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Abstract

Mathematical models for the spread of infectious diseases between living organisms

are crucial to humanity’s endeavour to understand and control its environment. The

threat posed by communicable diseases is great. For example, the 1918 flu pandemic

resulted in the deaths of over 50 million people and the HIV/AIDS pandemic is still

under way with 2.3 million new cases in 2012. Mathematical models allow us to make

predictions about the likelihood, impact and time scale of possible epidemics, and to

devise effective intervention programmes, e.g. mass vaccination.

This thesis considers various stochastic models of disease propagation which utilise

the concept of a finite contact (social) network. For such models, we investigate ways

in which important information can be extracted without a full mathematical ‘solution’

(often unavailable) or numerous time consuming simulations (often inefficient and un-

informative). For example, we consider the probability that a large scale outbreak will

occur when a single infected individual is introduced to a susceptible population, and

the expected number of infected individuals at time t.

Although we focus on the context of epidemiology, the models under investigation

are elementary and will be applicable to other domains, such as the spread of computer

viruses, the spread of ideas, chemical reactions, and interacting particle systems.
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Chapter 1

Introduction

1.1 Overview

This thesis is concerned with the construction and analysis of mathematical models for

the spread of infectious diseases. The purpose of this introductory chapter is therefore

to provide an idiosyncratic summary of some key methodologies and results within

mathematical epidemiology, such that the ideas underlying the rest of the thesis are

then familiar to the reader. These ideas will be presented, approximately, in an or-

der of increasing complexity where the complexity arises as extra aspects of the real

world processes are incorporated. For example, deterministic models will be followed

by stochastic models, and homogeneous host populations will be considered before

populations with more heterogeneous contact structures.

Throughout this chapter, various models will be defined, and their assumptions

about the real world will be examined. In addition, existing methods of analysis and

computation relating to the following important concepts/questions will be presented:

• Invasion: Given the introduction of an infectious agent into a population of sus-

ceptible hosts, what is the probability of a large scale outbreak (invasion)? How

does one distinguish between ‘large’ and ‘small’ outbreaks?

• Final outcome: Given that invasion occurs, can we make predictions about the

impact on the host population?

• Dynamics: Can we track the progress of the infection in time?

The thesis as a whole represents further work in this direction and is, to a large

extent, based on the following papers (to which the authors made equal contributions):

• Chapter 2: Wilkinson, R.R and Sharkey, K.J. (2013) ‘An exact relationship be-

tween invasion probability and endemic prevalence for Markovian SIS dynamics

on networks’, PLoS ONE 8, e69028.
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• Chapter 3: Sharkey, K.J. and Wilkinson, R.R. (2015) ‘Complete hierarchies of

SIR models on arbitrary networks with exact and approximate moment closure’,

arXiv:1501.06353 [q-bio.PE].

• Chapter 4: Wilkinson, R.R and Sharkey, K.J. (2014) ‘Message passing and

moment closure for susceptible-infected-recovered epidemics on finite networks’,

Phys. Rev. E 89, 022808.

Indeed, some sections of the thesis are reproduced verbatim from these papers.

1.2 Compartmental modelling

The typical approach in mathematical epidemiology is to assume that at any point

in time the host population can be divided into a small number of ‘compartments’,

where a given compartment represents all individuals of a particular health status, e.g.

the ‘infected’ compartment (Kermack and McKendrick, 1927). Deterministic models

can then be defined as mathematical dynamical systems (ordinary differential equa-

tions), where the state of the system is a list of ‘densities’ for all the compartments.

For example, the density of the infected compartment represents the total number of

infected individuals. Note that under this set-up, any ‘internal structure’ of a given

compartment is ignored: only the compartment’s density is kept track of.

The models which we consider in this thesis are primarily stochastic (probabilistic

not deterministic), and the individual hosts are treated explicitly. Thus, in general, the

list of compartment densities at a given time does not allow us to ‘evolve’ the model

according to its prescribed rules: the particular set of individuals belonging to each

compartment must be known, and possibly even the length of time for which individuals

have been in a given compartment (and other information which is ignored in the

traditional dynamical systems approach). However, if we are still primarily concerned

with keeping track of the compartment densities, and whether given individuals belong

to given compartments, then we will still refer to the model as compartmental. In this

wider sense, all of the models which we consider are compartmental.

The concept of a compartment is similar to that of an individual-state. Indeed, we

will refer to an individual in compartment X as being in state X.

1.3 Early deterministic models in mathematical epidemi-

ology - construction and key results

1.3.1 The deterministic SIR model

Some of the earliest and most influential work in mathematical epidemiology can be

found in the seminal papers of Kermack and McKendrick (the first published in 1927).

In ‘Contributions to the mathematical theory of epidemics - I’ the authors construct
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a model by first defining three compartments/states: ‘susceptible’, ‘infected’ and ‘re-

moved’. In the susceptible state, an individual (host) is at risk of becoming infected if

there are other individuals in the population that are infected. If an individual becomes

infected it inevitably recovers (is removed from the process) at some later time. Thus,

individuals are only permitted to transition between states in the following way:

S(susceptible)→ I(infected)→ R(removed).

The authors then discretise time and define how the change in the total number of

individuals in a given state, from time t to time t+∆, is determined by the total num-

ber of susceptible individuals at time t and the total number of infected individuals at

time t that have been infected for θ time steps (for all θ ∈ {0,∆, 2∆, . . . , t}). Implicit

in this construction is the assumption that all individuals are the same in terms of

their interaction with the infectious agent, i.e. all individuals are equally predisposed

to catching, transmitting and recovering from the infection, and the assumption that

all individuals interact equally with all other individuals, i.e. all susceptible individuals

have the same risk of being infected at the next time step. Both of these assumptions

are often relaxed or removed in more modern constructions which incorporate, for ex-

ample, heterogeneous contact structure. The authors are able to arrive at a particularly

appealing and simple model by also assuming the time for which individuals have been

in their current state to be irrelevant, this corresponding to ‘constant’ rates of recovery

and infectivity. This final assumption makes the mathematics so much more tractable

that it is still ubiquitous in epidemiological modelling. Allowing the time step ∆ to

tend towards zero, the model is then expressible as a system of ordinary differential

equations (ODEs):

˙S(t) = −(βN)S(t)I(t),

˙I(t) = (βN)S(t)I(t) − γI(t),
˙R(t) = γI(t), (1.1)

where S(t), I(t) and R(t) are the fraction of a population of size N that are sus-

ceptible, infected and recovered respectively at time t, while γ represents the rate at

which infected individuals recover and β represents the rate at which a given infected

individual makes ‘infectious contacts’ to another given individual (upon receiving an

infectious contact, a susceptible individual immediately becomes infected). However,

in modelling a given disease in populations of different sizes it is common to keep βN

constant, letting β′ = βN , such that we get the same trajectories for a given disease in

populations of different sizes. This is justified by the notion that a larger population

is not necessarily more dense and so the rate at which an infected individual makes

infectious contacts should, in general, be kept constant. In practice this can lead to

very small values of β when N is large.
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Jumping ahead somewhat, note that if the model were stochastic and at time t

the fraction of the population in each compartment was S(t), I(t) and R(t) (with

probability 1), then plugging these numbers into the right-hand-sides of system (1.1)

would give the exact rates of change of the expected fraction in each compartment (at

time t) if infectious periods were exponentially distributed with parameter γ and if any

given infected individual made infectious contacts to any given susceptible individual

according to a Poisson process of rate β (see the Markovian stochastic model in section

1.4). This holds since, in this case, the product S(t)I(t)N2 is exactly the number of

susceptible-infected pairings at time t. Thus, γ may be interpreted as the reciprocal

of the average infectious period, and β as the reciprocal of the average time between

infectious contacts (from an infected individual to another given individual).

We will refer to the above system (1.1) as the deterministic SIR model. Note that

this model is most appropriate for relatively fast moving infections where change in

the size of the host population (caused by births, (unrelated) deaths, migration etc.)

can be assumed to be negligible, and where infected individuals will either recover with

long-term immunity from further infection or else die from the disease (in either case

they are removed from the infection process). System (1.1) is deterministic in the sense

that for any initial system state, given as the fractional size of each compartment at

t = 0, the state of the system at time t is then fixed. However, it is not usually possible

to obtain closed-form solutions for non-linear systems such as (1.1), and in these cases

software packages such as MATLAB can be employed for numerical integration.

Although the non-linearity in system (1.1) makes a closed form solution ‘impossible’,

Kermack and McKendrick identified several important features or characteristics of the

model. Possibly the most famous observation is that there exists a threshold parameter

βN/γ such that, assuming the fraction of the population that are initially infected is

small (and the rest are susceptible), then the size of the infected compartment is initially

increasing if and only if βN/γ > 1, otherwise the infected compartment decreases

monotonically. Therefore, when a small number of initially infected individuals are

‘introduced’ to the population, we say that an ‘epidemic’ or ‘invasion’ will occur if and

only if βN/γ > 1.

Here, the number βN/γ is called the ‘basic reproductive ratio’ and is denoted R0.

It can be interpreted as the ‘expected number of secondary cases caused by a single

primary case in an otherwise susceptible population’ and, indeed, this is the more

general definition of R0. Note that under the Markovian stochastic interpretation of the

deterministic model, mentioned above, this expected value is precisely β(N−1)/(β+γ)
(and this tends towards βN/γ as N → ∞, β → 0). Clearly, if this expected number

is less than 1, then the expected number of ‘new’ cases caused by a single infected

individual, at any point during the process, is also less than 1. Thus, if R0 < 1, then

the expected number of nth generation cases decreases monotonically with n, while if
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R0 > 1 then it is initially increasing with n (assuming a single initial infected).

For the deterministic SIR model, Kermack and McKendrick also derived a tran-

scendental equation for the limit of R(t) as t→∞ (denoted R(∞)), for the case where

R(0) = 0, this giving the overall fraction of the population affected by the disease

(Kermack and McKendrick (1927)):

R(∞) = 1− S(0)e−
βN
γ

R(∞). (1.2)

Note that we now have a threshold parameter relating to the initial behaviour of the

system and an expression for the final state (S(∞) = 1−R(∞), I(∞) = 0) which both

involve the number R0 = βN/γ. Indeed, if S(0) → 1, I(0) → 0, such that the initial

presence of the infection is infinitesimal, then the above equation has a single solution

for R(∞) ∈ [0, 1) if and only if βN/γ > 1 (otherwise the only solution is R(∞) = 0).

1.3.2 The deterministic SIS model

Bearing in mind the construction process for the deterministic SIR model, it is now

possible to write down deterministic models, expressible as systems of ODEs, for dis-

eases where different or extra compartments (for the hosts) need to be defined, and/or

where movement between compartments may reflect different mechanisms. For exam-

ple, in some cases infected hosts may become re-susceptible to the disease after their

infectious period has terminated (consider sexually transmitted diseases or computer

viruses). This notion leads to the deterministic SIS model in which individuals can move

back and forth between the susceptible compartment and the infected compartment:

˙S(t) = −(βN)S(t)I(t) + γI(t),

˙I(t) = (βN)S(t)I(t) − γI(t), (1.3)

where the variables and parameters are defined as in the deterministic SIR model,

except that γ is now the rate at which infected individuals recover and immediately be-

come susceptible. Note that for system (1.3), assuming β, γ,N > 0, all of the equilibria

lie along the lines I = 0 and S = γ/(βN). However, under the constraint S + I = 1,

there are exactly two equilibria and these correspond to the points (I = 0, S = 1)

(disease-free equilibrium) and (I = 1 − γ/(βN), S = γ/(βN)) (endemic equilibrium).

Note that the first of these is biologically plausible while the second is only plausible if

βN/γ > 1. Moreover, it can be shown that if this condition for plausibility is met then

the disease-free equilibrium is unstable and the endemic equilibrium is stable, and vice

versa when the condition for plausibility is not met. Thus, as in the deterministic SIR

model, there exists the same threshold parameter R0 = βN/γ, such that if R0 > 1 then

a stable endemic equilibrium emerges whereby the infection can persist indefinitely.

The size of the infected compartment at this stable endemic equilibrium is then related
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to the threshold, i.e. Iendemic = 1 − γ/(βN). If βN/γ < 1 then the infected com-

partment monotonically tends to zero (assuming I(0), S(0) > 0 and S(0) + I(0) = 1).

Therefore, similarly to the deterministic SIR model, we can say that an ‘epidemic’ or

‘invasion’ will occur if and only if R0 > 1 (and I(0) > 0).

1.3.3 Remarks

The threshold and final outcome results support the idea that reducing the average

infectious period (by medicinal intervention) and/or the rate at which infectious con-

tacts are made (by modification of human behaviour) can both reduce the likelihood

of a significant outbreak and mitigate the impact of the disease in the event of such an

outbreak. Indeed, the threshold results imply that if a fraction greater than 1−γ/(βN)

are vaccinated then an ‘epidemic’ will no longer be possible (see, for example, Keeling

and Rohani (2007)).

There have been many deterministic models constructed which emphasise different

aspects of real-world disease propagation according to their perceived importance in

different contexts. All of the following concepts (and more besides) have been incorpo-

rated into deterministic epidemiological models: age structured populations, metapop-

ulations and households, vector-borne transmission, local contact structure, seasonal

variation, heterogeneity in host susceptibility and infectivity. For examples, see respec-

tively: McKendrick (1926); House and Keeling (2008); Ross (1911); Keeling (1999);

Keeling, Rohani and Grenfell (2000); May and Anderson (1988).

The majority of this thesis will involve analysis of stochastic models but in almost

all cases the considerations which led to the construction of the deterministic models

will be highly relevant. Moreover, the endeavour to produce mathematically precise and

practically relevant results, without finding exact closed form solutions to the dynamics,

will be reflected in many of the narratives of this thesis.

1.4 The standard SIR stochastic model (Markovian and

non-Markovian versions)

In the stochastic version of the deterministic SIR model (see, for example, Bailey’s

(1975) ‘general stochastic epidemic’), which we will refer to as the Markovian standard

SIR model, we have a population consisting of a set V of N = |V | discrete individuals.

An individual, while infected, makes infectious contacts to any other given individual

according to a Poisson process of rate β. If a susceptible individual receives an infectious

contact, it immediately becomes infected for an exponentially distributed period with

parameter γ, after which it ceases making contacts and becomes permanently recovered

(all individual level recovery and contact processes are independent). Such dynamics

are Markovian, as a result of all the individual level processes being Poisson, and this
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means that for a given present state, i.e. knowledge of which individuals are in which

states, then the future and the past are independent. This independence of the future

from the past, given some present state, is also inherent in the deterministic SIR model

since it was there assumed that the history of any given individual in a given state was

irrelevant. In fact, all of the assumptions are the same except that here we allow the

process to evolve stochastically such that the sizes of the compartments are discrete and

‘jump’ up or down in single units (they are not continuous in time). If the infectious

periods are i.i.d. (independent identically distributed) random variables distributed as

R, then we will refer to the resulting non-Markovian model as the standard SIR model.

The way in which the individuals transition between states, under the model out-

lined above, can be completely described by a continuous time Markov chain {σ(t)}
where σ(t) denotes the (random) configuration of the system/population at time t, tak-

ing values in S = SVind = {S, I,R}V , such that σi(t) denotes the corresponding (random)

status of individual i ∈ V at time t (S-susceptible, I-infected, R-removed/recovered).

The transition rates for this Markov chain are given in table 1.1, in which σ is an

arbitrary system configuration (not a random element) and σi is the state of individual

i implied by σ. The configuration σi→X is the same as σ except with the state of

individual i set to X ∈ {S, I,R}. Given this setup, a parameter set (V, β, γ) and a

probability distribution for σ(0), uniquely determines the probability distribution for

σ(t) (see, for example, Grimmett and Stirzaker (1982) for theory of Markov chains).

Letting X(t) and Y (t) denote the random number of susceptible individuals at

time t and the random number of infected individuals at time t respectively, then the

continuous time Markov chain {(X(t), Y (t))}, with transition rates as in table 1.2 with

the constraint that x+ y ≤ N and x, y ≥ 0, is also consistent with the dynamics in the

Markovian standard SIR model.

Table 1.1: Individual level transitions for the Markovian standard SIR model
from to at rate

σ : σi = S σi→I β
∑

j∈V 1(σj = I)

σ : σi = I σi→R γ

Table 1.2: Population level transitions for the Markovian standard SIR model

from to at rate

(x, y) (x− 1, y + 1) βxy
(x, y) (x, y − 1) γy

Many important results for the Markovian standard SIR model have been proved

and many also generalise to the case where infectious periods are arbitrary i.i.d. random

variables, i.e. to the standard SIR model. One result which is important to this thesis,
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and which we will state without proof, is that in the limit of large population size (as

N →∞) the Markovian standard SIR model converges to the deterministic SIR model

by a law of large numbers, i.e. (X(t)/N, Y (t)/N)→ (S(t), I(t)) uniformly on bounded

intervals for agreeing parametrisation and initial conditions (the reader is directed to

Ethier and Kurtz (1986) and the lecture notes of Andersson and Britton (2000)).

1.4.1 Defining invasion via coupling to branching processes

The early stages of the standard SIR model can be approximated as a ‘branching

process’ (Bartlett, 1955; Ball and Donnelly, 1995) such that the approximation ‘im-

proves’ as N increases. This result also allows a computation of the probability of an

‘epidemic’ or ‘invasion’, for the standard SIR model, when there are initially a small

number of infected individuals, or just one. Interestingly, this does not require an ‘epi-

demic’ or ‘invasion’ to be mathematically defined such that it, or its absence, can be

identified in a single stochastic realisation. The result relies on the method of cou-

pling in which, for this context, a number of different processes are constructed on

the same probability space in such a way as to be illuminating. As a simple exam-

ple, it is possible to construct two standard SIR models, one with β = a the other

with β = b > a (and no other differences), on the same probability space such that

X(t)β=a ≥ X(t)β=b while X(t)β=a andX(t)β=b remain correctly distributed, thus prov-

ing that P (X(t)β=a ≤ n) ≤ P (X(t)β=b ≤ n)∀n (Andersson and Britton, 2000). This is

intuitive since one would expect there to be less susceptibles at a given time t if, every-

thing else being kept the same, the rate at which infected individuals make infectious

contacts was increased.

Following Andersson and Britton (2000), the relevant continuous time branching

process is defined as follows: Let there be m live individuals (ancestors) at t = 0. The

lifespans of all individuals are i.i.d. random variables distributed as I. While alive, an

individual gives birth to new individuals according to a Poisson process of rate λ, and

all Poisson processes are independent. We will use B(t) to denote the total number of

births occurring before time t and L(t) to denote the total number of living individuals

at time t.

We will now describe a method of constructing the standard SIR model for a popu-

lation of size N and m initial infecteds and the branching process defined above (with

m ancestors), setting β = λ/(N −m) and R = I, on the same probability space. Note

that the rate at which an initially infected individual makes infectious contacts to ini-

tially susceptible individuals in the epidemic model has been set to be the same as the

rate at which a live individual gives birth in the branching process, and the distribution

of the infectious period has been set to match the distribution of an individual lifespan.

Also note that, in the standard SIR model, the infectious contacts made by an infected

individual are made to individuals chosen uniformly at random from the rest of the
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population.

We now draw a sequence of integers Ui, i ≥ 1, where each is drawn uniformly at

random from the set {1, 2, . . . , (N − m)} (with replacement), and where the length

of the sequence is equal to the total number of births that occur in the branching

process (possibly infinite). We then assign the sequence of numbers Ui, i ≥ 1, to

the sequence of births in the branching process in the order in which they occur (in

time). Now, for every birth which is assigned a number which is also assigned to an

earlier birth we remove it, and all future births resulting from it, from the time line of

the branching process (this constrains the branching process equivalently to how the

epidemic process is constrained by the decreasing number of susceptibles). After doing

this, the new number L′(t) of individuals alive at time t in the (modified) branching

process has the same distribution as the number Y (t) of infected individuals at time t

in the epidemic process, and the total number B′(t) of births before time t now has the

same distribution as the total number of successful infections in the epidemic process,

X(0)−X(t). Importantly, if we let T be the time of the first birth which has a number

which is also assigned to an earlier birth (before the procedure of removing births from

the branching process time line), then it is clear that up until this time the (unmodified)

branching process and the epidemic process must have an exact correspondence, i.e.

P (L(t) = L′(t)|T > t) = 1 and P (B(t) = B′(t) | T > t) = 1. It is straightforward to

then check that for finite t we have P (T > t)→ 1 as N →∞ and so, in this limit, we

have L(t)
D
= Y (t) and B(t)

D
= X(0) − X(t) (Ball and Donnelly, 1995; Andersson and

Britton, 2000).

1.4.2 Computing invasion probability

We have shown that the early stage of the standard SIR model can be well approximated

by a continuous time branching process when the population size is large. For the

branching process, the probability of ultimate extinction (all individuals eventually

die out) can be computed exactly. It is thus natural to define the probability of an

‘epidemic’ or ‘invasion’ for the standard SIR model as one minus the probability of

ultimate extinction in the corresponding branching process (Ball and Donnelly, 1995).

For the branching process described in the previous section, consider that the expected

number of offspring produced by a single individual is λE[I] and the expected number of

individuals in generation n is given bym(λE[I])n (wherem is the number of individuals

at t = 0). There is thus a threshold value (= 1) for the expected number of offspring

of an individual such that above the threshold the expected number in generation n

grows geometrically with n, but below the threshold the expected size of generation n

tends towards zero (for such generations, we know that the births of individuals into

generation n occur after the birth of the first individual into generation n−1). However,
this description is misleading since even above the threshold there is still the possibility
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that the population will become extinct.

Let there be a single initial individual (ancestor) and let q be the probability of

ultimate extinction, then q must satisfy the self consistency relationship:

q =

∞
∑

k=0

qkP (D0 = k), (1.4)

where P (D0 = k) is the probability that an individual will give birth to k individuals

in total. In fact, q is the smallest non-negative root of equation 1.4 (see, for example,

Grimmett and Stirzaker (1982)). The self consistency relationship can be understood

by noting that all individuals behave independently, and for extinction to occur we

need all of the independent ‘lines’ from each of the offspring of the initial individual

to also go extinct. If we have m initial individuals then the probability of ultimate

extinction is qm (again due to independence). Since the right-hand-side of equation

(1.4) is a convex and non-decreasing function of q, for q ∈ [0, 1], which passes through

1 at q = 1, then it is straightforward to show that there is at most one solution in [0, 1)

and it exists only if the gradient at q = 1 is greater than 1 (otherwise the only solution

is q = 1). This is the case when the expected number of offspring for an individual

is greater than 1 (and hence taking the q = 1 solution would be inconsistent with the

exploding expected population size).

If the continuous time branching process is constructed to be Markovian, by setting

I to be exponential with parameter µ, then the process will evolve according to the

transition rates in table 1.3. Note that the expected number of offspring for an indi-

vidual is now given by λ/µ such that the threshold is at λ/µ = 1. For the Markovian

case, given some present state, the future depends only on the current number of living

individuals L (and not their histories).

Table 1.3: Transitions for the Markovian branching process

from to at rate

L = x L = x+ 1 λx
L = x L = x− 1 µx

The probability of ultimate extinction qM (from a single ancestor) in the Markovian

branching process is simple to compute since there now exists a simpler self consistency

relationship:

qM = P (D0 = 0) + P (D0 6= 0)q2M

=
µ

λ+ µ
+

λ

λ+ µ
q2M . (1.5)

This can be understood by considering that as soon as the ancestor gives birth, the

system then essentially consists of two ‘new’ individuals (since individual histories are

now irrelevant). Indeed, we can now think of individuals splitting in two rather than
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giving birth, and the probability of it going extinct from this new state, L = 2, is

then q2M . The probability that an individual manages to produce offspring (split)

before dying is here the probability of one exponential random variable (time of first

birth/split) being less than another independent exponential random variable (time of

death). This explains the second line in equation (1.5). The probability of ultimate

extinction when there are m ancestors is thus qmM . Equation (1.5) can be solved as a

quadratic function to give:

qM ∈ {µ/λ, 1}. (1.6)

However, note that if the expected number of offspring of an individual is above 1,

then the lower value, µ/λ, is the consistent solution. Otherwise, ultimate extinction is

certain.

By the correspondence between the Markovian branching process and the Marko-

vian standard SIR model (which gives λ = β(N −m) and µ = γ) we can now write

Pm(epidemic/invasion) = 1− qmM

=

{

1−
[

γ
β(N−m)

]m

if β(N−m)
γ

> 1

0 otherwise,
(1.7)

where Pm(epidemic/invasion) is the probability of a ‘major’ epidemic in the Markovian

standard SIR model when there are initially m infecteds and the rest of the population

are susceptible. This definition is more valid for larger populations since then the

correspondence between the epidemic process and the branching process is more exact

(for the early stage of the process). Note that since the ultimate extinction threshold

for the Markovian branching process is at λ/µ = 1 then the corresponding threshold

for the Markovian standard SIR model is at β(N −m)/γ = 1. This agrees exactly with

the same threshold in the deterministic SIR model, R0 = βN/γ = 1, for the case where

βN is held constant as N →∞.

1.5 The standard SIS stochastic model (Markovian)

In the stochastic version of the deterministic SIS model, which we call the Marko-

vian standard SIS model (proposed by Weiss and Dishon (1971)), individuals behave

in exactly the same way as in the Markovian standard SIR model except that after

their infectious periods individuals return to the susceptible state (there is no recov-

ered/removed state). The transitions for the Markovian standard SIS model are shown

in tables 1.4 and 1.5, which can be understood with reference to tables 1.1 and 1.2 for

the Markovian standard SIR model (and the explanation given there).

It can be proved that in the limit of large population size the Markovian standard

SIS model converges to the deterministic SIS model, i.e. Y (t)/N → I(t) uniformly on
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Table 1.4: Individual level transitions for the Markovian standard SIS model
from to at rate

σ : σi = S σi→I β
∑

j∈V 1(σj = I)

σ : σi = I σi→S γ

Table 1.5: Population level transitions for the Markovian standard SIS model

from to at rate

(x, y) (x− 1, y + 1) βxy
(x, y) (x+ 1, y − 1) γy

bounded intervals for agreeing parametrisation and initial conditions (Ethier and Kurtz,

1986; Andersson and Britton, 2000). Also, we can couple the Markovian standard SIS

model to the same branching process that we coupled to the Markovian standard SIR

model. The logic follows through in exactly the same way except that the time T (see

section 1.4.2) now gives a lower bound on the actual time at which the correspondence

breaks down. This is because an individual can be infected more than once in the SIS

model, and it is only when an individual that is currently infected receives an extra

infectious contact that the correspondence breaks. Therefore, we get the same thresh-

old and probability of an epidemic/invasion as for the Markovian standard SIR model

(again, valid for large populations). Note that the probability of an epidemic/invasion

from a single initial infected in the Markovian standard SIS model is thus equal to I(∞)

in the endemic equilibrium of the deterministic SIS model (when above the threshold).

It should be stressed that for the stochastic SIS model the eventual outcome is al-

ways extinction of the infection (given enough time) since, given any present state, the

probability of the all-susceptible (absorbing) state arising in any future time interval is

positive.

1.6 Quasi-stationary distributions (for conditional final
outcomes)

Let us consider a continuous-time absorbing Markov chain, with finite state space S and

generator Q, in which there is a single absorbing state labelled 0 and the set S \{0} is a
communicating class of transient states (as in the Markovian standard SIS model). In

this case, there exists a unique quasi-stationary distribution (for the transient states)

such that, if the system is initiated in a transient state and we condition on non-

absorption, then the system (restricted to S \ {0}) tends towards this distribution

(Daroch and Seneta, 1965, 1967). For a set A ⊂ S of absorbing states, conditioning

on non-absorption yields a unique quasi stationary distribution (QSD) if S \ A is a

communicating class of transient states.
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Following N̊asell (1996), let p(t) be the row vector such that p1(t) is the probability

that the system is in state 1 (after some arbitrary ordering) at time t. We will assume

that there is a single absorbing state labelled 0 and that the system is initiated in

a transient state. Let pQ(t) be the same as p(t) but with the first component p0(t)

removed. We can now define

q(t) =
pQ(t)

1− p0(t)
, (1.8)

such that q1(t) is the probability that the system is in state 1 at time t given that

absorption does not occur.

From the theory of continuous time Markov chains (Grimmett and Stirzaker, 1982),

we have

p(t) = p(0)eQt, (1.9)

and so pQ(t) = q(0)eAQt, where AQ is the same as Q but with the first row and column

removed. We can now write:

q(0)eAQt = (1− p0(t))q(t)
= (q(0)eAQt1)q(t), (1.10)

where 1 is an (|S| − 1)× 1 column vector of ones. The quasi-stationary distribution q∗

is defined to satisfy:

q∗eAQt = (q∗eAQt1)q∗ ∀t > 0, (1.11)

and therefore it must be an eigenvector of eAQt. Since AQ and eAQt(t > 0) share the

same eigenvectors and eAQt(t > 0) is a positive matrix, due to our transient states

forming a communicating class, we can make use of the Perron-Frobenius theorem

(see, for example, Grimmett and Stirzaker (1982)). Specifically, eAQt has just one

left eigenvector v such that its components are all real and non-negative (equivalently

non-positive), and is therefore the only candidate for a probability distribution. This

eigenvector corresponds to a real eigenvalue r(t) which is positive and greater in absolute

value than any other eigenvalue. This being the case, we have r = eρ1t where ρ1 is the

eigenvalue of AQ which corresponds to v. In other words, if q∗ exists, it must be

proportional to v and q∗eAQt1 = eρ1t. However, since it is clear that veAQt1 = eρ1t

(after we have normalised v such that
∑

k vk = 1) then we do indeed have a unique

quasi-stationary distribution q∗(∝ v). Note that q∗eAQt1 = eρ1t implies that the time

until absorption, when p(0) = q∗, is an exponential random variable with parameter

ρ1.

It is also straightforward to show that q∗ is a limiting distribution. In fact, we can

write

q(t) = q∗ +O(et(ρ
′−ρ1)), (1.12)
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where ρ′ < ρ1 < 0 and so q∗ is the limit as t → ∞. We can see that q∗ may have

great practical relevance when ρ′ << ρ1 and ρ1 ≈ 0 since then q∗ can potentially

approximate pQ(t) for a significant time period. This would correspond to the case

where the expected time to absorption is long and the rate of convergence of q(t) to q∗

is rapid.

1.7 Networks (graphs representing populations with con-

tact stucture)

The models so far described have all made use of the assumption that populations are

‘evenly mixed’ such that, at any given time, all susceptible individuals are equally at

risk of being infected. In reality, certain individuals are more isolated while others are

better connected and it is intuitive that some individuals may play a more important

role in spreading the infection than others. For example, consider the role played by

promiscuous individuals in the case of sexually transmitted diseases (STDs). Addition-

ally, the existence of communities or households, within which the infection may spread

more rapidly, will clearly affect real world disease dynamics.

In models which assume ‘even mixing’, the large population limit is usually taken

in order to simplify the mathematics. This limit is taken in such a way that two types

of event, which may have important ramifications in the real world, are not captured

by the models: repeated infectious contacts between a given pair of individuals and,

on short time scales, infectious contacts to individuals who have already been infected

by different individuals. By ignoring such events the models may overestimate the

initial progress and final impact of the disease. These models also ignore the existence

of individuals who are likely to remain susceptible for a long period, or indefinitely,

primarily due to their ‘distance’ from initially infected individuals.

In order to avoid these limitations, and to allow more realistic heterogeneity, the

idea of a ‘social network’ can be introduced. The social network is conceptualised as a

set of individuals or ‘social actors’ where the presence of a relationship between any two

specific individuals is recorded, and its ‘strength’ is quantified (the individuals in such a

relationship are then ‘neighbours’). Indeed, the real-world propagation of disease is an

inherently stochastic phenomenon in which the ‘infection event’ is fundamental. Such

an event (generally) involves just two individuals i.e. an infectious individual transmits

the infection to a previously uninfected, yet susceptible, individual. Therefore it is

natural to try and quantify the pair-wise relationships in a given population. Note also

that by introducing a finite network which models each individual explicitly, we can

avoid the assumption that all individual hosts interact with the infectious agent in the

same way (in terms of infectivity and recovery profiles).

In theory, the process of disease propagation could be described (probabilistically)

in terms of a time-dependent matrix T (t) where the product Tij(t)∆ is the probability
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that individual j will make a contact (sufficient to transmit the disease) to individual i

between time t and time t+∆ (for ∆→ 0). It would then be necessary to superimpose

the propagation of the infectious agent on to this existing behaviour, resulting in an

extremely complex system. However, even at this level of generality we have assumed

that the behaviour of the host population is largely independent of the effects of the

propagating infectious agent. In light of these issues it may be preferable, for example,

to let Tij(t)∆ instead represent the probability that j will make a sufficient contact

to i between time t and time t + ∆, where time is measured from the moment that

j becomes infected (assuming that it does). In this case T captures the behaviour of

the population which is most relevant to the propagation of the disease, and allows

more interaction between the behaviour of the host population and the presence of

the infectious agent, while also offering a way around the problem of superimposing

the dynamics of the disease on to some prescribed behaviour for the host population.

Indeed, this kind of approach is adopted by Karrer and Newman (2010). Note that if

the system is assumed to be such that, given some present state, the future and the

past are independent, i.e. the Markovian case, then the difficulties discussed here are

ameliorated.

Throughout this thesis, social networks will be defined as directed graphsD = (V,A)

where V is the set of all individuals (vertices/nodes) in the network (population) and

A is a set of arcs (ordered pairs). The existence of an arc (i, j) ∈ A corresponds to the

ability of i ∈ V to make direct contacts to j ∈ V . We also assume an arbitrary labelling

such that the set V is given a one-to-one correspondence to the integers {1, 2, . . . , N =

|V |}. Similarly, we will sometimes define undirected networks as undirected graphs

G = (V,E) where E is a set of edges (unordered pairs) such that (i, j) ∈ E indicates

that i and j are in direct contact. By incorporating networks into the models it is

possible to represent disease transmission as a collection of processes which take place

between interacting pairs of individuals such that an individual’s position in the network

is highly relevant.

We note that contact structure is itself random and changing over time. However,

it may be that the propagation process is sufficiently rapid such that the assumption

of a static contact structure (during the relevant time period) is less strong. Some

types of networks are naturally more static, such as networks of sexual partners in

non-promiscuous societies, or networks of computer nodes in technological systems.

For a given network/directed graph D = (V,A), we make the following definitions:

Definition 1.7.1. The ‘adjacency matrix’ is a |V |× |V | matrix where the (i, j)th entry

is 1 if (j, i) ∈ A and zero otherwise.

Definition 1.7.2. Individual i ∈ V has a set of ‘in-neighbours’ {j : (j, i) ∈ A}, a set of

‘out-neighbours’ {j : (i, j) ∈ A} and a set of ‘neighbours’ {j : (i, j) ∈ A or (j, i) ∈ A}.
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Definition 1.7.3. A ‘path’ from i ∈ V to j ∈ V is a sequence of individuals i =

v1, v2, v3, . . . , j = vn where (vk, vk+1) ∈ A and where no individual appears more than

once. We say that i ∈ V can reach j ∈ V iff there exists some path from i to j.

Similarly, we say that i ∈ V can be reached from j ∈ V iff there exists some path from

j to i. A ‘cycle’ is any path where there exists an arc from the last individual in the

sequence to the first.

Definition 1.7.4. The ‘in-component’ of A ⊂ V , denoted In(A), is the set of all

individuals from which at least one member of A can be reached. The ‘out-component’

of A, denoted Out(A), is the set of all individuals which can be reached from at least

one member of A. We assume that A ⊂ In(A) and A ⊂ Out(A).

Definition 1.7.5. a ‘subgraph’ is a graph with a vertex set which is a subset of V , say

B ⊂ V , and an arc set which is a subset of A (restricted to arcs where both ends are in

B). The vertex induced subgraph D[B], where B ⊂ V , is the graph consisting of vertex

set B where there is an arc from i ∈ B to j ∈ B if and only if there is an arc from i to

j in the original network D.

Definition 1.7.6. The ‘underlying graph/network’ is the graph with vertex set V where

there is an arc from i ∈ V to j ∈ V iff there is an arc from i to j, or from j to i, in

the original network D. We will refer to this underlying graph as undirected, since the

existence of an arc from i to j implies the existence of an arc from j to i.

Definition 1.7.7. The network is ‘strongly connected’ iff every individual can be reached

from every other individual. A strongly connected component is a subgraph which is

strongly connected and maximal with respect to this property. The network is ‘weakly

connected’ iff its underlying graph is strongly connected.

1.7.1 Erdös-Rényi random graphs

Early work on random graphs was conducted by Erdös and Rényi (1959). They defined

their random graph via the following construction ‘recipe’: 1) Let V be a collection of

N = |V | vertices 2) for every unordered pair of vertices, place an edge connecting them

together with probability p (independently for each pair). It is immediately obvious

that the expected number z of edges emanating from a randomly selected vertex, i.e.

its expected degree, will then be equal to p(N − 1). By taking the limit as N tends

to infinity, whilst keeping z constant, many important results concerning the structure

of the random graph can be proved. The Erdös-Rényi random graph, of size N , is

the graph-valued random element with possible values and distribution determined by

the above recipe, i.e. the probability of it taking a particular structure is precisely the

probability of that structure arising when following the recipe.
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The probability pk that a vertex will be of degree k is given by

pk =

(

N − 1

k

)

pk(1− p)N−1−k

≈ e−zzk

k!
, (1.13)

where the approximation becomes exact as N → ∞ (and p → 0, since z is kept

constant).

Modelling a population by this random graph is arguably more realistic than the

approach which assumes that all individuals interact equally with all others. Indeed,

it allows us to obtain results for the case where, in the limit of large population size,

the number of neighbours of individuals is kept small, and the contact structure is

heterogeneous. However, the Poisson degree distribution is not considered realistic for

most social or technological networks. In addition, the local structure around a given

node is almost surely tree like. The first of these shortcomings is overcome by way of

generalised random networks.

1.7.2 Generalised random graphs

Generalised random graphs can be used to approximate ‘real’ networks when there

is limited information. For example, the fraction of the population pk consisting of

individuals who commonly interact with precisely k others may be known (or might be

confidently estimated), while other information is lacking. Given this distribution over

k, one can consider properties of the random graph of (population) size N , where the

probability of any given individual having k neighbours is pk, but which is in all other

respects uniformly random. We will refer to such a generalised random graph as a

‘configuration network’ (Bender and Canfield, 1978; Bollobás, 1985; Molloy and Reed,

1995; Newman et al., 2001). It is amenable to mathematical analysis (especially as

N →∞) but has the limitation of not being able to capture the higher order structure

of the real network, such as the likelihood that two neighbours of a given individual

will be neighbouring to each other, or the correlation in degree between neighbouring

individuals, e.g. the fraction of all individuals that are neighbouring to individuals of

degree k that are also of degree k.

The ‘recipe’ for generating a realisation of a configuration network goes as follows:

1) Let V be a collection of N = |V | vertices. 2) attach to each individual a number of

‘stubs’, where the number is an independent draw from the degree distribution pk; if

the total number of stubs is odd then start again. 3) select a pair of stubs uniformly

at random from the set of all such pairs, and connect them via an edge, and keep

doing this until there are no more available stubs. Thus, the probability of a randomly

selected vertex having precisely k neighbours is pk. However, an extremely important

characteristic, resulting from the form of the above recipe, is that the probability of
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a randomly selected neighbour of a randomly selected individual (given that it has at

least one neighbour) having degree k is not given by pk, but by kpk/z (consider that

the expected number of stubs attached to individuals with k stubs is kpkN and the

expected total number of stubs is zN). This means that ‘your friend has more friends

than you do’ and this is reflected in real world networks. Indeed, for a finite simple

graph (non-random), it can be shown that the expected degree of an individual at

the (uniformly) randomly chosen end of a (uniformly) randomly chosen edge is greater

than the average degree (Feld, 1991). Another important characteristic of configuration

networks is that in the limit as N → ∞ the structure is locally tree-like (Newman et

al., 2001), in the sense that the probability of a randomly selected individual being

contained in a cycle (loop) of finite size n ∈ N tends to zero as N →∞ (assuming that

the expectation and variance of the degree of a randomly selected individual remain

finite: Dorogovtsev, 2010; Newman et al., 2001).

As N →∞, the expected number of individuals that are at a distance of (finite) n

edges from a randomly selected individual is

z

[∑∞
k=0 k(k − 1)pk

z

]n−1

.

Thus, there is a threshold where the quantity in square brackets is equal to 1, this

quantity being the expected number of extra edges belonging to an individual arrived

at via an edge emanating from a randomly selected individual. Below the threshold,

the expected fraction of the network that can be reached from a randomly selected in-

dividual is vanishingly small. Above the threshold, the expected number of individuals

reachable from a randomly selected individual tends to infinity as N → ∞. However,

even above the threshold, there is still the possibility that an individual will only be able

to reach a vanishingly small fraction of the network. This echoes our earlier description

of the threshold for branching processes.

Similarly to the probability of ultimate extinction in branching processes, the prob-

ability S that a randomly selected individual is connected only to a vanishingly small

fraction of the configuration network is given by (Newman et al., 2001):

S =
∞
∑

k=0

pku
k,

where u is the probability of being able to reach only a vanishingly small fraction after

traversing one edge (and not coming back along it). This follows from the fact that

if the individual has k neighbours, which occurs with probability pk, then all k of

its edges must lead to a vanishingly small fraction of the network, and there can be

nothing which favours one edge over another with respect to this property. Since we

have already computed the distribution for the number of extra edges emanating from

a neighbour of a randomly selected individual, we know that u must satisfy the self
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consistency relationship (Newman et al., 2001):

u =
1

z

∞
∑

k=1

kpku
k−1.

Note that besides the ‘permanent’ u = 1 solution, there can be at most one other

solution in [0,1] (due to the convexity of the right-hand-side for u ∈ (0, 1)), and it

is straightforward to show that it appears when above the threshold (Newman et al.,

2001).

It is said that, above the threshold, the network/graph ‘percolates’ such that a single

connected component appears that is of the order of N in size, this being the ‘giant

component’ (Newman et al., 2001). Unlike the branching process, we therefore have two

interpretations of the probability 1− S. It is the probability that a randomly selected

vertex be connected to a positive fraction of the network, and it is also the relative size

of the giant component. Indeed, there is a branch of mathematics named ‘percolation

theory’ which addresses the issue of the existence and size of giant components for

different random graphs (and the size distribution for non-giant connected components).

This kind of analysis was especially simple for configuration networks because of the

locally tree like structure. In contrast, starting with an infinite square lattice and then

removing every edge independently with probability p results in a giant component if

and only if p < 1/2 - this took decades of work to prove (see, for example, Grimmett

(2010)).

1.8 Invasion and final outcome for epidemics on gener-
alised random graphs (via percolation theory)

The idea that an infection spreading on a configuration network is equivalent to a

percolation process was discussed by Newman (2002), but the relationship between the

spread of disease on an arbitrary network and percolation was recognised earlier by

Frisch and Hammersley (1963) and Grassberger (1983). The key to understanding the

relationship between these processes is by noting that the marginal probability that a

given individual, when it becomes infected, will make at least one infectious contact

to another given individual can sometimes be calculated. Indeed, for the Markovian

standard SIR model this probability is β/(β + γ). Therefore, if we have a graph where

each edge represents the possibility of an infectious contact, and we remove each edge

according to the marginal probability that the infectious contact via that edge does not

occur, then the probability that there is a path from an initially infected individual to

some other given individual is the probability that the given individual gets infected (at

some point in time). However, as was pointed out by Kenah and Robins (2007), this

mapping to a percolation process is only completely accurate if the infectious period

is not random but fixed, otherwise a slight modification to the percolation process is
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required, which we shall now discuss.

The problem arises from the fact that infectious contacts from a given individual

are correlated since the probability of each one depends on the infectious period of the

given individual. The way to account for this correlation is to first assign infectious

periods to all individuals from the appropriate distribution(s) before computing the

marginal probabilities of infectious contacts across each edge given this set of infectious

periods (every edge must first be replaced by two oppositely directed arcs since the

marginal probability of an infectious contact in one direction can be different to the

other direction). The random network implied by this recipe is called the epidemic

percolation network (EPN) and is a powerful theoretical and numerical tool (Kenah

and Robins, 2007; Miller, 2009). Note that a single realisation of an EPN gives a

statistically accurate ‘simulation’ of the final outcome of the epidemic process for all

possible initial configurations (whether or not a particular individual gets infected just

depends on how we independently assign the initial infecteds).

Let us consider the case where the infectious period tI is fixed and the infection is

spreading on a configuration network, and so an exact mapping to standard percolation

is possible. The marginal probability PI that a given individual makes an infectious

contact to a given neighbour is then:

PI =

∫ tI

0
βe−βτdτ = 1− e−βtI .

This means that the expected number of individuals (in the EPN) that are a distance

of n edges from a randomly selected individual is:

PIz

[

PI

∑∞
k=0 k(k − 1)pk

z

]n−1

,

and so there is a threshold where the quantity in square brackets, this being the expected

number of secondary cases caused by an infected individual near the start of the process

(not the index case), is equal to 1. Below the threshold, in the limit of large population

size, a vanishingly small fraction of the network are infected, while above the threshold

it is possible that a positive fraction of the network will be infected. The probability S

that a randomly selected individual will be reachable from (and can reach) a vanishingly

small fraction of the network is (Newman, 2002; Kenah and Robins, 2007):

S =
∞
∑

k=0

pku
k
I ,

where uI (to be interpreted similarly to u in the previous section) satisfies

uI = (1− PI) +
PI

z

∞
∑

k=1

kpku
k−1
I .

Thus, we can interpret 1 − S as simultaneously the probability of a major epidemic

(seeded by a single initially infected individual selected at random) and the relative
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size of a major epidemic. In fact, these last equations enable us to find the correct

relative size of a major epidemic even when the infectious period is random. This is be-

cause a given individual receiving an infectious contact from another given individual is

(marginally) independent of it receiving an infectious contact from a different individual

(both contacts depend on independent infectious periods) (Kenah and Robins, 2007).

This means that these last equations give us the correct probability of a randomly

selected individual being reachable from a vanishingly small fraction of the network in

the EPN. Note that if the degree distribution for the configuration network is set to

pN−1 = 1, and N →∞ such that we have an infinite fully connected network (which is

not locally tree like, but the corresponding EPN is, since the expected number of infec-

tious contacts from a given individual is finite), then the probability S of a randomly

selected individual being reachable from a vanishingly small fraction of the network in

the EPN satisfies

S ≈ (1− PI + PIS)
N−1

= (1− PI(1− S))N−1

≈ e−PIN(1−S), (1.14)

where the approximations are exact in the limit as N →∞. The last line follows since

PIN is kept constant while N → ∞ and PI → 0. If, as for the Markovian standard

SIR model, we have PI = β/(β + γ) (where βN is held constant as N →∞) then it is

straightforward to show that S is here the same as the value S(∞) (= 1−R(∞)) given

by equation (1.2) for the final outcome of the deterministic SIR model (in the case

S(0) → 1). This was to be expected since, as stated earlier, the Markovian standard

SIR model and the deterministic SIR model ‘coincide’ in the limit of large population

size (Ethier and Kurtz, 1986; Andersson and Britton, 2000).

1.9 Capturing the dynamics of epidemics on generalised

random graphs

Equations determining the exact time series for epidemics on configuration networks

were first given by Volz (2008), but we will discuss the equivalent and simpler system

of equations derived by Miller (2011) (see also Eames and Keeling (2002) for a different

approach to dynamics on heterogeneous networks). Miller has described his method as

‘edge-based compartmental modelling’. It relies on the concept of the ‘cavity state’ (see,

for example, Karrer and Newman (2010)) which allows a simpler conceptual framework

and is defined as follows: an individual is placed in the cavity state by removing

its ability to transmit the infection while leaving the process by which it becomes

infected unchanged. Thus, whether or not a given individual will be infected and

the random time at which it becomes infected are unchanged if we first place the
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individual in the cavity state. If the network is a tree network, an initially-susceptible

individual in the cavity state is susceptible at time t if it has not received an infectious

contact from any of its neighbours and, crucially, it receiving no such contacts from one

neighbour is statistically independent of it receiving no such contacts from a different

neighbour. In configuration networks, which are locally tree-like, this assertion of

statistical independence is valid after assuming that the infection survives long enough

for a positive fraction of the population to become infected (or if this is the case at

t = 0). Another feature of this approach which makes the mathematics tractable is that,

no matter how many neighbours a given cavity-state individual has, the probability

of it receiving no infectious contacts from a given neighbour (the degree of which is

unknown) by time t is always the same.

Following Miller (2011), and letting θ(t) denote the probability that a randomly

selected individual, after having been placed in the cavity state, does not receive an

infectious contact from a given (unknown) neighbour by time t:

〈S〉 =

∞
∑

k=0

pk[θ(t)]
k,

〈I〉 = 1− 〈S〉 − 〈R〉,
˙〈R〉 = γ〈I〉, (1.15)

where 〈X〉 is the fraction of the population in state X at time t, γ is the (exponential)

rate at which an infected individual recovers, and we use ‘dot’ notation for time deriva-

tives. Implicit in the above construction is the assumption that a randomly selected

individual is susceptible at t = 0 with probability 1 i.e. a vanishingly small fraction

of the population is initially infected. By similarly assuming that a neighbour of a

randomly selected individual will be susceptible at t = 0, Miller then derives:

˙θ(t) = −β
[

θ(t)−
∑∞

k=0 kpk[θ(t)]
k−1

∑∞
k=0 kpk

]

+ γ(1− θ(t)), (1.16)

where β is the rate at which an infected individual makes infectious contacts to one of

its neighbours. The quantity in large square brackets is the probability that a neighbour

of a randomly selected individual has received an infectious contact by time t but has

not made an infectious contact to our selected individual (note that this probability

has been derived by placing the neighbour also into the cavity state, with the exception

that it is allowed to make contacts to our selected individual). Note that θ(0) = 1 and

θ̇(0) = 0, and so we need a system state at time t + ∆, where θ(t + ∆) = 1 − e and

0 < e << 1, from which we can then compute the time series (Miller, 2011).

The edge-based approach can be applied to a wide range of generalised random

networks and even dynamic networks (Miller et al., 2011). The principle of selecting

a random individual, placing it in the cavity state, and then computing θ(t) remains

the same but the computation of θ(t) itself (or its time derivative) always needs careful

consideration.
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1.10 Epidemics on finite non-random networks

We define the Markovian network-based SIR model to be the same as the Markovian

standard SIR model (section 1.4), except that we let individual j make infectious con-

tacts to individual i at rate Tij ≥ 0 (when j is infected), and individual i recovers at rate

γi (when it is infected). We let Γ denote the vector [γ1, γ2, . . . , γN ]. The transition rates

for the corresponding Markov chain are shown in table 1.6, which can be understood

with reference to table 1.1 for the Markovian standard SIR model (and the explanation

given there). Similarly, we define the Markovian network-based SIS model according

to the transition rates in table 1.7. The network D = (V,A) on which the disease

Table 1.6: Transitions for the Markovian network-based SIR model
from to at rate

σ : σi = S σi→I
∑

j∈V Tij1(σj = I)

σ : σi = I σi→R γi

Table 1.7: Transitions for the Markovian network-based SIS model
from to at rate

σ : σi = S σi→I
∑

j∈V Tij1(σj = I)

σ : σi = I σi→S γi

spreads is thus implied by the matrix T , i.e. Tij > 0⇔ (j, i) ∈ A(D). Note that, since

we allow T to be asymmetric, this model is able to effectively model heterogeneity in

the innate susceptibility and infectivity of individuals. The case where Tij > Tji may

also be employed to capture the situation where i adopts an anti-spreading behaviour,

like frequent hand-washing, whereas j does not, or, if i and j represent communities,

the situation where there is more migration from j to i than from i to j (Sharkey et

al. (2006)).

The introduction of the contact network has broken the symmetry which existed

for the Markovian standard SIR and SIS models such that it now matters which in-

dividuals are in which states, i.e. there is no corresponding Markov chain where the

state of the system can be defined simply in terms of the number of individuals in each

compartment. This means that numerical simulation for such network-based models

is more computationally intensive since, for the Markovian network-based SIR (SIS)

model, there are 3N (2N ) states to keep track of. Nonetheless, the models are still con-

tinuous time Markov chains and so relatively simple to simulate. Note also that the

generator matrices will be extremely sparse since, for a given present state, we know

that the next state can only differ by the status of a single individual. The rate of

change of the status of a single individual is easily computed from the current state of

the system and table 1.6 or 1.7.
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It is possible to generalise these models such that a given infected individual makes

infectious contacts to a given neighbour according to some arbitrary non-Markovian

stochastic process, and/or a given individual’s infectious period has an arbitrary distri-

bution. Extra compartments, such as an ‘exposed’ class, can also be added. However,

the network on which the disease spreads still defines (and is defined by) which indi-

viduals are in direct contact, and the network remains static in time.

For arbitrary finite networks, each individual is (potentially) unique in its ability to

spread the infection and so there is no simple branching process to which the progress

of the infection can be coupled. The expected number of nth generation infecteds

depends on which individuals are initially infected and no longer grows (or reduces)

geometrically with n. There is no invasion threshold and, indeed, what an invasion

would ‘look like’ is now obscure.

Definition 1.10.1. Let XiYj denote the indicator variable for the event that σi(t) =

X,σj(t) = Y , where σ(t) is the random state of a stochastic process at time t, taking

values in S = SVind (i, j ∈ V ), and where X,Y are individual-states belonging to Sind.
Thus we can write:

∑

σ∈S:σi=X,σj=Y

P(σ(t) = σ) = P(σi(t) = X,σj(t) = Y )

= 〈XiYj〉,

where the angled brackets denote expectation. In other words, 〈XiYj〉 is the probability

that, at time t, individual i is in state X and individual j is in state Y . This generalises

to any number of individuals XiYjZk . . .

Remark. When referring to such indicator variables, the probability space on which

they are defined will be clear from the context, i.e. the model under consideration. For

example, in the Markovian standard SIR model, {σ(t)} is a continuous time Markov

chain where Sind = {S, I,R} and S = {S, I,R}V . Unless otherwise stated, all the ran-

dom elements in any equation or system of equations are defined on a single (arbitrary)

probability space which is consistent with a ‘run’ of the model. Hence, reference to

initial conditions and parametrisation will usually be dropped.

1.10.1 Capturing the dynamics by a moment closure approach

After careful consideration of the transition rates in table 1.1 (section 1.4), it is straight-

forward to see that for the Markovian standard SIR model:

˙〈Si〉 = −β
∑

j∈V \i

〈SiIj〉,

˙〈Ii〉 = β
∑

j∈V \i

〈SiIj〉 − γ〈Ii〉,

˙〈Ri〉 = γ〈Ii〉, (1.17)
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where 〈Si〉, 〈Ii〉 and 〈Ri〉 are the probabilities that individual i is susceptible, infected

and recovered respectively at time t and 〈SiIj〉 is the probability that i is susceptible

and j is infected at time t (see definition 1.10.1). We can now sum over i to obtain the

rates of change of the expected number in each compartment:

˙[S] = −β[SI],
˙[I] = β[SI]− γ[I],
˙[R] = γ[I], (1.18)

where [S] = E[X(t)], [I] = E[Y (t)] and [R] = E[N − X(t) − Y (t)] are the expected

number that are susceptible, infected and recovered respectively at time t, and [SI] is

the expected number of ordered pairs (of individuals) where the first is susceptible and

the second is infected at time t. System (1.18), although exact (consistent with the

Markovian standard SIR model), is not very useful without also having an equation

which governs the change in the expected number of the pairs. However, note that the

number of such ordered pairs at time t is given by X(t)Y (t), and if we assume that

E[X(t)Y (t)] = E[X(t)]E[Y (t)], as would be the case if X(t) and Y (t) were statistically

independent, then we get:

˙[S]∗ = −β[S]∗[I]∗,
˙[I]∗ = β[S]∗[I]∗ − γ[I]∗,
˙[R]∗ = γ[I]∗. (1.19)

After expressing in terms of fractions (of N), this is exactly the same system as the

deterministic SIR model (the ‘stars’ indicate that the variables in the system are now

approximations of the corresponding quantities for the underlying stochastic model).

System (1.19) demonstrates the principle of moment closure (for this context) since it

was generated from an exact (but not closed) system of equations by approximating

the higher-order quantities (pairs of individuals) in terms of lower order quantities

(individuals).

A slightly weaker assumption is that the states of individuals are statistically inde-

pendent. This is weaker since it is (in some sense) implied by statistical independence

of X(t) and Y (t), but does not imply statistical independence of X(t) and Y (t), e.g.

statistical independence of individuals implies E[X(t)Y (t)] =
∑

i∈V

∑

j∈V \i〈Si〉〈Ij〉 =
E[X(t)]E[Y (t)]−∑i∈V 〈Si〉〈Ii〉. This assumption leads to:

˙〈Si〉∗ = −β
∑

j∈V \i

〈Si〉∗〈Ij〉∗,

˙〈Ii〉∗ = β
∑

j∈V \i

〈Si〉∗〈Ij〉∗ − γ〈Ii〉∗,

˙〈Ri〉∗ = γ〈Ii〉∗, (1.20)
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which is a closed solvable system with a large number of variables (order N). To reduce

the size of this system, one can make the individual level homogeneity assumption that

the trajectories of all individuals are the same and so, for example, 〈Si〉 = [S]/N∀i.
Note that, due to symmetry, this assumption holds true if the probabilistic states

of individuals are all the same at t = 0 (and the states of individuals are initially

independent), e.g. 〈Si〉 = 〈Sj〉∀i, j at t = 0. Also, if we start the system in any pure

state then all initially susceptible individuals follow the same trajectories, and similarly

for initially infected individuals. After summing over all i ∈ V in equation (1.20), this

homogenity assumption allows us to write:

˙[S]∗ = −β (N − 1)

N
[S]∗[I]∗,

˙[I]∗ = β
(N − 1)

N
[S]∗[I]∗ − γ[I]∗,

˙[R]∗ = γ[I]∗, (1.21)

which provides an alternative to system (1.19) which assumed statistical independence

of X(t) and Y (t).

For the Markovian network-based SIR model, the same assumptions can be used in

order to produce small solvable systems. Consideration of the transition rates for this

model (section 1.10, table 1.6) leads to:

˙〈Si〉 = −
∑

j∈V \i

Tij〈SiIj〉,

˙〈Ii〉 =
∑

j∈V \i

Tij〈SiIj〉 − γi〈Ii〉,

˙〈Ri〉 = γi〈Ii〉, (1.22)

which are exact equations, in terms of the underlying stochastic model, but they do

not form a closed system. To close the system, one can assume statistical independence

for the states of individuals:

˙〈Si〉∗ = −
∑

j∈V \i

Tij〈Si〉∗〈Ij〉∗,

˙〈Ii〉∗ =
∑

j∈V \i

Tij〈Si〉∗〈Ij〉∗ − γi〈Ii〉∗,

˙〈Ri〉∗ = γi〈Ii〉∗, (1.23)

and this is a closed solvable system of order N . The assumption of statistical inde-

pendence in the states of individuals for this model is generally stronger than for the

Markovian standard SIR model since each individual (potentially) has a small num-

ber of neighbours. For an infected individual, at least one of this small number of

neighbours is not susceptible - the individual who infected it.
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To reduce the system size, the individual level homogeneity assumption can be

made, giving:

˙[S]∗ = −T̄ [S]∗[I]∗,
˙[I]∗ = T̄ [S]∗[I]∗ − γ̄[I]∗,
˙[R]∗ = γ̄[I]∗, (1.24)

where

T̄ =
1

N2

∑

i,j∈V

Tij =
nβ̄

N
, (1.25)

γ̄ =
1

N

∑

i∈V

γi, (1.26)

and n is the average number of out-neighbours (= average number of in-neighbours) of

an individual in the population, while β̄ is the average rate at which an infected indi-

vidual makes infectious contacts to one of its out-neighbours. The network structure,

encoded in the matrix T , drastically reduces the symmetry of the system and makes

the homogeneity assumption (generally) much stronger.

Going back to the exact equations (1.22), let us now write down exact expressions

for the rates of change of 〈SiIj〉 and 〈SiSj〉∀i, j : Tij > 0:

˙〈SiIj〉 = −(Tij + γj)〈SiIj〉
+
∑

k∈Nj\i

Tjk〈SiSjIk〉

−
∑

k∈Ni\j

Tik〈IkSiIj〉,

˙〈SiSj〉 = −
∑

k∈Nj\i

Tjk〈SiSjIk〉

−
∑

k∈Ni\j

Tik〈IkSiSj〉. (1.27)

Here, we can achieve a closed system by attempting to represent the triples, e.g.

〈SiSjIk〉, in terms of pairs and individuals. First, we assume that for any given in-

dividual in a given state, knowledge of the state of one of its neighbours cannot provide

any extra information about the states of any of the other neighbours. Note that this

does not preclude correlations in the states of neighbouring individuals. This is the

heart of many so-called ‘pair-wise’ (or pair-based) approximation models, where corre-

lations in the states of neighbouring individuals are attempted to be preserved while

correlations between individuals further apart are ignored. This assumption leads to
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the following closures (see Sharkey (2008) and references therein):

〈AiBjCk〉 ≈ 〈AiBj〉
〈BjCk〉
〈Bj〉

G[i, j, k] connected open triple, j central ,

〈AiBjCk〉 ≈ 〈AiBj〉
〈BjCk〉
〈Bj〉

〈AiCk〉
〈Ai〉〈Ck〉

G[i, j, k] connected triangle,

(1.28)

where A,B,C ∈ {S, I,R} and G is the underlying undirected graph of the network

D (recall, from definition 1.7.5, that G[i, j, k] is the subgraph formed from individuals

i, j and k and any edges which may exist between them in G). We use the term

‘connected open triple’ to describe a connected undirected subgraph of three individuals

where only one (central) individual has two neighbours, and similarly for ‘connected

triangle’ except here all three individuals have two neighbours. The first closure follows

directly from the beyond-pair independence assumption discussed above. The second

is similar but attempts to account for the extra correlation due to all three individuals

being directly connected to one another, and is an example of the Kirkwood (1935)

approximation; see also Rand (1999) for a detailed discussion.

Applying these approximations in equation (1.27), and after making pair level ho-

mogeneity assumptions, e.g. 〈SiIj〉 = [SI]/(Nn)∀i, j : Tij 6= 0 (and for simplicity

assuming T = T T , Tij ∈ {0, β}, γi = γ), yields the population-level closed system (see

Sharkey (2008) and references therein):

˙[S] = −β[SI],
˙[I] = β[SI]− γ[I],
˙[SI] = −(β + γ)[SI]

+Cβ [SS][SI]
[S]

(

(1− φ) + φ
N [SI]

n[S][I]

)

−Cβ [SI][SI]
[S]

(

(1− φ) + φ
N [II]

n[I][I]

)

,

˙[SS] = −2Cβ [SS][SI]
[S]

(

(1− φ) + φ
N [SI]

n[S][I]

)

,

˙[II] = −2γ[II]

+Cβ [SI][SI]
[S]

(

(1− φ) + φ
N [II]

n[I][I]

)

,

(1.29)

where C and φ are constants determined by the network’s adjacency matrix. C is the

number of triples divided by Nn2, while φ is the fraction of triples which are also
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triangles (fully connected triples):

C =
||G2|| − trace(G2)

Nn2
,

φ =
trace(G3)

||G2|| − trace(G2)
.

(1.30)

Here, G is the network’s adjacency matrix and ||A||, where A is an arbitrary matrix,

denotes the sum of all elements in A. Note that φ = 0 when there are no triangles

in the network, and this makes the equation for [II] unnecessary for a closed system.

The approach outlined above is also applicable to other stochastic models such as

the Markovian network-based SIS model (see also the introduction of chapter 3, and

Sharkey et al. (2006), for application to directed networks with asymmetric T ).

1.10.2 Capturing the dynamics by a message passing approach

The message passing approach of Karrer and Newman (2010) is somewhat similar

to Miller’s (2011) edge-based approach, but more general, in that they first consider

the case of an arbitrary undirected network G = (V,E) and allow the individual-

level transmission and recovery processes to be non-Poisson. They then also apply

their approach to configuration networks with Markovian individual-level processes and

obtain a system which is equivalent to Miller’s (2011), with a small discrepancy relating

to initial conditions. Analogous to the quantity θ(t), the message passing approach

relies on the probability H i←j(t) that i does not receive an infectious contact from j

by time t, given that i has been placed in the cavity state. It can be approximated by

the quantity F i←j(t) (Karrer and Newman, 2010):

F i←j(t) = 1−
∫ t

0
f(τ)

[

1− z
∏

k∈Nj\i

F j←k(t− τ)
]

dτ, (1.31)

where
∫ t

0 f(τ)dτ is the probability that an infected individual makes an infectious con-

tact to a given neighbour within time period t of first becoming infected (it is generally

not equal to 1 in the limit as t → ∞). Nj is the set of neighbours of j and z is the

probability that an individual is susceptible at t = 0 (it is assumed that the states of

individuals are statistically independent at t = 0 and there are initially no recovered

individuals). This means that the expected number of infected individuals at t = 0 is

(1− z)N .

If the network is a tree network then it is straightforward to show that equation

(1.31) is in fact exact, i.e. F i←j(t) = H i←j(t). Otherwise, it can be shown that

F i←j(t) ≤ H i←j(t). The dynamics can then be approximated by the system (Karrer
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and Newman, 2010):

〈Si〉∗ = z
∏

j∈Ni

F i←j(t), (1.32)

〈Ri〉∗ =

∫ t

0
ri(τ)

[

1− 〈Si〉∗t−τ
]

dτ, (1.33)

〈Ii〉∗ = 1− 〈Si〉∗ − 〈Ri〉∗, (1.34)

where
∫ t

0 ri(τ)dτ is the probability that individual i recovers within time period t of

having become infected (assuming it does become infected). The above system is exact,

in terms of the underlying stochastic model, when the network is a tree network since

then the probability of a cavity state individual receiving no infectious contacts from

one neighbour is statistically independent of it receiving no infectious contacts from a

different neighbour (similar to Miller’s (2011) edge-based approach). Otherwise it can

be shown that 〈Si〉 ≥ 〈Si〉∗ (Karrer and Newman, 2010).

1.11 Stochastic simulation

All stochastic simulations carried out in the service of this thesis were programmed

using the Gillespie (1976) algorithm, i.e.

1. Choose an initial pure system state (the system is in this state with probability

1 at t = 0) and set i = 1.

2. Use a random number generator to determine the next system state Γi and the

waiting time ∆i until transition.

3. Increase the simulated time by ∆i and update the system state to Γi.

4. If Γi is not an absorbing state and further simulation is required then return to

step 2 and set i = i+ 1.

For continuous time Markov chains, it is well known that the waiting time for a given

state is exponentially distributed where the parameter is equal to the sum of the rates at

which the system transitions away from that state into others (Grimmett and Stirzaker,

1982). The probability that it transitions into a given state is equal to the ratio of the

rate at which it transitions into that state to the sum of rates just described.

To simulate a random variable X with cumulative distribution function FX(x) we

draw a number U uniformly from the interval (0, 1), using a random number gener-

ator, and then apply the generalised inverse F ∗X(u) of FX(x) to the number U . The
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generalised inverse is defined:

F ∗X(u) = inf{x : FX(x) ≥ u} 0 < u < 1.

It is straightforward to show that F ∗X(U) then has the same cumulative distribution

function as X (U is a random variable distributed uniformly in (0,1)). If X ∼ Exp(λ)

then

F ∗X(u) = − 1

λ
ln(1− u),

and so, since U and 1 − U have the same distribution, we can simulate X as simply

− ln(U)/λ. A discrete random variable X, for which P (X = ai) = pi, can also be

simulated as f(U) where f(u) = ai iff u ∈ (
∑i−1

j=1 pj,
∑i

j=1 pj). This is useful for

determining the next system state in a Markov chain simulation since, given some

present state, the subsequent state can be represented as a state-valued discrete random

variable.
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Chapter 2

Invasion and endemicity in the
Markovian network-based SIS
model

2.1 Introduction

We will refer to any compartmental model in which the individuals of the population

move back and forth between just two states: susceptible and infectious, as an SIS

model. This framework has applications in the domains of sexually transmitted diseases

(Hethcote and York, 1984; Garnett and Anderson, 1996; Eames and Keeling, 2002;

Keeling and Eames, 2005) and computer viruses (Kephart and White, 1991, 1993;

Pastor-Satorras and Vespignani, 2001; Balthrop et al., 2004), where infections are able

to persist for long periods of time due to hosts being repeatedly infected. We say that

an infection is ‘endemic’ when its presence in the population is self-sustained for a ‘long

period’. We say that ‘invasion’ occurs if the infection becomes endemic. See Gilligan

and Bosch (2008) for an overview of invasion and persistence in epidemiological models

(for the context of plant pathogens).

For the deterministic SIS model (described in section 1.3.2), endemicity occurs when

R0 = βN/γ > 1 and, for such values of R0, the endemic state is represented by the

equilibrium of the system in which the infection is present (complete absence of the

infection is a trivial equilibrium). Therefore, invasion occurs if and only if R0 > 1.

For the Markovian standard SIS model (first introduced by Weiss and Dishon (1971)

and described in section 1.5), there is only one stationary distribution and this places

probability 1 on the complete absence of the infection (the single absorbing state).

However, there is also a unique quasi-stationary distribution (QSD) which is the natural

description of endemicity for this stochastic model (see section 1.6). For methods of

computation/approximation, see Clancy and Mendy (2011) and references therein. In

the limit of large population size there is an exact correspondence between the stochastic

and deterministic standard SIS models (Ethier and Kurtz, 1986; Andersson and Britton,
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2000) and so, for R0 > 1, the endemic equilibrium of the deterministic model must in

some sense approximate the expected number of infected (or susceptible) individuals

in the QSD.

Defining invasion for the Markovian standard SIS model poses difficulties since in-

definite persistence is not a possibility. However, we may choose to define invasion

probability as the probability that the corresponding branching process is infinite, as

in section 1.4.2 (Ball and Donnelly, 1995; Ball, 1999), and this should roughly cor-

respond to the probability that the time until the disease becomes extinct is long as

opposed to short (recall that the validity of the coupling to the branching process in-

creases with population size). Indeed, when running stochastic simulations it is usually

straightforward to distinguish between long outbreaks (invasion) and short outbreaks

(non-invasion) ‘by eye’.

Jacquez and Simon (1993) have proposed that, for the Markovian standard SIS

model, invasion can occur if and only if βN/γ > N/(N − 1) since below this threshold

the expected number of infected individuals will monotonically decrease, while above

the threshold it initially increases (considering a single initial infected). By a different

line of thought, N̊asell (1995) proposes that the threshold should be determined by the

point in parameter space which gives an expected time to extinction equal to f(N),

where f is some non-decreasing function of N (above the threshold, the expected time

to extinction grows exponentially with N , while there is little dependence on N below

the threshold).

The work of this chapter is motivated by a desire to understand why, for the Marko-

vian standard SIS model, the probability of invasion from a single initial infected (com-

puted from the corresponding branching process) is equal to the fraction of infected

individuals in the endemic equilibrium of the deterministic SIS model (when parameters

coincide), and to investigate the analogue of this relationship in a generalised version

of the model which we call the Markovian network-based SIS model (defined in section

1.10). Along the way, we find a precise mathematical definition for invasion probability

which generalises the (large population) definition via branching processes, similarly to

the way in which the QSD generalises the (large population) definition of endemicity,

i.e. equilibrium, in the deterministic model.

As discussed in section 1.10, the Markovian network-based SIS model can be de-

scribed by a continuous time Markov chain {σ(t)}, where σ(t) takes values in {S, I}V ,
and, for convenience, we reproduce its transition rates in table 2.1 (S-susceptible, I-

infected).

The contact network on which the disease spreads is encoded by the matrix T in

the sense that Tij > 0 ⇔ (j, i) ∈ A(D) and Tij = 0⇔ (j, i) /∈ A(D). Recall that Tij is

the rate at which j makes infectious contacts to i when j is infected, and γi as the rate

at which i, once infected, recovers (returning to the susceptible state).
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Table 2.1: Transitions for the Markovian network-based SIS model
from to at rate

σ : σi = S σi→I
∑

j∈V Tij1(σj = I)

σ : σi = I σi→S γi

In the context of an arbitrary finite network, the correspondence to a simple branch-

ing process is lost, even in the early stages, since each individual ‘interacts’ differently

with its environment. Due to the population being finite, there are no non-trivial

stationary distributions since the disease dies out almost surely as t → ∞ (complete

absence of the disease is the only absorbing state, reachable from all other states).

The network-based model is becoming more practically relevant as computing power

increases, allowing efficient individual-based stochastic simulations to be performed.

The increase in the amount of data on real-world network structures (cattle farms:

Woolhouse et al., 2005; poultry farms: Sharkey et al., 2007; other examples: Danon

et al., 2011) means that the dynamics of diseases, or computer viruses, on particular

networks is now an area of real concern.

2.2 Numerical investigations

In order to carry out stochastic simulations we adopt the Gillespie (1976) algorithm

(described in section 1.11). For a given matrix T and vector of recovery parameters

Γ = [γ1, γ2, . . . γN ], a simulation of the Markovian network-based SIS model is produced

as follows:

1. Choose an initial system configuration (pure system state), σ(0). Set t = 0.

2. Draw a random number U uniformly from (0,1). Set ∆ = − ln (U)/r where

r =
∑N

i=1(λi + µi) is the rate at which the system transitions away from its

current state, and

λi =

N
∑

j=1

Tij1(σj = I)1(σi = S),

µi = γi1(σi = I), (2.1)

are the rate at which individual i flips from susceptible to infected and from

infected to susceptible respectively. Finally, update t = t + ∆ (note that ∆ ∼
Exp(r)).

3. Draw a random number U from {1, 2, . . . , N} where i ∈ {1, 2, . . . , N} is chosen

with probability (λi +µi)/r. Then, flip the state of individual U (to infected if it

is currently susceptible, to susceptible otherwise). Update σU accordingly (note
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that the probability of individual i’s state being flipped is proportional to the

rate at which i transitions away from its current state).

4. The system is ‘now’ in state σ at time t. If the system has not reached the

absorbing state then return to step 2.

For the moment, we limit our investigations to contact networks which are strongly

connected (see definition 1.7.7). This means that so long as the infection is present

somewhere in the network then there is positive probability that all individuals are

simultaneously in the infected state at some future time. From this ‘all-infected’ state

any other system state can then be reached by a sequence of individual recoveries. Thus,

all non-absorbing states communicate with one another, and the single absorbing ‘all-

susceptible’ state can be reached from any non-absorbing state (all non-absorbing states

are therefore ‘transient’). The system which emerges when the network is strongly

connected thus satisfies the criteria for a unique QSD (see section 1.6, and Daroch and

Seneta (1967)).

Since the QSD is by definition the unique distribution towards which the system

tends, given non-absorption, we can measure the QSD numerically by first allowing a

simulation to run until it ‘looks’ as though the behaviour could be well described by

some time-invariant distribution. Assuming that the remainder of the simulation is

described by the QSD, we approximate the marginal probability that individual i ∈ V
is infected in the QSD as the fraction of time it then spends in this state. If absorption

occurs (the disease dies out) then we can just restart the process, since what we are

measuring is conditioned on non-absorption. Clearly, the longer the period of simulated

time over which we take our measurement, the more accurate it will be. Similarly, the

longer we ‘wait’ before starting our measurement, the closer the system will be to the

QSD, and the more accurate our measurement will be. We define P i
T,Γ(quasi-prevalence)

to be the marginal probability that individual i is infected in the QSD and, by then

summing over all i ∈ V , we define P
global
T,Γ (quasi-prevalence) to be the expected number

of infected individuals in the QSD. This is how we define and quantify endemicity in

this context, and this is what we attempt to approximate through numerical simulation.

Our measurement of invasion probability is (at this point) not a measurement of

a precisely defined mathematical quantity, as is the case for the QSD. However, the

intuitive notion of invasion is clear, and as long as we feel we can make a distinction

between small and large outbreaks then the procedure is straightforward. The prob-

ability of invasion from individual i ∈ V is computed by running a large number of

simulations where the initial system state has i as the only infected individual. For effi-

ciency, we stop the simulations at some maximum time or the time at which absorption

occurs, whichever comes first. Then, we decide ‘by eye’ which simulations exhibited a

large outbreak and which exhibited a short outbreak (by examining a histogram), and

then compute invasion probability as the fraction of the simulations in which a large
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Figure 2.1: Numerical data from simulations of Markovian SIS dynamics on our ex-
ample network Tex. (a) is a plot of the total number of infected individuals against
time in a simulation where the outbreak was initiated on a single infectious individual.
(b) is a histogram of the number of infection events in 100 simulations of an outbreak,
which were allowed to run up to a maximum of 300 infection events, initiated on the
same individual each time. In both cases, the weighted network matrix was multiplied
by 0.01 and the recovery rate was set to unity for all individuals.

outbreak occurred. Cases where a clear distinction between small and large outbreaks

could be made were not difficult to find across a wide range of networks and param-

eters. However, we will later derive a mathematical definition of invasion probability

which is independent of this numerical approach (and which can be applied to any

parametrisation, even when the numerical approach does not allow a clear distinction

between small and large outbreaks).

Figure 2.1 gives an example of the numerical measurement of endemicity and inva-

sion probability for our example network Tex. This network is the largest (5,119 node)

strongly connected component of a network which was generated from simulations on

a complex model of the spread of H5N1 avian influenza through the British poultry

flock (Sharkey et al., 2008; Jonkers et al., 2010). It exhibits extensive heterogeneity in-

cluding complex spatial structures, heterogeneous transmission strengths varying over

many orders of magnitude, clustering and directed links. In other numerical investiga-

tions we measured and compared P i
T,Γ(quasi-prevalence) with invasion probability from

i in different networks and, for each network, the contact parameter matrix T was also

multiplied by different scalar numbers.

In the case of undirected networks, i.e. symmetric T , the numerical results pointed

towards an exact relationship between P i
T,Γ(quasi-prevalence) and invasion probability
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Figure 2.2: Measurements of P i
T,Γ(quasi-prevalence) for a single individual (i = node

2332) in our example network Tex, and of the probability of invasion from the same
individual when network links are reversed, i.e. when Tex is transposed. The recovery
rate was set to unity for all individuals while a multiplier of the network matrix was
varied. In (a), these two quantities are plotted against each other for each of 20 different
multipliers of the network matrix. The faint dashed line indicates equality. On this scale
it is not possible to determine any deviation from the equality of the two quantities.
(b) is a ‘zoomed-in’ view of the perpendicular deviation of each of the data points from
the straight line (equality), in the bottom right to top left direction.

from i (see figure 2.2). Note that the Markovian standard SIS model is actually a

special case of the network-based version, where Tij = β ∀i 6= j and γi = γ ∀i ∈ V .

Also note that any undirected network is necessarily strongly connected (we assume

a single connected component since distinct connected components can be treated as

separate systems).

2.3 Graphical representation and duality

For the Markovian network-based SIS model, the graphical representation of Harris

(1978) allows a coupling together of all of the processes corresponding to all possible

initial configurations on the same probability space. It does this in such a way that

there is a large amount of statistical dependence between these different processes and

thus several important features emerge. We follow the description of the graphical

representation given by Grimmett (2010).

Descriptions of the graphical representation in the literature are commonly re-
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Figure 2.3: A realisation of the graphical representation of Markovian SIS dynamics on
a fully connected network of three individuals i, j and k (up to time t). The vertical
lines are the time lines corresponding to each individual. The short diagonal lines
indicate the points of cure and the horizontal arrows are the arrows of infection. A
path from 0 on j’s time line to t on i’s time line is shown in bold.

stricted to the following special case of the Markovian network-based SIS model: the

network is undirected, all contact parameters are the same and all recovery parameters

are the same, i.e. T = T T , Tij ∈ {λ, 0} and γi = δ (Grimmett, 2010). We now con-

sider this special case which is also known as the ‘contact process’ (it is also frequently

restricted to the case of an infinite d-dimensional square lattice, often with d = 1 (Grif-

feath, 1981)). See Liggett (1999) for an overview, and Durrett and Levin (1994) for an

ecological perspective.

Firstly, and following Grimmett (2010), we assign a non-negative real number line

to each member i ∈ V of the population and call these time lines. For each i ∈ V

we then place an independent Poisson point process of intensity δ on the time line

corresponding to i, and call these points of cure (the ‘time’ or ‘spacing’ between two

consecutive points of cure, on a single time line, is thus ∼ Exp(δ)). Finally, for each arc

(i, j) ∈ A(D) we place ‘arrows of infection’ from i’s time line to j’s time line according

to an independent Poisson point process of intensity λ.

Adopting the notation of Harris (1974), we now define the set ξAt ⊂ V , where

A ⊂ V , such that i ∈ ξAt if and only if there is at least one path from 0 on a time line

corresponding to an individual in A to t on i’s time line (paths follow the direction of

time and the directions of the arrows of infection and do not traverse points of cure).

Due to its construction, ξAt is precisely the same set-valued random variable (in terms

of possible values and distribution) as the set of individuals infected at time t, in the
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corresponding epidemiological model, when the set of initial infecteds is A. As such,

we know that {ξAt } is a Markov chain with a unique QSD which is the same for all

choices of A ⊂ V (A 6= ∅).
The following property (monotonicity) is immediate (see, for example, Grimmett

(2010)):

ξAt ⊂ ξBt if A ⊂ B, (2.2)

which implies for the contact process, amongst other things, that the probability of

any given individual being infected at time t when A is the set of initial infecteds is

less than or equal to the probability of that individual being infected at time t when

B(⊃ A) is the set of initial infecteds. We say that ξBt is stochastically greater than (or

equal to) ξAt , where A ⊂ B, since P (ξBt ∩ C 6= ∅) ≥ P (ξAt ∩ C 6= ∅) ∀C ⊂ V .

The above graphical representation also lends itself to the proving of the following

important property known as ‘duality’ (Holley and Liggett, 1975; Harris, 1976):

Pλ,δ(ξ
A
t ∩B 6= ∅) = Pλ,δ(ξ

B
t ∩A 6= ∅), (2.3)

which says that the probability of at least one member of B being infected at time t

when the set A are initially infected is equal to the probability of at least one member of

A being infected at time t when the set B are initially infected (for given transmission

and recovery parameters, λ and δ).

Lemma 2.3.1. (see, for example, Grimmett (2010))

lim
t→∞

Pλ,δ(ξ
{i}
t ∩ V 6= ∅) = lim

t→∞
Pλ,δ(ξ

V
t ∩ {i} 6= ∅) ∀i ∈ V.

This lemma follows simply from the property of duality. The lemma says that the prob-

ability of indefinite persistence when only i is initially infected is equal to the probability

that i is infected at time t, in the limit as t → ∞, when all individuals are initially

infected. For the case where the network is infinite, e.g. an infinite square lattice,

it has been shown that these probabilities can be greater than zero (see, for example,

Grimmett (2010)) (if the network is finite then they are zero). If the network is also

homogeneous, as is the case for the infinite square lattice, then these probabilities are

independent of the particular choice of i ∈ V .

The above lemma can be used to intuit the exact correspondence between invasion

probability in the Markovian standard SIS model (when computed via the correspond-

ing infinite branching process) and the endemic equilibrium of the deterministic SIS

model. The Markovian standard SIS model is equivalent to the contact process on a

homogeneous fully connected network (every individual interacts equally with every

other individual). As the population size tends to infinity the deterministic model

exactly corresponds with the Markovian model/contact process and the early stages

of the Markovian model/contact process exactly correspond with a branching process.
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Since, in this case, the probabilities in the lemma are the same for all choices of i ∈ V ,

the right-hand-side is also the ‘final’ expected fraction of the population in the infected

state when all individuals are initially infected. In the limit as N →∞ this must equal

the ‘final’ fractional size of the infected compartment in the deterministic SIS model,

i.e. the endemic equilibrium (or the disease-free equilibrium if below the threshold).

The left-hand-side of the lemma is the probability that the infection persists indefinitely

when just one individual is initially infected in the Markovian model/contact process

which, in the limit as N → ∞, is the probability that the corresponding branching

process is infinite.

Much of the analysis of the contact process in the literature focuses on the computa-

tion of a threshold value for the parameter λ/δ such that below the threshold eventual

extinction of the disease is certain while above the threshold indefinite persistence is

possible (for the case where the network is infinite, e.g. an infinite square lattice). For

example, in the case of a network which is a k−regular Bethe lattice (k > 2), this

threshold value is known to lie between 1/(2
√
k − 1) and 1/(k−2) (Liggett, 1996). For

our analysis of the Markovian network-based SIS model, we will sidestep this question

by assuming that endemicity (long but not indefinite persistence) is always possible,

and then focus on the probability that endemicity occurs (invasion) and its relationship

to the endemic state (QSD).

In order to proceed, we modify the above graphical representation such that it can

be applied to the Markovian network-based SIS model in full generality (Wilkinson

and Sharkey, 2013): For each i ∈ V we place an independent Poisson point process of

intensity γi on the time line corresponding to i. For each arc (i, j) ∈ A(D) we place

‘arrows of infection’ from i’s time line to j’s time line according to an independent

Poisson point process of intensity Tji. We then define ξAt as before and note that if

the network is strongly connected then {ξAt } has a unique QSD that is the same for all

choices of A ⊂ V (A 6= ∅). The property of monotonicity still holds, while the property

of duality needs some modification and is expressed as:

Theorem 2.3.1 (Duality for the Markovian network-based SIS model).

PT,Γ(ξ
A
t ∩B 6= ∅) = PTT ,Γ(ξ

B
t ∩A 6= ∅),

where matrix T and vector Γ fully parametrise the model, and T T is the transpose of

T (directions of transmission processes are reversed). Here, T may be asymmetric and

its elements may be any non-negative real numbers. Γ also consists of non-negative

real numbers. The theorem says that the probability of at least one member of B being

infected at time t when only the set A are initially infected is equal to, in the transposed

network, the probability of at least one member of A being infected at time t when

only the set B are initially infected (note that for undirected networks T = T T ). See

Wilkinson and Sharkey (2013).
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Proof. Consider first the case where the network is undirected (symmetric T ) and where

the subsets of the population are single individuals: A = j,B = i. The probability of a

path (under the graphical representation) from 0 on j’s time line to t on i’s time line is

then expressed by the left-hand-side. This is equal to the probability that i is infected

at time t when only j is initially infected. With reference to figure 2.3, reversing the

direction of time (turning the diagram upside down) does not alter the validity or

interpretation of the graphical representation, in any way, since the probability of a

point of cure or arrow of infection in any time interval just depends on the absolute

size of the time interval (by the memoryless property of Poisson processes). Therefore,

since by reversing the direction of time a path from 0 on j’s time line to t on i’s time

line maps to a path from 0 on i’s time line to t on j’s time line, the theorem holds

for the case where T is symmetric and A and B are single individuals. When T is

asymmetric, reversing the direction of time produces a valid graphical representation

for the transposed network and this explains the appearance of T T in the right-hand-

side. The case of arbitrary sets A and B follows through by exactly the same logic

(see, for example, Grimmett (2010) for the case of symmetric T and homogeneous

transmission and recovery rates).

2.4 Endemicity and quasi-prevalence

We define PA
T,Γ(quasi-prevalence) to be the marginal probability that at least one mem-

ber of A ⊂ V is infected in the QSD and so, by the definition of the QSD, we can

write:

PA
T,Γ(quasi-prevalence) = lim

t→∞
PT,Γ(ξ

V
t ∩A 6= ∅ | ξVt ∩ V 6= ∅) (2.4)

= lim
t→∞

PT,Γ(ξ
V
t ∩A 6= ∅)

PT,Γ(ξVt ∩ V 6= ∅)
, (2.5)

where the second equality follows from the fact that ξVt ∩ A 6= ∅ implies ξVt ∩ V 6= ∅
(recall that we are assured a unique QSD by assuming the network to be strongly

connected). Note that the choice of initial conditions in equation (2.4) is arbitrary

since the QSD is independent of initial conditions (except that the initial state cannot

be the absorbing state).

It can be argued that the QSD has practical relevance if the rate of convergence

to this distribution, when conditioning on non-absorption, is rapid compared to the

rate at which the probability of absorption by time t approaches 1 when the system is

‘initiated’ in the QSD (Daroch and Seneta, 1965). This corresponds to the case where,

given that the infection survives the initial stages, the expected time to extinction is

long and for most of its lifetime the system behaves as if it is well described by the

QSD. This can often be the case for stochastic SIS dynamics where, according to N̊asell

(1996) (on the Markovian standard SIS model), ‘it is easy to find examples where the
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Figure 2.4: Here we illustrate how it is possible for the quantifiers
PA
T,Γ(quasi-prevalence) and PA

T,Γ(quasi-invasion) to capture critical information
about the model. If the network is undirected then these quantifiers are numerically
the same and have equal practical relevance (as is seen by assuming that T is the same
undirected network in (a) and (b), above).

expected time to extinction even for a rather small population exceeds the age of the

universe’.

Let us consider the following quantities for the Markovian network-based SIS model,

and a given matrix T and vector Γ:

1. PT,Γ(ξ
V
t ∩A 6= ∅) = The probability that at least one member of A ⊂ V is infected

at time t given that all individuals are infected at t = 0.

2. PT,Γ(ξ
V
t ∩ V 6= ∅) = The probability that the infection survives to time t given

that all individuals are infected at t = 0.

3. PT,Γ(ξ
V
t ∩A 6= ∅)/PT,Γ(ξ

V
t ∩ V 6= ∅) = The probability that at least one member

of A is infected at time t given that all individuals are infected at t = 0 and given

that the infection survives to time t.

Note that in the limit as t → ∞ quantity 3 is equal to PA
T,Γ(quasi-prevalence).

In figure 2.4a, the way in which these three quantities vary with respect to time is

illustrated for the scenario in which the QSD has practical relevance (discussed above).

In this scenario, the quantifier PA
T,Γ(quasi-prevalence) is able to capture the value at

which PT,Γ(ξ
V
t ∩A 6= ∅) initially ‘plateaus’ before its slow decay to zero. Since the all-

infected initial state gives the maximum expected time to absorption (via monotonicity)

then it is natural to associate this plateau with endemicity.
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2.5 Quasi-invasion

In the context of SIS dynamics on arbitrary finite networks, invasion and invasion prob-

ability have not been given rigorous theoretical definitions, even though attempts to

establish an invasion-threshold in the Markovian standard SIS model have been made

(N̊asell, 1995; Jacquez and Simon, 1993). As we have already discussed, invasion prob-

ability is often computed as the probability that the corresponding branching process

is infinite, but even for fully connected networks this is only valid in the limit of large

population size. For finite heterogeneous networks, finding an appropriate branching

process which can reasonably approximate the early stages, while still being tractable,

is not so easy (and the choice of branching process depends on which individual in the

network initiates the epidemic). The finite situation demands the ability to distinguish

between short outbreaks and long, but not indefinite, outbreaks.

In this section we show that the quantifier of invasion probability, which has equal

practical relevance to the QSD and quasi-prevalence, for outbreaks initiated by the

members of A ⊂ V in a strongly connected network can be defined:

PA
T,Γ(quasi-invasion) = lim

t→∞

PT,Γ(ξ
A
t ∩ V 6= ∅)

PT,Γ(ξVt ∩ V 6= ∅)
, (2.6)

where the numerator is the probability of survival to time t when subset A are the

initial infecteds, while the denominator is the probability of survival to time t when all

individuals are initially infected. Immediately, there are some observations about this

definition which correspond to our intuitive notions of invasion. The definition implies

that invasion is certain when all individuals are initially infected, since the numerator

and the denominator are then equal for all t. Also, we have that

PA
T,Γ(quasi-invasion) ≥ PB

T,Γ(quasi-invasion) B ⊂ A,

by the property of monotonicity. In other words, when ‘adding’ more initial infecteds

the probability of invasion is non-decreasing.

Let us now consider the quantities:

4. PT,Γ(ξ
A
t ∩ V 6= ∅) = The probability that the infection survives to time t given

that only the members of A are infected at t = 0.

5. PT,Γ(ξ
V
t ∩ V 6= ∅) = The probability that the infection survives to time t given

that all individuals are infected at t = 0.

6. PT,Γ(ξ
A
t ∩ V 6= ∅)/PT,Γ(ξ

V
t ∩ V 6= ∅) = The quotient of quantities 4 and 5.

It follows from duality that the three quantities, 4, 5 and 6, are all equal respectively

to the three quantities, 1, 2 and 3 (from section 2.4), provided that we transpose T .

Note also that, in the limit as t→∞, quantity 6 is equal to PA
T,Γ(quasi-invasion).

43



Quantity 4 denotes the survival probability up to time. We see in figure 2.4b that

this plateaus in exactly the same way as quantity 1 for the transposed network (figure

2.4a). Thus, in exactly the same way in which PA
T,Γ(quasi-prevalence) captures the

value at which the probability of infection in A plateaus before its slow decay to zero,

when all individuals are initially infected, PA
T,Γ(quasi-invasion) must capture the value

at which the probability of survival anywhere, when subset A are the initial infecteds,

plateaus before its slow decay to zero. This is, after all, what we are interested in since

the slow decay to zero represents the inevitability of absorption, regardless of initial

conditions, while the initial plateau represents the effect of the much faster decay due

to specific initial conditions. In some sense, we can say that quasi-invasion corresponds

to the ‘achievement’ of the QSD. That the limit in the above definition exists, and is

always positive (from the Perron-Frobenius theorem - see section 1.6), follows from the

fact that due to the property of duality PA
T,Γ(quasi-invasion) is equal to the probability

that at least one member of A is infected in the QSD when the transmission processes

are reversed, i.e. T → T T (transposing T does not affect the network’s being strongly

connected and so a unique QSD is still ensured). We discuss this further in the next

section.

Our quantifier of invasion probability can be generalised as:

PX(quasi-invasion) = lim
t→∞

PX
S (t)

Pmax
S (t)

, (2.7)

where X is the initial system state from which invasion may or may not occur. PX
S (t)

is the probability that the infection survives to time t given that the system is initiated

in state X, and Pmax
S is the probability of survival to time t given that the initial

state is such that the expected time to extinction is maximised (that this maximising

state is the all-infected state, for Markovian network-based SIS dynamics, follows from

monotonicity). In this form, the definition becomes applicable to other Markovian

infection dynamics (on strongly connected networks) which permit endemic behaviour

via a unique QSD, e.g. susceptible-infected-removed-susceptible (SIRS) dynamics (see

figure 2.5). It is the existence of a unique QSD, to which the system tends regardless

of initial conditions (given non-absorption), which enables our definition to capture

invasion probability in the same way as for SIS dynamics. Note that the definition of

quasi-prevalence can also be generalised to any infection dynamics with a unique QSD.

2.6 The prevalence-invasion relationship

Our main result, in this area, states the prevalence-invasion relationship and is pre-

sented as a theorem:

Theorem 2.6.1.

PA
T,Γ(quasi-invasion) = PA

TT ,Γ(quasi-prevalence),
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Figure 2.5: Here, we approximate P (quasi-invasion) for a single initial infected (i),
in the case of Markovian SIRS dynamics on a small network of 25 individuals. The
definition (see text) is seen to capture the ‘plateau’ of the survival probability.

for Markovian network-based SIS dynamics on strongly connected networks, and where

A is any subset of the population.

The above theorem can be rewritten as:

lim
t→∞

PT,Γ(ξ
A
t ∩ V 6= ∅)

PT,Γ(ξVt ∩ V 6= ∅)
= lim

t→∞

PTT ,Γ(ξ
V
t ∩A 6= ∅)

PT,Γ(ξVt ∩ V 6= ∅)
, (2.8)

which holds because of the property of duality.

Note that for a single individual i ∈ V we have:

P i
T,Γ(quasi-invasion) = P i

TT ,Γ(quasi-prevalence), (2.9)

that is, the probability of invasion from individual i is equal to the probability that i

is infected in the QSD (for the transposed network). By summing over all i ∈ V and

dividing by N we get

P
global
T,Γ (quasi-invasion) = P

global
TT ,Γ

(quasi-prevalence), (2.10)

where P
global
T,Γ (quasi-invasion) is the probability of invasion when there is a single ini-

tial infected chosen uniformly at random from the population. An implication of the

global-level relationship is that, for strongly connected directed networks, reversing the

transmission processes will result in an interchange between these two quantifiers with-

out affecting the ‘stability’ of the QSD, i.e. the expected time to extinction when the

system is initiated in its QSD is the same. This can be understood by observing that

PT,Γ(ξ
V
t ∩ V 6= ∅) = PTT ,Γ(ξ

V
t ∩ V 6= ∅) ∀t. Another interesting observation is that

45



PT,Γ(ξ
i
t ∩ i 6= ∅) = PTT ,Γ(ξ

i
t ∩ i 6= ∅), i.e. given the infection is initiated by individual i,

the probability that i is infected at time t is the same for T and its transpose.

For the case where the network is undirected (symmetric T ), theorem 2.6.1 implies

that:

PA
T,Γ(quasi-invasion) = PA

T,Γ(quasi-prevalence), (2.11)

and for a single individual i ∈ V :

P i
T,Γ(quasi-invasion) = P i

T,Γ(quasi-prevalence), (2.12)

and globally:

P
global
T,Γ (quasi-invasion) = P

global
T,Γ (quasi-prevalence). (2.13)

2.7 Simulations on a small square lattice

An undirected and homogeneously weighted (Tij ∈ {0, β}) square lattice of 25 individ-

uals was investigated (see figure 2.6). Due to the small population size, the probability

of extinction on a relatively short timescale was significant, even when starting from

all-infected. This network enables us to illustrate the numerical measurement of our

quantifiers in a scenario where the QSD has less practical relevance, i.e. where endemic

quasi-stationary behaviour and dichotomised persistence are not recognisable phenom-

ena. In this case, we can compute P i
T,Γ(quasi-invasion)(= P i

T,Γ(quasi-prevalence)) by

directly measuring PT,Γ(ξ
i
t ∩ V 6= ∅)/PT,Γ(ξ

V
t ∩ V 6= ∅) at increasing time points and

then estimating its convergent value. Thus, for two different global transmission pa-

rameters (0.8, 0.5), and two different initial states (all-infected, one infected), 1 million

simulations were allowed to run up to some specific point in simulated time (the global

recovery parameter was always set to 1). For each simulation, the time at which extinc-

tion occurred was recorded so that the probability of survival up to increasing points

in time could be measured.

In figure 2.6a, our quantifier is able to capture an important feature of the model,

i.e. the value at which PT,Γ(ξ
i
t ∩ V 6= ∅)(= PT,Γ(ξ

V
t ∩ i 6= ∅)) plateaus before its

inevitable decay to zero. Figure 2.6b gives an example of a scenario where, although

our quasi-invasion and quasi-prevalence quantifiers are clearly defined, their practical

relevance is less obvious. This is because the transmission parameter was sufficiently

low such that early extinction was the dominant behaviour.

2.8 Computational efficiency in the measurement of in-
vasion probability and endemic prevalence - a new

perspective

Through duality, we can approximate PA
T,Γ(quasi-prevalence) by measuring PTT ,Γ(ξ

A
t ∩

V 6= ∅) at increasing points in time (as in figure 2.6) in order to estimate the value

46



0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Time

P
ro

ba
bi

lit
y

 

 

0 5 10 15
Time

P(ξ
t
V ∩ V ≠ ∅ ) 

P(ξ
t
i ∩ V ≠ ∅ ) 

P(ξ
t
i ∩ V ≠ ∅ )/P(ξ

t
V ∩ V ≠ ∅ ) 

(a) (b)

Figure 2.6: Here we illustrate a method of measurement, through stochastic simula-
tion, for P i

T,Γ(quasi-invasion)(= P i
T,Γ(quasi-prevalence)), where T is an undirected and

homogeneously weighted square lattice of 25 individuals (we look for the value towards
which PT,Γ(ξ

i
t ∩ V 6= ∅)/PT,Γ(ξ

V
t ∩ V 6= ∅) converges). For (a), the global transmission

parameter (β) was set to 0.8. For (b), the global transmission parameter was 0.5. The
global recovery parameter (γ) was set to 1 in both cases. The figure illustrates how
these quantifiers are well defined but not always practically relevant.

at which it may initially plateau. This could, in certain circumstances, be much more

efficient than trying to establish global quasi-stationary behaviour and then computing

the proportion of time for which the infection is present in A. Conversely, if we wish

to approximate P i
T,Γ(quasi-invasion), for all i ∈ V , it may be more computationally

efficient to first establish global quasi-stationary behaviour in the transposed network

and then measure the proportion of time each individual spends infected.

2.9 Weakly connected networks

In this section we consider the Markovian network-based SIS model in the case where

the contact network is weakly connected (we still assume that the underlying undirected

network is connected). This means that the sets of individuals reachable from, and that

can be reached from, some individual i ∈ V may be differing subsets of the population.

Therefore, there can be no unique QSD since some areas of the network may remain

completely disease-free depending on where the infection originates. Indeed, the criteria

for a unique QSD that is independent of initial conditions is here absent. However, for

a given initial distribution over the state space there is a unique distribution towards

which the system, conditioned on non-absorption, converges (Daroch and Seneta, 1965).

As a first step towards understanding, observe that if the set of individuals reachable
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from individual i ∈ V is disjoint from the set of individuals from which i is reachable,

then i’s ability to spread the infection has no impact on the probability of it being

infected at any future time. However, if there is some set of individuals (or just one)

which i can reach, and from which i is reachable, then i’s ability to spread the infection

impacts on the probability of it being infected at future times (it indirectly causes in-

dividuals to become infected which then indirectly cause it to be infected). Therefore,

we expect such individuals to be important in sustaining the disease and promoting

endemicity. These individuals are in fact the members of the network’s strongly con-

nected components (SCCs). We can think of the SCCs as regions in which the presence

of the infection can be self-sustained, or as the equivalence classes of the equivalence

relation ‘i can be reached from j and j can be reached from i’. As such, they are crucial

to endemicity.

The importance of SCCs to endemicity leads us to define distinct QSDs for each.

For example, let D = (V,A) be the network and D[B], where B ⊂ V , be an SCC

of D. Now let SB be the set of all system configurations where at least one member

of B is infected and no members of V \ Out(B) are infected. If the system is in

a configuration belonging to SB then the probability that all individuals in Out(B)

are simultaneously infected at some future time is positive. From this configuration,

any configuration of SB can then be achieved by a sequence of recoveries, and so all

configurations in SB communicate with one another. No configuration in which at

least one member of V \ Out(B) is infected can be reached from a configuration in

SB , and no configuration of SB can be reached from a configuration where there is

no infection in B ∪ (V \ Out(B)). This means that SB is a communicating class of

states. Therefore, by treating all system configurations not in SB as absorbing states,

and then conditioning on non-absorption, we generate a unique QSD for SB. In other

words, {ξAt | ξAt ∩ B 6= ∅} converges to a unique distribution that is the same for all

choices of A ⊂ Out(B) : A ∩ B 6= ∅. Similarly, we can define unique QSDs for sets of

SCCs, e.g. by defining SB1,B2
, where D[B1] and D[B2] are SCCs, as the set of system

configurations where at least one member of B1 and at least one member of B2 is

infected, and no members of V \ (Out(B1) ∪Out(B2)) are infected (this generalises to

larger sets of SCCs). However, when defining a QSD for a set of SCCs we will assume

that none of the SCCs can be reached from any of the others, for example, if B1 can

be reached from B2 then conditioning on the infection always being in B2 will have a

similar effect to conditioning on the infection always being in B1 and B2, i.e. the QSDs

corresponding to SB2
and SB1,B2

will be in some sense similar.

If the infection is suspected to originate in B, or from individual(s) not contained

in any SCCs but from which B can be reached, then the QSD corresponding to SB is

the obvious choice for representing the endemic situation. If the infection is suspected

to originate in B1 and B2, or from individual(s) not contained in any SCCs but from
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which B1 and B2 can be reached, then the QSD corresponding to SB1,B2
is the obvious

choice for representing the endemic situation.

Note that the QSD corresponding to SB and restricted to the states of individuals in

B is precisely the unique QSD we get by first removing all individuals outside of B and

then conditioning on non extinction. Similarly, the QSD corresponding to SB1,B2,...,Bn

and restricted to the states of individuals in Bi is precisely the unique QSD obtained

by first removing all individuals outside of Bi and then conditioning on non extinction

(because we have assumed that one SCC cannot be reached from another). Since, for

any D[B] which is an SCC, we have PT,Γ(ξ
B
t ∩ B 6= ∅) = PTT ,Γ(ξ

B
t ∩ B 6= ∅) it is

straightforward that the practical relevance of the QSD corresponding to SB in the

original network is the same as the practical relevance of the QSD corresponding to SB

in the transposed network. Similarly, if the QSDs corresponding to SB1
, SB2

. . . are

practically relevant then so is the QSD corresponding to SB1,B2,... in both the original

network and the transposed network.

We are now in a position to generalise our definition of quasi-prevalence such that

it is also applicable to weakly connected networks:

P
A,{B1,B2,...,Bn}
T,Γ (quasi-prevalence)

= limt→∞ PT,Γ(ξ
C
t ∩A 6= ∅ | ξCt ∩Bi 6= ∅ ∀i ∈ {1, 2, . . . , n})

= limt→∞ PT,Γ(ξ
C
t ∩A 6= ∅ | ξBi

t ∩Bi 6= ∅ ∀i ∈ {1, 2, . . . , n}), (2.14)

where D[Bi] is an SCC for all i ∈ {1, 2, . . . , n} and C = ∪ni=1Bi, and A ⊂ Out(C).

Thus, P
A,{B1,B2,...,Bn}
T,Γ (quasi-prevalence) is the probability that at least one member of

A is infected in the unique QSD defined on the set of system configurations SB1,B2,...,Bn ,

i.e. given that the infection is endemic in B1 and B2 . . . and Bn, and the infection is

not present in V \Out(C). The definition captures the value at which PT,Γ(ξ
C
t ∩A 6= ∅)

initially plateaus before its slow decay to zero in exactly the same way in which the

definition for strongly connected networks captures the initial plateau of PT,Γ(ξ
V
t ∩A 6=

∅) (assuming the QSD has practical relevance). In many specific examples, there will

be just one SCC or just one that dominates the network. For the case of a single SCC

the definition simplifies to

P
A,{B}
T,Γ (quasi-prevalence) = lim

t→∞
PT,Γ(ξ

B
t ∩A 6= ∅ | ξBt ∩B 6= ∅),

where D[B] is the SCC and A ⊂ Out(B). Note that if the whole network is strongly

connected then B = V and we obtain our previous definition of quasi-prevalence for

strongly connected networks as a special case.

We define quasi-invasion in this context:

P
A,{B1,B2,...,Bn}
T,Γ (quasi-invasion)

= limt→∞ PT,Γ(ξ
A
t ∩ C 6= ∅ | ξBi

t ∩Bi 6= ∅ ∀i ∈ {1, 2, . . . , n}), (2.15)
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Figure 2.7: Here, we approximate P (quasi-invasion) for a single initial infected (i)
outside of the strongly connected component. The network consisted of 26 individuals
with the strongly connected component comprised of 25 individuals.

where here A ⊂ In(C). Thus, if Bi ⊂ A for some i then invasion from A is certain

since the conditional probability in the definition is then equal to 1 for all t, and by

monotonicity

P
A,{B1,B2,...,Bn}
T,Γ (quasi-invasion) ≥ PA′,{B1,B2,...,Bn}

T,Γ (quasi-invasion) A′ ⊂ A,

so ‘adding’ initial infecteds cannot decrease the probability of invasion.

In the case of a single SCC, D[B], quasi-invasion simplifies to:

P
A,{B}
T,Γ (quasi-invasion) = lim

t→∞
PT,Γ(ξ

A
t ∩B 6= ∅ | ξBt ∩B 6= ∅),

where, again, setting B = V gives the previous definition of quasi-invasion for strongly

connected networks.

We will next seek to justify P
A,{B1,B2,...,Bn}
T,Γ (quasi-invasion) as the probability that

at least one of the components B1 . . . Bn is invaded when A is the set of initial infecteds.

Firstly, we state the prevalence-invasion relationship for this more general context

Theorem 2.9.1.

P
A,{B1,B2,...,Bn}
T,Γ (quasi-prevalence) = P

A,{B1,B2,...,Bn}

TT ,Γ
(quasi-invasion).

This theorem can be rewritten as

limt→∞ PT,Γ(ξ
C
t ∩A 6= ∅ | ξBi

t ∩Bi 6= ∅ ∀i ∈ {1, 2, . . . , n})
= limt→∞ PTT ,Γ(ξ

A
t ∩ C 6= ∅ | ξBi

t ∩Bi 6= ∅ ∀i ∈ {1, 2, . . . , n}), (2.16)
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which follows from the property of duality: reversing the direction of time produces a

graphical representation for the transposed network, a path from 0 on i’s time line to

t on j’s time line, where i, j ∈ Bi, is mapped to a path of the same type, and a path

from 0 on i’s time line to t on j’s time line, where i ∈ C, j ∈ A, is mapped to a path

from 0 on j’s time line to t on i’s.

Assuming the QSD corresponding to SB1,B2,... is practically relevant (it is equally

practically relevant for the original network and the transposed network) then PTT ,Γ(ξ
C
t ∩

A 6= ∅) = PT,Γ(ξ
A
t ∩ C 6= ∅) plateaus before its slow decay to zero, and this plateau is

captured by P
A,{B1,B2,...,Bn}

TT ,Γ
(quasi-prevalence) = P

A,{B1,B2,...,Bn}
T,Γ (quasi-invasion). It is

natural to interpret the value at which PT,Γ(ξ
A
t ∩ C 6= ∅) plateaus as the probability

that the infection establishes itself somewhere in C = ∪ni=1Bi when the members of A

are the initial infecteds, i.e. at least one of the SCCs is invaded.

2.10 Discussion

By considering the unique QSD associated with Markovian SIS dynamics on finite

strongly connected networks, along with its implications under duality, we have pro-

vided meaningful mathematical definitions for both endemic prevalence (quasi-prevalence)

and invasion probability (quasi-invasion). Utilising these definitions, we have provided

a general statement of the exact relationship between invasion probability and en-

demic prevalence at the individual and population level, for any finite undirected net-

work of arbitrary heterogeneity (including undirected networks with weighted links

and individual-specific recovery parameters). The definitions also generalise to weakly

connected networks, and the prevalence-invasion relationship, with slight modification,

applies to arbitrary directed networks.

We note that for infinite homogeneous networks, invasion probability (in these cases,

the probability of indefinite persistence) from a single initial infected has been shown

to be equal to the fraction of the population infected in the upper invariant measure

(Grimmett, 2010; Neal, 2008). Furthermore, the relationship between the probability

of long-term persistence and quasi-stationary distributions has previously been investi-

gated (see Chaterjee and Durrett (2009) and, for the related concept of ‘metastability’,

see Schonmann (1985) and Simonis (1996)). However, although the prevalence-invasion

relationship follows easily from a combination of the QSD and duality, to our knowledge

this is the first general statement of this exact relationship in the context of arbitrary

networks. We have thus related two fundamental epidemiological quantifiers in systems

where they cannot usually be calculated analytically due to complexity.

It is generally easier to collect empirical data on endemic prevalence rather than

directly on invasion risk. In the case of undirected networks, prevalence data can

thus be utilised to inform invasion risk. This method echoes Anderson and May’s

(1991) estimation of the basic reproductive ratio of measles from the total number
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of susceptible individuals in England and Wales (using data from Fine and Clarkson

(1982)).

When other infectious agents exhibit qualitatively similar behaviour on the same

undirected network, we can expect that the individuals carrying the greatest level of

endemic infection are also those most likely to initiate new successful invasions. This

lends support to the targeting of high-risk individuals in these systems as an effective

strategy for the mitigation and control of emerging epidemics.
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Chapter 3

Moment-closure for Markovian
epidemic dynamics on networks

3.1 Introduction

In this chapter we focus on epidemic dynamics where individuals can only be infected

once or not at all. Specifically, we consider a Markovian network-based model with

a general compartmental structure described as susceptible-exposed-infected-recovered

(SEIR) (see, for example, Keeling and Rohani (2007)). This model is the same as

the Markovian network-based SIR model, defined in section 1.10, except that after a

susceptible individual i ∈ V receives an infectious contact it must first pass through an

‘exposed’ state, lasting for a period that is exponentially distributed with parameter

αi, before entering the infected state. While in the exposed state individuals do not

make infectious contacts. Thus, with reference to the definition of the simpler SIR

version in section 1.10, the Markovian network-based SEIR model can be described by

a continuous time Markov chain {σ(t)}, where σ(t) takes values in {S,E, I,R}V , and
with transition rates as in table 3.1.

Table 3.1: Transitions for the Markovian network-based SEIR model
from to at rate

σ : σi = S σi→E
∑

j∈V Tij1(σj = I)

σ : σi = E σi→I αi

σ : σi = I σi→R γi

For this model there are 4N Kolmogorov forward equations which give a full descrip-

tion of the evolution of the system (given some initial distribution). However, moment

closure methods allow us to write down much smaller systems of ordinary differential

equations which attempt to capture the evolution of the expected number in each com-

partment. For example, the time derivative of the expected number of pairings of a

susceptible and an infected individual depends on the expected numbers of connected

triples in various states. By approximating the expected number of connected triples

53



of a given type, in terms of expected numbers of pairs and individuals, a small closed

system of equations is obtained (Matsuda et al., 1992; Keeling, 1999; House and Keel-

ing, 2010). Similarly, at the individual level, the time derivative of the probability of a

connected pair being in a given state depends on the joint probabilities of the triples

which it forms with its neighbours. By expressing the joint distribution for such triples

in terms of pairs and individuals, a closed system is obtained (Sharkey, 2008).

We will first outline the construction of pair-based moment closure systems (at the

population level), with a focus on finite and directed networks. We will adopt the

systematic approach to construction, starting at the individual level and then making

independence and homogeneity assumptions, given by Sharkey (2008). We will then go

on to develop ‘exact’ moment closure systems for the case of tree networks, extending

the work of Sharkey et al. (2013) and Kiss et al. (2014) from SIR to SEIR dynamics.

We then propose an exact closure theorem, extending a result given by Kiss et al.

(2014), which allows us to define exact systems for non-tree networks, and examine the

relevance of network structure to the dimensionality of such systems. Finally, we will

define hierarchies of approximating moment closure systems, which are non-decreasing

in dimensionality, and which start with a pair-based system and end with an exact

system (Sharkey and Wilkinson, 2015).

3.2 Pair-based systems at the population level

From the table of transition rates 3.1, the following exact time derivatives for the

marginal probabilities of individuals and pairs of individuals being in certain states can

be derived (for the notation, see definition 1.10.1):

˙〈Si〉 = −
∑

j∈Ni

Tij〈SiIj〉 i ∈ V,

˙〈Ei〉 =
∑

j∈Ni

Tij〈SiIj〉 − αi〈Ei〉,

˙〈Ii〉 = αi〈Ei〉 − γi〈Ii〉,
˙〈SiIj〉 = −(Tij + γj)〈SiIj〉+ αj〈SiEj〉 −

∑

k∈Ni\j

Tik〈IkSiIj〉 i, j ∈ V : j ∈ Ni,

˙〈SiEj〉 = −αj〈SiEj〉 −
∑

k∈Ni\j

Tik〈IkSiEj〉+
∑

k∈Nj\i

Tjk〈SiSjIk〉, (3.1)

where Ni the set of i’s in-neighbours and we use ‘dot’ notation for time derivatives.

Also note that

〈Ri〉 = 1− 〈Si〉 − 〈Ei〉 − 〈Ii〉.

This individual level approach for describing the dynamics was developed by Sharkey

(2008).
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For simplicity of exposition, in the remainder of this section we will assume that

the individual level rates are homogeneous, i.e. Tij ∈ {0, β}, αi = α, γi = γ. Summing

over all i ∈ V in the first three equations of 3.1 and then over all i, j ∈ V : j ∈ Ni in

the others, gives the time derivatives for expected population level quantities:

˙[S] = −β[S←−I ],
˙[E] = β[S

←−
I ]− α[E],

˙[I] = α[E] − γ[I],
˙

[S
←−
I ] = −(β + γ)[S

←−
I ] + α[S

←−
E ]− β[−→I S←−I ],

˙
[S
←−
E ] = −α[S←−E ]− β[−→I S←−E ] + β[S

←−
S
←−
I ], (3.2)

where, for example, [S] is the expected number of susceptible individuals at time t, and

[S
←−
I ] is the expected number of ordered pairings of individuals at time t where the first

is susceptible and the second is infected, and where the second can directly contact

the first (such population level quantities, defined explicitly for directed networks, were

considered by Sharkey (2006)). These equations are exact but do not form a closed

solvable system. To overcome this obstacle we can attempt to represent the triples, i.e.

[
−→
I S
←−
I ], [
−→
I S
←−
E ], [S

←−
S
←−
I ], in terms of pairs and singlets, by making use of the closures

(see section 1.10.1):

〈AiBjCk〉 ≈ 〈AiBj〉
〈BjCk〉
〈Bj〉

G[i, j, k] connected open triple, j central , (3.3)

〈AiBjCk〉 ≈ 〈AiBj〉
〈BjCk〉
〈Bj〉

〈AiCk〉
〈Ai〉〈Ck〉

G[i, j, k] connected triangle, (3.4)

where A,B,C ∈ {S,E, I,R} and G is the underlying graph. However, for the rest of

this section we will assume that there are no triangles in G such that we only need the

first of these two closures (when we do not make this assumption, the second closure

is used for the triples which are also triangles in G).

Making use of closure (3.3), we now write:

[
−→
AB
←−
C ] ≈ 1

β2

N
∑

i,j=1

Tji

N
∑

k 6=i

Tjk
〈AiBj〉〈BjCk〉

〈Bj〉

≈ 1

NK̄in
2

[
−→
AB][B

←−
C ]

[B]

1

β2

N
∑

i,j=1

Tji

N
∑

k 6=i

Tjk

= C(→←)
[
−→
AB][B

←−
C ]

[B]
, (3.5)

where K̄in is the average number of in-neighbours (= average number of out-neighbours)

of an individual. We can view C(→←) as a correction term satisfying:

number of triples (i→ j ← k) = NK̄in
2C(→←).
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Following Sharkey (2008), the second approximation in equation (3.5) is based on

homogeneity assumptions:, e.g. 〈Ai〉 = [A]/N∀i and 〈AiBj〉 = [A
←−
B ]/(NK̄in)∀i, j : j ∈

Ni etc. Note that, although [S]/N may be a crude approximation for a given 〈Si〉,
it performs well when computing some quantity which is computed by summing over

many such probabilities; especially if the errors are due to random ‘noise’ (and similarly

for [A
←−
B ]/(NK̄in)).

We note that

C(→←) =
number of triples (i→ j ← k)

K̄in × number of pairs (i→ j)

=
NK̄inK̄

(+1)
in (excess)

NK̄in
2

=
K̄

(+1)
in (excess)

K̄in

, (3.6)

where K̄
(+1)
in (excess) is the average in-degree of the ‘head’ of an arc, not counting the

‘tail’ of the arc, hence the word ‘excess’. This reveals C(→←) as the quotient of the

average excess in-degree of an out-neighbour and the average in-degree (= average out-

degree). Thus, the approximation represented in equation (3.5) can also be arrived at by

the following argument which assumes the system is in a particular configuration/pure

state: firstly, the expected number of in-neighbours in state C of a randomly selected

individual in state B is [B
←−
C ]/[B]. Like the beyond-pair independence assumption, we

now assume that the expected number of in-neighbours in state C, of a randomly se-

lected individual in state B with in-degree k, is given by k[B
←−
C ]/K̄in[B] (so that it scales

linearly with k, which we would expect if the distribution of the states of an individual’s

neighbours were not correlated with its own state and degree). Therefore, the expected

number of excess in-neighbours of the second individual in a randomly selected
−→
AB

pair, that are in state C, is given by K̄
(+1)
in (excess)[B

←−
C ]/K̄in[B] = C(→←)[B

←−
C ]/[B].

The reader is directed to Rand (1999), and House and Keeling (2010) for more discus-

sion of this type of reasoning in moment closure approximations.

An approximation for [A
←−
B
←−
C ] can be similarly derived:

[A
←−
B
←−
C ] ≈ 1

β2

N
∑

i,j=1

Tij

N
∑

k 6=i

Tjk
〈AiBj〉〈BjCk〉

〈Bj〉

≈ 1

NK̄in
2

[A
←−
B ][B

←−
C ]

[B]

1

β2

N
∑

i,j=1

Tji

N
∑

k 6=i

Tjk

= C(←←)
[A
←−
B ][B

←−
C ]

[B]
, (3.7)

where C(←←) satisfies:

number of triples (i← j ← k) = NK̄in
2C(←←).
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We note that

C(←←) =
number of triples (i← j ← k)

K̄in × number of pairs (i→ j)

=
NK̄inK̄

(+1)
out (excess)

NK̄in
2

=
K̄

(+1)
out (excess)

K̄in

, (3.8)

where K̄
(+1)
out (excess) is the average out-degree of the ‘head’ of an arc, not counting the

‘tail’ of the arc. Hence, C(←←) is the quotient of the average excess out-degree of an

out-neighbour and the average out-degree (= average in-degree).

The situation is simpler if the network is undirected, in which case C(→←) = C(←←).

For a finite network, the needed constants can be computed from the network’s (di-

rected) adjacency matrix. For an Erdös-Rényi random graph, in the limit of large

population size, we would expect C(→←) = C(←←) = 1, while for a K regular network

(Bethe lattice) we would have C(→←) = C(←←) = (K−1)/K. For the standard configu-

ration network we expect C(→←) = C(←←) = E[K2−K]/(E[K])2 where K is the degree

of a randomly selected individual (note that for random networks we must interpret

the arithmetic averages in equations (3.6) and (3.8) as expected values). For these last

three cases there are also (almost surely) no triangles.

If there are no triangles in G, then using closures 3.5 and 3.7 for the expected triples

quantities in system (3.2) yields a closed approximating system of just six ordinary dif-

ferential equations (ODEs); an additional one is required since the closure introduces

the ‘new’ pair quantity [S
←−
S ], the time derivative of which is constructed entirely anal-

ogously (a few extra variables/equations are required if there are triangles in G). This

system was first constructed by Sharkey (2006).

In more heterogeneous networks, it is possible to reduce the ‘strength’ of the ho-

mogeneity assumptions by attempting to track the expected number [Sa] of in-degree

‘a’ individuals which are susceptible, and the expected number [Sa←−I b] of pairings of

an in-degree ‘a’ individual with an in-degree ‘b’ individual where the first is susceptible

and the second is infected and the second can directly contact the first (and similarly

for all the various individual states, see Eames and Keeling (2002)). Thus we capture

correlations between the state of an individual and it’s status in relation to network

structure. In an entirely analogous way to before, we can write down the following

exact time derivatives for the expected population level quantities (again assuming
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homogeneous rates for the individual level processes):

˙[Sa] = −β
∑

b

[Sa←−I b],

˙[Ea] = β
∑

b

[Sa←−I b]− α[Ea],

˙[Ia] = α[Ea]− γ[Ia],
˙

[Sa
←−
I b] = −(β + γ)[Sa←−I b] + α[Sa←−E b]− β

∑

c

[
−→
I cSa←−I b],

˙
[Sa
←−
E b] = −β

∑

c

[
−→
I cSa←−E b]− α[Sa←−E b] + β

∑

c

[Sa←−S b←−I c]. (3.9)

Applying the beyond-pair independence assumption, and (in-degree sensitive) homo-

geneity assumptions, leads to the following closures for the triples quantities (assuming

at this point that there are no triangles in G):

[
−→
A aBb←−C c] ≈ 1

β2

∑

i:|Ni|=a

∑

j:|Nj |=b

Tji
∑

k:|Nk|=c,k 6=i

Tjk
〈AiBj〉〈BjCk〉

〈Bj〉

≈ [b]

[−→a b][b←−c ]
[
−→
A aBb][Bb←−C c]

[Bb]

1

β2

∑

i:|Ni|=a

∑

j:|Nj|=b

Tji
∑

k:|Nk|=c,k 6=i

Tjk

= C(−→a b←−c )

[
−→
A aBb][Bb←−C c]

[Bb]
, (3.10)

[Aa←−B b←−C c] ≈ 1

β2

∑

i:|Ni|=a

∑

j:|Nj|=b

Tij
∑

k:|Nk|=c,k 6=i

Tjk
〈AiBj〉〈BjCk〉

〈Bj〉

≈ [b]

[a
←−
b ][b←−c ]

[Aa←−B b][Bb←−C c]

[Bb]

1

β2

∑

i:|Ni|=a

∑

j:|Nj|=b

Tji
∑

k:|Nk|=c,k 6=i

Tjk

= C
(a
←−
b←−c )

[Aa←−B b][Bb←−C c]

[Bb]
, (3.11)

where [a] is the number of individuals of in-degree a, [−→a b] is the number of ordered

pairings of individuals where the first has in-degree a, the second has in-degree b, and

the first can directly contact the second. C(−→a b←−c ) and C(a←−b←−c )
can be viewed as correction

terms satisfying:

[−→a b←−c ] =
[−→a b][b←−c ]

[b]
C(−→a b←−c ), (3.12)

[a
←−
b←−c ] =

[a
←−
b ][b←−c ]
[b]

C
(a
←−
b←−c )

. (3.13)

C(−→a b←−c ) is the quotient of the average number of excess in-neighbours of in-degree c of

the ‘b’ individual in an −→a b pair, and the average number of in-neighbours of in-degree
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c of an in-degree b individual (and this is symmetric in a and c). C
(a
←−
b←−c )

is the quotient

of the the average number of excess out-neighbours of in-degree a of the ‘b’ individual

in a b←−c pair, and the average number of out-neighbours of in-degree a of an in-degree b

individual. Note that this is equivalent to the quotient of the average number of excess

in-neighbours of in-degree c of the ‘b’ individual in an a
←−
b pair, and the average number

of in-neighbours of in-degree c of an in-degree b individual.

For example, if there are no −→a b←−c triples then C(−→a b←−c ) = [−→a b←−c ] = 0. For the

standard configuration network, in which the degrees of individuals are not correlated,

we would expect C(−→a b←−c ) = C(a←−b←−c )
= (b− 1)/b. Even in a configuration network where

the degrees of neighbouring individuals are correlated it could still take this value since,

for a given individual, knowing the degree of one of its neighbours may not provide extra

information about the degrees of its other neighbours. For a given finite (non-random)

network, we can compute the needed constants from the (directed) adjacency matrix.

A slightly less general form, for the case of undirected networks, is given by Eames

and Keeling (2002) who assume that C(−→a b←−c ) = C(a←−b←−c )
= (b − 1)/b. This ignores the

possibility of the degrees of an individual’s neighbours being correlated.

The approximation represented by equation (3.10) can also be arrived at by the

following argument: Note that the expected number of in-neighbours of in-degree c

and state C, of a randomly selected in-degree b individual in state B, is given by

[Bb←−C c]/[Bb]. Making the beyond-pair independence assumption, it is also reason-

able to assume that, given the selected individual has k in-neighbours of in-degree

c, then this expected number is then given by k[b][Bb←−C c]/[b←−c ][Bb] (so it scales lin-

early with k in a reasonable way). Therefore, the expected number of excess in-

neighbours of in-degree c and state C, of the ‘b’ individual in an
−→
A aBb pair, is given

by [−→a b←−c ][b][Bb←−C c]/[−→a b][b←−c ][Bb] = C(−→a b←−c )[B
b←−C c]/[Bb]. A similar argument exists for

the approximation in 3.11.

Using closures 3.10 and 3.11 for the expected triples quantities in system (3.9)

yields a closed approximating system where the number of ODEs is of the order of M2,

where M is the number of distinct degrees that the individuals in the network may

have. This can be very large and so further assumptions can be made about both the

network structure and the dynamics on the network in order to simplify the system

and reduce the number of variables (see House and Keeling (2010)).

All of these pair-wise systems can be derived, as shown, by first making the beyond-

pair-level independence assumptions, 3.3 and 3.4, and then further homogeneity as-

sumptions. Removing just the homogeneity assumptions, we are left with a system

where the number of variables is of the order of NK̄in which, with modern computing

power, can be solvable for non-trivial finite networks. Such systems, which embrace

heterogeneity but make the beyond-pair independence assumption, are the focus of the

remainder of this chapter. In particular, how accurate is this assumption in different
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scenarios, and is it possible to lessen the strength of the assumption by making it at a

higher level, e.g. a beyond-triple independence assumption? Also, what is the relevance

of triangles and cycles in general?

3.3 Exact systems for tree networks

Definition 3.3.1. We use the following notation to denote quantities relating to ‘sub-

systems’:

• ψW is a subsystem comprising of the set of individuals W ⊂ V (D).

• Let A be a mapping from W to {S,E, I,R}, and let Ai be the image of i ∈ W
under A. Thus, A can be interpreted as a configuration for subsystem ψW , i.e.

the configuration where, for all i ∈W , individual i is in state Ai.

• ψA
W denotes the indicator random variable for the event that σi(t) = Ai,∀i ∈ W .

Hence we can write:PT,ᾱ,γ̄(σi(t) = Ai,∀i ∈W ) = PT,ᾱ,γ̄(ψW = A) = 〈ψA
W 〉T,ᾱ,γ̄ .

Remark. When referring to such indicator variables, the probability space on which they

are defined will be clear from the context, i.e. the model under consideration. Unless

otherwise stated, all the random elements in any equation or system of equations are

defined on a single (arbitrary) probability space which is consistent with a ‘run’ of

the model. Hence, reference to initial conditions and parametrisation will usually be

dropped.

Definition 3.3.2. We place set C ⊂ V (D) into the ‘cavity state’ (Karrer and Newman,

2010) by removing the ability of all individuals in C to make infectious contacts to

others, this being equivalent to removing all arcs emanating from all j ∈ C. We will

denote the resulting network by D(cav C) and the resulting contact parameter matrix

by T\C .

We note that susceptible individuals cannot make infectious contacts until they

receive an infectious contact. Therefore, if a set C ⊂ V are susceptible at time t then

whether or not this set was placed into the cavity state has had no impact on the

system up to time t.

We can now write:

〈ψA
W | σi(t) = S,∀i ∈ C〉T = 〈ψA

W | σi(t) = S,∀i ∈ C〉T\C
, (3.14)

which holds wherever such conditional expectations are defined. We have used the

standard vertical line to indicate an event being conditioned upon. Moreover, if C ⊂W
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and Aj = S,∀j ∈ C, then:

〈ψA
W 〉TPT (σj(t) = S,∀j ∈ C)

=
〈ψA

W 〉T\CPT\C
(σj(t) = S,∀j ∈ C)

, (3.15)

wherever the denominators are positive, since ψA
W = 1 implies σj(t) = S,∀j ∈ C. Note

that the numerators are zero if the denominators are zero. This implies that, for an

arbitrary subsystem ψW , and arbitrary configuration A, we can write:

〈ψA
W 〉T = 〈ψA

W 〉T\C
if C ⊂W,Aj = S,∀j ∈ C. (3.16)

Let us now note that the fates of two individuals i and k are statistically independent

if their in-components are disjoint and there is no imposed correlation between the two

in-components at t = 0. Indeed, it is intuitive that an individual i’s fate is, in general,

independent of the behaviour of individuals outside of its in-component, and that the

in-components of individuals in i’s in-component are subsets of i’s in-component. In

fact, it can be shown that Si, for i ∈ V , is a function of the initial conditions and a set

of random variables (independent of initial conditions) assigned to the arcs where both

‘ends’ are in i’s in-component (Kenah and Robins, 2007), and these random variables

are independent when assigned to arcs which emanate from different individuals (and

so any dependence between Si and Sj , where i and j have disjoint in-components, must

derive from the initial conditions). The random variable in question, assigned to arc

(i, j) say, is the time that it takes i to make its first infectious contact to j upon i’s

becoming exposed (or since t = 0 if i is initially infected), given that i does become

exposed (or is initially exposed/infected). Once j ∈ V has received its first infectious

contact, or if j is not susceptible at t = 0, its fate is then completely independent of

the states and behaviour of the rest of the population (see transition table 3.1).

Definition 3.3.3. An undirected graph G = (V,E) is a ‘tree’ iff for any two individu-

als/vertices i, j ∈ V there is a unique path from i to j. An undirected graph G = (V,E)

is a ‘forest’ iff for any two individuals/vertices i, j ∈ V there is either a unique path

from i to j or no path at all, i.e. a forest is a collection of disjoint trees.

Definition 3.3.4. A network/digraph D = (V,A) is a ‘tree network’ iff its underlying

graph is a tree or forest. See figure 3.1 for an example tree network.

Definition 3.3.5. An undirected graph G = (V,E) is ‘biconnected’ iff there are at

least two vertex disjoint paths between every pair of vertices. For example, a tree is not

biconnected since there is exactly one path between every pair of vertices in the tree.

For any tree network D = (V,A) (with underlying graph G), all neighbours of

j ∈ V in D(cav j) have mutually disjoint in-components, and so the fates of these

neighbours are statistically independent if there are no correlations between the states
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Figure 3.1: An undirected tree network

of any individuals at t = 0. For the rest of this chapter, unless otherwise stated, we

will thus assume that the initial conditions imply that the states of individuals are

statistically independent at t = 0 (a pure initial system state satisfies this but choosing

a specific number of initial infecteds at random does not). In the case of a tree network

we can now write:

〈XiSjZk〉T = 〈XiSjZk〉T\j
(i, j), (k, j) ∈ E(G)

= 〈Sj〉T\j

〈XiSj〉T\j

〈Sj〉T\j

〈SjZk〉T\j

〈Sj〉T\j

=
〈XiSj〉T\j

〈SjZk〉T\j

〈Sj〉T\j

=
〈XiSj〉T 〈SjZk〉T

〈Sj〉T
, (3.17)

where X,Z ∈ {S,E, I,R} and the first and last steps follow from equation (3.16)

(note that 〈Sj〉 = 0 implies 〈XiSjZk〉 = 0). Indeed, we can conclude that for a tree-

network, given some individual is susceptible at time t and there are no correlations

between individuals at t = 0, then the states of the neighbours of that individual are

statistically independent at time t. This is intuitive since if j is susceptible at time

t, in a tree network, then there has not been any ‘communication’ between the in-

components of the neighbours of j before time t (since this would require the infection

‘passing through’ individual j).

Theorem 3.3.1. For Markovian network-based SEIR dynamics on a tree network, if

the states of individuals are statistically independent at t = 0 then the following system

62



0 1 2 3 4

3

4

5

6

7

8

Time

E
xp

ec
te

d 
nu

m
be

r 
su

sc
ep

tib
le

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

E
xp

ec
te

d 
nu

m
be

r 
ex

po
se

d

Figure 3.2: Comparison between the numerical solution of system (3.18) (curves) and
simulations of the corresponding stochastic process (crosses). In this example, the
network on which the disease spreads is that which is depicted in figure 3.1, with
T ∈ {0, 2}, αi = 2, γi = 1,∀i. Individuals 3 and 9 were initially infected, all others
being initially susceptible.
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Figure 3.3: Comparison between the numerical solution of system (3.18) (curves) and
simulations of the corresponding stochastic process (crosses). In this example, the
network on which the disease spreads is that which is depicted in figure 3.1, with
T ∈ {0, 2}, αi = 2, γi = 1,∀i. For a) all individuals were (independently) initially
infected with probability 0.2 and initially susceptible otherwise. For b) two initial
infecteds were chosen uniformly at random (without replacement) and the rest were
initially susceptible, this meaning that the states of individuals were not statistically
independent at t = 0.
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is exactly consistent with the underlying stochastic process:

˙〈Si〉 = −
∑

j∈Ni

Tij〈SiIj〉, i ∈ V

˙〈Ei〉 =
∑

j∈Ni

Tij〈SiIj〉 − αi〈Ei〉,

˙〈Ii〉 = αi〈Ei〉 − γi〈Ii〉,
˙〈SiIj〉 = −(Tij + γj)〈SiIj〉+ αj〈SiEj〉 −

∑

k∈Ni\j

Tik
〈IkSi〉〈SiIj〉
〈Si〉

, i, j ∈ V : j ∈ Ni

˙〈SiEj〉 = −αj〈SiEj〉 −
∑

k∈Ni\j

Tik
〈IkSi〉〈SiEj〉
〈Si〉

+
∑

k∈Nj\i

Tjk
〈SiSj〉〈SjIk〉
〈Sj〉

,

˙〈SiSj〉 = −
∑

k∈Nj\i

Tjk
〈SiSj〉〈SjIk〉
〈Sj〉

−
∑

k∈Ni\j

Tik
〈IkSi〉〈SiSj〉
〈Si〉

. (3.18)

Proof. The theorem is derived from the application of the closure in equation (3.17)

to system (3.1) (and deriving an expression for ˙〈SiSj〉 which also makes use of the

closure).

See figures 3.2 and 3.3 for numerical examples on the tree network depicted in figure

3.1. Although the system is in general inexact if the network is a non-tree network, the

equations can still be applied to obtain approximate results (the system may become

exact for certain initial conditions on non-tree networks - see Sharkey et al. (2013)).

3.4 Exact systems for non-tree networks

Here we prove a theorem which generalises the closure represented by equation (3.17).

We then use this to derive a class of exact systems for Markovian SEIR dynamics on

arbitrary networks. We illustrate this with some examples, and finally state a theorem

specifying the maximum size of subsystem needed to exactly represent the dynamics on

a given network (this maximum subsystem size gives us some idea of the total number

of equations which will be needed).

3.4.1 Exact closure theorem

For a given directed graph D = (V,A), we make the following definitions:

Definition 3.4.1. Let X,Y,Z ⊂ V be disjoint and non-empty. The set Z is ‘dynami-

cally partitioning’ with respect to X and Y iff we have fE(X,Y,Z) = 1 where:

fE(X,Y,Z) =

{

1 if IN(X) ∩ IN(Y ) = ∅ (in D(cav Z))

0 otherwise
. (3.19)

Here, E is chosen to represent ‘exact’; this is appropriate since we shall now see that

fE(X,Y,Z) = 1 implies the existence of an exact closure relation.
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Remark. If the network is undirected then fE(X,Y,Z) = 1 if and only if there is no

path between X and Y in D(cav Z).

Theorem 3.4.1. (Exact closure theorem) Let X,Y,Z ⊂ V (D) be disjoint and non-

empty. If Z is dynamically partitioning with respect to X and Y , and the states of

individuals are statistically independent at t = 0, then:

〈ψA
Xψ

B
Y ψ

C
Z 〉 =

〈ψA
Xψ

C
Z 〉〈ψB

Y ψ
C
Z 〉

〈ψC
Z 〉

if Ci = S,∀i ∈ Z (3.20)

holds for arbitrary subsystem configurations A,B,C, wherever 〈ψC
Z 〉 6= 0. However,

note that 〈ψC
Z 〉 = 0 implies 〈ψA

Xψ
B
Y ψ

C
Z 〉 = 0.

Proof. Since Ci = S,∀i ∈ Z, we can write (see equation (3.16)):

〈ψA
Xψ

B
Y ψ

C
Z 〉T = 〈ψA

Xψ
B
Y ψ

C
Z 〉T\Z

,

and since the in-components of X and Y are disjoint in D(cav Z), which follows from

the fact that Z is dynamically partitioning with respect to X and Y , then the states of

individuals in X are independent of the states of individuals in Y in D(cav Z) (given

that the states of individuals are statistically independent at t = 0). We can now write:

〈ψA
Xψ

B
Y ψ

C
Z 〉T\Z

=
〈ψA

Xψ
C
Z 〉T\Z

〈ψB
Y ψ

C
Z 〉T\Z

〈ψC
Z 〉T\Z

(3.21)

=
〈ψA

Xψ
C
Z 〉T 〈ψB

Y ψ
C
Z 〉T

〈ψC
Z 〉T

, (3.22)

where the last step follows from equation (3.16).

Remark. It is not difficult to envisage that the exact closure will hold true for other

non-Markovian models of SEIR dynamics on networks. The closure holds when an

individual or set of individuals being susceptible at time t implies that two other sets of

individuals have not interacted up to time t, and so no statistical dependence between

these two sets can have emerged by time t. However, this is negated if statistical

dependence between the two sets is built into the initial conditions.

The theorem is a generalisation of the main result of Kiss et al. (2014) which is

stated in terms of single dynamically partitioning individuals on undirected networks,

and SIR dynamics rather than SEIR. In that context they are referred to simply as

partitioning individuals due to their correspondence to graph partitioning (Newman,

2010). Some examples of applying the exact closure theorem are shown in Figure 3.4.

In this Figure and throughout the remainder of this thesis, network links without

arrowheads denote undirected links whereas those with arrowheads denote directed

links. We will next define an exact (closed) system which can take advantage of closure

(3.20) such that the number of variables is to some extent curtailed.
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S2

S3I4

S5

S1
I2

I3 S4

S5
I6

I7

I1 I2

S3 S4 S5 S6

I7 I8

S9

a) b) c)
I1

Figure 3.4: Three examples of applying the exact closure theorem. Here directed
links have arrowheads and undirected links do not. a) This configuration is a typi-
cal example of when dynamical partitioning allows an exact closure. Applying The-
orem 3.4.1, we see that there is dynamical partitioning about node 2, so we have
〈I1S2S3I4S5〉 = 〈I1S2〉〈S2S3I4S5〉/〈S2〉. b) We can dynamically partition on this
graph about a cluster of susceptible nodes. In fact there are two exact closures we
can write down: 〈I1I2S3S4S5S6I7I8S9〉 = 〈I1I2S3S4S6〉〈S3S4S5S6I7I8S9〉/〈S3S4S6〉 =
〈I1I2S3S4S5S6〉〈S3S4S5I7I8S9〉/〈S3S4S5〉. c) Here we can apply the exact closure theo-
rem to obtain 〈S1I2S4S5I6I7〉 = 〈S1I2S4〉〈S4S5I6I7〉/〈S4〉. Note that I3 is not included
in this closure.

Definition 3.4.2. Let ψA
W be an indicator variable, as in definition 3.3.1, and let

k ∈W and X ∈ {S,E, I,R}. Then

hXk (ψA
W ) ≡ ψB

W , (3.23)

where

Bi =

{

Ai ∀i ∈W, i 6= k

X i = k.
(3.24)

This means that hXk changes the configuration by putting individual k into state X. If

Ak = X then hXk (ψA
W ) ≡ ψA

W .

Theorem 3.4.2. For Markovian network-based SEIR dynamics, the time derivative

for the probability of an arbitrary susbsystem configuration (expectation of the indicator
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variable for the event that it occurs) can be written:

˙〈ψA
W 〉 =

∑

k∈W

1(Ak = S)



−
∑

n∈V \W

Tkn〈ψA
W In〉 −

∑

n∈W

Tkn1(An = I)〈ψA
W 〉





+
∑

k∈W

1(Ak = E)

[

∑

n∈V \W

Tkn〈hSk (ψA
W )In〉

+
∑

n∈W

Tkn1(An = I)〈hSk (ψA
W )〉 − αk〈ψA

W 〉
]

+
∑

k∈W

1(Ak = I)

[

αk〈hEk (ψA
W )〉 − γk〈ψA

W 〉
]

+
∑

k∈W

1(Ak = R)

[

γk〈hIk(ψA
W )〉

]

. (3.25)

Proof. The theorem is straightforward to prove by a careful consideration of the tran-

sition rates in the Markov chain (see table 3.1), and some tedious algebra (see Sharkey

(2013) for the equivalent equation, and proof, in the context of SIR dynamics).

The equations in system (3.1) can now be seen to be special cases of theorem

3.4.2. By using this theorem to write down time derivatives for 〈Si〉, 〈Ei〉 and 〈Ii〉,∀i ∈
V , and also for any ‘new’ variables which emerge, a closed and exact system M is

obtained where the variables are a moment-induced set of probabilities of subsystem

configurations. The number of variables in M is finite since both |V | is finite and the

number of states for an individual is finite. However, the number of equations will

generally be very large for most systems, preventing numerical solution. Note that the

number of subsystems of size n ∈ {1, 2, . . . , N}, which appear in the variables of M , is

of the order of the number of distinct subgraphs of D which consist of n individuals

and where at least one individual is reachable from all others (in the subgraph). This

follows from the fact that, with reference to equation (3.25), the subsystems on the

right-hand-side either consist of the same set of individuals as on the left-hand-side,

i.e. W , or of W ∪ j where there is at least one arc from j ∈ V \W to some individual

in W .

To reduce the number of equations we need to curtail the generation of ‘new’ sub-

systems which occurs as a result of the repeated application of theorem 3.4.2. With

reference to equation (3.25) in theorem 3.4.2, we note the following:

Corollary 3.4.1. For subsystem ψW and configuration A, if Ak = S where k ∈ W ,

and if fE(n,W \ k, k) = 1 where n ∈ V \W , then

〈ψA
W In〉 =

〈ψA
W 〉〈SkIn〉
〈Sk〉

. (3.26)
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Proof. Follows from the exact closure theorem.

Making use of corollary 3.4.1, which expresses the probability of a subsystem config-

uration consisting of |W |+1 individuals in terms of subsystem configurations consisting

of |W | or less individuals, in equation (3.25) of theorem 3.4.2 gives:

˙〈ψA
W 〉 =

∑

k∈W

1(Ak = S)

[

−
∑

n∈W

Tkn1(An = I)〈ψA
W 〉
]

+
∑

k∈W

1(Ak = E)

[

∑

n∈W

Tkn1(An = I)〈hSk (ψA
W )〉 − αk〈ψA

W 〉
]

+
∑

k∈W

1(Ak = I)

[

αk〈hEk (ψA
W )〉 − γk〈ψA

W 〉
]

+
∑

k∈W

1(Ak = R)

[

γk〈hIk(ψA
W )〉

]

−
∑

k∈W

1(Ak = S)
∑

n∈V \W

Tkn

[

(

1− fE(n,W \ k, k)
)

〈ψA
W In〉

+fE(n,W \ k, k)
〈ψA

W 〉〈SkIn〉
〈Sk〉

]

+
∑

k∈W

1(Ak = E)
∑

n∈V \W

Tkn

[

(

1− fE(n,W \ k, k)
)

〈hSk (ψA
W )In〉

+fE(n,W \ k, k)
〈hSk (ψA

W )〉〈SkIn〉
〈Sk〉

]

. (3.27)

Thus, by taking advantage of the closure (corollary 3.4.1), we have limited the number

of subsystems of size greater than |W | which appear on the right-hand-side of equation

(3.25) of theorem 3.4.2.

For an arbitrary network, by applying equation (3.27) to the indicator random

variables Si, Ei and Ii for all i ∈ {1, 2, ..., N}, and then reapplying it to every new

subsystem configuration that emerges, a closed set of differential equations for the exact

time-evolution of the probability of an individual being in a particular state is obtained

for all individuals (we also must assume that fE is zero when one of its arguments is

the empty set).

Definition 3.4.3. For a given network (parametrisation), a closed and exact system

ME is obtained by using equation (3.27) to write down time derivatives for 〈Si〉, 〈Ei〉
and 〈Ii〉,∀i ∈ V , and also for any ‘new’ variables which emerge (the size of this system

is automatically curtailed, where possible, by making use of the exact closure theorem).

Remark. It follows that 〈Si〉, 〈Ei〉 and 〈Ii〉 (∀i ∈ V ) and 〈SiIj〉 (∀i, j ∈ V : Tij > 0) are

variables in ME for any network.
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Figure 3.5: Some example networks. For dynamics on these networks we consider a
homogeneous recovery rate γ, a homogeneous rate of becoming infected once exposed
α, and a contact rate of 1 across each network link (arc).

3.4.2 Examples

Before determining the network structures under which dynamical partitioning occurs

more generally, we consider some examples. For further examples in the context of

undirected networks the reader is directed to Kiss et. al. (2014).

Example 1

Consider the network in Figure 3.5a. Let us suppose that all individuals recover at

rate γ when infected, become infected at rate α when exposed, and that the contact

rate across all network links is unity. For simplicity we shall also make this assumption

through the remainder of the explicit examples in this chapter. We can apply the

closure in corollary 3.4.1, which is a special case of the exact closure theorem, to build

up the moment-induced system ME . Let us consider the probability of individual 1

being exposed to see how this works. We have:

˙〈E1〉 = 〈S1I2〉 − α〈E1〉. (3.28)

Here and throughout this chapter we order individuals according to the numerical

order of their labels; the relevant subsystem configurations need to be understood with

reference to the full network. Now, individual 2 is dynamically partitioning with respect

to individuals 1 and 3, and it is also dynamically partitioning with respect to individuals

1 and 4. Hence:

˙〈S1I2〉 = −(1 + γ)〈S1I2〉+ α〈S1E2〉,

and for 〈S1E2〉:

˙〈S1E2〉 = 〈S1S2I3〉+ 〈S1S2I4〉 − α〈S1E2〉

=
〈S1S2〉〈S2I3〉
〈S2〉

+
〈S1S2〉〈S2I4〉
〈S2〉

− α〈S1E2〉. (3.29)

Rather than a complete analysis of all moment-induced subsystem configurations that

arise, we take a single pair configuration S2I3 from this equation as an example. Here,
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individual 3 is not dynamically partitioning with respect to individuals 2 and 4 but

individual 2 is dynamically partitioning with respect to 1 and 3 so:

˙〈S2I3〉 = −
〈I1S2〉〈S2I3〉
〈S2〉

− 〈S2I3I4〉 − (1 + γ)〈S2I3〉+ α〈S2E3〉. (3.30)

Then, for 〈S2I3I4〉, individual 2 is dynamically partitioning with respect to individual

1 and individuals 3 and 4 so:

˙〈S2I3I4〉 = −〈I1S2〉〈S2I3I4〉〈S2〉
− 2(1 + γ)〈S2I3I4〉

+α〈S2E3I4〉+ α〈S2I3E4〉. (3.31)

We see that here, ME represents a significant dimensional reduction compared to the

full system M .

Example 2

For the undirected network in Figure 3.5b there is dynamical partitioning about indi-

vidual 1. Starting with (for example) the probability of individual 1 being exposed, we

have:

˙〈E1〉 = 〈S1I2〉+ 〈S1I4〉+ 〈S1I5〉+ 〈S1I6〉 − α〈E1〉. (3.32)

Now, choosing the first of these pairs to develop one part of the moment-induced system

ME gives:

˙〈S1I2〉 = −〈S1I2I4〉 −
〈S1I2〉〈S1I5〉
〈S1〉

− 〈S1I2〉〈S1I6〉〈S1〉
−(1 + γ)〈S1I2〉+ α〈S1E2〉, (3.33)

and

˙〈S1E2〉 = 〈S1S2I3〉 − 〈S1E2I4〉 −
〈S1E2〉〈S1I5〉
〈S1〉

− 〈S1E2〉〈S1I6〉
〈S1〉

−α〈S1E2〉. (3.34)

Then, for the first of these triples:

˙〈S1S2I3〉 = −〈S1S2I3I4〉 −
〈S1S2I3〉〈S1I5〉

〈S1〉
− 〈S1S2I3〉〈S1I6〉〈S1〉

−(1 + γ)〈S1S2I3〉+ α〈S1S2E3〉, (3.35)

and for the quad we have:

˙〈S1S2I3I4〉 = −〈S1S2I3I4〉〈S1I5〉〈S1〉
− 〈S1S2I3I4〉〈S1I6〉〈S1〉

−2(1 + γ)〈S1S2I3I4〉+ α〈S1S2E3I4〉+ α〈S1S2I3E4〉. (3.36)

Here, the maximum size of a subsystem configuration is four individuals. We note that

this is equal to the size of the largest cycle and that this was also true for example 1.

However, this is not always the case as shown by the next example.
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Example 3

Figure 3.5c shows a network where the maximum simple cycle size is 4 but the maximum

size of a subsystem configuration in ME is 5. Starting with the the probability of

individual 1 being exposed we have:

˙〈E1〉 = 〈S1I2〉+ 〈S1I4〉+ 〈S1I5〉 − α〈E1〉. (3.37)

Then, taking just the subsystem configuration in the first term:

˙〈S1I2〉 = −〈S1I2I4〉 − 〈S1I2I5〉 − (1 + γ)〈S1I2〉+ α〈S1E2〉, (3.38)

and again taking the first term gives:

˙〈S1I2I4〉 = −〈S1I2I4I5〉 − 2(1 + γ)〈S1I2I4〉
+α〈S1E2I4〉+ α〈S1I2E4〉, (3.39)

and for the quad:

˙〈S1I2I4I5〉 = −3(1 + γ)〈S1I2I4I5〉+ α〈S1E2I4I5〉
+α〈S1I2E4I5〉+ α〈S1I2I4E5〉. (3.40)

Finally, taking the last of these terms gives:

˙〈S1I2I4E5〉 = −(2 + 2γ + α)〈S1I2I4E5〉
+〈S1I2I3I4S5〉+ α〈S1E2I4E5〉+ α〈S1I2E4E5〉. (3.41)

In this case we see that the maximum size of a subsystem configuration is at the size of

the system (5 individuals) and is not constrained by the largest cycle (4 individuals).

This leads to the question of what aspect of a network specifies the largest subsystem

configuration that appears in ME . We answer this question in the following section.

3.4.3 System size

Here we define the type of network structures that are amenable to dynamical partition-

ing. We start from single node subsystems and expand out, via equation (3.27), until

the largest subsystem is reached incorporating that individual before dynamical par-

titioning prevents larger subsystems emerging. For the undirected case, the situation

simplifies considerably (Kiss et al., 2013) since all dynamically partitioning individ-

uals are also cut-vertices (individuals which, when removed, increase the number of

connected components). It is then helpful to represent the network as a collection of

blocks (maximal biconnected subgraphs) where the between-block structure is tree-like

(see Figure 3.6a). This makes it straightforward to assess the feasibility of constructing

a solvable exact system by making use of dynamical partitioning. Notice that it is
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Figure 3.6: Examples of networks that decompose into transmission blocks. The trans-
mission blocks are represented by the shaded rectangles. a) An undirected network
where the effectiveness of dynamical partitioning is made clear by the number of blocks
(which resemble structured households). b) A directed network where identifying the
transmission blocks is more complicated.
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possible for a node to belong to more than one block as in the top right of Figure 3.6a

although the overlap between any two blocks can only be a single node. It is interesting

that this representation of the network resembles the household model structure where

analytic progress can also be made (Ball et al., 2010). For directed networks, the situa-

tion is more complicated. Here we define ‘transmission blocks’ to play a similar role to

blocks. Indeed, blocks and transmission blocks will have equivalent definitions in the

undirected case. We use the term transmission block rather than block since there are

likely to be other useful extensions of the block concept for directed networks.

Definition 3.4.4. The subgraph D[W ] is a ‘directed sub-block’ if and only if there is at

least one node reachable from all others in D[W ] and its underlying graph is biconnected

(recall from definition 3.3.5 that an undirected graph is biconnected iff there are at least

two vertex disjoint paths between every pair of vertices).

Remark. According to this definition, any block in an undirected network is also a

directed sub-block. Hence, the blocks illustrated in Figure 3.6a are all directed sub-

blocks.

Definition 3.4.5. We will refer to a directed sub-block D[W ] as a ‘transmission block’

if and only if there does not exist U ⊃W such that D[U ] is also a directed sub-block.

The shaded boxes in Figure 3.6 are examples of transmission blocks. Figure 3.6b

gives an example of these on a directed graph. Notice that now it is possible for

transmission blocks to overlap by more than one node (the darker shaded triangle is

a directed sub-block which ‘belongs’ to two distinct transmission blocks). This can

happen when a region of the network has paths to two or more other regions that do

not have paths between each other. Figure 3.7 shows some more examples of these

definitions for directed networks. Figure 3.7 a) and b) have underlying graphs that

are biconnected. However, b) has a node (node 1) which is reachable from all others

whereas a) does not, and so b) is a directed sub-block while a) is not. Figure 3.7 b) is

also a transmission block since it is maximal. Additionally, neither have sub-graphs of

the underlying graphs that are biconnected and so neither contain directed sub-blocks

as subgraphs. Figure 3.7 c) is a transmission block (the underlying graph is biconnected

and node 2 is reachable from all others). It also contains several directed sub-blocks (for

example nodes 1,2 and 3). Figure 3.7 d) contains a transmission block as a subgraph

(nodes 1,2,3,4) and contains several directed sub-blocks.

We can now state the main result of this section:

Theorem 3.4.3. The largest subsystem configuration (not necessarily unique) in ME

consists of the same number of individuals as the largest transmission block, or it con-

tains 2 individuals if there are no transmission blocks.
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Figure 3.7: Four directed graphs/networks. Graph a) is not a transmission block
whereas graphs b) and c) are transmission blocks. Graph d) contains a transmission
block as a subgraph.

Proof. The Theorem follows from Corollary A.1.1 and Corollary A.1.2 (see Appendix

1). From Corollary A.1.1, the individuals contained in a subsystem larger than a

pair appearing in ME belong to some transmission block. From Corollary A.1.2, any

transmission block appears as a subsystem in ME.

Definition 3.4.6. Let D = (V,A) be a directed graph. A vertex-induced subgraph

D[W ], where W ⊂ V , is a ‘k-motif ’ if and only if |W | = k and there is at least one

individual reachable from all others in D[W ].

Remark. From the way in which the exact system ME is built up, via equation (3.27)

(see definition 3.4.3), the individuals of a subsystem configuration appearing in ME

form a single k-motif.

Theorem 3.4.4. If a directed graph D = (V,A) has n transmission blocks, D[W1], . . . ,

D[Wn], then:

dimensionality of ME ≤ 3|V |+ 3|A|+
n
∑

i=1

|Wi|
∑

k=3

3k#distinct k-motifs in D[Wi]

≤ 3|V |+ 3|A|+
n
∑

i=1

|Wi|
∑

k=3

3k
(|Wi|

k

)

.

Proof. From the way in which the exact system ME is built up, via equation (3.27)

(see definition 3.4.3), it is immediate that there are 3N configurations for subsystems
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of order 1 (individuals in states S,E and I), and at most 3|A| configurations for sub-

systems of order 2 (connected pairs in states SI, SE and SS). From Corollary A.1.1

(see Appendix 1), the individuals in a subsystem configuration larger than a pair are

contained within some single transmission block and form a k-motif. Since there are

three possible individual states, S,E, I, for individuals in the subsystem configurations

of ME , the theorem must hold.

3.5 Hierarchies of approximate systems

The systems of equations in the previous section are exact, but limited in applicability

because of the limited scope for dynamical partitioning in most networks. To suitably

curtail the large number of equations, the networks need to have a structure which is

roughly tree-like.

More typically, we want to trade off some exactness for systems which are numer-

ically tractable and provide a good, rather than exact description of the underlying

dynamics. The pair-level SEIR system (equation (3.18)) is exact for tree networks but

is also a reasonably good approximation for Markovian SEIR dynamics on a wide range

of networks. Higher-order systems will typically be more accurate, but will have consid-

erably greater computational cost. Here we formally define hierarchies of approximate

systems that can be applied to Markovian SEIR dynamics on any network.

We define ‘pseudo-partitioning’ according to different criteria. We define two hi-

erarchies of systems via what we term ‘cycle-partitioning’ and ‘size-partitioning’. We

then also consider a ‘hybrid-partitioning’ hierarchy utilising both methods. Although

these pseudo-partitionings can be defined more generally, as in the case of dynami-

cal partitioning itself, we shall restrict our attention here to pseudo-partitioning with

respect to single susceptible nodes.

Generalising from the case of dynamical partitioning, we define a function fp(X,Y, i)

which acts on subsets of the network and which enables a systematic curtailing of the

number of subsystem configurations necessary for a solvable system. We then use this

function to determine some pseudo-partitioning of subsets X and Y with respect to
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node i. By analogy with equation (3.27), we have:

˙〈ψA
W 〉 ≈

∑

k∈W

1(Ak = S)

[

−
∑

n∈W

Tkn1(An = I)〈ψA
W 〉
]

+
∑

k∈W

1(Ak = E)

[

∑

n∈W

Tkn1(An = I)〈hSk (ψA
W )〉 − αk〈ψA

W 〉
]

+
∑

k∈W

1(Ak = I)

[

αk〈hEk (ψA
W )〉 − γk〈ψA

W 〉
]

+
∑

k∈W

1(Ak = R)

[

γk〈hIk(ψA
W )〉

]

−
∑

k∈W

1(Ak = S)
∑

n∈V \W

Tkn

[

(

1− fp(n,W \ k, k)
)

〈ψA
W In〉

+fp(n,W \ k, k)
〈ψA

W 〉〈SkIn〉
〈Sk〉

]

+
∑

k∈W

1(Ak = E)
∑

n∈V \W

Tkn

[

(

1− fp(n,W \ k, k)
)

〈hSk (ψA
W )In〉

+fp(n,W \ k, k)
〈hSk (ψA

W )〉〈SkIn〉
〈Sk〉

]

. (3.42)

So, when fp(X,Y, i) = 1, we treat i as if it is dynamically partitioning with respect to X

and Y and so the right-hand-side of the equation does not generate larger subsystems.

The specific type of approximate system depends on how fp(X,Y, i) is defined and is

formed by assuming equality between the left and right hand sides.

Note that equation (3.42) defines a solvable system that is based on the closure

in corollary 3.4.1. However, other closures such as the Kirkwood-closure 〈XiYjZk〉 ≈
〈XiYj〉〈YjZk〉〈ZkXi〉/(〈Xi〉〈Yj〉〈Zk〉), where G[{i, j, k}] is a complete graph, fall outside

of this scheme. It is, however, straightforward to define a solvable hierarchy of approx-

imate systems that incorporates the standard Kirkwood closure as a special case.

By analogy with the closure in corollary 3.4.1, and the Kirkwood closure, we thus

define the following closure for the expectation of the product of two indicator variables,

ψA
W and In, where n /∈W :

〈ψA
W In〉 ≈ 〈ψA

W 〉〈In〉
∏

j∈W

[ 〈In(Aj)j〉
〈In〉〈(Aj)j〉

]Gnj

. (3.43)

For the case where G[W ∪ {n}] is a complete graph of three nodes, this is seen to

reproduce the standard Kirkwood closure (recall that we use G to denote both the

underlying graph and its adjacency matrix). The closure in equation (3.43) has the

theoretical advantage of treating all of the connected pairs that n forms with the mem-

bers of W in the same way. In the derivation of the previous closure (corollary 3.4.1),
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this issue was non-existent since there was only one pair formed between n and a mem-

ber of W , i.e. the pair it formed with i ∈ W where i was dynamically partitioning

relative to W \ i and n. However, the disadvantage of this Kirkwood-based closure is

that it is more likely to extend the dimensionality of the system by introducing new pair

configurations, such as 〈IiIj〉, which wouldn’t otherwise be needed for a closed system.

We expect that, overall, the benefit of keeping the sizes of subsystems lower would

outweigh this disadvantage. On the contrary, note that when using the original closure

(corollary 3.4.1) to build up the system, the ‘new’ pair state that is introduced by the

closure is always of the form 〈SiIj〉 where (j, i) ∈ A(D) and such a pair configuration

would be part of the system in any case.

With reference to equation (3.42), this Kirkwood-style closure can be utilised to

generate a closed system via the time derivative:

˙〈ψA
W 〉 ≈

∑

k∈W

1(Ak = S)

[

−
∑

n∈W

Tkn1(An = I)〈ψA
W 〉
]

+
∑

k∈W

1(Ak = E)

[

∑

n∈W

Tkn1(An = I)〈hSk (ψA
W )〉 − αk〈ψA

W 〉
]

+
∑

k∈W

1(Ak = I)

[

αk〈hEk (ψA
W )〉 − γk〈ψA

W 〉
]

+
∑

k∈W

1(Ak = R)

[

γk〈hIk(ψA
W )〉

]

−
∑

k∈W

1(Ak = S)
∑

n∈V \W

Tkn

[

(

1− fp(n,W \ k, k)
)

〈ψA
W In〉

+fp(n,W \ k, k)〈ψA
W 〉〈In〉

∏

j∈W

[ 〈In(Aj)j〉
〈In〉〈(Aj)j〉

]Gnj

]

+
∑

k∈W

1(Ak = E)
∑

n∈V \W

Tkn

[

(

1− fp(n,W \ k, k)
)

〈hSk (ψA
W )In〉

+fp(n,W \ k, k)
〈hSk (ψA

W )〉〈SkIn〉
〈Sk〉

∏

j∈W\k

[ 〈In(Aj)j〉
〈In〉〈(Aj)j〉

]Gnj

]

. (3.44)

Either equation (3.42) or (3.44) can be used in conjunction with suitable definitions

of fp(X,Y, i) to generate hierarchies of approximate systems. We shall mostly use

equation (3.42) for explicit examples. However, for completeness, we shall briefly discuss

equation (3.44) in a later section devoted to it.

It is worth noting that both of these closures are based on multiplying by a quotient

of pair configurations and singlets. Other schemes with more complex closures should

also be possible. For example, the exact closure theorem allows closures where we do

not necessarily need to have only singlet states in the denominator (see Figure 3.4b).
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i

j

W

Figure 3.8: An example of a node i ∈ W which is not dynamically partitioning with
respect to node j and W \ i, but it is cycle-partitioning up to x = 2.

3.5.1 Cycle-partitioning

With reference to Figure 3.8, although node i is not dynamically partitioning with

respect to W \ i and node j, we might observe that it is in some sense ‘approximately’

dynamically partitioning because the path length between j and W is reasonably long

when i is deleted. It seems sensible to define a type of pseudo-partitioning according to

this path length, and this is the approch which we will adopt below. However, note that

a more effective definition of pseudo-partitioning, at a perhaps higher computational

cost, would be to also account for the ‘strength’ of the path between j and W . For

example, although this path length is reasonably long when i is deleted, it may be

that the rates of contacts between the interacting pairs in the path are so high that,

assuming j becomes infected, W will also be infected with high probability.

Definition 3.5.1. The set of individuals that can reach at least one member of X ⊂ V ,

by traversing a ∈ N arcs or less, is denoted INa(X). Here, N = {0, 1, 2, ...}.

Definition 3.5.2. Node i ∈ V is ‘cycle-partitioning’ at order x ∈ N with respect to

disjoint and non-empty subsets X,Y ⊂ V , where i /∈ X ∪ Y , if and only if we have

fC(x)(X,Y, i) = 1 where:

fC(x)(X,Y, i) =

{

1 if INa(X) ∩ INb(Y ) = ∅ ∀a, b : a+ b = x (in D(cav i))

0 otherwise,
(3.45)

where a, b ∈ N.

We make the following observations: i) If the network is undirected then fC(x)(X,Y, i) =

0 if and only if there is at least one path of length x or less between some member of

X and some member of Y when i is deleted. ii) An individual who is dynamically

partitioning with respect to two subsets is also cycle-partitioning at all orders with
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respect to those subsets. iii) In Figure 3.8, node i is cycle-partitioning with respect to

W \ i and j for x = 0, x = 1, and x = 2, but not x > 2. iv) Any individual i ∈ V is

always cycle-partitioning at order x = 0 with respect to any other two subsets.

Adapting Corollary 3.4.1 such that cycle-partitioning individuals of order x ∈
{0, 1, 2, . . .} are ‘treated’ as dynamically partitioning individuals, we substitute fp(n,W\
k, k) = fC(x)(n,W \ k, k) into equation (3.42).

Remark. By using equation (3.42) to write down time derivatives for 〈Si〉, 〈E〉 and 〈I〉,
∀i ∈ V , and for every new subsystem configuration which emerges, we obtain a closed

set of differential equations which form the xth system in a hierarchy of approximating

systems (note that the system corresponding to x = 0 is the pair-level system given by

equation (3.18)). The associated system will be denoted by MC(x).

Examples

We can consider cycle-partitioning for the network in Figure 3.5b. If we cycle-partition

at x = 1, then the first two terms of equation (3.34) are closed at the level of pairs.

Specifically, for the first term, node 2 is cycle-partitioning with respect to nodes 1 and

3. For the second term, node 1 is cycle-partitioning with respect to nodes 2 and 4.

This gives:

˙〈S1E2〉 ≈
〈S1S2〉〈S2I3〉
〈S2〉

− 〈S1E2〉〈S1I4〉
〈S1〉

− 〈S1E2〉〈S1I5〉
〈S1〉

− 〈S1E2〉〈S1I6〉
〈S1〉

−α〈S1E2〉. (3.46)

Thus, triples within the square are no longer ‘kept intact’, and so, within the square,

the model closes at the level of pairs. However, triples made up of the members of the

triangle are kept intact. For example, we have:

˙〈S1I5〉 = −〈S1I5I6〉 − (1 + γ)〈S1I5〉+ α〈S1E5〉

−〈S1I5〉〈S1I2〉〈S1〉
− 〈S1I5〉〈S1I4〉〈S1〉

. (3.47)

Figure 3.9 shows this hierarchy of systems. Here, the x = 0 system is the pair-level

system (equation (3.18)). The x = 1 system is an improvement since it picks up the

triangle. The x = 2 system picks up the square as well and is equivalent to the exact

system ME .

If we apply cycle-partitioning to Figure 3.5c instead, then the x = 0 system is the

pair-level system as always. The x = 1 system is also the pair-level system and the

x = 2 system is equivalent to the exact system ME (equivalent to M in this case).

Hence, cycle-partitioning does not necessarily lead to improved systems as x increases

and it does not always lead to a reduction in system size with respect to the exact

system ME . The results from the x = 0 pair-level system and the exact system ME
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Figure 3.9: Cycle-partitioning applied to the scenario in Figure 3.5b with x = 0, which
corresponds to the pair-level system, through x = 1 and finally x = 2 which is exact
for this scenario. Here we assumed that all individuals were independently susceptible
at time t = 0 with probability 5/6 and infected otherwise (the states of individuals
initially independent). We also assumed α = γ = 1.
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Figure 3.10: A triangle lattice - an extreme example where cycle-partitioning at order
greater than x = 0 requires subsystem configurations which contain all individuals.

applied to Figure 3.5c can be seen in the section on size-partitioning below (Figure 3.11)

and so are not reproduced here.

An extreme example of the failure of cycle-partitioning to produce a hierarchy of

‘improving’ systems is given by the triangular lattice shown in Figure 3.10. Here,

the x = 0 system is the pair-level system. For x = 1, consider the triple A3S1C4

(A,C ∈ {S,E, I}). Here we do not have cycle-partitioning since by deleting node 1,

there is a path of length 1 between nodes 3 and 4. As we move to size 4 subsystems,

(e.g. adding a node to the above triple either by the edge (1,2) or the edge (3,2)),

it is readily seen that there will always exist subsystems which do not cycle-partition

for x = 1, at all subsystem sizes. Hence for the triangle lattice, even for x = 1 cycle-

partitioning, we obtain a system with subsystem configurations at the size of the full

network. Some cycle-partitioning does occur however, so the resulting system is not

exact. For example, for the triple A2S1C4, deleting node 1 means that the shortest

path from 2 to 4 is via node 3 and is of length 2. So we have cycle-partitioning here.

We also have it for configuration A7S1C4. This configuration is also cycle-partitioning

at x = 2 (the path length from node 7 to node 4 after deletion of node 1 is 3) but

we no longer cycle-partition A2S1C4. Finally, at x = 3, no cycle-partitioning occurs

anywhere and we have an exact system containing subsystem configurations containing

all individuals (MC(3) =ME =M).

In general, if the largest transmission block in a network has n individuals, then any

cycle-partitioning system of order x ≥ n − 2 is exact (see Theorem A.2.1 in Appendix
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2). This is illustrated by the network in Figure 3.5b where the largest transmission

block is of size n = 4 and the x = 2 cycle-partitioning system is exact (Figure 3.9).

This is also the case for the network in Figure 3.5c where n = 5 and the x = 3

system is exact (the x = 2 system also happens to be exact here as well). Another

general result is that if the smallest directed sub-block consists of n individuals, then

the cycle-partitioning systems of order x < n − 2 are all equivalent to the pair-level

(x=0) system (see Theorem A.2.2 in Appendix 2). This is illustrated by the network

in Figure 3.5c where the smallest directed sub-block is n = 4, and we found that the

x = 1 cycle-partitioning system is the same as the pair-level system.

3.5.2 Size-partitioning

The issues arising in some networks such as Figure 3.5c, where even cycle-partitioning

at x = 2 requires subsystem configurations containing all individuals, and the extreme

example of the triangular lattice, motivate an alternative pseudo-partitioning approach

whereby the sizes of subsystem configurations are more directly constrained.

Definition 3.5.3.

fS(x)(X) =

{

1 if |X| = x+ 1

0 otherwise,
(3.48)

where X ⊂ V and x ∈ N.

Here we make the substitution fp(n,W \ k, k) = fS(x)(W \ k) into equation (3.42).

Remark. As with previous pseudo-partitioning, a complete approximate system arises

from the time derivatives for the individual-level probabilities and then repeatedly

writing down the time derivatives for each subsystem configuration that emerges. As

with cycle-partitioning, the x = 0 size-partitioning system corresponds to the pair-level

system.

Examples

As an example, consider the x = 1 size-partitioning system for Figure 3.5c, where the

cycle-partitioning hierarchy was redundant. Equation (3.39) now becomes:

˙〈S1I2I4〉 ≈
〈S1I2I4〉〈S1I5〉

〈S1〉
− 2(1 + γ)〈S1I2I4〉

+α〈S1E2I4〉+ α〈S1I2E4〉.

For x = 2 size-partitioning, equation (3.39) is left untouched since the exact rate

equation for a subsystem state of size 3 does not involve subsystem states larger than

4. However, equation (3.41) becomes:

˙〈S1I2I4E5〉 ≈ −(2 + 2γ + α)〈S1I2I4E5〉+
〈S1I2I4S5〉〈I3S5〉

〈S5〉
+α〈S1E2I4E5〉+ α〈S1I2E4E5〉.

82



0 2 4 6 8 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Time

E
xp

ec
te

d 
fr

ac
tio

n 
su

sc
ep

tib
le

 

 

x=3 (exact)
x=2
x=1
x=0 (pair−based)

Figure 3.11: Size-partitioning applied to the scenario in Figure 3.5c with x = 0, which
corresponds to the pair-level system, through x = 1, x = 2, and finally x = 3 which
is exact for this scenario. Individuals were assumed to be initially susceptible with
probability 4/5 and infected otherwise (the states of individuals initially independent).
We also assumed α = γ = 1.

In this way, we obtain three different approximate systems: x = 0, x = 1 and x = 2.

For x > 2, the system is exact. Figure 3.11 shows results from the application of each

of these three approximate systems and the exact x = 3 system to Markovian SEIR

dynamics on the network depicted in Figure 3.5c. An interesting feature that should

be noted for the x = 2 system is that it very slightly underestimates the rate of spread

of the epidemic. Typically, experience shows that the closure of these equations leads

to an over-estimate the rate of spread, but this provides a counter example.

While size-partitioning will resolve issues such as the triangular lattice, it has prob-

lems of its own. Specifically, we see from Figure 3.11 that since the smallest cycle size

in Figure 3.5c is 4, the x = 1 size-partitioning system is almost identical to the x = 0

pair-level system. The x = 3 and x = 4 systems are also almost identical. Hence,

the extra computation in evaluating at x = 2 and x = 4 is wasteful. In this sense,

cycle-partitioning has an advantage by only picking up complete cycles in the network.

An additional problem with size-partitioning is that it ignores genuine dynamical

partitioning. For example, for Figure 3.5b, we would require subsystem configurations
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of size 6 (x = 5) to describe this exactly within the size-partitioning scheme. However,

if we permit genuine dynamical partitioning, we only need subsystem configurations of

size less than or equal to 4. This issue is readily resolved by considering the modified

scheme:

fE,S(x)(X,Y, i) =

{

1 if fE(X,Y, i) = 1 or fS(x)(Y ) = 1

0 otherwise,
(3.49)

which incorporates genuine dynamical partitioning into size-partitioning. With this

rule, in Figure 3.5b, the genuine dynamical partitioning around node 1 is utilised wher-

ever possible.

3.5.3 Hybrid-partitioning

Both cycle-partitioning and size-partitioning have their merits. Size-partitioning avoids

unnecessarily large subsystem configurations where cycle-partitioning cannot be effec-

tively implemented beyond an early stage, such as in the triangle lattice. On the other

hand, cycle-partitioning picks out cycles in the network and closes at the pair level un-

less complete cycles can be incorporated, avoiding wasteful computation with minimal

gain in accuracy.

We can construct a hybrid-partitioning scheme that captures the benefits of both

cycle-partitioning and size-partitioning while avoiding the problems of both. We define

this hybrid-partitioning as:

Definition 3.5.4.

fC(x)S(x)(X,Y, i) =

{

1 if fC(x)(X,Y, i) = 1 or fS(x)(Y ) = 1

0 otherwise
. (3.50)

This leads to a hierarchy of systems defined by substituting fp(n,W \ k, k) =

fC(x)S(x)(n,W \k, k) into equation (3.42). This also has the pair-level system for x = 0.

We also note that alternative hierarchies could be designed with different values of x

for the size-partitioning and the cycle-partitioning parts.

This definition of pseudo-partitioning benefits from the advantages of both cycle-

partitioning and size-partitioning. Firstly, if there are only large cycles, the hierarchy

is closed at a low order by cycle-partitioning. This is desirable since, as illustrated in

Figure 3.11, continuing on generates little benefit unless we are able to continue to the

size of the smallest cycle. However, if the system is not amenable to cycle-partitioning,

as in the triangular lattice, then size-partitioning is required. A network illustrating

the benefits of this is shown in Figure 3.12. For hybrid-partitioning with x = 1, let us

start with the probability that node 1 is exposed:

˙〈E1〉 = 〈S1I2〉+ 〈S1I5〉+ 〈S1I6〉+ 〈S1I7〉 − α〈E1〉. (3.51)
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Figure 3.12: A network that illustrates the benefits of hybrid-partitioning. Expand-
ing from node 1 with x = 1, we utilise both cycle-partitioning and size-partitioning,
capturing the advantages of both.

Since we know that ˙〈S1I2〉 depends on 〈S1E2〉, we consider the differential equation for

〈S1E2〉:

˙〈S1E2〉 ≈
〈S1S2〉〈S2I3〉
〈S2〉

− 〈S1E2〉〈S1I5〉
〈S1〉

− 〈S1E2〉〈S1I6〉
〈S1〉

−〈S1E2〉〈S1I7〉
〈S1〉

− α〈S1E2〉,

where we have employed x = 1 cycle-partitioning. Similarly, for 〈S1E5〉 in equation

(3.51) we obtain:

˙〈S1E5〉 ≈
〈S1S5〉〈I4S5〉
〈S5〉

+ 〈S1S5I6〉 −
〈S1E5〉〈S1I2〉
〈S1〉

−〈S1E5I6〉 −
〈S1E5〉〈S1I7〉
〈S1〉

− α〈S1E5〉,

where, again, x = 1 cycle-partitioning has been implemented where possible. Here, the

time derivative of the second term must depend on 〈S1S5E6〉, for which we have:

˙〈S1S5E6〉 ≈
〈S1S5S6〉〈S6I7〉

〈S6〉
− 〈S1S5E6〉〈S1I7〉

〈S1〉
− α〈S1S5E6〉

−〈S1S5E6〉〈I4S5〉
〈S5〉

− 〈S1S5E6〉〈S1I2〉
〈S1〉

.

The closures on the first line are via x = 1 size-partitioning, whereas the closures on

the second line are via meeting the criteria for both x = 1 size-partitioning and x = 1

cycle-partitioning.

So, this hybrid-partitioning obtains the best of both methodologies. Cycle-partitioning

avoids unnecessarily including extra terms in the large cycle 1-2-3-4-5-1 which we have

seen (Figure 3.11) generates minimal extra accuracy. Size-partitioning forces partition-

ing where the subsystem configurations get beyond a specified size, here constraining

the maximum subsystem size to be 3.

3.5.4 Alternative closure

Before leaving this section on pseudo-partitioning, we include a brief aside on pseudo-

partitioning using the alternative Kirkwood-style closure defined in equation (3.43). In
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Figure 3.13: Two simple examples of applying the alternative Kirkwood-style closure
as in equation (3.43). The shaded region specifies the given subsystem configuration,
and there is a new IS link towards it in accordance with the way in which the induced
state spaces are built up. The dashed lines represent additional links between the new
node and the original subsystem (these would be ignored by the closure rule in equation
(3.42).)

this case, we can still apply the cycle, size and hybrid methods, but we use equation

(3.44) in place of equation (3.42). Two examples of applying this are illustrated in

Figure 3.13. Here the shaded regions represent the existing subsystem states and the

solid lines coming out of these regions represents the new infectious node being added

on. The dashed lines represent other links between the new infectious nodes and the

original subsystems. Supposing that the criteria for pseudo-partitioning is met at this

stage (i.e. the relevant fp(.) = 1), for Figure 3.13a we obtain

〈I1S2I3〉 ≈
〈I1S2〉〈S2I3〉〈I1I3〉
〈I1〉〈S2〉〈I3〉

,

and for Figure 3.13b, we obtain

〈I1S2S3I4I5〉 ≈
〈I1S2S3I4〉〈I1I5〉〈S2I5〉〈S3I5〉

〈I1〉〈S2〉〈S3〉〈I5〉2
.

We note that for cycle-partitioning with x > 0, the two closure methods result in

the same system (building up the sytem using equation (3.44) becomes equivalent to

building up the system via equation (3.42)) since the types of additional links drawn

in Figure 3.13 could not then be present when the partitioning occurs.

Notice that when the closure of triples always occurs (e.g. x = 0 cycle-partitioning

or x = 0 size-partitioning), the variant of the pair-level system introduced by Sharkey

(2008, 2011) is obtained under this Kirkwood-style closure. This variant is expected to

be able to handle networks with triangles more accurately than the variant considered

by Sharkey et al. (2013) and Kiss et al. (2014) that follows from equation (3.42).
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3.6 Discussion

Recently it has been possible to establish exact and practicable representations of

stochastic epidemic dynamics on finite tree networks (Sharkey et al., 2013) using closure

methodologies evaluated at the level of individuals (Sharkey, 2008, 2011). Message-

passing also gives exact representations on trees (Karrer and Newman, 2010) and this

can be shown, under some circumstances with Poisson transmission processes, to be

equivalent to moment closure systems (see Wilkinson and Sharkey (2014) and chapter

4 of this thesis). Under suitable and very restrictive homogeneity assumptions, ex-

act population-level versions of these closed systems (e.g. Keeling, 1999) can also be

derived for idealised graphs with homogeneous initial conditions (Sharkey, 2008).

Within the individual-level closure construction, it is possible to go beyond trees and

obtain exact representations of epidemic dynamics on non-tree networks using the idea

of dynamical partitioning (referred to by Kiss et al. (2014), in the context of undirected

networks, as partitioning). Here we extended the concept of dynamical partitioning to

arbitrary directed networks, and then used this to define an exact system using our

exact closure theorem. The extent to which these systems are computationally viable

depends primarily on the underlying structure of the network.

More specifically, starting from the probabilities of the states of individual nodes in

a given network, we uniquely defined the full set of exact induced moment equations by

automatically implementing the exact closure theorem where applicable. We also de-

fined transmission blocks as a natural decomposition of a network for the closure of the

SEIR system. Transmission blocks represent a possible extension of the block concept

in graph theory into directed networks. Using this concept, we proved a theorem stat-

ing that the size of the largest subsystem appearing in the set of exact moment-induced

equations is equal to the size of the largest transmission block.

We also investigated hierarchies of approximate moment closure systems. In the epi-

demic literature, it is normally the case that moment closure models are constructed

at the level of pairs, or occasionally at triples or quads (Matsuda et al., 1992; Bauch,

2005; House et al., 2009). This is often accompanied with an assertion that higher

order models exist. However, to our knowledge, these higher order epidemic models

have never been defined explicitly. This is understandable since these models rapidly

become too complex to be of real practical relevance, but it does leave open the theo-

retical question of how these models can be defined (Sharkey, 2011). To address this,

we introduced ‘pseudo-partitioning’ to construct complete hierarchies of approximate

closed systems that are well-defined at all orders. In fact, we defined several hierarchies

of closed systems; one in terms of subsystem size, one in terms of the size of cycles in

the network, and a hybrid method taking the best of both of the previous methods.

Undoubtedly other hierarchies can be defined as well. In addition, we investigated two
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mechanisms of closure - one based on exact dynamical partitioning and the other which

is more related to the Kirkwood closure.

The closure based directly around dynamical partitioning has the pair-based system

considered by Sharkey et al. (2013) as its zeroth order variant (for all of the size, cycle

and hybrid approaches). The hierarchies based around the Kirkwood-type closure all

have the pair-based system introduced by Sharkey (2008, 2011) as their zeroth order

variant (this is designed to handle networks with triangles in a more effective way).

We also observed that the conditions for cycle-partitioning at orders greater than zero

mean that both methods of closure become equivalent.

The hierarchies of systems generated some interesting observations concerning the

convergence to exactness with order. For example, for size-partitioning, the systems

converge to the exact solution with increasing order, but this convergence is not always

monotonic (see Figure 3.11). In all of our previous numerical work, we had found

that moment closure models over-exaggerate the spread of an epidemic, but here we

observed a counter example (see also Sharkey (2011), where possible explanations of

overestimation/underestimation are discussed). An unanswered question is whether the

approximate systems always increase in accuracy as the order of the hierarchy increases.

Intuitively we would expect that they do, and this is validated by the examples so far

investigated.
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Chapter 4

The message passing approach to
general epidemics on networks

4.1 Introduction

In this chapter we will consider a generalised version of the Markovian network-based

S(E)IR model, as considered by Karrer and Newman (2010). The generalised model

will assume the same underlying dynamics but the individual level processes will no

longer be resticted to Poisson processes. This is an important generalisation since,

as discussed in their paper, real-world infectious periods are not well described by

the exponential distribution, and the effect of moving to a non-exponential infectious

period can greatly affect the evolution of the epidemic. For this model, Karrer and

Newman (2010) developed a system of equations, in the language of ‘message passing’

algorithms, which exactly captures the probability of a given individual being in a given

state at time t (for all individuals) provided that the network is a tree network and

the states of individuals are statistically independent at t = 0. They also proved that,

in the case of non-tree networks and the same restriction on initial conditions, their

equations provide a rigorous lower bound on 〈Si〉∀i ∈ V .

We will further generalise the model considered by Karrer and Newman (2010), al-

lowing more heterogeneity in the individual level processes and initial conditions. Fol-

lowing their approach, we will then derive a system of ‘message passing’ equations which

can give exact results in the case of tree networks, and a lower bound on 〈Si〉∀i ∈ V
otherwise. We will then show that generalised pair-based moment closure systems (al-

lowing arbitrary infectious/exposed periods) can be derived from these message passing

equations, indicating that the pair-based systems can give exact results for tree net-

works and a rigorous lower bound on 〈Si〉∀i ∈ V for non-tree networks (the pair based

system defined in theorem 3.3.1 of chapter 3, for the Markovian network-based SEIR

model, is seen to be a special case).

At the end of the chapter we will discuss the scenario where the states of individuals

are not statistically independent at t = 0. In particular, we will consider the relation-
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ship between the case where every individual is initially susceptible with probability

z (independently), and initially infected otherwise, and the case where zN initially

susceptible individuals are chosen uniformly at random (without replacement), and

the rest are initially infected (assuming zN is an integer). Indeed, a single individual

chosen uniformly at random to initiate the epidemic is more common in the literature

than the assumption of initial independence between individuals (see, for example, Ball

et al. (2010) and Meyers et al. (2006)). In the limit of large population size, this is

the most interesting case since it (generally) gives positive probability to a very small

outbreak (non-invasion), allowing stochastic fluctuations near the start of the process

to be crucial for the epidemic outcome (as, presumably, in the real world).

4.2 The model

Following Karrer and Newman (2010), while generalising to allow more heterogeneity

(Wilkinson and Sharkey, 2014), the individual level processes are specified as follows

(for SIR, SEIR will be addressed later): the probability that individual j ∈ V will

make at least one infectious contact to individual i ∈ V within time period t of having

first entered the infected state is given by
∫ t

0 fij(τ)dτ where fij : R≥0 → R≥0 is defined

such that 0 ≤
∫∞
0 fij(τ)dτ ≤ 1. The time that it takes for individual i to enter

the recovered/removed state, measured from the moment it enters the infected state,

is described by a probability density function ri : R≥0 → R≥0. Note that rj has

implications for fij since for an infectious contact to be made from j to i it must

be made while j is still in the infected state. For consistency we can relate the two

functions as follows:

fij(τ) = hij(τ)

∫ ∞

τ

rj(τ
′)dτ ′,

where hij : R≥0 → R≥0 is a probability density function for the time it takes for

j to make its first contact to i after j having first entered the infected state (this

contact may be non-infectious). Note that it is only the first infectious contact from

one individual to another which may be relevant to the dynamics since as soon as a

susceptible individual receives an infectious contact it becomes infected, and from that

point on further infectious contacts have no effect (this is, in general, the case for all

S(E)IR models).

For initial conditions we will assume that at t = 0 the states of individuals are sta-

tistically independent and that the probability that individual i is susceptible, infected

or removed at t = 0 is given by zi, yi and xi respectively (zi + yi + xi = 1). We will

equate an individual being in the removed state at t = 0 with that individual having

been vaccinated against the disease.

The network/digraph D = (V,A) on which the process takes place is implied by the

functions fij(τ) since we assume that there is an arc from j to i iff
∫∞
0 fij(τ)dτ > 0.
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Similarly, the network/digraph restricts these functions such that
∫∞
0 fij(τ)dτ > 0 iff

there is an arc from j to i.

Given that an individual has received an infectious contact, or is not susceptible at

t = 0, then its ‘fate’ is decoupled from the behaviour and states of all other individuals.

This makes it straightforward to write down equations for 〈Xi〉, where X ∈ {I,R}, as
follows:

〈Ii〉 = 1− 〈Si〉 − 〈Ri〉,

〈Ri〉 = xi +

∫ t

0
ri(τ)

[

1− xi − 〈Si(t− τ)〉
]

dτ. (4.1)

Thus, it is possible to compute these quantities once we have 〈Si〉. As we shall see, the
message passing formalism provides a way forwards.

4.3 Exact systems for tree networks

In this section we shall restrict our attention to the case where the underlying (undi-

rected) graph of the network is a tree or forest. The fundamental quantity in the

message passing formalism for tree networks is H i←j(t) (also defined for non-tree net-

works), where (j, i) ∈ A(D), which is the probability that i has not received an infec-

tious contact from j by time t given that i is in the cavity state, i.e. in D(cav i). Note

that placing an individual in the cavity state does not affect its fate since its ability

to contact others only comes into play if it is infected. We can now write (Karrer and

Newman, 2010):

〈Si〉 = zi
∏

j∈Ni

H i←j(t). (4.2)

This follows from the fact that when i is in the cavity state, and the underlying graph

is a tree or forest, the in-components of each of i’s neighbours are mutually disjoint.

Therefore, if the states of all individuals are statistically independent at t = 0 then the

states of i’s neighbours are statistically independent at all times.

Given its definition, the message passing equation can be expressed (Karrer and

Newman, 2010; Wilkinson and Sharkey, 2014):

H i←j(t) = 1−
∫ t

0
fij(τ)

[

yj + zj − zjΦj
i (t− τ)

]

dτ, (4.3)

where Φj
i (t) is the probability that j has not received an infectious contact by time t

given that i and j are both in the cavity state, i.e. in D(cav {i, j}). The above message

passing equation can be understood by considering that zj(1−Φj
i (t− τ))fij(τ)∆ is the

probability that j is initially susceptible and receives its first infectious contact before

time t− τ , at time t1 say, and then makes its first infectious contact to i between time

t1 + τ and time t1 + τ +∆, for ∆→ 0+, given that i is in the cavity state. For the tree
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networks considered in this section we can substitute in equation (4.3):

Φj
i (t) =

∏

k∈Nj\i

Hj←k(t). (4.4)

If Nj \ i = ∅ then we define the right-hand-side of equation (4.4) to be equal to 1. Here,

Φj
i (t) can be expressed as a product of probabilities of independent events because of

the simple structure of tree networks, i.e. there is no more than one path from any

individual to any other individual and no cycles. This is discussed in more detail in

the subsequent section on non-tree networks.

To understand how to numerically ‘solve’ such equations, let us consider the case

where the network is undirected and j ∈ V has only one neighbour i (j is a leaf). We

can write:

H i←j(t) = 1−
∫ t

0
yjfij(τ)dτ, (4.5)

which is directly solvable since the function and constant in the integrand are known a

priori. Next, if j is the only individual that can directly infect i, then

Hk←i(t) = 1−
∫ t

0
fij(τ)

[

yj + zj − zjH i←j(t− τ)
]

dτ, (4.6)

and this too is now directly solvable. In other words, by working ‘inwards’ from the

leaves, one can compute H i←j(t)∀(i, j) : i ∈ V, j ∈ Ni. The (marginal) probability

distribution for the state of a given individual at time t can then be obtained from

equations (4.1) and (4.2). For a directed tree network, we work ‘inwards’ from the set

of arcs {(i, j) ∈ A(D) : (k, i) /∈ A(D) ,∀k ∈ V \ j}.
By setting zi, yi ∈ {0, 1} ∀i ∈ V , we can consider any pure initial system state (note

that we assume initially infected individuals ‘become’ infected at t = 0). In this case,

we could reduce the number of our equations by removing from the network those indi-

viduals that are vaccinated. However, we can also consider mixed (probabilistic) initial

system states - as long as the states of individuals are initially statistically indepen-

dent. For instance, we might consider the case where every individual is independently

vaccinated with probability x.

We obtain the specific form in the Karrer and Newman (2010) paper by setting

zi = z, xi = 0 ∀i. The solution of this system represents a measure of an ‘average

epidemic’ but we note that the initial distribution in the total number of infecteds is

binomial and allows the event of no initial infecteds. Typically, as previously discussed,

we are more interested in the expected outcome when a single initial infected individual

is seeded uniformly at random in a susceptible population, and this will be addressed

in section 4.6.

To start to link the message passing method with the pair-based systems, we express

some relevant probabilities for connected pairs.
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4.3.1 Exact message passing equations for pair-states

We can express the probabilities of some configurations for connected pairs in terms of

the message passing formalism as follows:

〈SiSj〉 = zizjΦ
j
i (t)Φ

i
j(t),

〈SiIj〉 = ziΦ
i
j(t)

[

− zj
∫ t

0
gij(τ)

˙
Φj
i (t− τ)dτ + yjgij(t)

]

, (4.7)

where

gij(t) =

∫ ∞

t

hij(τ)dτ

∫ ∞

t

rj(τ)dτ (4.8)

is the probability that j does not recover by time t and does not make an infectious con-

tact to i by time t, where time is measured from the moment j enters the infected state.

The integral in equation (4.7) can be understood by observing that −zjgij(τ) ˙
Φj
i (t−τ)∆

is the probability that j is initially susceptible and receives its first infectious contact

between time t− τ and time t− τ +∆, for ∆→ 0+, and then does not recover, or make

an infectious contact to i, within time period τ , given that i is in the cavity state.

4.3.2 The case of Poisson contact processes; novel pair-based systems
emerge

In this section we will consider the case where individuals contact their neighbours via

independent Poisson processes, i.e.

hij(τ) = Tije
−Tijτ ,

fij(τ) = Tije
−Tijτ

∫ ∞

τ

rj(τ
′)dτ ′

= Tij

∫ ∞

τ

hij(τ
′)dτ ′

∫ ∞

τ

rj(τ
′)dτ ′

= Tijgij(τ), (4.9)

where Tij is the ‘rate’ at which j makes infectious contacts to i when j is in the infected

state.

Let us now consider the time derivative of the message passing equation (4.3) for

this special case (using Leibniz’s integral rule):

˙H i←j(t) = zj

∫ t

0
fij(τ)

˙
Φj
i (t− τ)dτ − yjfij(t)

= zjTij

∫ t

0
gij(τ)

˙
Φj
i (t− τ)dτ − yjTijgij(t)

= −Tij
〈SiIj〉
ziΦi

j(t)

= −TijH i←j(t)
〈SiIj〉
〈Si〉

〈Si〉 6= 0, (4.10)
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and we can also write:

Φ̇i
j(t) =

∑

k∈Ni\j

˙H i←k(t)
∏

l∈Ni\{j,k}

H i←l(t)

= −
∑

k∈Ni\j

TikH
i←k(t)

〈SiIk〉
〈Si〉

∏

l∈Ni\{j,k}

H i←l(t)

=
−1

ziH i←j(t)

∑

k∈Ni\j

Tik〈SiIk〉

= −
∑

k∈Ni\j

Tik
〈SiIk〉
〈Si〉

Φi
j(t) 〈Si〉 6= 0. (4.11)

We are now in a position to transform the message passing system into a pair-based

system (for the present case of Poisson contact processes); using equations (4.10) and

(4.11) to find the time derivatives of the probabilities expressed in equations (4.2) and

(4.7):

˙〈Si〉 = −
∑

j∈Ni

Tij〈SiIj〉, (4.12)

˙〈SiIj〉 = −
∑

k∈Ni\j

Tik
〈IkSi〉〈SiIj〉
〈Si〉

+
∑

k∈Nj\i

Tjk
〈SiSj〉〈SjIk〉
〈Sj〉

− Tij〈SiIj〉

−
∫ t

0
rj(t− τ)e−Tij(t−τ)

∑

k∈Nj\i

Tjk
〈SiSj(τ)〉〈SjIk(τ)〉

〈Sj(τ)〉
Φi
j(t)

Φi
j(τ)

dτ

−ziyjΦi
j(t)e

−Tij trj(t), (4.13)

˙〈SiSj〉 = −
∑

k∈Nj\i

Tjk
〈SiSj〉〈SjIk〉
〈Sj〉

−
∑

k∈Ni\j

Tik
〈IkSi〉〈SiSj〉
〈Si〉

, (4.14)

where 〈XiYj(τ)〉 is the probability that i is in state X and j is in state Y at time

τ . Above, equations (4.11) to (4.14) form a pair-based (closed) system of integro-

differential equations, the solution of which (in principle) allows us to find the (marginal)

probability distribution for the state of any given individual at any given time via

equation (4.1). To remove any trace of the message-passing formalism from this new

pair-based system we can re-express the variable Φi
j(t) as:

Φi
j(t) = exp

(

−
∫ t

0

∑

k∈Ni\j

Tik
〈SiIk(τ)〉
〈Si(τ)〉

dτ

)

. (4.15)

We recognise this pair-based system as a generalisation (to arbitrary infectious peri-

ods) of the pair-based moment-closure equations (discussed in section 3.3 and Sharkey

et al. (2013)) which assume the following approximation for the probability of the state

of a connected open triple: 〈AiBjCk〉 = 〈AiBj〉〈BjCk〉/〈Bj〉, where 〈Bj〉 6= 0. We know

that this approximation is exact when B = S (susceptible) for the case of tree networks
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(see section 3.3). It is clear that the number of equations in this new pair-based system

is of the order of the number of arcs in the network, i.e. |A(D)|.
The message passing system, and the pair-based system derived from it (for Poisson

contact processes), are exact for any tree network. More specifically, they are exact

for any directed graph where there is no more than one simple directed path from any

individual to any other individual and no directed cycles. The reason for this will be

made clear in section 4.4. Certain initial conditions may also ensure that the systems

are exact on some non-tree networks, as discussed by Sharkey et al. (2013) in relation

to the pair-based equations for Markovian network-based SIR dynamics.

The message passing system and the pair-based system, for Poisson contact pro-

cesses, are equivalent in the sense that they produce the same time series for the proba-

bilities of the states of individuals. Next, we will consider both systems for exponential

and fixed (non-random) infectious periods, where the equations become simpler.

Exponential infectious periods

For the case of exponential infectious periods we have ri(τ) = γie
−γiτ , where γi is the

rate at which i recovers when infected, and so:

fij(τ) = Tije
−(Tij+γj)τ ,

˙fij(τ) = −(Tij + γj)fij(τ),

gij(τ) = e−(Tij+γj)τ . (4.16)

The message passing system is now conveniently constructed as a system of ODEs:

˙H i←j(t) = −
∫ t

0

˙fij(t− τ)
[

yj + zj − zjΦj
i (τ)

]

dτ − fij(0)
[

yj + zj − zjΦj
i (t)
]

= (Tij + γj)(1−H i←j)− Tij(yj + zj − zjΦj
i (t)),

〈Si〉 = zi
∏

j∈Ni

H i←j(t),

〈Ii〉 = 1− 〈Si〉 − 〈Ri〉,
˙〈Ri〉 = γi〈Ii〉. (4.17)

The corresponding pair-based system is derived by substituting the exponential

infectious period into the equation for ˙〈SiIj〉 (equation (4.13)). In particular, for the
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last two terms of equation (4.13), we can write:

−
∫ t

0
rj(t− τ)e−Tij (t−τ)

∑

k∈Nj\i

Tjk
〈SiSj(τ)〉〈SjIk(τ)〉

〈Sj(τ)〉
Φi
j(t)

Φi
j(τ)

dτ

−ziyjΦi
j(t)e

−Tij trj(t)

= −γjΦi
j(t)

∫ t

0
e−(Tij+γj)(t−τ)

〈SiSj(τ)〉 ˙Φj
i (τ)

Φj
i (τ)Φ

i
j(τ)

dτ − γjziyjΦi
j(t)e

−(Tij+γj)t

= −γjzizjΦi
j(t)

∫ t

0
gij(t− τ) ˙

Φj
i (τ)dτ − γjziyjΦi

j(t)gij(t)

= −γj〈SiIj〉, (4.18)

and so the closed pair-based system of ODEs is:

˙〈Si〉 = −
∑

j∈Ni

Tij〈SiIj〉,

˙〈SiIj〉 = −
∑

k∈Ni\j

Tik
〈IkSi〉〈SiIj〉
〈Si〉

+
∑

k∈Nj\i

Tjk
〈SiSj〉〈SjIk〉
〈Sj〉

−Tij〈SiIj〉 − γj〈SiIj〉,
˙〈SiSj〉 = −

∑

k∈Nj\i

Tjk
〈SiSj〉〈SjIk〉
〈Sj〉

−
∑

k∈Ni\j

Tik
〈IkSi〉〈SiSj〉
〈Si〉

,

˙〈Ri〉 = γi〈Ii〉,
〈Ii〉 = 1− 〈Si〉 − 〈Ri〉. (4.19)

Fixed (non-random) infectious periods

For fixed infectious periods (or fixed time to recovery) we have ri(τ) = δ(τ −ωi) where

δ(τ) is the Dirac delta function and ωi is the time it takes i to recover once it has been

infected. We now have:

fij(τ) = Tije
−Tijτθ(ωj − τ),

˙fij(τ) = −Tijfij(τ)− Tije−Tijτδ(τ − ωj),

gij(τ) = e−Tijτθ(ωj − τ), (4.20)
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Figure 4.1: Here we investigate SIR dynamics (Poisson contact, fixed recovery) on an
undirected tree network of 10 individuals. We set the infectious period to unity for
all individuals and Tij = 1 ∀i, j ∈ V : j ∈ Ni. Two non-adjacent index-individuals
were selected to be initial infecteds, whilst the rest were vaccinated with probability
1/10 but susceptible otherwise (at t = 0). The line represents the output from our
representation (equation (4.21)) whilst the crosses indicate corresponding numerical
results from 10,000 full stochastic simulations.
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where θ(t) is the Heaviside step function. The message passing system is now con-

structed as a system of delay differential equations (DDEs):

˙H i←j(t) = −
∫ t

0

˙fij(t− τ)
[

yj + zj − zjΦj
i (τ)

]

dτ − fij(0)
[

yj + zj − zjΦj
i (t)
]

= Tij(1−H i←j(t)) + Tije
−Tijωjθ(t− ωj)

[

yj + zj − zjΦj
i (t− ωj)

]

−Tij
[

yj + zj − zjΦj
i (t)
]

,

〈Si〉 = zi
∏

j∈Ni

H i←j(t),

〈Ri〉 = xi + θ(t− ωi)
[

1− xi − 〈Si(t− ωi)〉
]

,

〈Ii〉 = 1− 〈Si〉 − 〈Ri〉. (4.21)

For a numerical example, see figure 4.1.

Again, a corresponding pair-based system is derived by substituting the fixed infec-

tious period into the equation for ˙〈SiIj〉 (equation (4.13)). In particular, for the last

two terms of equation (4.13), we can write:

−
∫ t

0
rj(t− τ)e−Tij (t−τ)

∑

k∈Nj\i

Tjk
〈SiSj(τ)〉〈SjIk(τ)〉

〈Sj(τ)〉
Φi
j(t)

Φi
j(τ)

dτ

−ziyjΦi
j(t)e

−Tij trj(t)

= −θ(t− ωj)e
−Tijωj

∑

k∈Nj\i

〈SiSj(t− ωj)〉〈SjIk(t− ωj)〉
〈Sj(t− ωj)〉

Φi
j(t)

Φi
j(t− ωj)

−ziyjΦi
j(t)e

−Tij tδ(t− ωj), (4.22)

and so the closed pair-based system of DDEs is:

˙〈Si〉 = −
∑

j∈Ni

Tij〈SiIj〉,

˙〈SiIj〉 = −
∑

k∈Ni\j

Tik
〈IkSi〉〈SiIj〉
〈Si〉

+
∑

k∈Nj\i

Tjk
〈SiSj〉〈SjIk〉
〈Sj〉

− Tij〈SiIj〉

−θ(t− ωj)e
−Tijωj

∑

k∈Nj\i

〈SiSj(t− ωj)〉〈SjIk(t− ωj)〉
〈Sj(t− ωj)〉

Φi
j(t)

Φi
j(t− ωj)

−ziyjΦi
j(t)e

−Tijtδ(t− ωj),

˙〈SiSj〉 = −
∑

k∈Nj\i

Tjk
〈SiSj〉〈SjIk〉
〈Sj〉

−
∑

k∈Ni\j

Tik
〈IkSi〉〈SiSj〉
〈Si〉

,

〈Ri〉 = xi + θ(t− ωi)
[

1− xi − 〈Si(t− ωi)〉
]

,

〈Ii〉 = 1− 〈Si〉 − 〈Ri〉. (4.23)
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4.4 Approximate systems and a rigorous bound for non-
tree networks

Karrer and Newman (2010) proved that their message passing formalism, when applied

to non-tree networks, provides a rigorous lower bound on 〈Si〉 ∀i ∈ V . Here we repeat

their analysis in order to confirm that this bound is still obtained in our slightly more

general setting, and to show that the derived pair-based systems consequently provide

the same bound on 〈Si〉 ∀i ∈ V .

Following Karrer and Newman (2010), we represent general SIR dynamics on an

arbitrary digraph D = (V,A) by randomly weighting/removing the arcs as follows: 1)

assign an infectious period τi to every individual i ∈ V , sampling from density functions

ri. 2) weight every arc (j, i) ∈ A with a contact time ωij, sampling from density

functions hij . 3) for every arc (j, i) ∈ A, if its weighting ωij > τj then completely remove

it from the digraph. 4) for every individual i ∈ V , with probability xi, completely

remove every arc emanating from i.

The resulting weighted digraph is denoted D′. niB(D
′), where B ⊂ Ni, denotes

the set of individuals from which i can be reached by a simple directed path of total

weighting less than t, such that a member of B is the penultimate individual, given

that i is in the cavity state (all arcs emanating from i are removed).

Let i ← B, where B ⊂ Ni, denote the event that i (in the cavity state) does not

receive any infectious contacts from any of the members of B by time t. Let |Ni| =M

and let us label each of these neighbours as N
(1)
i , N

(2)
i , . . . , N

(m)
i , . . . , N

(M)
i where the

ordering is arbitrary. We can now express 〈Si〉 as a product of conditional probabilities:

〈Si〉 = ziP (i← ∪Mp=1N
(p)
i )

= ziP (i← N
(1)
i )

×P (i← N
(2)
i | i← N

(1)
i )

× . . .× P (i← N
(m)
i | i← ∪m−1p=1 N

(p)
i )

× . . .× P (i← N
(M)
i | i← ∪M−1p=1 N

(p)
i ). (4.24)

The particular way in which D′ is constructed means that, for any j ∈ Ni, we have:

P (i← j) = E





∏

k∈nij

zk
1− xk



 , (4.25)

where the expectation operator is here applied to a function of the random variable

nij(D
′), and this function is assumed to be equal to 1 when nij = ∅. Equation (4.25)

follows from the fact that all members of nij(D
′) must be initially susceptible if D′ is

to represent the event that i (in the cavity state) does not receive an infectious contact

from j by time t. zk/(1 − xk) is the probability that k is initially susceptible given

that it is not vaccinated (we excluded the possibility of a member of nij(D
′) being
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vaccinated in step 4 of the construction of D′). Similarly, for any B ⊂ Ni : j /∈ B, we

can write:

P (i← j | i← B) ≈ E





∏

k∈nij\niB

zk
1− xk



 . (4.26)

Now, assuming that approximation (4.26) is actually exact (which it is for tree

networks), and since nij \ niB ⊂ nij , with set equality occurring for tree networks, we

have:

P (i← j) ≤ P (i← j | i← B), (4.27)

with equality occurring for tree networks. In fact, nij(D
′) and niB(D

′) are necessarily

disjoint sets if there is no more than one path from any individual to any other individual

in D. A rigorous proof of inequality (4.27) relies on the fact that 1i←j and 1i←B can

both be expressed as increasing functions of the same set of ‘associated’ (as defined by

Esary et al. (1967)) random variables.

Inequality (4.27) implies that the conditioning in each term of the product in equa-

tion (4.24) can only serve to increase the total probability. Therefore

〈Si〉 ≥ zi
∏

j∈Ni

P (i← j) = zi
∏

j∈Ni

H i←j(t). (4.28)

Inequality (4.27) also implies that

Φj
i (t) ≥

∏

k∈Nj

k 6=i

P (j ← k | i in cavity), (4.29)

where we have ignored P (j ← i | i in cavity) since it is necessarily equal to 1 (Φj
i (t)

is the probability that j has not received an infectious contact by time t given that

i and j are both in the cavity state, where (j, i) ∈ A(D) - see equation (4.3)). Now,

taking i out of the cavity state, we only increase (or leave the same) the probability of

infectious contact across any arc, and so

∏

k∈Nj

k 6=i

P (j ← k | i in cavity) ≥
∏

k∈Nj

k 6=i

Hj←k(t), (4.30)

with equality occurring for tree networks. Notice that this, in conjunction with equality

in 4.27, implies equation (4.4) for tree networks. However, we also get equality in 4.30

whenever there are no cycles in the digraphD. Therefore, sufficient requirements for the

exactness of these systems are: 1) there is no more than one path from any individual

to any other individual in D and 2) there are no cycles in D. Equations (4.3), (4.29)

and (4.30) imply that

H i←j(t) ≥ 1−
∫ t

0
fij(τ)

[

yj + zj − zj
∏

k∈Nj

k 6=i

Hj←k(t− τ)
]

dτ. (4.31)
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Following Karrer and Newman (2010), we define the function:

F i←j(t) = 1−
∫ t

0
fij(τ)

[

yj + zj − zj
∏

k∈Nj

k 6=i

F j←k(t− τ)
]

dτ, (4.32)

and note that it corresponds to the way in which H i←j(t) can be expressed for tree

networks (equations ()4.3) and (4.4)).

Let F i←j
0 (t) = H i←j(t) ∈ [0, 1] (∀i, j : j ∈ Ni), and define an iterative process (as

in Karrer and Newman (2010)):

F i←j
n+1 (t) = 1−

∫ t

0
fij(τ)

[

yj + zj − zj
∏

k∈Nj

k 6=i

F j←k
n (t− τ)

]

dτ. (4.33)

From equation (4.31) we have:

F i←j
1 (t) ≤ F i←j

0 (t), (4.34)

and since this is true in all cases, we have:

F i←j
1 (t) ≥ 1−

∫ t

0
fij(τ)

[

yj + zj − zj
∏

k∈Nj

k 6=i

F j←k
1 (t− τ)

]

dτ, (4.35)

and so in general

F i←j
n+1 (t) ≤ F i←j

n (t). (4.36)

Since F i←j
n (t) is bounded below by 1 −

∫ t

0 fij(τ)dτ (Karrer and Newman, 2010),

this iterative procedure must converge from above such that

F i←j
n (t)→ F i←j(t) ≤ H i←j(t) as n→∞, (4.37)

and this allows us to write:

〈Si〉 ≥ zi
∏

j∈Ni

H i←j(t) ≥ zi
∏

j∈Ni

F i←j(t). (4.38)

For Poisson contact processes, the (approximate) dynamics can be cast as systems

of differential equations in both formalisms (all occurrences of H and S, I and R, in

equations (4.1) to (4.14), are changed respectively to F and X,Y and Z - indicating

inexactness). Since they are implied by the message passing formalism, the solution of

the pair-based systems on non-tree networks, i.e. arbitrary digraphs, provide a rigorous

lower bound on 〈Si〉 and approximations for 〈Ii〉, 〈Ri〉 ∀i ∈ V .

Figure 4.2 illustrates the application of the message passing approach to SIR dynam-

ics with Poisson contact processes and fixed recovery processes on a non-tree network

(we use equations (4.4) and (4.21), changing all occurrences of H and S, I and R, to

F and X, Y and Z, respectively).
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Figure 4.2: The same scenario as in figure 4.1 except that two extra undirected connec-
tions, i.e. four arcs, have been added to the network/digraph, creating multiple cycles.
The lines represent the output from our representation (equations (4.21)) whilst the
crosses indicate corresponding numerical results from 10,000 full stochastic simulations.

4.5 Generalising to SEIR dynamics

For SEIR dynamics, the time that it takes individual i ∈ V to move from the exposed

state into the infected state is described by a probability density function qi : R≥0 →
R≥0. We will also make use of a function f∗ij : R≥0 → R≥0 where

∫ t

0 f
∗
ij(τ)dτ is the

probability that j ∈ V will make at least one infectious contact to individual i ∈ V
within time period t of having first entered the exposed state. As such, it must satisfy:

f∗ij(τ) =

∫ τ

0
qj(τ

′)fij(τ − τ ′)dτ ′. (4.39)

In all other respects, the notation that we use for SEIR dynamics can be understood

from its previous usage for SIR dynamics, and the derivation of equations can be

understood from the corresponding derivations for the SIR case. For ease of exposition

and little loss in generality we will assume that no individuals start in the exposed

state.

Similarly to the SIR version, it is straightforward to write down equations for the

probability of an individual being in a given state, excluding susceptible, in terms of

the probabilities of it being in the other states (this is because, given an individual

is not susceptible, its fate does not then depend on the states or behaviour of other
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individuals):

〈Ei〉 = zi − 〈Si〉 −
∫ t

0
qi(τ)

[

zi − 〈Si(t− τ)〉
]

dτ,

〈Ii〉 = yi + zi − 〈Si〉 − 〈Ei〉

−
∫ t

0
ri(τ)

[

yi + zi − 〈Si(t− τ)〉 − 〈Ei(t− τ)〉
]

dτ,

〈Ri〉 = 1− 〈Si〉 − 〈Ei〉 − 〈Ii〉. (4.40)

The message passing equation for SEIR dynamics is:

H i←j(t) = 1−
∫ t

0
f∗ij(τ)

[

zj − zjΦj
i (t− τ)

]

+ yjfij(τ) dτ, (4.41)

where for tree networks, we can again substitute:

Φj
i (t) =

∏

k∈Nj\i

Hj←k(t) (4.42)

and, also for tree networks:

〈Si〉 = zi
∏

j∈Ni

H i←j(t). (4.43)

The equations for the states of connected pairs in terms of the message passing formal-

ism are:

〈SiSj〉 = zizjΦ
j
i (t)Φ

i
j(t),

〈SiEj〉 = ziΦ
i
j(t)

[

− zj
∫ t

0

∫ ∞

τ

qj(τ
′)

˙
Φj
i (t− τ)dτ ′dτ

]

,

〈SiIj〉 = ziΦ
i
j(t)

[

− zj
∫ t

0

∫ τ

0
qj(τ

′)gij(τ − τ ′) ˙
Φj
i (t− τ)dτ ′dτ + yjgij(t)

]

.

(4.44)

If the individual level contact processes are Poisson, we can derive the time derivative

of H i←j(t) as follows:

˙H i←j(t) = zj

∫ t

0
f∗ij(τ)

˙
Φj
i (t− τ)dτ − yjfij(t)

= zj

∫ t

0

∫ τ

0

∫ ∞

τ−τ ′
qj(τ

′)Tije
−Tij(τ−τ ′)rj(τ

′′)
˙
Φj
i (t− τ)dτ ′′dτ ′dτ

−yjTije−Tijt

∫ ∞

t

r(τ)dτ

= zjTij

∫ t

0

∫ τ

0

∫ ∞

τ−τ ′

∫ ∞

τ−τ ′
qj(τ

′)hij(τ
′′′)rj(τ

′′)
˙
Φj
i (t− τ)dτ ′′′dτ ′′dτ ′dτ

−yjTij
∫ ∞

t

hij(τ)dτ

∫ ∞

t

rj(τ)dτ

= zjTij

∫ t

0

∫ τ

0
qj(τ

′)gij(τ − τ ′) ˙
Φj
i (t− τ)dτ ′dτ

−yjTijgij(t)

= −TijH i←j(t)
〈SiIj〉
〈Si〉

〈Si〉 6= 0, (4.45)
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and this allows us to write:

Φ̇i
j(t) = −

∑

k∈Ni\j

Tik
〈SiIk〉
〈Si〉

Φi
j(t) 〈Si〉 6= 0.

The general pair-based system is:

˙〈Si〉 = −
∑

j∈Ni

Tij〈SiIj〉,

˙〈SiIj〉 = −
∑

k∈Ni\j

Tik
〈IkSi〉〈SiIj〉
〈Si〉

− Tij〈SiIj〉

−
∫ t

0

∫ t−τ

0
e−Tijτ

′
rj(τ

′)qj(t− τ − τ ′)
∑

k∈Nj\i

Tjk
〈SiSj(τ)〉〈SjIk(τ)〉

〈Sj(τ)〉
Φi
j(t)

Φi
j(τ)

dτ ′dτ

+

∫ t

0
qj(t− τ)

∑

k∈Nj\i

Tjk
〈SiSj(τ)〉〈SjIk(τ)〉

〈Sj(τ)〉
Φi
j(t)

Φi
j(τ)

dτ

−ziyjΦi
j(t)e

−Tijtrj(t),

˙〈SiSj〉 = −
∑

k∈Nj\i

Tjk
〈SiSj〉〈SjIk〉
〈Sj〉

−
∑

k∈Ni\j

Tik
〈IkSi〉〈SiSj〉
〈Si〉

,

˙〈SiEj〉 =
∑

k∈Nj\i

Tjk
〈SiSj〉〈SjIk〉
〈Sj〉

−
∑

k∈Ni\j

Tik
〈IkSi〉〈SiEj〉
〈Si〉

−
∫ t

0
qj(t− τ)

∑

k∈Nj\i

Tjk
〈SiSj(τ)〉〈SjIk(τ)〉

〈Sj(τ)〉
Φi
j(t)

Φi
j(τ)

dτ, (4.46)

where

Φi
j(t) = exp

(

−
∫ t

0

∑

k∈Ni\j

Tik
〈SiIk(τ)〉
〈Si(τ)〉

dτ

)

. (4.47)

If the exposed and infectious periods are all exponential, then this system reduces to the

familiar pair-based system for the Markovian network-based SEIR model (see section

3.3).

It is straightforward that, in the case of non-tree networks, the message passing

equations again provide a lower bound on 〈Si〉∀i. This can be shown in the same way as

for SIR dynamics, since it is again possible to represent the model as a random weighted

directed graph (the probability of the infection passing across a given arc, given that

it arrives at the tail, is known a priori (see the next section (4.6) for elucidation)).

Therefore, the pair-based system for the Markovian network-based SEIR model must

also provide the same bound(s).

4.6 A note on initial conditions

For general network-based S(E)IR dynamics on tree networks, the expected outcome

when a single initial infected is seeded uniformly at random, and the rest are suscep-

tible, can be computed via the following methods: 1) Solve the message passing (or
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pair-based) system N times, with each individual in turn as the single initial infected,

and then average. This would be an exact but relatively time-consuming approach 2)

Increase z towards 1 such that the ratio between the probability of there being one ini-

tial infected to the probability of there being more than one becomes large. We are then

left with a sum of two terms, one corresponding to zero initial infecteds (contributing

nothing to the time series) and the other to a single initial infected seeded uniformly

at random. Thus, dividing the resulting time series (expected number infected) by the

probability of having at least one initial infected, i.e. 1− zN , approximates the desired

result (for the expected number susceptible, we must first subtract NzN , and then

divide by 1 − zN ). We have achieved considerable success with this second approach

in our numerical computations (see figure 4.3), but have found that the same method,

in the case of non-tree networks, produces nonsensical results (stemming from the fact

that the equations for non-tree networks are inexact to begin with).

In the previous sections of this chapter, we have assumed that the states of individ-

uals are statistically independent at t = 0. However, when a specific number of initial

infecteds are chosen at random, this assumption is violated. We will thus compare

two families of initial conditions for general network-based S(E)IR dynamics: (1) each

individual is initially susceptible with probability z and initially infected otherwise, and

the states of individuals are statistically independent at t = 0. (2) a specific number

I0 = (1− z)N are chosen uniformly at random (without replacement) to be the initial

infecteds and the remaining S0 = zN are initially susceptible, and so the states of

individuals are not independent at t = 0. Notice that the expect number of individuals

in each compartment at t = 0 is the same in both cases, and we have assumed that z

is chosen such that I0 and S0 are positive integers less than N .

To proceed, we will need to represent the dynamics, and couple together the

processes resulting from all the different possible initial configurations, as a random

weighted directed graph, as in section 4.4. To do this, we define the random graph in

exactly the same way except that we also assign an exposed period τ ′i to every individ-

ual i ∈ V , sampling from density functions qi. We then define the total weighting of a

path as the sum of all the weightings of the associated arcs and all of the exposed pe-

riods of the associated individuals, except the first and last. For this graph, ni denotes

the set of individuals from which i ∈ V can be reached by some path of total weighting

less than t.

For initial conditions (1) we can now write:

〈Si〉(1) = E [zX] , (4.48)

where X = |ni|+1. This follows from the fact that the probability that i is susceptible

at time t is the same as the probability that there is no initially infected individual in

ni ∪ {i}, and each individual in this set is not initially infected, i.e. susceptible, with
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Figure 4.3: Here, we are investigating SIR dynamics (Poisson contact, fixed recovery)
on an undirected tree network of 10 individuals. We set the infectious period to unity for
all individuals and Tij ∈ {0, 2}. The crosses represent the average of 10,000 stochastic
simulations where a single initial infected was chosen uniformly at random, and the rest
were initially susceptible. The dashed line represents the output from the corresponding
message passing system with zi = z = 9/10, yi = y = 1/10 and xi = x = 0. The
solid line is the output from the message passing system with zi = z = 1 − 10−10,
yi = y = 10−10 and xi = x = 0 and then compensating by conditioning on their being
at least one initial infected (see text).
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probability z (independently). For initial conditions (2) we have:

〈Si〉(2) = E1X≤S0

I0−1
∏

j=0

(

1− X

N − j

)





= E [1X≤S0

(N −X)!(zN)!

(zN −X)!N !

]

= E [1X≤S0

S0(S0 − 1)(S0 − 2) . . . (S0 −X + 1)

N(N − 1)(N − 2) . . . (N −X + 1)

]

= E [1X≤S0
zX

(1− 1/S0)(1− 2/S0) . . . (1− (X − 1)/S0)

(1− 1/N)(1 − 2/N) . . . (1− (X − 1)/N)

]

,

(4.49)

and this follows from the fact that the probability of there being an initially infected

individual in ni∪{i}, when I0 initial infecteds are chosen uniformly at random (without

replacement), is now precisely the quantity in the square brackets (for a given realisation

of ni).

Thus in a single realisation, i.e. for an appropriately constructed D′, the random

variable, of which we take the expectation in equation (4.48), takes a value which

is greater than or equal to the value taken by the corresponding random variable in

equation (4.49). This follows since the indicator variable takes values in {0, 1} and

since S0 < N . We can now write:

〈Si〉(1) ≥ 〈Si〉(2) ∀i ∈ V. (4.50)

This indicates that: a) for tree networks, the message passing (or pair-based) system

provides a rigorous upper bound on 〈Si〉(2)∀i since it computes 〈Si〉(1)∀i exactly. b) for
non-tree networks, the message passing (or pair-based) system, by providing a lower

bound on 〈Si〉(1)∀i, may provide a better approximation of 〈Si〉(2)∀i than of 〈Si〉(1)∀i,
as in figure 4.4.

4.7 Discussion

For Poisson contact processes, the message passing formalism can be cast as a system

of integro-differential equations, which conveniently simplify to ODEs/DDEs for expo-

nential/fixed recovery processes. However, we note that for certain other biologically

feasible sets of functions {fij(τ) : i, j ∈ V, j ∈ Ni}, which do not correspond to Pois-

son contact processes, the message passing formalism may still allow the dynamics to

be obtained via systems of ODEs/DDEs. See, for example, the ‘top hat’ function dis-

cussed by Karrer and Newman (2010). This is a clear advantage of the message passing

formalism over the moment-closure formalism, the latter seeming to require the con-

tact processes to be Poisson. In fact, for arbitrary contact and recovery processes, the

message passing formalism is theoretically solvable as a system of integral equations.

107



0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

E
xp

ec
te

d 
nu

m
be

r 
su

sc
ep

tib
le

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

Time

E
xp

ec
te

d 
nu

m
be

r 
in

fe
ct

ed

initial conditions (2)

initial conditions (1)

message passing

Figure 4.4: Here we are investigating the same scenario as in figure 4.3 except that two
extra (undirected) connections have been added to the network, creating multiple loops.
The ‘x’s represent the average of 10,000 stochastic simulations where a single initial
infected was chosen uniformly at random, and the rest were initially susceptible. The
‘+’s represent the equivalent quantity where each individual was initially susceptible
with probability 9/10 and initially infected otherwise (independently). The solid line
represents the output from the corresponding message passing system, with zi = z =
9/10, yi = y = 1/10 and xi = x = 0.
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Other advantages of the message passing approach are its applicability in the domain

of random graph ensembles and, by considering H i←j(t) (or F i←j(t)) ∀i, j : j ∈ Ni

in the limit as t → ∞, its connection to percolation-based theory for final outcome

statistics (Karrer and Newman, 2010).

The pair-based formalism is a special case of the message passing approach in the

sense that it seems to only apply to Poisson contact processes. In this case, the message

passing system is more efficient than the pair-based system in terms of the number of

equations. However, it is not immediately obvious how to extend the applicability of

the message passing equations. For example, to generate exact equations for non-tree

networks, or to susceptible-infected-susceptible dynamics. Conversely, the pair-based

(moment closure) representation can allow both of these extensions in a straightforward

way (Kiss et al., 2014; Nagy and Simon, 2013). Since the physical meaning of each

term in the pair-based system is clear, it is also straightforward to make this system

applicable to multiple competing diseases on the same network - the number of equa-

tions then grows linearly with the number of diseases. However, we note that in the

context of configuration network ensembles and Poisson contact and recovery processes,

Miller (2013) has shown that the dynamics for competing diseases can be solved via a

low-dimensional message-type system (see also Karrer and Newman (2011)).

In our endeavour to understand the relationship between these two formalisms, we

have shown that the pair-based moment closure formalism is applicable to arbitrary

exposed and infectious periods and, for non-tree networks, provides a lower bound on

〈Si〉 ∀i - for tree networks the representation is exact. On the other hand, we have shown

that the message passing formalism is applicable to arbitrary finite networks, where

the contact/recovery processes are pair-specific/individual-specific, and can incorporate

any pure initial system state including vaccinated individuals - or any mixed initial

system state where the states of individuals are uncorrelated.
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Chapter 5

Using the message passing
formalism to prove new results
for classic models

5.1 The deterministic SIR model provides a rigorous bound
on the Markovian standard SIR model

In this section we will be concerned with the Markovian standard SIR model. We will

assume a pure initial state. In doing so, we define S0 ⊂ V and I0 = V \ S0 to be the

set of initial susceptibles and initial infecteds respectively. In order to avoid triviality

we will also assume that |I0| > 0, |S0| > 1.

It was proved by Ball and Donnelly (1987) that the Markovian standard SI model

is underestimated, in terms of the expected number susceptible at time t, by its deter-

ministic counterpart. For the Markovian standard SIS model it is also straightforward

to show that its deterministic counterpart underestimates the expected number sus-

ceptible at time t (see, for example, Allen (2008)). We here provide a proof of the

corresponding bound for the Markovian standard SIR model.

We will present a sequence of three systems, all previously defined, which approxi-

mate the Markovian standard SIR model, and show that each one increasingly under-

estimates the expected number of susceptibles E[X(t)] at any positive time point.

The first system is formed from the message passing equations of Karrer and New-

man (2010), where we have made use of the generalisation of initial conditions provided

by Wilkinson and Sharkey (2014), and the large amount of symmetry in the stochastic

process.

The second system is derived by assuming, at the appropriate stage in the construc-

tion of the system, that the states of individuals are statistically independent (Sharkey,

2008). We refer to this system as the individual-based system.

The third system, which we refer to as the deterministic SIR system, is the well-

known SIR model of Kermack and McKendrick (1927), in the special case where the
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individual-level processes are assumed to be Poisson.

The sequence of inequalities which we seek to prove are:

E[X(t)] ≥ S(t)(message passing) ∀t, (5.1)

S(t)(message passing) ≥ S(t)(individual-based) ∀t, (5.2)

S(t)(individual-based) ≥ S(t)(deterministic SIR) ∀t, (5.3)

where S(t)(.) is the number of susceptible individuals at time t according to the given

system, and where the parametrisation and initial conditions are kept the same. How-

ever, we will usually drop the system name when it is obvious from the context or

section in which it appears. These inequalities indicate that the systems increasingly

overestimate the impact of the infection relative to the Markovian standard SIR model.

Throughout this section, the different systems will be treated as attempts to approxi-

mate the Markovian standard SIR model.

The message passing system

We have seen that the message passing equations can be applied to general S(E)IR

dynamics on finite graphs/networks. If the underlying graph is a tree or forest then the

equations give results which match the underlying stochastic process exactly; otherwise

they give a lower bound on the probability of any given individual being susceptible

at time t, and so a lower bound on the expected number susceptible at time t. The

Markovian standard SIR model is equivalent to SIR dynamics on a fully connected finite

network, where all individual level processes are Poisson. Thus, the message passing

equations for the Markovian standard SIR model give:

S(t) =
∑

i∈V

zi
∏

j 6=i

F i←j (5.4)

where

F i←j(t) = 1−
∫ t

0
βe−(β+γ)τ



1− zj
∏

k 6=i,j

F j←k(t− τ)



 dτ. (5.5)

However, the pure initial system state and the individual-level symmetry in the stochas-

tic process allow us to simplify equation (5.4) to:

S(t) = |S0|[F1(t)]
|S0|−1[F2(t)]

|I0|, (5.6)

where

F1(t) = 1−
∫ t

0
βe−(β+γ)τ

[

1− [F1(t− τ)]|S0|−2[F2(t− τ)]|I0|
]

dτ. (5.7)

F2(t) =
βe−(β+γ)t + γ

β + γ
. (5.8)
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The message passing system is then completed by:

I(t) = N − S(t)−R(t),
˙R(t) = γI(t). (5.9)

From the results in Karrer and Newman (2010), and Wilkinson and Sharkey (2014),

we have inequality (5.1):

E[X(t)] ≥ S(t)(message passing). (5.10)

In order to compare the message passing system with our next system, the individual-

based system, it is necessary to define:

Q(t) = 1−
∫ t

0
βe−(β+γ)τ

[

1− [Q(t− τ)]|S0|[F2(t− τ)]|I0|
]

dτ, (5.11)

where |S0|− 2 in the definition for F1(t) has been changed to |S0|. It is straightforward
to show that:

Q(t) ≤ F1(t). (5.12)

For later reference, we will also need the time derivatives:

˙F2(t) = γ(1− F2(t))− βF2(t), (5.13)

˙Q(t) = γ(1−Q(t))− βQ(t) + β[Q(t)]|S0|[F2(t)]
|I0|, (5.14)

which, since F2(0), Q(0) = 1, imply that F2(t), Q(t) ∈ (0, 1].

The individual-based system

By assuming the states of individuals to be statistically independent, at the appropriate

stage of construction, the following individual-based system can be derived (Sharkey,

2008):

˙〈S〉 = −β〈S〉
[

(|S0| − 1)〈I〉 + |I0|e−γt
]

,

˙〈I〉 = β〈S〉
[

(|S0| − 1)〈I〉 + |I0|e−γt
]

− γ〈I〉,
˙〈R〉 = γ〈I〉, (5.15)

where 〈S〉, 〈I〉 and 〈R〉 represent the fraction of initially susceptible individuals still

susceptible at time t, infected at time t and recovered at time t respectively. e−γt is

(exactly) the expected fraction of initially infected individuals still infected at time t.

Thus, we define

S(t) = |S0|〈S〉 (5.16)

and note that it is straightforward to see that 〈S〉, 〈I〉, 〈R〉 ∈ [0, 1] (for feasible initial

conditions).
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We now reformulate the above system in terms of two quantities, S1(t) and S2(t),

which are defined such that:

〈S〉 = [S1(t)]
|S0|−1[S2(t)]

|I0|, (5.17)

˙S1(t) = −βS1(t)〈I〉,
S1(0) = 1, (5.18)

˙S2(t) = −βS2(t)e−γt,
S2(0) = 1, (5.19)

and note that if F2(t) ≥ S2(t) and F1(t) ≥ S1(t) then inequality (5.2) must hold

(compare equations (5.16) and (5.17) with equation (5.6)).

Immediately we can solve for S2(t):

S2(t) = e
β
γ
(e−γt−1), (5.20)

and this allows us to express its time derivative:

˙S2(t) = −γS2(t) lnS2(t)− βS2(t). (5.21)

Thus, since 0 ≥ x lnx ≥ x−1 for x ∈ (0, 1), and by comparison of equations (5.19) and

(5.21) with equations (5.8) and (5.13), we have that

F2(t) ≥ S2(t). (5.22)

Defining 〈I〉∗ to be equal to the quantity which appears in square brackets in equa-

tion (5.15):

〈I〉∗ = (|S0| − 1)〈I〉 + |I0|e−γt, (5.23)

it is then possible, by a separation of variables, to derive:

〈I〉∗ = N − |S0|〈S〉 −
(

1− 〈S〉
)

+
γ

β
ln〈S〉, (5.24)

which allows us to express the time derivative of S(t) as:

˙S(t) = −βS(t)〈I〉∗ (5.25)

= −βS(t)
[

N − S(t)−
(

1− S(t)

|S0|

)

+
γ

β
ln
S(t)

|S0|

]

. (5.26)

Expressing S(t) in terms of S1(t) and S2(t), and after some straightforward but

lengthy algebra, we can also write:

˙S1(t) = −γS1(t) lnS1(t)− βS1(t) + βS1(t)
|S0|S2(t)

|I0|. (5.27)
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Again, since 0 ≥ x lnx ≥ x − 1 for x ∈ (0, 1), and since F2(t) ≥ S2(t), we have

Q(t) ≥ S1(t) (by comparison of equations (5.18) and (5.27) with equations (5.11) and

(5.14)). This means that:

F1(t) ≥ S1(t), (5.28)

and indeed inequality (5.2) must hold:

S(t)(message passing) ≥ S(t)(individual-based). (5.29)

The deterministic SIR system

The deterministic SIR model was first defined by Kermack and McKendrick (1927)

and can be represented as a system of ordinary differential equations (When Poisson

individual level processes are assumed):

˙S(t) = −βS(t)I(t),
˙I(t) = βS(t)I(t) − γI(t),
˙R(t) = γI(t), (5.30)

where it is straightforward to show that S(t), I(t), R(t) ∈ [0, N ] (for feasible initial

conditions). By a separation of variables it is also straightforward to show that:

˙S(t) = −βS(t)
[

N − S(t) + γ

β
ln
S(t)

|S0|

]

, (5.31)

which, by comparison with equation (5.26), gives inequality (5.3):

S(t)(individual-based) ≥ S(t)(deterministic SIR). (5.32)

5.2 General epidemics on homogeneous graphs

Let us consider general epidemic dynamics, as defined by Karrer and Newman (2010),

on a homogeneous graph G = (V,E), e.g. a finite fully connected (complete) graph,

finite ring lattice, infinite square lattice, Bethe lattice etc., where each individual has a

finite number n of neighbours by which it can be directly infected. Note that, in general,

it now matters how the initial infecteds are ‘placed’, e.g. if all the initial infecteds are

neighbours on a ring lattice, then the number of susceptibles will decrease less rapidly

than if the initial infecteds are ‘spread out’. Therefore, to increase the symmetry of

the stochastic model we will assume that each individual is initially susceptible with

probability z and initially infected otherwise, and that the states of individuals are

statistically independent at t = 0.

For these more general dynamics we define a function f(τ) such that
∫ t

0 f(τ)dτ

is the probability that a given individual, conditional on its getting infected, makes

an infectious contact to a given neighbour within time period t, and r(τ) such that
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∫ t

0 r(τ)dτ is the probability that a given individual, given that it gets infected, recovers

within time period t. Therefore f , in general, depends on r.

Due to the homogeneity of the graph and the initial conditions, the message passing

system is simply:

S(t) = zN [F (t)]n,

I(t) = N − S(t)−R(t),

R(t) =

∫ t

0
r(τ)[N − S(t− τ)]dτ, (5.33)

where

F (t) = 1−
∫ t

0
f(τ)

[

1− z[F (t− τ)]n−1
]

dτ. (5.34)

From the arguments given by Karrer and Newman, this system underestimates the

expected number susceptible at time t; except where the network is a tree, or is locally

tree-like, where the system is exact. This implies that across all undirected homoge-

neous graphs, for a given n, the infection will have the largest impact in the Bethe

lattice (since the system is the same in each case but is only exact for the Bethe lat-

tice). Indeed, clustering and the presence of other cycles in the network is known to,

in general, slow down and/or limit the spread of the infection (see Miller (2009) and

references therein).

Let us now consider the individual-level processes to be Poisson such that f(τ) =

βe−(β+γ)τ , r(τ) = γe−γτ (the Markovian version). By expressing the time derivative of

S(t) as a function of its ‘current’ value, in system (5.33), it is then straightforward to

show that the following individual-based system:

˙S(t) = −β n
N
S(t)I(t),

˙I(t) = β
n

N
S(t)I(t)− γI(t),

˙R(t) = γI(t), (5.35)

where S(0) = zN, I(0) = (1 − z)N and R(0) = 0, gives an even lower number of

susceptibles at time t, i.e. S(t) computed from system (5.33) is greater than S(t)

computed from system (5.35) (for the Markovian case).

Note that in this section we assumed a mixed initial system state and, for this reason,

the proofs for the arguments in this section are not sufficient for proving inequalities

(5.1) to (5.3) where a pure initial system state was assumed.

5.3 The general epidemic on an infinite complete graph

(mean-field case)

Since a complete graph is homogeneous, system (5.33) of the previous section must still

apply. However, since we here consider the case where N → ∞, we will convert the
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variables of the system into fractions (divide through by N):

S(t) = z[F (t)]n,

I(t) = 1− S(t)−R(t),

R(t) =

∫ t

0
r(τ)[1− S(t− τ)]dτ, (5.36)

where S(t), I(t) and R(t) are now the fractions of the population that are susceptible,

infected and recovered respectively (S(t) + I(t) + R(t) = 1). However, the occurrence

of n is now problematic since it also tends to infinity. To try for a different expression

of S(t), we first write:

˙S(t) =
S(t)

F (t)

[

n− 1

n

∫ t

0
nf(τ)

Ṡ(t− τ)
F (t− τ)dτ − nf(t)(1− z)

]

, (5.37)

where we have made use of Leibniz’s integral rule. Now, because an individual is able to

make contacts to an infinite number of neighbours, it is sensible to impose the following

(as n→∞):

∫ t

0
f(τ)dτ → 0, (5.38)

n

∫ t

0
f(τ)dτ → c(t), (5.39)

where c(t) is monotonically increasing from zero and converges to some finite number.

The first imposition implies that the probability of a given infected individual making

an infectious contact to a different given individual tends to zero. This is sensible

since the number of individuals to which it can make contacts is infinite. The second

imposition implies that the expected total number of infectious contacts that an infected

individual will make is positive, but finite. In the limit as n →∞, and t→∞, c(t) is

the expected number of infectious contacts (to different individuals chosen uniformly

at random) made by a given individual during its entire infectious period (assuming it

gets infected). Note that the first imposition also implies that F (t)→ 1. Therefore, in

the limit as n→∞, equation (5.37) becomes:

˙S(t) = S(t)

[
∫ t

0
f∗(τ)Ṡ(t− τ)dτ − f∗(t)(1− z)

]

, (5.40)

where f∗(t)∆ = nf(t)∆ is the expected number of infectious contacts, to different

individuals chosen uniformly at random, made by a given individual between time t

and time t+∆ (for ∆ → 0), where time is measured from the moment the individual

first becomes infected (assuming that it does). f∗(τ) is related to r(τ) in the following

way:

f∗(τ) = s∗(τ)

∫ ∞

τ

r(t′)dt′,
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where s∗(t)∆ is the expected number of contacts (that can be non-infectious), to differ-

ent individuals chosen uniformly at random, made by a given individual between time

t and time t+∆ (for ∆→ 0), where time is measured from the moment the individual

first becomes infected (assuming that it does).

Our general mean-field system can now be expressed:

˙S(t) = S(t)

[
∫ t

0
f∗(τ)Ṡ(t− τ)dτ − I(0)f∗(t)

]

,

I(t) = 1− S(t)−R(t),

R(t) =

∫ t

0
r(τ)[1− S(t− τ)]dτ. (5.41)

For the case of Poisson contact and recovery processes we have f∗(τ) = βne−(β+γ)τ

and r(τ) = γe−γτ . Imposing that βn → β′ as n → ∞, where β′ is then the constant

(exponential) rate at which an infected individual makes infectious contacts at random

to the rest of the population, and then plugging this into the above system, generates

the (Poisson) Kermack and McKendrick deterministic SIR system (system (5.30) after

dividing through by N). This system is known to exactly capture Markovian SIR

dynamics on a complete graph in the limit of large population size (Ethier and Kurtz,

1986; Andersson and Britton, 2000).

We conjecture that the above general mean-field system is an ‘exact’ representation

of the general epidemic on a fully connected (complete) graph, in the limit of large

population size (with some modest restrictions on the underlying stochastic process, as

discussed by Barbour and Reinert (2013)). This conjecture is based on the fact that,

due to the infinite population size and the finite expected number of infectious contacts

per infected individual, the path of the infection is locally tree-like. This means that the

independence assumption (Karrer and Newman, 2010; Wilkinson and Sharkey, 2014)

in the message passing equations is valid.

5.4 General epidemics on configuration networks with two
levels of mixing (superimposed even mixing)

Following Kiss et al. (2006) and Ball and Neal (2008), we consider SIR dynamics on

a configuration network where the infection may be transmitted across network links

or via a superimposed even mixing process. However, we will construct a system to

capture the dynamics using the message passing formalism, and we will not (initially)

assume that the individual level processes are Poisson. Thus, we define fL(τ) such that
∫ t

0 fL(τ)dτ is the probability that an individual makes a local infectious contact to a

given neighbour within time period t of having become infected, and fG(τ) such that
∫ t

0 fG(τ)dτ is the probability that an individual makes a global infectious contact to

another given individual within time period t of having become infected. Similarly to
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the previous subsection, we will impose that

(N − 1)

∫ t

0
fG(τ)dτ → c(t) as N →∞, (5.42)

where c(t) is a non-decreasing function which converges to some finite value. We will

make the assumption that individuals are susceptible at t = 0 with probability z and

infected otherwise, and that the states of all individuals are statistically independent

at t = 0.

Let us first consider the probability that a randomly selected individual is suscep-

tible at time t, this being equivalent to the expected fraction susceptible:

S(t) = zG0(H(t))F (t)N−1, (5.43)

where G0 is the generating function of the degree distribution, and satisfies:

G0(H(t)) =

∞
∑

k=0

pkH(t)k, (5.44)

where pk is the fraction of the population which is of degree k. H(t) is the probability

that a random individual, after having been placed in the cavity state, does not receive

a local infectious contact from a given neighbour by time t (averaged over the network

ensemble). F (t) is the probability that a random individual, after having been placed

in the cavity state, does not receive a global infectious contact from another given

individual by time t. Thus, G0(H(t)) is the probability that a random individual,

in the cavity state, does not receive any local infectious contacts by time t (averaged

over the network ensemble), while F (t)N−1 is the probability that it receives no global

infectious contacts by time t.

We now write:

H(t) = 1−
∫ t

0
fL(τ)

[

1− zG1(H(t− τ))F (t − τ)N−2
]

dτ, (5.45)

where G1 is the generating function of the excess degree of a neighbour of a random

individual. It can be computed as (see, for example, Newman (2002)):

G1(H(t)) =
G′0(H(t))

G′0(1)
. (5.46)

For F (t), we have:

F (t) = 1−
∫ t

0
fG(τ)

[

1− zG0(H(t− τ))F (t− τ)N−2
]

dτ, (5.47)

where here we use G0 instead of G1 since this is a global contact. The reader is advised

to consult Karrer and Newman (2010), and their application of the message passing

formalism to a configuration network scenario, in order to better understand the form

of our equations for S(t), H(t) and F (t).
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The time derivative of S(t) can be written:

˙S(t) = S(t)
G′0(H(t))

G0(H(t))
˙H(t) + S(t)(N − 1)

˙F (t)

F (t)
. (5.48)

Now, assuming that in the limit as N → ∞ the quantity in the square brackets of

equation (5.47) is equal to 1 − S(t − τ) (compare with equation (5.43)), then we can

write:
˙F (t) =

∫ t

0
fG(τ) ˙S(t− τ)dτ − (1− z)fG(t), (5.49)

and so the second term in equation (5.48) can be expressed:

S(t)

∫ t

0
f∗G(τ)

˙S(t− τ)dτ − S(t)(1− z)f∗G(t), (5.50)

where f∗G(t) = (N−1)fG(t), and
∫ t

0 f
∗
G(τ)dτ = c(t) (as N →∞) is the expected number

of global infectious contacts that an individual will make, to others chosen uniformly

at random, within time period t of having been infected (note that we have also here

assumed S(t)/F (t) = S(t) in the limit as N →∞). Thus:

˙S(t) = S(t)

[

G′0(H(t))

G0(H(t))
˙H(t) +

∫ t

0
f∗G(τ)

˙S(t− τ)dτ − (1− z)f∗G(t)
]

. (5.51)

For the time derivative of H(t), we can write:

˙H(t) =

∫ t

0
fL(τ) ˙S2(t− τ)dτ − (1− z)fL(t), (5.52)

where we have defined:

S2(t) ≡ zG1(H(t))F (t)N−1, (5.53)

and due to form equivalence:

˙S2(t) = S2(t)

[

G′1(H(t))

G1(H(t))
˙H(t) +

∫ t

0
f∗G(τ)

˙S(t− τ)dτ − (1− z)f∗G(t)
]

. (5.54)

We now define the full system:

˙S(t) = S(t)

[

G′0(H(t))

G0(H(t))
˙H(t) +

∫ t

0
f∗G(τ)

˙S(t− τ)dτ − (1− z)f∗G(t)
]

,

I(t) = 1− S(t)−R(t),

R(t) =

∫ t

0
r(τ)[1− S(t− τ)]dτ, (5.55)

where

˙H(t) =

∫ t

0
fL(τ) ˙S2(t− τ)dτ − (1− z)fL(t),

˙S2(t) = S2(t)

[

G′1(H(t))

G1(H(t))
˙H(t) +

∫ t

0
f∗G(τ)

˙S(t− τ)dτ − (1− z)f∗G(t)
]

.

(5.56)
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For the case of Poisson individual level processes, i.e. fL(τ) = βLe
−(βL+γ)τ , fG(τ) =

βGe
−(βG+γ)τ , r(τ) = γe−γτ , the equations simplify to a system of ODEs:

˙S(t) = −β∗GS(t)I(t) + S(t)
G′0(H(t))

G0(H(t))
˙H(t),

I(t) = 1− S(t)−R(t),
˙R(t) = γI(t), (5.57)

where β∗G = (N − 1)βG and

˙H(t) = (βL + γ)(1−H(t))− βL(1− S2(t)),
˙S2(t) = −β∗GS2(t)I(t) + S2(t)

G′1(H(t))

G1(H(t))
˙H(t). (5.58)

This last system, of just 5 equations, represents a large improvement in efficiency

relative to the system given by Ball and Neal (2008). Indeed, the size of their system

is of the order of the number of distinct degrees in the degree distribution. Further,

we conjecture that our system is ‘exact’ (as is theirs) in the limit as N →∞, and that

a rigorous proof of this would be possible along the same lines as the proof provided

by Decreusefond et al. (2012) for Volz’s (2008) system (which is equivalent to Miller’s

(2010) edge-based system for Markovian SIR dynamics on configuration networks, and

to Karrer and Newman’s (2010) message passing approach when applied to Poisson

individual level processes and configuration networks). The derivation of the above

system followed quite simply from the principles established by Karrer and Newman

(2010).
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Chapter 6

Final summary and discussion

In chapter 2, we investigated the Markovian network-based SIS model, this being a

generalised version of the well-known Contact Process. Our main contribution here

was to apply important results issuing from highly technical probabilists working on

the Contact Process, such as Harris (1974) and Liggett (1999), in combination with

the concept of the quasi-stationary distribution (Daroch and Seneta, 1967), to produce

a general and useful result for modellers in epidemiology - The Prevalence-Invasion

Relationship. Indeed, the very definitions of invasion and invasion probability, and to

a lesser extent endemic prevalence, were previously problematic for this finite-network-

based model. We have now provided precise mathematical definitions of such quanti-

fiers, i.e. PA
T,Γ(quasi-invasion) and PA

T,Γ(quasi-prevalence), which are straightforward

to approximate numerically, and proved the exact relationship between them (Wilkin-

son and Sharkey, 2013). Moreover, these definitions are based on the existence of a

quasi-stationary distribution which is independent, or largely independent, of initial

conditions; as such, they can be generalised to a large class of stochastic models which

meet this requirement. In the limit of large population size, in cases where such a limit

makes sense, our definitions are equivalent to existing definitions/measures such as:

the probability of indefinite persistence in a branching process and the upper invariant

measure of the Contact Process.

The work in chapter 2 also provided insight into the equality between invasion

probability from a single initial infected in the Markovian standard SIR/SIS models,

computed from the corresponding branching process, and the fraction of the population

infected in the endemic equilibrium of the deterministic SIS model. The equality follows

from the ‘exactness’ of these two computations in the limit of large population size,

and the property of duality. In essence, we extended this result, and the equivalent

result for the Contact Process on an infinite homogeneous network (see, for example,

Grimmett (2010) and Neal (2008)), to a more general and heterogeneous finite-network

setting.

There are some immediate practical implications of the Prevalence-Invasion Rela-
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tionship when the network on which the disease spreads is undirected (assuming the

model corresponds to a real world process): 1) The individuals which spend the most

time in the infected state are the same individuals most capable of initiating large scale

outbreaks, and should be targeted for intervention. 2) When measuring invasion prob-

ability or endemic prevalence, through data collection or mathematical models, the two

are interchangeable.

For strongly connected directed networks, invasion probability is interchangeable

with endemic prevalence after reversing the directions of network links. Such an inter-

change, via the reversal of network links, may be desirable and possible in technological

networks. A similar relationship was seen to hold for the case of arbitrary directed net-

works with strongly connected components.

In chapter 3, we considered Markovian network-based SEIR dynamics. In particu-

lar, we adopted the technique of moment closure in order to capture the dynamics via

systems of ordinary differential equations. In the introduction, pair-based systems at

the population level were constructed for the case of finite directed networks, and the

assumptions behind the ‘closures’ were made clear (following Sharkey (2008)). In the

literature, directed networks and finite networks are often overlooked.

For the case of tree networks, a particular individual level pair-based system was

seen to exactly capture the dynamics of the expected compartment sizes, assuming

that the states of all individuals are independent at t = 0 (this encompasses all pure

initial states) (for the SIR case, see Sharkey et al. (2013) and Kiss et al. (2014)). The

exact closure which enabled this was then generalised such that exact systems for non-

tree networks, which go beyond the pair-level, could be ‘written down’; see the Exact

Closure Theorem and ‘dynamical partitioning’ (Sharkey and Wilkinson, 2015). These

systems, although potentially very large, are sometimes considerably less than the 4N

Kolmogorov forward equations needed to fully capture the evolution of the system. In

addition, the dependence of the applicability of this approach on network structure,

and particular sub-structures which we termed ‘transmission blocks’, was discussed.

These transmission blocks are a particular subset of the biconnected sub-graphs of the

underlying undirected graph/network.

For an arbitrary network, we then defined several hierarchies of approximating

moment closure-type systems, where the first system of the hierarchy was always the

pair-based system and the last system was always exact. This was made possible by

proposing different criteria under which the Exact Closure Theorem is to be assumed to

hold true and thereby employed in the construction of the system (the precise conditions

under which the theorem holds true are ignored). Moment closure systems which go

beyond the pair-level are rare in the literature. This is understandable since the systems

quickly become unwieldy.

In chapter 4, the message passing approach (Karrer and Newman, 2010) for general
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SEIR dynamics on arbitrary finite networks was described, and slightly generalised

(Wilkinson and Sharkey, 2014). It was seen that in the case of tree networks, and if

the states of individuals are independent at t = 0, then the message passing equations

exactly capture the probability of a given individual being in a given state. For non-

tree networks, and the same restriction on initial conditions, the equations provide a

rigorous lower bound on the probability of a given individual being susceptible.

When the individual level contact processes were Poisson, it was shown that the

message passing equations could be used to derive a pair-based system of integro-

differential equations which allowed arbitrary (in distribution) exposed and infectious

periods; the derivation involved taking time derivatives and renaming variables in such

a way that the two systems of equations give exactly the same output. If, in addition,

the exposed and infectious periods were exponentially distributed, then the pair-based

system reduced to the familiar pair-based system of ODEs presented in chapter 3. This

being so, it could be concluded that the pair-based system of ODEs also provides a rig-

orous lower bound on the probability of a given individual being susceptible, assuming

that the states of individuals are initially independent.

The issue of initial conditions was then addressed such that the situation where a

specific number of initial infecteds are chosen at random (without replacement), and the

rest are susceptible, could be considered. In particular, for these initial conditions and a

tree network, it was shown that the message passing equations provide an upper bound

on the probability of a given individual being susceptible. For these initial conditions

and a non-tree network, the bound was no longer assured but it was seen that the over-

estimation of the spread, caused by the presence of cycles in the network, compensated

in the ‘right direction’; the output could provide an even better approximation for these

initial conditions than for the type which were originally assumed.

For many networks of interest, the systems defined in chapters 3 and 4 will be ex-

tremely large, often prohibitively. In many cases, it will be much more computationally

efficient to run, and analyse, large numbers of simulations. However, in more practi-

cable low-dimensional systems, which make use of mean field type approximations to

construct population level variables, the assumptions/approximations underlying their

construction, and the kinds of errors they induce, are not obvious. It is likely that im-

proved low-dimensional systems, with more clearly stated assumptions/approximations,

and a better understanding of their effects, could be developed from our individual level

systems. Indeed, this is something which we will pursue in future research.

In chapter 5, the message passing formulation was applied to some classic models in

mathematical epidemiology, and some new results obtained. It was seen that, relative

to the Markovian standard SIR model (with a pure initial state), the deterministic SIR

model overestimates the spread of the infection, providing a rigorous lower bound on

the expected number susceptible. Similarly, a model which is formally the same as the
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deterministic SIR model, but naively accounts for the finite number of neighbours by

which an individual can be directly infected, overestimates the spread of the infection

relative to Markovian SIR dynamics on a homogeneous network where each individual

has precisely that number of neighbours. It was also shown how the original deter-

ministic model of Kermack and McKendrick (1927), which does not assume Poisson

individual level processes, could be derived from message passing equations.

The message passing approach of Karrer and Newman (2010) was finally used to

construct a system for the case of general SIR dynamics in a configuration network

setting, with superimposed even mixing (considered by Kiss et al. (2006) and Ball

and Neal (2008)). To our knowledge, all systems in the literature which address such a

scenario are at least as large as the number of distinct degrees in the degree distribution,

and assume the individual level processes to be Poisson. Our system consists of just 5

equations (ODEs in the case of Poisson individual level processes) and we conjecture

that it is ‘exact’ in the limit of large population size.
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Appendix

A.1 Proof of the underpinning results for Theorem 3.4.3

Let us consider Markovian SEIR dynamics on a network D = (V,A) for which ME is

the associated system derived by making use of the exact closure theorem wherever

possible. Theorem 3.4.3 follows from Corollary A.1.1 and Corollary A.1.2 below.

Definition A.1.1. A set Wn ⊂ V of size |Wn| = n can be ‘generated’ from a set

Wm ⊂ V of size |Wm| = m where 2 ≤ m < n if and only if a sequence of sets

Wm, . . . ,Wi, . . . ,Wn exist where Wi+1 =Wi ∪ {k}, where k is a single node in V \Wi,

and there exists an arc from k towards some individual j ∈Wi which is not dynamically

partitioning relative to k and Wi \ {j}.

Remark. The above definition is constructed such that 〈ψA
W 〉, where |W | > 2, is a

variable in ME , for some A, if and only if W can be generated from some connected

pair. This follows from the definition of ME via equation (3.27).

Lemma A.1.1. If a setW can be generated from some connected pair, then there exists

X ⊃W such that D[X] is a directed sub-block. There also exists some node i ∈W that

it is reachable from all other nodes in both D[W ] and D[X].

Proof. The proof follows by induction. Lemma A.1.2 proves the statement for the case

|W | = 3 while Lemma A.1.3 establishes the inductive step.

Corollary A.1.1. If 〈ψA
W 〉, where |W | > 2, is a variable in ME, then there exists

X ⊃W such that D[X] is a directed sub-block.

Proof. This follows directly from Lemma A.1.1 and Definition A.1.1.

Lemma A.1.2. If a set W where |W | = 3 can be generated from some connected pair,

then there exists X ⊃ W such that D[X] is a directed sub-block, and some i ∈ W is

reachable from all others in both D[W ] and D[X].

Proof. With reference to Figure 1, if a set W3 = {i, j, k} can be generated from the

pair W2 = {i, j}, with j connected towards i, then there is a link from k to either i

or j. Further, from the definition of dynamical partitioning and the generating rule,

there are two possibilities: 1) there exists two vertex disjoint paths P1, P2 from some
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Figure 1: Demonstration for Lemma A.1.2: ‘ways’ in which a set W3 = {i, j, k} can be
generated from the pair {i, j}, where j is connected towards i. Note that W3 is always
a subset of some directed sub-block, and i is reachable from all others in both D[W3]
and the directed sub-block. The dashed arrows represent paths which may consist of
any number of vertices.

individual (which could be k) to both members of W2, and where k is the penultimate

individual in one of these paths (see Figure 1a&c), or 2) there exists a path P3 from

one member of W2 to the other, and k is the penultimate individual in this path (see

Figure 1b&d). Note that in all cases depicted in Figure 1, W3 is a subset of some

directed sub-block in which i is reachable from all others (and i is reachable from all

others in D[W3]).

Lemma A.1.3. If the statement made in Lemma A.1.1 is true for the case where

|W | = n, then it is also true when |W | = n+ 1.

Proof. Firstly, note thatWn+1, where |Wn+1| = n+1, can be generated from some con-

nected pair if and only if it can be generated from some setWn, where |Wn| = n, which

can itself be generated from some connected pair. Now suppose that Lemma A.1.1 is

true for the case where |W | = n, and let Wn be a set of size n that can be generated

from some connected pair. Then we have a set X ⊃ Wn such that D[X] is a directed

sub-block where, without loss of generality, i ∈Wn ⊂ X is reachable from all others in

both D[Wn] and D[X]. With reference to Figure 2, and again focusing only on directed

links, if a set Wn+1 =Wn ∪ {k} (k /∈Wn) can be generated from Wn, then either there

126



Figure 2: Demonstration for Lemma A.1.3. Here, the single node inX\Wn is illustrative
of the nodes in this set which must be connected by at least one path leading to node i,
and where the underlying graph G[X] is biconnected. We have placed node k outside
of X, but k ∈ X \Wn is also permitted. a) shows k belonging to one of two vertex
disjoint paths from some node to Wn and b) shows k as the penultimate individual in
a path from a node in Wn to a different node in Wn. In either case, Wn ∪ {k} is seen
to always be a subset of some Y ⊃ X where D[Y ] is a directed sub-block in which i is
reachable from all others (and i is reachable from all others in D[Wn ∪ k]).

exist two vertex disjoint paths P1, P2 from some individual to two different members of

Wn and k is the penultimate individual in one of these paths (Figure 2a), or there exists

a path P3 from one member of Wn to a different member of Wn and k is the penul-

timate individual in this path (Figure 2b). This follows from the generating rule and

the definition of dynamical partitioning. Note that if P1, P2 exist then D[X ∪ P1 ∪ P2]

is a directed sub-block in which i is reachable from all others (and i is reachable from

all others in D[Wn+1]). Similarly, if P3 exists then D[X ∪P3] is a directed sub-block in

which i is reachable from all others (and i is reachable from all others in D[Wn+1]).

Lemma A.1.4. Let D[X] be a directed sub-block and let i ∈ W ⊂ X, where |W | ≥ 2,

be reachable from all others in both D[W ] and D[X]. In this case, some set W ∪ {k},
where k ∈ X \ W , can be generated from W , and i is reachable from all others in

D[W ∪ {k}].

Proof. From Figure 2, but with k ∈ X, we note that some setW∪{k}, where k ∈ X\W ,

can be generated from W if and only if there exist two vertex disjoint paths P1, P2

from some individual to two different members of W and where k is the penultimate

individual in one of these paths, or there exists a path P3 from one member of W to a

different member of W and k is the penultimate individual in this path (note that we

are referring to Wn in figure 2 as W ). Our proof is by contradiction. We shall assume

that neither of these scenarios hold and show that this contradicts the assumption that

D[X] is a directed sub-block.

Every individual in X \W is at the start of a path to i in D[X]. Figure 3 shows

the ways in which k ∈ X \W may be connected to a node of W , in D[X]. Firstly,

the underlying graph in Figure 3a is not biconnected so here D[X] is not a directed
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Figure 3: Demonstration for Lemma A.1.4: shows the ways in which k ∈ X \W may
be connected to a node of W , in D[X]. We have cases a) the underlying graph of D[X]
is not biconnected, b) Existence of path P3, c) Existence of paths P1 and P2 and
d) Existence of a node from which W is unreachable. Cases a) and d) imply D[X] is
not a directed sub-block and so the existence of paths P1 and P2, or of path P3, is
established.

sub-block. Secondly, Figures 3b and c correspond to the existence of path P3 and

the existence of paths P1, P2 respectively and hence W ∪ {k} is generated. Finally,

Figure 3d has a node from which W is unreachable and so D[X] cannot be a directed

sub-block. Other more complicated variants of this path will also contain such nodes

from which W is unreachable. Hence, if paths P1 and P2 do not exist, and path P3

does not exist, then D[X] is not a directed sub-block.

Corollary A.1.2. If there exists X ⊂ V such that D[X] is a directed sub-block, then

there exists 〈ψA
X〉, for some A, as a variable in ME.

Proof. If D[X] is a directed sub-block in which i ∈ X is reachable from all others, then

there exists at least one arc (j, i) in D[X]. The corollary then follows from lemma A.1.4

which proved that, for such a case, X can be generated from {i, j} (and from the remark

under definition A.1.1).

A.2 Proof of general results on cycle-partitioning

The main results of this appendix are stated as Theorem A.2.1 and Theorem A.2.2.

Lemma A.2.1. If 〈ψA
W 〉 is a variable in MCx , then there is at least one individual

reachable from all others in D[W ].

Proof. Follows from the way in which MC(x) is constructed via equation (3.42) (or

equation (3.44)).

Theorem A.2.1. If the largest transmission block in a network consists of n individ-

uals, then any cycle-partitioning system of order x ≥ n− 2 is exact.
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Proof. For any W ⊂ V where at least one individual is reachable from all others in

D[W ], if any i ∈ W is cycle-partitioning at order x ≥ n − 2 with respect to some

j /∈ W and W \ i, where (j, i) is an arc, then i is also dynamically partitioning with

respect to j and W \ i. This follows because if i is not dynamically partitioning, but is

cycle-partitioning at order x > n− 2, then this implies the existence of a directed sub-

block containing j, i and at least one other member of W , and which consists of more

than n individuals. Therefore, by Lemma A.2.1, MC(x) only utilises genuine dynamical

partitioning and we have MC(x) =ME (x ≥ n− 2).

Theorem A.2.2. If the smallest directed sub-block consists of n individuals, then all

cycle-partitioning systems of order x < n− 2 are equivalent to the pair-level system.

Proof. For any connected pair W ⊂ V (|W | = 2), if i ∈ W is not cycle-partitioning at

order x < n−2 with respect to j /∈W andW \ i, where (j, i) is an arc, then there exists

a directed sub-block containing W ∪ j, and which consists of less than n individuals.

Therefore, no such j can exist. From the way in whichMC(x) is constructed, this means

that no subsystem states larger than connected pairs emerge and we have the pair-level

system, i.e. MC(x) =MC(0) (x < n− 2).

Remark. Together, Theorems A.2.1 and A.2.2 imply that the difference in size between

the largest directed sub-block (or largest transmission block) and smallest directed

sub-block gives an upper bound on the number of distinct systems that the cycle-

partitioning approach can provide. If all directed sub-blocks are the same size then

no systems that are distinct from the pair-level system and the exact dynamical parti-

tioning system ME emerge. However, even when this difference is large the number of

distinct systems may sometimes be small, as was shown to be the case for the triangle

lattice (where the difference is N − 3).
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