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�Computer science is no more about computers than astronomy is about tele-

scopes."

Edsger Dijkstra
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This thesis studies algorithms for Distributed Computing. More speci�cally how-

ever the project aimed to carry out research on the performance analysis of mobile

robots in a variety of di�erent settings. In a range of di�erent network and geo-

metric settings we investigate e�cient algorithms for the robots to perform given

tasks. We looked at a variety of di�erent models when completing this work but fo-

cused mainly on cases where the robots have limited communication mechanisms.

Within this framework we investigated cases where the robots were numerous to

cases where they were few in number. Also we looked at scenarios where the robots

involved had di�erent limitations on the maximal speeds they could travel.

When conducting this work we explored two main tasks carried out by the robots

that became the primary theme of the study. These two main tasks are Robot Loca-

tion Discovery and Robot Evacuation. To accomplish these tasks we constructed

algorithms that made use of both randomised and deterministic approaches in

their solutions.
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Chapter 1

Preface

1.1 Algorithms

This Chapter has been included for readers who are perhaps unfamiliar with the

topic of this work. In this section the concept of algorithms will be introduced

along with explanations of what it means to analyse them as well as some technical

explanation.

1.1.1 Overview

Algorithms are procedures used to solve some task. More speci�cally, they are

well de�ned steps that take an input either as a single value or a set of values and

then outputs either a single value or a set of values. In this way algorithms can

be seen as a sequence that can be followed to �solve� a computation problem.

1.1.2 Analysis

When we talk about analysing an algorithm quite often we are measuring its

e�ciency in some way. The metric of e�ciency for an algorithm is usually based

on its speed. However, one could just as easily measure its memory or energy

usage as a metric for analytical purposes.

We live in a world where there are still many problems we do not even know exist,

let alone are aware of e�cient solutions to them. However, for thoes problems

1



Chapter 1. Preface 2

that we are aware of but have yet to solve them e�ciently we place into a subset

of problems called NP-complete. It is interesting to note that there is a special

property that holds for these types of problems that means if an e�cient solution

is found for one then that means there must also be e�cient solutions for the other

problems in this subset. Unfortunately, no e�cient solution has yet been found

for any of these problems. However, in the meantime we can use what we call

approximation algorithms to get close to an e�cient solution in these cases.

De�nition 1.1. running time: The time it takes an algorithm to complete its

steps and �nish a task.

De�nition 1.2. steps : it is assumed that each line of code in an algorithm is a

step and that a step will take a constant time to run. That way when comparing

algorithms between di�erent computers we can still get a reliable measurement on

its running time.

For this work we will be interested in the speed of an algorithm, that is the running

time that an algorithm needs to complete the given task. Given that depending on

what computer an algorithm is run on it may run faster or slower in comparison

with the same algorithm on another computer, due to possibly di�erent hardware

con�gurations, we measure this running time in the number of steps executed.

Furthermore, in order to understand better the performance of an algorithm for

any size input we tend to express the running time of an algorithm as a function

of n, f(n), where n is the input size.

Following on from this it is also important to understand that for large values of n

the lower order terms of the running time function are rendered inconsequential.

Therefore, when looking at the running time of an algorithm it is usual to only

consider non-constant factors. At this point we are considering the order of growth

of the algorithm.

De�nition 1.3. order of growth: The rate at which the number of steps an

algorithm must perform to reach a solution that is given by the dominant factor

in the growth function.

When we are talking about these orders of growth we are looking at the function

as a way of describing the limit for the runtime of the algorithm. In Computer

Science the method that we use to describe the limiting behaviour of functions is
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through asymptotic notation. Table 1.1 shows common examples and de�nitions

of this form of notation.

Table 1.1: Examples of asymptotic notations and their meanings.

Notation Description

f(N) = O(g(N)) f is bounded from above by g asymptotically.

f(N) = o(g(N)) f is dominated by g asymptotically.

f(N) ∼ g(N) f is equal to g asymptotically.

f(N) ∈ Ω(g(N)) f is bounded from below by g asymptotically.

f(N) ∈ θ(g(N)) f is bounded from both above and below by g asymptotically.

f(N) ∈ ω(g(N)) f dominates g asymptotically.

1.2 Distributed Computing

This thesis has its roots �rmly embedded in Distributed Computing, that is com-

puting that takes place in a Distributed Setting.

De�nition 1.4. Distributed Setting : A setting that has no central or controlling

aspect. In computing this can be seen as groups of networked computers that have

processors running concurrently in parallel, each with its own memory.

Distributed Computing tackles problems by utilising the collective power of the

computers or, in the case of this work, robots that inhabit the system. The algo-

rithms in this work therefore are part of a category of algorithms called Distributed

Algorithms. Quite often Distributed Algorithms will tackle separate parts of the

problem with information spread across the system.

De�nition 1.5. Distributed Algorithms : Algorithms that have been designed to

execute concurrently on independent processors.
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One of the biggest factors for Distributed Algorithms is the coordination of the

processors involved in solving the task. However, there are huge bene�ts to using

Distributed Algorithms in the correct setting. For example, a good Distributed

Algorithm will allow for better levels of fault tolerance than a traditional algorithm

as the other processors in the system should seamlessly pick up where the failed

one left of. Furthermore, often it is the case that by splitting a task into sub-parts

that can be carried out by each processor, or robot, in the system the task can be

completed much faster.

1.3 Speci�c Chapter De�nitions

This section of the chapter is designed to layout some speci�c de�nitions of notions

that will be used later on in this work.

1.3.1 Location Discovery

The following de�nitions are in reference to Chapter 3.

De�nition 1.6. Arbitrary but distinct positions : What is meant here is that each

robot starts at a position that is randomly determined and is independent from

the other robots starting locations.

De�nition 1.7. Unit Circle: A unit circle usually means a circle with a radius

of 1. However, for the purpose of Chapter 3 we talk of a unit circle having the

circumference of 1. This is done without loss of precision as it simply allows us to

normalise things with respect to 1, thereby making explanations and understand-

ings clearer.

De�nition 1.8. Anonymous Robots : Robots are de�ned as anonymous as they

are unknown to one another and given their starting con�guration there are no

fundamental di�erences between them and so they could be interchanged without

impact.

De�nition 1.9. Unit Speed : Here unit speed simply means with a speed = 1. This

gives any robots with a unit speed the ability to traverse a unit circle, as de�ned

before, in one time step. As before, we use this de�nition to make explanations

and understandings clearer.
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De�nition 1.10. Synchronised Rounds : The notion of synchronised rounds sim-

ply referes to the fact that all rounds are performed by the robots at the same

time and at the same pace.

De�nition 1.11. Leaving marks : When we refer to robots leaving marks it is to

be understood that for a robot to leave a mark this could mean that they can

leave some sort of signal or note for either other robots, or itself, to discover and

use at a later date.

De�nition 1.12. Exchanging messages : Robots exchanging messages simply refers

to communication between robots. However, in Chapter 3 the robots are limited

to no communication with one another outside of collisions that occur during the

walking phase of a round.

De�nition 1.13. Coupon Collector's Problem (CCP): One player must collect m

coupons. During each consecutive attempt the player draws each coupon with

probability 1
m
. One can use a short calculation and a union bound to prove that

after α · m logm attempts the player is left without a full set of coupons with

probability at most 1
mα−1 , for any constant α > 1 [98]. CCP can be also executed

in consecutive stages, where each stage can be formed of a �xed number ` of

consecutive attempts. In this case one can conclude that it is enough to run

α · m
`

logm stages to collect all coupons with high probability 1− 1/mα−1.

1.3.2 Evacuation Problem

The following de�nitions are in reference to Chapter 4 and Chapter 5.

De�nition 1.14. Group Search: In this context Group Search is the type of

problem we have carried out research on. It involves a group of robots searching

for one or more locations or another robot or other robots in a given environment.

In this work we look at the Evacuation Problem. This is a form of group search

problem where one or more robots search for a location from which to evacuate

the environment. The task is complete when all of the robots in the system have

reached that location.

De�nition 1.15. Line: In Chapter 4 we consider the environment of a line. Here

the robots all start at some point on the line and it is assumed that this line is a

one dimensional line that extends in�nitively in both directions from the robots

starting location.
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De�nition 1.16. Disk : In Chapter 5 we consider the environment of a disk.

This disk is a unit disk where the radius of the disk is 1. The robots start o� in

the centre of the disk and are tasked with locating a single point that is on the

perimeter of that disk.

De�nition 1.17. Mobile Robots : For the purpose of this work all robots men-

tioned have the ability to move and there should be no distinction between the

use of "robots" and "mobile robots".

De�nition 1.18. Maximal Speed : The maximal speed of a robot is the fastest

speed that the robot is able to travel by.

De�nition 1.19. Unit Speed : Throughout this work we make explanation and

understanding clearer by designating the maximal speeds of the robots to be that

of a unit speed. A unit speed in this context simply means a speed = 1.

De�nition 1.20. Non-Wireless/Local Communication: When we talk about non-

wireless or local communication what is meant is that the robots are only able to

communicate with one another when they occupy the same location. We assume

that communication happens instantly and that there is no chance of missed or

corrupt communication occurring.

De�nition 1.21. Wireless Communication: When we talk about wireless com-

munication it is assumed that all robots in the system are able to communicate

with one another at any time no matter where they all are at that time. We as-

sume that communication happens instantly and that there is no chance of missed

or corrupt communication occurring.



Chapter 2

Introduction

2.1 Motivation and Problem Scope

This thesis looks at the area of Distributed Algorithms in the �eld of Computer

Science, more speci�cally it investigates the area of Control Problems for Mobile

robots in Distributed Settings. Work carried out on applied areas of Graph Theory

and Network Analysis can also be found within this thesis.

Firstly, however, we will talk about the world of Mobile robots. The trends in

processing power described by Moore's law and the trends in network tra�c are

increasing at di�erent rates and so the power of our processors cannot keep up

with the demand placed on our networks today. With that said, there is therefore

a need for Distributed Computing, and that will increase further with large parts

of the developing world set to be fully connected to the Internet and thus the

Cloud in the near future. This would suggest that the future of computing will be

heavily dependent on solutions that are, at the very least in part, distributed.

Already the move towards a distributed world has begun with huge leaps forward in

the past few years with regards to making use of distributed computing solutions

in our daily lives. There has been work done by [95] with the aim of creating

a self-organising group of robots to build structures. They work in a scenario

where the robots must locate the building blocks needed and then move the blocks

into position to create a useful structure. The approach used is an increasingly

popular one of looking to nature for the solution with a biological-inspired swarm

intelligence based algorithm proposed.

7



Chapter 2. Introduction 8

There has been much talk about using teams of robotic swarms to explore planets

that are incapable of supporting life and would provide a much cheaper option

than sending a team of astronauts to these planets themselves. [108] propose an

autonomous robotic swarm exploration to search for extra-terrestrial life on Mars.

This would also have applications in a military sense where it may be too dangerous

to send humans in to do reconnaissance, intrusion detection or mine clearing [110].

Leading on from the dangerous settings of the area of war, there has been sig-

ni�cant strides in multi-robot teams for Search and Rescue situations in natural

disaster zones [24, 91]. [24], for example, introduce a multi-robot algorithm for

the use in search and rescue scenarios for exploration of unknown terrain. Their

solution allows for parallel search and rescue operations to be run alongside each

other by exploiting the robustness of distributed teams of robots.

Looking more towards the industrial front and how distributed computing can be

used to enhance our economic needs [48, 76, 88, 101]. Perhaps the most famous

example of this would be the success story of Kiva Systems, [114], who are now

owned by Amazon and have developed and continue research on teams of mobile

robots that manage the giant warehouses that house the stock sold on the online

market site. The work done in [48, 76, 88] shows how swarms of small automated

guided vehicles are employed to collect items from storage shelves in warehouses

and take them to a picking station that helps to simultaneously improve produc-

tivity and speed. In this way operators are able to simply stand still and have

the required move towards them. This method employs the use of inventory pods

that are picked up and moved by hundreds of mobile robot platforms. In 2009

the largest number of Kiva robots in a single warehouse stood at 500, [93], for

a supply company in the USA. Since Amazon integrated the company into their

business that record has been smashed with Amazon itself having 15,000 Kiva

robots spread across its 10 main warehouses in their network, [38].

Even in the sphere of ecological needs there have been attempts in recent years to

use distributed systems to help and aid wherever possible. There is an initiative

at Heriot-Watt University, Edinburgh, Scotland that uses a distributed array of

coral maintenance droids called "corralbots" to help maintain and repair the coral

reefs in the oceans that have become damaged or endangered through over�shing

in those areas [20].
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As it is plainly evident from the applications mentioned above this area of comput-

ing, although studied now for several years, can only continue to grow in number of

applications and importance in humanities dependency upon such systems. This

is why it is imperative that we grow our understanding of the mechanisms and

strategies that control and govern the movements of such Mobile Entities, MEs, so

that we are able to keep up with the demand for ever more intelligent and dynamic

solutions based upon a distributed approach to problem solving in todays modern

world.

2.2 Background

2.2.1 Search and Discovery Problems

The Search Problem is well-studied within the �elds of operations research, com-

puting, and mathematics. This problem deals with a searcher looking for a hidden

object (or �target�), wishing to minimize a resource used in �nding it. Many ver-

sions of this problem can be considered, including variations in the environment,

whether the target is �xed or mobile, and, the use of a deterministic or random-

ized search strategy. Furthermore, there can be di�erences in the approach con-

sidered with respect to the resource being minimised. There has been much work

done with respect to minimising the time to �nd the target [7�9, 13, 14, 27, 32�

34, 43, 46, 47, 50, 52, 78] as well as minimising the memory used to �nd the tar-

get [56, 73]. In the context of search and discovery of di�erent varieties of environ-

ments there is a large volume of robot network exploration algorithms, they mainly

focus on network topology discovery either in graph-based networks [27, 32, 41, 67]

or in geometric setting [43, 52, 78, 115].

Varying the number of searchers is also another variable that has been studied in

the past when looking at such problems. Many papers have investigated search

and discovery algorithms from the perspective of a single explorer, [5, 11, 28, 53,

56, 66, 70, 78]. There is however an obvious motivation to use multiple searchers

in the time needed to complete the search as it usually allows a greater search area

to be covered in a shorter time. Although, in large unknown environments where

communication between searchers is limited either to a short range or perhaps to

the local vicinity it is often useful to consider the case to employ a distributed
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approach as in [27, 32, 34, 46, 67, 68, 73, 105, 115]. There are many advantages

that endorse the use of distributed mobile systems. Working together the MEs

can not only increase their e�ciency but also their reliability through redundancy.

Furthermore, the cost of such MEs is reduced through being able to use less

advanced MEs to complete the same tasks, either through things like reduced

memory or energy used.

However, havingMEs that are less advanced sometimes presents its own problems.

For example, sometimes it is necessary for the MEs to perform a distributed task

without all performing exactly the same set of commands. If there exists no way to

communicate or identify the MEs from one another what can be done to break the

symmetry? In this case we move away from deterministic approaches of addressing

these problems and look towards randomisation for the solution as done in [54, 68].

Search and Discovery problems can also inherently be seen as types of control

problems and as with other control problems many have looked towards the nat-

ural world to help come up with innovative algorithmic solutions, some based on

Brownian Walks and Levy Flights [107, 119] and others looking towards the insect

world with ant and bee colony mechanisms [49, 58, 117].

As seen from above there can be many variations on the Search and Discovery

problem and the book by Alpern and Gal [8] is a good survey of known results for

these.

2.2.2 Rendezvous and Gathering Problems

Search Problems also naturally lead into the Rendezvous Problem, where two or

more searchers seek to meet in an environment, and this problem naturally lends

itself to additional considerations of the inherent abilities of the searchers them-

selves, such as whether they have the same speed or di�erent speeds, their ability

to communicate and see (typically over a limited distance), and if the searchers

are able to follow the same or di�erent search strategy (e.g. do the searchers have

unique identi�ers so they can adopt their own search method, or are they in-

distinguishable and therefore must use the same (randomized or deterministic)

strategy?).

Again, as with the Search and Discovery problem it is possible to approach the

solution from either a centralised or distributed perspective. Approaching from
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the distributed side the main problem that is obvious is agreeing upon a place to

meet. This of course can be made more di�cult by limitations on communication.

As mentioned earlier Rendezvous and Gathering Problems tend to lead on from

Search Problems meaning that many of the variations studied above also apply

here with a lot of research being done in a variety of settings and with a variety

of constraints [37, 84, 100, 113]

2.2.3 Monitoring and Patrolling Problems

The Monitoring Problem is where, in a graph or geometric environment (such as

a simple polygon), MEs are arranged in stationary positions to constantly survey

the graph or region and usually the MEs have a limited �eld of vision. One of the

main targets of such problems is to maxamise the visual range with the minimum

number of MEs as there is probably a cost for each additional ME introduced into

the system. This formulation of the problem is known widely as the Art Gallery

Problem [36].

The problem has gained much popularity in recent years, [21, 59, 71, 121] with

the emergence of more advanced robotic systems meaning that truly distributed

structures can be deployed easily. The idea of MEs that are able to self-organise

into a suitable con�guration for e�cient monitoring has been looked at by [121] in

relation to vehicles that can communicate with each other to position themselves

e�ectively on road systems to minimise congestion with reduced impact on travel

time. Also [59] has looked into neighbour discovery in a sensor network with

directional antennae.

In some circumstances, there may not be enough MEs to constantly monitor the

environment. In this scenario it is vital that the MEs are able to detect this

vulnerability in the system and adapt accordingly. This means that theMEs would

need to adopt a patrolling strategy rather than a static monitoring one. This gives

us the Network Paroling Problem, the main focus of which is to minimise the time

between visits to points of the network or areas of the geometric space by the MEs

as studied by [3, 55, 61, 103, 106, 111]. This becomes more interesting still when

taking into consideration that some areas or points may be more important or

vulnerable than others and so therefore theMEsmay choose a strategy that divides

their time up unevenly between each location to ensure maximum frequency to

certain sections of the patrolled area.
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It is worth noting here that in the setting of a general graph with edges of equal

length then the Network Patrolling Problem is NP-Hard as if there exists only a

single ME then the problem becomes one of �nding a Hamiltonian cycle in the

graph, [29].

As with the previous problems looked at in this chapter the Network Patrolling

Problem is also subject to a wide variety of settings and constraints that can be

imposed to make the problem more realistic to the real world or more interesting

to study. For example, [3] uses a model where communication between the MEs

is limited. This adds an extra dimension of complexity to the problem and can

be used to accurately model a real world situation where surveillance is being

performed where radio silence is necessary.

Furthermore, just like with the Search Problem it may be bene�cial to break up the

symmetry of a deterministic approach by adopting a randomised algorithm instead

when patrolling [4, 69, 106]. Although, this time the breaking of symmetry may

be simply to enable more e�cient paroling in terms of attempting to fool any

potential intruders. A Bayesian learning method was used by [106] to do just this.

The Network Paroling Problem has many real world applications. One of which

is an intuitive jump to make from theoretical surveillance to that of Unmanned

Aircraft Surveillance where work has already been done with that exact scenario

in mind [2].

Again nature can also help provide useful solutions to problems with work being

done using strategies taken from ant colonies to enable paroling of areas or net-

works based on the pheromones left behind to help ensure portions of the patrolled

locations do not go untended for too long [69].

2.3 Summary of Results

2.3.1 Robot Location Discovery

The results we obtained in this area have been published in [68] and are presented

in full in Chapter 3. What is presented is a randomised distributed communication-

less coordination mechanism for n uniform anonymous robots located on a circle

with unit circumference. It is assumed the robots are located at arbitrary positions
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on the ring, unknown to other robots. The robots perform actions in synchronised

rounds. At the start of each round every robot chooses the direction of its move-

ment (clockwise or anticlockwise), and moves at unit speed during that round.

Robots are not allowed to pass by one another, i.e., when a robot collides with

another it instantly starts moving with the same speed in the opposite direction.

Robots are also unable to leave marks on the ring, have zero vision and cannot

exchange messages. However, on the conclusion of each round each robot obtains

(some, not necessarily all) information regarding its trajectory during this round

and no other. This information can be processed and stored by the robot for

further analysis.

The Location Discovery Task to be performed by each robot is to determine the

initial position of every other robot in the system at the start of the scenario and

eventually to return and stop at its own initial position, or proceed to another

task such as Boundary Patrolling, in a fully synchronised manner. The primary

motivation was to study distributed systems where robots collect the minimum

amount of information that is necessary to accomplish this location discovery task.

Our original result for this problem was a fully distributed randomised (Las Vegas

type, [16]) algorithm, solving the Location Discovery Task w.h.p. in O(n log2 n)

rounds (assuming the robots collect su�cient information). Note that this result

also holds if initially the robots do not know the value of n and they have no

coherent sense of direction. We believe that our work in [68] is the �rst attempt

to solve the distributed boundary patrolling problem in the geometric ring (circle)

model. Furthermore, the proof technique of the concept of virtual "batons" that

robots exchange with each other upon collision, we believe, is a novel and intriguing

approach to analysing the motion of the robots in the system. To our knowledge

this is the �rst time such an approach has been used to analyse such a system and

it led to us discovering a rotation of robots positions at the end of each round. This

in turn had a large impact on us designing and analysisng the resulting algorithm.

This method has since been explored and built upon by [45] and [44].

However, Chapter 3 presents another fully distributed randomised (Las Vegas

type, [16]) algorithm that can achieve success w.h.p signi�cantly faster in n +

O(log2 n) rounds. Given the constraints of the model any algorithm will need

to visit all n locations anyway and so there is no escaping this cost. Following

on from this, the limitations of the model lead us to believe that any approach

will need some small amount of costly decisions by the robots. It is also our
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belief that this new algorithm is in fact the optimal solution for this problem as

our approach works by each robot remembering not only where they have been

but the decisions it made to get there. This allows the robot to remember any

bene�cial decisions and reapply them throughout the process while at the same

time avoiding repeating any costs. However, we have yet to formalise a proof for

this claim.

2.3.2 Evacuation Problem on the Line

The results we obtained for the Evacuation Problem on the Line have been pub-

lished in [34] and are presented in full in Chapter 4.

We consider the Group Search Problem on the Line, or Evacuation Problem on the

Line, in which k robots located on the line perform search for a speci�c destination.

The robots are initially placed at the same point (origin) on the line L and the

target is located at unknown distance d either to the left or to the right from the

origin. All robots must simultaneously occupy the destination, and the goal is to

minimize the time necessary for this to happen. The problem with k = 1 is known

as the Cow Path Problem, and the complexity of this problem is known to be 9d in

the worst case (when the cow moves at unit speed), where d is the distance between

the origin and the destination. It is also known that this is the case for k ≥ 1 unit-

speed robots. Our results show for the �rst time a clear argument for this claim by

showing a rather counter-intuitive result. Namely, in any metric, independently

from the number of robots, group search cannot be performed faster than in time

9d. We also examine the case of k = 2 robots with di�erent speeds, showing a

surprising result that the bound of 9d can be achieved when one robot has unit

speed, and the other robot can move with speed at least 1
3
. Finally the case where

k = 3 robots, with one having a speed less than 1, is brie�y looked at and we

show that a bound of 9d can yet again be achieved, but only if the slower robot's

speed is at least 1
5
. Our analysis of this problem is made clear through our use

of Minkowski Spacetime. Introduced by Hermann Minkowski, [96], the Spacetime

cone that is centeral to this theory is a conveniently formulated mathematical

explanation of Einstein's theory of special relativity, [60]. Our use of this concept

in the analysis of the Evacuation Problem is to our knowlage the �rst time such

an approach has been used here and in the related Cow Path Problem.
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2.3.3 Evacuation Problem on the Disk

Our work on the Evacuation Problem on the Disk has been published in [46] and

is presented in full in Chapter 5 of this thesis.

In this work k mobile robots inside a circular disk of unit radius are considered.

The robots are required to evacuate the disk through an unknown exit point

situated on its boundary. It is assumed all robots have the same (unit) maximal

speed and start at the centre of the disk. The robots may communicate in order

to inform each other about the presence (and its position) or the absence of an

exit. The goal is for all the robots to evacuate through the exit in the minimum

time possible.

Two models of communication between the robots were considered: In non-wireless

(or local) communication model robots exchange information only when simulta-

neously located at the same point, and wireless communication in which robots

can communicate between each other at any time.

The following question for di�erent values of k is studied: What is the optimal

evacuation time for k robots? We were able to construct algorithms to accomplish

this and present lower bounds in both communication models for k = 2 and k = 3

thus indicating a di�erence in evacuation time between the two models. Almost-

tight bounds are also obtained on the asymptotic relation between evacuation

time and team size, for large k. Also in the local communication model it is shown

that, a team of k robots can always evacuate in time 3 + 2π
k
, whereas at least

3+ 2π
k
−O(k−2) time is sometimes required. In the wireless communication model,

time 3 + π
k

+ O(k−4/3) always su�ces to complete evacuation, and at least 3 + π
k

is sometimes required. This shows a clear separation between the local and the

wireless communication models.

We found that one of the remarkable points of interest for this problem was that

when increasing the number of participating robots only slightly, and still when

considering a relativity small number of k, the compexity of the problem itself

grew rapidly.
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2.4 Thesis Structure

The chapters in this thesis contain both work related to the main topic of the

doctorate as well as several side interests that the author has pursued throughout

its duration. The material covered in this thesis has been aranged in the following

way:

Chapter 3

This chapter covers Search and Discovery problems, going into the back-

ground of the topic as well as presenting results obtained in [68], as well as

progress made that expands upon this work.

Chapter 4

The material in this chapter focuses more on the collaboration of MEs to

achieve goals while still in the context of Search and Discovery problems as

well as introducing The Evacuation Problem and the results relating to this

produced in [34].

Chapter 5

Expanding on the previous chapter, here details of the material presented

in [46] as an obvious path forward following the promising work accomplished

in [34] will be discussed.

Chapter 6

The �nal chapter shows the conclusions of this work and looks further av-

enues forward for this research.

2.5 Author's Contribution

Chapter 3 is based on the full version of [68], joint work completed by the author

with co-authors, Tom Friedetzky, Leszek G¡sieniec, Russell Martin and Ely Po-

rat. Chapter 4 is work based upon [34] done by the author and co-authors

Marek Chrobak, Leszek G¡sieniec and Russell Martin. The research in Chapter 5

comes from [46], also done by the author with the co-authors Jurek Czyzowicz,

Leszek G¡sieniec, Evangelos Kranakis, Russell Martin and Dominik P¡jak.



Chapter 2. Introduction 17

Everything else is the author's work, written for this PhD project and supervised

by Russell Martin and Leszek G¡sieniec.

Table 2.1: The author's publications and co-authors throughout the duration
of the author's PhD studies.

Title Authors Appeared

Observe and Remain Silent [68]

T. Friedetzky,
L. G¡sieniec,
T. Gorry

and R. Martin

1MFCS 2012

Evacuating Robots from an
Unknown Exit Located

on the Perimeter of a Disc [46]

J. Czyzowicz,
L. G¡sieniec,
T. Gorry,

E. Kranakis,
R. Martin

and D. P¡jak

2DISC 2014

Group Search on the Line [34]

M. Chrobak,
L. G¡sieniec,
T. Gorry

and R. Martin

3SOFSEM 2015

4MFCS 2012: The 37th International Symposium on Mathematical Foundations

of Computer Science, 2012

5DISC 2014: The 28th International Symposium on Distributed Computing, 2014.

6SOFSEM 2015: 41st International Conference on Current Trends in Theory and

Practice of Computer Science, 2015





Chapter 3

Location Discovery

3.1 Introduction

This chapter is based heavily on results published in [68] at The 37th Interna-

tional Symposium on Mathematical Foundations of Computer Science in 2012

(MFCS'12). There is also work presented in this chapter concerning improvements

to the location discovery problem presented in [68] that have been discussed be-

tween the author and their supervisors but at the time of writing have still yet to

be published. Furthermore, it should be noted here that the initial idea for this

problem and the beginnings of the initial solution are already part of the author's

Master's Dissertation, [75], but have been included here as they provide the foun-

dations for what eventually became the paper we published that was mentioned

at the start of this paragraph, [68].

In this chapter we study a randomised distributed communication-less coordina-

tion mechanism for n uniform anonymous robots located on a circle with unit cir-

cumference. We assume the robots are located at arbitrary but distinct positions,

unknown to other robots. The robots perform actions in synchronised rounds. At

the start of each round a robot chooses the direction of its movement (clockwise

or anti−clockwise) and moves at unit speed during this round. Robots are not al-

lowed to overpass, i.e when a robot collides with another it instantly starts moving

with the same speed in the opposite direction. Robots cannot leave marks on the

ring, have zero vision and cannot exchange messages. However, on the conclusion

of each round each robot has access to, some (not necessarily all), information

19
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regarding its trajectory during this round. This information can be processed and

stored by the robot for further analysis.

The location discovery task to be performed by each robot is to determine the

initial position of every other robot and eventually to stop at its initial position,

or proceed to another task, in a fully synchronised manner. Our primary motiva-

tion is to study distributed systems where robots collect the minimum amount of

information that is necessary to accomplish this location discovery task.

Our original result for this problem, [68], was a fully distributed randomised

(Las Vegas type, [16]) algorithm solving the location discovery problem w.h.p.

in O(n log2 n) rounds (assuming the robots collect su�cient information). Note

that our result also holds if initially the robots do not know the value of n and they

have no coherent sense of direction. However, this chapter also presents another

fully distributed randomised, Las Vegas type, algorithm that can achieve success

w.h.p. signi�cantly faster in n+O(log2 n) rounds.

3.1.1 Overview

A cycle-based topology of communication networks is very often identi�ed with

the ring of discrete nodes in which each node has two neighbours at its oppo-

site sides. The ring network is one of the most studied network topologies in the

context of standard distributed computation tasks [92, 109, 120] as well as coor-

dination mechanisms for mobile robots [87]. In this chapter, however, the focus is

on geometric rings, later referred to as circles. The work presented in this chapter

refers to the recently popularised concept of swarms, i.e., large groups of fairly

primitive but cost-e�ective entities (robots) that can be deployed to perform an

exploration or a monitoring task in a hard-to-access hostile environment for hu-

mans, for example on a planet other than Earth where there may be little or no

oxygen for humans to breath. There has been substantial progress in the design

of e�cient distributed coordination mechanisms in a variety of models for mobile

robots, e.g., see [15, 37, 84, 112]. In this chapter a version of the model introduced

in [15] is considered. In that model, the robots operate in synchronised rounds,

they are assumed to be anonymous, and they lack means of communication. A

robot wakes up at the beginning of each round and performs its move that depends

on the current location of other robots in the network. In the model from [15] the

moves are assumed to be instantaneous, but this last assumption is not true in
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this instance. Numerous algorithms have been developed in the literature for a

variety of control problems for robot swarms, see [15, 37, 63, 64, 84, 112]. Most

of these algorithmic solutions, with certain exceptions, e.g., [39], impose on the

participating robots access to the global picture, in other words the ability to

monitor performance of all robots. While there is a large volume of robot network

exploration algorithms, they mainly focus on network topology discovery either in

graph-based networks [27, 32, 41, 67] or in geometric setting [43, 52, 78, 115]. As

mentioned earlier here the focus is on the network model similar to [15] in which

communication is limited to a bare minimum. In such networks, the communica-

tion de�ciency of a robot is compensated by an astute observation and analysis

of its own movement. The trajectory of a robot's movement in a given round is

represented as a continuous, recti�able curve, that connects the start and the end

points of the route adopted by the robot. While moving along their trajectories,

robots collide with their immediate neighbours, and information on the exact lo-

cation of those collisions might be recorded and further processed. When robots

are located on a circle, thanks to its closed topology, each robot may eventually

conclude on the relative location of all robots' initial positions, even given only

limited information about its trajectory. This procedure, in turn, enables other

distributed mechanisms based on full synchronisation including equidistant distri-

bution along the circumference and optimal boundary patrolling scheme. Most of

the models adopted in the literature on swarms assume that the robots are either

almost or entirely oblivious, i.e., throughout the computation process the robots

follow a very simple, rarely amendable, routine of actions. Oblivious algorithms

have many advantages including striking simplicity and self-stabilisation [57] prop-

erties.

3.1.2 The Model

In this chapter geometric network model, i.e., a circle with circumference one is

adopted, along which a number of robots move and interact in fully synchronised

rounds (each of which lasts one unit of time). The robots are uniform and anony-

mous to one another. Moreover, the robots do not necessarily share the same

sense of direction, i.e., while each robot distinguishes between its own clockwise

(C) and anticlockwise (A) directions, robots may not have a coherent view on

this (see Section 3.3.4 for more on this). At the beginning of each round a robot
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chooses a direction of its move from {A,C} and moves at unit speed. It is as-

sumed that robots are not allowed to pass over each other along the circle. In

particular, when a robot collides with another (robot) it instantly starts moving

with the same speed but in the opposite direction. The robots cannot leave marks

on the ring, they have zero visibility and cannot exchange messages. Instead, on

the conclusion of each round every robot learns a speci�c information concerning

its recent trajectory. In particular, for odd n we assume that a robot is informed

about the relative distance between its location at the start and the end of this

round. For even n, however, the robots must also learn about the exact time (loca-

tion) of their �rst collisions during this round. This information can be processed

or stored for further analysis. The aim of a robot is to discover the initial posi-

tions of all other robots. Our main motivation for [68] was to study distributed

systems where robots collect the minimum amount of information necessary to

accomplish the location discovery task, and the novelty comes from considering

the situation where robots operate with a very limited amount of information col-

lected during the discovery procedure. One might consider, for example, that a

robot spends energy to determine its current location, and wants to minimize its

energy expenditure.

Since the robots never pass over one another it can be assumed that the robots

are arranged in an implicit (i.e., never disclosed to the robots) periodic order s.t

robots are located at random intervals along the circumference of the ring from a0

to an−1. The original positions of ai, are denoted by pi for all i ∈ [n]1. Note that,

due to the periodic order of robots, all calculations on implicit labels of robots

that follow are performed modulo n.

Note however, that the circumference of the circle has to be known in advance.

Otherwise, a participating robot might not be able to tell the di�erence between

n = 1 and n > 1. In particular, if the robot imposed a limit on the traversal time

until the �rst collision, the adversary would always choose the circumference to

be large enough to accommodate distant locations between the robots preventing

them from ever getting close enough. On the other hand, if the robot continues

its search inde�nitely, the adversary could choose n = 1 and the location dis-

covery process would never end. Thus, it is important to know either n or the

circumference of the circle.

1[n] = {0, 1, . . . , n− 1} for any natural number n.
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3.1.3 Results

We assume that n mobile robots are initially located on a circle at arbitrary,

distinct and undisclosed positions. As stated previously, the task of each robot is

to determine the initial position of every other robot. On the conclusion of the

algorithm robots either synchronously stop at their initial positions or may proceed

with another task. For the clarity of presentation, we �rst provide a solution to

the distributed location discovery under the assumption that the robots have a

coherent sense of direction, i.e. they all have the same understanding of what

direction clockwise and anti-clockwise is, and the value n is known in advance

to all robots. Later, in Sections 3.3.3 and 3.3.4 we provide further evidence on

how these two assumptions can be dropped. Finally, we brie�y describe how

the location-discovery mechanism can be used to coordinate actions of robots

in distributed boundary patrolling on circles, see Section 3.3.5. This last part

should be seen as a natural continuation of [42] devoted to e�cient centralised

patrolling mechanisms designed for robots with distinct maximum speeds. We

believe that our work in [68] is the �rst attempt to solve the distributed boundary

patrolling problem in the geometric ring (circle) model. Our work in this chapter

shows that we can accomplish this task in O(n log2 n) rounds w.h.p.. However, we

can introduce the concept of a Stationary choice of movement where that robot

initially chooses not to move but instead remains at its starting location until a

collision with another robot. Using this we also show in this chapter that with

the added inclusion of a Stationary choice of movement at the start of a round

robots are able to accomplish the task w.h.p. signi�cantly faster in n+ O(log2 n)

rounds..

All of the bounds in this chapter hold with high probability2 (w.h.p.) for n large

enough. However, one can easily modify the solutions such that by periodically

repeating actions of robots, they can solve the task with the required level of

con�dence even for smaller, e.g., constant values of n.

3.2 Rotation mechanism

The location-discovery algorithm is formed of a number of stages. Each stage is a

sequence of at most n consecutive rounds, each of unit duration. Recalling from

2With probability at least 1− 1/nc for some positive constant c.
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earlier, a round lasts exactly one unit of time. Given that the ring is one of unit

circumference this would be exactly enough time for the robot to walk the entire

circumference and arrive back at its original starting location if it experienced

no collisions along the way, i.e. if the robot was the only one in the system.

At the beginning of the �rst round of each stage a robot ai randomly chooses

the direction (clockwise or anticlockwise) of its movement, and moves with unit

speed throughout the entire stage. Later throughout the same stage, the exact

location and the movement direction of ai depends solely on the collisions with its

neighbours ai−1 and ai+1. We show that on conclusion of each round the robots

always reside at the initial positions p0, . . . , pn−1, where there is a k ∈ [n], equal

for all robots, such that the current location of robot ai corresponds to pi+k. It

should be noted here that depending on the initial choices of all the robots in

terms of their direction of movement then pi+k could also be pi−k. Also note that

this observation allows robots to visit (and record) the initial positions of other

robots. Thus, part of the limited amount of information that a robot obtains is

its position, relative to its initial starting location, at the end of each round. A

stage concludes at the end of a round when each robot ai arrives at its original

starting position pi. We show that w.h.p. robots require O(log2 n) stages to learn

the locations of their counterparts. Since each stage is formed of at most n rounds,

the total complexity of our algorithms is bounded by O(n log2 n).

Throughout the discovery procedure, robots move with uniform speed one. Recall

when two robots collide, they instantly bounce back without changing their uni-

form unit speed. While observing two indistinguishable colliding robots, one could

wrongly conclude that the two robots overpass each other. We assume that at the

beginning of each stage of our algorithm every robot ai holds a unique virtual baton

bi. During the �rst collision with either ai−1 or ai+1 this baton gets exchanged for

a baton currently held by the respective robot. In due course, further exchanges

of batons take place. We emphasize that the concept of batons is solely a proof

device in what follows, that they do not actually exist as far as the robots are

concerned, and that no actual communication (or exchange of any object) takes

place between the robots when they collide.

Lemma 3.1. At the start of each round baton bi resides at position pi, for all

i ∈ [n].

Proof. At the start of the location discovery procedure, bi resides at pi for all i.

During the �rst round, baton bi moves in a unidirectional manner with unit speed
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(being exchanged as appropriate during collisions), so bi must arrive at pi on the

conclusion of this �rst round. Inductively, at the end of each round (i.e. start of

the next round) of the procedure, bi will reside at position pi.

Using Lemma 3.1 it can be concluded that at the start of each round the robots

populate initial locations p0, . . . , pn−1. In fact, one can state a more accurate

lemma.

Lemma 3.2. There is a k ∈ [n] s.t. at the start of each round, for all i ∈ [n],

robot ai resides at position pi+k.

Proof. At the start of the location discovery procedure, all initial positions are

populated by the robots, each carrying a (virtual) baton. From Lemma 3.1, bi

begins (and ends) each round at position pi. Since some robot must always be

carrying bi, there is a robot occupying the location pi at the beginning of a round,

and some (possibly di�erent) robot occupying pi (and holding bi) at the end of

the round. The same argument holds for each i, hence all n initial locations are

occupied at the end (start) of each round. Recall that the robots never overpass,

i.e., robot ai always has the same neighbours ai−1 and ai+1. Thus, if ai resides at

position pi+k for some k, then ai−1 and ai+1 must reside at the respective locations

pi+k−1 and pi+k+1.

Using the observation from Lemma 3.2, consider the respective locations pj+k1

and pj+k2 of robot ai at the start of two consecutive rounds. One can conclude

that during one round all robots rotated along the initial positions by a rotation

index of r = k2 − k1, i.e. each robot experiences the same shift by r places (either

clockwise or anticlockwise) between the beginning and the end of one round.

Lemma 3.3. During one stage the rotation index r remains unchanged.

Proof. The movement direction of each robot at any moment is determined by the

movement direction of the virtual baton currently possessed by that robot since,

during each round, a baton moves in a unidirectional manner around the ring.

Since at the beginning of each round the virtual batons reside at their original

positions and they do not change their directions during the entire course of the

stage, the rotation index throughout each stage must remain unchanged. At the

beginning of a stage, the (random) choices of the robots determine the directions
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of the batons during the entire stage, i.e. if robot ai chooses �clockwise�, then

baton bi will move clockwise during that entire stage. Since at the beginning of

each round, the virtual batons reside in their original positions (Lemma 3.1), and

they don't change their directions during the entire stage, this means the pattern

of movement and collisions (swaps of batons) of the robot beginning a round at pi

will be identical that of ai during the �rst round of the stage. Hence, the rotation

index remains unchanged during an entire stage.

Following on from this it can now be shown that the rotation index r depends

on the initial choice of random directions adopted by the robots. Consider the

�rst round of any stage. Let sets BC and BA contain the virtual batons that move

during this round in the clockwise and anticlockwise directions, respectively, where

|BC | = nc, |BA| = na, and nc + na = n. We say that during this stage virtual

batons form a (nc, na)-con�guration.

Lemma 3.4. In a stage with a (nc, na)-con�guration, the rotation index

r = nc − na.

Proof. By Lemma 3.2 it is enough to prove the premise of the lemma for one robot.

Without loss of generality, assume that baton bi is in BC . At the beginning of any

round baton bi is aligned with position pi, and assume that at the beginning of

the considered round bi is carried by robot aj.

First note that bi can only be exchanged with batons from BA since all batons in

BC move with the same speed in the clockwise direction. Moreover, during any

round every baton from BC is exchanged with every baton from BA exactly twice

at certain antipodal points of the ring. Why is this? Suppose bk ∈ BA, and let d

denote the distance (along the circumference) between bi and bk, measured in the

clockwise direction. Note that d < 1 since robots start at distinct locations. Then

bi and bj meet (are exchanged by colliding robots) at time d/2. After additional

time 1/2 (since d/2 + 1/2 < 1), bi and bk meet again at the antipodal point of

their �rst collision before returning to their respective positions at pi and pk.

Thus, during any round baton bi is exchanged between colliding robots exactly

2na times. Also, since bi moves in the clockwise direction during each exchange,

an index of the new hosting robot is increased by one. Thus at the end of the

considered round when bi arrives at pi it is hosted by robot aj+2na . This leads to

conclusion that the rotation index is r = −2na.
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Focusing on batons from BA, one can use an analogous argument to prove the

rotation factor r = 2nc. Now since nc + na = n it follows that −na = nc(mod n)

and �nally −2na = 2nc(mod n) admitting the uniform rotation index r across all

robots.

Finally, na + nc (that has value 0 modulo n) is added to −2na and the rotation

index r = nc − na is obtained.

3.3 The Location Discovery Algorithm

Using the premise from Lemma 3.4, one can observe that if the rotation factor

nc−na is relatively prime with n, denoted gcd(nc−na, n) = 1, a single stage with

an (nc, na)-con�guration will last exactly n rounds. Moreover, during such a stage

every robot will visit the original positions of all other robots. For example, if

n > 2 is a prime number, one stage with nc, na 6= 0 would be enough to discover

the original positions of all robots. However, the situation complicates when n is

a composite number. For example, when n is even, the di�erence nc−na is always
even, meaning that n and nc − na cannot be relatively prime. This means that

the mechanism described above will allow robots to discover at most half of the

original positions.

In what follows this work �rst presents the discovery algorithm for odd values of n.

Following on from this it is shown how this algorithm can be amended to perform

discovery also for even values of n.

3.3.1 Algorithm for odd values of n

As mentioned earlier, the algorithm works in stages concluded by robots' arrival

to their initial positions. It is further assumed that the robots know n and they

have a coherent sense of direction.

The algorithm explores the basic properties of the network model, re�ected in

the functionality of the procedure Single-round, accompanied by a randomised

control mechanism. The procedure Single-round describes the performance of

a robot during a single round. As input the procedure accepts two parameters:

current relative location, loc, and direction, dir ∈ {C,A}, i.e., the clockwise (C)
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or the anti-clockwise (A) direction of movement. On the conclusion of the round

the procedure returns two parameters: new-dir, i.e., the direction of the robot to

move in the new round; and a real value new-loc, a relative distance (positive or

negative) that describes the position relative to its starting point at the beginning

of the round. (This allows the robot to compute its relative distance from its

starting point at the beginning of the stage, or the entire discovery procedure as

the model assumes that the robot has access to unlimited memory and processing

power, as well as GPS information about itself.) Recalling the discussion at the

beginning of this section, the set of new-loc data collected during the procedure

is su�cient to accomplish the location discovery task if n is odd, if the robots are

in an (nc, na)-con�guration with gcd(nc − na, n) = 1.

The main (randomised) control mechanism of the procedure Discover is pre-

sented in Algorithm 1. Initially, the list of known points is empty. At the end

of each round the content of the list is updated. Note that in step (3) the ini-

tial directions are chosen uniformly at random as this clearly is the only sensible

choice.

Algorithm 1: The location-discovery procedure of a robot.

the-list← ∅
repeat

pick direction dir from {C,A} uniformly in random
set loc = 0
repeat

(new-dir ,new-loc) ← Single-round(loc, dir)
the-list← the-list ∪ {new-loc}
dir ← new-dir ; loc← loc+ new-loc

until loc = 0

until |the-list| = n
return the-list

Here a stage is de�ned as successful when gcd(nc − na, n) = 1, i.e., when every

robot visits all initial positions of other robots.

Lemma 3.5. For any odd n > 0, a successful stage occurs within the �rst O(log2 n)

stages, w.h.p.

Proof. The de�nition of a successful stage earlier clearly indicates that there is a

desire to target a distribution of directions with gcd(nc − na, n) = 1. To simplify

this task it is best to focus only on prime values of the rotation index where
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|nc − na| <
√
n. Note that the probability that during a stage the value |nc − na|

is obtained is 2 ·
�
n
nc

�
/2n. Using Stirling's factorial approximation one can prove

that this probability is Ω(1/
√
n), for all |nc − na| <

√
n.

It is also known [94] that for a large enough integer m (> 15, 985) the m-th prime

number is not larger than m(logm + log logm). This can be also interpreted

that for m large enough there are Ω(m/ logm) prime numbers smaller than m.

In particular, it can be conculded that there are Ω(
√
n/ log n) primes between 0

and
√
n. Note, however that not all of these prime numbers need to be relatively

prime to n. However, n can have at most O(log n) prime divisors. So there are

Ω(
√
n

logn
− log n) primes between 0 and

√
n that are also relatively prime to n.

This leads to the conclusion that the probability that any one stage is successful

is Ω((
√
n

logn
− log n) · 1√

n
) = Ω( 1

logn
). In other words, there exists a constant co > 0

such that a stage is successful with probability at least co/ log n.

Finally, the performance of Discovery can be described by a Bernoulli process

where the probability of success is co/ log n in each stage. It is a well-known fact

that after co log n stages of such a process, the probability of reaching a successful

stage is constant, and after co log2 n stages this probability is high.

Since each stage is composed of at most n rounds, the following can be concluded.

Theorem 3.6. For any large enough odd n, the number of rounds required to

perform full discovery of the robots' initial positions is O(n log2 n) w.h.p.

Proof. Each stage is formed of at most n rounds. Since w.h.p. the algorithm

accomplishes the discovery task in O(log2 n) stages, the time complexity of

Discovery is O(n log2 n).

3.3.2 Amendment for even n

For the case when n is even it should be noted that for any nc+na = n we have that

nc−na is also even. Thus, one cannot simply await a stage with gcd(nc−na, n) = 1.

To deal with this problem we have came up with two solutions that can be applied,

they are described below.
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3.3.2.1 More information during a round

The �rst option available to us to be able to circumnavigate this issue is to target

stages with gcd(nc − na, n) = 2, and in particular when |nc − na| is a double of

a prime. Using a similar argument as in Lemma 3.5, one can prove that such a

successful stage (where gcd(nc − na, n) = 2) occurs with probability Ω(1/ log n).

In a successful stage, the robots form a bipartition Xeven ∪ Xodd, where Xeven =

{a0, a2, . . . , an−2} and Xodd = {a1, a3, . . . , an−1}, and each robot learns the initial

positions of all other robots in the same partition.

So can we solve the full location discovery problem in this case? Well, we can,

provided a robot receives the same data about its new location at the end of each

round as before, as well as the time until (or location of) its �rst collision in each

round. We show that this very limited additional information su�ces to allow the

robots to solve the discovery problem. Note that this amendment is not changing

the model as de�ned in the introduction of this chapter, but merely changing

the amount (and type) of information a robot receives during execution of the

procedure.

Recall that the calculations here are all done modulo n. With this in mind now

consider a successful stage where gcd(nc−na, n) = 2. During this stage any robot

ai ∈ Xeven will visit all initial positions p0, p2, . . . , pn−2 and any ai ∈ Xodd will visit

all initial positions p1, p3, . . . , pn−1. More formally this can be written as for any

i = 0, . . . , n− 1 and j = 0, . . . , n
2
− 1, robot ai+2j (respectively,ai+2j+1) also visits

the initial position pi (resp. pi+1) of ai (resp. ai+1). Note that if at the beginning

of this stage robot ai picks direction C and robot ai+1 (from the other partition)

picks direction A, the two robots meet halfway between pi and pi+1 after traversing

distance min-dist = |pi − pi+1|/2. When this happens, the robots can retrieve the

original positions of one another, i.e. robot ai concludes that pi+1 = pi+2·min-dist

and robot ai+1 concludes that pi = pi+1 − 2 ·min-dist .

Note also that when robots ai and ai+1 pick the same direction C (or A) the

distance to the �rst meeting with ai+1 that is observed by robot ai is always longer

than min-dist . Thus, to learn the correct distance to pi+1, a single successful stage

with initial directions C of ai and A of ai+1 is su�cient. In other words, we need

to run the procedure Discovery long enough to ensure that such a stage occurs

w.h.p. This means that a robot ai ∈ Xodd will maintain a record of its current

estimates of the starting locations of neighbors in Xeven, and similar for a robot
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ai ∈ Xodd. These estimates use the �rst collision information that a robot receives

in each round, and the calculations described above (i.e. the �rst collision distance

is used to estimate min-dist to the left or right neighbour). This record is updated,

as appropriate, throughout the discovery procedure to build up a complete picture

of the starting locations of the robots in the other partition.

Observe that if in the �rst round of a stage ai (respectively, ai+1) learns pi+1 (resp.

pi), then in the next n
2
− 1 rounds of this stage every other robot ai+2j (resp.

ai+2j+1) learns pi+1 (resp. pi) since the directions of the batons bi and bi+1 remain

unchanged throughout the entire stage.

This leads us to conclusion that to solve the location-discovery problem for even

n we need to run procedure Discovery until, for each i = 0, . . . , n − 1, there is

some successful stage in which robots ai and ai+1 start moving during the �rst

round in directions C and A, respectively. We show that O(log2 n) stages of

procedure Discovery (modi�ed so that a robot also collects the distance until

its �rst collision in each round) still guarantee a solution to the discovery problem

(w.h.p.) for even n.

Lemma 3.7. For any even n > 0, each robot learns the positions of the others

within the �rst O(log2 n) stages w.h.p. when using the approach of having access

to more information during a round.

Proof. In order to simplify the proof we focus on two sets of pairs of initial posi-

tions: P0 = {(p2j, p2j+1) : j ∈ [n
2
− 1]} and P1 = {(p2j+1, p2j+2)) : j ∈ [n

2
− 1]}.

Within each set, each pair contains distinct robots' initial positions, and every

such position belongs to some pair.

We split consecutive successful stages (with gcd(nc − na, n) = 2) of procedure

Discovery into two alternating sequences S0 and S1, where in stages from S0 we

consider pairs from P0 and in stages from S1 we consider pairs from P1.

Without loss of generality, consider the sequence S0. Recall that in these stages

every robot visits every second initial position on the circle. Thus if, e.g., in the

beginning of the �rst round of this stage robot a2j moves in direction C and robot

a2j+1 moves in direction A, after the �rst stage these two robots learn their relative

positions, and in the remaining n
2
− 1 rounds of this stage all other robots in Xeven

learn p2j+1 and all other robots in Xodd learn p2j. Thus we need to consider enough

number of stages in S0 such that, for each j = 0, . . . , n
2
, there is a stage in which
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robot a2j starts moving in direction C and robot a2j+1 starts moving in direction

A.

We �rst assume that |nc− na| <
√
n, which occurs w.h.p. Under this assumption,

during each stage in S0, we randomly populate the n
2
pairs in P0 with pairs of

directions, (A,A), (A,C), (C,A) and (C,C). Since our primary interest is in the

pair (C,A), we �rst estimate from below the expected number of (C,A) generated

during each successful stage in S0. We generate pairs sequentially at random

assuming that initially the number of As and Cs is at least n
2
−
√
n
2
. We generate

these pairs until either the remaining number of As or the remaining number of

Cs is smaller than n
4
−
√
n
2
. This means that we generate at least n/4

2
= n

8
pairs.

One can now show that the probability of picking a mixed pair (C,A) is at least

1/5.

Recall the Coupon Collector's Problem (CCP) from De�nition 1.13 in which one

player must collect m coupons. In this case one can conclude that it is enough to

run α · m
`

logm stages to collect all coupons with high probability 1− 1/mα−1.

We note here that random generation and further distribution of (C,A)s in suc-

cessful stages can be also seen as a version of coupon collection executed in stages.

The n
2
pairs of positions in P0 correspond to coupons in our version of CCP. Dur-

ing a single attempt in a successful stage (that occurs with probability ce/ log n)

a pair (C,A) is drawn with probability 1/5 and allocated at random to one of the

n/2 pairs in P0. Thus, in a successful stage, in a single attempt each coupon (pair

in P0 with allocated (C,A)) is drawn with probability 2/(5n).

Compare now a single stage in standard CCP with a successful stage in our ver-

sion of CCP. If in CCP a speci�c coupon is drawn more than once, the second and

further attempts are void. In other words, these multiple attempts are wasted. In

a valid stage of version of CCP (based on Discovery), however, if an attempt

results in a coupon (pair in P0 with allocated (C,A)) that has been already col-

lected in this stage, the attempt is continued until a not yet collected coupon is

found. In other words, during a valid stage we may in fact generate more (but

certainly not fewer) coupons compared to the respective stage in standard CCP.

Recall that during a successful stage at least n/8 sequential attempts are made,

where each coupon out of n/2 is drawn with the probability 2/(5n). Since the

probability de�ned on all coupons does not sum up to one, we may add a missing

number of �null� coupons, each also drawn with probability 2/(5n). In turn, we
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obtain our version of CCP run in stages with m = 5n/2 coupons and stages of

length ` = n
8
. Recall also that in our version of CCP α · m

`
logm stages are required

to collect all coupons w.h.p. 1− 1
mα−1 . Since the length of each stage is ` = n

8
and

m = 5n
2
, one can conclude that α · 5n/2

n/8
log(5n

2
) = 20α · (log(5

2
) + log n) < 25α log n

stages of Discovery are needed to generate (C,A) for each pair in P0, with

probability 1− 1/(5
2
· n)α−1. This gives a high probability of success for α > 2.

Similarly, one can analyse the generation of (C,A)s for all pairs in P1. Thus w.h.p.,

all robots can learn the position of all other robots with O(log2 n) stages of Dis-

covery.

3.3.2.2 More movement choices

The second option available to us is the introduction of a Stationary choice of

movement at the start of each round. In this approach we say that the robots still

are not aware of when their collisions occur but instead are able to now choose

from three movements. Now in addition to the choices of clockwise (C) or the

anti-clockwise (A) each robot is allowed to make the decision to remain stationary

(S). What this means exactly is that at the start of that round any robot that

chose (S) will not move in any direction. The only time a robot will move during

a round after choosing this case will be when another robot that has made the

choice to travel in a direction collides with the stationary robot. At this time the

stationary robot would adopt the direction of the colliding robot and that robot

becomes stationary. The decision is now made by each robot in the following way.

They will still each decide randomly and independently their initial movement. S

is chosen with a constant probability P and then with 1
2
(1 − P ) either C or A is

chosen.

So, why does this help? Well if we take the case that n = even and we apply

these new settings it could happen that the number of robots actually moving,

and therefore a�ecting the rotation discussed in Lemma 3.2, becomes odd. Thus

leaving us with the same problem as before and allowing us to still use the same

algorithm and assumptions about the model as when n = odd.

Lemma 3.8. For any even n > 0, each robot learns the positions of the others

within the �rst O(log2 n) stages w.h.p. when using the approach of having more

movement choices.
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The purpose of allowing a robot to make a choice from {C,A, S} is that it will allow
some permutations to exist where nc + na is odd, thus allowing the Discovery

algorithm to work as intended for cases of odd n.

From the proof for (Lemma 3.3) we know that when only the directions of C and

A are used robots exchange batons when they collide and when this collision and

exchange occurs the robot also takes on the directional behaviour of that baton

as well. Therefore, in the case when S is also an option that may be chosen by a

robot when a robot exchanges batons with a robot that chose S they receive their

baton as usual and also inherit this choice to remain stationary. In the event where

a robot who is in possession of a stationary baton experiences collisions from both

sides at the same time then the two mobile robots that initiated the collisions

will simply exchange batons with each other, leaving the stationary robot with its

original stationary baton.

Now recall that when only the directions of C and A are used a robot will collide

with every other robot twice during a round as shown in the proof for (Lemma 3.2).

This can no longer be the case as the stationary baton will remain stationary for

the stage and so will experience only one collision with every mobile robot during

each round. Following on from this observation we can say that if a robot chooses a

clockwise direction then it will experience a number of (2na +ns) collisions during

a round. If the robot chooses an anti-clockwise location then it will experience a

number of (2nc + ns) collisions during a round and �nally if the robot has chosen

the stationary choice then it will experience (−nc + na) collisions per round.

Following on from this we can use a very similar argument from (Lemma 3.4)

as the rotation index during a stage using the Discovery algorithm is governed

by those robots that are mobile. During a stage where nc + na is odd we can

discover initial starting locations as we would if n was also odd. Essentially if a

robot carried a stationary baton during a round it would "sit out" that round of

discovery thereby allowing the robots that are mobile the chance to discover new

starting locations during that round as if n was odd.

3.3.3 Amendment for unknown n

When n is unknown we will need another important observation. Consider a single

stage where the direction of each of n batons is chosen uniformly at random. One
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can show that w.h.p. the batons form a (nc, na)-con�guration satisfying |nc−na| <
10
√
n.

During the Discovery procedure, each robot is constructing a (partial) map of

the initial positions of all robots. If gcd(nc − na, n) = 1, then in one stage each

robot will learn the initial positions of all other robots (but, of course, will not

know that if n is unknown). If we have gcd(nc−na, n) > 1, a robot visits (records

the location of) at least n
|nc−na| initial robot positions during the stage. Assuming

the robot collects the distance to �rst collision in each round, it also builds (or

updates) estimates of positions of nearest neighbours in its map (when n is odd,

these may coincide with positions the robot visits; when n is even these estimates

are necessary to determine the entire map, as outlined in Section 3.3.2).

Because |nc − na| < 10
√
n w.h.p., we note that (w.h.p.) a robot will visit at

least
√
n/10 initial positions in any stage. Hence, after an initial small (constant)

number of stages, a robot can use the number of positions visited to obtain a very

good estimate (or overestimate) for n, except that it may not know if n is even

or odd. a robot determines the parity of n during the Discovery procedure by

observing if it actually visits the (calculated) positions of its nearest neighbours.

3.3.4 Sense of direction agreement

While a coherent sense of direction was not essential during the execution of pro-

cedure Discovery, we will need it to solve other problems, such as boundary

patrolling where all robots are asked to move in one direction. Recall that when

the robots start they may not share the same sense of direction.

Two types of stages (rounds) can be distinguished: (1) when the robots do not

collide, and (2) when collisions happen. Note that an extra agreement procedure

is not needed if a stage of type (1) occurs. When the robots do not collide (i.e.

after one time unit they arrive back at their starting locations) they assume that

their current direction is the clockwise direction.

Observe that the probability that all robots choose the same direction is very

small ( 2
2n

= 1
2n−1 ). Therefore we focus on stages of type (2) where we also have the

rotation index r 6= 0. When the �rst such stage occurs, the robots that experience

r > 0 do not change their understanding of the clockwise direction, and those with

r < 0 replace the clockwise direction with its anticlockwise counterpart.
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The probability that a stage of type (2) with r 6= 0 occurs is 1 − 1
2n−1 when n is

odd and 1 −
�
n
n/2

�
/2n − 1

2n−1 � 1/2 when n is even. Thus after O(log2 n) stages

of procedure Discovery the probability that agreement on sense of direction is

reached is very high.

3.3.5 Equidistant distribution and boundary patrolling

In this section we consider application of location discovery to the boundary pa-

trolling problem, see [42], where robots walk along the circle inde�nitely with the

goal of minimising the maximum time between two consecutive visits at any point

located on the circle. During the location discovery procedure, robots always move

with the unit speed. However, in order to obtain the equidistant distribution, that

is a distribution along the circle where the space between the robots is equal, each

robot must be able to set its speed as a value 0 ≤ s ≤ 1 during the course of a

single round.

Recall that on the conclusion of procedure Discovery every robot ai is aware of

the relative location of (or distance to) other robots. For equidistant distribution,

during a single adjustment round each robot ai is asked to move from pi to a target

position ti, where |ti+1 − ti| = 1
n
, for all i ∈ [n].

Theorem 3.9. In the considered distributed model of computation, n robots with

the maximum speed one can reach equidistant distribution in one round, after the

location of all robots have been discovered.

Proof. Consider all distances di = |pi+1 − pi|
and form a cyclic word D = d0, d1 . . . dn−1 in which the end values d0 and dn−1

are concatenated.

We say that this cyclic word D has a period w if, for all i = 0, . . . , n−1, di = di+w.

Further, D is non-periodic if the shortest period of D is equal to n. Otherwise D

is called periodic.

We distinguish two cases in relation to periodicity of D.

Case 1 D is non-periodic. A non-periodic cyclic word of length n generates

n di�erent cyclic rotations. In particular, D generates n cyclic rotations r0 =

d0 . . . dn−1, r1 = d1 . . . d0, all the way to rn−1 = dn−1 . . . dn−2. These rotations can
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be sorted lexicographically, where ri < rj if 0 ≤ x < y ≤ n− 1, di+x < dj+y for all

and di+x = dj+x.

Since in this case all rotations are di�erent there must exist the smallest rotation

in this order, and let this be rs = dsds+1 . . . ds−1. Note that rs uniquely identi�es

position ps, i.e., the breaking point in D that forms rotation rs. This means that

all robots can compute the exact location of position pi. This position becomes

the reference point in the equidistant distribution round. In particular, during

this round the robot as remains at position ts = ps, and every other robot pi

moves to the position ti located at distance i−s
n

from ts in clockwise direction (or

anticlockwise, if negative).

Since the adjustment is performed in a single round, robot ai moves towards ti

along the shortest route with the constant speed 0 ≤ |ti− pi| < 1. This is to allow

every robot to arrive at its destination exactly at the end of the round. Note �rst

that during this adjustment round the robots do not change their order on the

circle. Thus if two robots move towards each other (from di�erent directions) they

never collide. Similarly, if two robots move in the same, say clockwise, direction

they cannot collide. Otherwise, a faster robot would attempt at some point to

overpass (collide with) a slower one while having a shorter distance to be traversed

until the end of the round at a higher speed. Thus at the end of the adjustment

round all robots arrive on time at their equidistant target positions.

Case 2 The shortest period of D is u < n. In this case we observe that u is a

divisor of n and there are exactly u di�erent cyclic rotations of D. Let rs = rs+u =

· · · = rs−u be the smallest cyclic rotation. This time we have a set of n
u
breaking

points BP = {ps, ps+u, . . . , ps−u}.

During the adjustment round all robots residing at positions in BP do not move,

i.e., ti = pi, for all pi ∈ BP . Every other robot ai can work out its relative

location in the period including its geometric |pi−pj| and rotation |i−j| distances
to the closest (in anticlockwise direction) breaking point pj ∈ BP. During the

adjustment round ai traverses to its target position ti = pj + |i−j|
n

with the speed

|ti − pi|. Finally, using a similar argument to the one adopted in Case 1 one can

conclude that also in this case there will be no collisions and all robots will arrive

on time at their equidistant target positions.
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3.3.6 Boundary patrolling

In the boundary patrolling problem the mobile robots are asked to adopt movement

trajectories such that the maximum time, taken across all points in space, between

two consecutive visits by some (possibly di�erent) robots is minimised.

Theorem 3.10. In the considered distributed model of computation, n robots with

the maximum speed one can adopt an optimal cyclic boundary patrolling strategy.

Proof. On the conclusion of the adjustment round all robots start moving along

the circle with maximum speed one in the same, e.g., clockwise direction. We

show that this cyclic patrolling strategy is optimal. First note that this solution

admits the idle time 1
n
(the maximum time any point is unobserved). Note that if

at any time t there exists a greater than 1
n
gap between two robots ai and ai+1, the

midpoint between ai and ai+1 is at distance greater than 1
2n

from both of them.

This, in turn, means that this point was visited strictly before time t− 1
2n

and will

be visited strictly after time t + 1
2n
, admitting the idle time strictly greater than

1
n
. Therefore all robots must move with maximum speed either in the clockwise or

anticlockwise direction.

3.4 Faster Algorithm

In this section a modi�ed strategy for solving the location discovery problem on

the ring is considered. This new strategy involves the robots remembering the

decisions that they had made in the past in terms of the directions they picked

at the start of each round. This small piece of information that is remembered

actually helps in a big way by allowing the robot to learn from costly decisions

it made in the past. These costly decision will become more evident later on but

the basic idea of this faster approach is to attempt to prevent the robots ending

a round at, "visiting", a previously discovered location. Through limiting the

number of repeat "visits" to previously discovered locations we have been able to

decrease the upper bound for this problem from O(n log2 n) rounds to n+O(log2 n)

rounds.
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Algorithm 2: FasterDiscovery(n: integer)

List Points, History, V ectorSet
{C,A} dir
R location
Points,History, V ectorSet← ∅
location, i← 0
pick direction dir from {C,A} uniformly at random
append location to Points
while location == 0 & |points| < n & location /∈ Points do

append location to Points
append dir to V ectorSet
move for 1 round and set location

end while

remove last element from VectorSet
History ← V ectorSet
V ectorSet← ∅
while |points| < n do

IncreaseGranularity()
remove last element from VectorSet
History ← V ectorSet
V ectorSet← ∅

end while

return Points

3.4.1 Odd n

In the case for when n is odd then we perform a new FasterDiscovery algo-

rithm as de�ned in Algorithm 2. The basic idea of the solution is that a robot

picks a direction at random and walks for a stage discovering the starting loca-

tions of the other robots as it moves. After this initial stage is complete the robot

then picks a new direction, also at random, and then follows the steps outlined

in the IncreaseGranularity algorithm, shown in Algorithm 3. The new im-

proved algorithm relies on an iterative approach to allow each robot to explore

for one round in the chosen direction and then if the newly visited location has

not been previously discovered the algorithm iterates over the list of stored direc-

tions used in previous stages using a saved history. However, if the visited point

has been previously discovered the IncreaseGranularity algorithm comes to

an end and the control of the robots movement returns to the main loop in the

FasterDiscovery algorithm.

In this way it is possible for the robot to never repeat discovery patterns from

previous stages over starting locations that have already been discovered as every
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Algorithm 3: IncreaseGranularity()

{C,A} originalDir
boolean badDir
pick direction dir from {C,A} uniformly at random
badDir = false
move for 1 round and set location
while location = 0 & |points| < n & location /∈ Points do

append location to Points
append dir to V ectorSet
originalDir = dir
while location == 0 & |points| < n do

foreach set ∈ History do
foreach newDirection ∈ Set do

dir = newDirection
move for 1 round and set location
if location /∈ Points then

append location to Points
append dir to V ectorSet

else

badDir = true
break

end if

end foreach

if badDir == true then
break

end foreach

if badDir == true then
break

end while

end while

time the robot sets out on one of these previously walked patterns it will stop

itself in the �rst round of that stage and start again with a new direction. The

e�ect of this is that the running time for the discovery process is reduced from

O(n log2 n) rounds w.h.p. to n + O(log2 n) rounds w.h.p. (see Lemma 3.11). The

robots still need to perform the walking and colliding portion of the process, hence

the O(log2 n), however now we only need to do this once for each starting location

discovered.

Figure 3.1 shows an example of the algorithm at work in a scenario where n = 27

and the robots were unable to �nd a gcd(n,rotation-index) = 1 in the �rst few

stages. In this scenario the FasterDiscovery algorithm would allow for a faster

solution than the original solution outlined earlier in this chapter. Figure 3.1
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Stage 3

nc − na = 7
gcd(27, 18, 12, 7) = 1
Vector = V3

Vector Set = (V3, V1, V1, V2, V1, V1, V2, V1, V1,V3, V1, V1, V2,
V1, V1, V2, V1, V1)
History saved = (V3, ((V1, V1), (V2, (V1, V1), V2, (V1, V1)),V3,
((V1, V1), (V2, (V1, V1), V2, (V1, V1))))

Figure 3.1: A simple example of the algorithm at work when n = 27.

shows that during Stage 1 the robots have traveled along a rotation − index of

18 thus giving a gcd of 9. From this the robots are able to complete the stage

having discovered every starting location spaced at 9 starting locations apart, in

this case this means that they have discovered their own starting location plus

2 other starting locations around the ring. Furthermore they have also found

that by traveling for one round they move by a vector, given as V1, meaning that

after one stage they have traveled with a complete V ectorSet of V1, V1, V1 and in
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doing so have visited the points labeled 0, 1 and 2 in that order. The robot is

also able to realise that the last vector it traversed brought it back to it's starting

starting location (position 0), a starting location it had already discovered. This

is important because it means that in future stages when the robots are iterating

through the direction history portion of the algorithm they are able to save time

by knowing they have no need to perform this last vector of the already discovered

V ectorSet, therefore saving 1 round of traversal in each iteration performed.

This can be seen clearly in Stage 2 of Figure 3.1. Notice how the robot will

travel from it's original starting location (position 0) to a new location through a

rotation − index of 12 for 1 round to position 1. At this point the robot realises

it has not been in this starting location before and so can switch to using the

direction it chose during Stage 1. The robot then travels with this new direction

for 2 rounds, thereby performing the actions mapped in the �rst V ectorSet stored

in the robot's History and visiting positions 2 and 3, before switching back to

using the direction it had chosen at the start of Stage 2 and moving to position 4.

Using this method the robot has discovered only starting locations that it had not

previously discovered as it had learned that by traveling for a third round using

the same direction it had used in Stage 1 it would end that round in a starting

location it had previously discovered and in doing so would have been wasting

time. However, the robots have not �nished this stage yet as a stage only ends

when the robot is either back at it's original starting location at the end of a

round or all of the starting locations have been discovered. Therefore the robot

now repeats itself by moving for one round using the direction it had chosen at

the start of Stage 2 and then moving for another 2 rounds using the direction it

had used during Stage 1. Finally, the robots move for 1 round using the direction

chosen at the start of Stage 2. Stage 2 now comes to an end as the robots are

all now back in their original starting locations having visited and subsequently

discovered positions 5 and 6 as well.

In the �nal stage of the example given in Figure 3.1 the robots pick a direction

again and the perform similar actions to the ones carried out in the second stage.

That is each time a new starting location is discovered when traveling with the

choice of direction from the current stage, the robots then iteratively perform the

search process using the history produced from each of the previous stages, in the

order of Stage 1, Stage 2, ... In this example Stage 3 �nishes prematurity as all

of the starting locations have been discovered. If this was not the case then the
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robots would have walked for another 10 rounds, following the pattern from the

V ectorSet, before arriving back at it's original starting location. In this example

the robot moves from its starting location at position 0 to position 1 through a

rotation − index of 7. At this point the robot is aware this is a newly visited

location and proceeds to adopt the previous moves it has made in the past when

it has found a new location. This means that it �rst adopts the direction and

subsequent moves used in Stage 1 for two rounds to move to position 2 and then

3 before adoption the direction and subsequent moves used in Stage 2 using the

saved History. Doing this allows the robot to travel in the same manner as Stage 2

to discover positions 4, 5, 6, 7, 8 and 9 before reverting back to its chosen direction

for Stage 3. At this point the pattern begins again, with the robot �rst moving to

position 10 and then iteratively going through its previous movements in Stage 1

and then Stage 2 to discover the �nal positions.

This method of discovery allows us to represent the ring as we have done in

Figure 3.1 and to say that for each stage completed the granularity of the starting

locations discovered had been increased to the gcd(n, rotation− index1, rotation−
index2, ..., rotation− indexi), where i is the stage that was completed last.

Lemma 3.11. For any n > 0, each robot learns the positions of the others within

the �rst n + O(log2 n) rounds w.h.p. using the FasterDiscovery algorithm if

the stationary (S) direction is allowed.

Proof. Using the iterative method of the FasterDiscovery and IncreaseG-

ranularity algorithms we can show that the total number of rounds needed to

complete the Location Discovery Problem is n + O(log2 n) rounds. This can be

broken down into the number of rounds is required to do two things. Firstly, the n

portion comes from the fact that, due to the lack of communication present in the

system, each robot has to visit the home bases of each of the other n robots. The

second portion of O(log2 n) rounds comes from the fact that we are targeting a

stage with a gcd(n,Ψ, nc−na) = 1, where Ψ is the set of all previous nc−na from
completed stages. Using the FasterDiscovery and IncreaseGranularity

algorithms to achieve this robots start a new stage and move for one round if they

�nish a round at a home base that they have already learned in the past then

the robots realise this error and instead start a new stage and pick a new random

direction of movement. The number of times this happens in the pursuit of a

stage with a gcd(n,Ψ, nc − na) = 1 is O(log2 n). This can be shown in the same
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way as in Lemma 3.5, where we prove that it takes O(log2 n) rounds to achieve a

successful stage, that is one where gcd(n, nc − na) = 1.

3.4.2 Even n

Previously when n is even we have had problems with the original Discover al-

gorithm and needed to adapt it slightly to allow for detection of the �rst collision

during each round. Using this technique and given enough time the robot could

build up a picture of where the starting locations of all the robots where as there

would never be a con�guration where gcd(nc−na, n) = 1 and hence a stage where

the robot could visit all of the starting locations on the ring. This issue can not

be overcome in the same way if we make use of the FasterDiscovery algorithm

as we do not allow for the required number of rounds for the robot to build up

this reliable picture of where the starting locations are located. Instead what we

can do is simply modify the FasterDiscovery and IncreaseGranularity

algorithms to accept a third direction, stationary (S), along with clockwise (C)

and anticlockwise (A). Robots would now make a choice between moving and S

with equal probability and then if their choice was to move then they would make

another random choice between C and A with equal probability. Allowing this

change would mean that we can continue to use the steps in the the FasterDis-

covery for each robot and still achieve a running time of n + O(log2 n) rounds

w.h.p..

Lemma 3.12. For any even n > 0, each robot learns the positions of the oth-

ers within the �rst n + O(log2 n) rounds w.h.p. using the FasterDiscovery

algorithm if the stationary (S) direction is allowed.

Proof. The purpose of allowing a robot to make a choice from {C,A, S} is that
it will allow some permutations to exist where nc + na is odd, thus allowing the

FasterDiscovery and IncreaseGranularity algorithms to work as intended

for cases of odd n.

As shown in Lemma 3.8, using the Stationary choice as well as Clockwise and

Anti − Clockwise the rotation of robots during a round remains the same as

when only Clockwise and Anti − Clockwise directions are allowed therefore in

this setting when a stage occurs where nc + na is odd we can discover starting

locations as we would if n was also odd.
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Following on from this we can apply the FasterDiscovery and IncreaseG-

ranularity algorithms to the problem as if n itself was odd and, as shown in

Lemma 3.11, we end up solving the problem in n+O(log2 n) rounds w.h.p..

3.5 Conclusion

We presented a fully distributed randomised algorithm that solves the location

discovery problem w.h.p. in O(n log2 n) rounds. We then also extended this result

to show that the location discovery problem can actually be solved much faster

with the new algorithm that terminates with all starting positions discovered after

n+O(log2n) rounds.

We also show how this mechanism can be used to distribute n robots evenly on

the circle and how to coordinate their joint e�ort in e�cient boundary patrolling

of the circle. We have shown that this result is also true if initially the robots are

not aware of their number n and they have no coherent sense of direction.

In this chapter we focused on the case with known circumference. The question

whether one can solve the location discovery problem for the case with known

n and unknown circumference remains unanswered. Another promising direction

would be the design of deterministic discovery algorithms in models where robots

bear unique identi�ers. One could also consider more complex network topologies

in which likely more detailed information would have to be used by the robots to

allow them to solve the discovery problem.





Chapter 4

Evacuation on the Line

This chapter introduces the Evacuation Problem, more speci�cally this chapter

will cover work done in [34] that has been accepted to The 41st International

Conference on Current Trends in Theory and Practice of Computer Science 2015

(SOFSEM'15).

We will consider the group search problem, or evacuation problem, in which k

robots located on the line perform search for a speci�c poiont on the line that will

be known as the destination. The robots are initially placed at the same origin

on the line L and the target is located at an unknown distance d, either to the

left or to the right from the origin. All robots must simultaneously occupy the

destination, and the goal is to minimize the time necessary for this to happen.

The problem with k = 1 is known as the Cow Path Problem, [18] and the time

required for this problem is known to be 9d − o(d) in the worst case (when the

cow moves at unit speed); it is also known that this is the case for k ≥ 1 unit-

speed robots. A clear argument for this claim is presented later in this chapter

by showing a rather counter-intuitive result that was published in our paper [34].

Namely, independent of the number of robots, group search cannot be performed

faster than in time 9d − o(d). We also examine the case of k = 2 robots with

di�erent speeds, showing a surprising result that the bound of 9d can be achieved

when one robot has unit speed, and the other robot moves with speed at least 1/3.

47
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4.1 Introduction

Search problems are well-studied within the �elds of operations research, comput-

ing, and mathematics. Indeed, nearly sixty years ago Bellman [25] asked a question

that can be stated as follows: �A hiker is lost in a forest whose dimensions are

known to her. What is the best path for her to follow to escape the forest?�

In general, search problems deal with a searcher looking for a hidden object (or

�target�), with a goal of minimizing the time required to �nd it. Many versions

of this problem can be considered, including variations in the environment (e.g.,

a geometric setting vs. a graph), whether the target is �xed or mobile, or if the

target is a point in space or a boundary of a region or other curve, the use of a

deterministic or randomized search strategy, and whether or not the searcher(s)

have access to additional tools to aid the search (such as markers to drop in the

environment) [18, 19, 27, 28, 30, 72, 77, 86, 89].

Search also naturally leads into the rendezvous problem, where two or more searchers

seek to meet in an environment, and that problem itself lends itself to additional

considerations of the inherent abilities of the searchers themselves, such as whether

they have the same speed or di�erent speeds, their ability to communicate and

see their environment (typically over a limited distance), and if the searchers are

able to follow the same or di�erent search strategy, e.g. do the searchers have

unique identi�ers so they can adopt their own search method, or are they in-

distinguishable and therefore must use the same (randomized or deterministic)

strategy? [10, 40, 55]. The book by Alpern and Gal [8] is a good survey of known

results for both the search and rendezvous problems.

The focus of this chapter is the group search problem or evacuation problem, where

k mobile robots, all starting from the origin on the line, must �nd and simultane-

ously gather at the target located at an unknown distance d from the origin. The

inspiration for the name comes from consideration of an evacuation procedure of

a building (one, say, that is on �re). Evacuation can be considered a very special

case of the rendezvous problem mentioned earlier. The signi�cant di�erence be-

tween rendezvous and evacuation is that all participants must gather at the same

point in space, and at the same time. Some of the mobile robots might �nd the

target location and leave it, only to return later, but the evacuation problem is

only deemed to be ��nished� when all mobile robots simultaneously gather at the

target.
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In the case of the line that is consider here, the most relevant previous results

are in relation to the cow-path problem, a search problem that was introduced by

Baeza-Yates, et al. in 1988 [18] and has since been considered in the same form

and in di�erent variations in [17, 19, 72, 81, 82, 89, 116].

The cow-path problem involves a single cow, Eloise1, who is standing at a cross-

roads (de�ned as the origin) with w paths leading o� into unknown territory.

Traveling with unit speed, the goal of Eloise is to locate a target destination (say,

a tasty patch of grass) that is at distance d from the origin in as small a time

as possible. Eloise faces three di�culties: (1) she does not know the value of d,

(2) she does not know which of the w paths leads to the goal, and (3) her eyesight

is not very good, so she will not know she has found the goal until she is standing

in it.

Baeza-Yates, et al. [18, 19] studied the cow-path problem, and proposed a deter-

ministic algorithm they called Linear Spiral Search (detailed later) as a solution.

In the case that w = 2 (two paths), this algorithm will �nd the goal in time at

most 9d, and they showed that this is optimal up to lower order terms. In the

same work, the authors considered the case of w > 2 paths, showing an optimal

(up to lower order terms) result of
(
1 + 2 ww

(w−1)w−1

)
d time bound to �nd the target

using a deterministic search strategy.

Let us move away from cows, and into the world of mobile robots (robots) in what

follows, opening up these robots to (possibly) have more computational power,

memory, and/or communication ability than the average cow. The words target or

destination will be used throughout this chapter to denote the goal of the search.

In [17] Baeza-Yates and Schott examined other variations of the cow-path problem

in these stronger settings. They note the straightforward fact that if d is known

by the robot then, in the worst case, it must travel for 3d units of time (for

w = 2 paths). They also considered cases involving two or more robots having

uniform speed. If the robots are able to communicate arbitrarily far away, then

a total distance of at least 2d must be traveled to �nd the destination, and 4d if

both robots must reach the destination. Baeza-Yates and Schott showed the total

distance traveled when no communication is present, and both robots must reach

the goal is also 9d, the same time it would take a single robot.

1From the book Eloise and the Old Blue Truck, by Kennon Graham, illustrated by Florence
Sarah Winship, a childhood favorite of one of the authors.
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The previous results all applied to deterministic search algorithms. Kao, et al. [82]

examined the �rst randomized algorithm for the cow-path problem and, for the

case of w = 2 paths, obtained an optimal randomized 4.59112d bound for the

search time. Those authors also give a bound for w > 2 paths, which they conjec-

ture to be an optimal randomized strategy.

The cow-path problem, with either one or two robots, cannot be solved in time

smaller than 9d (up to lower order terms), where d is the distance from the origin

to the destination, and the robots have unit speed. This result is proved, and

re-proved in various fashions, in [17, 19, 72, 81, 82, 89, 116]. However, [17] seems

to claim that if the number of robots is greater than two, then the evacuation

procedure can be performed in a smaller time. This claim is dispute here in �rst

part of this chapter through a proof showing that 9d is also optimal (up to lower

order terms) when the number of robots is at least 2. By doing so an alternative

way of proving the lower bound of 9d than the papers previously mentioned have

done can be presented.

In the second part of this chapter, there will be some discussion around the study

of the evacuation problem where mobile robots have di�erent maximum speeds. It

will be shown, with somewhat surprising results (to the authors at least), that when

there are two (or more) mobile robots, one with unit speed and the others having

maximum speed at least 1/3, then the evacuation problem can still be performed

in time at most 9d. The authors believe that this is the �rst result regarding

the evacuation problem with mobile robots having di�erent maximum speeds, and

hope to inspire further work in this direction. Indeed, the authors know of no

prior work in the �eld of search, rendezvous, or evacuation that considers mobile

robots with di�ering maximum speeds.

4.2 Results

This chapter looks at the scenario where there are k robots on the line, all starting

at the origin. Here, work is done in the restricted setting where communication

between robots is only possible when they are in contact (i.e. occupy the same

location), but it is also assumed that any communication occurs instantaneously.

This chapter examines the evacuation problem where all k robots must simulta-

neously occupy a target located at an unknown distance d from the origin. Note
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this does not preclude a robot from �nding the target and moving away from it

(to return later), but rather that the evacuation problem is only completed when

all k mobile robots are on the target at the same time. The aim is to achieve this

goal in as small a time as possible. It is assumed here that d is a positive integer,

but most of the results achieved here can be generalised for rational or real values

of d, provided that d is not too small.

In Section 4.2.1 k(≥ 2) Mobile Robots, MRs, having a uniform speed that (by

re-scaling time) will set to 1 are considered. The Linear Spiral Search method

described in [18, 19] in which a single robot can �nd a target in time at most

9d can be brie�y recalled here, as well as recalling a coordinated method for two

robots to solve evacuation in time at most 9d.

Here a new proof of a lower bound of 9d− o(d) for the evacuation time of two or

more robots having unit speed will be given. (Theorem 4.5)

In Section 4.3 the case when k = 2 and the robots have di�erent maximum speeds

will be looked at. Where the speeds of the robots will be normalised by setting

the speed of the fastest robot to 1 and then setting the speed of the slower robot

proportionately. It will be demonstrated in this chapter that, provided the speed

of the slower robot is at least 1/3, then the 9d evacuation time bound can still be

achieved. (Theorem 4.7)

In these considerations time-space diagrams will be used to support the reasoning

and the proofs. A time-space is a 2d-plane with the horizontal axis representing

location on the line L and the vertical axis refers to the time t. For the purpose of

this chapter only the half-plane where the values of time are positive will be taken

into account. In this context, the trajectory adopted by a robot can be described

as a function of time t to give a location on L.

4.2.1 Multiple robots with uniform speeds

As mentioned earlier, there has been much previous work done in this area of

the problem before. However, the goal of this section is to provide a clear and

complete explanation to the claim of the 9d − o(d) worst case in this setting for

multiple searchers with uniform speeds. d will be used throughout this chapter

to denote the destination as well as the (unknown) distance to that destination.

This should not cause confusion as the meaning should be clear from the context.
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For completeness we �rst recall what is known in the case of one or two searchers.

The strategy for this time bound involves at least one robot traveling to the right

and at least one to the left until the destination is found or they are alerted to the

destination being found elsewhere on the line. If the robot �nds d then immediately

it turns around and heads in the opposite direction with its maximum speed so

that it is able to catch up with the other robots and inform them of the discovery

of d. Once informed, a robot heads towards d with its maximum speed. After all

robots have been informed, then they will gather at the target to complete the

evacuation procedure.

4.2.2 A basic strategy for a single mobile robot

As a brief reminder, a search strategy in the case of a single robot for two paths was

outlined in [19], referred to as Linear Spiral Search by the authors in that paper.

This search strategy is given as Algorithm 4, where for simplicity we consider the

two paths to be a line in this case.

Algorithm 4: A �doubling strategy� for a single mobile robot

begin

r ← 1
dir ← left /* dir ∈ {left, right} */

while (Destination not found) do
Walk distance r in direction dir and return to the origin /* (Stop at

destination if found.) */

Reverse dir
r ← 2 · r

end while

end

This deterministic search strategy for a single robot yields the search time of 9d,

which is optimal up to lower order terms [19, Theorem 2.1].

4.2.3 Evacuating two mobile robots on the line

For the evacuation problem with two robots on the line (or two paths), there are

at least two strategies that will yield a 9d upper bound for the problem.
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One strategy is that each robot ignores the existence of the other robot and simply

executes their own version of Algorithm 4, independently of the other (in fact,

each robot can independently begin by going left or right at the start of their own

procedure). This will clearly give an evacuation time of at most 9d, since an robot

that �nds the destination simply waits for the other.

A second strategy coordinates the use of the searchers to �nd the target.

Once the target is located, the robot that �nds it informs the other, and they both

return to the destination together. In order for this strategy to work, the robots

must use a speed slower than their maximum speed during the initial exploration

phase, so that the ��nder� is able to catch up with (and inform) the other searcher.

Algorithm 5 is one such coordinated evacuation procedure. The two mobile robots

move with a speed of α during the �exploration� phase where they are searching

for the evacuation point, switching to maximum speed to inform the other robot

once the destination is found, and to move to/return to the destination. Later in

this chapter it is argued that a speed of α = 1/3 gives the 9d search bound.

Theorem 4.1. Algorithm 5, with α = 1
3
, gives an evacuation procedure with time

bound 9d, where d is the distance from the origin to the destination.

Proof. Consider the time-space diagram in Fig. 4.1. The vertical axis is time and

the horizontal one is distance.

So the two robots start at the origin and move along the red lines, until one of

them �nds the target. The one who �nds the target (e.g. the right one in Fig. 4.1)

then moves at maximum speed (along the green line) to inform the other robot.

Finally, the pair moves to/returns to the destination at maximum speed (this �nal

part of the movement is not shown on the diagram).
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Algorithm 5: Coordinated evacuation for two mobile robots on the line

/* The robots are R1 and R2, with (current) speeds s1 and s2, resp.

*/

begin

s1 ← α, dir(R1)← left
s2 ← α, dir(R2)← right
while (Destination not found) and (Not informed) do

Ri moves in direction dir(Ri) at speed si
if (Ri �nds the destination) then

InformOtherrobot(Ri) /* See subroutine below */

end if

end while

/* Now both robots know the direction of the target */

s1 ← 1, dir(R1)← direction towards target
s2 ← 1, dir(R2)← direction towards target

end

/* Subroutine to inform the other robot */

begin

si ← 1, dir(Ri)← opposite of current direction
while (Not encountered other robot) do

Ri moves in direction dir(Ri) at speed si
end while

Inform other robot of (direction of) destination

end

Thus, using the labels in Fig. 4.1, there are the following de�nitions:

d1 = The distance from the origin to the destination (= d).

t1 = Time to discover the destination by one robot.

t2 = Additional time for this robot to inform the other robot.

d1 + d2 = The distance from the origin where the two robot will meet

in this scenario.

α =
d1
t1

=
d2
t2

= Speed used during initial exploration, and by the second

robot until it is informed of the location of the destination.

Therefore, the total evacuation time is t1 + t2 + 2d1 +d2. The 2d1 +d2 terms come

from the time for the pair of robots to travel to the destination (after R1 has been

informed of the location of the target), as they are using their maximum (unit)

speed, and must travel a total distance of 2d1 + d2.
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Figure 4.1: Time/space diagram for the evacuation procedure in Algorithm 5.

d1d1d2

t2

t1

time

distance

R2 �nds destination

R2 informs R1

The rest is a few calculations, as the goal here is to have

t1 + t2 + 2d1 + d2 ≤ 9d1. (4.1)

Using that t2 = 2d1 + d2 (since the ��nder� takes this much time to inform the

other robot, and moves a distance of 2d1 + d2 in doing so), it an then be found

that

t2 = 2αt1 + αt2

or t2 =
2α

1− αt1 =
2

1− αd1,

and d2 = αt2 =
2α

1− αd1.
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Using these expressions for t1 and t2 in Equation (4.1), the goal is for

1

α
d1 +

2

1− αd1 + 2d1 +
2α

1− αd1 ≤ 9d1

1

α
+

2

1− α + 2 +
2α

1− α ≤ 9

(1− α) + 2α + 2α(1− α) + 2α2 ≤ 9α(1− α)

9α2 − 6α + 1 ≤ 0

(3α− 1)2 ≤ 0. (4.2)

Equation (4.2) is only satis�ed when α = 1
3
. So using Algorithm 5 with an �explo-

ration speed� of α = 1
3
gives an evacuation procedure for two robots that works in

time at most 9d.

4.2.4 Energy conservation by coordinated evacuation

As noted earlier, the 9d bound on the time to complete the evacuation can be

achieved by each robot using its own (independent) version of Algorithm 4. (In-

deed, each robot can choose to start the procedure by �rst searching left or right

independently of the other robot, and otherwise follow the doubling strategy of

Algorithm 4.) Here this chapter remarks that the coordinated strategy of Al-

gorithm 5 provides a bene�t over each robot simply using their own version of

Algorithm 4.

Namely, there is a savings if we consider the total distance traveled by the robots,

and therefore a savings in terms of energy consumption. For Algorithm 4, each

robot (in the worst-case) can travel a distance of 9d, for a combined total distance

traversed by the pair of 18d, if each acts separately from the other.

In Algorithm 5, the total distance traveled is d1 + d1 = 2d (for the �discovery

phase�), 2d1 + 2d2 = 4d (for the �inform phase�), and 4d1 + 2d2 = 6d (to reach the

evacuation target). Thus, the total combined distance traveled by both robots is

12d, a savings of 1/3 of the total cost of the non-coordinated evacuation procedure.
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4.2.5 A lower bound

In [17], the authors make the statement �if we have more [than two] robots, we can

have two robots searching and coming back to certain points, while other robots

can carry messages between the searchers until the goal is found. In this case, the

goal can be reached in a smaller time.�

It is unclear to these authors whether the authors of [17] are claiming that the

evacuation problem can be solved in time smaller than 9d− o(d) given using more

than two searchers. In any case, we would dispute such a claim, and here we want

to give a new proof that 9d is a lower bound (up to lower order terms) on the

evacuation problem (for any number of robots). We remind the reader that the

lower bound of 9d− o(d) was proven to be optimal for a single robot in [19]. We

want to investigate the lower bound for two or more robots with a maximal speed

of 1.

So here we assume that there are at least two robots performing the group search

problem. To facilitate our proof, we �rst de�ne some notation. We suppose

that the robots performing the evacuation procedure are following some �xed

(but unknown) algorithmic procedure, which may or may not be coordinated.

The only restrictions we impose are the ones mentioned earlier, that robots can

only communicate when they occupy the same point, that this communication is

instantaneous, and that the maximum speed is 1.

De�nition 4.2. For t > 0, we de�ne α(t) ∈
�
0, π

2

�
as the angle, measured in

radians, as follows:

α(t) = sup
t′≥t

§
arctan

�x
t′

�
: (x, t′) ∈ E

ª
,

where E is the set of all pairs (x, t′) such that some robot is at distance x from

the origin at time t′.

In other words, α(t) de�nes a symmetric cone (centered around the origin) of size

2α(t) in the time/space diagram that contains all terrain that is ever explored

from time t to time ∞ during the evacuation procedure, if we assume that the

evacuation target does not actually exist, so that the robots will be exploring the

x-axis forever. This cone, inspired by Minkowski Spacetime [96], exists as two

robots exploring with a maximum speed tan(α(t)) could never travel fast enough

to travel beyond the boundaries of this cone.
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It is easy to see that tan(α(t)) ≤ 1 for all t > 0 since the maximum speed of the

robots is 1.

We note the following facts without proof.

Fact 4.3. For any sequence 0 < t1 < t2 < . . ., we have α(t1) ≥ α(t2) ≥ . . .. In other

words, for any increasing sequence of numbers {ti}∞i=1, the sequence {α(ti)}∞i=1 is

a non-increasing sequence.

Fact 4.4. limi→∞ α(ti)
def
= α exists, and is independent of the particular increasing

series of numbers {ti}∞i=1 chosen.

The previous fact follows as the non-increasing sequence {α(ti)}∞i=1 is bounded

below (by 0), and, hence by the monotone convergence theorem, has a limit. (We

can alternatively express Facts 4.3 and 4.4 in terms of the tangents of the angles.)

The following theorem and proof shows us if there exists any point that was

reached by a robot outside of the previously mentioned cone of potentially explored

space that happened to be the evacuation point then to complete the evacuation

procedure in (at most) 9d it must also be the case that tan(α) = 1
3
.

Theorem 4.5. Suppose that there are two robots performing the evacuation. If

tan(α) 6= 1
3
, where α is the limit de�ned in Fact 4.4, then there exists d > 0 and

δ > 0 such that the evacuation procedure takes time at least (9 + δ)d.

Proof. For the sake of this proof, we may suppose that there is an �adversary� who

decides where to place the evacuation target, provided that this point has not yet

been visited by any robot in the evacuation procedure.

Given ε > 0, let us pick t0 and t1 > t0 large enough so that:

(a) |tan(α(t0))− tanα| < ε,

(b) the position at time t1, z(t1), of an robot Z also satis�es
∣∣∣ |z(t1)|

t1
− tan(α)

∣∣∣ <
ε (Remark: We assume, without loss of generality, that the value of α(t)

in an interval around t1 is de�ned by an robot located to the right of the

origin. Otherwise, we may consider a similar argument to the one that follows

where α(t1) is de�ned by an robot to the left of the origin. Hence, under our

assumption, the robot could be at the point labeled Z in Fig. 4.2.5.), and
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(c) the line from Z extending backwards in time at a 45◦ angle to the time-axis

that intersects the cone de�ned by the angles ±(α± ε) does so after the time

t0. (See Fig. 4.2.5.)

The purpose of the last condition is that the shaded region shown in the �gure has

been unvisited by any robot (as has the corresponding region on the right-hand

side of the �gure, but we have not shaded that region).

t0
αL αR

Z
D

D

45◦

target d

d

t′

Figure 4.2: Time/space diagram of con�guration used to establish the lower
bound

Given this choice of t0 and t1, the evacuation point is placed slightly inside of the

shaded region, as shown in Fig. 4.2.5.

With this con�guration as labeled, we can make the following conclusions:

The earliest time that the evacuation point, at distance d from the origin, can be

found is at time t′, where t′ satis�es tan(α + ε + ζ ′) = d
t′
, for a small ζ ′ > 0 (to

guarantee the target is in the unexplored region). Note that we can also choose ζ ′

so that ζ ′ < ε.

This means that the earliest time that robot Z could learn about the existence

of the target is at the time t′ + d + D, where D satis�es
∣∣∣ D
t′+d+D

− tan(α)
∣∣∣ < ε.

This is because Z is at the speci�ed location in the diagram at time t′ + d + D,
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and obtaining the information at an earlier time would violate the �speed of light�

in this time frame (which is the maximum speed of 1, indicated by the line that

makes a 45◦ angle with the time axis).

Finally, this means that the earliest that robot Z could arrive at the evacuation

point is at time t′ + 2 · (d+D), since Z would require time d+D to travel to the

evacuation point from its current location at full speed.

The remaining part of this argument is some calculations in order to attempt to

lower bound the sum t′ + 2 · (d+D). First we have that

tan(α + ε+ ζ ′) =
d

t′
as already noted, and (4.3)

tan(α± ζ ′′) =
D

D + d+ t′
for a small 0 < ζ ′′ < ε (with sign (4.4)

depending upon the exact location of Z).

Using Taylor's Theorem (see your favorite beginning calculus book), we note that

we can write

tan(α + ε+ ζ ′) = tanα + (sec2 α)(ε+ ζ ′) + g(δ′)(ε+ ζ ′)2 and (4.5)

tan(α± ζ ′′) = tanα± (sec2 α)(ζ ′′)± g(δ′′)(ζ ′′)2 (4.6)

where g(z) = 2 sec2 z tan z, 0 < δ′ < ε+ ζ ′, and 0 < δ′′ < ζ ′′.

The signs in (4.6) depend upon the position of Z. For the location of Z as given

in Fig. 4.2.5, we have that (4.6) is actually (using the appropriate signs):

tan(α− ζ ′′) = tanα− (sec2 α)(ζ ′′)− g(δ′′)(ζ ′′)2. (4.7)

(The case for Z located on the other side of the angle labeled αR is similar to the

analysis we give below, and is left to the reader.)

Then, for small ε, ζ ′, and ζ ′′, we can �nd (small) constants C1 and C2 (that depend

upon ε, ζ ′, and ζ ′′) such that

tan(α + ε+ ζ ′) ≤ tanα + (sec2 α)(ε+ ζ ′) + C1(ε+ ζ ′)2 (4.8)

and tanα− (sec2 α)(ζ ′′)− C2(ζ
′′)2 ≤ tan(α− ζ ′′). (4.9)

We note that C1 → 0 as ε+ ζ ′ → 0 and, similarly, C2 → 0 as ζ ′′ → 0.
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In what follows, in order to simplify the notation somewhat, we will let x = tanα

and recall, of course, that sec2 α = 1 + tan2 α = 1 + x2.

Therefore, from (4.3) and (4.4), and (4.8) and (4.9) we can write:

t′ ≥ d

x+ (1 + x2)(ε+ ζ ′) + C1(ε+ ζ ′)2
, and (4.10)

D

D + d+ t′
≥ x− (1 + x2)(ζ ′′)− C2(ζ

′′)2, from which we get (4.11)

D ≥ (d+ t′) (x− (1 + x2)(ζ ′′)− C2(ζ
′′)2)

1− x+ (1 + x2)(ζ ′′) + C2(ζ ′′)2
. (4.12)

(Again, in the other case to consider for the location of the robot Z, one can obtain

similar inequalities to use as lower bounds.)

The earliest time that robot Z can complete the evacuation procedure is t′ + 2 ·
(d + D) which, using (4.10) and (4.12) is lower bounded by the function, after

some simpli�cation,

d · h(x, ε, ζ ′, ζ ′′, C1, C2)
def
= d

¨
1

x+ (1 + x2)(ε+ ζ ′) + C1(ε+ ζ ′)2
+ 2

+

�
2 (x− (1 + x2)(ζ ′′)− C2(ζ

′′)2)

1− x+ (1 + x2)(ζ ′′) + C2(ζ ′′)2

�
·
�

1 +
1

x+ (1 + x2)(ε+ ζ ′) + C1(ε+ ζ ′)2

�«
.

Recall that if ε+ ζ ′ → 0, then C1 → 0, and if ζ ′′ → 0, then C2 → 0.

So let us consider the function f(x) = 1
x

+ 2 +
�

2x
1−x

�
·
�
1 + 1

x

�
. We claim that

f(x) ≥ h(x, ε, ζ ′, ζ ′′, C1, C2) for a �xed x, and for all small enough ε, ζ ′, ζ ′′, C1, and

C2, and h(x, ε, ζ ′, ζ ′′, C1, C2) increases to f(x) as {ε, ζ ′, ζ ′′, C1, C2} all approach 0.

Elementary calculus tells us that f(x) is minimized, under the restriction that

0 < x < 1, when x = 1
3
. In this case, we have f

�
1
3

�
= 9, and f(x) > 9 for any

other value of x ∈ (0, 1)−
¦
1
3

©
.

We therefore claim that for any other value of x ∈ (0, 1)−
¦
1
3

©
, since f(x) > 9, and

since h increases with decreasing values of {ε, ζ ′, ζ ′′, C1, C2}, we can �nd (suitably

small) ε, ζ ′, and ζ ′′ (and corresponding C1 and C2), such that h(x, ε, ζ ′, ζ ′′, C1, C2) >

9 as well.

This would mean that if x(= tanα) 6= 1
3
, then there exists a δ > 0 such that

t′ + 2 · (d+D) ≥ (9 + δ)d, proving the result of the theorem.
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Intuitively, Theorem 4.5 tells us that the leftmost and rightmost boundaries of

the region explored by the robots must (in the limit) grow an average of 1/3 unit

distance per unit of time in order to successfully accomplish evacuation in time

(at most) 9d.

For more than two robots, we may consider the leftmost and rightmost robot at

any time. The robots are anonymous, so to us (as outside observers), we cannot

tell the di�erence if two robots �cross over� or if they meet each other and �bounce�.

The region that has been explored by a set of robots will still consist of a single

connected segment in the line. Hence, we can conclude the following result just by

considering the leftmost and rightmost robot at any moment in time, and repeating

the proof of Theorem 4.5.

Corollary 4.6. For two or more robots, if tan(α) 6= 1
3
, then there exists d > 0

and δ > 0 such that the evacuation procedure takes time at least (9 + δ)d.

4.3 Robots having di�erent maximum speeds

Now we consider two cases involving mobile robots having di�erent maximum

speeds. As before, by rescaling, we assume the maximum speed is 1. We call a

mobile robot with maximum speed 1 a �fast robot�. A mobile robot with speed

s, where 0 < s < 1 shall be called a �slow robot�. We use the notation FMR
to refer to the �faster� mobile robot. Similarly, we will use SMR to refer to the

�slower� mobile robot.

Section 4.3.1 deals with the special case of one fast robot and one slow robot. In

the case that s ≥ 1
3
, we show that evacuation can still be accomplished in time 9d,

a fact that these authors found surprising when we �rst discovered it.

Section 4.3.2 deals with the case of two fast robots and one slow robot. Even in

this case, if the slow robot is not too slow (in particular, if s ≥ 1
5
), then evacuation

can still be performed in time 9d.

4.3.1 One fast, one slow

For one FMR and one SMR we will show that, provided s ≥ 1
3
, the 9d evacuation

time bound still holds using a coordinated strategy for the two mobile robots. A
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picture that hints at the strategies of the two robots can be seen in Fig. 4.3, but

we give some brief discussion of each strategy in what follows.

4.3.1.1 The FMR's strategy.

The FMR searches for the evacuation point as if the SMR is not there, using

the doubling strategy described in Algorithm 4 (always traveling at its maximum

speed). The FMR follows this strategy until the evacuation target is located.

Having found the target, mooving with its maximum speed of 1 it immediately

seeks to make contact with the SMR. Both robots then walk together to the

evacuation target with the full speed s of the SMR. Fig. 4.3 shows the exploration
path the FMR takes to �nd the target as the solid black line, which is simply

the doubling strategy from before.

One point to keep in mind is that the FMR knows the strategy of the SMR,
so the FMR knows in which direction to travel in order to �nd and inform the

SMR once it locates the target.

4.3.1.2 The SMR's strategy

The slow mobile robot is obviously unable to mimic the path of the FMR due

to its reduced maximum speed. Somewhat counter-intuitively, even if s > 1
3
, the

SMR is instructed to use speed 1
3
and follow the dashed path outlined in Fig. 4.3.

It follows such a path until it is informed by the FMR of the location of the

evacuation target, and then proceeds at maximum speed, i.e. s, to reach that

destination.

The SMR is following its own �doubling strategy�, but this takes more time to

execute than it does for the FMR. In particular, initially the SMR stays at

the origin for 4 units of time, and then begins its own movements. After that, it

uses a �doubling strategy� to move to distances 1, 2, 4, 8, 16, . . . from the origin (on

opposite sides of the origin, i.e. moving to distance 1 to the left, taking three units

of time, returning to the origin, then to distance 2 to the right and returning, then

to distance 4 to the left, etc.) Recall that the SMR is moving at speed 1/3, and,

hence takes time 2 ·3 ·2k to execute one portion of its �doubling� move, i.e. moving

to distance 2k and returning to the origin.
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Observe that the SMR and FMR will meet at certain pre-de�ned times and

locations during their trajectories. All of the meeting points, aside from the �rst

one at the origin while the SMR is not moving, occur at locations that were

originally extreme points (i.e. turning points) of the trajectory of the FMR. For
example, the two robots will meet at distances 1, 2, 4, . . . from the origin (again,

on opposite sides of the origin).

Under this strategy, the SMR will never discover the evacuation point before

the FMR does so, and therefore must simply keep walking in this way until the

FMR comes to inform it of the location of the evacuation target and take it there

with the maximum speed of the SMR.

time

distance

Figure 4.3: An optimal strategy for two di�erent speeds, where the slower
robot has a speed at least 1/3 the speed of the fast robot.
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We also remark that by following the particular outlined strategy, the SMR is at

the origin at the same moment that the FMR is at one of the turning points of

its movements.

a

b

c

d

2k−2

2k

time

distance

Figure 4.4: Example of 9d for evacuation problem, where SMR has s ≥ 1
3

and the evacuation point is at 2k−2 + ε

4.3.1.3 Still 9d evacuation, when s ≥ 1
3

Theorem 4.7. The coordinated strategy outlined above for the SMR and FMR
gives a 9d upper bound for time of the evacuation problem, as long as s ≥ 1

3
.

Proof. We can think of the evacuation procedure as a three-step process where

(1) the FMR locates the evacuation target, (2) the FMR informs the SMR of

that location, and (3) the two robots proceed (back) to the target.

We assume that d ≥ 2. (The 9d bound for d = 1 is easy to verify.) Note that the

FMR will locate the target between successive �peaks� on the same side of the
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origin (or it will �nd the destination just at a �peak�), so we de�ne k to be the

integer such that 2k−2 < d ≤ 2k. In particular, we can write d = 2k−2 + ε for some

0 < ε ≤ 3 · 2k−2.

The �discovery phase� to locate the target will take time (at most)

2 · 1 + 2 · 2 + · · ·+ 2 · 2k−1 + d = 2
k−1∑
i=0

2i + d = 2 · (2k − 1) + d.

At the time when the FMR locates the evacuation target, the distance between

the FMR and SMR is 4
3
ε. Why? The two robots crossed paths at the meeting

point that is 2k−2 away from the origin, and since that meeting the FMR has

moved distance ε and the SMR has moved a distance of ε
3
(as it is moving at

speed 1
3
). After the FMR locates the target, it immediately reverses direction

to inform the SMR. At that time, the two robots are 4
3
ε apart and the distance

between the pair will decrease at a rate of 2
3
(the relative speeds between the

robots). Therefore, the time for the FMR to inform the SMR is 4
3
ε ÷ 2

3
= 2ε.

Note that this also means when the FMR informs the SMR, they are at distance
2ε from the evacuation target.

Finally, the two robots return to the target to complete the evacuation procedure.

Thus, assuming the 1
3
worst-case speed of the SMR, this �nal �exit portion� will

take time 2ε÷ 1
3

= 6ε.

Therefore, the entire evacuation procedure (in the worst-case, with a 1
3
speed for

the SMR) will take time at most

2(2k − 1) + d+ 2ε+ 6ε = 2(4× 2k−2 − 1) + d+ 8ε

= 2
�
4(2k−2 + ε)− 4ε− 1

�
+ d+ 8ε

= 8d− 8ε− 2 + d+ 8ε

= 9d− 2.

Figure 4.4 shows in detail the paths taken by the two robots once the evacuation

point has been found. In the diagram the evacuation point is shown as the orange

line. The path the FMR took is in red, the with the originally intended path

(prior to �nding the evacuation point) shown as a dashed red line. The path that

the SMR took is in blue, with its originally intended path shown as a dashed
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blue line. The purple line signi�es where the two robots walked together at s = 1
3

to the evacuation point.

We conjecture that when s < 1/3, then the evacuation time for the pair is strictly

larger than 9d, i.e. there exists a constant δ > 0 such that the evacuation time is

at least (9 + δ)d− o(d).

4.3.2 Two (or more) fast robots, many slow robots

We �nish with a remark about evacuating two (or more) fast robots, together with

one or more slow robots.

Conjecture 4.8. Given that the two FMRs have a maximum speed of 1 and the

slow robots have a speed of at least 1/5 then the whole group of robots can still

�nish the evacuation in time 9d.

With (at least) two FMRs, this pair can perform the coordinated evacuation

procedure mentioned in Section 4.2.3. Once a fast robot discovers the evacuation

target and proceeds to inform the other FMR, any slow robots that have remained

at the origin can be informed as the FMR passes through the origin. It takes an

FMR time 4d to �nd the target and return to the origin, and another 5d time to

catch up to the other FMR, inform it, and return to the target. Hence, as long

as the slow robots have a speed of at least 1/5, they will arrive at the evacuation

point at the exact same time as the fast pair, hence, the collection of all robots

can still �nish the evacuation in time 9d. This can be seen clearly in Figure 4.5

4.4 Conclusion

As stated in the introduction, our main goal in the paper was to initiate study of

the evacuation problem using mobile robots having di�erent maximum speeds.

This chapter has demonstrated some cases where the original optimal 9d bound

for homogeneous mobile robots is still obtainable in this new setting, provided the

maximum speed of the slow robot(s) is not too low. Further work is necessary to
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time
distance

Figure 4.5: A strategy for two robots with unit speed and a third robot with
speed at least 1/5 the speed of the fast robot.

investigate these problems, and the related, more general, search and rendezvous

problems utilizing robots with di�erent maximum speeds.



Chapter 5

Evacuation Problem on the Disk

This chapter is based on joint work done in [46] that has been published in 28th

International Symposium on Distributed Computing (disk'14). The chapter moves

on from the previous one by further study of the evacuation problem. The work

done here extends the concept from the setting of a simple line to one of a disk

type arena.

As with Chapter 4 this chapter focuses around the Evacuation Problem. As before

we will consider k mobile robots but this time the setting is inside a circular disk

of unit radius rather than a line. The robots are required to evacuate the disk

through an unknown exit point situated on its boundary. We assume all robots

having the same (unit) maximal speed and starting at the centre of the disk. The

robots may communicate in order to inform themselves about the presence (and

its position) or the absence of an exit. The goal is for all the robots to evacuate

through the exit in minimum time.

We consider two models of communication between the robots: in non-wireless

(or local) communication model robots exchange information only when simulta-

neously located at the same point, and wireless communication in which robots

can communicate between each other at any time.

We study the following question for di�erent values of k: what is the optimal

evacuation time for k robots? We provide algorithms and show lower bounds in

both communication models for k = 2 and k = 3 thus indicating a di�erence in

evacuation time between the two models. We also obtain almost-tight bounds

on the asymptotic relation between evacuation time and team size, for large k.

69
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We show that in the local communication model, a team of k robots can always

evacuate in time 3 + 2π
k
, whereas at least 3 + 2π

k
− O(k−2) time is sometimes

required. In the wireless communication model, time 3 + π
k

+ O(k−4/3) always

su�ces to complete evacuation, and at least 3 + π
k
is sometimes required. This

shows a clear separation between the local and the wireless communication models.

5.1 Introduction

5.1.1 Overview

Consider a team of mobile robots inside an environment represented by a circular

disk of unit radius. The robots need to �nd an exit being a point at an unknown

position on the boundary of the disk in order to evacuate through this point. The

exit is recognized when visited by a robot. The robots may communicate in order

to exchange the knowledge about the presence (or the absence) of the exit acquired

through their previous movements. We consider two communication models. In

the non-wireless (or local) model, communication is possible between robots which

arrive at the same point (in the environment) at the same moment, while the wire-

less model allows broadcasting a message by a robot, which is instantly acquired

by other robots, independently of their current positions in the environment. The

robots start at the centre of the disk and they can move with a speed not exceed-

ing their maximum velocity (which is the same for all robots). The objective is

to plan the movements of all robots, which result in the shortest worst-case time

needed for all robots to evacuate.

5.1.2 Related work

Mobile robots are autonomous entities traveling within geometric or graph-modeled

environments. Besides mobility, robots possess the ability to perceive the environ-

ment, compute, and communicate among themselves. They collaborate in order to

perform tasks assigned to them. When robots operate in geometric environments

(then they are usually called robots) their performance is measured by the geo-

metric distance traveled, most often disregarding their computing, communicating

and environment-perceiving activities.
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When the geometric environment is not known in advance by the mobile robots, in

many papers their task consisted in exploring the environment[5, 6, 51, 78]. The

coordination of exploration between multiple robots has been mainly studied by

the robotics community [31, 118, 122]. However even if the main objective assigned

to the robots is di�erent from exploration, often part of their activity is devoted

to the recognition or mapping of the terrain and/or the position of the robots

within it [85, 97, 102]. When the map of the environment is known to the robots,

a lot of research was devoted to search games, when the searchers usually try to

minimize the time to �nd an immobile or a moving hider [8, 12, 90]. The literature

of the case of mobile fugitives, often known as cops and robbers or pursuit-evasion

games is particularly rich [35, 65], with numerous variations related to the type of

environment, speed of evasion and pursuit, robots visibility and many others [99].

The searching for a motionless point target in the simple environment presented

in this chapter has some similarities with the lost at sea problem, [74, 79], the

cow-path problem [23, 26], and with the plane searching problem [17, 19].

The problem of evacuation has been studied for grid polygons from the perspective

of constructing centralized evacuation plans, resulting in the fastest possible evacu-

ation from the rectilinear environment [62]. Previously, [22] considered evacuation

planning as earliest-arrival �ows with multiple sources giving the �rst algorithm

strongly polynomial in input/output size.

Evacuation in a distributed setting, when the mobile robots (know the simple

environment but not the exit positions) has been recently asked in [34], examined

in Chapter 4, for the case of a line. We proved that evacuation of multiple uniform

robots is as hard as the cow-path problem. Evacuation of two robots without

wireless communication was discussed with the research group of M. Yamashita

during the visit of the second co-author at Kyushu University [83]. The discussion

focused on laying the foundations for the lower bound presented in this chapter

and seeking ways to improve the respective upper bound. However, the main

objective of our problem is to �nd a compromise between, on one hand, spreading

su�ciently the robots so that they can �nd the exit point fast in parallel, and, on

the other hand, not to spread them too far so that, when one robot �nds the exit,

the escape route to it of the other robots is not too long.
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5.1.3 Preliminaries

The environment is a disk of unit radius. The robots start their movement at the

centre of the disk. We assume that the perception device of the robot permits

to recognize a boundary point of the environment when the robot arrives there.

Similarly, we assume that a robot recognizes the presence of other robots at the

same position as well the fact that the robot is currently at the exit point. We also

assume that the robots are labeled, i.e. they may execute di�erent algorithms.

Each such algorithm instructs the robot to make the moves with a speed not

exceeding its maximal speed. In particular, the algorithm may ask the robot to

move towards the centre of the disk or a chosen point on its boundary or to follow

the boundary clockwise or counterclockwise. The movement may be changed when

the perception mechanism allows the robot to acquire some knowledge about the

environment (e.g. the exit point, boundary point, a meeting point with another

robot). The robots are allowed to stay motionless at the same point. If A and B

are points on the perimeter of the disk, by øAB we will denote arc from A to B in

the clockwise direction and by AB we will denote the cord connecting A and B.

The length of øAB will be denoted by |øAB| and the length of AB will be denoted

by |AB|.

5.1.4 Outline and results of the paper

In Section 5.2 we consider the evacuation problem for two robots, while Section 5.3

analyzes the case of three robots. Section 5.4 proves tight asymptotic bounds for

k robots. Each section is divided into two parts consisting of the analysis for the

local communication and wireless models, respectively. The complexity details

corresponding to the three sections are in Table 5.1. It shows the results that we

have obtained for both the local communication and wireless models for di�erent

numbers of robots in the system. We have been able to produce both upper and

lower bound results for these and they are presented in the table.

These results establish a clear separation between the local communication and

the wireless communication models.
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Table 5.1: Upper and Lower bounds for k ≥ 2 robots

The strategy used to obtain the non-wireless result for k ≥ 4 can be applied
successfully to instances where k < 4 as well. However, the results given for

those scenarios are an improvement over this strategy in those cases.

Model Bound k = 2 k = 3 k ≥ 4

Local
Upper

Lower

∼5.74
(Th 5.1)

∼5.199
(Th 5.2)

∼5.09
(Th 5.13)

∼4.519
(Th 5.10)

3 + 2π
k
< 4.58

(Th 5.13)

3 + 2π
k
−O(k−2)

(Th 5.15)

Wireless
Upper

Lower

∼4.83
(Th 5.5)

∼4.83
(Th 5.8)

∼4.22
(Th 5.11)

∼4.159
(Th 5.12)

3 + π
k

+O(k−4/3)
(Th 5.16)

3 + π
k
> 3.785

(Th 5.17)

5.2 Two Robots

Consider a disk centered at K. Two robots, say r1, r2, start at K moving with

constant speed, say 1, searching for an exit located at an unknown point on the

perimeter of the disk. In the following we prove upper and lower bounds for the

two robot case in the local communication and wireless cases.

5.2.1 Local Communication

Algorithm 6 indicates the robot trajectory for evacuation without wireless com-

munication.

In the following theorem we give a bound on the worst-case evacuation time of

Algorithm 6 .

Theorem 5.1. Algorithm 6 evacuates the robots from an unknown exit located on

the perimeter of the disk in time 1 + α/2 + 3 sin(α/2), where the angle α satis�es

the equation cos(α/2) = −1/3. It follows that the evacuation algorithm takes time

∼ 5.74.

Proof. We calculate the time required until both robots from Algorithm 6 reach

the exit. Denote x = |øBA| = |øAC|, y = |BD| = |øCD| and α = |øBD|. According to
the de�nition of the above Algorithm 6 the total time required is f(α) = 1+x+2y.
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Algorithm 6: Algorithm for two robots without wireless communication.

1. Both robots move to an arbitrary point A on the perimeter.

2. At A the robots move along the perimeter of the disk in opposite
directions; robot r1 moves counter-clockwise and robot r2 moves clockwise
until one of the two robots, say r1, �nds the exit at B.

3. Now robot r1 is at point B and r2 is at point C (symmetric to B). Robot
r1 chooses a point D such that the length of the chord BD is equal to the
length of the arc øCD and moves towards D.

4. Since the length of the chord BD is equal to the length of the arc øCD,
both robots arrive at D at the same time. Robot r1 has knowledge about
the location of the exit thus both robots can now follow the straight line
DB and exit.

x x

yy

α
K

B

A

C

D

Figure 5.1: Evacuation of two robots without wireless communication.

Observe that α = 2x + y, and y = 2 sin(α/2), because y is a chord of the angle

α. By substituting x and y in the de�nition of the function f we can express the

evacuation time as a function of the angle α as follows. f(α) = 1 + α−y
2

+ 2y =

1 + α
2

+ 3y
2

= 1 + α
2

+ 3 sin(α/2). Now we di�erentiate with respect to α and

we obtain: df(α)
dα

= 1
2

+ 3
2

cos(α/2). It is easy to see that this derivative equals

0 for the maximum of function f(α), which yields as value for α the solution of

cos(α/2) = −1/3. This proves the theorem.

We remark however that Algorithm 6 is not optimal. We can introduce the follow-

ing modi�cation to Algorithm 6. Let trajectory of a robot be a movement of the

robot who neither had discovered the exit nor had been noti�ed about the exit.

In Algorithm 6 the trajectory is radius KA and then starting from A, a semicircle
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(in some direction) of the perimeter. With these new modi�cations the trajectory

of Algorithm 6 becomes:

1. radius KA,

2. part of the semicircle of length z1 to point E,

3. interval EF of length z2 towards the centre of the disk,

4. interval FE of length z2 back to the perimeter,

5. remaining part of the semicircle.

When the robot is moving towards the centre (point 3), the potential length y of

the cord that needs to be traversed to get to the exit (if the exit is discovered by

the other agent) is shorter than in Algorithm 6. We place the point E such that

if the other agent discovered the exit in the worst case point then the agents will

meet in the interior of the disk, not on the perimeter. Experiments carried out by

one of the co-authors of this work showed that if z1 = 2.64 and z2 = 0.5 then the

worst case evacuation time of the modi�ed algorithm is 5.64, [104].

In the following we state and prove a lower bound.

Theorem 5.2. It takes at least 3 + π
4

+
√

2 (∼ 5.199) time units for two robots to

evacuate from an unknown exit located in the perimeter of the disk.

Proof. At the beginning, both robots are located at the centre K of the disk. It

takes at least 1 time unit for both of them to move to the perimeter of the disk.

In less than an additional π/4 time units the two robots cover at most a length

of π/2 of the perimeter. The main idea is to observe, that until that time of

the movement we can always construct a square ABCD with sides equal to
√

2

whose all vertices are not yet visited by neither of the two robots. The vertices

represent positions where an adversary can place an exit. Using an adversary

argument it can be shown that an additional 2 +
√

2 time units are required for

robot evacuation. We give details of this argument in the following two lemmas.

Lemma 5.3. For any ε > 0, at time 1 + π
4
− ε there exists a square inscribed in

the disk none of whose vertices has been explored by a robot.
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A

K

B

CD

Figure 5.2: Forming a square ABCD of positions not yet explored by the
robots.

Proof. (Lemma 5.3) The proof is easily derived by rotating a square inscribed in

the disk continuously for an angle of π/2. More precisely assume on the contrary

that such an inscribed square does not exist. Consider a partition of perimeter of

the disk into four arcs of length π/2, E1, E2, E3, E4. Any point e1 ∈ E1 uniquely

de�nes an inscribed square with vertices e1 ∈ E1, e2 ∈ E2, e3 ∈ E3, e4 ∈ E4. More-

over for a di�erent e′1 ∈ E1, e
′
1 6= e1 vertices of the inscribed square {e′1, e′2, e′3, e′4}

are di�erent e′i 6= ei for all i ∈ 1, 2, 3, 4. By the assumption, for any e1 ∈ E1 at

least one of the vertices {e1, e2, e3, e4} of the inscribed square has to be explored

(denote it by e∗). Thus for any e1 we can identify an explored vertex e∗(e1). Since

for di�erent e1, the inscribed square is di�erent then the function e∗(e1) is an in-

jection. Thus the image of the function e∗(e1) is a set of length π/2 of explored

points. But such set does not exist because at time 1 +π/4− ε the total length of

the set of explored points less than π/2. Therefore we obtain a contradiction at

time 1 + π
4
− ε that an inscribed square, none of whose vertices has been explored

by a robot, does exist.

Lemma 5.4. For any square inscribed in the disk none of whose vertices has been

explored by a robot it takes more than 2 +
√

2 time to evacuate both robots from a

vertex of the square.

Proof. (Lemma 5.4) Take the square ABCD with unexplored vertices. Consider

any evacuation algorithm A. We allow the algorithm to place the robots on arbi-

trary positions of the disk (possibly also on vertices of the square). The adversary

can run the algorithm with unde�ned position of the exit and place the exit de-

pending on the behaviour of the robots. The adversary will run the algorithm
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from perspective of a �xed robot r and will place the exit at a some point P . The

placement of the exit at point P in time t is possible if robot r has no information

whether the exit is located in P . Formally we say that a point P is unknown to

robot r at time t if for any time moment t′ ∈ [0, t] robot r is at distance more than

t′ from P . This means that even if other robot started at P it could not meet r at

any time in the interval [0, t]. Take a robot r and the �rst time moment t when

the third vertex of the square is visited by a robot. Consider two cases

Case 1.
√

2 ≤ t < 2.

Denote the vertex visited by r in time t by A. The adversary places the exit in

the antipodal point C. Observe that point C is unknown to r at time t. This

is because if r was at distance at most t′ from C at some time t′ ∈ [0, t] then it

would be at distance 2 − t′ from A and would reach A no sooner than at time 2,

which is a contradiction as t < 2. Thus placement of the exit in C cannot a�ect

movement of r until time t. Therefore, the adversary can place the exit in C and

the evacuation time in this case will be at least t+ 2 ≥ 2 +
√

2.

Case 2. 2 ≤ t.

Time moment t is the �rst time when three vertices of the square are explored (it

is possible that in t both robots explore a new vertex). Therefore, at time t, some

robot r has knowledge about at most three vertices. The adversary simply places

the exit in the vertex unknown to r and the evacuation time of r will be at least

t+
√

2 ≥ 2 +
√

2.

Observe that t cannot be smaller than
√

2 because within time t at least one robot

has to traverse at least one side of the square. This proves the lemma.

Clearly, the proof of Theorem 5.2 is an immediate consequence of Lemmas 5.3 and 5.4.

5.2.2 Wireless communication

Algorithm 7 indicates the robot trajectory for evacuation with wireless communi-

cation.
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Algorithm 7: Algorithm for two robots with wireless communication.

1. Both robots move to an arbitrary point A on the perimeter.

2. At A the robots start moving along the perimeter of the disk in opposite
directions: robot r1 moves counter-clockwise and robot r2 moves clockwise
until one of the robots, say r1, �nds the exit at B.

3. Robot r1 noti�es r2 using wireless communication about the location of the
exit and robot r2 takes the shortest chord to B.

Theorem 5.5. Algorithm 7 is an algorithm for evacuating two robots from an

unknown exit located on the perimeter of the disk which takes time at most 1 +
2π
3

+
√

3.

Proof. Consider the maximum evacuation time of Algorithm 7. If the angular

distance between A and B equals x, then the length of the chord taken by the

robot r2 equals to c(x) = 2 sin(π − x) (see Figure 5.3). Thus the evacuation time

x x

A

B

c(x)

Figure 5.3: Evacuation of two robots with wireless communication.

T satis�es T ≤ max0≤x≤π{1 + x+ 2 sin(π − x)} = max0≤x≤π{1 + x+ 2 sinx}. The
function f(x) = 1 + x + 2 sinx in the interval [0, π] is maximized at the point

x∗ = 2π/3 and f(x∗) = 1 + 2π/3 +
√

3. This proves the theorem.

In order to prove the lower bound we need to show the following lemma.

Lemma 5.6. Consider a perimeter of a disk whose subset of total length u+ε > 0

has not been explored for some ε > 0 and π ≥ u > 0. Then there exist two

unexplored points between which the distance on the perimeter is at least u.
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Proof. Denote by U the set of all unexplored points. We have that |U | = u + ε.

First consider case when u < π. Throughout the proof we will consider only points

on the perimeter of the disk. Let dist(x1, x2) be de�ned as the length of the shorter

arc connecting x1 and x2.

Assumption 1 Assume on the contrary that two unexplored points between which

the distance on the perimeter is at least u do not exist.

Under such assumption we will construct subsets N,L,R of the set of all unex-

plored points (N,L,R ⊂ U c). Set N is de�ned as the set of all antipodal points of

points in U , (if x ∈ U , then y ∈ N if and only if dist(x, y) = π). For any x ∈ U ,
by x + π we denote the point antipodal to x. To construct L and R take any

x ∈ U . Let x′ and x′′ be the unexplored point closest to x+π in the clockwise and

counter-clockwise direction respectively. We construct arc L as the set of points

on the perimeter at distance at most π − u from x′ + π (antipodal to x′) in the

counter-clockwise direction. Analogically R is the set of points at distance at most

π − u from x′′ + π in the clockwise direction (see Figure 5.4).

x

x+ π

x− ux+ u

x′
x′′

x′′ + π
x′ + π

x′ + u x′′ − u
L R

Figure 5.4: Construction of sets L and R.

Observe that all points belonging to sets N,L,R are explored. Every point y ∈ N
is antipodal to some unexplored point y + π ∈ U , thus if y is unexplored then

we have a pair of unexplored points y, y + π at distance π. If a point y′ in L

is unexplored then we have a pair of unexplored points x′, y′ at distance at least

u. Finally if a point y′′ in R is unexplored then we have a pair of unexplored

points x′′, y′′ at distance at least u. All these cases lead do contradiction with

Assumption 1.
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We want to show that |L ∪R| = 0. First note that

dist(x+ π, x′) > π − u, (5.1)

because if dist(x+ π, x′) ≤ π − u, then dist(x, x′) ≥ u which is impossible due to

Assumption 1 since both x and x′ are unexplored. Similarly we observe that

dist(x+ π, x′′) > π − u. (5.2)

By equation 5.1 we have that dist(x′+π, x) = dist(x′, x+π) > π−u thus set L is

a subset of the semicircle from x to x+ π in the clockwise direction. Similarly we

show that R is a subset of the semicircle from x to x+ π in the counter-clockwise

direction. Thus L∪R contains at most one point (in the case when x = x′ = x′′).

Thus |L ∪R| = 0.

Observe also that |L ∪ N | = 0, because all points in the arc from x + π to x′

in the clockwise direction are explored (x′ is the closest unexplored). Similarly

|R ∪N | = 0.

Thus |N ∪L∪R| = |N |+ |L|+ |R| = u+ π− u+ π− u = 2π− u. Since all points
in N,L,R are explored we have

|U | = 2π − |U c| ≤ 2π − |N ∪ L ∪R| = u

which is a contradiction because |U | > u. If u = π it is su�cient to consider set

N . Observe that all elements from set N are explored and |N | = π. We obtain

contradiction because |U | > π.

Lemma 5.7. For any k ≥ 2 and x satisfying π/k ≤ x < 2π/k and any evacuation

algorithm it takes time at least 1 + x + 2 sin(xk/2) to evacuate from an unknown

exit located in the perimeter of the disk.

Proof. Consider an algorithm A whose evacuation time equals to T . In any evacu-

ation algorithm using k robots, at time moment 1+x, the total length of explored

arcs of the perimeter equals at most xk (because robots need time 1 to go from

the centre to the perimeter). Thus the total length of the unexplored part of the

perimeter is at least 2π − xk and π ≥ 2π − xk > 0. Thus using Lemma 5.6 at

time moment 1 + x there exists a pair of unexplored points whose distance on the

perimeter is at least 2π−xk−ε for any ε > 0. Take this pair of points and consider



Chapter 5. Evacuation Problem on the Disk 81

a chord connecting them. Such chord has length at least 2 sin(π−xk/2−ε/2) and

has both endpoints unexplored. Thus the adversary can place the exit in any of two

endpoints. If a robot visits one endpoint of the chord, the adversary places the exit

in the other and such agent will have to walk at least the length of the chord more.

Thus the total evacuation time is at least 1+x+2 sin(π−xk/2−ε/2). This holds

for any ε > 0, thus by taking the limit ε→ 0 we obtain T ≥ 1 +x+ 2 sin(xk/2).

Theorem 5.8. For any algorithm it takes at least 1 + 2π
3

+
√

3 time in the worst

case for two robots to evacuate from an unknown exit located in the perimeter of

the disk.

Proof. The theorem is a direct consequence of Lemma 5.7 by taking k = 2 and

x = 2π/3.

5.3 Three Robots

In this section we analyze evacuation time for three robots in both local commu-

nication and wireless models.

5.3.1 Local Communication

The �rst lemma provides a lower bound which is applicable for any k robots in

the local communication model.

Lemma 5.9. For any k ≥ 3 and 1 < α < 2, it takes in the worst case at least

min
¦
3 + απ

k
, 3 + 2 sin

�
π − απ

2

�©
time to evacuate from an unknown exit located on

the perimeter of the disk in the model without wireless communication.

Proof. (Lemma 5.9) Take any evacuation algorithm A. Denote by Apr(t) the po-
sition of robot r in time t if the exit is located at point p. Since we are con-

sidering the worst case, we need to show that there exists a point p∗ on the

perimeter such that if the exit is located at p∗ then the evacuation time of the

algorithm A is at least 3+ 2π
k
−O(k−2). Consider the following three time intervals:

I1 = [0, 1) , I2 =
�
1, 1 + απ

k

�
, I3 =

�
1 + απ

k
, 3
�
. Since algorithm A is deterministic,

the robots will follow a �xed trajectory, independent of the location of the exit
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until �nding the exit or being noti�ed about it by some other robot. Denote these

trajectories by p1(t), p2(t), . . . pk(t). Consider two cases:

Case 1. There exists a robot r and time t∗ ∈ I3 such that point p = pr(t
∗) of the

trajectory of the robot r is on the perimeter of the disk.

We will argue that the adversary can place the exit at point p∗ being antipodal

of p. We need to prove that if the exit is at point p∗ then until time t∗ robot

r will be unaware of the location of the exit and will follow the trajectory pr(t).

Consider the trajectory followed by robot r in algorithm A if the exit is at point

p∗. Robot r is following the trajectory pr(t) until �nding the exit or being noti�ed

about it. We want to show that robot r cannot be noti�ed about the exit until

time t∗. Assume on the contrary that 1 ≤ t′ < t∗ is the �rst moment in time

when r either discovered the exit or met a robot carrying information about the

location of the exit. Thus we have that Ap∗r (t) = pr(t), for all t ∈ [0, t′]. First note

that since p = pr(t
∗) we have that dist(Ap∗r (t′), p∗) = dist(pr(t

′), p∗) > t′ − 1. The

last inequality is true because if the distance between pr(t
′) and p∗ would be at

most t′ − 1 then the distance to p would be at least 3 − t′ (because p and p∗ are

antipodal) and robot r following trajectory pr(t) would not be able to reach p until

time t∗ (recall t∗ < 3), which is a contradiction since pr(t
∗) = p. Now observe that

in algorithm A if the exit is located at p∗ then for any time moment t′ ≤ 3, any

robot carrying information about the location of the exit is at distance at most

t′ − 1 from p∗ (it is because robots can exchange informations only when they

meet and the maximum speed of a robot is 1). Thus it is not possible that robot

r in time t′ obtain the information about the exit by meeting another robot. It is

also not possible that pr(t
′) = p∗, because robot r following trajectory pr(t) would

not be able to reach p until time t∗. Thus such t′ does not exist and we have:

Ap∗r (t) = pr(t), for all t ∈ [0, t∗]. In time moment t∗ robot r following algorithm

A is at distance 2 from the exit located at p∗. Thus the total evacuation time is

at least t∗ + 2 ≥ 3 + απ/k, since t∗ ≥ 1 + απ/k (because t∗ ∈ I3).

Case 2. None of the trajectories p1(t), p2(t), . . . pk(t) in the interval I3 is equal to

a point on the perimeter.

In this case we consider robots following the trajectories p1(t), p2(t), . . . , pk(t) in

the time interval [0, 3). We need Lemma 5.6.

The set of points U on the perimeter of the disk that were not visited by any robot

following such trajectories satis�es |U | ≥ 2π − απ because in this case robots can
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explore the perimeter only in time interval I2 of length απ/k. Thus by Lemma 5.6

there exists a pair of unexplored points at distance at least 2π−απ−ε for any ε > 0.

The chord connecting these two points has length at least 2 sin(π − απ/2− ε/2).

Take this chord and denote its endpoints by u1 and u2. The adversary can run

the algorithm A until moment t′ when one of the points u1, u2 is visited and the

adversary can place the exit in the other one. Note that until moment t′ robots are

following trajectories pr(t) because none of the robots has any information about

the exit, thus t′ ≥ 3. Now the �rst robot that visited one of the points u1, u2 still

needs to travel at least 2 sin(π−απ/2−ε/2) because the exit is on the other end of

the chord. Thus exploration time is in this case at least 3 + 2 sin(π−απ/2− ε/2).

We showed that the worst case time of evacuation T for any correct algorithm

satis�es T ≥ min
¦
3 + απ

k
, 3 + 2 sin

�
π − απ

2
− ε

2

�©
, for any ε > 0. The claim of the

lemma follows by passing to the limit as ε→ 0.

Theorem 5.10. It takes at least 4.519 time in the worst case to evacuate three

robots from an unknown exit located in the perimeter of the disk in the model

without wireless communication.

Proof. We have by Lemma 5.9 that the evacuation time T of any evacuation

algorithm A satis�es T ≥ min{3 + απ
k
, 3 + 2 sin(π − απ/2)} for any k ≥ 3. To

prove the statement we numerically �nd such α that απ
3

= 2 sin
�
π − απ

2

�
. If we set

α = 1.408, we obtain T ≥ min
¦
3 + απ

3
, 3 + 2 sin

�
π − απ

2

�©
> 4.519. This proves

the theorem.

5.3.2 Wireless communication

We have three robots r1, r2, r3 and consider Algorithm 8.

The upper bound is proved in the following theorem.

Theorem 5.11. It is possible to evacuate three robots from an unknown exit located

on the perimeter of the disk in time at most 4π
9

+ 2
√
3+5
3

+ 1
600

< 4.22 in the model

with wireless communication.

Proof. Consider the evacuation time of Algorithm 8. If the exit is discovered

within time 1+y, then since we are working in the wireless communication model,

time for evacuation is at most 2 after the discovery as the furthest away a robot
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Algorithm 8: Algorithm for three robots with wireless communication.

1. Robot r1 moves to an arbitrary point A of the perimeter, robots r2 and r3
move together to the point B at angle y = 4π/9 + 2

√
3/3− 401/300 in the

clockwise direction to the radius taken by robot r1.

2. Robot r1 moves in the counter-clockwise direction. Robot r2 moves in the
clockwise direction. Robot r3 moves in the counter-clockwise direction for
time y. Then r3 moves towards the centre. Then r3 moves towards the
perimeter at angle π − y/2 in the clockwise direction to radius RB.

3. A robot that discovers the exit sends noti�cation to other robots.

4. Upon receiving noti�cation a robot walks to the exit using the shortest
path.

B

y

K π − y
2

A

x

x

α
C

D

Figure 5.5: Evacuation of three robots with wireless communication.

Evacuation of three robots with wireless communication.
|CD| =

È
1− 2x cos(α− x) + x2

could be from that point at this time would be the diameter of the disk. Thus if

the discovery is within time 1 + y, the evacuation is in time at most 3 + y. If the

exit is discovered after time 1 + y then it is discovered either by r1 or r2 (robot

r3 explores part of the perimeter of length y thus he �nishes exploration in time

1 + y).

Consider the evacuation time of r1 if the exit is discovered by r2. Robot r1 explores

an assigned arc until being noti�ed and upon noti�cation he takes the chord to

the exit. If the exit is discovered at time 1 + y′ then the evacuation time of r1 is

Tr1 = 1 + y′ + 2 sin(π − y/2− y′),



Chapter 5. Evacuation Problem on the Disk 85

and y′ ∈ [0, π−y/2]. In this interval the function f(y′) = 1+y′+2 sin(π−y/2−y′)
is maximized when y′ = 2π/3−y/2 and the maximum value is 1+2π/3−y/2+

√
3.

Thus we have

Tr1 ≤ 1 +
2π

3
− y

2
+
√

3 =
4π

9
+

2
√

3 + 5

3
+

1

600

The evacuation time of r2 can be bounded similarly.

Consider the evacuation time of r3. Consider the case when the exit is discovered

by r1 or r2 at some point of time in the interval [1+y, 2+y]. In this interval, robot

r3 is moving towards the centre. A path from the point A to the centre and from

the centre to the exit has length 2 (two times the radius). A path taken by the

robot is shorter by the triangle inequality, because the robot after the diskovery

of the exit is not continuing to the centre but goes to the exit using the shortest

path. Thus if the exit is discovered within interval [1+y, 2+y] then the evacuation

time of r3 is at most

Tr3 ≤ 3 + y =
4π

9
+

2
√

3

3
+

998

600
<

4π

9
+

2
√

3 + 5

3
+

1

600
.

Finally consider the evacuation time of robot r3 in the case when the exit is

discovered after time 2 + y. In this case the exit is discovered while robot r3

is walking from the centre towards the perimeter. If the exit is discovered at

time 2 + y + x then robot r3 walked distance x from the centre. The length of

the segment he takes to the exit equals
È

1− 2x cos(α− x) + x2 (see Figure 5.3),

where α is length of the arc traversed by r2 (or equivalently by r1) after time

2+y. At time 2+y the total length of the explored perimeter equals 3y+2. Thus

α = π − 3y/2− 1. Thus the evacuation time of r3 is in this case at most

Tr3 ≤ 2 + y + max
x∈[0,α]

{x+
È

1− 2x cos(α− x) + x2}

We have that α = π − 3y/2 − 1 = π/2 −
√

3 + 201/200 < 1/3. In the interval

[0, 1/3] the cos function is decreasing thus −2x cos(1/3− x) ≥ −2x cos(α− x) for

any x ∈ [0, 1/3], thus we have

max
x∈[0,α]

{
x+

È
1− 2x cos(α− x) + x2

}
≤ max

x∈[0,1/3]

{
x+

È
1− 2x cos(α− x) + x2

}
≤ max

x∈[0,1/3]

{
x+

È
1− 2x cos(1/3− x) + x2

}
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To complete the proof we show the following

Claim: x+
È

1− 2x cos(1/3− x) + x2 ≤ 1.005 for every x ∈ [0, 1/3]

First we change the variable z = 1/3− x. We have

max
x∈[0,1/3]

¨
x+

Ê
1− 2x cos

�
1

3
− x

�
+ x2

«
max

z∈[0,1/3]

{
1

3
− z +

Ê
1− 2

�
1

3
− z

�
cos z +

�
1

3
− z

�2
}

Now using Lemma 5.14 we have

1

3
− z +

Ê
1− 2

�
1

3
− z

�
cos z +

�
1

3
− z

�2

≤ 1

3
− z +

Ê
1− 2

�
1

3
− z

��
1− z2

2

�
+

�
1

3
− z

�2

=
1

3
− z +

2

3

É
1 + 3z + 3z2 − 9

4
z3

In order to prove that 1
3
− z + 2

3

È
1 + 3z + 3z2 − 9

4
z3 ≤ 1.005 it is equivalent to

show that

1 + 3z + 3z2 − 9

4
z3 ≤ 162409

160000
+

1209

400
z +

9

4
z2,

because for z ∈ [0, 1/3], 1 + 3z + 3z2 − 9
4
z3 > 0. Thus we need to show that

0 ≤ z3 − z2

3
+

z

100
+

1

150
+

1

40000

The polynomial z3 − z2

3
+ z

100
+ 1

150
+ 1

40000
in the interval [0, 1/3] has the minimal

value for z = 1/9 +
√

73/90, and the minimal value is bigger than 0. This �nishes

the proof of the claim.

Using the claim we have that in the case when the exit is discovered after time

2 + y, the evacuation time Tr3 of robot r3 satis�es

Tr3 ≤ 2 + y + 1.005 =
4π

9
+

2
√

3 + 5

3
+

1

600
.

We bounded the evacuation time of each robot in every possible position of the

exit thus the evacuation time T of the algorithm satis�es

T ≤ 4π

9
+

2
√

3 + 5

3
+

1

600
.

The lower bound is proved in the following theorem.
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Theorem 5.12. For any algorithm it takes at least 1+ 2
3

arccos
�
−1

3

�
+ 4
√
2

3
∼ 4.159

time in the worst case for three robots to evacuate from an unknown exit located

in the perimeter of the disk.

Proof. The theorem is a direct consequence of Lemma 5.7 by taking k = 3 and

x = 2/3 arccos(−1/3).

5.4 k Robots

We prove asymptotically tight bounds for k robots in both the local communication

and wireless models.

5.4.1 Local Communication

The trajectory of the robots is given in Algorithm 9.

Algorithm 9: Algorithm for k robots without wireless communication.

1. The k robots �spread� at equal angles 2π/k and they all reach the
perimeter of the disk in time 1.

2. Upon reaching the perimeter, they all move clockwise along the perimeter
for 2π/k time units.

3. In one time unit, all robots move to the centre of the disk. Since at least
one robot has found the exit it can inform the remaining robots.

4. In one additional time unit all robots move to the exit.

Theorem 5.13. It is possible to evacuate k robots from an unknown exit located

on the perimeter of the disk in time 3 + 2π
k
in the model with local communication.

Proof. Clearly Algorithm 9 is correct and attains the desired upper bound.

The following technical lemma provides bounds on the sin and cos functions based

on their corresponding Taylor series expansions, [1].

Lemma 5.14. For any x ≥ 0 the following bound on values of sinx and cosx

hold:
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Gα

Gβ

π − 2
√
πk−1/3

π + 2
√
πk−1/3

A B

C

F

E

D

Figure 5.6: k robots with wireless communication

Extremal (leftmost and rightmost) robots from group Gα are moving towards the

interior of the arc øAB.
|DE|+ |EF | < |DC|+ |CF |

(1) sinx ≥ x− x3/3!

(2) cosx ≤ 1− x2/2! + x4/4!

Theorem 5.15. It takes time at least 3+ 2π
k

+O(k−2) in the worst case to evacuate

k robots from an unknown exit located on the perimeter of the disk in the model

without wireless communication.

Proof. We have by Lemma 5.9 that the evacuation time T of any evacuation

algorithm A satis�es T ≥ min{3+ απ
k
, 3+2 sin(π−απ/2)}. If we set α = 2k/(k+1)

then taking into account Lemma 5.14 we obtain:

T ≥ min
§

3 +
π

k + 1
, 3 + 2 sin

� π

k + 1

�ª
≥ 3 +

π

k + 1
− π3

3!(k + 1)3

= 3 +
π

k
− π

k(k + 1)
− π3

3!(k + 1)3
= 3 +

π

k
−O(k−2),

This proves the theorem.

For k ≥ 3 robots we conjecture that the time T required to �nd an exit on the

perimeter of a disk is exactly 3 + 2π
k
.

5.4.2 Wireless communication

The trajectory of the robots is given in Algorithm 10.
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Algorithm 10: Algorithm for k robots with wireless communication.

1. Divide the team of robots into two groups: Group Gα of size kα = dk2/3e,
and Group Gβ of size kβ = k − kα.

2. Assign a continuous arc øAB of length π − 2
√
πk−1/3 to group Gα and

remaining part of the perimeter denoted by øBA (of length π + 2
√
πk−1/3)

to group Gβ.

3. Divide arcs øAB and øBA equally between members of groups. Each robot
belonging to Gα is assigned an arc of length aα = |øAB|/kα. Each robot

from group Gβ receives an arc of length aβ = |øBA|/kβ.
4. Each robot goes from the centre to the perimeter and explores an assigned

arc. Extremal robots from group Gα when exploring the assigned arcs go
towards each other (see Figure 5.6). All other robots explore assigned arcs
is any direction. A robot that discovers the exit sends noti�cation to all
other robots using wireless communication.

5. Upon receiving a noti�cation about the position of the discovered exit, a
robot takes the shortest chord to the exit.

6. Robots from group Gβ after �nishing exploration of their arcs start moving
towards the centre.

Theorem 5.16. Using Algorithm 10 with an input of k ≥ 100 then it is possible

to evacuate k robots from an unknown exit located in the perimeter of the disk in

time 3 + π
k

+O(k−4/3), in the model with wireless communication.

Proof. Consider the evacuation time of the Algorithm 10. Note that since k ≥ 100

then k − dk2/3e ≥ dk2/3e implying that aα > aβ. Thus robots from Gβ �nish

exploration �rst and start going towards the centre while robots from Gα are

still exploring (point 6. in the pseudocode). We will show an upper bound on

evacuation time T of the algorithm. Consider two cases:

Case 1. The exit is located within the arc øAB.
Consider the evacuation time Tβ of robots from group Gβ. Observe that since

ε > 1, then aα < 1 thus the exit is discovered while robots from Gβ are walking

towards the centre (before they reach the centre). Robots from Gβ start moving

towards the centre at time 1 + aβ. At some time t′ satisfying 2 + aβ > t′ > 1 + aβ

the exit is discovered by a robot from group Gα. Consider a trajectory taken by

a robot r from group Gβ starting from time 1 + aβ. If r would simply walk to
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the centre and then from the centre to the exit (location of the exit would be

known by the time when r reaches the centre). The time would be not more than

3 + aβ. By the triangle inequality the path taken by robot r acting according to

the algorithm is shorter (see Figure 5.6). Thus the evacuation time Tβ for robots

belonging to team Gβ is at most

Tβ ≤ 3 + aβ ≤ 3 +
π + 2

√
πk−1/3

k − kα
= 3 +

π + 2
√
πk−1/3

k
+

(π + 2
√
πk−1/3)dk2/3e

k(k − dk2/3e) = 3 +
π

k
+O(k−4/3).

Consider now the evacuation time of robots from groupGα. Assume that the exit is

discovered at time 1+x for some 0 ≤ x ≤ aα. Since the extremal robots from group

Gα are walking towards each other at the time moment 1 + x two arcs of length x

has been explored starting from each endpoint of arc øAB. Thus the distance on

the perimeter between extremal unexplored points of arc øAB is π−2
√
πk−1/3−2x.

Hence the maximum length of a chord connecting two unexplored points of arcøAB in this moment is 2 sin((π − 2
√
πk−1/3 − 2x)/2). Therefore the time Tα until

evacuation of all robots from group Gα is at most

Tα ≤ max
0≤x≤aα

{
1 + x+ 2 sin

(
π − 2

√
πk−1/3 − 2x

2

)}
= max

0≤x≤aα

¦
1 + x+ 2 cos

�√
πk−1/3 + x

�©
.

The function f(x) = 1 + x + 2 cos(
√
πk−1/3 + x) has derivative f ′(x) = 1 −

2 cos(
√
πk−1/3 + x). For k ≥ 100 we have that 2

√
πk−1/3 + aα ≤ π/6. Thus

cos(
√
πk−1/3 + x) ≤ 1/2 for all x ∈ [0, aα], which implies that the function f(x) is

non-decreasing in the considered set. In order to �nd the maximum it is su�cient

to consider its value at the extremal point aα.

Tα ≤ 1 + aα + 2 sin(π/2− (
√
πk−1/3 + aα))

= 1 +
π − 2

√
πk−1/3

dk2/3e + 2 cos

(√
πk−1/3 +

π − 2
√
πk−1/3

dk2/3e

)
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≤ 1 +
π − 2

√
πk−1/3

dk2/3e + 2−
(√

πk−1/3 +
π − 2

√
πk−1/3

dk2/3e

)2

+

(√
πk−1/3 +

π − 2
√
πk−1/3

dk2/3e

)4

/12

≤ 3 +O(k−4/3)

Thus in this case the evacuation time T ≤ max{Tα, Tβ} ≤ 3 + π
k

+O(k−4/3).

Case 2. The exit is located within arc øBA.
Each robot from group Gβ explores an arc of length (π+2

√
πk−1/3)/(k−kα). Thus

time until the exit is discovered is at most 1 + (π+ 2
√
πk−1/3)/(k− dk2/3e). Since

we are in the wireless communication model, each robot is noti�ed immediately

and needs additional time at most 2 to go to the exit. Thus the total evacuation

time in this case is at most

T ≤ 3 +
π + 2

√
πk−1/3

k − k2/3 − 1

= 3 +
π + 2

√
πk−1/3

k
+

(π + 2
√
πk−1/3)(k2/3 + 1)

k(k − k2/3 − 1)

= 3 +
π

k
+O(k−4/3)

This completes the proof of Theorem 5.16.

Theorem 5.17. It takes at least 3 + π
k
time in the worst case to evacuate k ≥ 2

robots from an unknown exit located on the perimeter of the disk in the model with

wireless communication.

Proof. This is a direct consequence of Lemma 5.7 where x = π/k.

5.5 Conclusion

We studied the evacuation problem for k robots in a disk of unit radius and pro-

vided several algorithms in both local communication and wireless communication

models for k = 2 and k = 3 robots. For the case of k robots we were able to give

asymptotically tight bounds thus indicating a clear separation between the local

communication and the wireless communication models. There are many interest-

ing open questions. An interesting challenge would be to tighten our bounds or
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even determine optimal algorithms for k = 2, 3 robots. Another interesting class

of problems is concerned with evacuation from more than one exit, or with robots

having distinct maximal speeds. Finally, the geometric domain being considered,

the starting positions of the robots, as well as the communication model provide

challenging variants of the questions considered in this chapter.



Chapter 6

Conclusions

6.1 Overview

This thesis has presented a variety of solutions to various problems that can all

be categorised as in the domain of Distributed Computing. The problems them-

selves have been concerned with an array of control problems for mobile robots

in distributed settings. The models used take their inspiration from both network

and geometric based environments.

The results presented in the preceding chapters are the result of published work

carried out by the author, their supervisors and also several collaborators from

di�erent institutions. Below is a more detailed look at the conclusions that can

be obtained from the main results presented in this thesis.

6.1.1 Robot Location Discovery

Chapter 3 Introduces a randomised distributed communication-less coordination

mechanism for n uniform anonymous robots located on a circle with unit circum-

ference with the goal to learn the positions of the other robots in the system as

quickly as possible so that they are able to self organise into doing a more useful

and involved task later on. It is assumed that the robots are located at arbitrary

but distinct positions, unknown to other robots. The robots perform actions in

synchronised rounds. At the start of each round an robot chooses the direction

of its movement (clockwise or anticlockwise), and moves at unit speed during this

93
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round. robots are not allowed to overpass, i.e., when an robot collides with an-

other it instantly starts moving with the same speed in the opposite direction.

robots cannot leave marks on the ring, have zero vision and cannot exchange mes-

sages. However, on the conclusion of each round each robot has access to (some,

not necessarily all) information regarding its trajectory during this round. This

information can be processed and stored by the robot for further analysis.

The Location Discovery Task to be performed by each robot is to determine the

initial position of every other robot and eventually to stop at its initial position, or

proceed to another task, in a fully synchronised manner. The primary motivation

was to study distributed systems where robots collect the minimum amount of

information that is necessary to accomplish this location discovery task.

Our original result for this problem was a fully distributed randomised (Las Vegas

type) algorithm, solving the Location Discovery Task w.h.p. in O(n log2 n) rounds

(assuming the robots collect su�cient information). Note that this result also

holds if initially the robots do not know the value of n and they have no coherent

sense of direction. We believe that our work in [68] is the �rst attempt to solve

the distributed boundary patrolling problem in the geometric ring (circle) model.

Furthermore, the proof technique of the concept of virtual "batons" that robots

exchange with each other upon collision, we believe, is a novel and intriguing

approach to analysing the motion of the robots in the system. To our knowledge

this is the �rst time such an approach has been used to analyse such a system and

it led to us discovering a rotation of robots positions at the end of each round. This

in turn had a large impact on us designing and analysisng the resulting algorithm.

This method has since been explored and built upon by [45] and [44].

However, Chapter 3 presents another fully distributed randomised (Las Vegas

type) algorithm that can achieve success w.h.p signi�cantly faster in n+O(log2 n)

rounds. It is also our conjecture that this new algorithm is in fact the optimal

solution for this problem.

There are many applications to this work but the main principle that should be

taken away from this in terms of practical applications is that even in the most

limited distributed environments there can still exist an e�cient method to enable

collaboration on a larger goal, even if smaller tasks must �rst be achieved. For

example, the work in Chapter 3 shows how a larger goal of the robots might be to

e�cently patrol the perimeter of the ring. However, given their limited capabilities
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each robot can employ the algorithms outlined in that chapter to learn the location

of the other robots in the system.

When thinking of where the next step for the research presented in Chapter 3,

where we had been looking at the case where the circumference of the ring was

known to the robots, we believe that a natural question that follows is therefore

whether one can solve the location discovery problem when it is the case that n

is known but the circumference is not. This work that is presented here uses a

randomised technique to achieve the results so it would be nice if we could create

a deterministic solution to the problem. The model here would most likely be one

where robots had their own unique identi�ers. This problem could also be studied

in a variety of di�erent settings that could vary in complexity.

6.1.2 Evacuation Problem on the Line

After our work on limited robots in distributed settings it was a natural progression

for us to move on to studying other settings and to see what sorts of limitations

could be imposed on them and then what useful tasks can still be achieved. This is

why we started to look at group search problems, or the evacuation problem. These

results are presented in Chapter 4 and consider a problem in which k MEs located

on the line perform search for a speci�c destination. TheMEs are initially placed at

the same point (origin) on the line L and the target is located at unknown distance

d either to the left or to the right from the origin. All MEs must simultaneously

occupy the destination, and the goal is to minimize the time necessary for this

to happen. The problem with k = 1 is known as the cow-path problem, and the

complexity of this problem is known to be 9d in the worst case (when the cow

moves at unit speed); it is also known that this is the case for k ≥ 1 unit-speed

MEs. Presented in Chapter 4 is a clear argument for this claim by showing a rather

counter-intuitive result. Namely independently from the number of MEs, group

search cannot be performed faster than in time 9d, where d is the distance between

the origin and the destination. The case of k = 2 MEs with di�erent speeds is also

examined, showing a surprising result that the bound of 9d can be achieved when

one MEs has unit speed, and the other ME moves with speed at least 1
3
. Finally

the case where k = 3 MEs with one having a speed less than 1 is brie�y looked at

showing that a bound of 9d can yet again be achieved, but only if the slower ME's

speed is at least 1
5
. This work can be seen to have its practical applications based
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heavily in the search and rescue space or indeed within military settings. Both

spaces where we see more and more are employing the use of distributed robotics

to aid in their tasks.

As stated already in Chapter 4 we have not provided a lower bound for the case

when the speed of the slower robot(s) is not too small. Therefore, investigating

this further would be a natural progression of our work and would be something

that would have been included in this thesis had time allowed. Our work dealt

with showing that in the new setting of the evacuation problem the optimal 9d

bound is still obtainable. More generally, of course, there is also the impact the

study of robots with multiple maximum speeds could have on rendezvous and

search problems. One interesting change to the model shown in Chapter 4 could

be to study problems where more than one evacuation point exists.

6.1.3 Evacuation Problem on the Disk

Following on from our work in Chapter 4 we could see that although the results

were interesting that the setting was quite a simple one, being only a line. There-

fore, it made sense to assume that any interesting results we obtained on the line

would most likely become far more interesting if the same problem was considered

in a more complex setting. In Chapter 5 k mobile robots inside a circular disk of

unit radius are considered. The robots are required to evacuate the disk through

an unknown exit point situated on its boundary. It is assumed all robots have the

same (unit) maximal speed and start at the centre of the disk. The robots may

communicate in order to inform each other about the presence (and its position)

or the absence of an exit. The goal is for all the robots to evacuate through the

exit in the minimum time possible.

Two models of communication between the robots were considered: In non-wireless

(or local) communication model robots exchange information only when simulta-

neously located at the same point, and wireless communication in which robots

can communicate between each other at any time.

The following question for di�erent values of k have been studied: What is the

optimal evacuation time for k robots? Algorithms are given here as well as lower

bounds in both communication models for k = 2 and k = 3 thus indicating a

di�erence in evacuation time between the two models. Almost-tight bounds are
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also obtained on the asymptotic relation between evacuation time and team size,

for large k. Also in the local communication model it is shown that, a team of k

robots can always evacuate in time 3+ 2π
k
, whereas at least 3+ 2π

k
−O(k−2) time is

sometimes required. In the wireless communication model, time 3 + π
k

+O(k−4/3)

always su�ces to complete evacuation, and at least 3 + π
k
is sometimes required.

This shows a clear separation between the local and the wireless communication

models.

We found that one of the remarkable points of interest for this problem was that

when increasing the number of participating robots only slightly, and still when

considering relatively small number of k, the compexity of the problem itself grew

rapidly.

This work, as with the work shown in Chapter 4 on the line, can also be seen to

have obvious applications in both a search and rescue and military setting.

As before when talking about the future research directions of the work done in

Chapter 4, the next interesting point to consider for work done in Chapter 5 is to

look at a model where there exists multiple evacuation points. This would indeed

more accurately model a real world setting such as a search and rescue procedure

performed on a collapsed building. Another, intriguing scenario would be if the

robots found themselves at di�erent starting locations from each other and indeed

from the center of the disk itself. A natural continuation from this would also be

to look at a geometric setting that was not the disk but perhaps some irregular

polygon in the area that was covered as again this would more accurately model

real world examples.

Our work on the disk has since been extended by [80] who are able to show

improvements to both the upper and lower bounds for the evacuation of robots

with face to face communication. They present an algorithm that provides an

evacuation time that is at most 5.628 and show that any algorithm has evacuation

time at least 3 + π
6

+
√

3 ≈ 5.255.

6.2 Final Remarks

Over the course of this project we have felt that we have contributed to a new class

navigation problems of autonomous robots being designed and explored within the
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�eld of Distribute Computing research. It is also felt that through this contribution

we have gained a greater understanding of surrounding topics such as Search and

Rendezvous problems andMonitoring and Patrolling problems. It is our hope that

the work presented in this thesis and the papers that it draws from can also spark

an interest in the community for Evacuation Problems as there is such a close

relation to Location Discovery and Rendezvous based algorithms both in teams

and as individuals. There has already been so much work done on this subject and

by changing the model to represent that of an evacuation type problem it is likely

that many more interesting questions can be proposed, especially when looking at

cases where there are a multitude of maximum speeds for the robots present in

the system.
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