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Abstract 
Automatic segmentation of anterior segment optical coherence tomography (AS 

OCT) images provides an important tool to aid management of ocular diseases.  

Having precise details about the topography and thickness of an individual eye 

enables treatments to be tailored to a specific problem.  OCT is an imaging 

technique that can be used to acquire volumetric data of the anterior segment of the 

human eye.  Fast automatic segmentation of this data, which is not available, 

means clinically useful information can be obtained without the need for time 

consuming error-prone manual analysis of the images.  This thesis presents newly 

developed automatic segmentation techniques of OCT images. 

Segmentation of 2D OCT images is first performed.  One of the main challenges 

segmenting 2D OCT images is the presence of regions of the image that generally 

have a low signal to noise ratio.  This is overcome by the use of shape based terms.  

A number of different methods, such as level set, graph cut, and graph theory, are 

developed to do this.  The segmentation techniques are validated by comparison to 

expert manual segmentation and previously published segmentation techniques.  

The best method, graph theory with shape, was able to achieve segmentation 

comparable to manual segmentation.  Good agreement is found with manual 

segmentation for the best 2D segmentation method, graph theory with shape, 

achieving a Dice similarity coefficient of 0.96, which is comparable to inter-observer 

agreement.  It performed significantly better than previously published techniques. 

The 2D segmentation techniques are then extended to 3D segmentation of OCT 

images. The challenge here is motion artefact or poor alignment between each 2D 

images comprising the 3D images. Different segmentation strategies are 

investigated including direct segmentation by level set or graph cut approaches, and 

segmentation with registration.  In particular the latter requires the introduction of a 

registration step to align multiple 2D images to produce a 3D representation to 

overcome the presence of involuntary motion artefacts.  This method produces the 

best performance. In particular, it uses graph theory and dynamic programming to 

segment the anterior and posterior surfaces in individual 2D images with shape 

constraint.  Genetic algorithms are then used to align 2D images to produce a full 

3D representation of the anterior segment based on landmarks or geometric 

constraints.  For the 3D segmentation, a data set of 17 eyes is used for validation.  

These have each been imaged twice so a repeatability measurement can be made.  

Good repeatability of results is demonstrated with the 3D alignment method.  A 

mean difference of 1.77 pixels is found between the same surfaces of the repeated 

scans of the same eye. 

Overall, a new automation method is developed that can produce maps of the 

anterior and posterior surfaces of the cornea from a 3D images of the anterior 

segment of a human eye.  This will be a valuable tool that can be used for patient 

specific biomechanical modelling of the human eye. 
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1 Introduction 

1.1 Overview 

Several eye healthcare therapies are based on the assumption that the eyes’ 

topography and material stiffness vary consistently with, and can be predicted from, 

the age and medical history. In appreciation of the significant approximations made 

by this assumption, work is now progressing to optimise eye therapy for individual 

eyes [3]. The work is based on the use of numerical simulations that have been 

designed to closely represent the topography and material behaviour of an 

individual’s eye, and predict the eye’s response to mechanical actions such as 

surgery and impact. This project is intended to overcome an important obstacle 

related to the shaping of numerical simulations to an individual eye’s topography as 

obtained clinically. 

This work focuses on the analysis of optical coherence tomography (OCT) images 

of the cornea.  The latest OCT instruments allow acquisition of 3-dimensional (3D) 

volumetric data and are capable of resolving the fine details of the anterior (front) 

part of the eye.  In order to use these images for biomechanical modelling 

segmentation is needed to identify important boundaries in the image.  Current 

algorithms supplied with anterior segment OCT machines are only able to 

accurately segment the central part of the images.  Manual segmentation of the 

entire image is a time consuming process preventing fast analysis of images.  The 

development of fully automatic segmentation techniques would allow clinically 

useful information to be obtained without the need for time consuming error-prone 

manual analysis of the images. 

The main challenge faced when segmenting anterior segment (AS) OCT images is 

accurately detecting regions of low signal to noise ratio that occur either side of the 

centre of the image.  In these regions the posterior surface between the cornea and 

the anterior segment chamber is not clearly delineated.  In order to detect this 

region prior knowledge of the expected shape of the cornea must be used.   

This thesis comprises of two main sections.  The first develops fully automated 

image segmentation techniques capable of obtaining topographic information of the 

eye from 2D OCT images.  The second section builds on this, developing 

segmentation and registration of a full 3D surface of the cornea. 

The process of segmenting the images starts by using 2D OCT images of the 

anterior segment of the eye.  Image segmentation is the task of splitting an image 
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into different regions.  In this case the task is to split an image into two areas the 

object of interest, in this case the cornea and sclera, and background.  

Segmentation of multiple regions of interest is also possible.  There are various 

techniques that can be applied for image segmentation.  Available techniques 

include finding a threshold to segment an image; a very simple and quick method 

that is vulnerable to noise.  Using the vertical gradient of the image to locate edge 

points, segmentation based on gradient information can be carried out in a number 

of ways and may also be sensitive to noise.  Active contours using a level set is an 

approach that uses various factors to segment an image including edge information, 

regional statistics and prior knowledge of the shape to be segmented.  This 

technique has the advantage of being more robust to noise but is computationally 

expensive.  Approaches taking a graph based approach to the problem including 

graph cut and graph theory based techniques have been tried.  These work by 

representing images as a graph and require the development of energy functions 

that will correctly identify features on an image. 

Following the segmentation of 2D images, the work is extended to obtain 3D 

topographical information.  3D segmentation can either be attempted by developing 

a fully 3D segmentation technique or by carrying out segmentation of multiple 2D 

images and combining them to produce a full 3D model.  The different methods 

developed for use on 2D images are all extended to 3D.  Those that are suited to it, 

such as level set and graph cut can be implemented in a fully 3D manner.  Other 

techniques such as graph theory based segmentation cannot be easily extended to 

3D, so 2D segmentation will be carried out on multiple images and then an 

alignment technique developed to produce a 3D surface from those images.  

The 3D information to be acquired using OCT images could be used to produce 

patient specific numerical models of the human cornea, however this is beyond the 

scope of this thesis. 

1.2 Aim and Objectives 

The aim of the project is to develop a fully automated method that is able to create a 

3D surface map that delineates the anterior and posterior boundaries of the human 

cornea from OCT images. 

1.2.1 Objectives 

In order to produce such a method there are two subsidiary steps that must be 

carried out 
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 Develop a fully automatic image segmentation program capable of 

segmenting 2D anterior segment OCT images 

 Expand this method to utilise multiple 2D cross sections of the cornea to 

produce 3D image segmentation 

1.3 Unique Contribution of PhD 

As part of this PhD a number of novel techniques have been developed.  There 

have been three new 2D segmentation techniques that have been developed.  

None of these involved the developed of new segmentation techniques but all 

involved the adaptation of existing techniques to the segmentation of anterior 

segment OCT images for the first time.  The use of a shape based term to improve 

segmentation of anterior segment OCT images is novel.  The first used a level set 

technique with a shape term.  Use of level set based techniques on the 

segmentation of anterior segment OCT images has not been previously reported.  

The next technique developed was a graph cut segmentation using a shape term.  

This is the first time that graph cut segmentation with shape has been used on 

anterior segment OCT images.  The final novel 2D segmentation technique was 

graph theory segmentation again with a shape term.  This is the first time a shape 

term has been used on segmentation of anterior segment OCT images using this 

technique. 

There has been no previous work that has attempted to validate 3D segmentation of 

anterior segment OCT images.  The work carried out for this PhD is novel in this 

regard.  The use of genetic algorithms in the way presented here presents a novel 

application of the technique to ocular OCT images.   

1.4 Background 

In order to carry out this segmentation, background knowledge of the structure of 

the cornea is necessary.  This is presented in this section.  Sources of OCT images 

are also described.  All of the imaging was done by project collaborators since there 

was no suitable OCT imaging capability available at the University of Liverpool. 

1.4.1 The Cornea 

The human eye is a highly specialised organ that detects light from our 

surroundings and processes that information to the brain.  Light is detected by 

specialised nerve cells in the retina called rods and cones.  This is an important part 

of the eye; the purpose of other structures of the eye is to focus light onto the retina 

and to provide the needed support for the eye’s internal components. 
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The general shape of the eye is approximately spherical in nature.  Its outer tunic 

consists of two parts, a smaller anterior segment and the larger sclera.  The cornea 

is located at the front of the eye and forms a major part of the anterior segment.  

Together with the sclera, the cornea provides a tough protective envelope which 

protects the important ocular tissues.  The cornea has a higher curvature than that 

of the sclera and forms about one sixth of the total surface of the eye.    

The surface of the cornea is where most of the refraction in the eye occurs; there is 

a large difference in refractive index between air and corneal tissue that changes 

little with age.  The transparency of the cornea is one of its most important 

properties, although it must also provide a tough physical boundary against trauma 

and infection [4].  The cornea is composed of five layers, these are the corneal 

epithelium, Bowman’s layer, the corneal stroma, Descemet’s membrane and the 

cornea endothelium [5].  The cornea has no blood vessels and has a highly 

regularised arrangement of fibrous, cellular and extracellular components: these 

ensure the transparency of the cornea. 

 

Figure 1: Labelled diagram of the human eye taken from [6]. 

1.4.1.1 Corneal Epithelium 

The corneal epithelium is the outermost layer of the cornea.  It is 50-60 µm thick and 

consists of 5 or 6 layers of flattened, nucleated and nonkerantinised cells.  The 

anterior surface has numerous microvilli and microplane which act to stabilise the 

pre-corneal tear film.  New cells grow in the limbal basal cell layer and displace 



6 
 

existing cells superficially and centripetally.  Cells slide to rapidly repair damage to 

the integrity of this layer. 

1.4.1.2 Anterior Limiting Lamina 

The anterior limiting lamina, or Bowman’s layer, is 8 – 12 µm thick and consists of 

fine, randomly arranged collagen fibrils.  It connects the epithelium with the stroma.  

The boundary with the epithelium is well defined, while the posterior boundary 

merges with the stroma. 

1.4.1.3 Corneal Stroma 

This is the region that takes up the vast majority of the cornea and is generally 

between 400-500 µm thick.  It is made of dense connective tissue containing 2 µm 

thick layers of collegenous lamellae, most of which are orientated parallel to the 

surface [7].  Keratocytes are found between these layers, these are extremely 

flattened fibroplasts, which act to hold the collagen bundles in place and may help 

with diffusion of metabolites.  This region normally contains no blood or lymphatic 

vessels. 

1.4.1.4 Posterior Limiting Lamina 

This is a thin, homogenous layer between the stroma and endothelium 8 – 12 µm 

thick.  There are two parts to it an anterior banded section and a nonbanded 

posterior section.  Microscopic deposits appear on the edge of the region with 

increasing age.  If this layer is disrupted it tends to curl towards the anterior 

chamber. 
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1.4.1.5 Corneal Endothelium 

The corneal endothelium is responsible for regulating the supply of fluid to the rest 

of the cornea.  The cornea loses fluid constantly through evaporation causing the 

thickness to decrease as the day progresses.  The cells in the layer are 5-6 µm in 

height and 18-20 µm in diameter and form an uninterrupted polygonal array.  They 

have a very low regenerative capacity and cell density fall with age from 4000 

cells/𝑚𝑚2 at birth to 2000 cells/𝑚𝑚2  in old age.  Damage to cells and low density 

causes oedema and swelling of the stroma resulting in a loss of transparency.  

 

Figure 2: Labelled cross section of the human cornea from [8]. 

1.4.1.6 Boundaries of Interest 

This study aims to detect the anterior and posterior boundaries of the cornea using 

OCT images.  The anterior boundary corresponds to the air-epithelium interface.  

Bowman’s membrane is visible in some OCT images, but not all of them, and not for 

the entire width of the cornea.  For this reason I do not attempt to segment this 

layer.  The posterior boundary corresponds to the location of the endothelium. 

1.4.2 OCT Data Sources 

There was no capability to carry out anterior segment OCT imaging in the University 

of Liverpool.  All the imaging was carried out by collaborators.  Each set of image 

acquired will be discussed in turn. 

1.4.2.1 Initial Data Set 

In order to develop an image segmentation program for the anterior segment, OCT 

images were needed.  The images initially used were collected at the Singapore 

National Eye Centre.  The Visante anterior segment optical coherence tomography 
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(AS OCT) system manufactured by Zeiss was used.  This is a time domain system 

that uses 1300nm infrared light to obtain cross sectional images of the anterior 

segment with a scanning rate of 2000 axial scan per second.   The image contains 

256 A-scans in 16mm with 1024 points per A-scan to a depth of 8mm.  The images 

have a transverse resolution of 60 𝜇𝑚 and an axial resolution of 18𝜇𝑚.  The images 

were outputted by the machine as 816 x 636 pixel JPEG files.  Informed consent 

was obtained from all participants in the study.  Figure 3 shows an example image 

obtained using this machine. 

 

Figure 3: Example 2D anterior segment OCT image. 

1.4.2.2 Second 2D Data Set 

In order to validate the automatic segmentation methods developed, comparison 

against manual segmentation must take place.  A second data set was acquired for 

this purpose.  39 anterior segment OCT B scan images through the centre of the 

cornea from healthy eyes (one per subject) were acquired by the Visante AS OCT 

system (Carl Zeiss Meditec, Dublin, CA) in Wenzhou Medical University, China for 

the purpose of evaluation in the study.  This is the same system as the initial data 

set.  The images were corrected for refractive index using the built-in software of the 

system; this correction is unlikely to affect the automatic segmentation results. The 

anterior and posterior boundaries of all images were later segmented manually by 

two expert ophthalmologists. 

1.4.2.3 3D Data Sets 

All the data used for 2D segmentation came from time-domain (TD) OCT devices.  

This is because they are currently the most widely available commercially available 

systems capable of imaging the full width and depth of the cornea.  Previous studies 
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have been carried out using spectral-domain (SD) OCT to investigate the cornea, 

but these have mainly involved the use of custom built machines.  One of the 

advantages of SD OCT over TD OCT is the increased speed of measurements.  

This is very useful in obtaining 3D data.  The majority of OCT machines currently 

available are set up to take 2D images slicing into the eye.  Multiple 2D slices of the 

cornea can be combined to produce a 3D image.   

Initial 3D work was carried out on a single set of images of an eye obtained through 

SD OCT containing 32 individual 2D images of the cornea.   These data were 

acquired using a custom built SD OCT system in Wenzhou Medical University, 

China.  Synthetic data were created to supplement this data set. These images 

were created simulated the cornea as the area between two ellipsoids, speckle 

noise was added to this data and part of the cornea removed to simulate low signal 

to noise regions present in real data. 

Due to the roughly ellipsoidal structure of the cornea, a series of 32 cross-sectional, 

radial images of the cornea all across the centre of the cornea but rotated relative to 

each other are taken to represent the cornea. Figure 4(a) demonstrates the 

scanning pattern and Figure 4(b) illustrates the scan in the horizontal direction.    

Another source of 3D data was through collaboration with Dr Pinakin Davey at 

Western University of Health Sciences, USA.  An initial set of 8 eyes each with 16 B 

scans again in a radial pattern was procured.  These were taken using the same 

Visante OCT system that was used to acquire the 2D data.   

 

(a)        (b) 
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Figure 4: Illustration of the 3D AS-OCT scanning pattern. (a) Diagram showing layout of radial 

scans.  The black circle represents the cornea and each red line is a B scan of the cornea.  Note 

that only 16 scans are shown here for clarity. (b) An example scan in the horizontal direction. 

For the purpose of demonstration, the brightness and contrast have been adjusted. 

1.4.2.4 Repeated Measurements 

In order to carry out validation of our 3D segmentation and alignment technique a 

repeatability test was carried out.  Additional data for this test was acquired from the 

Western University.  The same Visante OCT machine was used to acquire 16 

images of an eye arranged in a radial pattern.  Each eye was imaged twice by this 

method to enable a repeatability study to be carried out.  Images of a total of 17 

eyes were acquired for this study.  These came from 11 different people, 5 people 

had images taken of a single eye and 6 people had images taken of both eyes. 

1.5 Specifications of Computer Used When Carrying Out 

Segmentation 

The different methods developed here have been tested for speed and accuracy.  In 

order for effective comparison of the time taken for segmentation it is important to 

know the specifications of the machine that was used for the segmentation.  All 

segmentation was carried out using a Win7 PC with Intel Core i5-2320 CPU 

@3.00GHz and 4.00 GB RAM.   

1.6 Evaluation Criteria 

1.6.1 2D Segmentation Evaluation 

In order to evaluate the success of segmentation techniques it is necessary to 

compare the results of automated segmentation techniques with those done by 

expert manual observers.  There are numerous comparison techniques: this study 

uses three measures to evaluate success; Dice’s similarity coefficient (DSC), mean 

unsigned surface positioning error, and the Hausdorff distance (HD).   

1.6.1.1 Dice Similarity Coefficient 

The DSC is an area similarity method defined by the following expression 

𝐷𝑆𝐶 = 
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 (1)  

where X and Y are the two segmentations to be compared, in this case the manual 

and automated segmentation results.  DSC has a range between 0 and 1. The 

higher the DSC value, the more similar the two segmented regions are.  This was 

first developed by Dice when looking at ecological association of species [9] but has 
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been used widely for evaluating images since then [10].  Figure 5 is a diagram that 

shows how this method works. 

 

 

Figure 5:  Diagram showing Dice Similarity Coefficient (DSC).  The two regions to be compared 

are X outlined in red and Y outlined in green.  The area of overlap is yellow.  DSC is defined as 

the area in yellow divided by the total area that X and Y encompass. 

1.6.1.2 Mean Unsigned Surface Positioning Error 

The mean unsigned surface positioning error (MSPE) is a method for quantifying 

the similarity between two lines.  It differs from the DSC in that it looks at individual 

lines rather the area as a whole.  The unsigned surface positioning error is defined 

by  

𝑀𝑆𝑃𝐸 = 
∑ | 𝑧𝑎

𝑖𝑛
𝑖=1 − 𝑧𝑚

𝑖 |

𝑛
 (2)  

where 𝑧𝑎
𝑖  is the z value of the automated segmentation at point 𝑖, 𝑧𝑚

𝑖  is the z value of 

the manual segmentation at point 𝑖 and 𝑛 is the number of points.  The method has 

been widely used for evaluation of image segmentation techniques [10].  Figure 6 is 

a diagram that shows how this method works. 

 

 

Figure 6: Diagram of mean unsigned surface positioning errors (MSPE).  The red and green 

lines are to be compared.  The mean unsigned distance corresponds to the black lines with 

measures made at set points along the line.  The distance is unsigned so it does not matter 

which line is on top 
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1.6.1.3 Hausdorff Distance 

The mean 95% Hausdorff distance [11] is a more stringent measure that compares 

the difference between the two boundaries.  The Hausdorff distance from set A to 

set B is defined as 

𝐻𝐷(𝐴, 𝐵) =  max
a∈A

(min
b∈B

(|a − b|)) (3)  

 

where A and B are sets of boundary points from the two images to be compared, a 

and b are the corresponding individual points within each set.  The measure is in 

effect a measure of the distance of the worst fitting point from the data set.  In order 

to reduce the effect of outliers on the data set, a modification of the Hausdorff 

distance can be used.  Here the 5% largest distances were removed.  Then the 

maximum of HD(A,B) and HD(B,A) was taken for each image  [12].  Perfect 

alignment is represented by a Hausdorff distance of 0.   

1.6.2 3D Evaluation 

For the 3D methods, two sets of data were acquired to enable repeatability tests to 

be carried out.  Repeatability was chosen to evaluate the success of the techniques 

since it is not practical to carry out manual registration.  Two measures were used to 

assess repeatability.  The first was a simple height difference comparison.  The 

height difference between corresponding points on each of the two surfaces is 

calculated across the surface.  An unsigned mean was then taken of this over the 

entire area.  This measure is defined by 

𝑅 =
∑ (𝑧𝑖

𝑎 −𝑖 𝑧𝑖
𝑏)

𝑛
 (4)  

where 𝑧𝑖
𝑎 is the z coordinate of the ith point on surface a, 𝑧𝑖

𝑏 is the z coordinate of 

the ith point on surface b, i is valued from 1 to n and n is the number of points 

present on both surfaces being compared. 

The other measure used was a coefficient of repeatability (CoR) this is a measure of 

the repeatability of multiple measurements of the same things.  Measurements of 

the corneal thickness were used to evaluate this.  The CoR is defined by  

𝑅 =
2 ∗ 𝑠𝑑(𝑇𝑎 − 𝑇𝑏)

𝑚𝑒𝑎𝑛(𝑇𝑎 − 𝑇𝑏)
 (5)  

Where 𝑠𝑑 is the standard deviation of the difference between the two 

measurements 𝑇𝑎 and 𝑇𝑏. 

For both measures of repeatability a lower value indicates a better match.   
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1.6.3 Statistical Techniques 

In order to test if differences between methods are statically significant a number of 

techniques were used.  The statistical tests were all calculated using the software 

package SPSS Statistics for Windows (version 20, IBM, Armonk, NY, USA).   

When comparing more than two techniques an ANOVA test was carried out.  This 

test enables quick comparisons between different techniques to see if differences 

between them are significant.  Post hoc analysis can then be carried out to assess 

the significance of specific differences between methods. 

When two methods were being compared directly, a paired t-test is more 

appropriate to use.  The two methods are compared over the same set of images.  

Using a paired t-test will account for differences in results that are due to differences 

between the images rather than the alignment techniques.   

1.7 Plan of Thesis 

The remainder of the thesis is split into 5 chapters.   

Chapter 2 presents a literature review.  Previous work investigating different 

imaging techniques for the cornea is discussed.  Different image segmentation 

techniques, as well as different registration techniques, are then discussed. 

Chapter 3 describes the 2D segmentation techniques developed.  Initially, existing 

segmentation techniques that have been used on the anterior segment are 

described.  Following this a number of techniques that have been developed as part 

of this study are explained.  The first group of methods introduced are based on 

level set techniques.  Methods based on graph cut techniques are then introduced 

and finally graph theory segmentation is explored.  For each group of methods a 

number of novel techniques have been developed specifically aimed at segmenting 

anterior segment OCT images. 

Chapter 4 describes 3D segmentation and alignment.  There has been no previous 

work compatible with the imaging system used in this thesis.  Three different 

approaches for developing novel techniques are discussed.  These are based on 

the 2D segmentation methods developed in previous chapter.  Techniques to align 

sets of 2D images to produce 3D maps are also described. 

Chapter 5 contains the results of the segmentation methods.  2D automated 

segmentation programs developed here are compared to manual segmentation.  
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The results of the different techniques are presented in the same order that they 

were described.  Different variations of the techniques are compared within each 

broad category of method.  Then one of each type of method is compared so the 

best method can be decided upon.  The second half of this chapter discusses the 

results of the 3D segmentation and alignment techniques.  The results of a 

repeatability test are presented and used to assess the performance of each 

method.   

Chapter 6 contains a discussion of future steps that can be carried out based on this 

work.  It also contains a summary of the main findings to conclude the work.   
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2 Literature Review 

2.1 Introduction 

This chapter will first review different techniques that have been used for the 

purpose of imaging the cornea.  The advantages and disadvantages of techniques 

are discussed.  This review will show why OCT is a promising technique for use in 

the project.  We will then go on to discuss image segmentation techniques with 

special focus being placed on those that have previously been used on ocular OCT 

images.  2D segmentation techniques are discussed first followed by 3D 

segmentation.  Image alignment problems inherent in 3D segmentation are 

discussed next.  Finally a concluding section will present important findings and 

point at areas of investigation for the current study. 

2.2 Techniques for Imaging the Cornea 

Given the cornea’s importance in human vision it has been subject to much 

investigation.   There are several methods that can be used to measure corneal 

thickness [13].  These include ultrasound pachometry, optical pachometry, 

Scheimpflug photography and OCT, as well as techniques that combine different 

methods.  Each method will be discussed separately and comparisons will be made. 

2.2.1 Optical Pachometry 

2.2.1.1 Slit Lamp Based Method 

Optical pachometry is based upon the use of a slit-lamp.  The technique requires a 

trained observer to judge where the light is reflected from within the cornea.  The 

location of one edge is ascertained and then the relative distance to the other edge 

can be measured using a sliding scale.  This technique can measure central corneal 

thickness to within 6𝜇𝑚.  The use of a set of fixation lights helps to assist in the 

alignment of the slit lamp [14]. 

One of the major disadvantages of this method is that it is a subjective method 

relying on the observers’ judgement about location of boundaries [15].  It also 

suffers from potential inaccuracies due to possible errors due to alignment and non-

uniform specula reflection.  This technique was largely replaced by ultrasound 

methods by the late 1980s. 

2.2.1.2 Clinical Specula Microscope 

This is a variation on slit lamp optical pachometry.  A slit lamp is used to illuminate 

the cornea at an angle.  The light from this is reflected from both the posterior and 

anterior surfaces of the cornea.  The light reflected from both surfaces is 
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approximately parallel so can be observed with a microscope.  In order to improve 

the accuracy of the results an aperture is placed in front of the objective lens.  This 

reduces the range of possible deviations from the correct angle [16]. 

Comparisons between this method and ultrasound pachometry found significantly 

lower values of corneal thickness when the specula microscopy method was used 

(32 𝜇𝑚 thinner) [17].  Lower inter observer variation was observed in the specula 

method, indicating it could be more useful for long term studies [18].  This is 

probably due to the fact that the position of the cornea is fixed using a guide light 

and no manual placing of an ultrasound probe needs to take place.   

2.2.1.3 Orbscan System 

This is an optical system that can be used to measure the topography of the human 

eye.  It measures the anterior and posterior corneal elevation, surface curvature, 

and corneal thickness.  Two slit lights are used to illuminate the human eye at a 45 

degree angle.  Slits are projected sequentially onto the eye from both left and right.  

Information on where this light is reflected from is then used to calculate axial 

curvature, elevation of anterior and posterior surface, and corneal thickness in a 

central region 8 to 10 mm in diameter.  Pachometry data is determined by the 

difference in elevation between the anterior and posterior surface of the cornea [19]. 

Comparisons between this system and ultrasound pachometry techniques have 

found similar accuracy and precision in both systems.  Orbscan measurements 

were found to be 23-28 𝜇𝑚 greater than ultrasound measurements of the same eye 

[20].  This means that this system cannot be used interchangeably with ultrasound 

methods.  This discrepancy could be due to the fact that ultrasound methods are 

contact whereas the Orbscan system is a non contact method.  It could also be due 

to the Orbscan system including the hydrated mucus gel that covers the corneal 

surface and has a thickness of up to 40 𝜇𝑚, as part of the cornea [21]. 

2.2.2 Ultrasound Pachometry 

Ultrasound pachometry is a widely used technique which has been around for over 

25 years and is frequently used in the clinical environment [22].  Ultrasound 

pachometry works by emitting high frequency pulses of sound which are reflected 

by the anterior and posterior surfaces in the cornea.  These reflected pulses can be 

measured and the time difference between pulse emission and signal can be used 

to determine the location of the edges.  A transducer probe which emits high 

frequency sound pulses must be placed on the cornea to enable measurements to 

be made.  Patients must receive a topical anaesthetic. 
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The method has several advantages.  The technique requires minimal observer 

judgement making measurements more reliable and consistent.  It is cheaper, faster 

and more portable than optical pachometry, a previously used technique.  One 

disadvantage of this method is that it requires contact between the ultrasound probe 

and the cornea.  This introduces potential errors since if too much pressure is 

applied with the tip, incorrect readings will result.  In order to find the centre of the 

cornea patients are asked to stare at a fixed spot and the centre of the pupil is 

estimated to be the centre of the cornea.  No fixation lights are used to control 

patient gaze.  One study [23] found a high degree of reproducibility of ultrasound 

pachometry results for both inter observer and intersession measurements.  This 

shows that the issues mentioned above do not present a fundamental problem for 

the technique.   

Ultrasound pachometry is a single point measurement technique and doesn’t 

produce a map of the cornea.  Ultrasound biomicroscopy (UBM) is a variation on 

this technique that is able to produce maps of the cornea [24]. 

2.2.2.1 Ultrasound Biomicroscopy 

UBM requires the use of a water bath to achieve contact between the eye and the 

probe.  Early models required patients to lie down to take measurements.  More 

recently the Paradigm UBM model (Paradigm Medical Industries Inc., Salt Lake 

City, Utah, USA) uses a handheld device that can measure patients while sitting 

[25].  UBM has been used to detect abnormalities in anterior segment angle and 

ciliary body.  Currently it is not used as a standard diagnostic tool but has proved a 

useful tool for research purposes. 

2.2.3 Scheimpflug Photography 

This is a variation of the slit lamp method of imaging the anterior segment.  Light is 

directed on the eye and a series of images are taken at an angle to each other.  

These are combined to generate cross-sectional images of the anterior segment of 

the eye.  These give information about where light is reflected from the eye and so 

can be used to determine the density of the cornea or lens [26].  When using the 

Scheimpflug method to look at the lens it produces similar results to slit lamp based 

classification but is less dependent on the skills of the person performing the 

examination.  When compared to techniques like OCT or ultrasound biomicroscopy 

(UBM), Scheimpflug photography is superior in respect of quantification of light 

scattering in the cornea and lens.  However it cannot be used to visualise the 

complete anterior chamber angle which OCT and UBM are capable of doing. 
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2.2.4 Optical Coherence Tomography 

Optical coherence tomography (OCT) is a widely used medical imaging technique.  

Since it was first developed in 1991 [27], it has been rapidly developed as a non 

invasive optical medical diagnostic method.  It generates cross sectional images by 

measuring time delay in backscattered light.  OCT was first used for in vivo studies 

of the human eye, specifically looking at the retina.  The transparent nature of ocular 

media, where only minimum optical attenuation and scattering occurs, provides 

easy access to the human retina.  This has meant that ophthalmic diagnosis is one 

of the most clinically developed OCT applications.  For example around 50% of all 

OCT publications up to 2008 were in ophthalmic journals. 

OCT of the anterior segment of the eye was first demonstrated in 1994 [28].  There 

have been many different uses of anterior segment OCT [29].  These include 

evaluating anatomical outcomes of refractive surgery, imaging of cataracts, anterior 

chamber angle assessment, monitoring corneal oedema, and routine clinical 

examination of the anterior segment.  However, the extra expense of OCT 

machines compared to ultrasound equipment and the established nature of 

ultrasound measurements has meant that ultrasound continues to be used as the 

standard technique for measuring central corneal thickness. 

Using ultrahigh resolution OCT, an axial resolution of 2 – 3 𝜇𝑚 can be achieved, 

and standard OCT systems have a maximum resolution of 10-15 𝜇𝑚 [30], better 

than can be achieved using ultrasound.  The technique works in a similar way to 

ultrasound but detects back scattered light instead of sound. 

This method has several advantages over ultrasound methods.  It has a higher 

resolution than conventional ultrasound due to shorter wavelength of light, the 

method is non invasive and non contact, and it can give quantitative morphological 

information [31].  OCT has been used to look at the cornea.  Measurements of 

central corneal thickness can be made using this technique.  This is done using an 

automatic algorithm to isolate the cornea in the central region.  Studies have good 

repeatability indicating that OCT is a suitable technique to make these 

measurements. 

The technology behind OCT has developed and improvements in both scanning 

speed and resolution have been achieved.  There are two types of OCT systems, 

time domain and spectral domain OCT.  Time domain OCT will be discussed first, 

followed by spectral domain OCT. 
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2.2.4.1 Time Domain Optical Coherence Tomography 

OCT works by measuring the time delay of backscattered light incident on a sample.  

The time delay of the backscattered light cannot be measured directly due to the 

high speed of light, so instead an interferometer is used.  The light emitted from a 

source is split into two paths using a beam splitter, known as the reference and 

sample arms. 

Light in the reference arm travels to a mirror at a known distance, it is then 

recombined with the light from the sample arm, which has been back scattered by 

the sample.  The reference mirror is moved while the sample is kept stationary, 

creating an interference pattern is measured by the detector.  The coherence length 

of the light source limits the depth of possible measurements.  A measurement of 

reflectivity against depth can then be obtained from the detector; this single scan of 

reflectivity against depth is referred to as an A scan.  A series of these A scans 

taken along a line is known as a B scan and can be used to create a 2D image of 

the subject. 

 

Figure 7: Schematic diagram of Time Domain Optical Coherence Tomography taken from [32] 

and modified.  SLD is the light source which can be a super luminescent diode, other light 

sources can also be used.  For time domain OCT the sample is held still and the reference arm 

is moved to generate an interference pattern after light is recombined and sent to detector. 

The axial resolution of an OCT image is primarily determined by the coherence 

length of the light source. This is determined by the following equation [33] 
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𝑙𝑐 = 
2 ln(2)

𝜋

𝜆0
2

𝑛∆𝜆
 (6)  

where 𝜆 is the central wavelength of the light source in question, ∆𝜆 is the 

bandwidth of the light source and n the refractive index of the sample.  The choice 

of wavelength is therefore important in OCT; whilst a shorter wavelength is 

desirable in that it would give an improved resolution, tissue absorption must also 

be considered.  Haemoglobin absorption dominates at wavelengths shorter than 

600nm and water absorption becomes important above 1000nm [34].  This means 

that the standard wavelengths used are in the 800-900nm region.  More recently 

longer wavelength light sources have also been used with a wavelength of 1310nm 

being used in several systems.  The use of infrared wavelengths has the advantage 

of not dazzling the subject.  Increased absorption at longer wavelengths also allows 

for a higher power of light to be used, since absorption reduces retinal exposure. 

2.2.4.2 Spectral Domain OCT 

A more recent development in OCT is spectral domain (SD) or Fourier domain OCT.  

In this system the reference mirror is kept stationary and the OCT signal is acquired 

as a function of frequency using a spectrometer as detector [35].  The resultant 

spectrum can be Fourier transformed to determine where the backscattering of the 

light occurred.  SD OCT can be swept source where the emission wavelength is 

tuned rapidly over a broad wavelength, in this case the set up is the same as TD 

OCT and a single photodetector can still be used.  The other alternative is to use a 

broadband light source and use a spectrometer to record the signal. 
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Figure 8: Schematic Diagram of Spectral Domain OCT.  The detector in this case must be a 

spectrometer [32].  Here SLD is a light source.  For SD OCT the light source must either be 

broadband source or a have a varying wavelength light emitted.  The reference mirror is held 

still in the device. 

One of the main advantages of SD OCT over TD OCT is the increasing scanning 

speed available.  Since SD OCT contains no moving parts a much higher 

acquisition speed is achieved.  One problem faced when making optical 

measurement is involuntary eye movements by patients.  Improving acquisition 

speed reduces the effect of this problem.  In 2008 the fastest commercial TD OCT 

system acquired 2,000 A-scans per second; in contrast a SD OCT system then 

available could achieve 26,000 A-scans per second or higher [36].  This opens up 

the possibility of creating 3D scans of the eye.  It also allows for a higher density of 

A scans, thereby increasing sensitivity and reducing speckle size and so noise in 

the images. 

2.2.5 Anterior Segment OCT 

Whilst OCT has been used most widely to study the retina it has also been used 

extensively to study the cornea as well.  Accessing the Scopus online database in 

2012 [37] the search term ‘optical coherence tomography AND cornea’ revealed 

1,109 results compared to 7,823 results using the search term ‘optical coherence 

tomography AND retina’. 

When looking at the anterior segment a longer wavelength can be used.  Longer 

wavelength light has the advantage of increasing the penetration depth.  A higher 

power of light can also be used since water absorption at this frequency acts to 
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shield the retina from receiving too much light [38].  Scattering is reduced at longer 

wavelengths which leads to an improved penetration depth when 1310 nm is used 

instead of 803 nm [39].   

Work has been carried out developing SD OCT systems with a larger scanning 

depth.  One group investigating accommodation designed a custom built OCT 

system that was capable of achieving a scanning depth of 11.87mm [40].  The 

scanning speed of this system was 4,000 A scans per second.  This is faster than 

TD OCT systems and able to achieve similar scan depths to those they can 

achieve.   Several different uses of anterior segment (AS) OCT will be discussed in 

the following sections. 

2.2.5.1 Anterior Chamber (AC) Angle Assessment 

Glaucoma is one of the most common causes of blindness and irreversible visual 

loss.  It is caused by poor filtration of fluid in the eyeball and, if untreated, results in 

higher intraocular pressure which can cause permanent nerve damage and so 

blindness.  Intraocular fluid is usually filtered through the anterior chamber angle.  If 

this angle becomes too small then angle closure glaucoma occurs.  It is estimated 

that this will cause 5.8 million people worldwide to go blind by 2020 [41].  This 

means that screening for glaucoma is very important especially since it is 

asymptomatic in the early stages, resulting in cases not being diagnosed till the 

disease is advanced and has affected the patient’s vision.  Measuring the anterior 

chamber angle is used to detect angle closure glaucoma and decide the treatment 

method. 

There has been a considerable amount of research into using AS OCT for anterior 

chamber angle assessment.  The use of light allows a higher spatial resolution than 

ultrasound to be achieved.  The non-contact nature of OCT permits more 

comfortable examinations and removes possible mechanical distortion of the angle.   

In 2005 the commercially available Zeiss Visante OCT was approved for AC angle 

imaging.   This uses 1300nm wavelength and was able to measure 2,000 A scans 

per second with an axial resolution of 10-20 micrometers.  Several studies were 

carried out based on manual identification of the sclera spur from OCT images.  

This was then used to determine the AC angle and the sclera spur location, which 

could be determined in 72% of cases [42]. 

Advances in OCT technology and the introduction of SD OCT meant that higher 

resolution images can be produced in a shorter time.  High definition OCT with 



 
 

23 
 

improved axial and transverse resolution promises higher quality images and more 

reliable angle assessment.  However, the shorter wavelengths used in HD OCT 

devices, 840nm as opposed to 1310nm, mean that penetration depth is reduced.   

As a result of this the sclera spur, previously used for angle identification, is not well 

defined.  However, Schwalbe’s line (at the back of the cornea) is well defined and 

can be used as an alternative method of angle assessment.  Attempts have been 

made to develop a fully automated system for detecting this line [43]. 

An alternative SD OCT system that is capable of imaging the entire anterior 

chamber has is the Casia SS-1000 OCT (Tomey, Nagoya, Japan).  This is a 

commercially available swept source OCT system using a wavelength of 1310 nm 

[44].  This machine comes with automated software that is able to detect posterior 

and anterior surfaces of the cornea.  With the manual identification of a few 

landmark points it can be used to measure the anterior chamber angle.  Low 

variability of measurements of the anterior chamber angle has been shown using 

this machine.  One group found the inter class correlation coefficient (ICC) was 

>0.83 [44].  The segmentation technique used on this machine is unknown.  The 

software is propritorial and has not been published anywhere.  This means it is not 

possible to compare the segmentation technique to techniques developed by 

others. 

2.2.5.2 Anterior Chamber Biometry 

Measurements of anterior chamber dimensions are important for many different 

purposes, including the sizing of ophthalmic devices such as intraocular lenses 

(IOL) [45], corneal implants, microkeratomes and contact lenses.  Both UBM and 

AS OCT are capable of measuring the anterior chamber.  The non contact nature of 

OCT is a major advantage.  Studies using AS OCT to measure anterior chamber 

have found good repeatability in their results [46], showing that it is a good 

technique.  When carrying out these measurements manual identification of key 

points in the image must be carried out. 

2.2.5.3 Pathologies of Anterior Segment 

Anterior segment OCT has been used to investigate various different pathologies of 

the anterior segment.  One study looked at patients with micro bacterial keratitus, 

which is an infection associated with contact lens wear, trauma, and ocular surface 

disease, and can lead to visual loss.  Current diagnosis is based on slit lamp 

examination but AS OCT has been shown to be able to provide an objective 

assessment of the disease [47]. 
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Work has also been carried out investigating anterior segment tumours using OCT.  

Here problems were encountered when looking at larger tumours, as OCT was 

unable to penetrate the entire tumour due to increased pigmentation [48], when 

looking at smaller or hypopigmented iris tumours this problem did not occur.  OCT 

was also able to differentiate between solid and crystic lesions in the iris [39]. 

The noncontact nature of AS OCT makes it ideal for measurements of fragile eyes.  

Trauma classification is very important to evaluate severity and plan a management 

course.  AS OCT has been shown to be able to detect displacement of the 

crystalline lens and occult sclera perforation [49] in a patient suffering loss of vision 

after blunt trauma from a clenched fist.  Using ultrasound in this case would be 

unsuitable since a method involving contact would risk further injury to the eye and 

OCT can reveal a lot more than slit lamp examination. 

2.2.5.4 Laser in Situ Keratomileusis Flab Thickness 

Laser in situ keratomileusis (LASIK) is a commonly carried out corneal refractive 

procedure.  Following surgery, monitoring LASIK flap thickness is very important to 

ensure adequate recovery.  AS OCT has been used to carry out these 

measurements, as have ultrasound techniques.  Studies have found good 

repeatability of measurements using OCT [50].  Studies have also been carried out 

comparing results from spectral domain and time domain OCT systems.  These 

found that there was no significant difference in mean flap thickness measurements 

between the two techniques.  One study found better intra observer agreement 

when using SD OCT [51]. 

2.2.5.5 Keratoconus Treatment 

Keratoconus is a bilateral non inflammatory progressive corneal disease 

characterised by changes in corneal collagen structure, decreased rigidity of the 

cornea, and corneal thinning.  Patients will suffer from progressive corneal 

deformation leading to decreased vision if untreated.  Treatment options include 

using contact lenses or glasses to correct for refractive error.  Patients who are 

intolerant to contact lenses can be treated through intrastromal corneal ring 

implantation.  OCT can be used to measure the placement depth and identify 

patients at risk of depth related complications [52]. 

Another newer treatment method is corneal collagen crosslinking.  Eye drops and 

UV light are used to form crosslinks between corneal collagen fibres which act to 

increase corneal rigidity.  Following on from the treatment a demarcation line 

appears that separates the treated area from the rest of the corneal stroma.  AS 
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OCT has been demonstrated to be able to detect the line and accurately measure 

its depth, which is thought to be correlated to the effectiveness of the treatment [53]. 

2.2.5.6 Other Uses 

Anterior segment OCT has been shown to be able to accurately image the anterior 

segment of the eye. This has led to it having research roles in other corneal surgery 

applications, including monitoring Phakic Intraocular lenses, corneal transplantation, 

cataract surgery, glaucoma surgery and other surgery [39, 54-56]. 

2.2.6 Comparison of Different Methods 

Measuring corneal thickness is something that is useful to do over a long time 

period.  It is hard to get absolute measurements for in vivo readings using the 

various techniques since measuring an eye in vivo and then dissecting it to measure  

actual thickness is not possible.  The fact that the different techniques show 

different thicknesses when looking at the same eye is therefore a strong 

disincentive to change technique.  In evaluating a method for its suitability for 

measuring central corneal thickness repeatability is the criterion used.  A technique 

with good repeatability allows measurements taken years apart to be effectively 

compared.  Ultrasound methods have proved to be just as good as other techniques 

developed in this regard and so have continued to be the most widely used. 

Other methods such as the Orbscan technique and OCT are able to give 

topographical information about the cornea as opposed to just giving information on 

corneal thickness.  This makes them more useful in investigating patients known to 

have more complex problems.  

A comparison of ultra sound pachometry, OCT, and Pentacam (a Scheimpflug 

system) showed that they achieve different results for central and peripheral corneal 

thickness [57].  The authors concluded that this means they should not be used 

interchangeably but that Pentacam and OCT systems were useful additions when 

looking at preoperative refractive surgery evaluation.  When looking at post LASIK 

eyes (see below, section 2.1.11.1) they found Scheimpflug pachometry maps 

showed excessive thinning, making OCT a preferable technique for this. 

A study comparing 3 different Scheimpflug systems and an OCT system for 

measuring corneal thickness found they all achieved suitable repeatability for 

thickness at 5 different sites on the eye [58].  They also found reduced repeatability 

of measurements further away from the centre of the cornea with all instruments.  

Slightly better repeatability was found using OCT, the authors attribute this to the 
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higher scanning speed of the system used and the higher resolution of the system.  

Their findings were consistent with other studies. 

In 2012 a group carried out a review of resolution and repeatability results for 

different anterior segment biometry measuring devices [59].  They obtained 

information from the manufacturers of 9 different devices as well as carrying out a 

literature review.  The technologies covered were OCT, Scheimpflug and 

ultrasound.  They found that looking at the manufacturer data the best repeatability 

for central corneal thickness and minimum corneal thickness was the Galilei system 

which is a dual channel Scheimpflug camera.  This achieved repeatability of 1.38μm 

for vertex thickness and 1.02μm for minimum thickness.  The next best system was 

the RTVue OCT system, achieving repeatability of 2.20μm and 1.17μm, and the 

Artemis ultrasound system, which achieved repeatability of 1.68μm and 1.36μm.  

Looking at published data they found that there was not always agreement between 

what manufacturers and authors of studies reported.  For Visante, OCT, and 

SLOCT they found repeatability in published data better than that found by the 

manufacturer.  They conclude this may be due to larger sample size for the 

manufacturer data.  They could find no published data for the Galilei system.  No 

conclusions are drawn by this study but their data indicates that the Galilei system 

has the highest resolution and repeatability.  One disadvantage of that and other 

Scheimpflug systems compared to OCT systems, is their inability to make certain 

measurements such as angle to angle distance.  This is due to their narrower 

imaging area.  There are other measurements, such as sulcus to sulcus distance, 

that can only be measured using ultrasound methods since light is unable to 

penetrate the iris pigment epithelium.  No discussion of imaging speed is made in 

their review. 

Overall, anterior segment OCT is a promising technique which has many different 

uses.  Its main strength is the ability to produce high resolution images of the 

anterior segment without requiring contact with the eye.  Other advantages of OCT 

compared to other systems are good sensitivity and high imaging speed.  This 

means that OCT is a useful technique for using in this study. 

2.3 2D Image Segmentation 

Image segmentation is the splitting of images into regions that correspond to 

particular features.  In biomedical imaging this mainly involves isolating 

physiological and biological structures of interest.  There are many different 

techniques available to be used and much work has been done in the field.   
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The choice of which methods has been motivated by an assessment of their use for 

segmentation of anterior segment OCT images.  Pixel based methods have been 

investigated for their simplicity and the fact that there have been previous 

publications segmenting anterior segment OCT images using them.  Level set 

methods using shape have been previously used in retinal OCT images.  These 

have been investigated to see if this work can be adapted to use on anterior 

segment images.  Graph cut methods have been investigated since they have been 

previously used to achieve a much faster segmentation of images than level set 

techniques.  Finally graph theory segmentation has been investigated since there 

has been previous work on anterior segment OCT image segmentation using this 

technique.   Each of these techniques will now be discussed in more detail. 

2.3.1 Pixel Based Methods 

The most straightforward and fastest method of segmentation is based on using 

individual pixels.  A threshold can be applied and pixels are separated into two 

regions depending on whether they are above or below that value.  This is a 

common method in converting an intensity image to a binary image and is often 

proceeded by other approaches to improve results [60].  Due the fact that 

segmentation is independent of pixel location this method is sensitive to noise. 

It is possible to apply multiple thresholds to an image to slice it into multiple regions 

if that is required.  The key question when using thresholding is how to decide the 

value of the threshold to use.  The speed at which thresholding is carried out makes 

it possible to manually select a level to use; this however would make the method 

very time consuming if more than one image had to be segmented.  Other simple 

options include using a fixed value all the time, which would be suitable if all images 

looked similar, or using the value of a fixed point on an image.  Both those methods 

have the drawback of not being able to deal with varying images. 

The most commonly used method for selecting a greyscale value was formulated by 

Otsu in 1979 [61].  This method selects an optimum value for the threshold based 

on maximising between class variance.  Calculations are made based on the 1D 

histogram of the image making it a very fast method.   

Thresholding struggles to cope with images containing noise.  Two regions with a 

clear difference in mean intensity may have sufficient noise that application of a 

threshold is unable to segment them effectively.  The effect can be reduced by the 

use of denoising filters but remains a major disadvantage of the method. 
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2.3.1.1 Improvements to Thresholding 

To segment two regions it can be useful to find similarities that can be used to 

identify the regions.  These are sometimes known as continuity based methods 

since they are trying to segment regions based on similarities within the region.  

They generally consist of applying a filter to the image and then applying a threshold 

to segment the image. 

The simplest method in this category is to apply a low pass filter to the image.  This 

has the effect of smoothing out noise by applying a Gaussian of a chosen size to 

each point on the image.  For images with a clear difference in mean intensity, but 

too much noise to be segmented using a simple threshold, this technique works well 

[62].  

Another way of improving segmentation is to use the texture of an image.  There are 

a few different ways to measure this.  Small segment Fourier transform, local 

variance, the Entropy operator, the Laplacian operator, the range operator 

(difference between maximum and minimum pixels in a neighbourhood), and the 

Hurst operator (maximum difference as a function of pixel separation) are a few of 

the most popular types.  These allow segmentation of regions with similar mean 

intensity but different textures.  When using this type of method some information is 

lost on the location of the edges, but since these are often used for images with 

indistinct edges this is not a major problem.  After a texture operator has been 

applied to the image, it can then segmented using a threshold as discussed above. 

2.3.1.2 Edge Detection 

One way of improving pixel based methods is to use edge detection.  This method 

is based on the idea that there are two regions separated by a defined edge.  Edge 

detectors will use either the first or second derivative of the image intensity to 

segment the image.  A simple threshold can be used to only select edges over a 

certain value, or the method can be incorporated into an active contour model which 

will be discussed below in section 2.3.2. 

Overall, pixel based methods are a very simple method of segmentation.  This 

makes them very fast so they are useful where they are successful, but more robust 

methods must be found to solve many image segmentation problems. 

2.3.1.3 Previous Applications of Thresholding to Corneal OCT Images 

Thresholding methods have been used to segment OCT images of the cornea.  One 

group attempting to measure the ocular surface shape SD-OCT images used a 
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thresholding method [63].  They were interested in looking at the anterior surface 

over the entire cornea; a custom built SD-OCT machine was used.  They found that 

variations in signal to noise ratio of the images meant that applying a threshold to 

the intensity image resulted in poor segmentation.  The different textures of the 

features could be utilised to solve this problem, an entropy filter was used to 

improve results.  In their method an entropy map was created, then Otsu’s method 

was used to apply a global threshold to segment the image into two regions.  

Morphological operations were applied in order to remove small objects and fill in 

holes.  It was assumed that the largest object detected corresponded to the cornea. 

Gradient information about the image was then used to improve the segmentation of 

the image.  The gradient of the image was calculated and the point with maximum 

gradient was assumed to be the boundary of the anterior surface.  The brightest 

pixel in regions along the initial boundary was selected and used to specify a new 

edge.  A 10th order polynomial was then fitted to this to smooth the identified 

boundary.  Corrections were also applied to take into account distortions due to the 

OCT method.  The study managed to achieve good repeatability of their results 

when comparing segmentation of several different images of the same eye.  

However the study did not compare their segmentation technique to expert manual 

segmentation, so it is difficult to assess the accuracy of segmentation.  The study 

was also limited to identifying the anterior boundary of the cornea only.   

Another study attempted to use thresholding techniques to calculate the anterior 

chamber angle [43].  Here the important structure to identify is Schwlbe’s line which 

forms part of the boundary of the cornea and the anterior chamber.  A threshold was 

used to segment the image and morphological operations used to remove speckle 

noise from the image.  They assumed the largest object found was the cornea and 

checked to see if the second largest object was big enough to be the iris.  A 4th 

order polynomial was fitted to the line on the posterior boundary of the cornea.  

Schwalbe’s line is characterised as being a disruption to this fit.  Dewarping was 

performed to remove distortion due to the OCT scanning method.  Comparison of 

their results to segmentation by experts showed their results worked just as well as 

manual labelling in 37 out of 40 images.  The failure in some images was due to 

heavy noise around the angle recess.  A Zeiss Cirrus HD-OCT system was used to 

acquire images.  This was able to achieve a transverse resolution of 15 𝜇𝑚/pixel 

and axial resolution of 5 𝜇𝑚/pixel.  A wavelength of 840 nm was used, the system 
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had a shorter penetration depth than the Visante OCT system, meaning it is only 

capable of imaging part of the cornea. 

Overall, thresholding has been shown to have some promising signs.  There are 

however a number of problems with it, the main one being its heavy sensitivity to 

noise.  So far studies using it on the human cornea have only been done with small 

amounts of data.  If large scale trials were made they would involve more images 

with lower signal to noise ratio (SNR) but this would cause thresholding to break 

down.  The quick and simple nature of the method makes it useful as a starting 

point for segmentation but a more complex method may be needed to produce 

consistent reliable results. 

2.3.1.4 Central Corneal Thickness 

There have been several of papers published of studies looking at central corneal 

thickness using OCT.  Many studies measuring anterior segment dimensions have 

used manual annotation [42, 64].  Methods for automatic segmentation have also 

been developed [31].  This is done by examining the intensity profile of a cross 

section of the image.  Locations a fixed distance on either side of the central noise 

artefact are used.  The first intensity peak corresponds to the location of the front 

surface of the cornea, the second to the location of the epithelium-Bowman layer 

and the last peak to the endothelium – aqueous interface.  The distances between 

these peaks are then used to measure central corneal thickness and epithelium 

thickness.  This method has been shown to work on a variety of different OCT 

devices [29] with results agreeing with those achieved through manual 

segmentation.  A median filter is used to pre-process images for this technique 

This technique has been shown to work well when looking at central corneal 

thickness but how far it can be extended to cover the entire cornea is unclear.  The 

centre of the cornea is usually the location of the best image quality. 

2.3.2 Active Contours 

Since their introduction in 1988 [65], active contour based methods have been 

extensively used in image segmentation.  There are many different formulations of 

this technique, depending on how it is wished to separate the regions.  Active 

contours work by having deformable contours that segment the image into regions.  

This can be driven by regional based statistics, edge information, or using 

predefined shape information.  Various regularising forces can also be added to 

keep contours smooth, push them past noisy edges, and overcome other problems 

that may be encountered. 
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2.3.2.1 Level Set 

Level set based formulations are a widely used technique in the field of image 

segmentation.  These are where the contour is represented as the zero level set of 

a smooth function, often known as a level set function [66].  The evolution of this 

surface is represented as the minimisation of an energy function with terms added 

to produce the desired results.  One of the advantages of the level set formulation is 

that topological changes such as breaking or merging sections are well defined and 

will occur as and when required.    

The boundary between two regions is defined by Φ = 0; inside the region Φ >0 and 

outside Φ <0.  The motion can be analysed using a velocity field v where 
𝑑Φ

𝑑𝑡
+

 𝑣∇Φ = 0.   The velocity field is determined by the energy function and governs how 

the level set will evolve with subsequent iterations [67]. 

2.3.2.2 Edge Detection 

Edge detection is based upon detecting an edge using the gradient of the image.  It 

can be incorporated into level set methods.  For example the Caselles method [68] 

uses the following energy equation 

𝐸(𝛵) =  ∫ 𝑔(|𝛷(𝑞)|)|𝛵(𝑞)|𝑑𝑞
1

0

 (7)  

where 𝛷(𝑞) is the level set function, and 

𝑔(𝛵) =  
1

1 + |∇(𝐺 ∗ 𝐼)|2
 (8)  

where 𝐼 is image intensity, Τ the curve, and G a Gaussian filter.  The image has 

been convoluted with a Gaussian to smooth it, then the gradient of image taken.  

The evolution equation for this is  

𝜕𝛷(𝑥)

𝜕𝑡
= 𝑔(𝑥)|𝛻𝛷(𝑥)|(𝑐 +  𝜅) +  𝛻𝑔(𝑥)𝛻𝛷(𝑥) (9)  

where κ is the curvature of the evolving contour, 𝑥 is the position of a point in the 

image, and c is a constant that acts as a balloon force.  Increased gradient will slow 

movement of the curve, causing the contour to stop at regions of high gradient.  The 

balloon force can be adjusted to affect the sensitivity of the edge detection.  This 

method suffers when there are noisy images since the contour may get stuck on 

regions of high gradient due to noise.   
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These methods have been used for studying OCT images of the retina but 

extensive pre-processing is required to reduce the effect of speckle noise [69]. 

2.3.2.3 Active Contours without Edges 

Using image gradient information has problems segmenting noisy images or those 

without sharp edges.  An alternative technique is to use regional statistics to 

segment an image instead.  This method was first proposed by Chan and Vese in 

2001 [70].  In the simplest case segmentation between two regions is carried out; 

the two regions are assumed to have approximately constant intensities within the 

region and a substantial difference to those outside the region.  The energy term 

then consists of two terms 𝐹1 and 𝐹2  with 

𝐹1(𝑐) + 𝐹2(𝑐) =  ∫ (𝑢0(𝑥, 𝑦) − 𝑐1)
2𝑑𝑥𝑑𝑦

𝑖𝑛𝑠𝑖𝑑𝑒(𝑐)

 

+∫ (𝑢0(𝑥, 𝑦) − 𝑐2)
2𝑑𝑥𝑑𝑦

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑐)

+∫ 𝛿(𝛷𝑖(𝑥, 𝑦))|𝛻𝛷𝑖(𝑥, 𝑦)|𝑑𝑥𝑑𝑦
𝛺

 

(10)  

where C is a variable curve, 𝑢0 is image intensity, and constants 𝑐1 and 𝑐2 are the 

averages of 𝑢0 inside C and outside C respectively.   This energy function is then 

minimised; this will equal zero when C divides two regions of equal intensity.  Since 

images requiring to be segmented are nearly always more complicated than two 

uniform layers the addition of regularisation terms is needed.  The third term is a 

smoothing term to keep the contour a smooth curve; a function of length of the 

contour is used for this purpose. 

2.3.2.4 Shape Constraints 

The segmentation of images can be improved by using information about an 

object’s shape.  Often the general shape of the object to be segmented is known 

and incorporating this information into the energy function can improve results [71].  

There are two main ways to incorporate shape information.  One is to define a 

shape an object should look like, for example a circle or an ellipse.  The other is 

using statistical information. 

2.3.2.4.1 Statistical shape models 

Statistical models require a set of training images [72].  These can then be used to 

add another energy term to the function.  This must normally be done in addition to 

a regional based term based on the Chan Vese formulation discussed above [73].  

The energy formulation for this method can be best seen through a Bayesian 
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formulation of the problem [74].  The level set function is denoted φ, image 

information I, with training shapes being 𝛷̃ and 𝐼 respectively [75] 

𝛷̃ = argmax  𝑝(𝛷 |𝐼, 𝛷̃, 𝐼 ) (11)  

𝛷̃ = 𝑎𝑟𝑔𝑚𝑖𝑛(− log (𝑝(𝐼|𝛷, 𝛷̃, 𝐼)) + log (𝑝(𝛷|𝛷̃))) (12)  

𝛷̃ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐸𝑖𝑚𝑎𝑔𝑒 + 𝐸𝑠ℎ𝑎𝑝𝑒) (13)  

The image information 𝐼 can be split into three regions; ℎ𝑖𝑛inside the contour, ℎ𝑜𝑢𝑡 

outside the contour, and ℎ𝑒𝑛 over the entire region.  ℎ𝑖𝑛 and ℎ𝑜𝑢𝑡 both depend on φ 

whilst ℎ𝑒𝑛 does not.  There is a simple relationship between the three 

ℎ𝑒𝑛 =  𝛼 ℎ𝑖𝑛 + (1 − 𝛼)ℎ𝑜𝑢𝑡 (14)  

where α is the ratio of the area inside evolving contour to entire area.  These 

expressions can be used to split the image energy term to give  

𝛷̃ = 𝑎𝑟𝑔𝑚𝑖𝑛(− log(𝑝(𝛼(𝛷)|𝛼̃)) −  log (𝑝(ℎ𝑖𝑛(𝛷)|ℎ𝑖𝑛̃)

− log (𝑝(ℎ𝑜𝑢𝑡(𝛷)|ℎ̃𝑜𝑢𝑡)) − log(𝑝(𝛷|𝛷̃)) 
(15)  

= 𝑎𝑟𝑔𝑚𝑖𝑛(𝐸𝛼 + 𝐸ℎ𝑖𝑛 + 𝐸ℎ𝑜𝑢𝑡 + 𝐸𝑠ℎ𝑎𝑝𝑒) (16)  

These expressions are substituted into the previous equation which is minimised to 

find the best level set to segment the image. 

This method of using a statistical shape force to help segmentation allows 

segmentation of images where the object to be segmented is not well differentiated 

from the surroundings by either edge information or by regional intensity variation.  

This method has been used successfully in a variety of medical imaging problems 

and has been shown to perform better than methods not using shape energy [76-

78].   

2.3.2.4.2 Parametric Shape model 

An alternative way to incorporate shape energy is to use a predefined shape instead 

of training data.  This has the advantage of not requiring the inputting of large 

amounts of training data to the system.  One area where this has been used 

successfully was in segmentation of different layers of the retina in OCT images of 

rats eyes [79].  The shape term is needed in this case due to difficulties caused by 

speckle noise inherent to OCT and blood vessel artefacts within the retina. 
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The different layers of the retina were modelled as a series of concentric circles, 

since this roughly corresponds to the retinal structure.  In this method a level set 

formulation was used.  In order to avoid the need for reinitialisation of the level set a 

regularising term was added to ensure the level set remained a valid level set.  This 

was based on work by Li et al. [80].  A contour length term was also used making 

the regularisation term 

𝐸𝑅 = ∑ ∫ 𝛿(𝛷𝑖(𝑥, 𝑦))|∇𝛷𝑖(𝑥, 𝑦)|𝑑𝑥𝑑𝑦
𝛺

𝑅−1

𝑖=1
 

+ ∑ ∫
1

2
(|∇𝛷𝑖(𝑥, 𝑦)| − 1)

2𝑑𝑥𝑑𝑦
𝛺

𝑅−1

𝑖=1
 

 
 

(17)  

where 𝛷𝑖(𝑥, 𝑦) is the level set function and 𝛿(𝛷𝑖(𝑥, 𝑦)) is a delta function that is 1 on 

the boundary and zero elsewhere.  The first term here is the contour length term 

and the second the level set regularisation term.  

The shape energy term was based on the distance to the circle from a point defined 

as  

𝐷𝑖(𝑥, 𝑦) = ((𝑥 − 𝑐𝑋)
2 + (𝑦 − 𝑐𝑌)

2 − 𝑟𝑖
2)2 (18)  

where (𝑐𝑋 , 𝑐𝑌) is the centre point common to all the circles and 𝑟𝑖 is the radius of 

circular prior the ith interface.  The energy term to encourage the level set to lie on 

the circle is then 

𝐸𝑆 = ∑ ∫ 𝐷𝑖(𝑥, 𝑦)𝛿𝛷𝑖(𝑥, 𝑦)|∇𝛷𝑖(𝑥, 𝑦)|𝑑𝑥𝑑𝑦
𝛺

𝑖=1

𝑅−1
 (19)  

The 𝛿𝛷𝑖(𝑥, 𝑦)|∇𝛷𝑖(𝑥, 𝑦)|  term ensures that the shape term only has nonzero values 

on the zero level set.  𝐸𝑆 is minimised when 𝛷𝑖(𝑥, 𝑦) lies exactly on the circular 

shape.  The shape parameters are estimated using a least squares fit, with φ held 

fixed. 

In addition to the shape and regularisation terms they also used regional intensity 

terms from Chan and Vese method same as equation 10 here.  Their energy 

function was a combination of equations 10, 27 and 19 giving 

𝐸 = 𝜆𝐿𝐸𝐿 + 𝜆𝑆𝐸𝑆 + 𝜆𝑅𝐸𝑅 (20)  

where 𝐸𝐿  is energy term from image intensity (given in equation 10), 𝐸𝑆 is shape 

energy term from equation 19 and 𝐸𝑅 is regularisation term from equation 17.  Each 
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term has a corresponding 𝜆 value which is a coefficient which determines the 

relative strength of the different terms. 

The optimisation of the relative weighting of the different energy terms is important 

in achieving good results.  This study used adaptive weights, starting off with the 

regional Chan Vese term dominating and then applying a shape term later on in 

segmentation.  They were able to successfully segment several different layers in 

the retina.  Results achieved were better than those using just the Chan Vese active 

contours without edges method, and those using the shape term but not adaptive 

weighting of the different terms. 

A similar method was used to segment cardiac magnetic resonance (MR) images 

[81].  An elliptical shape term was used for this method; in this case both regional 

statistics (active contours without edges) and edge based terms were used.  Similar 

adaptive weighting of relative terms was used here; initially the region and edge 

based terms were allowed to dominate, then the shape term was allowed to 

dominate in the final iterations. 

2.3.2.5 Relevance to this Work 

Level set techniques with shape have been previously used to segment retinal OCT 

images successfully.  For this application, the main problem is regions of low SNR 

within the cornea.  This means that using a technique that includes information on 

the expected shape of the cornea could be useful.   

2.3.3 Graph Cut Segmentation 

Level set methods have many advantages; they are easily able to cope with 

changes in topography of segmentation, they are global methods with minimal 

dependence on starting conditions and have been shown to produce good results.  

There are however some limitations to these techniques.  The primary one is speed.  

Graph cuts have been shown previously to be a quick alternative to level sets [82] in 

image processing.  

Graph cuts are a way of segmenting an image exploiting a min-cut algorithm for 

graph labelling [83].  A global optimum cut can be obtained for an image.  A set of 

pixels with a corresponding set of labels are input and the goal is to minimise an 

energy function.  The motivation for using these techniques is that there are very 

efficient max flow algorithms that can be used to minimise the energy [84].  These 

methods have been used increasingly in image segmentation and other image 
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processing problems.  In order to use graph cuts an energy function must be 

constructed in the correct form [85]. 

The most basic formulation of the problem that is faced is to solve a pixel labelling 

problem.  If we have a set of pixels P with a corresponding set of labels L.  A 

labelling x can be found which minimised some energy function.  The standard form 

of the energy function is 

𝐸(𝑥) =  ∑𝐸𝑖(𝑥𝑖) + 

𝑖

∑ 𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗) 

𝑖,𝑗 ∈𝑁

 (21)  

where n is a neighbourhood system on pixels, 𝐸𝑖(𝑥𝑖) is a function that measures the 

cost of assigning label to pixel 𝑥𝑖  to pixel 𝑖, and 𝐸𝑖𝑗(𝑥𝑖 , 𝑥𝑗) is a function that 

measures the cost of assigning labels (𝑥𝑖 , 𝑥𝑗) to adjacent pixels 𝑖, 𝑗 [86].  These are 

given by 

𝐸𝑖(𝑥𝑖)  =  Ei
0(1 − 𝑥𝑖) + Ei

1𝑥𝑖   

 𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗) =  𝑤𝑖,𝑗 ((1 − 𝑥𝑖)𝑥𝑗 + 𝑥𝑖(1 − 𝑥𝑖)) 

(22)  

This energy function can be minimised by graph cuts if and only if 𝑤𝑖,𝑗 ≥ 0 for any 

(𝑖, 𝑗) ∈ 𝑁. 

Implementation of Chan and Vese active contour without edges has been done 

using graph cuts several times previously showing ~1,000 times faster results [87] 

when compared to level set implementation.   For this model the region is 𝐸𝑖(𝑥𝑖) 

since it is a global function.  The curvature term is then represented by 𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗).  

There are different ways to represent the curve length in graph cut optimisations.  A 

commonly used method is the Cauchy- Crofton formula. 

2.3.3.1 Cauchy-Crofton Formula 

The graph cut will divide the pixels into two different sets, an image set and a 

background set.  For a given cut the energy cost can be defined as 

|𝐶|𝐺 = ∑ 𝑤𝑖,𝑗
(𝑖,𝑗)∩𝐶≠0

 (23)  

Boykov and Kolmogorov [84] introduced the cut metric and related length through 

the Cauchy Crofton formula.  If a set of lines in a plane is defined by 

(𝜌, 𝜃) where 𝑥𝑐𝑜𝑠(𝜃) +  𝑦𝑠𝑖𝑛(𝜃) =  𝜌, the length of a curve C is given by 
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𝑙𝑒𝑛𝑔𝑡ℎ(𝐶) =  
1

2
∫ ∫ 𝑛𝑐(𝜃, 𝜌)𝑑𝜌𝑑𝜃

∞

−∞

𝜋

0

 (24)  

where 𝑛𝑐(𝜃, 𝜌) is the number of interactions between the line 𝑥𝑐𝑜𝑠(𝜃) +  𝑦𝑠𝑖𝑛(𝜃) =

 𝜌 and the curve C.  This gives 

𝑙𝑒𝑛𝑔𝑡ℎ(𝐶) =  ∑ 𝑛𝑐(𝑘) 
𝛿2∆𝜃𝑘
2|𝑒𝑘|

𝑛

𝑘=1

 (25)  

Different neighbourhood schemes can be used to approximate the length.  

Increased size of neighbour generally produces to a better result but will take longer 

to carrying out, 𝑛𝑐 is given by neighbourhood scheme.  𝛿 is the grid size, ∆𝜃𝑘 the 

angular difference between nearest grid lines and |𝑒𝑘| is the length of the edge 𝑒𝑘.  

Edge weights can be chosen to be 

𝜔𝑘 = 
𝛿2∆𝜃𝑘
2|𝑒𝑘|

 (26)  

 This can be substituted back into equation 21 to give. 

|𝐶|𝐸 =  ∑ 𝑛𝑐(𝑘) 𝜔𝑘

𝑛

𝑘=1

= ∑𝜔𝑖

𝑁𝐸

𝑖=1

 (27)  

This means |𝐶|𝐸 can be used as the cost of |𝐶|𝐺 in equation 21 of a cut in graph G. 

2.3.3.2 Shape in Graph Cut Segmentation 

There has been previous work adding shape terms into graph cuts models.  One 

study used an elliptical shape prior to improve segmentation of lymph nodes in 

pelvic MR images and for detection of human faces in images [88].  They used an 

image based energy term from Chan and Vese with 

𝐷𝑝(𝑜𝑏𝑗𝑒𝑐𝑡)            =  |𝐼(𝑝) − 𝑢𝑖| (28)  

𝐷𝑝(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) =  |𝐼(𝑝) − 𝑢0| (29)  

where 𝐼(𝑝) is the image intensity at pixel p, 𝑢𝑖 is the mean intensity inside the curve 

and 𝑢𝑜 the mean intensity outside the curve. 

An additional shape prior term, based on a binary shape mask M valued at 0 inside 

an ellipse and 1 outside, is used.  The shape based term is 
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𝐷𝑝(𝑜𝑏𝑗𝑒𝑐𝑡)            =  |𝑀(𝑝) −  1| (30)  

𝐷𝑝(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) =  |𝑀(𝑝) −  0| (31)  

These were taken together to equal 𝐸𝑖(𝑥𝑖) in equation 21.  The second term in 21 is 

not changed by addition of shape and so a similar term to that used in Danek’s 

paper is used [89].  This gives an energy function of  

𝐸(𝑥) =  ∑|𝐼(𝑝) − 𝑢𝑖| + |𝑀(𝑝) −  1| + 

𝑖

∑ |𝐶|𝐸  

𝑖,𝑗 ∈𝑁

 𝑖𝑛𝑠𝑖𝑑𝑒, 

𝐸(𝑥) =  ∑|𝐼(𝑝) − 𝑢0| + |𝑀(𝑝) −  0| + 

𝑖

∑ |𝐶|𝐸  

𝑖,𝑗 ∈𝑁

 𝑜𝑢𝑡𝑠𝑖𝑑𝑒. 

(32)  

2.3.3.3 Using a Shape Variability Model 

Ali et al. [90] developed a method for segmenting images of a kidney which 

exploited shape information.  They used a set of training data to produce a distance 

probabilistic model.  A method was produced that combined this shape information 

with image information to produce a graph cut framework.  Their technique was 

shown to work much better than those without the shape term. 

The energy function they used is defined by  

𝐸(𝒇) =  ∑ 𝑆(𝑓𝑝) + 

𝑝∈𝑃

∑𝐷(𝑓𝑝) + ∑ 𝑉(

(𝑝,𝑞)∈𝑁𝑝∈𝑃

𝑓𝑝, 𝑓𝑞) (33)  

where 𝑆(𝑓𝑝) is the shape term explained in the next section, 𝐷(𝑓𝑝) is the image 

information similar to the one used previously, and 𝑉(𝑓𝑝, 𝑓𝑞) is the smoothness term. 

The shape model they used is based on using a set of training data.  The first step 

is to align the segmented images using 2D rigid registration.  These images are 

then converted to binary images.  A three stage shape is then created, 𝑃𝑠 = 𝑂 ∪ 𝐵 ∪

𝑉 where 𝑂 is the object, 𝐵 is the background, and 𝑉 is the variability region.  A 

distance probabilistic model is used to describe the variability region.  The 

probability of a pixel to be in the object decreases exponentially as the discrete 

distance increases.  The distance histogram can be modelled as a Poisson 

distribution.  The histogram entity at distance 𝑑𝑝 is given by 
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ℎ𝑑𝑝 = ∑ ∑ 𝛿(𝑝 ∈

𝑝∈𝐶𝑑𝑝

𝑀

𝑖=1

𝐾𝑖) (34)  

where delta function 𝛿(𝑝 ∈ 𝐾𝑖) is 1 when (𝑝 ∈ 𝐾𝑖) is true and zero otherwise,  𝑀 is 

the number of training images, and  𝐾𝑖 the kidney region in the training image i.  The 

distance is changed till the whole distance domain is covered.  This is then 

multiplied by the kidney prior value defined as follows 

𝜋𝐾 = 
1

𝑀|𝑉|
∑ ∑ 𝛿(𝑝 ∈

𝑝∈𝐶𝑑𝑝

𝑀

𝑖=1

𝐾𝑖) (35)  

The shape energy term is defined as 𝑆(𝑓𝑝) =  − ln P( 𝑑𝑝|𝑓𝑝) where the distance 

marginal density of each class 𝑃(𝑑𝑝|𝑓𝑝) is shown below.   

There is a slight deviation between the estimated and empirical densities since 𝑓𝑝 

does not follow a perfect Poisson distribution.  The deviation is modelled as a linear 

combination of discrete Gaussians with +ve and –ve components.  This gives the 

following 

𝑃(𝑑𝑝|𝑓𝑝) = 𝑣 (𝑑𝑝|𝜆𝑓𝑝) + ∑𝑤𝑓𝑝,𝑟
+

𝐾𝑓
+

𝑟=1

𝛾 (𝑑𝑝|𝜃𝑓𝑝,𝑟
+ ) −∑𝑤𝑓𝑝,𝑙

−

𝐾𝑓
−

𝑙=1

𝛾(𝑑𝑝|𝜃𝑓𝑝,𝑙
− ) (36)  

where 𝑣 (𝑑𝑝|𝜆𝑓𝑝) is a Poisson density with rate 𝜆, and 𝛾(𝑑𝑝|𝜃) is a Gaussian density 

with parameter 𝜃 ≡ (𝜇, 𝜎2) with mean 𝜇 and variance 𝜎2.   

Ali et al. reported that this model showed improved results compared to 

segmentation techniques not including shape information.   

2.3.3.4 Relevance of Graph Cut Segmentation to This Work 

Graph cut techniques have been shown by other groups to be capable of achieving 

much faster segmentation that level set methods.  For the segmentation of anterior 

segment OCT images speed is an advantage for two reasons.  Rapid segmentation 

will allow for real time segmentation, which means that patients can have imaging 

carried out and then discuss the results of the imaging with a doctor at the same 

visit.  The other reason is the development of 3D imaging.  3D imaging will give 

larger amounts of data so rapid processing is needed in order to make this practical. 
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2.3.4 Graph Theory Based Methods 

Another method of segmentation of images is through the use of graph theory 

based techniques.  These work by setting weights for joining different pixels to each 

other and then finding the lowest weighted path through an image [91].  Typically 

edge information is used to determine the weighting of the path. 

In general the image is represented as a graph of nodes, with each node 

corresponding to a pixel.  These nodes are connected by edges, and a connected 

set of edges form a pathway.  The edges can be assigned different weights to 

create a preferred route.  With appropriate weights assigned, Dijkstra’s algorithm 

[92], a simple and fast technique, can be used to determine the lowest weighted 

path.  Graphs can be set up when either the edges have weightings or the nodes 

contain the weighting information. 

An alternative method to find the shortest path through the graph is to use dynamic 

programming.  The principle behind this method is the idea, that whatever the path 

from start point A to node D, there exists an optimal path between D and the 

endpoint.  This means if the optimum start point to end point goes through D, then 

both sections start point to D and D to end point are also optimal paths. 

An example graph segmented using this technique is shown in Figure 9 below.  

Figure 10 explains how the technique works on a step by step basis. 

 

Figure 9: Example of a graph searching sequence.  Graph to be segmented, each point on the 
graph can be taken to represent a pixel in an image. The value of each node on the graph is 
determined by the cost function. 
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Figure 10:  Step by step showing segmentation of graph using dynamic programming. The first 
step is to find the shortest path to the second layer of the graph from an arbitrary starting 
point. Cumulative cost is shown in small numbers above each node.  The second step is to do 
this again for the third layer.  Cumulative cost to get to each node is shown on the diagram.  
The third step does this again for the fourth and final layer.  The node with the shortest path is 
marked.  The fourth and final step is to trace back from the shortest path node to find the 
optimal path back to the start. 

In the example shown above each point was allowed to connect three possible 

points in a forward direction.  The connectivity of the graph can be altered 

depending on the problem that is being solved.  The cost for each node in the above 

graph is given by the expression 

𝐶(𝑥𝑖
𝑚+1) =  min

𝑖
(𝐶(𝑥𝑖

𝑚) + 𝑔𝑚(𝑖, 𝑘)) (37)  

where 𝐶(𝑥𝑖
𝑚+1) is the cost associated with the node 𝑥𝑖

𝑚+1, and 𝑔𝑚(𝑖, 𝑘) is the cost 

to get from node 𝑥𝑖
𝑚+1 to node 𝑥𝑖

𝑚.  For the entire problem this becomes 

min(𝐶(𝑥1, 𝑥2, … , 𝑥𝑀)) =  min
𝑘=1,…,𝑛

(𝐶(𝑥𝑘
𝑀)) (38)  

where 𝑥𝑘
𝑀 are the end nodes, M is the number of layers between start and end 

points, and 𝐶(𝑥1, 𝑥2, … , 𝑥𝑀) is the cost of a path between the first and last graph 

layer.  The graph must be correctly constructed to allow for this optimisation to take 

place. 
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In order to segment images using this method it must first be determined how to set 

the weightings for different paths.  Examples of general techniques that can be used 

for this are discussed by Sonka et al in their book [93].  They discuss four principle 

methods. 

1) Strength of edges of the boundary.  This is the idea that the stronger the 

edges of the boundary, the more likely this is to be the true boundary.   

2) Curvature of boundary.  In some applications boundaries with small 

curvatures are preferred.  The total curvature can be evaluated as the sum 

of local curvature increments 

𝑑𝑖𝑓𝑓(𝛷(𝒙𝑖) −  𝛷(𝒙𝑗)) (39)  

where 𝑑𝑖𝑓𝑓 is a function evaluating the difference in edge direction between 

two consecutive border elements. 

3) Proximity to approximate boundary location.  If some information is known 

about where the boundary should be then paths which are closer to this can 

be favoured.  An element can be weighted based on its distance from the 

estimate boundary location. 

4) Estimates of the distances to the end point.  If a reasonably straight 

boundary is wished for, then elements closer to the end can be favoured. 

These techniques have been used for a wide variety of purposes and the function 

used to determine the cost should be varied according to the desired solution.  

Often good cost functions will combine several different components of these 

techniques to give a solution. 

2.3.4.1 Graph Theory Segmentation of Retinal and Corneal OCT images 

Graph theory techniques have been used to segment retinal and corneal OCT 

images [94-97].  Vertical gradient was used to set the cost function.  One group 

carried out this technique using SD OCT images of the retina [94].  They first 

flattened the image to improve results.  In order to flatten the image they assumed 

that the Retinal Pigment Epithelium (RPE) layer was the brightest pixel in each 

column after denoising with a Gaussian filter.  The image was then adjusted to 

make this layer flat in the image.  This was done to reduce errors due to the 

segmented boundaries taking shortcuts to the edge of the image.  Weights were 

calculated using vertical intensity gradients  

𝑤𝑎𝑏 = 2 − (𝑔𝑎 + 𝑔𝑏) + 𝑤𝑚𝑖𝑛 (40)  
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where 𝑤𝑎𝑏 is the weight of the edge connecting a to b, 𝑔𝑎  is the vertical gradient at 

node a, 𝑔𝑏 is the vertical gradient at node b, and 𝑤𝑚𝑖𝑛 is a small minimum value 

added for stability.  The gradient must first be normalised to be between 0 and 1 

before this can be used.  The direction of the gradient can also be taken into 

account and used to identify particular boundary line in the image.  The group used 

Dijkstra’s method [92] to find the shortest path through their image.  This normally 

requires the setting of start and end points for the segmentation.  To avoid having to 

do this in their application, they added a zero weight column to each edge of the 

image so the segmentation was able to start at any row on the first column of actual 

image data. 

Their method was able to segment 7 different boundaries in the retina; in 

comparison with expert manual segmentation the method performed well, having a 

lower mean difference when compared to manual segmentation than when 

comparing two expert graders. 

Another group tried a similar method also looking at retinal OCT images [95].  This 

group was aiming to segment 9 different layers of the macular.  Part of their focus 

was on improving speed compared to previous studies, since they believed the slow 

speed of previous methods made them unsuitable for clinical use.  Their method 

used a combination of Canny edge detectors and dynamic programming to segment 

nine layers.  The weighting function they used was given by  

𝐶(𝑖, 𝑗) =  𝑤1 ∗ 𝐶𝑎𝑛𝑛𝑦(𝑖, 𝑗) + 𝑤2 ∗ 𝐴𝑥𝑖𝑎𝑙(𝑖, 𝑗) + 𝑤3 ∗ 𝑂𝑡ℎ𝑒𝑟𝑠(𝑖, 𝑗) (41)  

where Canny is a modified Canny edge detector which evaluates the strength of 

different edges, Axial is an axial intensity gradient map which uses a larger filter size 

to gain additional information and Others varies for the different boundaries and is 

not specified in their paper, other than saying it may include intensity information.  

𝑤1,2,3 are weighting terms which govern which of the three terms are most 

important.  In order to detect the different boundaries, they varied the threshold for 

their Canny edge detector depending on the boundary they were trying to find. 

They used a different method to find the shortest path once they had set the node 

weight values, choosing a method based on dynamic programming.  This has been 

used extensively on different image segmentation problems including others looking 

at retinal OCT images [98].  Here the minimum cost to reach position (𝑖, 𝑗) is defined 

by 
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𝑡(𝑖, 𝑗) = {

                   ∞                                             𝑗 < 1, 𝑗 > 𝑚

     𝐶(𝑖, 𝑗)                                    𝑖 = 𝑛

min
𝑝=𝑗−2:𝑗+2

(𝑡(𝑖 − 1, 𝑝) +  𝐶(𝑖, 𝑗)     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (42)  

where 𝑡(𝑖, 𝑗) is the minimum cost to reach point (𝑖, 𝑗), 𝐶(𝑖, 𝑗) is the node cost 

function, i is the X direction index with maximum n, and j the Y direction index with 

maximum number m.  This method is an efficient way of finding an optimum path 

where the start and end points are unknown. 

The first group also used the same graph based method to look at OCT images of 

the cornea [97].  The images were acquired using a SD OCT system manufactured 

by Bioptigen.  They were attempting to segment three boundaries in the cornea; the 

air-epithelium interface, the endothelium-aqueous interface, and the Epithelium-

Bowman’s layer interface.    

The first step of their method was to remove several artefacts from the image.  

Central saturation artefacts at the corneal apex and lower SNR away from the 

centre are caused by the telecentric scan pattern used by most systems.  Horizontal 

line defects are also often present, which is due to the effect central saturation has 

on the DC subtraction algorithm used by many SD OCT systems.  The horizontal 

artefact can be removed by subtracting the mean intensity of each row from every 

pixel in that row.  This works best if the horizontal artefact is of uniform intensity and 

does not pass through the cornea.  The vertical artefact is detected by first applying 

a vertical median filter to accentuate it, then looking for abrupt changes to the mean 

intensity of A scans.  Once the central artefact is detected its effect on segmentation 

can be removed. 

The image gradient was used to produce path weights between points on the 

image.  The weighting function used was identical to that they had previously used 

on the retina see equation 40. 

Dijkstra’s method [92] was implemented to find the lowest weighted path across the 

image.  Problems were encountered in low SNR regions where the tendency for 

Dijkstra’s method to find straight lines overcame the weighting of the correct path on 

the image.  It was assumed that the cornea boundary corresponds to a 2nd order 

polynomial and the curve from the central region was expanded into regions of low 

SNR where the method had failed.  The segmentation is then adjusted as it was 

segmented based on maximum gradient; however the actual boundary is lower than 

this at the point of maximum intensity.  Therefore the segmentation is adjusted to 

find the lowest weight path, this time using intensity and not gradient to assign 
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lengths, within 20 μm from the initial path.  The lower boundary was found by 

assuming the corneal thickness at the apex is approximately the minimum thickness 

across the entire cornea.  The image was flattened based on the detection of the 

upper boundary and the same method used, limiting the area path could travel 

through by the previous assumption.  This study managed to achieve results 

comparable to manual grading with 40 B scans.  The mean difference between 

automatic and manual segmentation of the anterior boundary was 0.6 pixels 

compared to 1.5 pixels between two images manually segmented by different 

experts. 

This method has been shown to work for healthy corneas but has difficulties 

detecting boundaries in lower SNR regions.  The group indicated they were trying to 

extend their work to cover a wider area, but the method described above uses a 

polynomial to extend the segmentation beyond the central region, assuming the 

cornea is regular.  It was based on using SD OCT images from a commercially 

available system; it was not capable of taking an image of the entire anterior 

segment. 

2.3.5 Relevance to this Work 

Image processing is a wide and varied field with many different techniques 

available.  Many of these have been used previously to segment retinal OCT 

images.  There has been less work looking at the segmentation of anterior segment 

OCT images.  Most groups that have previously looked at the cornea have only 

focussed on part of it rather than the entire anterior segment.  One group managed 

to use pixel based methods to segment the entire ocular surface.  This group used a 

custom built SD OCT machine, but their method seems to be a good starting point 

for developing a more robust method.  Methods involving use of level sets, graph 

cut and graph theory based techniques have also produced promising results 

previously. 

2.4 3D Segmentation 

Carrying out imaging of structures using only 2D images is not sufficient for all 

applications.  A 2D scan only covers results from a particular view of a 3D object.  

For some imaging modalities this means that objects may be hidden behind other 

objects, other imaging modalities will only acquire a 2D single slice of the object.  So 

while this will show detail on that particular area it does not give an accurate 

showing of the entire object.  OCT imaging has generally been developed in a way 
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to give 2D images of objects.  It is possibly to extend this imaging system to 3D by 

acquiring multiple 2D images and combining them to give a 3D model.  This then 

poses two challenges for 3D image segmentation; the first is an alignment problem 

and the other is the actual segmentation itself. 

The problem of image alignment is due to the fact what is being imaged is live 

biological tissue.  This makes it susceptible to movement artefacts which in the case 

of the eye are often involuntary and so it is not possible to get the patient to remove 

these.  In order to reduce the effect of movement artefacts either an increased 

imaging speed or image registration techniques can be used. 

2.4.1 3D Retinal OCT Imaging 

OCT imaging is used extensively to study the retina.  Initially this was done using 

2D scans but the development of faster spectral domain OCT imaging led to 

extensive take up of 3D OCT imaging of the retina.  Looking at the registration and 

segmentation techniques used will be helpful for investigating the cornea. 

Generally a raster scan pattern is used on the retina.  This is where a series of 

parallel scans at a known distance apart are used to image the region of interest.  

One of the problems faced in ophthalmic imaging is involuntary eye motions [99].  

These are present even in high speed SD OCT images and have to be accounted 

for in the image alignment process. 

This can be done by generating two images simultaneously.  A fundus image of the 

retina is acquired at the same time as the 3D raster scan.  A fundus image is a 2D 

face-on image of the retina.  This can be used to visualise the location of key 

features in the retina such as blood vessels.  Blood vessels can be detected in both 

the fundus image and OCT image.  These can be used as landmarks to allow for 

alignment of the images [100]. 

This method has been adopted for commercially available retinal OCT techniques.  

However it has limited applicability for OCT images of the cornea.  The cornea lacks 

any such obvious features that pass through the image, so this method cannot be 

used. 

When carrying out 3D segmentation two methods can be used, either true 3D 

segmentation where the entire volume is considered at the same time, or “2.5D” 

segmentation where a series of 2D scans are segmented separately before being 
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combined to produce a 3D image.  Which is chosen depends on the method of 

segmentation that is desired to be used. 

Level set methods of segmentation can be expanded into 3D with trivial changes to 

the mathematical formulation.  The increasing number of data points when going to 

3D volumes does result in practical limits in terms of computational power and 

speed of the segmentation technique.  For example one group reported using a 3D 

level set based method with shape prior to segment 172x148x124 voxel MR brain 

images [101].  They gave a stated time of “less than an hour” for the 3D images 

compared to 2 minutes for 2D slices of the same data. 

Graph theory segmentation techniques cannot easily be formulated into a natural 

3D method.  This means work with this method can be done more easily using a 

2.5D segmentation method.  For example, a group using graph theory to segment 

nine layers in the retina [95] segmented 2D images separately.  They managed an 

acquisition time of 16 seconds for a 480x512x128 voxel volume. 

Graph cut methods can be expanded to be fully 3D; they just require the 

construction of a suitable graph.  One group used a graph cut method to segment 5 

different layers in the retina [102].  They were using images acquired from 6 radial 

scans of the retina.  A multistep process was used in their segmentation.  First they 

aligned each image so that the RPE (an easily definable boundary) was horizontal.  

They then performed a 2D segmentation step on all the images, finding 3 different 

boundaries.  Using this segmentation a registration step was performed using 

mutual information metric to align all the images to the first image taken.  This then 

gave them a series of 2D scans aligned in such a way that they could carry out 3D 

segmentation on them.  They then found the optimum segmentation by finding the 

min cut of a 3D geometric graph they constructed.   

They defined a surface as a function 𝑓(𝑟, 𝜃) mapping (𝑟, 𝜃) pairs to z values.  They 

applied smoothness constraints to the surfaces, only including feasible surfaces 

where the difference in z values of neighbouring points is less than a certain 

threshold.  They then constructed a 3D geometric graph for each surface; costs 

were assigned to each vertex and then the minimum-cut closed set was found.  The 

cost function used varied, depending on the different surface they were trying to 

detect.  They successfully managed to detect surfaces just as accurately as two 

different human observers could detect them.  No information was given on how 

long it took for their programme to run. 
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This method could be applicable to our work, since they have used a similar scan 

pattern to the one we have used.  They have also used a very simple registration 

technique that relies on accurate detection of boundaries and uses them to align 

images. 

2.5 Image Alignment Methods 

2.5.1 Iterative Closest Point 

Iterative closest point algorithm (ICP) is a fairly simple image registration method.  

This automatically registers a set of points from one surface to another [103].  It 

assumes that the surface being registered is a sub set of the other, so only one 

surface can contain points that do not exist on the other surface.  There is a 

likelihood of the solution getting stuck in a local minimum, so a good initial estimate 

of the solution is needed [104]. 

ICP has been used extensively in different image registration techniques.  It works 

by carrying out a number of steps in an iterative fashion in order to improve the 

registration of two data sets [105].  The first step is to associate all the points within 

the object to a point in the reference template.  This step is carried out many times 

so it is important that it is done in an efficient way.  One method uses a linear 

technique where an exhaustive search of all possible connections is carried out.  

This works best for problems with a small number of points or a high number of 

dimensions.  An alternative way of finding the nearest neighbour is to use a space 

partitioning search.  This reduces the space where the points are searched for.  This 

is more complex in relation to dimension rather than number of points, so is faster 

for problems with a large number of points and a low number of dimensions. 

Once the points are all paired up, the distance between the different sets of points is 

calculated.  A transformation that reduces this distance is then found.  The process 

is then repeated in an iterative fashion until an optimum transformation is found.  

The stopping criteria usually used is either to have a maximum number of iterations 

that cannot be exceeded or to stop when the distance between the points and the 

model falls below a certain threshold value. 

2.5.2 Genetic Algorithms 

Finding the optimum value for a function is a general problem that is often 

encountered in image processing problems.  The problem in a general form is; for a 

finite domain D a function f is defined such that f:D = R, R being the set of real 
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numbers, to find the best value of D under function f.  This best value is the value 

𝑥 ∈ 𝐷 giving either a minimum or a maximum of function f: 

𝑓𝑚𝑖𝑛(𝑥) =  min𝑥∈𝐷 𝑓(𝑥) ,                                        𝑓𝑚𝑎𝑥(𝑥) =  max𝑥∈𝐷 𝑓(𝑥). (43)  

The function f is known as the objective function.  Genetic Algorithms (GA) are a 

method for finding the minimum (or maximum) of this function.  In order to achieve 

success in the task the objective function must well represent what is wished to be 

found.  Therefore care must be taken in the construction of the objective function.   

The simplest approaches to optimisation of the function use calculus based 

techniques such as gradient descent.  The gradient of the objective function gives 

the direction of steepest descent and this can be followed to find a minimum.  The 

main problem with this method is that a local minimum can easily be found and 

there is no easy way to find a global minimum.  An example of a function with 

several local minima can be seen in Figure 11 below.  Genetic Algorithms represent 

an alternative technique which attempts to find a global minimum by introducing a 

random element to the search. 

 

Figure 11: Example of a function containing several local minima.  Limitations of gradient 

descent could cause solutions to be stuck at x = 8 or at x = 5.2 where local minima are found  

2.5.2.1 How Genetic Algorithms Work 

The central idea behind genetic algorithms (GA) is using natural evolution 

mechanisms to search for the minimum.  The use of GA does not guarantee that the 

global optimisation is found but empirical results show that the final solution is 

normally very close. 
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GA uses a population of possible solutions.  The value of the objective function at 

each of these points is calculated; the value of this function is known as the fitness 

function in GA.  Each parameter can be represented as a binary string.  It is these 

strings rather than the parameters themselves that the method processes to find the 

solution.  It is also possible to use real valued GA, which is where the parameters 

themselves are used directly in the GA rather than binary strings.  This has the 

advantage of not requiring switching between binary strings and real values when 

calculating the cost function. 

In order to generate a new population from the previous one, GA uses three 

processes known as reproduction, crossover and mutation.  The idea behind this is 

that a solution with a better value for the fitness function will have a better chance of 

surviving.   

The reproduction step is based on the idea of survival of the fittest using a 

probabilistic treatment.  First all members of the population are ranked according to 

their value of the fitness function.  Often a number of elite children are copied 

through without change, ie. the best 3 or 4 individuals from the population are 

included in the new population so as not to lose the best fit that has been found so 

far.  The rest of the population is made up of children generated by the processes of 

crossover and mutation.  Strings with a better fitness value have a higher chance of 

being included in the new population.  This can result in there being multiple copies 

of the same string in the new population if they have a good fitness value. Figure 12 

below shows the three different methods by which reproduction occurs; crossover 

and mutation are explained below. 
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Figure 12: Diagram showing how the three different methods of reproduction occur in GA.  The 

elite population is the best performing solutions and are unchanged between old and new 

populations.  Crossover is method of reproduction that occurs most commonly.  New solutions 

are made of a combination of results of old solutions.  Mutation occurs to ensure there are no 

solutions that are unable to be reached through other processes.  New solutions produced by 

this technique are the same as an old solution with some random change occurring. 

Crossover is a way to add in variation to the new population.  Strings are ‘mated’ to 

create a new population by randomly selecting which bits of two strings to switch 

round to each other.  The probability that a string is involved in this process is 

determined by its fitness function.   

Mutation also occurs but plays a secondary role to crossover in providing a variation 

in the new population.   During mutation part of a string in the population is 

randomly changed to a new value.  This is done since there are some 

configurations of solutions that may be otherwise lost if crossover is the only way 

new populations are generated.  By randomly changing some solutions, GA can 

ensure all possible solutions can be reached. 

The convergence of the population in GA is a serious problem.  This is usually 

solved by finishing the process when improvement has fallen below a certain 

threshold over a defined number of generations.  A maximum number of 

generations can also be used to stop the process. 
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The starting population can either be set at random or, if some information is known 

about where the solution is likely to be then this can be used to set a starting 

population which is close to the desired solution. 

2.5.3 Previous Use of Genetic Algorithms 

Genetic algorithms have been used for many different applications in the field of 

image processing.  These include use in image enhancement, where they have 

been used to construct a fuzzy image filter [106].  A number of groups have used 

genetic algorithms for image contrast enhancement [107] [108] and many other 

image enhancement techniques.   They have also been used for image 

segmentation [109] [110], solving many different problems within that field.  Since it 

is wished to use genetic algorithms to solve a registration problem it is appropriate 

to discuss this in more detail. 

2.5.3.1 Image Registration 

Image registration is the alignment of images of the same object taken at either 

different times or using different methods.  One area where GA has been used 

extensively is looking at images of the brain.  Here computed topography (CT) 

scans can give good information on the hard tissue such as bone, and MR imaging 

provides good information on the location of soft tissues such as the brain.  One 

group have used a method based on genetic algorithms to register these two 

images to each other [111].  They developed a method that allowed for more 

translation but also distortion of the image.  A simple global elastic transform was 

used to model MR image distortions.  This was defined by 

𝑝 = (𝑥, 𝑦, 𝑧)𝑇       𝑝′ = (𝑥′, 𝑦′, 𝑧′)𝑇 =  𝑇(𝑝) 

𝑝′ = ∑∑∑(𝑎𝑖,𝑗,𝑘 , 𝑏𝑖,𝑗,𝑘

1

𝑘=0

1

𝑗= 0

, 𝑐𝑖,𝑗,𝑘)
𝑇𝑥𝑖𝑦𝑗𝑧𝑘

1

𝑖=0

 
(44)  

where 𝑎𝑖,𝑗,𝑘 , 𝑏𝑖,𝑗,𝑘 and 𝑐𝑖,𝑗,𝑘 are coefficients of the transformation.  The aim of the 

algorithm is to find pairs of homologous points between the two images to achieve a 

global warping calculated with 24 coefficients.   

In order to achieve a good registration a fitness function must be selected which is 

capable of both being fast and a good fit to the required result.  A feature based 

fitness function was calculated for this.  The air-skin interface can be extracted from 

both CT and MRI images. The distance between these two surfaces was used as 

the fitting function.  Let 𝑆𝑖 be the surface extracted from 𝐹𝑖 and 𝑑𝐸(𝑝1, 𝑝2) be the 



 
 

53 
 

distance between points 𝑝1, 𝑝2.  The distance 𝑑𝑎  with respect to transformation T 

can be defined as 

𝑑𝑎(𝑆1, 𝑆2|𝑇) =  
1

𝑐𝑎𝑟𝑑 𝑆1 
∑ min

𝑝2∈ 𝑆2
𝑑𝐸(𝑇(𝑝1), 𝑝2)

𝑝1∈ 𝑆1

 (45)  

In order to save computational time a distance map 𝐷2 can be created where each 

point in 𝐷2 is equivalent to min𝑝2∈ 𝑆2 𝑑𝐸(𝑇(𝑝1), 𝑝2).  In order to further increase speed 

a series of n points are chosen randomly from the set  𝑆1 and the distance is 

computed with this new set, giving 

𝑑𝑎(𝑆1, 𝑆2|𝑇) =  
1

𝑛 
∑ 𝐷2(𝑇(𝑝1)).

𝑝1∈𝑆1
𝑛

 (46)  

The need to do this comes from the large number of times this must be calculated 

when finding the minimum using genetic algorithms.   

The group then used a GA to optimise this function.  They found that the GA could 

easily get them to a location near the local minimum they wished to find, but it 

struggled to find the optimum solution.  They therefore used a multistep process 

where the GA was used to find the local region the optimum solution was found in, 

and then a fine tuning process was carried out to improve the solution. 

Since their work many other groups have looked at using genetic algorithms for 

image registration.  These have included different ways to generate the fitness 

function as well as variations on the genetic algorithm itself [112].  One alternative 

way to generate a fitness function is to use mutual information [113]. 

Mutual information uses a concept from information theory to measure how similar 

two images are.  When a maximum of mutual information is found it is hoped this 

will correspond to the correct registration.   Mutual information of two random 

variables A, B with marginal probability distributions 𝑝𝐴(𝑎) and 𝑝𝐵(𝑏) joint probability 

distribution 𝑝𝐴𝐵(𝑎, 𝑏) is defined as  

𝐼(𝐴, 𝐵) =  ∑𝑝𝐴𝐵
𝑎,𝑏

(𝑎, 𝑏) log
𝑝𝐴𝐵(𝑎, 𝑏)

𝑝𝐴(𝑎). 𝑝𝐵(𝑏)
 (47)  

This is related to the notion of entropy from information theory by the following 

equation 

𝐼(𝐴, 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) −  𝐻(𝐴, 𝐵) (48)  
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where H(A) is the entropy of A and H(A,B) is their joint entropy.  Entropy is defined 

as 

𝐻(𝐴) =  −∑log𝑝𝐴𝐵(𝑎, 𝑏)

𝑎

 (49)  

It has been show that mutual information is always non-negative. 

In order to find the correct registration the maximum value of I(A,B) is found.  This 

was done using GA.  The main advantage of using mutual information combined 

with GA is that it is fully automatic and does not require any prior segmentation 

steps.  It is also mathematically simple which helped with the early adoption of this 

technique.   

2.5.4 Variations on GA 

One group attempting to achieve surface registration used a slight variation on GA 

[114].  They were using an energy function based on minimising the Euclidian 

distance between the surface they were registering and a model surface.  They 

allowed the surface to have translation and rotation on 3 different axes and also to 

scale.  In order to get to a solution more quickly they used a dynamic mutation step, 

initially allowing the parameters to take a large range of values and so allow for 

mutation to cover anywhere in this region.  When a solution was reached they then 

repeated the GA but this time looked at a smaller region.  This meant that mutation 

occurred over a smaller region and is analogous to using a smaller step size to 

search carefully in a particular region.  This was done repeatedly until using a 

smaller region no longer produced any improvement in registration.  

2.5.4.1 Using Real Valued GA 

When GA was first formulated, the parameters that the mutation and crossover 

operations were applied to were in the form of binary strings.  This was done since it 

more closely follows ideas from genetics and allows for mutation to happen in a 

random way.  However there are a number of disadvantages to this.  Often there is 

some prior knowledge about the solution space so each parameter will have limits 

placed on it.  When applying crossover or mutation to binary strings there is no 

requirement for the new value to still be a valid parameter, therefore a potentially 

computationally costly check of values must be carried out before accepting anew 

value as valid.  An alternative way to implement this is to use the actual values of 

the parameters directly in the model.  This removes the need to convert binary 

strings to parameters when calculating the cost function, resulting in a faster 

programme [115]. 
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2.5.5 Using Zernike Polynomials to Model the Cornea 

Accurate modelling and measurement of corneal surfaces has long been an 

important problem for a number of different reasons.  Refractive surgery requires 

accurate modelling of the corneal shape to ensure a good outcome of surgery.  

Contact lens design and fitting is also based on corneal topography.  Corneal data 

from a number of different imaging sources can be given as a functional 

representation in terms of a Zernike polynomial expression [116].  The anterior 

surface can be modelled by a finite series of Zernike polynomials [117] 

𝐶(𝜌, 𝜃) =  ∑𝑎𝑝𝑍𝑝(𝜌, 𝜃) +  𝜖

𝑃

𝑝=1

 (50)  

where 𝐶(𝜌, 𝜃) is the corneal surface, 𝑝 a polynomial ordering index, 𝑍𝑝(𝜌, 𝜃) the pth 

order Zernike polynomial, 𝑎𝑝 is a coefficient associated with polynomial p, 𝜌, 𝜃 is the 

normalised position in polar coordinates and 𝜖 is noise due to measurement and 

modelling error.   

The pth order Zernike polynomial is given by 

𝑍𝑝(𝜌, 𝜃) =

{
 
 

 
 √2(𝑛 + 1) 𝑅𝑛

𝑚(𝜌) cos(𝑚𝜃) , 𝑒𝑣𝑒𝑛 𝑝,𝑚 ≠ 0 

√2(𝑛 + 1) 𝑅𝑛
𝑚(𝜌) sin(𝑚𝜃) , 𝑜𝑑𝑑 𝑝,𝑚 ≠ 0

√𝑛 + 1𝑅𝑛
0(𝜌), 𝑚 = 0

}
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where n is the radial degree, m is the azimuthal frequency, and  

𝑅𝑛
𝑚(𝜌) =  ∑

(−1)𝑠(𝑛 − 𝑠)!

𝑠! (
𝑛 + 𝑚
2 − 𝑠) ! (

𝑛 − 𝑚
2 − 𝑠) !

𝜌𝑛−2𝑠.

(𝑛−𝑚)/2

𝑠=0

 (52)  

The radial degree and azimuthal frequency are integers that satisfy 𝑚 ≤ 𝑛 and 

𝑛 − |𝑚| = 𝑒𝑣𝑒𝑛.  The optimal number of Zernike terms varies depending on the 

topography of the eye.  For normal and astigmatic corneas one study found the 

optimal number of terms was 11 [118].  They found that for distorted corneas the 

optimum number of terms varied from subject to subject.  Using too many terms 

results in over parameterisation of the model. 

2.5.6 Relevance to Our Work 

Genetic algorithms have been shown to be a technique capable of finding a global 

minimum of an energy function.  They have been extensively used in many different 

image processing techniques.  They are therefore a likely candidate for use in our 

work.  The problem to be discussed here is attempting to solve is the registration of 

a set of 3D images.  This differs from traditional registration problems in that there is 

not any considerable area of overlap between the different images.  This means 
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techniques such as maximum mutual information registration techniques are not 

any use to us.  Using genetic algorithms is not limited to any particular energy 

function.  It may also be sensible to include some fine tuning after the GA has 

completed, since previous groups have found it struggles to reach a final minimum 

but is easily able to find the region where the global minimum is located. 

Zernike polynomials have been used extensively previously to describe the shape of 

the cornea.  This indicates they could be a good choice to use to model the shape 

of the cornea for the purpose of registration. 

2.6 Conclusion 

This chapter has reviewed previous work in several different areas.  Different 

anterior segment imaging techniques have been discussed.  OCT is a promising 

technique for work on the human eye, the transparent nature of the eye making it 

well suited to the technique.   

Different segmentation techniques have been examined.  This has included looking 

at previous segmentation of anterior segment images as well as more generally 

discussing a number of techniques that can be used to develop segmentation 

techniques.  A number of different useful techniques for image segmentation have 

been discussed.  Implementing a previous group’s work segmenting the anterior 

segment using a threshold [63] is an obvious starting point for our own work.  There 

has also been work using level set, graph cut and graph theory techniques on 

ocular OCT images indicating these methods might offer promising results.  

Previous 3D alignment techniques based on the retina have often used two imaging 

modalities to achieve segmentation.  This would not work for anterior segment 

images as there are no features, such as blood vessels which are used in the retina, 

that extend across the cornea and are easily visible in many images.  GA based 

techniques have been extensively used for different applications so should be 

investigated for use in alignment of 3D images.  
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3 Image Segmentation in 2D  

3.1 Introduction 

The first stage of the PhD was to develop automated 2D segmentation techniques 

capable of automatically detecting the cornea.  In order to tackle this problem a 

number of different strategies were investigated.  The first step was to implement an 

existing technique, Shen et al.’s [63] technique using a threshold to segment the 

images was the most promising technique found in the literature so was chosen as 

a starting point.  Following on from this a number of different novel techniques were 

developed.  These are split into three categories for ease of description and 

evaluation.  The first new technique developed was a level set with shape technique 

based on Chan and Vese’s [70] work with the addition of a shape term.  The next 

set of techniques was based on a graph cut implementation of the level set with 

shape technique.  Finally a graph theory based technique was developed.   

The segmentation techniques were mainly implemented using Matlab.  This was 

chosen for its ease of use.  The graph theory method was implemented in C++ 

since this was found to be the most accurate technique and code is generally faster 

when implemented in C++. 

An example image is shown in Figure 13.  Areas of lower signal to noise ratio can 

be seen either side of the centre.  It is difficulties encountered in identifying the 

posterior surface in this area that mean it is valuable to use a shape prior term for in 

the segmentation. 

 

Figure 13: An example OCT image of the anterior segment. 

A variety of new techniques for segmentation were developed.  The first was a level 

set based technique.  Level set techniques were chosen since it was thought they 

represented a good chance to develop a novel method that was successful at 
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segmentation.  They had previously been used successfully for segmentation of 

retinal OCT images.  Here groups had used shape terms to improve segmentation 

and it was hoped to replicate their success on a different part of the eye.  A number 

of variations of the technique were tried.   

Next, segmentation using graph cut technique was carried out.  Graph cut 

techniques were investigated because when attempts were made to extend the 2D 

level set technique to 3D the technique proved to be too slow.  Graph cuts had 

previously been used to increase the speed of segmentation where level sets had 

been previously employed [87].  It was hoped that they could be used to similarly 

improve speed of the level set segmentation technique developed here. 

The final 2D segmentation technique to be developed was graph theory 

segmentation.  This technique was investigated as they had been previously used 

successfully to segment retinal OCT images.  There had also been some limited 

work using these to segment parts of corneal OCT images [97].  It was hoped that 

incorporating our shape based technique could improve the results of this 

technique. 

These methods will be discussed in turn.  A number of variations were attempted for 

each method.  The results of these variations are compared.  The best versions of 

each of the methods are compared to see which method performs best.  Prior to the 

discussion of segmentation techniques there will be a brief discussion of noise 

removal. 

3.2 Dealing with speckle noise in OCT image 

OCT images all contain speckle noise which is inherent in the imaging technique.  

There are number of techniques that can be used to counteract the effect of this 

noise on the segmentation result.  The most widely used method to do this is to use 

a median filter.  This is a simple technique where each pixel is set to the median 

value of pixels in a group.  This technique preserves edges in the image.  

Another strategy for dealing with speckle noise is to alter the imaging technique.  

During imaging the value for each A scan can be recorded multiple times and an 

average value taken.  Imaging speed is important when using this technique since 

repeat measurements must be taken fast enough to avoid a movement in the object 

of interest [119].  This technique has been previously used successfully but was not 

available to use for this study since it requires modification of the camera.   
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The use of a median filter as part of the pre-processing technique was tested but it 

did not produce significantly different results for most of the techniques.  It was 

decided not to carry out any de-noising steps but instead to generate segmentation 

techniques that are robust to small amount of noise.   

3.3 Segmenting Images Using a Threshold 

Before developing any novel techniques the method described by Shen et al [63] 

was implemented.   The first step of the segmentation algorithm was to apply a 

threshold to the grayscale image.  The threshold value was calculated using Otsu’s 

method [61], which is implemented in Matlab.  This method was shown to be able to 

only segment part of the cornea as shown in Figure 14.  The areas of lower signal to 

noise ratio in the middle do not appear.   

 

Figure 14: Image segmented using basic threshold technique.  Here all the pixels over a certain 

value have been labelled as part of the object of interest. 

One way to improve the segmentation results was to use texture rather than 

intensity information.  Matlab has implementations of different ways to do this as 

part of the image processing toolbox.  An entropy filter was used since this has 

successfully been used by Shen et al., as well as others [120].  Once the entropy 

filter was applied a threshold was used to segment the image.  Attempting this did 

improve image segmentation, however it was still unable to entirely pick up regions 

of lower signal to noise ratio.  The image after the filter has been applied is show in 

Figure 15 and the results of the segmentation are shown in Figure 16. 
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Figure 15: Image after entropy filter has been applied.  This is the same image that is show in 
Figure 13. 

 

Figure 16: Image segmented by applying entropy filter and then a threshold. 

Shen et al. [63]  uses binary morphology and gradient information to improve their 

segmentation.  These steps were also carried out during the segmentation.  These 

steps did not lead to an improvement in the segmentation results.  This is most 

probably due to the initial results being too far from true segmentation. 

Overall this method was found to be capable of locating the anterior surface of the 

cornea, which is all Shen et al were attempting to do, but was unable to accurately 

show the location of the posterior surface.  It was concluded that this method could 

be used to create a reasonably accurate initial guess but a different method needed 

to be used to improve on this. 

3.4 Common Segmentation Framework 

All other 2D segmentation techniques were carried out within a shared 

segmentation framework.  This contains some pre-processing steps that are 

common to all different methods.  Figure 17 shows the common framework for the 

different methods.  The first step carried out is a pre-processing step.  This removes 
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noise as well as unwanted parts of the images such as eyelids or the iris.  The 

second step is the main segmentation step.  This step changes depending on the 

method used.  Four different categories of technique are discussed for this step.  

The final step is post-processing.  The step consists of smoothing the acquired 

boundaries by either fitting a polynomial to the result or using a smoothing function. 

 

Figure 17: Generic flow chart showing the common steps of all the different segmentation 
techniques. 

The next section will describe the pre-processing steps used.  The following four 

sections will each be devoted to a different segmentation technique.  Following this, 

there will be a section on post-processing. 

3.5 Pre-Processing Steps 

In order to improve the segmentation results a number of pre-processing steps were 

used.  These techniques are common to the different segmentation methods so will 

be presented here separately.  There are some slight differences in steps used for 

the different segmentation techniques.  Which steps are used with each method is 

discussed when each segmentation method is introduced. 
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3.5.1 Removal of Iris and Central Noise Artefact 

Common to all anterior segment OCT images is the central noise artefact caused by 

specula reflection at the apex of the cornea.  Anterior segment images all contain 

the iris as well as the cornea.  The aim of this technique is to identify the cornea so 

the iris can be removed to improve performance without losing important 

information. 

The central noise artefact is characterised by having a higher signal than the rest of 

the image.  In order to detect the central noise artefact, the mean of each column in 

the image was calculated.  The maximum of this is always located within the central 

noise artefact.  To remove the central noise artefact, columns with means within 

90% of maximum were all set to zero.  This value was used as the brightest 

columns were always part of the central noise, it is a conservative threshold of the 

noise the avoid removing parts of the image that were wanted.  A small region either 

side of this region is also removed since these also generally contain part of the 

central noise artefact.  There is too much noise to be able to accurately detect 

surfaces of interest in this region.  This method has been used in previous studies 

[97].   

The iris was located in a similar manner to the central noise artefact.  It is an 

approximately horizontally orientated structure so all the mean value of each row in 

the image was calculated.  The iris is characterised as a bright horizontal structure 

in the image behind the cornea.  The rows within 90% of the maximum mean were 

again detected.  Sometimes another area of high signal in front of the cornea was 

also detected.  In order to only remove the iris, the program checked for a large gap 

in rows reaching the 90% threshold and only selected rows from below this gap if it 

was detected.  This prevented the incorrect detection of bright rows corresponding 

to the apex of the cornea.  The image was then cropped to remove all points below 

the top of the iris.  The algorithms for noise and iris removal worked for all the 

images, although complete iris removal was not always achieved. 

 

Figure 18: Image with iris and central noise artefact removed 
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3.5.2 Rotation Error  

In the first data set of OCT images all the images were well aligned with the closest 

point to the camera being the furthest forward part of the cornea and the iris being 

perpendicular to the incoming light.  This was not the case for the second data set.  

In these images there seemed to be a slightly different angle for each image.  This 

was best seen by looking at the angle of the iris.  The different angles created some 

problems for the segmentation method used since it makes assumptions of the 

corneal shape based upon the fact that the images were taken perpendicular to the 

plane of the cornea.  Figure 19 below shows an example of an image taken at an 

angle. 

 

Figure 19: Example image of cornea showing substantial deviation from perpendicular angle.  

Looking at the iris it can be seen the image is at an angle.  Note the line down the middle is an 

imaging artefact so will always appear vertical in the image. 

In order to solve this problem a pre-processing step that was able to correctly align 

the images was developed.  The easiest way to identify the angle the image was 

taken is to look at the iris.  If the alignment of the image is correct then the iris 

should be a horizontal structure across the image. 

A method, described above, had already been developed to detect the iris based on 

the fact the iris is the only horizontal structure in the image, and so if the mean 

intensity of each row in the image is taken the row with the maximum will 

correspond to the iris.  A simple algorithm based on this was used to rotate the 

image.  It was assumed that rotation by an angle of less than 10o in either direction 

would find the correct alignment for the image.  The image was then rotated at 1 

degree intervals and the maximum intensity of rows calculated after each rotation.  
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This gave 21 possible orientations for the image.  The angle with the highest 

maximum row intensity was assumed to be the correct orientation since that 

corresponded to having a horizontal iris.  The algorithm worked successfully with all 

images in the data set. 

Medical imaging on large scale applications can often suffer from images being 

taken that are lower quality than could be achieved with the imaging equipment 

under perfect conditions. 

3.5.3 Eyelid Removal 

Some of the images of the cornea also include parts of the eyelids in the image.  

This is a problem since it interferes with the identification of the cornea.  It is 

therefore desirable to develop a method that can be used to remove the eyelid from 

images prior to segmentation.  The angle at which the OCT images are taken at 

determines the chance of a section of the eyelid being included in the image.  Non 

horizontal angles, such as those used when acquiring 3D information by taking a 

series of radial scans, are more likely to have parts of the eyelid included. 

Three different techniques were attempted; all based the same initial premise.  A 

threshold technique was used to segment the image.  The anterior surface can be 

detected reasonably accurately by this technique.  This surface would include both 

cornea and the eyelid.  The eyelid can then be detected and removed by studying 

this line.  Figure 20 shows an example image containing parts of the eyelid. 

 

Figure 20: Example image showing image including eyelids.  Note where eyelid is present it 
blocks out all lower features in the eye so parts of the iris are missing in this picture. 
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3.5.3.1 Initial Segmentation 

The first step of eyelid removal is to segment the images.  This is done using Otsu’s 

method [61] to select a suitable threshold to segment the image.  Once the image 

had been segmented, a diamond shaped structuring element was used to dilate the 

segmented image.  This was done as the threshold segmentation method 

consistently underestimates the area of interest in the image.  Dilating the image 

also causes different sections the cornea to be joined together.  The largest 

segmented object is then found and assumed to be the cornea and parts joining to 

it.  A check is carried out on the second largest object.  If it is similar in size of the 

largest object it is also assumed to also be an object of interest and included.  This 

was done to ensure that objects that are noise artefacts are rejected but those that 

are part of the cornea or eyelid are included.  The regions are joined together using 

straight lines and the boundary of this object is found.  It is assumed that this object 

contains all of the cornea and possibly including eyelids if they are in the image.  

Figure 21 shows the example image with this boundary marked on it. 

The anterior surface of this shape can be found by taking the first set of boundary 

points from the start until the furthest right edge is reached.  Using this surface, 

three different methods were attempted to discover the location of the boundary with 

the eyelid.  These were a gradient based method, a method based on finding on 

peaks, and finally a method based on finding the maximum z value of the boundary, 

where z is the vertical axis of the image and is valued at zero at the top of the 

image. 

 

Figure 21: Example image with the anterior surface detected using the method described 
above. The top surface has been detected includes both the cornea which we want and eyelids 
which we wish to remove.  The challenge is accurately finding this boundary. 
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3.5.3.2 Max z value of boundary 

The most successful method was based upon finding the max z value of the 

boundary.  The image was split into two halves at the apex of the cornea.  This was 

determined by finding the minimum in the central region and assuming this 

corresponds to the location of the centre of the cornea.   

The maximum value of the anterior surface was then found in each half of the 

image.  The location of this corresponds to the join of the eyelid and the cornea.  

The image was then cropped at this location.  If there was no eyelid present in the 

image, the maximum point instead corresponds the either the end of the cornea or 

the edge of the image.  In either of these cases, cropping the image here does not 

result in the loss of any useful parts of the cornea.  This method proved the most 

successful of the three different methods that were tried, so was used in all future 

segmentation.  The result of this method on the example image is show in Error! 

Reference source not found.. 

 

Figure 22:  Example image after eyelid has been removed 

3.5.3.3 Other methods 

Rather than looking for a global maximum to find the boundary of eyelid methods 

looking for local minimum were also attempted.  Two variations of this method were 

used one looking at the gradient of the boundary the other looking for local peaks.  

The same problem was encountered with both techniques.  The middle region of the 

cornea has low signal to noise ratio.  It was not always possible to accurately detect 

the anterior surface in this region.  This caused gaps and extra turning points in the 

gradient of the anterior surface in some images,. causing this method to fail at 

accurately detecting the eyelid 
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3.6 Level Set Method 

The first technique developed used level set based methods to segment the 

images.  Level set methods were chosen because several groups have previously 

used this technique to successfully segment medical images.  The most relevant to 

this work is a study by a group that used a level set formulation with a shape 

constraint to segment OCT images of rodent retina [79]. 

The first attempt made was to use one of the simplest and most popular level set 

methods available: Chan and Vese’s [70] active contour without shape.  This 

method attempts to segment an image into two regions based on intensity.  The aim 

is to minimise the following energy expression 

𝐸(𝛷) =  𝜆1∫ (𝐼(𝑥, 𝑦) − 𝑢)2𝐻𝜖(𝛷) + (𝐼(𝑥, 𝑦) − 𝑣)
2(1 − 𝐻𝜖(𝛷)) 𝑑𝑥 𝑑𝑦

𝛺

+ 𝜆2 ∫ 𝛿𝜖(𝛷) 𝛻𝛷𝑑𝑥 𝑑𝑦
𝛺

 

(53)  

where I(x,y) is image intensity, u is mean intensity inside the curve, v is mean 

intensity outside of the curve,  𝐻𝜖(𝛷) is the Heaviside function and 𝜆1and 𝜆2 are 

constants that determine the weighting of each term.  u and v can be defined as 

𝑢(𝛷)  =  
∫ 𝐼(𝑥, 𝑦)
𝛺

𝐻𝜖(𝛷)𝑑𝑥𝑑𝑦

∫ 𝐻𝜖(𝛷)𝑑𝑥𝑑𝑦𝛺

 (54)  

𝑣(𝛷)  =  
∫ 𝐼(𝑥, 𝑦)
𝛺

(1 − 𝐻𝜖(𝛷))𝑑𝑥𝑑𝑦

∫ 1 − 𝐻𝜖(𝛷)𝑑𝑥𝑑𝑦𝛺

 (55)  

  

This method has been previously implemented in Matlab as part of the creasag 

program [121].  An example image segmented using this method is shown in Figure 

23.  This technique still struggles to locate the low signal to noise ration regions the 

threshold method also struggled to find.  
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Figure 23: Image segmented using “Active contour without edges” method 

This result confirmed it is necessary to incorporate shape information into the model 

to obtain an accurate segmentation. 

The initial work, shown in the example image above, was carried out without any 

pre-processing steps.  When it is compared with other techniques, all the pre-

processing techniques described in section 3.5 were used. 

3.7 Level Set with Shape 

In order to improve the previous method, a shape term can be used to help locate 

parts of the image with a low signal to noise ratio.  For this technique all the pre-

processing techniques described in section 3.5 were used.  Following the pre-

processing, the first step of the segmentation was to make an initial estimate of 

segmentation using the thresholding technique described above.  This was used to 

create a shape term.  Finally, a level set function was evolved to improve the 

contour.  The steps will be discussed in turn. 

3.7.1 Initial Estimate of Segmentation 

The initial investigation into the use of techniques based upon applying a threshold 

to an image shows that it is capable of finding a good estimate of the anterior 

surface of the cornea.  Following on from the initial pre-processing step an entropy 

filter was applied to the image to obtain texture information.  This texture image was 

then segmented using a threshold, and the results assumed to be a good initial 

estimate of the location of anterior surface of the cornea. 

This initial estimate was used to initialise the level set function and provide an initial 

estimate for the shape term. 
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3.7.2 Evolution of Curve Using a Level Set Function with a Shape Constraint  

In the level set technique, the active contour that is used to segment the image is 

represented by the zero level set of a function.  This function can then be evolved to 

move the contour in an image.  In order to control the evolution of the curve an 

energy function for the image must be created.  The method used here contains 

three terms 

𝐽(𝛷) =  𝐽1 (𝛷) + 𝐽2(𝛷) + 𝐽3(𝛷) (56)  

𝐽1 is a region based term, 𝐽2 a contour smoothing term and 𝐽3 a shape based term, 

each term is discussed in detail in the next section.  This method is similar to that 

used by Yazdanpanah et al when attempting to segment the retina into multiple 

regions as well as work looking at the segmentation of cardiac MR images [79, 81]. 

3.7.2.1 Model Matching – a Regional Based Term 

The regional based comes from the Chan-Vese model of active contour without 

edges and attempts to split the image into two regions based on them having similar 

regional statistics [70].  The energy term corresponding to this is 

𝐽1 (𝛷) =  𝜆1∫ (𝐼(𝑥, 𝑦) − 𝑢)2𝐻𝜖(𝛷) + (𝐼(𝑥, 𝑦) − 𝑣)
2(1 − 𝐻𝜖(𝛷)) 𝑑𝑥 𝑑𝑦

𝛺

 (57)  

where I(x,y) is image intensity, u is mean intensity inside the curve, v is mean 

intensity outside of the curve,  𝐻𝜖(𝛷) is the Heaviside function and 𝜆1is a constant 

that determines weighting of this term. 

3.7.2.2 Contour Smoothing Term 

The contour smoothing term is a function of the length of the contour and acts to 

smooth the curve.   

𝐽2(𝛷) =  𝜆2 ∫ 𝛿𝜖(𝛷) 𝛻𝛷𝑑𝑥 𝑑𝑦
𝛺

 (58)  

where 𝛿𝜖(𝛷) is an approximated delta function corresponding to gradient of 

Heaviside function, and 𝜆2 is a constant determining weighting of this term. 

3.7.2.3 Shape Prior Term   

To improve the segmentation to cover areas with lower difference in intensity a 

shape prior term is introduced.  The surface of the cornea is approximately elliptical 

so an elliptical shape was used.   
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An ellipse was fitted to the anterior surface of the curve using a least squares fitting 

method [122].  The distance between a point and the ellipse is then defined as  

𝐷 =  𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 (59)  

where a, b, c, d, e, and f are parameters that define an ellipse.   A second ellipse 

was then generated by adjusting the ellipse parameters to give a second ellipse with 

the same centre but smaller major and minor radius.  The two different D matrices 

obtained were then multiplied together to create a single matrix 

𝐷 = 𝐷𝑢𝑝𝑝𝑒𝑟. 𝐷𝑙𝑜𝑤𝑒𝑟 (60)  

The D matrix has values everywhere on the image and is zero on two curves 

corresponding to the two ellipses the surface is fit to. 

The shape constraint used was given by 

𝐽3(𝛷) =  𝜆3 ∫ 𝐷2 𝛿𝜖(𝛷) 𝛻𝛷𝑑𝑥 𝑑𝑦
𝛺

 (61)  

Where D is the shape prior term, 𝛿𝜖(𝛷) is a delta function corresponding to gradient 

of Heaviside function, and 𝜆3 is a constant determining weighting of this term.  

3.7.2.4 Minimisation of the Energy Function 

The above terms are all substituted into the original expression and our energy to 

be minimised is defined as  

𝐽(𝛷) =  ∫ 𝜆1[(𝐼(𝑥, 𝑦) − 𝑢)
2𝐻𝜖(𝛷) + (𝐼(𝑥, 𝑦) − 𝑣)

2(1 − 𝐻𝜖(𝛷)) ]
𝛺

 

+𝐴(𝑥, 𝑦) 𝛿𝜖(𝛷) 𝛻𝛷 𝑑𝑥 𝑑𝑦 

(62)  

where 𝐴(𝑥, 𝑦) =  𝜆2 + 𝜆3 𝐷
2. 

To evolve the contour and find the best fit for the curve on the image the energy 

function calculated above must be minimised.  This is done in a series of steps. 

Firstly, holding 𝛷 constant, the intensity inside and outside the curve (u and v) is 

calculated.   

The next step is to calculate the value of D while holding 𝛷 constant.  It is usual to 

calculate the shape constraint each iteration of the code updating the expression 

each time to get a better fit of results.  This approach was not used here.  Instead a 
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good initial estimate of the upper surface of the cornea was obtained.  The shape 

term was then updated every 30 steps, generating a new shape function at that 

point.  The main reason for doing this was because it resulted in a substantial 

improvement in the running speed of the program. 

Once the intensities and distance function are calculated, these are both held fixed 

and the Euler-Lagrange equation is used calculate the parameterised descent.  

From the Calculus of Variation [123] it can be shown that the 2D scalar function 

𝛷(𝑥, 𝑦) that minimises the energy function in equation 62 is the one that solves the 

PDE  

𝜕𝐽

𝜕𝛷
− 

𝑑

𝑑𝑥
(
𝜕𝐽

𝜕𝛷𝑥
) −

𝑑

𝑑𝑦
(
𝜕𝐽

𝜕𝛷𝑦
) = 0 (63)  

The partial derivative of J in with respect to 𝛷, 𝛷𝑥 and 𝛷𝑦. 

𝜕𝐽

𝜕𝛷
=  𝜆1

𝜕𝐻

𝜕𝛷
[(𝐼 − 𝑢)2 − (𝐼 − 𝑣)2] +  𝐴𝛿′(𝛷)| 𝛻𝛷| (64)  

𝜕𝐽

𝜕𝛷𝑥
= 𝐴𝛿(𝛷)

𝛷𝑥
| 𝛻𝛷|

 (65)  

𝜕𝐽

𝜕𝛷𝑦
= 𝐴𝛿(𝛷)

𝛷𝑦

| 𝛻𝛷|
 (66)  

where 𝛿′ = 𝜕𝛿 𝜕𝛷⁄ . 

Taking the derivative of equation 65 above with respect to x gives, 

𝑑

𝑑𝑥
(
𝜕𝐽

𝜕𝛷𝑥
) =  𝐴𝑥𝛿(𝛷)

𝛷𝑥
| 𝛻𝛷|

+  𝐴𝛿′(𝛷)
𝛷𝑥
2

| 𝛻𝛷|
+  𝐴𝛿(𝛷)

𝑑

𝑑𝑥
(
𝛷𝑥
| 𝛻𝛷|

) (67)  

Similarly the derivative of equation 66 with respect to y is 

𝑑

𝑑𝑦
(
𝜕𝐽

𝜕𝛷𝑦
) =  𝐴𝑦𝛿(𝛷)

𝛷𝑦

| 𝛻𝛷|
+  𝐴𝛿′(𝛷)

𝛷𝑦
2

| 𝛻𝛷|
+  𝐴𝛿(𝛷)

𝑑

𝑑𝑦
(
𝛷𝑦
| 𝛻𝛷|

) (68)  

Equation 62 can now be rearranged to be 

𝜆1
𝜕𝐻

𝜕𝛷
[(𝐼 − 𝑢)2 − (𝐼 − 𝑣)2] − [∇𝐴.

∇𝛷

| 𝛻𝛷|
+  𝐴𝑑𝑖𝑣 (

∇𝛷

| 𝛻𝛷|
)]  𝛿(𝛷) = 0 (69)  

This can then be used to evolve 𝛷 using an artificial time t.  The following update 

equation is then found 



72 
 

𝜕𝛷

𝜕𝑡
=  −𝜆1

𝜕𝐻

𝜕𝛷
[(𝐼 − 𝑢)2 − (𝐼 − 𝑣)2]  +  [∇𝐴.

∇𝛷

| 𝛻𝛷|
+  𝐴𝑑𝑖𝑣 (

∇𝛷

| 𝛻𝛷|
)]  𝛿(𝛷) (70)  

Using this method did not result in good segmentation of the images.  An example 

result is shown in Figure 24.  The poor results were due to the shape term not 

working as hoped to fill in gaps of the segmentation that were found when using 

only intensity information.  In order to improve the results a different approach to 

formulating the shape constraint was used.  This is described in the next section. 

 

Figure 24: Image segmented using the first attempt at level set function with shape 

3.7.2.5 Alternative Methods for Shape Term 

There are many different ways to implement a shape term in a level set function.  

These generally involve creating a signed distance function that corresponds to the 

shape that is being segmented [124]. 

One method used by Cremers et al. [125] was to use both prior shapes and 

dynamic labelling.  Letting 𝛷 be the level set function for segmentation and 𝛷0 a 

signed distance function for the given shape, a shape difference function was 

created as follows 

𝐽𝑠ℎ𝑎𝑝𝑒(𝛷) =  ∫ (𝛷 − 𝛷0)
2 𝑑𝑥𝑑𝑦

𝛺

 (71)  

The problem with this integral is that the shape prior is enforced over the whole 

domain.  This could create problems due to background objects affecting the 

segmentation of an image.  Another function L can be introduced into the integral to 

deal with this problem [126].   

𝐽𝑠ℎ𝑎𝑝𝑒(𝛷) =  ∫ (𝛷 − 𝛷0)
2 (𝐿 + 1)2𝑑𝑥𝑑𝑦

𝛺

 (72)  

where L defines where the shape prior should be active in the image domain.  

Regions where 𝐿 = −1 are excluded from the integral.  How the labelling region is 

defined is an important problem when using this method.  The simplest way to do 
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this is to predefine the labelling region in advance.  This has the disadvantage of 

requiring some knowledge of where the object to be segmented is located.  In this 

application this is not a major problem since thresholding can be used to get an 

approximate location of the cornea.  This can be used to restrict the shape term to 

regions near the approximate cornea location. 

3.7.2.6 New Evolution Equation 

If we substitute equation 72 into equation 62 then a new evolution equation can be 

derived.  The energy function to be minimised now becomes 

𝐽(𝛷)

=  ∫ 𝜆1[(𝐼(𝑥, 𝑦) − 𝑢)
2𝐻𝜖(𝛷) + (𝐼(𝑥, 𝑦) − 𝑣)

2(1 − 𝐻𝜖(𝛷)) ] +
𝛺

𝜆2𝛿𝜖(𝛷) 𝛻𝛷

+ 𝜆3(𝛷(𝑥, 𝑦) − 𝛷0(𝑥, 𝑦))
2(𝐿 + 1)2𝑑𝑥 𝑑𝑦 

(73)  

Based on the Euler – Lagrange equation as before 

𝜕𝐽

𝜕𝛷
− 

𝑑

𝑑𝑥
(
𝜕𝐽

𝜕𝛷𝑥
) −

𝑑

𝑑𝑦
(
𝜕𝐽

𝜕𝛷𝑦
) = 0 (74)  

 Equation 70 now becomes 

𝜕𝐽

𝜕𝛷
= 𝜆1

𝜕𝐻

𝜕𝛷
[(𝐼 − 𝑢)2 − (𝐼 − 𝑣)2] + 𝜆2𝛿

′(𝛷)| 𝛻𝛷| +  2𝜆3(𝐿 + 1)
2(𝛷 − 𝛷0) (75)  

The other derivatives are unaffected, other than setting 𝐴 = 𝜆2 making it no longer a 

function of (x,y).  This gives the gradient descent equation as 

𝜕𝛷

𝜕𝑡
=  −𝜆1

𝜕𝐻

𝜕𝛷
[(𝐼 − 𝑢)2 − (𝐼 − 𝑣)2]  − 2𝜆3(𝐿 + 1)

2(𝛷 − 𝛷0)

+ 𝜆2 𝑑𝑖𝑣 (
∇𝛷

| 𝛻𝛷|
)  𝛿(𝛷) 

(76)  

3.7.2.7 Defining the Shape Constraint 

One of the problems faced when using the above method is how the shape term is 

constructed.  The aim is to generate a shape that is a close as possible to the shape 

of the cornea and then use this to influence the contour to follow the edges of this 

shape. 

The initial technique attempted was to fit an ellipse to the anterior surface and then 

generate a second ellipse with a smaller major and minor axis and use this to 

approximate the bottom surface.  This method was initially successful, however 
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when updating the shape expression as the curve developed problems arose.  The 

method being used did not lead to a fixed sign for the new shape.  This prevented a 

stationary end point from being reached. 

To solve this problem a new method of generating a smaller ellipse was used.  The 

ellipse fitted to the anterior surface was used to generate a signed distance function 

(SDF).  The central width of the cornea was manually measured on a few example 

images.  The average of these values was used  to estimate  the bottom edge of the 

cornea at the centre.  The value of the SDF at this point was then subtracted from 

the original SDF to set a new zero point here.  This method successfully generated 

a new ellipse that was parallel to the original one.  However this is not a good 

approximation to the cornea.  The cornea thickness increases from the centre 

towards the edges of the image.  

In order the attempt to mimic this effect initially the minor axis had been decreased 

twice as much as the major axis.  In this case the amount the SDF was varied was 

based on horizontal position in the image.  A quadratic relationship was used with 

the amount each row was adjusted by being given by the following expression 

𝑆𝐷𝐹2(𝑥, 𝑦) =  𝑆𝐷𝐹1(𝑥, 𝑦) −  𝑆𝐷𝐹1(𝑥𝑡, 𝑦𝑡) −  𝑐 ∗ (𝑥 − 𝑥𝑡)
2 (77)  

Where SDF1 and SDF2 are the initial and altered signed distance functions 

respectively, (𝑥𝑡 , 𝑦𝑡) is a point 30 pixels below the anterior ellipse, and c is a 

constant obtained empirically. An example of the shape image is shown in Figure 25 

below.  Colour has been used to make it clearer. 

 

Figure 25: Example of the shape constraint used to guide segmentation.  Here dark blue 
corresponds to zero and below and red to higher values. 

3.7.3 Initial Results 

This method produced in a successful segmentation of most of the images.  The 

results for the same image as shown previously are shown in Figure 26 and Figure 

27 below.  Full results will be presented in Chapter 5. 
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Figure 26: Image segmented using level set with shape 

 

 

Figure 27: Image segmentation using level set with shape marked on original image 

One of the problems encountered was how to select the weighting of different parts 

of the energy expression.  The strength of the shape constraint was varied for all the 

different images.  There was no one value that worked for all images.  Some images 

were better segmented with a very weak shape constraint, whereas other performed 

better with a stronger shape term.  The values of 𝜆3 tested varied from 0.1 to 0.6.  It 

is possible the images not successfully segmented may have worked if a wider 

range of values was used.  In order for a fully automatic segmentation program to 

be used, the values of the weighting parameters must be calculated the same way 

for all images.  Using dynamic methods where 𝜆3 is a function of number of 

iterations could improve results.  Alternatively if a link between image quality and 𝜆3 

value could be found this could be used to determine best value for each image. 

3.7.4 Improvements to the Level Set Method using Dynamic Weighting 

 

The results from the level set with shape method were promising.  Therefore ways 

to improve the model with relatively minor changes were tested.  Previous image 

segmentation methods have improved segmentation by varying the weighting of 

different terms in the energy expression.  This can be done in a number of different 

ways. 
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One way that was investigated was adjusting the strength of the shape term based 

on image quality.  The images were graded on quality by the expert manual 

observer when they carried out the segmentation.  For each image, the value of the 

shape coefficient that gave the highest DSC value was found.  Comparing the two 

results, no correlation was found between rated image quality and value of shape 

coefficient that gave the best result.  Given the lack of any automated way of rating 

image quality, and the initial negative result, this line of investigation was not 

continued.   

3.7.4.1 Dynamic Changing of Weighting Factors 

The initial model of segmentation used constant values of the various coefficients 

for segmentation.  Other studies have found improved results by varying the values 

of the coefficients by iteration number.  This could have the advantage of using 

mainly image information to enable to correct region of the image to be detected.  

These methods were therefore attempted for this study.  A number of variations 

were attempted initially based on previous work.  A number of variations are 

described here these all produced worse quality results compared to using constant 

weighting.  

In STACS [81] there are four terms in the energy function.  The first two are regional 

and edge information from the image, the third term is their shape term and the final 

turn a smoothing term.  When minimising their energy function the following 

expressions were used for the different coefficient 

𝜆1(𝑛) =  𝜆1(1) − 
𝑛[𝜆1(1) − 𝜆1(𝑁)]

𝑁
 (78)  

𝜆2(𝑛) =  
1

2
[𝜆2(1) − 𝜆2(𝑁) [1 + cos (

𝑛𝜋

𝑁
)] + 𝜆2(𝑁)]  (79)  

𝜆3(𝑛) =  
𝜆3(𝑁) − 𝜆3(1)

cosh [10 (
𝑛𝜋
𝑁 −  1)]

+ 𝜆3(1) (80)  

where n is iteration number, N the total number of iterations and 𝜆𝑖(1) and 𝜆𝑖(𝑁) the 

initial and final value of the coefficients. 𝜆4 was held constant throughout the 

minimisation process.  These expressions correspond to slowly decreasing 𝜆1 and 

𝜆2 and a 𝜆3 value that increases dramatically at the end of the segmentation 

process. The evolution of these values is shown in Figure 28 below. 
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Figure 28: Graph showing evolution of different coefficient in Pleumpitiyawej et al.'s study [81] 

Since this method had shown an improvement in previous results, a modified 

version was tried.  A number of different methods of changing the strength of 

different terms as segmentation progressed were also tried.  Different strategies 

attempted were 

𝜆3(𝑛) = 0          𝑤ℎ𝑒𝑛 𝑛 < 100 

𝜆3(𝑛) =
𝜆3(𝑁)

2
                𝑤ℎ𝑒𝑛 100 ≤ 𝑛 ≤ 1500 

𝜆3(𝑛) =  𝜆3(𝑁)    𝑤ℎ𝑒𝑛 𝑛 > 1500 

(81)  

where n is number of iterations, and N is max number of iterations (3000 for this 

implementation).  𝜆1 and 𝜆2 were held constant throughout the process.  This 

method represents a step increase in strength of shape term.  Results using this 

method were worse than when a constant 𝜆3 value was used. 

The method used by Pluempotoyawei et al. [81] was then used.  It was altered to 

remove the extra term giving a system of  
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𝜆1(𝑛) =  𝜆1(1) − 
𝑛[𝜆1(1) − 𝜆1(𝑁)]

𝑁
 (82)  

𝜆2(𝑛) =  𝜆2(𝑁) (83)  

𝜆3(𝑛) =  
𝜆3(𝑁) − 𝜆3(1)

cosh [10 (
𝑛𝜋
𝑁
−  1)]

+ 𝜆3(1) (84)  

This method again resulted in a decrease in the quality of the resulting 

segmentation. 

The methods described so far are based upon increasing the shape coefficient with 

iteration.  They all decrease the effectiveness of the segmentation therefore it is 

useful to attempt to implement a method where the strength of the shape coefficient 

is reduced by iteration.  The following expression was used 

𝜆3(𝑛) = ( 1 − 
𝑛

2𝑁
 ) 𝜆3(𝑁) (85)  

with 𝜆1 and 𝜆2 being held constant throughout the process.  This method results in a 

steady increase in the value of the shape coefficient.  Implementing this method 

also results in a decrease in effectiveness of the segmentation model. 

Three different methods of altering the strength of the coefficients were attempted.  

These have previously been reported to give improved segmentation results.  All 

three techniques tested for altering the strength of the shape term using iteration 

number produced worse results compared to using a constant strength shape 

constraint.  There are many more ways that the segmentation could be changed 

with iteration number.  However due to repeated negative results this work was not 

continued.  Instead a constant strength shape coefficient was used throughout the 

energy minimisation process. 

3.7.4.2 Chan Vese with Shape and Edge (CVWSe) 

Another way of altering the strength of the shape coefficient is to use information 

from the image to vary it across each image.  This has been done in previous 

studies [81] where edge information was used to weight the shape coefficient.  In 

order to do this the following expression was used as an edge detector 

𝑔 = 
1

1 + 𝑘∇𝐼
 (86)  
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where k is a constant that determines the strength of the gradient term and ∇𝐼 is the 

gradient of the image.  g is 1 at regions where the gradient is zero and decreases at 

regions where there is a high gradient.  A strong gradient corresponds to a clear 

edge, an example of what this function looks like is shown in Figure 29.  In order to 

improve the segmentation 𝜆3 was replaced by 𝜆3 ∗ 𝑔 in the evolution equation: 

𝜕𝛷

𝜕𝑡
=  −𝜆1[(𝐼 − 𝑢)

2 − (𝐼 − 𝑣)2]  + 𝜆2 𝑑𝑖𝑣 (
∇𝛷

| 𝛻𝛷|
) − 2𝜆3 ∗ 𝑔(𝛷 − 𝛷0) (87)  

This model includes the standard Chan Vese model plus the addition of shape and 

edge information.  It will therefore be referred to as the CVWSe model when being 

compared to other segmentation techniques.  

 

Figure 29:  Example of gradient function g.  Note the anterior surface has obvious black line but 
the posterior surface contains a section with no clear edge present. 

3.7.4.3 Linking Weighting of Different Coefficients with Image Intensity 

The images used in this study contained some regions with strong signal and other 

regions with weaker signal.  It is required to detect to cornea in both regions.  The 

shape term is used to improve the segmentation in regions with lower signal to 

noise ratio.  In regions where the signal is stronger, the shape term is not needed to 

improve segmentation therefore the strength of the shape term was linked to image 

intensity.  If the shape coefficient had an inverse dependence on image intensity 

then it may improve the results.   

An extra term was added to the shape function 
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𝜆′3 = 𝜆3
0.1

𝐼(𝑥, 𝑦) + 0.1
 (88)  

where 𝜆′3 is the new shape coefficient, 𝜆3 is a constant and 𝐼(𝑥, 𝑦) is the image 

intensity at 𝑥, 𝑦.  0.1 was added to the denominator to prevent large values being 

caused by dividing by very low values. This method will reduce the value of the 

shape coefficient in regions of high image intensity.  An example of what this 

function looks like is shown in Figure 30 below.  A Gaussian filter was applied to the 

image first to reduce the effect of any spikes in image intensity due to noise.  During 

comparison with other methods this method will be known as CVWSiw. 

 

Figure 30: Example of intensity weighting function used.  Darker areas correspond to lighter 
patches on original image and the shape term will have a smaller effect in these locations.  
Again this function causes the difficult to detect region of the cornea to have an increase 

dependency on the shape term. 

3.7.5 Use of Texture Information to Improve the Model 

When carrying out segmentation using Chan and Vese active contours without 

edges there are a number of different types of image information that can be used.  

The methods that have been described so far are based on using image intensity to 

distinguish the two regions.  An alternative to using intensity is to use the texture of 

an image.  Both these methods have been extensively used in image segmentation.  

There are a number of different ways to represent image the texture of an image.  

The method used is a model matching method which assumes two different 

statistical models can be created one for object of interest and one for the 

background. 
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The image domain is separated into two regions by a contour C.  This contour is 

improved by maximising the probability that 𝑢1 and 𝑢2 are random samples that 

correspond to object model 𝑀1 and background model 𝑀2.  The contour is updating 

by maximise the function 

𝐸1(𝛷) = 𝑝(𝑢|𝐶,𝑀1,𝑀2) (89)  

where 𝑝(𝑢|𝐶,𝑀1,𝑀2) is the joint probability density function of image intensities u 

given the contour C and models 𝑀1 and 𝑀2. 

If 𝑀1 and 𝑀2 are assumed to be statistically independent, it is possible to rewrite the 

above as a product of two probability density functions 

𝐸1(𝛷) =  𝑝1(𝑢1|𝐶)𝑝2(𝑢2|𝐶) (90)  

Taking the negative log this becomes  

𝐸1(𝛷) =  −𝑙𝑛(𝑝1(𝑢1|𝐶)) − ln (𝑝2(𝑢2|𝐶)) (91)  

Assuming that these are independent and C is a zero level set of function 𝛷 

equation 57 becomes 

𝐸1(𝛷) =  ∫ −𝑙𝑛[𝑝1(𝑢(𝑥, 𝑦))]
𝛺

𝐻𝑒(𝛷(𝑥, 𝑦)) 

− 𝑙𝑛[𝑝2(𝑢(𝑥, 𝑦))[1 − 𝐻𝑒(𝛷(𝑥, 𝑦))]𝑑𝑥𝑑𝑦 

(92)  

where 𝐻𝑒(𝛷(𝑥, 𝑦)) is the regularised Heaviside function representing the pixels 

inside the contour and  1 − 𝐻𝑒(𝛷(𝑥, 𝑦)) represents the pixels outside.  Both the 

object and background pdfs are Gaussian with means 𝑚1 and 𝑚2, and variances  𝑠1 

and  𝑠2.  These will be calculated again each time the contour is updated.  This new 

energy function is used in the following equation (same as equation 56 presented 

earlier) 

𝐸(𝛷) =  𝜆1𝐸1 (𝛷) + 𝜆2𝐸2(𝛷) + 𝜆3𝐸3(𝛷) 

 
(93)  

where 𝐸2(𝛷) is the curvature smoothness term and 𝐸3(𝛷) the shape term.  

Terms 𝐸2(𝛷) and 𝐸3(𝛷) are unchanged in this model and have been discussed in 

previous sections.   

The negative log of the pdfs can be rewritten as 
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𝑀𝑖 = 
1

2
ln(2𝜋𝑠𝑖) + 

(𝐼(𝑥, 𝑦) − 𝑚𝑖)

2𝑠𝑖

2

 (94)  

where 𝑠𝑖 is the variance of pixels inside or outside contour, 𝑚𝑖 is mean of pixels 

inside or outside contour and 𝑖 = 1,2 to specify area inside or outside contour. 

This gives an evolution equation for this model of  

𝜕𝛷

𝜕𝑡
=  −𝜆1[𝑀1 −𝑀2]  + 𝜆2 𝑑𝑖𝑣 (

∇𝛷

| 𝛻𝛷|
) − 2𝜆3(𝛷 − 𝛷0) (95)  

The rest of the algorithm described earlier is unchanged.  This model is referred to 

as CVWSt when being compared to other methods. 

3.7.6 Extending the Segmentation to Include the Iris 

So far all the methods used started with a pre-processing step which included the 

removal of the iris from the image.  This is done because its presence in the image 

negatively affects the results since it deviated from the model for the shape of the 

cornea.  The main focus for the study is the cornea however it is also desirable to 

segment the iris for various reasons.  For example detecting the iris allows 

measurement of anterior chamber angle, which is important in Glaucoma 

investigation [127].  Following the success of the segmentation program when 

investigating the cornea it was decided to extend the segmentation to include the 

iris. 

Using the detection of the location of the iris in the initial steps a sub image 

containing only the iris and a limited part of the schelra is created.  In the images 

used the iris is much easier to detect than parts of the cornea.  The images of the 

iris could be segmented and the position of the anterior surface of the iris detected 

using the threshold technique described previously [43] and exploited here as an 

initial estimate. 

 

Specifically an entropy filter is applied to the image.  This is a measure of the 

texture of an image and gives a better contrast between object and background 

than simple intensity does.  The new image is then segmented using a threshold.  

The value used for the threshold is determined using Otsu’s method [61].  A three 

way Otsu’s method is used since there are now three regions in the image.  These 

are; an empty padding area that was produced by the earlier rotation step to align 

the iris horizontally, the background of the image, and the object of interest in the 

image.  If a two region segmentation method is used then only the difference 
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between the image and the empty padding area will be detected since the latter is 

completely uniform. 

 

Following the initial segmentation, morphological operations were carried out to 

improve the segmentation.  The image was eroded using a diamond shaped 

structural element.  This was done since it was found that the segmentation was a 

slight over estimate of the region of interest.   

 

Once segmentation of the region containing the iris is complete the best method of 

recombining the two images must be found.  Simply segmenting the two images 

and reattaching them suffers from the problem that unless the two segmentations 

are identical on the boundary, a discontinuity will exist.  In order to solve this 

problem an overlap region was used.  When cutting the image to remove the iris an 

extra section of the image was also added so the two images overlap.  When 

recombining the two images the boundaries in this region are combined.  At the top 

of the region the boundary used corresponds to the top image and at the bottom the 

boundary used corresponds to the bottom image.  In between these points the 

following expression is used to pick the boundary 

𝑏𝑜𝑢𝑛𝑑𝑛𝑒𝑤 = 𝑏𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟 − 
𝑖

𝑛
(𝑏𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟 − 𝑏𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟) (96)  

where 𝑏𝑜𝑢𝑛𝑑𝑛𝑒𝑤 is x coordinate of combined boundary, 𝑏𝑜𝑢𝑛𝑑𝑢𝑝𝑝𝑒𝑟 the x coordinate 

of boundary found through corneal segmentation, 𝑏𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟 the x coordinate of 

boundary found through iris segmentation, 𝑛 is the number of pixels in overlap 

region  and 𝑖 is the y coordinate with in the overlapping region ie 1 at top of region 

and n at bottom.  This gives a boundary that is smooth in transition between the two 

regions. 

 

Once the images have been combined an image is generated that has been 

segmented, including the iris.  The method described here works well at detecting 

the anterior surface of the iris.  The posterior boundary of the iris is harder to detect.  

This structure is not well defined on the image so this is probably a limitation in the 

imaging technique rather than our segmentation method.  An example image of the 

results of this technique is shown below in Figure 31.  The jagged edge on bottom 

right of image is mostly likely incorrect segmentation.  The anterior boundary of the 

cornea is smooth right through to the Sclera and there is no obvious boundary 
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between the two different segmentation techniques.  The posterior boundary of the 

cornea is also well defined, as is the top surface of the iris. 

 

 

Figure 31: Example of segmentation result including the iris.  Top section of the image is 

segmented using CVWSiw technique.  Lower section including the iris is segmented using 

threshold technique described immediately above this.  Well defined anterior boundary of iris 

can be seen.  The lower surface of iris is a very rough surface indicating probable inaccurate 

segmentation.   

3.7.7 Alternative Ways to Generate Shape Energy 

The methods presented so far have used a parametric shape term, assuming that 

the shape of the cornea can be considered as elliptical.  The results of our 

segmentation show that this is not an unreasonable assumption to have made.  

There are other ways of approaching the use of shape for image segmentation.  

Statistical shape priors can be used to generate a shape energy term and has 

widely been used for different applications in image processing. 

The use of a statistical shape model has the advantage of being able to generate 

shapes that are not easily described by comparison to geometric shapes.  The most 

common variations from these shapes are also identified and quantified using this 

model.  In order to carry out segmentation using this method set of training images 

is needed.  Once the manual annotations were acquired these could be used to 

train the model and attempt segmentation using this technique. 

Bresson et al. [77] have made their code publically available for others to use.  This 

was used to see if it would result in an increased performance of the segmentation 

model.  Since only had one data set of 39 images was available each image was 
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segmented using the other 38 to make up the reference data set.  This maximises 

the amount of data in the training set and allows for a full comparison to be made 

between the different methods.  The use of this segmentation technique produced 

poor results so work was focused on using a parametric shape as described above. 

3.8 Graph Cut Segmentation 

One of the weaknesses of using level set based techniques is the speed of the 

segmentation.  Level set is a slow segmentation technique.  Work has been done 

previously implementing level set models using graph cuts in order to increase the 

speed of the segmentation.  It was therefore decided to implement the CVWSiw 

model using graph cuts to attempt to speed up the code.  This technique uses all 

the pre-processing techniques described in section 3.5.   

In general when carrying out graph cut segmentation the energy function to be 

minimised should be in the following form 

𝐸(𝑥) =  ∑𝐸𝑖(𝑥𝑖) + 

𝑖

∑ 𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗) 

𝑖,𝑗 ∈𝑁

 (97)  

where n is a neighbourhood system on pixels, 𝐸𝑖(𝑥𝑖) is a function from image that 

measures the cost of assigning label to pixel 𝑥𝑖  to pixel 𝑖, and 𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗) is a function 

that measures the cost of assigning labels (𝑥𝑖, 𝑥𝑗) to adjacent pixels 𝑖, 𝑗 [86].  This is 

discussed in more detail in literature review section the equation and is repeated 

here for clarity. 

In order to implement the function it was necessary to create a shape term that 

could be used in a graph cut function.  The shape mask was developed from the 

initial estimate of segmentation using the same method used during the level set 

implementation of the code, i.e. fitting an ellipse to the anterior surface then creating 

a second related ellipse to model lower surface.  A binary shape mask was used 

rather than a distance function since this is similar to how shape has previously 

been added to graph cut segmentation.   

This means that 𝐸𝑖(𝑥𝑖) in equation 99 now becomes 

𝐸𝑖(𝑥𝑖) =  |𝐼(𝑝) − 𝑐1| + |𝑀(𝑝) −  1|       𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 

 

𝐸𝑖(𝑥𝑖) = |𝐼(𝑝) − 𝑐2| + |𝑀(𝑝) −  0|          𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟  

(98)  
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where 𝑐1 and 𝑐2 are mean intensities for inside and outside contour, 𝐼(𝑝) is image 

intensity at p and 𝑀(𝑝) value of mask at p.  𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗) becomes 

𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗) =  𝜇𝑤̂𝑖,𝑗 (99)  

where 𝑤̂𝑖,𝑗 is a weighting factor that assigns a penalty to all inconsistently labelled 

pair of neighbouring pixels (in order to produce a smooth curve).  This energy was 

minimised over sufficient iterations to give a stationary solution.  The mask function 

was then updated by generating a new shape from the segmentation.  The energy 

was then minimised again for the new shape, the shape term was updated a fixed 

number of times to generate the best results. 

The relative strength of the shape term compared to the region term is controlled by 

a coefficient. 

 

Figure 32:  Example image of graph cut segmentation result overlaid on original image.  

3.8.1 Improvements to Graph Cut Model 

The initial results were promising.  A significant reduction in speed was achieved 

however the quality of the results was slightly worse using graph cut when 

compared to level set based methods.  Therefore it was decided to continue 

investigating this method and find alternative ways of implementing a shape term in 

graph cut segmentation.  Two different methods were attempted in order to improve 

the results these were using a boundary term to represent the shape and using a 

distance function instead of the binary function used previously.  The use of a 

boundary term produced poor results so this technique was not adopted for use.  

Using a distance function resulted in an improvement in the segmentation. 

3.8.2 Using Boundary Term to Generate Shape 

Freedman and Zhang published a paper that produced an interactive graph cut 

model which usd shape information to improve segmentation [128].  Their model 

was an interactive model, while I am trying to produce a model that involves no user 
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input.  There are, however, interesting parts of their model.  They attempt to 

introduce shape information by modifying the energy function 

𝐸 = (1 − 𝜆)𝐸𝑖 + 𝜆𝐸𝑠  (100)  

where 𝐸𝑖 is the image energy and 𝐸𝑠 is an energy term based on a shape prior.  It is 

the construction of the shape energy term 𝐸𝑠 that is of particular interest.  In order to 

set up the shape equation they set up a distance function 𝛷̅ with a zero level set 

corresponding to the shape template.  Where the shape template is 𝒄̅ the following 

holds true 

𝒄̅ =  {𝑥 ∈ 𝑅2: 𝛷̅(𝑥) = 0 } (101)  

It is worth noting that 𝛷̅ is an unsigned distance function in contrast to the signed 

distance functions used earlier.   

The shape energy is then given as  

𝐸𝑠 = ∑ 𝛷̅ (
𝑖 + 𝑗

2
)

(𝑖,𝑗)∈𝑁:𝐴𝑖≠𝐴𝑗

 (102)  

where 𝑁 is neighbouring set of pixels.  The energy of this function will be low if 

𝛷̅ (
𝑖+𝑗

2
) ≈ 0.  If a point 𝑥 lies near the template shape then 𝛷̅(𝑥) ≈ 0 and if the point 

lies far away from the boundary of the segmented object then (
𝑖+𝑗

2
) ≈ 0.  Hence this 

energy is a function that encourages the boundary of the evolving contour to lie near 

the boundary of the shape function.   

Using this method of creating the shape function, the function 𝐸𝑖(𝑥𝑖) now has no 

dependency on the shape function and becomes 

𝐸𝑖(𝑥𝑖) =  |𝐼(𝑝) − 𝑐1|            𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 

𝐸𝑖(𝑥𝑖) = |𝐼(𝑝) − 𝑐2|       𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 

(103)  

The shape function is instead found in the 𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗) which becomes 

𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗) =  𝜇𝑤̂𝑖,𝑗 +  𝜆 𝛷̅ (
𝑖 + 𝑗

2
) (104)  

This model was implemented using my shape term, but the results were not as 

good as those produced using the binary shape graph cut method described 

previously.   
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3.8.3 Using a Distance Function for Shape Term 

In the level set segmentation technique a signed distance function was used to 

represent the shape term.  Initially this was replaced by a binary shape term for the 

graph cut segmentation work.  The results using this produced less accurate results 

that the level set technique.  In order to improve this technique it was decided to try 

using a distance function in graph cut work.  An unsigned distance function was 

used here rather than a signed distance function since negative costs are not 

allowed in graph cut methods. 

The initialisation steps for this technique remained the same as those used before.  

The difference was instead of generating a binary mask from the initial estimate of 

the shape an unsigned distance function was instead produced.  The general 

energy function remains the same as  

𝐸(𝑥) =  ∑𝐸𝑖(𝑥𝑖) + 

𝑖

∑ 𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗) 

𝑖,𝑗 ∈𝑁

 (105)  

However equation 100 for 𝐸𝑖(𝑥𝑖) now becomes 

𝐸𝑖(𝑥𝑖) =  |𝐼(𝑝) − 𝑐1| − 𝜆𝑠ℎ𝑎𝑝𝑒 ∗ (
1

𝐼(𝑝)
) ∗ 𝐷(𝑝)      𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 

 

𝐸𝑖(𝑥𝑖) = |𝐼(𝑝) − 𝑐2| + 𝜆𝑠ℎ𝑎𝑝𝑒 ∗ (
1

𝐼(𝑝)
) ∗ 𝐷(𝑝)     𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 

 

(106)  

where 𝑐1 and 𝑐2 are mean intensities for inside and outside contour, 𝐼(𝑝) is image 

intensity at p, 𝜆𝑠ℎ𝑎𝑝𝑒 is the shape weighting term at p and 𝐷(𝑝) is the value of the 

shape distance function at p.  The 𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗) term is unchanged compared to the 

binary shape version.  The minimisation of this function was carried out the same 

way as before. 

Results of this method are discussed in chapter 5. 

3.9 Graph Theory Segmentation 

The next approach to find a fast accurate segmentation method was by 

investigating approaches using graph theory.  As discussed in Chapter 2 this is a 

technique that has been previously used to successfully segment both corneal and 

retinal OCT images.   
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Work using graph theory to segment images can be split into two different 

categories based on how the energy or cost function is minimised.  In the first 

category are those approaches using edge weights, and minimising the energy 

using either Dijkstra’s algorithm or Nilsson’s A algorithm (two closely related 

methods).  The other category of methods is based on using dynamic programming 

to find the shortest path.  This can be optimised using either edge or node weights. 

The pre-processing techniques used for this method differed slightly to the previous 

methods.  This method is more robust to incorrect rotation of the images so the step 

to align the images horizontally was not needed.  The removal of the central noise 

was also not carried out as this did not cause problems for the segmentation. 

3.9.1 Dijkstra Algorithm Method 

The first attempt at graph theory segmentation was based on using edge weights 

and Dijkstra’s method to find the shortest path.  This is similar to the work by 

LaRocca et al. [97].  For this application a novel shape term was added to improve 

the segmentation.  The results of segmentation with and without the shape term 

were compared. 

A combination of using the gradient of the image and a shape term was used to 

create the cost function.  The edge going from node a to node b was given the 

weighting 

𝑤𝑎𝑏 = 2 − (𝑔𝑎 + 𝑔𝑏) + 𝜆𝑠𝛷 + 𝑤𝑚𝑖𝑛 (107)  

where 𝑤𝑎𝑏 is weight of edge connecting a to b, 𝑔𝑎  is vertical gradient at node a, 𝑔𝑏 

is vertical gradient at node b, 𝛷 is a distance function that defines the desired 

shape, 𝜆𝑠 is a coefficient that determines the strength of the shape term and 𝑤𝑚𝑖𝑛 is 

a small minimum value added for stability. 

The shape function that is chosen is generated during an initialisation step.  The 

image is segmented using a threshold, with the value of the threshold being 

determined using Otsu’s method.  While this method gives a good result for the 

location of the anterior surface of the cornea, it is not able to determine the lower 

surface.  A 4th order polynomial is then fitted to the anterior surface.  This 

polynomial is shifted down to give an estimate of the location of the lower surface.  

The distance it is shifted is related to the central cornea thickness, which can be 

detected from the image.  An additional distance related to the distance from the 

centre is also added to account for the fact the cornea is thinnest at the centre.  

These two boundaries are then used to generate a distance function that has a 
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minimum on the boundary, and so acts to constrain the line produced to be close to 

the initial estimate of the location of the cornea. 

After the weightings of the graph nodes have been determined, it is required to set 

end points for the image.  Due to the curved nature of the cornea and the tendency 

of graph theory based methods to find straight lines as a shortest path it was 

desirable to set the start and end points to be fixed to the bottom left and bottom 

right of the image.  This was done by fixing the first three pixels in the corner of 

each image to have a very low weight, making them attractive for the segmentation 

to detect.   

In addition to this step, it was necessary to remove a section of the middle of the 

image from the image.   This was to prevent the method finding a solution at the 

bottom row of the image.  The section removed was at a fixed distance below the 

estimate of the anterior surface.   A distance of three times the estimated corneal 

width was chosen for this since this is sufficiently large to definitely not contain any 

part of the cornea. 

Once the weighting term and the endpoints were set, the shortest path was found 

using Dijkstra’s algorithm.  This was done separately for positive and negative 

gradients because the anterior boundary is defined as a shift from dark to light while 

the posterior boundary has a shift from light to dark. 

3.9.2 Alternative Approach using Dynamic Programming 

Although the results of the segmentation using the above technique were good, the 

speed of the program is still an issue.  Whilst the above program is quicker than the 

level set method it is still not as fast as the graph cut method, discussed in the 

section 3.5.  It is therefore desirable to attempt to speed up this technique. 

Dynamic programming was investigated as an alternative method of minimising the 

energy function.  A move to a node based cost system was also made since this 

makes calculating the weighting function simpler and less memory intensive. 

A five stage segmentation method was developed.  Figure 33 shows the different 

steps involved in the process.  These will be now discussed in order. 
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Figure 33: Flow chart showing the steps of the graph theory segmentation method developed.  

3.9.2.1 Pre-processing Step 

The first stage of the segmentation was the detection and isolation of the iris.  The 

detection method used was the same as that described earlier, in section 3.5.1.  

Once the iris is detected, this area is excluded from the next stage of the 

segmentation.  The reason for removing the iris is that, as it is a horizontal structure 

in the image it would be detected instead of the cornea for some images.  

The removed iris was allowed to be at different angles.  Figure 34 shows the image 

after this step has been carried out. 
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Figure 34: Image after the section containing the iris has been removed.  The intensity of the 
removed black region was set to infinity to prevent any pixels in this area being included on 
path. 

3.9.2.2 Initial Segmentation 

In order to calculate the shortest path using this method, a cost function must be 

created that determines the cost of each pixel.  A different function was used for 

each step of the segmentation.  For the initial finding of the anterior surface the 

following cost function was used  

𝐶1(𝑖, 𝑗) =  𝑤1 ∗ 𝐺𝑟𝑎𝑑𝑣(𝑖, 𝑗) + 𝑤2 ∗ 𝐺𝑟𝑎𝑑ℎ(𝑖, 𝑗) (108)  

where 𝑤1,2 are weighting coefficients, 𝐺𝑟𝑎𝑑𝑣(𝑖, 𝑗) is the vertical gradient of the 

image at point (𝑖, 𝑗) and 𝐺𝑟𝑎𝑑ℎ(𝑖, 𝑗) is the horizontal gradient of the image.  For the 

horizontal gradient the central region of the image was set to zero.  The reason for 

using a combination of the two gradients is the curvature of the cornea.  In the 

central region the vertical gradient is at correct orientation to find the boundary.  As 

the cornea curves towards the edges of the image the boundary is orientated 

towards the top corners of the image so using both horizontal and vertical gradient 

is important. 

When carrying out this initial segmentation the image with the iris removed was 

used.  The results of this segmentation is shown in Figure 35 plotted on the original 

image. 
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Figure 35: Image with result of initial segmentation step marked on it.  Note the segmentation 
was carried out on the cropped image but is plotted on the full image here. This is why the line 
doesn’t follow the obvious boundary to the edges of the image. 

3.9.2.3 Creation of shape term from initial segmentation 

Excluding the iris also removes the section of the cornea where it joins the sclera.  It 

is therefore desirable to segment the entire image without removing the iris.  

Segmentation of the posterior surface is also necessary and as previously 

discussed suffers from regions of low signal to noise ratio that cannot easily be 

detected. 

In order to aid further segmentation, two shape functions were created.  For the 

detection of the anterior surface a function 𝛷1 is created.  This is a distance function 

from the anterior boundary detected in part 2 of the segmentation.  The value for the 

function at any point is simply the distance of that point to the line.  This function 

encourages subsequent segmentations to follow the path of the initial segmentation. 

For the lower surface, the upper surface of the cornea was used as a guide.  A 

model shape term was then used to estimate the width of the cornea.  In order to do 

this the width of the cornea is the centre was first measured.  The width of the 

cornea was found by identifying peaks in the intensity of slices of the image close to 

the centre.  Only peaks with values of 50% of the largest peak were considered.  

This threshold was used as due to noise there are many local maximum, local 

maximum that are due to noise rather than image information are much smaller so 

are removed by this step.  The anterior surface of the cornea was assumed to be 

the first significant peak that was found.  The lower surface of the cornea was 
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assumed to be the last significant peak.  Any peaks that were too close to the 

bottom of the image were excluded since they can’t be part of the cornea.  This 

technique only works in the central region where the best signal to noise ratio is 

found. 

Once the central cornea width was detected, a 2nd order polynomial was used to 

model how the width of the cornea increases away from the centre.  For simplicity of 

calculation the vertical width rather than actual width of cornea was used.  The 

coefficients of the polynomial were determined empirically by testing different values 

and seeing what produced the best results. 

A distance function was then created from this estimate of the location of the 

posterior surface of the cornea.  The motivation for using this shape function rather 

than fitting an ellipse as done previous was to improve the accuracy of the method.  

The ellipse is not a perfect model for the cornea.  The graph theory method by it’s 

nature gives us an accurate segmentation of the anterior surface which could be 

used to give a more accurate estimation of the position of the posterior surface than 

an ellipse. 

3.9.2.4 Final Segmentation of the Anterior Surface 

Once a shape term had been generated from the initial segmentation, a new cost 

function was constructed for the anterior surface and then the segmentation was 

carried out again.  The new cost function is given by 

𝐶2(𝑖, 𝑗) =  𝑤1 ∗ 𝐺𝑟𝑎𝑑𝑣(𝑖, 𝑗) + 𝑤2 ∗ 𝐺𝑟𝑎𝑑ℎ(𝑖, 𝑗) + 𝑤3 ∗ 𝛷1(𝑖, 𝑗) (109)  

where 𝛷1(𝑖, 𝑗) is distance function that determines the distance from the line 

detected in the segmentation of the image with the iris removed.  This encourages 

the line to follow the path of the previous segmentation but allows it to extend into 

regions that were not part of the previous segmentation.  An example of the result of 

this step is shown in Figure 36. 
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Figure 36: Image with the result of the final segmentation of the anterior surface using graph 
theory marked on it. 

3.9.2.5 Final Segmentation of the Posterior Surface 

The next step of the segmentation is to detect the posterior surface.  This is harder 

to detect than the anterior surface as the boundary is not as well defined.  In order 

to aid the detection of the boundary two strategies were used: the image was 

flattened and a shape term was incorporated in the energy function.  Flattening the 

image aids accurate segmentation since the graph theory segmentation technique 

favours detection of straight lines.  The image was flattened using the results of the 

anterior surface segmentation.  Each column of the image was moved so that the 

anterior surface detected in the previous step is a flat line in the image.  Figure 37 

shows what an example image looks like after it has been flattened. 
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Figure 37: Example image that has been flattened using the segmentation of the anterior 
surface shown in Figure 36.  Since the shift applied to each point is known it can be very easily 
reversed to align the results with original image afterwards. 

The detection of the lower surface was carried out in a similar manner.  An energy 

function incorporating a shape weighting term was used.  The weighting function 

was given by  

𝐶3(𝑖, 𝑗) =   𝑤1 ∗ (−1) ∗ 𝐺𝑟𝑎𝑑𝑣𝑓𝑖𝑙𝑡(𝑖, 𝑗) + 𝑤2 ∗ 𝛷2(𝑖, 𝑗) (110)  

where 𝑤1,2 are weighting functions to determine the strength of the different terms, , 

𝐺𝑟𝑎𝑑𝑣𝑓𝑖𝑙𝑡(𝑖, 𝑗) is the gradient in the vertical direction after a median filter was 

applied to the image the inverse of gradient was used since the posterior boundary 

is a light to dark edge.  This filter was used to reduce to effect of noise on the 

segmentation. 𝛷2(𝑖, 𝑗) is the shape term determined from the anterior surface 

through the method described above. 

In addition to this regions that were definitely known to not be part of the 

segmentation were given infinitely high values to remove them from the possible 

segmentation.  This was determined by being more than half the corneal width 

above the expected value, which prevents a second detection of the anterior 

corneal surface.  An area more than the corneal width below the expected value 

was also excluded to prevent detect of the iris instead of cornea.  Figure 38 shows 

the results of the segmentation of anterior and posterior boundaries.   
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Figure 38: Image with anterior and posterior boundary marked on it.   

3.9.2.6 Energy Minimisation 

Following the determining of the weighting function the shortest path was found 

using dynamic programming technique.  This works by calculating the cumulative 

cost function for each point using the following expression 

𝑡(𝑖, 𝑗)

=

{
 
 

 
 
                                 ∞                                                                    𝑗 < 1, 𝑗 > 𝑚

                       𝐶𝑞(𝑖, 𝑗)                                                                       𝑖 = 1

min
𝑝=𝑗−3:𝑗+3

(

𝑡(𝑖 − 1, 𝑗 − 3) + 𝐶𝑞(𝑖 − 1, 𝑗 − 1) + 𝐶𝑞(𝑖, 𝑗),

(𝑡(𝑖 − 1, 𝑝) + 𝐶𝑞(𝑖, 𝑗),

𝑡(𝑖 − 1, 𝑗 + 3) + 𝐶𝑞(𝑖 − 1, 𝑗 + 1) + 𝐶𝑞(𝑖, 𝑗)

)      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}
 
 

 
 

 
(111)  

where 𝑡(𝑖, 𝑗) is the cost to reach point (𝑖, 𝑗), 𝐶𝑞(𝑖, 𝑗) is the cost accumulated at node 

(𝑖, 𝑗) the q designates which cost function is used this minimisation scheme is used 

for all three cost functions described above, 𝑖 is the x direction index and 𝑗 in y 

direction index with maximum value m.  This allows each pixel to be connected to 

one of 7 pixels from the previous row.  If it is one of the 5 closest only the values at 

the previous point is taken into account.  If there has been a move of 3 pixels up or 

down then an additional cost is added from a point that it is assumed the line has to 

pass through in order to make a move that distance.  This is done to allow for steep 

lines to still be detected while preventing too much movement in the vertical 

direction without a cost penalty occurring.  Only one point is found for each point on 

the x axis.  Since the aim of the segmentation is to find a structure that spans the 

image this is a desirable condition for the path. 
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One of the advantages of this system is that it doesn’t require the use of a start or 

end point.  The shortest path that connects any pixel where 𝑖 = 0 to any pixel with 

𝑖 = 𝑛 is found.  

Once both boundaries were segmented they were both smoothed using moving 

average filter.  This is to remove small amounts of noise in result due small 

variations in pixel intensity along boundary.  The results on this can be seen in 

Figure 39 below. 

 

Figure 39: Image with final segmentation of anterior and posterior boundaries.  Here the 
boundaries have been smoothed and the posterior boundary cropped to stop at the boundary 
with the iris. 

3.9.3 Detection of Additional Features 

How to detect the anterior and posterior surfaces of the anterior segment using this 

technique has been described.  Within the anterior segment there are also a 

number of other points of interest.  These points of interest are related to the iris.  

The addition of the segmentation of the iris is therefore desirable.  This can be done 

using a variation of the technique used to find the other boundaries. 

The pre-processing step found a straight line estimate of the location of the iris 

based on finding a line of maximum brightness in an image.  This was useful when 

removing the iris but in order to segment it, a more accurate method is needed.  To 

find the top surface of the iris a slight variation to the energy term used to find the 

anterior surface of the cornea can be used.  The weighting function used to detect 

the top surface of the iris is given by  

𝐶(𝑖, 𝑗) =  𝑤1 ∗ 𝐺𝑟𝑎𝑑𝑣(𝑖, 𝑗) + 𝑤2 ∗ 𝛷𝑖𝑟𝑖𝑠(𝑖, 𝑗) (112)  
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where 𝐺𝑟𝑎𝑑𝑣(𝑖, 𝑗) is the vertical gradient of image, 𝛷𝑖𝑟𝑖𝑠(𝑖, 𝑗) is a shape term 

generated from the straight line estimate of the iris and 𝑤1, 𝑤2 are coefficients 

governing the strength of the different terms.  The guide shape term is zero in a 

region close to the approximate location of the iris as found in the pre-processing 

step and valued at infinity everywhere else.  This acts to prevent any segmentation 

that includes points that are not close to initial estimate of iris location. This was 

done to prevent detection of the cornea a second time.   The iris is the strongest 

structure on the image other than the cornea. 

Finding the lower boundary of the iris is more difficult.  This boundary is not well 

defined in the OCT images and lacks a strong edge that has been used to detect 

the other boundaries.  In order to detect this, an additional term is added that looks 

at the intensity of the points below this in the image. The bottom boundary of the iris 

should have an area of darkness below.  The weighting function used is given by 

𝐶(𝑖, 𝑗) =  𝑤1 ∗ 𝐺𝑟𝑎𝑑𝑚𝑖𝑛𝑢𝑠𝑣(𝑖, 𝑗) + 𝑤2 ∗ 𝛷𝑖𝑟𝑖𝑠(𝑖, 𝑗) + 𝑤3
∗ 𝑑𝑎𝑟𝑘𝑏𝑒𝑙𝑜𝑤(𝑖, 𝑗) 

(113)  

 

Where 𝐺𝑟𝑎𝑑𝑚𝑖𝑛𝑢𝑠𝑣(𝑖, 𝑗) is the negative gradient as used before, 𝛷𝑖𝑟𝑖𝑠(𝑖, 𝑗) is same 

shape term used for top surface and 𝑑𝑎𝑟𝑘𝑏𝑒𝑙𝑜𝑤(𝑖, 𝑗) is new term that is a 

cumulative total of pixel intensity for each row favouring points lower on the image 

and those below any bright sections of the image.  Each term has a weighting factor 

𝑤𝑘 that governs its strength. 

Using these two weighting functions it is possible to obtain boundaries for the iris.  

The method always segments continuous lines from left to right in an image.  This 

means that an additional section will be segmented joining the two sections of the 

iris together.  This boundary in between the two sections of the iris does not show 

anything useful.  In some images, sections of the lens are visible and in these cases 

the segmentation will follow this but it is not reliable enough to be used to detect the 

lens.  The lens is not visible in all images. 

There are two keys points that it is useful to identify: the junction of the iris and the 

cornea (ie. the apex of the anterior chamber angle) and the edges of the pupil.  The 

junction of the iris and cornea can be located by finding the intersection of the 

posterior boundary of the cornea with the anterior surface of the iris.  The edges of 

the pupil are more difficult to find.  This was done by looking at the gradient in the x 

direction near the top surface of the iris.  The end of the iris should correspond to 
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the maxima of the absolute value of this gradient.  The image was split into two 

halves and the maxima closest to the centre on each side were taken as the two 

ends of the iris.  The pupil is the region between the two sections of the iris so 

finding the end of the iris and the edge of the pupil are the same thing. 

Figure 40 is an example image with the segmentation of cornea and iris marked on 

it.  In the middle region of iris segmentation nothing of interested is segmented.   

 

Figure 40: Example image with segmentation marked on.  Red lines locate the anterior and 
posterior boundaries of the cornea.  Green lines are segmentation of iris.  The red asterisks 
mark the located points of interest on this image.  Both the apex of anterior chamber angles are 
detected on both sides and the two edges of the pupil are also detected in the middle.  

3.9.3.1 Improvements to Iris Detection 

There were two main problems faced when carrying out segmentation of the iris 

using graph theory.  The first is the discontinuous nature of the iris.  The graph 

theory technique can be used best to segment complete structures that connect one 

side of an image to the other.  This means that when investigating the iris there is a 

need for an additional step of the detection of the ends of the iris.  The other 

problem is the weak edges, especially on the lower edge of the iris.  The technique 

described above uses edge information to find the boundary, so the lower boundary 

of the iris is liable to achieve incorrect segmentation. 

In order to improve the technique the previous iris segmentation technique, 

discussed in section 3.7.6 was used.  It was altered slightly since a segmentation of 

the posterior boundary of the entire image has already been achieved.  First the 

region above the posterior boundary of the cornea was removed from the image in 

order to prevent any repeat detection of the cornea.  The remaining image was then 

segmented using a threshold set by Otsu’s method.  A morphological closing 

operation was then carried out to fill in small gaps in the segmentation due to noise. 
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The two largest objects detected are either side of the iris.  This can be combined 

with the previous segmentation to include the iris in our segmentation.  The junction 

between the iris and the cornea can be found by finding the minimum horizontal 

distance between the points found on the iris and the posterior segment.  Where 

this is a minimum, the junction between the cornea and the iris has been found.  

Figure 41 shows an example image with segmentation of boundaries of cornea and 

iris marked on. 

 

Figure 41: Image with segmentation of iris and cornea marked on.   

3.9.4 Using C++ to Improve Speed of Segmentation 

Initially the graph theory segmentation program was implemented in Matlab.  Matlab 

was chosen for the ease of use.  Following positive evaluation of the graph theory 

with dynamic programming technique it was decided to additionally implement the 

technique in C++.  This was done in order to increase the speed of the program.  

The technique was unchanged when it was re-coded from Matlab to C++.  These 

two versions of the function were validated separately and the results compared. 

3.10  Post Processing 

After segmentation of the anterior and posterior boundaries had been carried out 

the boundaries produced were often not smooth.  This is due to speckle noise 

inherent in OCT imaging and the discrete nature of the boundary produced.  In 

order to produce a boundary that is physically realistic smoothing must occur. 

Initially this was carried out by fitting a polynomial to the surfaces generated.  A 10th 

order polynomial was fitted to the anterior surface and a 4th order polynomial was 

fitted to the posterior surface.  These polynomials were chosen since they have both 

been previously used to smooth corneal surfaces. 
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Another smoothing technique that was also used was a moving average filter.  This 

works by making each point on the curve the mean value of its neighbours.  

3.11 Conclusion 

A number of different segmentation techniques have been developed.  These can 

be split into three main categories; level set techniques, graph cut segmentation, 

and graph theory segmentation.  A number of variations of each method have been 

developed.   

The introduction of a shape term was found to be important for all the different 

segmentation techniques.  This shape term allowed the method to overcome 

problems due to parts of the image having a low signal to noise ratio.  The 

implementation of a shape term for segmentation of anterior segment OCT images 

is the main unique contribution of this part of the study.   

Two different methods have been used for creating a shape term.  Initially an ellipse 

was fitted to the surface to provide a guide shape for the cornea, this shape was 

used for the level set and graph cut techniques.  An ellipse was chosen because the 

structure of the eye can be described as two ellipsoids.  The main section of the 

eyeball is one ellipsoid and then another can be used to represent the cornea which 

extrudes from this other ellipse.  When using an iterative approach such as level set 

or graph cut the shape term was updated repeatedly throughout the segmentation 

to generate new ellipses as the segmentation proceeds.  The main motivation for 

using a different shape term for the graph theory segmentation technique was 

limitations of using an ellipse to describe the cornea.  The approximation of the 

cornea being an ellipse is only valid in the central section at the limbus the cornea 

merges into the sclera.  The sclera has a different curvature than the cornea so the 

same ellipse can be used to model the surface of this.  The anterior segment 

images being used did include small sections of the sclera so the elliptical shape 

term became less accurate at the edges of the images.  

The step nature of the graph theory technique where each surface is found in turn 

motivated a different approach.  Having a good segmentation of the anterior surface 

prior to segmentation of the posterior surface, which was much easier to find and 

didn’t require the use of a shape term, meant that this could be used to generate a 

more accurate shape term instead.  The central thickness of the cornea could be 

calculated on the image utilising the much better signal to noise ratio in the central 

part of the image.  This could then be used to estimate the location of the posterior 



 
 

103 
 

surface on the rest of the image which was used as a shape term to guide 

segmentation.  This method proved more accurate than the use of the ellipse. 

It would have been possible to use the initial segmentation that was used to initialise 

the level set technique to produce a similar shape term for this technique.  This was 

not done since the graph theory segmentation technique was preferred for reasons 

of speed and memory usage. 

In order to evaluate the methods the segmentation of the same set of 39 images 

was carried out using all the different techniques.  These images have also been 

manually segmented by two expert ophthalmologists.  The results of this evaluation 

are described in Chapter 5. 
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4 3D Segmentation 

4.1 Introduction 

Chapter 3 discussed a number of 2D segmentation methods.  However, the cornea 

is a 3D structure and in order to produce a reliable model of the cornea 3D 

segmentation must be carried out.  To do this a suitable imaging framework is 

needed that is capable of producing a 3D segmentation.  Registration of multiple 2D 

images of the same object must also be considered. 

In this chapter the expansion of each of the 2D segmentation techniques developed 

into 3D is discussed.  First an attempt at expanding the level set with shape 

segmentation technique to 3D is discussed.  This method was found to require too 

much memory and be too slow to be a practical segmentation technique, which 

motivated the investigation of other segmentation techniques.  Following this the 

expansion of the graph cut segmentation method to 3D is carried out.  Finally the 

expansion of graph theory segmentation to 3D is discussed.  Registration of images 

is discussed as a part of the techniques.  

4.2 3D Level Set Segmentation 

A 2D segmentation method using a level set function has been developed.  One of 

the advantages of using a level set method is the ease of extension to include 3D 

data sets.  There are a few modifications needed to make the technique applicable 

to 3D images but the basic model used is very similar.  The three step algorithm 

used for 2D segmentation is used with slightly different pre-processing steps since 

images are different. 

3D AS-OCT images using a customised AS-OCT device were used for this 

technique.  The dataset comprises 32 radial images centred at the cornea with an 

angle of 11.25 degrees between images.  For this specific problem using cylindrical 

polar coordinates is more appropriate than Cartesian coordinates due to the method 

by which the images are acquired.  Level set models can be extended into 3D 

without changing the energy function fundamentally.  Previous work on 3D 

segmentation has mainly focused on models using Cartesian coordinates (i.e. a 

series of parallel scans of a subject being used to create a 3D image) [101].  

4.2.1 Segmentation Framework 

A three step segmentation framework is developed.  The first step is to pre-process 

the image to reduce noise.  This involves using a combination of Gaussian filters 

and morphological processing to smooth noise from the image.  The next step is to 



 
 

105 
 

obtain a coarse segmentation of the anterior segment.  The final step uses the new 

level set based shape prior segmentation model to evolve the contour initialised 

from the coarse segmentation and achieve the final segmentation. 

4.2.1.1 Pre-processing Step 

The initial pre-processing step is to apply a median filter to the image.  This reduces 

the noise in the image and is a filter that works well to remove the speckle noise 

found in OCT images.  Morphological processing is then used to remove some of 

the unwanted structures in the image.  There is a tendency for bright horizontal 

bands to form above the cornea in the image, as can be seen in Figure 4b.  These 

are removed by a morphological closing operation.  Linear structural elements are 

used in this process. 

4.2.1.2 Coarse Segmentation 

The aim of this step is to produce an initial estimate of the corneal location (or 

coarse segmentation).  This estimate is used as the initial location of the curve to be 

evolved by the level set function in the following step.  Additionally the anterior 

boundary is used to construct the shape constraint in the later stage.  A similar 

approach can be taken to the one used previously in 2D segmentation.  More 

specifically, an entropy filter is applied to the pre-processed image to produce an 

entropy map.  The coarse segmentation is achieved by segmenting the entropy map 

using Otsu’s thresholding method.  This is applied to the first image and a full initial 

shape is created by rotating this image, creating a perfectly cylindrically symmetric 

initial shape.   

4.2.1.3 Segmentation with Level Set and Shape Prior 

A general segmentation model using level set and shape prior can be described as 

the following energy minimisation problem 

𝐸(𝛷(𝒙), 𝑐1, 𝑐2) =  𝜆1 ∫ 𝛿(𝛷(𝒙))|∇𝛷(𝒙)|𝑑𝒙
𝛺

 

 + 𝜆2
1∫ (𝐼(𝒙) − 𝑐1)

2𝐻(𝛷)𝑑𝒙
𝛺

+ 𝜆2
2∫ (𝐼(𝒙) − 𝑐2)

2(1 − 𝐻(𝛷))𝑑𝒙
𝛺

+ 𝜆3∫ (
𝛺

 𝛷(𝒙) −  𝑆(𝒙))2𝑑𝒙 + 𝜆4∫ (|∇𝛷| − 1)2

𝛺

𝑑𝒙 

(114)  

where 𝛷(𝒙) is the level set function, 𝛿(𝛷) and 𝐻(𝛷) are the delta function and 

Heaviside function respectively, 𝐼(𝒙) the image intensity, 𝑐1 and 𝑐2 the mean 

intensities inside and outside the zero level contour, and 𝛺 the entire image volume.  

𝜆s are the weighting parameters for different terms.  In particular 𝜆2
1 and 𝜆2

2can be 
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used to apply different weights to the two region terms.  𝑆(𝒙) is a level set function 

corresponding to the shape prior. The first three terms in equation 114 are the 

standard Chan and Vese model [70]. The fourth term is a shape term that keeps 

𝛷(𝒙) close to the shape prior 𝑆(𝒙), the formulation of 𝑆(𝒙) will be detailed later. The 

last term is a regularisation form introduced by Li et al [80] to keep 𝛷(𝒙) as a valid 

level set function without need of computationally expensive re-initialisation.  The 

effect of this term is to penalise the formation of any regions with either very steep 

gradient or any flat areas.  The formation of these regions would mean the function 

was no longer a valid level set and so require reinitialising. 

 

The regularisation term is introduced to this model as, when carrying out 3D 

segmentation reducing time taken for segmentation became more important.  This 

is due to the large size of the images giving high memory requirements for the 

model.  By including this term the computationally costly re-initialisation step can be 

removed from the segmentation. 

 

The solution to equation 114 can be derived by a gradient descent approach as 

follows  

𝜕𝛷

𝜕𝑡
=   𝜆1 𝑑𝑖𝑣 (

∇𝛷

| 𝛻𝛷|
)  𝛿(𝛷) − 𝜆2

1𝛿(𝛷)(𝑍(𝒙) − 𝑐1)
2 + 𝜆2

2(𝑍(𝒙) − 𝑐2)
2

−  2𝜆3( 𝛷(𝒙) −  𝑆(𝒙)) + 𝜆4(∇
2𝛷 − 𝑑𝑖𝑣 (

∇𝛷

| 𝛻𝛷|
))   

(115)  

The energy function was minimised by alternatively minimising 𝛷, 𝑐1 and 𝑐2. When 

𝛷 is fixed, the terms 𝑐1 and 𝑐2 are found using the following expressions 

𝑐1 = 
∫ 𝑍(𝒙)𝐻(𝛷(𝒙)
𝛺

)𝑑𝒙

∫ 𝐻(𝛷(𝒙)
𝛺

)𝑑𝒙
 (116)  

𝑐2 = 
∫ 𝑍(𝒙)(1 − 𝐻(𝛷(𝒙)
𝛺

))𝑑𝒙

∫ (1 − 𝐻(𝛷(𝒙)
𝛺

))𝑑𝒙
 

(117)  

where 𝑍(𝒙) is the image intensity at point 𝒙 and 𝐻(𝛷(𝒙)) is the Hausdorff function 

which determines is a point is inside or outside of the boundary.  

The shape prior, S(x), was updated once every 100 iterations using the following 

process.  An ellipsoid was estimated by least square fitting to the anterior surface 

from the level set function.  A second related ellipsoid was built at a fixed distance 



 
 

107 
 

below the first one.  The shape prior of the cornea S(x) was then computed as the 

product of the level set functions corresponding to those two ellipsoids.   

𝑆(𝒙) = 𝑆𝑢𝑝𝑝𝑒𝑟(𝒙) 𝑆𝑙𝑜𝑤𝑒𝑟(𝒙)  (118)  

where 𝑆𝑢𝑝𝑝𝑒𝑟(𝒙) is a signed distance function corresponding to ellipsoid fitted to 

anterior surface and 𝑆𝑙𝑜𝑤𝑒𝑟(𝒙) corresponds to a related ellipsoid which has been 

shifted down to mimic the lower surface of the cornea.  Taking the product ensures 

a sign difference between the volume between the ellipsoids and outside the 

ellipsoids.   

In the discretisation, the main difference between cylindrical and Cartesian 

coordinate is the curvature term: the former one is more complex. Specifically, the 

curvature under cylindrically polar coordinate becomes 

𝑑𝑖𝑣 (
∇𝛷

| 𝛻𝛷|
) =

1

𝑟

𝜕

𝜕𝑟
(
𝑟 𝛷𝑟
| 𝛻𝛷|

) +
1

𝑟

𝜕

𝜕𝜃
(
1

𝑟
𝛷𝜃

1

| 𝛻𝛷|
) +

𝜕

𝜕𝑧
( 𝛷𝑧

1

| 𝛻𝛷|
) (119)  

where 𝑟, 𝜃 and 𝑧 are cylindrical coordinates. This was implemented using central 

difference approximations for the partial differentials in 3D.  

The level set function 𝛷(𝒙) was updated until either the update has only a very 

small effect on the position of the contour or 2,000 iterations has been carried out. 

Major problems faced with this method are those of speed and memory usage.  

When attempting to implement this method using level set technique using images 

sized 32x2048x2048 pixels it was found the computer lacked sufficient memory to 

run the program.  In order for segmentation to proceed the size of the images was 

reduced.  Finding alternative approaches that can speed up the segmentation and 

reduce memory usage is therefore necessary. 

Another limitation this method suffers from is that it fails to consider potential 

problems with the registration of the images.  This was not an issue when synthetic 

data was used however when real data was used it became apparent this was a 

problem.  The problems with slow speed, lack of registration of images and the 

need to make images smaller for segmentation to succeed meant that work on this 

method was not pursued further.  No attempt was made to carry out the evaluation 

of this technique using the repeated data set since the technique had been ruled out 

on grounds of speed and memory usage prior to the acquisition of the repeated data 

set. 
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4.3 3D Graph Cut Segmentation 

Graph cut techniques have been shown to quickly segment 2D AS OCT images 

effectively.  The technique used can be expanded to segment 3D images.  The 

main difference when moving from 2D segmentation to 3D segmentation is the need 

for the addition of a registration step before segmentation can take place.  The 

longer time taken for imaging in 3D means that there is an increased chance of 

movement between the scans.  This means that an additional preliminary step to 

align the images before segmentation needs to be carried out. 

4.3.1 Pre Segmentation Alignment 

In order to register the images they are first segmented individually on a 2D basis.  

This is done using the 2D graph theory method described in section 3.9.2, applied 

to the anterior surface only.  This approach is used since it is a quick, easy and 

accurate method.  The time taken was reduced by only finding the location of the 

anterior surface.  Once the anterior surfaces of the set of 16 images were acquired 

they were aligned to each other by finding the top point on each surface and 

aligning these.   

Initially the images are cropped to only include the radius of the cornea that is 

present in all the images.  This is done as smaller images result in faster 

segmentation.  While some information has been discarded this way, this is from 

areas that have a very low density of points so information there would be less 

reliable than in more central regions where there is a higher density of points.   

A variation of the method is to alter where the image were cropped off.  There was a 

requirement for all images to be the same size in order to combine them to a 3D 

volume.  This means that cropping less off some images requires adding zero 

padding onto other images.  Using larger images will results in an increase in time 

taken for segmentation but this allows for segmentation to be carried out over a 

larger area.  Two different distances were used to see what effect this process has 

on segmentation. 

It would be possible to carry out further tests to develop better registration 

techniques for this method.  This was not done as the analysis of 2D images found 

that graph theory segmentation was more accurate than graph cut segmentation.  

3D segmentation efforts were therefore mainly focused on this method. 
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4.3.2 Creation of Shape Term 

Once the images have been aligned a shape prior term needs to be created.  This is 

done using the graph theory segmentation of the anterior surface which had already 

carried out for the purpose of alignment.  An estimate of the posterior surface is 

found from the line.  This is done in the same way the shape term is generated for 

the lower surface of the graph cut model (see section 3.9.2.3).  The distance at the 

centre is calculated from intensity peaks in the image then the distance was 

assumed to increase either side.  A signed distance function is created from the two 

lines.  The area inside the two lines is given negative values, and the outside the 

lines, a positive value.  This is done on a 2D basis separately for each image.  

These are combined to produce a 3D shape term. 

4.3.3 Segmentation 

The switch to a 3D graph cut segmentation alters the handling of the neighbourhood 

term as working in 3D affects the number of the neighbours each point will have 

when compared to working in 2D.  The rest of the energy function is unaffected.  

With the creation of a suitable 3D shape term a similar shape term to the one used 

for 2D segmentation can be used.   

The energy function therefore remains as  

𝐸(𝑥) =  ∑𝐸𝑖(𝑥𝑖) + 

𝑖

∑ 𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗) 

𝑖,𝑗 ∈𝑁

 (120)  

where 

𝐸𝑖(𝑥𝑖) =  |𝐼(𝑝) − 𝑐1| − 𝜆𝑠ℎ𝑎𝑝𝑒 ∗ (
1

𝐼(𝑝)
) ∗ 𝐷(𝑝)           𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 

 

𝐸𝑖(𝑥𝑖) = |𝐼(𝑝) − 𝑐2| + 𝜆𝑠ℎ𝑎𝑝𝑒 ∗ (
1

𝐼(𝑝)
) ∗ 𝐷(𝑝)       𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟  

(121)  

 

𝐸𝑖𝑗(𝑥𝑖, 𝑥𝑗) =  𝜇𝑤̂𝑖,𝑗 (122)  

where 𝑐1 and 𝑐2 are mean intensities for object and background respectively, 𝐼(𝑝) is 

image intensity at p, 𝜆𝑠ℎ𝑎𝑝𝑒 is the shape weighting term at p and 𝐷(𝑝) is the value of 

the shape distance function at p.  
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Once the shape term is created and the 3D images are registered then 3D 

segmentation using graph cut is carried out.  This is done using the same code that 

has been used for 2D segmentation.  The only difference between the 2D and 3D 

cases is the neighbourhood term that is altered to reflect a larger neighbourhood for 

3D images. 

4.4 Graph Theory Segmentation in 3D 

When investigating 2D images significant improvements in both speed and 

performance were achieved using graph theory segmentation.  Graph theory 

methods cannot easily be expanded to 3D so instead a quasi 3D segmentation 

technique was used.  The 2D images were segmented individually then a 

registration step was performed to align the images into a 3D model. 

4.4.1 Segmentation 

This is carried out in exactly the same as discussed in section 3.9.2 for 2D image 

segmentation with graph theory. 

4.4.2 Registration 

Following segmentation a registration step was performed.  The relative angles of 

all the images were known as this is defined by the OCT system when the images 

were being taken.  There is, however, a possibility of movement of the eye between 

scans causing misalignment between the images taken.  The registration step 

needs to account for this effect.  A number of different registration techniques are 

carried out to see which method performed best. 

Initially relatively simple methods were attempted.  Following this Genetic algorithm 

(GA) based techniques were developed.  The GA based techniques proved most 

successful, the non GA based methods were used as an initialisation to the GA.  

This section will first discuss the GA registration technique.  Other methods not 

using GA that were also attempted will then be explored.   

4.4.3 Genetic Algorithms 

Genetic Algorithms (GA) were chosen as a technique since they are able to easily 

find a global minimum of an energy function.  They allow for complex energy 

functions to be for the purpose of registration.  Initial attempts had used only a few 

points from the images to align the images.  This has the advantage of producing a 

quick registration process; however more accurate registration may be achievable 

using more points from the images.  In order to improve on these techniques a new 
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method was attempted that uses genetic algorithms (GA) to improve the 

registration. 

GA work by breeding solutions from an initial set.  A function is created that 

evaluates the goodness of a particular solution.  Solutions that are a good fit are 

more likely to appear in the new batch of solutions than worse solutions and the 

best 4 solutions were always kept.  The new solutions are then also evaluated and a 

further generation of solutions is generated.  This process stops when no 

improvement occurs over a set number of generations.  In this case the best 

solution was assumed to be reached if there was no improvement over 200 

iterations.  The method was also stopped after it had run for 2,000 iterations. 

The Matlab implementation of the GA was used with a total population of 100, of 

which 4 are elite, 80 are crossover offspring and 16 are mutation offspring.  These 

values are used since they are the default values in Matlab and altering them didn’t 

produce a significant improvement in results.   

One of the key tasks in the successful use of GA is the choice of a suitable energy 

function.  A number of different energy functions were tested and evaluated against 

each other.  In addition to the choice of energy function knowledge of what is a 

reasonable range of values to be investigated can also be used to improve this 

method.  Reducing the solution space to only allow solutions in a particular area can 

act to improve the results 

4.4.3.1 Construction of the Energy Function 

In order to register the images it is necessary to exploit the fact information on the 

general shape of the object of interest is known.  The aim is to obtain a shape that 

models the cornea.  There are 16 slices arranged in a radial pattern and they need 

to be aligned to form a smooth surface.  The energy function that is minimised 

should therefore give preference to producing smooth shapes that look like possible 

corneas. 

A total of five different energy functions for genetic algorithms were compared.  

These were circles in r, circles in r and z, ellipse fitting, ellipse fitting with circles, 

and model fitting. 

4.4.3.1.1 Circles in r 

The first energy function used is based upon the idea that the cornea is roughly 

ellipsoidal in shape.  An energy function based on the standard deviation of the 

height of points in concentric circles around the centre is used.  This should act to 
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smooth any bumps caused by misalignment and result in a smooth cornea of 

roughly ellipsoidal shape.  Five circles of different radius were used to minimise the 

effect of any anomalies in the segmentation results.  The energy function is given by 

𝐸 = ∑ 𝑠𝑡𝑑(𝑧|𝑟=𝑗)

𝑗=30:30:150

 (123)  

where 𝑧|𝑟=𝑗 is the z values of points where 𝑟 = 𝑗.   𝑗 is varied at fixed intervals from 

points near the centre to further out.  Figure 42 shows to locations of the points 

considered, the standard deviation the z values of points on each of the circles is 

calculated separately and the sum taken.  Points that are a large distance from the 

centre are not considered since there is an increased chance of stray results further 

out.  Each slice was allowed to move in the x, y and z directions.  This gives a total 

of 48 coefficients to be optimised. 

 

Figure 42: Image showing the energy function described here.  The standard deviation of the 
heights of points located on each of the red circles is used as the energy function.  GA is used 
to minimise this function and produce a surface with a series of circles of points with as close 
to uniform height as can be achieved. 

The energy function is then minimised using genetic algorithms.  The Matlab 

implementation of the GA is used with a total population of 100, of which 4 are elite, 

80 are crossover offspring and 16 are mutation offspring.  These values are used 

since they are the default values in Matlab and altering them didn’t produce a 

significant improvement in results.  The process was run until it showed no 

improvement over a period of 100 generations. 

Results using this method are reasonable but the shapes produced contain 

noticeable ridges.  Further investigations into ways to improve this energy function 

were made. 
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4.4.3.1.2 Circles in r and z 

The initial method was based on fitting circles with fixed values of r and minimising 

the differences in z based on these.  As an extension circles with fixed z values are 

also used and minimise the differences in r of these circles.  This led to the addition 

of a second energy term  

𝐸2 = ∑ 𝑠𝑡𝑑(𝑟|𝑧=𝑗)

𝑗=min(𝑧)+20:20:min(𝑧)+100

 (124)  

where 𝑟|𝑧=𝑗 is the r values of points where z= 𝑗.  The energy function used is a 

linear combination of this and the previously used function (equation 123).  Giving 

𝐸 = 𝜆1 ∑ 𝑠𝑡𝑑(𝑧|𝑟=𝑗)

𝑗=30:30:150

 + 𝜆2 ∑ 𝑠𝑡𝑑(𝑟|𝑧=𝑗)

𝑗=min(𝑧)+20:20:min(𝑧)+100

 (125)  

where 𝜆1 and 𝜆2 are weighting functions to determine the strength of each term.  

They were kept equal. 

4.4.3.1.3 Ellipse Fitting and Ellipse Fitting with Model 

The third method used is to fit an ellipsoid to the data and minimise the distance 

between this ellipsoid and our surface.  This has the effect of pushing the data 

towards being a smooth surface.  An ellipsoid was used since this was found to be a 

reasonable approximation of the corneal surface during earlier segmentation work.  

The energy function for this became 

𝐸 =  ∑ 𝑎𝑏𝑠(𝑧𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑖=1:𝑁

−  𝑧𝑖
𝑒𝑙𝑙𝑖𝑝𝑠𝑒

) (126)  

where 𝑧𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 is a point on the surface, 𝑧𝑖
𝑒𝑙𝑙𝑖𝑝𝑠𝑒

 is a point with same x and y 

coordinates on the ellipse and N is the total number of points.  This new energy 

function was tried both on its own and in combination with the previously used 

energy function.  This method has the disadvantage, when compared to previous 

models, of being substantially slower than the other methods.  This is due to the 

fitting step needed to fit an ellipsoid to the surface.  When using GA, the energy 

function must be repeatedly calculated, if using a population of 100 over 100 

iterations then the energy function calculation is carried out 10,000 times.  This 

means that it is desirable for the energy function to be able to be calculated very 

quickly. 

4.4.3.1.4 Model fitting 

Zernike polynomials have been extensively used to model the cornea.  This makes 

them a likely candidate for use in the energy function.  Instead of fitting an ellipsoid 

to the surface 5th order Zernike polynomials were used instead.  A surface was 
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generated from the Zernike polynomial and the difference between the surface of 

the polynomial and the model points was used as the energy function.  This gave a 

function of  

𝐸 = ∑ 𝑎𝑏𝑠(𝑧𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑖=1:𝑁

−  𝑧𝑖
𝑧𝑒𝑟𝑛𝑖𝑘𝑒) (127)  

where 𝑧𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 is a point on the surface, 𝑧𝑖
𝑧𝑒𝑟𝑛𝑖𝑘𝑒 is a point with same x and y 

coordinates on the polynomial surface and N is the total number of points.  This 

energy function is used on its own.  It was found that the method of fitting the 

Zernike polynomials was too slow for this method to be of practical use.  The time 

taken for each step is 0.2s, with a population of 100 this meant it took around 20s 

for each iteration.  Typically the code needs to run for around 600 iterations before it 

reaches the stopping criteria.  The long time taken to run makes this method 

unsuitable for practical use: results from this technique where therefore not included 

in the analysis. 

The use of a fixed surface as a model was considered next.  Using the results from 

the Zernike method, which generated a smooth surface, a model surface is 

generated.  This surface is then used instead of generating a surface from the 

points each step.  This allowed for a much faster registration speed.  The energy 

function stayed the same but the Zernike polynomial is not updated each step. 

These five different GA energy functions were tested against each other using the 

same set of 17 eyes and a repeatability test. 

4.4.3.2 Finding Centre of Rotation 

The method of imaging the data meant that it consisted of a series of 4 sets of 4 

images.  Each image in the set was automatically rotated 45 degrees relative to the 

previous image around a common centre.  Following this, a manual rotation of 12 

degrees occurred and another set of 4 images was taken.  This meant that each set 

of 4 images had a common point on them as the centre of rotation, the largest 

movement occurred between the different sets of 4 images. 

A method was developed to exploit this to simplify the registration problem.  The 

first step is to find this common rotation point on each of the 4 sets of images.  This 

is done by finding the crossing point of the anterior segment from the 4 images.  

This point is defined as a minimum of the height difference between the different 

boundaries.  This is done in turn for each set of 4 images and 4 different centres are 

found. 
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The largest motion occurs between different sets of 4 scans due to the increased 

time difference between the scans at this point in the imaging.  If the relative 

position of these scans can be determined then this can be used to align the 

images.  This is attempted using the ellipsoid approximation of the shape for the 

cornea.  Once the centre of rotation for each image has been found this can then be 

used to generate four different sets of points to cover the cornea.  For each set an 

ellipsoid is fit to the data using a least squares fitting method.  These four ellipsoids 

should all correspond to the same surface.  The centre of the different ellipsoids is 

found and all the points are adjusted to align the centre of the fitted ellipsoids. 

When this step was tested with synthetic data that were generated by taking slices 

from an ellipsoid it worked well to align the data.  When using real data the 

ellipsoids generated were not all the same so although this step led to an 

improvement in the alignment, it was not able to perfectly align real data.  It was, 

however, used as an input for the GA program to reduce the range of possible 

values for the coefficients used. 

4.4.3.3 Non GA methods 

The non GA techniques evaluated are: 

1. No registration 

2. ICP  

3. Height and centre from corner points, straight line version 

4. Height and centre from corner points, curved version 

5. Ellipse from corner points 

6. Height and centre from pupil edges, straight line version 

7. Height and centre from pupil edges, curved version 

8. Ellipse from pupil edges 

Each of these will be described in turn, and then the results of all the techniques will 

be compared.  The goal of all the techniques is to combine 16 segmented 2D 

images to produce two 3D surfaces representing the anterior and posterior surfaces 

of the cornea. 

4.4.3.4 No Registration 

The simplest method of combing the images is to make the naïve assumption that 

the images are all perfectly aligned.  The 16 images are assumed to all be from a 

series with different angles.  The centre of each image, defined as the apex of 

cornea, is assumed to be a common rotation axis for all the 16 different images. 
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4.4.3.5 Iterative Closest Point 

Iterative closest point (ICP) registration technique is a widely used image 

registration technique.  It is designed to register two sets of points covering the 

same area.  It works by calculating the minimum distance from each point in the 

reference set with the closest point in the target data set.  An affine transformation is 

then found that moves the reference set of points to be closer to the target set.  This 

process has repeated iterations in order to minimise the distance between the two 

sets of points. 

The task faced here of registering a set of 16 images is not the same as the task 

ICP is designed for, since there are 16 images of different slices of the cornea with 

only a single line on them that corresponds to a second image.  It is possible, 

however, to exploit the roughly symmetrical nature of the cornea to use ICP.  Since 

each image is of a similar object, it is possible to align all 16 images to each other 

using ICP.  The first image of the 16 can be considered as the template image and 

all 15 other images transformed to align with this image.  The apex of the first image 

can then be calculated and assumed to be the centre of rotation about which all the 

images are varied.  This allows a 3D surface to be constructed from the images. 

4.4.3.6 Height and Centre from Corner Points, Straight Line Version 

Since the segmentation of the images has been carried out it is relatively simple to 

find the location of various points of interest in the images.  These points can be 

used to align the set of images.  There are two obvious choices of points available 

to use.  These are the corners of the anterior segment where the iris joins the 

cornea and the edges of the pupil.  In addition to these points the apex of the 

cornea is also a useful point to define.  These points are labelled in Error! 

Reference source not found. below. 
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Figure 43: Anterior segment OCT with key points for registration marked on it.  The red points 
are the “corner points” where the iris and cornea join.  The green points are the edges of the 
pupil.  The pink point is the apex of the cornea. 

The first attempt uses the corners of the cornea as reference points.  The 

identification of these points has some slight difficulties due to the fact the cornea 

and the iris were not connected on all images.  To get round this problem, a straight 

line approximation of the iris is used to find the corner points.  A line ten pixels 

higher than the brightest horizontal line in the image is used to represent the top 

edge of the iris.  The segmentation already includes a step to locate the iris using 

this method.  Detection of the iris was carried out on a rotated image so it is able to 

detect the iris even when the image is not perfectly horizontally aligned.  Where this 

line intersects with the lower boundary of the cornea is taken to be the corner points 

of the anterior segment.  This was a reasonable approximation of the corner point 

over the set of images from 17 eyes. 

Once the two corners were found the apex of the cornea is also located.  This was 

taken as the point where the z value of the anterior surface is lowest (since z = 0 

was defined at the top edge of the image).  Using these three points a measurement 

of the anterior chamber height can be carried out.  This is done by finding the mean 

z value of the two corner points and then finding the difference between that and the 

z value of the apex.  This is done for the entire set of 16 images.  There is a 

variation in the different heights found from the different images.  The maximum 

anterior chamber depth is assumed to correspond to the image that went the 

through the centre.  The smaller heights from the other images are assumed to be 

due to the image not passing through the centre.  Since all 16 images are of the 

same anterior segment the height for all of them should be the same. 
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The centre of each image is determined as the point midway between the two 

corners of the anterior segment.  This point is assumed to be the point closest to the 

centre of the cornea with a distance from the centre d determined by 

𝑑𝑖 = (𝑐0 − 𝑥0) −
ℎ𝑖(𝑐0 − 𝑥0)

ℎ0
 (128)  

where 𝑐0 is location of centre in image with maximum anterior chamber depth, 𝑥0 is 

location of corner of anterior chamber in same image, ℎ0 is anterior chamber depth 

for same image and ℎ𝑖 is anterior chamber depth of image 𝑖.  This is a simple model 

and represents the cornea as a pyramid rather than the curved surface it has in 

reality. 

The rotation in the plane of the image is determined from the angle the line between 

the two corners makes with the horizontal direction in the image.  Displacement in 

the z direction is determined by aligning the mean z values of the corners of the 

anterior chamber. 

4.4.3.7 Height and Centre from Corner Points, Curved Version 

This method is very similar to the previously described method.  The difference is 

the method of determining the displacement from perfect alignment using anterior 

chamber height.  Since the previous assumption of a linear relation between the 

anterior chamber height and distance from centre is obviously not true, a different 

method was used.  The image with the maximum anterior chamber height was used 

as a template.  For each image the point on the template image that has the same 

anterior chamber height was found.  The distance from this point to the centre of the 

image was taken as the distance from the image to the centre.  The z displacement 

and angle was determined in the same way as the previous method.  Error! 

Reference source not found. shows an example central image with the 

corresponding location of the centre of the other images marked on. 
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Figure 44: Image with upper surface marked on in red.  This image had the largest anterior 
chamber height so is assumed to be crossing the centre of the image.  The green asterisks 
demonstrate places where the height of each of the other images corresponds to the height in 
this image.  The displacement of each image from centre is taken as distance from left most 
asterisk to each asterisk.   

4.4.3.8 Ellipse from Corner Points 

This method uses the corner points of the anterior segment, which are found the 

same way as described in the two previous methods.  The difference is in how 

these points are used to determine the relative location of the images.  For this 

method an assumption that the corner points of the anterior segment should form an 

ellipse is made.  Since this corresponds to the iris being elliptical in shape it is true 

for all healthy patients and most diseased cases. 

An ellipse is fitted to the half of the points with the largest distance between them; 

this is based on the assumption that these points with a greater separation have a 

smaller shift from the centre than those with a smaller separation.  The distance 

required to shift each pair of points in order to align them with this ellipse is then 

calculated.  This shift is used as the shift for all the points on the corresponding 

image allowing all the images to be aligned.  A diagram of the ellipse and points 

before and after they have been fitted can be seen in Error! Reference source not 

found. below. 
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Figure 45: Diagram showing location of original corner points from all the images in blue, the 
ellipse that was fitted to the larger half of the blue points is shown in red. The points are then 
shifted to improve their fit to the ellipse, these points are shown in green. 

4.4.3.9 Height and Centre from Pupil Edges, Straight Line Version 

As an alternative to using the corner points of the anterior segment, the edges of the 

pupil can also be used.  These are also found during the segmentation process.  

The edges of the pupil are determined by first segmenting the pupil.  The graph 

theory technique used means that only lines that go from one side of the image to 

the other are detected.  The top surface and bottom surfaces of the iris are therefore 

segmented separately.  The edges of the pupil are defined as the first and last 

points where the two lines are closer than 5 pixels.  This is because where the pupil 

doesn’t exist on the image segmentation of the top and bottom edges of the pupil 

will coincide with each other.   

The location of the top of the anterior chamber was calculated using the same 

method as when using the corner points methods.  Once the points have been 
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detected they can be used to register the images.  This was done in the same way 

as when using the corner points from the cornea. 

4.4.3.10 Height and Centre from Pupil Edges, Curved Version 

This method is a combination of previously described techniques.  It uses the pupil 

edges as described in the previous method.  Then instead of using the straight line 

method to determine how this related to the displacement of the images, the curved 

distance method described in method 4 was used. 

4.4.3.11 Ellipse from Pupil Edges 

This method is also a combination of previously described techniques.  This time 

the edge points of the pupil are used and the assumption is made that the pupil 

should be elliptical in shape.  The same technique used in method 5 was used to fit 

an ellipse to the points and shift them accordingly. 

 

4.4.4 Restricting the Range of Solutions in GA 

It is possible to restrict the range of values that solutions that the GA can be allowed 

to take.  The methods discussed in the previous section can be used to do this.  A 

number of different methods were attempted.  These all used the Zernike model 

energy function since this performed best. 

4.4.4.1 Genetic Algorithm with Method 3 as Limit 

In this method the step described in method 3 (corner points with straight line) is 

used as a first estimate.  The available solutions are then limited to being near to 

the solution that is found from that.  The fitness function used is based on using a 

model of what a cornea should look like.  Each slice was free to move in 3 different 

directions and to rotate in the plane of the image.     

4.4.4.2 Genetic Algorithm with Method 4 as Limit 

Since the area of possible solutions is limited by the initial step which method is 

used to generate the initial estimate will affect the results.  Therefore the GA method 

was also tried with a different method to find an initial estimate.  Instead of using 

method 3 method 4 (corner points with curved line) was used to limit the range of 

results.  Everything else was done in the same way. 

4.4.4.3 Genetic Algorithm with Method 3 as Limit, X and Y Constraints Only 

In the previous two  methods attempted there are four degrees of freedom for each 

slice to move.  Each of these different directions to move is constrained by the initial 

step.  The determination of the angle and the vertical height are thought to be less 

critical than the x and y directions (i.e. movement in plane of image).  The 
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estimation of these coefficients by the initial step is also less accurate.  This method 

is therefore repeated but with the z and theta values having a much larger range of 

possible values than previously so they are not influenced by the initialisation. 

4.4.4.4 Genetic Algorithm with No Limit 

A test was carried out without using limits; previously solutions of the GA were 

limited to a region around the results of the initial estimate.  This constraint is 

relaxed to enable the GA to find solutions over a much larger area.  The same GA 

energy function is used in the minimisation. 

4.4.5 Comparison of Different Methods 

In order to test the different methods for registration a data set of 17 eyes was used.  

Each eye in this set has been imaged twice using the Visante OCT device.  16 

radial scans were acquired for each scan.  These images are then segmented using 

a graph theory based method.  Using the segmented results the initialisation step 

based upon identifying the corners of the anterior chamber is used.  This gives 

approximate values for shift needed for the image registration.  Once this step is 

carried out the different energy functions for use with GA are tested. 

The six different GA methods tested are circles in r, circles in r and z, ellipse fitting, 

ellipse fitting and circles, the model based method and the model based method 

with four rigid subsets of data.  This is carried out for each of the two sets of images 

independently.  This gives two surfaces that correspond to the corneal surface for 

17 eyes.  The distances between the two different surfaces of each of the eyes are 

calculated.  These are used to give an unsigned mean distance between the two 

different surfaces.  Since the same eye has been imaged twice, this distance should 

be zero.  There will, in reality, be differences due to three different factors, the 

constancy of the OCT images (these could be caused by movement artefacts, limits 

to resolution etc.), the repeatability of the segmentation technique (some images 

may be slightly incorrectly segmented) and finally the errors may come from the 

registration program.  The results of this comparison are shown in Chapter 5. 

4.5 Conclusion 

This chapter has described a number of different 3D segmentation and registration 

techniques.  The effectiveness of these techniques has been evaluated and is 

described in Chapter 5. 
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5 Results 

5.1 Introduction 

Many different techniques for the segmentation and alignment of images have been 

developed and evaluated.  This chapter will present the results of each technique in 

the same order they are introduced in previous two chapters.  The first results that 

are discussed are from level set segmentation and a number of variations on this 

technique.  Following this graph cut techniques will be discussed.  The next section 

described graph theory based techniques.  A comparison of the best of each 

category of 2D segmentation technique is then carried out.  Discussion then moves 

onto 3D segmentation.  Limited results from level set techniques are discussed.  

Following this the results of the graph cut techniques are discussed.  Then the 

results of the different alignment methods used in conjunction with graph theory 

based segmentation are presented.  Finally a comparison of all the different 3D 

segmentation techniques is carried out. 

For the 2D techniques all results given are from comparison over a set of 39 images 

using 3 different comparison techniques.  For the 3D techniques a set of images 

from 17 eyes was used for the comparison.  The acquisition of the images is 

described in section 0 and the comparison techniques are described in section 1.6. 

5.2 Level Set based Segmentation 

This was the first method that was developed.  There are a number of variations of 

this method that will be discussed in turn. 

5.2.1 CVWS 

The results of the segmentation technique described in Section 3.5 were compared 

with manual segmentation.  A variety of different values were used for  𝜆3  which 

controls the strength of the shape term.  The results are shown in Table 1 below.  It 

can be seen from looking at the table that the best value for the shape term was 0.8 

when looking over all the images.  The optimum strength of the shape term varied 

from image to image.  It can also been seen that for some images the value of the 

DSC is very low and the segmentation must be considered to have failed 

completely. 

Table 1: Table showing results DSC comparison between manual segmentation and CVWS 

method.  

𝜆3  0.4 0.5 0.6 0.8 1 

com43 0.69687 0.914702 0.919021 0.915554 0.917219 
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lss56 0.681387 0.693383 0.730572 0.96348 0.962151 

wqm02 0.944704 0.941476 0.945606 0.942916 0.937919 

wqm05 0.974852 0.975637 0.974791 0.968246 0.624081 

wqm06 0.970688 0.964875 0.960259 0.938379 0.914459 

wqm07 0.883905 0.928563 0.925306 0.91488 0.276295 

wqm08 0.807417 0.914068 0.910326 0.904756 0.904766 

wqm09 0.963421 0.960584 0.956396 0.933631 0.942253 

wqm10 0.965128 0.96603 0.966753 0.962295 0.962295 

wqm11 0.936854 0.931306 0.926313 0.91706 0.906015 

wqm14 0.838199 0.967414 0.965677 0.955557 0.662707 

wqm17 0.778664 0.814526 0.907893 0.877215 0.44921 

wqm19 0.419427 0.405179 0.404299 0.395017 0.928888 

wqm20 0.744319 0.927846 0.920874 0.907612 0.754848 

wqm21 0.891554 0.907253 0.922712 0.912632 0.902397 

wqm22 0.932438 0.929505 0.926084 0.92413 0.916456 

wqm24 0.961191 0.958119 0.95454 0.919094 0.925107 

wqm26 0.909235 0.90771 0.920619 0.95474 0.544088 

wqm27 0.924672 0.93774 0.93423 0.932112 0.91656 

wqm28 0.933809 0.926039 0.920143 0.90988 0.87332 

wqm29 0.964532 0.962931 0.509411 0.156763 0.405487 

wqm30 0.87589 0.926011 0.895854 0.888191 0.864667 

wqm31 0.93398 0.934784 0.931193 0.934323 0.77395 

wqm33 0.741178 0.808676 0.826225 0.939751 0.917182 

wqm34 0.915255 0.912581 0.912348 0.910077 0.905411 

wqm35 0.950037 0.949435 0.948234 0.942231 0.930831 

wqm44 0.822617 0.830268 0.844166 0.944916 0.930557 

wqm45 0.962168 0.957129 0.952508 0.938513 0.921794 

wqm46 0.789332 0.831991 0.841203 0.928559 0.895899 

wqm54 0.946889 0.949396 0.948218 0.943441 0.897521 

wqm55 0.67367 0.794802 0.963106 0.958787 0.94103 

wqm56 0.857215 0.873296 0.899428 0.943742 0.915563 

wqm57 0.861785 0.896194 0.892862 0.896829 0.894033 

wqm59 0.864574 0.955852 0.954302 0.928363 0.943474 

wqm61 0.508391 0.470616 0.470634 0.426357 0.934428 

wqm62 0.833174 0.858612 0.920089 0.920586 0.916128 

wqm63 0.949797 0.950259 0.946041 0.940532 0.929915 

wqm64 0.674105 0.812284 0.829337 0.92741 0.631691 

wqm65 0.795838 0.892345 0.925028 0.945029 0.93845 

Mean 0.848 0.883 0.882 0.884 0.839 

Standard deviation 0.129 0.121 0.132 0.168 0.169 

      Boundary comparison techniques were also carried out for the images.  In order to 

save space only the mean and standard deviation of these methods is shown in 

Table 2.  Here it can be seen that the optimum value for the shape term varied 

depending on which technique is used to analysis the results.  For the anterior 
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surface MSPE a shape constraint of either 0.5 or 0.6 performs best achieving a 

value of 1.66 pixels.  For the posterior MSPE a shape constraint of 0.8 performs 

with a value of 2.89 compared to 4.52 when a shape weighting of 0.6 was used.  

With the Hausdorff distance measure the best results are achieved with a shape 

constraint of 1. Table 2: Comparison between the CVWS automatic segmentation technique 

and manual segmentation using two comparison methods; the mean unsigned surface 

positioning error for both anterior and posterior surfaces and the Hausdorff distance measure. 

Value of shape term 0.4 0.5 0.6 0.8 1 

MSPE  

(anterior boundary) 

     Mean 1.75 1.66 1.66 1.77 4.05 

Standard Deviation 1.25 1.24 1.23 1.34 5.69 

  MSPE 

 (posterior boundary) 

     Mean 6.38 5.00 4.52 2.89 5.46 

Standard Deviation 3.89 3.63 3.21 1.33 5.87 

Hausdorff distance 

     Mean 28.5 21.0 19.5 16.0 15.2 

Standard Deviation 35.5 34.1 33.9 31.0 22.8 

 

The differences are most likely caused by the fact the Hausdorff distance is a 

measure find the greatest distance between the manual and automatic 

segmentation whilst the other techniques provide a mean measurement of 

difference.  The differences are also likely to arise from the fact different parts of the 

image are segmented better with a different strength shape constraint.  The 

posterior boundary is harder to segment so needs a stronger shape term to 

accurately identify the boundary whilst the anterior boundary is easier to detect and 

a stronger shape constraint could result in errors as the shape term is not a perfect 

model for the cornea. 

Looking at these results it was decided that a value of 𝜆3 = 0.8 is the optimum value 

to be used for this method.  Throughout the process the DSC measure of accuracy 

was used as the primary guide for strength of different terms since it is a technique 

that takes into account the entire image. 
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Figure 46: Example image showing both manual and automatic segmentation.  The red line is 

automated segmentation using the CVWS technique.  The Green line is manual segmentation 

by an expert.  The image shown here is wqm35 which has a DSC value of 0.942 

 

Figure 47: Example image showing two manual segmentations compared to automatic 

segmentation.  The red line is automated segmentation using the CVWS technique.  The Green 

line is manual segmentation by an expert.  The blue line is manual segmentation by a second 

observer.  The colours are mixed when the lines overlap 

5.2.2 Comparison of Three Different Weighting Techniques 

One way to improve the technique was to investigate alterations to the shape 

weighting technique as described in section 3.7.4.  Three methods are compared, 

constant shape constraint across the image (CVWS), varying it with edge 

information (CVWSe) and varying it with intensity information (CVWSiw).  Using 

iteration number to vary shape weighting produced obviously worse results in all 

cases so results were not included in this comparison. 

In order to make the comparison the three different methods were carried out using 

a number of different values of 𝜆3.  This enabled the optimum value of 𝜆3 for each 

method to be found.  The values of this were different for each method as is to be 

expected since the modifications to the code changed the value of the weighting 

term.  The values of 𝜆1 and 𝜆2 were always kept the same.  The optimum values of 

𝜆3 used were 0.8 for the original constant method, 2 for the CVWSe method and 1.5 

for the CVWSiw method.  The results of comparison of the different methods are 

shown in Table 3 below. 
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Table 3: Table showing comparison between three different methods used to determine the 

weighting of the shape term 

Method CVWS CVWSe CVWSiw 

DSC 
   

Mean 0.884 0.899 0.919 

Standard Deviation 0.168 0.069 0.026 

MSPE anterior 
   

Mean 1.77 2.26 1.64 

Standard Deviation 1.34 1.72 0.52 

MSPE posterior    

Mean 2.89 5.80 3.90 

Standard Deviation 1.33 6.84 1.81 

95% HD distance    

Mean 21.0 18.48 10.16 

Standard Deviation 34.1 25.62 4.78 

It can be seen that using the DSC comparison technique both methods varying the 

strength of the shape term across the image produced improved results.  The 

CVWSe technique has DSC value of 0.899 and the CVWSiw technique has a value 

of 0.919 both of these are superior to the value of 0.844 achieved using the more 

basic CVWS technique. 

Looking at the MSPE for anterior surface the CVWSiw again performs best with a 

value of 1.64 compared to 1.77 or 2.26 for the other two techniques.  For the 

posterior surface the CVWS technique performs best with a MSPE value of 2.89 

compared to 3.90 for the CVWSiw technique.  The 95% HD distance technique 

results agree with the DSC values, the best result is produced with the CVWSiw 

technique achieving a value of 10.16 compared to 18.48 and 21.0 for CVWSe and 

CVWS techniques. 

The method using the intensity weighting is the best technique of the three; the 

segmentation it produces is closer to the manual segmentation when using three of 

the four different techniques to measure it.  It is worth noting that the original basic 

method has a much higher standard deviation than the other two techniques.  This 

is because there are a number of images it completely fails on.  If those images are 

removed the results for the method substantially improve and become comparable 

with the CVWSe method.  
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Figure 48: Illustration of agreement between the segmentations using the two new methods 

(CVWS and CVWSe) and the manual annotation.  Red line is CVWS, green line is CVWSe and 

blue line manual annotation.  Colours are mixed where lines overlap.  Good agreement between 

the different methods can be seen especially on anterior surface. 

5.2.3 Results of Texture Segmentation 

The next technique that was evaluated used texture information instead of intensity 

to control the level set function.  This is described in section 3.7.5.  Table 4 shows 

the results of 4 different strengths of the shape constraint when comparison is made 

using DSC.  From this the best results are achieved using a shape constraint of 0.4 

with a DSC value of 0.909. 

Table 4: Table showing results of DSC comparison between the results of manual segmentation 

and segmentation using the CVWSt method. 

CVWS texture 0.2 0.4 0.6 0.8 

com43 0.90615 0.894568 0.892336 0.856136 

lss56 0.88031 0.923718 0.9566 0.958484 

wqm02 0.909911 0.924832 0.911999 0.929377 

wqm05 0.971598 0.963839 0.97116 0.963854 

wqm06 0.965388 0.940672 0.950695 0.939927 

wqm07 0.925217 0.897124 0.896296 0.900963 

wqm08 0.878268 0.895005 0.8823 0.895931 

wqm09 0.9565 0.918926 0.942245 0.913785 

wqm10 0.92436 0.964288 0.928494 0.963769 

wqm11 0.924739 0.912247 0.919234 0.91136 

wqm14 0.795755 0.803231 0.737625 0.748837 

wqm17 0.907575 0.908049 0.87851 0.875393 

wqm19 0.904584 0.923821 0.942943 0.925399 

wqm20 0.940795 0.956356 0.896606 0.862475 

wqm21 0.847213 0.861009 0.886959 0.895195 

wqm22 0.89905 0.897031 0.899558 0.901287 

wqm24 0.948161 0.936476 0.94688 0.830741 

wqm26 0.866941 0.87755 0.951287 0.867032 

wqm27 0.901523 0.911434 0.907933 0.90784 

wqm28 0.92335 0.907314 0.909335 0.90718 



 
 

129 
 

wqm29 0.861331 0.944825 0.661473 0.584269 

wqm30 0.912185 0.906682 0.864903 0.807179 

wqm31 0.899595 0.913818 0.91297 0.914791 

wqm33 0.906436 0.920286 0.935194 0.916313 

wqm34 0.860605 0.878484 0.903249 0.882086 

wqm35 0.921236 0.92079 0.930137 0.935491 

wqm44 0.827839 0.804783 0.825239 0.883594 

wqm45 0.941907 0.941582 0.939615 0.941565 

wqm46 0.918212 0.923085 0.921094 0.918701 

wqm54 0.929779 0.927597 0.923516 0.92613 

wqm55 0.893358 0.923298 0.948159 0.919534 

wqm56 0.888992 0.87196 0.8892 0.88936 

wqm57 0.912469 0.858536 0.851476 0.859515 

wqm59 0.941446 0.943966 0.915379 0.941867 

wqm61 0.87773 0.916385 0.923732 0.913928 

wqm62 0.910772 0.889329 0.902412 0.888114 

wqm63 0.938086 0.920379 0.917658 0.919629 

wqm64 0.899685 0.921625 0.914995 0.900769 

wqm65 0.908947 0.919875 0.9254 0.923884 

Mean 0.906 0.909 0.903 0.893 

Standard Deviation 0.036 0.035 0.057 0.066 

 

It can be seen from this that using the CVWSt technique the results are optimised 

with a smaller value of the shape coefficient than the basic CVWS method.  There is 

also a smaller standard deviation indicating fewer outlying results.  Table 5 below 

shows the results using four different values of the shape constraint using the 

boundary comparison techniques.  Again it can be seen that the different 

comparison techniques have different optimum results.  The best MSPE value for 

the anterior surface was 2.66 which was found when a shape constraint of 0.6 was 

used.  The best MSPE for the posterior surface is 16.92 which corresponded to a 

shape constraint of 0.2.  The best 95% HD distance was 8.82 and this was achieved 

using a shape constraint of 0.8.     

Table 5: Table showing comparison of segmentation using CVWSt and manual segmentation 

using three different line based methods.  This first two are mean surface positioning error 

(MSPE) calculated separately for anterior and posterior boundaries, the third measure is the 

95% Hausdorff distance calculated over the entire boundary. 

Strength of shape 

constraint 0.2 0.4 0.6 0.8 

MSPE anterior 
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Mean 3.15 2.82 2.66 2.82 

Standard Deviation 2.33 2.13 2.00 1.79 

MSPE posterior 

   Mean 16.92 17.45 18.13 18.77 

Standard Deviation 7.32 7.56 7.58 7.81 

95% HD distance 

   Mean 24.17 15.21 10.10 8.82 

Standard Deviation 33.34 26.27 12.92 6.06 

 

The anterior boundary can be found more accurately that the posterior boundary.  

This is common to all methods as the anterior boundary is much better defined on 

the image.  It was decided to use a weighting of 0.4 for the shape term since that 

gives the best value when using the DSC comparison method. 

5.2.4 Dynamic Weighting and Texture 

An investigation was also carried out to see how the inclusion of dynamic weighting 

would affect the performance of the texture model.  Dynamic weighting based on 

the number of iterations and based on edge information from across the image was 

attempted.   

As was found when using intensity information from the image segmentation 

attempts at altering the strength of the shape term by iteration number produced 

significantly worse results.  A full analysis of these results was not carried out and 

all further work using those methods was abandoned.  The results using edge 

information to vary the image intensity were more promising and are shown below. 

Table 6 shows the results of this comparison between segmentation with the 

automatic method CVWSte and manual segmentation.  The best DSC results of 

0.89 are found when using a shape constraint of 0.4.  This is repeated with the 

MSPE of the anterior surface with a value of 3.97.  Looking at the posterior surface 

the best value was found using a shape constraint of 0.8.  For the 95% HD distance 

the best value was found when a value of 0.8 was used for the shape constraint. 

Table 6: Table showing comparison between segmentation using the CVWSte method and 

manual segmentation using different comparison techniques and different strengths of the 

shape constraint.   

Strength of shape 

constraint 0.4 0.6 0.8 1 



 
 

131 
 

DSC 

    Mean 0.890 0.889 0.889 0.883 

Standard Deviation 0.041 0.051 0.059 0.070 

MSPE anterior 

    Mean 3.97 4.30 4.60 4.77 

Standard Deviation 2.87 3.42 4.25 5.07 

MSPE posterior 

   Mean 17.60 16.91 16.81 16.84 

Standard Deviation 7.48 7.29 7.05 7.05 

95% HD distance 

   Mean 26.5 25.0 22.4 26.1 

Standard Deviation 38.3 41.8 24.5 26.4 

 

Looking at these results a reasonable level of agreement with manual segmentation 

can again be seen.  The same optimum weighting of the shape term is found as the 

method using the constant weighting.  A comparison of the results of the two texture 

based methods shows they produce similar results.   

5.2.5 Comparison of Different Level Set Methods 

So far in this section five different versions of the novel level set with shape method 

have been presented.  Two previously presented segmentation techniques were 

also implemented for the purpose of comparison.  The five different versions are 

Chan and Vese with shape prior (CVWS), Chan and Vese with shape prior and 

dynamic weighting based on edge (CVWSe), Chan and Vese with shape prior and 

dynamic weighting based on intensity (CVWSiw), texture based Chan and Vese 

with shape prior (CVWSt) and texture based Chan and Vese with shape prior and 

dynamic weighting based on edge (CVWSte).  The previously used methods are 

Chan and Vese’s active contour without edges (CV) [70] this is equivalent to the 

techniques we have developed with the shape term  𝜆3 = 0 and a threshold based 

method developed by Shen et al. [129].  Results of manual segmentation by a 

second observer are also compared. 

In order to carry out this analysis the results of segmentation for the 5 new models, 

two existing models and a second manual observer were compared to the 

segmentation by a manual observer.  The results of these comparisons using DSC 

is shown in Table 7 below, the results using the line based methods are shown in 

Table 8. 



132 
 

Table 7: Mean results of DSC comparison between seven automatic segmentation techniques 

and manual segmentation.  39 images have been used for the comparison.  Results are also 

shown of the difference between manual segmentation by two different experts.   

Technique Mean Standard Deviation 

CVWS 0.884 0.168 

CVWSe 0.899 0.069 

CVWSiw 0.919 0.026 

CVWSt 0.909 0.035 

CVWSte 0.89 0.041 

CV 0.654 0.049 

Threshold 0.767 0.1 

Inter Observer 0.966 0.007 

 

Table 8: Mean results of line comparison methods between six automatic segmentation 

techniques and manual segmentation over 39 images.  This first two comparison techniques 

are mean surface positioning error (MSPE) calculated separately for anterior and posterior 

boundaries, the third comparison technique is the 95% Hausdorff distance calculated over the 

entire boundary. 

 MSPE anterior MSPE posterior 95% HD distance 

 

Mean 

Standard 

Deviation Mean 

Standard 

Deviation Mean 

Standard 

Deviation 

CVWS 1.87 1.27 16.1 5.7 34.3 66.3 

CVWSe 2.26 1.72 16.6 6.0 49.1 78.6 

CVWSiw 1.63 0.52 3.9 1.81 10.2 4.8 

CVWSt 2.82 2.13 17.4 7.6 15.2 26.3 

CVWSte 3.97 2.87 17.6 7.5 35.6 32.5 

CV 3.21 1.59 12.46 2.36 20.07 19.34 

Threshold 2.82 5.33 11.05 3.66 25.39 8.89 

Inter 

Observer 
1.07 0.21 1.16 0.34 36.4 7.3 

 

Looking at the tables it can be seen that the newly developed methods have 

superior performance to previously reported methods.  The best new method is the 

CVWSiw technique which achieved a DSC value of 0.919 compared to a value of 

0.767 for the threshold method which is a previously published technique.  This 

pattern is repeated in MSPE measurements with CVWSiw getting values of 1.63 
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and 3.90 for anterior and posterior surface respectively.  This is better than the 2.82 

and 11.05 values achieved using threshold. The results do not perform quite as well 

as manual observation which achieved a DSC value of 0.966 and MSPE for anterior 

and posterior surfaces of 1.07 and 1.16.  This indicates the difference between two 

manual observers is less than the difference between manual observers and 

automated segmentation methods. 

ANOVA analysis was carried out on the DSC results to determine if the differences 

between the methods were significant.  There was a significant difference between 

inter observer difference and all the other methods (p<0.05).  There was also a 

significant difference between CV, the threshold technique, and all the other 

methods (p<0.05).  The different methods developed here showed less significant 

differences between them.  A significant difference was found between CVWS and 

CVWSiw (p = 0.04).  The differences between the other methods were not found to 

be significant at the 0.05 level.  This can be seen by looking at the very close values 

of the mean DSC value for the different methods.   

Figure 49 below shows a binary representation of the segmentation produced by the 

various different techniques.  It can be seen by comparing (e) to images (a-d) the 

effect of the shape term.  The regions in the middle with a lower signal to noise ratio 

can’t be detected without the addition of the shape term which does detect them.  

The thresholding method shown in (f) avoids this problem by fitting polynomials to 

the surfaces of the cornea.  While this achieves reasonable results the drawbacks 

can be seen in the bulge on the right of the image which is an artefact produced by 

the polynomial.  Looking at images (g) and (h) good agreement can be seen 

between the best automatic technique and manual segmentation.  The effect of the 

intensity weighting term can be seen in image (h), the posterior surface is very 

smooth indicating that the shape term has been allowed to dominate here due to the 

weak signal from the image.  
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Figure 49: Montage of results of segmentation by different methods.  (a) is CVWS, (b) CVWSe, 

(c) CVWSt, (d) CVWSte, (e) CV, (f) threshold, (g) manual 1, (h) CVWSiw.   

Figure 50 below shows segmentation by three different methods overlaid on the 

same image.  It shows reasonable agreement between the methods as expected.  

The differences between the three methods are more pronounced in regions where 

segmentation is harder.  It also gives an indication of why using dynamic weighting 

does not results in significantly improved results as might be expected, improving 

the segmentation in outer regions of higher signal results in a shape term that is 

less effective at modelling the lower signal regions pulling the contour too far away 

from the true boundary. 

 

Figure 50: Example image with results of segmentation overlaying on it.  Red line is CVWS 

method.  Green line CVWSe.  Blue line CVWSte.  Where lines overlap the colours are mixed.  
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5.2.6 Discussion of Level Set Work 

A fully automatic technique has been developed that can detect both the anterior 

and posterior surfaces of the anterior segment in AS OCT images.  The algorithm 

used a shape prior to allow difficult-to-segment regions to be segmented.  The 

technique has been demonstrated to be able to successfully segment images 

including regions with a low signal to noise ratio.  The newly developed method 

performed significantly better than previously published methods and the results 

show a high level of agreement with expert manual segmentation. 

 

A comparison between the different variations of the model has revealed there are 

no significant differences between the results of the different models.  The CVWSiw 

model performed best with a higher mean value DSC than the others.  This model is 

therefore taken as being the best of the options that were developed.  The lack of 

significant differences is likely due to the relatively small sample size of the data and 

the similarity of the different methods. 

 

One of the important factors that can affect the segmentation performance is the 

image quality such as the signal noise ratio (SNR).  In general, the higher SNR an 

image has, the easier segmentation will be.  For this particular problem the image 

contains speckle noise inherent in the OCT system and poor SNR in some the 

cornea structures.  This means simple thresholding and region-based models will 

not work; this was demonstrated in the comparative study.  Our method uses a 

shape term to overcome this problem.  

 

Overall, the level set work has shown that using a shape prior term can significantly 

improve segmentation results of fully automatic segmentation of the cornea in AS-

OCT images.  This section of work has been published in the Journal of Biomedical 

Optics [1].   

5.3 Graph cut 

The next method attempted was a graph cut based implementation of the Chan and 

Vase with shape model; this is described in section 3.8.  Two different methods of 

representing the shape term were used and have been compared in turn. 

5.3.1 Binary Shape model 

The first technique developed was based on using a binary shape term.  A 

comparison was carried out between the results of segmentation using graph cut 

and manual segmentation using the same method as previously described.  The 
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results of this segmentation method carried out over the entire data set are shown in 

Table 9 below.  Several different values of the shape constraint are shown in the 

table.  The best DSC value of 0.894 is found using a shape term values at 0.04 and 

0.05.   

Table 9: DSC comparison between segmentation results of graph cuts program with the manual 

segmentation over all the images.   

Graph Cut 0.03 0.04 0.05 0.06 0.07 

com43 0.869278 0.872199 0.879135 0.883076 0.895932 

lss56 0.906831 0.900563 0.927237 0.935088 0.938201 

wqm02 0.880874 0.885133 0.895797 0.905248 0.915779 

wqm05 0.954421 0.954184 0.953437 0.951338 0.819703 

wqm06 0.957545 0.953998 0.950696 0.942788 0.935481 

wqm07 0.899124 0.901237 0.902056 0.901335 0.900501 

wqm08 0.874976 0.882752 0.876393 0.87382 0.870847 

wqm09 0.955497 0.946818 0.935639 0.923529 0.897523 

wqm10 0.925368 0.929992 0.931801 0.931213 0.925014 

wqm11 0.919018 0.918529 0.916267 0.910018 0.897051 

wqm14 0.591719 0.602654 0.591449 0.586053 0.584795 

wqm17 0.871978 0.868935 0.866685 0.860662 0.858766 

wqm20 0.915167 0.906104 0.888573 0.841816 0.807155 

wqm21 0.848768 0.849427 0.853126 0.854586 0.854586 

wqm22 0.898239 0.882051 0.888646 0.886537 0.891197 

wqm24 0.948845 0.948212 0.947136 0.94502 0.940229 

wqm26 0.955488 0.951725 0.948585 0.941928 0.937546 

wqm27 0.51551 0.900599 0.898562 0.901436 0.899093 

wqm28 0.905915 0.91037 0.908877 0.90874 0.904571 

wqm29 0.810612 0.810612 0.810612 0.810612 0.810612 

wqm30 0.871544 0.873364 0.869619 0.867921 0.862609 

wqm31 0.900328 0.899556 0.901487 0.900596 0.90293 

wqm33 0.519375 0.90119 0.903361 0.910795 0.910782 

wqm34 0.85318 0.840745 0.840975 0.846644 0.846642 

wqm35 0.915663 0.917667 0.919444 0.918077 0.919178 

wqm44 0.516463 0.910522 0.919469 0.919335 0.927338 

wqm45 0.937698 0.930417 0.93188 0.931612 0.93047 

wqm46 0.920393 0.9126 0.91164 0.911919 0.912536 

wqm54 0.569336 0.913263 0.913636 0.913231 0.913607 

wqm55 0.929903 0.935039 0.936934 0.934914 0.936619 

wqm56 0.564787 0.928972 0.929567 0.929803 0.929584 

wqm57 0.579056 0.846376 0.842659 0.844899 0.834986 

wqm59 0.951669 0.951784 0.949913 0.94874 0.946123 

wqm61 0.51762 0.891252 0.872027 0.874734 0.877477 

wqm62 0.577575 0.8507 0.846281 0.871465 0.872852 

wqm63 0.607962 0.914107 0.911867 0.91521 0.912965 
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wqm64 0.531254 0.897457 0.894513 0.899418 0.900215 

wqm65 0.903902 0.89881 0.908422 0.908708 0.909743 

Mean 0.805 0.894 0.894 0.893 0.888 

Standard Deviation 0.166 0.060 0.061 0.061 0.063 

Table 10 shows the result of comparison using the line based comparison 

techniques.  Again the optimum strength of the shape term varies with the method 

used for evaluation.  Looking at MSPE for anterior and posterior the best results 

(4.08 for anterior and 4.55 for posterior) are found when a shape constraint of 0.07 

is used.  The best result for 95% Hasudorff distance 10.21 is found using a shape 

term valued at 0.06. 

Table 10: Line comparison between segmentation results from graph cut with manual 

segmentation results.  

MSPE- anterior 0.03 0.04 0.05 0.06 0.07 

Mean 4.47 4.453 4.30 4.15 4.08 

Standard Deviation 4.89 4.21 4.13 4.11 4.09 

MSPE - Posterior 

    Mean 4.89 4.98 4.80 4.64 4.55 

Standard Deviation 5.01 4.32 4.25 4.22 4.21 

95% HD 

     Mean 32.92 11.14 10.39 10.21 10.38 

Standard Deviation 39.00 7.19 6.06 6.10 6.13 

The graph cut method performs slightly worse than the CVWS method it is based 

on.  Looking at the line comparison it can be seen that unlike all the previous 

methods the results are just as good for the anterior and posterior surfaces.  Both of 

these differences are probably due to the fact that a binary shape term has been 

used.  This gives a more rigid shape constraint compared to the level set method.  

Our method of selecting the shape term through fitting ellipses produces a shape 

that is close to the cornea but is not an exact model. 

Table 11 compares the time taken for the graph cut and level set segmentation 

techniques.  The time taken to run the graph cut program is 4.40s which is 

significantly shorter than the level set based technique which took 151s.  There is a 

significant reduction in segmentation time by a factor of over 30.  The reduction in 

time taken is less pronounced than previous studies have found [130].  This is 
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probably due to the repeated calculation of the shape term that is carried out in our 

method.  

Table 11: Table comparing mean time taken for segmentation using graph cut method (GC) and 

level set method (LS).  The graph cut method shows a significant reduction in time needed for 

segmentation. 

Technique Graph Cut Level Set 

Mean time (s) 4.399 150.694 

Standard Deviation 0.95 58.518 

Overall the results of this technique were promising.  A significant reduction in 

speed was achieved.  The quality of the results is slightly worse using graph cut 

when compared to level set based methods.   It was therefore decided to continue 

investigating this problem and alternative ways of implementing a shape term in 

graph cut segmentation were investigated.  Figure 51 shows an example image 

segmented using this technique.   

 

Figure 51: Example image of graph cut segmentation overlaid on original image.  This is same 

image that has been show previously 

5.3.2 Distance Function Shape Model 

In order to further develop the model an approach was developed based on using a 

distance function rather than the binary shape term used in the previous model.  

The results of comparisons of this technique with manual observers are shown in 

Table 12.  This technique achieves a DSC value of 0.943 when a shape constraint 

value of 0.1 was used.  The best results for anterior MSPE, a value of 1.18, were 

found using a slightly smaller shape constraint of 0.05.  The best results for MSPE 

posterior, 2.84, and 95% Hausdorff distance, 6.73, were found using a shape 

weighting term of 0.1.   
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Table 12: Results of comparison of graph cut segmentation technique with manual 
segmentation at different strengths of the shape term. 

Value of 𝜆𝑠ℎ𝑎𝑝𝑒 0.01 0.05 0.1 0.2 0.3 0.4 

DSC 
     

 

Mean 0.522 0.873 0.943 0.941 0.936 0.932 

Standard Deviation 0.114 0.135 0.020 0.020 0.021 0.024 

MSPE- anterior 
     

 

Mean 1.82 1.18 1.21 1.86 2.40 2.89 

Standard Deviation 1.17 0.31 0.31 1.84 2.99 3.94 

MSPE - Posterior 
     

 

Mean 4.55 4.95 2.84 2.86 3.13 3.43 

Standard Deviation 3.23 4.17 1.278 1.39 1.70 2.18 

95% HD 
     

 

Mean 103.82 19.20 6.73 6.92 7.63 8.30 

Standard Deviation 28.41 26.81 2.65 3.51 5.02 6.07 

The DSC values indicate that the segmentation performs badly if a weaker shape 

term than 0.05 is used.  The results for the anterior surface are best at a value of 

0.05.  With an increasing shape term the location of the anterior surface gets worse.  

The relatively good value of 1.82 when a shape weighting term of 0.01 is used 

compared to the very poor result when using DSC of 0.522 is due to a weakness of 

the MSPE technique.  The surface positioning error can only be defined on surfaces 

that exist.  When the segmentation performed very badly this will leave gaps in the 

surface, these have been ignored giving a better result that is warranted by the 

segmentation.  The 95% Hausdorff distance also shows substantially worse when a 

small weighting term is used, 103.8 for a shape term of 0.01. 

Based on these results it was decided to fix the shape weighting at 0.1 for all future 

analysis work.  This was because this performed better that using a weighting of 0.2 

on all of the analysis methods.  The differences between using a weighting of 0.1 

and 0.2 is not statistically significant.  It is possible that with a larger sample size or 

a different data set a different optimum value might be found.  However the small 

difference between the two options means this difference is unlikely to be large. 
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Table 13: Comparison of time taken for two variations of graph cut method and level set 
method. 

Time (s) GC(v1) GC(v2) LS 

Mean 4.40 3.53 150.7 

Standard Deviation 0.95 0.63 58.5 

Table 13 shows a comparison of the time taken to segment a single image by the 

two graph cut methods and the level set technique.  The time taken for the new 

graph cut method GC(v2) is similar to the other graph cut method, 3.53s compared 

to 4.40s.  This is to be expected as only a small change has been done to the 

method.  The difference in time between the two versions of the graph cut program 

is not statistically significant. 

5.3.3 Discussion of Graph Cut Segmentation 

Two automatic segmentation techniques using graph cut techniques have been 

implemented.  Both of these new techniques have produced a significant reduction 

in the time taken for segmentation in relation to the level set technique.  The second 

technique has demonstrated an increased accuracy in relation to the level set 

technique achieving a DSC value of 0.943 compared to 0.919 that can be achieved 

using the best of our level set techniques.  This shows that this graph cut technique 

is superior to the level set technique in relation to both speed and accuracy. 

A paper presenting this technique has been accepted for publication by Eye and 

Vision Science journal. 

5.4 Graph Theory Segmentation 

Graph theory segmentation was investigated to see if this method could achieve 

further improvements in speed and accuracy of segmentation.  Two variations of 

graph theory segmentation were attempted.  The first was based on using Dijkstra’s 

algorithm to find the shortest path; the second method instead used dynamic 

programming to find the shortest path.  The second method has been implemented 

twice, first using Matlab and then with C++, the two versions of the code are 

compared here.  The technique is described in section 3.9. 

5.4.1 Dijkstra's Algorithm Method 

The Dijkstra’s algorithm based method was used to segment the same data set as 

the previous techniques and the segmentation results were compared with manual 

segmentation results.  A number of different strengths for the shape coefficient were 

tested in order to find the optimal value.  The results are shown in Table 14 below. 



 
 

141 
 

Table 14:  Results of Graph Theory segmentation and DSC comparison with manual observers 

 
0.3 0.4 0.5 0.6 0.7 0.8 

com43 0.906593 0.906593 0.907006 0.907073 0.951681 0.951398 

lss56 0.962526 0.962655 0.962474 0.962474 0.962474 0.962517 

wqm02 0.959999 0.959666 0.959683 0.959542 0.959469 0.959526 

wqm05 0.967892 0.96791 0.96791 0.968509 0.968509 0.967615 

wqm06 0.971572 0.971572 0.971572 0.971572 0.971572 0.971534 

wqm07 0.953963 0.954362 0.954362 0.954362 0.954362 0.954262 

wqm08 0.932141 0.932257 0.932257 0.932241 0.932357 0.932631 

wqm09 0.917199 0.917749 0.922892 0.913356 0.911104 0.911104 

wqm10 0.767784 0.959614 0.959909 0.960037 0.960037 0.959777 

wqm11 0.962834 0.963363 0.963363 0.963363 0.963363 0.963363 

wqm14 0.964182 0.964182 0.964537 0.964537 0.96429 0.964332 

wqm17 0.954913 0.954785 0.954785 0.954785 0.954748 0.954821 

wqm19 0.945502 0.945525 0.94563 0.94563 0.945543 0.945473 

wqm20 0.952465 0.952465 0.952835 0.952835 0.953419 0.953419 

wqm21 0.958077 0.958077 0.958077 0.958129 0.957496 0.957496 

wqm22 0.947495 0.947339 0.947066 0.946861 0.946861 0.946707 

wqm24 0.953639 0.953119 0.953119 0.952927 0.952979 0.952979 

wqm26 0.967377 0.967253 0.967253 0.967253 0.967213 0.966835 

wqm27 0.948631 0.948631 0.948346 0.948346 0.948346 0.948331 

wqm28 0.960055 0.960055 0.960055 0.960724 0.960724 0.960724 

wqm29 0.960453 0.960453 0.960453 0.960453 0.960453 0.960856 

wqm30 0.949601 0.949619 0.949967 0.949601 0.951977 0.951977 

wqm31 0.96005 0.959767 0.959767 0.959767 0.959767 0.959767 

wqm33 0.958383 0.958284 0.958502 0.958502 0.958502 0.958502 

wqm34 0.768678 0.773111 0.949141 0.949062 0.933117 0.931709 

wqm35 0.959503 0.959503 0.959503 0.959503 0.959215 0.959215 

wqm44 0.955242 0.955242 0.955242 0.955242 0.955242 0.955242 

wqm45 0.955923 0.955923 0.9565 0.955967 0.955967 0.955967 

wqm46 0.951844 0.951844 0.951844 0.951761 0.951678 0.951678 

wqm54 0.932919 0.956246 0.956246 0.956269 0.956542 0.956487 

wqm55 0.966037 0.966037 0.966037 0.96602 0.966054 0.96602 

wqm56 0.956593 0.956593 0.956436 0.956548 0.95649 0.956294 

wqm57 0.920934 0.920726 0.928497 0.927262 0.927262 0.927367 

wqm59 0.961115 0.961338 0.961242 0.961242 0.961179 0.961148 

wqm61 0.908624 0.960235 0.959756 0.958053 0.957763 0.957023 

wqm62 0.915137 0.922463 0.954023 0.954036 0.954084 0.951085 

wqm63 0.965509 0.965509 0.964412 0.964412 0.964026 0.964026 

wqm64 0.953463 0.953463 0.953346 0.953187 0.947875 0.947663 

wqm65 0.958907 0.958907 0.959781 0.814183 0.833285 0.833285 

Mean 0.941 0.949 0.954 0.95 0.951 0.951 

Standard deviation 0.044 0.032 0.013 0.026 0.023 0.023 
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The best value for the strength of the shape term varied between images but a 

value of 0.5 produced the best result for the entire data set, this gave a mean DSC 

value of 0.954.  This has both the highest mean value 0.954, and the lowest 

standard deviation 0.013, indicating the results are all clustered around a similar 

region to the manual segmentation.  An example image segmented by this 

technique is shown in Figure 52 below. 

 

Figure 52: Example image showing OCT image with graph theory segmentation path marked on 
it. 

Table 15 shows the results using the line based comparison techniques.  The same 

values of the shape constraint were used.  Here different optimum values were 

found.  Looking at MSPE for the anterior surface the changing value of shape 

constraint had very little effect this is to be expected since the segmentation of this 

surface is not affected by the shape term.  The best value achieved was 1.16.  

Looking at the posterior surface the smallest MSPE 1.77 was achieved when a 

shape value of 0.7 was used.  This strength of the shape term also produced the 

best 95% Hausdorff distance of 4.18. 

Table 15: Comparison between automatic segmentation using graph theory minimised by 
Dijkstra’s algorithm and manual segmentation using line based comparison techniques. 

Value of 𝜆𝑠ℎ𝑎𝑝𝑒 0.3 0.4 0.5 0.6 0.7 0.8 

MSPE - anterior       

Mean 1.16 1.16 1.21 1.21 1.16 1.21 
Standard Deviation 0.29 0.29 0.46 0.46 0.29 0.46 

MSPE - posterior       

Mean 2.64 2.15 1.93 1.85 1.77 1.85 
Standard Deviation 2.73 1.87 1.39 1.14 0.77 1.15 

95% HD       

Mean 6.88 5.31 5.07 4.66 4.18 4.67 
Standard Deviation 7.59 5.28 5.90 5.09 2.92 5.08 

 

5.4.2 Dynamic Programming Method 

The second method involving graph theory used dynamic programming rather than 

Dijkstra’s algorithm.  The results achieved using the dynamic programming method 

implemented using Matlab are shown in Table 16 below.   
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Here the best results are achieved using a shape constraint of 0.001 for all 

comparison techniques.  The highest DSC value found was 0.960, no difference 

was found between using a shape term of 0.0005 and 0.001 using this technique.  

The anterior surface location was the same regardless of the value of the shape 

constraint as the location of this surface is not affect by the shape term, a MSPE of 

1.17 was found for the anterior surface.  For the posterior surface the best MSPE 

was 1.49.  The lowest 95% HD distance was 3.37. 

A comparison was also made to the method with no shape term being used.  Here it 

was found that the results were significantly worse when looking at the posterior 

surface.  The anterior surface is not affected by the shape term so is unchanged.  

The DSC value found with no shape was 0.668 much lower than the 0.960 found 

with a shape term.  The MSPE of the posterior surface was 17.3 indicating this was 

the surface that the segmentation technique was unable to find.  This comparison 

was included since it is similar to methods previously published by others [97]. 

Table 16: Comparison between automatic segmentation using graph theory minimised by 
dynamic programming and manual segmentation. 

Value of 𝜆𝑠ℎ𝑎𝑝𝑒 no shape 0.0001 0.0005 0.001 0.005 

DSC      

Mean 0.668 0.958 0.960 0.960 0.954 
Standard Deviation 0.125 0.010 0.009 0.009 0.012 

MSPE – Anterior      

Mean 1.17 1.17 1.17 1.17 1.17 
Standard Deviation 0.37 0.37 0.37 0.37 0.37 

MSPE – Posterior      

Mean 17.3 1.80 1.60 1.49 1.75 
Standard Deviation 4.67 0.59 0.45 0.47 0.59 

95% HD      

Mean 28.5 4.40 3.80 3.37 4.21 
Standard Deviation 2.9 1.64 1.20 0.89 1.50 

 

These results indicate that the dynamic programming results are marginally better of 

the two implementations, achieving a DSC value of 0.960 compared to 0.954.  The 

difference between the two implementations of the technique is very small and is 

not statistically significant.  The much lower strength of the shape term used with 

dynamic programming is not significant just a reflection of the slightly different way 

the shape term was generated in the different versions of the method. 
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5.4.2.1 Dynamic Programming using C++ 

This same technique was implemented using C++ instead of Matlab to try to reduce 

the running time.  Table 17 shows the results of this method.  Here the results are 

slightly different to the previous implementation of the same technique.  The best 

results were achieved using a shape value of 1.  The best DSC value found was 

0.962 which is marginally better than the best value achieved using the Matlab 

implementation of the same method, which found a value of 0.960.  As before the 

MSPE for the anterior surface is unchanged by shape, a value of 1.10 was found.  

For the posterior surface the best value was 1.75 pixels.  The best value for the 

95% Hausdorff distance was 4.10.  The results of this method were similar to the 

implementation of the method using Matlab.  The difference between the two 

implementations is not statistically significant.   

Table 17: Results of comparison between manual segmentation and automatic segmentation 
using graph theory and dynamic programming implemented in C++ 

Value of 𝜆𝑠ℎ𝑎𝑝𝑒 0.2 0.4 0.7 1 2 

DSC      

Mean 0.950 0.957 0.961 0.962 0.960 
Standard Deviation 0.014 0.011 0.010 0.009 0.011 

MSPE – Anterior      

Mean 1.10 1.10 1.10 1.10 1.10 
Standard Deviation 0.33 0.33 0.33 0.33 0.33 

MSPE – Posterior      

Mean 2.56 2.17 1.81 1.75 1.80 
Standard Deviation 1.00 0.90 0.69 0.60 0.76 

95% HD      

Mean 7.04 5.49 4.23 4.10 4.17 
Standard Deviation 3.22 2.70 1.85 1.61 1.74 

 

5.4.3 Graph Theory Time Comparison 

Three versions of graph theory segmentation have been implemented.  Graph 

theory with Dijkstra’s algorithm, graph theory with dynamic programming in Matlab 

and graph theory with dynamic programming in C++.  The time taken for each of the 

different methods is shown in Table 18. 

The fastest technique is the graph cut with dynamic programming implemented in 

C++ this has a mean time of 0.288s to segment a single image.  This is much faster 

than the 16.1 s that the Matlab implementation of the same method took.  The 

method using Dijkstra’s method was the slowest technique taking 125.1s to 

segment a single image.  Note that the time for the dynamic programming includes 
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time taken to identify boundaries of the iris.  The time taken could be further 

reduced by skipping those steps. 

Table 18: Time taken for segmentation of the three different implementations of the graph 
theory technique 

Technique Mean Time (s) Standard Deviation  

Graph theory Dijkstra’s algorithm 125.1 13.1 

Graph theory dynamic 

programming (Maltab) 
16.1 0.8 

Graph theory dynamic 

programming (C++) 
0.288 0.013 

Overall looking at the different graph theory methods the technique using dynamic 

programming performs best.  It is faster than the Dijkstra’s technique and has a 

marginally improved accuracy.  Implementing this method using C++ managed to 

reduce the time taken for segmentation by a factor of 55 without any loss in 

accuracy of the technique.  It is likely other techniques could also be made faster 

through a similar implementation in C++.  This was not done since the Graph 

Theory technique was the one that produced the best results. 

5.5 Comparison of Different Segmentation 2D Techniques 

The segmentation techniques described here all fall into 4 main categories.  In order 

to evaluate the methods developed the best method from each of these categories 

were compared.  These results were compared with manual segmentation results.  

The four different methods to be compared are; the threshold based technique, 

Chan Vese with shape technique (the best of the level set methods), our graph cut 

implementation of Chan Vese with shape, and the dynamic programming 

implementation of graph theory segmentation.  These methods were all applied to 

the same set of 39 images.  These images had been segmented manually by two 

different observers and the first observer had segmented the images twice 

independently.  This allows us to make a comparison with inter and intra observer 

variation. 

Three different comparison techniques were used to look at the images.  These are 

the Dice Similarity Coefficient (DSC), unsigned mean surface positioning error 

(MSPE) and 95% Hausdorff distance.  The results for the different methods will be 

presented in turn.   

Table 19: DSC comparison between four different automatic segmentation techniques.  All 
techniques have been compared against the same set of manual annotations over a set of 39 
images.   
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Segmentation Method Mean Standard Deviation 

Threshold 0.852 0.082 

CVWSiw 0.919 0.026 

Graph Cut 0.943 0.020 

Graph Theory 0.962 0.009 

Inter Observer 0.966 0.007 

Intra Observer 0.969 0.010 

Table 19 above shows the results of the DSC comparison with manual 

segmentation for the four different automated methods and two other manual 

segmentation results.  In order to test the significance of the results an ANOVA test 

was carried out using SPSS software.  This showed that there was a significant 

difference between the different methods.  Doing a Turkey post hoc analysis found 

there are four overlapping homogenous subsets of the techniques.  The Threshold 

method is significantly different to all the other methods (p<0.001 for all other 

techniques), achieved a DSC value of 0.852.  Using CVWSiw a DSC value of 0.919 

was found, this is significantly different to all the other methods (p<0.05 for all other 

techniques).  The graph cut technique achieved a value of 0.943, this was not 

significantly different to either the graph theory technique (p = 0.270) or the inter 

observer difference (p = 0.056).  There was a significant difference with the intra 

observer difference (p < 0.05).  The lack of significance of this difference is probably 

caused by the sample size rather than the technique.  When an independent t test 

looking at just the inter observer difference and graph cut technique was carried out 

it did show a significant difference between these techniques.  The Graph Theory 

technique, Inter Observer and Intra Observer differences achieved the best results 

getting DSC values of 0.962, 0.966 and 0.969 respectively.  There was no 

significant difference between these results (p = 0.950 as a grouping).   

In summary the DSC results indicate that all three techniques that have been 

developed are better than a previously used technique (threshold).  The graph 

theory based technique was the best performing method developed.  The graph 

theory segmentation technique is able to perform equally as well as manual 

observers.  There is no significant difference between inter and intra observer 

segmentations indicating that good quality objective segmentation of these images 

is possible and results aren’t dependant on the person carrying out the imaging. 

Table 20: MSPE comparison between four automatic segmentation techniques and three 
manual segmentations.  The anterior and posterior surfaces have been compared separately. 
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Segmentation 

Method 
Anterior Surface Posterior Surface 

 
Mean 

 

Standard 

Deviation 

Mean 

 

Standard 

Deviation 

Threshold 1.98 4.98 11.05 3.66 

CVWSiw 1.63 0.52 3.9 1.81 

Graph Cut 1.21 0.31 2.84 1.28 

Graph Theory 1.10 0.33 1.75 0.60 

Inter Observer 1.31 0.53 1.78 0.67 

Intra Observer 1.08 0.33 1.32 0.50 

Table 20 above shows the results of mean surface positioning error test comparing 

the four different automated methods with manual segmentation results.  An 

ANOVA test was carried out using MSPE measurements from the anterior and 

posterior surfaces separately.  The results for this test on the anterior surface were 

less conclusive than the DSC analysis.  All the results have an anterior MSPE of 

between 1 and 2 pixels.  Of the automated techniques the threshold technique has 

the largest difference of 1.98.  The smallest MSPE was found using the graph 

theory technique at 1.10 pixels, this is better than the inter observer MSPE of 1.31 

but worse than the intra observer MSPE of 1.08.  There were no statistically 

significant differences between the different techniques looking at the anterior 

surface.   

Looking at the posterior boundary similar results to the DSC comparison were 

found.  Analysis of the results indicates four overlapping subsets of results.  The 

threshold technique performs significantly worse than all the other techniques (p < 

0.05) with a MSPE of 11.05.  The graph cut and level set techniques form a second 

group significantly different to the others (p = 0.252 between them), achieving a 

posterior MSPE of 3.9 for the level set technique and 2.84 for the graph cut 

technique.  The graph cut did not show a significant difference when compared to 

either the inter observer difference (p = 0.097) or the graph theory technique (p = 

0.075).  The results from the graph theory, inter and intra observer techniques were 

not significantly different from each other (p = 0.900), achieving MSPE of 1.75, 1.78 

and 1.32 respectively.  One thing that is worth noting that unlike when looking at 

DSC where the inter and intra observer differences were very similar the intra 

observer is lower than the inter observer difference, while the difference is not 

significant (p = 0.898 for posterior surface) it is a possible indication that there is 



148 
 

some observer bias in the manual segmentation which may show up in a test with a 

larger number of images. 

Table 21: 95% Hausdorff distance comparison between four automatic segmentation 
techniques and three manual segmentations 

Segmentation Method Mean Standard Deviation 

Threshold 25.39 8.89 

CVWSiw 10.2 4.8 

Graph Cut 6.73 2.65 

Graph Theory 4.10 1.61 

Inter Observer 3.58 0.95 

Intra Observer 2.99 1.02 

Table 21 above shows the results of 95% Hausdorff distance comparing the four 

different automated methods with manual segmentation results.  A similar statistical 

analysis was carried out on the 95% Hausdorff distance.  The results of this test 

were inconclusive.  The only significant difference found was between the threshold 

method, with a 95% HD of 25.39, and all the other techniques (p<0.001 for all).  The 

rest of the techniques achieved values between 2.99 and 10.2.  The different values 

of the mean 95% HD values were arranged in the same pattern seen previously.  

The largest value was found using the CVSWiw technique, the best of the automatic 

techniques was the graph theory method achieving a 95% HD value of 4.10.  The 

differences that can be observed between the techniques are not statistically 

significant though.  All of the methods have a reasonably large standard deviation 

(4.8 for CVWSiw, 1.61 for graph theory) reducing the significance of any 

differences.  This is likely to be due to the fact that 95% HD looks only at the worst 

elements of the segmentation producing a wider variation in the results. 

As well as accuracy another important measure of the suitability of a technique is 

the time it takes for segmentation to occur.  The time taken for the different 

segmentation techniques is shown in Table 22 below.  The four automatic 

techniques are compared.  Two versions of the graph theory technique are shown, 

one using C++ and one using Matlab. 

The fastest technique is the graph theory using C++ taking 0.288 seconds to 

segment an image.  The next fastest methods are the threshold and graph cut 

segmentation techniques taking under 5 seconds to segment an image.  Graph 

theory in Matlab was the next fastest technique taking just over 16 seconds to 

segment an image.  The slowest technique was level set technique this took over 
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500 times longer than the graph theory technique.  Time taken for manual 

segmentation was not measured but it would be expected to be around 15 minutes 

per image. 

It is possible that further reductions in speed could be made in other methods that 

were not implemented solely C++.  The Graph Cut method used both C++ and 

Matlab so while some reduction in speed could be achieved by sole use of C++ this 

is unlikely to be as dramatic as speed reductions achieved converting graph theory 

method from Matlab to C++. 

Table 22: Comparison of time taken for four different automatic segmentation techniques 

Method Time (s) 

Threshold 4.53 

CVWSiw 150.7 

Graph Cut 3.53 

Graph Theory (using Matlab) 16.1 

Graph Theory (using C++) 0.288 

Overall looking at the different measures for accuracy similar results were achieved 

with all measures.  All the newly developed segmentation techniques perform better 

than the previously used threshold technique.  The graph cut and level set 

techniques have similar accuracy; however graph cut technique performs better 

than the level set technique when using the DSC technique.  The graph theory 

technique is most accurate and doesn’t show any significant differences with 

manual segmentation using any of the comparison techniques.  The graph theory 

technique was the fastest technique.  The superior performance in terms of both 

accuracy and speed of the graph theory based technique makes it the best 

technique.  

5.6 3D Level Set 

The 3D level set segmentation framework was tested on a synthetic image and a 

single real 3D AS-OCT volume.  During the tests the constants determining the 

strength of different components of energy were empirically chosen for the best 

results.  The values for the different constants used are 𝜆1 = 0.2, 𝜆2
1 = 𝜆2

2 = 1, 

𝜆3 = 0.8 and 𝜆4 = 0.1. 

A synthetic volume data was built using two ellipsoids with different radii to model 

the cornea.  In each section some regions were deleted deliberately to simulate the 

OCT data where some regions are missing due to poor signal to noise ratio.  
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Speckle noise was also added to these images since speckle noise is present in 

OCT data.  Figure 53(a) shows the synthetic data in montage form of all 32 

sections.  Figure 53(b) shows the segmentation results.  It can be seen that the new 

segmentation framework is capable of recovering the artificial gaps we have put in 

our ‘cornea’ to model areas of lower signal found in real data. 

The program was also tested on a single 3D OCT image of the human cornea, 

show in Figure 54(a).  The image was taken from a healthy normal eye using a 

custom built spectral domain OCT machine.  There are 32 cross-sectional scans of 

the cornea were taken with the scan being rotated 11.25 degrees between each 

image.  Figure 54(b) shows the result of the segmentation.  It can be seen from this 

that our program can segment the cornea. 

 

 

(a) 

 

 

(b) 
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Figure 53: A synthetic image and its segmentation result. (a) Synthetic data with 32 images 

arranged in a radial pattern; (b) Segmentation result of the image in (a). 

 

(a) 

 

 

(b) 

Figure 54: Illustration of segmentation of a 3D AS-OCT image. (a) A 3D OCT image of the human 

cornea where 32 images shown here are arranged in a radial pattern to give the 3D image of the 

cornea; (b) Segmented cornea of the image (a). 

While this work was able to achieve reasonable segmentation results it suffered 

from two major problems, the long time taken for the segmentation and the lack of a 

registration step.  The program had a very large requirement for memory and so 

could only successfully segment smaller images.  The results shown are on down 

sampled images.  It also suffered from being too slow.  The time taken to segment 

images of a single eye was over two hours which is not practical for medical usage.  

Registration of the images forming the volume was not considered by this method 
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which will lead to inaccuracies if the images are not perfectly aligned, a non uniform 

height of the corneal apex can be seen in Figure 54(a) indicating that a registration 

step is needed.  Due to these problems work on 3D level set was abandoned and 

no numerical validation carried out. 

5.7 3D Graph Cut  

In order to validate the graph cut technique a repeatability test was carried out over 

a series of 17 eyes.  For each eye two sets of images were acquired.  The 

segmentation technique was carried out for the two sets of images.  The results of 

the two segmentations were compared.  Since we are imaging the same eye twice 

then the results should be the same.  The comparison techniques used are 

described in section 1.6.2. 

Since the segmentation techniques produce results with arbitrary coordinates the 

segmented images were aligned via their minimum point in the z direction prior to 

comparison. 

Table 23 below shows the results of repeatability testing of this technique.  Results 

are shown for three variations.  The first is when all the images were cropped to the 

size of the smallest image and the other two when a progressively larger section of 

the image was also included.  The results are best when only a small area is 

included; a mean difference of 2.10 pixels is found then compared to 3.62 for the 

image 150 pixels wider.  The difference is probably due to the superior image 

quality near the centre of the images.  There is also a smaller distance between 

points from different slices near the centre which will lead to better results in this 

region. 

Table 23: Results of repeatability testing of 3D graph cut segmentation technique.  Comparison 
of three variations of the alignment technique. 

 Mean difference between 

surfaces 

Repeatability of thickness 

Method Mean  Standard deviation Mean  Standard 

deviation 

Graph Cut 3D 

segmentation 
2.10 0.68 0.095 0.131 

Graph Cut 3D 

segmentation 50 

pixels wider 

2.45 1.34 0.108 0.119 
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Graph Cut 3D 

segmentation 150 

pixels wider 

3.62 3.12 0.110 0.075 

 

Table 24 below shows the time taken for each of three segmentation techniques.  

There is an increase in time taken for the methods that use a larger area of the 

images for the segmentation; the method covering the smallest area took 229 

seconds compared to 235 seconds for method of larger area.  This is unsurprising 

since we would expect it to take longer to segment larger images.  The increase is 

fairly small, an increase in time taken of only 2.5% when an extra 150 pixels is 

added to each image.  The reason the increase is so small is due to the fact that the 

initial registration steps are the same however the image is subsequently aligned.  

This registration process takes around 80% of the total time.  The standard 

deviation is larger than the difference between the different techniques.  This is due 

to a difference in the sizes of the different images that comes the  different locations 

where the eye lid had been previously cropped off. 

Table 24: Time taken for segmentation for three variations of 3D graph cut segmentation 
technique.  Results are taken over a set of 17 eyes. 

 Time taken for segmentation (s) 

Method Mean  Standard deviation 

Graph Cut 3D 

segmentation 
229 15 

Graph Cut 3D 

segmentation 50 

pixels wider 

234 14 

Graph Cut 3D 

segmentation 150 

pixels wider 

235 13 

The results of the segmentation program show that it can achieve reasonable 

repeatability over a set of 17 eyes.  The comparison of the different methods shows 

that the results are better towards the centre of the image and so are improved 

when a smaller area is used.  The increase in time taken when using a larger area 

is small indicating that reducing the size of the images after the alignment step will 

not result in a significant increase in speed of segmentation.  The decision on where 

to crop the images before segmentation must be made based on an assessment of 
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how useful the segmentation is in regions where the data points have a large space 

between them.   

5.8 3D Graph Theory 

The 3D graph theory work focussed on attempts to align the images correctly.  The 

work here will be split into two sections.  This first will cover a variety of different 

registration techniques that didn’t use GA.  The second section focuses on genetic 

algorithms and investigates a number of different energy functions that can be 

minimised. 

5.8.1 Non GA Registration Techniques 

 All 11 registration methods were tested on the same data set.  This consisted of 

two sets of 16 2D images from 17 eyes, giving a total of 554 images.  The results 

from the alignment for each of the different sets were compared to each other.  Two 

measures were used, mean difference between the surfaces and repeatability of 

thickness measurement across the surface. 

Table 25: Repeatability comparison of 8 different alignment techniques over a set of 17 eyes.  
Mean difference measures the mean difference between the anterior surfaces of two different 
set of images of the same eye.  Repeatability is the coefficient of repeatability of the thickness 
of the cornea.  

Method Mean Difference Repeatability 

No Reg 51.2 0.100 

ICP 51.6 0.111 

CP, straight line 14.1 0.073 

CP, Curved 19.1 0.089 

CP, ellipse 15.7 0.082 

Pupil, straight line 22.4 0.195 

Pupil, curved 26.5 0.196 

Pupil, Ellipse 29.5 0.177 

 

Table 25 above shows the results of the different alignment techniques.  The best 

method, corner points with straight line achieved a mean difference of 14.1 pixels.  

All of the methods developed achieved better results than when no registration step 

was used.  Using the ICP technique to align images showed no significant change 

in accuracy of alignment compared to using no registration, 51.6 compared to 51.2 

pixels.  This is probably due to the fact ICP is attempting to register the images to 

each other which is not the same as aligning all the images. 
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Techniques using corner points for the registration performed better than similar 

methods using the pupil endpoints, 14.1 pixels mean difference rather than 22.4.  

This is probably due to the detection of the corner points of the cornea being more 

reliable than the detection of the edges of the pupil.  When looking at the different 

methods for using the points to align the images the most successful method is the 

straight line method.  This holds true when using either corner points or pupil 

endpoints.  When looking at corner points the ellipse method does better than the 

curved method for pupil endpoint method this is the other way round.  The 

discrepancy is probably due to difficulties in correctly identifying the points.  The 

straight line may work better since it provides a better estimate of the shape of the 

cornea that the curved line we were using.  It is also less affected by small errors in 

positions of points so will perform better if there are some errors in locating the 

points.   

Looking at the repeatability values the same results are not found.  Here the best 

results are found using the corner points with straight line method to align the 

images.  This is followed by the other corner points line methods.  The differences 

between the different methods are much smaller when looking at the repeatability 

measure than the mean difference measure.  These two measures are looking at 

different measurements which may explain some of the differences.  One is 

measuring the mean difference between two anterior surfaces the other compares 

thickness measurements.  The difference could be due to the fact the thickness 

doesn’t alter as much across each image so small displacements don’t show up as 

obviously. 

In order to test the significance of the repeatability results an ANOVA test was 

carried out.  This found that there was no significant difference between the results 

of different methods (p = 0.345).  While the lack of significant difference may be 

partly due to the small sample size of the study it also indicates that the repeatability 

measure may not be a good way to distinguish between the methods developed. 

When the ANOVA test was carried out on the mean difference data some significant 

differences between the methods were found.  There was a significant different 

between all the developed methods and the ICP and no registration methods 

(p<0.05 for all).   

5.8.2 Genetic Algorithm Energy Function Variations 

Five different energy functions for use with GA were tested.  The five different 

methods tested were circles in r, circles in r and z, ellipse fitting, ellipse fitting and 
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circles, and the model based method.  The distance between two surfaces achieved 

by repeating method is used to evaluate the success of the method.  Since the 

same eye has been imaged twice this distance should be zero.  There will in reality 

be differences due to 3 different factors, the constancy of the OCT images (these 

could be caused by movement artefacts, limits to resolution etc.), the repeatability of 

the segmentation (some images may be slightly incorrectly segmented) and finally 

the errors may come from the registration program. 

As well as measuring distance between the surfaces, the repeatability of thickness 

measurements was also calculated.  The results of alignment are shown in Table 

26. 

Table 26: Comparison of performance of different GA models for alignment of 3D images.   

 Mean difference between 

surfaces 

Repeatability of thickness 

Method Mean  Standard 

deviation 

Mean  Standard 

deviation 

Circles in r 23.12 12.4 0.0872 0.0430 

Circles in r and z 18.45 12.4 0.0812 0.0372 

Ellipsoid fitting 49.75 10.1 0.187 0.0572 

Ellipsoid fitting 

and circles in r 

and z 

20.18 15.9 0.102 0.0470 

Model fitting 1.64 0.69 0.0877 0.0418 

Best none GA 

method  
14.1 3.2 0.073 0.035 

Looking at the results for mean difference we can see that the first four of the 

energy functions for use with GA make the situation worse rather than better.  Better 

results can be achieved by using only the initialisation step, mean difference 14.1, 

than these methods using a GA, mean difference between 18.45 and 49.75.  The 

method involving the use of the Zernike polynomial model produced a substantial 

reduction in the mean difference achieving a mean difference of 1.64 pixels.   

The results of the repeatability test for thickness were not as useful for 

distinguishing between the different models.  Here the best results were achieved 
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by the non GA method; it also indicated that the circle fitting GA method was better 

than the model fitting technique though the difference between them is not 

significant.  It is unclear why the two different techniques produce different results 

though one common feature of both evaluation techniques was that the ellipsoid 

based methods performed worst. 

5.8.3 Genetic Algorithm Range Variations 

In addition to testing different energy functions five different ways to limit the range 

of the values for the solution were also tested.  These were three of the non GA 

methods, no limit and limit applied by fitting ellipses to four subsets of images.  

Table 27 shows the results of the alignment.   

Table 27: Comparison of different methods of limiting the range of possible solutions when 
using GA.  Abbreviations refer to methods shown in Table 25 above which have been used here 
to limit the range of possible solutions for the GA. 

Method Mean Difference Repeatability 

CPSL limit 4.47 0.079 

CPC limit 6.39 0.100 

CPSL limit xy only 1.77 0.085 

No limit 2.52 0.100 

Four ellipsoids limit 60.2 n/a 

 

The method with the limit from straight line in x and y directions only was the best 

performing technique achieving a mean difference of 1.77.  When the z value was 

limited by the initialisation this produced worse results.  This shows that the 

initialisation techniques are not able to accurately find the shift in the z direction.  

The performance was better when no limit was applied after the initial step than 

when the initial step limited the range of z values. 

Looking at the repeatability results the best performing technique was the corner 

points and straight line method of setting limits with limits on all dimensions.  This 

does not agree with what was found when looking at the mean difference of anterior 

surface.  This discrepancy between mean difference and thickness repeatability has 

been found looking at all the techniques and is likely due to the fact thickness varies 

less than height across the cornea so it is harder to detect misalignment looking at 

thickness as opposed to height. 

The method using four intersection points of images to improve the alignment 

produced the worse results of all the methods, with a mean difference of 60.2, 
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indicating that this was not a good method for further testing.  No thickness 

measurements were made for this technique due to its very poor results in aligning 

the anterior surface.   No attempt was made at using this to align the posterior 

surface needed to make thickness measurements. 

5.9 Comparison of 3D Segmentation Techniques 

Three different segmentation techniques were attempted for 3D segmentation with 

there being a number of variations of each method.  The different methods were 

level set segmentation, graph cut segmentation and graph theory segmentation with 

genetic algorithm alignment. 

A full comparison was not carried out of the level set method since this was unable 

to segment full sized images due to requiring too much memory to run on computer.  

The large memory requirements and the slowness of the method meant it was 

rejected as a possible technique.  A quantitative comparison was carried out to 

compare graph cut segmentation, graph theory segmentation with genetic algorithm 

alignment and graph theory segmentation with non GA alignment.   

Table 28: Comparison of three different 3D segmentation techniques over a set of 17 eyes 

 Mean difference between 

surfaces 

Repeatability of thickness 

Method Mean  Standard 

deviation 

Mean  Standard 

deviation 

Graph Cut 2.45 1.34 0.108 0.119 

Graph Theory 

with GA 
1.64 0.69 0.0877 0.0418 

Graph Theory 

without GA 
14.1 3.2 0.073 0.035 

Table 28 shows the results of a comparison between the performances of three 

different 3D segmentation techniques.  Looking at the results of the mean difference 

test it can be seen that the best results are achieved using the graph theory and GA 

technique, a mean difference of 1.64 pixels was found.  This performs substantially 

better than using graph theory segmentation with identified points on the image to 

register the images, 1.64 pixel difference compared to 14.1 pixels.  The graph cut 

technique performs almost as well as the graph theory and GA technique, achieving 

a mean difference of 2.45 pixels.  The difference between the two methods is not 

significant (p<0.05).  Looking at the repeatability results a different pattern is seen.  
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Here the graph theory without GA performs best and graph cut technique performs 

worst.  The difference between the two evaluation techniques is possibly because 

repeatability is a measure that looks at both anterior and posterior surfaces whereas 

mean difference only looks at the anterior surface.  The non GA technique uses 

reference points on the posterior surface while the GA method uses only points on 

the anterior surface for alignment. 

Table 29: Time taken for segmentation and alignment of 3D images.  Results taken over set of 
17 eyes. 

 Time taken for segmentation and 

alignment (seconds) 

Method Mean  Standard deviation 

Graph Cut 233 14 

Graph Theory with 

GA 
176 15 

Graph Theory 

without GA 
148 9 

Table 29 above shows how long segmentation and alignment took for the different 

methods.  The fastest method is the graph theory without GA, taking 148 seconds.  

The slowest method is the graph cut technique, taking 233 seconds.  The graph cut 

technique is probably slowest since it performs two segmentation steps an initial 2D 

segmentation which is used for registration then a full 3D segmentation.  The other 

two methods only perform 2D segmentation followed by an alignment step.  Since 

the GA method uses genetic algorithms to improve the results of the initial method it 

will always take longer than if the GA step doesn’t take place.  All the methods are 

able to complete segmentation and alignment in less than 4 minutes.  This means 

they would be able to be easily used to give results during a patient visit without 

having to wait a long time for analysis of images to take place.   

Repeatability tests were chosen for a measure of the success of the technique for a 

number of reasons.  If a technique is to ever be useful then measurements of a 

particular object should be the same each time the object is imaged.  A device that 

produces different measurements of the same object each time you measure it is 

not very useful.  For the 2D segmentation analysis the results of the automatic 

segmentation were compared with manual segmentation.  Comparison with manual 

observers is not practical for 3D segmentation.  Manual registration of the images 
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would be a very time consuming process and is not one which his commonly carried 

out. 

An alternative method for evaluating the data would be to image the eye using an 

alternative imaging modality and compare the results on this method with those 

achieved using a different technique.  A suitable set of images, where a person had 

been imaged both with OCT and another more established technique for measuring 

the human cornea, was not available.  

The repeatability of the thickness measurement has not been found to be a good 

metric for judging the effectiveness of the technique.  The results do not agree with 

those found looking a mean surface difference and don’t show significant 

differences between the different methods. 

Overall looking at the quality of the results and the time taken for segmentation for 

the different techniques the method that performs best is the graph theory with 

genetic algorithm method.  This achieves the best results when looking at the mean 

difference comparison where is significantly outperforms the graph theory without 

GA.  It is also faster than the graph cut method and achieves better repeatability 

than the graph cut method when looking at thickness measurements. 

The values achieved by the GA model method were similar to the difference 

between the segmentation technique and manual segmentation.  This indicates that 

it is not likely to be able to achieve further improvement to the alignment technique 

as there will always be an error present from segmentation of the images. 

This is a reasonably quick method taking around 3 minutes to achieve 3D 

segmentation.  It gives information of the boundaries of the anterior segment across 

the entire region that the images are able to cover.   
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6 Discussion and Conclusion 

6.1 Discussion 

A number of novel methods for the segmentation of anterior segment OCT images 

have been developed for this study.  For 2D segmentation these include techniques 

using level set, graph cut and graph theory based methods.  Analysis of the results 

of segmentation by these methods found the most successful technique was graph 

theory with shape.  This method has been shown to achieve results with the same 

level of accuracy as expert manual segmentation, achieving a DSC value of 0.961 

when compared to manual segmentation.  The graph theory with shape method is a 

fast method, taking 0.288 seconds to segment a single image. 

This new technique has been compared to a number of previously used 

segmentation techniques.  It has been shown to perform significantly better than a 

previously used threshold method [29].  The threshold technique achieved a DSC 

value of 0.852.  Another method that has been previously used is a graph theory 

based segmentation method.  This differs from our method in that it does not 

include a shape term as part of the segmentation.  The group that first published 

this technique were only looking at the central region of the cornea where the 

highest signal to noise ratio is found [97].  The results of the graph theory with 

shape technique developed here were compared to the same technique without the 

shape term.  It was found that without the shape technique, the method was unable 

to accurately detect the posterior surface of the cornea: a posterior MSPE of 17.3 

pixels was found compared to 1.49 pixels when using the shape term.  This 

indicates the newly developed method is able to accurately segment a larger region 

of the cornea than previously developed versions of this method. 

Tomey have developed a swept source OCT machine, CASIA (Tomey, Tokyo, 

Japan).  Swept source OCT is a variety of SD OCT.  This machine comes with 

algorithms that are able to automatically segment both the anterior and posterior 

surfaces across the entire anterior segment.  They have used a proprietorial method 

to carry out segmentation and there is no publically available information on their 

method.  A comparison of our technique to the technique they have developed 

would be of interest.  It has not been possible to source any images using this 

machine, so this has not been done.  The development of accessible methods 

where the technique used is made public through publication is important for the 

use of segmentation in research purposes.  Having a method that can be adapted to 

target specific parts of the anterior segment or eyes with specific diseases is useful. 
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Further advances in OCT technology will affect the work.  Most of the images 

acquired for this work were taken using time domain OCT.  Spectral domain OCT is 

a newer technique that is able to achieve higher speed and resolution images.  

Current commercially available SD OCT machines have a shorter scanning depth 

than can be achieved using time domain techniques.  This means they are unable 

to image the entire anterior segment and can only produce images of small areas.  

They can be focussed on central regions or peripheral regions depending on what is 

being investigated.  This makes them unsuited for use to acquire topography 

information for the entire cornea.  Further advances in OCT technology are likely.  

There are a number of groups that have custom built OCT devices that are capable 

of imaging a larger area.  It is likely that these devices will become more widely 

available in the not too distant future. 

Spectral domain images are generally better quality than time domain images.  This 

means that the segmentation method developed here should also work with images 

from any new spectral domain OCT machines that are developed.  The fact 

programs were developed to work on time domain OCT images should not provide 

a drawback.  It may offer an advantage in that it is able to segment images that 

contain regions of low signal to noise ratio.  When medical imaging is carried out on 

a large scale it is likely that there will be images that have regions that do not have 

optimum image quality.  Our program should still be able to segment these regions. 

For 3D segmentation, the best technique developed used graph theory with shape 

to segment 2D images then used a novel alignment method to align images to 

produce a 3D surface.  This technique used identification of three key points as an 

initial guide followed by the use of genetic algorithms to minimise the distance 

between the surface and a model surface of the cornea.  This has been shown to 

achieve a mean difference of 1.7 pixels between two sets of images of the same 

eye. 

There has been only very limited previous work looking at 3D segmentation of OCT 

image of the cornea.  No quantitative validation of 3D segmentation has been 

carried out by other groups previously investigating the cornea.   Eichel et al present 

a method for segmenting and aligning 3D SDOCT images [131].  Their study carries 

out validation tests for the 2D segmentation process but they only have data from 3 

eyes for their 3D work so do not present any validation of the reliability of their 

technique.  The work presented here is the first time validation of 3D alignment and 

segmentation of OCT images of the cornea has been carried out. 
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One of the limitations of the work was the relatively small number of images that 

have been used to evaluate the technique.  The 3D method has only been carried 

out on a sample size of 17 eyes.  Analysis of results over a larger data set would 

allow for more confidence to be had in the conclusions from the study and may also 

lead to further improvements to the model. 

Combining these techniques creates a tool that can go from a set of OCT images of 

the human eye to a map showing the location of the anterior and posterior surfaces 

across the entire cornea and including part of the sclera.  This tool will allow 

clinicians to use information acquired from OCT images of the human eye without 

the need for lengthy manual analysis of images.  The maps that are created can be 

used as an input for patient specific biomechanical modelling of the cornea for the 

purpose of treatment, planning and disease monitoring.  The speed of the 

segmentation is sufficiently fast to allow for analysis of results while a patient waits. 

6.2 Conclusion 

Three different novel techniques have been developed for the segmentation of 2D 

OCT images of the anterior segment.  These are level set with shape, graph cut 

with shape and graph theory with shape.  Analysis of the results of these methods 

found that the most successful technique was graph theory with shape.  This 

method achieved similar performance to manual segmentation and showed superior 

performance when compared to previously used techniques.  For 3D segmentation, 

each of these 2D techniques was extended to 3D.  The level set and graph cut 

techniques could be extended to true 3D segmentation.  The graph theory 

technique used “2.5D” segmentation where a series of 2D images are aligned to 

produce a 3D volume.  Analysis of the results of these methods found that the most 

successful technique was graph theory segmentation with registration using genetic 

algorithms.  This method showed good repeatability.  There has been no previous 

work validating registration and segmentation of 3D OCT images of the cornea.  

When combined, a method has been developed that can take a series of 2D OCT 

images of the anterior segment of the human eye and produce a map of the anterior 

and posterior surfaces of the cornea. 

6.3 Future Work 

6.3.1 Comparison with Results from Other Imaging Modalities 

In order to further develop the work discussed here, further validation of the 

techniques could be carried out.  So far no comparison of our results with the results 
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that can be achieved using different imaging modalities has occurred.  Given the 

strengths and weaknesses of different imaging technologies it is likely that a variety 

of imaging techniques will continue to be used to investigate the cornea.  A 

comparison between our segmentation of OCT images and results that can be 

achieved through Scheimplug photography would be useful when trying to decide 

what imaging modality is more useful for a patient’s specific problem. 

6.3.2 Segmentation of SD OCT Images 

If a different imaging system was used there would be a number of minor changes 

to the model needed.  The main change that would need to be made would be 

adjusting coefficients chosen for various parameters.  Specifically the creation of 

shape terms to guide the segmentation of the posterior surface of the cornea used 

coefficients to predict how thickness varied with distance from centre.  Different 

sized images would require altering these coefficients.  The optimisation of various 

other parameters may also need updating if a different imaging system was used. 

6.3.3 Incorporation with Biomechanical Modelling 

The techniques that have been developed here have had the aim of segmenting 

OCT images so they can be used to help produce patient specific biomechanical 

models of the human eye.  3D maps showing the location of the anterior and 

posterior surfaces of the cornea are produced by methods developed over the 

course of this PhD.  A relatively simple extension to the work would be to 

incorporate these 3D maps into biomechanical modelling. 

6.3.4 Improvements to the Segmentation Technique 

The 2D segmentation technique developed here performs very well and has limited 

potential for further improvements to be made on the model.  The main scope for 

further development of the technique lies in the 3D alignment techniques.  The 

method developed here uses a model cornea produced from fitting a Zernike 

polynomial to a corneal surface.  This model is then used to align the images in an 

appropriate manner.  It is possible for improvements to be made to this model 

cornea.  So far a relatively small data set has been used to test the method.  A 

larger data set could be used to produce a more accurate model of the cornea.  This 

could be used to guide the alignment of the images to produce a 3D shape. 
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