {p, q, r, t} gives {p} = {p}. Therefore, as qi ≈ qj , the conclusion

is that there is no evidence to suggest the states are necessarily different.

3.2 The Practical Reasoning Model

A Value-based Alternating Transition System (VATS) [9] is an appropriate representation for

reasoning over a qualitative coalition formation process as the underlying AATS [135] was ini-

tially used to show how (already formed) coalitions, performing joint-actions, change the state of

the world. The VATS will be used in this chapter to help the agents of the system find acceptable

coalitions, given their beliefs and social-value preference order.

To help the agents form coalitions, the following new function is added to the VATS repre-

sentation of agent i, given the full set of agents of the coalitional game (denoted N):

Chapter 3. 68

• ζi : N × Aci → {>,⊥} is a representation function, which defines whether agent i

believes if agent j ∈ N will perform the given action (therefore > is returned) or not

(therefore ⊥ is returned).

The Practical Reasoning Argumentation Scheme for Coalition Formation (PRASCF), mod-

ified from the AS1 scheme3 of [21], and presented in [98] is:

PRASCF: In the current circumstances R, joint action J should be performed, by coalition

C, which will result in the new circumstances S, which will realise goal G and promote/demote

the social-value V.

Circumstances R and S are represented as tuples of propositions. Joint action J is a tuple

µ of single actions, denoted µ = 〈acm, ..., acn〉. The coalitions are assumed to be able to

coordinate these joint-actions themselves4. Coalition C = {i, ..., j} is a set of agents where

a tuple ξ matches agents to single actions, denoted ξ = 〈(i, acp), ..., (j, acq)〉. The intended

interpretation for ξ is that if this coalition is accepted, then each agent in C will perform the

single action that it is paired to in ξ. An agent can put forth PRASCF arguments, to persuade

others that a coalition should be formed to undertake a joint-action, by instantiating this scheme.

The goal to be achieved, and the social-value to be promoted, provides the justification for the

coalition to undertake the joint-action.

Due to the nature of decentralised environments, the following conditions are enforced when

an agent i is creating a new instantiation of the argumentation scheme:

• The ξ tuple cannot have been previously proposed in an argumentation scheme and re-

jected unless the interpretation of the current state has changed, through an agent talking

by doing (i.e. an agent performing an action or a coalition performing a joint-action)

or through an agent doing by talking (i.e. an agent asserting a new B-arguments that

could influence another agent’s opinion of the current state). This stops instantiations of

argumentation schemes being repeated indefinitely, yet allows for situations where new

information is uncovered that indicates the current reasoning was flawed.

• Every agent of the coalition must be an agent in the ξ tuple. This condition requires each

member of the coalition not to be a dummy player [136], i.e. each agent of the coalition

must contribute to the coalition it is in.

• Each agent must occur once and only once in ξ. This condition ensures that an agent is

not given multiple single actions to perform at the same time.

• The coalition argued for/against does not have to be complete, i.e. the ξ tuple does not

have to be fully instantiated initially. This condition is due to an agent i potentially having

only partial knowledge of the system.

A formally instantiated version of the PRASCF scheme is defined as:
3The AS1 scheme is described in Section 2.6.3.
4With this assumption the joint actions operate in much the same manner as actions in the AS1 schema (the only

different is that a certain number of agents are required to perform a joint-action).

Chapter 3. 69

Definition 55: A PRASCF is denoted C = 〈qx, µ, ξ, qy, p, v, s〉 where qx is the current state,

µ is the joint action, ξ is the tuple that matches agents to a joint action, qy is the new state,

p is the goal in the new state, v is the social-value associated with this state transition and

s (where s = {+,−,=}) is the sign indicating whether the value is promoted/demoted/not

affected respectively.

In the PRASCF scheme, the coalition C is implicit in the ξ tuple, found by: ∀〈i, ac〉 ∈ ξ

then i ∈ C. A C-argument will represent a proposal if there exist single actions of µ not

matched to an agent in ξ. This situation is a proposal because the coalition does not yet have a

sufficient number of members to carry out the joint-action and so requires others to complete the

coalition. A C-argument will represent an assertion if all single actions of µ have been assigned

to an agent, because the coalition now has enough members to carry out the joint-action and is

therefore ready to form.

Additionally agents will be able to communicate critical questions attacking any proposal,

assertion or another critical question. A formalised critical question is instantiated as a modified

version of a C-argument intended to reflect the question it represents, in a logical form. These

critical questions are modifications of the critical questions of the AS1 scheme, presented in

Section 2.6.3.

3.3 Using Dialogues for Inquiry and Persuasion to Form Coalitions

The new dialogues presented in this chapter assume a decentralised multi-agent system, where

the agents collaborate in coalitions to achieve mutual goals that promote social-values the agents

are concerned with. To find the best joint-action that achieves a dialogue initiator’s goal, the

agents enter a coalitional persuasion over action (C-pAct) dialogue, which provides the agents

with an opportunity to persuade others by putting forward arguments for/against coalitions to

form to undertake joint-actions.

However, before these arguments can be communicated, each agent i may want to inquire

over some propositions to find their Boolean value so that the agent’s initial state can be found.

Once this has occurred, the correct C-arguments for the current system state can be uttered.

If an agent i wants to find the Boolean value of a proposition, then it will open a coalitional

inquiry (C-inq) dialogue with other agents in the system. The result of each C-inq dialogue is

for each agent participating in the C-inq dialogue to find a single point belief on the Boolean

value for all of agent i’s propositions that the C-inq dialogue was opened for. As stated in [34],

the single-point belief assumption is helpful because: probabilistic beliefs may not be available;

single point beliefs are easier to form; reasoning over single point beliefs is computationally less

complex; and single point beliefs are a natural assumption in many real-world situations.

In the C-pAct and C-inq dialogues, six different moves are allowed for all of the agents’

needs, where the agents broadcast these moves to all the others when required. These moves are

as follows:

• Open: The open move allows an agent i to start a new C-pAct or C-inq dialogue.

Chapter 3. 70

Move Format
open 〈i, open, dialogue(θ, γ)〉
join 〈i, join, dialogue(θ, γ)〉
propose 〈i, propose,Υ, dialogue(θ, γ)〉
assert 〈i, assert,Υ, dialogue(θ, γ)〉
close 〈i, close, dialogue(θ, γ)〉
leave 〈i, leave, dialogue(θ, γ)〉

TABLE 3.1: The format for moves used in this dialogue, where N represents the full set of
agents of the coalitional game, i is the agent making the move and i ∈ N . Then either θ = C-
pAct and γ is a proposition (representing the dialogue goal), or θ = C-inq and γ is a set of
propositions (that i is inquiring over). The set Υ is either a set of C-arguments and critical
questions (if θ = C-pAct) or Υ is a set of B-arguments, defeasible facts and defeasible rules

(if θ = C-inq).

• Join: The join move allows an agent i to join a dialogue that another agent j has created.

• Propose: The propose move allows an agent i to argue for/against the formation of a coali-

tion to undertake a joint-action, where all elements of the joint-action are not assigned to

agents.

• Assert: The assert move allows an agent i to either: argue for/against the formation of a

coalition to undertake a joint-action, where all elements of the joint-action are assigned to

agents (if the dialogue type is C-pAct); or communicate defeasible facts, defeasible rules

and B-arguments (if the dialogue is C-inq).

• Close: The close move allows an agent i to tell the other agents that it currently has no

other information to add to the dialogue. If all agents of the dialogue perform a close

move without any new arguments being communicated then the dialogue is over.

• Leave: The leave move allows an agent i to leave its current dialogue.

The format of the moves that the agents can perform is presented in Table 3.1. The set of all

moves meeting the format defined in Table 3.1 is denotedM. Within this chapter, a dialogue

Dtr, is a sequence of moves mr, . . . ,mt where r, . . . , t ∈ N represents the time-point at which

each move was made, with r being the starting point of the dialogue and t the end point. The

collection of all on-going dialogues of the system are referred to as Ω.

Each agent i’s proposals and assertions are stored in its public commitment store (CoSti)

that grows monotonically over time:

Definition 56: Commitment store update. For a dialogue with participants N, denoted Dtr, a

commitment store of agent i at time-point t is denoted CoStti and updated as follows:

CoStti =

∅ iff t = 0,

CoStt−1
i ∪Υ iff mt = 〈i, proposal,Υ, dialogue(θ, γ)〉,

CoStt−1
i ∪Υ iff mt = 〈i, assert,Υ, dialogue(θ, γ)〉,

CoStt−1
i otherwise.

Chapter 3. 71

As the dialogues of this chapter are decentralised, the public commitment store of each agent

is assumed to be maintained by every agent internally. Each agent i’s public commitment store

is empty at time t = 0. For any time point t > 0, any instantiated arguments that agent i

communicates as proposals or assertions are added to the public commitment store of agent i,

so that all agents can reason over all arguments communicated:

Definition 57: The union of all the commitment stores at timepoint t is defined as:

CoStt =
⋃
∀i∈N CoSt

t
i.

Even thought the union of all commitment stores includes arguments that have been publicly

asserted, agents may still hold their own private information, which will remain private until used

in an argument that is asserted publically.

The following functions operate over and within a dialogue:

• Initiator(Dtr) returns the agent i who opened the dialogue Dtr.

• Type(Dtr) returns the type of the dialogue Dtr (i.e. C-pAct or C-inq).

• Ags(Dtr) returns the set of agents in the dialogue Dt
r.

• Topic(Dtr) returns the goal the agents are trying to achieve iff the dialogue type isC-pAct,

i.e. Type(Dt
r) = C-pAct. Topic(Dt

r) returns the set of propositions which the agents are

jointly trying to find the truth value of iff the dialogue type is C-Inq, i.e. Type(Dt
r) =

C-inq .

• DiaLive(dialogue(θ, γ)) returns the ongoing dialogue Dt
r if it is of the type θ and its

topic matches with γ. I.e. Dt
r is returned if there ∃Dtr ∈ Ω where Type(Dtr) = θ and

Topic(Dtr) = γ else the empty set ∅ is returned.

• Valid(A) returns > if A is a defeasible fact, defeasible rule, B-argument or A is an argu-

ment for a coalition to form and each element of the joint-action is given to one and only

one agent. Otherwise ⊥ is returned.

• AgAction(j, ξ) returns the single action ac agent j is assigned to perform should an argu-

ment including ξ be accepted. The empty set ∅ is returned if j is not assigned an action in

ξ.

• StartState(A) returns qx for any argumentAwhereA is a C-argument or critical question.

Returns ∅ if there is no qx in A.

• Action(A) returns µ for any argument A where A is a C-argument or critical question.

Returns ∅ if there is no µ in A.

• CoalAct(A) returns ξ for any argument A where A is a C-argument or critical question.

Returns ∅ if there is no ξ in A.

• Coalition(A) returns C for any argument A where A is a C-argument or critical question,

and for all 〈ac, j〉 ∈ CoalAct(A) then j ∈ C. Returns ∅ if there is no ξ in A.

Chapter 3. 72

• Coalition(ξ) returns C for any tuple ξ where for all 〈ac, j〉 ∈ ξ then j ∈ C. Returns ∅ if

there is no ξ in A.

• EndState(A) returns qy for any argument A where A is a C-argument or critical question.

Returns ∅ if there is no qy in A.

• Goal(A) returns p for any argument A where A is a C-argument or critical question.

Returns ∅ if there is no p in A.

• Value(A) returns v for any argument A where A is a C-argument or critical question.

Returns ∅ if there is no v in A.

• Polarity(A) returns s for any argument A where A is a C-argument or critical question.

Returns ∅ if there is no s in A.

Dialogues commence when an agent i desires to move to another state (defined by its VATS).

This agent should perform the open move to open either: a C-inq dialogue to inquire over some

or all of i’s propositions used to represent the world (if aC-inq dialogue to inquire over the same

propositions is not currently on-going); or a C-pAct dialogue if i is ready to communicate C-

arguments, to achieve some goal to promote some social-value (if a C-pAct dialogue to achieve

the same proposition is not currently on-going). Then the agent should use the relevant protocol

for the dialogue type, either the C-inq protocol of Section 3.4.1 or the C-pAct protocol of

Section 3.4.2, to find out what possible moves are available. The pre and post conditions of the

moves are listed in Table 3.2.

Additionally, each agent i should check the Ω list of currently ongoing dialogues to see if

there is any that i finds relevant to join. Agent i should find a C-inq dialogue relevant if it is

discussing one (or more) of the propositions that i uses to represent the world in Φi. Agent i

should find a C-pAct dialogue relevant if there is a possibility that i could persuade some agents

of the dialogue to join a coalition with i to achieve a goal that will promote some social-value

that i desires.

There is only one way for a dialogue to be terminated successfully. This is when all agents

have consecutively made a close move one after another without a different move separating

them, as this ensures that the dialogue does not terminate until none of the agents have anything

more they want to add. Alternatively a dialogue could be terminated unsuccessfully, which

occurs when the dialogue has not been completed successfully and all the agents have left the

dialogue.

Once the C-pAct dialogue has terminated successfully, each agent evaluates the arguments to

determine the acceptable set. To evaluate the arguments during the dialogue would be redundant

computation because the C-pAct protocol is designed to uncover all relevant arguments for the

current dialogue. An argument is relevant in a C-pAct dialogue if it is a critical question to

another argument in the dialogue or it is a C-argument for achieving the dialogue goal p. It

is assumed that the agents think rationally and want the best coalitions to form given all the

relevant arguments. Only when all these arguments have been uncovered, do the agents then

need to find the acceptable set of arguments and thus the acceptable coalitions.

Chapter 3. 73

Move Format Pre-conditions Post-conditions
open 〈i, open, dialogue(θ, γ)〉 DiaLive(dialogue(θ, γ))

= ∅
Dialogue commenced, i.e.
DiaLive(dialogue(θ, γ))
= dialogue(θ, γ). Also
i ∈ Ags(dialogue(θ, γ)).

join 〈i, join, dialogue(θ, γ)〉 DiaLive(dialogue(θ, γ))
= D and i /∈ Ags(D)

i ∈ Ags(D)

propose 〈i, propose,Υ, dialogue(θ, γ)〉 DiaLive(dialogue(θ, γ))
= D, i ∈ Ags(D)
and ∀A ∈ Υ,
Valid(A) = ⊥.

CoStti = CoStt−1
i ∪Υ.

assert 〈i, assert,Υ, dialogue(θ, γ)〉 DiaLive(dialogue(θ, γ))
= D, i ∈ Ags(D)
and ∀A ∈ Υ,
Valid(A) = >.

CoStti = CoStt−1
i ∪Υ.

close 〈i, close, dialogue(θ, γ)〉 DiaLive(dialogue(θ, γ))
= D and i ∈ Ags(D)

DiaLive(dialogue(θ, γ))
= ∅ iff all agents have
performed a close move
in a row (without another
move inbetween).

leave 〈i, leave, dialogue(θ, γ)〉 DiaLive(dialogue(θ, γ))
= D and i ∈ Ags(D)

DiaLive(dialogue(θ, γ))
= ∅ iff Ags(D) = ∅.
Otherwise i /∈ Ags(D).

TABLE 3.2: The moves available to the agents

The agents find the acceptable set of asserted arguments using a Value-Based Argumentation

Framework (VAF) [19]; the details of this evaluation and how the agents find acceptable coali-

tions to form given their different social-value orders is described in Section 3.5. For any two

coalitions C and C ′ that are recommended to form, then C ∩ C ′ = ∅ is assumed. This assump-

tion fits in with the traditional understanding of coalitional games. Additionally in the context

of this chapter, it makes sense for an agent to not be assigned to perform different actions at the

same time (which would occur if this assumption did not hold).

Finally, the memory requirements for each agent in inquiry and persuasion dialogues pre-

sented in this Chapter, is according to the size of storing: (i) their VATS; (ii) their associated

beliefs; (iii) the utterances in the dialogues; (iv) the attack relations between the argumentation

schemes; and (v) all the agents’ preference orderings. The size of (i) to (v) can vary greatly

given different domains and different agents.

3.3.1 Extending the Formalisation of Critical Questions

The dialogue system set out in [21] handled only three of the possible seventeen critical ques-

tions (CQs) associated with the AS1 schema that the PRASCF schema is based on. These three

CQs were: ‘are there alternative ways of realising the same consequences to promote some

other social-value5?’ (CQ6); ‘does doing the action have a side effect which demotes some

5Where social-value is a social interest an agent is concerned over, as described in [19].

Chapter 3. 74

other social-value?’ (CQ9); and ‘does doing the action promote some other social-value?’

(CQ10). In this chapter the dialogue system is extended by not only modifying the AS1 schema

so that coalitions can form, but by also increasing the CQs that the agents can use. The CQs

formalised in this section that follow the PRASCF definition are also C-arguments. All CQs can

be communicated by any agent to challenge a practical reasoning argument of any other agent

(including itself).

Unlike the previous work of [10], this chapter’s CQs do not argue over the starting state.

This is to add flexibility for a coalition to form even if the members of that coalition think they

are in different starting states. This can occur after the C-inq dialogue due to the possible dif-

ferent methods used to reason over the asserted B-arguments. Yet believing they are in different

starting states should not be a hindrance to coalition formation, as there maybe joint-actions that

all of the agents of the coalition believe will be successful from all of their believed starting

states. For this reason, CQ1 and CQ12 of [10] are not in the dialogue system detailed in this

chapter, because they both require specific agreement on the starting state.

Within the definitions below, Arguments Over Actions (AOAs) refers to C-arguments and

CQs attacking C-arguments. The critical questions that allow a new coalition to be suggested

are CQ5, CQ6, CQ7 and CQ11, because these critical questions allow alternative joint-actions

to be proposed/asserted compared to the ones already existing in the dialogue. Accompanying

the definitions are figures that illustrate a situation where each CQ could be posed. The same

two agents appear in all of the figures, with the assumption being they are arguing over whether

the coalition {1, 2} should form, and that agent 1 has put forward a C-argument for {1, 2} to

form. All of the figures have each agent’s initial state on the left-hand side. Some of the figures

for a CQ may not include explicit joint-actions or social-values because they do not occur in the

definition of that critical question.

Definition 58: A cq2-argument answers the question ‘Does the joint-action have the stated

consequences?’. It is constructed from VATSi and denoted 〈µ, ξ, qy〉 s.t. µ = 〈acp, ..., acq〉;
∀ack ∈ µ, ack ∈ Aci; i ∈ Coalition(ξ); τ i(qi0, µ) = qy. It challenges any AOA including µ′, ξ′,

q′y iff µ = µ′, ξ = ξ′, qy 6= q′y.

FIGURE 3.1: Illustration of a cq2-argument (Definition 58). Agent 2 uses a cq2-argument as it
thinks that the joint-action µ = µ′ will not bring about the consequences [p] from [¬p].

Definition 59: A cq3-argument answers the question ‘Assuming the joint-action has the stated

consequences, will the joint-action bring about the desired goal?’. It is constructed from VATSi

and denoted 〈µ, ξ, qy, ∅〉 s.t. µ = 〈acp, ..., acq〉; ∀ack ∈ µ, ack ∈ Aci; i ∈ Coalition(ξ);

τ i(qx, µ) = qy. It challenges any AOA that includes µ′, ξ′, q′y, p′ iff µ = µ′, ξ = ξ′, qy ≈ q′y,

p′ /∈ (qy).

Chapter 3. 75

FIGURE 3.2: Illustration of a cq3-argument (Definition 59). Agent 2 uses a cq3-argument as
it thinks that the joint-action µ = µ′ used at [¬q] ≈ [¬p,¬q] will not bring about a state that

includes the goal p because τ2([¬q], µ) = [q].

Definition 60: A cq4-argument answers the question ‘Assuming the joint-action has the stated

consequences, will the joint-action bring about the desired social-value?’. It is constructed

from VATSi and denoted 〈µ, ξ, qy, v, s〉 s.t. µ = 〈acp, ..., acq〉; ∀ack ∈ µ, ack ∈ Aci; i ∈
Coalition(ξ); τ i(qi0, µ) = qy; v ∈ Avi; δi(qi0, qy, v) = s; s ∈ {=,−}. It challenges an AOA

that includes µ′, ξ′, q′y, v′, s′ iff µ = µ′, ξ = ξ′, qy ≈ q′y, v = v′, s′ = +.

FIGURE 3.3: Illustration of a cq4-argument (Definition 60). Agent 2 uses a cq4-argument as it
thinks that the joint-action µ = µ′ used at state [¬p] ≈ [¬p] to achieve state [p] ≈ [p] does not

promote the social-value v = v′, i.e. δ2([¬p], [p], v) 6= +.

Definition 61: A cq5-argument answers the question ‘Are there alternative ways of realis-

ing the same consequences?’. It is constructed from VATSi and denoted 〈µ, ξ, qy〉 s.t. µ =

〈acp, ..., acq〉; ∀ack ∈ µ, ack ∈ Aci; i ∈ Coalition(ξ); ∀j ∈ Coalition(ξ) then ζi(j,AgAction(j, ξ))

= >; τ i(qi0, µ) = qy. It challenges an AOA that includes µ′, q′y iff µ 6= µ′, qy ≈ q′y.

FIGURE 3.4: Illustration of a cq5-argument (Definition 61). Agent 2 uses a cq5-argument as it
thinks that there is another joint-action µ 6= µ′ that can be used from its current state [¬p, q] to

achieve state [p, q] ≈ [p, q].

Definition 62: A cq6-argument answers the question ‘Are there alternative ways of realising

the same consequences to promote some other social-value?’. It is constructed from VATSi

and denoted 〈µ, ξ, qy, v,+〉 s.t. µ = 〈acp, ..., acq〉; ∀ack ∈ µ, ack ∈ Aci; i ∈ Coalition(ξ);

∀j ∈ Coalition(ξ) then ζi(j,AgAction(j, ξ)) = >; τ i(qi0, µ) = qy; v ∈ Avi; δi(qi0, qy, v) = +.

It challenges an AOA that includes µ′, q′y v
′, s′ iff µ 6= µ, qy ≈ q′y, v 6= v′, s′ = +.

Chapter 3. 76

FIGURE 3.5: Illustration of cq6-argument (Definition 62). Agent 2 uses a cq6-argument as it
thinks that there is another joint-action µ 6= µ′ that can be used from its current state [¬p,¬q]

to achieve state [p, q] ≈ [p] while promoting a different value v 6= v′.

Definition 63: A cq7-argument answers the question ‘Are there alternative ways of promot-

ing the same social-value?’. It is constructed from VATSi and denoted 〈µ, ξ, qy, v,+〉 s.t. µ =

〈acp, ..., acq〉; ∀ack ∈ µ, ack ∈ Aci; i ∈ Coalition(ξ); ∀j ∈ Coalition(ξ) then ζi(j,AgAction(j, ξ)) =

>; τ i(qi0, µ) = qy; v ∈ Avi; δ(qi0, qy, v) = +. It challenges an AOA that includes µ′, q′y, v′, s′

iff µ 6= µ′, qy 6= q′y, v = v′, s′ = +.

FIGURE 3.6: Illustration of cq7-argument (Definition 63). Agent 2 uses a cq7-argument as it
thinks that there is another joint-action µ 6= µ′ that can be used from its current state [¬p,¬q]

to achieve state [¬p, q] 6= [p,¬q] while achieving the social-value v = v′.

Definition 64: A cq8-argument answers the question ‘Does doing the joint-action have a side

effect which demotes the social-value?’. It is constructed from VATSi and denoted 〈µ, ξ, qy, v,−〉
s.t. µ = 〈acp, ..., acq〉; ∀ack ∈ µ, ack ∈ Aci; i ∈ Coalition(ξ); τ i(qi0, µ) = qy; v ∈ Avi;

δi(qi0, qy, v) = −. It challenges an AOA that includes µ′, ξ′, q′y, v′, s′ iff µ = µ′, ξ = ξ′,

qy ≈ q′y, v = v′, s′ = + .

FIGURE 3.7: Illustration of a cq8-argument (Definition 64). Agent 2 uses a cq8-argument as it
thinks that the joint-action µ = µ′ from its current state [¬p,¬q] will produce the side effect of
q in state [p, q] ≈ [p], which agent 1 did not recognise, that will demote the social-value v = v′.

Definition 65: A cq9-argument answers the question ‘Does doing the joint-action have a side

effect which demotes some other social-value?’. It is constructed from VATSi and denoted

〈µ, ξ, qy, v,−〉 s.t.: µ = 〈acp, ..., acq〉; ∀ack ∈ µ, ack ∈ Aci; i ∈ Coalition(ξ); τ i(qi0, µ) = qy;

v ∈ Avi; δi(qi0, qy, v) = −. It challenges an AOA that includes µ′, ξ′, q′y iff µ = µ′, ξ = ξ′,

qy ≈ q′y, v 6= v′, s′ = +.

Chapter 3. 77

FIGURE 3.8: Illustration of a cq9-argument (Definition 65). Agent 2 uses a cq9-argument as
it thinks that the joint-action µ = µ′ from the its current state [¬p,¬q] will produce the side
effect of q in state [p, q] ≈ [p], which agent 1 did not recognise, that will demote the social-value

v 6= v′.

Definition 66: A cq10-argument answers the question ‘Does doing the joint-action promote

some other social-value?’. It is constructed from VATSi and denoted 〈µ, ξ, qy, v,+〉 s.t.: µ =

〈acp, ..., acq〉; ∀ack ∈ µ, ack ∈ Aci; i ∈ Coalition(ξ); τ i(qi0, µ) = qy; v ∈ Avi; δi(qi0, qy, v) =

+. It challenges an AOA that includes µ′, ξ′, q′y v
′, s′ iff µ = µ′, ξ = ξ′, qy ≈ q′y, v 6= v′,

s′ = +.

FIGURE 3.9: Illustration of cq10-argument (Definition 66). Agent 2 uses a cq10-argument as
it thinks that the joint-action µ = µ′ from the state [¬p,¬q] will achieve state [p, q] ≈ [p] and

will promote the social-value v 6= v′.

Definition 67: A cq11-argument answers the question ‘Does doing the joint-action preclude

some other joint-action which would promote some other social-value?’. It is constructed

from VATSi and denoted 〈µ, ξ, qy, v,+〉 s.t. µ = 〈acp, ..., acq〉; ∀ack ∈ µ, ack ∈ Aci;

i ∈ Coalition(ξ); ∀j ∈ Coalition(ξ) then ζi(j,AgAction(j, ξ)) = >; τ i(qi0, µ) = qy; v ∈ Avi;
δ(qi0, qy, v) = + . It challenges an AOA that includes µ′, q′y, v′, s′ iff µ 6= µ′, qy 6= q′y, v 6= v′,

s′ = +.

FIGURE 3.10: Illustration of a cq11-argument (Definition 67). Agent 2 uses a cq11-argument
as it thinks that performing the joint-action µ′ will preclude µ being used (where µ 6= µ′) to

achieve a different state [¬p, q] 6= [p, q], which will promote a social-value v 6= v′.

Definition 68: A cq13-argument answers the question ‘Is the joint-action possible?’. It is

constructed from VATSi and denoted 〈¬µ〉 s.t. ∃ac ∈ µ where ac /∈ Aci. It challenges any AOA

that includes µ′ iff µ = µ′.

Chapter 3. 78

FIGURE 3.11: Illustration of a cq13-argument (Definition 68). Agent 2 uses a cq13-argument
as it does not recognise that joint-action µ = µ′ is possible.

Definition 69: A cq14-argument answers the question ‘Are the consequences as described

possible?’. It is constructed from VATSi and denoted 〈¬qy〉 s.t. ∀q ∈ qy then q ∈ Φi; and

¬∃qz /∈ Qi where qz ≈ qy. It challenges any AOA that includes q′y iff qy ≈ q′y.

FIGURE 3.12: Illustration of a cq14-argument (Definition 69). Agent 2 uses a cq14-argument
as it shares the propositions p and q with agent 1, yet thinks agent 1’s end state [p, q] can never

be achieved.

Definition 70: A cq15-argument answers the question ‘Can the desired goal be realised?’. It is

constructed from VATSi and denoted 〈¬p〉 s.t. p ∈ Φi; (∀q ∈ Qi)(p /∈ π(q)). It challenges an

AOA that includes p′ iff p = p′.

FIGURE 3.13: Illustration of a cq15-argument (Definition 70). Agent 2 uses a cq15-argument
as even though it recognises p as a valid proposition, it believes that p cannot be achieved in

any state.

Definition 71: A cq16-argument answers the question ‘Is the social-value indeed a legitimate

social-value?’. It is constructed from VATSi and denoted 〈¬v〉 s.t. v /∈ Avi. It challenges an

AOA that includes v′ iff v = v′.

FIGURE 3.14: Illustration of a cq16-Argument (Definition 71). Agent 2 uses a cq16-argument
as it does not recognise social-value v = v′ as a valid social-value.

Definition 72: A cq17-argument answers the question ‘Is another agent guaranteed to execute

its part of the desired joint-action?’. It is constructed from VATSi and denoted 〈µ,¬ξ〉 s.t.

∀ack ∈ µ, ack ∈ Aci; ∃j ∈ ξ where ζi(j,AgAction(j, ξ)) = ⊥. It challenges an AOA that

includes µ′ iff µ = µ′.

Chapter 3. 79

FIGURE 3.15: Illustration of a cq17-Argument (Definition 72). Agent 2 uses a cq17-argument
as it has reason to doubt that the joint-action µ = µ′ will be executed because agent 2 doubts
an agent j will perform its action in the coalition as described in ξ. Instead agent 2 expects the
joint-action µ′′ = µ − AgAction(j, ξ) to be performed. Where this doubt comes from is left

undefined, be it from a trust issue or something else.

3.4 The Dialogue Protocols

Now that the formalism of all the possible arguments has been detailed, to find out what argu-

ments are possible in the dialogue at any time, two protocols have been defined: theC-inq proto-

col in Section 3.4.1 that finds all the possible defeasible facts, defeasible rules and B-arguments

that can be communicated in the C-inq dialogue; and the C-pAct protocol in Section 3.4.2

that finds all the possible C-arguments and critical questions that can be communicated in the

C-pAct dialogue. It is then left to the agents themselves to autonomously decide which (if any)

of the possible moves to use.

3.4.1 Defining the Inquiry Protocol

An inquiry protocol to find the state of the world, is now formally defined in Definition 73

(below) through the Ξ function, using the protocol format detailed in [21]. This Ξ protocol

function returns the set of possible moves denoted ℘I(M) (from the set of all possible moves

M) that are legal for each agent (from N) that has joined the dialogue (Dtr) of the type C-Inq.

This protocol will not allow any proposition to become a claim of a B-argument without

supporting evidence. Supporting evidence takes the form of defeasible facts or a fully supported

defeasible rule. A defeasible rule λ is fully supported when there is a defeasible derivation for

the consequence of the rule that includes the rule and can be constructed from the union of all

the commitment stores.

The protocol works by initially allowing each agent j to identify all of its relevant beliefs that

can be asserted in the current dialogue that are not already present in the commitment store (see

Ξa(D
t
1, j) in the following definition). A belief can be either a defeasible rule or a defeasible

fact (see Ξa(D
t
1, j) part (1)). A defeasible fact is relevant to the current dialogue (see Ξa(D

t
1, j)

part (2)) if: (2)(i) it is not already present in the commitment store and is present in agent j’s

belief base (i.e. Σj); and (2)(ii,a) it is an element of the dialogue topic or (2)(ii,b) it is an element

of a defeasible rule in the combined commitment store of all of the agents. A defeasible rule is

relevant to the current dialogue (see Ξa(D
t
1, j) part (3)) if: (3)(i) it is not already present in the

commitment store and is present in agent j’s belief base (i.e. Σj); and (3)(ii,a) its consequent

Chapter 3. 80

returns a defeasible fact that is an element of the dialogue topic or (3)(ii,b) its consequent returns

a defeasible fact that is an element of another defeasible rule in the CoSt.

Next, the agent checks to see if any of its asserted beliefs (denoted φ) are now fully supported

by a set of defeasible facts and defeasible rules (denoted Φ) in the commitment store, i.e Φ ⊆
CoSt (see Ξb(Dt

1, j) in the following definition). If some asserted beliefs are found to be fully

supported, these beliefs can be asserted as B-arguments in the form B = 〈Φ, φ〉, as long as they

have not been asserted already (i.e. B /∈ CoSt). Each agent j can only assert a B-argument with

claim φ if it asserted the belief that included φ (i.e. φ ∈ CoStti). This is to eliminate multiple

assertions of B-arguments. Lastly if the agents cannot assert anything new then the moves that

are returned are the ‘close’ move to be used when the agents want to remain in the dialogue to

hear what the other agents have to say, or the ‘leave’ move to be used if the agent wants to leave

the dialogue completely.

Definition 73: The C-inq protocol for a C-inq dialogue is a function Ξ : D × N 7→ ℘I(M).

If j ∈ N is the given agent and Dt
r is the given dialogue where Ags(Dt

r) = N , CoSt =⋃
∀k∈N CoSt

t
k, Type(Dt

r) = C-Inq and 1 ≤ t, then Ξ(Dt
r, j) is

Ξa(D
t
1, j) ∪ Ξb(Dt

1, j) ∪ {〈j, close, dialogue(C-Inq,Topic(Dt
r))〉} ∪

{〈j, leave, dialogue(C-Inq,Topic(Dt
r))〉}

where

Ξa(D
t
1, j) = {〈j, assert,Ψ〉|

(1) Ψ 6= ∅ where Ψ is a set of beliefs, and

(2) ∀φ ∈ Ψ where φ is a defeasible fact:

(i) φ 6∈ CoSt, φ ∈ Σj , and

either (ii,a) φ ∈ Topic(Dt
r) ,

or (ii,b) ∃λ ∈ CoSt s.t. φ ∈ DefeasibleSection(λ)

(3) ∀λ ∈ Ψ where λ is a defeasible rule:

(i) λ 6∈ CoSt, λ ∈ Σj , and

either (ii,a) DefeasibleProp(λ) ∈ Topic(Dt
r) ,

or (ii,b) ∃λ′ ∈ CoSt s.t. DefeasibleProp(λ) ∈ DefeasibleSection(λ′)

Ξb(Dt
1, j) = {〈j, assert,Υ〉|

(1) Υ 6= ∅,Υ is a set of B-arguments , and

(2) ∀B ∈ Υ: B = 〈Φ, φ〉 where: Φ ⊆ Ψ ∪ CoSt, φ ∈ Ψ ∪ CoStti and B /∈ CoSt

If every agent is using the C-inq protocol then a C-inq dialogue, just like the inquiry dia-

logue of [22], is guaranteed to terminate according to the following Theorem:

Theorem 3.1. If each agent in a C-inq dialogue is using the C-inq protocol, then the dialogue

is guaranteed to terminate (given each agent’s beliefs is of finite size).

Proof. Assume that all n agents in a C-inq dialogue game are using the C-inq protocol but the

dialogue never terminates. For this to occur, the agents must be constantly asserting arguments

of defeasible rules or defeasible facts (because n leave moves will terminate the dialogue as

Chapter 3. 81

there will be no agents left and n close moves will terminate the dialogue as no more agents

have any more arguments to add).

Yet according to the C-inq protocol condition (2)(i) and (3)(i), an argument for a defeasible

fact or defeasible rule can only be asserted if it has not previously been asserted by any agent.

As it is given that each agent’s beliefs is of finite size, then in the worst case, each agent will

assert all of the defeasible rules and defeasible facts that it is aware of. Once this has occurred,

the only moves the agents will have left is the close or leave move and n leave moves or n close

moves in a row will terminate the dialogue, which contradicts the assumption.

Thus, as every belief of an agent could theoretically be communicated, the tractability of

the C-inq dialogues (like the inquiry dialogues in [22]) depends on the total number of possible

beliefs of all the agents.

3.4.2 Extending the pAct Protocol

A Persuasion for Action Protocol for finding arguments for coalition formation is now formally

defined in Definition 74 through the Π function, using the protocol format detailed in [21]. This

protocol returns the set of possible moves denoted ℘P (M) (from the set of all possible moves

M) that are legal for each agent (from N) that has joined the dialogue (Dtr) of the type C-pAct.

The protocol works by initially allowing each agent i to assert or propose all its relevant

C-arguments and critical questions to the current dialogue that are not already present in the

commitment store (see Ξa(D
t
1, i) in the following definition). A C-argument and critical ques-

tion is relevant if it achieves the dialogue topic (given by Topic(Dt
r)) or attacks an argument

present in the combined commitment store CoSt. The agent should use an assert move for

arguments with completed ξ tuples, or the propose move for non-completed ξ tuples. Any ar-

guments returned that are either a C-argument or one of the critical questions CQ5, CQ6, CQ7

or CQ11 allow the proposal or assertion of a new coalition in the ξ tuple, because this is an

argument where the condition CoalAct(A′) = ξ′ (ξ = ξ′) for an argument A′ ∈ CoSt is not

enforced. The other CQs use a previously proposed or asserted coalition to argue in favour or

against it.

Lastly, if all the agents cannot propose or assert anything new, then the moves that are

returned are either the ‘close’ move to be used if the agents want to remain in the dialogue to

hear what the other agents have to say, or the ‘leave’ move used when the agent wants to leave

the dialogue completely.

Definition 74: The C-pAct protocol for aC-pAct dialogue is a function Π : D×N 7→ ℘P (M).

If agent j ∈ N is the agent given and Dt
r is the dialogue given where: Ags(Dt

r) = N , CoSt =⋃
∀k∈N CoSt

t
k, Type(Dt

r) = C-pAct, Topic(Dt
r) = p and 1 ≤ t, then Π(Dt

1, j) is

Πa(D
t
1, j) ∪ {〈j, close, dialogue(C-pAct,Topic(Dt

r))〉} ∪
{〈j, leave, dialogue(C-pAct,Topic(Dt

r))〉}
where

Πa(D
t
1, j) = {〈j, propose ∨ assert,Ψ〉|

(1) Ψ 6= ∅, and

Chapter 3. 82

(2) ∀A ∈ Ψ:

(i) A 6∈ CoSt, and

either (ii,c) A = 〈qx, µ, ξ, qy, p, v,+〉 where A is a C-argument

or (ii,2) A = 〈µ, ξ, qy〉 where A is a cq2-argument and ∃A′ ∈ CoSt s.t.

Action(A′) = µ′, (µ = µ′)

CoalAct(A′) = ξ′ (ξ = ξ′),

EndState(A′) = q′y (qy 6= q′y),

or (ii,3) A = 〈µ, ξ, qy, ∅〉 where A is a cq3-argument and ∃A′ ∈ CoSt s.t.

Action(A′) = µ′, (µ = µ′)

CoalAct(A′) = ξ′ (ξ = ξ′),

EndState(A′) = q′y (qy ≈ q′y, p /∈ qy, p ∈ q′y)
or (ii, 4) A = 〈µ, ξ, qy, v, {=,−}〉 and where A is a cq4-argument ∃A′ ∈ CoSt s.t.

Action(A′) = µ′, (µ = µ′)

CoalAct(A′) = ξ′ (ξ = ξ′),

EndState(A′) = q′y (qy ≈ q′y)
Value(A′) = v (v = v’), Polarity(A′) = +,

or (ii, 5) A = 〈µ, ξ, qy〉 where A is a cq5-argument and ∃A′ ∈ CoSt s.t.

Action(A′) = µ′, (µ 6= µ′)

EndState(A′) = q′y (qy ≈ q′y)
or (ii, 6) A = 〈µ, ξ, qy, v,+〉 where A is a cq6-argument and ∃A′ ∈ CoSt s.t.

Action(A′) = µ′, (µ 6= µ′)

EndState(A′) = q′y (qy ≈ q′y)
Value(A′) = v (v 6= v′), Polarity(A′) = +,

or (ii, 7) A = 〈µ, ξ, qy, v,+〉 where A is a cq7-argument and ∃A′ ∈ CoSt s.t.

Action(A′) = µ′, (µ 6= µ′)

EndState(A′) = q′y (qy 6= q′y)

Value(A′) = v (v = v’), Polarity(A′) = +,

or (ii, 8) A = 〈µ, ξ, qy, v,−〉 where A is a cq8-argument and ∃A′ ∈ CoSt s.t.

Action(A′) = µ′, (µ = µ′)

CoalAct(A′) = ξ′ (ξ = ξ′),

EndState(A′) = q′y (qy ≈ q′y)
Value(A′) = v (v = v’), Polarity(A′) = +,

or (ii,9) A = 〈µ, ξ, qy, v,−〉 where A is a cq9-argument and ∃A′ ∈ CoSt s.t.

Action(A′) = µ′, (µ = µ′)

CoalAct(A′) = ξ′ (ξ = ξ′),

EndState(A′) = q′y (qy ≈ q′y)
Value(A′) = v (v 6= v′), Polarity(A′) = +,

or (ii,10) A = 〈µ, ξ, qy, v,+〉 where A is a cq10-argument and ∃A′ ∈ CoSt s.t.

Action(A′) = µ′, (µ = µ′)

CoalAct(A′) = ξ′ (ξ = ξ′),

EndState(A′) = q′y (qy ≈ q′y)

Chapter 3. 83

Value(A′) = v (v 6= v′), Polarity(A′) = +,

or (ii, 11) A = 〈µ, ξ, qy, v,+〉 where A is a cq11-argument and ∃A′ ∈ CoSt s.t.

Action(A′) = µ′, (µ 6= µ′)

EndState(A′) = q′y (qy 6= q′y)

Value(A′) = v (v 6= v′), Polarity(A′) = +,

or (ii, 13) A = 〈¬µ〉 where A is a cq13-argument and ∃A′ ∈ CoSt s.t.

Action(A′) = µ′ (µ = µ′ and ∃ac ∈ µ where ac /∈ Aci)
or (ii,14) A = 〈¬qy〉 where A is a cq14-argument and ∃A′ ∈ CoSt s.t.

EndState(A′) = q′y (qy ≈ q′y and ¬∃qz ∈ Qi where qy ≈ qz),

or (ii, 15) A = 〈¬p〉 where A is a cq15-argument and ∃A′ ∈ CoSt s.t.

Goal(A′) = p′, (p = p′, p ∈ Φi and ¬∃qz ∈ Qj where p ∈ π(qz))

or (ii, 16) A = 〈¬v〉 where A is a cq16-argument and ∃A′ ∈ CoSt s.t.

Value(A′) = v′ (v = v′ and v /∈ Avi).
or (ii, 17) A = 〈µ,¬ξ〉 where A is a cq17-argument and ∃A′ ∈ CoSt s.t.

Action(A′) = µ′, (µ = µ′ and ∃j ∈ ξ where ζi(j,AgAction(j, ξ)) = ⊥)

else Π(Dt
1, j) = ∅.

If every agent is using the C-pAct protocol then a C-pAct dialogue, just like the persuasion

dialogue of [21], is guaranteed to terminate according to the following Theorem:

Theorem 3.2. If each agent in a C-pAct dialogue is using the C-pAct protocol, then the dia-

logue is guaranteed to terminate (given each agent’s VATS is of finite size).

Proof. Assume that all n agents in a C-pAct dialogue game are using the C-pAct protocol but

the dialogue never terminates. For this to occur, the agents must be constantly proposing or

asserting arguments for coalitions to form (because n leave moves will terminate the dialogue

as there will be no agents left and n close moves will terminate the dialogue as no more agents

have any more arguments to add).

Yet according to the C-pAct protocol condition (2)(i), an argument for a coalition to form

can only be proposed or asserted if it has not previously been proposed or asserted by any agent.

As it is given that each agent’s VATS is of finite size, then in the worst case, each agent will

propose or assert every possible argument it can make out of its VATS. Once this has occurred,

the only moves the agents will have left is the close or leave move and n leave moves or n close

moves in a row will terminate the dialogue, thus contradicting the assumption.

Thus, as every possible argument in a VATS of an agent could theoretically be communi-

cated, the tractability of the C-pAct dialogue game (like the persuasion dialogue game in [21])

depends on the total number of possible arguments that can be generated from all of the agent’s

VATS.

Chapter 3. 84

3.5 Coalition Argument Evaluation

Each agent i can evaluate the C-arguments and critical questions uttered in the dialogue that

include i, by placing them in a Value-Based Argumentation Framework6 (VAF) [19]. For a VAF,

it is assumed that each agent/audience i has a preference order over its social-values, of the form

v1 � ... � vk (where k = |Avi|), that ranks i’s known social-values into an order where v1 is

the most preferred and vk the least. This gives each agent i an Audience specific Value-based

Argumentation Framework (AVAF), denoted VAFi.

The classical VAF definitions of objective acceptance and subjective acceptance7, to find the

acceptable arguments, are modified in this chapter to handle arguments for coalitions, as several

issues were identified whilst developing a model to select the final recommended coalitions to

form, from the communicated arguments in the C-pAct dialogue. These issues were:

1. Coalition Membership - In this chapter it is assumed that each agent i only reasons over

arguments for coalitions where i is a member of that coalition. This condition is used so

that an agent cannot try to manipulate other agents not in its coalition with false arguments

over that coalition.

2. Incomplete Coalitions - There may be some arguments communicated in the dialogue,

through the propose move, that have incomplete coalitions. These arguments should be

discounted from consideration.

3. Agents Leaving - Arguments that include an agent who has left the dialogue before the

dialogue completed should be removed from consideration.

4. Arguments Without Social-Values - Since several critical questions concern problem

formulation issues [10], not all arguments have an associated social-value (i.e. those de-

rived from CQ13, CQ14 and CQ15). Instead, these arguments are taken to automatically

defeat any other argument that they attack in the AVAF, by being assigned the social-

value ‘truth’, which always ranks higher than any other social-value [19], provided that

these arguments are agreeable. An agreeable argument for an agent i is one that matches

the information in agent i’s VATS, i.e.: an agreeable argument can be formulated from

VATSi if required. For example, CQ16 against the social-value v7 is only agreeable to i if

v7 /∈ Avi. The same argument is not agreeable to j if v7 ∈ Avj . In future work, this pro-

cess could be modeled within uniform argumentation frameworks [11] where value-based

and value independent arguments are modeled together.

5. Coalition to Coalition Attacks - Two different arguments in favour of two distinct coali-

tions should attack each other if they share an agent, due to a traditional assumption of

coalition formation that an agent can only be in one coalition at any one time [136]. Fur-

thermore, given the model presented in this chapter, two different arguments A1 and A2

for two different coalitions should attack each other if EndState(A1) 6= EndState(A2),

6Described in background Section 2.6.2.
7Both described in Section 2.6.2.

Chapter 3. 85

which indicate that the two coalitions will attempt to bring about a state with at least one

conflicting proposition. This is a logical contradiction.

After considering these issues, for an agent i to construct an AVAF to reason over its accept-

able coalition(s) given the arguments communicated during the dialogue, each agent i should:

(1) find the arguments with coalitions including i; (2) remove the arguments with incomplete

coalitions; (3) remove the arguments that include an agent j who has left the dialogue; (4) re-

move the non-agreeable arguments that promote the value ’truth’; (5) and add the critical ques-

tion attacks (which include the coalition to coalition attacks). Each agent i can then evaluate the

VAFi it has created, using its social-value ordering to find its preferred extension(s).

In this thesis, due to theses identified issues, model specific acceptability definitions are

used:

Definition 75: Coalitionally Objectively-Stable: Given a VAF, 〈Args, R, V , val, N〉, a coali-

tionC ⊆ N is coalitionally objectively-stable if and only if: ∀i ∈ C, ∃A ∈ Args that is in every

preferred extension of V AFi where Coalition(A) = C.

Example 3.1. Consider N = {1, 2, 3} agents discussing what coalitions to form, where there

are three possible coalitions that can form:

• Coalition {1, 2} in argument A1 that promotes social-value v3;

• Coalition {1, 3} in argument A2 that promotes social-value v1; and

• Coalition {2, 3} in argument A3 that promotes social-value v2.

In this example, all arguments attack every other argument. The social-value ordering of the

agents are as follows:

• Agent 1 prefers v1 over v2 over v3;

• Agent 2 prefers v3 over v2 over v1; and

• Agent 3 prefers v1 over v2 over v3.

Given that the agents only reason over coalitions that involve itself, agent 1 has a preferred

extension (PE) of PE1
1 = {A2}, agent 2 has PE2

1 = {A1} and agent 3 has PE3
1 = {A2}.

In this case, it can be seen that coalition {1, 3}, in argument A2 is coalitionally objectively-

stable because the coalition exists in all the preferred extensions of all the agents that are in-

cluded in it. For example, A2 is in PE1
1 and PE3

1 while no more PEs exist for agents 1 or 3.

Definition 76: Coalitionally Subjectively-Stable: Given a VAF, 〈Args, R, V , val, N〉, a coali-

tion C ⊆ N is coalitionally subjectively-stable if and only if: ∀i ∈ C, ∃A ∈ Args that is in

at least one preferred extension of V AFi where Coalition(A) = C; and ¬∃A′ ∈ Args where

Coalition(A′) 6= Coalition(A), R(A′, A) and for all j ∈ Coalition(A′), A′ is in at least one

preferred extension of V AFj .

Example 3.2. Consider N = {1, 2, 3} agents discussing what coalitions to form, where there

are four possible coalitions that can form:

Chapter 3. 86

• Coalition {1, 2} in argument A1 that promotes social-value v1;

• Coalition {1, 3} in argument A2 that promotes social-value v1;

• Coalition {2, 3} in argument A3 that promotes social-value v2; and

• Coalition {1, 2, 3} in argument A4 that promotes social-value v3.

In this example, all arguments attack every other argument. The social-value ordering of the

agents are as follows:

• Agent 1 prefers v1 over v2 over v3;

• Agent 2 also prefers v1 over v2 over v3; and

• Agent 3 prefers v3 over v2 over v1.

Given that the agents only reason over coalitions that involve itself, agent 1 has two preferred

extensions (PEs) of PE1
1 = {A1} or PE1

2 = {A2}, agent 2 has only PE2
1 = {A1} and agent 3

has only PE3
1 = {A4}.

In this case, it can be seen that the coalition {1, 2}, in argumentA1 is coalitionally subjective-

stable because even though it is not in an argument in all the preferred extensions of agent 1

(that is agent 1 thinks it has another option available), it is the only coalition option that is also

in an argument in the other coalition member’s preferred extension. For example, A1 in PE1
1

and PE2
1 while {1, 3} (in argument A2) is not in any PE of agent 3.

Definition 77: Coalitionally Subjectively-Unstable: Given a VAF, 〈Args, R, V , val, N〉, a

coalition C ⊆ N is coalitionally subjectively-unstable if and only if: ∀i ∈ C, ∃A ∈ Args that

is in at least one preferred extension of V AFi where Coalition(A) = C; and ∃A′ ∈ Args where

Coalition(A′) 6= Coalition(A), R(A′, A) and for all j ∈ Coalition(A′), A′ is in at least one

preferred extension of V AFj .

Example 3.3. Consider N = {1, 2, 3} agents discussing what coalitions to form, where there

are three possible coalitions that can form:

• Coalition {1, 2} in argument A1 that promotes social-value v1;

• Coalition {1, 3} in argument A2 that promotes social-value v1; and

• Coalition {2, 3} in argument A3 that promotes social-value v2.

In this example, all arguments attack every other argument. The social-value ordering of the

agents are as follows:

• Agent 1 prefers v1 over v2;

• Agent 2 prefers v1 over v2; and

• Agent 3 also prefers v1 over v2.

Chapter 3. 87

Given that the agents only reason over coalitions that involve itself, agent 1 has two preferred

extensions (PEs) of PE1
1 = {A1} or PE1

2 = {A2}, agent 2 has only PE2
1 = {A1} and agent 3

has only PE3
1 = {A2}.

In this case, it can be seen that coalition {1, 2} in argument A1, and coalition {1, 3} in

argument A2, are coalitionally subjectively-unstable because both of the coalitions exists in at

least one argument of one of the preferred extensions of all their members. For example, A1 is

in PE1
1 and PE2

1, while A2 is in PE1
2 and PE3

1.

Any coalitionC that is coalitionally objectively-stable should form, as all agents believe that

C is acceptable to them given their value order under every preferred extension of their AVAF,

and they do not have another equally acceptable coalition (otherwise C would be either coali-

tionally subjectively-stable or coalitionally subjectively-unstable due to the coalition to coalition

attack issue).

Any coalition C that is coalitionally subjectively-stable should form, as all agents believe

that C is acceptable to them given their value order under at least one preferred extension of

their AVAF, and they do not have another equally acceptable coalition C ′ to form that every

agent of C ′ finds equally acceptable (otherwise C would be coalitionally subjectively-unstable

due to the coalition to coalition attack issue).

IfCS is the set of coalitions that should form after the VAF evaluation, then: for every coali-

tion Co, that is coalitionally objectively-stable, Co ∈ CS should hold; and for every coalition

Cs that is coalitionally subjective-stable, Cs ∈ CS should hold.

The remaining coalitions that should be considered for inclusion in CS are those coalitions

that are coalitionally subjectively-unstable (denoted ∆). That is, a coalition C that is acceptable

to every agent i ∈ C under at least one preferred extension of i, even though agent i has other

coalitions of the same acceptability level. Firstly any subset Λ ⊆ ∆ chosen to be added to CS

should have the following conditions so that Λ does not conflict with itself or the other coalitions

in CS: (1) no coalitions in CS or Λ should share an agent; and (2) no coalitions in CS or Λ

should attempt to bring about a conflicting end state. That is, CS should always remain conflict

free.

The idea of partitioning the coalitions into three sets resembles the three set partition of

Amgoud’s work in [4], where acceptable, abeyance and rejected coalitions were identified.

Yet in [4], only one preference order for the coalitions was used. Having multiple preference

orders gives rise to different degrees of acceptability (identified in this chapter as coalitionally

objectively-stable, coalitionally subjectively-stable and coalitionally subjectively-unstable).

To resolve which coalitions Λ should be chosen from ∆, inspiration could be taken from

qualitative coalitional games (QCGs). In these games, the minimal coalition(s) that are success-

ful are chosen. In this chapter, the minimal successful coalitions are the ones that satisfy as

many agents as possible, i.e. ¬∃Λ′ ⊆ ∆ where |Λ′| > |Λ|. Yet this method of selection does not

take into account the preferences of the agents.

Alternatively, to resolve which coalitions to choose from ∆, inspiration could be taken from

qualitative coalitional games with preferences. In these games, using the stability definition

given in Section 2.3.1, a stable subset Λ ⊆ ∆ could be identified where there does not exist a

Chapter 3. 88

coalition S ∈ ∆, S /∈ Λ, where every member of S prefers coalition S compared to its coalition

in Λ.

To conclude, exactly which arguments of ∆ should be chosen to be in the final recommended

coalition structure CS should depend on what the dialogue designer wants to achieve, for ex-

ample: are a minimal number of coalitions desired?; or are the most stable coalitions desired?

3.6 Dialogue and Argument Evaluation Example

In order to illustrate the model introduced in this chapter, the following example is used that

demonstrates: the C-inq dialogue; the C-pAct dialogue; and the evaluation over the asserted

arguments for/against coalitions.

3.6.1 Example Preliminaries

Consider a system with agents N = {1, 2, 3, 4} where their VATS are modeled in the Figures

3.16 and 3.17, which show the state transitions and the associated value assignments.

FIGURE 3.16: Agent 1’s VATS1 (left side) and agent 2’s VATS2 (right side).

FIGURE 3.17: Agent 3’s VATS3 (left side) and agent 4’s VATS4 (right side).

Given the VATS we find the agent’s propositional representations of the world are the follow-

ing: Φ1 = {p, q}; Φ2 = {p, r, s}; Φ3 = {r, s, t}; and Φ4 = {p, t}. Additionally each agent’s

belief base before any dialogue commences are: Σ1 = {¬p,¬q}; Σ2 = {¬p → ¬r,¬p → s};
Σ3 = {}; and Σ4 = {s→ ¬t}.

Finally the joint-actions are composed like so: µ1 = 〈ac1, ac2〉; µ2 = 〈ac1, ac5〉; µ3 =

〈ac1, ac3, ac4〉; and µ4 = 〈ac3, ac4〉. For simplicity in this example, it is assumed all agents

Chapter 3. 89

know that: agent 1 can perform ac1; agent 2 can perform ac2; agent 3 can perform ac3; and

agent 4 can perform ac4.

3.6.2 Inquiry Dialogues

In this example, agent 1 initially knows the value of all of its propositions, obviating the need to

inquire over them. However, as agent 2 does not know the current value of any of its propositions

it is aware of, it opens an C-inq dialogue over its propositions p, r and s, denoted dialogue(C-

inq, {p, r, s}). In this inquiry dialogue, agent 2 can communicate the defeasible rules ¬p→ ¬r
and ¬p→ s. Agent 1 can then respond with the defeasible fact ¬p and the B-argument 〈∅,¬p〉,
to support the previous defeasible rules communicated. Agent 2 can now communicate the B-

arguments 〈{¬p,¬p→ ¬r},¬r〉 and 〈{¬p,¬p→ s}, s〉 to indicate that it is now aware that its

starting state is [¬p,¬r, s]8.

The full informal description of dialogue(C-inq, {p, r, s}), is now presented, followed by

the formal notation (where the redundant close moves have been removed in both tables):

Move Num. Move Meaning
1 Agent 2 wants to open a C-inq dialogue to discuss the Boolean

values of propositions p, q and r.

2 Agent 1 wants to join this C-inq dialogue.

3 Agent 3 wants to join this C-inq dialogue.

4 Agent 4 wants to join this C-inq dialogue.

5 Agent 2 believes that: if ¬p holds then ¬r holds; and if ¬p holds

then s holds.

6 Agent 1 believes that: ¬p holds true.

7 Agent 2 now has enough information to believe that: ¬r and s

hold true.

8 Agent 3 has no more relevant information to communicate.

9 Agent 4 has no more relevant information to communicate.

10 Agent 1 has no more relevant information to communicate.

11 Agent 2 has no more relevant information to communicate. As

all the agents have communicated that they have no more infor-

mation to add, then the dialogue is completed successfully.

The above informal description of dialogue(C-inq, {p, r, s}) translates to the following

formal notation:

Move Num. Move Notation
1 〈2, open, dialogue(C-inq, {p, r, s})〉
2 〈1, join, dialogue(C-inq, {p, q, r})〉
3 〈3, join, dialogue(C-inq, {p, q, r})〉

8Assuming agent 2 trusts agent 1’s assertions enough (or trusts agent 1’s assertions above any evidence to the
contrary).

Chapter 3. 90

4 〈4, join, dialogue(C-inq, {p, q, r})〉
5 〈2, assert, {¬p→ ¬r,¬p→ s}, dialogue(C-inq, {p, q, r})〉
6 〈1, assert, {¬p, 〈∅,¬p〉}, dialogue(C-inq, {p, q, r})〉
7 〈2, assert, {〈{¬p,¬p → ¬r},¬r〉, 〈{¬p,¬p → s}, s〉},

dialogue(C-inq, {p, q, r})〉
8 〈3, close, dialogue(C-inq, {p, q, r})〉
9 〈4, close, dialogue(C-inq, {p, q, r})〉
10 〈1, close, dialogue(C-inq, {p, q, r})〉
11 〈2, close, dialogue(C-inq, {p, q, r})〉

This C-inq dialogue should update the beliefs of the agents of the system to include the

B-arguments asserted within it.

Agent 3 now does not need to open another C-inq dialogue over the propositions r and s,

because all of the relevant defeasible facts, defeasible rules and B-arguments have been com-

municated for r and s. Instead, agent 3 can just open a C-inq dialogue over proposition t,

denoted dialogue(C-inq, {t}). Agent 4 has the only information on t and so communicates the

B-argument 〈{¬p,¬p → s, s → ¬t},¬t〉, where the support for ¬t is in the union of agent

4’s belief base (i.e. Σ4), and the arguments communicated in the previous C-inq dialogue (i.e.

dialogue(C-inq, {p, q, r})).

The full informal description of dialogue(C-inq, {t}), is now presented, followed by the

formal notation (where the redundant close moves have been removed in both tables):

Move Num. Move Meaning
1 Agent 3 wants to open a C-inq dialogue to discuss the Boolean

value of proposition t.

2 Agent 1 wants to join this C-inq dialogue.

3 Agent 2 wants to join this C-inq dialogue.

4 Agent 4 wants to join this C-inq dialogue.

5 Agent 4 believes that: if s holds then ¬t holds. In dialogue(C-

inq, {p, r, s}), a B-argument was communicated for s, and agent

4 trusts the agent who communicated this argument, so agent 4

now has enough information to believe that ¬t holds.

6 Agent 1 has no more relevant information to communicate.

7 Agent 2 has no more relevant information to communicate.

8 Agent 3 has no more relevant information to communicate.

8 Agent 4 has no more relevant information to communicate. As

all the agents have communicated that they have no more infor-

mation to add, then the dialogue is completed successfully.

The above informal description of dialogue(C-inq, {p, r, s}) translates to the following for-

mal notation:

Chapter 3. 91

Move Num. Move Notation
1 〈3, open, dialogue(C-inq, {t})〉
2 〈1, join, dialogue(C-inq, {t})〉
3 〈2, join, dialogue(C-inq, {t})〉
4 〈4, join, dialogue(C-inq, {t})〉
5 〈4, assert, {s → ¬t, 〈{¬p,¬p → s, s → ¬t},¬t〉},

dialogue(C-inq, {t})〉
6 〈1, close, dialogue(C-inq, {t})〉
7 〈2, close, dialogue(C-inq, {t})〉
8 〈3, close, dialogue(C-inq, {t})〉
9 〈4, close, dialogue(C-inq, {t})〉

All agents now have enough information to form single point beliefs over each of their

Boolean propositions used to represent the world. If we assume that each agent i trusts the

communicated defeasible facts, defeasible rules and B-arguments in both the C-inq dialogues,

then the starting states of each of the agent’s VATS are found to be: q1
0 = [¬p,¬q] for agent 1;

q2
0 = [¬p,¬r, s] for agent 2; q3

0 = [¬r, s,¬t] for agent 3; and q4
0 = [¬p,¬t] for agent 4.

3.6.3 Persuasion Dialogue

Now that each agent’s starting state has been established, the agents can start to reason over

what coalitions to form. Consider Agent 1 starting a C-pAct dialogue to achieve p, denoted

dialogue(C-pAct, p). The following is a description of what would happen if all the agents

joined this dialogue and each agent i communicated all arguments identified by the C-pAct

protocol relating to arguments for/against the formation of a coalition including i (where these

arguments are listed in Table 3.7). The argument evaluation for this example, in Section 3.6.4,

makes clear which arguments and argument attacks are relevant to which agent.

In dialogue(C-pAct, p), agent 1 initially identifies the joint-actions that it thinks will achieve

the goal p to promote a social-value. Given agent 1’s VATS1, these joint-actions are µ1 and µ3

that promote v2 and v3 respectively. Agent 1 identifies those agents that it believes can help it

achieve µ1 and µ3. It believes the coalition {1, 2} can perform µ1 and the coalition {1, 3, 4}
can achieve µ3. Agent 1 puts this identified information into C-argument form, denoted A1=

〈µ1, 〈〈1, ac1〉, 〈2, ac2〉〉, [p, q], p, v2,+〉 and A2 = 〈µ3, 〈〈1, ac1〉, 〈3, ac3〉, 〈4, ac4〉〉, [p, q], p, v3,+〉,
and asserts them to the other agents of the respective coalitions. Agent 1 cannot form an argu-

ment for µ2 as µ2 does not achieve the goal that is the subject of the persuasion dialogue (or

give a relevant critical question to another argument in the dialogue). Even if µ2 could achieve

goal p, an argument including µ2 could only be proposed because agent 1 does not know of an

agent capable of performing the single action ac5.

Both arguments A1 and A2 are conflicting because the coalitions in both arguments can-

not form at the same time (as agent 1 cannot be in two coalitions at once). Therefore A1 and

A2 pose the following critical questions to each other: CQ5 = ‘Are there alternative ways of

Chapter 3. 92

Arg
Num

Ag µ ξ qy p v s Attacks

A1 1 µ1 〈〈1, ac1〉,
〈2, ac2〉〉

[p, q] p v2 + A2(CQ5&6), A3(CQ10),
A4(CQ5&6), A5(CQ5&6),
A6(CQ5&6), A7(CQ5&6).

A2 1 µ3 〈〈1, ac1〉,
〈3, ac3〉,
〈4, ac4〉〉

[p, q] p v3 + A1(CQ5&6), A3(CQ5&6),
A4(CQ10), A5(CQ5&6),
A6(CQ10), A7(CQ5)

A3 2 µ1 〈〈1, ac1〉,
〈2, ac2〉〉

[p,¬r,¬s] p v4 + A1(CQ10), A2(CQ5&6),
A4(CQ11), A5(CQ7),
A6(CQ5&6), A7(CQ5,CQ6)

A4 3 µ3 〈〈1, ac1〉,
〈3, ac3〉,
〈4, ac4〉〉

[r,¬s,¬t] ∅ v2 + A1(CQ5), A2(CQ3,CQ10),
A3(CQ11), A5(CQ5&6),
A6(CQ2), A7(CQ11)

A5 3 µ4 〈〈3, ac3〉,
〈4, ac4〉〉

[r,¬s,¬t] ∅ v4 + A1(CQ5&6), A2(CQ5&6),
A3(CQ7), A4(CQ5&6),
A6(CQ7), A7(CQ2)

A6 4 µ3 〈〈1, ac1〉,
〈3, ac3〉,
〈4, α4〉〉

[p, t] p v4 + A1(CQ5&6), A2(CQ10),
A3(CQ5), A4(CQ2),
A5(CQ7), A7(CQ5&6)

A7 4 µ4 〈〈3, ac3〉,
〈4, ac4〉〉

[p, t] p v3 + A1(CQ5&6), A2(CQ5),
A3(CQ5&6), A4(CQ11),
A5(CQ2), A6(CQ5&6)

A8 4 ¬v2 A1(CQ16), A4(CQ16)
A9 1 ¬v4 A3(CQ16), A5(CQ16),

A6(CQ16)
A10 3 ¬[t] A6(CQ14), A7(CQ14)

TABLE 3.7: The instantiated argumentation schemes asserted in the example C-pAct dialogue
of Section 3.6.3, where the attack column lists all the calculated attacks, found once theC-pAct

dialogue has been completed successfully.

realising the same consequences?’ because Action(A1) 6= Action(A2), and EndState(A1)

≈ EndState(A2); and CQ6 = ‘Are there alternative ways of realising the same consequences

to promote some other social-value?’ because Action(A1) 6= Action(A2), EndState(A1) ≈
EndState(A2), Value(A1) 6= Value(A2) and Polarity(A1) = Polarity(A2) = +. Consequently

agent 1 needs to reason over the arguments presented by the other agents to find out which (if

any) of the two arguments communicated are acceptable to the agents of the potential coalitions

{1, 2} and {1, 3, 4}.
Given agent 1’s communicated arguments, agent 2 can formulate an additional argument

to assert that poses different critical questions. The argument, denoted A3 = 〈µ1, 〈〈1, ac1〉,
〈2, ac2〉〉, [p,¬r,¬s], p, v4,+〉, poses the critical questions: CQ5 to A2; CQ6 to A2; and CQ10
= ‘Does doing the joint-action promote some other social-value?’ to A1 because Action(A1)

= Action(A3), CoalAct(A1) = CoalAct(A3), EndState(A1) ≈ EndState(A3), Value(A1) 6=
Value(A3) and Polarity(A1) = Polarity(A3) +. Agent 2 cannot formulate an argument for µ3

because it cannot perform any single actions of µ3.

Chapter 3. 93

Agent 3 can now respond to the previous arguments by formulating and asserting two new

arguments. The first argument, denoted A4 = 〈µ3, 〈〈1, ac1〉, 〈3, ac3〉, 〈4, ac4〉〉, [r,¬s,¬t], ∅, v2,+〉,
poses the critical questions: CQ3 = ‘Assuming the joint-action has the stated consequences,

will the joint-action bring about the desired goal?’ to A2 because Action(A2) = Action(A4),

CoalAct(A2) = CoalAct(A4), EndState(A2) ≈ EndState(A4), Goal(A2) /∈ EndState(A4) and

Goal(A2) ∈ EndState(A2); CQ5 to A1; CQ10 to A2; and CQ11 = ‘Does doing the joint-action

preclude some other joint-action which would promote some other social-value?’ to A3 be-

cause Action(A3) 6= Action(A4), EndState(A3) 6= EndState(A4), Value(A3) 6= Value(A4)

and Polarity(A3) = Polarity(A4) = +. The second argument of agent 3, denoted A5 =

〈µ4, 〈〈3, ac3〉, 〈4, ac4〉, [¬r,¬s, t], ∅, v4,+〉, poses the critical questions (to the arguments al-

ready communicated): CQ5 to A1, A2 and A4; CQ6 to A1, A2 and A4; and CQ7 = ‘Are

there alternative ways of promoting the same social-value?’ to A3 because Action(A3) 6=
Action(A5), EndState(A3) 6= EndState(A5), Value(A3) = Value(A5) and Polarity(A3) =

Polarity(A5) = +.

Agent 4 now responds by formulating three additional arguments that attack other argu-

ments previously asserted via critical questions. The first argument agent 4 formulates, denoted

A6 = 〈µ3, 〈〈1, ac1〉, 〈3, ac3〉, 〈4, ac4〉〉, [p, t], p, v4,+〉, poses the critical questions: CQ2 =

‘Does the joint-action have the stated consequences?’ to A4 because Action(A4) = Action(A6),

CoalAct(A4) = CoalAct(A6), EndState(A4) 6= EndState(A6); CQ5 to A1 and A3; CQ6 to A1;

CQ7 to A5; and CQ10 to A2. The second argument agent 4 formulates, denoted A7 = 〈µ4,

〈〈3, ac3〉, 〈4, ac4〉〉, [p, t], p, v3,+〉, poses the critical questions: CQ2 to A5; CQ5 to A1, A2,
A3 and A6; CQ6 to A1, A3, A6; and CQ11 to A4.

Agent 4’s last argument, denoted A8 = 〈¬v2〉, poses the critical question: CQ16 = ‘Is the

social-value a legitimate social-value?’ to A1 (and A4) because Value(A8) = ¬ Value(A1) and

Value(A1) /∈ Av4. Argument A8 is associated to the social-value truth (the highest ranking

social-value) for an agent i, if i finds A8 agreeable, i.e. i can form A8 in its VATSi. Agent 1 can

assert a similar argument denoted A9 = 〈¬v4〉, to poses the critical question: CQ16 to A3, A5
and A6. Argument A9 is also associated to the social-value truth.

Finally, agent 4’s arguments allow agent 3 to assert one more argument, denoted A10
= 〈¬[t]〉, that poses the critical question: CQ14 = ‘Are the consequences as described pos-

sible?’ to A6 and A7 because ¬∃qz ∈ Q4 where qz ≈ EndState(A6) ≈ EndState(A7) ≈
EndState(A10). Again, argument A10 is associated to the social-value truth for an agent i, if i

finds A10 agreeable.

This is all the possible arguments that could be generated using the agents’ VATS of Sec-

tion 3.6.1, where each agent communicates only arguments for or against a coalition that in-

cludes itself. As no more moves are possible, the agents close the dialogue, and dialogue(C-

pAct, p) ends. Table 3.7 lists all the arguments communicated within dialogue(C-pAct, p),

where the attacks between the arguments have been re-calculated after the C-pAct dialogue has

completed successfully.

The full informal description of dialogue(C-pAct, p), is now presented, followed by the

formal notation (where the redundant close moves have been removed in both tables):

Chapter 3. 94

Move
Num.

Move Meaning

1 Agent 1 wants to open a C-pAct dialogue to achieve goal p while promot-

ing a value.

2 Agent 2 wants to join this C-pAct dialogue.

3 Agent 3 wants to join this C-pAct dialogue.

4 Agent 4 wants to join this C-pAct dialogue.

5 Agent 1 believes that: if coalition {1, 2} forms and undertakes joint-action

µ1, then goal p will be achieved and value v2 will be promoted; and if

coalition {1, 3, 4} forms and undertakes joint-action µ3, then goal p will be

achieved and value v3 will be promoted.

6 Agent 2 believes that: if coalition {1, 2} forms and undertakes joint-action

µ1, then goal p will be achieved and value v4 will be promoted.

7 Agent 3 believes that: if coalition {1, 3, 4} forms and undertakes joint-

action µ3, goal p will not be achieved but value v2 will still be promoted;

and if coalition {3, 4} forms and undertakes joint-action µ4, then goal p

will not be achieved but value v4 will be promoted anyway.

8 Agent 4 believes that: if coalition {1, 3, 4} forms and undertakes joint-

action µ3, goal p will be achieved and value v4 will be promoted; if

coalition {3, 4} forms and undertakes joint-action µ4, then goal p will be

achieved and value v3 will be promoted; and finally that the value v2 does

not exist.

9 Agent 1 believes that the value v4 does not exist.

10 Agent 3 believes that there does not exist a state where t is true.

11 Agent 1 has no more relevant information to communicate.

12 Agent 2 has no more relevant information to communicate.

13 Agent 3 has no more relevant information to communicate.

14 Agent 4 has no more relevant information to communicate. As all the

agents have communicated that they all have no more information to add,

then the dialogue is completed successfully.

The above informal description of dialogue(C-inq, {p, r, s}) translates to the following

formal notation:

Move
Num.

Move Notation

1 〈1, open, dialogue(C-pAct, p)〉
2 〈2, join, dialogue(C-pAct, p)〉
3 〈3, join, dialogue(C-pAct, p)〉
4 〈4, join, dialogue(C-pAct, p)〉
5 〈1, assert, {〈µ1, 〈〈1, ac1〉, 〈2, ac2〉〉, [p, q], p, v2,+〉,

〈µ3, 〈〈1, ac1〉, 〈3, ac3〉, 〈4, ac4〉〉, [p, q], p, v3,+〉}, dialogue(C-pAct, p)〉

Chapter 3. 95

6 〈2, assert, {〈µ1, 〈〈1, ac1〉, 〈2, ac2〉〉, [p,¬r,¬s], p, v4,+〉}, dialogue(C-

pAct, p)〉
7 〈3, assert, {〈µ3, 〈〈1, ac1〉, 〈3, ac3〉, 〈4, ac4〉〉, [r,¬s,¬t], ∅, v2,+〉,

〈µ4, 〈〈3, ac3〉, 〈4, ac4〉〉, [¬r,¬s, t], ∅, v4,+〉}, dialogue(C-pAct, p)〉
8 〈4, assert, {〈µ3, 〈〈1, ac1〉, 〈3, ac3〉, 〈4, ac4〉〉, [p, t], p, v4,+〉,

〈µ4, 〈〈3, ac3〉, 〈4, ac4〉〉, [p, t], p, v3,+〉 〈¬v2〉}, dialogue(C-pAct, p)〉
9 〈1, assert, {〈¬v4〉}, dialogue(C-pAct, p)〉
10 〈3, assert, {〈¬[t]〉}, dialogue(C-pAct, p)〉
11 〈1, close, dialogue(C-pAct, p)〉
12 〈2, close, dialogue(C-pAct, p)〉
13 〈3, close, dialogue(C-pAct, p)〉
14 〈4, close, dialogue(C-pAct, p)〉

3.6.4 Argument Evaluation

This section evaluates the arguments presented in the example C-pAct dialogue using the ac-

ceptability definitions introduced in Section 3.5, which are used to determine which coalitions

should be formed. To find either coalitionally objectively-stable, coalitionally subjectively-

stable or coalitionally subjective unstable arguments, each agent i should generate their au-

dience specific value-based argumentation framework, denoted VAFi, that contains arguments

in the C-pAct dialogue that: (i) have i in the coalition; or (ii) include agreeable arguments to i

(i.e. arguments that include information that is within agent i’s VATS).

Looking initially at VAF1 in Figure 3.18 there are two main issues to notice: (a) Not all of

the arguments from the C-pAct dialogue are present because only some of the arguments in the

dialogue included agent 1; and (b) the majority of the attack relationships are reciprocal, due to

the nature of the critical questions between these arguments.

FIGURE 3.18: Agent 1’s VAF taken from the example C-pAct dialogue. Each node is labeled
with the argument ID and the associated value. If there is no associated value then the label >

is attached to the node to indicate the social-value ’truth’.

Chapter 3. 96

Agent 1 can evaluate these arguments using its value-ordering. As Agent 1 does not recognise

the value v4, arguments using this value are defeated in VAF1 by argument A9. Assuming agent

1’s value ordering is v2 ≺ v3, then agent 1 has two preferred extensions: PE1
1 = {A1} and

PE1
2 = {A4}. As Coalition(A1) = {1, 2} and Coalition(A4) = {1, 3, 4}, agent 1 is currently

undecided on which coalition it wants to form because there is no coalition that is coalitionally

objectively-stable, due to there being no coalition in all of agent 1’s preferred extensions.

To find out if {1, 2} is acceptable then VAF2 (Figure 3.19) has to be evaluated. This eval-

uation is very simple because there are only two arguments in the example C-pAct dialogue

that involve a coalition that agent 2 is a member of. Both of these arguments promote different

social-values, whilst suggesting that coalition {1, 2} should form. Therefore, whatever value

ordering agent 2 choses, there will be one argument with the coalition {1, 2} in the preferred

extension. It is now known that {1, 2} is acceptable to its members. To find out if {1, 2} is

coalitionally subjectively-stable or coalitionally subjectively-unstable, agent 1 needs to know if

the coalition {1, 3, 4} is also acceptable, and therefore a valid option.

FIGURE 3.19: Agent 2’s VAF taken from the example C-pAct dialogue. Each node is labeled
with the argument ID and the associated value.

To find out agent 3’s acceptable coalitions (and to continue investigating if {1, 3, 4} is ac-

ceptable) then VAF3 (Figure 3.20) has to be evaluated. In VAF3, argument A10 removes A6

and A7 from consideration due to these instantiations suggesting an end state that conflicts with

VATS3. Therefore agent 3 is left with a choice between: coalition {1, 3, 4} supported by ar-

guments A2 and A4; and coalition {3, 4} supported by argument A5. In this case, because

different social-values are promoted by the arguments; only one preferred extension is possible.

The argument in the preferred extension depends on agent 3’s value ordering. Before discussing

how the different value orderings will effect the system’s outcome, VAF4 will be introduced

(Figure 3.21).
It can be seen that VAF4 is similar to agent 3’s apart from agent 4 has A8 (instead of A10) to

eliminate arguments from consideration, where A8 is used to show that agent 4 does not recog-

nise v2. Out of the remaining arguments, A5 and A7 support coalition {3, 4}, while arguments

A2 and A6 support coalition {1, 3, 4}. Assuming agent 1’s value ordering is v2 ≺ v3, then to get

the final recommended coalition structure to be CS = {{1, 2}, {3, 4}}, agent 3’s value order

should have v4 as the most preferred, whereas agent 4 can have any value order. This would

make both coalitions of CS coalitionally subjectively-stable as no other coalitions would have

the same level of acceptability. The coalitions of CS are not coalitionally objectively-stable

because neither coalitions of CS are present in all preferred extensions of agent 1 and agent 4.

Chapter 3. 97

FIGURE 3.20: Agent 3’s VAF taken from the example C-pAct dialogue. Each node is labeled
with the argument ID and the associated value. If there is no associated value then the label >

is attached to the node to indicate the social-value ’truth’.

Alternatively, coalitions {1, 2} and {1, 3, 4} would be coalitionally subjective-unstable if

agent 1’s value order remained the same, agent 3 favoured v2 or v3, and agent 4 had any value

order. In this case, both {1, 2} and {1, 3, 4} would exist in at least one (but not all) preferred

extension(s) of every one of its members. As both coalitions would be coalitionally subjective-

unstable and conflict with each other by sharing a member, then only one of them can form.

This concludes the example.

FIGURE 3.21: Agent 4’s VAF taken from the example C-pAct dialogue. Each node is labeled
with the argument ID and the associated value. If there is no associated value then the label >

is attached to the node to indicate the social-value ’truth’.

Chapter 3. 98

3.7 Summary

This chapter assumes that the agents have a qualitative method to value the coalitions. The

qualitative method used was social-values, as recent work in argumentation suggests that agent

systems can be more richly described with the inclusion of these social-values [10, 125] as op-

posed to just describing systems with goals. Social-values provide reasons why agents may

sometimes want to achieve one goal in one situation, and achieve a different (and perhaps con-

tradictory) goal in another situation.

However, using a purely qualitative method to value the coalitions raises several issues:

1. What is the best set of coalitions to choose?: When analysing a VAF to find acceptable

arguments for coalitions, the agents in the coalitions of arguments that are coalitionally

objectively-stable and coalitionally subjectively-stable have no reasonable logical alter-

native. But agents in the coalitions of arguments that are coalitional subjective-unstable

have at least one logical alternative, which raises the following further issues:

2. Differentiating between coalitions promoting the same social-value: Some coalitions

may achieve the same goal and promote the same value, but not to the same degree.

For example, say some agents join together in a coalition to repair a resource that they

will mutually benefit from, thereby promoting the social-value efficiency of resource. Yet

there may be a few ways to promote this social-value that will improve the efficiency on

different scales. Consideration of the degree of social-value promotion/demotion is left as

a future avenue for research.

3. How to offer incentives to choose a coalition: If no acceptable coalitions can be formed

using the definitions given in Section 3.5, then at least one agent needs to be incentivised

to change its value ordering for a coalition to become acceptable to all of its members. But

how the agent can be incentivised in this model is unclear. In transferable utility games

[83], an agent i can be incentivised to join a coalition C through the rest of the members

of C offering i more proportion of the transferable utility value payoff of C. This idea of

using transferable utility as an incentive to form a coalition can help with the reasoning

on what coalitions should be chosen. Yet this transferable utility incentivisation cannot be

achieved in the qualitative representation presented in this chapter.

4. How to defined the maximum social welfare: It can be desirable to design an agent

system to maximise social welfare, even in the self-interested multi-agent systems con-

text. For example, the cooperative game theory solution concept of the core is defined for

self-interested agents and maximises social welfare [83]. Yet there is no way to define

the maximal social welfare in this model because there is no method to compare between

coalitions promoting the same social-value and no method to compare the utility differ-

ence between one coalition promoting one social-value with another coalition promoting

another social-value.

All these identified issues can be solved using a quantitative transferable utility based ap-

proach to coalition formation. Quantitative transferable utility approaches: (i) define the best set

Chapter 3. 99

of coalitions to choose via cooperative game theory solution concepts9; (ii) allow all coalitions

to be differentiated by the utility value that they are assigned; (iii) allow incentives to be offered

to agents to join a coalition via the transferable utility property; and (iv) define the maximum

social welfare by the total utility value that all the coalitions achieve.

Therefore in the next chapter, the coalition formation process will be discussed from a quan-

titative valuation approach. Chapter 4 and Chapter 5 assume that each agent holds the same

valuation for each coalition, while Chapter 6 will look at situations where valuation disagree-

ments between the agents could occur.

9See Section 2.2 for a discussion on the different types.

Chapter 4

101

Chapter 4

Distributing Coalition Value
Calculations

This chapter investigates the best way to distribute the coalition value calculations in character-

istic function games to the agents of a multi-agent system.

In a characteristic function game, each coalition’s value should be calculated as an agent can

potentially join many different coalitions, and so must choose which coalition to join. As the

number of coalitions grows exponentially with the number of agents, the burden of requiring

every agent to calculate all of the coalition values is high1. Furthermore, the complexity of

calculating an individual coalition’s value can vary, and potentially be exponential [106]. Thus,

even if each agent only calculates the value of those coalitions that it can be a member of (i.e.
2n

2), then this can still result in a significant overlap of calculations, such that this redundancy

can converge to 100%, as limn→∞
2n−1
n2(n−1) = 0.

This chapter’s distributed coalition generation (DCG) algorithm divides the coalition value

calculations between the agents of the system, and has the properties of: (i) no communication

is required among the agents; (ii) no coalition’s value is calculated more than once; (iii) the

coalition value calculations are divided into shares, one for each agent, in a full and approxi-

mately equal manner; (iv) agents with equal sized shares have the same number of operations

to perform; and (v) each coalition in an agent’s share includes that agent as a member. No other

algorithm apart from DCG has all of these properties, as discussed in detail in Section 4.3. The

motivation of the DCG algorithm was initially outlined in [102], while the underlining theory

was presented in [99]. The proof that the DCG algorithm generates all coalitions once and only

once was developed with Paul Dunne, given in Appendix A. In Chapter 5, it will be described

how the DCG algorithm can be used as input to a distributed algorithm to find an optimal coali-

tion structure and a payoff vector in the weak-least core.

The rest of the Chapter is structured as follows: Section 4.1 provides the preliminary ma-

chinery for a new method to order and distribute the coalitions, while also providing an intro-

ductory example. Section 4.2 details the DCG algorithm. Section 4.3 uses an implementation

and theoretical results to analyse the properties of the DCG algorithm when compared to the
1The exact number of coalitions that can form given a population of n agents is 2n − 1.

103

Chapter 4. 104

other coalition value calculation algorithms. Section 4.4 analyses the runtime performance of

the algorithm. Finally Section 4.5 discusses how the DCG could be used in general coalition

formation.

4.1 Preliminaries and Introductory Example

The DCG algorithm exploits a novel method for representing and ordering coalitions, so that

different coalitions can be allocated to each agent, in such a way as to facilitate the construction

of shares (one per agent) that eliminate redundant coalition value calculations.

4.1.1 The New Ordering Method

In this chapter, a coalition C ⊆ {1, 2, ..., n} is represented as an ordered sequence of identi-

fiers (IDs) that form a coalition array, where no agent appears more than once in any coalition,

and where s = |C|. An integer increment value between two contiguous agents i and j in a

coalition array corresponds to the difference in the agents’ IDs2. For example, if we have a

coalition array [3, 6, 1], then there are two integer increment values between the ID pairs 3, 6

and 6, 1. There is an additional increment between the last and the first agent IDs in the array;

i.e. the ID pair 1, 3. The integer increment value between two agents i and j can be decom-

posed into a baseline increment (which is assumed to be 1, since agent IDs are unique) and an

offset increment, denoted ti = (j − i) − 1 mod n (i.e. integers modulo n). Thus, if ti = 0,

the difference between the IDs for agents i and j corresponds only to the baseline increment;

whereas if ti 6= 0, then ti represents an additional offset increment. An increment array (IA)

denoted t = 〈t0, t1, . . . , ts−1〉 therefore represents the offset increments between the identifiers

of the coalition array. For example, given the coalition array [3, 6, 1], the corresponding IA will

be 〈2, 0, 1〉.
An integer partition of k is a combination of positive integers that add up to exactly k. The

DCG algorithm uses integer partitions to identify the offset increments between consecutive

pairs of IDs in the coalition array. The full set of integer partitions is denoted I(n − s); for

example, given n = 6 and s = 3, I(n− s) = {{3}, {2, 1}, {1, 1, 1}}. Increment arrays can be

formed from an integer partition I for coalitions of size s, only when I ∈ I(n− s) and |I| ≤ s,
by including additional zero values to satisfy the property:

s−1∑
i=0

ti = (n− s)

For example, when n = 6 and s = 3, the integer partition {2, 1} could be used to form various

possible increment arrays: 〈2, 1, 0〉, 〈2, 0, 1〉, etc. The integer increment values corresponding

to the increment array 〈2, 1, 0〉 result from the two coalition arrays [1, 4, 6] and [2, 5, 1], as the

ID pairs 1, 4 and 2, 5 share (2 + 1), whereas the ID pairs 4, 6 and 5, 1 share (1 + 1). As IAs are

2As agent IDs are in the range [1..n], IDs modified using an integer increment will result in an ID modulo n. The
agent ID n will be returned when the ID 0 is found because 0 ≡ n (mod n).

Chapter 4. 105

L3

L3,〈3,0,0〉 L3,〈2,1,0〉 L3,〈2,0,1〉 L3,〈1,1,1〉
CV1 1,5,6 1,4,6 1,4,5
CV2 2,6,1 2,5,1 2,5,6
CV3 3,1,2 3,6,2 3,6,1
CV4 4,2,3 4,1,3 4,1,2 4,6,2
CV5 5,3,4 5,2,4 5,2,3 5,1,3
CV6 6,4,5 6,3,5 6,3,4

TABLE 4.1: Coalition value calculation shares (CV) for all s = 3 agent coalitions in an n = 6
agent coalition-game.

shared between coalition arrays, the new ordering method introduced in this paper divides the

coalitions into 2-dimensional lists Ls,t.

4.1.2 Example

Each increment array t represents the necessary offset increments from one agent ID of the

coalition array to the next. For agent i to generate a coalition C assigned to itself using t, the

first element of the coalition array will be i to motivate i to compute the coalition’s value. The

second agent ID j in the coalition array will be = (i + t0 + 1) mod n; and the third agent ID

k will be = ((i+ t0 + 1) + t1 + 1) mod n. This continues until the coalition’s size s limit has

been reached.

Table 4.1 presents a subset of the coalition arrays, grouped by IAs of size s = 3 for n = 6

agents. Each column represents a single list Ls,t for some IA t, whereas the rows present

the coalition value calculation shares (CVs) comprising the different coalition arrays with a

common first element (CVi is agent i’s share). The table represents all coalition arrays necessary

for coalitions of size s = 3. To assign all of the coalitions, multiple IAs are needed; however,

every coalition is assigned once and only once. Note that an integer partition may form more

than one increment array; for example the two increment arrays 〈2, 1, 0〉 and 〈2, 0, 1〉 are formed

from the {2,1} integer partition.

Four different IAs are required for all the coalitions to be allocated in the above example.

The IA tx = 〈2, 0, 1〉 is valid as {2, 1} is a candidate integer partition of I(6− 3) that satisfies

|{2, 1}| ≤ s = 3. Yet as |{2, 1}| 6= 3, additional zeros are needed to fill up the IA to make the

IA the required size s. If agent 1 used tx, the coalition array would comprise:

= {1, (i+ tx0 + 1) mod n, ((i+ tx0 + 1) + tx1 + 1) mod n}

= {1, (1 + 2 + 1) mod 6, ((1 + 2 + 1) + 0 + 1) mod 6}

= {1, 4, 5}

Chapter 4. 106

Alternatively if agent 2 used tx, the coalition array would comprise:

= {i, (i+ tx0 + 1) mod n, ((i+ tx0 + 1) + tx1 + 1) mod n}

= {2, (2 + 2 + 1) mod 6, ((2 + 2 + 1) + 0 + 1) mod 6}

= {2, 5, 0} ≡ {2, 5, 6}

In the above example, the ID 0 was generated. As 0 ≡ n (mod n), this is replaced with

ID = n = 6 in this coalition.

Each unique IA should be used n times (once for each agent) unless the IA includes a se-

quence that is repeated throughout the IA. In Table 4.1, 〈1, 1, 1〉 is the only IA with a repeated

sequence, with {1} being repeatedm = 3 times. The number of times an IA with a repeating se-

quence should be used relates to the size of the repeating sequence and is given by r (introduced

in the next subsection). The choice of agents that should use this type of IA will depend on the

allocation of other coalitions; the DCG algorithm balances the number of coalitions assigned to

each agent’s share so that an agent’s share can never be greater than two coalitions bigger than

another agent’ share.

Thus, if any other IA was used other than the ones listed in Table 4.1, it would result in a

coalition’s value being calculated more than once. For example, if agent 6 used ty = 〈1, 2, 0〉,
the coalition array [6, 2, 5] would be generated despite this coalition being generated by agent 2

using tx = 〈2, 0, 1〉.

4.1.3 A Distributed Method for Coalition Generation

The period of t, denoted by π(t) is defined as:

Definition 78: The period of t:

min
1≤p≤s

t = 〈t0, t1, . . . , tp−1, t0, t1, . . . , tp−1, . . . , t0, t1, . . . , tp−1〉

Hence, t is formed by m identical copies of a sequence of length π(t). The period of t is

therefore the length of the smallest subsection of t that is repeated throughout t. For example,

if t = [3, 1, 3, 1, 3, 1] then the period of t is 2 because the subsection [3, 1] is the smallest

subsection repeated throughout t. Additionally if t = [3, 1, 3, 1, 3, 1], then m = 3 because the

subsection [3, 1] is repeated 3 times within t.

Definition 79: Calculating an agent ag’s coalition C given an IA array t:

Given C ⊆ {1, 2, . . . , n}, agent ag generates C from ag if C = {ag1, ag2, . . . , ags} and:

agi =

ag if i = 1

(ag + φi) mod n if (ag + φi) mod n 6= 0

n if (ag + φi) mod n = 0

Chapter 4. 107

where:

φi =
i−2∑
k=0

tk + (i− 1)

Additionally, C(ag, t) denotes the subset of {1, 2, . . . , n} generated by the IA t from agent

ag. The proofs in Appendix A demonstrate that each t only needs to be used by r = (n×π(t))/s

different agents. If more than r agents use t to generate a coalition, then repeated coalitions

will be generated. For example, if the chosen IA from Table 4.1 is tq = 〈1, 1, 1〉 then r =

(n × π(tq))/s = (6 × 1)/3 = 6/3 = 2 agents should use tq, which is true as any other agent

using tq would repeat either coalition {1, 3, 5} or {2, 4, 6}. Finally, if tx and ty generate the

same coalition C for two different agents i, j ∈ C (i.e. C(i, tx) = C(j, ty)), then tx and ty

are classified as belonging to the same equivalence class, denoted tx ≈ ty. For example, the

IAs C(2, 〈2, 0, 1〉) = C(6, 〈1, 2, 0〉) = {2, 5, 6} belong to the same equivalence class. We write

tx ≈ ty when tx = 〈tyk, ..., t
y
s−1, t

y
0, ..., t

y
k−1〉 for some 0 ≤ k ≤ s− 1. To get ty from tx, it can

be said that tx is shifted (s − k) steps. Appendix A proves that rather than considering every

possible IA, it suffices only to consider a single representative from each equivalence class ≈.

The DCG algorithm is designed to only consider a single representative of each class, the one

that is the smallest lexicographically, named the canonical representative for its equivalence

class and denoted [t]≈.

4.2 The Distributed Coalition Generation (DCG) Algorithm

Given the definitions presented in the previous section, the DCG algorithm for distributed coali-

tion value calculations can now be presented.

The DCG algorithm focuses on finding the canonical representative for each equivalence

class, i.e. the lexicographically smallest IA in each equivalence class. The intuition of the

algorithm is as follows, given the number of agents n, for each coalition size s, the DCG seeks

to find all IAs that total (n− s) that are not a member of an equivalence class previously found.

One method of guaranteeing that all the canonical representatives are found, is to generate

all possible IAs that total (n − s) and then test all of them to make sure that they are the

lexicographically smallest. To do this an indexing scheme could be created. This indexing

scheme relies on the function, place : t → N0 that maps an IA, t = 〈t0, . . . , ts−1〉 to a non-

negative integer by:

place(〈t0, t1, . . . , ts−1〉) =

s−1∑
i=0

(ti × (n− s+ 1)i)

Informally, place(t) treats t as an integer expressed in base n− s+ 1. With this convention,

the number of distinct IAs is bounded by (n − s + 1)s. But generating every possible IA and

testing it, is a great inefficiency for even small numbers of n as there may be many IAs in the

Chapter 4. 108

same equivalence class. For example when n = 5,
s=n∑
s=1

(n−s+1)s = (5+16+27+16+1) = 65.

Yet as detailed in Section 4.4, for n = 5 there are only 7 canonical representative IAs3.

To find all the canonical representatives, DCG generates the IAs in lexicographical order

and tests a subset of them to check that each tested IA is the lexicographically smallest in its

equivalence class. As n increases, DCG skips over an ever increasing number of IAs in the

lexicographical order. To describe how this is done, the correct function in Algorithm 4 will

be introduced. To understand the intuition behind Algorithm 4, the following example is used:

Example 4.1. Given n = 17 and s = 6, suppose the last IA generated was t = 〈0, 3, 0, 5, 3, 0〉.
It can be seen that t is not the canonical representative because there is a way that the num-

bers in t can be shifted to make another IA ux so that ux ≈ t and [ux]≈. In this case

ux = 〈0, 0, 3, 0, 5, 3〉.
To try to find the next canonical representative from t, the next IA in lexicographical or-

der could be generated. Remember this is not uy = 〈0, 3, 0, 5, 3, 1〉 because now uy sums to

greater than (n − s). So the next IA in lexicographical order from t is formed via some incre-

ment and decrement of positions in t. In this case the correct function increments t3 = 6,

decrements t4 = 0 and increments t5 = 2, giving t1 = 〈0, 3, 0, 6, 0, 2〉. But t1 is not the

canonical representative of its class because t1 could be shifted two places to the right, giving

uz = 〈0, 2, 0, 3, 0, 6〉. As t1 failed the canonical representative check, the correct function

would find the next IA in lexicographical order by incrementing and decrementing positions of

t1 to give t2 = 〈0, 3, 0, 6, 1, 1〉. The IA t2 is a canonical representative as there is no way to

shift t2 to generate another IA that is lexicographically smaller.

Now how the correct function skips over some IAs is as follows. Given t3 = 〈0, 3, 0, 6, 2, 0〉
for n = 17 and s = 6, the correct function would generate t4 = 〈0, 3, 0, 7, 0, 1〉 and set a

boolean variable hold3 = true to indicate the lowest part of the IA that has just been incre-

mented (i.e. t43). Now if a canonical representative is not found for any IA starting with the prefix

[0, 3, 0, 7] then incrementing the same t43 will not find a canonical representative either4. So in

this case no IA starting with the prefix [0, 3, 0, 8] is generated or checked. Instead the correct

function skips over t43 and increments t42, giving t5 = [0, 3, 1, 0, 0, 7] (which will now get tested

and the algorithm will continue).

Now that an example has been detailed, the correct function can be introduced after the

following variables and notational conventions:

msd: The value t0, i.e the most significant “digit” of the IA t. To begin with msd := 0.

EditIA(): This function takes (t, j,msd) as input and returns t′ where: t′x = msd, ∀t′x where x ∈
{j + 1, j + 2, ..., s− 2}; t′y = ty, ∀t′y where y < j + 1; and t′s−1 = (n− s)−

∑s−2
i=0 t

′
i.

complete: This is a global boolean variable that is set as false until the correct function can find

no more possible IAs.
3For completeness, these 7 are: [4]; [0, 3]; [1, 2]; [0, 0, 2]; [0, 1, 1]; [0, 0, 0, 1]; and [0, 0, 0, 0, 0].
4This holds true apart from the special case when t43 <= n−s−1−msd

2

Chapter 4. 109

Algorithm 4: Finding the next IA to be lexicographically tested.
1: function correct (t) returns s-tuple;
2: Input: 〈t〉; where t is the last IA tested to see it if its the canonical representative.
3: Output: 〈t0, t1, . . . , ts−1〉; the next IA to be lexicographically tested.
4: begin
5: int sum := ts−1;
6: for (int j := s− 2; j >= 0; j −−) do
7: if (tj + sum == (n− s)) and (holdj 6= true) then
8: holdj = true;
9: tj + +;

10: sum−−;
11: if j == 0 then
12: msd+ +;
13: end if
14: return EditIA(t, j,msd);
15: else if (sum 6= 0) and ((holdj 6= true) or (tj < n−s−1−msd

2)) then
16: holdj := true;
17: tj + +;
18: sum−−;
19: return EditIA(t, j,msd);
20: end if
21: sum := sum+ tj
22: end for
23: complete := true;
24: return null;
25: end

hold: This is a global boolean array variable that is set in the build function to false for every

position, until the correct function changes parts of it to true to help skip IAs.

The correct function in Algorithm 4 begins by being given an IA t that is not a canon-

ical representative and setting the current sum to equal the last value in the IA (line 5). The

correct function starts from the second to last digit of t and continues down to the first digit,

until a digit is found that can be incremented by one (line 6). For every loop the current sum

of all the digits considered is recorded (line 21). A digit can be incremented by one if it is

non-zero, it is in the smallest position of the IA for all the non-zero digits, and this position

has not previously been incremented (since the last canonical representative IA was found) (line

7). Additionally a digit can be incremented if the current sum is greater than zero, this digit

is not in a position that has already been incremented (since the last canonical representative

IA was found) and this digit is less than n−s−1−msd
2 (to make sure all canonical representatives

get tested) (line 15). If the digit incremented was the digit at position zero, then msd must be

incremented as this is the smallest value any digit can now take (line 12). Regardless of which

digit is incremented by one, the correct hold position is set to true (lines 8 and 16), the sum

is decremented by one (lines 10 and 18) and the rest of the IA is edited to become the smallest

that it can be in lexicographical order (lines 14 and 19). Finally if no digits satisfy the increment

conditions then complete is set to true and null is returned.

Chapter 4. 110

Algorithm 5: Finding canonical representative IAs from equivalence classes of ≈.
1: function build (t) returns s-tuple;
2: Input: 〈t〉; where t is the last canonical representative IA used.
3: Output: 〈tk0, tk1, . . . , tks−1〉; the next canonical representative IA of a class not used so far.
4: begin
5: ts−1 −−;
6: ts−2 + +;
7: if (s 6= 2) and (ts−1 > msd) then
8: return t;
9: else if (s == 2) and (ts−2 ≤ ts−1) and (ts−1 > msd) then

10: return t;
11: else if (s == 2) then
12: completed := true;
13: return null;
14: end if
15: hold := 〈false, false, ..., false〉;
16: repeat
17: t = correct(t);
18: until ((t == [t]≈) or (completed == true))
19: return t;
20: end

Now that the correct function has been introduced, the build function that finds the

next canonical representative of each class can be detailed, as seen in Algorithm 5. Remember

that canonical representatives are found in lexicographical order. For example, given n = 6 and

s = 4, the canonical representative IA 〈0, 0, 0, 2〉 is generated first and then 〈0, 0, 1, 1〉.
The simplest manner to generate the next canonical representative IA is to decrement the last

digit of the IA by one and increment the last but one digit by one. When the size of the coalition

is greater than two, then there will exist a digit with the msd value in at least the first position.

Therefore the only way an IA generated in this manner cannot be an canonical representative

IA is when the last digit is less than or equal to msd. In this case, the IA can be shifted one

place to the right to generate a lexicographically smaller IA. For example when n = 5, s = 3

and msd = 0, the IA tx = 〈0, 1, 1〉 is the canonical representation, but the next IA generated

ty = 〈0, 2, 0〉 is not because ty2 = msd and therefore tz = 〈0, 0, 2〉 is lexicographically smaller.

This exception is caught in the if statement of line 7.

When the coalition is of size two, then an IA generated in this manner may not be a canonical

representative IA, when the first digit becomes greater than the last digit. This is because the

lexicographical smallest IA of this class has already been generated, as can be seen by swapping

the digits around. For example if the IA generated is 〈3, 2〉, the canonical representation of this

class is 〈2, 3〉 and was generated previously. This exception is dealt with in the if statements of

lines 9 and 11.

Now the later part of the build function, from line 15 onwards, is only reached if this

simple generation method described in the preceding paragraphs has not found a canonical rep-

resentative IA. In this case, the correct function is called to generate another IA, where some

Chapter 4. 111

Algorithm 6: The Distributed Coalition Generation (DCG) method.
1: function DCG (int n,i)
2: Input: 〈n, i〉 (1 ≤ i ≤ n); where n is the number of agents and i the agent ID.
3: begin
4: int bal := 1;
5: v({i});
6: j := i+ 1 mod n;
7: v(N\{j});
8: for (int s = 2; s ≤ n

2 ; s+ +) do
9: boolean completed := false;

10: int msd := 0;
11: int[] t := 〈0, 0, ..., n− s〉;
12: while (complete == false) do
13: p := π(t);
14: r := (n× p)/s;
15: if (bal ≤ i < bal + r) or (bal + r > n and 1 ≤ i < bal + r − n) then
16: v(C(i, t));
17: if s 6= n

2 then
18: v(N\C(j, t));
19: end if
20: end if
21: bal := (bal + r) mod n;
22: t = build(t);
23: end while
24: end for
25: if (i == bal) then
26: v(N);
27: end if
28: end

possible IAs may be skipped. The IA generated via the correct function is lexicographically

tested to see if it is the canonical representative class (line 18). If IA is not the lexicographically

smallest IA of its class then the correct function is called again until a canonical representa-

tive is found or no more possible IAs can be made.

Now finally the approach each agent i uses to generate all of its coalitions in its coalition

value calculation share is presented in the DCG algorithm in Algorithm 6, which exploits the

build and correct functions. The DCG(n,i) algorithm starts by initializing the bal pointer

(line 4), which is used to distribute the coalitions in an approximately equal manner. Next each

agent i should calculate its own value and the value of the coalition of size n − 1 that does not

include agent j (line 5-7). The agents now look for canonical representative IAs for sizes 2 to

bn2 c (line 8). The agents do not look for canonical representatives of every size as it is quicker

to find the complement of agent j, where agent j is one increment greater than agent i’s ID

(when mod n is used). The complement of agent j’s coalition will include agent i because of

the baseline increment assumption described previously.

For each s used to search for canonical representative IAs, the first canonical representative

is always the lexicographical minimal (line 11). Then the while loop (lines 12-23) finds out how

Chapter 4. 112

many agents should calculate a coalition using t (line 14) and allows the agent to use the IA if

that agent is one of the next r agents according to the bal pointer (line 15 and 16). Additionally,

if the agent was allowed to calculate the value, it will also calculate the value of a coalition of

size n− s, if s 6= n
2 (lines 17-19). The while loop then continually calls the build function of

Algorithm 5 (line 22) to find the next canonical representative IA. When complete has been set

to true in the build function or the correct function, this indicates that all the coalitions of

size s for agent i’s calculation share have been found. Finally, the grand coalition is assigned to

the agent who, according to the bal pointer, is the next agent to calculate a coalition (line 26).

A note here should be made on how the memory requirements of the DCG algorithm grows

linearly as the number of agents n increases. This is because the maximum size of the t and hold

array is n
2 (according to line 8), while the maximum size of a coalition generated is n (according

to line 26).

4.3 Discussion

The following is a discussion on how the DCG algorithm presented in this chapter, compares

to the DCVC algorithm [89, 90], the VBFR algorithm [126] and the SK algorithm [117], when

judged on the following properties identified in the introduction of this chapter: (i) elimination

of communication; (ii) elimination of coaltion value calculation redundancy; (iii) approximately

equal coalition value calculation shares for each agent; (iv) agents with equal sized shares have

the same number of operations to perform; and (v) each coalition in an agent’s share includes

that agent as a member.

(i) Elimination of communication: The method to split up the calculations of the coalition

values in the DCG algorithm has no communication costs (as you can see there is no where

in the DCG algorithm that requires communication between the agents). No communica-

tion costs occur because, like the DCVC and VBFR algorithms, the agents have: (1) a

pre-agreed ordering of the coalitions; and (2) a pre-agreed algorithm to dictate which ex-

act share of this ordering each agent should calculate. Conditions (1) and (2) are not the

case for the SK algorithm and so agents using this algorithm need to communicate to find

out which coalitions will be in each agent’s share. Yet for any distributed coalition value

calculation algorithm, if the agents want to complete the decentralised coalition formation

process, communication costs will be incurred later when agents communicate to each

other their best coalitions or coalition structures found (e.g. [1, 73, 104]). Even when the

best coalition structure is known, more communication will occur if the agents want to

negotiate on their final utility payoff (e.g. [1, 7, 30, 59, 67, 118, 137]). How the agents

can communicate the correct coalitions (given coalition shares according to the DCG algo-

rithm), constrain communication costs and achieve a certain stable outcome is described

in Chapter 5.

(ii) Elimination of Redundancy: In the DCG algorithm: (1) one and only one representative

increment array from each equivalence class is used. This single representative increment

Chapter 4. 113

array t is only used: (2) (n× π(t))/s times; and (3) no more than once for each agent. In

Appendix A it is proved that a repeated coalition can only be generated from an increment

array if any of (1), (2) and (3) are not abided to. The DCVC algorithm and VBFR algo-

rithm also do not have any redundant coalition value calculation issues because the agents

are aware how the coalitions are ordered in both algorithms and therefore each agent’s

share does not accidentally overlap. The SK algorithm does involve an exponentially large

redundancy because, as stated in [90], each agent commits to calculate the value of a set

of coalitions with limited knowledge on the other agent’s commitments.

(iii) Approximately equal coalition value calculation shares: The DCG algorithm, like the

DCVC algorithm, gives approximately equal shares. The DCG algorithm has a maximum

difference of two between the agent’s coalition value calculation share due to the each

agent generating 2 coalitions at a time. The DCG algorithm achieves this through the use

of the bal pointer, while the DCVC algorithm uses the α pointer (where the α pointer is

described in Section 2.4.1).

The bal pointer is initialised to 1 in line 4 of the DCG algorithm. Then bal lets the next r

agents calculate a maximum of two coalition values, after that, bal is corrected (line 21).

As bal only allows a maximum of two coalitions to be calculated at a time, an agent can

only be a maximum of two coalition assignments ahead of another agent.

The VBFR algorithm does not give balanced shares to the agents (in the case where all

the agents are assumed to be in a fully connected graph). In this case, for n agents, agent

1 is always assigned 2n/2 coalitions because there are 2n/2 coalitions where agent ID 1

is the smallest ID of that coalition. Agent n on the other hand is always assigned only

one coalition because there is only one coalition with agent n as the smallest ID, which is

the singleton coalition {n}. Finally the SK algorithm has no guarantees on the maximum

difference between the agent’s shares, yet the average difference grows exponentially with

the number of agents, as detailed in [90].

(iv) Equal number of operations for agents with equal sized shares: Only the DCG algo-

rithm and the DCVC algorithms guarantee that the agents coalition value calculation shares

will be approximately equal. Yet [90] shows that the DCVC algorithms do not guarantee

an equal number of operations5 to generate each agent’s coalition value calculation share,

even when each agent’s share is equal sized. This is due to the lexicographical ordering of

the coalitions that the DCVC algorithm uses. For the DCG algorithm equal operations will

be performed by agents that are allocated an equal number of coalitions of each size, as

each IA of the same size requires the exact same number of operations of additions to find

the corresponding coalition (see Definition 79). This is because the DCG algorithm, unlike

the DCVC algorithm, does not rely on lexicographical order to generate the coalitions. In-

stead two-dimensional lists based on increment arrays are used. For every increment array

of size s, an agent needs to use s − 1 additions to generate the associated coalition, even

if the increment arrays are different. The increment arrays used by the agents are the only
5Where the operations are comparisons and additions.

Chapter 4. 114

5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Number of Agents

T
he

%
of

C
oa

lit
io

ns
in

cl
ud

in
g

th
e

C
al

cu
la

tin
g

A
ge

nt
DCVC
DCVC2
DCVC3

DCG

FIGURE 4.1: This graph shows, for an n agent game, the percentage of coalitions in all CVi∈N
that include agent i (for all sizes 1 ≤ s ≤ n). It was produced from a java implementation of all
the algorithms, where each agent kept a count of each coalition assigned to itself that included

itself.

variable points of the DCG algorithm. Therefore for any two agents that generate the same

number of coalitions for every s, then the same number of increment arrays are used, thus

the same number of operations are used.

(v) Agents are members of all their assigned coalitions: The DCG algorithm, like the SK

and VBFR algorithms before it, guarantee that every coalition distributed to an agent i,

includes i as a member. In the DCG algorithm, this is achieved by assigning agent i to be

the first agent in every coalition that it generates (see Definition 79).

This is not the case in any of the DCVC algorithms, as can be seen in Figure 4.1 (that

shows the three different types of the DCVC algorithm described in Section 2.4.1). This

is a weakness for the DCVC algorithm for certain domains. Consider any e-commerce

environment where agents (representing a single business) will join with others in a tem-

porary coalition if they can gain price discounts and economics of scale. As there maybe

anti-monopoly penalties or other considerations, such as communication and logistic costs,

then this problem cannot simply be solved by forming the grand coalition. Therefore the

agents together will have to calculate the values of the different coalitions to find their most

preferable ones. If the variables involved in the calculation of each coalition’s value are

public knowledge, then this situation can be treated as a characteristic function game and

the coalition value calculation costs can be shared around the agents of the system. In this

situation it makes no sense for an agent to calculate the value of a coalition C that does not

include itself because the agent will gain no benefit if C were to form.

When using the DCG algorithm with self-interested agents, possible manipulations could

occur by for example, misreporting the value of a certain coalition. In this case the tools

of mechanism design [80] may have to be used, where the DCG algorithm can be wrapped

Chapter 4. 115

Algorithm Eliminates
Communica-
tion

Eliminates
Redundancy

Equal
Shares

Equal
Operations

Agent in All
its Assigned
Coalitions

SK No No No No Yes
DCVC Yes Yes Yes No No
VBFR Yes Yes No No Yes
DCG Yes Yes Yes Yes Yes

TABLE 4.2: A summary of the comparison between the DCVC, VBFR, SK and DCG algo-
rithms that distribute coalition value calculations.

in some form of mechanism that constitutes a Bayesian game. If this mechanism has

Bayesian equilibria and the optimal strategy for each agent is to misreport information,

then via the revelation principle [76, 119] their exists another payoff-equivalent individ-

ually rational mechanism that has an equilibrium where the players truthfully report their

types6 [76, 119].

This discussion, summarised in Table 4.2, has shown that the DCG algorithm satisfies all

the above properties, which none of the DCVC, VBFR or SK algorithms can do.

4.4 Performance Evaluation

To evaluate the performance of the DCG algorithm, the running time of the algorithm is com-

pared to the benchmark of the running time of generating all coalitions that include the same

agent, which is named AgentInAll7. Generating every coalition that an agent is in, is exactly

what has to occur for the agent with the lowest ID in the VBFR algorithm. SK was not included

in the performance evaluation as the exponientially increasing communication and memory re-

quirements significantly slow the algorithm down compared to the AgentInAll approach, as

discussed in [90].

By evaluating the time that AgentInAll takes, the benefits of balancing the computation

around the agents of the system using IAs, while keeping the key property that every agent is

assigned coalitions in which it is a member, can be tested. For completeness, DCG is addition-

ally compared to DCVC, the fastest algorithm for coalition value calculations, but the reader is

reminded that DCVC may assign coalitions to agents that do not include that agent.

Three figures as used to present the coalition value calculation time of the algorithms, Fig-

ure 4.2 for a coalition valuation function ofO(s) complexity, Figure 4.3 for a coalition valuation

function of O(s2) complexity and Figure 4.4 for a coalition valuation function of O(2s) com-

plexity8. For all the experiments of each complexity class, for all the algorithms, the coalition
6The search for this truthful mechanism is left for future work.
7The PC on which the simulations were run had a processor: Intel(R) Core(TM) i7-4810MQ 2.80 GHz, with

8GB of RAM.
8All Figures use a 95% confidence interval, which are all small relative to the y axis (that displays the milliseconds

each algorithm takes to complete).

Chapter 4. 116

14 16 18 20 22 24 26
0

50

100

150

200

250

300

350

400

450

Number of Agents

M
ill

is
ec

on
ds

DCG
AgentInAll

DCVC

FIGURE 4.2: This graph shows the computation time for the agents calculating their coalition
values using different possible algorithms, when the cost of calculating each coalition’s value

is O(s).

value calculation function was exactly the same, consisting of s, s2 or 2s multiplication opera-

tions.
Starting with a negative result, it can be seen by looking at Figure 4.2 that the AgentInAll

algorithm is quicker than DCG when the complexity of the coalition value calculation function

is linear according to the size of the coalition. This result can be explained by the fact that the

additional overhead of finding all canonical representative IAs has a larger cost than calculating

the value of the full set of coalitions an agent is in, when the valuation function is linear accord-

ing to the coalition’s size. So the current implementation of DCG should not be used when the

coalition value calculation function cost is relatively inexpensive. That said, a quicker algorithm

than DCG that finds each canonical representative IA could be found in the future.

Figure 4.2 also shows that the DCVC algorithm remains the quickest coalition value calcu-

lation algorithm, but as all the algorithms involve the distribution of an exponentially increasing

number of coalitions, all the different algorithms’ computation times will increase exponentially.

Moving onto positive results, consider Figure 4.3, where it can be seen that there is an

advantage of using the DCG algorithm instead of calculating all coalitions the agent is in. For a

coalition value calculation function ofO(s2), the DCG algorithm delays the significant time cost

of calculating each agent’s assigned coalitions longer than the AgentInAll algorithm, while the

DCVC algorithm delays the significant time cost longer than the DCG algorithm. Now looking

at Figure 4.4, it can be seen that the advantage of using the DCG algorithm instead of calculating

all the coalitions the agent is in, increases the more complex the coalition valuation function is.

The AgentInAll algorithm’s computation time grows a lot faster than the other two algorithms.

For instance at n = 25, the AgentInAll algorithm took approximately 101
2 minutes to complete,

compared to DCG that took approximately 4 seconds and DCVC that took approximately 0.1

seconds. In this figure, DCVC has again not increased its execution time to the level of the other

algorithms as it has still managed to delay the significant exponential time growth until after

n = 25.

Chapter 4. 117

14 16 18 20 22 24 26
0

500

1,000

1,500

2,000

2,500

3,000

3,500

Number of Agents

M
ill

is
ec

on
ds

AgentInAll
DCG

DCVC

FIGURE 4.3: This graph shows the computation time for the agents calculating their coalition
values using different possible algorithms, when the cost of calculating each coalition’s value

is O(s2).

14 16 18 20 22 24 26
0

500
1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500
6,000
6,500
7,000
7,500
8,000

Number of Agents

M
ill

is
ec

on
ds

AgentInAll
DCG

DCVC

FIGURE 4.4: This graph shows, the computation time for the agents calculating their coalition
values using different possible algorithms, when the cost of calculating each coalition’s value

is O(2s).

Finally the number of canonical representative IAs needed to distribute all coalitions were

found through the implementation of the DCG algorithm. These results are presented in Fig-

ure 4.5 for low number of n because the growth of the canonical representative IAs, like the

coalitions themselves are exponential according to the number of agents n. The main issues to

point out here are the following:

• The number of canonical representative IAs are significantly less than the number of pos-

sible coalitions 2n−1 and are approximately 2n−1
n . For example the number of canonical

representative IAs for n = 14 is 1178, while 2n−1
n = 16383

14 = 1170.

Chapter 4. 118

4 6 8 10 12 14
0

200

400

600

800

1,000

1,200

Number of Agents

C
an

on
ic

al
re

pr
es

en
ta

tiv
e

IA
s

FIGURE 4.5: This graph shows the number of canonical representative IAs.

• The number of canonical representative IAs are significantly less than the bound on the

number of possible IAs, which is (n− s+ 1)s, as described earlier.

The DCG does not need to explicitly find all these canonical representative IAs. Each agent

using the DCG algorithm does not use an IA to generate its singleton coalition and any coalition

of size greater than bn2 c, as explained in Section 4.2.

4.5 Towards Distributed Coalition Formation

The DCG algorithm is only designed to organise agents for the first stage of coalition forma-

tion. To complete the coalition formation process in a desirable manner, the agents will need

to collaborate to find an optimal coalition structure and a stable payoff vector. Additionally,

the approach that the agents take, needs to take into account the distributed knowledge of the

coalition values that the DCG algorithm has created. This is the aim of the distributed dynamic

programming (DDP) algorithms introduced in the next chapter.

Chapter 5

119

Chapter 5

A Distributed Search for the
Superadditive Cover Least Core

The computational cost of calculating the value of every coalition grows exponentially as the

number of agents in the system increases. To tackle this issue, these calculations can be dis-

tributed among the agents of the system, as the previous chapter suggests. Yet distributing the

value calculations means that each agent of the system will have only partial, incomplete knowl-

edge of the characteristic function game.

Given this distributed knowledge, this chapter investigates and provides a method to solve

the following issues1: (1) how can a stable core-based solution to a characteristic function game

be guaranteed to be found in a decentralised manner?; and (2) how can this stable solution be

found when the ε values of the stable core-based solutions are not known beforehand?

The decentralised dynamic programming algorithm introduced in this chapter, named DDP,

is a modification of the dynamic programming (DP) algorithm introduced in [138] and detailed

previously in Section 2.4.2. The DDP algorithm shows how the agents can complete all three

stages of the coalition formation process in a distributed manner. It can be used for any charac-

teristic function game, and is guaranteed (through Lemma 5.1, Theorem 5.2 and Corollary 5.3)

to find a coalition structure and payoff vector distribution in the solution concept of the weak

least core for the superadditive cover of the characteristic function game when cross-coalition

side payments are allowed2. This guarantee comes from the fact that the DP and DDP algorithm

can be used to identify the coalitions in the synergy coalitional group representation [41, 81].

The contributions of the DDP algorithm are that: (i) a stable solution is found with dis-

tributed knowledge, which is equivalent to the complete knowledge solution; (ii) this stable

solution is guaranteed to be in the weak-least core+ solution concept for the superadditive cover

of the characteristic function game, where the plus denotes that cross-coalition side payments

are allowed; and (iii) every agent is motivated to perform its part of the algorithm.
1An early attempt at solving issues (1) and (2) of this Chapter was presented via an argumentation-based dialogue

game in [100].
2I.e. The total payoff the agents of a formed coalition receive can be less than the coalition’s total value when

cross-coalition side payments are allowed.

121

Chapter 5 122

The rest of this chapter is structured as follows: Section 5.1 provides a detailed discussion on

the solution concept guarantees of the DDP algorithm; Section 5.2 details the DDP algorithm;

Section 5.3 describes how the communication costs of DDP can be lowered and constrained;

Section 5.4 provides an example of how the DDP algorithm works, once the communication

costs have been constrained; Section 5.5 evaluates the DDP algorithm according to the com-

municated information, the number of agent operations, and the solution concept success rate;

Finally Section 5.6 concludes.

5.1 Guaranteeing Stable Solutions

When the characteristic function game is superadditive (see Section 2.1 for definition), then the

grand coalition is the optimal coalition structure [36]. In this chapter, the synergy coalitional

group (SCG) representation (detailed in Section 2.4.1) is used to guarantee that a least core stable

solution is found. In SCGs, a coalition and coalition value pair (i.e. (C, v(C))) is explicitly

represented within the set of synergy coalitions, denoted W , if that coalition C earns more

utility from forming then any possible partition of C could receive. The values of any other

coalition S not represented within W is found by finding the maximum value partition of S

made up of coalitions explicitly represented within W . In Lemma 2 and Theorem 4 of [41] it is

proven that the set W allows a core solution to be found if the core is non-empty. This Lemma

and Theorem have been modified below to show that a payoff vector in the weak least core can

also be guaranteed to be found for the grand coalition using the W set:

Lemma 5.1. Given a superadditive characteristic function game G = 〈N, v〉 and a payoff vector

x (where x(N) = v(N)), let εw be the maximum weak excess value that still gives a blocking

coalition for x given full knowledge on each coalition’s value. Using only the coalition values

in W , a blocking coalition D for this maximum weak excess value will be present within W .

Proof. Suppose x is blocked by a coalition C through v(C)−|C|εw so that v(C)−|C|εw > x(C)

and ∀εw ′ > εw there is no blocking coalition. If (C, v(C)) ∈W then this proves the Lemma. If

(C, v(C)) /∈W then from the definition of a SCG, it is known that the value of the coalition can

be found through its maximum value partition, i.e. v(C)− |C|εw =
∑

1≤p≤q(v(Cp)− |Cp|εw),

for some set of coalitions {C1, ..., Cq} where:

1.
⋃q
p=1Cp = C

2. Ci ∩ Cj = ∅ for any i, j ∈ {1, ..., q} where i 6= j

3. (Cp, v(Cp)) ∈W , for all Cp ∈ {C1, ..., Cq}

Via substitution, it follows that
∑

1≤p≤q(v(Cp) − |Cp|εw) > x(C) and hence for at least one

Cp then v(Cp) − |Cp|εw > x(Cp). Therefore if the value of a coalition C that is not in the

SCG representation blocks a payoff vector x given the maximum weak excess εw penalty that

still gives a blocking coalition, it has been shown that there exists a coalition Cp ⊂ C, that also

blocks x given the maximum weak excess εw penalty, yet Cp is represented explicitly within the

SCG representation (i.e. (Cp, v(Cp)) ∈W). Thus the proof of the Lemma is complete.

Chapter 5 123

Lemma 5.1 shows that given a superadditive characteristic function game, the grand coali-

tion and a payoff vector distributing the grand coalition’s value, a coalition that blocks the pay-

off vector for the maximum weak excess (that allows a blocking coalition) will be present in the

SCG representation. For further understanding, consider the following example:

Example 5.1. Consider a characteristic function game with N = {1, 2, 3, 4} agents, where the

coalition C = {1, 2, 3} has a value of v({1, 2, 3}) = 25. Given a payoff vector x, that gives

the coalition C the total value x(C) = 18, it is known that the maximum (integer) weak excess

to still give a blocking coalition is εw ′ = 2. For instance x(C) = 18 < v(C) − |C|εw ′ =

25 − (3 × 2) = 25 − 6 = 19, and so coalition {1, 2, 3} is a blocking coalition for x when

εw ′ = 2 but not a blocking coalition when εw ′ = 3.

If C ∈ W then a blocking coalition for the maximum weak excess value (that still admits

a blocking coalition) has been found in the SCG representation. If C /∈ W then there must be

coalitions within W that make up a partition of C and have an equal or greater combined value

then C. In this example assume ({1, 2}, v({1, 2}) = 16), ({3}, v({3}) = 9) ∈ W . The values

of these coalitions have been chosen because v({1, 2}) + v({3}) = v({1, 2, 3}), i.e. the values

are the minimal needed to make sure that coalition {1, 2, 3} is not in the SCG representation.

Given theses preliminaries, to stop coalition {1, 2} being a blocking coalition when εw ′ = 2,

then x({1, 2}) must be greater than or equal to v({1, 2}) − |{1, 2}|εw ′ = 16 − (2 × 2) = 12.

Assume that x({1, 2}) = 12 (i.e. the minimal payoff to satify the coalition has been given).

Recall x(C) = 18. Therefore x3 = x(C) − x({1, 2}) = 18 − 12 = 6. But this gives

x({3}) = 6 < v({3}) − |{3}|εw ′ = 9 − (1 × 2) = 9 − 2 = 7 and so the singleton coalition

{3} is a blocking coalition for x when εw ′ = 2 and this blocking coalition has been found in the

SCG representation.

In conclusion this example shows that if a blocking coalition C with the maximum weak

excess (that still admits a blocking coalition) is not present in the SCG representation, then a

coalition C ′ ⊂ C with the same weak excess value will be present in the SCG representation.

The following theorem shows that given the grand coalition for a superadditive game, the

coalitions in the SCG representation can be used to find a payoff vector within the weak least

core:

Theorem 5.2. For the grand coalition, a payoff vector that minimises the maximum weak excess

can be found using only the coalitions in W .

Proof. The linear program to minimise εw is:
min εw subject to: (5.1)

xi ≥ 0 for each i ∈ N (5.2)

x(N) = v(N) (5.3)

x(C) ≥ v(C)− |C|εw, for all (C, v(C)) ∈W (5.4)

Only the coalitions in W are needed to be used in this linear program, according to Lemma 5.1.

Chapter 5 124

Before introducing the corollary to this theorem, a formal definition regarding cross-coalition

side payments are required, which are shown through the weak ε-core+ and weak least core+

definitions:

Definition 80: The weak ε-core+:- For a characteristic function game G = 〈N, v〉, a coalition

structure and payoff vector pair 〈CS∗, x〉 is in the weak ε-core+ iff:∑
i∈N

xi = CS∗ (5.5)∑
i∈C

xi ≥ v(C)− |C|ε, ∀C ⊆ N (5.6)

The difference of the weak ε-core+ compared to the weak ε-core of Section 2.2.1 is that

a weak ε-core+ payoff vector totals the value of the optimal coalition structure, which may

not be the grand coalition. The difference of the weak ε-core+ compared to the ε-CS-core of

Section 2.2.3 is that the weak ε-core+ does not have the condition that all the payoff of each

coalition in the coalition structure is given to that coalition (i.e. x(C) = v(C), ∀C ∈ CS∗

does not have to hold). Given the definition of the weak ε-core+, the weak least core + can be

defined:

Definition 81: weak least core+:- For a characteristic function game G = 〈N, v〉, a coalition

structure and payoff vector pair 〈CS∗, x〉 is in the weak ε-core+ iff:

〈CS∗, x〉 is in the weak ε-core+

∀ε′ < ε, the weak ε′-core+ is empty

Corollary 5.3. For the grand coalition of a superadditive cover game, a payoff vector that

minimises the maximum weak excess of the superadditive cover can be found using only the

coalitions in W .

Proof. Replace the characteristic function v with the superadditive cover characteristic function

v∗ in Lemma 5.1 and Theorem 5.2 (meaning the grand coalition’s value will be equal to the

optimal coalition structure), to guarantee a weak least core+ solution for the superadditive cover.

Given Corollary 5.3, the DDP algorithms introduced in this chapter identify the coalitions

in the synergy coalitional group (SCG) representation and the coalition structure that maximises

the value of the superadditive cover of the grand coalition to guarantee that a weak least core+

stable solution is found. If cross-coalition side payments were not used, then it would be much

more difficult for the agents to reason over what is the most stable coalition structure and payoff

vector pair, as [112] showed the optimal coalition structure may not be the most stable in this

situation and so multiple coalition structures will have to be compared via not just their value,

but also their stability.

Searching all possible coalition structures is a highly complex task because the total possible

number of coalition structures grows at a significantly higher rate than the number of potential

Chapter 5 125

coalitions [104]. For n agents, the number of possible coalition structures is found using the

Bell number Bn, which is ∼ θ(nn) and so significantly larger then the θ(2n) growth of possible

coalitions [104]. It is of great benefit to the agents to significantly minimise the number of

possible coalition structures to compare.

Additionally, as noted in [2, 66], allowing cross-coalition side payments can benefit multi-

agent systems, as it was argued that introducing cross-coalition side payments can be considered

a more fair payoff mechanism then disallowing cross-coalition side payments The additional

fairness comes from eliminating the effect of the coalition structure on agent payoffs. The

example given in [2] is that it may be possible that in the optimal coalition structure some agents

M ⊂ N are by themselves in singletons, or are members of a comparatively small coalition

compared to the size of the other coalitions in the coalition structure. When cross-coalition side

payments are not allowed, these M agents do not benefit from the cooperation of others, even

when theM agents are in many potential coalitions that have a high value, that the agentsN\M
may have used to negotiate for a better payoff. Yet, for the greater good of the population, i.e.,

maximizing social welfare, theM agents may be forced to stay in the optimal coalition structure.

In this chapter, the DDP algorithm assumes cross-coalition side payments are allowed be-

cause it significantly reduces the computation costs of the agents as multiple coalition structures

will not have to be compared according to their stability.

5.2 Finding a Superadditive Cover Least Core Solution

In this section, the fully decentralised DDP algorithm for finding a solution within the weak

least core+ is introduced. When designing decentralised algorithms for coalition formation, it

is critical to reduce the number of coalitions and coalition structures to be considered by each

agent to minimise computation costs. In the DDP algorithm, a decentralised filtering method

is used to transform a characteristic function game with an exponential representation into a

superadditive cover with a synergy coalition group representation (SCG) [41, 81]. Even though

in the worst case the SCG representation lists every coalition, in the majority of cases this

transformation lowers the number of explicitly represented coalitions (as can be seen in the

experimental evaluation of Section 5.5.1). The explicit listing of a lower number of coalitions

reduces the number of constraints used to find a stable payoff vector. Developing algorithms for

characteristic function games with constraints is an active research area (e.g. [5, 66, 92]). This

chapter shows how agents with distributed knowledge on coalition values can create their own

constraints for any possible characteristic function game, using their own self-interest as their

motivator.

5.2.1 The Filtering Method

The proofs of Section 5.1 show that for any random payoff vector x, the coalition values of only

the coalitions within the SCG representation need to be used in a linear program to guarantee

that a weak least core+ stable payoff vector can be found. Therefore the filtering in the DDP

Chapter 5 126

algorithm distributes the checking of each C ⊆ N coalition to see if C is in the SCG represen-

tation. So, instead of |C ⊆ N | linear program constraints to find a stable payoff vector solution,

there will now be |W | constraints, where W is the set of publicly known coalition and coalition

value pairs, individually denoted (C, v(C)).

The agents can then use the filtered coalitions in W to find the most stable payoff vector

for the superadditive cover of the given characteristic function game by using the following

function:

Definition 82: The function StablePayoff(v∗(N),W), given the superadditive cover of the

grand coalition and the synergy coalition group representation, returns a payoff vector satis-

fying the least weak core+ for the superadditive cover, by returning the solution to the following

linear program:

min εw subject to: (5.7)

xi ≥ 0 for each i ∈ N (5.8)

x(N) = v∗(N) (5.9)

x(S) ≥ v(S)− |S|εw for each S ∈W (5.10)

The linear program used in the StablePayoff function is different to the traditional least

core finding linear program, detailed in Section 2.4.3. Firstly, the new linear program divides the

value of the optimal coalition structure of the characteristic function game (which is now also

the superadditive cover of the grand coalition). Secondly, the exponential constraint S ⊆ N has

been replaced by the filtered W . In the worst case, W holds the same number of constraints as

|S ⊆ N |, yet this number is significantly reduced experimentally, as show in Section 5.5, for

standard coalition-value distributions in the literature [93].

The distribution of the task of checking each coalition S ⊆ N to see if S is in the setW uses

elements of the DCG algorithm of Chapter 4. The DCG algorithm is used to give each agent i a

coalition value calculation share (CVi) that is:

(a) approximately equal to another agent j’s share, i.e. for all i, j ∈ N then |CVi| = |CVj |+ p

where −2 ≤ p ≤ 2;

(b) contains only coalitions where i is a member, i.e. for all C ∈ CVi then i ∈ C.

Point (a) is used to share the coalition value calculations around the group. Point (b) is used

as an additional incentive for the agent to calculate the value of the coalition it has been assigned.

In the DDP algorithm, agents only communicate a coalition value to each other from their

value calculation share, when this coalition is a member of the explicit SCG representation of

the characteristic function game. A coalition and coalition value (C, v(C)) should be explicitly

included in the W set if v(C) is of greater value than all possible partitions of C containing

coalitions only from within W .

Chapter 5 127

Algorithm 7: A function to detail to the agents what information to communicate between
themselves within the DDP algorithm.

1: function Communicate(i, s, n, bal)
2: Input: 〈i, s, n, bal〉; where i is the agent ID, s the size of the coalitions to evaluate, n is the

total number of agents and bal is the balance pointer.
3: Output: 〈Γ〉 where Γ is a vector of objects containing coalition values or coalition

structures to communicate to the other agents.
4: vector Γi = 〈〉
5: if s == 1 then
6: Γi0 := v({i}); // If size = 1, report this information to all the agents
7: add ({i}, v({i})) to W ; // All coalitions of size 1 belong in the SCG representation
8: else
9: int k := 0;

10: for each C ∈ DCGSingleSize(i, s, n, bal) do
11: f2[C] := max{f2[C ′] + f2[C\C ′] : C ′ ⊂ C and 1 ≤ |C ′| ≤ 1/2|C|}; // f2[C] is the

maximum value of any two-set partition of C
12: if f2[C] < v(C) then
13: set f1[C] := C and f2[C] := v(C); // C is greater in value than all its two-set

partitions
14: set Γik := v(C); // So the value of the coalition should be reported to all agents...
15: add (C, v(C)) to W ; // ...because C is in the SCG
16: else
17: set f1[C] := C∗ where C∗ maximises f2[C];
18: set Γik := C∗ // The best two-set partition of C is reported to the agents
19: end if
20: k + +;
21: end for
22: end if
23: return Γi;
24: end;

5.2.2 The Distributed Dynamic Programming (DDP) Algorithm

The DDP algorithm is split into three main functions for clarity. The first function, named

Communicate (detailed in Algorithm 7), shows how the agents divide the parts of the original

DP algorithm (see Section 2.4.2) up between themselves and how the agents decide what to

communicate to the others. The second function, named decodeDDP (detailed in Algorithm 9),

shows how each agent takes the communicated information from every other agent and uses

this information to update its own knowledge base. Finally the full DDP algorithm is detailed

in Algorithm 10. Through the DDP algorithm, the v table stores the values of the original

characteristic function game, the values of the superadditive cover is stored in the f2 table,

while the f1 table stores the partition of each coalition that maximises its superadditive cover.

In more detail3, the Communicate function of Algorithm 7 describes to each agent i what

information it should communicate to the others (in the vector Γ), regarding the coalitions in
3The following description does not take into account the issue of communication costs. This issue is dealt with

in Section 5.3.

Chapter 5 128

Algorithm 8: The Single sized variant of the Distributed Coalition Generation (DCG)
method.

1: function DCGSingleSize (int i, s, n, bal)
2: Input: 〈i, s, n, bal〉 (1 ≤ i ≤ n); where i the agent ID, s is the size of the coalitions, n is

the number of agents, and bal is the balance pointer.
3: Ouput: 〈CVi,s〉; where CVi,s is the ordered set of coalitions of size s assigned to agent i,

denoted CVi,s = 〈C1, C2, ..., Ck〉.
4: begin
5: if s < n then
6: int count := 1;
7: boolean completed := false;
8: int msd := 0;
9: int[] t := 〈0, 0, ..., n− s〉; // Get the first canonical representative IA

10: while (complete == false) do
11: p := π(t);
12: r := (n× p)/s;
13: if (bal ≤ i < bal + r) or (bal + r > n and 1 ≤ i < bal + r − n) then
14: C(i, t) = Ccount ∈ CVi,s; // Add the coalition to the set of coalitions to return
15: count+ +;
16: end if
17: bal := (bal + r) mod n;
18: t = build(t); // Get the next canonical representative IA
19: end while
20: else if (s == n) and (i == bal) then
21: CVi,n = {N};
22: end if
23: end

CVi that are of size s. These coalitions are found using the DCGSingleSize function, which

is a single sized variant of the DCG algorithm displayed in algorithm 8 (that uses the function

build from the previous chapter).

In the Communicate function, if s = 1 then each agent should simply communicate the

value of the singleton coalition of itself and represent this coalition explicitly within the SCG

representation (lines 5 to 7). If s > 1 then the Communicate function assigns each agent

a coalition value calculation share via the DCGSingleSize function. For each coalition of

size s in i’s coalition value calculation share, agent i checks if the value of C adds any synergy

for the agents of C. If there is some additional synergy found (lines 12 to 15) then f1 is set

equal to C and f2 is set equal to v(C), indicating that the agents of C cannot gain any payoff

from splitting into smaller coalitions, meaning C should be in the SCG representation. In this

situation the agent i should add the value of v(C) to Γi. Alternatively, if there is no additional

synergy found (lines 16 to 18) f1 is set equal to C∗ and f2 is set equal to v(C∗), indicating that

the agents of C can maximise their value by splitting into the smaller coalitions detailed in the

set C∗ = {C∗1 , ..., C∗k}, where:

1.
⋃k
p=1C

∗
p = C

2. C∗i ∩ C∗j = ∅ for any i, j ∈ {1, ..., k} where i 6= j

Chapter 5 129

Algorithm 9: An function showing how the agents should decode the information com-
municated to them within the DDP algorithm.

1: function decodeDDP(i, s, n, bal)
2: Input: 〈i, s, n, bal〉; where i is the agent ID, s the size of the coalitions to evaluate, n is the

total number of agents and bal the variable used to balance the agents’ coalition value
calculation shares.

3: if s == 1 then
4: for j := 1 to n where j 6= i do
5: set f1[{j}] := {j} and f2[{j}] := v(Γj0); // Set the value of the singleton coalitions to

the communicated values
6: add ({j}, v({j})) to W ; // Add all the communicated coalitions of size 1 to the SCG
7: end for
8: else
9: int[n] counter := [0, ..., 0];

10: int m := 0;
11: tm := 〈0, 0, ..., n− s〉; // Generate the first canonical representative IA
12: while tm 6= null do
13: p := π(tm); // Find the period of the IA
14: r := (n ∗ p)/s; // Find the number of agents to use the IA
15: for each j ∈ N where j 6= i do
16: if bal ≤ j < bal + r or (bal + r > n and 1 ≤ j < bal + r − n) then
17: C := C(j, tm); // Get the coalition for j if j was one of the next r agents
18: if Γjcounterj−1

== v(C) then
19: f1[C] := [C] and f2[C] := v(C); // Parse j’s communicated data correctly
20: add (C, v(C)) to W ; // Add C to the SCG
21: else
22: f1[C] := Γjcounterj−1

and f2[C] := f2[v(Γjcounterj−1
)]; // Parse j’s

communicated data correctly
23: end if
24: counterj−1 + +; // Increment agent j’s counter
25: end if
26: end for
27: bal := bal + r; // Increment pointer
28: if bal > n then
29: bal := bal − n; // Correct the pointer
30: end if
31: tm = build(tm); // Get next canonical representative IA
32: end while
33: end if

In this situation the agent i should add the collection of coalitionsC∗ to Γi. The Communicate

function then returns Γi for agent i to communicate. Later in Section 5.3, it is shown how the

cost of communicating Γ can be significantly reduced.

Now given the communicated data on all coalitions of size s, in the form Γj for all j ∈
N , each agent i needs a method to decode the data, detailed in the decodeDDP function of

Algorithm 9. If s = 1 then each agent knows that only the value of each singleton coalition

was communicated, which is straightforward to decode (lines 4 to 7). If s > 1 then this is more

Chapter 5 130

Algorithm 10: Agent i’s section of the decentralised DDP algorithm to find a stable char-
acteristic function game outcome given distributed knowledge on the coalition values.

1: function DDP(i,N)
2: Input: 〈i,N〉; where i is the agent ID and N is the set of agent IDs.
3: Output: 〈CS∗, xk〉 where CS∗ is the optimal coalition structure and xk is a weak least

core+ stable payoff vector.
4: int bal := 1;
5: set W := {};
6: for int s := 1 to n do
7: int tempBal := bal;
8: send Communicate(i, s, n, bal) to all agents;
9: wait until Γj received from all agents j ∈ N\{i};

10: decodeDDP(i, s, n, tempBal); // Decode all data received from the other agents
11: end for
12: Set CS∗ := {N};
13: Boolean edits := true;
14: while edits == true do
15: edits := false;
16: for each C ∈ CS∗ do
17: if f1[C] 6= C then
18: set CS∗ := (CS∗\{C}) ∪ {f1[C]}; // Replace C in the coalition structure, with its

best two-set partition
19: edits := true; // This is set to true so the agents will look again through CS∗ to see

if any other coalitions in CS∗ can be broken down further into two-set partitions
20: end if
21: end for
22: end while
23: xi := StablePayoff(CS∗);
24: Collaboratively choose an xk to implement;
25: return 〈CS∗, xk〉;
26: end;

complicated to decode as: (i) each agent may have calculated the value of multiple coalitions;

(ii) each agent may have searched for the optimal two-set partition of multiple coalitions; and

(iii) not all agents may have used the same increment arrays t’s to generate their coalitions (due

to the use of the bal pointer in the DCGSingleSize function).

When s > 2, the decodeDDP proceeds by using every canonical representative increment

array (lines 11 and 31), to generate the coalitions that the agents N\{i} calculated the value for

(line 17). As not all of the agents may have used every increment array due to the repeating

sequences (line 13 and 14), the following are used: (a) the bal pointer (line 16 and 27 to 29); (b)

the r value (line 14); and (c) the counter array (line 9, 18 and 22). Both (a) and (b) are used for

the same reasons as in the DCG algorithm; to work out which agents use which increment array,

while (c) is used so the agent can keep track of what position of each Γj is to be used next.

When agent i, using the decodeDDP function, finds that another agent generated a coalition

C (at line 17), if i finds the next element of Γj to be a coalition value, then this indicates to agent

i that C is more valuable than any possible partition of C. To indicate this synergy: f1[C] is

Chapter 5 131

set to equal C; f2[C] is set equal to v(C) to indicate the value of this synergy; and (C, v(C))

is to added to the list of coalitions explicitly represented in the SCG representation. If the next

element of Γj is instead set to a partition ofC that has the maximum value, then (just like the DP

algorithm [138]): f1[C] is set equal to this partition; and f2 is set equal to the partition’s value.

Once all possible increment arrays have been generated, then the decoding of the different data

sent by the agents is complete.

Finally, the full DDP algorithm can be introduced in Algorithm 10, which takes an agent

ID i from the set N as input and outputs a characteristic function game outcome of an optimal

coalition structure CS∗ (representing the coalition structure that maximises the superadditive

cover of the grand coalition) and a weak least core+ stable payoff vector xk.

The DDP algorithm begins with the agents sharing the required coalition values and/or coali-

tion partitions and decoding this communication for every potential size of a coalition (lines 6 to

11). The same pointer value is used for both the Communicate and decodeDDP functions to

keep them synchronised. Next all the agents find an optimal coalition structure using the method

first detailed in the DP algorithm of [138] (lines 16 to 21). Lastly all the agents find a stable

payoff vector using the linear program detailed in the StablePayoff function described in

Section 5.2.1, which only includes the coalitions in the SCG representation as constraints. To-

gether the agents should choose the final single payoff vector in accordance to some agreed

criteria as the least-weak-CS core+ may contain multiple different payoff vectors. For example,

the payoff vector chosen could be: from an agent, picked according to some form of lottery; or

the most commonly suggested payoff vector; or the one that satisfies the majority of agents to

some degree; or the one that has the smallest deficit vector4. In the next section, modifications

to the DDP algorithm are detailed that significantly reduce the communication costs.

5.3 Lowering the Communication Costs

If bandwidth is costly, the agents have three main choices on how to lower communication costs

(and for the algorithm to still remain decentralised and distributed):

1. Give each two-set partition of a coalition an index value.

2. Indicate whether a coalition’s value creates synergy or not.

3. State a worst case number of bits to communicate for every possible coalition.

The advantage of giving the two-set partitions of each coalition an index value can be seen

from the following discussion. For any coalitionC of size s, if the agents of the two-set partition

are required to be explicitly stated, then it will take a worst case of b s2c×dlog2(s)e bits to detail

this because it will take dlog2(s)e bits to represent one agent, and the smallest part of the two-set

partition of C contains a maximum of b s2c agents. Yet this is significantly more bits compared

to using indexes.

For any coalition C of size s, there are 2s−1 − 1 different possible two-set partitions of

C [36]. The formula 2s−1 − 1 is equivalent to the (s − 1)th Mersenne number [75]. In

4Definition in Section 2.2.1

Chapter 5 132

[53], function posn(C, n, s) is used for indexing a coalition C = 〈c1, ...cs〉 of size s, given

n = {ag1, ag2, ..., agn} agents, where C ⊆ n. The posn function gives an index relative only

to coalitions of the same size s, and can be build upon to index every coalition C relative to

coalitions of all sizes (that are all subsets of n), through the following totalposn function:

totalposn(C, n, s) =
∑

1≤k≤s−1

(
|n|
k

)
+ posn(C, n, s)

Now totalposn can be used to give the index of any two-set partition of a coalition C = n

by giving the index value of the first set partition C1, while the second set partition is all the

agents not in the first set partition, i.e. C2 = C\C1. It is assumed that C1 is either: (a) the

smallest coalition of the partition, i.e. |C1| < |C2|; or (b) both coalitions are of equal size and

C1 is smaller lexicographically, i.e. |C1| = |C2| and C1 <lex C2. Additionally, the function

totalposn−1 (that makes use of the posn−1 function from [53]) returns a coalition given an

index m:

totalposn−1(m,n) = indexCorrect(m,n, 1)

indexCorrect(m,n, s) = posn−1(m,n, s) if m−
(
|n|
s

)
< 0 else

indexCorrect(m,n, s) = indexCorrect(m−
(
|n|
s

)
, s+ 1)

To show the benefits of communicating an index for the two-set partition, compared to

explicitly stating the agents, Table 5.1 shows the number of bits required for both methods.

Table 5.1 clearly shows that indexing is the better method because the number of bits required

for explicitly stating the agents grows at a higher rate than the indexing method, which grows

linearly.

Alternatively, if indicating the best two-set partition of each coalition was not required, the

communication costs can be lowered further. In this case, each agent j could send to every

agent i (where i ∈ N\{j}), a single bit for each of its coalitions in CVj to indicate whether this

coalition adds synergy (bit sent is 1) or not (bit sent is 0). Yet this method will require each agent

i to either: (i) re-calculate the value of the coalition, which agent j has already completed (if bit

sent is 1); or (ii) re-calculate the best two-set partition of the coalition, which agent j again has

already completed (if bit sent is 0).

A compromise between the two approaches of using an index value or just sending a single

bit, is to use a pre-agreed limit on the number of bits to be communicated per coalition, denoted

bc. In this scenario, the first bit should be reserved to indicate that the coalition adds synergy (the

first bit is set to 1) or not (the first bit is set to 0). Then the remaining bits should be used to detail

the coalition value (if the coalition creates synergy and the coalition value can be represented

in the remaining bits) or the binary search instructions for the index value of the best two-set

partition (if the coalition does not create any synergy). For example, when a coalition does not

create any synergy, if there are m possible two-set partitions of a coalition, the second bit (the

Chapter 5 133

s two-set partitions C bits Indexing bits
2 1 1 1
3 3 2 2
4 7 4 3
5 15 6 4
6 31 9 5
7 63 9 6
8 127 12 7
9 255 16 8
10 512 20 9
11 1047 20 10
12 2047 24 11
13 4095 24 12
14 8191 28 13
15 16383 28 14
16 32767 32 15
17 65535 40 16
18 131071 45 17
19 262143 45 18
20 524288 50 19

TABLE 5.1: This table details the number of bits needed to represent the best two-set partition
of a coalition, where: two-set partitions represent the total number of ways to split a coalition
of size s into two partitions, found using the formula 2s−1− 1; C bits is the worst case number
of bits to explicitly represent each agent of one coalition of size b s2c, found using the formula
b s2c × dlog2(s)e; and Indexing bits is the worst case number of bits using the indexing method

of the totalposn function.

first bit indicates whether a coalition value creates synergy or not) states whether the index of

the best partition is higher (bit is set to 1) or lower (bit is set to 0) than m/2. Then the next bit

designates if the index of the best partition is higher or lower than the midpoint of the remaining

index values, and so on until the best partition is found or the number of bits required reaches

the pre-agreed limit. This compromise approach has the benefit of each agent i knowing that the

worst case bits of information they will be communicating will be the pre-agreed limit on bits

per coalition multiplied by the number of coalitions in i’s value calculation share (i.e. bc×CVi).

5.4 A DDP Algorithm Example

The following is a discussion of the characteristic function game example outlined in Table 5.2,

where the original value of each coalition is given in v[C], the superadditive cover of C is given

in f2[C] and the index of the partition of C that maximises f2[C] is given in f1[C] (where the

indexing scheme is described in Section 5.3). In the DDP algorithm, the agents go step by

step through the coalitions of each size. The agents begin with the singleton coalitions, where

they calculate their assigned value, add it to the synergy coalitional game (SCG) representation

and communicate the value to the other agents. As all the singleton coalitions are in the SCG

representation then their f1 pointers are set to the index value of zero to indicate this. In Table 5.2

Chapter 5 134

s C Ag The evalations performed before setting f1 and f2 f1 f2 SCG
1 {1} 1 v[{1}] = 1.0 0 1.0 YES
{2} 2 v[{2}] = 1.1 0 1.1 YES
{3} 3 v[{3}] = 0.9 0 0.9 YES
{4} 4 v[{4}] = 0.9 0 0.9 YES

2 {1, 2} 1 v[{1, 2}] = 2.0 f2[{1}] + f2[{2}] = 2.1 1 2.1 NO
{1, 3} 1 v[{1, 3}] = 2.0 f2[{1}] + f2[{3}] = 1.9 0 2.0 YES
{1, 4} 4 v[{1, 4}] = 2.2 f2[{1}] + f2[{4}] = 1.9 0 2.2 YES
{2, 3} 2 v[{2, 3}] = 2.2 f2[{2}] + f2[{3}] = 2.0 0 2.2 YES
{2, 4} 2 v[{2, 4}] = 2.0 f2[{2}] + f2[{4}] = 2.0 1 2.0 NO
{3, 4} 3 v[{3, 4}] = 2.0 f2[{3}] + f2[{4}] = 1.8 0 2.0 YES

3 {1, 2, 3} 1 v[{1, 2, 3}] = 3.0
f2[{2}] + f2[{1, 3}] = 3.1

f2[{1}] + f2[{2, 3}] = 3.2
f2[{3}] + f2[{1, 2}] = 3

1 3.2 NO

{1, 2, 4} 4 v[{1, 2, 4}] = 3.0
f2[{2}] + f2[{1, 4}] = 3.3

f2[{1}] + f2[{2, 4}] = 3.0
f2[{4}] + f2[{1, 2}] = 3.0

2 3.3 NO

{1, 3, 4} 3 v[{1, 3, 4}] = 3.3
f2[{3}] + f2[{1, 4}] = 3.1

f2[{1}] + f2[{3, 4}] = 3
f2[{4}] + f2[{1, 3}] = 2.9

0 3.3 YES

{2, 3, 4} 2 v[{2, 3, 4}] = 3.0
f2[{3}] + f2[{2, 4}] = 2.9

f2[{2}] + f2[{3, 4}] = 3.1
f2[{4}] + f2[{2, 3}] = 3.1

1 3.1 NO

4 N 3 v[{1, 2, 3, 4}] = 4.0
f2[{2}]+f2[{1, 3, 4}] = 4.4
f2[{4}]+f2[{1, 2, 3}] = 4.1
f2[{1, 3}] + f2[{2, 4}] = 4

f2[{1}]+f2[{2, 3, 4}] = 4.1
f2[{3}]+f2[{1, 2, 4}] = 4.2
f2[{1, 2}]+f2[{3, 4}] = 4.1
f2[{1, 4}]+f2[{2, 3}] = 4.4

2 4.4 NO

TABLE 5.2: This table details a characteristic function game for the set of agents N =
{1, 2, 3, 4}. The agents find a stable least-weak-CS core+ solution in a decentralised man-
ner when using the DDP algorithm. The array f1 is set to the lowest possible index value for

each coalition.

it is shown, through the Ag column, which agents are assigned which coalitions in their value

calculation share5.

Now for all coalitions of sizes 2 ≤ s ≤ n the agent who is assigned to calculate the value

of a coalition C will also have to compare the values of all the possible two-set partitions of

C. If the value of the coalition is higher than the value of any possible two-set partition, the

calculating agent needs to communicate this to the agents, set the index value to zero and add

the coalition to the SCG representation. If the value of a two-set partition is higher, then the

calculating agent also needs to communicate this, and set the index value to the correct number

via the totalposn function. For example in Table 5.2, f1[{1, 2}] is set to 1 as there is only one

way to split the coalition {1, 2} into a two-set partition and this partition has a greater combined

value of 2.1 compared to the value of the coalition {1, 2}. Alternatively, f1[{1, 2, 4}] is set to 2,

because there are three different ways to split {1, 2, 4} into a two-set partition, where the most

valuable partition corresponds to {{2}, {1, 4}}, which is assigned an index value of 2 according

to the totalposn function. This index value of 2 occurs because the smallest coalition in the

partition (i.e. {2}) is the second smallest coalition (in lexicographical order) of the smallest

5The canonical representative increment arrays used to assign the coalitions: for s = 2 were [0, 2] and [1, 1],
while for s = 3, [0, 0, 1] was used.

Chapter 5 135

possible coalition size. When there is more than one partition with the same value, then the

partition with the lowest index is assumed to be used.

In this example, it can be seen that 9 coalition values have been communicated, and there-

fore (24−1 − 1) − 9 = 6 index values have been communicated by the agents. Given this

communicated information, the agents find that there are two possible optimal coalition struc-

tures of the characteristic function game described in the v table of Table 5.2 that maximise the

superadditive cover f2 of the grand coalition: (a) {{1, 4}, {2, 3}}; or (b) {{2}, {1, 3, 4}}. It is

assumed, that the optimal coalition structure with the lowest index value is chosen, which is:

{{2}, {1, 3, 4}}.
Using the 9 communicated coalition values in the linear program of the StablePayoff

function will allow the agents to find a weak least core+ solution of the superadditive cover. The

grand coalition of the superadditive cover gives a value of εw = 0 under the weak least core+

definition, indicating that the core of the superadditive cover is non-empty. An example payoff

vector that satisfies all the agents of the game described in Table 5.2 is: x(1.0, 1.1, 1.1, 1.2).

5.5 Evaluation

This section will provide an evaluation through the discussion of: (a) the information communi-

cated between the agents for two standard coalition-value distributions; (b) the number of split

operations each agent needs to perform (i.e. the number of two-set partitions of every coalition);

(c) how to modify DDP to make sure that the difference between the number of split opera-

tions between the agents are lowered; and (d) how successful DDP is at finding an outcome in

different solution concepts.

For part (a), an experimental analysis was used as (a) is dependent on the coalition-value

distribution. The experiments were run using: (i) different agent numbers from 4 to 12, where

30 runs for each agent number were used; and (ii) different coalition-value distributions, which

were normal, uniform and NDCS, as is usual in the coalition structure generation literature [93].

These coalition-value distributions are defined as:

• Uniform:- Each coalition’s value is determined by multiplying the number of agents in the

coalition by a variable q picked from a uniform distribution between 0 and 1.0. Formally,

v(C) = max(0, |C| × q), where: q ∈ U(a, b); a = 0; and b = 1.0.

• Normal:- Each coalition’s value is determined by multiplying the number of agents in the

coalition by a variable q picked from a normal distribution with mean 1 and variance 0.1.

Formally, v(C) = max(0, |C| × q), where: q ∈ N (µ, σ2); µ = 1; and σ2 = 0.1.

• NDCS:- Each coalition’s value is determined by a variable q picked from a normal dis-

tribution with mean of the coalition’s size and variance also according to the coalition’s

size. Formally, v(C) = max(0, q), where: q ∈ N (µ, σ2); µ = |C|; and σ2 = |C|.

Chapter 5 136

4 6 8 10 12
0
5

10
15
20
25
30
35
40
45
50
55
60

Number of agents

C
oa

lit
io

n
va

lu
es

co
m

m
un

ic
at

ed
as

%

uniform
normal
NDCS

FIGURE 5.1: This figure shows the percentage of coalition values communicated for the uni-
form, normal and NDCS coalition-value distributions. A 95% confidence interval was used.

5.5.1 The Communicated Information

As discussed in Section 5.3, the DDP algorithm requires the agents to communicate at least

one bit for each coalition they are assigned. To help estimate the cost of allowing agents to

communicate all of the coalition values that DDP requires (according to the Communicate

function), the number of coalition values communicated for the three standard coalition-value

distributions is illustrated in Figure 5.1, where the x axis shows the total number of agents of

the characteristic function game and the y axis shows the coalition values communicated as a

percentage of the total coalitions. For example, using Figure 5.1, if it is known that the worst-

case cost of communicating one coalition value in an 8 agent game is bcv, and the coalition-

value distribution is expected to be of a normal distribution, then an estimate for the total cost is

15× bcv.

Additionally, to estimate the cost of allowing agents to communicate an index for the best

two-set partition of each coalition that does not create synergy, the average percentage of re-

quired index communications is 100% minus the average percentage of communicated coalition

values. For example, in Figure 5.1, if it is known that the worst-case cost of communicating one

coalition index in an 8 agent game is bi, and the coalition-value distribution is expected to be of

a normal distribution, then an estimate for the total cost is (100− 15)× bi.
We can infer from Figure 5.1 that the number of the coalitions in the SCG representation

decreases (as a percentage of the total coalitions) as n increases, for all the uniform, normal and

NDCS coalition value distributions. This means that searching for a core or weak least core

stable payoff vector using the full set of coalitions with these coalition value distributions is

greatly inefficient (as the SCG representation includes all the coalitions to find a core or weak-

least core payoff vector, see Section 5.1). This is why the DDP algorithm uses the decentralised

filtering process.

Finally the experiments showed the normal coalition-value distribution (and the NDCS vari-

ant) to require less coalition values to be communicated. Upon closer inspection, this occurred

Chapter 5 137

n Total Operations Highest Ag Ops Lowest Ag Ops Difference Operations for N
2 1 1 0 1 1
3 6 4 1 3 3
4 25 11 4 7 7
5 90 30 15 15 15
6 301 72 41 31 31
7 966 192 129 63 63
8 3025 475 348 127 127
9 9330 1252 997 255 255
10 28501 3244 2733 511 511
11 86526 8796 7773 1023 1023
12 261625 23431 21384 2047 2047

TABLE 5.3: This table gives the number of split operations occurring in the DDP algorithm for
different n values where: Total Operations is the total split operations by all the agents; Highest
Ag Ops gives the maximum number of split operations an agent will perform; Lowest Ag Ops
gives the lowest; Difference gives the difference between highest and lowest; while Operations

for N gives the number of split operations required for the grand coalition.

because in general, the q value used in the normal (and NDCS) coalition-value calculations have

a more compact distribution. Therefore, there is a higher chance in a uniform coalition-value

distribution that a larger coalition will create synergy, which requires for that coalition to be

communicated.

5.5.2 Agent Split Operations

For coalitions of increasing size, there are an exponentially increasing number of ways to split

such coalitions into two partitions (henceforth known as split operations), as DDP requires. This

exponentially increasing sequence is actually equivalent to the Stirling number of the second

kind: S(n+ 1, 3) [104]. Even though each agent is assigned an approximately equal number of

coalitions in its coalition value calculation share, each agent using DDP will have different num-

bers of split operations to perform. This is because the agents do not calculate an equal number

of coalitions of every size, for example there is only ever one grand coalition to distribute.

As can be seen in Table 5.3, as the total number of agents increases, the gap between the

highest and lowest number of split operations performed by an agent also increases. Yet high-

lighted in the final two columns of Table 5.3 is the fact that this gap is equivalent to the number

of split operations required by the grand coalition N . Therefore a modification of DDP, named

DDP∗, is introduced here, that constricts the range of split operations required for each agent.

The algorithm DDP∗ is the same as DDP except that the split operations of the grand coalition

are divided among the agents. DDP∗ uses the split function presented in Algorithm 11 to

achieve the distribution of the grand coalition split operations. The DDP algorithm is modified

from the DDP∗ algorithm by replacing line 6 of the DDP algorithm with the following: “for int
s := 1 to n− 1 do” and immediately after this for loop the split function is called.

In the split function of Algorithm 11, firstly the number of split operations that every

agent has to perform is calculated (line 3). This is found by dividing the (n − 1)’th Mersenne

Chapter 5 138

Algorithm 11: The function determining which two-set partitions of the grand coalition
each agent should search in the DDP∗ algorithm.

1: function split(i, n, bal)
2: Input: 〈i, n, bal〉; where i is the agent ID, n is the number of agents and bal is the next

agent to calculate an additional value
3: int k := b2n−1−1

n c; // k is the number of two-set partitions for each agent
4: if i 6= bal then
5: f i2[N] := max{f2[C ′] + f2[N\C ′] : C ′ := totalposn−1(m,N) for all

(k ∗ i)− k < m ≤ k ∗ i}; // m is all the indexes of the two-set partitions to check
6: else
7: f i2[N] := max{f2[C ′] + f2[N\C ′] : C ′ := totalposn−1(m,N) for all

(k ∗ i)− k < m ≤ k ∗ i and k ∗ n < m}; // In this case, agent i gets additional two-set
partitions to check

8: end if
9: f i1[N] := C∗ where C∗ maximises f i2[N]; // Now C∗ maximises only the two-set

partitions of N that agent i searched
10: send f i1[N] and f i2[N] to all agents;
11: f2[N] = max{f j2 [N] : ∀j ∈ N}; // The real maximum partition of N is now found
12: if i == bal then
13: calculate v(N); // agent with ID bal is assigned to calculate the value
14: send v(N) to all agents;
15: else
16: wait to receive v(C);
17: end if
18: if f2[N] < v(N) then
19: f1[N] := N and f2[N] := v(N);
20: add (N, v(N)) to W ; //N is added to the SCG if its value is greater than any two-set

partition
21: else
22: f1[N] := f j1 [N] where f2[N] == f j2 [N];
23: end if
24: end;

number (which corresponds to the number of ways to split the grand coalition into two, shown

by Table 5.1) by n. If the grand coalition split operations divides by the number of agents to

give an integer value, then each agent gets assigned an equal number of split operations for the

grand coalition (line 5 and 7). If the grand coalition split operations do not divide equally, then

the agent who is to calculate the grand coalition value is assigned the remainder of the grand

coalition split operations (line 7). Each agent i then sets its f i1[N] and f i2[N] pointers correctly

(in lines 5, 7 and 9) and sends them to the others (line 10). The agents proceed to find the largest

f j2 [N] pointer (line 11) and use it to see if the grand coalition creates any synergy or not (line

18 to 22), once the grand coalition value has been calculated by the agent assigned to it (line 12

to 17).

This distribution of grand coalition split operations will not create any new strategic issues

when cross-coalition side payments are allowed, because: (i) each agent is in the grand coalition,

so each agent has a motivation to maximise the value of the grand coalition partition; and (ii) all

Chapter 5 139

n DDP op DDP∗ op∗ DDP Range DDP∗ Range
2 op(1, 0) op∗(1, 0) [100%,0%] [100%,0%]
3 op(4, 1, 1) op∗(2, 2, 2) [66.7%,16.7%] [33.3%,33.3%]
4 op(5, 5, 11, 4) op∗(6, 6, 8, 5) [44%,16%] [32%,20%]
5 op(30, 15, 15, 15, 15) op∗(18, 18, 18, 18, 18) [33.3%,16.7%] [20%,20%]
6 op(48, 48, 72,

43, 43, 47)
op∗(53, 53, 47,
49, 49, 52)

[23.9%,14.3%] [17.6%,15.6%]

7 op(192, 129, 129,
129, 129, 129, 129)

op∗(138, 138, 138,
138, 138, 138, 138)

[19.9%,13.4%] [14.3%,14.3%]

8 op(349, 349, 373, 373,
379, 379, 475, 348)

op∗(364, 364, 388, 388,
394, 394, 370, 363)

[15.7%,11.5%] [13%,12%]

9 op(1000, 1000, 1000,
1028, 1028, 1028,
1252, 997, 977)

op∗(1028, 1028, 1028,
1056, 1056, 1056,
1028, 1025, 1025)

[13.4%,10.7%] [11.3%,11%]

10 op(2860, 2860, 3244,
2733, 2733, 2747,
2747, 2859, 2859, 2859)

op∗(2911, 2911, 2785,
2784, 2784, 2798,
2798, 2910, 2910, 2910)

[11.4%,9.6%] [10.2%,9.8%]

11 op(8796, 7773, 7773,
7773, 7773, 7773, 7773,
7773, 7773, 7773, 7773)

op∗(7866, 7866, 7866,
7866, 7866, 7866, 7866,
7866, 7866, 7866, 7866)

[10.2%,9%] [9.1%,9.1%]

12 op(21775, 21895, 23431,
21384, 21512, 21512,
21514, 21514, 21770,
21770, 21774, 21774)

op∗(21945, 22065, 21561,
21554, 21682, 21682,
21684, 21684, 21940,
21940, 21944, 21944)

[9%,8.2%] [8.4%,8.2%]

TABLE 5.4: This table explicitly details the deterministic operation vectors for the DDP and
DDP∗ algorithm, where the range columns detail the numbers of operations an agent has to
perform as a percentage of the total operations (where the total operation number is found from

Table 5.3).

agents will want to find the optimal superadditive cover of the grand coalition because all agents

will then have more utility to distribute between themselves. Alternatively, if utility transfers

are not allowed between the coalitions, then distributing the grand coalition split operations may

introduce strategic considerations, as an agent i may want to hide a grand coalition partition that

leads to a coalition structure with itself in a small coalition that has little utility to distribute

between its member agents.

The differences between the number of split operations each agents computes can be anal-

ysed in Table 5.4, where the split operations are grouped into a vector op (or op∗) where agent

i will perform opi (or op∗i) number of split operations. Analysing Table 5.4, it can be seen

that the split operation range for the DDP∗ algorithm has been significantly restricted com-

pared to the range for the DDP algorithm. For example, the 6 agent split operation vector for

the DDP algorithm is op(48, 48, 72, 43, 43, 47), while Table 5.3 shows that the total number

of split operations for 6 agents is 301 (i.e.
∑

1≤i≤6 opi = 301), meaning the range of this

operation vector is between op3=72
301 = 23.9% and op4=op5=43

301 = 14.3%. Using the DDP∗ al-

gorithm to redistribute the 31 split operations required for the grand coalition approximately

evenly around the agents of the system, gives the operation vector op∗(53, 53, 47, 49, 49, 52). In

Chapter 5 140

op∗, agent 1 gets 53 split operations because 53 = op1 + b31
6 c = 48 + 5. Additionally in op∗,

the agent assigned to calculate the grand coalition (agent 3), gets 47 split operations because

47 = op1 − 31 + b31
6 c+ (31− (b31

6 c × 6)) = 72− 31 + 5 + 1. The redistribution of the grand

coalition split operations has restricted the range, compared to the operation vector of the DDP

algorithm, as it is now between op∗1=op∗2=53
301 = 17.6% and op3=47

301 = 15.6%.

Additionally it can be seen that for some agent numbers, the number of split operations

required by the DDP∗ algorithm is equal for each agent (i.e. when n ∈ {3, 5, 7, 11}). Analysis

of this interesting property led to the following theorem:

Theorem 5.4. The number of split operations per agent for the DDP∗ algorithm is exactly equal

whenever there are n agents and n is an odd prime.

Proof. It is easy to show that for every odd prime n and 0 < s < n, then n divides
(
n
s

)
= n!

s!(n−s)!
(written n|

(
n
s

)
), because in n!

s!(n−s)! the numerator is divisible by n whereas the denominator is

not (since it is a product of numbers smaller than n and n is a prime). The number
(
n
s

)
corre-

sponds to the number of coalitions of size s, when n is the number of agents in the characteristic

function game. Therefore because n|
(
n
s

)
∈ N (when 0 < s < n), each agent receives an equal

number of coalitions of the same size in its coalition value calculation share, and so an equal

number of associated split operations for every size s where 0 < s < n.

To complete the proof, the number of grand coalition split operations must be the same

for each agent. This is proven through Fermat’s Little Theorem [75] which states that if n is

a prime number then 2n−1 ≡ 1(mod n) holds. Fermat’s Little Theorem can be re-written as
2n−1−1

n ∈ N>0, which is the number of ways the grand coalition can be split into two [36],

divided by the number of agents, resulting in a natural number.

Now the proof has shown that when n is an odd prime, each agent has an equal number

of split operations for any s where 0 < s < n and each agent has an equal number of split

operations for the grand coalition (i.e s = n), thus proving the theorem.

Corollary 5.5. When n is an odd prime, then n divides the Sterling number of the second kind

S(n+ 1, 3).

Proof. Theorem 5.4 shows that whenever n is an odd prime then the total number of split op-

erations can be equally divided between the agents. The total number of ways to split every

coalition C ⊆ N into two parts is S(n+ 1, 3), showing the corollary.

Thus Theorem 5.4, Table 5.4 and the previous discussion shows that by redistributing the

split operations of the grand coalition around the agents, the computational burden for the agents

of completing the coalition formation process becomes more balanced (and exactly equal when

the number of agents is an odd prime).

5.5.3 Solution Concept Success Rate

As detailed in Section 5.1, if the DDP algorithms finds all coalitions that are explicitly detailed

in the synergy coalitional group representation, then the payoff vector returned is guaranteed

Chapter 5 141

to be in the weak least core+ of the superadditive cover (where the plus indicates that cross-

coalition side payments are allowed). The DDP algorithms find every explicit coalition in the

SCG representation in lines 7 to 15 of the Communicate function (see Algorithm 7), lines 6

and 20 of the decodeDDP function (see Algorithm 9) and line 20 of the Split function, if

DDP∗ is used (see Algorithm 11). Then the linear program of the StablePayoff function is

solved for the grand coalition of the superadditive cover to find a weak least core+ stable payoff

vector of the superadditive cover.

If the core of the superadditive cover is non-empty then it will correspond to the weak least

core+ of the superadditive cover. Yet the success rate for the following solution concepts is not

guaranteed using the DDP algorithm: (a) the least-strong-CS core+ of the superadditive cover;

or (b) the least-CS core. In [112], an example was detailed that showed that solutions within (b)

may not include the optimal coalition structure. This means that the DDP algorithms may not

find solution (b).

An outcome is not guaranteed for strong least core+ of the superadditive cover due to the ε

in the strong-ε core definition (of Section 2.2.1) not being proportional to the number of agents

in the coalition and so a blocking coalition maybe missing from the SCG representation:

Theorem 5.6. Given a superadditive characteristic function game G = 〈N, v〉 and a payoff

vector x (where x(N) = v(N)), let εw be the maximum weak excess that still gives a blocking

coalition for x given full knowledge on each coalition’s value. Using only the coalition values

in W , a blocking coalition D for the weak excess value of εs′ is guaranteed to be present within

W , where εs′ is in the bound εs

n−1 ≤ ε
s′ ≤ εs.

Proof. Suppose x is blocked by a coalition C through v(C)− εs so that v(C)− εs > x(C) and

∀εs′′ > εs there is no blocking coalition. If (C, v(C)) ∈ W then this proves the Lemma. If

(C, v(C)) /∈W then from the definition of a SCG, it is known that the value of the coalition can

be found through its maximum value partition, i.e. v(C)− εs =
∑

1≤p≤q v(Cp)− εs, for some

set of coalitions {C1, ..., Cq} where:

1.
⋃q
p=1Cp = C

2. Ci ∩ Cj = ∅ for any i, j ∈ {1, ..., q} where i 6= j

3. (Cp, v(Cp)) ∈W , for all Cp ∈ {C1, ..., Cq}

Via substitution, it follows that
∑

1≤p≤q v(Cp)− εs > x(C) and hence for at least one Cp then

v(Cp)− εs

q > x(Cp). As the game is superadditive the grand coalition is known to form, hence

the largest coalition that can have an excess value is S ⊂ N where |S| = n − 1, therefore

0 < q < n.

Using this information, a coalition with the strong excess value of εs′ is guaranteed to be in

the SCG representation, where: εs

n−1 ≤ ε
s′ ≤ εs. Thus the theorem is proved.

Therefore searching for the strong least core using only the coalitions in W may return

erroneous results (i.e. a solution not in the strong least core) because the agents may conclude

that a payoff vector is stable when inspecting the excess values of only the coalitions in W but

Chapter 5 142

actually this payoff vector is not stable when inspecting the coalitions not in W . For further

understanding, consider the following example:

Example 5.2. Consider a characteristic function game with N = {1, 2, 3, 4} agents, where a

coalition C = {1, 2, 3} has a value of v({1, 2, 3}) = 25. Given a payoff vector x, that gives the

coalition C the total value x(C) = 22, it is known that the maximum (integer) strong excess to

give a blocking coalition is εs′ = 2. For instance x(C) = 22 < v(C) − εs′ = 25 − 2 = 23,

and so coalition {1, 2, 3} is a blocking coalition for x when εs′ = 2 but not a blocking coalition

when εs′ = 3.

If C ∈ W then a blocking coalition for the maximum strong excess value (that still admits

a blocking coalition) has been found. If C /∈ W then there must be coalitions within W that

make up a partition of C and have an equal or greater combined value then C. In this example

assume ({1, 2}, v({1, 2}) = 16), ({3}, v({3}) = 9) ∈ W . The values of these coalitions have

been chosen because v({1, 2}) + v({3}) = v({1, 2, 3}), i.e. the values are the minimal needed

to make sure that coalition {1, 2, 3} is not in the SCG representation.

Given theses preliminaries, to stop coalition {1, 2} blocking when εs′ = 2, then x({1, 2})
must be greater than or equal to v({1, 2}) − εs = 16 − 2 = 14. Assume that x({1, 2}) = 14

(i.e. the minimal payoff to satify the coalition has been given).

Recall x(C) = 22. Therefore x3 = x(C) − x({1, 2}) = 22 − 14 = 8. But this gives

x({3}) = 8 > v({3})− εs = 9− 2 = 9− 2 = 7. As the payoff of 3 is currently greater than its

singleton value minus εs′, the singleton coalition {3} does not become a blocking coalition for

x under εs′ = 2.

In conclusion this example shows that if a blocking coalition C with the maximum weak

excess (that still admits a blocking coalition) is not present in the SCG representation, then it is

not guaranteed that a coalition C ′ ⊂ C with the same weak excess value will be present in the

SCG representation.

5.6 Summary

This chapter presented two decentralised algorithms, DDP and DDP∗, for agents to use to solve

the coalition formation process in a completely distributed manner (i.e. without even shared

memory access). Both algorithms are dynamic programming ones that are guaranteed to output

a solution within the weak least core+ of the superadditive cover of the given characteristic

function game, where the ‘+’ indicates that cross-coalition side payments are allowed. The

algorithms distribute: (i) the coalition value calculations; (ii) the filtering of the coalitions into

the synergy coalitional group representation; and (iii) the two-set partitions of each coalition to

search. The agents communicate to each other information that allows each agent to not have to

compute all of (i), (ii) and (iii) by itself, yet the agents still achieve an optimal solution as if the

individual agents had full knowledge.

The DDP and DDP∗ algorithms have only one difference, which is that the DDP∗ algorithm

distributes the split operations of the grand coalition to the agents. This difference restricts the

range of two-set partition operations required by the agents and leads to the interesting property,

Chapter 5 143

proven in Theorem 5.4, that whenever the number of agents n is an odd prime, then the agents

receive an exactly equal number of split operations to perform.

Both the DDP and DDP∗ algorithms have been developed from the DP algorithm detailed in

[138], as discussed in Section 2.4.2. The DP algorithm only searched for the optimal coalition

structure (referred to in [138] as the ‘best set partition’) and did not concern itself with stable

payoff vectors. Another variation of DP is the IDP algorithm [91], which like DP finds the op-

timal coalition structure, but by considering only 38.7% of the two-set partitions. Additionally,

less memory was used for IDP compared to DP. The DDP algorithms followed the DP approach

of considering all of the split partitions as this led to the interesting properties of: (a) being able

to locate the exact coalitions in the synergy coalitional group representation; and (b) each agent

having an equal number of split operations to consider when the agent number is an odd prime.

Methods to reduce the memory requirements (described in [91]), such as removing the f2 table

through putting all operations for f2 into the v table, can easily be added to the DDP algorithms.

Finally, the DDP algorithms use elements of the DCG algorithm of Chapter 4 because:

(1) the DCG algorithm gives an approximately equal distribution for the agents coalition value

calculation shares; and (2) every coalition in each agent i’s share has agent i as a member. Point

(2) is very important in the context of finding an accurate stable payoff vector distribution (in the

context of complete knowledge), because without this point, then self-interested agents will be

motivated to hide values of coalitions not including themselves in order to gain a larger payoff.

Chapter 6

145

Chapter 6

Valuation Disagreement Coalitional
Games

So far in Chapters 4 and 5, coalitional games with quantitative valuations were investigated

where the values of the coalitions were the same for every agent, and therefore there were no

valuation disagreements. In this chapter, coalitional games with valuation disagreements are

investigated (where each agent assigns quantitative values to the coalitions). These disagree-

ments can arise from agents having potentially different methods to interpret their possibly het-

erogeneous knowledge bases, which can lead to the agents finding different conclusions on a

coalition’s quantitative value. Thus finding stable coalitional game solutions in these situations

involves identifying coalitions and agent-payoff contractual agreements that each agent finds

acceptable given its own beliefs on each coalition’s quantitative value.

In this chapter, the new valuation disagreement coalitional game (VCG) model is introduced

with the new stability solution concepts of: the valuation-disagreement core, the valuation-

disagreement εv-core and the non-empty least valuation-disagreement core. All of the solution

concepts consist of a triple containing: (i) a coalition structure; (ii) an estimated payoff vector;

and (iii) a contract function. The estimated payoff vector details each agent i’s expected payoff

given all the agents’ coalition valuations, while the contract function provides an agreement on

the manner to distribute the true value of each coalition in the coalition structure, once the true

value of each coalition is revealed.

The new solution concepts allow harsh punishment of agents who overestimate the true

value of their formed coalition in the agreed coalition structure. This harsh punishment is used

to encourage agents to report lower pessimistic valuations. Pessimistic valuations can benefit

an agent system as it increases the likelihood that each agent will gain a profit over its expected

payoff once the true values of the formed coalitions are revealed. This is beneficial as less

loss/debt will have to be assigned to some agent(s) from their expected payoffs (compared to

the agents reporting normal or optimistic valuations). Assigning less debt is a very positive

property due to coalitional games being a microeconomic model of the complicated human

economic world, and assigning loss/debt can have a wide-ranging social impact on people (such

as poverty, job losses, etc).

147

Chapter 6. 148

Therefore the contributions of this chapter are as follows: (i) the valuation disagreement

coalitional game model itself and its related solution concepts are introduced; (ii) these new so-

lution concepts, when analysed empirically and compared quantitatively to coalitional games

with beliefs1, allow previously unattainable coalitions to form; (iii) valuation disagreement

coalitional games, compared to coalitional games with beliefs, give solutions of greater expected

value in the majority of cases (when the same valuations for both games are used); and (iv) val-

uation disagreement coalitional game solution concepts are shown to encourage pessimistic

valuations, compared to a solution concept that uses a single percentage-based agreement.

This chapter is structured as follows: in Section 6.1, the valuation disagreement coalitional

game model is introduced, which includes the estimated payoff vector and the associated sta-

bility solution concepts. In Section 6.2, the role of contract functions are described in detail.

In Section 6.3, an experimental evaluation is detailed. Finally Section 6.4 summarises and con-

cludes.

6.1 The Proposed Solution

The motivation for this work can be found in the many possible methods to distribute unknown

payoffs that can be identified in real economic environments where there is disagreement on a

coalition’s true value, such as labour and financial markets. Perhaps the most popular method

in coalitional game literature is that of Chalkiadakis et al. [33, 34] and Suijs et al. [122]

who replace the traditional numeric payoff vector of characteristic function games with a fixed

percentage-based demand vector. Yet this method is only a subset of the possible ways to dis-

tribute the unknown value of a coalition. In these environments each agent has three main

variables to consider before accepting or rejecting an offer to move to a new coalition:

1. Expected/estimated payoff and minimum payoff: Given agent i’s knowledge about the

other agents of the coalition and the environment it is in, agent i estimates the worth of

the coalition C, denoted wi(C) in the valuation disagreement coalitional game model.

Given the agreed terms at the coalition valuation wi(C), agent i can find its estimated (or

expected) payoff. The minimum payoff is the minimum estimated payoff an agent will

accept to join a new coalition.

2. Share of profits: It is possible that all/some of the agent valuations could be an under-

estimation of the true value. In this case, agents of the coalition will need an agreement

to share any possible gains over all/some of their estimated payoffs.

3. Share of losses: Alternatively the agents may over-estimate all/some of their valuations

of the coalitions. In this case, agents of the coalition will need an agreement to share any

possible losses over all/some of their estimated payoffs. This is separate to variable 2 as

some agents can make a profit on their estimated payoff when others make a loss.
1See Section 2.3.2 for a description.

Chapter 6. 149

Agents have different considerations for each of these variables. For instance, an agent i will

only consider joining a coalition C if the estimated payoff that is being offered to i at the coali-

tion value wi(C) equals or exceeds agent i’s required minimum payoff. Each agent i will also

want to maximise its estimated payoff at the coalition value wi(C). Additionally an agent i may

be willing to sacrifice a percentage of payoff over a certain valuation of C to an agent j (where

this valuation would rationally be somewhere above wi(C)), if wj(C) is higher than wi(C).

Sacrificing payoff at this higher valuation may entice agent j to join the coalition, possibly in

return for more payoff under a valuation that i finds more likely to occur.

Different approaches treat these three variables either all together (e.g. [33, 34, 122]), or

exhaustively by creating a payoff vector for each different possible combination of coalition

values (e.g. [65]). The method used in this chapter is different because it combines elements

of the exhaustive payoff vector proposals [65] with those used in the single percentage demand

vector proposals [33, 34, 122], as discussed in the next section.

6.1.1 The Valuation Disagreement Coalitional Game Model

The valuation disagreement coalitional game (VCG) model provides more flexibility in coali-

tional agreements than [33, 34, 122] by allowing different percentage distributions for the dif-

ferent possible true values of each coalition. Yet the VCG model does not state an explicit

agreement for every possible true value, due to this requirement being extremely complex even

for situations with small amounts of valuation disagreement [65]. Instead, VCG relies on a

contract function that gives an implicit payoff agreement for every possible true value.

The VCG does not state where exactly the difference in each agent’s opinion on a coalition’s

value comes from (be it from agent types, possible worlds, or another method). Yet this chapter’s

model, like the coalitional games with beliefs model of [34], uses the simplifying assumption

of single point beliefs for the reasons stated in Section 2.3.2. These reasons are: probabilistic

beliefs may not be available; single point beliefs are easier to form; reasoning over single point

beliefs is computationally less complex; and single point beliefs are a natural assumption in

many real-world situations. Given these preliminaries, valuation disagreement coalitional games

are defined as:

Definition 83: An valuation disagreement coalitional game is: Gv = (N ;w) where N =

{1, .., n} is the set of agents and w is the valuation vector denoted w = 〈w1, ..., wn〉 where

each wi ∈ w assigns every possible coalition a value (wi(2N) → R) representing agent i’s

reported best guess on each coalition’s value. The notation w(C) denotes all the valuations of

C by the agents of C.

In this chapter, it is assumed that each agent reports wi so that it is public knowledge. Then

the valuation disagreement coalitional game outcome can accurately reflect each agent’s re-

ported valuations (which might not be their truthful valuations). The justification of this can

be seen in many real life negotiations where the future value of a coalition is disputed and

individuals make known their valuations to improve negotiation. For example, in the popu-

lar international television programme “Dragons’ Den”, where business ideas are pitched to a

Chapter 6. 150

panel of venture capitalists, the two or more negotiating parties usually make known their fu-

ture valuation of the business when demanding a percentage share (of future payoff) to form the

coalition.

Reporting personal information can create strategic issues. In this chapter, unlike [78], the

concern is not with designing incentive compatible mechanisms where the agents perform best

if they truthfully reveal their private information. Finding an incentive compatible mechanism

can be a computationally difficult task [119].

Instead, like [23], in this chapter it is assume that the agents report coalition valuations in

a near incentive compatible manner; that is, the agents cannot determine how to change their

coalition valuations (from their truthful valuations) to increase their final payoff, even though

this maybe theoretically possible.

A simple way to ensure near incentive compatibility is for each agent i ∈ N to have no

knowledge on the other agent’s coalition valuations when i reports its coalition values. To do

this, each agent i should encrypt its valuations, send them to every other agent j (i.e. j ∈ N , j 6=
i), and for the decryption key to be sent only when i has received every other agent j’s encrypted

valuations [23]. Now in this situation, each agent i will not know if raising a single coalition’s

value (above the coalition’s truthful value) will give i more power to demand more payoff from

some other agents or cause another coalition to become unstable and dissolve, thus decreasing

the total possible payoff agent i can demand from other agents anyway. If each agent’s coalition

valuations were exchanged like this, then the agents would have complete knowledge on each

agent’s coalition valuations and could continue to reason over which coalitions to form via

coalitional bargaining, a payoff vector transfer scheme or another type of distributed algorithm

(for example, similar to the previous chapter’s distributed algorithm).

To reason over outcomes of valuation disagreement coalitional games, it is useful to intro-

duce a function π(C, i) that takes as input a coalition C and an agent i ∈ C and outputs all

the agents M ⊆ C (where i ∈ M), who believe the value of C to be equal to or less than

wi(C), i.e. for all j ∈M , wj(C) ≤ wi(C) holds. Using this function, estimated payoff vectors

that are used to find acceptable outcomes for valuation disagreement coalitional games can be

introduced, formalised as:

Definition 84: An estimated payoff vector denoted e = 〈e1, ..., en〉 for a coalition structure

CS = {C1, ..., Ck} in a game Gv satisfies: (a) ei ≥ wi({i}) (i.e. individual rationality) for all

i ∈ N ; and (b)
∑

j∈π(C,i) ej ≤ wi(C) for each agent i ∈ N , where i ∈ C ∈ CS. The estimated

payoff vector of a coalition C is denoted e(C). Using e, the expected payoff for each agent i is

given by ei.

Estimated payoff vectors give the agents more flexibility when negotiating for payoff for a

coalition C, as each agent i only has to offer a distribution of wi(C) that satisfies all agents

M ⊆ C who value C less than or equal to i. The total estimated payoff to the M agents given

by π(C, i) must never be greater than wi(C) for any coalition C ∈ CS, which ensures that each

agent i can achieve its estimated valuation should the coalition’s real value be equal to or greater

than wi(C).

Chapter 6. 151

0 5 10 15

0

2

4

6

8

10

Possible Coalition Value

A
ge

nt
Pa

yo
ff

ag1
ag2

FIGURE 6.1: This figure shows how a simple contract changes agent ag1 and ag2’s payoff
given different possible future valuations of the coalition {ag1, ag2}, where ag1 requires a
payoff of 4 (or more) when the coalition is valued at 5 (or more) and ag2 requires a payoff of 6

(or more) when the coalition is valued at 10 (or more).

The logic behind the estimated payoff vectors is simple. Consider two agents ag1 and ag2

negotiating over possibly joining together in a coalition. Agent ag1 reports the coalition’s value

as 5 and requires an estimated payoff of 4 to join (i.e. 80% of 5). Agent ag2 reports the

coalition’s value as 10 and requires an estimated payoff of 6 to join (i.e. 60% of 10). Then

both agents will be satisfied (if the agents are risk neutral) with a contract that gives agent

ag1 a monotonically increasing payoff that will be ≥ 4 at the valuation 5 and gives agent ag2

a monotonically increasing payoff that will be ≥ 6 at the valuation of 10. Additionally this

contract needs to state how to work out each agent’s payoff for any possible true valuation of

the coalition. A simple contract (i.e. one of many possible contracts), such as the one presented

in Figure 6.1, could assign all the payoff to the agent with the smallest valuation (ag1) until its

demand is reached, then all the payoff to the agent with the next smallest valuation (ag2) until its

demand is reached, and finally assign any payoff, over the total of both demands, proportionally

to both agents.

These contracts are represented via a function κ that takes as input a tuple 〈C, e(C), w(C), v(C)〉
representing: the coalition (i.e. C); the estimated payoff of the agents in the coalition (i.e. e(C));

the reported agent valuations for that coalition (i.e. w(C)); and the coalition’s true value (i.e.

v(C)). The κ function outputs a payoff vector agreement x(C) for the coalition at its true value

v(C).

More complicated contracts can be developed that distribute any possible future valuation

of the coalition. These contracts could be designed for different purposes (or a combination of

different purposes), such as: (i) encouraging conservative valuations; (ii) distributing the payoff

in the most ‘fair’ manner; and (iii) distributing the payoff proportionally to some variable. The

two restrictions assumed in contract functions (in this thesis) are:

Chapter 6. 152

1. Each agent’s payoff is monotonically weakly increasing as the coalition value increases.

2. Each agent i must receive equal to or greater than its estimated payoff ei when the coali-

tion C is formed and v(C) ≥ wi(C).

Restriction 1 means a situation cannot occur where an agent gets a payoff of y if v(C) = z

and a payoff of less than y if v(C) > z. Restriction 2 means that it is guaranteed that if any

agent i correctly predicts or pessimistically values the coalition it forms, then i is to be given

greater than or equal to its estimated payoff ei.

Now that the estimated payoff vector and the contract function have been introduced, the

outcome of a valuation disagreement coalitional game can be defined:

Definition 85: An outcome of a valuation disagreement coalitional game is a triple consisting of

a coalition structure, an estimated payoff vector and a contract function, denoted: 〈CS, e, κ〉.
The different possible contract functions do not affect valuation disagreement coalitional

game stability solution concepts (introduced in the next sub-section), yet may influence what

valuations each agent reports. The valuation disagreement coalitional game stability solution

concepts are not affected by the contract functions, because these concepts are only concerned

with finding a stable outcome given the reported valuations. The contract functions are only

used if the highest valuation of any coalition in the final coalition structure is wrong. In this

case, some more (resp. less) payoff needs to be assigned to (resp. from) the coalition’s members

as the coalition’s true value is higher (resp. lower) than expected.

6.1.2 Valuation Disagreement Stability Concepts

The solution concepts for valuation disagreement coalitional games that are provided in this

chapter are the valuation-disagreement core (VC), the εv-valuation-disagreement core (εv-VC)

and the least valuation-disagreement core (LVC) which are analogous to the CS-core, ε-CS-core

and least-CS-core described in Section 2.2.3.

The VC is the set of stable outcomes where no subset of agents has an incentive to deviate.

The εv-VC is a variant of the VC where the agents need an incentive greater than εv to deviate.

The estimated excess of each coalition C is measured by:

Definition 86: The estimated excess of a coalition C given an estimated payoff vector e, is

denoted εv(C, e) and calculated by:

εv(C, e) = wj(C)−
∑
i∈C

ei where j ∈ C and π(C, j) = C

Positive estimated excess, for a potential coalition C and the highest valuation of C by

an agent (i.e. wj(C)), means that the total estimated payoff of the members of C is lower

than C’s highest valuation. Negative estimated excess, for a potential coalition C and the

highest valuation of C by an agent (i.e. wj(C)), means that the total estimated payoff of the

members of C is higher than C’s highest valuation. The highest agent valuation was cho-

sen because: (i) if wi(C) −
∑

k∈C ek was used in the estimated excess formula for a lower

Chapter 6. 153

valuation wi(C) < wj(C), then by definition a lower excess value would be returned; and

(ii) if wi(C) −
∑

k∈π(C,i) ek was used in the estimated excess formula for a lower valuation

wi(C) < wj(C), then any excess returned may be estimated payoff that is given to an agent m

with a higher valuation (i.e. m ∈ C and m /∈ π(C, i)), to entice m to joint. Therefore it is the

estimated excess that is propagated up to the top valuation that is of concern.

Definition 87: The maximum estimated excess εv of a valuation disagreement coalitional

game is defined as:

εv = max
C⊆N

(εv(C, e))

In multi-agent systems, it is beneficial to view agents as being able to form many different

coalition structures [36], hence the definitions for valuation disagreement coalitional games in-

clude a coalition structure. Both the VC and εv-VC for coalition structures can be defined using

the following definition:

Definition 88: The valuation-disagreement core/εv-valuation-disagreement core for a game

Gv consists of all triples 〈CS, e, κ〉 where:

1.
∑
i∈C

ei = wj(C), ∀C ∈ CS where j ∈ C and π(C, j) = C

2.
∑
i∈D

ei ≥ wj(D)− εv, ∀D ⊆ N where D /∈ CS, j ∈ C and π(D, j) = D.

When εv = 0, the εv-VC definition is the same as the VC. For a triple 〈CS, e, κ〉 to be in

the VC/εv-VC, conditions 1 and 2 must be satisfied. Condition 1 states that all the payoff of the

highest valuation of each coalition C in the coalition structure CS must be distributed to all the

agents of that coalition. The highest valuation for each coalition C in CS is used because if it

was not, then at least one agent may believe there is more payoff that can be assigned. Condition

1 is therefore the efficiency condition. Additionally, due to the estimated payoff vector definition,

the highest valuation of each coalition C should be distributed to its members in a manner such

that every agent i can achieve its estimated payoff ei by its valuation wi(C). The definition

of the estimated payoff vector therefore ensures that a solution is feasible. Finally, condition 2

states that for every possible coalition D not in the coalition structure CS, the sum of estimated

payoffs for π(D, j) for an agent j ∈ D with the highest valuation should be greater than or

equal to j’s valuation of D minus εv. If the second condition does not hold for some group of

agents D, then D has a valid reason to deviate from the current CS.

The VC/εv-VC is similar to the CS-core for Beliefs (CSB) of [34]. The differences are

that firstly, the CSB uses percentage demand vectors and the VC/εv-VC uses numeric estimated

payoff vectors. Secondly, in the VC/εv-VC, agents can receive different percentages of the

coalition’s payoff at different valuations, to encourage cooperation. Finally, εv-VC is defined in

the εv style, which allows the VC to be expanded if necessary, meaning that a stable solution

can always be found, compared to the CSB which can sometimes be empty. A solution in the

smallest non-empty εv-VC, known as the least valuation-disagreement core (LVC) is defined

as:

Chapter 6. 154

Definition 89: The least valuation-disagreement core for a game Gv consists of all triples

〈CS, e, κ〉 where:

〈CS, e, κ〉 is in the εv-valuation-disagreement core

∀εv ′ < εv, the εv ′-valuation-disagreement core is empty

A triple 〈CS, e, κ〉 in the LVC minimises the maximum dissatisfaction of any potential coalition

not in the LVC coalition structure.

6.1.3 Valuation-Disagreement Coaltional Game Properties

valuation disagreement coalitional games (VCG) essentially convert a coalitional game with

valuation disagreements into a characteristic function game, by finding stability based on one

value per coalition (the highest one). The difference from the traditional characteristic function

game is that the estimated payoff vector adds some additional constraints on the final payoff

each agent can receive (i.e. each agent i’s payoff should be feasible given its coalition C and the

valuations of the π(C, i) set). The justification of this method will be discussed subsequent to

the following proofs on the various properties of VCG outcomes compared to outcomes using a

percentage demand vector.

Lemma 6.1. For the same stable coalition structure CS where there are no valuation disagree-

ments, then an estimated payoff vector and a percentage demand vector give the same total

expected value.

Proof. A percentage demand vector distributes 100% of the value of each coalition C in the

coalition structure CS, giving a total of
∑

C∈CS v(C). According to condition 1 of the VC/εv-

VC, a stable estimated payoff vector does the same.

Lemma 6.2. For the same stable coalition structure CS where there are valuation disagree-

ments, percentage demand vectors that distribute 100% of the payoff to the agents who value

the coalitions in CS the highest, give the same total expected value as an estimated payoff

vector.

Proof. Assume a percentage demand vector distributes 100% of the highest valuation of each

coalition C in the coalition structure CS, then the total is
∑

C∈CS v
j(C) where π(C, j) = C.

For the percentage demand vector to not total the estimated payoff vector then (according to

condition 1 of the VC/εv-VC definition) for a least one coalition C ∈ CS there must exist an

agent i where wi(C) > wj(C), but agent i cannot exist according to the assumption.

Lemma 6.3. For the same stable coalition structure CS where there are valuation disagree-

ments, percentage demand vectors that do not distribute 100% of the payoff to the agents who

value the coalitions the highest, give a lower total expected value compared to an estimated

payoff vector.

Chapter 6. 155

Proof. Assume a percentage demand vector d distributes equal (or greater) value to an estimated

payoff vector (that distributes all of the top valuation for each coalition according to condition

1 of the VC/εv-VC definition), but d distributes less than 100% of the payoff of the highest

valuation of a coalition C ∈ CS to the agents. Then there exists a demand 0 < di ≤ 1 for an

agent i who values C less than an agent j (i.e. wi(C) < wj(C)). As di×wi(C) < di×wj(C)

then the total value of the agents of the system would be increased by adding di to dj . If

this process is completed for all agents who do not value C the highest, then 100% of the

highest valuation of C is distributed to the agents that value C the highest, meaning the new

demand vector will only now give equal expected value compared to an estimated payoff vector

(according to Lemma 6.2).

Theorem 6.4. For the same stable coalition structure where there are valuation disagreements,

then an estimated payoff vector gives a higher (or equal) expected value than a percentage

demand vector.

Proof. See Lemma 6.2 and Lemma 6.3.

Theorem 6.4 shows that solutions in the VC or εv-VC give equal or higher expected value

than any percentage-based demand vector can give. In fact, according to Lemma 6.2 there is a

very specific restriction placed on percentage demand vectors to give an equal expected value

compared to estimated payoff vectors. This restriction is that 100% of the payoff must go to

agents with the highest valuations. Therefore an agent with a lower valuation must receive zero

expected payoff. This restriction seems unrealistic as rational agents should object if they are

only offered zero payoff, especially if receiving zero payoff breaks the individual rationality

condition2.

Regarding the justification of this model; in situations where it is impossible/difficult to

know the correct value for each coalition, the satisfaction of each agent according to its own

beliefs should be prioritised. The proofs of this section and the experiments of Section 6.3,

show that using a percentage-based demand vector is not the way to maximise the overall social

welfare of the system in expectation because VCG estimated payoff vectors offer more satisfying

solutions (in the form of higher expected value) for any realistic scenario for the multi-agent

system.

So the first contribution of this Chapter’s model is that in any realistic scenario with valu-

ation disagreements between the agents3, then estimated payoff vectors give a higher expected

total payoff than a fixed percentage based model and thus collectively satisfies the agents more

than the fixed percentage based model.

Another (perhaps more) important contribution of this model is that the contract functions

can increase the likelihood that the agents report lower valuations and so increase the likeli-

hood that the agents will be in profit over their expected payoff once the coalition forms and

completes. This issue will be discussed in Section 6.2 after a brief example of the model is

presented.
2See Section 2.1 for a definition.
3Realistic is used in this context to indicate that no agent will be satisfied with receiving zero expected value.

Chapter 6. 156

The trade-offs VCG make so that these additional contributions over the percentage based

model can be achieved are: (i) complete knowledge on each agent’s coalition valuations are

assumed; and (ii) the complexity of the contract function, that is used to distribute the value

of a coalition if that coalition’s highest valuation was wrong, maybe more complex than the

percentage based distribution method (but the exact complexity depends on the contract function

designer).

It should be noted that in some percentage-based coalitional game models, such as [33, 34],

an estimation of each other agent’s valuations are kept in memory, so the VCG does not add

any more memory requirements in this context, but can add more communication requirements

depending on how many coalition valuations affect the stability of the VCG.

6.1.4 Example

In the valuation disagreement coalitional game model introduced in this chapter, the agents

attempt to maximise their estimated payoff given the agents’ reported valuations. This example

will show the benefits of the new stability definitions presented in this chapter compared to

the CS-core for beliefs (CSB) stability definition of the comparison model of [34], detailed in

Section 2.3.2. This comparison model was chosen as it uses: single point beliefs (like valuation

disagreement coalitional games); and percentage-based demand vectors.

Consider a 3-agent valuation disagreement coalitional game Gv1 as well as a 3-agent coali-

tional game with beliefs Gb1, where the coalition values are the same for each agent in Gv1 and

Gb1, presented in Table 6.1.

Using Table 6.1’s coalition valuations, the possible solutions in the game Gb1 (that uses

percentage demand vectors, denoted d) are investigated. With the starting coalition structure of

{{1}, {2}, {3}}, first consider whether the coalition C = {1, 2, 3} can form, when each agent

requires an increase of expected payoff from what they believe they can get by themselves. For

any proposal for C to form, agent 1 will demand greater than 70% (i.e. d1 > 0.7) of coalition

C’s payoff because 0.7 × u1(C) = u1({1}) (i.e. because 70% of agent 1’s valuation of C is

equal to agent 1’s valuation of itself). Agent 2 will demand greater than 40% (i.e. d2 > 0.4)

of coalition C’s payoff because 0.4 × u2(C) = u2({2}). Finally Agent 3 will demand greater

than 5% (i.e. d3 > 0.05) of coalition C’s payoff because 0.05 × u3(C) = u3({3}). Collecting

all these lower bound demands into a demand vector we have d(> 0.7, > 0.4, > 0.05), where∑
i∈C di > 1 (i.e. the total demand is greater than 100% of coalition C’s value). As C’s lower

bound on the total demand is >100%, then C is infeasible for rational agents and will not form

in Gb1.

On the other hand, coalition C ′ = {1, 3} can form in Gb1 because the agents of {1, 3} have

lower bounds on demands that are d′1 > 0.7 and d′3 > 0.1 because 0.7× u1(C ′) = u1({1}) and

0.1× u3(C ′) = u3({3}), meaning the lower bound of d′(C) is
∑

i∈C′ d
′
i < 1. This coalition is

included in the best coalition structure in the CSB of Gb1, which is CS′ = {{1, 3}, {2}}. The

coalition structure CS′ can be matched with one of many possible demand vectors in the CSB

solution concept. Yet the expected total payoff of any demand vector in the CSB, indicated by

Chapter 6. 157

Coalition agent Valuation
{1} 1 w1({1}) = u1({1}) = 7
{2} 2 w2({2}) = u2({2}) = 6
{3} 3 w3({3}) = u3({3}) = 1
{1, 3} 1 w1({1, 3}) = u1({1, 3}) = 10
{1, 3} 3 w3({1, 3}) = u3({1, 3}) = 10
{1, 2, 3} 1 w1({1, 2, 3}) = u1({1, 2, 3}) = 10
{1, 2, 3} 2 w2({1, 2, 3}) = u2({1, 2, 3}) = 15
{1, 2, 3} 3 w3({1, 2, 3}) = u3({1, 2, 3}) = 20

TABLE 6.1: All the coalition valuations not equal to zero for the valuation disagreement coali-
tional game Gv

1 and the coalitional game with beliefs Gb
1, where wi(C) is agent i’s valuation

of C in Gv
1 and ui(C) is agent i’s valuation of C in Gb

1.

the vector p, will be
∑

i∈N pi = 10 + 6 = 16 because both agents 1 and 3 believe {1, 3} is

worth 10 and agent 2 believes the payoff by himself is 6.

Alternatively, using Gv1, the coalition structure of the valuation-disagreement core contains

the coalition C = {1, 2, 3}. A possible estimated payoff vector that can be present in the

valuation-disagreement core with the coalition structure CS = {{1, 2, 3}} is e(8, 7, 5). This

estimated payoff vector is possible because all agents receive a payoff that another coalition

cannot improve on and all agents can achieve their estimated payoff by their valuation of C, i.e.:

e1 ≤ w1(C), e1 + e2 ≤ w2(C) and e1 + e2 + e3 ≤ w3(C).

Figure 7.2 shows different possible contracts functions that could be used for an valuation

disagreement coalitional game outcome containing CS = {{1, 2, 3}} and e(8, 7, 5). The con-

tract κ1 satisfies the estimated payoff of the agent with the lowest valuation first, then the agent

with the next lowest valuation and so on. Additionally κ1 distributes the excess over the highest

valuation to each agent i according to a value α1
i that represents i’s estimated payoff divided

by the highest valuation. For example, agent 1’s payoff using κ1 and the truthful valuation

v(C) = 40 uses α1
1 = e1

w3(C)
= 8

20 = 0.4 to find that x1 = e1 + (α1
1 × (v(C) − w3(C))) =

8 + (0.4× (40− 20)) = 16.

Contract κ2 is the same as κ1 for each agent’s valuation of C (i.e. when C is equal to 10,

15 or 20). Yet if the true value of the coalition v(C) is lower than the lowest valuation of C (i.e.

w1(C)), then κ2 divides the payoff according to xi = yi
w1(C)

× v(C) where yi is the payoff i

expected at w1(C) under κ1. For example, agent 2’s payoff at v(C) = 6 is x2 = 2
10 × 6 = 1.2.

Additionally κ2 distributes the excess over the highest valuation to each agent i according to a

value α2
i (representing i’s payoff on its own divided by i’s valuation of C i.e. wi({i})

wi(C)
) divided

by the sum of α2 for C. For example, agent 1’s payoff using κ2 and the truthful valuation

v(C) = 40 uses α2
1 = wi({1})

w1(C)
= 7

10 = 0.7 (additionally, α2
2 = 0.47 and α2

3 = 0.05) to find that

x1 = e1 + (
α2
1∑

i∈C α
2
i
× (v(C)− w3(C))) = 8 + (0.7

0.7+0.47+0.05 × (40− 20)) = 19.48.

To summarise, this example shows that using this chapter’s new stability concept, the agents

are left with a coalition structure CS = {{1, 2, 3}}, which is not available using the CSB

model of [34]. This coalition structure gives the agents a collective higher expected payoff

when compared to the CSB, which accepts only the coalition structure CS′ = {{1, 3}, {2}},

Chapter 6. 158

0 5 10 15 20 25

0

2

4

6

8

10

12

Coalition Value

A
ge

nt
Pa

yo
ff

Ag 1 & κ1 Ag 1 & κ2

Ag 2 & κ1 Ag 2 & κ2

Ag 3 & κ1 Ag 3 & κ2

FIGURE 6.2: Shows the potential payoffs for the agents in the example game Gv
1 using two

different contracts functions κ1 and κ2.

i.e.
∑

i∈N ei = 20 >
∑

i∈N pi = 16. Meaning, in this example, the expected value of the

solution in the LVC is 25% higher than the expected value of the CSB.

6.2 The Exposure to Debt/Distribution of Risk

So far, the expected value advantages of estimated payoff vectors over fixed percentage-based

demand vectors have mostly been discussed (in situations where the agents reported the same

valuations). In this section the exposure to debt, according to each agent’s expected utility value,

in valuation disagreement coalitional games is described.

In more detail, in valuation disagreement coalition games, each agent values every coalition

a certain utility value. Then according to all the agent’s values, each agent is assigned into a

coalition and given an estimated payoff the agent can not object to. Now if the mindset is taken

that each agent’s estimated payoff is lent to the coalition while it is completing its task, then

each agent has some debt exposure.

The distribution of the risk associated with this estimated payoff debt exposure4 plays an

important role in valuation disagreement coalitional games (VCGs). In this section it is shown

how valuation disagreement coalitional games can be used to help lower the agents’ valuations

and increase the likelihood that the agents gain a profit (instead of a loss) over their expected

payoff.

Gaining a profit can be very important when coalitional games are put in the context of

the wider economy. When agents (individuals or businesses) commit to form a coalition for
4Risk in this context refers to the likelihood of the coalition defaulting on all or some of its debts to its member

agents.

Chapter 6. 159

an expected payoff, in many cases, this payoff may be used in a budget to plan for the future.

For example when a business sums its expected utilities for the next year and finds an expected

profit, this expected profit may motivate one or more of the following: (i) the hiring of new

employees; (ii) the commitment to expansion; (iii) the investment in new equipment. Yet if this

expected profit turns into a real loss once the true values are known, the business may be forced

to: (i) make employees redundant; (ii) cancel expansion plans mid-project; or (iii) default on

payments for new equipment. Over-budgeting in this sense may have even worse consequences

for individuals, such as: losing their job if businesses need to cut back; losing their home if

they cannot afford mortgage payments anymore; and/or struggling to provide the basic needs

for their family.

Essentially, in this section, it is shown how VCGs can lower the possibility of a ‘market

bubble’5 appearing regarding the agents’ coalition valuations. This is achieved through the

distribution risk associated with the agents estimated payoff debt exposure.

6.2.1 Contract Functions

The requirements of contract functions place more risk on the estimated payoff debt exposure

of the agents’ with the higher valuations. These contract function requirements are: (i) that

the contract function is monotonically weakly increasing; and (ii) an agent i’s estimated payoff

has to be achieved by agent i’s valuation. Therefore if an agent over-estimates the value of a

coalition, then that agent’s true payoff has a higher chance of being lower than its estimated

payoff. This is also true of percentage-based demand vectors but not to the same degree:

1. Using the percentage-based model where d is the demand vector and p is the vector of

expected payoffs, where an agent i’s expected payoff is pi = di×ui(C), i is a member of

the coalition C whose true value is v(C), this true coalition value is z% of ui(C) (where

0 ≤ z ≤ 100), then agent i’s true worst case payoff will be xi = pi × z
100 . Therefore

xi = 0 can only occur if: (a) agent i was offered no percentage share of the coalition’s

true value, i.e. di = 0 (which a rational agent should not agree to); (b) agent i valued

the coalition at zero, i.e. ui(C) = 0 (so a rational agent should not have agreed to join

C in the first place); or (c) the true value of the coalition is zero, i.e. v(C) = 0 (i.e. the

absolute worst case true value of the coalition).

2. Using the estimated payoff vector ewhere an agent i’s expected payoff is ei, i is a member

of the coalition C whose true coalition value is v(C), this true value is z% of wi(C)

(where 0 ≤ z ≤ 100), then agent i’s true worst case payoff will be xi = max(0, ei −
(wi(C) − v(C))). Now the value xi = 0 can occur when: (a) agent i was offered no

numeric share of the coalition’s true value, i.e. ei = 0 (which a rational agent should

not agree to); (b) agent i valued the coalition at zero, i.e. wi(C) = 0 (so a rational agent

should not have agreed to join C in the first place); or (c) ei−(wi(C)−v(C)) ≤ 0, which

occurs when agent i over-estimates the value of the coalition by ei or more.
5A market bubble is used here to mean that some/all of the reported coalition valuations are much higher than the

true coalition valuations, leading to a ‘crash’ in some/all of the agents’ valuations when the true value is revealed.

Chapter 6. 160

So considering the two points above and assuming no rational agent will join a coalition

where either its payoff is zero (i.e. both 1(a) and 2(a) are irrational choices) or where it beliefs

the coalition’s valuation is zero (i.e. both 1(b) and 2(b) are irrational choices) we can conclude

that agents can lose all their payoff significantly earlier (if they over-estimate their coalition’s

value) in an VCG compared to a coalitional game using a percentage-based demand vector.

A trivial example shows how contract functions “punish” higher valuations more than the

percentage-based model. Take wi(C) = ui(C) = 20, ei = pi = 5 and v(C) = 15. Then the

percentage-based model gives a worst case of xi = 5 × 0.75 = 3.75, while the VCG model

gives a worst case of xi = max(0, 5 − (20 − 15)) = max(0, 0) = 0. The VCG model with

contract functions does give a best case payoff of 5 for this example, but this is only possible

if there exists agents with a higher valuation that are punished in a harsher manner than in the

percentage-based model.

6.3 Experimental Evaluation

The added value of this chapter’s approach over the percentage based demand vector of [34] is

evaluated empirically because the exact added utility value of the valuation disagreement coali-

tional game is dependent on each agent’s coalition valuations. The different agent valuations can

vary significantly due to the potentially significant difference in the method the agents use to in-

terpret their possibly heterogeneous knowledge base. The fact that the valuation disagreement

coalitional game model increases the risk associated with the estimated payoff debt exposure

of the agents who value the coalitions higher is obvious from the discussion of Section 6.2 and

therefore not analysed empirically.

For the experiments, different coalition value distributions popular in the coalition formation

literature are used [93], defined as:

• Uniform:- Each coalition’s value is determined by multiplying the number of agents in the

coalition by a variable q picked from a uniform distribution between 0 and 1.0. Formally,

for an agent i, wi(C) = ui(C) = max(0, |C| × q), where: q ∈ U(a, b); a = 0; and

b = 1.0.

• Normal:- Each coalition’s value is determined by multiplying the number of agents in the

coalition by a variable q picked from a normal distribution with mean 1 and variance 0.1.

Formally, for an agent i, wi(C) = ui(C) = max(0, |C| × q), where: q ∈ N (µ, σ2);

µ = 1; and σ2 = 0.1.

• NDCS:- Each coalition’s value is determined by a variable q picked from a normal dis-

tribution with mean of the coalition’s size and variance also according to the coalition’s

size. Formally, v(C) = max(0, q), where: q ∈ N (µ, σ2); µ = |C|; and σ2 = |C|.

These experimental conditions differ slightly compared to the conditions of the previous

chapter. In the previous chapter the different distributions were used to give values to the differ-

ent coalitions of the same size, values that differed according to their coalition value distribution.

Chapter 6. 161

2 3 4 5 6 7
0

10

20

30

40

50

60

70

Number of Agents

To
ta

le
xp

ec
te

d
pa

yo
ff

in
cr

ea
se

as
%

uniform normal
NDCS

FIGURE 6.3: This figure shows the increase in the total expected payoff of the agents when
using the LVC solution instead of the CSB solution. A 95% confidence interval was used.

Even though this is still the case, additionally now the values for the same coalition differ be-

tween the agents according to the coalition value distribution, which allows for coalition value

disagreements to occur.

In the experiments of this chapter, normal (and NDCS) coalition-value distributions simu-

late the situations where agents have similar (but still possibly differing) opinions on the value

of each coalition, as q is centered around a mean with a small standard deviation. Uniform

coalition-value distributions on the other hand, simulate situations where the agents have quite

different opinions on the value of each coalition, as q will in general be a lot more varied.

The following three hypotheses have been tested using both the coalition-value distributions:

(i) Outcomes in the least valuation-disagreement core (LVC) typically provide a higher total

estimated payoff compared to the total expected payoffs in the CS-core for beliefs (CSB),

when the same agent valuations are used for both solution concepts.

(ii) Coalitions/coalition structures can form in the LVC that cannot under the CSB solution

concept, when the same agent valuations are used for both solution concepts.

(iii) LVC outcomes provide an improvement to the majority of the agents’ expected payoff in

the majority of cases when compared to CSB outcomes, when the same agent valuations

are used for both solution concepts.

All the coalition-value distribution experiments were run for 2 to 7 agents. As the LVC

is never empty, yet the CSB maybe empty, the comparisons between the two approaches were

taken from the first 30 runs of each coalition-value distribution that returned a solution in the

Chapter 6. 162

2 3 4 5 6 7
10

20

30

40

50

60

70

80

90

100

Number of Agents

N
ew

co
al

iti
on

st
ru

ct
ur

e
fo

un
d

as
%

uniform normal
NDCS

FIGURE 6.4: This figure shows the percentage number of times a stable coalition structure
occurred in the LVC solution that was not in the CSB solution. A 95% confidence interval was

used.

CSB. The number of runs matches previous work on coalition games in multi-agent systems

(e.g. [32, 88]).

In Figure 6.3, the mean increase of the total expected payoff of the agents using the LVC

over the CSB is shown. Additionally Figure 6.4 shows the mean number of experiments where

the coalition structure in the resulting LVC was not in the CSB. Therefore Figure 6.4 shows the

percentage number of times that the LVC allowed stable cooperation between agents that the

CSB did not.

Figure 6.3 shows that the uniform coalition-value distribution yielded a greater mean im-

provement over the normal coalition-value distribution. The reason being that when a fixed

percentage-based demand vector is used, then there will be more breakdowns of negotiations

when the different valuations are spread out, meaning the CSB has less coalitions to find an

acceptable solution with. Overall the greatest mean improvement was shown to be the NDCS

distribution, as each individual coalition can be assigned more value using this distribution than

the other two.

In summary, Figure 6.3 and Figure 6.4 show that: (i) with three well known coalitional-value

distributions, the LVC stability solution concept gives higher expected payoffs for the agents

compared to the CSB solution concept (when the same valuations are used for the LVC and

CSB solutions); and (ii) with three well known coalitional-value distributions, the LVC stability

solution concept allows new stable coalition structures to form that are not possible under the

CSB solution concept (when the same valuations are used for the LVC and CSB solutions).

Thus these experiments show that from a system-wide perspective the LVC improves on

the CSB. To show that the LVC also improves on the CSB on an individual level, Figure 6.5 is

introduced. In this figure, the percentage of agents who increased their expected payoff in the

Chapter 6. 163

2 3 4 5 6 7

65

70

75

80

85

90

95

100

Number of Agents

A
ge

nt
s

in
cr

ea
si

ng
pa

yo
ff

as
%

uniform normal
NDCS

FIGURE 6.5: This figure shows the percentage of agents who increased their expected payoff
in the experiments, using a LVC solution instead of a CSB solution. A 95% confidence interval

was used.

experiments using a LVC solution instead of a CSB solution is plotted (the other agents lose out

as there was not one experiment where any agent received the same expected payoff). The figure

shows that for all the coalition-value distributions, there is an improvement to the majority of

agents’ expected payoffs in the LVC compared to CSB outcomes. Therefore, Figure 6.5 shows

that, when the same valuations are used: (iii) using the LVC solution over the CSB will satisfy

more agents regarding their expected payoffs.

6.4 Summary

This chapter has discussed how the agents can handle disagreements between themselves over

the value of a coalition, when the coalitions are valued quantitatively, and so complements Chap-

ter 3 that discussed how to handle disagreements when the coalitions are valued qualitatively.

To handle these quantitative value disagreements, a new coalitional game model, named

valuation disagreement coalitional games, has been introduced as well as new solution concepts,

one of which is never empty. These solution concepts detail stable coalition structures and

estimated payoff vectors, matched with a contract function. This contract function allows a

payoff vector solution for every possible valuation of every coalition in the coalition structure

to be implicitly given. Detailing the future possible payoffs for any valuation via a function

is computationally less complex compared to providing an explicit solution for every possible

valuation, which is the approach of Bayesian Coalitional Games [65]. Additionally the implicit

payoff vector solutions can give different percentage payoffs for the agents at different coalition

valuations, allowing more flexibility in negotiation than fixed percentage-based models such as

coalitional games with beliefs [34]. The flexibility of this chapter’s approach over [34] allows

Chapter 6. 164

outcomes with a higher total expected value to be found that can include coalition structures that

the approach of [34] does not allow to form. Finally due to the distribution of risk associated

with the estimated payoff debt exposure in valuation disagreement coalitional games, Section 6.2

discussed how pessimistic valuations by the agents are encouraged, which is beneficial if the

expected payoff to be gained by the formation of each coalition is of high importance.

Chapter 7

165

Chapter 7

Conclusions and Future Work

This Chapter presents the main contributions of this thesis in Section 7.1, followed by a discus-

sion of a number of possible future work directions in Section 7.2.

7.1 Summary of Contributions

The aim of this thesis was to attempt to answer the research question defined in Section 1.3:

How can decentralised coalition formation methods be designed that: (i) balance the com-

putational load; (ii) do not allow distributed knowledge to affect results; (iii) bound the commu-

nication costs; and (iv) handle valuation disagreements of a quantitative or qualitative manner?

All the contributions of this thesis relate to problems identifed by (i), (ii), (iii) and (iv) of the

research question. Chapters 4 and 5 describe decentralised coalition formation methods that bal-

ance the computational load approximately equally, thereby achieving (i). Chapter 5 describes

a decentralised coalition formation method that provides a guarantee that optimal and stable

solutions will be found when information on coalition values is distributed, thereby achieving

(ii). Chapters 4 and 5 describe decentralised coalition formation methods that constraint com-

munication costs, thereby achieving (iii). Finally chapters 3 and 6 offer new resolution methods

to find the best coalitions when there are disagreements on the values of the coalitions, thereby

achieving (iv). Exactly how these chapters achieve this is expanded on below:

(i) Balancing the computational load. Two new methods for addressing this issue are given

in this thesis, one method in Chapter 4, where the agents divide the coalition value calcu-

lations between themselves, and another method in Chapter 5 where the agents divide the

optimal coalition structure and least core stable payoff vector search between themselves.

Chapter 4’s method, named the DCG algorithm, is based on a new manner to list coalitions

of size s in an n agent characteristic function game. This new listing method relates to the

different (n, s)-increment arrays that are of size s and consists of: an integer partition of

(n − s) (of less than or equal size to s), and accompanying zeros if the chosen integer

partition is less than size s. Using these new lists, every agent is assigned to calculate

167

Chapter 7. 168

the value of a coalition, only if that coalition includes itself as a member. It is shown in

the proofs of Appendix A that each coalition’s value is calculated once and only once.

Additionally, it is seen from the discussion and analysing the algorithm itself, that if two

agents calculate the exact same number of coalitions of each size s, then each agent has

the exact same number of operations to perform.

Chapter 5’s methods, named the DDP algorithms, are based on: (a) new proofs for syn-

ergy coalition groups (SCG); (b) having distributed coalition value calculations as input;

(c) having an indexing scheme for two-set partitions of a coalition; and (d) modifying the

previously introduced dynamic programming (DP) algorithm of [138], which is guaran-

teed to find the optimal coalition structure. Part (a) will be discussed in (ii). Given (b),

provided by sections of the DCG algorithm, the agents can distribute the operations to

split each coalition into two (required by the DDP algorithms and henceforth known as

split operations) between themselves. Additionally when (c) is used to distribute the split

operations of the grand coalition, the range of split operations given to the agents tightens

and it is proven that the number of split operations becomes exactly equal if the number of

agents is an odd prime. If the number of agents is not an odd prime, the DDP∗ algorithm

that uses (c) still has a smaller range of split operations between the agents, compared to

the DDP algorithm that does not use (c).

(ii) Guaranteeing that optimal coalition formation solutions are found. A new methods for

addressing this issue is given in this thesis. The method is presented in Chapter 5 where

the agents are guaranteed to find the weak least core+ for the superadditive cover of any

characteristic function game (where the + indicates that cross-coalition side payments are

allowed).

Chapter 5’s method, as previously noted, relies on new proofs for synergy coalition groups

(SCG). These proofs show that: (a) for any superadditive characteristic function game,

using the coalitions only in the SCG representation, a solution in the weak least core is

guaranteed to always be found, should a linear program be run to find a weak least core

solution; and (b) for any superadditive characteristic function game, using the coalitions

only in the SCG representation, a solution in the strong least core is not guaranteed to

always be found, should a linear program be run to find a strong least core solution, yet

a guaranteed bound around the strong least core is given. The DDP algorithms are used

to guarantee that the coalitions in the SCG representation are located. Additionally, as the

proofs apply also to the superadditive cover, then for any characteristic function game’s su-

peradditive cover, a solution in the weak least core+ (where the + indicates cross-coalition

side payments are allowed), can always be found using the DDP algorithms.

(iii) Bounding the communication costs. Two new methods for addressing this issue are

given in this thesis, one method in Chapter 4, where the agents complete the distributed

calculation of all the coalition values with zero communication costs, and another method

in Chapter 5, where a method to restrict the communication on each potential coalition is

detailed when searching for the superadditive cover of a characteristic function game.

Chapter 7. 169

Chapter 4’s method relies on the previously stated new listing method of the coalitions.

As all agents know the listing method, and the DCG algorithm describes to each agent

exactly what coalition of each list it should calculate the value of, then no communication

is required between the agents to coordinate themselves.

Chapter 5’s method, discussed in Section 5.3, shows how to restrict the communication

between the agents when calculating the superadditive cover of a characteristic function

game. Section 5.3 details three ways to restrict the communication costs: (1) assign each

two-set partition of a coalition an index value to restrict the number of bits needed to

communicate which partition has the best synergy; (2) communicate one bit per coalition

indicating whether it has synergy or not; and (3) state a worst case number of bits to

communicate per coalition.

(iv) Allow coalition formation when there are disagreements on coalition values. Two new

methods for addressing this issue are given in this thesis, one method in Chapter 3, where

the agents value the coalitions qualitatively, and another method in Chapter 6, where the

agents value the coalitions quantitatively.

Chapter 3’s method is a new argumentation-based approach where agents instantiate an ar-

gumentation scheme to suggest a coalition to form. Critical questions are provided to allow

the agents to challenge the instantiations. To allow the agents to use this argumentation-

based approach, two new dialogue game communication protocols are defined: (a) the

C-inq dialogue game that allows the agents to reason over the state of the world; and (b)

the C-pAct dialogue game that allows the agents to put forth and attack arguments for a

coalition to form. Finally, to allow the agents to reason over these instantiated argumen-

tation schemes and critical questions, a new argument evaluation method for value-based

argumentation frameworks is detailed. This new argument evaluation method finds the

best coalitions for the agents to form, in terms of the agents reported preferences.

Chapter 6’s method is a new cooperative game theory model of coalitional games, named

valuation disagreement coalitional games, where the agents disagree on the quantitative

value of each coalition. This model provides new stability solution concepts that detail

exactly which coalitions (and payoff vectors) are classified as the most stable, and there-

fore best to form. This chapter’s model is shown to encourage pessimistic valuations in

the agents because the model stacks the risk of the coalition not achieving its combined

predicted value, on the agents who report a higher value than the real coalition value. En-

couraging pessimistic valuations is a positive property in microeconomic models because

assigning loss/debt can having a wide ranging social impact.

7.2 Future Directions

The results presented in this thesis have provided a number of possible directions for future

work:

Chapter 7. 170

• Hybrid qualitative and quantitative model: In this thesis, a model for coalition for-

mation in qualitative environments is outlined in Chapter 3 and then a quantitative envi-

ronment model is used for the other chapters. In multi-agent systems, there are certain

environments that are inherently quantitative while other environments are best described

in a qualitative manner [132]. Yet there are many environments that can be described with

a mix of both qualitative and quantitative models. For example, if a coalition achieves

some goal or promotes some social-value, to what degree this is achieved is most likely

best described in a quantitative form. Alternatively, if a coalition achieves some utility,

exactly why it achieves this is most likely best described in propositional (i.e. qualitative)

form.

In this thesis, allowing the agents to intelligently reason in a qualitative environment was

achieved through argumentation, while allowing the agents to intelligently reason in a

quantitative environment was achieved through game theoretic analysis. This suggests

that a good starting point for finding a hybrid qualitative and quantitative coalition for-

mation model, is to investigate how the qualitative coalitional formation models of argu-

mentation and the quantitative coalition formation models of game theory can be blended

together.

• Developing the DCG algorithm: The DCG algorithm, given in Chapter 4, could be

developed by adapting it: (i) for a dynamic number of agents; (ii) for repeating the calcu-

lation of certain coalitions whose values have changed; and (iii) for the possibly different

computational resources of the agents. Additionally as DCG is essentially distributing

all possible subsets to the agents, future work could investigate DCG in other applica-

tions apart from coalition formation. These new applications would all have to require the

distribution of sets for some calculation.

• Developing decentralised anytime algorithms: The DDP algorithms to complete the

coalition formation process presented in this thesis are dynamic programming algorithms

and so give a solution only when the algorithm is run to conclusion. On the other hand,

anytime algorithms can return a solution at anytime, which is guaranteed to be within a

bound from the optimal solution [94]. In [94], it was shown that an anytime algorithm,

named IP, can be faster than the DP dynamic programming algorithm of [138] for some

standard coalition-value distributions. This is the case even though the worst case run-

ning time of DP is O(3n), while the worst case running time of IP is O(nn). With this

is mind, an interesting future research direction would be to develop a decentralised any-

time algorithm for coalition formation that has the guarantees of: (i) finding the optimal

coalition structure; and (ii) finding a stable payoff vector in a least core related solution

concept. A decentralised anytime algorithm for locating the optimal coalition structure

does exist, named D-IP [73], yet D-IP does not provide any guarantees on whether (ii)

can be achieved.

• Incentive compatibility: In both the DCG algorithm of Chapter 4 and the DDP algo-

rithms of Chapter 5, the agents are given only coalitions that include themselves as a

Chapter 7. 171

member, to motivate them to follow the algorithm. Yet since self-interested agents may

use the algorithms, it is not guaranteed that they will follow the algorithms completely.

In this case the tools of mechanism design [80] may have to be used, where the DCG

algorithm can be wrapped in some form of mechanism that is incentive compatible. An

mechanism is incentive compatible if the agents fare best when they truthfully follow it

[119], meaning rational self-interested agents will be guaranteed to comply with an in-

centive compatible mechanism. A mechanism is near incentive compatible if the agents

cannot reason on how to lie profitably. Proving the incentive compatibility/near incen-

tive compatibility of the algorithms in this thesis (or wrapping the algorithms in another

mechanism so that they become incentive compatible/near incentive compatible [80]), is

left for future work.

• Controlling the risk in uncertain environments: In the valuation disagreement coali-

tional games of Chapter 6, the agents are encouraged to report pessimistic valuations by

heightening the risk of an agent losing all its expected payoff, the higher that agent values

the coalition that forms. A very interesting future extension is to fully investigate differ-

ent contract functions. Removing the assumption that contract functions have to allow an

agent to achieve its expected payoff by its valuation of the coalition, could allow for the

contract function designer to have better control over the multi-agent system’s reported

valuations. This additional control would come from allowing the contract designer more

freedom to redistribute each coalition’s true payoff, according to the agent’s reported val-

uations. For example, contract functions without the previously mentioned assumption

could: (i) assign a payoff penalty of varying percentage to every agent reporting a coali-

tion value above the lowest reported valuation, where the percentage is dependent on how

high the agent’s valuation is in comparison to the other agents; and (ii) assign a valuation

as a threshold and any reported valuation above this threshold value could be assigned a

penalty. This threshold value could represent the mean, median or mode of the reported

values. Both (i) and (ii) would allow the contract designer more control over the valua-

tions the agents’ report, controlling (to some degree) how low or high a valuation report

is. This future work has comparisons to economic markets and these comparisons should

be investigated.

These directions indicated above are just some of the possible options given the results of

this thesis. I look forward to seeing any possible future research directions inspired by my thesis.

Appendix A

Proof for the Distributed Coalition
Generation Algorithm

In this appendix, the definitions from Section 4.1.3 are restated. Following the definitions are

the theorems and proofs that show that each coalition is assigned to one and only one agent

when the DCG algorithm of Chapter 5 is used.

A.1 Definitions

Let n and s be natural numbers where n is the number of agents and s is the size of the coalitions

where s ≤ n. The notation t is used to denote an arbitrary sequence of non negative integers

t = 〈t0, t1, . . . , ts−1〉 such that
∑s−1

i=0 ti = n − s. Such a sequence is named the increment

array.

The period of t, denoted by π(t) is

min
1≤p≤s

t = 〈t0, t1, . . . , tp−1, t0, t1, . . . , tp−1, . . . , t0, t1, . . . , tp−1〉

That is, t formed by m identical copies of a sequence of length p.

Given C ⊆ {1, 2, . . . , n}, agent ag (for some 1 ≤ ag ≤ n) generates C from ag and t if

C = {ag1, ag2, . . . , ags} and:

agi =

ag if i = 1

(ag + φi) mod n if (ag +
∑i−2

k=0 tk + (i− 1)) mod n 6= 0

n if (ag +
∑i−2

k=0 tk + (i− 1)) mod n = 0

Given an arbitrary sequence of non-negative integers, b = 〈b0, . . . , bs−1〉, the n-correction

of b is the sequence, corr(b, n), obtained by replacing each bi > n with the value (bi mod n).

If c = corr(b, n) and c 6= b then b is said to be uncorrected for n.

Additionally C(ag, t) denotes the subset of {1, 2, . . . , n} generated by the increment array t

from ag, where C(ag, t) will have been n-corrected if required. The proofs in A.2 demonstrate

173

Appendix A. 174

that each t only needs to be used by r = (n × π(t))/s different agents. If more than r agents

use t to generate a coalition, then repeated coalitions will be generated.

Finally, if two non-negative integer sequences tx and ty generate the same coalition C for

two different agents i, j ∈ C (i.e. C(i, tx) = C(j, ty)), then tx and ty are classified as the same

equivalence class, denoted tx ≈ ty. The Proofs in Section A.2 show that rather than consider

every possible increment array, it suffices only to consider a single representative from each

equivalence class.

To simplify the notation let,

ϕr =

{
0 if r = 1∑r−2

k=0 tk + (r − 1) if 2 ≤ r ≤ s+ 1

Note that ϕs+1 = n.

A.2 Theorems

The main theorem is the following.

Theorem A.1. For any increment array t, and for all 1 ≤ i ≤ j ≤ n,

C(i, t) = C(j, t) ⇔ ∃ 0 ≤ r ≤ (n− i)s
nπ(t)

: j = i + r ×
(
nπ(t)

s

)
(A.1)

Proof. It is first shown that if j = i + (rnπ(t)/s) for r in the range stated then C(i, t) and

C(j, t) are identical. Notice that the case r = 0 is trivial and it suffices to consider only r = 1.

Note that no assumptions are made concerning i other than those prescribed by the requirement

1 ≤ i ≤ n− π(t)n/s.

The (uncorrected with respect to n) sequence generated by C(i, t) is,

〈i+ ϕ1, i+ ϕ2, . . . , i+ ϕs〉

and that by C(j, t) (again uncorrected with respect to n) is,

〈i+ (nπ(t)/s) + ϕ1, i+ (nπ(t)/s) + ϕ2, . . . , i+ (nπ(t)/s) + ϕs〉

Consider the term ϕπ(t)+k for 1 ≤ k ≤ s− π(t).

ϕπ(t)+k =

π(t)+k−2∑
p=0

tp + π(t) + k − 1

=

π(t)−1∑
p=0

tp +

π(t)+k−2∑
q=π(t)

tq + π(t) + k − 1

= ϕπ(t)+1 +

k−2∑
q=0

tq + k − 1

= ϕπ(t)+1 + ϕk

Appendix A. 175

The penultimate identity follows from tπ(t)+q = tq.

Now consider ϕπ(t)+1. We have,

ϕπ(t)+1 =

π(t)−1∑
k=0

tk + π(t)

and

n− s =
s−1∑
k=0

tk =

s/π(t)−1∑
r=0

(r+1)π(t)−1∑
k=rπ(t)

tk

=

s/π(t)−1∑
r=0

(r+1)π(t)−1∑
k=rπ(t)

tk−rπ(t)

=
s

π(t)

π(t)−1∑
p=0

tp

=
s

π(t)

(
ϕπ(t)+1 − π(t)

)
We deduce, therefore, that

ϕπ(t)+1 =
nπ(t)

s
(A.2)

Hence from our earlier analysis of ϕπ(t)+k we obtain

ϕπ(t)+k =
nπ(t)

s
+ ϕk (A.3)

Returning to the (uncorrected) sequences defining C(i, t) and C(i + nπ(t)/s, t), the former

contributes
s⋃

k=1

{i + ϕk} =

s/π(t)−1⋃
r=0

π(t)⋃
k=1

{i+ rϕπ(t)+1 + ϕk}

which is
s/π(t)−1⋃
r=0

π(t)⋃
k=1

{
i+

rnπ(t)

s
+ ϕk

}
(A.4)

And, by a similar analysis of j = i+(nπ(t)/s), in the latter case, we obtain, prior to correction,

C(j, t) as:
s/π(t)−1⋃
r=0

π(t)⋃
k=1

{
i+

(r + 1)nπ(t)

s
+ ϕk

}
(A.5)

Comparing (4) and (5), the terms with 1 ≤ r < s/π(t)− 1 clearly occur in both sets. The terms

for r = 0 in (4) are
π(t)⋃
k=1

{i+ ϕk}

Appendix A. 176

Similarly, the terms corresponding to r = s/π(t)− 1 in (5), are

π(t)⋃
k=1

{
i+

s

π(t)

nπ(t)

s
+ ϕk

}

These terms are prior to n correction, so that

i+
s

π(t)

nπ(t)

s
+ ϕk ∈ C(j, t) = i + n + ϕk = i+ ϕk ∈ C(i, t)

This establishes the first part of the Theorem:

j = i+ r

(
nπ(t)

s

)
⇒ C(i, t) = C(j, t)

To complete the proof we show that

C(i, t) = C(j, t) ⇒ ∃ 0 ≤ r ≤ (n− i)s
nπ(t)

: j = i + r ×
(
nπ(t)

s

)
First observe that if C ′ = C(j, t) ⊆ {1, 2, . . . , n} of size s is the same set as C = C(i, t) =

{x1, . . . , xs} there must be some 2 ≤ r ≤ s such that

corr(〈i+ ϕr + ϕ1, i+ ϕr + ϕ2, . . . , i+ ϕr + ϕp, . . . , i+ ϕr + ϕs〉, n)

is exactly the set C(i, t) whose elements are

corr(〈i+ ϕ1, i+ ϕ2, i+ ϕ3, . . . , i+ ϕp, . . . , i+ ϕs〉, n)

In summary from C(i, t) = C(j, t) we can deduce: i ∈ C(i, t) and each element contribut-

ing to C(i, t) (prior to n-correction) has the form i + ϕk so that there is a choice, r, for which

by j ∈ {i+ ϕr, i+ ϕr − n}.
The terms generated by (i, t) are,

β(i) = corr(〈i+ ϕ1, . . . , i+ ϕp, . . . , i+ ϕs〉, n)

The terms generated by (i+ ϕr, t) are

β(r) = corr(〈i+ ϕr + ϕ1, . . . , i+ ϕr + ϕp, . . . , i+ ϕr + ϕs〈, n)

From the premise, every term in corr(β(r), n) must correspond to some term in corr(β(i), n)

That is,

∀ p ∃ q : i+ ϕp ∈ {i+ ϕr + ϕq, i+ ϕr + ϕq − n}

After some trivial rearrangement this is simply,

∀ p ∃ q : ϕp ∈ {ϕr + ϕq, ϕr + ϕq − n}

Appendix A. 177

Observe that for any sequence

〈y1, y2, y3, . . . , ys〉

generated via (y1, t) there is at most one index l for which

yi ≤ n ∀ i ≤ l ; yl+1 > n ; yi − n ≤ n ∀ l + 2 ≤ i ≤ s

In consequence, the values 〈y1, . . . , yl〉 are strictly increasing, as are the values 〈yl − n, yl+1 −
n, . . . , ys − n〉. We can therefore deduce the following:

For ϕr witnessing the behaviour of t in the analysis above, there is a unique index p for

which

ϕr + ϕq is

{
≤ n if q ≤ p
> n if q > p

So that from

i+ ϕr + ϕp = i+ n = i+ n+ ϕ1

It follows that,
ϕr + ϕp = n+ ϕ1

ϕr + ϕp+1 = n+ ϕ2

· · ·
ϕr + ϕp+k = n+ ϕk+1

· · ·
ϕr + ϕp+(s−p) = n+ ϕs−p+1

ϕr + ϕp−1 = ϕs

ϕr + ϕp−2 = ϕs−1

· · ·
ϕr + ϕp−k = ϕs−k+1

ϕr + ϕp−(p−2) = ϕs−p+3

ϕr + ϕp−(p−1) = ϕs−p+2

Appendix A. 178

In consequence, s and r, uniquely determine the value of p as s − r + 2. Rearranging the

expression above, gives

n+ ϕ1 = ϕr + ϕ(s−r+2)

n+ ϕ2 = ϕr + ϕ(s−r+2)+1

· · ·
n+ ϕk+1 = ϕr + ϕ(s−r+2)+k

· · ·
n+ ϕs−(s−r+2)+1 = ϕr + ϕ(s−r+2)+(s−s−r+2)

ϕs−(s−r+2)+2 = ϕr + ϕ(s−r+2)−((s−r+2)−1)

ϕs−(s−r+2)+3 = ϕr + ϕ(s−r+2)−((s−r+2)−2)

· · ·
ϕs−k+1 = ϕr + ϕ(s−r+2)−k

· · ·
ϕs−1 = ϕr + ϕ(s−r+2)−2

ϕs = ϕr + ϕ(s−r+2)−1

Giving the final set of identities that the increment array t must satisfy in order for C(i, t) =

C(i+ ϕr, t) post n-correction (recall that ϕs+1 = n).

ϕr + ϕq =

{
ϕr+q−1 if 2 ≤ q ≤ s− r + 1

ϕs+1 + ϕr+q−1−s if s− r + 2 ≤ q ≤ s

where

ϕr =

{
0 if r = 1∑r−2

k=0 tk + (r − 1) if 2 ≤ r ≤ s

We first observe that these systems of identities can be expressed solely in terms of 〈t0, . . . , ts−1〉:
the terms on the left-hand side contribute r− 1 + q− 1 = r− q− 2 in addition to the tk values.

The terms on right-hand side, however, also contribute r+ q − 3 (via s+ (r+ q − 2− s) when

s− r + 2 ≤ q ≤ s) in addition to the tk values, so that these cancel.

In total we have so far shown that if after n-correction, C(i, t) = C(i + ϕr, t) for some

value r with 2 ≤ r ≤ s, the increment array t = 〈t0, . . . , ts−1〉 is a solution for the system of

identities

r−2∑
k=0

tk +

q−2∑
k=0

tk =

r+q−3∑
k=0

tk 2 ≤ q ≤ s− r + 1 (A.6)

r−2∑
k=0

tk +

q−2∑
k=0

tk =

s−1∑
k=0

tk +

r+q−3−s∑
k=0

tk s− r + 2 ≤ q ≤ s (A.7)

We now show that any such solution must have π(t) ≤ r − 1.

Let t be an increment array that satisfies the system of identities given in (6) and (7) using

r. In order to simplify the notation we use η(n, s, r, q) to denote the relevant identity.

Appendix A. 179

We analyse the general behaviours of

η(n, s, r, r − p) for 1 ≤ p ≤ r − 2

η(n, s, r, r + p) for 0 ≤ p ≤ s− r

For η(n, s, r, r − p) (1) and (2) yield the identities (post simplification and rearrangement)

r−p−2∑
k=0

tk =

2r−p−3∑
k=r−1

tk 2r − s− 1 ≤ p ≤ r − 2 (A.8)

r−p−2∑
k=2r−p−2−s

tk =
s−1∑

k=r−1

tk 1 ≤ p ≤ 2r − s− 2 (A.9)

For η(n, s, r, r + p) we obtain, in a similar manner,

r−2∑
k=0

tk =

2r+p−3∑
k=r+p−1

tk 0 ≤ p ≤ s− 2r + 1 (A.10)

r+p−2∑
k=2r+p−2−s

tk =

s−1∑
k=r−1

tk s− 2r + 2 ≤ p ≤ s− r (A.11)

Consider (8) and (9). As p decreases from its maximum value (for these cases) of r − 2 to its

minimum of 1 the system of identities follows the pattern,

t0 = tr−1 p = r − 2, q = 2

t0 + t1 = tr−1 + tr p = r − 3, q = 3

t0 + t1 + t2 = tr−1 + tr + tr+1 p = r − 4, q = 4

· · ·
t0 + t1 + t2 + · · ·+ tr−k−2 = tr−1 + tr + tr+1 + · · ·+ t2r−k−3 p = r − k, q = k

· · ·
t0 + t1 + t2 + · · ·+ tr−3 = tr−1 + tr + tr+1 + · · ·+ t2r−4 p = 1, q = r − 1

We then have, via (10) and the first case of (11) (that is, p = s − 2r + 2, q = s − r + 2), a

sequence of s− 2r + 3 identities,

t0 + t1 + · · ·+ tr−2 = tr−1 + tr + tr+1 + · · ·+ t2r−3 q = r

t0 + t1 + · · ·+ tr−2 = tr + tr+1 + tr+2 + · · ·+ t2r−3 + t2r−2 q = r + 1

t0 + t1 + · · ·+ tr−2 = tr+1 + tr+2 + · · ·+ t2r−2 + t2r−1 q = r + 2

· · ·
t0 + t1 + · · ·+ tr−2 = tr+k−1 + tr+k + · · ·+ t2r+k−4 + t2r+k−3 q = r + k

· · ·
t0 + t1 + · · ·+ tr−2 = ts−r + ts−r+1 + · · ·+ ts−3 + ts−2 q = s− r + 1

t0 + t1 + · · ·+ tr−2 = ts−r+1 + ts−r+2 + · · ·+ ts−2 + ts−1 q = s− r + 2

Appendix A. 180

Finally, from the remaining r − 2 cases of (11), we obtain the identities,

t1 + t2 + t3 + · · ·+ tr−2 = ts−r+2 + ts−r+3 + · · ·+ ts−2 + ts−1 q = s− r + 3

t2 + t3 + · · ·+ tr−2 = ts−r+3 + · · ·+ ts−2 + ts−1 q = s− r + 4

· · ·
tk + · · ·+ tr−2 = ts−r+k+1 + · · ·+ ts−2 + ts−1 q = s− r + k + 2

· · ·
tr−3 + tr−2 = ts−2 + ts−1 q = s− 1

tr−2 = ts−1 q = s

It is clear, from these patterns, that the following equalities must hold in order for t to lead to

C(i, t) = C(i+ ϕr, t) after n-correction.

From the first set of r − 2 identities together with that for q = r we obtain,

t0 = tr−1

t1 = tr

· · ·
tr−k−2 = t2r−k−3

· · ·
tr−3 = t2r−4

tr−2 = t2r−3

(A.12)

For the identities which must hold when r ≤ q ≤ s − r + 2, the left-hand of side of these is

always
∑r−2

k=0 tk while the right-hand side of the identity for q has exactly two terms in common

with the right-hand side of q − 1 and two in common with q + 1. In consequence we further

deduce,
tr−1 = t2r−2

tr = t2r−1

· · ·
tr+k−1 = t2r+k−2

· · ·
ts−r = ts−1

(A.13)

Finally, in a similar manner to the identities in the first collection we deduce from the final set,

ts−1 = tr−2

ts−2 = tr−3

· · ·
ts−r+k+1 = tk

· · ·
t1 = ts−r+2

t0 = ts−r+1

(A.14)

Appendix A. 181

If we consider the effect of combining these and the consequences for 〈t0, . . . , ts−1〉 we have

the following.

For each j,

t(r−1)−j = t2(r−1)−j from (12)

t(r−1)+j = t2(r−1)+j from (13)

tj = ts−(r−1)+j from (14)

Now suppose we write s as s = b×m where b = gcd(s, r − 1): note that since this allows

b = 1 the value of b is always well defined for any s and 2 ≤ r ≤ s.
In this case the conditions expressed in (12)–(14) indicate, from s = b×m and (r−1) = b×v

that t conforms to the behaviour in Table A.1,

TABLE A.1: Values of ti(r−1)+j implied by (12)–(14), s = m× b, (r − 1) = v × b

0 1 · · · j · · · (b− 2) (b− 1) · · · (v − 1)b · · · vb− 1

0 t0 t1 · · · tj · · · t(b−2) t(b−1) · · · t0 · · · t(b−1)

1 t0 t1 · · · tj · · · t(b−2) t(b−1) · · · t0 · · · t(b−1)

· · · t0 t1 · · · tj · · · t(b−2) t(b−1) · · · t0 · · · t(b−1)

i t0 t1 · · · tj · · · t(b−2) t(b−1) · · · t0 · · · t(b−1)

· · · t0 t1 · · · tj · · · t(b−2) t(b−1) · · · t0 · · · t(b−1)

m− 2 t0 t1 · · · tj · · · t(b−2) t(b−1) · · · t0 · · · t(b−1)

m− 1 t0 t1 · · · tj · · · t(b−2) t(b−1) · · · t0 · · · t(b−1)

That this is the behaviour imposed, follows from the conditions arising via (14) to the effect

tj = ts−(r−1)+j , which is equivalent to the identity,

tj = tbm−bv+j = tb(m−v)+j

indicating that values repeat in blocks of size b.

This, configuration, however, indicates that an increment array t for which C(i, t) = C(i+

ϕr, t) after n-correction must have the form

〈t0, t1, . . . , tb−1, t0, t1, . . . , tb−1, . . . , t0, t1, . . . , tb−1, t0, t1, . . . , tb−1〉

That is to say, π(t) ≤ b. Now in order to complete the proof it remains to demonstrate that

ϕr = l × (nb/s) for some choice of 1 ≤ l ≤ (n− i)s/nb. Since π(t) ≤ b and we have already

shown that t repeats in blocks of length b, should π(t) < b then we must have b an exact multiple

(> 1) of π(t).

Appendix A. 182

We have from our analysis above,

ϕr =
r−2∑
k=0

tk + r − 1

=
r − 1

b

b−1∑
k=0

tk + r − 1

=
r − 1

b

(
b−1∑
k=0

tk + b

)

=

(
r − 1

b

)
ϕb+1

In addition, however,

n− s =
s−1∑
k=0

tk =
s

b

b−1∑
k=0

tk

=
s

b
(ϕb+1 − b)

So that

ϕb+1 =
b

s
(n− s) + b =

bn

s

Thereby giving ϕr as

ϕr =

(
r − 1

b

)
bn

s
=

(r − 1)n

s
= l ×

(
nπ(t)

s

)
for some choice of l since (r − 1) = v × b = l × π(t).

This suffices to establish the result:

C(i, t) = C(j, t) ⇒ j = i+m×
(
nπ(t)

s

)

Lemma A.2. Let C ⊆ {1, 2, . . . , n} with |C| = s. There is an increment array t and i ∈ C
such that C = C(i, t).

Proof. Let C = {x, x0, x1, . . . , xs−2}. Without loss of generality we may assume

x < x0 < x1 < · · · < xi < xi+1 < · · · < xs−2

Appendix A. 183

It suffices to find t = 〈t0, . . . , ts−1〉 with C(x, t) = C and
∑s−1

i=0 ti = n− s, i.e.

t0 = x0 − (x+ 1)

· · ·

tk = xk −

(
k−1∑
i=0

ti + x+ k + 1

)
· · ·

ts−1 = n−
s−2∑
i=0

ti

For increment arrays t and u we write t ≈ u if for some k with 0 ≤ k ≤ s− 1 we have

〈u0, u1, . . . , us−1〉 = 〈tk, tk+1, . . . , ts−1, t0, t1, . . . , tk−1〉

It is easy to see that ≈ is an equivalence relation and that t ≈ u⇒ π(t) = π(u).

Lemma A.3. If t ≈ u then

n⋃
i=1

{ C(i, t) } =
n⋃
i=1

{ C(i, u) }

Proof. Without loss of generality we may assume that t ≈ u is witnessed by the choice k =

s− 1, i.e.

〈u0, u1, . . . , us−1〉 = 〈ts−1, t0, t1, . . . , ts−3, ts−2〉

Define ϕr for 1 ≤ r ≤ s+ 1 as before and ψr for 1 ≤ r ≤ s+ 1 via

ψr =

{
0 if r = 1

ts−1 +
∑r−3

k=0 tk + r − 1 if 2 ≤ r ≤ s+ 1

Comparing respective terms we see that for all 2 ≤ k ≤ s

ψk = ϕk + (ts−1 − tk−2) (A.15)

We claim that this leads to the following,

C(i, t) =

{
C(n− ts−1 + i− 1, u) if 1 ≤ i ≤ ts−1 + 1

C(i− ts−1 − 1, u) if ts−1 + 2 ≤ i ≤ n

To see this, consider the case when 1 ≤ i ≤ ts−1 + 1. We have,

C(i, t) =

s⋃
k=1

{i+ ϕk}

Appendix A. 184

which is claimed to be,

C(n− ts−1 + i− 1, u) =

s⋃
k=1

{n− ts−1 + i− 1 + ψk}

= {n− ts−1 + i− 1} ∪
s⋃

k=2

{n− ts−1 + i− 1 + ϕk + ts−1 − tk−2}

Consider the terms

n− ts−1 + i− 1 + ϕk + ts−1 − tk−2

For 2 ≤ k ≤ s, from the fact that ϕk =
∑k−2

j=0 tj + k − 1, these are equal to

n− ts−1 + i− 1 +

k−3∑
j=0

tj + k − 1 + ts−1 = n+ i+ ϕk−1

In total we have, for 1 ≤ i ≤ ts−1 + 1

C(i, t) =
s⋃

k=1

{i+ ϕk}

C(n− ts−1 + i− 1, u) = {n− ts−1 + i− 1} ∪
s⋃

k=2

{n+ i+ ϕk−1}

Noting that after n correction terms n + i + ϕk−1 become i + ϕk−1 all of which are elements

of C(i, t) the only terms unaccounted for are {n− ts−1 + i− 1} ∈ C(n− ts−1 + i− 1, u) and

{i+ ϕs} ∈ C(i, t). For these, however,

i+ ϕs = i+

s−2∑
j=0

tj + s− 1

= i+ (n− s− ts−1) + s− 1

= i+ n− ts−1 − 1

When ts−1 + 2 ≤ i ≤ n, it is claimed that

C(i, t) =
s⋃

k=1

{i+ ϕk}

corresponded to

C(i− ts−1 − 1, u) =

s⋃
k=1

{i− ts−1 − 1 + ψk}

= {i− ts−1 − 1} ∪
s⋃

k=2

{i− ts−1 − 1 + ϕk + ts−1 − tk−2}

Appendix A. 185

Inspecting the terms for 2 ≤ k ≤ s

i− ts−1 − 1 + ϕk + ts−1 − tk−2

These, again, simplify to i+ ϕk−1, so that

C(i, t) =

s⋃
k=1

{i+ ϕk}

C(i− ts−1 − 1, u) = {i− ts−1 − 1} ∪
s⋃

k=2

{i+ ϕk−1}

When 1 ≤ k ≤ s − 1, the term i + ϕk appears in both C(i, t) and C(i − ts−1 − 1, u), For

the terms i + ϕs ∈ C(i, t) and i − ts−1 − 1 ∈ C(i − ts−1 − 1, u) we have already seen that

i+ ϕs = i+ n− ts−1 − 1 which after n correction is i− ts−1 − 1 as required.

This establishes the property claimed: if t and u belong to the same equivalence class of ≈
then

n⋃
i=1

{C(i, t)} =

n⋃
i=1

{C(i, u)}

Lemma A.3 shows that increment arrays belonging to the same equivalence class of ≈ gen-

erate exactly the same set of coalitions of size s from {1, . . . , n}. Our next two results establish

that this is the only way in which two distinct sequences can produce the same coalition.

Lemma A.4. Let C = C(xi, t) and

C = {x1, x2, . . . , xi, . . . , xs}

with xi < xi+1 for all 1 ≤ i < s. There is an increment array, u, for which t ≈ u and C(x1, u)

generates C in strictly increasing ordering of xi, i.e.

xi ∈

{
x1 +

i−2∑
k=0

ui + i− 1, x1 +
i−2∑
k=0

ui + i− 1− n

}
∀ 2 ≤ i ≤ s

Proof. Given t, suppose

C(xi, t) = {x1, x2, . . . , xi, . . . , xs}

First observe that the terms

xi +

r−2∑
k=0

tk + r − 1 = xi + ϕr

Appendix A. 186

are strictly increasing. It follows that if xi 6= x1 there must be a unique index, p, for which

xi + ϕr is

{
≤ n if r < p

> n if r ≥ p

In consequence, x1 = xi+ϕp−n for otherwise we cannot have x1 ∈ C(xi, t). More generally,

however, it must hold that,

xk = xi + ϕp+k−1 − n ∀ 1 ≤ k ≤ s− p+ 1

xk = xi + ϕp−(s−k)−1 ∀ s− p+ 2 ≤ k ≤ s

This, however, corresponds to the behaviour of the increment array, u, whose definition is

u = 〈tp+1, tp+2, . . . , tp+k, . . . , ts, t0, . . . , tp〉

Clearly u ≈ t and C(x1, u) = C(xi, t) as claimed.

As an easy consequence of Lemma A.4 we obtain,

Lemma A.5. Let t and u be increment arrays for which t 6≈ u. In such cases,

n⋃
i=1

{C(i, t)}
⋂ n⋃

i=1

{C(i, u)} = ∅

Proof. Suppose the contrary and that C = {x1, . . . , xs} can be generated by C(xi, t) and

C(xj , u) for choices of t and u belonging to different equivalence classes of ≈. As a conse-

quence of Lemma A.4 we know that there are increment arrays, t′ and u′ for which,

t ≈ t′

u ≈ u′

C(x1, t
′) = C(xi, t) = C(xj , u) = C(x1, u

′)

Furthermore, C(x1, t
′) and C(x1, u

′) produce the elements of C in increasing ordering of xi ∈
C. This, however, is only possible if

xi = x1 +

i−2∑
k=0

t′k + i− 1 = x1 +

i−2∑
k=0

u′k + i− 1

that is, t′i = u′i for each 0 ≤ i ≤ s− 1. This, however, implies that t ≈ u in contradiction to our

starting premise.

Theorem A.6. For increment arrays, t and u,

n⋃
i=1

{C(i, t)}
⋂ n⋃

i=1

{C(i, u)} 6= ∅ ⇔ t ≈ u (A.16)

n⋃
i=1

{C(i, t)} =

n⋃
i=1

{C(i, u)} ⇔ t ≈ u (A.17)

Appendix A. 187

Proof. That increment arrays belonging to the same equivalence class of ≈ generate identical

sets of coalitions of size s over all agents (and hence such have a non-empty intersection) follows

directly from Lemma A.3. This establishes the⇐ implication for (17) and hence (16). That this

is the only way that two increment arrays can generate a coalition in common, i.e. that should

t and u produce the same subset of {1, 2, . . . , n} then t and u belong to the same equivalence

class of ≈ is immediate from Lemma A.4 and Lemma A.5. We thus have the⇒ implications of

(16) and (17) thereby completing the theorem proof.

Bibliography

[1] S. Airiau and S. Sen, Distributed computation of kernel-stable coalition payoff distribu-

tions, in Proceedings of the 1st Workshop on Cooperative Games in Multiagent Systems

(CoopMAS), 2010, pp. 13–20.

[2] , On the stability of an optimal coalition structure, in Proceedings of the 19th

European Conference on Artificial Intelligence (ECAI), 2010, pp. 203–308.

[3] K. Allan, Felicity conditions on speech acts, Encyclopedia of Language and Linguistics,

Oxford: Pergamon Press, 1994.

[4] L. Amgoud, An argumentation-based model for reasoning about coalition structures, in

Proceedings of the 2nd International Workshop on Argumentation in Multi-Agent Sys-

tems (ArgMAS), 2005, pp. 217–228.

[5] S. Arib and S. Aknine, Preferences and constraints for agent coalition formation, in

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Tech-

nology (IAT), 2013, pp. 130–137.

[6] Aristotle, Topics, Clarendon Press, Oxford, UK, 1997, Translated by R. Smith.

[7] T. Arnold and U. Schwalbe, Dynamic coalition formation and the core, Journal of Eco-

nomic Behaviour and Organization 49 (2002), 363–380.

[8] K. Atkinson, What should we do? Computational representation of persuasive argument

in practical reasoning, Ph.D. thesis, Department of Computer Science, University of Liv-

erpool, 2005.

[9] K. Atkinson and T. Bench-Capon, Action-based alternating transitions systems for ar-

guments about action, in Proceedings of the 22nd Conference on Artificial Intelligence

(AAAI), 2007, pp. 24–29.

[10] , Practical reasoning as presumptive argumentation using action based alternat-

ing transition systems, Artificial Intelligence 171 (2007), 855–874.

[11] K. Atkinson, T. Bench-Capon, and P. E. Dunne, Uniform argumentation frameworks, in

Proceedings of the 4th International Conference on Computational Models of Arguments

(COMMA), 2012, pp. 165–176.

189

Bibliography 190

[12] K. Atkinson, T. Bench-Capon, and P. McBurney, A dialogue game protocol for multi-

agent argument over proposals for action, Autonomous Agents and Multi-Agent Systems

11 (2005), 153–171.

[13] K. Atkinson, T. J. M. Bench-Capon, and P. McBurney, Computational representation of

practical argument, Synthese 152 (2006), 157–206.

[14] R. J. Aumann and J.H. Dreze, Cooperative games with coalition structures, International

Journal of Game Theory 3 (1974), 217–237.

[15] R. J. Aumann and M. Maschler, The bargaining set for cooperative games, Advances in

Game Theory (M. Dresher, L. S. Shapley, and A. W. Tucker, eds.), Princeton University

Press, 1964, pp. 443–447.

[16] R. J. Aumann and M. Maschler, Game-theoretic analysis of a bankruptcy problem from

the Talmud, Journal of Economic Theory 36 (1985), 195–213.

[17] J. L. Austin, How to do things with words, Oxford University Press, 1962.

[18] Y. Bachrach, E. Elkind, R. Meir, D. Pasechnik, M. Zuckerman, J. Rothe, and J. S. Rosen-

schein, The cost of stability in coalitional games, in Proceedings of the 2nd International

Symposium on Algorithmic Game Theory (SAGT), 2009, pp. 122–134.

[19] T. Bench-Capon, Persuasion in practical argument using value based argumentation

frameworks, Journal of Logic and Computation 13 (2003), 429–48.

[20] F. Bistaffa, Jesus Cerquides, and S. D. Ramchurn, Anytime coalition structure generation

on synergy graphs, in Proceedings of the 13th International Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS), 2014, pp. 13–20.

[21] E. Black and K. Atkinson, Dialogues that account for different perspectives in collabora-

tive argumentation, in Proceedings of the 8th International Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS), 2009, pp. 867–874.

[22] E. Black and A. Hunter, An inquiry dialogue system, Autonomous Agents and Multi-

Agent Systems 19 (2009), 173–209.

[23] B. Blankenburg, R. K. Dash, S. D. Ramchurn, M. Klusch, and N. R. Jennings, Trusted

kernel-based coalition formation, in Proceedings of the 4th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS), 2005, pp. 989–996.

[24] G. Boella, D. M. Gabbay, A. Perotti, and S. Villata, Coalition formation via negotia-

tion in multiagent systems with voluntary attacks, in Proceedings of the 22nd Benelux

Conference on Artificial Intelligence (BNAIC), 2010, pp. 25–32.

[25] G. Boella, L. v. d. Torre, and S. Villata, Analyzing cooperation in iterative social network

design, Universal Computer Science 15 (2009), 2676–2700.

Bibliography 191

[26] A. Bogomolnaia and M. O. Jackson, The stability of hedonic coalition structures, Games

and Economic Behaviour 28 (2002), 201–230.

[27] S. Branzei and K. Larson, Coalitional affinity games and the stability gap, in Proceedings

of the 21st International Joint Conference on Artificial Intelligence (IJCAI), 2009, pp. 79–

84.

[28] N. Bulling and J. Dix, Modelling and verifying coalitions using argumentation and ATL,

Inteligencia Artificial 14 (2010), 45–73.

[29] C. Cayrol and M. C. Lagasquie-Schiex, Coalitions of arguments: A tool for handling

bipolar argumentation frameworks, Intelligent Systems 25 (2010), 83–109.

[30] J. C. Cesco, A convergent transfer scheme to the core of a TU-game, Revista de Matemti-

cas Aplicadas 19 (1998), 23–35.

[31] , Fundamental cycles of pre-imputations in non-balanced TU-games, Interna-

tional Journal of Game Theory 32 (2003), 211–222.

[32] G. Chalkiadakis, A bayesian approach to multi-agent reinforcement learning and coali-

tion formation under uncertainty, Ph.D. thesis, Department of Computer Science, Uni-

versity of Toronto, 2007.

[33] G. Chalkiadakis and C. Boutilier, Bayesian reinforcement learning for coalition for-

mation under uncertainty, in Proceedings of the 3th International Conference on Au-

tonomous Agents and Multi-Agent Systems (AAMAS), 2004, pp. 1090–1097.

[34] G. Chalkiadakis, E. Elkind, and N. R. Jennings, Simple coalitional games with beliefs, in

Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI),

2009, pp. 85–90.

[35] G. Chalkiadakis, E. Elkind, E. Markakis, M. Polukarov, and N. R. Jennings, Cooperative

games with overlapping coalitions, Journal of Artificial Intelligence Research 39 (2010),

179–216.

[36] G. Chalkiadakis, E. Elkind, and M. Wooldridge, Computational aspects of cooperative

game theory, Morgan & Claypool Publishers, 2011.

[37] G. Chalkiadakis, E. Markakis, and C. Boutilier, Coalition formation under uncertainty:

bargaining equilibria and the bayesian core stability concept, in Proceedings of the 6th

International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),

2007, pp. 64–81.

[38] A. Chapman, R. A. Micillo, R. Kota, and N. R. Jennings, Decentralised dynamic task

allocation using overlapping potential games, The Computer Journal 53 (2010), 1462–

1477.

Bibliography 192

[39] K. Chatterjee, B. Dutta, and K. Sengupta, A noncooperative theory of coalitional bar-

gaining, Review of Economic Studies 60 (1993), 463–477.

[40] B. Cheng, G. Zeng, and A. Jie, Adding branching temporal dimension to qualitative

coalitional games with preferences, Journal of Computers 5 (2010), 749–757.

[41] V. Conitzer and T. W. Sandholm, Complexity of constructing solutions in the core based

on synergies among coalitions, Artificial Intelligence 170 (2006), 607–619.

[42] V. D. Dang, R. K. Dash, A. Rogers, and N. R. Jennings, Overlapping coalition formation

for efficient data fusion in multi-sensor networks, in Proceedings of the 21st Conference

on Artificial Intelligence (AAAI), 2006, pp. 635–640.

[43] V. D. Dang and N. R. Jennings, Generating coalition structures with finite bound from the

optimal guarantees, in Proceedings of the 3th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), 2004, pp. 564–571.

[44] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, Algorithms, McGraw-Hill Higher

Education, 2006.

[45] M. Davis and M. Maschler, The kernel of a cooperative game, Naval Research Logistics

Quarterly 12 (1965).

[46] F. Dignum, B. Dunin-Keplicz, and R. Verbrugge, Agent theory for team formation by dia-

logue, in Proceedings of the 7th International Workshop on Agent Theories, Architectures

and Languages (ATAL), 2000, pp. 141–156.

[47] M. Dimand and R. W. Dimand, The history of game theory, volume 1: from the beginnings

to 1945, Routledge, 1996.

[48] Y. Dimopoulos, P. Moraitis, and L. Amgoud, Theoretical and computational properties

of preference-based argumentation, in Proceedings of the 18th European Conference on

Artificial Intelligence, 2008, pp. 463–467.

[49] T. S. H. Driessen, Cooperative games, solutions and applications, Springer Netherlands,

1988.

[50] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games, Artificial Intelligence 77 (1995),

321–357.

[51] P. E. Dunne, W. v. d. Hoek, S. Kraus, and M. Wooldridge, Cooperative boolean games, in

Proceedings of the 7th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS), 2008, pp. 1015–1022.

[52] P. E. Dunne and M. Wooldridge, Preferences in qualitative coalition games, in Proceed-

ings of the 6th Workshop in Game Theoretic and Decision Theoretic Agents (GTDT),

2004, pp. 29–38.

Bibliography 193

[53] Paul E. Dunne, Indexing (n, s) combinations, Tech. Report ULCS-15-001, University of

Liverpool, 2015.

[54] B. Dutta and R. Vohra, Incomplete information, credibility and the core, Mathematical

Social Sciences 50 (2005), 148–165.

[55] E. Elkind, G. Chalkiadakis, and N. R. Jennings, Coalition structures in weighted voting

games, in Proceedings of the 18th European Conference on Artificial Intelligence (ECAI),

2008, pp. 393–397.

[56] R. Evans, Coalitional bargaining with competition to make offers, Games and Economic

Behaviour 19 (1997), 211–220.

[57] A. J. Garcı́a and G. R. Simari, Defeasible logic programming an argumentative approach,

Theory and Practice of Logic Programming 4 (2004), 95–138.

[58] D. Gillies, Some theorems on n-person games, Ph.D. thesis, Princeton University, 1953.

[59] H. J. Goradia and J. M. Vidal, A distributed algorithm for finding nucleolus-stable payoff

divisions, in Proceedings of the IEEE/WIC/ACM International Conference on Intelligent

Agent Technology (IAT), 2007, pp. 395–398.

[60] T. Gordon, H. Prakken, and D. Walton, The carneades model of argument and burden of

proof, Artificial Intelligence 171 (10-15) (2007), 875–896.

[61] C. L. Hamblin, Fallacies, Methuen, London, UK, 1970.

[62] H. Hattori, T. Ito, T. Ozono, and T. Shintani, An approach to coalition formation using

argumentation-based negotiation in multiagent systems, in Proceedings of the 14th Inter-

national Conference on Industrial and Engineering Applications of Artificial Intelligence

and Expert Systems (IEA/AIE), 2001, pp. 687–696.

[63] B. Horling and V. Lesser, A survey of multi-agent organizational paradigms, Knowledge

Engineering Review 19 (2004), no. 4, 281–316.

[64] S. Ieong and Y. Shoham, Marginal contribution nets: a compact representation scheme

for coalitional games, in Proceedings of the ACM Conference on Electronic Commerce,

2005, pp. 193–202.

[65] , Bayesian coalitional games, in Proceedings of the 23rd Conference on Artificial

Intelligence (AAAI), 2007, pp. 95–100.

[66] A Iwasaki, S. Ueda, and M. Yokoo, Finding the core for coalition structure utilizing dual

solution, in Proceedings of the IEEE/WIC/ACM International Conference on Intelligent

Agent Technology (IAT), 2013, pp. 114–121.

[67] E. Lehrer, Allocation processes in cooperative games, International Journal of Game The-

ory 31 (2003), 341–351.

Bibliography 194

[68] I. A. Letia and A. Groza, Planning with argumentation schemes in online dispute res-

olution, in Proceedings of the IEEE International Conference on Intelligent Computer

Communication and Processing, 2007, pp. 17–24.

[69] W. F. Lucas, A game with no solution, Bulletin of the American Mathematical Society 7
(1968), 237–239.

[70] P. McBurney, D. Hitchcock, and S. Parsons, The eightfold way of deliberation dialogue,

Intelligent Systems 22 (2007), 95–132.

[71] P. McBurney and S. Parsons, Dialogue games for agent argumentation, Argumentation

in Artificial Intelligence, 2009, pp. 261–280.

[72] Peter McBurney and Simon Parsons, Games that agents play: A formal framework for

dialogues between autonomous agents, Journal of Logic, Language and Information 11
(2002), no. 3, 315–334.

[73] T. Michalak, J. Sroka, T. Rahwan, M. Wooldridge, P. McBurney, and N. R. Jennings, A

distributed algorithm for anytime coalition structure generation, in Proceedings of the

9th International Conference on Autonomous Agents and Multiagent System (AAMAS),

2010, pp. 1007–1014.

[74] P. J. Modi, W. M. Shen, M. Tambe, and M. Yokoo, Adopt: Asynchronous distributed

constraint optimization with quality guarantees, Artificial Intelligence 161 (2006), 149–

180.

[75] R. A. Mollin, Fundamental number theory with applications, second edition, Chapman

and Hall/CRC, 2008.

[76] R. Myerson, Incentive-compatibility and the bargaining problem, Econometrica 47
(1979), 61–73.

[77] , Cooperative games with incomplete information, International Journal of Game

Theory 13 (1984), 69–86.

[78] , Virtual utility and the core for games with incomplete information, Journal of

Economic Theory 136 (2007), 260–285.

[79] J. v. Neumann and O. Morgenstern, The theory of games and economic behavior, Prince-

ton University Press, 1944.

[80] N. Nisan, Introduction to mechanism design (for computer scientists), Algorithmic Game

Theory, Cambridge University Press, 2007, pp. 209–242.

[81] N. Ohta, V. Conitzer, R. Ichimura, Y. Sakurai, A. Iwasaki, and M. Yokoo, Coalition struc-

ture generation utilizing compact characteristic function representations, in Proceedings

of the 15th International Conference on Principles and Practice of Constraint Program-

ming (CP), 2009, pp. 623–638.

Bibliography 195

[82] A. Okada, A noncooperative coalitional bargaining game with random proposers, Games

and Economic Behaviour 16 (1996), 97–108.

[83] M. J. Osbourne and A. Rubinstein, A course in game theory, MIT Press, 1994.

[84] W. Ouerdane, N. Maudet, and A. Tsoukias, Argument schemes and critical questions for

decision aiding process, in Proceedings of the 2nd International Conference on Compu-

tational Models of Argument, 2008, pp. 285–296.

[85] H. Prakken, Formal systems for persuasion dialogue, Knowledge Engineering Review 21
(2006), 163–188.

[86] I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons, and L. Sonenberg,

Argumentation-based negotiation, Knowledge Engineering Review 18 (2003), 343–375.

[87] I. Rahwan and G. R. Simari, Argumentation in artificial intelligence, Springer, 2009.

[88] T. Rahwan, Algorithms for coalition formation in multi-agent systems, Ph.D. thesis,

School of Electronics and Computer Science, University of Southampton, 2007.

[89] T. Rahwan and N. R. Jennings, Distributing coalition value calculations among coop-

erating agents, in Proceedings of the 20th conference on artificial intelligence (AAAI),

2005, pp. 152–157.

[90] , An algorithm for distributing coalition value calculations among cooperating

agents, Artificial Intelligence 171 (2007), 535–567.

[91] , An improved dynamic programming algorithm for coalition structure gener-

ation, In Proceedings of the 7th International Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS) (2008), 1417–1420.

[92] T. Rahwan, T. Michalak, E. Elkind, P. Faliszewski, J. Sroka, M. Wooldridge, and N. R.

Jennings, Constrained coalition formation, in Proceedings of the 25th Conference on

Artificial Intelligence (AAAI), 2011, pp. 719–725.

[93] T. Rahwan, T. P. Michalak, and N. R. Jennings, A hybrid algorithm for coalition struc-

ture generation, in Proceedings of the 26th Conference on Artificial Intelligence (AAAI),

2012, pp. 1443–1449.

[94] T. Rahwan, S. D. Ramchurn, A. Giovannucci, and N. R. Jenning, An anytime algorithm

for optimal coalition structure generation, Journal of Artificial Intelligence Research 34
(2009), 521–567.

[95] S. D. Ramchurn, E. Gerding, N. R. Jennings, and H. Jun, Practical distributed coalition

formation via heuristic negotiation in social networks, in Proceedings of the 5th Interna-

tional Workshop on Optimisation in Multi-Agent Systems (OPTMAS), 2012.

[96] D. Ray, A game-theoretic perspective on coalition formation, Oxford University Press,

2007.

Bibliography 196

[97] C. Reed and D. Walton, Argumentation schemes in dialogue, in Proceedings of Dissensus

and the Search for Common Ground (OSSA), 2010, pp. 1–11.

[98] L. Riley, A persuasive dialogue game for coalition formation, in Proceedings of the inau-

gural Imperial College Student Workshop (ICCSW), 2011, pp. 66–73.

[99] L. Riley, K. Atkinson, P. Dunne, and T. R. Payne, Distributing coalition value calcula-

tions to coalition members, in Proceedings of the 29th Conference on Artificial Intelli-

gence (AAAI), 2015.

[100] L. Riley, K. Atkinson, and T. R. Payne, A dialogue game for coalition structure gener-

ation with self-interested agents, in Proceedings of the 4th International Conference of

Computational Models of Argument (COMMA), 2012, pp. 311–322.

[101] L. Riley, K. Atkinson, T. R. Payne, and E. Black, An implemented dialogue system for

inquiry and persuasion, in Proceedings of the 1st International Workshop on the Theory

and Applications of Formal Argumentation (TAFA), 2011, pp. 67–84.

[102] L. Riley, T. R. Payne, T. Bench-Capon, and K. Atkinson, Distributing coalition value

calculations to self-interested agents, in Proceedings of the 13th International Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS), 2014, pp. 1431–1432.

[103] A. Rubinstein, Perfect equilibrium in a bargaining model, Econometrica 50 (1982), 97–

110.

[104] T. W. Sandholm, K. S. Larson, M. Andersson, O. Shehory, and F. Tohme, Coalition

structure generation with worst case guarantees, Artificial Intelligence 111 (1999), 209–

238.

[105] T. W. Sandholm and V. Lesser, Issues in automated negotiation and electronic commerce:

extending the contract net protocol, in Proceedings of the 1st International Conference on

Multiagent Systems (ICMAS), 1995, pp. 328–335.

[106] T. W. Sandholm and V. R. Lesser, Coalitions among computationally bounded agents,

Artificial Intelligence 94 (1997), 99–137.

[107] P. Scerri, D. Pynadath, and M. Tambe, Adjustable autonomy for the real world, Agent

Autonomy 7 (2003), 211–241.

[108] D. Schmeidler, The nucleolus of a characteristic function game, SIAM Journal of applied

mathematics 17 (1969), 1163–1170.

[109] A. S. Schulz and N. A. Uhan, Sharing supermodular costs, Operations Research 58
(2010), 1051–1056.

[110] J. R. Searle, Speech acts: An essay in the philosophy of language, Cambridge University

Press, 1969.

Bibliography 197

[111] S. Sen and P. Dutta, Searching for optimal coalition structures, in Proceedings of the 4th

International Conference on Multiagent Systems (ICMAS), 2000, pp. 287–292.

[112] T. Service, Coalition structure generation in characteristic function games, Ph.D. thesis,

Vanderbilt University, 2012.

[113] L. S Shapley, A value for n-person games, Contributions to the Theory of Games, Volume

II (Annals of Mathematics Studies) 28 (1953), 307–317.

[114] L. S. Shapley and M. Shubik, Quasi-cores in a monetary economy with non-convex pref-

erences, Econometrica 34 (1966), 805–827.

[115] O. Shehory and S. Kraus, Task allocation via coalition formation among autonomous-

agents, in Proceedings of the 14th International Joint Conference on Artificial Intelligence

(IJCAI), 1995, pp. 655–661.

[116] , Formation of overlapping coalitions for precedence-order task-execution among

autonomous agents, in Proceedings of the 2nd International Conference on Multiagent

Systems (ICMAS), 1996, pp. 330–337.

[117] , Methods for task allocation via agent coalition formation, Artificial Intelligence

101 (1998), 165–200.

[118] , Feasible formation of stable coalitions among autonomous agents in non-super-

additive environments, Computational Intelligence 15 (1999), 218–251.

[119] Y. Shoham and K. Leyton-Brown, Multiagent systems: Algorithmic, game-theoretic and

logical foundations, Cambridge University Press, 2007.

[120] R. G. Smith, The contract net protocol: High-level communication and control in a dis-

tributed problem solver,, IEEE Transactions on Computers 29 (1980), 1104–113.

[121] R. E. Sterns, Convergent transfer schemes for n-person games, Transactions of American

Mathematical Society 134 (1968), 449–459.

[122] J. Suijs, P. Borm, A. D. Waegenaere, and S. Tijs, Cooperative games with stochastic

payoffs, European Journal of Operational Research 113 (1999), 193–205.

[123] A. Toniolo, T. J. Norman, and K. Sycara, Argumentation schemes for collaborative plan-

ning, in Proceedings of the 14th International Conference on the Principles and Practice

of Multi-Agent Systems (PRIMA), 2011, pp. 323–325.

[124] S. Ueda, A. Iwasaki, M. Yokoo, M. C. Silaghi, K. Hirayama, and T. Matsui, Coalition

structure generation based on distributed constraint optimization, Proceedings of the 24th

Conference on Artificial Intelligence (AAAI), 2010, pp. 197–203.

[125] T. L. v. d. Weide, F. Dignum, J. J. Ch. Meyer, H. Prakken, and G. A. W. Vreeswijk,

Practical reasoning using values, in Proceedings of the 6th International Workshop on

Argumentation in Multi-agent Systems (ArgMAS), 2009, pp. 225–240.

Bibliography 198

[126] M. Vinyals, F. Bistaffa, A. Farinelli, and A. Rogers, Coalitional energy purchasing in the

smart grid, in Proceedings of the IEEE International Energy Conference & Exhibition

(ENERGYCON), 2012, pp. 848–853.

[127] T. Voice, S. D. Ramchurn, and N. R. Jennings, On coalition formation with sparse syn-

ergies, in Proceedings of the 11th International Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS), 2012, pp. 223–230.

[128] D. N. Walton, Argumentation schemes for presumptive reasoning, Lawrence Erlbaum

Associates, Mahwah, NJ, USA, 1996.

[129] D. N. Walton and E. C. W. Krabbe, Commitment in dialogue: Basic concepts of interper-

sonal reasoning, State University of New York Press, Albany NY, 1995.

[130] S. Wells and C. Reed, Knowing when to bargain - the roles of negotiation and persuasion

in dialogue, in Proceedings of the 1st International Conference on Computational models

of Argument (COMMA), 2006, pp. 235–246.

[131] R. Wilson, Information, efficiency and the core of an economy, Econometrica 46 (1978),

807–816.

[132] M. Wooldridge and P. E. Dunne, On the computational complexity of qualitative coalition

games, Artificial Intelligence 158 (2004), 27–73.

[133] , On the computational complexity of coalitional resource games, Artificial Intel-

ligence 170 (2006), 853–871.

[134] M. Wooldridge and N. R. Jennings, Intelligent agents: Theory and practice, Knowledge

Engineering Review 10 (1995), 115–152.

[135] M. Wooldridge and W. v. d. Hoek, On obligations and normative ability: Towards a

logical analysis of the social contract, Journal of Applied Logic 3 (2005), 396–420.

[136] Michael Wooldridge, An introduction to multiagent systems second edition, John Wiley

& Sons, 2009.

[137] L. S.-Y. Wu, A dynamic theory for the class of games with nonempty cores, SIAM Journal

on Applied Mathematics 32 (1977), 328–338.

[138] D. Y. Yeh, A dynamic programming approach to the complete set partitioning problem,

BIT Numerical Mathematics 26 (1986), 467–474.

	Notations
	Preface
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Agents and Multi-Agent Systems
	1.2 Coalition Formation
	1.3 Research Question
	1.4 Thesis Outline and Contributions
	1.5 Published Work

	2 Literature Review
	2.1 Characteristic Function Games
	2.2 Cooperative Game Theory Solution Concepts
	2.2.1 Classical Core Based Solution Concepts
	2.2.2 Other Classical Solution Concepts
	2.2.3 Coalition Structure Stability Solution Concepts

	2.3 Non-Classical Types of Coalitional Games
	2.3.1 Non-Transferable Utility Games
	2.3.2 Valuation Disagreements in Coalitional Games

	2.4 The Three Stages of Coalition Formation
	2.4.1 Coalition Value Calculations
	Compact Representation Schemes

	2.4.2 Coalition Structure Generation
	2.4.3 Payoff Distribution
	Payoff Transfer Schemes
	Coalitional Bargaining

	2.5 Agent Communication
	2.5.1 Speech Acts
	2.5.2 Dialogue Games
	2.5.3 Dialogue Games used for Coalition Formation

	2.6 Argumentation
	2.6.1 Argumentation Frameworks
	2.6.2 Value-Based Argumentation Frameworks
	2.6.3 Argumentation Schemes
	2.6.4 Value-based Alternating Transition Systems
	2.6.5 Reasoning Over Current Beliefs
	2.6.6 Argumentation Applied to Coalition Formation

	2.7 Summary and Conclusions

	3 Forming Coalitions with Argumentation Schemes and Critical Questions
	3.1 Finding the State of the World
	3.1.1 Comparing States

	3.2 The Practical Reasoning Model
	3.3 Using Dialogues for Inquiry and Persuasion to Form Coalitions
	3.3.1 Extending the Formalisation of Critical Questions

	3.4 The Dialogue Protocols
	3.4.1 Defining the Inquiry Protocol
	3.4.2 Extending the pAct Protocol

	3.5 Coalition Argument Evaluation
	3.6 Dialogue and Argument Evaluation Example
	3.6.1 Example Preliminaries
	3.6.2 Inquiry Dialogues
	3.6.3 Persuasion Dialogue
	3.6.4 Argument Evaluation

	3.7 Summary

	4 Distributing Coalition Value Calculations
	4.1 Preliminaries and Introductory Example
	4.1.1 The New Ordering Method
	4.1.2 Example
	4.1.3 A Distributed Method for Coalition Generation

	4.2 The Distributed Coalition Generation (DCG) Algorithm
	4.3 Discussion
	4.4 Performance Evaluation
	4.5 Towards Distributed Coalition Formation

	5 A Distributed Search for the Superadditive Cover Least Core
	5.1 Guaranteeing Stable Solutions
	5.2 Finding a Superadditive Cover Least Core Solution
	5.2.1 The Filtering Method
	5.2.2 The Distributed Dynamic Programming (DDP) Algorithm

	5.3 Lowering the Communication Costs
	5.4 A DDP Algorithm Example
	5.5 Evaluation
	5.5.1 The Communicated Information
	5.5.2 Agent Split Operations
	5.5.3 Solution Concept Success Rate

	5.6 Summary

	6 Valuation Disagreement Coalitional Games
	6.1 The Proposed Solution
	6.1.1 The Valuation Disagreement Coalitional Game Model
	6.1.2 Valuation Disagreement Stability Concepts
	6.1.3 Valuation-Disagreement Coaltional Game Properties
	6.1.4 Example

	6.2 The Exposure to Debt/Distribution of Risk
	6.2.1 Contract Functions

	6.3 Experimental Evaluation
	6.4 Summary

	7 Conclusions and Future Work
	7.1 Summary of Contributions
	7.2 Future Directions

	A Proof for the Distributed Coalition Generation Algorithm
	A.1 Definitions
	A.2 Theorems

	Bibliography

