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Abstract 

Atmospheric levels of CO2 are currently 395 ppm (dry air mole fraction measured at 

Mauna Loa, Hawaii), their highest concentration in 420,000 years. Forests play a 

major role in the global carbon (C) cycle by taking up inorganic C as CO2 through 

photosynthesis, converting it to organic compounds (biomass), and either storing it 

in living and dead organic matter (above and below ground: including trees, dead 

wood, litter, and soil) or returning it to the atmosphere by respiration, decay or fire. 

Globally, forests cover around 4.1 billion ha of the Earth’s surface and are estimated 

to contain up to 80% of all aboveground C and around 40% of all belowground 

(soils, litter, roots) terrestrial C. Forest C stocks have been reported to be increasing 

over the past 50 years in Europe and over the past 17 years in the United States. 

However, national forest inventories used to provide these data are often biased 

towards managed plantations, thereby leaving a knowledge gap regarding the 

dynamics of unmanaged, semi-natural forests. There are significant uncertainties 

about changes in C flux through time and the relative contributions of drivers such 

as land use, climate and atmospheric CO2. Decomposition of tree root C represents 

a potentially large C flux and contribution to the soil C sink when the input of dead 

and decaying root tissue, and root exudates, are greater than the output from 

respiration of roots, their symbionts, and the soil decomposer organisms. 

Therefore, quantifying decomposition rates and identifying primary controls of root 

decomposition are important for evaluating ecosystem function and possible 

responses to environmental change. This thesis explores long-term C dynamics in 

Lady Park Wood (LPW), an ancient semi-natural woodland situated in the counties 

of Monmouthshire and Gloucestershire, UK. We calculated changing tree biomass C 

stocks in LPW from 1945 to 2010. Separate estimates of tree biomass C, soil C and 

dead wood C were obtained to verify how C is apportioned among these types of 

forests. We used the dynamic vegetation model LPJ-GUESS to explore the likely 

contributions of temperature, CO2 and management to forest C stocks in this region 

during the last 65 years. A 30 month field experiment was conducted in LPW using 

oak roots of different diameter classes (<2 mm, 2-5 mm and 5-10 mm) in 

decomposition bags. These were buried in two locations: one with bare ground and 
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one with the soil covered by ground layer vegetation, in order to quantify root 

decomposition rates. Lastly, we utilised long-term monitoring data from 2 other 

semi-natural woodlands in the UK to investigate whether LPW is a typical 

representation of live biomass C storage in these types of woodland. We then 

compared C storage in semi-natural forests with C storage in plantations and 

managed forests to see which type of forest stores the most C.  

Between 1945 and 2010, tree biomass (including roots) carbon stocks in LPW 

approximately doubled in the old-growth stands, (increasing from 8.92 kg C m-2 

(0.025-quantile 7.21 k C m-2, 0.975-quantile 10.19 kg C m-2) to 17.50 kg C m-2 (0.025-

quantile 14.09 kg C m-2, 0.975-quantile 20.24 kg C m-2)), and between 1977 and 

2002 increased by almost 50% in the young-growth stands (from 6.30 kg C m-2 

(0.025-quantile 5.39 kg C m-2, 0.975-quantile 7.23 kg C m-2) to 9.21 kg C m-2 (0.025-

quantile 7.72 kg C m-2, 0.975-quantile 10.65 kg C m-2)). In the old-growth stands 

60% (0.025-quantile 54%, 0.975-quantile 64%) of carbon was stored in tree 

biomass, 38% (0.025-quantile 34%, 0.975-quantile 43%) was stored in soil and 2% 

(0.025-quantile 1%, 0.975-quantile 4%) stored in coarse woody debris. In contrast, 

storage of carbon in the young-growth stands was allocated almost equally 

between tree biomass (53%, 0.025-quantile 48%, 0.975-quantile 57%) and soil 

(43%, 0.025-quantile 39%, 0.975-quantile 47%), with 4% (0.025-quantile 2%, 0.975-

quantile 7%) stored in coarse woody debris. Results from LPJ-GUESS suggest that 

release from management was the major driver of carbon storage but CO2 also had 

a pronounced effect. Relatively little of the observed increase in carbon stocks was 

attributable to increased temperature. Similarly, little evidence of a temperature 

effect was found on root decomposition rates. Mean loss rates of roots buried in 

the location with ground vegetation were significantly higher than those of roots 

buried in the bare ground site. Large roots (5-10 mm) decomposed faster than 

medium (2-5 mm) or fine roots (<2 mm) over the first 18 months.  

A typical unthinned Sitka spruce plantation in the UK sequesters carbon faster than 

semi-natural forests, having accumulated 16 kg C m-2 by the end of its 60 year 

rotation, compared to Lady Park Wood which accumulated just 9.31 kg C m-2 over a 

65 year period. However, semi-natural forests comprise much greater carbon stores 
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over the long term. A time average equilibrium storage value (mean taken across 

the harvesting cycle) for unthinned Sitka spruce stands is 7.4 kg C m-2, whereas the 

mean storage value for semi-natural woodlands in this study is 17.5 kg C m-2. 

Although an increase in tree biomass carbon is consistent with European syntheses, 

this study suggests that semi-natural old-growth stands are storing more carbon 

than typical plantations, with tree biomass the most important compartment for 

carbon stores. There is clear evidence to suggest that semi-natural woodland may 

be an important and underestimated carbon stock in the UK. 
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  Chapter 1 

 

1 Introduction 

 

1.1 Overview and rationale 

The global carbon (C) cycle involves the C in and circulating between the three 

active reservoirs: the atmosphere, the ocean, and the terrestrial system including 

various stocks, such as forests and organic C found in soils (Figure 1.1). Forests play 

a major role in the global C cycle by taking up inorganic C as CO2 through 

photosynthesis, converting it to organic compounds (biomass), and returning it to 

the atmosphere by respiration, decay or fire (Figure 1.2) (Post et al. 1990).  

 

Figure 1.1: The global carbon cycles for the 1990s. Main annual fluxes are shown in 

Gt C y-1 and reservoir sizes in Gt C. Pre-industrial ‘natural’ fluxes in black and 

‘anthropogenic’ fluxes in grey (from IPCC, 2007c). 
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Figure 1.2: Main pathways for C flux into the forest (Black arrows; C sink) and out of 

the forest (Black outline arrows; C source). Above-ground biomass (stemwood, 

branchwood, bark, foliage and seeds), below-ground biomass (coarse roots, fine 

roots and stumps), and soil organic C all constitute C stocks (redrawn from Forestry 

Commission, www.forestry.gov.uk/website/forestresearch.nsf/ByUnique/INFD-

62NBUH). 

 

 

Globally, forests cover around 4.1 billion ha of the earth’s surface and are 

estimated to contain up to 80 % of all aboveground C and around 40 % of all 

belowground terrestrial C (Dixon et al. 1994). The world’s forests store ~ 289 

gigatonnes (Gt) of C in biomass alone, although between 2005 and 2010 C stocks 

decreased by ~ 0.5 Gt annually due to a reduction in forest area (FAO, 2010). 

Between 2000 and 2010 13 million hectares of forest were lost through conversion 

to other uses or natural causes (FAO, 2010). As a consequence of deforestation and 

forest degradation large amounts of CO2 are released into the atmosphere. CO2 is a 
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potent greenhouse gas (GHG) and a primary component of anthropogenic 

emissions. The global concentration of atmospheric CO2 has increased from a pre-

industrial value of ~ 280 parts per million (ppm) in 1750 (IPCC, 2007) to 395 ppm at 

the end of September 2014 (Tans and Keeling, 2014). Initially, this increase was 

mainly caused by anthropogenic release of C to the atmosphere from deforestation 

and other land use change activities (Le Quéré et al. 2013). This means forests have 

a significant role in the global C cycle, especially with regard to mitigating CO2 

emissions, and the ability to accurately measure the standing stock of C stored in 

forests is becoming increasingly important (Brown, 2002). The Kyoto Protocol, 

linked to the United Nations Framework Convention on Climate Change (UNFCCC), 

is an international agreement which commits participating countries to 

internationally binding emission reduction targets. As part of the Protocol, 

countries must report detailed information about changes in C stocks and GHG 

emissions pertaining to sources and removal by sinks from land use, land use 

change and forestry (LULUCF) activities. When the net uptake of CO2 from 

photosynthesis is greater than respiration the forest is acting as a ‘sink’, i.e. there is 

a net flux of C into the ecosystem. When C is lost from the forest, i.e. through 

disturbance, then it becomes a ‘source’. The terms ‘sink’ and ‘source’ imply a net 

flux of C (in units of mass/time, g C y-1, or mass/(area*time), g C m-2 y-1) into or out 

of the ecosystem, whilst the term ‘stocks’  refers to a store of C (in units of mass, g 

C, or mass/area, g C m-2).  

Increase of tree C stocks has been estimated at 1.7 kg C m-2 for Europe over the 

past 50 years (Ciais et al. 2008) and at 0.5 kg C m-2 for the United States over the 

past 17 years (Pan et al. 2011). The mostly likely reasons for these increases in C 

stocks are increased forest area (Kauppi et al. 2006) due to new planting, on former 

agricultural land or formerly grazed upland habitats, and natural succession 

following land abandonment and depopulation; increased live C store per unit area, 

because of reduced levels of forest grazing and recovery from forest degradation 

(Rautiainen et al. 2009); nitrogen deposition (Magnani et al. 2007); climatic change 

and increasing CO2 concentration (Bellasen et al. 2011). However, disentangling the 

drivers of these increases can be difficult. 
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Forest area in the UK is ~ 3 million ha (~ 1.6 million ha coniferous and ~ 1.5 million 

ha broadleaved) which equals 13% of land area (Forestry Commission, 2014). Since 

1990 new forest area has been planted at rates between 16,000 and 21,000 ha y-1, 

with afforestation rates in 2000 being ~ 7,000 ha y-1 of conifers and 10,000 ha y-1 of 

broadleaves (Milne et al. 2000). The majority of forest area in the UK is of 

plantation origin, with approximately 1,516,000 ha (7%) covered by conifer 

plantations (Norman, 2009) and, as of 1990, 600,000 ha of broadleaved plantations 

(Cannell and Dewar, 1995). Only 2% (535,000 ha) of land cover is ancient semi-

natural woodland (Spencer and Kirby, 1992) which means that forest inventories 

may not fully capture the dynamics of these unmanaged, mixed woodland areas 

(Harmon, 2010). Little is known about C budgets in these woodlands and detailed 

long-term data on their C dynamics are rather scarce. Unmanaged forests are 

thought to store more C than plantations (Thornley and Cannell, 2000; Liao et al. 

2010) so are likely to be important for long term C storage, not only because forests 

can act as C sinks until high ages (Schulze et al. 2000; Luyssaert et al. 2008) but also 

because preservation of old growth natural forests, with large C pools, has a large 

effect on the C cycle (Schulze et al. 2000).  

Compiling a C budget involves quantifying C pools and flux in the forest. The main C 

pools are live biomass (stemwood, branchwood, bark, foliage, coarse roots and fine 

roots), soil organic C (SOC), and dead wood biomass. C budgets for forest 

ecosystems can be calculated in a variety of ways, for example forest inventories, 

remote sensing, eddy covariance technique, and process-based modelling (Turner 

et al. 1995; Baldochii, 2003; Bellassen et al. 2011; Le Toan et al. 2004) and can often 

involve several different methods (Goodale et al. 2002; de Wit et al. 2006; Sitch et 

al. 2007).  Stocks of C in live biomass are regularly calculated using inventory data, 

which includes details of tree species and diameter at breast height (dbh) 

measurements (Gimmi et al. 2009). Allometric equations are then used to calculate 

tree biomass from the dbh measurements (Jenkins et al. 2004). Ciais et al. (2008) 

reported a live biomass pool of ~4 kg C m-2 for broadleaved European forests in 

2000 using inventory data, and suggested a potential maximum C stock of 17 kg C 

m-2.  
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Remote sensing procedures, which collect information on above-ground forest 

biomass, are often used as an alternative to methods based on field measurements 

as they can obtain reasonably accurate information, at less cost, over large areas 

(Vicharnakorn et al. 2014). Airborne and satellite sensors can map surface variables 

such as land cover type and leaf area index, which are then used with process based 

models to quantify fluxes of C (Turner et al. 2004). The C flux can also be inferred 

from the change in C pools over time, i.e. the net C accumulation or loss of C from 

the live biomass pool, and can be calculated as the change in the C pool over the 

time period, divided by the number of years in the time period (Turner et al. 1995). 

A direct measurement of CO2 fluxes between the atmosphere and forest vegetation 

can be measured using the eddy covariance technique, which measures the 

covariance between fluctuations in vertical wind velocity and CO2 mixing ratio 

(Baldocchi, 2003). Using this method, Thomas et al. (2011) estimated net ecosystem 

production (NEP, net gain or loss of C from an ecosystem) for an ancient 

broadleaved, deciduous UK woodland to be 0.12 kg C m-2 y-1.  

The soil C pool is frequently measured using direct field methods, i.e. field sampling 

and laboratory measurement (Vanguelova et al. 2013). Vanguelova et al. (2013) 

reported forest soils of the UK to range between 10.8 and 44.8 kg C m-2 (80 cm 

depth). C dynamic simulation models can be used to estimate C stock in soils under 

present land use if field methods are not able to be implemented (FAO, 2004). The 

Yasso dynamic soil C model, which calculates C pools of litter and soil organic 

matter, and annual changes in these pools, consists of five decomposition 

compartments and two woody litter compartments, the dynamics of which are 

controlled by physical and chemical characteristics of litter and climate (Liski et al. 

2006).  

Data from forest inventories, remote sensing and eddy covariance methods are 

often used to test and develop dynamic global vegetation models (DGVMs). LPJ-

GUESS (Smith et al. 2001; Sitch et al. 2003) is a process based dynamic vegetation 

model that uses an individual gap-model approach (Prentice et al. 1993) and can be 

used to study regional changes on a decennial-centennial timescale. Few attempts 

have been made to reconstruct regional long-term dynamics of forest C stocks 
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based on historical data (Gimmi et al. 2009; Gingrich et al. 2007) and C modellers 

are generally not acquainted with long-term monitoring data sets of forest biomass. 

Comparing simulated C stock estimates from LPJ-GUESS to long-term reconstructed 

data is one way to examine how well the model can match historical patterns of C 

pools. Gimmi et al. (2009) calculated C pools in a Swiss mountain forest and found 

that the potential maximum vegetation C (19 kg C m-2) simulated by LPJ-GUESS 

underestimated historical C stocks in 1975 (20.2 kg C m-2), which they explain could 

be due to the inability of models to grasp peak values and their tendency to 

generalise. Keith et al. (2009) suggest that process-based models may 

underestimate C accumulation because of the assumption that C exchange reaches 

an equilibrium. However, if model reliability can be established the model can then 

be used to identify possible drivers of change of historical C stocks and to predict 

future C stocks under different climatic scenarios. 

Globally, surface temperatures show a warming of 0.85˚C from 1880 to 2012 and 

this temperature increase is likely to exceed 1.5˚C by the end of the 21st century 

(IPCC, 2013). The amount of CO2 in the atmosphere is predicted to reach between 

541 and 970 ppm by 2100 (Prentice et al. 2001). Whilst is it generally accepted that 

the increase in atmospheric CO2 is altering the climate system, it remains unclear 

whether forests will sequester more C in response to the increase in CO2 or 

whether limitations posed by nutrients, temperature and precipitation will limit the 

effect (Beedlow et al. 2004). Free air CO2 enrichment (FACE) experiments show 

enhanced photosynthesis in plants (Norby et al. 2005; Sholtis et al. 2003) and a 

meta-analysis of FACE experiments by Ainsworth and Long (2005) found increased 

biomass production in trees. However, data from FACE experiments are limited due 

to a number of factors, including bias towards young forests, small numbers of sites 

for each ecosystem, and durations of 10 years or less (Leakey et al. 2012). In a 

mature deciduous forest, Körner et al. (2005) found that although there was an 

immediate and sustained increase in C flux through the forest in response to 

elevated CO2, the trees did not accrete more biomass C in the stems. Although 

Norby et al. (2002) found increased net primary production (NPP) led to an increase 

in wood increment in the first year, in subsequent years the extra C was allocated 
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to the production of leaves and fine roots. Fine root biomass production and 

standing crop have been shown to double under enhanced CO2 (Iversen et al. 2008) 

meaning that extra C can be stored in the mineral soil (Jastrow et al. 2005). 

Consequently, tree root C represents a potentially large C flux and soil C sink, and 

quantifying root decomposition rates and identifying primary controls of root 

decomposition are important for evaluating ecosystem function (Harmon et al. 

1999) and its possible response to environmental change.  

Forests constitute a major terrestrial C store, which is highly dynamic and 

responsive to changes in management, climate and atmospheric CO2 among other 

factors (Pan et al. 2011). Understanding the drivers behind the recent increase of C 

stocks (Ciais et al. 2008; Bellassen et al, 2011) is important for preservation of 

current C stocks and management policies. Regional long-term forest data are 

extremely rare (Gimmi et al. 2009) and can be used to create C budgets and to 

explore C dynamics through time. This knowledge provides useful information that 

can be used to improve models of terrestrial C cycles (Friedlingstein et al. 2006) and 

can be applied when considering future changes in C stocks. 

 

1.2 Thesis aims and objectives 

The major aim of this thesis is to reconstruct long-term live biomass C dynamics for 

a semi-natural deciduous woodland in the UK. Little is known about C budgets in 

semi-natural woodlands, therefore forest inventories may not fully capture the 

dynamics of these types of woodland. Lady Park Wood (LPW) was designated as an 

unmanaged nature reserve in 1944 and has the longest and most detailed records 

available from British semi-natural woodlands. Separate estimates of tree, soil and 

dead wood C stocks will be obtained to verify how C is allocated in this type of 

woodland. The dynamic vegetation model LPJ-GUESS will be used to simulate live 

biomass C stock estimates in LPW for comparison with reconstructed historical data 

to establish model reliability. LPJ-GUESS can then be used to explore possible 

drivers of C stock change and to allow future C storage scenarios in LPW under 

different climate scenarios to be tested. A root decomposition study, commencing 

in December 2010 for 2 ½ years, will enable us to quantify root decomposition rates 
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in a semi-natural woodland. Lastly, we will utilise long-term monitoring data from 2 

other semi-natural woodlands in the UK to investigate whether LPW is a good 

representation of live biomass C storage in these types of woodland. These data can 

then be compared to C storage in plantations and managed forests to see which 

type of forest is storing the most C. 

 

The following specific questions will be addressed: 

 How have C stocks changed in a British semi-natural deciduous 

woodland over the past 60 years? 

 How is C apportioned in a British semi-natural deciduous woodland? 

 What are the main drivers of C stock changes? 

 What is the potential future C storage at LPW under different climate 

scenarios? 

 How quickly do roots breakdown, thereby transferring C to the soil C 

pool and the atmosphere, and nutrients to the soil? 

 How does the temporal variation of C stocks in a semi-natural forest 

differ from those of a plantation forest?  

 Which type of forest (semi-natural, managed or plantation) stores the 

most live biomass C? 

 

 

1.3 Status of manuscripts 

Chapter 2: Hale K, Spencer M, Peterken GF, Mountford EP, Bradshaw RHW. Rapid 

carbon accumulation within an unmanaged, mixed, temperate forest. Manuscript 

submitted to Functional Ecology: rejected with resubmission invited. Current status: 

undergoing revision with view to resubmit. 
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Author contribution: 

Hale K – Main author responsible for data collection, biomass calculations, 

statistical analysis, figure and table presentation, and manuscript preparation. 

Spencer M – Discussion, assistance with statistical analysis, and detailed manuscript 

review. 

Peterken GF – Manuscript review. 

Mountford EP – Provision of long-term monitoring data and manuscript review. 

Bradshaw RHW – Discussion and detailed manuscript review. 

 

Chapter 3: Allen KA, Lehsten V, Hale K, Bradshaw RHW. Past and future drivers of a 

neglected carbon sink in European temperate forest. Manuscript submitted to 

Global Change Biology: to be published subject to minor changes. Current status: 

undergoing changes to be resubmitted by 15th January 2015. 

Author contribution: 

Allen KA – Main author responsible for model runs, figure presentation, and 

manuscript preparation. 

Lehsten V – Discussion and help with model runs. 

Hale K – Responsible for historical data calculations, data collection, discussion, and 

manuscript review. 

Bradshaw RHW – Discussion and detailed manuscript review. 

 

Chapter 4: Hale K, Spencer M, Bradshaw RHW. Effects of temperature and ground 

vegetation on decomposition rates of oak roots in an unmanaged, temperate 

woodland. Manuscript. 
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Author contribution: 

Hale K – main author responsible for data collection and processing, statistical 

analysis, figure presentation, and manuscript preparation. 

Spencer M – Assistance with statistical analysis, discussion, and detailed manuscript 

review. 

Bradshaw RHW – Discussion and detailed manuscript review. 

 

Chapter 5: Hale K, Spencer M, Bradshaw RHW. Climate change mitigation by carbon 

sequestration: Semi-natural unmanaged forests or plantations? Manuscript. 

Author contribution: 

Hale K – main author responsible for data collection and processing, figure 

presentation and manuscript preparation. 

Spencer M – Discussion and detailed manuscript review. 

Bradshaw RHW – Discussion and detailed review. 

 

1.3.1 Authors overall contributions 

The author was present and assisted with all field work that took place in Lady Park 

Wood during 2010, 2011, 2012 and 2013, along with help from Richard Bradshaw, 

Matt Spencer, Kath Allen, Gina Bradshaw and Mike O’Connor (University of 

Liverpool, UK). The author was responsible for the preparation of all samples and all 

lab work, apart from C:N analysis, which was run by Sabena Blackbird (University of 

Liverpool, UK). All statistical work in R was conducted by the author with assistance 

from Matt Spencer. LPJ-GUESS model runs were made by Kath Allen. Data analysis, 

interpretation, figure presentation, and manuscript preparation was the 

responsibility of the author, with the exception of chapter 3, whereby following a 

period of ill health, Kath Allen became the lead author. 
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Chapter 2 

 

2 Rapid carbon accumulation within an unmanaged, 

mixed, temperate woodland 

 

2.1 Abstract 

Forest carbon (C) stocks have been reported to be increasing over the past 50 years 

in Europe and over the past 17 years in the United States. National forest 

inventories used to provide these data give some indication of forest C dynamics 

but may leave a knowledge gap regarding the dynamics of unmanaged, semi-

natural forests. We calculated changing tree biomass C stocks for a mixed, 

unmanaged, semi-natural woodland containing stands of 2 different ages; c. 70 

years (young-growth) and c. 100-135 years (old-growth). The old-growth stands 

have been untouched since 1902, are dominated by trees dating from 1800-1900, 

and contain transects that have been monitored since 1945. The young-growth 

stands were clear felled in 1943 and have grown up naturally since then. Transects 

in the young-growth stands have been monitored since 1977. Separate estimates of 

tree C, soil C and dead wood C were obtained to verify how C is apportioned in 

these types of forests. Between 1945 and 2010, tree biomass C stocks 

approximately doubled in the old-growth stands, (increasing from 8.92 kg C m-2 to 

17.50 kg C m-2), and between 1977 and 2002 increased by almost 50%  in the 

young-growth stands (from 6.30 kg C m-2 to 9.25 kg C m-2). In the old-growth stands 

60% of C is stored in tree biomass, 38% is stored in soil and 2% stored in coarse 

woody debris. In contrast, storage of C in the young-growth stands is allocated 

almost equally between tree biomass (53%) and soil (43%), with 4% stored in coarse 

woody debris. Although an increase in tree biomass C is consistent with the 

European synthesis, this study suggests that semi-natural old-growth stands are 

storing more C than typical plantations, with tree biomass the most important 
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compartment for C stores. Therefore if management is to be shifted from biomass 

production to C storage, due consideration should be given to the role of 

unmanaged, old growth forests. 

 

2.2       Introduction 

Forests comprise a large terrestrial C sink, but one which is highly dynamic and 

responsive to changes in management, climate and atmospheric CO2 among other 

factors (Pan et al. 2011). Sequestered forest C has recently increased at global and 

continental scales. For example, Ciais et al (2008) estimated a 1.7 kg C m-2 increase 

over the past 50 years in Europe and Pan et al (2011) estimated a 0.5 kg C m-2 over 

the past 17 years in the United States and 0.2 kg C m-2 globally. The most favoured 

hypotheses for these increased forest C stocks are increased forest area (Kauppi et 

al. 2006) due to new planting, on former agricultural land or formerly grazed upland 

habitats; increased growing volume per unit area as a successional process 

following reduced levels of forest grazing and recovery from forest degradation 

(Rautiainen et al. 2009); climatic change, nitrogen deposition and increasing 

atmospheric CO2 concentration (Pan et al. 2009) but these hypotheses are hard to 

evaluate fully using existing data. 

Forest area in Europe has been increasing since at least 1950, with estimates 

ranging from 5% (Ciais et al, 2008) to as much as 30% increase (Gold et al. 2006). 

Reasons for this disagreement include changing definitions of forest, data 

incompatibility from different countries, inventories that tend to focus on 

plantation areas and differing estimates derived from field and remotely sensed 

data. The increase in forest area in the United States is much smaller by comparison 

at just 0.5% between 1953 and 2007 (Rautiainen et al. 2011).  

Growing volume per unit area has also been increasing since 1950, both in Europe 

and in America (Rautiainen et al. 2011). Estimates for Europe vary from a doubling 

of volume to just minor increases (Ciais et al. 2008; Gold et al. 2006). In America, 

growing volume per unit area has been estimated to have increased by 51% 
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between 1953 and 2007 (Rautiainen et al. 2011). Recovery from previous forest 

exploitation has led to an increase in timber volume and biomass, which primarily 

drives development of forest C stocks (Rautiainen et al. 2009). In European 

managed forests, increasing volume is primarily due to increased stand density (a 

higher number of trees present) rather than a large increase in tree diameters 

(Linder and Östlund, 1998). Biomass-density relationships in trees related to self-

thinning and succession have received considerable theoretical and empirical study. 

Weiner & Freckleton (2010) state how total standing biomass initially increases in 

proportion to density during a succession following disturbance or release from 

management. Biomass in many systems then levels off and finally can remain 

constant, as trees increase in size leaving space for fewer individuals. This course of 

events may be described by a negative relationship between mean tree size and 

total community biomass, where average tree size has been predicted to scale as 

the -3/2 (Reineke 1933; Westoby 1984) or -4/3 (Enquist et al. 1998) power of 

maximum population density, dependent on the underlying conceptual model 

adopted. Linked to these relationships is the concept of a ‘constant final yield’, 

although this has only been experimentally demonstrated in annual plants (Weiner 

& Freckleton 2010). A study of a natural mixed forest in New Zealand showed a shift 

in the cause of death from competitive self-thinning in the small-stem phase to 

exogenous disturbance in the large-stem phase resulting in a changing biomass-

density distribution over time (Coomes et al. 2003).These authors suggest that 

biomass-density plots might be a useful method for detecting potential impacts of 

climate change and exogenous disturbance factors. Smith (1969) already suggested 

that old growth forests continued to sequester C and Luyssaert et al. (2008) showed 

that older stands with a smaller number of large individuals can obtain the highest 

amounts of biomass, gained over centuries, with a potential upper limit of between 

50 and 70 kg C m-2 (Luyssaert et al. 2008). Keith et al. (2009) reported even greater 

forest biomass figures. 

Atmospheric CO2 has increased from ~316 ppm in 1959 to ~394 ppm in 2012 (Tans 

and Keeling, 2014). This increase in CO2 often leads to the assumption that forests 

will increase C sequestration rates in response. Studies show that the increasing 
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levels of CO2 can increase photosynthesis in plants, at least in the short term (Norby 

et al. 2005; Sholtis et al. 2004), but it is unclear whether the increase in net primary 

productivity (NPP) will lead to an increase in biomass, and therefore in C stocks, or 

simply to an increase in turnover rates of leaves or roots (Norby et al. 2002; Körner 

et al. 2005). Magnani et al. (2007) propose that the increase in forest C 

sequestration is more likely to be a consequence of N deposition. The initial 

increase in NPP seen in some studies, due to increasing CO2, has been seen to 

decline over time due to N limitation (Norby et al. 2010). Data about CO2 

fertilisation from free-air CO2 enrichment (FACE) experiments are still limited due to 

a number of factors, including bias towards young forests, small numbers of sites 

for each ecosystem and durations of 10 years or less (Leakey et al. 2012). 

Ecosystem modellers have demonstrated the potential influence of the recent 

increase in atmospheric CO2 on net ecosystem productivity of European forests 

(Bellassen et al. 2011). 

Simulation models can be used to evaluate the contributions of the various 

mechanisms that influence C dynamics in forests. Kaplan et al. (2012) drove the LPJ 

dynamic vegetation model with reconstructed climate, land-use and CO2 

concentrations to explore the effects of land-use and climate change on the 

European C cycle over the past 500 years. They found that land-use change was the 

primary control on the C budget for this time period with deforestation chiefly 

contributing to a net loss of C until the 1950’s, when the trend was reversed and C 

accumulation began. They estimate that European forests retain the potential to 

absorb significant quantities of C at the present day, although coupled climate-

carbon cycle models suggest that future climates will reduce the efficiency of the 

global forests to absorb C because of drought, heat stress and wildfire (Mackey et 

al. 2013). 

Detailed long-term data on forest C dynamics are rather scarce. National forest 

inventories give some indication of forest C dynamics during the last few decades 

(e.g. Hu and Wang, 2008; Gingrich et al. 2007), but may not fully capture the 

dynamics of unmanaged, mixed woodland areas (Harmon, 2010). Long-term 

monitoring of permanent plots and transects in unmanaged, close to natural, forest 
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is a rather neglected source of information. These studies provide data on 

aboveground tree biomass (Peterken and Mountford, 1995). There also appears to 

be very limited data regarding soil C content and dynamics even though soil C pools 

are thought to account for as much as 50-60% of C stored in temperate forest 

systems (Dixon et al. 1994). Current estimates for European forest soils range from 

between 1.13 and 12.63 kg C m-2 (Baritz et al. 2010). Liski et al (2002) showed that 

litter production is related to forest biomass suggesting that unmanaged, old 

growth forests might be large C sinks. 

 

2.3      Aims 

Here we calculate changing C stocks over a 65 year period for a mixed, unmanaged 

woodland, on the border of England and Wales, to distinguish between forest area 

and forest density effects, and to explore possible explanatory drivers behind the 

increase in C stocks. We obtain separate estimates of the tree, soil and dead wood 

C stocks, to verify how C is allocated, and to investigate whether the soils are 

storing a high percentage of total ecosystem C. We examine which of the 

hypotheses outlined above, describing possible mechanisms accounting for recent 

increases in forest C storage, are tenable. 

 

2.4      Material and methods  

2.4.1  Study site 

This study took place in Lady Park Wood (51˚49′N, 2˚39′W) (Figure 2.1), an ancient 

semi-natural woodland, situated 3 km north east of Monmouth on the southern 

bank of the River Wye at 30-190 m elevation. Long-term climatic data are available 

from the Ross-On-Wye weather station (approx. 11 km from the woods). Mean 

annual precipitation for the period 1971-2000 was 706.2 mm and mean annual 

temperature was 10.2˚C.  
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Figure 2.1: (a) Location of Lady Park Wood and (b) the distribution of old-growth 

(clear) and young-growth (stippled) stands, the location of cliffs, and the position of 

the transects studied (I-VI in this study) (from Peterken and Jones, 1987). 

 

For centuries Lady Park Wood was treated as coppice/coppice-with-standards but 

was designated as an unmanaged nature reserve in 1944. The reserve covers 35.2 

ha, of which 14 ha are known as old-growth stands that were practically untouched 

by fellings which took place in 1943 (Peterken and Jones, 1987). The remaining 21 

ha were clear felled in 1943 and are referred to as young-growth stands (Peterken 

and Jones, 1989). Although the more mature stand qualifies as old-growth for 

several reasons: it has been well stocked with standing dead trees since 1976, 

canopy height and basal area have oscillated around a ceiling achieved by 1976 and 

the volume of coarse woody debris in the 1990’s was similar to volumes found in 

temperate deciduous ‘virgin’ forests and USA old-growth, here the terms old-

growth and young-growth are used following Peterken and Jones (1987; 1989) 

criteria. The underlying bedrock is limestone and the main species present are 

beech (Fagus sylvatica), oak (Quercus petraea), ash (Fraxinus excelsior), lime (Tilia 

(a) (b) 
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cordata, T. platyphyllos), wych elm (Ulmus glabra) and birch (Betula pendula, B. 

pubescens). The soils range from skeletal rendzinas on the steep slopes (32˚) to thin 

organic loams on the plateau fringe to deeper, lighter loams (derived from river 

borne deposits) on the gentler mid and low slopes. Transects I – VI (Figure 2.1), 

(used in this study) were established in 1944, consist of a mixture of old- and 

young-growth areas and were placed as roughly parallel lines, at equal intervals 

through the wood (Peterken and Jones, 1987). Each transect is 20 m wide, with 

length varying from 180 m to 330 m. Old-growth transects were recorded in 1945, 

1955, 1977, 1983, 1986, 1992, 2000 and 2010. Young-growth transects were 

recorded in 1977, 1993 and 2002 (Peterken and Jones, 1989). 

 

2.4.2  Tree biomass C 

The reconstruction of tree biomass C dynamics in Lady Park Wood (LPW) was based 

on unpublished data supplied by Ed Mountford. This comprised measurements of 

the location, species and diameter of all trees achieving ≥1.3m height within the 

monitoring transects. The data for standing C crop were calculated using all trees 

with a DBH (diameter at breast height) ≥ 6.5cm throughout the study. All stems 

attaining this size were included on multi-stemmed individuals. Tree measurements 

were converted to above and below ground biomass using European species-

specific (where possible) allometric regression equations (Table 2.1) (Zianis et al. 

2005). It should be noted that the root to shoot ratio (i.e. the ratio RT:AB) for Betula 

pendula, Fagus sylvatica, and Quercus petraea increases with DBH. As a 

consequence the root to shoot ratio increases with tree/stand age. This fact is 

contrary to results of some other authors where the root to shoot ratio decreases 

with tree/stand age (Cairns et al. 1997; Genet et al. 2009). Where European 

equations were not available, equations from a North American database (Jenkins 

et al. 2004) were used. Where there were no species-specific equations available, 

then appropriate Forestry Commission equations from the ‘Carbon assessment 

protocol’ (Jenkins et al., 2010) were substituted. Finally, C content was calculated 

from total biomass. All calculations involved Monte Carlo uncertainty analysis, as 
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described in the supporting information (Appendix 1). To compare growth rates 

between time periods in a way that standardises for the different lengths of time 

between observations, a mean discrete-time annual growth rate R (growth rate for 

short) was calculated. As growth is likely to be multiplicative, the ratio of carbon 

c(t2) at some time t2 to carbon c(t1) at time t1 (where times are measured in years) 

is a natural measure of the amount of growth. To express this on a one-year time 

scale we take the 1/(t2-t1) power. Thus we obtain the mean annual growth rate 

𝑅 = (
𝑐(𝑡2)

𝑐(𝑡1)
)

(
1

𝑡2−𝑡1
)

.  Note that R is a dimensionless quantity and therefore has no 

units. C stocks at the two points are related by 𝑐(𝑡2) = 𝑐(𝑡1)𝑅𝑡2−𝑡1. Values of R less 

than 1 indicate decreases in C stocks, and values greater than 1 indicate increases. 
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Table 2.1 Equations used for main tree species: WT = Whole tree biomass, AB = Aboveground biomass, RT = Belowground biomass; letters (a, b, c) 
refer to parameters obtained from original sources for regression equations, equation numbers refer to original sources; dbh = diameter at breast 
height; biomass is on left hand side for both the equations and the units. 
 

 

           

 

 

Species Component Equation a b c Units (biomass, dbh) Equation no. Reference

Acer campestre AB log10biomass=a+b*(log10(dbh^c)) 2.2151 2.4209 1 kg, cm - Whittaker et al. 1974

Acer campestre RT log10biomass=a+b*(log10(dbh^c)) 1.7368 2.2006 1 kg, cm - Whittaker et al. 1974

Betula pendula AB AB=a*dbh^b 0.00087 2.28639 - kg, mm 31 Zianis et al. 2005

Betula pendula RT log10RT=a*log10(dbh)+b 2.3547 -1.3 - kg, cm 36 Zianis et al. 2005

Fagus sylvatica AB AB=a*dbh^b 0.453 2.139 - kg, cm 88 Zianis et al. 2005

Fagus sylvatica RT log10RT=a+b*log10(dbh) -2 2.7 - kg, cm 120 Zianis et al. 2005

Fraxinus excelsior AB lnAB=a+b*ln(dbh) -2.4598 2.4882 - kg, cm 134 Zianis et al. 2005

Fraxinus excelsior RT RT=(a*dbh^b)*1000 0.000149 2.12 - kg, cm 5.3.3 Jenkins et al. 2010

Quercus petraea AB lnAB=a+b*ln(dbh) -0.883 2.14 - kg, cm 600 Zianis et al. 2005

Quercus petraea RT log10RT=a+b*log10(dbh) -1.56 2.44 - kg, cm 598 Zianis et al. 2005

Tilia cordata AB lnAB=a+b*ln(dbh) -2.6788 2.4542 - kg, cm 607 Zianis et al. 2005

Tilia cordata RT RT=(a*dbh^b)*1000 0.000149 2.12 - kg, cm 5.3.3 Jenkins et al. 2010

Ulmus glabra Stem wood log10biomass=a+b*(log10(dbh^c)) 2.9529 2.1032 1 g, in 2551 Jenkins et al. 2004

Ulmus glabra Stem bark log10biomass=a+b*(log10(dbh^c)) 2.264 1.9642 1 g, in 2553 Jenkins et al. 2004

Ulmus glabra Branches log10biomass=a+b*(log10(dbh^c)) 2.5173 2.3507 1 g, in 2556 Jenkins et al. 2004

Ulmus glabra Foliage log10biomass=a+b*(log10(dbh^c)) 2.1373 1.7043 1 g, in 2557 Jenkins et al. 2004

Ulmus glabra RT RT=(a*dbh^b)*1000 0.000149 2.12 - kg, cm 5.3.3 Jenkins et al. 2010
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2.4.3  Soil C 

Soil samples were collected in December 2011 using a 2 cm diameter gouge corer. 

Six soil cores were taken from each transect, three from the old-growth section and 

three from the young-growth section, except transect 6, where only three cores 

were taken because this transect contained only young-growth. Cores were taken 

at random locations within each transect section. Each core was taken to the 

greatest possible depth and divided into layers: 0-10 cm (Upper), 10-20 cm 

(Second), 20-30 cm (Third) and > 30 cm (Fourth). Following collection soil samples 

were placed in sealed plastic bags, returned to the laboratory and stored in a 

refrigerator overnight. 5ml soil samples were mixed with 40ml double distilled 

water, stirred and left to settle for 1 hour before measuring pH with a Hanna 

HI9025 hand held pH meter (Hanna Instruments Ltd., Bedfordshire). Samples were 

frozen for 24hrs before being freeze dried, weighed and ground into a fine powder 

using a pestle and mortar. Soil C concentrations were determined with a Carlo Erba 

NC2500 analyser (CE Instruments Ltd., Wigan, UK), which uses a process known as 

‘Dynamic Flash Combustion’. C concentration is then measured from the gas 

passing through the thermal conductivity detector (TCD). The analyser was 

calibrated with High Organic Sediment OAS (Organic Analytical Standard) prior to 

the samples being run. Following calibration, four High Organic Sediments (with 

certified values of 6.72 %C) were run as controls, giving a result of 6.72 %C +/- 0.2. 

Bulk density was calculated by dividing dry weight by sample volume. Soil C stocks 

were calculated per unit area in each layer (g C cm-2) using C stocks (g C cm-3) 

multiplied by depth of layer. C stocks in full core depth are the sum of C stocks per 

unit area in each layer. Monte Carlo uncertainty analysis was carried out as 

described in the supporting information (Appendix 1). 

 

2.4.5  Dead wood C 

To account not only for amount of coarse woody debris (CWD) currently at the 

study site, but also how the amount of CWD has changed over time, the same 

method of line-intercept sampling was used as in a previous study (Kirby, 1992). 
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Line-intersect sampling comprises setting down a transect line of known length in a 

stand of trees and counting all dead logs, branches and trunks that are greater than 

5 cm in diameter where they cross the transect line. Using this method, the length 

of the fallen dead wood can be estimated using the formula (Warren and Olsen, 

1964; Van Wagner, 1968; Brown, 1974): 

L = (π 104 N) / (2 l), 

where: 

L = total length of fallen wood per hectare (m). The conversion factor of 104 

changes the results to metres per hectare instead of per metre square; 

N = number of intersections; 

l = transect length (m). 

Using random sampling and a transect length of 25m, 10 transects were taken in 

the old-growth stands and 20 in the young-growth stands. All dead wood stems 

were measured at the point of interception with the transect line and assigned to a 

diameter class (6-10 cm, 11-20 cm or 20+ cm). Assuming a circular cross section for 

all logs, the lengths of dead wood stems were then converted to volumes using the 

formula: 

V = l π d2 / 4, 

where: 

V = volume of dead wood for each diameter class (m3 ha-1); 

l = length of dead wood for each diameter class (m ha-1); 

d = mean diameter for each diameter class (m). 

The sum of the volumes for each diameter class equals the volume of dead wood 

(m3) per hectare. 

To convert the volume of CWD to C stocks a value for wood density is needed. 

According to Merganičová and Merganič (2010) the decay process must be taken 
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into account so that C stocks in CWD are not overestimated. We therefore assigned 

each piece of dead wood to one of five decay categories: recently dead, weakly 

decayed, medium decayed, very decayed and almost decomposed. These decay 

categories have dry wood density values of 0.63, 0.57, 0.5, 0.51 and 0.22 g cm-3 

respectively (Paletto and Tosi, 2010). Decay categories were recorded for a sample 

of dead wood transects, each 25 m long, within the permanent transects at our 

study site. Data from old-growth transects and young-growth transects were 

pooled due to the small amount of data. No C stocks or decay categories were 

reported in the previous dead wood survey, only the volume of CWD, so 

proportions of CWD in each decay category were calculated from the sample and 

applied to both the previous survey and our survey. The volume of CWD was then 

converted to C stocks using the formula (Merganičová and Merganič, 2010): 

C = 10 V ρ c, 

where: 

C = carbon stock of CWD (Kg C ha-1) 

V = wood volume of CWD (m-3 ha-1) 

ρ = wood density of CWD (g cm-3) 

c = carbon concentration in percentage of dry mass (50%). We assumed the same 

percentage as living biomass C concentration as Weggler et al (2012) report that C 

concentration does not change with decay class. Monte Carlo uncertainty analysis 

was carried out as described in the supporting information (Appendix 1). 

 

2.5     Results 

2.5.1  Tree biomass C 

Since recording began, carbon stocks in the older growth stands have approximately 

doubled, going from 8.92 kg C m-2 (0.025-quantile 7.21 kg C m-2, 0.975-quantile 

10.19 kg C m-2) in 1945 to 17.50 kg C m-2 (0.025-quantile 14.09 kg C m-2 ,0.975-
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quantile 20.24 kg C m-2) in 2010, and carbon stocks in the younger growth stands 

have increased by almost 50%, from 6.30 kg C m-2 (0.025-quantile 5.39 kg C m-2, 

0.975-quantile 7.23 kg C m-2) in 1977 to 9.21 kg C m-2 (0.025-quantile 7.72 kg C m-2, 

0.975-quantile 10.65 kg C m-2) in 2002 (Figure 2.2). This gives a net accumulation of 

8.58 kg C m-2 (0.025-quantile 6.76 kg C m-2, 0.975-quantile 10.18 kg C m-2) in the 

older growth stands over a 65 year period and a net accumulation of 2.91 kg C m-2 

(0.025-quantile 2.16 kg C m-2, 0.975-quantile 3.63 kg C m-2) in the younger growth 

stands over a 25 year period. The mean estimated carbon stocks increased between 

any two sequential monitoring years in both older and younger growth stands, 

except for a decrease of 0.78 kg C m-2 (0.025-quantile -1.17 kg C m-2, 0.975-quantile 

-0.37 kg C m-2) between 1977 and 1983 in older growth stands. The mean discrete-

time annual growth rate R in older growth stands had mean estimates between 

1.006 and 1.021 for all time periods except 1977-1983, where it was 0.991 (0.025-

quantile 0.986, 0.975-quantile 0.996). The fastest growth rate in the older growth 

stands (1.02, 0.025-quantile 1.017, 0.975-quantile 1.024) occurred between 1945 

and 1955. The two time periods in younger growth stands had growth rates of 1.018 

(0.025-quantile 1.025, 0.975-quantile 1.021) and 1.011 (0.025-quantile 1.007, 

0.975-quantile 1.015) respectively. In other words, the rate of increase in tree 

biomass C was similar between older and younger growth. 
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Figure 2.2: Change in tree C stock (kg C m-2) for old-growth stands (1945-2010) and 

young-growth stands (1977-2002). Symbols are mean estimates, and vertical bars 

extend from 0.025-quantile to 0.975-quantile. Other studies (Pan et al. 2011; 

Nabuurs et al. 2003; Gimmi et al. 2009; Hu and Wang, 2008) added for comparison 

of changing C stocks over time. 
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2.5.2  Soil C 

The depth to the parent material of soil cores sampled ranged from 5 cm on the 

steep slopes, to 54 cm on the mid slopes. Mean estimates of C storage from 

individual cores (over the full core depth) ranged from 2.04 kg C m-2 (0.025-quantile 

1.93 kg C m-2, 0.975-quantile 2.16 kg C m-2) to 35.00 kg C m-2 (0.025-quantile 34.31 

kg C m-2, 0.975-quantile 35.71 kg C m-2), highlighting the substantial variability 

within these forest soils. More C is stored in the upper layer (0-10 cm) of both the 

old- growth and young-growth stands (Figure 2.3) and generally decreases by layer. 

However, the old-growth stands appear to store more C below 30 cm depth, 

compared to the young-growth stands. 

 

Figure 2.3: Soil C content (kg C m-2) by layer (1: 0-10cm, 2: 10-20 cm, 3: 20-30 cm, 4: 

>30 cm) for (a) old-growth and (b) young-growth stands. 
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In a biplot of % soil C, depth, pH and bulk density (Figure 2.4), there was little 

correlation between pH and the other variables. However, bulk density and depth 

appear strongly correlated, whilst depth and bulk density are both negatively 

correlated with soil C. None of the samples appear as obvious groups or clusters 

and no variables seem to point towards a specific group of samples. In other words, 

the data do not suggest systematic differences in soil properties between transects, 

or between young and old-growth. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Biplot of the first two principal components of natural log of percentage 

soil C (logC), depth, pH and natural log bulk density (logbulk), labelled by transect 

number and coloured black for old-growth and blue for young-growth. Arrows 

indicate the loading of each variable on the first two principle components, and the 

cosine of the angle between any two arrows approximates the correlation between 

the corresponding variables. The percentage of variation explained by the first two 

principal components is 82.5%. 
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Old-growth stands had more soil C per unit area than young-growth stands (old-

growth mean estimate 11.03 kg C m-2, 0.025-quantile 10.76 kg C m-2, 0.975-quantile 

11.27 kg C m-2; young-growth mean estimate 7.43 kg C m-2, 0.025-quantile 7.22 kg C 

m2, 0.975-quantile 7.64 kg C m-2), although this difference was mostly driven by a 

small number of old-growth cores with unusually high soil C. In the old-growth, 70% 

of C (0.025-quantile 68%, 0.975-quantile 71%) was stored in the top 20cm, while in 

the young-growth the top 20cm stored 81% of C (0.025-quantile 80%, 0.975-

quantile 83%). 

 

2.5.3  Dead wood C 

The amount of C currently being stored in CWD is 0.63 kg C m-2 (0.025-quantile 0.27 

kg C m-2, 0.975-quantile 1.20 kg C m-2) in the old-growth stands and 0.75 kg C m-2 

(0.025-quantile 0.37 kg C m-2, 0.975-quantile 1.22 kg C m-2) in the young-growth 

stands (Table 2.2). In 1992, the corresponding figures were 0.93 kg C m-2 (0.025-

quantile 0.34 kg C m-2, 0.975-quantile 1.86 kg C m-2) in the old-growth stands and 

0.61 kg C m-2 (0.025-quantile 0.22 kg C m-2, 0.975-quantile 1.42 kg C m-2) in the 

young-growth stands. The uncertainty on changes between 1992 and 2011 is too 

large to say whether there has been an increase or a decrease in dead wood (old-

growth stands mean change -0.30 kg C m-2, 0.025-quantile -1.09 kg C m-2, 0.975-

quantile 0.34 kg C m-2; young-growth stands mean change 0.14 kg C m-2, 0.025-

quantile -0.52 kg C m-2, 0.975-quantile 0.63 kg C m-2). 
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Table 2.2: Line intercept sampling results for current study (2011) compared to 

previous study (1992) in old-growth (OG) and young-growth (YG) stands. 

 

2.6     Discussion 

2.6.1  Tree biomass C  

The rapid increase in C storage in living trees during recent decades is clear, both in 

this study and in European syntheses (Ciais et al. 2008, Pan et al. 2011, Nabuurs et 

al. 2003). Although the old-growth and young-growth stands in this study have 

been increasing at similar rates, they are storing vastly different amounts of C. This 

Lady Park Wood           This study, 2011           Kirby, 1992

YG  OG  YG OG

Stand Age: 66 yrs 100-135 yrs 46 yrs 80-115 yrs

No. of transects (25m): 20 10 10 10

Mean number of

intersections per

25m transect: 5.6 3.7 4.8 5.8

Standard error: 0.8 0.9 0.8 1.8

Number of intersections 

stem diameter (cm)

6 - 10: 65 19 38 35

11 - 20: 42 15 9 19

20+ 5 3 1 4

Estimated length of

dead wood (m/ha): 3325 2377 3110 3662

0.025- and 0.975-quantiles: (2740, 3895) (1596, 3189) (2214, 4070) (2666, 4718)

Estimated volume of 

dead wood (m3/ha): 33 28 27 41

0.025- and 0.975-quantiles: (24, 43) (15, 44) (12, 54) (21, 71)

C stock (kg C m-2): 0.75 0.63 0.61 0.93

0.025- and 0.975-quantiles: (0.37, 1.22) (0.27, 1.20) (0.22, 1.42) (0.34, 1.86)

Number of snags in 7 3 10 6

ten transects
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is due to the differing treatments they received in 1943, when the young- growth 

stands were clear felled (and the timber extracted to aid the war effort), whilst the 

old-growth stands have been mostly untouched since 1870, save for light thinnings 

in 1902 and probably the 1920’s (Peterken and Jones, 1987).   

The old-growth stands (as of 2010) are currently storing almost twice as much C as 

the young-growth stands (as of 2002), and as of 2010 had a 66% chance of 

exceeding the potential maximum C stocks for temperate, deciduous forest of 17 kg 

C m-2 reported by Ciais et al. (2008). Old growth stands are often assumed to be in a 

steady state but evidence suggests that they will grow steadily, possibly for 

centuries, until set back by disturbance (Luyssaert et al. 2008). The dip after 1976 

was due to a major drought, which greatly, but temporarily increased CWD to levels 

recorded in old-growth forests in N. America (Green and Peterken, 1997). The Swiss 

mountain forest (Figure 2.2), with similar values to our old-growth stands, reached 

20.2 kg C m-2 in 1975 but has since declined to 18 kg C m-2 due to two severe 

windthrow events and bark beetle damage. The main tree species in LPW can 

probably live for 200 -500 years, yet few individuals are over 200 years due to past 

felling (Peterken and Jones, 1987).  

Most studies available for comparison (Figure 2.2) show the amount of C stored in 

forested areas as being similar to the amount stored in the LPW young-growth 

stands. European and U.S. forests had very low growing volume per unit area 

around 1950 due to the large scale fellings that took place across western, central 

and eastern Europe during and after World War II (Vilén et al. 2012)  and to earlier 

periods of extensive forest harvest in the U.S. (Turner et al. 1995). Although similar 

histories makes the increase in C storage in the young-growth stands comparable to 

the rest of European forests, our study site has shown no increase in forest area, as 

has been suggested for European forests (Kauppi et al. 2006). As increased forest 

area was not a factor in LPW, the increase must have been driven by an increase in 

growing volume per unit area.  
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Possible factors behind an increase in growing volume per unit area include 

successional dynamics and changes in disturbance regime, climate, CO2 fertilisation 

and N deposition (Pan et al. 2011; Boisvenue and Running, 2006; Goodale et al. 

2002). The recent large increase in C storage in the old-growth stands (1.42 kg C m-2 

(0.025-quantile 0.88 kg C m-2, 0.975-quantile 2.02 kg C m-2) between 2000 and 

2010) may reflect tree growth and a consequent reduction in stand density 

(number of trees per ha), which has fallen from 384 trees/ha in 1977 to 287 

trees/ha in 2010.  Following suggestions from Weiner & Freckleton (2010), we 

plotted our data to compare plot trajectories with a -3/2 power relationship 

between mean biomass and stem density to detect the importance of factors other 

than successional self-thinning on forest biomass (Figure 2.5). As described in 

previous forest studies (Westoby 1984, White et al. 2007, Weiner & Freckleton 

2010), we find that most of the transects rarely exceed the -3/2 power slope and 

generally lie within the bounds of possible size-density relationships suggested by 

White (1985: Fig 2.5, grey lines). Where the slope is steeper than -3/2, it is during 

an early successional stage following disturbance (e.g. younger 2, older 3). The 

transects with higher biomass do run together, parallel to a -3/2 slope and the rate 

of biomass increase in transect ‘older 4’ with the maximum biomass values does 

slow in recent years suggesting that a final yield value is being approached.  This 

value may have exceeded the 17 kg C m-2 (Fig 2.5, black line) reported for European 

temperate deciduous forest by Ciais et al. (2008). The curves show various 

trajectories dependent on disturbance history as proposed by Coomes et al. (2003). 

Westoby (1984) and Zeide (1987) presented evidence for how various factors such 

as soil fertility affected the properties of the thinning lines in biomass-density plots 

and we might anticipate variation in climate, CO2 fertilisation and N deposition to 

influence our data when plotted in this way, although it would need controlled 

experiments to separate out the effects of these different drivers in Lady Park 

Wood. Exploration of the relative importance of these factors by comparing C 

measurements with experiments using a climate-driven dynamic vegetation-model 

indicated that release from former management and CO2 fertilisation were the 

dominant factors (Chapter 3). 
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Figure 2.5: Logarithm (base 10) of mean tree biomass (kg, mean over transect of 

mean biomasses from uncertainty analysis, including both aboveground and 

belowground tree biomass) against logarithm (base 10) of number of stems per 

metre squared. Filled symbols: old-growth. Open symbols: young-growth. Arrows 

connect consecutive observations on the same transect. Small black dots on arrows 

indicate 1-year intervals (assuming constant proportional rates of change between 

observations), so that closely-spaced dots indicate slow change, and widely-spaced 

dots rapid change. Black line: constant total biomass equivalent to 17 kg C m-2, 

assuming mean tree C content 48.8%. Grey lines: lines with slope -3/2, and 

intercept values log10(3.2) and log10(100), delimiting the boundaries of possible size-

density relationships suggested by White (1985, p. 306). 
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2.6.2  Soil C 

Soil carbon stocks in LPW were highly variable but well within the range reported 

from other studies. In the BioSoil soil survey (which measured soil properties from 

167 plots throughout Great Britain) Vanguelova et al. (2013) reported total 

amounts of soil carbon stores as 10.8 kg C m-2 for rendzinas and 15.2 kg C m-2 for 

brown earths. These amounts are similar to the mean estimate for carbon stores in 

the old-growth stands (11.03 kg C m-2) at LPW, however the young-growth stands 

are storing considerably less (7.43 kg C m-2). This difference is mostly driven by a 

small number of old-growth cores with unusually high soil carbon. Such a wide 

range of values results from the complexity and number of factors that can affect 

soil carbon stores, for example, climate, soil (type, texture, and depth), topography, 

dominant trees species and management (Lal, 2005). Both the old- and young- 

growth stands share the same management history until 1943 when the young- 

growth stands were clear cut. The higher level of disturbance resulting from clear 

cutting can cause loss of soil carbon due to an increased rate of detritus 

decomposition and a change in microclimate (Bhatti et al. 2002). Covington (1980) 

produced a curve demonstrating that in the 20 years following clear cutting the 

forest floor decreased by over 50% (4.5 kg/m-2), which he attributed to rapid 

decomposition and reduced leaf and wood litter fall. However, other studies 

suggest either slower decomposition in the clear cuts (Blair and Crossley, 1988) or 

show no evidence that litter decomposes faster in clear cuts than in adjacent 

forests (Prescott et al. 2000). Currie et al. (2002) report that leaf litter is reduced for 

less than a decade and that canopy closure, along with leaf production, occurs 

quickly, within 8 years. Although the canopy in the young-growth stands was largely 

closed by 1955 (Peterken and Jones, 1989), it is possible that the disturbance meant 

that some soil carbon was lost or at the very least that soil carbon accumulation 

was arrested for a while. Schulp et al. (2008) suggest that organic carbon stores 

mainly develop in the upper layer in the first decades after disturbance and that if 

the stand is undisturbed for longer periods, the carbon will be transferred to 

deeper layers. This could explain why the old-growth stands store more carbon 

below 30 cm depth compared to the young-growth stands. The soils in this study 
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are storing similar percentages of soil carbon in the top 20 cm (70% in the old- 

growth stands and 81% in the young-growth) to the rendzina soils in the BioSoil 

survey (Vanguelova et al. 2013), which stored 75% in the top 20 cm. However, the 

old-growth stands store a similar amount of carbon, as well as a similar percentage 

stored in the top 20 cm, to amounts reported in Vanguelova et al. (2013) whereas 

the young-growth stands store less carbon overall with a greater percentage being 

stored in the top 20 cm. This suggests that over time, if undisturbed, more carbon 

may be transferred to the deeper layers and therefore the amount of carbon being 

stored in the young-growth stands could increase. 

 

2.6.3  Total ecosystem C (TEC) 

C is apportioned differently in the different aged stands at LPW. Currently, 60% 

(0.025-quantile 54%, 0.975-quantile 64%) of C in the old-growth stands is stored in 

live biomass, 38% (0.025-quantile 34%, 0.975-quantile 43%) is stored in soil and 2% 

(0.025-quantile 1%, 0.975-quantile 4%) is stored in CWD. In contrast, storage of C in 

the young-growth stands is apportioned almost equally between live biomass (53%, 

0.025-quantile 48%, 0.975-quantile 57%) and soil (43%, 0.025-quantile 39%, 0.975-

quantile 47%) and 4% (0.025-quantile 2%, 0.975-quantile 7%) is stored in CWD. 

Although soil C storage is low in LPW compared with the national average, it is the 

high amount of tree biomass C being stored that causes soil C to account for less 

than two-fifths of TEC in the old-growth stands. Soils in LPW do not account for 

anywhere near the 60% of TEC that Pan et al (2011) report for European temperate 

forests. However, Pan et al (2011) suggested that whilst tree biomass C had risen 

between 1990 and 2007, soil C had stayed roughly the same, meaning the 

proportion of C stored in tree biomass rose by 3% and the proportion of C in soil 

decreased by 3%. Nabuurs et al. (2003) suggested that the European annual C sink 

was almost equal between tree biomass and soil compartments until the 1970’s, 

after which the tree biomass portion increased rapidly and by the 1990’s accounted 

for 68%. Therefore it seems likely that as forests age, and tree biomass increases, 

there is a shift away from the soil compartment storing the majority of TEC.  
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What we found is mainly consistent with the European synthesis, in that tree 

biomass C has been increasing over the last fifty years. However the fine spatial 

resolution of our study yielded new insights. Far more C is being stored in tree 

biomass than in the soils in the old-growth stands, soils in the old-growth stands 

store more carbon than soils in the young-growth stands, and the soil store 

accounts for less than 50% TEC in both the old-growth and young-growth stands. C 

increase in this study is all attributable to an increase in volume per unit area and is 

primarily driven by recovery from former forest exploitation prior to 1944. While 

the rate of biomass increase in the most heavily stocked transect is slowing, C 

stocks are still increasing. Pan-European data also showed an increase in forest 

area, meaning Europe had a smaller increase in volume per unit area than LPW. The 

old-growth stands are storing a substantial amount of C and even the young-growth 

stands (of similar age to European forests) are storing more C than the amounts 

reported by Ciais et al. (2008) or Pan et al. (2011), with the potential to store more. 

This study suggests that tree biomass C can become the most important 

compartment for C storage, as forests age and tree biomass C increases faster than 

soil C. Therefore, if C storage is to be given as much emphasis as biomass 

production then due consideration should be given to the role of unmanaged, old-

growth forests which contain larger trees than are found in forests managed for 

timber. Analysis of changing biomass-density relationships through time was not 

sufficiently sensitive to detect potential influence from climate change, CO2 

fertilisation or N deposition. The influence of these factors can be more effectively 

explored using dynamic ecosystem modelling. 
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Chapter 3 

 

3 Past and Future Drivers of a Neglected Carbon Sink in 

European Temperate Forest 

 

3.1 Abstract 

Forests are major carbon (C) stores on a global scale but there are significant 

uncertainties about changes in C flux through time and the relative contributions of 

drivers such as land-use, climate and atmospheric CO2. We used the dynamic 

vegetation model LPJ-GUESS to test the relative influence of CO2 increase, 

temperature increase and management on carbon storage in living biomass in an 

unmanaged European temperate deciduous forest. The model agreed well with 

living biomass reconstructed from forest surveys and maximum biomass values 

from other studies.  High-resolution climate data from both historical records and 

general circulation models was used to force the model and was manipulated for 

some simulations to allow relative contributions of individual drivers to be 

assessed. Release from management was the major driver of carbon storage for 

most of the historical period while CO2 took over as the most important driver in 

the last 20 years. Relatively little of the observed historical increase in carbon stocks 

was attributable to increased temperature. Future simulations using IPCC RCP4.5 

and RCP8.5 scenarios indicated that carbon stocks could increase by as much as 3 

kg C m-2 by the end of the century, which is likely to be driven by CO2 increase. This 

study suggests that unmanaged semi-natural woodland in Europe can be a major 

potential carbon sink that has been previously underestimated. Increasing the area 

of unmanaged forest would provide carbon sink services during recovery from 

timber extraction, while long-term protection would ensure carbon stocks are 

maintained. 
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3.2 Introduction 

 

Forests globally provide a substantial and important C store but significant 

uncertainties exist about the changes in C flux through time (Erb et al. 2013; 

Mackey et al. 2013). Over the last 300 years, US forests have switched from being a 

C source to a C sink (Birdsey et al. 2006) and this is also likely to have occurred in 

China and Europe because of reforestation and reduction of intensive land-use 

practices, which are returning C to forest ecosystems (Erb et al. 2013; Mackey et al. 

2013). Indeed Mackey et al. (2013) estimate that global terrestrial ecosystems 

currently act as a net C sink, as forest regrowth in the developed-world more than 

compensates for the effects of deforestation in developing countries. Estimates for 

recent changes in C fluxes are available at global (Pan et al. 2011) and regional 

(Birdsey et al., 2006; Ciais et al. 2008) scales, but uncertainty remains about the 

drivers of these changes, which may include reduced management, CO2 

fertilisation, nitrogen availability and climatic influence on photosynthesis and 

respiration. Bellassen et al. (2011) used a dynamic vegetation model to suggest that 

CO2 fertilisation and climate change were the dominant influences on C stocks in 

European forests between AD 1950 and 2000, while Erb et al. (2013) stressed the 

role of management relaxation. The relationship between these drivers of C flux in 

terrestrial ecosystems is likely to have shifted through the recent past and will 

continue to do so in future.  

Increased forest C stocks in the recent past are commonly reported and have been 

estimated at 1.7 kg C m-2 in the last 50 years in Europe (Ciais et al. 2008) and 0.5 kg 

C m-2 in the last 17 years in the United States (Pan et al. 2011). This is most 

commonly attributed to increased forest density due to recovery from more intense 

management (Rautiainen et al. 2011; Erb et al. 2013), or changes in atmospheric 

composition or climate (e.g. Bellassen et al. 2011; Mackey et al. 2013). A meta-

analysis of free-air CO2 enrichment (FACE) experiments revealed that elevated CO2 

resulted in larger plants, with greater allocation to wood and increased biomass 

production in trees (Ainsworth & Long, 2005). The effect of climate warming is less 

clear, as C stocks may be increased in some regions through extended growing 
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seasons due to increased temperature, but may also be reduced by negative effects 

on plant growth through drying or heat stress (Mackey et al. 2013).  

The capacity to store C in vegetation is ultimately limited, although the maximum 

will change with prevailing environmental conditions. Ciais et al. (2008) suggested a 

potential maximum C stock of 17 kg C m-2  for broad-leaved forests  (14-15 kg C m-2 

for forests in general) using managed forest data, although such inventory data may 

underestimate the true C carrying capacity significantly (Keith et al. 2009). A review 

of global and European datasets revealed that most forests are below or close to 

this suggested maximum, but some forests already store considerably more 

(Chapter 5). These may be primary forests which are under-represented in the data 

used by Ciais et al. (2008), but it is possible that as a forest recovers from 

management, it may exceed its theoretical maximum until self-thinning processes 

restore equilibrium densities (Shugart, 1998). Therefore, as most UK forest is 

recovering from some form of timber extraction, these elevated levels may still 

subside to a long-term maximum.  

Native temperate deciduous forests account for 36.7% of European forest cover 

and 12.8% (1.2 x 108 ha) of European land area (Schuck et al. 2002). Most of this 

forest is managed or experiencing the effects of management legacy (e.g. Erb et al. 

2013) and only 26% of Europe’s forest is now primary forest (FAO, 2010). 

Unmanaged forest has the potential to store more C as living biomass than forest 

experiencing current or recent timber extraction, although it is not clear by how 

much. Keith et al. (2009) reported biomass data from mature and older forests to 

be 2-3 times the temperate biome default values (from forest inventory data) used 

to inform climate change mitigation policies (IPCC, 2003). Better understanding of 

the role of management in determining C flux in forests, and how it relates to other 

drivers such as atmospheric CO2 fertilisation and climatic change is clearly crucial 

for guiding policy to optimise C storage.  
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3.3 Aims 

Here we use long-term monitoring data from a European, temperate, semi-natural, 

deciduous forest to reconstruct C storage in living biomass. This forest has been 

unmanaged since 1945 and as such represents an important contrast to studies of 

plantations and managed forests. We compared output from the dynamic 

vegetation model LPJ-GUESS with long-term monitoring data to establish reliability 

of simulated C stock estimates. We then used the model to explore the sensitivity 

of forest C stocks in this region to temperature, precipitation, CO2 and 

management. Simulation results were compared to estimate the relative 

contribution of different variables to C fluxes during the last 65 years. Only living 

biomass (above- and below-ground) was considered; C stored in soils and dead 

biomass was omitted. The nitrogen cycle is not represented in LPJ-GUESS and 

therefore N fertilisation could not be considered.  

 

3.4  Materials and methods 

3.4.1  Site description and data collection 

Lady Park Wood is an ancient, semi-natural woodland in the UK (51˚49′N, 2˚39′W; 

30-190m elevation), which was coppiced for centuries but designated an 

unmanaged nature reserve in 1945. The main species present are beech (Fagus 

sylvatica L.), oak (Quercus petraea (Matt.) Liebl.), ash (Fraxinus excelsior L.), lime 

(Tilia cordata Mill., T. platyphyllos Scop.), wych elm (Ulmus glabra Huds.) and birch 

(Betula pendula Roth). The reserve covers 35.2 ha, of which 14 ha (old-growth 

stands) have experienced no management since c. 1900 when approximately 50% 

of tree biomass was removed (Peterken & Jones, 1987). Species proportions in 

these stands are around 50% beech, 20% oak, 20% ash, 8% lime, and 1% each of 

elm and birch. The oldest trees are c. 220 years and these stands have been well 

stocked with standing dead trees since 1976 when many were killed by drought. 

Canopy height and basal area have oscillated around a ceiling achieved by 1976 and 

the volume of coarse woody debris in the 1990’s was similar to temperate 
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deciduous ‘virgin’ forests and USA old-growth forests. The remaining 21 ha (young-

growth stands) were virtually clear-felled in 1943 (Peterken & Jones, 1989). Species 

proportions in these stands are around 30% beech, 24% birch, 15% each of ash, oak 

and lime, and 1% elm. 

Transects were established in old- and young-growth areas in 1944. Old-growth 

transects were recorded in 1945, 1955, 1977, 1983, 1986, 1992, 2000 and 2010 and 

young-growth transects in 1977, 1993 and 2002 (details in Peterken & Jones, 1987; 

1989). These long-term monitoring data (Mountford, E. unpub) provide location, 

species and diameter of all trees achieving ≥ 1.3 m height. Allometric regression 

equations were used to calculate above-ground biomass in order to reconstruct 

long-term C dynamics (Chapter 2).  

 

3.4.2 The LPJ-GUESS model 

LPJ-GUESS (Smith et al. 2001) is a dynamic vegetation model that uses a gap 

modelling approach (Shugart, 1984; Prentice et al. 1993; Bugmann, 2001). Various 

plant functional types (representing groups of species with similar functional traits) 

and species can be simulated (hereafter PFT refers to both PFTs and species) 

(Hickler et al. 2004). Bioclimatic limits (Prentice et al. 1992; Sykes et al. 1996) are 

used to define the climate space in which each PFT may occur. Biophysical and 

physiological processes are represented mechanistically, using the formulations 

given in Sitch et al. (2003) for LPJ-DGVM, which uses an area-averaged 

representation of vegetation structure. In contrast, LPJ-GUESS simulates vegetation 

as age cohorts of different species, competing for light and water on replicate 

patches (100 in the present study). The model is driven by short-wave radiation 

(photosynthetically active light), temperature, precipitation, and CO2 concentration 

of the air. Soil conditions modify the water uptake of the plant. CO2 influences 

assimilation rate following the Farquar et al. (1980) approach.  

Twenty-two PFTs and species were modelled including the major tree and shrub 

species plus a group comprising grasses and herbaceous plants, which compete 
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with trees for resources. Bioclimatic limits determine whether plants establish and 

whether they die in cold spells (for details and species specific parameters see 

Hickler et al. 2012). Each PFT also has a specific drought tolerance, characterised by 

its water uptake rate. Summergreen species require varying periods of chilling to 

induce budburst (Murray et al. 1989). Cohort establishment and mortality are 

modelled as stochastic processes within each patch. In addition, stochastic patch-

destroying disturbances, representing processes such as herbivory and storm 

damage, result in all vegetation in a patch being transferred to the patch’s litter 

pool and occur with an annual probability of 1/500.  

 

3.4.3 Model forcing and simulation protocol 

To equilibrate initial vegetation and carbon pools with climate at the beginning of 

the study period, the model was first “spun-up” for 1000 years using climate data 

for the period 1901-1930 cycled repeatedly and the 1901 CO2 value. The study 

period then ran from 1901 to 2005. Temperature, precipitation and short-wave 

radiation data for 1901-2005 were taken from the WATCH dataset (Weedon et al., 

2011). Both WFD (1901-1978) and WFDEI (1979-2005) were used to cover the study 

period and a bias correction was applied to the WFD data to create a continuous 

dataset. Locally measured daily temperature and precipitation data  were also 

available from Ross on Wye (11 km from site) for years 1961 to 2005 (UK 

Meteorological Office). These data were used in place of the WATCH dataset for the 

available years and the WATCH dataset was further bias corrected using these local 

data (see supplementary material for method: Appendix 2). Missing values in the 

local station climate data were interpolated using a linear relationship (r2 = 0.94, P < 

0.0001) with data from Preston Wynne (34km from site). Atmospheric CO2 was 

taken from the RCP Concentration Calculation & Data Group (Meinshausen et al., 

2011). Simulations using modifications of these data are described below.  

To project future carbon pools, temperature, precipitation and short-wave 

radiation for the period 2006-2100 were calculated to represent the IPCC 
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representative concentration pathways (RCP) 4.5 and 8.5, which project an 

approximate 40% increase in atmospheric CO2 from 2006-2100 or a 250% increase 

respectively. These scenarios were chosen as they represent the two extremes of 

global temperature increase by 2100, within the range given by the IPCC AR5 report 

(Stocker et al., 2013) for both stabilisation scenarios (RCP4.5 and RCP6.0) and high 

greenhouse gas emission scenarios (RCP8.5). The RCP2.5 is considered highly 

unlikely and the derived climate data is not yet available. The two chosen scenarios 

are to some extent comparable to the AR4 SRES scenarios B1 and A2. Climate 

projections for the period were taken from CORDEX (Coordinated Regional Climate 

Downscaling; http://www.euro-cordex.net/) using data downscaled to high 

resolution (11’ longitude / latitude). We used downscaled climate data for the grid 

cell containing Lady Park Wood from the CMIP5 ensemble general circulation 

models (GCMs) HadGEM, MPI, IPSL and CNRM. These were the only models for 

which downscaled data at high resolution for RCPs 4.5 and 8.5 were available. 

Anomalies for each month in each future year were calculated as the difference 

between the future month mean and the climatology (monthly mean across all 

years 1970-2005) for each climate variable. Daily data for the relevant climate 

variable from the period 1970-2005 were cycled through repeatedly to provide a 

baseline for future climate, maintaining intra-annual variation, and anomalies were 

applied to these data. A significant increasing trend was identified in the station 

temperature data, however, and this trend was removed before applying 

anomalies. For further details see supplementary material (Appendix 2). 

 

3.4.3.1 Comparison of monitoring data with model output 

Vegetation dynamics in Lady Park Wood were simulated in LPJ-GUESS for the 

period 1901-2000; firstly without simulated clearance, to represent the C carrying 

capacity of the forest in a “natural” state with no history of anthropogenic 

disturbance or management. This hypothetical simulation provides a baseline 

against which C stocks under other real or modelled conditions can be compared 

and is referred to as “no-clearance” throughout. The clear-felling (100% biomass 



 

Page | 42  
 

removal) that took place in the young-growth areas of Lady Park wood in 1943 and 

the partial felling (50%) of old-growth stands in 1901 were then simulated. These 

results were compared with observed old- and young-growth biomass data. 

 

3.4.3.2 Relative effects of climate, CO2 and management 

Using the old-growth simulation as a baseline, simulations with no-clearance, with 

detrended temperature throughout and detrended CO2 throughout were then 

compared. This allowed consideration of how different C storage would have been 

if each observed effect had not been present. As no trend in precipitation was 

identified in the weather data, the effect of precipitation could not be examined, 

but cannot have been a driver of the observed biomass increase. 

 

3.4.3.3 Extreme weather 

Different climate variables are related strongly to each other; for example, years 

with higher than average summer temperatures are likely to have decreased 

precipitation. Hence, when investigating the effect of temperature, changing 

temperature alone in the driving data would be an oversimplification. The extreme 

climate experiments assessed the effect of climate factors by replicating years in 

which those factors were unusually pronounced (e.g. dry years). Local weather data 

was ranked in terms of temperature or precipitation levels and the top five 

warmest, coldest, wettest and driest years were extracted and cycled through 

repeatedly to simulate an extreme climate. By using real daily data from these top 

ranking years, the relationship between temperature and precipitation was 

preserved. Radiation data were not available for the site, therefore CRU data were 

used throughout. Clearance was not simulated here in order to focus on the effects 

of climate. 
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3.4.3.4 Future projections 

The potential for C storage as biomass towards the end of this century was 

projected using climate data representing IPCC AR5 scenarios RCP4.5 and RCP8.5. 

The model was run to 2100, using the end of the no-clearance and young-growth 

simulations as starting points, the old-growth simulation was not used as its end 

point in 2000 was very similar to the no-clearance simulation. 

 

3.5 Results 

3.5.1 Comparison to data 
 

Measured C stocks increased in old-growth unmanaged stands by 8.5 kg m-2 over 65 

years and in young-growth stands by 9 kg m-2 over 59 years (Figure 3.1; see Chapter 

2 for more details), compared to simulated C stocks which increased by 4.31 kg C   

m-2 in old-growth stands and by 8.89 kg C m-2 in the young-growth stands.  

Simulations of the partial clearance in 1901 and clear felling in 1943 agree relatively 

well with these data, with observed values falling within the limits. By the year 

2000, simulated C mass in old-growth stands approaches the values of the no-

clearance simulation, suggesting recovery from timber extraction is almost 

complete. The model correctly identified the major tree species (Fagus, Quercus, 

Fraxinus, Tilia, Ulmus and Betula) but tended to overestimate Quercus abundance 

and underestimate Fagus, Fraxinus and Tilia. This may indicate that some model 

parameterisations were sub-optimal for local conditions, although models can 

never perfectly recreate observed conditions due the random effects on vegetation 

establishment in multi species mixtures. 

 

3.5.2 Relative effects of climate, CO2 and management 

The no clearance simulation represents the C carrying capacity of Lady park wood if 

no management had ever been applied. C storage was greater in the no clearance 

than in the old-growth simulation, although the difference decreased through time. 
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The size of the difference between these simulations suggests that, for most of the 

study period, management legacy is likely to be the most important factor 

determining C stored in living biomass (Figure 3.2), and has a large but decreasing 

negative effect on C mass as the forest recovers from past felling. According to the 

model simulations, CO2 has an increasingly large positive effect as atmospheric 

levels rise, indicated by reduced C mass when CO2 is detrended. Indeed by the end 

of the period, the positive effect of CO2 is larger than the negative effect of 

management legacy. These simulations suggest that the increase in forest biomass 

observed over the last century is more likely to be attributable to CO2 fertilisation 

than to warmer conditions in Lady Park Wood. 

 

3.5.3 Effects of extreme climate conditions 

Figure 3.3 compares the extreme climate simulations to that without climate 

manipulation (all without clearance) (Table 3.2). Under dry conditions C stored as 

living biomass is reduced, whereas under wet conditions biomass production does a 

little better than under actual climate. However, biomass production was also 

greatly suppressed under warm conditions.  
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Figure 3.1: Observed biomass in old- (open circles) and young-growth (filled circles) 

at Lady Park Wood and LPJ-GUESS output representing C mass under various past 

management conditions (lines represent mean values): 50% clearance of all tree 

species in 1901 representing the old-growth stands (dashed); total clearance in 

1943 representing young-growth stands (dotted); and no clearance representing 

the potential C carrying capacity or ‘natural’ state with a mosaic of age cohorts and 

no anthropogenic disturbance (solid). Shaded regions represent the standard error 

of mean values. Vertical bars on data points extend from 0.025-quantile to 0.975-

quantile. 
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Table 3.1: Projected carbon mass values in 1960, 1980 and 2000 (mean ± SD). The simulation using observed conditions represents old-growth 

conditions as a baseline. Δ Cmass shows the difference between each modified condition and that baseline. The biggest driver of C mass at 

each time point is highlighted in bold text.  

Simulation 
1960 Cmass 

(kg C m-2)

Δ Cmass 

(kg C m-2)

1980 Cmass 

(kg C m-2)

Δ Cmass 

(kg C m-2)

2000 Cmass 

(kg C m-2)

Δ Cmass 

(kg C m-2)

Observed temperature & CO2 with 50% clearance in 1901 12.87 ± 7.18 0 13.93 ± 6.48 0 15.63 ± 6.36 0

Detrended CO2 12.17 ± 7.00 -0.7 13.21 ± 6.31 -0.72 13.67 ± 6.10 -1.96

Detrended temperature 13.56 ± 7.30 0.69 14.73 ± 6.62 0.8 16.01 ± 6.78 0.33

No-clearance 16.68 ± 7.64 3.81 16.62 ± 7.27 2.69 16.97 ± 7.74 1.34
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Figure 3.2:  LPJ-GUESS output showing the effect on stored C of removing single 

variables relative to observed conditions in old-growth stands (i.e. 50% tree 

clearance in 1901, increasing temperature and CO2; solid line). The effect of 

management was removed by running the model without simulated clearance (long 

dashes). CO2 was detrended by using 1901 levels throughout (short dashes). 

Temperature was detrended using a linear regression (dotted line; see text). Lines 

represent means of 500 replicate patches and shaded areas represent standard 

error. 
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Figure 3.3: Effects of extreme weather conditions on stored C simulated by LPJ-

GUESS using local weather data from the most extreme five years in terms of 

high/low temperature and high/low rainfall. Shaded areas on LPJ-GUESS output 

represent 95% confidence intervals. 
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Table 3.2: Summary of weather conditions during top ranking years for mean 

temperature (March to September) and precipitation (May to July). Climate data 

from these years were used to produce figure 3.3. 

Top 5
Mean temp 

Mar-Sept (˚C)

Mean prec         

May-July (mm)
Years

Warmest 13.70 1.07 1989, 1990, 1995, 

1997, 1999

Driest 12.98 0.89 1975, 1976, 1978, 

1984, 1995

Coldest 11.57 1.83 1962, 1965, 1972, 

1974, 1986

Wettest 12.18 2.60 1967, 1968, 1969, 

1985, 1993
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Figure 3.4: Future projections of C mass in Lady Park Wood using the RCP4.5 (left) 

and RCP8.5 (right) climate models. The starting point for future projections was the 

no-clearance simulation (top) and new growth simulation (bottom). Lines represent 

means of 500 replicate patches and shaded areas represent standard error. 

 

3.5.4 Future C storage 

During the period 2006 to 2100, C stocks were projected to either maintain 

approximately 2005 levels or increase by up to 3 kg C m-2 in the simulations with no 

historical clearance. Projected C stored as living biomass in the young-growth 

stands increased rapidly to approach simulated levels without historical clearance 

and, in some cases, continued to rise by up to 4 kg C m-2 (Fig 3.4). There are some 
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consistent differences between GCM’s but the overall trends are very similar in 

most cases. Regardless of clearance history or GCM the difference between the two 

RCPs is small. 

 

3.6 Discussion  

Monitoring data reveal that, since release from management, the old-growth 

stands in Lady Park Wood have approximately doubled their C storage as living 

biomass (Figure 3.1). Furthermore, greater biomass appears to be possible and still 

rising (old-growth stands in 2010 = 17.50 kg C m-2. This already exceeds the 17 kg C 

m-2 maximum potential biomass suggested by Ciais et al. (2008) for European 

broad-leaved forest, although it may be within the range of natural variability. 

Previous estimates of current C sequestration have been based mostly on 

inventories of commercial forests in the European temperate zone and are lower 

than the values we report from this unmanaged area, which may still be at the 

lower end of the UK range. In the New Forest, for example, a value of 28 kg C m-2 

has been recorded (Mountford, unpub). The potential range of C in above-ground 

living biomass for American, Chinese and Australasian temperate forest given by 

Keith et al. (2009) (c. 15-38 kg C m-2 ) therefore also seems accurate for European 

forest, even under sub-optimal conditions.  

The no-clearance simulations represent the potential C carrying capacity as living 

biomass in Lady Park Wood if no management had ever been applied. At around 17 

kg C m-2, it is similar to the suggested max of 17 kg C m-2 for broad-leaved forest 

(Ciais et al. 2008). Future projections in the no-clearance stands showed either 

stability at 2005 levels or an increase towards the end of the century of up to 3 kg C 

m-2 (Figure 3.4). However, the timescale is relatively short for forest dynamics and 

longer projections would be required to determine where C levels might stabilise in 

the long term. 

According to these simulations management had the greatest effect on C stocks 

throughout most of the study period (Table 3.1 Figure 3.2). However, towards the 

end of the study period, CO2 has taken over as the bigger driver. This has a parallel 
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with Erb et al.’s (2013) work in Austria, where a shift from management to ‘climate 

and management’ was identified as the major driver of mean annual increment 

during the latter part of the 20th century, although they did not distinguish CO2 

from climate. Relatively little of the observed increase in C stocks was attributable 

to climatic change, once the effects of increasing CO2 and management were 

removed.  

Climate manipulation experiments demonstrated that increased temperature (and 

associated rainfall reduction) had negative effects on C storage even though 

warmer conditions have been proposed to stimulate net primary productivity at 

northern latitudes (e.g. Zaehle et al. 2007) and this can also be demonstrated by 

manipulating temperature or precipitation in isolation (Appendix 2). While less 

precipitation will clearly cause water limitation, increased temperatures can also 

cause water stress by increasing demand for water. Furthermore, assimilation is 

inhibited in LPJ-GUESS by a negative effect of temperature on light use efficiency 

above 5˚C, which has been demonstrated experimentally (Farquhar et al. 1980; 

Haxeltine & Prentice, 1996). A negative effect of increased temperature might be 

rather unusual in a European context, since most temperate broad-leaved forests 

occur in areas with a continental climate and therefore more pronounced 

temperature seasonality and longer winters. Under these conditions, an increase in 

temperature would extend the growing season, allowing more photosynthesis and 

therefore productivity. However, at Lady Park Wood the climate is oceanic, 

therefore the growing season could be only marginally extended as temperatures 

are generally above the photosynthesis threshold already. Any positive effect on 

winter net primary productivity would be outweighed by a decrease over summer, 

when increased temperature would increase water demand and reduce light-use 

efficiency. At other locations with a more continental climate a higher annual 

temperature may result in increased productivity.  

C mass in old-growth stands was approaching “natural” levels by 2005, which 

indicates an approximate 100-year recovery time from 50% clearance. Recovery 

from 100% clearance might be expected to take significantly longer, but Figure 3.4 

shows projected recovery times of 110-140 years. Therefore, intensively-managed 
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forest stands may recover relatively quickly if released from management. This is 

likely to be driven by increased CO2 levels rather than associated warming (Figure 

3.2). In the simulations of “natural” forest without historical clearance, forecasts of 

C stocks for the next century based on the two climate models are qualitatively 

similar over the first decades, while in the latter period they differ in detail, one 

showing relatively little change to a slow, steady increase of up to 3 kg C m-2. 

This study was confined to living biomass carbon stocks, which are closely related to 

soil and dead biomass carbon stocks. Currently in Lady Park Wood, 29% of carbon 

stocks are in the soil and 3% in coarse woody debris within the old growth stands 

and 46% and 5% respectively in the young growth stands (Hale, 2015). These values 

are rather low compared with other sites in the UK because of the thin soil cover on 

the steeply sloping site (Vanguelova et al., 2013). 

Previous European estimates of carbon storage as biomass have been far lower 

than the values we report from this unmanaged area, where both model and data 

approach the potential maximum stock estimated from old forest data and yield 

tables (Ciais et al. 2008).  However, this potential maximum is likely to be site 

dependent and is significantly exceeded in other old growth deciduous forests in 

the UK (Hale, 2015). Native temperate deciduous forests cover a significant amount 

of European land area (12.8% or 1.2 x 108 ha) (Shuck et al. 2002) but are mostly 

managed for some level of timber extraction. Nabuurs et al. (2013) reported that 

European forests are approaching equilibrium with the current level of 

management and thus the carbon sink effect is declining.  

This study suggests that forests released from management can provide a major 

carbon sink during the recovery phase, as suggested by Erb et al. (2013) and 

Mackey et al. (2013). Consequently, the contribution of European native deciduous 

forests to recent carbon sequestration is likely to be significant when total 

ecosystem carbon is considered and this contribution has almost certainly been 

underestimated in the UK for the latest Global Forest Resources Assessment, where 

observations from plantations predominated (FRA, 2010; Hale, 2015). However, 

there are strict environmental limits on the carbon carrying capacity of a degraded 
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forest and further limits on the degree to which that can be restored. The ultimate 

value of these areas for carbon mitigation therefore lies in their long-term 

preservation, rather than their current sink status (Mackey et al. 2013). Therefore 

increasing the area of neglected or unmanaged semi-natural woodland in Europe 

will help to maximise the positive effect of CO2 fertilisation on their carbon sink 

status and mitigate any negative effect due to associated climate warming. 

Protecting these areas in the long-term will ensure carbon stocks are maintained 

and that a return to source behaviour does not occur.  
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Chapter 4 

 

4   Effects of temperature and ground vegetation on 

decomposition rates of oak roots in an unmanaged, 

temperate woodland. 

 

4.1  Abstract 

The decomposition of roots is one of the most important processes in forest 

ecosystems, transferring significant amounts of organic matter and nutrients into 

the soil. Quantifying decomposition rates and identifying primary controls of root 

decomposition are important for evaluating ecosystem function and its response to 

environmental change. We conducted a 30 month field experiment using oak roots 

of different diameter classes (<2 mm, 2-5 mm and 5-10 mm) in decomposition bags, 

which were buried at two locations, one with bare ground and one with soil 

supporting ground layer vegetation. A TinyTag data logger, that recorded minimum 

and maximum temperature every 30 minutes, was buried alongside each litterbag 

plot. Every 6 months litterbags were removed and the mass loss calculated. Roots 

were also analysed for percentage carbon (C) and nitrogen (N). Mean mass loss 

rates of roots buried in the location with ground vegetation were significantly 

higher than those of roots buried in the location of bare ground. Large roots (5-10 

mm) decomposed faster than medium (2-5 mm) or fine roots (<2 mm) over the first 

18 months. We found little evidence of a temperature effect, nor did we find any 

difference between initial C:N ratio in the different diameter classes. C:N ratio 

dropped quickly in the large diameter class and remained lower than the other 

diameter classes throughout the study. Our data suggest that root diameter class 

and type of ground cover may exert important influences on dead root 

decomposition rates in Lady Park Wood. 
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4.2  Introduction 

Within the biogeochemical cycle of forest ecosystems, the decomposition of litter 

and roots is one of the most important processes, transferring significant amounts 

of organic matter and nutrients into the soil. Temperate forests are thought to 

contain 2.1 – 2.2 kg C m-2 of tree root C, with 10 – 20% of that C being stored in fine 

roots (Brunner & Godbold, 2007). As tree root C is retained in soils more efficiently 

than aboveground C inputs (Schmidt et al. 2011), decomposition of tree root C 

represents a potentially large C flux and soil C sink. Consequently, quantifying 

decomposition rates and identifying primary controls of root decomposition are 

important for evaluating ecosystem function (Harmon et al. 1999) and its possible 

response to environmental change. 

Significant uncertainty still exists regarding the factors (and their interactions) that 

control root decomposition dynamics. Rates of mass loss have been explained by 

initial litter chemistry, i.e. C:N ratio, root Ca concentration, N concentration (Silver 

and Miya 2001; Parton et al. 2007),  N as a limiting factor (Lin et al 2010), 

environmental variables (soil temperature, soil moisture and soil nutrient content) 

(Solly et al. 2014), C quality (Sun et al. 2103; Chen et al. 2002) and microbial 

community composition (Brant et al. 2006).  

Root diameter is another possible regulating factor in decay rates, with larger 

diameter roots thought to decompose more slowly than smaller diameter roots, 

due to the longer period necessary for fungal colonisation and the increasing 

proportions of resistant organic substrates (Berg, 1984; Harmon et al. 1986). 

However, Fahey et al. (1988) found that the lignin fraction was higher in very fine 

roots (<0.6mm) than in small roots (0.6mm – 10mm) and the proportion of non-

structural carbohydrates was lower. As initial mass loss primarily comes from the 

non-structural fraction (McClaugherty et al. 1984) it might be anticipated that 

larger roots, with a higher proportion of non-structural carbohydrates, would decay 

faster initially. Yet there appears to be no consistent pattern in decay rates of small 

or large roots (Camiré et al. 1991; McClaugherty et al. 1984; Berg, 1984; Olajuyigbe 

et al. 2012). Root diameter has also been linked to C and N concentrations. Gordon 
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and Jackson (2000) found that C concentrations increased with root diameter, 

whereas N concentrations decreased. Pregitzer et al. (2002) also found N 

concentrations decreased as root order increased (mean root diameter decreases 

with increase in order) but did not find any correlation between diameter and C 

concentration. Root order is a way to describe root architecture and begins with 

primary roots (first-order) then increases sequentially with each branch from the 

proximal to the distal portions of the root system (Pregitzer et al. 1997). This 

decrease in N concentration in roots with increased diameter leads to them having 

a higher C:N ratio (Pregitzer et al. 2002). A lower C:N ratio (15-20) is favourable for 

rapid microbial utilisation, and therefore faster decay rates (Pregitzer et al. 1997). 

Indeed, Silver and Miya (2001) reported a strong negative correlation between root 

decay rate and initial C:N ratios on a global scale. Along with a lower C:N ratio, very 

fine roots also lack secondary (wood) development in all temperate tree species 

(Fan and Guo, 2010) and are therefore expected to decompose faster. However, 

some studies show that very fine roots decompose slower than larger diameter 

roots in spite of these traits (Sun et al. 2013; Sun et al. 2012; McClaugherty et al. 

1984). 

Temperature has also been found to be a controlling factor in decomposition rates 

(Berg et al. 1998; Solly et al. 2014), possibly due to temperature being one of the 

most important drivers of enzyme activities (Wallenstein et al. 2011). Increasing 

temperature is found to enhance enzyme activities (Chen et al. 2000; McClaugherty 

and Linkins, 1990) and Baldrian et al. (2013) found that in a temperate forest the 

highest enzyme activities were in the warm season. Therefore if a temperature 

effect is present we would expect decomposition rates to be higher in warmer 

periods. 

The microbial community, which secretes the degradative enzymes, is determined 

by the initial chemical composition of the litter (Baldrian and Štursová, 2011). 

Through changes in litter quality, plant species can affect decomposition by 

influencing nutrient cycling, thus possibly overriding temperature effects (Hobbie, 

1992). Enzyme activities in forest soils have been shown to have seasonal patterns, 

related to labile C and N availability for microbes (i.e. peak rates in spring related to 
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root exudates and peak rates in autumn related to input of fresh litter), which can 

alter microbial community composition (Kaiser et al. 2010). Significant activity of 

microbes has also been shown to continue over the winter period due to the 

availability of substrate C following litterfall in October (Kähkönen et al. 2001). This 

suggests that, although there may be a temperature effect, the availability of 

resources, i.e. C and N, could be more important (Bardgett et al. 2005). As plant 

exudates represent a high quality C source for microbes (Bartlett et al. 2005) and 

have been shown to increase the abundance and activity of microbes and fauna in 

the rhizosphere (Ostle et al. 2003), we hypothesise that roots buried in soil 

supporting ground-layer vegetation will decompose faster than roots buried under 

bare ground. 

 

4.3 Aims 

In this study we examined the effect of C:N ratio, soil temperature and ground 

vegetation on the decomposition of different sized oak roots (<2, 2-5 and 5-10 mm 

diameter) over a 2 ½ year period. Our specific objectives were to (1) determine 

whether the presence of ground vegetation would affect root decomposition; (2) 

explore the relationship between initial C:N ratio and decomposition rates, and (3) 

investigate effects of temperature on decomposition. We also collated literature 

data on root decomposition and calculated decomposition rates to compare with 

rates in this study. 

 

4.4 Materials and methods 

4.4.1 Site description 

This study took place in Lady Park Wood (51˚49′N, 2˚39′W), an ancient semi-natural 

woodland, situated at 30 – 190 m elevation on the southern bank of the River Wye, 

3km north east of Monmouth. The woodland covers 35.2 ha and was designated as 

an unmanaged nature reserve in 1944. Soils in the study area are acid silty clay 

loam brown earths, derived from old red sandstone drift, and they support old-
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growth beech-ash-oak-lime woodland (Ed Mountford, unpublished data). The area 

chosen for the experiment was under a mixed canopy, with bare ground occurring 

beneath the larger beech trees. Limestone bedrock is present throughout the 

woodland. The study ran from November 2010 until July 2013. Thirty-year (1981-

2010) mean annual temperature at local weather station Ross-On-Wye was 10.5˚C 

and mean annual precipitation was 733.5mm 

(http://www.metoffice.gov.uk/climate/uk/averages/19812010/sites/ross_on_wye.

html, accessed 30 September 2014). 

 

4.4.2 Litterbag experiment  

Oak roots of a variety of sizes were collected in November 2010. Roots were rinsed, 

sorted into diameter classes (<2 mm, 2-5 mm and 5-10 mm), and air dried for 2 

weeks. Samples were then weighed and ~7 g of roots were placed into 10 cm x 10 

cm litter bags (nylon, 1 mm mesh). Each litterbag contained roots from each 

diameter class. Two plots were chosen in the older growth stands (dominated by 

trees dating from 1800-1900 (Peterken and Jones, 1987)), that differed in ground 

cover, with one having a selection of ground vegetation present (grasses, brambles 

and bracken) (Fig. 4.1a) and the other having bare ground (Fig. 4.1b). Fifteen 

litterbags were buried at each plot by carefully removing the litter layer, laying the 

bags out in rows on the mineral soil, and replacing the litter layer. At each plot a 

Tinytag data logger, buried at the same depth as the litter bags, collected soil 

temperature data every 30 minutes for the duration of the study. To compare 

above- and below-ground temperature a TinyTag data logger was hung from the 

closest tree to each plot in the final year of the experiment. Three litterbags were 

collected from each plot at six monthly intervals. Collected bags were returned to 

the laboratory, where they were washed, dried at 65˚C for 48 hours, and weighed.  

http://www.metoffice.gov.uk/climate/uk/averages/19812010/sites/ross_on_wye.html
http://www.metoffice.gov.uk/climate/uk/averages/19812010/sites/ross_on_wye.html
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Figure 4.1: Litterbag plots in (a) vegetated ground and (b) bare ground. 
 

 

4.4.3 C:N analysis 

Roots were ground into a fine powder using a coffee grinder. C and N 

concentrations were determined with a Carlo Erba NC2500 analyser (CE 

Instruments Ltd., Wigan, UK), which uses a process known as ‘Dynamic Flash 

Combustion’ whereby the sample, under a continuous flow of helium, reacts with a 

measured amount of oxygen, at temperatures as high as 1800˚C, in order that 

complete sample combustion takes place (Révész et al. 2012: 3). Resulting 

combustion gases are then separated and C and N can be measured using a thermal 

conductivity detector. The analyser was calibrated with a Chitin standard (with 

certified values of 45.07% +/- 0.22 for C and 6.88% +/- 0.1 for N) prior to the 

samples being run. Following calibration, two unknown Chitin samples were run as 

controls, giving a result of 45.07% +/- 0.05 for C and 6.88% +/- 0.01 for N.  

 

4.4.4 Collation of literature data 

We collated literature data on root decomposition. Our main source was Silver & 

Miya’s (2001) global data set. Other relevant sources were found from Web of 

Science searches using search terms such as ‘root decomposition’. Sources were 
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used if they contained data for percentage mass remaining to allow us to calculate 

a mean loss rate (as described below) for similar time periods in all studies. 

 

4.4.5 Statistical analysis 

All root decomposition constants (k, years-1) (this study and others) were calculated 

in R, version 2.14.0 (R Development Core Team, 2011), as minus the natural log of 

proportion remaining (weight at the end of the time period divided by weight at the 

start) divided by the time period (k=-ln(x/x0)/t (where x is final mass (g), x0 is initial 

mass (g), and t is time in years)) (Olson, 1963). 

The data were processed using a general linear model with post-hoc analysis done 

using Tukey tests, in SPSS v20 for Windows. The main and interaction effects of root 

diameter class, type of ground cover (bare or vegetated), time since start of 

experiment, mean soil temperature since start of experiment, and C:N ratio on 

mean loss rates were examined. 

 

4.5 Results 

4.5.1 Temperature data 

There was much greater variability in daily air temperatures than in daily soil 

temperatures (Figure 4.2). The maximum recorded difference between daily 

minimum and maximum air temperatures was 16˚C, whereas for soil temperatures 

it was 7.1˚C. Air temperatures generally had a higher daily maximum temperature 

than the soil maximum temperature and a lower minimum temperature than the 

soil minimum temperature, thus the soil environment appears buffered against 

extreme temperatures. For a short period in January 2013 the maximum soil 

temperatures (around 2.5˚C) became warmer than the maximum air temperatures, 

which had fallen to around -3˚C. The soil temperature never dropped below 

freezing in the entire study period. 
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Figure 4.2: Daily maximum and minimum temperatures recorded for the air and soil 

at the (a) bare plot and (b) vegetated plot. Air temperatures were recorded from 

June 2012 to July 2012 and soil temperatures from November 2010 to July 2013. 
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4.5.2 Mass loss and mean loss rates 

The effect of diameter class depended on time (F(8,50)=3.35, P=0.004). In the first 6 

months mass loss was greatest in large roots, which had a mean overall loss (bare 

and vegetated plots combined) of 21.5% compared to 12.5% for medium roots and 

10.5% for fine roots (Figure 4.3). By 24 months the mean overall loss from fine roots 

(41%) was almost the same as for the large roots (43%), whilst medium roots had 

lost slightly less (35%). The difference between bare and vegetated plots also 

depended on time (F(3,50)=7.23, P<0.0005). At 6 months the mean respective mass 

losses from roots in bare and vegetated ground were 20% and 23% for large roots, 

12% and 13% for medium roots, and 9% and 12% for fine roots. By 24 months the 

difference between the mean respective mass losses from roots in bare and 

vegetated ground (37% and 49% for large roots, 30% and 39% for medium roots, 

and 40% and 42% for fine roots) had grown considerably for large and medium 

roots, but had stayed similar for fine roots. Mean loss rates of roots placed in 

vegetated ground were significantly higher than those of roots placed in bare 

ground (F(1,50)=45.91, P<0.0005). 

There was also a significant effect of root diameter class on mean loss rates 

(F(2,50)=28.9, P<0.0005) with a significant difference between large and medium 

roots (P<0.0005) and between large and fine roots (P<0.0005) but no significant 

difference between medium and fine roots (P=0.981) (post-hoc Tukey tests). There 

was little evidence of an interaction between type of ground cover and diameter 

class (F(2,50)=2.675, P=0.079), and no interaction between type of ground cover, 

diameter class and time since start (F(6,50)=0.637, P=0.7). There was little evidence 

for an effect of temperature on mean loss rates (F(1,75)=2, P=0.161) (Figure 4.4). 

We found no striking differences between our mean loss rates and those from 

other studies (Figure 4.5, Table 4.1). The mean proportion lost after 1 year was 

24.1%. Rates were higher and more variable for short time periods, with less 

variation between rates as time progresses. 
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Figure 4.3: Percentage of mass remaining for roots during 30 months of 

decomposition in bare ground and 24 months of decomposition in vegetated 

ground for (a) large roots, (b) medium roots, and (c) fine roots. Each point 

represents a diameter class from a single litter bag. 
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Figure 4.4: Mean root decomposition rate k (y-1) versus mean temperature (˚C) for 

full period that litterbags were in the ground, 0-6, 0-12, 0-18, 0-24, 0-30 months, for 

large, medium, and fine roots in (a) bare ground and (b) vegetated ground.
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Table 4.1:  k rates (y-1) from other sources for various time periods, along with root size, species, position and original reference information.

k rates (y-1) for various time periods (years)( months in brackets)

Size Species Position 0.25 (3) 0.32 (4) 0.42 (5) 0.5 (6) 1 (12) 1.27 (15) 1.5 (18) 2 (24) 2.25 (27) 2.5 (30) Reference

Mean * Alder 15 cm depth 0.85 0.4 0.5 Camiré et al. 1991

Mean * Poplar 15 cm depth 1 0.42 0.38 Camiré et al. 1991

< 0.5 mm Not specified Litter Layer 0.36 0.36 Burke & Raynal, 1994

< 0.5 mm Not specified 10 cm depth 0.22 0.74 Burke & Raynal, 1994

0.5 mm - 1.5 mm Not specified Litter Layer 0.55 0.2 Burke & Raynal, 1994

0.5 mm - 1.5 mm Not specified 10 cm depth 0.8 0.31 Burke & Raynal, 1994

1.5 mm - 3 mm Not specified Litter Layer 0.28 0.22 Burke & Raynal, 1994

1.5 mm - 3 mm Not specified 10 cm depth 0.42 0.43 Burke & Raynal, 1994

0 - 0.5 mm Hardwoods Forest floor 0.15 0.13 McClaugherty et al. 1982

0 - 0.5 mm Hardwoods Mineral soil 0.3 0.12 McClaugherty et al. 1982

0.5 - 3 mm Hardwoods Forest floor 0.34 0.26 McClaugherty et al. 1982

0.5 - 3 mm Hardwoods Mineral soil 0.05 0.16 McClaugherty et al. 1982

0 - 0.5 mm Hardwoods Forest floor/A horizon** 0.14 0.05 0.07 McClaugherty et al. 1984

0.5 - 3 mm Hardwoods Forest floor/A horizon** 0.29 0.2 0.14 McClaugherty et al. 1984

< 2 mm Sitka spruce 0 - 10 cm 0.42 0.33 0.19 0.17 0.15 0.14 Olajuyigbe et al. 2012

< 2 mm Sitka spruce 10 - 20 cm 0.7 0.28 0.19 0.15 0.16 0.16 Olajuyigbe et al. 2012

2 - 10 mm Sitka spruce 0 -10 cm 0.33 0.19 0.16 0.09 0.12 0.09 Olajuyigbe et al. 2012

2 - 10 mm Sitka spruce 10 - 20 cm 0.25 0.26 0.11 0.12 0.12 0.12 Olajuyigbe et al. 2012

* Mean of all sizes (< 2 mm, 2 - 5 mm and 5 - 10 mm)

**Litter bags were placed in the same horizon that the roots were collected from.
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Figure 4.5: Comparison of mean root decomposition rates k (y-1) for different time 

periods (years) between this and other studies. 

 

 

4.5.3 C:N ratios 
 

C:N ratios decreased over time for all diameter classes, with large roots generally 

having a lower C:N ratio for all time periods (Fig. 4.6). There was little evidence for 

an effect of root diameter class on initial C:N ratios (F(1,3)=0.521, P=0.639). There 

was little evidence of a relationship between C:N ratio at the time of removal from 

ground and mean loss rate up to that point (F(1,75)=2.13, P=0.149). There was, 

however, a significant effect of root diameter class on C:N ratio at the time of 

removal from the ground (F(2,62)=31.29, P<0.0005), with large roots having a 

significantly lower C:N ratio (post-hoc Tukey tests showed a significant difference 

between large and medium roots (P<0.0005) and between large and fine roots 

(P<0.0005) but no significant difference between medium and fine roots (P=0.641).
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Figure 4.6: C:N ratios at time of removal from ground for large, medium and fine 

roots in bare ground (circles) and vegetated ground (diamonds). Initial C:N ratios for 

large, medium and fine roots (squares) are shown at time 0. Each point represents a 

diameter class from a single litter bag. 

 

4.6 Discussion 

4.6.1 Effects of diameter class and C:N ratio on decomposition rates 

Diameter had a significant influence on the rate of decomposition, with large roots 

decomposing faster than medium or fine roots in the first 18 months. Silver and 

Miya’s (2001) global review found that large diameter roots (>5 mm) decomposed 

much slower than smaller diameter roots. However, Camiré et al (1991) had mixed 
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There was no difference in initial C:N ratio between our diameter classes. This 

differs from Gordon and Jackson (2000) who found that C concentrations increased 

with diameter class. The difference in C concentrations, and therefore C:N ratios, 

has been shown to explain a large amount of the variability in decay rates (Silver 

and Miya, 2001). Despite there being no initial difference in C:N ratio between our 

diameter classes, the C:N ratio of large roots fell rapidly and they continued to have 

lower C:N ratios than fine or medium roots throughout the study period. Lower C:N 

ratios are much more favourable for decomposition (Pregitzer et al. 1997), which 

might suggest a reason why our large roots decomposed faster. Mao et al. (2011) 

found that roots with higher N concentration and lower C:N ratios decomposed 

faster, possibly due to the stimulation of microbial growth. However, very fine roots 

have also been shown to decompose slower than larger roots, despite their lower 

C:N ratios (Sun et al. 2013). Our results showed that at 24 months, decomposition 

rates were similar for large and fine roots yet the C:N ratio was still much lower in 

the large roots. C:N ratios can only tell us how much C is present in relation to N, 

not what type of C is present. It is possible that the large roots in this study had a 

higher proportion of total non-structural carbohydrates (TNC), and lower 

proportion of lignin, than the fine roots, as reported by Fahey et al. (1988). Singh 

and Srivastava (1986) also found that the concentration of TNC increased with root 

diameter (the largest roots were 8mm diameter), with these roots acting as 

important carbohydrate storage organs. As the initial mass loss is made up of 

mostly TNC (McClaugherty et al. 1984) this might explain the initial rapid decay 

rates of our larger roots, which then slowed down to a rate similar to our fine and 

medium roots.  

 

4.6.2 Effects of ground layer vegetation 

Roots buried in soil supporting ground layer vegetation decomposed significantly 

faster than roots buried under bare ground. By 18 months, roots buried under 

vegetated ground had lost on average 20% more mass than roots buried under bare 

ground (all diameter classes). Microbial decomposition processes are largely 

controlled by substrate quality and availability of labile C (Koranda et al. 2013). A 
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seasonal pattern of microbial processes has been observed in temperate forest 

ecosystems, which is related to seasonal variation in resource availability 

(belowground C exudation during the growing season and litterfall in autumn) 

(Kaiser et al. 2010). Plant root exudates, a high quality nutrient source, can 

stimulate microbial growth and activity in the rhizosphere (Bardgett et al. 2005). It 

is likely that the vegetated plot received a larger amount of these root exudates 

than the bare plot throughout the growing season, therefore creating a higher level 

of biological activity and possibly promoting faster root decomposition. Although 

roots buried at the vegetated plot consistently lost mass faster, for the first 12 

months the difference in decomposition between bare and vegetated plots was 

relatively small but became much more noticeable at 18 months. Initially, mass loss 

for roots buried at both plots probably came from TNC, which supplies easily 

accessible energy for microbes (Sun et al. 2013), thus the addition of plant root 

exudates at the vegetated plot perhaps only provided an advantage once the easily 

accessible TNC had been depleted (Fontaine et al. 2003). 

Enzyme distribution is highly heterogeneous and can be affected by numerous 

factors, e.g. variation in microbial biomass, soil moisture and effect of individual 

trees (Baldrian, 2014). Our plot containing bare ground was situated next to a large 

beech tree. Beech trees produce low quality litter (high lignin and low N content) 

that can affect organic layers, pH levels and base status (Aubert et al. 2013). Beech 

trees, known as ecosystem engineers, create an acid environment suitable for 

themselves (Kooijman and Cammeraat, 2010) and this can produce a shift in 

microbial communities to ones with lower N requirements (Kooijman et al. 2008). 

On the other hand, the vegetated plot likely produced conditions favouring faster 

decomposition. Vegetation present at the site was largely grass. Soils of grasslands 

have been shown to have higher moisture content, higher microbial biomass 

content and higher pH values than forest soils (Solly et al. 2014). Fine roots of 

grasses have a rapid turnover due to the high proportion of production allocated to 

fine root biomass (Stewart and Frank, 2008) and decompose faster than tree roots 

(Silver and Miya, 2001; Solly et al. 2014). Although both plots are on forest soils it is 

probable that the vegetation present has influenced the soil in a similar way as 

grasslands, albeit on a much smaller scale. Therefore, it is possible that enzyme 



 

Page | 71  
 

distribution differed between our two plots and this may be an additional reason 

for a difference in decomposition rates.  Our results were consistent with the 

hypothesis that decomposition would be faster in soil supporting ground-level 

vegetation. However, an observational study with only two plots cannot provide a 

definitive test. Observations from multiple plots would provide stronger evidence, 

but could not show definitively that ground vegetation was causing faster root 

decay. Experimental manipulation could provide a definitive answer, but would be 

difficult and time-consuming. For example, one could remove ground vegetation 

from a series of plots, while leaving others as controls, wait for existing roots from 

the manipulated plots to decay, and then bury litter bags. 

 

4.6.3 Carbon respiration calculations 

Mean root necromass (monthly measurements taken over a year) in a mixed 

hardwood forest was reported to be 288 g m-2 (Powell and Day, 1991) and C 

respiration from dead roots in a mid-successional oak- maple-birch forest was 

reported to be 110 g C m-2 y-1 (Nadelhoffer et al. 2004). A simple way to calculate 

the total amount of carbon respired per litter bag over the course of the 

experiment is to assume a constant proportional decay rate for dead roots, 

calculated as 𝑘 = (ln 𝑚0 − ln 𝑚𝑡 )/𝑡 = 0.254 y-1, where 𝑚0 = 7.15 g and 𝑚𝑡 = 4.3 

g are the initial and final dry masses respectively, and 𝑡 = 2 years is the total time. 

Under this assumption, it can be shown that the total amount of carbon respired 

per litter bag is 
𝑎

𝑘
(𝑚0 − 𝑚𝑡) = 4.28 g C, where 𝑎 = 110 / 288 = 0.38 g C g-1 y-1 is the 

amount of carbon respired per gram of dead roots per year, based on the data 

above. It is likely that this somewhat overestimates the true amount of carbon 

respired, because, as noted above, decay rates tended to be fastest early in the 

experiment, which will reduce the mean dead root mass over the whole time 

period. 
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4.6.4 General comments 

Through their ability to produce a wide range of extracellular enzymes, soil fungi 

and bacteria carry out a variety of decomposition processes (Baldrian et al. 2011). 

Spatial distributions of soil enzymes are affected by, among other things, effects of 

individual trees, plant roots, variation in microbial biomass and actual soil moisture, 

meaning that enzyme distribution, and therefore decomposition rates, are almost 

certainly highly dynamic (Baldrian, 2014). Temperature has been shown to increase 

enzyme activity during the warm period of the year (Baldrian et al. 2013) and 

indeed Berg et al. (1998) reported the average temperature of July as one of the 

controlling factors of decomposition. However, in our study, temperature appeared 

to be relatively unimportant, probably due to recorded temperatures approaching a 

long-term mean which results in decreasing variability in this explanatory variable. 

Many complex factors affect enzyme temperature sensitivity (Wallenstein et al. 

2011), with temperature sensitivity thought to increase with increasing molecular 

complexity of the substrate (Davidson and Janssens, 2006). Also of critical 

importance are substrate concentration and the affinity of the enzyme for the 

substrate (Davidson and Janssens, 2006). Microbial community composition has 

been shown to have a strong relationship with enzyme activities over the seasonal 

cycle, with the main substrate for decomposition being soil organic matter in the 

summer, but plant litter in the autumn (Kaiser et al. 2010), and different microbial 

communities operating during winter and summer (Bardgett et al. 2005). Therefore 

it is possible that these seasonal changes override any temperature effects. 

All studies showed comparable decomposition rates, with data coming from a 

young Sitka spruce forest and young plantations as well as from mixed deciduous 

forests. The fastest decomposition rates occurred in the first 6 months then rates 

fell. This can possibly be explained by the two-phased pattern of decomposition 

that McClaugherty et al. (1984) suggested, with the first phase being a period of 

rapid loss dominated by the loss of soluble compounds, and the second phase a 

period of much slower loss. How long the initial rapid phase lasted would depend 

on the initial amount of soluble compounds contained in the roots. 
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The mean dry mass loss for our roots was 2.85 g over 2 years. We do not know how 

much of this loss was C so we cannot directly compare this figure to the 4.28 g C 

respiration associated with root decomposition. However it does suggest that more 

C was respired than was lost from our decomposing roots. This could be due to the 

priming effect, whereby a greater availability of energy from the input of fresh 

organic matter leads to an increase in soil organic matter (SOM) degrading 

populations, which accelerates SOM mineralisation (Fontaine et al. 2003). This 

shows how important soils are in C release. Soils in temperate forests of Central 

Europe store approximately 6.5 kg C m-2 with a flux of 0.44 kg C m-2 y-1 from plant 

litter (20% from coarse roots and 20% from fine roots) to soils (Brunner and 

Godbold, 2007). C from root litter has a turnover time of 5 – 10 years (Gaudinski et 

al. 2000). Our study site has a soil C pool of approximately 7.72 kg C m-2 compared 

to 18.11 kg C m-2 (older growth) and 8.15 kg C m-2 (younger growth) in the tree C 

pool (Chapter 2).  

In conclusion, our data suggest that root diameter class and type of ground cover 

exert the most important influence on dead root decomposition rates in Lady Park 

Wood. However we cannot definitively state that the ground vegetation caused 

faster decomposition rates and would need further experimental manipulation 

studies to confirm our hypothesis. We found little evidence of a temperature effect 

on decomposition rates nor did we find any difference between initial C:N ratio in 

the different diameter classes. C:N ratio dropped quickly in the large diameter class 

and remained lower than the other diameter classes throughout the study period. 

Further studies could include examining root C quality in the different diameter 

classes of oak roots as higher amounts of TNC might explain faster initial 

decomposition rates, especially noticeable in our large diameter class. 

Decomposition rates of all studies were generally fastest in the first 6 months and 

then declined as time progressed. 
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Chapter 5 

 

5 Climate change mitigation by carbon sequestration: 

Semi-natural unmanaged forests or plantations? 

 

5.1 Abstract 

Atmospheric levels of CO2 are currently 395 ppm, the highest amount in the past 

420,000 years, and any associated climate change will be largely irreversible for at 

least 1000 years. Forest plantations are often proposed as a measure to mitigate 

climate change due to their ability to sequester carbon (C) in wood and soils. The 

majority of forest area in the UK is of plantation origin, with over half covered by 

conifer plantations managed for timber production. Only 535,000 ha of ancient 

semi-natural woodland remain in the UK and little is known about C budgets in 

these woodlands. Forest inventories may not fully capture the dynamics of these 

unmanaged mixed woodland areas. Here we utilise long term monitoring data from 

3 semi-natural woodlands to compare C dynamics and storage with a typical Sikta 

spruce plantation. We also compare C storage between differently managed 

European forests. A typical unthinned Sitka spruce plantation in the UK sequesters 

C faster than semi-natural forests, having accumulated 16 kg C m-2 by the end of its 

60 year rotation, compared to Lady Park Wood which accumulated 9.31 kg C m-2 

over a 65 year period. However, semi-natural forests comprise much greater C 

stores over the long term. A time averaged equilibrium storage value for unthinned 

Sitka spruce stands is 7.4 kg C m-2, whereas the mean storage value for semi-natural 

woodlands in this study is 17.5 kg C m-2. There is clear evidence to suggest that 

semi-natural woodland may be an important and underestimated C stock in the UK. 
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5.2  Introduction 

Forests are thought to contain up to 80% of all aboveground and up to 40% of all 

belowground terrestrial C (Dixon, 1994) and therefore play an important role in the 

global C cycle. Through photosynthesis, C is captured from the atmosphere and 

converted to forest biomass or emitted back to the atmosphere during respiration 

and decomposition (Percy et al. 2003). Since the industrial era, atmospheric CO2 has 

risen from ~280 ppm to 395 ppm (Tans and Keeling, 2014), the highest amount in 

the past 420,000 years (Prentice et al. 2001). The burning of fossil fuels for energy 

and accelerated land clearance have both contributed to this significant increase in 

atmospheric CO2 (Mackey et al. 2013), which will have long lasting effects. Between 

a quarter and a third of the CO2 emitted could remain in the atmosphere for 

millennia (Inman, 2008) and any associated climate change will be largely 

irreversible for at least 1000 years, even after emissions cease (Solomon et al. 

2009). In an attempt to reduce emissions the Kyoto protocol was negotiated. Linked 

to the United Nations Framework Convention on Climate Change (UNFCCC), the 

Kyoto protocol is an international agreement which commits participating countries 

to internationally binding emission reduction targets. The protocol also suggests 

that increasing C sink strength through afforestation or reforestation will reduce 

atmospheric CO2 and consequently forests, through their ability to sequester C, are 

now increasingly recognised for their mitigation potential. The term ‘sink’ refers to 

a net flux (in units of mass/time, g C y-1, or mass/(area*time), g C m-2 y-1) of C into 

the ecosystem, whilst the term ‘stocks’ refers to a store of C (in units of mass, g C, 

or mass/area, g C m-2). 

 

5.2.1  Types of forest/forest management 

When considering forests for their climate change mitigation potential, a frequently 

proposed solution is to use plantations to sequester C in wood and soils (Jackson 

and Schlesinger, 2004; Winjum and Schroeder, 1997). A definition of plantation 

forests is given by FAO (2003) as “planted forests that have been established and 

are (intensively) managed for commercial production of wood and non-wood forest 
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products, or to provide a specific environmental service (e.g. erosion control, 

landslide stabilization, windbreaks etc.)”. Between 2000 and 2005, 3 million ha of 

plantations per year were established globally, of which three quarters were for 

productive functions and one quarter for protective functions (FAO, 2006). As there 

are different levels of forest management and a range of silvicultural practices with 

different objectives (FAO, 2003) here we refer to planted forest as forest 

plantations when they fit the same criteria as Evans (2008), i.e. they are readily 

distinguished as artificial by possessing features of uniformity, shape and intensity 

of management. Winjum and Schroeder (1997) suggest that plantations can provide 

a significant contribution to global C storage, with a store of ~11.8 Pg in 1990 and a 

sink of 0.78 Pg C y-1. Concerns are often raised about plantations for their lack of 

biodiversity (Brockerhoff et al. 2008), the assumption that native forest has been 

destroyed to establish plantations and concern over environmental damage (Sedjo, 

1999). However, there are ways to conserve biodiversity in plantations, often with 

small changes to management practices (Hartley, 2002) and the expanding of 

plantation area, which is expected to exceed 200 million ha by 2050, means less 

pressure on remaining natural forests (Evans, 2008). Furthermore, most plantations 

are established on former agricultural lands and are seldom an important cause of 

deforestation (Sedjo, 1999).  

Forest management is defined by FAO (2003) as “the process of planning and 

implementing practices for stewardship and use of the forest aimed at fulfilling 

relevant ecological, economic and social functions of the forest”. Forest 

management can range from high intensive even-aged forestry (plantations) to 

medium-combined objective forestry, whereby individual objectives are maximised 

in separate areas, to low-close to nature forestry, where timber can be harvested 

and extracted but some standing and fallen dead wood has to remain in the forest 

(Duncker et al. 2012). Due to the range of management practices across Europe 

forests provide a wide variety of services, including timber, biomass for bioenergy, 

habitat functions, recreation, and regulation of water, erosion and air quality 

(Hengeveld et al. 2012). Nearly 90% of forests in industrialised countries have a 

formal or informal management plan in place (Nabuurs et al. 2007) but there is 

often confusion surrounding the definition of a forest management plan. For 
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example, the FAO (2003) suggests that an unmanaged forest has no management 

decisions, planning or interventions implemented, but this does not necessarily 

mean a forest is unmanaged. Indeed a management objective can be to have an 

unmanaged nature reserve (Duncker et al. 2012). In this paper our reference to 

managed forests means they are managed for production of timber or biomass, 

generally on a less intensive, more sustainable level than plantations. 

Semi-natural forests are neither undisturbed by man nor are they plantations, but 

represent managed forests modified by man through silviculture and assisted 

regeneration (FAO, 2002). They usually consist of predominantly native trees which 

over time take on a number of natural characteristics and key elements of native 

ecosystems, e.g. enriched species diversity, random spacing and layered canopy 

(FAO, 2003). Semi-natural forests have a higher level of biodiversity than 

plantations, which is a key component of sustainable forest management 

(Rollinson, 2003). When these forests are left unmanaged, or managed as natural 

reserves, they will eventually take on old-growth characteristics, with the 

occurrence of large, old trees and dead and decaying wood (Humphrey, 2005). 

There has been a long accepted theory that natural forests reach a balance 

between storage and emissions of CO2 and are therefore in equilibrium (Odum, 

1969). More recently this theory has been challenged as new findings suggest that 

natural forests continue to sequester C even when mature (Luyssaert et al. 2008; 

Keith et al. 2009; Carey et al. 2001). Bellassen and Luyssaert (2014) propose that 

higher atmospheric CO2 concentrations and nitrogen emissions may be responsible 

for the continual C sink behaviour in mature forests. Although the Kyoto protocol 

favours young forest stands for sequestering C, Sculze et al. (2000) argue that 

natural old growth stands allow more C to enter a permanent C pool so preserving 

these types of forests will have a greater effect on the carbon cycle.  
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5.2.2  Trade-offs of forest management    

Over the past 50 years the objectives of forest management have widened from a 

main goal of timber production to one of sustainable forest management, whereby 

all goods and services of the forest should be taken into account (Farrell et al. 

2000). This means managing forests for biodiversity, along with regulating, 

supporting, cultural and provisional services (Hicks et al. 2014). Most recently, 

following the Kyoto protocol, the emphasis has been on sustainably managing 

forests for C sequestration, with the IPCC (2007b) suggesting that a long term 

sustainable forest management strategy which maintains or increases C stocks 

whilst producing an annual yield of timber or energy will give the largest sustained 

mitigation benefit. Clearly, focusing on certain management objectives will have an 

effect on the other services a forest can provide. Managing a forest for a high 

timber yield, enhancing biodiversity or focusing on maximum C stocks will inevitably 

involve trade-offs between the various management goals (Carnus et al. 2006; 

Thornley and Cannell, 2000). Even within the management goal of climate change 

mitigation there is a possible trade-off between managing a forest for C 

sequestration or for providing biomass for bioenergy (Zanchi et al. 2010). 

Therefore, quantifying C stocks and sequestration in different pools in forests under 

varying management regimes can lead to a greater understanding of the trade-offs 

involved.  

There is still much confusion surrounding the role that forests can play in enhancing 

and maintaining C sequestration due, in part, to the reporting of a mixture of stocks 

and fluxes (that are often confused) and the inclusion of different C pools in 

different studies (Nabuurs and Schelhaas, 2002). Understanding the many 

integrated C pools and their interactions are therefore important. These include not 

only the on-site living/dead forest C pools but also the wood product C pool, which 

contains the C in wood taken from the forest at harvest (Cannell and Milne, 1995), 

and the substitution effect, whereby fossil fuel emissions are displaced, i.e. wood is 

burnt in place of fossil fuels or products displace more energy intensive materials, 

such as steel or concrete (Lippke et al. 2012).  
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5.2.3  Forests in the UK 

Forest area in the UK is 3.14 million ha (~ 1.6 million ha coniferous and ~ 1.5 million 

ha broadleaved) which equals 13% of land area (Forestry Commission, 2014). The 

majority of forest area in the UK is of plantation origin, with approximately 

1,516,000 ha (7%) covered by conifer plantations of which the primary purpose is 

timber production (Norman, 2009). Since 1945 predominant conifer planting has 

been of Picea sitchensis (Sitka spruce) and Pinus contorta (Lodgepole pine), which 

share similar C storage characteristics (Cannell and Dewar, 1995).  As of 1990 there 

were 600,000 ha of broadleaved plantations in Britain (Cannell and Dewar, 1995) 

with new forest area being planted at rates of between 16,000 and 21,000 ha y-1 

(afforestation rates in 2000 were ~7000 ha y-1 of conifers and 10,000 ha y-1 of 

broadleaved) (Milne et al. 2000). More recent afforestation (2013-2014) is at a 

similar rate for broadleaved (10,900 ha y-1) but much lower for coniferous planting 

(2,200 ha y-1) (Forestry Commission, 2014).  

Almost 40% of ancient semi-natural woodlands were converted into plantations 

(which mostly contained non-native conifer species) between 1930 and 1980 

(Thompson et al. 2003). Ancient woodland (land that has remained as woodland 

since 1600 AD, regardless of whether it has been felled periodically as part of a 

management cycle) covers 535,000 ha of Great Britain, with 83% of ancient 

woodland fragments having areas less than 20 ha (Spencer and Kirby, 1992). This 

means that forest inventories may not fully capture the dynamics of these 

unmanaged, mixed woodland areas (Harmon, 2010). Little is known about carbon 

budgets in these woodlands and detailed long-term data on their carbon dynamics 

are rather scarce. Unmanaged forests are thought to store more C than plantations 

(Liao et al. 2010) so are likely to be important for long term C storage, not only 

because forests can act as C sinks until high ages (Schulze et al. 2000; Luyssaert et 

al. 2008) but also because preservation of old growth natural forests, with large C 

pools, can have a large effect on the C cycle (Schulze et al. 2000).  
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5.3 Aims 

Here we utilise long term monitoring data from 3 semi-natural woodlands in the UK 

to investigate living biomass C dynamics and storage in these types of woodland. 

We also compare C storage in a typical Picea sitchensis (Sitka spruce) plantation 

with C storage in semi-natural woodlands to see which stores the most C. Data are 

used from plots in 2 Welsh forests within 1 mile of each other; one forest is a 

broadleaved semi-natural woodland and the other a conifer plantation, to enable 

further comparison of C storage between the different types of forest. Finally, the 

data from semi-natural woodlands are compared to data from sustainably managed 

forests to allow a comparison of C storage in a range of forests with different 

management styles.  

 

5.4 Methods 

5.4.1 UK study sites 

Lady Park Wood, Denny Wood and Clairinsh Wood were selected for study because 

they are semi-natural, unmanaged woodlands with long-term monitoring data 

available (Peterken and Jones, 1987; Mountford and Peterken, 2003; Mountford, 

2000). Although they are all unmanaged with regards to wood production, Denny 

Wood and Clairinsh Wood receive some light management for public safety, i.e. 

removal of trees or branches that pose a risk. At Denny Wood this is due to a camp 

site that was established in the open wood close to the northern end of the Denny 

Wood transect (Mountford et al. 1999). Clairinsh Wood is also managed for control 

of deer to prevent damage and aid natural regeneration (Mountford, 2000). The 

data from two Welsh forests were used to enable a comparison between a semi-

natural broadleaved forest (Big Covert) and a typical plantation forest, whereby the 

close proximity of the forests to one another means that climatic conditions and 

local soil and rock types are similar for each forest.  
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5.4.1.1 Lady Park Wood 

Lady Park Wood (51˚49′N, 2˚39′W; 30-190m elevation) is an ancient, semi-natural 

woodland that was managed for centuries as coppice/coppice with standards but 

was designated as an unmanaged nature reserve in 1944. It is situated 3 km north 

east of Monmouth on the southern bank of the River Wye. The reserve covers 35.2 

ha, of which 14 ha are known as old-growth stands that were untouched by fellings 

that took place in 1943 and are dominated by trees dating from 1800-1900 

(Peterken and Jones, 1987). The remaining 21 ha were virtually clear felled in 1943 

and are referred to as young-growth stands (Peterken and Jones, 1989). Main 

species present are beech (Fagus sylvatica), oak (Quercus petraea), ash (Fraxinus 

excelsior), lime (Tilia cordata, T. platyphyllos), wych elm (Ulmus glabra) and birch 

(Betula pendula, B. pubescens). Transects consisting of a mixture of old- and young-

growth areas were established in 1944. Old-growth transects were recorded in 

1945, 1955, 1977, 1983, 1986, 1992, 2000 and 2010 and young-growth transects in 

1977, 1993 and 2002.  

 

5.4.1.2 Denny Wood 

Denny Wood Inclosure (50˚51.5′N, 1˚32.5′W) is an ancient, mixed deciduous wood-

pasture with beech (Fagus sylvatica) and pedunculate oak (Quercus robur) the main 

species present. It was managed as unenclosed wood pasture, a mixture of 

woodland and open land (a traditional form of management whereby the woodland 

was accessible to both deer and domestic stock and wood was harvested and 

renewed by pollarding) until the late 19th century (Forestry Commission, 2008). 

Denny Wood is located in the New Forest National Park, 2 miles east of Lyndhurst 

within Hampshire County. In 1870 part of the wood was fenced into the Denny 

Inclosure and in 1952 the Forestry Commission designated all the remaining old 

beech-oak forest (23 ha) in the Inclosure as a Forest Nature Reserve, but this was 

later reduced to a 100m wide strip (Mountford et al. 1999). The enclosed transect 

(1000 m x 20 m) was set up in the 1950s and was recorded in 1959, 1964, 1984, 

1988 and 1996 (Mountford, 2004). 
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5.4.1.3 Clairinsh Wood 

Clairinsh Wood (56.1˚ N, 4.6˚ W), is an ancient, semi-natural oak woodland that was 

managed as coppice with standards until the last cutting in 1913. Clairinsh is a 6 ha 

island located in the southern part of Loch Lomond National Nature Reserve (NNR), 

Central Scotland. The main species present are oak (Quercus petraea, Quercus 

robur) and birch (Betula pubescens) (Mountford, 2000). Two transects were set up 

in 1961, both 10 m wide (increased to 20 m in 1986) with lengths of 174 m and 362 

m, and were recorded in 1961, 1986 and 1998 (Mountford, 2004). 

 

5.4.1.4 Big Covert Wood and plantation forest, Clwyd 

Big Covert is a broadleaved forest area of approximately 160 ha (53˚07′N, 3˚11′W). 

The predominant species are beech (Fagus sylvatica), oak (Quercus petraea) and 

birch (Betula pendula). The plantation forest (53˚07′N, 3˚10′W) is a typical conifer 

plantation (~ 52 ha) comprised almost entirely of Sitka spruce (Picea sitchensis) and 

Eastern hemlock (Tsuga canadensis), with a small amount of European larch (Larix 

decidua) (Maddox, 2014). Both forests are situated within the Clwydian Range Area 

of Outstanding Natural Beauty (AONB). Data was collected from five 20 m2 plots in 

each forest in 2014 (Maddox, 2014). 

 

5.4.2 Tree biomass C calculations 

The reconstructions of long-term tree biomass C dynamics in Lady Park Wood, 

Denny Wood and Clairinsh Wood were based on unpublished data supplied by Ed 

Mountford (JNCC, personal communication). This comprised measurements of the 

location, species and diameter of all trees achieving ≥1.3 m height within the 

monitoring transects. 

Calculations for tree biomass C in the Welsh forests were based on unpublished 

data supplied by Alex Maddox (Maddox, 2014). These data included plot number, 

species, height and diameter of all trees ≥5 cm diameter within each plot. Tree core 
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data were also supplied, which included species from each plot and the amount of 

growth measured over the last 10 years (cm). 

Tree measurements (dbh ≥ 6.5 cm) were converted to above ground biomass using 

European species-specific (where possible) allometric regression equations (Zianis 

et al. 2005). Where European equations were not available, equations from a North 

American database (Jenkins et al. 2004) were used. Where there were no species-

specific equations available, then appropriate Forestry Commission equations from 

the ‘Carbon assessment protocol’ (Jenkins et al., 2010) were substituted. Finally, C 

content was calculated from total biomass where a C content of 50% was assumed 

(Pettersen, 1984). To calculate the amount of tree C storage in 2003 for the Welsh 

forests the average growth per species for the last ten years was subtracted from 

the original dbh measurements. Allometric equations were then used on the new 

dbh measurements. This may introduce some error as it makes the assumption that 

no large trees have died/the plantation has not been thinned in the last ten years. 

 

5.4.3  Extracting data on land types and C distributions 

Figures 2 – 4, showing distribution of C in vegetation, main land cover groups and 

soil C, from Milne and Brown (1997) were saved as jpg images. For each figure 

ImageJ (Rasband, 2014) was used to calculate the area of Great Britain allocated to 

each category. The area (square km) was then plotted against the categories for 

each figure to look at the area of each land type in Great Britain and the 

distributions of vegetation and soil C.  

 

5.4.4  Comparing plantation and managed forest data 

The Sitka spruce plantation data came from model output (Dewar and Cannell, 

1992) over a 70 year period and therefore has no real dates attached to it. For 

comparison with our semi-natural long-term monitoring data it was decided to give 

the plantation data a starting date of 1943. This coincides with the clearance of the 

young-growth stands in Lady Park Wood, where regeneration has been entirely 
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natural since then, and allows a comparison of different types of forest 

management from the same starting point.  

The sustainably managed forest data (Bruckman et al. 2011; Ostrogović, 2013) 

come from chronosequence studies which have a space for time substitution. The 

Austrian data (Bruckman et al. 2011) come from stands ranging from 1 year to 91 

years old and the Croatian data (Ostrogović, 2013) from stands between 5 years 

and 168 years old. Technically these data do not follow one stand through time, but 

in order to compare C storage in all forest types the chronosequence data have 

been added to the graph as if they were sequential data. A date of 1845 was chosen 

for the start of the sequence in order to make it comparable to LPW, where the old-

growth stands are dominated by trees dating from 1800-1900. The Austrian data 

has a smaller age range of stands and was added to the graph with a starting year 

of 1901. This was the final year that LPW old-growth stands received management, 

when 50% of the biomass was removed. As the Austrian data comes from 

sustainably managed forests, where biomass is never fully removed, this should 

also enable a reasonable comparison. 

 

5.5  Results 

5.5.1 UK land cover and distribution of vegetation and soil C 

Grasslands and agriculture are the most dominant land types in Great Britain with 

each having around 30% of the land cover (Figure 5.1). Woodland accounts for 11% 

of the land cover in 1997 (although that figure has since increased to 13% (Forestry 

Commission, 2014)).  

The distribution of vegetation C and soil C are strongly right skewed (Figure 5.2) 

with most areas having very low vegetation C. Only 6% of land area has > 1 kg C m-2 

in vegetation, so all forests (semi-natural, managed and plantations) in this study 

are in the 94th percentile for vegetation C in Great Britain. Around 50% of land area 

has between 0 and 20 kg C m-2 stored in soil. Soils in general tend to store 

considerably more C than vegetation does (Scharlemann et al. 2014), hence the soil 
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C histogram has categories comprising ranges of 20 kg C m-2 up to > 100 kg C m-2, 

whereas the vegetation C categories are 100 times smaller. In forests however, 

especially more mature forests, vegetation C can often reach much higher amounts 

than soil C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Area of different types of land in Great Britain (data from 

Milne and Brown, 1997). 
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Figure 5.2: Distribution of amounts of (a) vegetation C and (b) soil C in Great Britain 

(Data from Milne and Brown, 1997). 
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5.5.2 Comparison of tree C storage in different types of UK forest 

Denny Wood and the Big Covert forest are storing the highest amount of tree C 

(Figure 5.3), with Denny Wood storing 21.97 kg C m-2 at the last recording in 1996 

and the Big Covert storing 23.74 kg C m-2 in 2013. By the end of its rotation, the 

typical Sitka spruce unthinned plantation had accumulated nearly twice as much 

tree C as the LPW young-growth stands (16 and 8.15 kg C m-2 respectively) over the 

same period of time, although it fell short of storing as much as the old-growth 

stands (18.11 kg C m-2). Clairinsh Wood was storing a similar amount to the typical 

unthinned plantation (15.32 kg C m-2) at the last recording in 1998 and the conifer 

plantation in Clwyd (11.86 kg C m-2) was storing a similar amount to the typical 

thinned plantation (10.5 kg C m-2). All woodlands have been acting as C sinks apart 

from Denny Wood. 

 

Figure 5.3: Amount of tree C stored in semi-natural forests (black lines), in a 

plantation forest, Clwyd (black dashed line) and in a typical Sitka spruce plantation 

with yield class 14, 2m initial spacing (from Dewar and Cannell, 1992) (grey lines) in 

the UK. 
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5.5.3 Comparison of tree C storage between sustainably managed oak forests   

             and semi-natural forests in Europe 

Even when comparing semi-natural forests with sustainably managed forests Denny 

Wood is still storing the greatest amount of tree C (21.97 kg C m-2) (Figure 5.4). The 

next highest C storage is in the managed Croatian forest, with the 108 year old 

stands storing 20.49 kg C m-2. As the stands in this forest get older they store less C; 

19.66 kg C m-2 in the 138 year old stands and 12.69 kg C m-2 in the 168 year old 

stands. The 68 year old stands are storing 16.6 kg C m-2, which is less than the LPW 

old-growth stands but more than double the LPW young-growth stands, which 

were storing 8.11 kg C m-2 after approximately 60 years.  

The Austrian coppice with standards (CS) forest stores more C than the Austrian 

high forest (HF), which is initially due to the standards present in the very young CS 

stands (Bruckman et al. 2011). The Austrian HF has the highest amount of C in the 

74 year old stands (9.75 kg C m-2) which is more than LPW young-growth stands but 

nowhere near the amount of tree C stored in the other semi-natural forests, 

whereas the Austrian CS surpassed the amount of C stored in Clairinsh Wood (15.32 

kg C m-2) in its 50 year old stands (16.3 kg C m-2). 

None of the sustainably managed stands reached tree C stores as high as Denny 

Wood and only the 108 and 138 year old Croatian stands achieved tree C stores 

higher than LPW old-growth stands. The 50 year old Austrian CS stand, along with 

some Croatian stands, stored more tree C than Clairinsh Wood. Most of the 

sustainably managed forest stands stored more tree C than LPW young-growth 

stands. 

 

 

 

 

 



 

Page | 89  
 

 

Figure 5.4: Comparison of tree C stores between European temperate, semi-natural 

forests (black lines) and sustainably managed forests (grey lines). Sustainably 

managed forest data comes from chronosequence studies (Ostrogović, 2013; 

Bruckman et al. 2011) but has been added to graph as sequential data to allow 

comparison (see method section for full details). 

 

5.6 Discussion 

Semi-natural old-growth forest in the UK may store a large amount of C per unit 

area. Out of all the forests, Denny Woods reached the highest C stocks of 28.01 kg C 

m-2 in 1964. Denny Woods, the Big Covert and LPW old-growth stands have all 

surpassed the maximum potential C stocks (17 kg C m-2) suggested by Ciais et al. 

(2008). Keith et al. (2009) reported an average amount of 37.7 kg C m-2 for above-

ground living biomass in cool temperate moist forests, which might suggest the UK 

semi-natural forests have a much higher C carrying capacity than the amounts they 

currently store. It is likely that recovery from past management histories of 

browsing and selective felling is not complete yet. Substantial increases in C storage 

should occur as forests recover from past human disturbance (Merino et al. 2007). 

Odum’s (1969) theory that forests reach an equilibrium, i.e. respiration increases 
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with forest age and eventually equals gross primary production (GPP), proposes 

that forests have a limit to the amount of C they can store. Recently these views 

have been challenged by evidence that suggests old growth forests continue to 

accumulate C for centuries (Luyssaert et al. 2008). Indeed Stephenson et al. (2014) 

report that large old trees actively fix large amounts of C, in some cases as much as 

is contained in a medium sized tree, each year and should not just be thought of as 

old C stores. However, our results clearly show that C stocks in Denny Wood have 

been declining since 1964. Watt (1947) concluded there was a cycle of change in all 

communities which consisted of a building up stage (upgrade) where the balance 

was positive and a breaking down stage (downgrade) where the balance was 

negative. Studies frequently show an age related decline in growth and biomass 

accumulation in forests after they have reached a peak but in contrast to Odum 

(1969), Ryan et al. (1997) report that the decline in net primary productivity (NPP) is 

driven by a decrease in GPP, along with a decrease in respiration. However, 

Luyssaert et al (2008) suggest there is not always a decline in productivity in old-

growth forests as when large old trees are lost through mortality there are usually 

new recruits waiting to take over and maintain productivity, which happens on a 

shorter timescale than the CO2 release from the dead wood (which can take 

decades to decompose). In Denny Wood, tree mortality due to stem exclusion and 

disturbance (storms in 1987 and 1990, drought in 1976) has resulted in canopy gaps 

extending to 30% of the transect area (Mountford et al. 1999). Despite this opening 

of the canopy, heavy browsing by deer and ponies has prevented regeneration 

from taking place since 1964 (Mountford and Peterken, 2003) and therefore 

productivity has been declining. In an experiment conducted in old-growth forests 

in Minnesota, White (2012) found that whole tree biomass in plots protected from 

browsing increased at a rate twice that of unprotected plots and therefore forests 

subject to high browsing pressure may be limited in their capacity to store C. 

Compared to semi-natural forests, a typical unthinned Sitka spruce plantation in the 

UK may store a similar amount of C (16 kg C m-2) at the end of its 60 year rotation. 

This C is accumulated more quickly than in a semi-natural forest as LPW old-growth 

stands accumulated 9.31 kg C m-2 over a 65 year period. However, as any further 

growth in the plantation is limited by clearfelling at the end of each rotation, the 16 
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kg C m-2 is not a permanent store of C. A time-averaged equilibrium value of storage 

for unthinned stands is given as 7.4 kg C m-2 (Dewar and Cannell, 1992), which 

means that over the long term plantations store less than half the amount of C 

stored in semi-natural forests.  

Dead wood is an important component of forest ecosystems yet it is often 

underestimated or ignored as a C store (Brown, 2002). Although live C stores in 

Denny Wood have been declining since 1964, the C is being transferred to the dead 

C pool. As large dead trees can persist for decades to centuries, the dead wood pool 

has the potential to store large amounts of C (Harmon and Hua, 1991). In 1991, 

Denny Wood Inclosure had a coarse woody debris (CWD) volume of 273 m3 ha-1, an 

extremely high amount of dead wood, comparable to amounts reported from old-

growth stands in NE America (Christensen et al. 2005). This translates to a large C 

pool (>3 kg C m-2) and is more than 3 times the amount present in LPW at that time. 

Maximum input of woody debris occurs after a disturbance when none of the 

formerly live material is removed (Harmon, 2009). Kirby et al. (1998) found that 

managed forests contained much less dead wood than unmanaged forests (less 

than 20 m3 ha-1). Reduction of CWD accounts for one third of the difference 

between C stores in a plantation and in an old-growth forest (Harmon et al. 1990). 

McGarvey et al. (2014) suggest that the dead wood C pool is likely an important 

future C store that will help to maintain the sink capacity of forests for many 

decades. However, as this pool is either missing from or greatly reduced in 

managed forests or plantations it is unlikely to amount to much of a C store/sink in 

these types of forest. 

Forest soils are an important C store which can comprise as much as 60 % of the 

total ecosystem C in temperate forests (Dixon et al. 1994). In a meta-analysis, using 

a paired site design, Liao et al. (2010) compared C stock between plantations and 

natural forests and found that soil C stock was 32 % lower in plantations than in 

natural forests (10.4 ± 1 and 12.9 ± 1.4 kg C m-2 respectively). This analysis also 

showed fine root biomass to be 66 % lower in plantations (Liao et al. 2010). Fine 

root turnover is a major source of input to the soil C pool; with more root derived C 

being retained in soils than above-ground inputs of leaves or needles (Schmidt et al. 
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2011), therefore it is unsurprising that both fine root biomass and soil C stock were 

lower in the plantation forests. Bradley et al. (2005) reported woodland soil C 

stocks for England, Scotland and Wales as 17, 33 and 20 kg C m-2 respectively, with 

the high values in Scotland being due to the high percentage of C reported for peat 

soils. These results come from calculations using soil type and land use data. The 

BioSoil soil survey (a comprehensive survey of soils in Great Britain) found that C 

content varied with soil depth and type, rather than type of management, with 

deep peats and peaty gleys containing the most C and rankers and rendzinas the 

least (Vanguelova et al. 2013). Much of the plantation forest cover in Scotland has 

been established on peaty gley soils; 590,000 ha on shallow peat soils and 150,000 

ha on deep peat soils, where C stocks can average as much as 35 and 51 kg C m-2 

respectively for the top 1 m of soil (Morison et al. 2010). However, drainage and 

drying of peat to improve aeration, and lowering of the water table under a 

maturing stand, can cause an increase in the rates of oxidation, meaning any 

benefit from C sequestration in tree biomass may be lost (Zerva and Mencuccini, 

2005). Although a disproportionate amount of forest plantations in the UK are 

found on peaty gleys, generally they have been planted on infertile, poor quality 

soils (Vanguelova et al. 2006). An equilibrium storage value of 8.3 kg C m-2 is given 

by Dewar and Cannell (1992) for soils in a typical Sitka spruce plantation, a much 

lower amount than that found in the soils of forested peatlands. Although 

Vanguelova et al. (2013) found higher C stores under conifers compared to 

broadleaves, conifer sites tend to have larger amounts of less decomposed plant C 

in the organic layers, which are quickly lost following fire or erosion, whereas 

broadleaved forests tend to store a higher fraction of C in deeper layers of mineral 

soil which are more protected (Gleixner et al. 2009). Broadleaved forests have also 

been noted to have no effect on soil C stocks when planted onto pasture or forest 

land, whereas conifers significantly reduced soil C (Guo and Gifford, 2002). 

Forest fragmentation, due to human land use, is leading to a greater proportion of 

edge habitat (the interface between forested and non-forested ecosystems or 

between two forests of contrasting composition or structure) meaning that more of 

the forest ecosystem may be experiencing ‘edge effects’ (Harper et al. 2005). In 

England, 74 % of all woodland is within 100 m of the forest edge and 45 % of 
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ancient woodland is within 60 m of the nearest edge (Riutta et al. 2014). ‘Edge 

effects’ are ecological responses that vary with distance from edge (Ries et al. 

2004). Some of these edge effects, such as altered microclimate, temperature, 

moisture, wind, and light intensity (Murcia, 1995) have the potential to affect C 

storage. Chen et al. (1992) found that live tree biomass reduced near the edge of an 

old-growth Douglas-Fir forest due to high rates of tree mortality related to high 

wind velocities. Dantas de Paula et al. (2011) reported that interior forest plots 

retained almost 3 times more C than edge and fragmented plots in old-growth 

Atlantic forest because large stems (>70 cm) and tall trees (> 31 m height) were rare 

in edge or fragmented plots, which suggests that only a small percentage of the 

land has the full C storage potential. In a British semi-natural ancient woodland, 

dead wood decomposition rates at the edge of the forest were found to be almost 

half that of decomposition rates 100 m into the forest, meaning edge effects could 

have a significant impact on decomposition and the C cycle (Crockatt and Bebber, 

2014). The interior habitat differs from the edge habitat in that it is usually cooler, 

moister and more uniform (Murcia, 1995) and often supports different species 

richness (Gehlhausen et al. 2000) and assemblages (Ozanne et al. 2000). Edge 

effects can occur from up to 30 m to > 240 m into the forest (Chen et al. 1995) so 

woodland needs to be of a certain size to have an interior habitat. Ancient 

woodland in Britain is highly fragmented, with 83 % of sites in England and Wales 

being <20 ha (Spencer and Kirby, 1992). Some species require large areas of intact 

forests to sustain populations, such as the capercaillie in Scotland, which require up 

to 300 ha of suitable forest habitat (Kortland, 2003). The age of the stand is also 

important, with edge and generalist species being found in young-growth stands 

and more specialised species found in old-growth stands (Peterken et al. 1992). 

Humphrey (2005) suggests that Britain’s plantations can play a role in reducing 

fragmentation of semi-natural old-growth forests by allowing small patches of 

plantations to develop an old-growth structure, which can happen within 20-70 

years. Not only would this create substantial areas of new habitat for late 

successional species, old-growth Sitka spruce – western hemlock forests of the 

Pacific Northwest have been shown to contain 90-150 kg m-2 of living biomass, 

compared to 20 kg m-2 of living biomass in a 50 year old Sitka spruce plantation in 
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Britain (Peterken et al. 1992). This means that areas of old-growth plantation would 

be likely to have much higher C stocks in living biomass than a typical plantation.  

In conclusion, there is clear evidence that semi-natural woodland may be an 

important C store in the UK. Cannell and Milne (1995) reported C stocks in the 

vegetation of forests and woodlands of Britain as 91.9 million t C, with broadleaved 

woodlands storing 53.5 million t C (46.8 % of total C in all vegetation). The UK 

Global Forest Resources Assessment (FRA, 2010) reported a value of 136 million t C 

in living biomass for all forests in the UK. Ancient semi-natural woodlands account 

for 535,000 ha in Britain (Spencer and Kirby, 1992), so taking the mean C stock 

value for the semi-natural woodlands in this study (17.5 kg C m-2/175 t C ha-1) 

means that ancient semi-natural woodlands could be storing as much as 93.6 

million t C in living biomass (more than the total value reported by Cannell and 

Milne (1995)). Given that these types of woodland represent less than a fifth of 

British forests it would seem that they have been vastly underestimated as C 

stocks/sinks and store much more C than the younger plantation forests. 
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Chapter 6 

 

6 Conclusions 

 

6.1  Conclusions 

The work conducted for this thesis explores long-term C dynamics in Lady Park 

Wood, a British semi-natural deciduous woodland. Over the past 65 years C stocks 

have steadily increased in both the old- and young-growth stands, with C stocks 

more than doubling in the old-growth stands. Although rates of increase are similar 

for old- and young-growth stands, the old-growth stands are storing more than 

twice the amount of the young-growth stands. Disturbance, either anthropogenic 

or natural, will impact the amount of C being stored by a forest. The young-growth 

stands were clear-felled in 1943 and have taken 60 years to recover C stocks in the 

live biomass. A drought in 1976 had a significant impact on beech populations, with 

many large, mature beech trees being killed immediately (Peterken and Mountford, 

1996) causing the noticeable decrease in C stocks in the old-growth stands. The 

difference between the disturbances being that following the anthropogenic 

disturbance, i.e. clear felling, the C is removed from the forest, whereas following 

the natural disturbance, i.e. drought, the C passes from the live pool to the dead 

wood pool. C stocks in the old-growth stands had recovered from the drought 

within 15 years, less time than is taken for large dead trees to break down. 

Recovery from disturbances can lead to substantial increases in C storage. 

C is apportioned differently in the different aged stands at LPW. Due to the much 

larger live biomass C stocks in the old-growth stands, this pool represents 68% of 

the TEC, with 29% being stored in soil and 3% in CWD. In contrast, storage of C in 

the young-growth stands is apportioned almost equally between live biomass and 

soil (49% and 46% respectively), with 5% stored in CWD. Soil in LPW stored less C 

than expected, possibly due to the amount of shallow soils present, and the 

amount of C did not differ significantly between old- and young-growth stands. 
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Therefore, it seems that as forests age, tree biomass increases and stores 

proportionally more of the TEC than the soil compartment. 

 Simulations of the partial clearance in 1901 and clear-felling in 1943, run using LPJ-

GUESS, agree relatively well with C stocks in LPW calculated using historical data, 

although the data from the old-growth stands overshoots the model output in 

recent years. Though the model correctly identified the major tree species, it 

overestimated Quercus abundance and underestimated Fagus and Tilia. Ecosystem 

models are unlikely to recreate observed conditions perfectly due to their relative 

simplicity and their underlying assumptions that include for example no systematic 

browsing effects. Using a no-clearance simulation, to represent the carbon carrying 

capacity of LPW if no management had ever been applied, reveals that release from 

management is the main driver behind the increase in C stocks over most of the 

study period. However the influence of CO2 on carbon stocks grows in importance 

as atmospheric concentrations increase and by the end of the period the positive 

effect of CO2 is larger than the effect of management legacy. There was very little 

effect on carbon stocks attributable to temperature; in fact climate manipulation 

experiments demonstrated that increased temperature had negative effects on 

carbon storage because of increased respiration and the negative effect of 

temperature on light use efficiency above 5˚C (Haxeltine and Prentice, 1996). 

During the period 2000 to 2100, projected carbon stored as living biomass in the 

young-growth stands increased rapidly to reach simulated levels without historical 

clearance. Calculated C stocks are higher than simulated C stocks in the old-growth 

stands by the end of the study period and although there is a predicted slow steady 

increase of 1 to 2 kg C m-2 (based on IPCC A2 and B1 scenarios) the model 

simulations never quite reach the amount of calculated C stocks. This could be 

because process-based models of forest growth and C storage are based on the 

assumption that stands are even aged and that C exchange reaches an equilibrium 

(Keith et al. 2009). However as this assumption has recently been challenged 

(Luyssaert et al. 2008) it is possible that sometimes these models underestimate 

productivity and therefore C accumulation. Model simulations show that the future 

scenarios with past disturbance (1943 clearance) accumulate more C than the 

future scenarios with no clearance. Keith et al (2009) also found that the highest C 
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stocks were found in areas experiencing past partial stand replacement, although it 

is unclear whether that includes a large amount of dead wood C stocks or not. 

Much less is known about C dynamics below ground, i.e. root decomposition and 

turnover, as roots are hidden from view, occur in an environment that must be 

disturbed as part of any study, and require much time and effort to measure them. 

As a result, the contribution of decomposing roots to the C pool is often ignored 

(Olajuyigbe et al. 2012). Here we gained some insights into the decomposition of 

oak roots in a semi-natural deciduous woodland. Our data suggest that root 

diameter class and type of ground cover exert the most important influence on 

dead root decomposition rates in LPW. Large roots (5-10 mm) decomposed faster 

than medium (2-5 mm) or fine (<2 mm) roots over the first 18 months and mean 

loss rates for roots buried in the location with abundant ground vegetation were 

significantly higher than those for roots buried in the location with bare ground. We 

found little evidence of a temperature effect, possibly due to buffering effects of 

the soil on temperature. There was much greater variability in air temperature than 

in daily soil temperature. Air temperatures generally had a higher daily maximum 

temperature than the soil maximum temperature and a lower daily minimum 

temperature than the soil minimum temperature. Thus the soil environment 

appears buffered against extreme temperatures. For a short period in January 2013 

the maximum daily soil temperatures (around 2.5˚C) became warmer than the 

maximum daily air temperatures, which had fallen to around -3˚C. In contrast to the 

air temperature the soil temperature never dropped below freezing in the entire 

study period. The mean percentage of mass lost from the roots after 1 year was 

24.1 % and there were no striking differences between our mean loss rates and 

those from other studies. Rates were higher and more variable for short time 

periods, most likely due to the initial amount of soluble compounds the roots 

contained, with less variation as time progressed. Using available data from studies 

on root necromass and C respiration from dead roots (Powell and Day, 1991; 

Nadelhoffer et al. 2004) allowed us to estimate the amount of C respired per litter 

bag over 2 years (4.28 g C). The mean dry mass loss for our roots was 2.85 g over 2 

years. We do not know how much of this loss was C so we cannot directly compare 

this figure to the 4.28 g C respiration associated with root decomposition. However 
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it does suggest that more C was respired than was lost by physical means from our 

decomposing roots, possibly due to the priming effect, whereby a greater 

availability of energy from the input of fresh organic matter leads to an increase in 

soil organic matter (SOM) degrading populations, which accelerates SOM 

mineralisation (Fontaine et al. 2003). This shows how important soils are in C 

release.   

The majority of forest area in the UK is of plantation origin, with less than a fifth 

being ancient semi-natural woodland. However, it is possible that this much smaller 

amount of woodland could contribute a large, previously unaccounted for, 

proportion of the C budget in the UK. Although a typical Sitka spruce plantation in 

the UK sequesters C faster (16 kg C m-2 by the end of its 60 year rotation) than semi-

natural forests (9.31 kg C m-2 over a 65 year period in LPW), it will store much less C 

over the long term (7.4 kg C m-2 compared with 17.5 kg C m-2). Taking the mean C 

storage value for the semi-natural woodlands in this study (17.5 kg C m-2) means 

that ancient semi-natural woodlands could be storing as much as 93.6 million t C, 

which is more than the value reported by Cannell and Milne (1995) (91.9 million t C) 

for total C stocks in the vegetation of forests and woodlands in the UK. Given that 

these types of woodland represent less than a fifth of British forests it would seem 

that they have been vastly underestimated as C stocks/sinks and store much more 

C than the younger plantation forests. 

 

6.2 Concluding remarks 

The findings in this thesis highlight the value of long-term field based site 

measurements in distinguishing forest C stocks/dynamics. Through these findings 

we can see how C stocks change over time and the impact that disturbance can 

have on C stocks. This knowledge helps up to quantify current C stocks and also 

anticipate a range of future dynamics. They have shown C stocks in ancient semi-

natural woodlands in the UK to be higher than the potential maximum of 17 kg C m2 

suggested by Ciais et al. (2008). Although the full C storage potential of these 

ancient semi-natural woodlands is not well understood, the high C stocks obtained 
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at Denny Wood provide a reasonable estimate of a possible upper limit of these 

types of woodland, meaning that they  could act as C sinks (as well as large C stores) 

for many years to come. More importantly, they have highlighted that ancient 

semi-natural woodlands may be an underestimated and neglected C sink/store in 

the UK. 
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Appendix 1 

Monte Carlo uncertainty analysis 

Tree carbon 

We used the following algorithm to estimate the uncertainty in tree carbon. R code 

is available from the authors on request. 

For each replicate: 

 Draw a percentage carbon content 

 For each species: 

  Draw allometric coefficients 

  For each individual: 

   Draw diameter 

   Draw biomass 

   Multiply biomass by proportional carbon content to get tree 

carbon 

Add up tree carbon over all individuals and divide by transect area to get tree 

carbon per unit area 

 

Carbon content 

Thomas and Martin (2012a) synthesize data on carbon content in trees. In their raw 

data (Thomas and Martin 2012b), temperate and boreal angiosperm stem wood 

(𝑛 = 54) had a sample mean proportional carbon content of 48.8% and a sample 

standard deviation of 2.1%, and can be roughly approximated by a normal 

distribution. We used the same percentage carbon content for other tissues, 

because the relationship between carbon content in stems and other tissues is 

approximately 1:1 (Thomas and Martin 2012a, p. 341). We treated carbon content 

as constant across species because few of the major species at our site were 

represented in the database. 

Allometric coefficients 

Few of our sources for allometric equations used to estimate biomass from 

diameter at breast height (dbh) reported all the necessary information on 

uncertainty. However, for Fagus sylvatica, the dominant species at our site, 

Cienciala et al (2005) provided raw data on total aboveground biomass and dbh 
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(their table 2). We obtained the covariance matrix of estimated parameters from 

these data for both linear regression on log-transformed data and nonlinear least-

squares on untransformed data. For each species, we chose either the linear or the 

nonlinear covariance matrix, depending on which form of allometric equation was 

fitted. To include the effects of sample size on uncertainty in parameters, we scaled 

the selected covariance matrix by 20/𝑛𝑎, where 20 is the sample size in Cienciala et 

al (2005) and 𝑛𝑎 is the sample size in the species. Where sample sizes were not 

reported, we set 𝑛𝑎 to 20. We sampled parameter estimates for each species from 

multivariate normal distributions with mean vectors given by the reported 

parameter estimates for the species, and covariance matrices as described above.  

Diameter 

In our raw data, there was a mixture of measurements of dbh and girth at breast 

height in different years. We assumed that measurement error in dbh did not 

depend on whether dbh or girth was originally measured. From 10 replicate 

measurements using a tape measure of girth at breast height on each of 5 trees, we 

estimated that the measurement error in girth was approximately normally 

distributed with mean 0 and standard deviation 0.18 cm. We converted reported 

dbh to circumference assuming a circular cross-section, added a measurement 

error drawn from a normal distribution with mean 0 and standard deviation 0.18, 

and converted back to a simulated dbh. 

Biomass 

Given a simulated dbh and sampled allometric coefficients, we used the 

appropriate allometric equation for each species to estimate predicted biomass of 

each tree component. We then added a simulated normally-distributed residual to 

this prediction. Where the residual standard deviation was not reported, we used 

the values obtained from the Cienciala et al (2005) data, for either linear or 

nonlinear least-squares as appropriate. Since nonlinear least-squares implicitly 

assumes normally-distributed residuals on the original scale, negative biomasses 

are possible for small tree components under this method (but not under a linear 

model on the log scale). We truncated these to zero. This will not have a major 

effect because truncation only occurs for small trees, which make little contribution 
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to biomass. We summed the simulated biomasses across all components for each 

tree. 

Tree carbon per unit area 

When calculating tree carbon per unit area, we treated transect area as known 

precisely enough that there was no uncertainty in whether each tree was inside or 

outside the transect. 

 

Dead wood carbon 

We used the following algorithm to estimate uncertainty in dead wood carbon: 

For each replicate: 

 Draw a percentage carbon content 

 Draw a set of decay class probabilities 

 Draw a set of dry densities for decay classes 

 Draw diameters for each piece of dead wood and put into diameter classes 

 Calculate mean diameter for each diameter class 

 For each dead wood transect: 

  For each diameter class 

   Draw a length of dead wood intersecting the transect 

   Calculate volume from length and mean diameter 

   Calculate carbon content, summing over decay classes 

  Sum over diameter classes 

 Calculate mean over transects for each stand age 

  

Carbon content 

As explained in the main text, we assumed that the distribution of carbon content 

was the same for dead wood as for tree biomass (and the same sequence of values 

for carbon content was used in each replicate of the dead wood algorithm as in 

each replicate of the tree carbon algorithm). 

Decay class probabilities 

We had decay class assignments for a total of 36 pieces of dead wood. We used a 

non-parametric bootstrap on these data to sample from the distribution of decay 
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class probabilities. Because this was a fairly small sample, we calculated pooled 

decay class probabilities over transects and stand ages. 

Dry densities 

We obtained data on dry density by decay class from Paletto and Tosi (2010), who 

reported means and standard deviations in their Table V. In the absence of detailed 

information on the distributions of these, we assumed dry densities were 

independently normally distributed. 

Diameters 

We assumed that the same measurement error distribution applied to dead wood 

as described above for tree diameters. When calculating volume from length, we 

used the mean diameter for each diameter class, because individual diameter 

measurements were not available for the 1992 data. 

Length of dead wood 

There is no general formula for the uncertainty in length of intersections from line  

transect sampling (Paletto and Tosi 2010). We therefore calculated the mean 

estimated intersection length over all dead wood transects within each of the six 

forest transects, separately for each stand age and diameter class. We also 

calculated a pooled standard deviation of intersection length over all forest 

transects, stand ages and diameter classes (we used a pooled estimate because the 

sample s were small and showed little evidence of systematic differences in 

variability). For each dead wood transect and diameter class, we drew a dead wood 

length from a normal distribution with the appropriate mean and the pooled 

standard deviation (truncating at zero if the sampled length was negative). For the 

1992 data, we had only the total number of intersections over 10 transects for each 

stand age, so we drew a dead wood length from a normal distribution with this 

total as the mean, and standard deviation 1/√10 times the pooled standard 

deviation for a single transect. 

Soil carbon 

We used the following algorithm to estimate uncertainty in soil carbon: 

For each replicate: 

 For each core layer in each core in each transect: 

Draw true depth of layer 
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Draw percentage carbon in layer 

Calculate carbon content in layer 

 Sum over layers 

 Take mean over cores within stand ages 

True depth of layer 

We assumed that two processes contribute to differences between true depth and 

measured depth. First, loss or compaction may mean that the apparent depth of 

the layer differs from the true depth. Second, the apparent depth was only 

measured to the nearest centimetre.  

We had no quantitative information on the amount of loss or compaction that 

might have occurred. However, we believe that losses of more than 1 cm3 from a 

layer would have led to rejection of the layer. In the absence of information on 

compaction, we assume that apparent depth had a symmetrical triangular 

distribution with mode at the measured depth, minimum equal to measured depth 

– 1/3.5708 (equivalent to loss of 1 cm3) and maximum equal to measured depth + 

1/3.5708 (equivalent to compaction leading to an extra 1 cm3 being included). The 

constant 3.5708 is the ratio between depth of a layer and volume in cm3 (assumed 

known exactly, from the shape of the corer). 

We measured depth to the nearest cm. We therefore assumed that true depth had 

a uniform distribution with minimum equal to apparent depth – 0.5 cm, and 

maximum equal to apparent depth + 0.5 cm. 

Percentage carbon in layer 

The elemental analyser used to quantify percentage carbon was calibrated against 

known standards every morning. The calibration gives a standard deviation of 

0.17%. We assumed that true percentage carbon had a normal distribution with 

mean equal to measured percentage carbon, and standard deviation 0.17%. 
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Appendix 2 

Bias correction: 

 

Temperature and radiation 

For the overlapping period in two datasets, a linear model was fitted to the 

relationship between daily values from each dataset, using the dataset to be bias 

corrected as the explanatory variable. The coefficients from this model were then 

applied to daily values in the non-overlapping part of the dataset to be bias 

corrected. 

 

Precipitation 

For the overlapping period in two datasets, the monthly mean value across all years 

(climatology) was calculated for each dataset. Values for the reference dataset 

were then divided by values for the dataset to be bias corrected, to give 

proportional differences for each month. Daily values in the non-overlapping part of 

the dataset to be bias corrected were then multiplied by these differences. 
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Figure S1 

Top panel: De-trending 

Temperature was de-trended by fitting a linear model (blue line) to annual means 

(red bars) for each month separately. This example uses temperatures for May. The 

difference between the predicted monthly mean and each daily value was then 

calculated (sum of daily variation: red arrows and monthly variation: blue arrows) 

and added to the predicted monthly mean for 1961 (blue dot), thereby maintaining 

intra-annual variability. Left panel shows data before de-trending and right panel 

shows data after. It should be noted that while the top panel shows a truncated 

range of years, the linear models were fitted to all years in the local station dataset 

(1961-2005). 
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Bottom panel: Calculating anomalies 

The mean of daily values (black dots) across years 1970-2005 was calculated for 

each month separately to generate a climatology (blue line). This example uses 

temperatures for May. Monthly anomalies (blue arrows) in each future year were 

calculated as the difference between the future month mean (red bars) and the 

climatology (blue line, dashed in future years) for each climate variable. For 

temperature (shown here) this was calculated by subtracting the climatology from 

the future monthly mean (delta change method). For precipitation and radiation 

this was calculated by dividing the future mean by the climatology (multiplicative 

relative anomalies). These anomalies were then added to or multiplied by the 

relevant daily values to give future climate daily data. 
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Figure S2 

The effect on carbon storage of changing either temperature (above) or 

precipitation (below) in isolation. Temperature was modified by adding or 

subtracting degrees to each daily climate value, whereas precipitation was changed 

multiplicatively since it is a zero based variable. 

 


