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Abstract  

The lattice Boltzmann method (LBM) has become an effective numerical technique 

for computational fluid dynamics (CFD) in recent years. It has many advantages over 

the conventional computational methods like finite element and finite difference 

methods. The method is characterised by simplicity, easy treatment of boundary 

conditions and parallel feature in programming that makes it ideal for solving large-

scale real-life problems. This thesis presents the development and applications of a 

lattice Boltzmann model for both steady and unsteady two-dimensional axisymmetric 

flows. The axisymmetric flows are described by three-dimensional (3D) Navier-

Stokes equations, which can be solved by three-dimensional (3D) lattice Boltzmann 

method. If cylindrical coordinates are applied, such 3D equations become 2D 

axisymmetric flow equations.  However, they cannot be solved using the 2D standard 

LBM. In order to study more complicated axisymmetric flow problems by 2D LBM, 

in this thesis, firstly, the revised axisymmetric lattice Boltzmann D2Q9 model 

(AxLAB®) is applied and tested for some benchmark for axisymmetric laminar 

flows and more complicated flows including 3D Womersley flow and forced 

axisymmetric cold-flow jets, and flows with swirl such as the cylindrical cavity flows 

and the swirling flow in a closed cylinder with rotating top and bottom.  Secondly, 

the AxLAB® is extended to simulate turbulent flows and non-Newtonian fluid flows. 

A well-known power-law scheme is incorporated into the AxLAB® to simulate the 

non-Newtonian fluid flow: the Taylor Couette flows for Newtonian and non-

Newtonian fluids are simulated and compared. The combined effects of the Reynolds 

number, the radius ratio, and the power-law index on the flow characteristics are 

analysed and compared with other literatures. All the numerical results are also 

compared with the existing numerical results or experimental data reported in the 

literature to demonstrate the accuracy of the model. Thirdly, a further developed 

AxLAB® is presented to simulate the turbulent flows. The turbulent flow is 

efficiently and naturally simulated through incorporation of the standard subgrid-

scale stress (SGS) model into the axisymmetric lattice Boltzmann equation in a 

consistent manner with the lattice gas dynamics. The model is verified by applying it 
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to several typical cases in engineering: (i) pipe flow through an abrupt axisymmetric 

constriction, (ii) axisymmetric separated and reattached flow and (iii) pulsatile flows 

in a stenotic vessel.  All the numerical results obtained using the present methods are 

compared with experimental data and other available numerical solutions, indicating 

good agreements.  This shows that the improved AxLAB® is simple and is able to 

predict axisymmetric turbulent, non-Newtonian complicated flows at good accuracy. 
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Chapter 1: Introduction and Literature Review 

1.1 Background  

Fluid flows play an important role in human’s daily life, such as the water flow in 

rivers, air movement in the atmosphere, the ocean currents and the blood flow in 

human body are all the common fluid flow phenomena. Many researchers aim to find 

out the rules which in the fluid flows in last few decades. Fluid flows obey the 

conservations of mass and momentum. Based on these conservation laws, a set of 

differential equations can be derived to represent fluid flow motions. The most 

important dynamic theories are the continuity equation and the Navier-Stokes (N-S) 

equations which have been established to describe the flow characters in the middle of 

19
th

 century. However, for the general governing equations, there is no analytical 

solution except for some simple situations. Till 1940s, the modern computer 

techniques developed quickly, people started to use computer to numerically solve the 

equations and to study the fluid system. At the meantime, the computational fluid 

dynamics (CFD) methods, such as finite difference method (FDM) and finite volume 

method (FVM), have been developed to solve the Navier-Stokes equations 

numerically. Each of them has its own advantages. For example, FDM has two 

advantages compared with FEM: firstly, it is generally faster than the FEM for a 

similar case, which is more obvious for three-dimensional calculations [1]; secondly, 

it generally does not suffer from the local mass conservation problem, which is often 

observed in a finite element model [2]. On the other hand, The FEM adopts the 

unstructured grids which can fit complex and irregular geometries more easily than 

the FDM. Therefore, the FEM can reduce the number of grids significantly with the 

similar accuracy for flows in complicated geometries. The FVM is also popular for 

solving the axisymmetric flow equations. The  construction  of  FVM methods 

capable to deal with unstructured meshes can be of utmost importance  in  order  to  

handle  problems  that  involve  complex geometries  [3]. Murthy and Mathur 

extended the FVM to compute radiation in axisymmetric geometries using 

unstructured polyhedral meshes [4]. The node-centered FVM using an edge-based 

data structure, which was presented in Lyra et al. [5] is very flexible to deal with 

control volumes of different shapes associated to generic unstructured meshes. These 
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CFD methods can solve the N-S equations directly and some macro variables such as 

velocity and pressure can be obtained as well. It should be noticed that these 

conventional CFD methods are based on the discretisation of macroscopic continuum 

equations at the macroscopic level. 

It is well known that the fluid is composed of a huge number of atoms and molecules 

at the microscopic level. By modeling the motion of individual molecule and 

interactions between molecules, the behavior of fluid can be simulated. However, this 

microscopic computation method needs much more time than the traditional CFD 

method at macroscopic level because it has to calculate a huge number of the 

molecules motions. That is the drawback of this method. Between these two 

calculation scales, there is an intermediate scale that is named the mesoscopic scale, 

which can also be used to simulate the fluid system and other physical phenomena. 

This idea considers a much fewer number of fluid ‘particles’ than molecular dynamics 

method. In other word, a fluid ‘particle’ is a large group of molecules. Moreover, the 

size of the fluid ‘particle’ is still smaller than the smallest length scale of the 

macroscopic simulation for the right macroscopic physical properties. 

Using such scale, a cellular automata concept was developed by Ulam, von Neumann 

and Zuse in the late 1940’s [6]. Since then, it has been further developed and it has 

now become a very powerful tool in simulating various scientific problems [7, 8]. 

Zuse presented an idea concerning the wide applications of cellular automata (CA) to 

physical problems in a monograph [9]. Hardy et al. proposed some formulations of 

HPP (Hardy, de Pazzis and Pomeau) lattice gas cellular automata in 1973 [10]. Since 

then, both one and two-dimensional CA have been investigated. Typical ones are 

Wolfram’s four universal classes CA, Fredkin’s game, etc. The two-dimensional 

“Game of Life” is well known, which was introduced by Conway in the 1970’s [11].  

This demonstrates the most important feature of the CA: with extremely simple rules; 

a CA can be used to simulate some complex physical problems in the real world. 

Actually, many applications have shown that CA is a very simple method to a wide 

variety of complicated phenomena [6, 12, 13]. 
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1.2 Lattice Gas Automata 

A lattice gas automata (LGA) is a particular class of the cellular automata. It is based 

on a simple model based on fully discrete microscopic space, time and particle 

velocities that reside on regular lattices [14]. Such particles move from one lattice unit 

to other lattice in their directions at their own velocities. Two or more particles 

arriving at the same place can collide. The important property of the LGA is that the 

mass and momentum are explicitly conserved, which is a significant feature in 

simulating real physical problems. In fact, the summations of the micro-dynamic mass 

and momentum equations can be asymptotically equivalent to the Navier-Stokes 

equation for incompressible flows [14]. 

The first fully discrete model for a fluid was developed by Hardy et al. [10] on a 

square lattice (HPP model), which is the most simple LGA model for two-

dimensional flows. But the N-S equations cannot be recovered from this model using 

the HPP due to the insufficient symmetry of the lattice. After that, Frisch et al. [15] 

proposed a corrected lattice gas automaton (FHP model) in 1986, which can recover 

the N-S equations (see Fig. 1.1). 

 

Figure 1.1 Lattice for FHP model. 
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Generally, the LGA has two sequence steps: streaming step and collision step. In 

streaming step, each particle moves to the nearest node along the directions at its own 

velocity.  Then, when the particles arriving at one node and their velocity directions 

were changed according to the assumed rules; and the collision happens. These two 

steps will simulate convection and diffusion respectively at macroscopic level in 

physics. 

The LGA equation can be written as: 

      , 1 , , ,       0,1,..., ,n x e t n x t n x t M             (1.1) 

where n  is a Boolean variable that is used as an indication of the presence with 

1n   or absence with 0n   of particles, t  is the time, e  is the local constant 

particle velocity,    is the collision operator, and M  is the number of directions of 

the particle velocities at each node. 

The physical variables, density and velocities are defined by 

 
0

,
M

n





   (1.2) 

 
0

1
.

M

i iu n e 
 

    (1.3) 

in which n  indicates the ensemble average of  n  in statistical physics. 

The LGA for the Navier-Stokes equations has several drawbacks, such as the non-

isotropic advection term, spurious invariants, numerical noise etc. [16]. As a result, 

researchers were keen to find a method to treat these drawbacks and the lattice 

Boltzmann model was developed in such background. 
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1.3 Lattice Boltzmann Methods 

The Lattice Boltzmann method is evolved from LGA to overcome its drawbacks. Its 

basic difference from LGA is in that Boolean variable is replaced by particle 

distribution functions, i.e.   0 .n f f     If individual particle motion and 

particle-particle correlations are neglected, Eq.(1.1) can be replaced by the following 

lattice Boltzmann equation [17], 

      , 1 , , ,       0,1,..., .f x e t f x t f x t M             (1.4) 

Such approach eliminates the statistical noise in a LGA and retains all the advantages 

of locality in the kinetic form of a LGA [8]. According to the above definition, the 

fluid density and velocity can be obtained from 
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M
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




   (1.5) 
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1
.

M

i iu e f 
 

    (1.6) 

The lattice Boltzmann method (LBM) is a relative new numerical method for 

simulating complex flows via an indirect solution to the incompressible Navier-Stokes 

(N-S) equations [19,20].  It has been applied in different areas [18,21,22], which show 

its efficiency, accuracy and capabilities.  The method has many advantages over the 

conventional computational methods like the finite difference method and finite 

volume methods. Although it is originally developed to simulate fluid flows described 

by the Navier-Stokes equations, it has been extended to solving many other flow 

problems in science and engineering. For instance, Chang and Yang [23] proposed a 

lattice Boltzmann model for image denoising; Mendoza et al. [24] applied the method 

to simulate the relativistic fluids; Swift et al. [25] used the lattice Boltzmann method 

to present the nonideal fluids; and Zhou developed the lattice Boltzmann method for 

shallow water flows [26] and groundwater flows [27]. Moreover, Love and Donato 

[28] has extended the lattice gas automaton to simulate fluids on arbitrary surfaces. 

Mendoza et al. [29] developed a new lattice kinetic method to simulate fluid 

dynamics in curvilinear geometries and curved spaces. Klales et al. [30] present a 
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hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with 

dynamical geometry. Mendoza et al. [31] developed and validated a new lattice 

Boltzmann model for the transport properties of campylotic media. He and Doolen 

[32] extended the lattice Boltzmann method to general curvilinear coordinate systems 

by using an interpolation-based strategy. 

Unlike traditional CFD methods (e.g., FDM and FVM), LBM is based on the 

microscopic kinetic equation for the particle distribution function (PDF) and the 

macroscopic variables are defined from the PDF. The LBM have several advantages: 

first, it is simple to program. Since the simple streaming step and collision step can 

recover the non-linear macroscopic advection terms, basically, only one loop of the 

two simple steps is implemented in LBM programs. Moreover, in LBM, the pressure 

satisfies a simple equation of state when simulate the incompressible flow. Hence, it 

is not necessary to solve the Poisson equation by the iteration or relaxation methods as 

common CFD method when simulate the incompressible flow. The explicit and non-

iterative nature of LBM makes the numerical method easy to parallelize [33]. On the 

other hand, LBM also have some drawbacks like other CFD methods. For the present 

LBM, most of calculations focus on low-velocity flows; more complex flows need to 

add extra calculation terms, such as multiphase flows and porous flows, which are 

still in process by the researchers. 

1.4 Axisymmetric Lattice Boltzmann Method (AxLAB®) 

As lots of axisymmetric flows occur in practical engineering [34], the study on how to 

apply the LBM to axisymmetric flows has been reported.  The three-dimensional (3D) 

lattice Boltzmann method was developed to simulate 3D axisymmetric flows 

[35,36,37] using the cubic lattices, in which a curved boundary condition was treated. 

In theory, the 3D Navier-Stokes (N-S) equations for axisymmetric flows can be 

simplified to 2D flow equations in the cylindrical polar system. This makes it possible 

to develop a simpler lattice Boltzmann method for 3D axisymmetric flows, which will 

greatly reduce the computational time. To take the full advantage of this feature, 

appropriate source term may be added to the LBE for the Navier-Stokes equations to 

model axisymmetric flow. In order to mimic the additional axisymmetric 

contributions to 2D Navier-Stokes equations in cylindrical coordinates, several spatial 
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and velocity-dependent source terms were proposed to insert into the standard lattice 

Boltzmann equation (LBE) [38,39,40]. This is the basic idea behind the method of 

Halliday et al. [41], where they first developed the lattice Boltzmann method for 

axisymmetric flows through the introduction of two source terms into the lattice 

Boltzmann equation and recovered the macroscopic hydrodynamic equations. This 

method has successfully been applied to a number of axisymmetric flow problems 

[42,43,44]. Later, other researchers also derived modified LBMs following the same 

procedure of Halliday et al. [45,46].  The revised axisymmetric model proposed by 

Lee can recover the axisymmetric flow equations correctly [44]. Recently, Chen et al., 

[47] used the vorticity-stream-function equations to develop an axisymmetric lattice 

Boltzmann method, making the formulation satisfy the continuity equation and easy 

to solve.  Guo et al., [48] described an axisymmetric lattice Boltzmann model from 

the continuous Boltzmann-BGK equation in cylindrical coordinates, which is a 

complete lattice Boltzmann model for the axisymmetric flows with or without rotation 

in the framework of the lattice Boltzmann method.  An improved axisymmetric lattice 

Boltzmann scheme has been formulated by Li et al., [49], which includes the rotation 

effect.  

More recently, Zhou [50] has improved on his earlier proposed axisymmetric lattice 

Boltzmann method (AxLAB) [51] to model general axisymmetric flows with or 

without rotation, which is named AxLAB® for an axisymmetric lattice Boltzmann 

model revised.  The AxLAB® is simple and efficient without involving calculations 

of a derivative and suitable for studying complex axisymmetric flows with or without 

swirling effect.  Unlike other existing methods, all the macroscopic variables such as 

velocities and density are determined in the same formulas as those in the standard 

lattice Boltzmann approach to the Navier-Stokes equations, and furthermore, any 

additional force terms can be easily and directly added to the model without a 

modification with similar features to the standard lattice Boltzmann Method for the N-

S equations. This makes the model efficient to model general incompressible 

axisymmetric flows.   

However, most axisymmetric lattice Boltzmann methods in literatures are reported for 

laminar axisymmetric flow equations without the flow turbulence.  As most practical 

flows in nature are turbulent, these methods cannot be directly applied.  Generally, 
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flow turbulence can be modelled by using additional scheme such as the k   model, 

giving the time-averaged properties. Teixeira [52] presented a lattice Boltzmann 

method for turbulent flows: the single relaxation time is modified as a variable 

relaxation time which is decided by solution of the two differential equations, k   

equations.  As an alternative method, the large eddy simulation can efficiently 

simulate vorticity larger than a prescribed scale, where space-filtered governing 

equations with a subgird-scale (SGS) stress model for the unresolved scale stress are 

used. Usually, the Smagorinsky [53] subgird-scale is applied to simulate flow 

turbulence in the space-filtered governing equations, which turns to be the simplest 

and most accurate for turbulence flows. According to the research by Tutar and Hold 

[54], the space-filtered flow equations are more accurate than the time-averaged ones 

for the calculation of turbulent flows and so are used in the present study.  Hou et al. 

[55] demonstrate that the standard Smagorinsky SGS stress model can be 

incorporated into the lattice Boltzmann method for turbulence modelling.  Meantime, 

the single relaxation time is modified as a variable relaxation time which is directly 

linked with the distribution function and can be eliminating any calculations of 

derivatives. Following the similar idea to Hou et al., Zhou has developed a lattice 

Boltzmann model for the shallow water equations with turbulence modelling 

(LABSWE
TM

) [56], demonstrating its power and applicability for turbulence 

modelling [57].   

1.4.1 Study of Pulsatile Flow 

In fluid dynamics, a flow with periodic variations is known as pulsatile flow. 

Researching the pulsatile flow is one of the most attractive research projects in the 

axisymmetric flow study, especially for the blood flow. The blood transports particles 

such as red and white blood cells through a complicate network of elastic branching 

tubes. The blood flow is becoming a great interest research project in the 

cardiovascular doctors and fluid dynamicists since the deaths of the cardiovascular 

diseases increase rapidly in the world. Lots of blood problems are due to the abnormal 

blood flow in arteries. Once the stenoses block more than about 70% of the artery, it 

is a significant health problem for the patient. The blood flow to the brain and heart 

will be blocked when the blood clots exist in the main arteries. It is necessary to carry 
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out experiment and numerical studies to further investigate the flow characters in 

stenosed artery. 

Generally, most of literatures studies for the blood flow come from the experiments. 

Experiments have been carried out for a local stenosis and steady flow [58,59] or 

unsteady flows [60]. Then, experimental observations for both steady and unsteady 

flow through furrowed channels have been presented [61]. Computational methods of 

the steady flow including analytical solutions for the flow in a continuously perturbed 

conduit [62] and numerical solutions in locally constructed two-dimensional channels 

[63] or cylindrical pipes [64]. The pulsatile flow has also been treated numerically for 

local stenoses and two-dimensional channels [65]. Young and Tsai carried out more 

experimental studies for the steady and unsteady flows through rigid stenosed tubes 

with different constriction ratios [66]. However, accurate measurements of distance 

from the wall and the shape of the velocity profile are technically difficult for 

pulsatile flow. Moreover, shear stress measurement also depends on the near-wall 

blood viscosity which is usually not easy to known. Thus arterial wall shear stress 

measurements are estimated and may have much error.  

Therefore, using the numerical methods to investigate the blood flow can overcome 

the above drawbacks. Since the lattice Boltzmann method (LBM) has advantages such 

as ease of implementation, ease of parallelization and simple boundary treatments, the 

LBM may become a useful tool for application in the blood flow. Artoli et al. [67] 

studied the accuracy of two dimensional (2D) Womersley flow by using 2D nine-

velocity lattice LBM model. Cosgrove et al. [68] also studied the 2D Womersley flow 

and indicated that the results of LBM incorporating the halfway bounce-back 

boundary condition are second order in spatial accuracy. Later, Artoli et al. [69] 

obtained some preliminary results for the steady blood flow in a symmetric 

bifurcation. Actually, the above studies only addressed on simple 2D geometries and 

it cannot represent the 3D blood tubes. 

Maier et al. [35] studied the Poiseuille flow in 3D circular tube, and they found that it 

will cause much error on curved surface when using the simple bounce-back 

boundary condition. In order to solve this problem, accurate 3D curved boundary 

treatments were proposed by Mei et al. [36] and Bouzidi et al. [70].  Besides that, lots 
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of literatures are written for the pulsatile flow. Beratlis et al. [71] presented a closely 

coupled numerical and experimental investigation of pulsatile flow in a prototypical 

stenotic site. The pulsatile flow of non-Newtonian fluid in a bifurcation model with a 

non-planar daughter branch is investigated numerically by Chen and Lu [72], who 

using the Carreau-Yasuda model to take into account the shear thinning behavior of 

the analog blood fluid. Li et al. investigated the flow field and stress field for different 

degrees of stenoses under physiological conditions [73]. 

The studies of 3D pulsatile flow in tubes with different 3D constrictions are necessary 

to carry out. But the problem is also obviously as the direct 3D simulations of flow in 

circular tubes [37] are very time-consuming for such an axisymmetric geometry. It is 

necessary to develop an accurate model to simulate the axisymmetric flow more 

efficiently. Fang et al. [74] studied the pulsatile blood flow in a simple 2D elastic 

channel. In their study, an elastic and movable boundary condition was proposed by 

introducing the virtual distribution function at the boundary and some good results 

were obtained. Guo et al. [75] further developed a non-slip wall boundary condition. 

Later, Fang et al. [76] proposed a boundary condition for elastic and moving 

boundaries and applied to simulate the viscous flow in large distensible blood vessels. 

Their above results of pulsatile flow are consistent with the experimental data in 3D 

elastic tubes. 

However, the Reynolds number in the above studies are very low and the geometry of 

study is only 2D.  Due to the practical engineering applications, modelling the 

turbulent axisymmetric flow is necessary.  

 

1.4.2 Study of Rotation Flow 

Axisymmetric flows with swirl or rotation played an important role in engineering 

practice [77,78]. At the meantime, the flows with swirl or rotation have more complex 

property than the axisymmetric flow without swirl. The flow in a closed cylindrical 

container with a rotating top has been studied both experimentally and numerically for 

several decades. The first set of experiments was carried out by Vogel [79] in 1968. 
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And then, Ronnenberg [80] and Escudier [81] took some experiments to observe the 

flow produced in cylindrical container by a rotating end wall, in which they found the 

formation of a concentrated vortex core along the center axis. Based on their research 

work, many experimental and numerical studies have been carried out later. Spohn et 

al. [82] experimentally studied the vortex breakdown bubbles which appeared in 

steady-state flow in a closed cylindrical container with the rotating bottom. Details of 

the flow were visualized by means of the electrolytic precipitation technique, whereas 

a particle tracking technique was used to characterize the whole flow field. Later, 

Sotiropoulos et al. [83] carried out the first experiment to verify their early numerical 

findings which show the existence of chaotic behavior in the Lagrangian transport 

with the vortex-breakdown bubbles for flows are steady. In the computations, 

numerous cylindrical problems were investigated. Lopez [77,84,85] published three 

papers to investigate the axisymmetric vortex breakdown from 1990 to 1992. 

Sotiropoulos et al. [86,87] studied three-dimensional structure of confined swirling 

flows with vortex breakdown in 2001. Apart from the one side rotation, people find 

two sides rotation can give new insight to the problems and give some new ideas on 

how to control the vortex. The influence of co- and counter-rotation of the other end 

wall of the cylinder on vortex breakdown was studied experimentally by Bar-Yoseph 

et al. [88] Gautier et al. [89] and Fujimura et al. [90]. In computations, Valentine and 

Jahnke [91] and Lopez [92] studied the case of co-rotating end walls with the same 

angular velocity for steady and unsteady swirl flow. 

The other typical rotation flow is Taylor-Couette flow. The flow moves between two 

concentric rotating cylinders of infinite length, known as Taylor-Couette flow. This 

kind of flow has been investigated by many experiments and numerical studies. As we 

know, Taylor [93] first studied the stability of this viscous flow experimentally and 

theoretically in 1923. However, the aspect ratio of the annular cavity is not large 

enough to apply the Taylor-Couette model in practice. The ends effects also played an 

important role when the aspect ratio reduced. So that the solutions in the annulus of 

short cylinders may different from the ideal Taylor-Couette model which was 

presented by Benjamin [94,95]. DiPrima and Eagles [96] have reported the influence 

of the radius ratio on the stability of the Taylor-Couette flow. When the radius ratio 

decrease, the number of unstable flow patterns in a fixed Reynolds number decreased 

rapidly. On the other hand, the rotation speed of the inner cylinder is also need to 
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study. At low rotational speed of the inner cylinder, the flow is steady and the vortices 

are planar. Three-dimensional vortices would begin to appear when the speed of 

rotation exceeds a critical value which depends on the radius ratio of two cylinders. 

Among these studies, most of them used the conventional Navier-Stokes solvers to 

studies the Taylor-Couette flow with Newtonian fluid. Recently, the lattice Boltzmann 

method received much attention from the non-Newtonian fluid dynamics researcher. 

Yoshino et al. [97] proposed a numerical model for non-Newtonian fluid flows based 

on the LBM. They applied this method to two representative test case problems, 

power-law fluid flows in a reentrant corner geometry and non-Newtonian fluid flows 

in a three-dimensional porous structure. Their simulations indicated that this method 

can be useful for practical non-Newtonian fluid flows. Wang and Bernsdorf [98] used 

the LBM in the analysis of a blood flow using the Carreau Yasuda model. A 

comparison has been made between non-Newtonian and Newtonian flows in a three-

dimensional (3D) generic stenosis. 

Later, several authors developed their own model to study the axisymmetric flows 

using the LBM. Niu et al. [43] developed an extension idea of Halliday et al. [41] 

which include the azimuthal rotation effect in their model. The rotation terms are 

considered as inertia forces by their methods. Peng et al. [42] improved Halliday’s 

method to the axisymmetric thermal systems. Besides the radial and axial velocity 

components solved by the lattice Boltzmann formulation, the azimuthal velocity 

component and the temperature are calculated by a finite differences scheme. 

Moreover, Huang et al. [99–103] presented a revised version of the D2Q9 model 

proposed by He and Luo [104] which improved the numerical stability and to reduce 

the compressibility effect. They developed a hybrid lattice Boltzmann scheme for 

axisymmetric flows with the rotation of the inner cylinder. The axial and the radial 

velocities were solved by inserting source terms into the two-dimensional lattice 

Boltzmann equation, while the azimuthal velocity and the temperature equations were 

discretized with a finite difference scheme. More recently, Zhou [51] developed 

another axisymmetric scheme, suitable for general axisymmetric flows, where the 

force and source or sink terms were incorporated into the lattice Boltzmann (LB) 

equation naturally. In 2011, the same author presented a revised axisymmetric lattice 

Boltzmann method [50]. Later, An et al. [105] developed an analytical solution of an 

axisymmetric lattice Boltzmann model for cylindrical Couette flows for non-
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Newtonian fluid. To improve the numerical stability and eliminate the compressibility 

effect of standard LBM, It is necessary to obtain a more robust incompressible 

axisymmetric D2Q9 model. 

1.4.3 Study of Turbulent Flow 

The flow with turbulence is very important in both theoretical and practical study. 

From the theoretical view, it can be simulated using the Navier-Stokes equations and 

the continuity equation. However, the most important characteristic of a turbulent 

flow is the enormous numbers of scales, which is not an easy way for a traditional 

method to obtain the results. Meanwhile, Tennekes and Lumley [106] summarized a 

number of characteristics for turbulent flow:  

1) Turbulent flow is irregular, random and chaotic, which consists of a spectrum of 

eddy sizes.  

2) The diffusivity in turbulent flow increases with the rise of the Reynolds number Re. 

That means the exchange of momentum increases.  

3) Turbulent flow takes place at high Reynolds number. For example, turbulent 

axisymmetric pipe flows usually occurs when 4000Re   [107], in which 

Re / .uD v   

4) Turbulent flow is always three-dimensional. But when the governing equations are 

time-averaged or space-filtered, it can be dominated by two-dimensional 

characteristics and exists in practice as a two-dimensional flow problem. [106]  

5) Turbulent flow is dissipative, as the kinetic energy of the small eddies, which is 

obtained from larger eddies, is transformed into internal energy. The largest eddies 

extract the energy from the mean flow. Such process is referred to as a cascade 

process [106].  

6) The flow should still be treated as a continuum in spite of the occurrence of 

different sizes of eddies. 
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By using the LBM to solve a high Reynolds number flow, the unresolved small scale 

effects on large scale dynamic should be added, otherwise the results will be instable. 

Sterling and Chen [108] reported consistently with this argument and they found the 

LBM can be viewed as an explicit second-order finite-difference discretization 

method.  In order to extend the LBM to include small scale dynamics for turbulent 

flows, two methods have been proposed. Because of the LBM was originated from 

LGA method and the lattice gas dynamics contains small scale fluctuations, so Hou et 

al. [55] suggest the LBM can be used to simulate large scale motions and the lattice 

gas method can be used to simulate small scale dynamics. The other one is much 

simple, in which the LBM can be combined with the traditional subgrid model. Benzi 

et al. [109] and Qian et al. [110] followed this approach and obtained reasonable 

results.  Among the simplest subgrid models is the standard Smagorinsky model [47], 

which uses a positive eddy viscosity to represent small scale energy damping. 

Therefore, Hou et al. [55] discussed the traditional subgrid model and incorporated it 

into the framework of the LBM naturally.  Following the similar idea to Hou et al., 

Zhou has developed a lattice Boltzmann model for the shallow water equations with 

turbulence modelling (LABSWE
TM

) [56], demonstrating its power and applicability 

for turbulence modelling [57].  Meantime, lots of other methods have been carried out 

for the flow turbulence modelling. Krafczyk et al. [111] developed a large eddy 

simulation with a multiple-relaxation-time (MRT) lattice Boltzmann model for the 

Navier–Stokes equations. Yu et al. [112] proposed similar a work and applied the 

MRT lattice Boltzmann model to simulate turbulent square jet flow.  

1.5 Aims and Contributions 

In the practical engineering, axisymmetric flows with turbulence are commonly 

observed. Although the lattice Boltzmann method has developed quickly over the past 

two decades, it is still a relative new method that unlike the traditional CFD methods. 

Like all the CFD methods, the LBM also has some drawbacks and needs further 

improvement. Although the AxLAB® has demonstrated its potential and attractive 

capabilities in simulating axisymmetric flows, it still needs to be improved and tested 

for more flow problems.  
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Therefore, the main contributions of this study are to present and improve the general 

LBM for axisymmetric flows and apply these models to study the axisymmetric fluid 

flows. The detailed novelties can be summarized as follows: 

1. Presented a general method by inserting proper source terms into the lattice 

Boltzmann equation this made the model simpler and save the calculation time. In 

addition, a new simple boundary condition for the distribution function was used to 

simulate the axisymmetric flows which shown efficiency and accuracy. 

2. Developed the AxLAB® model for the non-Newtonian flows like the flow in 

Taylor-Couette flow. 

3. Improved the AxLAB® model for simulation of flow turbulence by combining 

with the subgrid-scale (SGS) stress model and verify it by simulating different 

turbulent flows. 

 

1.6 Outline of the Thesis 

In Chapter 1, introduces the research background and the history of the lattice 

Boltzmann method, reviews the development and application of LBM in recent years 

briefly and outlines the aim and the objectives of this thesis. 

In Chapter 2, briefly describes the N-S equations and the various axisymmetric flow 

governing equations such as laminar flow, turbulent flow. 

In Chapter 3, the basic knowledge of lattice Boltzmann methods are introduced. The 

derivation and theory for the axisymmetric lattice Boltzmann model are presented and 

two models were described to simulate axisymmetric flows with or without swirl. A 

brief recovery procedure for the axisymmetric flow equations from the AxLAB® is 

given. 
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In Chapter 4, the non-Newtonian fluid simulation was introduced and a general 

power-law model was suggested for incompressible non-Newtonian fluid flows based 

on the AxLAB®. Meanwhile, a recovery procedure was presented in this chapter. 

In Chapter 5, briefly describes the subgrid-scale (SGS) stress model and how to 

combine it with the AxLAB® for turbulence modelling. A recovery procedure was 

also presented in this chapter. 

In Chapter 6, discusses the initial and boundary conditions used in the lattice 

Boltzmann method. In this chapter, the no-slip, semi-slip and slip boundary conditions 

are presented. 

In Chapter 7, several steady and unsteady flows through axisymmetric pipe and 

complex rotation flows were simulated and analyzed. 

In Chapter 8, the non-Newtonian fluid rotation flows was studied and compared with 

other methods. 

In Chapter 9, a turbulent axisymmetric LBM simulation is presented and applied to 

simulate the three different cases. The accuracy of the turbulent model was compared 

with other method and experiment results. 

In Chapter 10, conclusions and recommends to future work were presented. 
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Chapter 2: Governing Equations for Axisymmetric 

Flows 

2.1 Introduction  

Fluid flows obey the conservations of mass and momentum. Based on these 

conservation laws, a set of differential equations can be derived to represent fluid flow 

motions. A general set of flow equations are the continuity equation and the Navier-

Stokes (N-S) equations. In this chapter, the governing equations, the N-S equations, 

and axisymmetric flow equations with and without turbulence terms are described.  

2.2 The Navier-Stokes Equations 

The governing equations for general incompressible flows are the three-dimensional 

continuity and Navier-Stokes (N-S) equations that are derived from Newton’s second 

law of motion and the mass conservation.  If Cartesian coordinate is adopted, the N-S 

equations can be shown as follows: 

 0
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in which  x, y and z are  the  Cartesian  coordinate  (see  Fig  2.1);  u , v  and w  are  

the corresponding velocity components, respectively; xf , 
yf  and zf  are the body 



Chapter 2: Governing Equations for Axisymmetric Flows 

18 
 

forces per unit mass in the corresponding direction;   is the kinematic viscosity; p   

is the pressure;  and   is the fluid density and t   is the time. 

The equations (2.1-2.4) can also be written in tensor form as 

 0,
j

j

u

x





  (2.5) 

 
  2

1
.

i ji i
i

j i j j

u uu up
f

t x x x x




 
   

   
  (2.6) 

where the subscripts i  and j  are space direction indices; if  is the body force per unit 

mass acting on fluid in the i  direction and the Einstein summation convention is used. 

 

Figure 2.1 Cartesian coordinate system. 

The whole left hand side of Eq. (2.6) is an inertia term, in which the second term is 

called convective term. The three terms on the right hand side are the body force term, 

the pressure term and the viscous term in sequence. As the general governing 

equations for fluid flows, the N-S equations have no analytical solution except for 

some simple situations. However, taking advantage of the increasing computer power, 

it is possible to obtain numerical solutions to the equations. Thus, numerical methods 

play an increasingly important role in solving flow problems in engineering.  
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2.3 Governing Equations in Axisymmetric Flows  

2.3.1 Laminar Flow 

Consider the flow of an incompressible, isotropic fluid through a three-dimensional 

pipe. The ,   and r ze e e  are the standard orthonormal unit vectors which defining a 

cylindrical coordinate system: 
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  (2.7) 
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e
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  (2.8) 

  0,0,1 .ze    (2.9) 

in which 2 2 ,r x y    is the azimuth, cosx r   and sin .y r   If the solution to 

the Navier-Stokes equation is of the form 

    , , ,r r z zu u r z e u r z e    (2.10) 

that is the velocity field does not depend on  , then the flow is defined to be 

axisymmetric (without swirl). The continuity equation in cylindrical coordinate is  
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 
  (2.11) 

and the components of the momentum equation are: 
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where v  is the kinematic viscosity. After coordinate transformation, equations (2.11)-

(2.13) can be written in Cartesian-like coordinates: 
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
  (2.14) 
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where the Cartesian coordinate system and the Einstein summation convention are 

used. 

In equation (2.14) and (2.15),   is the density; p  is the pressure; t  is the time;   is 

the kinematic viscosity; i  is the index standing for r or x ; r and x  are the coordinates 

in radial and axial directions, respectively; iu  is the component of velocity in i  

direction; 
ij  is the Kronecker   function defined by: 

 d
ij

=
0,     i ¹ j,

1,     i = j.

ì

í
ï

îï
  (2.16) 

Incorporation of the continuity equation (2.14) into the momentum equation (2.15)

results in [49]: 
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  (2.17) 

2.3.2 Turbulent Flow 

Generally speaking, the turbulent flows can be described either by time-averaged 

Navier-Stokes equation, the Reynolds equation or space-filtered Navier-Stokes 

equation, the large eddy simulation (LES). In time-averaged models, the variables in 

turbulent flows are divided into two parts: the time-averaged part and the perturbation 

part. Taking the velocity for example, it is 
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 ' .jj ju u u    (2.18) 
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where ju  is a universal variable; ju  is the time-averaged part and '

ju  is the 

perturbation part of the variable. After substitution of above equation (2.18) into the 

governing equations, e.g. the N-S equations in the three-dimensional situation, 
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a new term ' '

ij i ju u    named the Reynolds stress turns up. According to the 

Boussinesq approximation [113], the Reynolds stresses ij  can be expressed in terms 

of the mean strain rate, 
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  (2.22) 

As there are ten unknowns (three velocity components, pressure and six stresses) and 

four equations (the continuity equation and the N-S equations), the closure problem 

needs to be solved [114]. Based on these problems, there are various levels of 

approximate methods to close the set of governing equation (2.20) and (2.21) as 

follows.  

1. Zero-Equation models. In this model, a simple algebraic relation is used to compute 

eddy viscosity. The Reynolds stress tensor is assumed to be proportional to the 

velocity gradients [115],  
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  (2.23) 
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ml  is determined experimentally. 

2. One-Equation models. These models usually solve a transport equation of a 

particular turbulent quantity, e.g. turbulent kinetic energy, and obtain a second 

turbulent quantity from an algebraic expression [114]. 

 .t mv C kl   (2.24) 
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  (2.25) 

C  is a constant determined from simple benchmark experiments by Launder and 

Spalding [115]. 

3. Two-Equation models. In this model, two partial differential equations are designed 

to describe two transport scalars. A typical model in such a category is the widely 

used k   model [116],  
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  (2.28) 

where k  is the turbulent kinetic energy and   is the turbulent dissipation rate. 

4. Reynolds stress models (RANS). A transport equation is derived for the Reynolds 

stress 
' '

i ju u . Then the Reynolds stresses are used to obtain closure of the Reynolds-

averaged momentum equation [117]. The RANS transport equation is written as  



Chapter 2: Governing Equations for Axisymmetric Flows 

23 
 

 
   

' ' ' '

' ' ' ' ' ' '

                                 ,

i j k i j

i j k kj i ik j i j

k k k

ij ij ij ij

u u u u u
u u u p u u u u

t x x x

P G

 
   



    
      

    

   

  (2.29) 

where 
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The objective of this model is to find the turbulent diffusion, the pressure strain 

correlation and the turbulent dissipation rate. 

Lots of research shows that the space-filtered Navier-Stokes equation is more 

expensive to use than the time-averaged Reynolds equation, but it can produce more 

accurate solution to turbulent flows and also provide detailed characteristics of flow 

turbulence [54]. Therefore, the large eddy simulation is used for turbulent flows in 

this study. The flow equations for the large eddy simulation can be obtained by 

introducing a space-filtered quantity in the continuity (Eq.(2.5)) and the momentum 

equation (Eq.(2.6)). The space-filtered continuity and Naviaer-Stokes equation can be 

denoted as: 
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and 
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where iu  is the space-filtered velocity component in i  direction defined by: 
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with a spatial filter function G . 
ij  is named the subgrid-scale stress which reflects 

the effects of the unresolved scale with the resolved scales, i.e. 

 .i jij i ju u u u     (2.37) 

By following the Boussinesq assumption for turbulent stress, the subgrid-scale (SGS) 

stress with an SGS eddy viscosity ev  was further represented as 
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  (2.38) 

Substitution of  Eq.(2.38) into Eq.(2.35) leads to the following momentum equation, 
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where tv  is the total viscosity t ev v v  , v  is the kinematic viscosity;  ev  is the eddy 

viscosity, defined by 

  
2

,e s s ij ijv C l S S   (2.40) 

where sC  is the Smagorinsky constant [53], sl  is the characteristic length scale and 

ijS  is the magnitude of the large scale strain-rate tensor. 
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For the subgrid-scale (SGS) stress model, the finer the grid size, the less unresolved 

scale eddies. If the grid size is small enough, the SGS model can be a direct numerical 

simulation. because in the lattice Boltzmann method, the lattice spacing and the mesh 

size is usually much smaller than that used in a traditional computation method, it can 

be expected an incorporation of a subgrid-stress model into the lattice Boltzmann 

method can obtain more accurate solution for turbulent flows. 

Substitution of Eq. (2.37) into Eq.(2.35) leads to the following momentum equation,  
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From the above equation, it is noticed that a new term ' '

i ju u  turns up which named as 

Reynolds stress.  

For convenience, the hats of iu  and ju  in following equations are dropped off 

resulting the same form of general turbulent axisymmetric flow equations, but the 

corresponding symbols represent the space-filtered variables. The governing 

equations for the incompressible axisymmetric turbulent flow in a cylindrical 

coordinate system can be written in tensor form as: 
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where tv  is the full viscosity for turbulent flow, t ev v v  . 
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Chapter 3: Lattice Boltzmann Method 

3.1 Introduction 

Evolving from a simplified and fictitious molecular model (the lattice gas cellular 

automata (LGCA)), the lattice Boltzmann method (LBM) is a discrete computational 

method. In general, it is comprised of three components: the lattice Boltzmann 

equation controls the transport of the particle distribution function from one lattice to 

the nearby lattice; a lattice pattern represents grid nodes and determines particles' 

motions; and the local equilibrium distribution function decides what flow equations 

are recovered by the lattice Boltzmann model, e.g. the axisymmetric flow equations. 

These three main topics and some related aspects are described in this chapter. 

3.2 Derivation of the Lattice Boltzmann Equation 

 

Figure 3.1 Nine-speed square lattice (D2Q9). 

In  lattice Boltzmann theory  [14],  the streaming and collision steps are  the main  

two  steps  that  make  up  the  LBM.  In  the  streaming  step,  particles that  move  

towards  their  nearest  neighbours  at  their  own  velocities  and their directions are 

governed by: 
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where f  is the distribution function of the particles, 'f  is the value before the 

streaming, e  is  the  velocity  vector  of  a  particle  in  the   link; t  is the time 

step, x  is the space vector, /e x t   ; x  is the lattice size; iF  is the force term, N  

is a constant decided by the lattice pattern as: 
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     (3.2) 

Meanwhile, in the collision step, the particles arrive and interact with one another and 

change their velocities and directions according to the rules of scattering, denoted by: 

      ' , , , ,f x t f x t f x t         (3.3) 

where    is the collision operator  that  controls the speed of change in f  during 

collision. 

The collision operator   is a matrix and can be obtained from kinetic theory. 

However, due to the complexity of the analytic solutions, Higuera and Jimenez [118] 

proposed a fundamentally important idea of simplifying the collision operator. They 

linearized the collision operator around its local equilibrium state.  This collision 

operator     is then expanded in terms of its equilibrium value.  Referring to Noble 

et al. [119], the operator is as follows: 
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  (3.4) 

where eqf   is the local equilibrium distribution function. 

After high-order terms in Eq. (3.4) are neglected and  implying that    0eqf  ,  a  

linearized  collision  operator  (equation  (3.5))  is obtained: 
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If assuming the local particle distribution relaxes to an equilibrium state at a single 

rate   [120,121], 
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where 
  is the Kronecker delta function: 
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Eq. (3.5) can be written as 
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the above Eq. (3.8) resulting in the lattice BGK collision operator [116], 
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where    is named as single relaxation time.  By  substituting  the collision operator  

(3.9)  into  (3.3), the  most popular lattice Boltzmann equation or the  so-called  single  

relaxation  time  lattice  Boltzmann  equation  can  be expressed as follows [14]: 
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3.2.1 Relation to Continuum Boltzmann Equation 

Although the lattice Boltzmann equation (3.10) historically evolved from LGCA, the 

LBE can also be derived from the continuous Boltzmann equation (CBE). 

The CBE with the BGK approximation reads [121]: 
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where    ,  ,  f f x e t  is the single-particle distribution in continuum phase space

 ,  x e ; e is the particle velocity;   is a relaxation time; i j
x y
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 is the 

gradient operator; and 
eqf is the Maxwell-Boltzmann equilibrium distribution function 

defined by 
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where D is the spatial dimension; particle velocity e and fluid velocity V are 

normalized by 3RT ; R is the ideal gas constant and T is temperature, which produce 

a sound speed of 1/ 3.sU   [18]. Then the fluid density and velocity are calculated 

in terms of the distribution function, 

 ,fde     (3.13) 

 .V efde     (3.14) 

If the fluid velocity V is small compared with the sound speed, the equilibrium 

distribution function given by Eq. (3.12) can be expanded in the following form up to 

the second order accuracy [123], 
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In order to introduce a discrete Boltzmann model, a finite set of velocities and 

associated distribution functions are built up instead of the whole. 

    , , , ,f x t f x e t    (3.16) 

    , , , ,eq eqf x t f x e t    (3.17) 

They still satisfy Eq. (3.11) 
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where for D2Q9 square lattice, 
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A discretization of Eq. (3.18) is given by 
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    


  (3.21) 

Lagrangian behaviour is then obtained by the selection of / xx t e    and the terms 

of  ,  f x t t   are cancelled, leading the above equation to 

      
1

, , .eqf x e t t t f x t f f S t     


           (3.22) 
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with / t   . Strictly speaking,   should be called a single dimensionless 

relaxation time. The beauty of above transformation is that it provides a linear 

approach Eq.(3.22) to model a nonlinear system Eq.(3.18), since the terms regarding 

 ,  f x t t   disappear. 

 

3.3 Lattice Pattern 

 

Figure 3.2 Lattice Patterns: 9-speed square lattice (D2Q9) and 7-speed hexagonal 

lattice (D2Q7). 

In the traditional methods, a lattice pattern is used to set up grid points. But in the 

lattice Boltzmann method, it has another function, determining particle's motions, and 

a microscopic model for molecular dynamics. In the lattice Boltzmann equation 

Eq.(3.10), the constant N  is determined by the lattice pattern. 

In two-dimensional situations, there are various regular lattice patterns for selection, 

for which the LBM can be written down in a simple, explicit form [123]. Among 

these lattice patterns, the square and hexagonal lattices (from Fig. 3.2) are popular. In 

this thesis, they are referred by D2Q9 and D2Q7 respectively, i.e. two dimensional, 

nine or seven velocities according to Qian's denotation [124]. The square lattice can 

also be D2Q4 or D2Q8 and the hexagonal lattice can be D2Q6 regardless of the zero 

velocity. However, not all these lattice patterns have sufficient symmetry that is a 
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dominant requirement for recovery of the correct flow equations [15]. Theoretical 

analysis and numerical tests illustrate that both the D2Q9 and D2Q7 lattice have such 

a property and satisfactory performance in numerical simulations. In 1993, Skordos 

indicated that models based on the D2Q9 lattice usually produce more accurate results 

than those using the D2Q7 lattice [125]. Furthermore, the use of the square lattice 

offers an easy way to implement different boundary conditions [126], e.g. the force 

term can be associated with a gradient and boundary conditions can be easily and 

accurately determined. Therefore, the D2Q9 lattice is preferred.  

For the 9-speed square lattice (D2Q9) shown in Fig. 3.1, each particle moves one 

lattice unit at its velocity along one of the eight links indicated with number 1-8, or 

else 0 indicates the particle at rest with zero speed. The velocity of particles is defined 

by: 

 

 

   

   

0,0 ,                                                      0,

1 1
cos ,sin ,       1,3,5,7,

4 4

1 1
2 cos ,sin ,   2,4,6,8.

4 4

e e

e





   


   








  
   

 


  
  
  

  (3.23) 

It is easy to demonstrate that the 9-speed square lattice has the following basic 

features, 

 0,i i j ke e e e   
 

     (3.24) 

 26 ,i j ije e e 


   (3.25) 

  4 44 6 ,i j k l ij kl ik jl il jk ijkle e e e e e   


            (3.26) 

where 
1,       ,

0,           .
ijkl

i j k l

otherwise

  
  


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Substitution Eq. (3.23) into Eq. (3.2), the following equation can be obtained  

 
2 2

1 1
6.x x y yN e e e e

e e
    

 

      (3.27) 

Combining the above equation and Eq.(3.10), the most common form of a lattice 

Boltzmann model with D2Q9 lattice can be obtained. 

        2

1
, , , .

6

eq

i i

t
f x e t t t f x t f f e F x t

e
     




          (3.28) 

 

3.4 Local Equilibrium Distribution Function 

The local equilibrium distribution function plays a significant role in the lattice 

Boltzmann method. It decides what flow equations are solved by the lattice 

Boltzmann model. A suitable local equilibrium distribution function eqf  must be 

derived, if the lattice Boltzmann equation Eq. (3.28) is applied to solve the two 

dimensional axisymmetric flow equations (2.14) and (2.15). According to the theory 

of the lattice gas cellular automata (LGCA), an equilibrium function is the Fermi-

Dirac distribution, which is often expanded as a Taylor series in macroscopic velocity 

to its second order [127]. For the lattice Boltzmann method, applying a Taylor 

expansion to the Maxwell-Boltzmann distribution can obtain the equilibrium 

distribution function for recovering the Navier-Stokes equations [128]. However these 

methods are not suitable to generate the axisymmetric flow equations. Thus an 

alternative and powerful way called the Ansatz method [129] is used to find the 

proper expression for the local equilibrium distribution function. In the Ansatz 

method, an equilibrium function can be assumed as a power series in macroscopic 

velocity [14]. 

 ,eq

i i i j i j i jf A B e u C e e u u D u u             (3.29) 

This assumption makes the process a general approach, which is successfully used for 

solution of various flow problems. Its accuracy and flexibility have been proved and 
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demonstrated by a number of researchers [130,131,132]. Since the equilibrium 

function has the same symmetry as the lattice, there must be 

 
1 3 5 7 ,A A A A A      (3.30) 

 
2 4 6 8 ,A A A A A      (3.31) 

Similar expressions for ,  and .B C D    For convenience, Eq. (3.29) is expressed as 

 

0 0 ,                                                       0,

,               1,3,5,7,

,              2,4,6,8.

i i

eq

i i i j i j i i

j i i j i j i i

A D u u

f A Be u Ce e u u Du u

A Be u Ce e u u Du u

   

  







  



    

    

  (3.32) 

In order to determine the coefficients in the above equations, the conservation 

relations such as mass and momentum conservations are used as the constraints on the 

equilibrium distribution function. For the axisymmetric flow equations, the local 

equilibrium distribution function (3.32) must satisfy the following three conditions, 

 ,eqf


   (3.33) 

 ,eq

i ie f u 


   (3.34) 

 .eq

i j ij i je e f p u u  


     (3.35) 

Based on the above constraints, the calculation of the lattice Boltzmann equation 

(3.28) leads to the solution of the two-dimensional axisymmetric flow equations (2.14) 

and (2.15). In this procedure, the source term of the axisymmetric flow equations, 

such as the friction force and the wind shear stress, is not involved, since it will be 

cancelled out. 

If Eq. (3.33) is substituted into Eq. (3.32), one can obtain, 
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0 0

1,3,5,7 1,3,5,7

2,4,6,8 2,4,6,8

4 4

4 4 .

i i

i i i j i j i i

i i i j i j i i

A D u u

A Be u Ce e u u Du u

A Be u Ce e u u Du u

  
 

  
 



 

 



   

    

 

 

  (3.36) 

Substituting Eq. (3.23) into the above equation evaluating the coefficients of   and 

i iu u  respectively, so 

 
0 4 4 ,A A A      (3.37) 

 
2 2

0 2 4 4 4 0.D e C e C D D       (3.38) 

Similarly, inserting Eq. (3.32) to Eq.(3.34) yields 

  

 

0 0

1,3,5,7

2,4,6,8

.

i i j j

i i j i i j k i j i i i

i i j i i j k i j i i i i

A e D e u u

Ae Be e u Ce e e u u De u u

Ae Be e u Ce e e u u De u u u

 

      


      










   

    





  (3.39) 

Making the coefficients of iu  equal results in 

 
2 22 4 .e B e B     (3.40) 

Again, inserting Eq. (3.32) to the third constraint Eq.(3.35) yields 

 

 

 

1,3,5,7

2,4,6,8

.

i j i j k j k i j k l k l i j k k

i j i j k j k i j k l k l i j k k

ij i j

Ae e Be e e u u Ce e e e u u De e u u

Ae e Be e e u u Ce e e e u u De e u u

p u u

          


          


 





  

   

 



   (3.41) 

Substituting Eq. (3.23) into the above equation leads to 
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2 4 2 2

2 4 2

2 2 2 4

8 4 4 .

ij i i i i ij

i j i i i i ij i j

Ae Ce u u De u u Ae

Ce u u Ce u u Ce u u p u u
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 

  

    

  (3.42) 

Another four relations can be obtained based on the above equation, 

 2 22 4 ,e A e A p    (3.43) 

 28 ,e C    (3.44) 

 22 ,e C    (3.45) 

 
2 2 42 4 4 0.e D e D e C     (3.46) 

Eqs. (3.44) and (3.45) can be put together and yields 

 4 .C C   (3.47) 

Due to the symmetry, it is feasible to assume three additional relations with respect to 

Eq. (3.47). 

 4 ,A A   (3.48) 

 4 ,B B   (3.49) 

 4 .D D   (3.50) 

Up to now, ten equations, (3.37), (3.38), (3.40) and (3.43) - (3.50) are available, so the 

coefficients can be calculated 

 0 0 2

4 2
,      

9 3
A B

e


     (3.51) 

 
2 4 4

,      ,      ,      
9 3 2 6

A B C D
e e e

   
       (3.52) 
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2 2 2

,      ,     ,     
36 12 8 24

A B C D
e e e

   
       (3.53) 

Therefore, if Eqs. (3.51), (3.52) and (3.53) are substituted into Eq. (3.32), the local 

equilibrium distribution function is expressed as 

 
2 4 2

9 3
1 3 ,

2 2

ai aj i jeq ai i i i
a a

e e u ue u u u
f

e e e
 

 
    

 
  (3.54) 

where  

 

4
,                 0,

9

1
,        1,3,5,7,

9

1
,       2, 4,6,8.

36





 









 






  (3.55) 

This local equilibrium distribution function is then used in the lattice Boltzmann 

equation for solving the axisymmetric flow equations. 

 

3.5 Lattice Boltzmann Equation for Axisymmetric Flows 

3.5.1 Axisymmetric Flows without Swirl 

The AxLAB® on the nine-speed square lattice shown in Fig. 3.1 reads [50], 

       2
, , ,eq

i i

t
f x e t t t f x t f f t e F

e
         


           (3.56) 

where f  is the distribution function of the particles, eqf  is the local equilibrium 

distribution function, t  is the time step, x  is the space vector, /e x t   ; x  is 

the lattice size;   is the weight,   is the source or sink term,  
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 ,ru

r


     (3.57) 

iF  is the force term calculated by:  

 
2

2
;i r i

i ir

u u vu
F

r r

 
     (3.58)                               

in which
ij  is the Kronecker   function, ie  is the component of e , which is the 

velocity vector of a particle in the   link 

 

 

   

0,0 ,                                            0,

1 1
cos ,sin ,  0;

4 4

e
e





   
 



 




 
 









  (3.59) 

With   defined as: 

 
1,        1,3,5,7,

2,     2,4,6,8.








 


  (3.60) 

 is constant and can be defined by: 

 ;2 2

1 1
x x r re e e e

e e
   

 

     (3.61) 

and   is the relaxation time: 
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,                                         

2 11
1 ,           0.

2

0,

r

r

e t
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r





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







 
 

  








 

  (3.62) 

If the nine-speed lattice pattern is used, w  is defined by Eq.(3.55). 



Chapter 3: Lattice Boltzmann Method 

39 
 

The constant relaxation time   and the fluid kinematic viscosity   have the 

relationship as follows: 

  
2

2 1 .
6

e t
 


    (3.63) 

The local equilibrium distribution function eqf   can be calculated from Eq. (3.54). 

According to the definition, the fluid density   and velocity iu  can be obtained 

from 

 ,f


    (3.64) 

 .
1

i iu e f 


    (3.65) 

 

3.5.2 Recovery of the Axisymmetric Flow Equations without Swirl 

The Chapman-Enskog analysis is applied to show that the macroscopic equations 

(2.14) and (2.17) can be derived from the lattice Boltzmann equation (3.56). It is 

assumed that t  is small and equal to  , 

 .t     (3.66) 

Substitution of the above equation into Eq.(3.56) yields 

   

 
 

  2
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2 11
                       .

2 6

eq eq

r i i

f x e t f x t

f f e f f w e F
r e

  
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 

 
 

 

  


      

  (3.67) 

By taking a Taylor expansion to Eq.(3.67) in time and space at point  ,x t ,  



Chapter 3: Lattice Boltzmann Method 

40 
 

 

 
 

 

2

2 3

2

1

2

2 11
.

2 6

j j

j j

eq eq

r i i

e f e f O
t x t x

f f e f f w e F
r e

   

      

  

 
  

 

      
               


      

  (3.68) 

 According to the Chapman-Enskog expansion, f  can be written in a series of  , 

        0 1 22 3 .f f f f O           (3.69) 

The centered scheme [9] is used for both source term   and force term iF  as 

 
1 1

,
2 2

x e t   
 

   
 

  (3.70) 

and 
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, .
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i iF F x e t 
 

   
 

  (3.71) 

which can also be written, via a Taylor expansion, as 

      21 1 1
, , ,

2 2 2
j

j

x e t x t e x t O
t x
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  (3.72) 

and 
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, , , .
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j
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  (3.73) 

After substitution of Eq.(3.69), (3.72) and (3.73) into Eq.(3.68), the equation to the 

order of 0  is 

  0
,eqf f    (3.74) 
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to the order of   is 
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  (3.75) 

and to the order of 2  is  
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  (3.76) 

By using Eq. (3.75), the above equation can be written as 
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  (3.77) 

From Eq. (3.75)+   Eq.(3.77), 
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
     

  (3.78) 

The summation of the above equation over   provides 

 
   0 0

.j

j

f e f
t x

  
 


 

 
 
    (3.79) 

The use of equation (3.74) and substitution of equation (3.64) and (3.65) into the 

above equation result in the continuity equation (2.14). If the density variation is 

small enough and can be neglected. 
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Taking 
aie [equation (3.75) + 𝜀 × equation (3.77)] above   yields 

  
 0

0
,

ij ij ir
i i

j j

e f F
t x x r

 


  
   

  
   (3.80) 

where 0

ijП  is the zero-order momentum flux tensor given by the following 

expressions: 

    0 0
,ij i je e f  



    (3.81) 

    1
2 1 ,

2
ij i je e f  







       (3.82) 

and 

    1
2 1 .

2
ij i re e f  







       (3.83) 

By evaluating the terms in Eq. (3.81) with Eq.(3.54),  

  0
,ij ij i jp u u      (3.84) 

where 
2 / 3p e  is the pressure, leading to a sound speed / 3sC e . Substitution 

of the above equation into equation (3.80) produces 

 
   

.
i j iji ir

i

j i j

u uu p
F

t x x x r

   
    

   
  (3.85) 

By applying equation (3.75), equation (3.82) can be rewrite as 

 
   1

2 1 ,
2

ij ij i re e w  



        (3.86) 
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with the first-order momentum flux tensor 1

ijП  defined by 

 
     1 0

2 1 ,
2

ij i r k

k

e e e f
t x

   





  
    

  
   (3.87) 

which can also be written using equation (3.81) as  

          1 0 0
2 1 2 1 .

2 2
ij ij i r k

k

e e e f
t x

   


 
 

 
     

 
   (3.88) 

The second term in the above equation can be evaluated with equation (3.54) and 

(3.74) as 

 
   
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.
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i r k i jk j ki k ij
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

     
 

  
 
   (3.89) 

If assuming characteristic velocity cU , length cL and time ct , the term 0/ ijtП   is of  

the order of 2 /c cU t , and the term 0/ k ai aj ak a

a

x e e e f    is of the order of 2 2 /c ce U L , 

based on which we obtain that the ratio of the former to the latter terms has the order 

of 

 

 

 

 

0 2

20

22
2

/ /

//

                                             .

ij c c

c ck i r k

c c

s

t U t
O O

e U Lx e e e f

U U
O O O M

e C

   






 
     
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 

  
   

   


  (3.90) 

In which /c sM U C  is the Mach number. It following that the first term in equation 

(3.88) is very small compared with the second term and can be neglected if 1M  , 

which is consistent with the lattice Boltzmann dynamics; hence equation (3.88), after 

equation(3.89) is substituted, becomes 
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     

2
1

2 1 ,
6

ij i jk j ki k ij

k

e
u u u

x


      


    


  (3.91) 

or 

 
       1

.
ji k

ij ij

j i k

uu u
v

x x x

 


  
    

    

  (3.92) 

In which   is the kinematic viscosity and defined by: 

  
2

2 1 .
6

e t
 


    (3.93) 

The insertion of equation (3.92) into equation (3.86) and evaluation of the rest of the 

terms of the equation lead to 

 
     

.
ji k

ij ij ij

j i k

uu u
v v

x x x

 
 

  
     

    

  (3.94) 

After applying the continuity equation (2.14) and ru

r
   , to the above,  

 
   

.
ji

ij

j i

uu
v

x x

 
   

   

  (3.95) 

Also,  

 
   

.
i r

ir

r i

u u
v

x x

   
   

  
  (3.96) 

Combining Eqs.(3.58), (3.95) and (3.96) with Eq. (3.85) results in 



Chapter 3: Lattice Boltzmann Method 

45 
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  
    

  

  (3.97) 

If the density variation is assumed to be small enough, the above is just the 

momentum equation(2.17). 

 

3.5.3 Axisymmetric Flows with Swirl 

For the axisymmetric rotational flows, the governing equation for an azimuthal 

velocity in a cylindrical coordinate system is [50]: 

 
  2

2 2

2
.

j r

j j

u uu u u u u u

t x x r r r r

    


  
    

   
  (3.98) 

Its further effect on the flow field is taken into account by adding an additional term 

to the force term iF  in Eq.(3.58) as 

 

2

2

2
.i r i

i ir ir

uu u vu
F

r r r

 
       (3.99) 

It is realized that Eq. (3.98) is an advection-diffusion equation and can be solved 

accurately and efficiently on either a D2Q4 or D2Q5 lattice Boltzmann model 

[133,134,135]. The D2Q4 lattice is used in rotation lattice Boltzmann equation for 

solution to the above equation as: 

 ( , ) ( , ) ( ) ,
4

eq

a a a a a a

S t
f x e t t t f x t f f





          (3.100) 
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where 
af is the distribution function; 

eq

a
f is the local equilibrium distribution function; 

S
is the source or sink term defined by: 

 
2

2
;

ru u u
S

r r

 



 
     (3.101) 

ae  is the velocity vector of a particle on the D2Q4, 

 
( 1) ( 1)

cos ,sin ,       1,2,3,4;
2 2

ae e
   


  

  
 

  (3.102) 

and 
a is also an effective relaxation time associated with the single relaxation time , 

 

1
,                                   0,

1 (2 1)
1 ,      0.

2

a
ar

r

e t
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
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
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    
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 
  

  (3.103) 

There are many expressions for the 
eq

a
f  and a simple one is used here: 

 
2

2
1 , 1,2,3,4,

4

eq aj j

a

e u u
f

e




 
   
 
 

  (3.104) 

where  
je  is the component of e . It is easy to show that the above equation has the 

following properties: 

 ,eqf u 


   (3.105) 

 ,eq

i ie f u u  


   (3.106) 

and 
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 2 / 2.eq

i j ije e f e u   


    (3.107) 

The azimuthal velocity can be calculated as: 

 
1

.a

a

u f


    (3.108) 

 

3.5.4 Recovery of Axisymmetric Lattice Boltzmann Equation with 

Swirl 

In order to prove that Eq. (3.98) can be recovered from the lattice Boltzmann equation 

(3.100), the similar Chapman-Enskog analysis was applied to that given in Sec. 3.3.2 

and, after taking a Taylor expansion to Eq. (3.100) in time and space at point  ,x t ,  

 

 

 
 

 

2

2 31

2

2 11
                                .

42

j j

j j

eq eq

r

e f e f O
t x t x

S
f f e f f

r

  


   

  


 
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
    

  (3.109) 

The centred scheme (3.80) is used again for the term S
, 

 
1 1

, ,
2 2

S S x e t   
 

   
 

  (3.110) 

which is further written, via a Taylor expansion, as 

      21 1 1
, , , .

2 2 2
i

i

S x e t S x t e S x t O
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      
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  (3.111) 

After substitution of Eq. (3.69) and (3.111) into (3.109), Eq.(3.109) to the order of 0  

is 
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 0 eq

f f    (3.112) 

to the order of   is 
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  (3.113) 

and to the order 2  is 
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  (3.114) 

The substitution of Eq.(3.113) into the above equation gives 
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  (3.115) 

Taking [  Eq.(3.113)+   Eq.(3.115)] yields 
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where  
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Inserting Eq. (3.113) into Eq. (3.117) leads to 
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or 
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The order analysis indicates that 
 0

/ it e f 


    has the order of 2 /c cU t  from 

Eq.(3.106) and 
 0

/ i jjx e e f  


    has the order 2 /c ce U L  from Eq.(3.107), based 

on which the ratio of the former to the latter has the order of 
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This suggests that the first term in Eq. (3.120) is much smaller compared to the 

second and can be dropped if 1M  , which again conforms to the lattice Boltzmann 

method; hence Eq.(3.120) can be approximated by 
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By applying Eq.(3.107) into above,  
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in which v  is the kinematic viscosity defined by 

  
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2 1 .
4

e t
v 


    (3.124) 

Similarly,  
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The substitution of Eqs.(3.105), (3.106), (3.123), and (3.125) into Eq. (3.116) results 

in the governing equation (3.98) if the density variation is assumed to be small 

enough. 

Consistency in the hydrodynamics requires the same kinematic viscosity, v v , 

which leads to 

  
1 1

2 1 .
2 3

v      (3.126) 

As seen from the above formulas, there is no calculation for a velocity gradient in the 

procedure and the added source or sink term is the same as that in the governing 

equation without the velocity gradient. 

 

3.6 Stability conditions 

The lattice Boltzmann equation is a discrete form of a numerical method. It also 

suffered from a numerical instability like any other numerical methods. Theoretically, 

the stability conditions are not known for the method. Generally, most of 

computational methods have shown that the method is often stable when some basic 

conditions are satisfied. 
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The lattice Boltzmann equation simulates the physical water flow, so the diffusion 

phenomena should be present. This implies that the kinematic viscosity v  should be 

positive [130], i.e. from Eq.(3.93) : 

  
2

2 1 0.
6

e t
v 


     (3.127) 

Thus an apparent constraint on the relaxation time is 

 
1

.
2

    (3.128) 

It should be point out that these conditions can be easily satisfied by using suitable 

values for the relaxation time. Also the time step should obey this relation: 

 
dx

t
e

    (3.129) 

Normally, the lattice velocity e  should not set too much larger than the flow velocity. 

Thus, the axisymmetric lattice Boltzmann method is stable as this condition is 

satisfied. 
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Chapter 4: Simulation of Non-Newtonian Fluids 

4.1 Introduction 

The majority of studies on the CFD focused on the Newtonian behaviour. However, 

in numerous engineering applications such as oil drilling and journal-bearing 

lubrication, the fluids often show a different behaviour from Newtonian fluid. Hence, 

a growing number of researchers take into account the rheological aspect by 

considering non-Newtonian fluids. Non-Newtonian fluids have a viscosity that is a 

function of shear rate. The viscosity of such fluids exhibits a non-linear relationship 

between shear stress and shear rate. In general all liquids exhibit a non-Newtonian 

character at certain shear rates, with Newtonian fluids being a sub class of non-

Newtonian fluids. In this chapter, a general power-law model will be presented and 

combined with the AxLAB® to simulate non-Newtonian fluid flow. 

4.2 AxLAB® for non-Newtonian Fluids Simulation 

For non-Newtonian fluids, it is a common practice to adopt the power-law model for 

the effective viscosity m , which is defined using the local shear rate   and the 

Newtonian fluid viscosity v  as, 

 
( 1)

,
n

m  


   (4.1) 

where  is the power-law exponent.  In the theory, when 1n   Eq. (4.1) describes the 

Newtonian fluid. When 0 1n  , the effective viscosity reduces with the fluid shear 

rate which is called “shear-thinning” or “pseudoplastic” fluid. When 1n  , the 

effective viscosity increases with the shear rate, and the fluid called “shear-thickening” 

or “dilatant” fluid. In the present study, the relationship of the shear rate is defined by 

Khali et al., [137]   

n
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In order to simulate non-Newtonian fluid flows, replace the relaxation time τ in the 

AxLAB® using Eq. (3.93) with m  given by 
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In addition, the force term for non-Newtonian fluid is accordingly changed to 
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By using the similar Chapman-Enskog analysis to that described by Zhou [50], the 

following incompressible non-Newtonian axisymmetric flows equations can be 

recovered from the lattice Boltzmann equation (3.56) using m . 
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in which   is the relaxation time and for the non-Newtonian fluid can be written as: 
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4.3 Recovery of the Axisymmetric Flow Equations for non-

Newtonian Fluids 

Similar to the former section, the Chapman-Enskog analysis is applied to show that 

the macroscopic equations (2.14) and (4.7) 
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  (4.7) 

can be derived from the lattice Boltzmann equation(4.5).  Assuming t  is small and 

equal to  , 

 .t     (4.8) 

Noting Eq.(3.62), substitute the above equation into Eq.(3.56) and obtain 
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By taking a Taylor expansion to Eq.(4.9) in time and space at point  ,x t , have 
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  (4.10) 

 According to the Chapman-Enskog expansion, f  can be written in a series of  , 
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Chapter 4: Simulation of Non-Newtonian Fluids 

55 
 

The centred scheme is used for both source term   and force term iF  as 
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and 
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  (4.13) 

which can also be written, via a Taylor expansion, as 
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and 
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  (4.15) 

After substitution of Eq.(4.11), (4.14) and (4.15) into Eq.(4.10), the equation to the 

order of 0  is 
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to the order of   is 
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and to the order of 2  is  
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  (4.18) 

By using Eq.(4.17), the above equation can be written as 
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From Eq.(4.17) +   Eq.(4.19),  
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The summation of the above equation over   provides 
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The use of equation (4.16) and substitution of equation (3.64) and (3.65) into the 

above equation result in the continuity equation (2.14). If the density variation is 

small enough and can be neglected. 

Taking 
aie [equation (4.17) +    equation(4.19)] above   yields 
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where 0

ijП  is the zero-order momentum flux tensor given by the following 

expressions: 



Chapter 4: Simulation of Non-Newtonian Fluids 

57 
 

    0 0
,ij i je e f  



    (4.23) 

    1
2 1 ,

2
ij m i j

m

e e f  






       (4.24) 

and 

    1
2 1 .

2
ij m i r

m

e e f  






       (4.25) 

By evaluating the terms in Eq. (4.23) with Eq.(3.54),  
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Where 
2 / 3p e  is the pressure, leading to a sound speed / 3sC e . Substitution 

of the above equation into equation (4.22) produces 
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By applying equation(4.17), equation (4.24) can be rewrite as 
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With the first-order momentum flux tensor 1

ijП  defined by 
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which can also be written using equation (4.23) as  
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The second term in the above equation can be evaluated with equation (3.54) and 

(4.16) as 
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If assuming characteristic velocity cU , length cL and time ct , the term 0/ ijtП   is of  

the order of 2 /c cU t , and the term 0/ k ai aj ak a

a

x e e e f    is of the order of 2 2 /c ce U L , 

based on which we obtain that the ratio of the former to the latter terms has the order 

of 
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In which /c sM U C  is the Mach number. It following that the first term in equation  

(4.30) is very small compared with the second term and can be neglected if 1M  , 

which is consistent with the lattice Boltzmann dynamics; hence equation(4.30), after 

equation(4.31) is substituted, becomes 
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or 
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in which 
m  is the kinematic viscosity and defined by Eq.(4.1). 

The insertion of equation (4.34) into equation (4.28) and evaluation of the rest of the 

terms of the equation lead to 
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After applying the continuity equation (2.14) and ru

r
   , to the above, can obtain 
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Also,  
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Combining Eqs.(3.58), (4.36)and (4.37) with Eq. (4.27)results in 
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If the density variation is assumed to be small enough, the above is just the 

momentum equation (4.7). 
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Chapter 5: Large Eddy Simulation for Turbulent 

Flows 

5.1 Introduction 

Most axisymmetric lattice Boltzmann methods in literature are reported for laminar 

axisymmetric flow equations without flow turbulence. As most practical flows in 

nature are turbulent, these methods cannot be directly applied. Generally, flow 

turbulence can be modelled by using additional scheme such as the model in modified 

laminar flow equations such as time-averaged or space-filtered flow equations. 

Teixeira [52] presented a lattice Boltzmann method for turbulent flows: the single 

relaxation time is modified as a variable relaxation time which is decided by solution 

of the two differential equations, k − ε equations. As an alternative method, the large 

eddy simulation can efficiently simulate vorticity larger than a prescribed scale, where 

space-filtered governing equations with a subgird-scale (SGS) stress model for the 

unresolved scale stress are used. The simplest and most accurate model in this class is 

developed by Smagorinsky [53], who expressed the Reynolds stress tensor by using 

the eddy viscosity and a large-scale strain tensor. According to the previous research 

[54], the space-filtered flow equations are more accurate for turbulent flows and so 

are used in the present study. Hou et al. [55] demonstrate that the standard 

Smagorinsky SGS stress model can be incorporated into the lattice Boltzmann method 

for turbulence modelling. Meantime, the single relaxation time is modified as a 

variable relaxation time which is directly linked with the distribution function and can 

be eliminating any calculations of derivatives.  In this chapter, the similar idea was 

applied to develop an axisymmetric LBM for turbulence modelling. The general 

methods for turbulent flows modelling are briefly reviewed first. Then the subgrid-

scale stress model for turbulent axisymmetric flows is introduced. Finally the 

recovery of the AxLAB® with turbulence is recovered from the axisymmetric flow 

governing equations. 
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5.2 AxLAB® with the Subgrid-Scale Stress Model (SGS) 

Most practical flows in nature with high Reynolds numbers are far to be directly 

simulated with current computer capacity. This problem rise the challenge of 

predicting the behaviour of highly turbulent flows without directly simulating all 

scales of motion. The large eddy simulation using a subgrid-scale stress model is a 

powerful tool within this problem. The simplest and most popular method in this topic 

is developed by Smagorinsky [53], who uses the eddy viscosity and a large-scale 

strain tensor to express the Reynolds stress tensor. According to the research by Tutar 

and Hold [54], space-filtered flow equations are more accurate than the time-averaged 

ones for the calculation of turbulent flows and so are used in the present study.  

Zhou has developed an axisymmetric lattice Boltzmann model for the axisymmetric 

flow equations (AxLAB®) without turbulence modelling [50] which presented in 

chapter 3. In this section, the AxLAB® was extended to include turbulence modelling. 

By comparing the axisymmetric flow Eqs. (2.14) and (2.15), and the turbulent 

axisymmetric flow Eqs.(2.43) and (2.44), it can be noticed that the only difference 

between them are the viscous terms. In the turbulent axisymmetric flow equations the 

viscous term has an additional viscosity concerning the eddies, which is not included 

in general axisymmetric flow equations. The kinematic viscosity v  is defined only by 

the relaxation time from Eq.(3.63). For the turbulence modelling using the eddy 

viscosity,  
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a new relaxation time t  is defined as: 

 ,t e      (5.2) 

A total viscosity tv  is defined by 

 .t ev v v    (5.3) 
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Therefore, the lattice Boltzmann equation with the total relaxation time t  can be 

written as: 
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and 
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By using this equation, the solution to the turbulent axisymmetric flow equation can 

be obtain, i.e. Eqs.(2.43) and (2.44). This is the basic idea behind the lattice 

Boltzmann method coupled with a subgrid-scale stress model proposed by Hou et al. 

[55]. In this way, the flow turbulence can be modelled simply and efficiently in the 

lattice Boltzmann equation without any changes in its standard form. 

Next, the total relaxation time t  will be defined. As Eq. (2.41) defines, the strain-rate 

tensor 
ijS  involves calculation of derivatives which is not suitable to use. To keep the 

consistency with the lattice gas dynamics, it is natural to calculate 
ijS  in terms of the 

distribution function. By using the Chapman-Enskog expansion, it can be found that 

the strain-rate tensor 
ijS  is related to the non-equilibrium momentum flux tensor that 

is described in Section 4.3, so it is convenient to calculate 
ijS  by 

  2

3
.

2

eq

ij i j

t

S e e f f
e t

   


  

   (5.7) 
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If assuming tv  and t  also satisfy the relation as Eq.(3.63), the following equation can 

be obtained, 

 
2

31
.

2

t
t

v

e t
  


  (5.8) 

Substitution of Eqs. (5.2) and (5.3) into Eq. (5.8) leads to 

 
 

2

31
.

2

e

e

v v

e t
 


  


  (5.9) 

Substitution of Eq. (3.63) into the above equation leads to 

 
2

3
.e ev

e t
 


  (5.10) 

Substitution of Eq. (2.40) into the above equation gives 

  
2

2

3
.e s s ij ijC l S S

e t
 


  (5.11) 

If Eq. (5.7) is substituted into above equation, e  can be further expressed as 

  
2

2 2

3 3
,

2
e s s ij ij

t

C l
e t e t




  
 

  (5.12) 

where 

  .eq

ij i je e f f   


     (5.13) 

If sl t   is adopted and Eq. (5.2) is referred, Eq. (5.12) is 
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2

2

9
,

2

s
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e
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e

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
  (5.14) 
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Finally, solution of the above equation and ignoring the minus value of e , the eddy 

relaxation time can be obtained, 

 
 2 2 218 /

,
2

s ij ij

e

C e  


    
   (5.15) 

hence giving the following total relaxation time t  via Eq. (5.2) 

 
 2 2 218 /

.
2

s ij ij

t

C e  


   
   (5.16) 

As the solution of the lattice Boltzmann equation (3.56) is the solution to the 

axisymmetric flow equations (2.14) and (2.15), the flow turbulence can be simply and 

naturally modelled in the standard lattice Boltzmann equation with total relaxation 

time t  which includes the eddy relaxation time e  form Eq. (5.2). By using 

Chapman-Enskog analysis, the 2D incompressible axisymmetric turbulent flow 

equations Eqs. (2.14) and (5.17) can be recovered from the lattice Boltzmann equation 

(3.56) . 

2

( )
.

21i j ji i i i r t ir
t i

t
r

j i j j i i
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t x x x x x r r x r r


 




        
                     

  (5.17) 

 

5.3 Recovery of the AxLAB® with Turbulence 

Similar to Section 3.3.2, the procedure used to recover the turbulent axisymmetric 

flow equations (2.43) and (2.44) from the lattice Boltzmann equation (5.4) is 

described in this section. Assuming t  is small and equal to  , 

 .t     (5.18) 

Noting Eq.(5.5), substitute the above equation into Eq.(5.4) and obtain 
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  (5.19) 

By taking a Taylor expansion to Eq.(5.19) in time and space at point  ,x t , 
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
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  (5.20) 

 According to the Chapman-Enskog expansion, f  can be written in a series of  , 

        0 1 22 3 .f f f f O           (5.21) 

The centered scheme is used for both source term   and force term iF  as 

 
1 1

,
2 2

x e t   
 

   
 

  (5.22) 

and 
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, .
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i iF F x e t 
 
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 

  (5.23) 

which can also be written, via a Taylor expansion, as 

      21 1 1
, , ,

2 2 2
j

j

x e t x t e x t O
t x
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  (5.24) 

and 
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  (5.25) 

After substitution of Eq.(5.21), (5.24) and (5.25) into Eq.(5.20), the equation to the 

order of 0  is 

  0
,eqf f    (5.26) 

to the order of   is 
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  (5.27) 

and to the order of 2  is  
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  (5.28) 

By using Eq.(5.27), the above equation can be written as 
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  (5.29) 

From Eq. (5.27)+   Eq.(5.29),  
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  (5.30) 

The summation of the above equation over   provides 
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The use of equation (5.26) and substitution of equation (3.64) and (3.65) into the 

above equation result in the continuity equation (2.14). If the density variation is 

small enough and can be neglected. 

Taking 
aie [equation (5.27) + 𝜀 × equation(5.29)] above   yields 
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   (5.32) 

where 0

ijП  is the zero-order momentum flux tensor given by the following 

expressions: 
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and 
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By evaluating the terms in Eq. (5.33)with Eq.(3.54),  

  0
,ij ij i jp u u      (5.36) 

Where 
2 / 3p e  is the pressure, leading to a sound speed / 3sC e . Substitution 

of the above equation into equation (5.32) produces 
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By applying equation(5.27), equation (5.34) can be rewrite as 
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With the first-order momentum flux tensor 1

ijП  defined by 
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which can also be written using equation (5.33) as  
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The second term in the above equation can be evaluated with equation (3.54) and 

(5.26) as 
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If assuming characteristic velocity cU , length cL and time ct , the term 0/ ijtП   is of  

the order of 2 /c cU t , and the term 0/ k ai aj ak a

a

x e e e f    is of the order of 2 2 /c ce U L , 

based on which we obtain that the ratio of the former to the latter terms has the order 

of 
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In which /c sM U C  is the Mach number. It following that the first term in equation 

(5.40) is very small compared with the second term and can be neglected if 1M  , 

which is consistent with the lattice Boltzmann dynamics; hence equation(5.40), after 

equation(5.41) is substituted, becomes 
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or 
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In which   is the kinematic viscosity and defined by: 
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The insertion of equation (5.44) into equation (5.38) and evaluation of the rest of the 

terms of the equation lead to 
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  (5.46) 

After applying the continuity equation (2.14) and ru

r
   , to the above,  
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Also,  
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Combining Eqs.(5.6), (5.47)and (5.48) with Eq. (5.37)results in 
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If the density variation is assumed to be small enough, the above is just the 

momentum equation (2.44). 
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Chapter 6: Initial and Boundary Conditions 

6.1 Introduction 

Proper  choice  of  boundary  conditions  is  important  in  solving  the governing  

equation  encountered  numerical  fluid  dynamics. In this chapter, a number of 

different boundary conditions which widely used have been presented such as no-slip, 

slip and semi-slip. Many research shows that the boundary conditions have strongly 

influence on the accuracy and stability of the simulation results [138]. Some typical 

research can be found in [139-142]. Up to now, the research for the boundary 

conditions and initial conditions are still attracting many attentions in the LBM [143-

145]. Succi [21] categorised two classes of boundary conditions in fluid dynamics: 

boundary conditions for simple cases and boundary conditions for complex cases. 

Brief descriptions of these types of boundaries are given as follows. 

6.2 Solid Boundary Conditions 

6.2.1 No-slip Boundary Condition 

The standard bounce-back scheme is derived from the LGCA boundary conditions 

that are simple and widely used in implementing wall boundary conditions [146,147]. 

The post-collision distributions function in the lattice Boltzmann equation (3.28)

coming from a solid node bx  to a fluid node 
fx  is not known during the streaming 

step. The bounce-back scheme is used to complete the unknown distribution function 

in the lattice Boltzmann equation [148]. In other words, the distribution function from 

the incoming particle f  ( ,fx t ) towards the wall boundary is bounced back into the 

fluid (see Figure 6.1).   
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Figure 6.1 Layout of no-slip boundary conditions. 

For a stationary wall, the bounce-back scheme is equivalent to setting the distribution 

function as follows [148]: 

 2 6f f   (6.1) 

 3 7f f   (6.2) 

 4 8f f   (6.3) 

The zero momentum of the particle close to the solid wall is summed from the above 

equations leading to no-slip boundary conditions. The no-slip boundary condition is 

first-order accurate [144]. In order to achieve second-order accuracy, the wall needs to 

be placed in the middle of the lattice nodes, e.g. 1/ 2x  with additional 

approximation of staircase boundary scheme treatment [139,150]. 

6.2.2 Slip Boundary Condition 

When the boundary is smooth with negligible friction, a slip boundary condition 

should be applied, which has been depicted in Fig. 6.2. In such a case, the tangential 

momentum balance of the fluid flow on the wall should be achieved. There is no 
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momentum exchange with the wall along the tangential direction. The unknown 

distribution functions 2 3 4,  and f f f  can be calculated: 

 2 8f f   (6.4) 

 3 7f f   (6.5) 

 4 6f f   (6.6) 

 

Figure 6.2 Slip boundary condition layout. 

 

6.2.3 Semi-slip Boundary Condition 

When fluid flows over a stationary surface, the fluid touching the surface is brought to 

rest by the shear stress [18,151]. Some fluid particles bounce back into the main 

stream and others move along the surface duet to the friction force. There is no 

motion normal to the surface; only a thin film of fluid moves tangentially along it, for 

which a combination of no-slip and slip boundary conditions would provide the best 

results.  
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Zhou [152] suggested that it is necessary to consider the effect of wall shear stress in 

order to achieve a semi-slip boundary condition. The wall shear stress vector 
f  due 

to wall friction can be expressed, 

 
*

,f f

V
v C V V

n


   


   


  (6.7) 

where V  is the velocity vector parallel to the wall; *n  is the outward coordinate 

normal to the wall; and 
fC  is the friction factor at the wall. The wall friction factor 

f  may be estimated with the Manning roughness 
fn  by: 
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The velocity vector normal to the wall tends to be zero if the slip boundary condition 

is applied at the boundary node. Thus,   

 .V V    (6.9) 

Substitution of equation (3.6) into (3.4) gives the tensor form of wall shear stress: 

 .fi f i j jC u u u     (6.10) 

Hence, a semi-slip boundary condition can be used at the boundary node by adding 

the wall shear stress 
fi  into the force term iF  in the lattice Boltzmann equation (3.10)

together with the slip boundary condition. 

 

6.3 Inflow and Outflow Conditions 

Appropriate inlet and outlet boundary conditions are important to obtain realistic 

simulation results, which work as constraints to ensure consistency with the 
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surrounding flow conditions. In fact, different flow variables (such as velocity and 

pressure) at the boundary have to reflect the correct situation.   

In traditional numerical methods, it is common to assign a given velocity profile at the 

inlet while imposing a given fluid velocity at the outlet [18]. In LBM, the zero 

gradients technique for these physical variables in the computational analysis has 

been proven to give satisfactory results [14]. For example, after streaming, the 

unknown 1f  , 2f  and 8f  are simply calculated by: 

    1, 2, ,                 1,2,8.f j f j      (6.11) 

Similarly, for the out flow, the unknown distribution functions 4f  , 5f  and 6f  have 

the following relations: 

    , 1, ,            4,5,6.x xf N j f N j       (6.12) 

where xN  is the total lattice number in x  direction. 

 

Figure 6.3 Sketch for inflow and outflow boundaries. 

For the axisymmetric flows with swirl, all of the distribution functions can be set to 

their respective local equilibrium distribution functions, eqf f   and 
eq

f f  which 

is proposed by Zhou [49] and demonstrated to produce accurate solutions to rotational 

axisymmetric flows. Although a real individual distribution function may be different 

from the local equilibrium distribution function, this can provide accurate solutions to 

the problem as the following chapters show. It should be noted that other schemes like 



Chapter 6: Initial and Boundary Conditions 

76 
 

the non-equilibrium extrapolation approach by Guo et al. [153] may be applied for 

accurate solutions to flows with significant non-equilibrium effect. 

 

6.4 Periodic Boundary Condition 

A periodic boundary condition may be useful in some specific cases. For example, the 

blood flows in the human body and a flow region contains the tidal flow. It has good 

stability when the computational domain becomes closed by connecting the inflow 

and outflow boundaries in the computation. According to these flows features, a 

periodic boundary condition can be achieved by specifying the unknown 1f  , 2f and 

8f  at the inflow boundary after streaming equal to the counterparts at the outflow 

boundary (see Fig. 6.4), 

    1, , ,           1,2,8.xf j f L j      (6.13) 

Similarly, the unknown 4f , 5f  and 6f  at the outflow boundary are equal to the 

counterparts at the inflow boundary, 

    , 1, ,           4,5,6.xf L j f j      (6.14) 

where xL  is the final node in the x direction within the computational domain. Also, a 

periodic boundary condition in the y direction can be achieved. 
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Figure 6.4 Sketch for the Periodic Boundary Condition 

 

6.5 Initial Condition 

Initial condition is the flow at the start time (when t=0s). Before calculation, the initial 

condition for distribution function needs to be given. Generally, there are two ways to 

specify the initial condition in the lattice Boltzmann method [14].  One is to specify a 

random value between 0 and 1 for the distribution function. The other is to define a 

flow field with fluid velocity and density firstly, then calculate the local equilibrium 

distribution function eqf  and use it as an initial condition for f . Generally speaking, 

it is easier to define a macroscopic value than a microscopic. Hence, the second 

method is preferred in practical computations, which is used in the present models. It 

should be notice that there is no difference between results calculated with these two 

initial conditions for a steady flow problem. 

 

6.6 Solution Procedure 

The solution procedures for the AxLAB® and AxLAB® with turbulence are very 

simple. It involves only explicit calculations and consists of the following steps: 



Chapter 6: Initial and Boundary Conditions 

78 
 

For AxLAB® or AxLAB® with turbulence, the procedure is 

1. Assume the initial fluid density  and velocityu , v  , 

2. Compute eqf  from Eq.(3.54), 

3. Calculate f  from the lattice Boltzmann equation (3.56) or from the Eq. (4.15) for 

turbulent flows together with the total relaxation time t  calculated from Eq. (4.17).  

4. Renew the fluid density and the velocity by Eqs. (3.64) and (3.65), 

5. Return to step 2 and repeat the above procedure until a solution is obtained. 

The calculation procedure can also illustrate by a flow chart below: 

 

Figure 6.5 Flow chart to demonstrate the LBM calculation procedure. 
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Chapter 7: Applications to Laminar Flows 

7.1 Steady Flow through a Straight Pipe 

Flow through a normal pipe is a basic case for axisymmetric flow simulation. This 

kind of flow is an axisymmetric steady, laminar flow of a viscous fluid through a pipe 

driven by a parabolic velocity profile at the inlet. A pipe was selected with the 

diameter of D=40m, in the numerical calculation, the velocity xu  in the axial direction 

is specified at the inflow boundary, 

 

2

0 1x

r
u U

R

  
   

   

  (7.1) 

with 0 0.01 /U m s  and the zero gradient is applied at the outlet boundary. 81 41  

lattices are used with flow density of 
33 /kg m  . The Reynolds number is 

 0Re 4.1      (Re )
U D

v
    (7.2)  

After steady solution reached, the result below can be obtained.  

 

Figure 7.1Velocity vectors for steady flow through a straight pipe by AxLAB®. 
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Figure 7.2 Velocity xU  distribution across cross section in pipe flow 

The velocity profiles and vectors for xu  are shown in Fig. 7.1 and Fig. 7.2 

respectively, which are correct with the analytical results [154] and can be used for 

further simulations. 

7.2 Flows through a Concentric Annulus 

 

Figure 7.3 Flow through a concentric annulus. 

A steady axial laminar flow in the annular space between two concentric cylinders is 

considered. It is driven by a constant pressure gradient schematic (see Fig. 7.3). There 

are no-slip at the inner wall 1r R  and outer wall 2r R . The radius ratio of outer 

cylinder to inner cylinder is defined as k. So when the k   , the flow recovers the 
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normal pipe flow which has shown in section 7.1. The treatment for this simulation is 

same as normal pipe flow. 

The analytical solution for the velocity profile is [154] 
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and the average velocity is  
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Figure 7.4 Velocity profile for flow through concentric annulus with radius ratio 

1.01,  3.31 and 10.11.k    

 

Figure 7.5 Velocity vectors when 3.31k   by AxLAB®. 
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Fig 7.4 shows the normalized velocity profiles as /r mU U  for flow through concentric 

annulus with k   1.01, 3.31 and 10.11.Then numerical results agree well with the 

analytical solutions. The figure also shows that the velocity profile leans toward the 

inner cylinder as the radius ratio k  increases, which is consistent with [154]. The 

flow velocity vectors are plotted in Fig 7.5, it is easy to see that the velocity leans to 

the centre line of the pipe.  

7.3 Steady Flow through a Constricted Pipe 

 

Figure 7.6 Geometry of constricted pipe. 

The flow in constricted pipes has been of great interest to biodynamicists. Although 

the actual geometry of astenotic artery maybe complex and varied, it is frequently 

simplified as a symmetric constriction in a cylindrical tube. Several researchers have 

studied steady flow through an axisymmetric tube with constriction. Smith studied 

steady flow through an axisymmetric stenosis using an analytical method [155]. 

Huang et al. [156] investigated steady flow through tubes with constrictions using 

LBM with D3Q19 model. The flow was studied by using axisymmetric lattice 

Boltzmann method due to its simple and efficient feature. 

In this case, the geometry of the constriction is described by a cosine function curve. 

The geometry of the constricted pipe is shown in Fig 7.6 and the radius of the stenosis 

is described by the following function: 
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where R is the radius of the nonstenosis is 02S , and 0S D . In this study, three cases 

of stenosis radial height were computed, / 2,  / 3,  / 4.R R R   As schematic in Fig 

7.6, 1 3S D , 2 8S D  was set to make sure that the flow is fully developed at the 

outlet.  

In this simulation, a fully developed parabolic velocity profile is imposed at the inlet 

boundary and the zero pressure gradients are used at the outlet boundary. The centre 

value of the inlet parabolic velocity keeps at 0.01cu  . The employed lattice number 

is 441 41  and the Reynolds number 4.1Re  . The wall boundary conditions deal 

with by using the bounce-back scheme. The inlet velocity boundary is applied with 

Zou and He velocity boundary treatment [157] and the outlet pressure is specified 

from the next inner nodes. Fig 7.7 shows the velocity vectors of this simulation. It can 

be noticed that the velocity increased rapidly at the constricted location. In order to 

test the convergence of the grid number, one more lattice mesh (grid 2: 881 81 ) was 

also proposed in this case. In Figs 7.8 and 7.9, the velocity profiles are plotted on both 

mesh when / 3R  . From the figures, only small differences can be seen. Defining 

the relative error between two meshes as 1 2 1( ) / ,rE u u u   in which 1u  and 2u  are 

the maximum velocity of axial velocity for the standard mesh and the fine mesh (grid 

2), respectively, the relative error is found to be 0.897%. Therefore the 441 41  mesh 

is deemed adequate for the present simulations. 

The normalized axial and radial velocity profiles at 0x   are shown in Figs 7.8 and 

7.9, respectively, for three values of the stenosis radial height. It can be seen that the 

axial velocity increases and exhibits sharper as the stenosis radial height increases. In 

Fig 7.8, the obvious reverse flow is observed and the absolute radial velocity also 

increases as the stenosis radial height increases. The results show that the stenosis 

radial height has significant effect on the velocity and thus the wall shear stress 

distribution. 
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Figure 7.7 Velocity vectors for steady flow through a constricted pipe when / 2R  . 

 

Figure 7.8 Axial velocity profiles in constricted pipe for three different constriction 

radial heights. 
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Figure 7.9 Radial velocity profiles in constricted pipe for different constriction radial 

heights. 

 

 

7.4 Steady Flow through an Expanded Pipe 

 

Figure 7.10 Geometry of expanded pipe. 

The steady flow through a pipe with local expansion of cosine function shape was 

also simulated in this study. The geometry of the expansion is shown in Fig 7.10. 

Radius of the expansion is described by the following function: 
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where R  is the radius of the non-expanded part of the pipe,   is the radial height of 

the expansion, the axial length of the expansion is 02S  with 0  S D . In this study, the 

expansion height was / 2.R   As schematic in Fig. 7.10, it was set 1 3S D  and 

2 8S D  to make sure the flow fully developed at the outlet. 

In this simulation, a fully developed parabolic velocity profile is also imposed at the 

inlet boundary and the zero pressure gradients are used at the outlet boundary. The 

centre value of the inlet parabolic velocity is 0.01cu   and the Reynolds number 

4.1Re   ( /cRe u D v ). The boundary conditions are treated with the same method 

as the flow through a constricted pipe. Fig 7.11 shows the velocity vectors of this 

simulation. It illustrated that the velocity decreased at the expended location and then 

increased during the downstream flow. It can be seen that the axial velocity profile at 

 0x   shown in Fig 7.12 increases as the expansion height increases, while the radial 

velocity at 0x   shown in Fig 7.13 increases as the distance increases. This validates 

that the short distance after the pipe expansion significantly influences the velocity of 

the flow, hence leading to a great effect on the wall stress tensor in the flow. For 

human carotid with local expansion, these changes of velocity and thus the wall shear 

stress caused by expansion will in fluency the structure and the function of the vessel 

significantly. In addition, the convergence test ( / 4R  ) was also proposed in this 

study, three different time steps were selected for this test, 0.5 ,   and 2t t t   . From 

Fig 7.14, it can be seen that the results using 0.5  and t t   were almost same. But for 

2 t , the result was a little far beyond the former two, which caused errors for this 

study. So, t  was the proper time step for this simulation. 

 

Figure 7.11 Velocity vectors when / 2.R   
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Figure 7.12 Axial velocity profiles in expanded pipe at different distances when

/ 2.R   

 

Figure 7.13 Radial velocity profiles in expanded pipe at different distances when

/ 2.R   
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Figure 7.14 Axial velocity profiles in expanded pipe at 0x  , compared with two 

time steps 0.5  and 2t t  ,  when / 4.R   

 

 

7.5 Unsteady Tube Flow (3D Womersley Flow) 

The 3D Womersley flow, or a pulsatile flow, is an unsteady axisymmetric flow in a 

straight pipe. It is driven by a periodic pressure gradient at the inlet of the pipe and 

pressure gradient is normally given as 

 0 cos
dp

p t
dx

   (7.7) 

where 𝑝0 is the maximum amplitude of the pressure variation and 2 /T   is the 

angular frequency, in which T is the period. The Reynolds number is defined as 

/cRe U D v , cU  is the characteristic velocity given by 
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In which /R v   is the womersley number, when 0  , the flow is steady 

flow. Where R is the pipe radius and D is the diameter. The analytical solution for the 

velocity of axisymmetric pulsatile pipe flow in the axial direction is  
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where 0J  is the zeroth order Bessel function of the first type, i  is the imaginary unit, 

( ) / 2i     , and Re denotes the real part of a complex number. The 

implementation of the periodic pressure gradient can be achieved by applying an 

equivalent periodic body force to the flow [68] or specifying periodic pressure at the 

inlet and fixing the outlet pressure [104], an additional body force is added to the 

existing force term iF , 

  02
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i ir ix

u u vu
F p wt

r r
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In the computation, 3,   0 0.001,p   40,D   1200,T   8,   and 1cU  , which 

gives 1200Re  . Also 0.6  , 80 40  lattice with 1x   are used in the simulation. 

The periodic boundary conditions are applied to inflow and outflow boundaries; the 

standard bounce-back scheme is applied to no-slip boundary conditions along the pipe 

walls. The numerical solutions at different times are obtained after an initial running 

time of 10T. The numerical results along diameter were compared to the analytical 

solutions of Eq.(7.9) in Figs.7.15 and 7.16. The velocity is normalized by Uc. The 

radius axis is nondimensionalized by dividing by the radius of the tube as shown in 

Figs.7.15 and 7.16. It also can be noticed when oscillatory pressure gradient changes 

very fast and it is impossible for velocity field to reach the fully developed velocity 

profile with maximum value cU . From this case, the character velocity Uc=1.0, but 

the Umax observed in whole oscillatory period is only about 0.07.   
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Figure 7.15 Comparisons when xu  is increasing at different times /16,t nT  with 

n=0, 1, 2, 3, 12, 13, 14, 15. 

 

Figure 7.16 Comparisons when xu  is decreasing at different times, /16,t nT with 

n=4, 5, 6, 7, 8, 9, 10, 11. 
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7.6 Cylindrical Cavity Flow 

 

Figure 7.17 Definition sketch for cylindrical cavity flow. 

Steady cylindrical cavity flows have been investigated both experimentally and 

numerically in last few decades [48,158-160]. The flow problem is sketched in Fig. 

7.17 and is known to have different complex structures depending on the 

combinations of the aspect ratio /H R   and the Reynolds number Re. With 

different combinations of these two parameters, distinct breakdown bubbles may 

occur. The bottom of the cavity is closed and kept stationary, while the top lid rotates 

around the cylindrical axis with a constant angular velocity  . Four cases with 

parameters of ( , Re), namely a. (1.5, 990), b. (1.5, 1290), c. (2.5, 1010) and d. (2.5, 

1290), have been used to validate the 3D lattice Boltzmann method by Bhaumik and 

Lakshmisha [160] and the axisymmetric lattice Boltzmann method by Guo et al. [75]. 

Li et al. also used the first two cases for the validation of their improved axisymmetric 

lattice Boltzmann scheme [158]. Consequently, these four cases are applied to test the 

AxLAB® stability and accuracy. 

These cases has also been investigated in the experiment, the stream lines for the 

steady solution are plotted in Fig. 7.18-7.21 and clearly show that breakdown vortices 

are well developed. The streamlines of the swirling flow are shown for the four cases 

considered. It is seen that in the cases of (a) and (c), no breakdown bubbles are seen. 

In case (b), however, a single bubble appears. Moreover, in case (d), a couple of 

bubbles appear which was not presented by the report of Guo et al. [75]. All the flow 

patterns are again in agreement with that observed in the experimental measurements 

[160]. 
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Figure 7.18 Stream lines for Case (a) with   = 1.5 and Re = 990. 

 

Figure 7.19 Stream lines for Case (b) with = 1.5 and Re = 1290. 
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Figure 7.20 Stream lines for Case (c) with A = 2.5 and Re = 990. 

In the simulations, R=1, 1   and   0.55  . The boundary conditions are 
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  (7.11) 

which are implemented in the proposed model by setting all of the distribution 

functions to their respective local equilibrium distribution functions, eq

a af f  and 

eq

a af f  , at the boundaries. Although a real individual distribution function may be 

different from the local equilibrium distribution function, this can provide accurate 

solutions to the problem as the following results show. It should be noted that other 

schemes like the nonequilibrium extrapolation approach by Guo et al. [42] may be 

applied for accurate solutions to flows with significant nonequilibrium effect. 
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Figure 7.21 Stream lines for Case (d) with A = 2.5 and Re = 1290. 

 

7.7 Different Forced Axisymmetric Laminar Cold-Flow Jets 

 

Figure 7.22 Wall jet forced flow. 

The next case considered is the forced cold-flow jets, of which periodically forced jets 

present many opportunities for jet mixing for a variety of applications. In practical 

engineering, the ability to increase the mixing rate for laminar flows is important in 
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the development of mesoscale reactors of various types.  In this section, simulations 

are performed to study the effect of high-amplitude forcing on laminar jets.  Different 

amplitudes and frequencies of the forcing function are investigated to show the vortex 

creation and the subsequent flow evolution downstream of the jet. This case is 

illustrated schematically in Fig. 7.22, which involves a wall jet; the computational 

domain is 12 cm in the radial direction and 40 cm in the axial direction. A uniform 

grid with 400 120  lattices was used.  The same test is also used by Barve et al. [161] 

with a finite volume method.  The diameter of the wall jet was 1 cm and the Reynolds 

number, 0Re /U D  , was set to 100, where 0U  is the jet exit axial velocity which is 

0.17m/s, D is the jet diameter.  The forcing case involved contains a velocity function 

of the form  0 1 sin 2u U A ft    , in which 0U is an average velocity and is given. 

For all the simulations, the temperature and pressure of air are 300K and 1 atm. Based 

on the amplitude of the forcing, there are two types of forced jets: one is the low 

forcing type, which has the amplitudes less than or equal to 1, i.e., 1A , and the high 

forcing type, with a greater amplitudes of 1A , in which reverse flow occurs.  The 

high amplitude forcing flow is quite different from those with low amplitude.  For this 

reason, both high and low forcing flows are considered and compared with the study 

of Barve et al. [161] 

Again, two types of boundary conditions were used.  For the wall jet and outflow 

boundaries, all the distribution functions were set to their respective local equilibrium 

distribution functions at the boundaries, eqf f  and
eq

f f  .  And the bounce back 

scheme is applied to the remaining boundaries which gives the no-slip boundary 

conditions. 

7.7.1 Low-Amplitude Forced Flow 

The centreline velocity profile for the steady jet is shown in Fig. 7.23.  The results are 

similar to those obtained in a similar numerical study by Barve et al. [161].  In the 

figure, the low-amplitude forcing problem 10%A   at the 25% phase was shown, in 

which it has the maximum jet exit velocity of all the phase in agreement with the 

results obtained by Barve et al.  The different velocity field along the centreline 

indicates that the vortices were formed around the jet entrance. The oscillations in the 
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velocity profile also confirmed that only near the jet area can the forcing affect the 

flows, and farther downstream, the effect becomes weak.  From Fig.7.23 it can also be 

seen that the results for steady jet with 10% amplitude are similar to those obtained 

using a finite volume methods by Barve et al. [161] and Pai and Hsieh [162]. 

 

Figure 7.23 Centreline velocities for steady jets and amplitude A = 10% forced 

laminar jets; steady jets are compared with data from Barve et al. 

 

7.7.2 High-Amplitude Forced Flow 

With high amplitude forcing, Barve et al. expects that the vortex structures at the jet 

entrance will get larger and stronger.  The same amplitude as considered by Barve et 

al. was used to examine this. Fig. 7.24 shows contour plots of the vorticity field along 

with the velocity vector for a steady flow jet for 0u U  and five different phase of the 

jet with 200%A  amplitude forcing and f = 5Hz frequency, which are in good 

agreements with Brave’s results.  In the steady jet, the vorticity reaches peak value 

near the orifice, because the large velocity gradient at the jet exit plane.  At the 

downstream, the magnitudes of the vorticity are reduced when the vorticity diffuses 

around the area. For the forced jet over one forcing time period, the vorticity field 

changed gradually, which shows the generation of the vortices at the orifice edge, 

followed by their ejection from the near orifice region and their subsequent 

convection downstream.  It also shows that the vortices grow in size along the flow 

direction and this convectional activity form the downstream shape without 

interacting with each other.  
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Fig.7.25 depicts the centreline axial velocities at five different phases and the 

centreline time-averaged axial velocity for the forcing amplitude 200%A and 

frequency 5f Hz .  As expected by Barve et al., the high amplitude transmits the 

forcing effects farther downstream compared to the low amplitude forcing case (Fig. 

7.23). 
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Figure 7.24 Vorticity contour plots and velocity vectors for the steady case and five 

different jet phases (0%, 20%, 40%, 60% and 80%) for a forcing amplitude of 200% 

and f = 5 Hz.  

It can be observed from Fig. 7.25 that at the beginning of phase 60% and 80% the 

axial velocity value is below zero-that is, the axial velocity will change from negative 

to positive in the velocity field region.  The velocity vectors near the nozzle in Fig. 

7.24 clearly show this.  Fig.7.26 compares the average centreline velocities for the 

five phases. The results from AxLAB® show a slight difference from the results of 

Barve et al., but have a similar trend. This is reasonable as there are inevitable errors 

in different numerical models.  
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Figure 7.25 Centreline velocities against distance for 200% amplitude forcing. 

 

Figure 7.26 Comparison of time-averaged centreline velocities with the solution of 

Barve et al. at 200% amplitude forcing. 

 

7.8 Swirling Flow in a Cylinder with Rotating Top and 

Bottom 

The flow patterns for axisymmetric swirling flow in a closed cylinder with rotating 

top and bottom is simulated and compared with the numerical results by Shen et al. 

[163] Fig. 7.27 displayed the sketch of the flow geometry.  In this circular cylinder, 

the radius is R, height is H and filled with an incompressible Newtonian fluid of 

constant density  and kinematic viscosity . The top and bottom of the cylinder are 
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rotating with angular velocities 1  and 2 , respectively. The different flow regimes 

are specified by the Reynolds number, 2

1Re /R v , the aspect ratio, / ,H R   and 

the ratio of angular velocities, 2 1/ .     

 

Figure 7.27 Sketch of the flow geometry. 

Firstly, to validate the code, swirling flows in a cylinder with co- and counter-rotating 

end walls are computed and analysed at aspect ratio of 2  . For the parameter 

studies, different ratios of angular velocities and Reynolds numbers are needed. A 

standard lattice mesh of medium size (100 200 ) is used in most of the computations 

in this case. To evaluate the influence of the grid, the code is validated for the case of 

co-rotation at a ratio of angular velocities 0.7   and a Reynolds number of 4000. 

The results shows good agreement with the study by Shen et al. [163] 

In this swirling flow case, the flow will normally transit from an unsteady situation to 

a steady situation. However, sometimes the flow will transit from a steady to an 

unsteady regime which because the supercritical Hopf bifurcation. In the same time, 

the critical Reynolds number can be determined from the amplitude of velocity 

components that decrease linearly with the Reynolds number in the unsteady regime. 

Hence, the critical Reynolds number can be calculated from [163]: 

  
2

1
1 2 12 2

2 1

Re Re Re Re ,cr

A

A A
  


  (7.12) 
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where subscripts 1 and 2 refer to two different points in the unsteady region that are 

located close to the Reynolds number. 

In order to test this AxLAB® model, computations are performed at aspect ratio 

2,   which is same as Shen et al. [163] and Gelfgat et al. [164] Fig.7.28 shows the 

stability diagrams of the critical Reynolds number in the counter-rotating region by 

the present method and finite volume method of Shen et al. In the Fig 7.28 it can be 

noticed that the present model have a good agreement with the model of Shen et al. 

Furthermore, when the ratio of angular velocities increase beyond -0.6, the critical 

Reynolds number starts to increase rapidly which indicate the steady region for a 

moderate counter-rotation has been enlarged. Moreover, further increasing the 

counter-rotation velocity, it can be seen that the size of the steady region reaches a 

maximum and then decreases, a sharp break can be captured around 0.5   . After 

that, the critical Reynolds number stays almost flat which also reported by Shen et al. 

The reduced frequency is defined by 12 / ,f    in which  f Hz  is the frequency 

of the oscillation. 

 

Figure 7.28 Diagrams of oscillatory instability in a cylinder with rotating top and 

counter-rotating bottom, 2.    
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Figure 7.29 Streamlines for counter-rotating cylinder at different Reynolds number

0.51   : (a) Re=3000, (b) Re=2200. 

 

Figure 7.30 History of the axial velocity at point ( 0.25 ,  0.5 )x H r R  . 

In order to test the results of the bifurcation around the break of the critical Reynolds 

number at 0.51   , two graphs were plotted in Fig 7.29. In the figures it can be 

noticed that in Fig 7.29 (a) there is a middle bubble and the bottom edge separation 

zone is smaller than Fig 7.29 (b). On the other hand, the two flow patterns are simply 

different. The difference also can be found in Fig 7.29 which shows the critical 

Reynolds number in different ratio of angular velocities and it shown that the 

Re=2200 and Re=3000 are not belonging to the same branch. From Fig 7.30, the 

history of the axial velocity confirms that the flow is periodic. Fig 7.31 illustrates the 

unsteady flow structure, form this set of figures, it can be noticed that the bottom edge 

(a) (b) 
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separate region size changes during the time and the middle bubble appears and then 

disappears. This situation also found by Shen et al. [163] who used a finite volume 

method.  

 

 

Figure 7.31 Stream lines for unsteady swirl flow in a cylinder with counter-rotating 

bottom at Re=3250, and 0.52   . Four different times in a period (a) 0t t  (b) 

0 / 4t t T   (c) 0 / 2t t T   (d) 0 3 / 4.t t T   

(a) (b) 

(c) (d) 
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Figure 7.32 Diagrams of oscillatory instability in a cylinder with rotating top and co-

rotating bottom, 2.     

Next, the study is for the influence of co-rotation on the transition from steady to 

unsteady flow. The relation between the critical Reynolds number and the ratio of 

angular velocities is plotted in Fig 7.32. From this figure, at 0.7  an S shape 

appears again in which it is further compared with the other result by Shen et al. [163], 

showing a good agreement.  

             

Figure 7.33 Streamlines for co-rotating cylinder at different Reynolds number and 

ratio of angular velocities: (a) Re=3300, 0.3;    (b) Re=3250, 0.4;   (c) Re=2800,

0.7.   

(a) (b) (c) 
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Meanwhile, in order to investigate the flow behaviours around 0.7  , the co-rotation 

velocities were slightly increased from 0.3 0.7  . Form Fig 7.33, it can be seen 

that the size of the middle bubble increases and the separation zone appears along the 

edge of the bottom wall. When increasing the angular velocity up to 0.7  , the 

lower separation zone also increased and push the upper bubble back toward the top 

wall. 

From Fig 7.34, the history of the axial velocity confirms that the flow is periodic. The 

streamlines shown in Fig 7.35 are obtained from the unsteady flow pattern at 

Re=4400. It can be seen from Fig 7.35, the flow structures are dominated by the large 

scale fluctuation form both top and bottom of the cylinder. 

 

Figure 7.34 History of the axial velocity at point ( 0.25 ,  0.5 )x H r R  . 

 
(a) (b) 
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Figure 7.35 Stream lines for unsteady swirl flow in a cylinder with co-rotating bottom 

at Re=4400, and 0.7.  Four different time in a period (a) 0t t  (b) 0 / 4t t T   (c) 

0 / 2t t T   (d) 0 3 / 4.t t T 
 

 

 

 

(c) (d) 
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Chapter 8: Applications to non-Newtonian Fluid 

Flows 

8.1 Introduction of Taylor Couette Flow 

Taylor–Couette flow, which has been the subject of many experimental, numerical 

and analytical studies for many years, is flow in an annulus with a rotating inner 

cylinder, a stationary outer cylinder and two end plates. Due to its industrial 

applications such as water purification, journal bearing and oil drilling, it is very 

interesting to simulate and predict its flow characteristics. 

8.2 Simulation to Newtonian and non-Newtonian Fluid 

Taylor Couette Flow  

As most applications of the flows involve non-Newtonian fluids, the AxLAB® was 

extended to model the non-Newtonian Taylor-Couette flows.  The same problem as 

that used by Khali et al. [137] is applied to the validation and is shown in Fig. 8.1.  

The ratio of inner cylinder radius to out cylinder radius was chosen to be η= 0.5 and 

the aspect ratio / wH D   was set to 3.8, H been the height of the cylinder and wD  is 

the gap between inner and outer cylinders.  Initially, a constant azimuthal velocity 

0.15u   was set for the inner cylinder and the flow field was set to be stationary 

with a constant density 0 . The Reynolds number is defined as 1Re /wu R D v , 

where v  is the fluid kinematic viscosity and 1R  is the radius of the inner cylinder.   

The Taylor number,Ta , which relates the centrifugal forces to the viscous forces, may 

be defined in different ways, here 2 3 2

1 /wTa u R D v  is used [165]. From their 

definitions, there is a relationship between the Reynolds and Taylor numbers, 

2Re /wTa u D v  , which indicates that they have similar effect on the flows.  For 

comparisons with the results available in literature, the Reynolds number is used in 

the study and several Reynolds number were selected for different cases.  After steady 

solutions were obtained, the numerical results were compared with those of Liu [166] 

who proposed differential quadrature method to solve the vorticity-stream function 
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formulation in the cylindrical polar system, and Khali et al. who used the method of 

Huang et al. [99] to simulate similar cases.  

 

 

Figure 8.1 Sketch of Taylor-Couette Flow 

In simulations, it is assumed that the fluid in the annular gap is incompressible, 

laminar and axisymmetric. In the theory, when n=1, Eq. (4.1) describes the 

Newtonian fluid. When 0<n<1, the effective viscosity reduces with the fluid shear 

rate which is called “shear-thinning” or “pseudoplastic” fluid. When 1n  , the 

effective viscosity increases with the shear rate, and the fluid called “shear-thickening” 

or “dilatant” fluid. 

 

There are two types of boundary conditions used in simulations.  For the two end 

plates and outer cylinder wall, the standard bounce back rule was implemented to 

represent the nonslip boundary conditions.  For the inner cylinder wall, all of the 

distribution functions are set to their respective local equilibrium distribution 

functions, eqf f  and ,
eq

f f  which is proposed by Zhou [50] and demonstrated 

to produce accurate solutions to rotational axisymmetric flows.  
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Table 8.1 Comparison of the maximum stream function 
max for Taylor-Couette flow 

with Re 85,100,150  against literature results. 

Re 85 100 150 

Results by AxLAB® 24.862 10  25.556 10  26.452 10  

Khali et al. [131] 24.903 10  25.553 10  26.361 10  

Huang et al. [93] 24.810 10  25.501 10  26.427 10  

Niu et al. [37] 24.859 10  
25.580 10  

26.387 10  

Liu et al. [161] 24.854 10  25.542 10  26.439 10  

average errors by Khali et al. 1.28% 0.22% 0.90% 

average errors by AxLAB® 0.43% 0.27% 0.52% 

To verify the accuracy of the developed axisymmetric lattice Boltzmann model, both 

Newtonian and non-Newtonian Taylor-Couette flows were tested. For the Newtonian 

cases, a 40 76  grid was used for three different Reynolds numbers, which are the 

same as those used by Huang et al., [99]. Comparisons of the maximum stream 

function values in the r z  plane for cases with Re = 85, 100 and 150 are listed in 

Table 8.1, showing that the present model compares well with average values from 

the literature [42,99,166]. The average errors of the present method are smaller than 

those of Khali et al. for Re = 85 and 150 and similar for Re = 100.       

The contours of the stream function and vorticity for Newtonian fluids (n=1), for 

Re=50, 70, 80 and 100 are illustrated in Fig. 8.2, which shows the effect of the 

Reynolds number on the flows. The flow structure at Re=50 (Fig. 8.2 (a)) is 

characterized by the so-called Ekman vortices at the end of the walls because of the 

non-slip boundary condition. When Re increases from 50 to 70, another pair of cells is 

going to form in the centre of the cylinder, which can be seen in Fig. 8.2 (a, b). The 
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critical Reynolds number at the beginning of Taylor vortex flow is Re 68.4c   where 

the flow starts to switch to the four-cell regime. When Re Rec , the centrifugal force 

has more effective in the annulus than the viscous forces and the flow is dominated by 

the laminar unstable regime, and as Re further increases to 100, the flow structure 

switches completely from two-cell to four-cell. In each figure, the stream lines and 

vorticity contours are presented to show the effect of the Reynolds number. 

   

 

Figure 8.2 Stream function and vorticity contours for Newtonian fluids (n=1): (a) 

Re=50, (b) Re=70, (c) Re=80, (d) Re=100. 
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For non-Newtonian fluid flows, the exponent n is set to values of 0.5 and 1.5, with the 

Reynolds number chosen to be in the range 65-150, which is the same as in the study 

of Khali et al. [137]. Fig. 8.3 and 8.4 show the combined effects of Reynolds number 

and the power-law index on the stream function and azimuthal vorticity. For the 

Newtonian fluid flow chart, there is an Ekman cell forming at Re=70, but for the non-

Newtonian fluid (n=0.5) the middle two cells are forming at about Re=65 (Figure 

8.3(a)); when n=1.5, this transition occurs at approximately Re=75. For a further 

increase in Reynolds number, the two cells flow pattern is fully developed to four 

cells pattern at Re=80 for n=0.5 and Re=150 for n=1.5, respectively. Moreover, it can 

be noted that when the Reynolds number increases to 111.5 the flow structure changes 

from four-cell to two-cell regimes when n=0.5, which is same as those reported by 

Khali et al.[137]. 

 

Figure 8.3 Stream function and vorticity contours for Newtonian fluids (n=0.5): (a) 

Re=65, (b) Re=80, (c) Re=111.5. 

Fig. 8.5 compares velocity profiles from AxLAB® and the model of Khali et al.: 

when n increases from 0.5 to 1.5, both the radial and axial velocity decreases due to 

the rheological behaviour of the non-Newtonian fluid.  According to the comparisons, 

it is clear that the axisymmetric lattice Boltzmann model (AxLAB®) and the model of 

Khali et al. produce very similar results. 
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Figure 8. 4 Stream function and vorticity contours for Newtonian fluids (n=1.5): (a) 

Re=75, (b) Re=80, (c) Re=150. 
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Figure 8.5 Comparison of velocity profiles with the results of Khali et al. for different 

values of n at Re =100: (a) radial velocity profile along x/d; (b) axial velocity profile 

along x/d. 

The enhanced axisymmetric lattice Boltzmann method AxLAB® is presented and 

extended to model the Newtonian and non-Newtonian Taylor Couette flows. The 

effect on the flow pattern of several parameters such as the Reynolds number and the 

power-law index n  are analysed. The results show that when Re Rec , the flow 

changes from the stable laminar regime to the unstable laminar regime and its 

structure switches from the two-cells to four-cell mode for both Newtonian (n=1.0) 

and dilatant fluids (n=1.5). On the other hand, for pseudoplastic fluids (n=0.5), the 

flow shows from two-cells to four-cells and switches again to the two-cell 

configuration. The results are compared with those reported in the literature. It is 

found that the AxLAB® model is easy and simple to simulate non-Newtonian fluid 

flows; it can predict complex axisymmetric flows and capture the typical features 

efficiently at the comparable accuracy to other conventional methods. Using the local 

equilibrium distribution function as the boundary conditions is also simple and can 

produce the accurate results to the Taylor-Couette flow.   
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Chapter 9: Applications to Turbulent Flows 

9.1 Flows through an Abrupt Axisymmetric Constriction 

The first case is a simulation of turbulent flow through an axisymmetric constriction 

that was reported by Andersson [167]. A schematic representation of the flow 

geometry is shown in Fig. 9.1. The length of the computational domain is 5D , where 

D is the diameter of the cylindrical domain. The axisymmetric constriction is given by 

the shaded area in Fig. 9.1 and the constriction height and length are H  and l , 

respectively. The relation between H  and l  is 0.5 0.25H l D  . At the inlet and the 

outlet, as described in Andersson [167], the flow is generated as a laminar Poiseuille 

flow with added random disturbances to generate turbulent transition.  It is driven by 

an axial pressure gradient at the inlet of the pipe which keeps the bulk flow constant at 

bU . The Reynolds number is 22000, which is same as Wang [168]. The similar 

experiment was also studied and described in the report by Wang [168], in which a 

closed-circuit pipe flow was generated. The long inlet and outlet provided fully 

developed turbulent flow within the test section. A slip boundary condition is 

implemented at the top and bottom walls of the domain. Simulations were performed 

on uniform lattices of 500 100 ; the time step t  is 0.2s, and the Smagorinsky 

constant 0.3sC   is used. The numerical results are compared with the experimental 

data [168] to validate the present model, where all lengths and velocities are 

nondimensionalized by D  and bU  , respectively. 

 

Figure 9.1 A schematic representation of the flow geometry. 
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The centreline velocity profile for the pipe flow is shown in Fig. 9.2, which is similar 

to that obtained using a different numerical study by Andersson [167]. The point 

/ 0x H   is selected at the end of the shaded rectangle in Fig.9.1. According to Fig. 

9.2 the flow shows a sudden acceleration just before of the constriction and thereafter 

decelerates as the high speed jets exit from the annular ring. But, before the point

/ 5x H   , the flow has developed fully as normal pipe flow which is also confirmed 

by the experiment data.  Comparisons of the mean axial velocity profiles at four 

different locations downstream of the constriction are shown in Fig. 9.3, which 

indicate good agreements with the experiments by Wang [168]. In the comparison at 

/ 12x H   in the figure, there are some relatively larger errors at the area near the 

wall; which may be due to the effect of the boundary condition used in this situation. 

The velocity histories at two typical points across the channel are plotted in Fig. 9.4, 

showing velocities fluctuation around the mean velocity, and their averaged velocity 

over sufficient long time period is constant. This confirms that turbulence modelling 

based on a subgrid-scale stress model can provide more details than a time average 

turbulence model such as the k   model [56]. 

 

Figure 9.2 Comparison of axial distributed mean streamwise velocities at the 

centreline. 
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Figure 9. 3  Comparison of the mean axial velocity profiles at different locations, (a) 

/ 0.04,x H   (b) / 2,x H  (c) / 4,x H  and (d) / 12.x H    
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Figure 9.4 Histories of centreline longitudinal and latitude velocities at two points: 

/  1x H    and /  0.x H   

 

9.2 Axisymmetric Separated and Reattached Flow 

 

Figure 9.5 Computational domain and boundary conditions. 
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An axisymmetric separated and reattached turbulent flow has been well reported by 

Rastgou and Saedodin [169] and used as the second test case for the present model. In 

this case, the axisymmetric flow past a longitudinal circular cylinder with blunt 

leading edge is simulated. The schematic configuration of the computational domain 

and the boundary conditions are shown in Fig.9.5. The radius of the cylinder is R; the 

domain length was set to 40R; the domain radius is 30R from the axis; and the head of 

the cylinder was located at 25R from the inlet. The computations are carried out using 

800 600 lattices, where the wall is treated using no-slip boundary conditions. The 

Reynolds number for flow is 6000 that is same as the study by Rastgou and Saedodin 

[169]. 

Comparisons of velocities with those using other numerical solutions are shown in 

Figs. 9.6 and 9.7, indicating reasonably good agreement at the similar accuracy to that 

by Rastgou and Saedodin [169]. Furthermore, the comparisons between the 

experimental results of Ota [170] (Re=56200) and Kiya et al. [171] (Re=10
5
) also 

confirm that small discrepancy may exist in the reverse flow region depending on the 

Reynolds number. One of the key characteristics in study of Rastgou and Saedodin is 

the reattachment length, which is defined as the distance between the separation point 

and the reattachment point. The experimental results by Ota [170] and Kiya et al. [171] 

reveal that the reattachment length of turbulent separated shear layer is independent of 

Reynolds number, which is about 1.6 times the diameter. Figs. 9.8 and 9.9 show the 

streamlines and the mean velocity vector field in the neighbourhood of the separated 

and reattaching flow region, respectively. It can be seen from the figures that the 

present model results in a reattachment length of 1.62 times the diameter, which also 

shows good agreement with the experimental data, suggesting that the present model 

has a good performance in simulating complex flows in the logarithmic region. 
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Figure 9.6 Distribution of mean velocity at a section in the separation region. 

 

Figure 9.7 Distribution of mean velocity at a section out of the separation region. 

 

Figure 9.8 Streamlines using the AxLAB® with turbulent. 
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Figure 9.9 Velocity vector field using the AxLAB® with turbulent. 

 

9.3 Pulsatile Flows in a Stenotic Vessel 

 

Figure 9.10 Geometry for the smooth stenosis vessel. 

The pulsatile stenotic flow was investigated using experiment by Ahmed and Giddens 

[172]. This is also simulated as the last test, which was also studied by Varghese and 

Frankel [173] using the Low Re k   model.  In this test, the time periodic period, T, 

is calculated in terms of the angular frequency,  , as 2 / .T     In the numerical 

simulation, a periodic boundary condition was applied to the inlet of the tube and 

outlet; the inflow velocity is set to 

 0 sin( ),mU U U t    (9.1) 

where 0U  is the mean velocity set as 0.04254 ( / )m s   and mU  is taken as a fraction of 

0U  set as 0.02808 ( / )m s , and  =0.314 (rad/s). The density of the flow is 

31000( / )kg m   and the viscosity is
3 =3.614 10 ( )Pa s   . Fig. 9.10 is the 
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geometry of the stenosis vessel with the diameter of 0.0508 D m  and the stenosis is 

described by the following function: 

     0 0 1 2 1( ) 1 cos 2 / / 2,S x s r x x x x        (9.2) 

where 0s  is the % stenosis severity with 1x  and 2x   1 2x x x   specifying the 

position and length of the stenosis. A 75% axisymmetric stenosis was used in this test. 

Pulsatile flow was set at a mean Reynolds number of 600 and a Womersley number of 

/ 2 ( / ) 7.5,D v    which is the same as that in the experiment by Ahmed and 

Giddens [172] and the study by Varghese and Frankel [173].   

The flow input waveform and the times at which the results are presented are shown 

in Fig 9.11 which is the same as Varghese’s research. A flat inlet velocity profile was 

proposed 2.5 times the diameter before the stenosis throat. Computed velocities at five 

different locations were compared with the experiment data and Varghese’s results 

during the peak inlet flow (T2) as shown in Fig 9.12.  From the figure, it can be seen 

that all of the five velocities results from the present model have more accuracy than 

Varghese’s results.  Also they have good reasonable trend to the experiment data. But 

in the experiment the entrance length of the tube before the constriction was 96 times 

the diameter [172]. The streamlines at different times computed by present model are 

plotted in Fig 9.13, which indicates a region of flow vortex just after the stenosis, 

which is also consistent with the reverse flow reported by Ahmed and Giddens [172]. 

 

Figure 9.11 Flow inlet waveform for the smooth stenosis. 
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Figure 9.12 Comparisons of the radial velocity profiles at five different locations 

among the two models and the experimental results. 

 

Figure 9.13 Streamline for the smooth stenosis from the present model at the different 

phases in the flow cycle. 
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Chapter 10: Conclusions and Future Work 

10.1 Introduction 

The axisymmetric lattice Boltzmann method is a relatively new CFD method based on 

the resolution of physics at a microscopic level. It is often used as a numerical 

simulation tool that is particularly suitable for simulate complex axisymmetric flows. 

This thesis aims to present the further power and capability the AxLAB® in 

modelling complicated axisymmetric flows.  The main objectives of this study are to 

develop the AxLAB® to simulate axisymmetric rotation flows, turbulent flow and 

non-Newtonian fluid flows as well as more complex flows with complicated 

boundary conditions.  To achieve this objective, the evolution of the lattice Boltzmann 

method (LBM) is reviewed firstly. Then the theory about the LBM for the 

axisymmetric flow equations (AxLAB®) is thoroughly studied. The numerical 

method is applied to a number of typical axisymmetric flow problems, including both 

laminar and turbulent cases. The numerical results are compared with either 

experimental data or analytical solutions.  Based on the work, the following section 

presents the major contributions and findings.  

10.2 Conclusions 

In this thesis, the lattice Boltzmann method for axisymmetric flows, namely 

AxLAB® for laminar flow, AxLAB® are derived and discussed for non-Newtonian 

fluid flow and AxLAB® for turbulent flow respectively in detail. The popular two-

dimensional nine velocities (D2Q9) lattice pattern is preferred as it is easier to use in 

numerical computations. Various boundary conditions are used in different tests. The 

most significant part of this thesis is the results analysis and comparison. From the 

analytical tests, it is found that when certain parameters of the models are adjusted, 

they generate stable results. Many simulation tests were done to verify this.  
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The key achievements and findings of the present study are summarized in the 

following paragraphs. 

 AxLAB® Applications for Complex Laminar Flows 

The numerical models were tested through a number of cases for which the analytical 

solution or experimental data were already known. The numerical results have shown 

a good accuracy and efficiency. After being validated, the models were implemented 

to several complex axisymmetric flow problems, including the steady cylindrical 

cavity flows, pulsatile 3D Womersley flow, the axisymmetric cold-flow jets and 

swirling flow in a cylinder with rotating top and bottom. In addition to the relatively 

new numerical theories of the AxLAB®, the numerical simulations of these cases 

with such type models have been originally presented in this thesis.  

 Improvement of the AxLAB® for non-Newtonian Fluid Flows 

The AxLAB® is extended to model the non-Newtonian fluid flows. Its accuracy is 

verified by simulating Newtonian and non-Newtonian Taylor-Couette flows, the 

combined effects of the Reynolds number, the radius ratio, and the power-law index 

n  on the flow characteristics were analysed for an annular space of finite aspect ratio. 

From the comparisons with other literatures results, good agreements were obtained to 

prove the present model is stable and can be used to predict complex non-Newtonian 

fluid flows. 

 Development of the AxLAB® for Turbulent Flows 

Moreover, the AxLAB® is further developed to simulate the turbulent flows. The 

turbulent flow is efficiently and naturally simulated through incorporation of the 

standard subgrid-scale (SGS) stress model into the axisymmetric lattice Boltzmann 

equation in a consistent manner with the lattice gas dynamics. The model is verified 

by applying it to three typical cases in engineering. The numerical results obtained 

using the present methods are compared with experimental data and other available 

numerical solutions, indicating good agreements. This confirms that turbulence 

modelling based on a subgrid-scale stress model can provide more details than a time 

average turbulence model such as the k   model. 
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It is known that, lots of research used the axisymmetric LBM to simulate various 

flows but no one has developed and applied the models to simulate the turbulent flows 

especially the pulsatile blood flows in a stenotic vessel. This study suggests that LBM 

can also be a useful tool to study the blood flows and micro-tube flows. This study 

also demonstrates that AxLAB® can be used to study complex non-Newtonian fluid 

flows. In addition, a new simple boundary condition for the distribution function was 

used in the most simulation applications which also shown very good results. 

10.3 Future Research 

As one of the novel CFD methods, AxLAB® has not been explored comprehensively. 

It still requires further research to improve its modelling ability and calculation 

stability. Hence, the following suggestions can be made for improving and enhancing 

this model.  

1. Further study on incompressible LBM is needed to improve the results of unsteady 

flows, since the compressibility of LBM model still affects the accuracy of the results 

especially for the unsteady flow cases. 

2. The extension of this model would be to develop a multi-relaxation time 

formulation. This could be achieved either by adding the source terms to the right-

hand side of main equation or by defining the moments of the generalised LBE such 

that the source terms are satisfied. Both procedures would be beneficial as they would 

enable the stability properties of the AxLAB® to be analysed in detail and allow the 

model to be extended to higher Reynolds number flows. 

3. Simulate the turbulent non-Newtonian fluid flow. In chapter 8 and 9, the non-

Newtonian fluid flow and turbulent flow were studied by improved AxLAB® 

separately. However, in practice, some axisymmetric flows are both turbulent and 

non-Newtonian fluids. As a result, the presented model needs to be extended into this 

situation for more practical engineering. 

4. Parallel Computation and GPU Technique for AxLAB®. In order to simulate the 

real life complex axisymmetric flows, huge numbers of grid are needed. Therefore, 
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parallel computing and GPU technic are desirable for numerical simulation. With 

today’s high performance graphic cards specialized in parallel computations, this will 

create opportunities to reach performance only possible with parallel supercomputers 

in the past. It is known that, one of most attractive advantages for the lattice 

Boltzmann method is the inherent feature of the parallel computation. It is 

recommended that parallel computation of above three models can be implemented in 

the future studies. 
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