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Abstract  

The transcription factors STAT3 and NF-κB play key roles in inflammation, 
immunity and cell fate. In the liver, they are responsible for transcribing 
hundreds of genes in response to combinations of IL-6, TNFα and IL-1β, and so 
together co-ordinate the acute phase response to infection. Dysregulated STAT3 
and NF-κB signalling leads to chronic inflammation and is implicated in the 
development of many cancers. A variety of highly context-dependent 
intercellular and intracellular mechanisms have been discovered which 
facilitate both positive and negative cross-talk between STAT3 and NF-κB. 
Whilst the long-term signalling dynamics of NF-κB have been characterised in 
single cells, and were found to be oscillatory, imaging studies on STAT3 have 
focused upon the short-term mechanisms of nuclear transport rather than the 
long-term dynamics. STAT3 has been shown to oscillate in a population of 
synchronised cells so it is possible that STAT3 will exhibit oscillatory spatio-
temporal signalling dynamics in response to cytokine stimulation. 

The primary aim of this thesis was to characterise the long-term signalling 
dynamics of STAT3 in response to IL-6, using fluorescent fusion protein 
reporters for STAT3 and its inhibitor SOCS3, in conjunction with live single cell 
fluorescence microscopy. Towards these aims, STAT3 and SOCS3 fluorescent 
fusion proteins were constructed. The responses of a candidate cell line to IL-6 
and TNFα were investigated, and then the fluorescent reporters were 
characterised in that cell line. The N-terminal tagged EGFP-STAT3 reporter was 
found to be the most accurate reporter of IL-6 signalling. The EGFP-STAT3 was 
then used to investigate the single cell spatio-temporal dynamics of STAT3 in 
response to differently timed lengths of IL-6 stimulation. STAT3 was found to 
oscillate with a period of approximately 90 min in response to continuous IL-6 
stimulation, but only underwent a transient nuclear translocation in response to 
a 30 min IL-6 pulse. Furthermore, the patterns of gene expression were 
characterised for the timed IL-6 treatments. The quantified single cell dynamics 
were used to constrain an existing generic model of STAT:SOCS signalling; the 
model was able to capture the observed single cell dynamics using a minimal 
ordinary differential equation approach. 

The secondary aim of the thesis was to study cross-talk between STAT3 and NF-
κB using live cell microscopy techniques. The effects of co-stimulation of NF-κB 
and STAT3 were investigated using combinations of TNFα and IL-6 stimuli. 
Combinations of single or dual transfections, and single or dual stimulation 
were performed as controls in order to tease apart the effects of co-expression 
and co-stimulation. The importance of the timing of cytokine stimulation was 
also investigated. Finally, the effects of IL-1β upon IL-6 induction of STAT3 were 
investigated, as this was shown elsewhere to inhibit STAT3 signalling and so 
was expected to produce interesting spatio-temporal signalling effects. This 
preliminary study revealed distinct subpopulations of cells with different p65 
and STAT3 response patterns. The STAT3 response was knocked down or 
significantly delayed in many cells but a small subset exhibited atypical 
oscillatory dynamics. Interestingly, the p65 dynamics were also significantly 
perturbed by IL-6 and IL-1β co-stimulation, indicating that there are cross-talk 
events occurring in both directions. Consequently these studies represent a very 
important area for future investigation.  
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1.1 Dynamic Intracellular Signalling and Systems 

Biology 

Cellular communication and monitoring of the local environment is essential to 

cell survival and proper functioning of the organism (Jordan et al, 2000). It is 

vitally important for the immune system, as without sufficient environmental 

surveillance and effective response co-ordination, infections may quickly 

become established. Conversely, an excessive immune response may endanger 

the organism in the short-term, through events like asthma attacks, allergic 

reactions and anaphylaxis, and in the long-term, through the development of 

chronic inflammation and auto-immune disorders, such as Rheumatoid 

Arthritis, asthma and Crohn’s Disease (Pernis & Rothman, 2002; Mihara et al, 

2012). Cell signalling pathways monitor different aspects of the cell’s 

environment and use Transcription Factors (TFs), including the Signal 

Transducer and Activator of Transcription (STAT) and Nuclear Factor-kappaB 

(NF-κB) protein families, to convey instructions from the cell membrane to the 

nucleus to regulate gene expression and determine biological outcomes (Ghosh 

et al, 1998; Imada & Leonard, 2000). 

The multiplicity of signals to be monitored presents the cell with the difficult 

task of performing the most appropriate response to the signals it detects 

(Jordan et al, 2000). Consequently signalling pathways are not discrete entities, 

rather they form complex integrated networks, able to influence each other 

through events commonly referred to as ‘cross-talk’ (Klipp & Liebermeister, 

2006). Cross-talk may be positive or negative and may influence the timing of 

particular events (Kholodenko, 2006). Direct protein-protein interactions, 

whether at the cell membrane or on gene promoters, provide points of contact, 

as do post-translational modifications of signalling proteins, such as 

phosphorylation, acetylation, ubiquitination and sumoylation by other 

intermediaries (Bruce Alberts, 2002). In addition, signalling networks possess a 

variety of positive and negative feedback and feed-forward loops to modulate 

signal duration and intensity (Kholodenko, 2006). They may require the 

induction of specific proteins, such as the Suppressors of Cytokine Signalling 

(SOCS) that down-regulate STAT signalling (Krebs & Hilton, 2001), or the 
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Inhibitory-kappaB (IκB) proteins which inhibit NF-κB signalling (Karin & Ben-

Neriah, 2000). These feedback loops may be inducible or modifiable by more 

than one pathway and so may facilitate cross-talk between those signalling 

pathways (Kholodenko, 2006).  

The vast number of possible points and modes of interaction within and 

between signalling pathways makes studying cross-talk a challenge at the 

molecular level using reductionist techniques. However the molecular signals 

may generate signalling dynamics at the bulk-protein level in single cells, as a 

result of the fundamental properties of the network. These emergent network 

dynamics may be observed as spatial and/or temporal events across cellular 

compartments, such as the cytoplasm and nucleus (Kholodenko, 2006; 

Mullassery et al, 2008). Often these dynamics cannot be observed by traditional 

population-based biochemical methods since intercellular variation may be 

masked in the population average. Fortunately developments in time-lapse, 

confocal fluorescence microscopy provide a means to investigate signalling 

dynamics within single cells over long periods (Ankers et al, 2008; Mullassery et 

al, 2008). Systems biology, by combining single cell data with mathematical 

modelling and iterative testing of hypotheses, has proved to be a fruitful 

investigative approach towards understanding the complex dynamics of the 

signalling network (Kitano, 2002).  

1.2 JAK-STAT Signalling 

1.2.1 Introduction to JAK-STAT Signalling 

1.2.1.1 Discovery of JAK-STATs 

JAK-STAT (Janus Kinase-Signal Transducers and Activators of Transcription) 

signalling was first discovered in the late 1980s in various contexts throughout 

the immune system, as a pathway responsible for processing cytokine signals, 

particularly the Interferons, and for mediating the Acute Phase Response to 

infection. Eventually it was realised these transcription factors had numerous 

roles throughout the immune system, in both innate and adaptive immunity, 

and formed a family of related proteins that became known as STATs (Aaronson 

& Horvath, 2002; Levy & Lee, 2002). 
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1.2.1.2 The JAK and STAT Family Members and Their Roles 

There are seven mammalian STAT proteins: STAT1, STAT2, STAT3, STAT4, 

STAT5A, STAT5B and STAT6, and analogues exist in the distantly-related 

Drosophila (D-STAT) and Dictyostelium (Dd-STAT) organisms (Hibi & Hirano, 

1998). In addition there are four Janus Kinase (JAK) proteins: JAK1, JAK2, JAK3 

and TYK2, which constitutively associate with cytokine receptors. JAKs directly 

activate the STATs through tyrosine phosphorylation in response to cytokine 

signalling and in doing so, enable STATs to translocate to the nucleus and 

initiate gene transcription (Hibi & Hirano, 1998; Heinrich et al, 2003).  

STAT1 was the first to be discovered. It forms homodimers and heterodimers 

with STAT2, which are essential for mediating Interferon (IFN) signals 

(Platanias, 2005), promoting inflammation and antagonising proliferation. 

STAT2 specifically is pivotal to the response to Type I IFNs (Schindler et al, 

2007). STAT4 has a quite limited role amongst the STATs. It is involved in 

polarising naïve CD4+ lymphocytes in to Th1 cells in response to Interleukin 

(IL)-4, whilst in response to IL-12, STAT4 is necessary for Natural Killer (NK) 

cell activation (Kisseleva et al, 2002). STAT5A and B are pleiotropic 

transcription factors that mediate a large number of signals from the IL-2- and 

IL-3-type cytokine families. They also mediate hormone signals, such as 

Prolactin, Growth Hormone (GH) and Erythropoietin (EPO) (Gouilleux et al, 

1994; Levy & Lee, 2002). STAT6 transduces IL-4 and IL-13 signals. Similar to 

STAT4, STAT6 is involved in polarising CD4+ lymphocytes, but turns them into 

Th2 cells (Kaplan et al, 1996). STAT6 is also necessary for mast cell activation in 

the allergic response and B cell isotype switching (Schindler et al, 2007). Finally 

there is STAT3, the most pleiotropic of all the STATs and the only one that 

results in embryonic lethality when knocked out in mice (Takeda et al, 1997). 

1.2.1.3 Biological Importance of STAT3 and the Acute Phase Response 

STAT3 was initially identified as the Acute Phase Response Factor (APRF) 

responsible for orchestrating the acute phase response (APR) to infection and 

injury (Moshage, 1997). The acute phase response is a systemic inflammatory 

response, featuring fever, oedema, considerable metabolic changes and the 

biosynthesis of a variety of plasma proteins, whose purpose is to eliminate 
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pathogens and aid healing afterwards (Moshage, 1997). The liver is the primary 

site of the APR, responding via the JAK-STAT and NF-κB networks to the 

cytokines Tumour Necrosis Factor-α (TNFα), IL-1β and IL-6 which are 

produced by tissue macrophages and liver-specific macrophages (Kupffer cells). 

In addition to its roles in the APR where STAT3 transduces IL-6 signalling, 

STAT3 is also responsible for another 18 related cytokines from the IL-6 and IL-

10 sub-families, as well as several growth factors, all of which have different but 

partially over-lapping functions (Schindler et al, 2007).  

The lethality of complete STAT3 knock-out in mice revealed the key 

involvement of STAT3 in early embryogenesis but also presented difficulties for 

understanding its function in adults. Conditional, tissue-specific knock-outs 

were generated using the Cre-loxP system and these studies identified roles in 

the skin and thymus, mammary development, the nervous system, T cells and 

the myeloid lineage (macrophages and neutrophils), and re-iterated its role in 

the acute phase response (Kisseleva et al, 2002; Levy & Lee, 2002). The 

phenotypes ranged from severely compromised wound healing in the skin, loss 

of thymocytes and hypersensitivity to stress in adult mice, to susceptibility to 

endotoxic shock due to STAT3-deficient macrophages (Levy & Lee, 2002). 

Additionally, absence of STAT3 in the liver lead to a significantly impaired APR 

and increased mortality, which rose even further if NF-κB was also knocked out 

in the liver, thus highlighting the importance of STAT3 and NF-κB cross-talk 

(Quinton et al, 2012).  

1.2.1.4 Summary of JAK-STAT Signalling Pathway 

The key events of the JAK-STAT signalling pathway are summarised in Fig. 1.1. 

JAK-STAT signalling is initiated by the binding of a cytokine to its cognate 

cytokine receptor. Receptor association and concomitant conformational re-

arrangement increases JAK activity, enabling them to trans-phosphorylate each 

other (Kisseleva et al, 2002). This increases their catalytic activity further so 

they can phosphorylate the receptor (Hibi & Hirano, 1998). Pre-formed, 

unphosphorylated STAT dimers (U-STATs) bind to the newly phosphorylated 

receptor and are phosphorylated by the JAKs (Braunstein et al, 2003; Sehgal, 

2008). This triggers a re-arrangement of the STAT dimer, increasing its DNA-
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binding affinity, and causing phosphorylated STATs (P-STATs) to accumulate in 

the nucleus where they can induce transcription of their target genes 

(Braunstein et al, 2003; Kretzschmar et al, 2004; Mao et al, 2005). The 

accumulation of STATs in the nucleus represents a bulk redistribution of STATs 

between the nuclear and cytoplasmic compartments. This phenomenon has 

been visualised using fluorescence microscopy though only short time-lapse 

experiments have been performed (Pranada et al, 2004). Phospho-STATs 

transcribe their target genes, with each STAT dimer transcribing a specific set of 

target genes (Alvarez & Frank, 2004; Hebenstreit et al, 2006). Interestingly, U-

STAT1 and U-STAT3 (Unphosphorylated-STAT1/3) are known to transcribe a 

limited set of genes, sometimes in concert with other transcription factor 

families, such as NF-κB (Yang et al, 2005; Yang & Stark, 2008). 

Inactivation of STAT signalling occurs through several processes, each acting at 

different points in the pathway. There are the constitutive processes of 

dephosphorylation within the nucleus, performed by Protein Inhibitors of 

Activated STATs (PIAS) and Nuclear-Protein Tyrosine Phosphatases (N-PTPs), 

whose actions together facilitate export of STATs from the nucleus (Heinrich et 

al, 2003). There are also constitutive and inducible processes utilising SH2 (Src-

Homology-2) domain proteins that deactivate phosphorylated receptor 

complexes and their associated JAKs, preventing subsequent rounds of STAT 

activation (Heinrich et al, 2003). Certain constitutive events involve SH2 

proteins such as SHP1 and SHP2 (SH2-domain-containing tyrosine 

phosphatase), whereas inducible inhibition of STATs involve the family of 

Suppressors Of Cytokine Signalling (SOCS) proteins. Four of the eight SOCS 

proteins, CIS (cytokine-inducible SH2 domain containing protein), SOCS1, 

SOCS2, and SOCS3, are of particular interest as they act by specifically inhibiting 

phosphorylated receptors (Heinrich et al, 2003). Since these four SOCS are 

induced by activated STATs, they form delayed negative feedback loops that 

down-regulate JAK-STAT signalling after a certain period of time (Wormald et 

al, 2006). Theoretically, this could prime the JAK-STAT-SOCS system for 

dynamic spatio-temporal signalling. Whilst considerable attention has been 

applied to the short-term signalling dynamics of nuclear import and export 

(Pranada et al, 2004; Herrmann et al, 2007; Meyer et al, 2007; Chen & Reich, 
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2010; Vogt et al, 2011) and the mid-term dynamics at the population level 

(Yoshiura et al., 2007), long-term analysis at the single cell level has not been 

attempted. This represents an important gap in our understanding of JAK-STAT 

signalling and it is one of the issues this thesis seeks to address.  

 

Figure 1.1: The JAK-STAT Pathway, for IL-6 and STAT3.  

Application of IL-6 (yellow stars) triggers the activation of IL-6 Receptor 

complex, 2 IL-6, 2 IL6R (IL-6 Receptor), 2 gp130 (glycoprotein-130), leading to 

JAK and gp130 tail phosphorylation (red circles). Unphosphorylated STAT3 

antiparallel dimers are phosphorylated by the JAKs and assume the parallel 

conformation (P-STAT3, with red circles). P-STAT3 accumulates in the nucleus 

and binds to DNA (blue ribbon) where it transcribes target genes. Nuclear P-

STAT3 is dephosphorylated by Protein Inhibitors of Activated STATs (PIAS) and 

Nuclear-Protein-Tyrosine Phosphatases (N-PTP) and then STAT3 is exported 

back to the cytoplasm. PTPs also dephosphorylate cytoplasmic P-STATs. SH2-

adaptor proteins and PTPs dephosphorylate the receptor and target it for 

lysosomal degradation. SOCS proteins, produced from STAT-induced mRNAs, 

also directly inhibit the JAKs and prevent the subsequent re-phosphorylation of 

STAT dimers.  
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1.2.2 Cytokine Receptors 

1.2.2.1 Cytokine Receptor Classes 

Cytokines form a large, diverse family of intercellular mediators which includes 

hormones, interleukins and growth factors, with roles in many aspects of 

immunoregulation, embryogenesis, growth and regeneration (Heinrich et al, 

1998). They signal via cytokine receptors, transmembrane proteins formed 

from multiple subunits, which are divided into Type I and Type II Receptors. 

Type I receptors mediate a wide variety of cytokines and hormones whilst 

interferons, IL-10- and IL-20-type cytokines signal exclusively via Type II 

receptors (Gadina et al, 2001). Type I receptors are further classified according 

to the protein subunits used. They typically consist of two long transmembrane 

signal transduction subunits and, in many cases, also a short transmembrane 

cytokine-specific subunit (Heinrich et al, 2003). The signal transduction 

subunits are γc, βc, and gp130, and there are a number of homodimeric 

receptors for specific hormones and growth factors, e.g. Prolactin and EPO (Hibi 

& Hirano, 1998). Different combinations of signal transduction units and short 

cytokine-specific receptors provide cytokine specificity and signal fidelity 

which, when coupled with cell type-limited expression of the cytokine-specific 

receptors, explains the diverse outcomes of cytokine signalling (Kisseleva et al, 

2002).  

1.2.2.2 IL-6 Family of Cytokines and their Cognate Receptors 

The IL-6-type cytokines are a structurally related family which signal through 

gp130 in combination with a number of different receptors. The family shares a 

four α-helix bundle structure (Boulton et al, 1994) and consists of the IL-6, IL-

10, IL-12, LIF (Leukaemia Inhibitory Factor), CT-1 (cardiotrophin-1), CNTF 

(ciliary neurotrophic factor) and OSM (oncostatin-M) cytokines (Heinrich et al., 

2003). The majority signal via a gp130:LIF-Receptor heterodimer, some also 

utilising the short CNTF-Receptor, whilst OSM can signal via both gp130:LIF-R 

and gp130:OSM-Receptor. IL-6 and IL-11 are unique in that they use a gp130 

homodimer paired with the IL-6 Receptor (IL-6R) and IL-11R respectively 

(Taga et al, 1989; Murakami et al, 1993; Heinrich et al, 2003).  
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Complete structures of the receptor components are not available, however 

good progress has been made with the structure of the extracellular portions of 

the receptors. IL-6R consists of three ectodomains, one Ig-like and a cytokine-

binding module (CBM) consisting of two fibronectin type III (FNIII) domains, 

whereas gp130 has six: one Ig-like, one CBM and three additional membrane-

proximal FNIII domains (Heinrich et al, 1998; Matadeen et al, 2007). The final 

components of the receptor complex are the Janus Kinase (JAK) proteins which 

provide the catalytic activity that enables down-stream signal transduction (Yeh 

& Pellegrini, 1999).  

1.2.2.3 Janus Kinases 

Janus Kinases (JAKs) catalyse tyrosine phosphorylation for the Type I receptors 

which lack a catalytic domain in their cytoplasmic regions. There are four JAKs: 

JAK1, JAK2, JAK3 and TYK2 (Gadina et al, 2001), and JAK1 and JAK2 are 

necessary for IL-6 signalling via gp130 (Guschin et al, 1995). Each receptor type 

is constitutively pre-associated with one or two specific JAKs in a non-reversible 

manner; receptor-bound JAKs do not exchange with cytosolic JAKs (Giese et al, 

2003). The JAKs themselves are large tyrosine kinases, between 120-140 kDa in 

size, and work in pairs to phosphorylate each other and the receptor to initiate 

STAT signalling (Yeh & Pellegrini, 1999).  

JAKs have four domains: the kinase domain, the pseudokinase domain, an 

atypical Src homology 2 (SH2) domain and a divergent FERM (4.1, ezrin, radixin 

and moesin) domain (Fig. 1.2) (Haan et al, 2006). The kinase domain catalyses 

the phosphorylation of the target tyrosine residue, whereas the pseudokinase 

domain lacks key catalytic residues and instead auto-inhibits JAK kinase activity 

(Yeh & Pellegrini, 1999; Lupardus et al, 2014). The atypical SH2 and FERM 

domains are responsible for the constitutive binding of JAKs to the signal 

transduction proteins because they recognise and bind specific residues and 

hydrophobic regions of the cytoplasmic tail (Haan et al, 2006; Wallweber et al, 

2014).  
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Figure 1.2: JAK structure. Listing the FERM, SH2, pseudo-kinase (ΨKi) and 

kinase (Ki) domain with illustrative amino acid numbers, reproduced from 

(Schindler et al, 2007). 

 

1.2.2.4 IL-6 Receptor Expression Dynamics 

IL-6R and gp130 are expressed very differently throughout the body. IL-6R is 

limited to specific cell types, for example hepatocytes and the haematopoietic 

lineage, whereas gp130 is ubiquitously expressed by nearly all cell types 

(Heinrich et al, 2003). In addition, IL-6R is expressed at very low levels, 

between 500 and 2000 receptors per cell (Zohlnhofer et al, 1992), although it 

can be up-regulated by other signalling pathways, e.g. glucocorticoids (Snyers et 

al, 1990; Schooltink et al, 1992).  

Receptor levels at the cell membrane were shown to be stable over time in the 

absence of IL-6 signalling, due to the balance of de novo protein synthesis and 

constitutive endocytosis and subsequent degradation. Maturation and surface 

expression of newly synthesized IL-6R takes 45 min, and 60 min for gp130 

(Gerhartz et al, 1994). Once at the cell membrane, gp130 has a half-life of about 

15 min, and the protein half-life is approximately 2-3 h (Thiel et al, 1998). IL-6 

stimulation does not affect gp130 internalisation but does change its 

degradation from proteasomal to lysosomal (Tanaka et al, 2008). Its 

internalisation rate can be altered by other cytokines, such as IL-1β (Radtke et 

al, 2010), providing a potential means for cross-talk between different 

signalling networks. IL-6R has a surface expression half-life of approx. 7 h in 

unstimulated HepG2 cells but only 15-30 min in IL-6 stimulated cells, when its 

protein half-life decreases to approximately 2 h (Zohlnhofer et al, 1992). 
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1.2.3 Structure and Function of STATs 

1.2.3.1 Structure of the STATs 

The STATs range from 750 to 900 amino acids in size, with a molecular weight 

of between 84 and 92 kDa, and share six structurally and functionally conserved 

domains. The first five domains are highly conserved while the sixth is less well 

conserved and contributes to protein specificity (Kisseleva et al, 2002). The 

domains, in order from N- to C-termini are: i) the N-terminal domain, ii) the 

coiled-coil domain, iii) the linker domain, iv) the DNA-binding domain, v) the 

SH2 domain and vi) the C-terminal Trans-Activation Domain (TAD), the most 

divergent of the domains (Chen et al, 1998; Schindler et al, 2007) (Fig. 1.3A). 

Each domain has its own set of functions, while some functions are spread 

across several domains e.g. sequences for nuclear transport. Various partial 

structures of STATs have been published, both DNA-bound and free, from 

crystal and solution-based studies. A ‘core fragment’ of human STAT1, 

consisting of the coiled-coil domain, DNA-binding domain, linker and SH2 

domains, bound to DNA was solved in 1998 (Chen et al, 1998) and a few months 

later a similar ‘core fragment’ of murine STAT3β was also solved (Becker et al, 

1998). In addition, structures for the unphosphorylated dimers of murine 

STAT5A (Neculai et al, 2005) and human STAT1 (Mao et al, 2005) have been 

solved. Coupled with work on the STAT4 N-terminal domain (Vinkemeier et al, 

1998; Chen et al, 2003), a composite structure can be produced for the 

phosphorylated (Fig. 1.3B) and unphosphorylated STAT dimer structures (Fig. 

1.3C and D).  

1.2.3.2 Domain Functions 

The N-terminal domain is necessary for the formation of unphosphorylated 

STAT1 and STAT3 homodimers, and also for nucleocytoplasmic shuttling of 

phosphorylated STAT3 dimers (Pranada et al, 2004; Mao et al, 2005; Vogt et al, 

2011). The coiled-coil region is essential for recruitment to the cytokine 

receptor and is necessary for dimer formation, nuclear import and DNA binding 

(Zhang et al, 2000). The DNA-binding domain (DBD) binds directly to a specific 

promoter sequence with a core motif of TTCN2–4GAA, with each STAT displaying 

different specificities for the N2-4 variants (Ehret et al, 2000). The linker domain 
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joins the DNA-binding domain and the SH2 domain together and interacts 

specifically with both domains (Chen et al, 1998). The SH2 domain recognises 

specific phospho-tyrosine residues on the cytokine receptor and the conserved 

tyrosine residue on the STAT monomer, which is Y705 in STAT3 and Y701 in 

STAT1. It is therefore essential for phosphorylated STAT dimerisation (Haan et 

al, 1999).  

The conserved tyrosine residue is situated next to the SH2 domain to prevent 

self-activation. The transactivation domain varies greatly between different 

STATs whilst STAT1 and STAT3 also have TAD alternative splice variants (Ning 

et al, 2003; Ng et al, 2012). The TAD contains numerous STAT-specific 

conserved serine phosphorylation sites and facilitates interactions with other 

transcription factors, such as p300, CBP (CREB-binding Protein) and Histone 

Acetyletransferases (Schindler et al, 2007). 

1.2.3.3 STAT3 mRNA and Protein Expression 

STAT3 is constitutively expressed in most tissues and can also be specifically 

up-regulated by IL-6 signalling in some cell types (Ichiba et al, 1998). STAT3 

mRNA was detected at increasing concentrations 1 h after addition of IL-6 to 

HepG2 cells, plateaued out after 3 h of continuous IL-6 signalling and could still 

be detected at 6 h. An extended time-course performed in M1 macrophages 

found STAT3 mRNA was sustained for up to 48 h of continuous IL-6 treatment 

(Ichiba et al, 1998). The half-life of STAT3 proteins was determined through a 

cycloheximide chase in COS-7 cells. The STAT3α isoform (full-length C-terminal 

domain) had a half-life of 8.5 h whereas the half-life of the truncated C-terminal 

isoform, STAT3β, was only 4.5 h (Siewert et al, 1999). Meanwhile STAT1 was 

found to be expressed at 1 x 105 molecules per cell in the HeLa cell line (Wenta 

et al, 2008), and it is assumed that STAT3 is expressed at a similar level. 
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Figure 1.3: Structure of STAT dimers. A Generic domain structure of STATs 

with illustrative amino acid numbers, indicating location of conserved phospho-

tyrosine residue (red Y). B Structure of human STAT1 ‘core fragment’ (Chen et 

al, 1998) modified to include STAT4 N-terminal domain (Vinkemeier et al, 

1998; Chen et al, 2003) and indicate the location of the C-terminal TAD (Levy & 

Darnell, 2002). C Bird’s-eye view and D side-on view of unphosphorylated 

STAT1 homodimer (reproduced from Mao et al, 2005).  

A 

B 
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1.2.3.4 STATs in the Un-Stimulated Cell 

In the unstimulated cell, STATs exist as dimers (Haan et al, 2000; Braunstein et 

al, 2003; Kretzschmar et al, 2004; Schröder et al, 2004). These non-

phosphorylated dimers have been shown to adopt an ‘anti-parallel’ 

conformation (Fig. 1.3C and D), whereby the C-termini are at opposite ends of 

the homodimer (Mao et al, 2005). Two interfaces, one between the coiled-coil 

domain and DNA-binding domain, and one between N-terminal domains, were 

identified as stabilising the anti-parallel dimer (Mao et al, 2005).  

The non-phosphorylated dimers are not restricted to the cytoplasm but instead 

shuttle constitutively between the nucleus and cytoplasm, despite being 

predominantly located in the cytoplasm (Meyer et al, 2002; Vinkemeier, 2004). 

The STAT subcellular distributions are maintained by the balance of nuclear 

import and export mechanisms, which vary between STATs. Consequently 

different STATs have different nucleocytoplasmic equilibria, that also differ 

between cell lines. For example, STAT1 exhibits a predominantly cytoplasmic 

distribution whereas in some cell types, e.g. HepG2, STAT3 is evenly distributed 

between the cytoplasm and the nucleus (Meyer et al, 2002).  

 

1.2.4 Early JAK-STAT Signalling Events 

1.2.4.1 Activating the gp130:IL-6Rα Receptor Complex 

Cytokine stimulation triggers the formation of the receptor complex within the 

cell membrane. In the case of IL-6, the IL-6 receptor complex forms in a specific 

order within minutes of IL-6 binding. First IL-6 binds to IL-6R prior to 

associating with pre-formed gp130 homodimers. A second IL-6:IL-6R dimer 

joins, completing the hexameric structure of 2IL-6:2IL-6R:2gp130 (Bravo et al, 

1998; Boulanger et al, 2003; Schroers et al, 2005; Tenhumberg et al, 2006). 

Since the structure of the extracellular region has been solved in detail (Fig. 

1.4), there is a good understanding of the sequence of induced conformational 

changes that lead to the trans-activation of the gp130-associated JAKs 

(Boulanger et al, 2003; Xu et al, 2010).  
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Figure 1.4: Cartoon of the activated IL-6 complex. The IL-6 receptor 

complex consists of 2 x gp130, 2 x IL-6R, 2 x IL-6 and 2 x JAK. JAK: FERM, SH2, 

pseudokinase and kinase domains labelled. Y = phospho-tyrosine residue. 

Based on the structure published (Matadeen et al, 2007) and the model figure in 

Heinrich, et al (Heinrich et al, 2003). 

The conformational changes of the gp130 receptor that lead to activation of the 

associated JAKs may involve: a shift from an extended to compressed form for 

gp130, a rotation around the vertical axis of symmetry of the complex and a 

“flapping” movement of the IL-6-bound domains (Matadeen et al, 2007). 

Together these movements could result in the repositioning of the rigid 

transmembrane α-helices of gp130 relative to each other, bringing the JAKs into 

closer proximity and affecting the interface between the JAKs and the gp130 tail 

to increase JAK activity (Haan et al, 2002; Matadeen et al, 2007; Wallweber et al, 

2014). The increased activity due to conformation rearrangement enables the 

JAKs to phosphorylate each other. This increases their catalytic ability further 

and enables their phosphorylation of specific gp130 tyrosine residues in YXXQ 
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motifs, specifically Y767, Y814, Y905 and Y915 in IL-6 signalling (Heinrich et al, 

2003). In turn, the phosphorylated gp130 tyrosines provide binding sites for 

STAT3 dimers, leading to the next step in the JAK-STAT signalling pathway: JAK 

phosphorylation of STAT dimers. These signal transduction events are swift; 

JAK and gp130 phosphorylation are detectable within 2 min of IL-6 stimulation 

and STAT3 phosphorylation occurs within 5 min (Wang & Fuller, 1994). 

1.2.4.2 Signalling Beacon Hypothesis 

The IL-6-induced activation of the receptor complex on its own is insufficient 

for downstream STAT3 activation and transcriptional activity; endosome 

trafficking is needed for maximal STAT3 activity. Disruption of both clathrin-

mediated receptor internalisation and early endosome signalling inhibits 

STAT3-dependent transcription (Bild et al, 2002). Clathrin-coated vesicles 

become early endosomes which present activated IL-6 receptors to the 

cytoplasm and act as ‘beacons of STAT3 activation’ (German et al, 2011). STAT3 

dimers rapidly cycle on and off the signalling endosomes where they are 

tyrosine phosphorylated at Y705 (Shah et al, 2006). The signalling process is 

terminated by the maturation of early endosomes into late endosomes and 

subsequently into lysosomes where the IL-6, IL-6R and gp130 are finally 

degraded; the entire process takes 2-3 h in total (Graeve et al, 1996; Tanaka et 

al, 2008). 

1.2.4.3 STAT Phosphorylation and Dimer Conformation Switching 

Tyrosine phosphorylation of the STAT dimers by the activated JAKs located on 

the signalling endosomes happens rapidly. It is generally described as rendering 

STATs transcriptionally active, even though there is now evidence that the non-

phosphorylated STAT dimers, especially STAT1 and STAT3, have specific 

transcriptional and non-transcriptional roles within the cell (Yang et al, 2005; 

Yang & Stark, 2008; Stark & Darnell, 2012). It is more accurate to say that 

tyrosine phosphorylation stabilises a “parallel” dimer conformation that has a 

high DNA-binding affinity. In this parallel configuration, the C-termini are 

located at the same end of the dimer and the dimer is stabilised by the SH2-

phospho-tyrosine interactions between the monomers (Fig. 1.3B) (Mao et al, 

2005; Zhong et al, 2005). As well as increasing the DNA-binding affinity, the 
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configuration change alters the modes of nuclear import and prevents nuclear 

export, thereby perturbing the nucleocytoplasmic shuttling equilibrium and 

resulting in the accumulation of phosphorylated STATs within the nucleus 

(Vinkemeier, 2004).  

STATs are also phosphorylated on conserved serine residues located in the 

transactivation domain, for example Ser727 in STAT3 (Decker & Kovarik, 

2000). MAP (Mitogen Activated Protein) Kinases, induced by other cytokine 

signalling in addition to IL-6, and other kinases, such as CDK5 (cyclin-dependent 

kinase 5) and the mTOR (mammalian target of rapamycin) kinase, are 

responsible for serine phosphorylation (Decker & Kovarik, 2000; Wakahara et 

al, 2012). The MAP kinases are recruited by SH2 adaptor proteins and Erk1/2, 

JNK and p38 are among the MAPKs recruited to the IL-6 activated receptor 

complex located on the early signalling endosomes (Hibi & Hirano, 1998). 

Serine phosphorylation has roles in transcription co-factor recruitment and in 

regulating tyrosine phosphorylation and therefore STAT transcriptional activity 

(Schuringa et al, 2001; Wakahara et al, 2012). 

 

1.2.5 Getting the STAT Signal to the Nucleus 

1.2.5.1 Nuclear Import of STATs 

STAT1, STAT3, STAT5 and STAT6 constitutively shuttle between the nucleus 

and cytoplasm and accumulate upon tyrosine phosphorylation whereas STAT2 

and STAT4 require tyrosine-phosphorylation to translocate into the nucleus 

(Reich, 2013). As such, nuclear trafficking is highly complex and varies between 

STATs (Vinkemeier, 2004). Thus despite considerable efforts, the precise 

mechanisms of STAT nuclear trafficking are still rather unclear (Reich, 2013).  

STAT proteins are too large to enter or exit the nucleus by diffusing through the 

Nuclear Pore Complex (NPC), instead they must either interact directly with 

nucleoporins, the protein components of the NPC, or indirectly via 

karyopherins, the chaperone trafficking proteins for the NPC consisting of the 

importins and exportins (Komeili & O'Shea, 2001). Direct interaction with the 

NPC in carrier-free transport is rare; most proteins rely on carrier-dependent 
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transport by the karyopherins. To interact with either system, the protein must 

possess Nuclear Localisation Signals (NLS) and Nuclear Export Signals (NES), 

weakly conserved amino acid sequences on the surface of the protein 

(Vinkemeier, 2004). A number of NLS and NES have been identified for each 

STAT, some conserved between STATs and others not (Kisseleva et al, 2002; 

Pranada et al, 2004; Vinkemeier, 2004).  The different combinations of NLS and 

NES maintain the finely balanced equilibrium that result in the observed 

nucleocytoplasmic distributions of STATs 1, 3, 5 and 6.  

Unphosphorylated STAT1 and STAT3 use carrier-free transport to enter and 

exit the nucleus (Marg et al, 2004; Vogt et al, 2011) but it is unclear whether 

other STATs also use this mechanism. In addition, STAT1 enters the nucleus 

using the karyopherins importin-α1:importin-β, whilst STAT3 uses importin-

α3:importin-β (reviewed Reich, 2013). Meanwhile nuclear export of U-STATs 

requires but does not entirely depend on CRM-1/exportin-1; inhibiting CRM-1 

with Leptomycin-B leads to the slow nuclear accumulation of STAT3 and STAT1 

because carrier-dependent nuclear export has been blocked (Bhattacharya & 

Schindler, 2003; Marg et al, 2004; Vinkemeier, 2004). 

1.2.5.2 Live Cell Imaging of STAT Nuclear Accumulation 

The nuclear accumulation of STATs has been visualised through live cell 

imaging experiments using fluorescent protein-tagged STATs. STAT1 was 

shown to accumulate in the nucleus and the nuclear localisation was sustained 

for 24 h after IFN-γ stimulation (Fig. 1.5) (Köster & Hauser, 1999). STAT3 

accumulation in the nucleus was imaged at 5 minute intervals for 1 h in HepG2 

cells stimulated with 20 ng/ml IL-6 for the duration of the experiment (Fig. 1.6) 

(Pranada et al, 2004). The maximum nuclear intensity was observed between 

30 and 40 min post-IL-6 stimulation. STAT6 was similarly shown to accumulate 

in the nucleus over a 1 h period after IL-4 signalling, and in this instance both N- 

and C-terminal GFP tags were considered (Nelson et al, 2002). The N-terminal 

tag translocated into the nucleus faster and was more transcriptionally active 

and this raises questions about how best to tag STATs with fluorescent proteins. 
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Figure 1.5: STAT1 time-dependent accumulation in the nucleus. STAT1-

GFP in stably-transfected C243 cells, stimulated with IFN-γ. Reproduced from 

Köster and Hauser (1999). 

 

 

Figure 1.6: Live cell fluorescence imaging of STAT3 nuclear 

accumulation. STAT3-CFP-YFP transfected into HepG2 cells and stimulated 

with 20 ng/ml IL-6. Artificially coloured heat map of fluorescence intensity. 

Reproduced from Pranada et al, (2004)     .  
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1.2.5.3 STAT DNA Binding and Gene Transcription 

Tyrosine phosphorylated STATs bind DNA with much higher affinity that non-

phosphorylated STATs and this is thought to be what traps them in the nucleus, 

leading to nuclear accumulation (Pranada et al, 2004; Wenta et al, 2008). As 

phospho-STATs accumulate in the nucleus they specifically bind γ-activated 

sequences (GAS), palindromic motifs of TTCN2–5GAA, so called because they 

were first discovered through gamma-Interferon signalling (Decker et al, 1997).  

STAT3 initiates transcription of a host of genes in the co-ordination of the Acute 

Phase Response in response to IL-6 signalling (Moshage, 1997). Genes 

responsive to IL-6 typically have a consensus GAS sequence within their 

promoter region. The products of these genes include critical effectors of the 

innate immune response, such as the complement system, and also the proteins 

and enzymes needed for the repair response, such as fibrinogen which is 

necessary for blood clotting (Bode et al, 2012a). Other STAT3-responsive genes 

are regulated in a more complex fashion and rely on non-consensus STAT3 

response elements. For example, Serum Amyloid A is strongly induced in 

response to IL-6 in conjunction with NF-κB stimuli (Bode et al, 2012a). In this 

instance, STAT3 binds to a site 3’ of the NF-κB response element, after forming a 

heteromeric complex with p65 and p300, a transcriptional co-activator 

(Hagihara et al, 2005). Several other APR genes are also co-operatively induced 

by STAT3 and NF-κB whereas other genes are up-regulated by STAT3 but 

down-regulated by NF-κB, highlighting the complexity of the transcriptional 

outcomes of STAT3 and NF-κB cross-talk. 

An additional important set of genes induced by STAT signalling are for the 

SOCS proteins. The SOCS proteins form negative feedback loops for STAT 

signalling and are essential for the proper regulation of JAK-STAT signalling and 

STAT-induced gene transcription. 

1.2.6 Turning Off JAK-STAT Signalling 

1.2.6.1 Deactivation and Nuclear Export 

Phosphorylated STATs must be dephosphorylated before they can be exported 

from the nucleus; inhibition of protein-tyrosine phosphatases (PTPs) prevents 

nuclear export (Meyer et al, 2003). Several different PTPs which 
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dephosphorylate STATs in the nucleus have been identified, including SHP2 

(SH2-domain-containing tyrosine phosphatase), PIAS3 (protein inhibitor of 

activated STAT3) and TC45/TC-PTP (T cell-PTP) (Yamamoto et al, 2002; 

Wakahara et al, 2012). Phosphorylation of a conserved serine residue, Ser727 in 

STAT3, regulates TC45 phosphatase activity (Wakahara et al, 2012). The rate of 

STAT dephosphorylation is partially regulated by STAT DNA binding, with the 

rate of dephosphorylation being proportional to the DNA off-rate (Meyer et al, 

2003). It is hypothesized that the parallel dimer, once unbound from DNA, 

spontaneously switches to the anti-parallel configuration, facilitating 

dephosphorylation of phospho-tyrosine-STAT dimers by nuclear PTPs. Loss of 

the phospho-tyrosine:SH2 interaction further destabilises the parallel dimer 

conformation, promoting the antiparallel STAT dimer configuration (Zhong et 

al, 2005). The dephosphorylated antiparallel STAT dimers are finally exported 

by the mechanisms that govern nuclear export in unstimulated cells, namely 

CRM-1 mediated export and constitutive STAT carrier-free export, and the 

export rate after stimulation is unchanged from before stimulation (Cimica et al, 

2011). 

1.2.6.2 Constitutive Inhibitors of STAT Signalling 

The protein tyrosine phosphatases essential for STAT dephosphorylation are 

constitutive inhibitors of cytokine signalling and do not require de novo protein 

synthesis. Although previously discussed in the context of nuclear 

dephosphorylation, PTPs are also active in the cytoplasm and have other roles 

besides inhibiting cytokine signalling. The cytoplasmic PTPs include SHP1, 

SHP2, TC-PTP, PTP-Receptor, CD45 and PTP1B (Heinrich et al, 2003; Wakahara 

et al, 2012). SHP2 is particularly interesting because in addition to 

dephosphorylating STATs, it also dephosphorylates gp130 and the associated 

JAKs. In doing so it prevents the phosphorylation of additional STATs and 

contributes to turning cytokine signalling off at the source (Schmitz et al, 2000; 

Lehmann et al, 2003).  

PIAS3 is part of a family that includes PIAS1, PIAS2 and PIAS4 (Yagil et al, 

2010). Although PIAS1 and PIAS3 were discovered in the context of inhibiting 

STAT1 and STAT3 respectively (Chung et al, 1997), inhibiting STATs is by far 



Introduction to JAK-STAT and NF-κB 

 

~ 21 ~ 
 

from their only role. The PIAS family has since been found to regulate upwards 

of 60 proteins, mostly transcription factors including NF-κB and SMADs, and 

they positively up-regulate some and down-regulate many others (Yagil et al, 

2010). PIAS proteins have several different mechanisms for regulating target 

proteins. They possess a SUMO-E3-ligase domain and are also able to bind to 

chromatin at scaffold attachment sites, often near gene enhancers. They also 

have a domain that inhibits STATs and another that activates nuclear receptors 

(Yagil et al, 2010). Unfortunately the precise details of how exactly PIAS 

proteins regulate their many targets, including STAT3, are unclear. 

1.2.7 SOCS Proteins and Inducible Negative Feedback 

1.2.7.1 The SOCS Family 

The SOCS family was first discovered as inhibitors of cytokine signalling, 

induced by STATs. CIS (cytokine-inducible SH2-domain containing protein) was 

discovered in 1995 (Yoshimura et al, 1995) while SOCS1 was discovered by 

three groups simultaneously, each using different techniques (Endo et al, 1997; 

Naka et al, 1997; Starr et al, 1997). SOCS2 and SOCS3 were identified at the 

same time (Starr et al, 1997). Four additional SOCS, SOCS4, SOCS5, SOCS6 and 

SOCS7, were subsequently identified on the basis of conserved DNA sequences 

(Hilton et al, 1998). The roles of CIS, SOCS1-3 and their mechanisms of 

signalling inhibition are now reasonably well understood. SOCS1-3 and CIS are 

virtually undetectable in most cell types but are rapidly induced by STATs in 

response to cytokine signalling. They inhibit the activity of the cytokine receptor 

type that induced their expression by targeting the activated receptors for 

proteasomal degradation and, in the case of SOCS1 and SOCS3, by also directly 

preventing JAK kinase activity (Linossi et al, 2013). In doing so, SOCS1-3 and CIS 

form classical negative feedback loops. For example, IL-6 induces STAT3 

activation, which induces SOCS3 expression, which in turn inhibits the active IL-

6 receptor complex.  

Conversely the in vivo functions of SOCS4-7 are far less clear. They are 

constitutively expressed at high levels in many cell types, and seem to be 

predominantly involved in down-regulating Receptor Tyrosine Kinase (RTK) 

signalling pathways, including insulin, growth hormone and epidermal growth 
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factor (EGF), through proteasomal degradation of the receptors  (Croker et al, 

2008a; Babon et al, 2014).  

1.2.7.2 Biological Roles of SOCS 

CIS and SOCS2, which share 45% sequence homology, act in a similar fashion 

and have some overlap in the cytokine signals they inhibit. CIS and SOCS2 both 

inhibit cytokines that signal via STAT5 including leptin (Lavens et al, 2006), 

prolactin (Dif et al, 2001; Endo et al, 2003), and Growth Hormone (GH) (Ram & 

Waxman, 2000; Greenhalgh et al, 2005; Vesterlund et al, 2011) whilst CIS also 

inhibits EPO (Verdier et al, 1998) and IL-2 signalling (Aman et al, 1999). SOCS4 

and SOCS5 are both inhibitors of EGF (Kario et al, 2005) and SOCS4 may have a 

role in ovarian folliculogenesis (Sutherland et al, 2012). SOCS6 and SOCS7 

down-regulate RKTs, such as KIT (Bayle et al, 2004) and the Insulin Receptor 

(Kabir et al, 2014). They appear to inhibit MAPK signalling from the RTKs, 

including ERK1/2, p38 and AKT (Kabir et al, 2014). SOCS6 can be found in the 

nucleus as well as the cytoplasm and has also been reported to regulate STAT3 

protein levels (Hwang et al, 2007). SOCS1 and SOCS3 are the most potent of the 

SOCS and each specifically regulates one particular class of cytokines. SOCS1 

inhibits Type I and Type II Interferons which signal to STAT1 via the γC-

receptor (reviewed Linossi et al, 2013) whereas SOCS3 inhibits IL-6-type 

cytokines that signal via gp130 to STAT3 (Croker et al, 2003; Babon et al, 2014). 

1.2.7.3 Domain Organisation of SOCS Proteins 

The eight related proteins all possess an SH2 domain and an extended SH2 

domain (ESS) for binding phospho-tyrosine residues, and a domain called the 

‘SOCS box’, approximately 40 amino acids long, that functions as a recruiter for 

an E3 ligase complex (Kile et al, 2002; Kershaw et al, 2014). The SOCS proteins 

are divided into two groups according to the length of their N-terminal region; 

CIS, SOCS1-3 have short N-terminal regions whereas SOCS4-7 have extended N-

terminal regions (Linossi et al, 2013). Different pairs of SOCS proteins also have 

additional shared features. For example, SOCS1 and SOCS3 have a Kinase 

Inhibitory Region (KIR) which is essential for the direct inhibition of their JAK 

targets (Sasaki et al, 1999). SOCS3 and CIS both have a PEST (proline, glutamic 

acid, serine and threonine) sequence which reduces their stability in vivo 

(Babon et al, 2005). SOCS4 and SOCS5 meanwhile share a conserved region 
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within their extended N-terminal regions, whose function is unclear (Feng et al, 

2012). Fig 1.7 illustrates the domain structures of the different SOCS proteins 

(Linossi et al, 2013).  

 

 

Figure 1.7: SOCS proteins’ domain architecture. Each contains a C-terminal 

SOCS Box motif, the SH2 domain, extended SH2 domain (ESS) and a variable N-

terminal region. SOCS1 and SOCS3 also contain the kinase inhibitory region 

(KIR), while SOCS3 and CIS have a PEST domain. Domains colour-coded, and 

SOCS paired by sequence homology (%). Reproduced from Linossi et al, (2013). 

 

1.2.7.4 Mechanisms of Inhibition 

SOCS proteins bind to their targets using their ESS and SH2 domains, which 

together recognise specific phospho-tyrosine residues on the JAKs and 

associated signalling receptors e.g. γC-Receptor or gp130 (Linossi et al, 2013). 

Some SOCS bind phospho-tyrosines on the JAKs but SOCS3 preferentially binds 

to the phospho-tyrosines of the gp130 cytoplasmic tail (Nicholson et al, 2000). 

It has been shown that SOCS3 preferentially binds simultaneously to gp130 and 

either JAK1, JAK2 or TYK2, using two independent interaction faces to do so. 

This three-way complex of JAK, gp130 and SOCS3 explains the high binding 

avidity of SOCS3 (Kershaw et al, 2013). It is hypothesised that at least SOCS1 

will also use this mechanism (reviewed Linossi et al, 2013). 
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Once bound to their targets, all SOCS proteins function as E3 ligase recruiters, 

targeting the receptors for proteasomal degradation. The SOCS box forms an 

active E3 ligase complex with Cullin-5 and Elongins-B/C which ubiquitinates the 

target on Lys48 (Bullock et al, 2006; Kershaw et al, 2014). This leads to the 

down-regulation of activated receptor complexes through proteasomal 

degradation, and so to the cessation of cytokine signalling.  

Of particular interest is the additional mechanism of inhibition used by SOCS1 

and SOCS3. These SOCS proteins both possess a kinase inhibitory region. This is 

a small, unstructured, 12 amino acid motif located N-terminally of the ESS and 

SH2 domains (Babon et al, 2005; Babon et al, 2006). It was originally 

hypothesized that the KIR acted as a pseudo-substrate for activated JAKs, based 

on the KIR’s similarity to the JAK activation loop (Sasaki et al, 1999). However, 

recent work revealed that the KIR binds alongside the JAK activation loop and 

so blocks substrate, e.g. STAT3, access to the active site (Kershaw et al, 2013). 

By blocking the JAK kinase domain and decreasing its catalytic activity, as well 

as increasing the receptor degradation rate, SOCS1 and SOCS3 reduce the rate of 

STAT1 and STAT3 phosphorylation, thereby inhibiting STAT transcriptional 

activity and cytokine signalling, and shaping the immune response 

appropriately (Croker et al, 2008b; Linossi et al, 2013). 

1.2.7.5 Regulation of SOCS3 Expression 

The expression of inducible SOCS proteins is tightly regulated to prevent 

uncontrolled immune responses. SOCS3 is rapidly induced by IL-6-activated 

STAT3, appearing within 15 min of IL-6 stimulation and peaking around at 1 h 

(Siewert et al, 1999; Yoshiura et al, 2007). In addition to intrinsic proteasomal 

degradation, the half-life of SOC3 protein varies in a cell-line dependent manner 

and can also be altered by additional signalling events, thus facilitating cross-

talk between STATs and other signalling pathways. The protein half-life of 

SOCS3 varies between 20 min and as much as 4 h, depending on the cell-line and 

additional post-translational modifications (Siewert et al, 1999; Sasaki et al, 

2003). SOCS3 can be phosphorylated on two tyrosines, Tyr204 and Tyr221, within 

the SOCS box by Src kinases or RTKs, active as a result of other cytokine signals. 

These phosphorylation events destabilise the interaction between SOCS3 and 
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elongin-C, facilitating SOCS3 degradation by the proteasome (Haan et al, 2003; 

Sommer et al, 2005). In turn, SOCS3 protein levels decrease and the SOCS3 

inhibition of STAT3 activation is reduced, with important implications for cross-

talk between signalling pathways (Sommer et al, 2005). 

SOCS3 mRNA is another point of cross-talk between STAT3 and other signalling 

networks. Not only does SOCS3 mRNA half-life vary by cell type, but it can be 

increased by other signalling pathways. In NIH-3T3 (mouse embryo fibroblast) 

cells, the half-life of SOCS3 mRNA is 22 ± 5 min and in RAW 264.7 macrophages 

it is 17 ± 3 min but in primary human bone-derived macrophages it is 49 ± 4 

min (Ehlting et al, 2007). These half-lives increase by approximately 20 min in 

response to TNFα signalling through the p38/MAPK stress-response pathway, 

which stabilises the SOCS3 mRNA in a mechanism involving a destabilising A/U-

rich element in its 3’ UTR (untranslated region) (Ehlting et al, 2007). By 

increasing the mRNA half-life and thus the quantity of SOCS3 protein in the cell, 

the other cytokine signal, in this case TNFα, strengthens the inhibition of STAT3 

and influences the overall immune response to IL-6. 

1.2.8 STAT3 and SOCS3 as an Oscillating System 

The induction of SOCS3 by IL-6-activated phospho-STAT3 forms a negative 

feedback loop that regulates phospho-STAT3 signalling within the cell, through 

the SOCS3 inhibition of JAK kinase activity at the IL-6 receptor (Fig. 1.8) 

(Yoshiura et al, 2007). Temporal delays between the key steps of the pathway, 

i.e. STAT3 translocation to the nucleus, SOCS3 gene transcription and SOCS3 

protein expression, fulfil the basic requirements for oscillatory dynamics to 

arise within a signalling system. 

Indeed, phospho-STAT3 and SOCS3 mRNA and protein were shown to 

interdependently oscillate in a population of serum-synchronised presomitic 

mesoderm cells (C3H10T½), in the context of the somite segmentation clock in 

the embryo (Yoshiura et al, 2007). Phospho-STAT3 (P-STAT3) had an 

oscillatory period of 2 h, as did SOCS3 protein, however the SOCS3 protein 

oscillations were an hour behind those of P-STAT3 (Fig. 1.9). In addition, there 

was a 1 h delay between SOCS3 mRNA translation and protein expression. 

SOCS3 siRNA knockdown abolished P-STAT3 oscillations, resulting in sustained 
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P-STAT3 whereas expression of a dominant-negative STAT3 abolished SOCS3 

oscillations (Fig. 1. 9) (Yoshiura et al, 2007). This demonstrated the 

interdependence of the STAT3-SOCS3 oscillations. 

 

Figure 1.8: Schematic representation of STAT3-SOCS3 signalling, 

illustrating the SOCS3 negative feedback loop. Components include the IL-

6-activated Receptor, unphosphorylated STAT3, phosphorylated STAT3 (P-

STAT3), SOCS3 mRNA (socs3) and SOC3 protein (Socs3), compartmentalised 

into the cytoplasm and nucleus. Figure provided by N. Domedel-Puig. 

In addition to the oscillations seen in serum-synchronised cells, biphasic 

kinetics were observed in the phosphorylation of STAT3 and SOCS3 mRNA 

levels in primary bone-marrow derived macrophages continuously stimulated 

with IL-6 (Wormald et al, 2006). The kinetics were dependent on SOCS3 as 

SOCS3-/- macrophages exhibited sustained STAT3 phosphorylation without 

biphasic kinetics. Furthermore, SOCS3 desensitised cells pre-treated with a 15 

min pulse of IL-6 to a subsequent 15 min IL-6 pulse in a time-dependent 

manner, according to the rest period between pulses (Wormald et al, 2006). 

Elsewhere, biphasic kinetics at the population level have been indicative of 

oscillations within single cells being masked by intercellular heterogeneity 

(Ashall et al, 2009), suggesting that P-STAT3 also oscillates at the single cell 

level. 

receptor 
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Figure 1.9: Oscillations in P-STAT3 and SOCS protein. Obtained from 

serum-stimulated C3H10T1/2 cells. Includes STAT3 control, expression with 

dominant SOCS3 (+SOCS3), and siRNA knock-down of SOCS3 (+siSOCS3). Blots 

reproduced from Yoshiura et al, 2007.  

 

Together these two studies strongly suggest that P-STAT3 and SOCS3 mRNA 

and protein will oscillate in single cells in response to continuous IL-6 

stimulation. Unfortunately it is not generally possible to study phosphorylation 

states using live cell fluorescence microscopy. However, since STAT3 undergoes 

a net nuclear translocation in response to IL-6 (Fig. 1.6) (Pranada et al, 2004), it 

may be possible to use bulk STAT3 translocation dynamics as a proxy for the 

phosphorylation state of STAT3 in long-term live cell fluorescence microscopy 

experiments. It may also be possible to observe SOCS3 mRNA and protein 

oscillations with the appropriate luciferase and fluorescent protein tagged 

reporter constructs.  
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1.3 NF-κB Signalling  

1.3.1 Biological Context of NF-κB Signalling 

The NF-κB (Nuclear Factor-kappaB) family of transcription factors has many 

roles throughout the immune system, and also in the cell cycle, proliferation, 

differentiation, and apoptosis (Gerondakis et al, 2006). Similar to the STATs, 

dysregulated NF-κB signalling is implicated in a host of diseases, including 

asthma, arthritis, heart disease, chronic inflammatory diseases and many 

cancers, and thus NF-κB is a prime target for medical intervention (Hayden & 

Ghosh, 2008). A wide variety of signals are transduced by NF-κB, including 

cytokines such as the TNFα, IL-1β, bacterial products e.g. lipopolysaccharide 

(LPS), and B and T cell mitogens. NF-κB also responds to genotoxic stress e.g. 

UV radiation, and to oxidative stress (Hayden & Ghosh, 2008). Consequently NF-

κB is a major regulator of transcription and controls of upwards of 300 genes 

(Hoffmann & Baltimore, 2006). 

 

1.3.2 Overview of NF-κB Signalling 

As with the JAK-STAT system, NF-κB signalling is considerably complex 

therefore this section provides a brief overview of the canonical NF-κB pathway 

(Fig. 1.10). In unstimulated cells, NF-κB dimers are predominantly localised to 

the cytoplasm by Inhibitor of KappaB (IκB) proteins (Hayden & Ghosh, 2008). 

Activation of the NF-κB network by specific signals culminates in the activation 

of IKK, the Inhibitory-KappaB Kinase complex (Karin, 2008). This three 

component kinase phosphorylates IκB proteins, which targets them for 

ubiquitination and subsequent degradation, releasing NF-κB in the process 

(Karin, 1999). Unbound NF-κB dimers translocate to the nucleus where they 

bind to κB DNA sequences and initiate transcription. The nuclear translocation 

is short-lived and has been extensively imaged using fluorescence microscopy 

(Nelson et al, 2002; Nelson et al, 2004; Ashall et al, 2009). One gene activated by 

NF-κB is IκBα. Consequently, IκBα accumulates in the cytoplasm and 

translocates to the nucleus where it disrupts NF-κB:DNA binding, binds to NF-

κB and exports it from the nucleus, thus halting transcription (Arenzana-
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Seisdedos et al, 1997). In this way IκBα forms a classical negative feedback loop 

and is the primary negative regulator of NF-κB activity (Perkins, 2006). Other 

NF-κB regulated feedback genes include IκBε and A20, which have different 

roles within the NF-κB network.  

1.3.3 NF-κB Proteins 

Five homologous proteins comprise the NF-κB family (Bonizzi & Karin, 2004). 

They were first discovered as a nuclear factor bound to Kappa Light Chain 

promoters in B cells (Sen & Baltimore, 1986). The family members are RelA 

(p65), RelB, cRel, and NF-κB1(p105/p50) and NF-κB2 (p100/p52) (Chen & 

Greene, 2004). They form a variety of homo- and heterodimers, which each 

have different transcriptional roles (Perkins et al, 1992; Hayden & Ghosh, 

2008).  

NF-κBs all have an N-terminal RHD (Rel Homology Domain), an ~300 amino 

acid sequence responsible for DNA binding, interaction with IκBs, dimerisation, 

and nuclear localisation (Gilmore, 1999). In addition, p65, RelB and cRel contain 

a non-homologous C-terminal transactivation domain (TAD) which allows them 

to activate transcription by recruiting transcriptional co-factors and the basal 

transcription machinery to the promoter (O'Shea & Perkins, 2008). NF-κB1 and 

NF-κB2 do not contain a TAD and instead contain ARDs (Ankyrin Repeat 

Domains), a feature shared with the IκBs. Therefore NF-κB1 and NF-κB2 are 

considered to be inhibitory proteins (Rice et al, 1992). The C-terminal domains 

of NF-κB1 and NF-κB2 can be cleaved off at a specific site, either through 

proteolysis or arrested translation, resulting in p50 and p52 respectively 

(Moorthy et al, 2006). P50 and p52 are however able to form transcriptionally 

active heterodimers with p65, RelB and cRel (Siebenlist et al, 1994). The 

predominant dimer, p65:p50, is representative of the canonical signalling 

pathway, and is found in virtually all cell types for the regulation of 

inflammatory and immune responses (Siebenlist et al, 1994). The alternative 

pathway uses a RelB:p52 dimer to regulate lymphoid organogenesis, B cell 

survival and maturation, and dendritic cell activation (Sun, 2011). 
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Figure 1.10: Overview of the Classical NF-κB Signalling pathway  

TNFα and IL-1β bind to their respective receptors (TNFR and IL1R), triggering 

receptor activation. Mediator proteins including TRADDs, TRAFs and IRAKs lead 

to the activation of the IKK complex (NEMO, IKKα and IKKβ) through 

phosphorylation events. IKK then phosphorylates IκBs (here, IκBα), marking 

them for lysine ubiquitination. Ubiquitinated-IκBs are targeted to the 

proteasome for degradation, releasing NF-κB dimers (here p65 and p50) from 

inhibition. NF-κB dimers translocate to the nucleus en mass where they induce 

gene transcription. The genes transcribed include the inducible IκBs (IκBα, β, ε), 

and also the inhibitor A20. A20 inhibits IKK activity using a variety of 

mechanisms. Newly synthesized IκBα translocates to the nucleus where it binds 

NF-κB dimers and shifts their localisation equilibrium to the cytoplasm, 

resetting the system.  
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1.3.4 IKK Complex 

The IKK complex is the focal point of the many signalling cascades that result in 

NF-κB activation (Hacker & Karin, 2006). It consists of three proteins, IKKα, 

IKKβ and NEMO (NF-κB Essential Modifier, also known as IKKγ), in 1:1:1 

arrangement. IKKα and IKKβ phosphorylate NF-κB-bound IκB proteins whilst 

NEMO regulates the activity of IKKα and IKKβ (Rothwarf et al, 1998). IKKα and 

IKKβ possess an N-terminal serine kinase domain for phosphorylating targets, a 

leucine zipper and a helix-loop-helix domain to mediate protein:protein 

interactions and a NEMO-binding domain (NBD) (Zandi et al, 1997). 

Phosphorylation of the IKKα/β activation loops activates the kinase domain and 

enables phosphorylation of IκB targets (Hacker & Karin, 2006). Progressive 

auto-phosphorylation of IKK causes a conformational change that decreases 

kinase activity and makes the IKK more susceptible to phosphatases for 

complete deactivation (Hacker & Karin, 2006). 

1.3.5 IκB Proteins 

IκBs are a major regulatory mechanism for NF-κB signalling. They function in a 

number of different ways, notably by sequestering NF-κB in the cytoplasm, 

disrupting DNA binding, and facilitating nuclear export (Hayden & Ghosh, 

2008). Certain IκBs may also have additional functions. Eight IκBs have been 

described so far, comprising two groups: classical and nuclear. All possess 

multiple ARDs, which facilitate binding to the NF-κB RHD (Siebenlist et al, 

1994). Other common features include a C-terminal PEST sequence (important 

for destabilising the IκB), NLS and NES motifs, and Death Domains for 

interacting with particular receptors. The classical IκBs, IκBα, IκBβ, IκBε, and 

IκBγ (a splice variant of NF-κB1) and NF-κB2, all bind to NF-κB dimers and 

cause them to be retained in the cytoplasm. The nuclear IκBs, Bcl-3, IκBζ and 

IκBδ, are located in the nucleus where they are able to modulate NF-κB 

transcriptional activity (Hayden & Ghosh, 2008). The IκBs preferentially bind 

different NF-κB dimers, with IκBα and IκBε binding most strongly to the 

p65:p50 NF-κB heterodimer of the classical pathway. 
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It is important to note that ‘cytoplasmic sequestration’ of NF-κB by classical 

IκBs is an oversimplification. As with STATs, NF-κB dimers constitutively 

shuttle between the nucleus and cytoplasm but are localised predominantly in 

the cytoplasm of resting cells. This is because IκB binding obscures the NLS 

motif of NF-κB, allowing the exposed NF-κB NES to drive nuclear export (Turpin 

et al, 1999). IκB binding also interferes with DNA binding and in conjunction 

with cytoplasmic localisation, renders NF-κB transcriptionally inactive 

(Tergaonkar et al, 2005). NF-κB is only released from IκB inhibition once IKK-

phosphorylated IκBs are recognised and poly-ubiquitinated on specific lysine 

residues by an ubiquitin ligase complex; this results in proteasomal degradation 

of ubiquitinated IκBs, thus releasing NF-κB and triggering its net nuclear 

translocation  (Karin & Ben-Neriah, 2000; Perkins, 2006).  

1.3.6 Regulation of NF- κB Transcriptional Activity 

NF-κB transcriptional activity is regulated through a number of different 

mechanisms, including nuclear import, post-translational modifications and 

recruitment of co-activators and co-repressors of transcription (Hayden & 

Ghosh, 2008). Nuclear import is primarily regulated by interactions with the 

IκBs, however nuclear localisation is insufficient for NF-κB activity. Post-

translational modifications e.g. phosphorylation and acetylation, further 

regulate NF-κB activity by determining which transcriptional co-activators and 

co-repressors interact with NF-κB (Perkins, 2006). Finally, ubiquitination by 

SOCS1 and other E3 ligases targets p65/NF-κB for proteasomal degradation 

(Ryo et al, 2003) and contributes to the deactivation of NF-κB signalling.  

Other regulatory feedbacks exist besides the IκBs and post-transcriptional 

modifications. One is A20, a zinc-finger protein with de-ubiquitinating and 

ubiquitin ligase domains, which is rapidly induced by TNFα stimulation of NF-

κB. Various inhibitory mechanisms have been proposed for A20 which 

predominantly act on events between receptor activation and IκB degradation, 

including blocking IKK phosphorylation and targeting key signalling 

components for proteasomal and lysosomal degradation (Verstrepen et al, 

2010).  
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1.3.7 Dynamics of Classical NF- κB Signalling 

As stated above, the classical NF-κB signalling pathway uses p65:p50 

heterodimers. These dimers are retained in the cytoplasm by IκBα, IκBβ and 

IκBε. IκBα is strongly and rapidly induced by NF-κB signalling, forms a classical 

negative feedback loop, and is therefore particularly important to the regulation 

of the p65:p50 dimer. IκBα is rapidly degraded as a result of phosphorylation 

and ubiquitination, allowing p65:p50 to translocate into the nucleus (Turpin et 

al, 1999). NF-κB dimers reside in the nucleus until IκBα re-accumulates, at 

which point IκBα-mediated nuclear export takes over and returns NF-κB to the 

cytoplasm (Hayden & Ghosh, 2008) (Fig. 1.11). IκBβ is a weaker inhibitor of 

p65:p50 than IκBα but can compensate for its loss in genetic knock outs whilst 

IκBε preferentially inhibits p65 homodimers and therefore may regulate a 

specific subset of genes (Whiteside et al, 1997). These processes, from IKK 

activation to IκB expression, take time to occur but the delay between initiation 

of IκBα transcription and the accumulation of expressed IκBα protein 

represents a significant temporal delay. This delay, in conjunction with the 

negative feedback of IκBα inhibition of NF-κB transcriptional activity, primes 

the NF-κB signalling system for oscillatory dynamics.  

Early biochemical studies of bulk cell populations on NF-κB signalling identified 

the stimulus-induced transient translocation of NF-κB to the nucleus as a 

biphasic response, caused by the degradation and resynthesis of IκBs (Baeuerle 

& Baltimore, 1988; Hoffmann et al, 2002). Subsequently, live cell imaging 

studies in the HeLa and the neuroblastoma SK-N-AS cell lines (Figure 1.12) 

(Nelson et al, 2004; Ashall et al, 2009) determined that in fact NF-κB exhibited 

oscillatory nucleocytoplasmic translocation dynamics that persisted for >20 

hours.  
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Figure 1.11: Representation of core components from the classical NF-κB 

pathway, modelled in Ashall et al, (2009). Reproduced from (Ankers et al, 

2008).  

 

Figure 1.12: HeLa cell displaying oscillatory NF-κB nuclear translocations 

and IκBα degradation and resynthesis (Nelson et al, 2004). 

Confocal microscopy time course of a single HeLa cell expressing p65-dsRed-

Express (Red) under the control of a consensus κB promoter and IκBα-EGFP 

(green) under the control of  a control κB promoter. The cell was treated with 

10 ng/ml TNFα at time zero. Loss of green signal indicates degradation of IκBα. 

Net nucleocytoplasmic translocation of p65 is particularly clear at 72 min. Scale 

bar represents 50 μm. 

The first p65 nuclear translocation was highly synchronised across the 

population but subsequent translocations, which decreased in amplitude over 

time, were heterogeneous between cells. The mean oscillatory period was 100 

min. Because the oscillations were heterogeneous, the dynamics could be 

masked by population averaging, which would explain why oscillations were 

not seen in population-based studies. More recently, it was suggested that 

intercellular heterogeneity may contribute to a robustly maintained tissue level 
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response to cytokine signalling, which in this instance is driven by the 45 min 

delay in IκBε transcription relative to IκBα (Kearns et al, 2006; Paszek et al, 

2010). Further studies have also found oscillations in mouse embryonic 

fibroblasts (MEFs) from NF-κB transgenic mice (Sung et al, 2009) and from a 

stable lentiviral transduced 3T3 cell line (Tay et al, 2010). Additionally, imaging 

IκBα using a κB promoter driven EGFP-tagged IκBα resulted in IκBα levels 

oscillating out-of-phase with NF-κB nucleocytoplasmic oscillations (Nelson et al, 

2004).  

A single 5 min TNFα pulse caused a single synchronous NF-κB nuclear 

translocation in over 97% of cells with no following cycles of activation (Nelson 

et al, 2004). Repeat pulses of TNFα were able to trigger additional rounds of 

activation, indicating that the system was still responsive. Pulses at 60 and 100 

min intervals resulted in synchronous but weaker translocations whereas a 200 

min interval was able to trigger a full strength translocation, indicating that the 

system has a re-set period (Ashall et al, 2009). Since translocations were 

responsive to the period of stimulation, this suggested that the oscillation 

frequency may be functionally important. The strength of the TNFα dose is also 

important to the NF-κB response. Reducing TNFα from the saturating 10 ng/ml 

dose was found to reduce the percentage of responding cells but not the 

translocation amplitude in cells that responded (Turner et al, 2010). 

To investigate the importance of oscillation frequency, gene expression patterns 

in response to differently timed TNFα pulses were investigated (Ashall et al, 

2009). NF-κB regulated genes have been classified into early, middle and late 

responders, depending on how quickly they are induced by TNFα (Tian et al, 

2005), and it was found that certain genes from these groups exhibited different 

transcriptional profiles in response to the different pulsing regimes (Ashall et al, 

2009). This strongly suggests that oscillation frequency is important for 

differential transcription, and suggests that pulsatile stimulation may be more 

important in driving immune responses of cells and tissues than continuous 

exposure to cytokines. 
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1.3.8 Modelling NF-κB Dynamics  

The complexity of the NF-κB signalling network and the dynamic responses of 

the system makes an intuitive understanding difficult, making NF-κB a prime 

candidate for mathematical modelling. Numerous mathematical models have 

been developed over the years, initially aimed at understanding how IκBs 

retained NF-κB in the cytoplasm of unstimulated cells (Carlotti et al, 2000) and 

the biphasic population response (Hoffmann et al, 2002). With the advent of 

fluorescent single cell microscopy, quantitative time-resolved data became 

available which was ideal for constraining models of NF-κB signalling (Nelson et 

al, 2004). This early model had a core motif of NF-κB retained in the cytoplasm 

by IκBα, which was degraded upon TNFα activation of the IKK. NF-κB 

translocation to the nucleus led to IκBα synthesis which pulled NF-κB out of the 

nucleus and returning it to the starting state. Later, an IKK module was 

introduced with three states for IKK activity and A20 feedback onto IKK 

activation was also incorporated (Ashall et al, 2009). IκBε transcription with the 

45 min delay was also included. The IκBα and IκBε components formed a dual 

delayed negative feedback motif (Alon, 2007). This model predicted that IκBε 

feedback would be responsible for the intercellular heterogeneity of NF-κB 

oscillations (Ashall et al, 2009). 

The prediction regarding IκBε feedback was investigated using both 

experimental and theoretical approaches (Paszek et al, 2010). This analysis 

indicated that the delayed IκBε feedback was optimised for maximum 

heterogeneity, and was supported by experimental data which found that IκBε-/- 

MEFs had more synchronous oscillations. Additionally, the study found that 

IκBε contributed to maintenance of oscillations. (Paszek et al, 2010). 

There remain many aspects of the NF-κB pathway that modelling is attempting 

to address, such as the role of different IκBs, IKK activity, and other feedbacks 

e.g. A20; a variety of modelling approaches are being applied. Many different 

models have been produced by both theoretical and biological groups and both 

single cell data and population data, obtained from a variety of cell lines in 

response to different stimuli, continue to be crucial in their development (for 

detailed reviews, see Basak et al, 2012; Williams et al, 2014).  
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1.4 STAT and NF-κB Cross-Talk  

The NF-κB and STAT networks are instrumental to the regulation of immune 

system functions and may affect each other considerably towards this end. The 

two networks together have been shown to link inflammation to cancer 

development, and may be co-opted by different cancers to avoid the immune 

system and to promote their own survival (for reviews see Bollrath & Greten, 

2009; Grivennikov & Karin, 2010; He & Karin, 2011; Fan et al, 2013; Hoesel & 

Schmid, 2013). Numerous interaction mechanisms have been proposed for 

STATs and NF-κB, including autocrine and paracrine events through secretion 

of cytokines, as well as intracellular mechanisms involving feedback loops, other 

signalling pathways and direct interactions between STAT and NF-κB family 

members. 

Intercellular cross-talk through secretion of IL-6 is well documented in a variety 

of cellular contexts: it helps cancer cells escape TNFα-triggered apoptosis (Li et 

al, 2012), is involved in graft rejection (Lee et al, 2012), and auto-immunity 

(Ogura et al, 2008). IL-6 can also modulate LPS (lipopolysaccharide) - TLR4 

inflammation via STAT3 signalling (Greenhill et al, 2011). 

Mechanisms for intracellular cross-talk are more complex and context-

dependent, as different effects predominate depending on cell line and cytokine 

stimulus. Modulation of SOCS feedback has been found in a number of contexts, 

using both SOCS1 and SOCS3. The earliest example is of LPS and TNFα co-

operatively inducing SOCS3 expression in macrophages, thereby inhibiting IL-6 

signalling via STAT3 (Bode et al, 1999). This was found to occur via TLR4 

activation of p38/MAPK, leading to the stabilisation of SOCS3 mRNA (Bode et al, 

2001; Ehlting et al, 2007; Bode et al, 2012b). By stabilising SOCS3 mRNA, 

LPS/TNFα signalling is able to inhibit STAT3 activation. This mechanism was 

also found for IL-1β in macrophages (Yang et al, 2004). Similarly, the influenza 

virus inhibits the antiviral IFN response by using NF-κB to drive SOCS3 

expression, thereby inhibiting STAT1 and STAT3 (Pauli et al, 2008). MAPK/p38 

was also found to inhibit IL-6 signalling via a SOCS3-independent mechanism, 

for LPS, TNFα and IL-1β (Bode et al, 2003; Yang et al, 2004; Albrecht et al, 2007; 

Kiu et al, 2007). This was subsequently found to be facilitated by 
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phosphorylation of the gp130 receptor, via SHP2 and MK2, leading to increased 

internalisation and proteasomal degradation of activated receptor complexes 

(Bode et al, 2003; Radtke et al, 2010). 

Conversely, SOCS1 and SOCS3 have been shown to down-regulate NF-κB 

signalling (Park et al, 2003; Albanesi et al, 2007), and a possible mechanism for 

this is the destabilisation of NF-κB in the nucleus via SOCS-mediated 

ubiquitination (Strebovsky et al, 2011). Yet another effect using feedback loops 

requires A20, a negative NF-κB feedback known to inhibit IKK activation. A20 

was in fact shown to decrease SOCS3 expression and thereby increase IL-6-

STAT3 signalling (da Silva et al, 2013). 

In addition to the indirect cross-talk via modulation of feedback loops, there is 

some evidence for direct interaction of specific NF-κB and STAT species. Most of 

this evidence is for direct interactions on the promoters of specific genes (Bode 

et al, 2012a), where STAT3 and NF-κB co-operate for the maximal transcription, 

e.g. for Serum Amyloid A (Hagihara et al, 2005) alpha-2-macroglobulin 

(Uskokovic et al, 2007), and hepcidin (Sow et al, 2009). However there are two 

examples of direct interaction between p65 and STAT3, for both the 

phosphorylated and unphosphorylated forms of STAT3, Lee et al., (2009) and 

Yang et al., (2007) respectively. Phospho-STAT3 was shown to maintain p65 

activity in the nucleus through the hyper-acetylation of p65 by p300, whereby 

P-STAT3 facilitated the interaction between p300 and p65 (Lee et al, 2009). 

Unphosphorylated-STAT3 meanwhile was shown to bind to NF-κB, 

outcompeting IκBα for p65 dimers, consequently forcing p65/NF-κB 

translocation to the nucleus via a STAT3 NLS (Yang et al, 2007). This effect was 

only seen after prolonged IL-6 signalling, which causes U-STAT3 dimers to 

accumulate in the cell. The nuclear U-STAT3:p65 complexes initiate 

transcription of a specific subset of genes, that has only limited overlap with IL-

6-STAT3 or TNFα-p65 target genes, thereby altering late gene expression 

profiles in response to co-activation of STAT3 and NF-κB (Yang et al, 2007). 

In light of these different and opposing mechanisms for cross-talk between 

STAT3 and NF-κB, it would be unsurprising if the signalling dynamics of the two 

networks were perturbed by co-stimulation protocols. Given that many of these 



Introduction to JAK-STAT and NF-κB 

 

~ 39 ~ 
 

mechanisms are indirect, the results of the interplay between them might be 

quite subtle, but may also be non-intuitive, with surprising consequences for 

their respective dynamics. It may be possible to visualise these effects without a 

detailed understanding of which processes are at work in any given situation, 

and as such, the single cell fluorescence microscopy techniques may be highly 

informative. 

1.5 Thesis Aims  

The studies presented in this chapter provide evidence to suggest that STAT3 

may be capable of oscillatory nucleocytoplasmic dynamics in single cells. 

Therefore the first aim of this thesis is to image IL-6-induced STAT3 dynamics 

in single cells using fluorescent fusion protein reporters for STAT3 and its 

inhibitor SOCS3. If STAT3 oscillatory dynamics are confirmed in single cells, this 

data will be used to refine an existing mathematical modelling of the pathway 

that predicts single cell oscillations (Domedel-Puig, unpublished), with the 

intention of generating new testable hypotheses about the nature of IL-6-

induced STAT3 signalling. The second aim of this thesis is to investigate cross-

talk between STAT3 and NF-κB, a system with known oscillatory dynamics, 

through a consideration of their respective dynamics in response to 

combinations of different stimuli. This thesis will also attempt to correlate any 

dynamic outputs to gene expression patterns, as changes in signalling dynamics 

have been shown to be biologically important elsewhere.  
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2.1 Materials 

Suppliers for specific reagents are stated in the text. All other general chemicals 

and reagents were from Sigma-Aldrich, (Gillingham, UK) or Invitrogen (Paisley, 

UK). Sigma supplied the antibiotics tetracycline, kanamycin, chloramphenicol 

and ampicillin. ZeocinTM was supplied by Invitrogen.  

2.2 Fluorescent Fusion and Luciferase Reporter 

Plasmids 

The Invitrogen Gateway® System was used to construct the fluorophore fusion 

expression plasmids necessary to study the STAT3-SOCS3 dynamics, as it 

provides a flexible method for changing the fluorescent protein cassette. Both N- 

and C-terminal tagged STAT3 fusions with Enhanced Green Fluorescent Protein 

(EGFP) were made, as well as SOCS3 tagged with EGFP at the C-terminus. The 

fusions were expressed under the control of the viral CMV promoter.  

The process can be summarised in three steps (Fig. 2.1, adapted from Dr J. 

Bagnall). After amplification of the protein coding sequence with primers to add 

specific AttB recombination sites at the ends, two successive recombination 

steps using BP and LR ClonaseTM enzymes (Invitrogen) are performed, using 

two antibiotic selection markers. The coding sequence cassette is integrated 

into the pDONR vector in a BP Recombinase mediated reaction, producing the 

entry vector. The entry vector is then recombined by LR Recombinase with a 

specific destination vector containing the fluorophore gene and features 

required for propagation in mammalian cells to generate the expression vector. 

In the first selection step the target coding sequence replaces the ccdB gene 

which is lethal to E. coli (Escherichia coli) DH5α. The second recombination 

process results in four different vectors, but only the expression vector will have 

the correct antibiotic resistance marker and lack the ccdB gene. Consequently 

only colonies carrying the completed expression vector survive the final 

selection step.  
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Figure 2.1: Schematic representation of the Gateway® Invitrogen 

homologous recombination cloning strategy, employed to generate 

plasmids encoding fluorescent tagged proteins. Orange indicates coding 

sequence of interest and green denotes fluorescent protein coding sequence. 

The recombination sites are shown in blue and red.  

2.2.1 Amplicon Production 

AttB flanking primers (Table 2.1) for amplifying STAT3 and SOCS3 coding 

sequences were designed manually with and without a Stop codon. Primers 

were checked using the PCR Primer Stats tool of the Sequence Manipulation 

Suite (P, 2000). The cassettes were amplified from cDNA extracted from HepG2 

cells stimulated for 4 h with 20 ng/ml IL-6, using KOD Polymerase (Novagen, 

Merck, Nottingham, UK) as per the kit instructions. To check whether 

amplification was successful 5 μl samples were run with 5x Loading Buffer 

(Bioline, London, UK) on a 1% Agarose/TAE gel with 12% v/v SYBR Safe Dye 

(Invitrogen) for 75 min at 100 V (SYBR Safe was used throughout to visualise 

DNA bands). The gel was visualised on a Gel DocTM XR+ machine (BioRad, UK). 

Successful reactions were combined and purified using the QIAquick PCR 

purification kit, as per the manufacturer’s instructions (Qiagen, Manchester, 

UK). DNA concentration and purity were measured using the NanoDrop ND-

1000 spectrophotometer (LabTech, East Sussex, UK). 
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Table 2.1: Primers used to generate Stop and Non-Stop amplicons of STAT3 

and SOCS3. Underlined sequences are for the start and end of those genes. 

2.1.1  Gateway® Cloning of STAT3 and SOCS3 Expression 

Vectors  

The attB amplicons were combined with the pDONRTM-Zeo vector (Invitrogen) 

to make the Entry Vectors using the BP ClonaseTM II Kit, as per the 

manufacturer’s instructions. 1 μl reaction mix was used to transform 50 μl of 

competent DH5α cells via heat-shock. The DNA was incubated with the cells on 

ice for 30 min, then the cells were transferred to a 42°C water bath for exactly 

45 sec, before being put back on ice for 2 min. The cells were rescued in 1 ml 

S.O.C. media (Invitrogen), and incubated for 30 min at 37°C with shaking, then 

plated out on low salt Luria Bertani (LB) agar plates with 60 μg/ml Zeocin. 

Plates were incubated over night at 37°C. (LB broth and agar used throughout 

supplied by Merck, UK). 

Colonies containing Entry Vectors were analysed by colony PCR. A pipette tip 

touched to a colony was rinsed in 5 μl Milli-Q water to lyse the cells, and 10 

colonies per Entry vector were selected. The 5 μl bacterial lysates were used in 

place of plasmid DNA in the KOD Polymerase kit and results were analysed via 

agarose gel electrophoresis as above. Successful transformants were amplified 

Amplicon Forward Primer Reverse Primer 

STAT3-Stop GGGGACAAGTTTGTACAAA

AAAGCAGGCTCAATGGCCCA

ATGGAATCAG 

GGGGACCACTTTGTACAAGA

AAGCTGGGTATCACATGGGG

GAGGTAGC 

STAT3-Non-Stop GGGGACAAGTTTGTACAAA

AAAGCAGGCTCAATGGCCCA

ATGGAATCAG 

GGGGACCACTTTGTACAAGA

AAGCTGGGTACATGGGGGA

GGTAGCGCA 

SOCS3-Stop GGGGACAAGTTTGTACAAA

AAAGCAGGCTATGGTCACCC

ACAGCAAGTT 

GGGGACCACTTTGTACAAGA

AAGCTGGGTCTAAAGCGGGG

CATCGTAC 

SOCS3-Non-Stop GGGGACAAGTTTGTACAAA

AAAGCAGGCTCGCTGGCTCC

GTGCGCC  

GGGGACCACTTTGTACAAGA

AAGCTGGGTAAGCGGGGCAT

CGTACTGG 
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by mini-prep using the QIAprep Mini-Prep Kit as per the manufacturer’s 

instructions (Qiagen). 

The second stage of the Gateway® System entails mixing 250 ng/ml Entry 

vector with 250 ng/ml of the appropriate Destination vector using the LR 

ClonaseTM II kit as per the instructions. As before, 1 μl reaction mix was 

transformed into competent DH5α cells following the heat-shock protocol. The 

resulting expression vectors were selected by using LB agar plates with 50 

μg/ml kanamycin. Formation of 100’s of colonies indicated a successful 

reaction, and so a number of colonies were mini-prepped for the expression 

vector as above. To ensure the plasmids were correct, samples subjected to a 

simple restriction digest and were sent for in-house sequencing, according to 

their directions. Sequencing primers, listed in Table 2.2, were designed using 

Primer3 (v0.4.0) (Koressaar T, 2007; Untergasser et al, 2012). 

Table 2.2: Primers used for DNA sequencing of finalised Expression Vectors. 

2.1.2  Primer Design for SOCS3 proximal promoter Cassettes 

A 1.1 kb region of the SOCS3 proximal promoter (ppSOCS3) was identified using 

the USCS Genome Browser (Kent et al, 2002), starting 770 bp upstream of the 

transcription start site, continuing to include the SOCS3 exon 1 and multiple 

transcription factor binding sites. This region was chosen as it had been used in 

a commercially available Renilla Luciferase reporter (SOCS3 sequence product 

ID S720285, available in the vector backbone pLightSwitch_Prom; ID S790005), 

Name Primer Sequence 

CMV Fwd CAACGGGACTTTCCAAAATGTC 

DsRedXP Fwd ACTCCAAGCTGGACATCACC 

DsRedXP Rvs  AAGCGCATGAACTCCTTGAT 

EGFP Fwd CGACAACCACTACCTGAGCA 

EGFP Rvs GAACTTCAGGGTCAGCTTGC 

STAT3 400 nt Fwd CAGGATGTCCGGAAGAGAG 

STAT3 1000 nt Fwd CAGGTTGCTGGTCAAATTC 

Destination Vec Rvs CAAGTTAACAACAACAATTGCATTC 
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produced by SwitchGear Genomics (www.switchgeargenomics.com; first 

accessed 2012). 

This proximal promoter region was to be amplified for ligation into the Firefly 

Luciferase vector pGL4.12 (luc2CP) (Promega) and to replace the CMV 

promoter in the SOCS3-EGFP expression vector. Two pairs of restriction 

enzymes were chosen that would not cut anywhere inside the ppSOCS3 

sequence nor anywhere in the target vector apart from the insertion site. The 

pGL4.12 vector had a multiple cloning site, making enzyme selection 

straightforward. The CMV promoter in the SOCS3-EGFP expression plasmid had 

to be precisely cut out, limiting the choice of restriction enzymes. Consideration 

was also given to how compatible the optimal enzyme buffers were. The 

plasmid maps and promoter sequences were examined in Vector NTI 

(Invitrogen Life Sciences) and the software used to select two non-

complementary restriction enzymes according to the conditions above. 

Amplification primers (Table 2.3) were designed manually to introduce the 

correct restriction sites at the 5’ and 3’ ends of ppSOCS3 for the selected enzyme 

pairs, and were checked using PCR Primer Stats.  

Final Vector Amplicon Forward Primer Reverse Primer 

ppSOCS3-

EGFP 

AflIII-ppSOCS3-

NheI 

GTAAACATGTAGTGCA

TGAAAGCGT 

GTGAGCTAGCCTTCC

TACCTGGTCC 

ppSOCS3-

LucF 

KpnI-ppSOCS3-

NheI 

AGGAGGTACCAAGCGT

TTTCATAGGG 

GTGAGCTAGCCTTCC

TACCTGGTCC 

Table 2.3: Primers used to amplify the SOCS3 proximal promoter for cloning 

into the SOCS3-EGFP expression vector and the pGL4.12 (luc2CP) Firefly 

Luciferase vector (LucF). 

2.1.3  Socs3 proximal promoter-SOCS3-EGFP Vector 

The SOCS3 proximal promoter was amplified from the SOCS3 BAC (Section 

2.3.2) using the ppSOCS3-EGFP primers and the KOD PCR kit. Optimisation of 

the reaction was required; Dimethylsulphoxide (DMSO, Sigma-Aldritch, UK) was 

added to a final concentration of 5% v/v due to the 74% CG content of the 

promoter sequence. The optimum annealing temperature was experimentally 

determined as 59ºC by running a temperature gradient PCR (data not shown). A 
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sample of the amplicon was sent for sequencing to confirm the PCR. A double 

restriction digest of the amplicon was performed with NheI and AflIII in Buffer 2 

(New England Biolabs, Herts, UK), in a 50 μl reaction at 37ºC for four hours. The 

products were cleaned using the QIAquick PCR fragment cleaning kit. The DNA 

concentration was measured using the NanoDrop, and stored at -20ºC until the 

ligation step.  

The CMV-SOCS3-EGFP plasmid was subjected to a double digestion with NheI 

and AflIII as above then the digested plasmid was run on a 1% agarose/TAE gel 

for 45 min at 120 V, and visualised on a Dark Reader transilluminator (Clare 

Chemical Research Ltd). The SOCS3-EGFP backbone was excised from the gel 

and extracted using the QIAquick Gel Extraction kit (Qiagen) and its DNA 

concentration measured. 

The digested ppSOCS3 sequence and the SOCS3-EGFP plasmid were ligated 

together using 1 Unit T4 DNA Ligase (Roche Applied Science, UK) at a ratio of 

3:1 insert to backbone, according to the instructions, and the mixture was left 

overnight in an ice bath, warming from 4ºC to 16ºC overnight. The ligated 

product was transformed into DH5α E. coli cells by heat shock and plated out 

onto LB agar kanamycin plates to grow overnight at 37ºC. 20 colonies were 

mini-prepped and screened by NotI restriction digest (Roche). Samples 

resulting in the expected band sizes were sent for sequencing using the primers 

listed in Table 2.4 and a ppSOCS3-SOCS3-EGFP (hereafter ppSOCS3-EGFP) 

plasmid was successfully obtained. Mini-prepped DNA was aliquoted and stored 

at -20ºC for future use. 
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Name Primer Sequence 

SOCS3 cds Rvs TCACTGCGCTCCAGTAGAAG 

SOCS3 cds Fwd1 CTCCAAGAGCGAGTACCAG 

SOCS3 cds Fwd2 CTTCGACTGCGTGCTCAAG 

ppSOCS3 Rvs CAGATTCCAGAGGGGAGACC 

ppSOCS3 Fwd1 AGGGTTGGCAAAGAACCTG 

ppSOCS3 Fwd2 AGGTCGGCCTCCTAGAACTG 

ppSOCS3 Fwd3 CTCTCGTCGCGCTTTGTC 

ppSOCS3 Fwd4 CGACTTGGACTCCCTGCTC 
 

Table 2.4: List of sequencing primers for ppSOCS3 cloning. Primers were 

designed to provide adequate coverage of the target sequence using Primer3. 

2.1.4  SOCS3-firefly luciferase reporter 

A SOCS3 proximal promoter firefly luciferase vector was constructed for use in 

live cell luminometry experiments to act as a marker of STAT3 transcriptional 

activity. The pGL4.12 firefly vector was used as its expression dynamics have 

been well characterised. The SOCS3 proximal promoter sequence used was the 

same as for the SOCS3 expression vector. The promoter was amplified from the 

SOCS3 BAC as before, using the ppSOCS3-LucF primers (Table 2.3). The PCR 

amplification was carried out with KOD polymerase as before, with an 

experimentally determined annealing temperature of 60°C in the presence of 

5% v/v DMSO. The PCR products were run on a 1.2% agarose/TAE gel for 45 

min at 120 V and the gel visualised. The band was excised from the gel and 

extracted with QIAquick Gel Extraction kit. 

Both the amplicon and the pGL4.12 plasmid were digested with NheI and KpnI 

in a double digest, as so: <1 μg DNA, 2 μl NE Buffer, 200 μg/ml BSA (final 

concentration), 5 Units NheI, 5 Units KpnI, to a final volume of 20 μl with dd 

H2O, incubated at 37°C overnight. The digested amplicon was cleaned using the 

QIAquick PCR cleaning kit. The plasmid digest products were run on a 1% 

agarose/TAE gel for 45 min at 100 V, the 4.4 kb band of the plasmid backbone 

was gel extracted, and the DNA concentration was determined. Digested 

ppSocs3 and pGL4.12 were combined in a 3:1 ratio with 1 Unit T4 DNA Ligase, 

and 2 μl 10 x Ligase Reaction Buffer overnight in an ice bath. The products were 
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checked by running them on a gel, and 5 μl ligation mix was transformed into 

DH5α cells via heat-shock. Colonies were streaked out onto 30 μg/ml ampicillin 

LB agar plates and mini-prepped. Samples were sent for DNA sequencing to 

confirm the ligation. 

2.1.5  Plasmid Maxi-preps for Transfection 

Once sequences of constructs were confirmed, single colonies from the streak 

plates were used to inoculate 5 ml LB broth starter cultures, which were grown 

at 37°C in a shaking incubator for 6 h. The 5 ml cultures were used to inoculate 

flasks of 500 ml LB broth, which were then grown overnight in a 37°C shaking 

incubator. The overnight cultures were spun down at 4000 x g rcf in a Beckman 

Avanti J26XP Centrifuge using the F10BA6 rotor for 15 min at 4°C. Cell pellets 

were maxi-prepped using the Invitrogen PureLink® HiPure Maxi-prep Kit 

(#K2100-06) as per the instructions. DNA pellets were resuspended in Milli-Q 

H2O and diluted to a final concentration of 1 μg/μl, using the NanoDrop to 

measure the DNA concentration and purity. DNA was split into 20 μl aliquots 

which were frozen at -20°C for future use. 

2.3 Fluorescent Fusions in Bacterial Artificial 

Chromosomes 

2.3.1 Introduction to Bacterial Artificial Chromosomes 

The Bacterial Artificial Chromosome (BAC) system, developed by Shizuya et al 

(1992), is based upon the F’ plasmid. This plasmid is used by certain bacterial 

species to replicate and horizontally transfer chromosomal material between 

species members in times of great stress. The F’ plasmid was cleaned up and 

only the sections needed for replication, translation and antibiotic resistance 

were retained. This enabled the vector to contain an additional 300 kbp of DNA, 

enough for one or more complete eukaryotic genes and their surrounding DNA 

sequences. Fluorescent protein expression cassettes can be seamlessly 

introduced into specific gene loci to create a fusion gene. There are numerous 

advantages to expressing fluorescent fusion proteins in the context of a native 

gene structure, especially compared to typical expression plasmids driven by a 

strong viral promoter. 
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The main advantages result from being able to express the gene of interest 

under the control of its own promoter while also retaining the gene’s 

intron/exon structure. Expression dynamics are maintained by signalling 

through the gene’s native promoter, via known and unknown transcription 

factor binding sites. Furthermore, because the intron/exon structure is 

maintained, the pre- mRNA transcript will be processed according to its integral 

regulatory sequences, which may be intronic or within the 5’- and 3’-UTRs. 

These sequences confer additional levels of control, affecting splice variants, 

mRNA half-life, copy number and stability etc. By preserving these regulatory 

processes, any fusion protein expressed under these conditions will much more 

accurately reflect the endogenous system. This is particularly useful for 

investigating labile inducible repressors such as SOCS3 and IκBα, which are only 

induced under particular circumstances and may adversely affect the signalling 

network if constitutively over-expressed.  

The BACs large size however presents several technical difficulties compared to 

expression plasmids. Standard in vitro molecular biology techniques are 

insufficient for manipulating BACs so new in vivo techniques were developed. 

These included modifying homologous recombination to make it inducible 

through temperature-sensitivity and a two-step selection procedure based upon 

galactose metabolism in E. coli. 

2.3.1.1 Inducible Homologous Recombination 

A temperature-sensitive form of homologous recombination was developed so 

that large segments of DNA could be introduced into a BAC. Homologous 

recombination is used by bacteria to repair double-stranded DNA breaks. It is 

also used by bacteriophages to insert their single-stranded DNA into the host 

bacteria’s chromosome so that they can replicate. Phages hijack the host’s 

RecBCD enzyme that performs homologous recombination using three proteins 

of their own, gam, exo and bet. Gam, inhibits RecBCD’s exonuclease function 

which would otherwise destroy the viral single-stranded DNA. Exo, a  5’-3’ 

exonuclease, produces 3’ overhangs whilst bet binds the 3’ overhangs to 

mediate annealing and homologous recombination with complementary DNA 

(Court et al, 2002). The genes for these three proteins are encoded by the 
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defective λ Red prophage, which was stably integrated into E. coli to produce 

the SW102 strain (Warming et al, 2005). The λ Red prophage was placed under 

the control of the pL strong phage promoter, which in turn was stringently 

regulated by the temperature-sensitive repressor, c1857 (Yu et al, 2000; Lee et 

al, 2001). C1857 is stable at 32°C but breaks down at 42°C, allowing the genes to 

be rapidly expressed thus facilitating highly efficient homologous 

recombination. Consequently this temperature-sensitive system is inducible, 

facilitating specific, targeted modification of BAC vectors.  

2.3.1.2 The GalK Selection Process 

The λ Red prophage system was subsequently combined with a two-step 

screening procedure utilising galactose metabolism to improve the efficiency of 

the recombination process (Warming et al, 2005). E. coli can grow with 

galactose as its only carbon source if its Gal operon is fully functional and 

contains all four genes, galE, galT, galK and galM. GalK encodes galactokinase 

which phosphorylates galactose into the metabolite galactose-1-phosphate 

whereas phosphorylation of the galactose analogue, 2-deoxy-galactose, results 

in a toxic non-metabolite, 2-deoxy-galactose-1-phosphate (Alper & Ames, 

1975). SW102 cells lack the GalK gene but adding it in trans via a BAC enables 

the cells to grow on minimal media containing galactose as the carbon source. 

The GalK gene is inserted into the BAC at the point where you want to put your 

desired gene e.g. for a fluorescent protein. After replacing GalK with the desired 

DNA sequence the E. coli are grown on minimal media containing 2-deoxy-

galactose and glycerol to select for cells that have lost GalK.  Cells that haven’t 

replaced GalK through homologous recombination preferentially metabolise 2-

deoxy-galactose and die from the accumulation of the toxic non-metabolite. The 

sequential positive and negative selection steps significantly reduce the number 

of false positives, simplifying the screening process and making the 

development of a suitable BAC much swifter than before. 
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2.3.2 Overview of BAC Engineering  

The Galactokinase selection process for generating a seamless fluorescently 

tagged BAC expression vector could be broadly divided into three stages. Firstly, 

the appropriate BAC vector should be selected and transformed into the SW102 

E. coli strain. Next, the Galactokinase gene must be introduced at a specific locus 

by homologous recombination. Finally, the desired fluorescent protein coding 

sequence replaces the Galactokinase coding sequence.  

At each stage extensive screening is required to ensure the correct vector has 

been selected. The first stage can be further subdivided into four steps: i) 

selection of suitable BACs, ii) extraction of BAC DNA from supplied library 

strain, iii) transformation of BAC DNA into the SW102 strain, and iv) screen of 

transformed SW102 colonies for accurate DNA up-take and propagation. These 

steps are discussed in detail in the following sections. 

2.3.3 Selecting SOCS3 and STAT3 BACs 

Two Bacterial Artificial Chromosomes were selected using the UCSC Genome 

Browser and ordered from Invitrogen. The RP11-183K18 BAC contained the 

SOCS3 gene and the PGSI gene for Phosphatidylglycerophosphate synthase I, 

required for the biosynthesis of an essential phospholipid. Located on the RP11-

102M17 BAC are the STAT3 and PTRF genes. The latter’s product, Polymerase I 

and Transcription Release Factor, is involved in ribosomal RNA synthesis. Both 

BACs, being based upon pBACe3.6, contained four genes from the E. coli F-

plasmid to regulate transcription: oriS and repE to mediate unidirectional 

replication and parA and parB to limit the BAC copy number per cell. Maps were 

constructed and annotated in SimVector (Premier Biosoft) (Figure 2.2). 
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Figure 2.2: Maps for RP11-183K18 SOCS3 and RP11-102M17 STAT3 

BACs. The pBACe3.6 sequence, common to both BACs, contains a pUC link, 

SacBII (from the BAC library preparation techniques) and the CMR gene for 

chloramphenicol resistance, and the parA, parB, repE and oriS genes for 

replication. The SOCS3 BAC contains the PGS1 gene whilst the STAT3 BAC 

contains the PTRF gene, in addition to the genes of interest. 
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2.3.4 BAC DNA Maxi-prep 

The BACs were supplied in DH10B E. coli cells as glycerol stocks and were 

streaked onto LB agar plates under chloramphenicol selection and incubated at 

37°C overnight. After incubation, a single BAC colony was inoculated into 5 ml 

LB broth supplemented with 12.5 μg/ml chloramphenicol and was incubated at 

37°C for 8 h in a shaking incubator. The 5 ml starter culture was then used to 

inoculate 500 ml LB broth with chloramphenicol selection which was kept at 

37°C in a shaking incubator overnight.  

The Nucleobond BAC 100 maxi-prep kit (Macherey-Nagel, supplied by Fisher 

Scientific, Loughborough, UK) was used to extract the BAC DNA from the 500 ml 

culture, as per the manufacturer’s protocol for low-copy plasmid purification. 

The purified BAC DNA was resuspended in sterile deionised H2O and the yield 

was determined by UV spectroscopy on the NanoDrop spectrophotometer. 

2.3.5 Transformation of Cold-competent SW102 Cells  

2.3.5.1 Inducing Competency by Cold-Shock 

Tetracycline-resistant SW102 cells were streaked from a glycerol stock onto an 

LB agar plate under tetracycline selection and incubated overnight at 32°C. 5 ml 

LB broth with 10 μg/ml tetracycline was inoculated with one colony from the 

streak plate and incubated with shaking at 32°C overnight. 1 ml of the starter 

culture was used to inoculate 50 ml LB broth with tetracycline in a baffled flask 

and was incubated with shaking for 3-5 h at 32°C until an OD600 of 0.5 - 0.6 was 

reached, when the flask was quickly cooled on ice. The culture was centrifuged 

at 6,000 g for 10 min at 4°C and the supernatant was discarded. The pellet was 

resuspended in 1 ml ice-cold dd H2O, to which another 9 ml ice-cold ddH2O was 

added. This step was repeated and the bacteria resuspended in 1 ml of ice-cold 

ddH2O before being transferred to pre-chilled 1.5 ml Eppendorf tubes. The 

samples were centrifuged at 6,000 g and 4 °C for 1 min in a bench-top centrifuge 

and the pellets resuspended in 1 ml ice-cold dd H2O. This step was repeated 

twice more. After the final centrifugation step the supernatant was discarded 

and the pellet of competent cells kept on ice until required. 
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2.3.5.2 Transforming with BAC DNA by Electroporation 

The pellet of competent cells was resuspended in 40 μl ice-cold ddH2O and 

transferred to a p1mm gap electroporation cuvette (Cell Projects, Kent, UK). 

100 ng of BAC DNA was added and the cells electroporated at 25 uF, 1.8 kV and 

200 ohms. The cells were immediately rescued in 1 ml S.O.C. medium 

(Invitrogen), transferred to a 15 ml Falcon tube and incubated with shaking for 

90 min at 32°C. Following this recovery period, 100 μl of the cell suspension 

was spread onto an LB agar plate supplemented with 1.25 μg/ml 

chloramphenicol and 10 μg/ml tetracycline (these concentrations used 

throughout). The reserved 900 μl cell suspension was spun down at 5,000 g for 

1 min in a microcentrifuge, 800 μl of supernatant was removed and the pellet 

resuspended in the remaining media. This was spread onto another LB agar 

plate supplemented with chloramphenicol and tetracycline. The plates of 

transformed SW102 cells were incubated overnight at 32°C. 

2.3.6 Characterisation of BAC-Transformed SW102 Cells 

2.3.6.1 BAC Mini-prep of Transformed SW102 Cells 

5 cultures of 5 ml LB broth supplemented with chloramphenicol and 

tetracycline, each inoculated with an individual colony from the plate of 

transformed SW102 cells, were incubated with shaking overnight at 32°C. One 

colony of the original BAC DH10B cells was also used to inoculate 5 ml LB broth 

+ 1.25 μg/ml chloramphenicol and was incubated with shaking overnight at 

37°C. Following the over-night growth, LB agar plates were streaked for each 

culture under chloramphenicol and tetracycline selection. 

The cultures were centrifuged at 2,500 g for 5 min and the supernatant 

discarded. Cell pellets were resuspended in 250 μl P1 Resuspension Buffer (cat. 

no. 19051). 250 μl of P2 Lysis Buffer (cat. no. 19052) was added and mixed by 

inversion before incubating for 5 min at room temperature. 250 μl P3 

Neutralisation Buffer (cat. no. 19053) was then added and the samples inverted 

to mix and incubated on ice for 5 min. (All three buffers supplied by Qiagen). 

The lysates were centrifuged at 4°C and 6,000 g for 5 min, the supernatant 

transferred to new Eppendorfs and the spin step repeated. 750 μl of 

isopropanol was added to the DNA suspension and the samples left on ice for 10 
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min before centrifugation at 6,000 g for 10 min at 4°C. The supernatant was 

then discarded and the DNA pellet washed in 1 ml 70% ethanol. Samples were 

centrifuged at 6,000 g for 5 min at 4°C and the ethanol carefully removed. 

Pellets were air dried next to a Bunsen flame DNA and finally resuspended in 52 

μl ddH2O and stored at 4°C. 

2.3.6.2 Restriction Digests 

Three restriction digests were performed, using the frequent cutter EcoRI 

enzyme, and the infrequent cutters XhoI and either SalI or NotI, for the SOCS3 

and STAT3 BACs respectively. 15 μl DNA was digested with 5 μl enzyme master 

mix (enzyme, Buffer H and water) overnight at 37°C. In a 20μl reaction 5 Units 

of EcoRI and 10 Units of XhoI, SalI or NotI were used.  

2.3.6.3 Agarose Gel Electrophoresis 

The EcoRI-digested samples were run on a 1% agarose gel for 18 h, 25 V in a gel 

electrophoresis unit (Bio-Rad, Hemel Hempstead, UK). The gel was made with 

1% Agarose/TAE buffer. Since the XhoI, SalI and NotI enzymes generated 

fragments larger than 20kbp these samples were separated out using the CHEF 

DRII Bio-Rad Pulsed Field Agarose Gel Electrophoresis apparatus. The samples 

were run on a 1% agarose gel (PGFE-approved agarose from Bio-Rad) in 0.5x 

TBE (diluted from 10x TBE buffer: 108 g Tris base, 55g Boric acid, 9.3 g EDTA, 

adjusted to 1 L with dH2O) for 18 h at 6 V/cm power, 6 s switching time, with 

the running buffer cooled to 14°C. The markers used were the Mid Range PFG 

Marker I and Mid Range PFG Marker II (New England Biolabs, Hitchin, UK). 

Following the completion of the run the gel was stained with 30 μl SYBR Safe for 

1 h to reveal the DNA bands for visualisation. 

An illustrative example of the gels from this process are shown below in Figure 

2.3 below, the digests grouped first by gene of interest and then by restriction 

enzyme. Obvious differences in the digest pattern between the BACs extracted 

from the transformed cells and the parent BAC are highlighted by an orange 

box. It was clear that while the STAT3 BAC was not altered by the 

transformation step, the SOCS3 BAC was. Two bands were missing from the 

XhoI digest, while in the SalI digest the largest band was much smaller than 

expected after the transformation step. The EcoRI digest also reveals 
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differences; there is a double band where there should be one, and a small band 

is missing entirely. This incorrect pattern was seen on multiple attempts, 

suggesting that there was a particular sequence the bacteria were responding 

to. The STAT3 BAC was successfully transformed into the SW102 cells but the 

SOCS3 BAC transformation was not successful, even after many attempts. 

2.3.6.4 BAC Glycerol stocks 

The successfully transformed STAT3 BAC SW102 cells were stored as glycerol 

stocks at -80ºC for future use. A 5 ml overnight LB broth (with chloramphenicol 

and tetracycline) culture of the transformed cells, grown at 32ºC, was mixed 

with 5 ml 80% sterile glycerol, to give a 40% glycerol stock, from which 1 ml 

aliquots were made. 

 

Figure 2.3: Restriction digest gels of STAT3 and SOCS3 BAC DNA 

obtained from SW102 cells, using A the infrequent cutters XhoI, SalI and NotI, 

and B the frequent cutter EcoRI. I and II are the pulsed-field ladders, sizes in 

kbp. 1 and 2 were individual colonies of transformed SW102 cells while * 

indicates DNA from the original DB10.B strain. Red arrows and orange dashed 

boxes indicate where the bands are different or missing.  

A B 
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2.4 Cell Culture 

SK-N-AS human neuroblastoma cells (cat. no. 94092302) and HepG2 human 

hepatoma cells (cat. no. 85011430) (obtained from the European Collection for 

Cell Cultures, Porton Down, UK) were cultured as a monolayer and grown in 

Earles’s Minimum Essential Media (MEM) (Gibco, Paisley, UK) supplemented 

with 10% Foetal Calf Serum (Harlan Sera-lab, Loughborough, UK) and 1% NEAA 

(Gibco) in T75 flasks (Corning, Scientific Laboratory Supplies Ltd, Nottingham, 

UK) at 37 °C with 5 % CO2 in a humidified incubator. SK-N-AS and HepG2 cells 

were passaged at 60-80 % confluencey, up to 15 and 25 times respectively, for 

use in experiments.  

2.4.1 Subculturing Cells 

Cells were washed with Mg2+ and Ca2+-free Phosphate-Buffered Saline (PBS; 

Gibco) and incubated with 1 ml of 0.05 % (w/v) trypsin in 0.48 mM EDTA 

(Gibco) at 37 °C and 5 % CO2 for 5 min to detach the monolayer from the flask. 

Since HepG2 cells are very resistant to tyrpsinisation, 2ml Trypsin was used and 

they were pipetted up and down multiple times to break up the cell clumps. 

Cells were resuspended in media to a final volume of 10 ml and centrifuged at 

150 x g for 5 min in a Centrifuge 5804 (Eppendorf, Cambridge, UK). The 

supernatant was discarded and the cell pellet was resuspended in 10 ml media. 

Cells were counted using a Z2 Coulter Particle Count and Size Analyzer 

(Beckman Coulter, High Wycombe, UK) and seeded as required. 

2.4.2 Cryogenic Storage of Cell Lines 

For freezing, after cells were spun down the cell pellet was resuspended in FCS 

with 10% v/v DMSO to a final concentration of 1x106 cells/ml. 1.5 ml aliquots in 

externally threaded cryovials (Sigma-Aldritch) were placed into a NALGENETM 

Cryo 1ºC freezing container filled with 100% Isopropanol and transferred into 

an -80ºC freezer for at least 24 h before being transferred to gas-phase liquid 

Nitrogen cryostorage. 
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2.4.3 Thawing of Cryogenically Stored Cell Lines 

Aliquots of cells were removed from liquid Nitrogen storage onto wet ice for 

transfer to Tissue Culture. The aliquot was thawed in a 37°C water bath until 

only a small ice crystal remained then 1 ml media (EMEM, 10% FCS, 1% NEAA) 

was slowly added to the cells. This mixture was added to 2.5 ml media and the 

cells were centrifuged. The cell pellet was resuspended in 5 ml media and was 

transferred to a T25 flask and the flask kept in the incubator as above. One to 

two days later, once 70-80% confluencey was reached, the cells were 

subcultured as above. 

2.4.4 Seeding and Transfecting Cells 

HepG2 cells were seeded at a density of approximately 12000 cells/cm2, 72 h in 

advance for use in confocal microscopy, immunoblotting, luminometry and RNA 

extraction. 30 mm diameter glass-bottomed dishes (Greiner Bio-One Ltd, 

Stonehouse, UK) were used for microscopy, 60 mm dishes for protein and RNA 

lysates and 100 mm dishes for luminometry. Dishes were transfected 24 h after 

seeding. For luminometry, 48 h after transfection the cells were harvested and 

reseeded into 24 well clear tissue culture plates at a density of 1.2 x 106 cells in 

500 μl media per well for use the following day. 

To transfect SK-N-AS cells Fugene 6 (Promega, Southampton, UK), was used in a 

2 μl:1 μg ratio with DNA in 100 μl serum-free MEM per approx. 1 x 106 cells in 3 

ml media. Transfection of HepG2 cells was optimised by a luminometry assay 

(Section 2.6) which led to a 5:1 Fugene 6:DNA ratio being used for all 

transfections. Where two plasmids were being transfected together, equal 

amounts were used to a total of 1 μg DNA. The transfection efficiency in HepG2 

cells ranged between 5 and 15%, compared to 70-80% in SK-N-AS cells, as 

assessed by fluorescence microscopy. 

2.5 Generation of Stable Cell Lines 

The generation of a stable HepG2 cell line expressing p65-dsRedXP was 

attempted. The p65-dsRedXP plasmid contains a resistance marker for 

geneticin®/G418 (Invitrogen). However HepG2 cells are well known to be 

highly resistant to G418/geneticin therefore a kill curve was carried out as 
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follows to determine a feasible geneticin dose. HepG2 cells were seeded in 6-

well plates and grown for 24 h prior to treatment with increasing 

concentrations of geneticin, from 200 μg/ml to 800 μg/ml, where the typical 

dose for non-resistant cells is around 200 μg/ml. The cells were incubated for 

two weeks, changing the media and replenishing the geneticin every 2-3 days. 

At the end of the two week period, the cells were trypsinised and collected in 5 

ml PBS, then counted using the Cell Counter. Even at the highest dose of 

geneticin, there was no significant decrease in cell numbers compared to 

untreated controls. Because of this, plans to make stable HepG2 cell lines were 

abandoned. To make stable cell lines possible, the existing plasmids would have 

to be reverse engineered to replace the geneticin resistance marker, or new 

plasmids would have to be constructed using a parent plasmid backbone with a 

different mammalian antibiotic marker. 

2.6 Stimulation with Cytokines and Wash Protocols 

The cytokines used were human Interleukin-6 (IL-6), human Tumour Necrosis 

Factor-alpha (TNFα) and human Interleukin-1β (IL-1β) and were all sourced 

from Calbiochem (Merck Millipore, UK). 10 μg lyophilised IL-6 was 

reconstituted in 1 ml filter-sterilised 100 mM Acetic acid. 20 μl aliquots were 

stored at -80ºC and were diluted to a working stock concentration of 20 ng/ml 

with serum-free MEM. Lyophilised IL-1β and TNFα were reconstituted in filter-

sterilised 0.1% v/v BSA in H2O to a stock concentration of 100 ng/ml. Aliquots 

were stored at -80ºC and were diluted before use with serum-free MEM to a 

working concentration of 10 ng/ml.  

IL-6, TNFα and IL-1β were all used for continuous stimulation of cells, whereby 

the cytokines were added and left on for the duration of the experiment. IL-6 

was also applied for shorter periods, commonly 30 min but also for 15 and 5 

min, after which time the media would be aspirated off the cells, the dish 

washed with 4 ml 37ºC MEM and an appropriate volume of media added. 

Microscopy dishes were washed 3 times with 1 ml fresh MEM warmed to 37ºC 

whereas 6 cm dishes for protein and RNA lysates were washed once with 5 ml 

MEM. After washing the media was replaced with either the appropriate volume 

of fresh MEM or culture conditioned media. Culture-conditioned media was 
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obtained by growing cells in the same sized dish for the same length of time 

concurrently to the dishes that were to be imaged or lysed and using the media 

from that dish to replace the media on the washed cells. 

2.7 End-point Luminometry 

End-point luminometry was used to optimise the transfection protocol and to 

compare the function of the plasmid constructs to the endogenous STAT3 and 

SOCS3 proteins. HepG2 cells were seeded and transfected as described in 2.4.4. 

Transfected cells were grown for 48 h before being harvested and re-seeded 

into clear 24 well plates at a density of 120,000 cells/well. Plates were used 15 

h later and were treated for 3 h. At the end of each experiment, cells were 

washed with 1 ml cold PBS, prior to the addition of 250 μl lysis buffer (Table 

2.5). Plates were shaken for 20 min at room temperature to ensure complete 

lysis and homogenisation. Afterwards plates were frozen at -20°C for up to a 

week before being used in the luminometry assay. Triplicate technical repeats 

were conducted within each plate and each plate was repeated at least 3 times. 

 

Luminometry Lysis Buffer 

25 mM Tris Phosphate, pH 7.75 

10 mM MgCl2 (aq) 

5 % v/v 0.5 M EDTA, pH 8.0 

15 % v/v Glycerol 

0.1 % v/v Triton X-100 

0.1 mg/ml BSA 

Final vol. 100 ml dd H2O 

Table 2.5: Luminometry Lysis Buffer 

For the luminometry assay, ATP was added to a final concentration of 1mM to 

each lysate, then duplicate 80 μl lysate aliquots were transferred to a white 96-

well LumitracTM plate (Greiner). The plate was loaded into a FLUOstar Omega 

plate reader (BMG Labtech, Aylesbury, UK) and readings were taking every 0.1 

s. After 0.5 s of background readings, 80 μl 2.5 mM Firefly D-luciferin (Biosynth, 

Fisher Scientific, UK) (dissolved in 25mM Tris-PO3 pH 7.75) was added to 

the wells by automated injection. Data analysis consisted of calculating the 
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mean of the post-stimulation readings collected between 2.0 and 3.0 s for each 

well, minus the averaged pre-luciferin background reading, then averaging the 

technical duplicate wells. The means of within-plate technical triplicate wells 

were calculated, before being converted to the fold-change relative to the 

untreated sample. Finally the results of biological replicate plates were 

averaged and the standard deviation calculated. 

 To optimise the HepG2 transfection protocol, a range of Fugene 6 (μl) to SOCS3-

lucF DNA (ng) ratios were tested: 1:1, 2:1, 3:1, 4:1, 5:1, 6:1. Cells were 

stimulated with 20 ng/ml IL-6 for 3 h. This demonstrated that the 5:1 ratio was 

best (data not shown). Dose-response experiments were carried out to confirm 

the optimum IL-6 dose. Concentrations tested were 0, 0.5, 2, 20, 40 and 100 

ng/ml IL-6 and were applied for 3 h. The saturating dose in HepG2 cells was 20 

ng/ml IL-6 (data not shown). To test the function of the plasmid constructs, the 

SOCS3-lucF reporter was transfected in with an equal amount of plasmid DNA. 

An empty fluorophore expression plasmid was used in the endogenous control. 

Cells were treated with 20 ng/ml IL-6 for 3 h. 

2.8 Immunoblotting 

2.8.1 Cytokine Stimulation Time Courses  

Time courses of cytokine stimulation were carried out in SK-N-AS and HepG2 

cells. Saturating doses were determined by dose-response luminometry assays 

(data not shown), which for  IL-6 was 20 ng/ml and 10 ng/ml for TNFα. Time-

courses included i) 30 min intervals for up to 3.5 h, generating samples at 0, 30, 

60, 90, 120, 150, 180 and 210 min, ii) a 24 h time course, weighted to early time 

points: 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 6, 8, 24 h, and iii) others as specified in the 

text. Cytokine exposure was either continuous (IL-6 and/or TNFα) or pulsatile 

(IL-6). 

2.8.2 Cell Lysate Preparation 

Cells were grown in 6 cm dishes as described in 2.4.4 and treated as described 

in 2.7.1 above. After treatment, the media was aspirated off and the cells washed 

with 4 ml ice-cold PBS. 250 μl Western Lysis Buffer was added to the dish and 

the cells scraped into it. HepG2 cell lysates were boiled in a heat block set to 
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104ºC for 8 min whereas SK-N-AS lysates were boiled for 4 min. Lysates were 

rapidly cooled on ice and stored at -20ºC until use. 

Western Lysis Buffer 

% v/v In dd H2O 
10 10 % SDS (aq) 
10 100% Glycerol 
10 0.1% β-mercaptoethanol 
8 0.5 M Tris Base pH 6.8 
1 0.1% Bromophenol Blue 

Table 2.6: Western Lysis Buffer 

 

2.8.3 Immunoblotting 

Samples were subjected to Acrylamide SDS-PAGE for ~1.5 h at 100 V. Gels were 

cast using buffers in Tables 2.8-9, and the running buffer is given in Table 2.10. 

A combination of Colour Plus Protein and Biotin ladders were used (Cell 

Signaling and New England Biolabs, respectively). Proteins were transferred to 

nitrocellulose membranes (Whatman, Kent, UK) by the wet method at 300 

mAmps for ~1.5 h, (transfer buffer – Table 2.11). Membranes were blocked in 

5% skimmed milk powder/TBS/Tween20 (TBST) for 1 h and then washed for 3 

x 5 min in TBST. Incubation with primary antibodies was overnight at 4°C as per 

Table 2.7  in either 5% Skim milk/TBST or 5% Bovine Serum Albumin/TBST 

(both skimmed milk powder and BSA from Sigma Aldritch).  

After a further three 5 min washes in TBST, the secondary antibodies were 

applied for 1 h. Membranes were washed for 3 x 5 min in TBST, then ~1 ml of 

LuminataTM Crescendo Western HRP Substrate (Millipore, Merck Watford, UK) 

was applied to each membrane and incubated at room temperature for 2 min 

before the excess was drained off. CL-XPosureTM films (Thermo Scientific, 

Loughborough, UK) were exposed to the membranes for 30 s to 10 min and 

developed. 
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Antibody Source Catalogue 

ID 

Dilution 

Factor 

Buffer 

STAT3 Mouse #9139S 1:2000 Skim milk 

STAT3 Rabbit #4904 1:2000 BSA 

pY-705-STAT3 Mouse #9138 1:2000 Skim milk 

SOCS3 Rabbit #2923S 1:1000 

BSA 
α-Tubulin Rabbit #2144S 1:2500 

GAPDH - 14C10 Rabbit #2118 1:2500 

Cyclophilin A Rabbit #2176 1:1000 

Anti-mouse IgG - #7076 1:1000 

Skim milk Anti-rabbit IgG - #7074 1:1000 

Anti-biotin - #7075 1:1000 

Table 2.7: All Antibodies supplied by Cell Signaling Technology (New England 

Biolabs, Hertfordshire, UK) 

Stacking Gel Buffer 0.5 M Tris-HCl pH 6.8 

Resolving Gel Buffer 1.5 M Tris-HCl pH 8.8 

Table 2.8: Resolving and Stacking Gel Buffers  

Western Gels Resolving Gel Stacking Gel 

Acrylamide  10 % w/v 0.04 % w/v 
Buffer (Table 2.8) 25 % v/v 25 % v/v 
dd H2O 40 % v/v 60 % v/v 
SDS 0.1 % w/v 0.1 % w/v 
APS 0.06 % w/v 0.06 % w/v 
TEMED  0.06 % v/v v/v 

Table 2.9: Resolving and Stacking Gels  

 

 

 

Table 2.10: SDS-PAGE Running Buffer 

 

Running Buffer In dd H2O 

SDS 3.47  μM 
Glycine 0.19 mM 

Tris Base 25  μM 



Materials and Methods 

 

~ 64 ~ 
 

Transfer Buffer In dd H2O 

Glycine 0.19 mM 
Tris Base 25  μM 

100 % Methanol 20 % v/v 

Table 2.11: Transfer Buffer 

 

2.9 Quantitative Real-Time-PCR 

2.9.1 Primer Design 

Primers were designed using the CDS for the relevant genes in Ensembl 

(www.ensembl.org) and the Primer3 software. The primers were around 18-22 

bases long with a melting temperature (Tm) value of around 60°C. Their 

suitability in terms of GC percentage, Tm, risk of single and dinucleotide base 

runs, GC clamp and hairpin formation, and self-annealing ability was checked 

using PCR Primer Stats. Potential primers were checked for selectivity against 

other DNA features in BLASTn and were ordered from Invitrogen. Primer pairs 

used are listed in Table 2.12. 

2.9.2 Cytokine Stimulation Time Course 

SK-N-AS and HepG2 cells were seeded into 6 cm dishes in 5 ml media as 

described in Section 2.4.4. Cells were stimulated with either 10 ng/ml TNFα, 20 

ng/ml IL-6 (continuous exposure or 30 min pulse) or co-stimulated with both 

10 ng/ml TNFα and 20ng/ml IL-6, 24 h after seeding  as in Section 2.5. Each 

condition was repeated three times. Time points were 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 

4, 6, 8 and 24 h. After stimulation, the media was aspirated off and the cells 

washed with 5ml ice-cold PBS, lysed and the mRNA extracted as described 

below. 
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cDNA Target 5’ Left 3’ Right 

GAPDH ACCCAGAAGACTGTGGATGG TTCAGCTCAGGGATGACCTT 

Cyclophilin A GCTTTGGGTCCAGGAATGG GTTGTCCACAGTCAGCAATGGT 

β-tubulin ACCTTCAGTGTGGTGCCTTC TGGTGTGGTCAGCTTCAGAG 

POLR2A GTCGTCCTCCCCTGTAACCT GGTCATCCCCATTCACAATC 

STAT3  GTCCTGAGCTGGCAGTTCTC CACACCAGGTCCCAAGAGTT 

SOCS1  GCCAGAACCTTCCTCCTCTT GAACGGAATGTGCGGAAGT 

SOCS2 GTGCAAGGATAAGCGGACAG GTAAAGGCAGTCCCCAGATG 

SOCS3  CCTCAAGACCTTCAGCTCCA TCACTGCGCTCCAGTAGAAG 

SOCS5  ACCCAGAGTTCATTGGATGC GGAAAACACAAGCCCACAGT 

SOCS7 TGGTGTCATCCCAAGTTTGA GTGCTGGAGGGATTTGACAT 

IL-6  AAAGAGGCACTGGCAGAAAA TTTCACCAGGCAAGTCTCCT 

IL6R  AAAGGCTGTGCTCTTGGTGA CTGAACTTGCTCCCGACACT 

gp130  ACACCAAGTTCCGTCAGTCC CTGGGCAAAATACCATCACC 

IL-10 AGGAGGTGATGCCCCAAG TGGCTTTGTAGATGCCTTTCTC 

IL-15 GTTCACCCCAGTTGCAAAGT TACTTGCATCTCCGGACTCA 

A2M TTCGCTGTCCCAAAGTCTTC TCTTGGGTTGGTCCTTTCAC 

FGG CTAAACAGAGCGGGCTTTAC CATCCATTTCCAGACCCATC 

SAA1 CCAATTACATCGGCTCAGAC TGGCATCGGTGATCACTTC 

Hepcidin  TGGCTCTGTTTTCCCACAAC GCAGCAGAAAATGCAGATGG 

IkBα  TGGTGTCCTTGGGTGCTGAT GGCAGTCCGGCCATTACA 

IkBε GGACCCTGAAACACCGTTGT CCCCAGTGGCTCATTCAGA 

A20 GCCCTCATCGACAGAAACAT CACAAGCTTCCGGACTTCTC 

RANTES GTCGTCTTTGTCACCCGAAAG  TCCCGAACCCATTTCTTCTCT 

Table 2.12: qPCR primer sequences  
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2.9.3 mRNA Extraction 

RNA was extracted from the cells using the High Pure RNA Isolation Kit (Roche). 

Washed cells were resuspended in 200 μl ice-cold PBS, using a plastic scraper to 

detach them from the dish. Next 400 μl Lysis/-Binding Buffer was added and the 

lysate vortexed for 15 s. The resulting lysates were processed according to the 

kit’s instructions. RNA was eluted from the columns in 70 μl Elution Buffer and 

the concentrations determined using the NanoDrop.  

2.9.4 cDNA Conversion 

Using the VILO Superscript kit (Invitrogen), 2.5 μg mRNA was converted to 

cDNA, according to the manufacturer’s instructions. Samples were heated in a 

Px2 Thermal Cycler (Thermo Electron Corporation, UK) as follows: 10 min at 

25ºC for annealing, 1 h at 42 ºC for synthesis and 85 ºC for 5 min to terminate 

the reaction. For qPCR using the LightCycler® 480 (Roche), aliquots were 

diluted 1 in 40 and stored at -20 °C until required. For qPCR using the 

Fluidigm® Bio-MarkTM System, the cDNA concentration was determined using a 

Qubit® Fluorometer (Invitrogen) and the Quant-iTTM ssDNA Assay Kit 

(Invitrogen) according to the manufacturer instructions, before being diluted to 

a working stock concentration of 10 ng/μl. For the primer efficiency standard 

curves, aliquots of cDNA from different samples and conditions were combined 

and a 10-fold serial dilution was performed using the pooled cDNA, to give 

relative concentrations of 1, 0.1, 0.01 and 0.001. 

2.9.5 Quantitative PCR using the LightCycler 480 System 

Initial quantitative real-time PCR (qPCR) experiments were performed on the 

LightCyclerTM 480 platform with the SYBR Green I fluorescent dye (Roche). A 96 

well format was utilised. In each well, 2 μl 1:40 diluted cDNA was incubated 

with 10 μl SYBR Green (Roche), 0.25 μM forward primer and 0.25 μM reverse 

primer, with RNase-free H2O added to a total volume of 20 μl. Included on each 

qPCR plate was the target gene, reference gene (cyclophilin A) and non-

template control, along with cDNA dilution standard curves for both target and 

reference genes. Each sample was plated out in technical triplicate. The cycling 

parameters are listed in Table 2.13. 
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Step Cycles Temperature °C Hold Ramp Rate °C/s 

Pre-Incubation - 95 5 min 4.4 

Amplification 45 95 10 s 4.4 

  58 30 s 2.2 

Melt curve - 95 5 s 4.4 

  65 1 min 2.2 

  97 - 0.06 

Cooling - 40 10 s 1.5 

Table 2.13: Cycling parameters for LightCycler 480 qPCR 

Data analysis for LightCycler 480 qPCR was performed using the supplied Roche 

LightCycler 480 software, version 1.5. Melt-curve analysis was performed for 

each run to check specificity of amplification, then standard curves were 

calculated for the primer pairs within each run to determine primer 

amplification efficiency and ensure they were at least 85% effective. Advanced 

relative quantification was performed using the calculated primer efficiency, 

accounting for any background noise from the non-template controls, 

normalising first to the reference gene and then to the untreated control 

samples. Normalised data and calculated error values were exported into Excel 

for further analysis. Biological triplicates for each condition and gene were 

averaged and the errors propagated through to account for variation between 

repeats and the error from the sample measurement.  

2.9.6 Quantitative PCR using the Fluidigm System 

The Fluidigm BioMark System performs semi-quantitative RT-PCR in the same 

way as the LightCycler 480, allowing the SYBR Green dye, primer sets and cDNA 

samples to be used. Its advantage over the LightCycler 480 system is its 48 x 48 

multiplex format which allows 48 primer pairs to be tested against 48 samples 

in a single run. Plates were set up to include three sets of samples, a serial 

dilution for the calculation of standard curves for primer efficiency, inter-run 

controls, water-only and non-template controls. The serial dilution included 1:1, 

1:10, 1:100 and 1:1000 dilutions of a pooled set of cDNA samples, each plated 

out in four technical replicates to improve the accuracy of the standard curve. A 
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separate plate was set up with the primer pairs for the 24 selected genes in 

duplicate so that technical replicates of each gene-sample pairing could be 

obtained. Prepared sample and primer plates were processed and run in-house 

by Core Services on the BioMark System and the resulting data files were 

analysed using Biogazelle’s qBase+ software on a premium licence 

(www.biogazelle.com/qbaseplus, accessed September 2013).  

2.9.7 qBase+ Analysis of Fluidigm Gene Expression Data 

Biogazelle’s qBase+ software imports and automatically detects sample 

annotations from CSV files and also permits additional sample labelling. Once 

the data were fully annotated with test conditions, time-points, test or reference 

target status etc. the calculation parameters, quality control and normalisation 

steps were determined. The data were presented as Cq (quantification cycle) 

values, also known as Ct (cycle threshold) or Cp (crossing point) values. The 

quality control settings first exclude any samples with Cq values below 0, any 

too close to the negative control values (within 5 units) and then samples whose 

technical duplicate Cq values were more than 1 cycle out. For the remaining 

samples, the arithmetic mean of the duplicates was used to calculate the Cq 

value. 

The MIQE Guidelines (Bustin et al, 2009) for qPCR analysis recommend using 

the efficiency corrected delta-delta-Ct method described by (Pfaffl, 2001) for 

accurate analysis. This method generates standard curves to calculate PCR 

efficiency for each target from a serial dilution of a representative sample 

template, in this case pooled cDNA from multiple sample sets, and the qBase+ 

software will also make the analysis run-specific as well as target specific. The 

calculated efficiency values were checked for each target to ensure it was 

between 80% and 110% efficient, otherwise it was excluded from the rest of the 

analysis. 

Further to the recommendation of the efficiency-corrected delta-delta-Ct 

method, the MIQE guidelines also recommend using more than one reference 

target for normalisation purposes. The limited plate size for the LightCycler 480 

qPCR means that only one reference target could be used but with the Fluidigm 
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system multiple genes could be selected. Four potential reference genes were 

included: PolR2A, GAPDH, β-Tubulin, and Cyclophilin-A. The GeNorm feature of 

qBase+ determined that all four genes were stable across all samples and were 

therefore suitable reference genes (data not shown). Normalisation factors 

were calculated for each sample according to the reference targets, and were 

compared to highlight any potential issues; a variation of 2-3 fold was 

considered acceptable and only one sample was flagged at this stage as 

unsuitable for further analysis.  

The last quality control consideration was the Inter-Run Calibration (IRC). 

Inter-run variability is an under-estimated cause of error so including a 

normalisation step to account for it increases accuracy. Consequently one 

sample was chosen to be included on every plate as the inter-run calibrator. The 

software used the IRC result to normalise the plates to each other so that their 

Cq values were comparable. 

Normalisation and scaling strategies were applied after the quality control 

steps. The unknown samples’ relative quantities were normalised to the 

geometric mean of the reference targets and then the data were scaled to the 

average of all unknown samples per target, since several genes were 

undetectable under unstimulated conditions. This is in contrast to the 

LightCycler 480 analysis where the samples were normalised to the 

unstimulated, zero time-point control. Finally the normalised relative quantities 

for all samples and all targets were exported to Excel. At this stage the mean and 

standard deviation could be calculated using the biological repeats of the four 

time series test conditions (continuous IL-6, 30 min IL-6, continuous TNFα, and 

continuous IL-6 + TNFα). GraphPad Prism was used to plot the results. 
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2.10 Fluorescence Confocal Microscopy  

Cells for fluorescence confocal microscopy were seeded in glass-bottomed 

dishes and transiently transfected as described in Section 2.4.4 two to three 

days before use. A Zeiss LSM510 Confocal microscope was used to image the 

cells at 5 minute intervals for up to 24 h using a Fluar 40x 1.3NA oil immersion 

objective. The pinhole was set to capture light from a 4.0 μm optical slice. EGFP 

was excited using an argon ion laser at 488 nm and the emitted light was 

reflected through a 505-530 Band Pass filter from a 545 nm dichroic mirror. A 

green helium neon laser (543 nm) was used to excite dsRedXP and was 

detected through a 560 Long Pass filter. The Ellenberg macro (Rabut & 

Ellenberg, 2004) was used to automatically focus the microscope prior to each 

image capture. After completion, data files were concatenated and visualised 

using the LSM Zeiss Image Browser version 4.2, and were processed to extract 

quantified fluorescence intensity of the nuclear and cytoplasmic compartments 

using the methods described next. 

2.11 Cell Tracking Approaches for Image Analysis 

Three different methods for extracting quantitative fluorescence data from 

microscopy images were compared. Region of Interest (ROI), manual and 

automatic whole cell tracking methods (Fig. 2.4) were performed using the Cell 

Tracker software (Shen et al, 2006). Automated whole cell tracking was 

previously found to be the most appropriate method for detecting low 

amplitude p65 nuclear translocations because it gave the best signal-to-noise 

ratio (Dr D. Turner, personal communication). However, the majority of this 

project focuses on STAT3 and uses the HepG2 cell line, both of which behave 

differently to p65 and SK-N-AS cells, therefore the suitability of automated 

whole cell tracker was in doubt. Re-evaluation of the three approaches 

regarding their suitability for STAT3 dynamics in HepG2 cells led to the 

conclusion that ROI tracking was the most appropriate method. 

2.11.1 Description of the Tracking Approaches 

In ‘whole cell’ tracking (Fig. 2.4A), compartments for the cytoplasm and nucleus 

are demarcated by drawing precise boundaries for the cell membrane and 
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nuclear envelope. In manual whole cell tracking, the boundaries are marked by 

hand, frame by frame, which is a very laborious, time-consuming process. 

Automated whole cell tracker meanwhile uses an algorithm to determine where 

the cytoplasmic and nuclear boundaries are based on a pre-set threshold for 

fluorescence intensity. The threshold level and sensitivity options can be set on 

a case-by-case basis, within a certain range. The cytoplasm is defined as any 

fluorescence above a pre-determined level while the nucleus is identified as the 

region of lowest fluorescence within the cytoplasmic area. The algorithm was 

designed this way for optimal analysis of p65 which is absent from the nucleus 

in the resting state.  

In comparison, ROI analysis involves demarcating two sample areas, one within 

the cytoplasm and the other in the nucleus (Fig. 2.4B). Ideally the nuclear 

sample region is just a fraction smaller than the nucleus since there is often 

some fluorescence spill-over from the cytoplasm. The cytoplasmic ROI is, at a 

minimum, the same size as the nuclear ROI in order to capture as much of the 

cytoplasm as possible whilst simplifying boundary selection and reducing 

operator selection bias. The ROIs are then copied from frame to frame and 

adjusted as necessary to ensure only the appropriate regions are sampled.  

In all three methods, once the boundaries had been marked for all frames, the 

software calculated the average fluorescence in the nuclear and the cytoplasmic 

regions, and exported the quantified data into Excel for further analysis. 

 

Figure 2.4: Comparison of Cell Tracking methods. A An example of “whole 

cell tracker” and B an example of ROI cell tracker. The nuclear and cytoplasmic 

boundaries are labelled, and the small red circles in A are the points used to 

manually adjust a boundary. 

A B 
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2.11.2 Cost-Benefit Analysis of Tracking Methods 

The three methods have different advantages and disadvantages and were 

therefore suited to different situations. The whole cell tracker methods 

provided a slightly better signal-to-noise ratio than ROI analysis but they had 

significant draw-backs. The manual approach was very labour intensive, taking 

up to four times per cell as long as the other two methods, making it the 

appropriate choice only for difficult analyses e.g. where two or more cells were 

in very close proximity or frequently changed their morphology or location. The 

automated tracking algorithm had the potential to be the quickest approach but 

it was very susceptible to confounding factors in the images, such as 

neighbouring fluorescent cells and auto-fluorescent debris. In addition, since it 

was optimised for p65, it identified the nucleus as any area of low fluorescence 

within the cytoplasm. However, since STAT3 is evenly distributed between the 

nucleus and the cytoplasm in unstimulated cells, and in stimulated cells is 

predominantly nuclear, the algorithm failed to identify the nucleus in STAT3-

expressing cells, necessitating manual tracking of the nuclei. It could also be 

confused by the oil vesicles often present in HepG2 cells as these would appear 

as dark regions within the area of EGFP fluorescence. This slowed down the 

“automated” tracking considerably and made it entirely unsuitable for tracking 

cells expressing STAT3 alone. It was however useful for analysing cells 

expressing p65-dsRedXP, either alone or with STAT3-EGFP, and therefore was 

used for many of the cells in the p65-based microscopy experiments.  

In contrast to these difficulties with whole cell tracking approaches, ROI 

tracking was very fast and labour efficient. Side-by-side comparisons of cells 

analysed with both automated whole cell tracking and ROI tracking indicated 

that ROI tracking had a sensitive enough signal-to-noise ratio to detect STAT3 

and p65 nuclear translocations in HepG2 cells. Although the ROI data was 

somewhat noisier than whole cell tracking, the use of a 3-point moving average 

reduced the noise sufficiently to enable feature detection in the output 

fluorescence graphs. ROI tracking was also very useful for HepG2 cells due to 

their highly variable, non-uniform morphology, both between cells and within 

cells over time. Whilst HepG2 cells are considerably less mobile than the SK-N-



Materials and Methods 

 

~ 73 ~ 
 

AS or HeLa cell lines, they prefer to grow in clumps, even if sparsely seeded. 

This clumped growth pattern meant the HepG2 cells had a tendency to crawl 

over and around each other as the island of cells proliferates. This can make cell 

boundary detection difficult, especially when fluorescence levels were low. By 

using ROI tracker, selection of nuclear and cytoplasmic regions was more 

straightforward, even for ‘difficult-to-track’ cells that the ‘whole cell’ algorithms 

could not accurately process, thereby increasing the number of analysed cells. 

In conclusion, since both semi-automated whole cell tracking and ROI tracking 

had different advantages and disadvantages, it was necessary to identify the 

best approach for each given cell or experiment. ROI tracker was used for 

preference, particularly for experiments on cells expressing EGFP-STAT3 alone, 

or where cells were more crowded or mobile than usual, since it was by far the 

fastest method for processing such images. Automated whole cell tracking was 

used for ‘easy-to-track’ cells, particularly for those expressing p65-dsREdXP. 

Ideally, use of good nuclear markers, such as Hoechst stain or a fluorescent 

marker using an ubiquitous nuclear protein e.g. H2B, a histone protein, would 

speed up the analysis by simplifying identification of the nucleus – several 

colleagues have recently had success with this approach (Dr Bagnall and Dr 

Spiller, personal communication). Alternatively, development of a new, up-to-

date analytical software would represent a significant step forward, and would 

have streamlined this project considerably, especially given the lack of a stable 

cell line. 

2.11.3 Analysis of Processed Image Data 

Two normalisation methods were considered for processing the raw 

fluorescence values of the nuclear and cytoplasmic compartments in order to 

give the clearest indication of the localisation dynamics. These were the ratio of 

nuclear to cytoplasmic fluorescence (N/C) and the nuclear fluorescence as a 

proportion of the total cellular fluorescence (N/T). The N/T ratio gave clearer 

results than the N/C ratio when the nuclear region was close to the upper 

threshold detection limit, which was often the case with EGFP-STAT3. 

Furthermore, since it has been repeatedly demonstrated that STAT3 levels do 
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not change significantly due to turn-over, degradation or induction under the 

tested conditions and time scales (Siewert et al, 1999; Wormald et al, 2006), the 

N/T ratio represents how much of the total STAT3 pool is in the nucleus and 

therefore can be considered transcriptionally active.  

The cytoplasmic and nuclear fluorescence intensity values exported into Excel 

were used to calculate the N/T ratio. A 3rd order moving average of the N/T 

fluorescence was calculated and plotted over time in hours. This pre-processed 

data was imported into a spreadsheet tool constructed by Drs Bagnall and Boyd 

to subject it to a peak-detection protocol as a way to expedite quantification of 

the fluorescence time series data and ensure consistency. Prior to the 

development of this spreadsheet tool, peak detection was performed manually 

by the experimenter. For the purposes of this thesis, a ‘peak’ is a transient but 

significant increase in transcription factor occupancy of the nucleus; each ‘peak’ 

or ‘nuclear translocation’ has an associated time and amplitude value. It was the 

purpose of the spreadsheet tool to extract these values and also calculate the 

intervals between sequential peaks.  

Within the spreadsheet itself, peaks were identified by searching for the highest 

N/T fluorescence value above a pre-determined amplitude and within a given 

window of time. These amplitude and window values were empirically 

determined and optimised separately for STAT3 and p65. In this way peaks 

could be identified via amplitude thresholding and a minimum peak-to-peak 

timing interval.  

The peak amplitude, peak appearance time and peak to peak interval data 

extracted from the Excel analysis were transferred into GraphPad Prism, 

version 6.02 for Windows, (GraphPad Software, La Jolla California USA, 

www.graphpad.com) for statistical analysis. 
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3.1 Introduction 

IL-6 is a functionally pleiotropic cytokine and is a critical instigator of the acute 

phase response to infection. IL-6-activated STAT3 induces transcription of 

SOCS3, which inhibits activation of STAT3 thus setting up a delayed negative 

feedback loop (Bode et al, 2012a). This has the potential to create oscillatory 

dynamics within the system. Indeed, phospho-STAT3 and SOCS3 protein 

oscillate out of phase in a population of serum-synchronised cells, and their 

oscillations were mechanistically interdependent (Yoshiura et al, 2007). Based 

on experience in other systems, such as NF-κB (Nelson et al, 2004; Ashall et al, 

2009) and p53 (Lahav et al, 2004), it seemed likely that oscillations would be 

more obvious at the single cell level.  Live cell fluorescence microscopy was 

used for these studies as it is a very effective tool for studying protein dynamics 

at the single cell level. It provides detailed time-resolved data for individual cells 

and so can reveal complex dynamics and intercellular heterogeneity that would 

otherwise confound population-based data. 

A key aim of this project was to investigate IL-6-induced STAT3/SOCS3 

dynamics in single cells using time-lapse fluorescence confocal microscopy. The 

second aim was to investigate cross-talk between the potential oscillations of 

STAT3-SOCS3 system and the known oscillatory dynamics of p65, an NF-κB 

transcription factor (Ashall et al., 2009). To address these aims, various 

molecular and cellular tools needed to be developed and validated, which is the 

subject of the current chapter.  

3.1.1 Objectives 

The overall objective of this chapter is to establish a system for the investigation 

of STAT3 and SOCS3 single cell dynamics and subsequently the investigation of 

STAT3-NF-κB cross-talk. To achieve this objective, a cell line with functional IL-

6 and TNFα signalling first needed to be selected from a number of possible 

candidates, including the SK-N-AS and HepG2 cell lines. The TNFα-induced NF-

κB dynamics in the HepG2 cell line were characterised for comparison to the SK-

N-AS cell line, which has been previously used to study NF-κB dynamics (Nelson 

et al, 2004; Ashall et al, 2009). Secondly, in order to try and visualise STAT3 and 

SOCS3 dynamics, fluorescent protein fusion plasmid expression vectors for 



Setting up the Model System 

 

~ 77 ~ 
 

STAT3 and SOCS3 were constructed. STAT3 and SOCS3 BACs were also 

attempted. A SOCS3 proximal promoter-driven luciferase vector was 

constructed to report on STAT3 transcriptional activity. The biological function 

of the STAT3 and SOCS3 fluorescence fusion proteins were investigated, and the 

effect of placing the fluorescent protein at either the N- or C-terminus of STAT3 

was also assessed. 

 

3.2 Selecting an IL-6 and TNFα Responsive Cell Line  

A cell line with functional IL-6 – STAT3 and TNFα – p65 signalling was 

necessary for being able to investigate cross-talk between p65 and STAT3 later 

in the project. Previous work has used cell lines such as SK-N-AS and HeLa 

(Nelson et al., 2004), and HepG2 and HEK-293 (Kretzschmar et al., 2004). The 

SK-N-AS neuroblastoma cell line has previously been used as a key model to 

study p65 and IκBα single cell dynamics (Nelson et al., 2004; Ashall et al., 2009). 

The data generated with this cell line was used to build and parameterise 

various models of NF-κB dynamics (Paszek et al., 2010; West et al., 2014). 

Stable NF-κB BAC transfected SK-N-AS lines are also available (A. Adamson, 

University of Manchester, unpublished), which would be advantageous for 

studying NF-κB and STAT3 cross-talk as only STAT3 constructs would need to 

be transiently transfected into the cells, making them a better choice than HeLa 

cells. However, the SK-N-AS ability to respond to IL-6 was unknown. Meanwhile, 

HEK-293 cells lack the IL-6 receptor and have to be transfected with an IL6R 

expression vector, making them unsuitable for studying IL-6-induced signalling. 

The hepatoma HepG2 cell line was a strong candidate, as it has been used 

extensively in the study of STAT3 signalling (Wegenka et al., 1993), including 

imaging studies (Pranada et al., 2004; Hermann et al., 2007). The HepG2 line 

has also been used to study aspects of NF-κB signalling (Albretch et al., 2007). 

However, the long-term single cell NF-κB dynamics were unknown. Therefore 

the first step was to test IL-6 signalling in the SK-N-AS line and compare it to 

that in the HepG2 line, using a combination of Western blotting and qPCR.  
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STAT3 activation by IL-6 in SK-N-AS and HepG2 cells was assessed by blotting 

for transcriptionally active pY705-STAT3 and by measuring mRNA induction of 

SOCS3, a target gene of STAT3. SK-N-AS cells showed no increase in pY705-

STAT3, despite having a similar amount of STAT3 to HepG2 cells (Fig. 3.1A & B).  

That there was no observable change following IL-6 stimulation, even though 

SK-N-AS cells had some degree of basal STAT3 tyrosine-phosphorylation, 

suggested these cells lack a functioning IL-6 receptor complex, probably due to a 

lack of IL6R subunit expression. Conversely, the HepG2 cells displayed a large 

increase in pY705-STAT3 within 30 min of stimulation that was sustained over 

the 3.5 h period studied (Fig. 3.1B). The absence of IL-6-induced STAT3 

signalling in SK-N-AS cells was confirmed by qPCR analysis of SOCS3 mRNA 

expression, which did not increase in response to IL-6 (Figure 3.1C). In contrast, 

SOCS3 was strongly induced in HepG2 cells, increasing 18-fold by 1 h. The 

unresponsiveness of SK-N-AS cells to IL-6 makes them unsuitable for studying 

IL-6-induced STAT3 single cell dynamics.  

Having established that the SK-N-AS line did not respond to IL-6, it was 

necessary to determine the HepG2 response to TNFα and compare it to that of 

SK-N-AS cells. Western blotting of IκBα and pS536-p65 and qPCR analysis of 

IκBα mRNA induction revealed minor differences between the cell lines (Fig. 

3.2). IκBα was degraded more slowly in HepG2 cells upon TNFa stimulation, but 

was resynthesized more rapidly (Fig. 3.2B). The induction of IκBα mRNA 

expression was similar in timing and amplitude in both cell lines (Fig. 3.2C), and 

was sustained in SK-N-AS but transient in HepG2 cells. These slight differences 

were not considered to be functionally important for the present studies. 

 In conclusion, the p65/IκBα population dynamics of the two cell lines appeared 

very similar. However, only the HepG2 line responded to IL-6; this cell line was 

therefore used for the rest of the project. The next step was to define the p65 

and IκBα dynamics in detail at the single cell level in HepG2 cells to see if they 

showed the typical oscillatory dynamics previously been seen in several cell 

lines and studied in most detail in SK-N-AS cells.  
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Figure 3.1: Comparison of SK-N-AS and HepG2 cell line responses to 

continuous 20 ng/ml IL-6. Western blots for pY705-STAT3, STAT3 and α-

tubulin from whole cell lysates collected at times indicated from A SK-N-AS and 

B HepG2 cells, representative of n=3 blots. C qPCR graph of relative fold-

change in SOCS3 mRNA, normalised to t=0 min, over a 6 hour period. Error bars 

represent the standard deviation of n=3 independent biological repeats. 
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Figure 3.2: Comparison of SK-N-AS and HepG2 responses to continuous 

stimulation with 10 ng/ml TNFα. Western blots for IκBα, pS536-RelA (p65) 

and Cyclophilin A on cell lysates collected at indicated times. A SK-N-AS cell line 

(reproduced from Nelson et al 2004). B HepG2 cell line. Western blots 

representative of n=3. C qPCR of relative fold-change in IκBα mRNA, 

normalised to t=0 min, over a 6 hour period. HepG2 data from Fluidigm qPCR 

and SK-N-AS data from LightCycler480 qPCR. Mean ± SEM from n=3 replicates. 
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3.3 Live-Cell Imaging of p65 and IκBα in HepG2 Cells 

The previous section established that the population dynamics of p65 and IκBα 

of HepG2 cells reflected those seen in SK-N-AS cells. The next step was to study 

the behaviour of p65 and IκBα in individual HepG2 cells using fluorescence 

confocal microscopy. This served the dual purposes of determining whether the 

Ashall model of NF-κB signalling in SK-N-AS cells is applicable to HepG2 cells, as 

well as providing experimental control data for NF-κB – STAT3 cross-talk work 

in Chapter 5.  

This was accomplished by transiently transfecting HepG2 cells with either the 

CMV-driven p65-dsRedXP plasmid or the IκBα-EGFP BAC, as per Section 2.4.4. 

Images from microscopy experiments were analysed using ROI Cell Tracking to 

calculate the Nuclear/Total (N/T) Fluorescence (Section 2.10). Amplitude and 

time of peak maxima values were extracted from the data using an Excel tool 

and the peak-to-peak intervals were calculated (Section 2.10.3). A 

representative p65-dsRedXP cell trace with the timing, amplitude and interval 

of the nuclear peaks marked is given in Fig. 3.3. The recurring peaks of p65 

nuclear translocation form an oscillatory pattern and period of oscillation can 

be calculated from the average of all peak intervals from a sample population of 

cells.  

 

Figure 3.3: Oscillations in p65-dsRedXP Nuclear/Total Fluorescence in a 

single HepG2 cell. 10 ng/ml TNFα added at t = 0. Timing of nuclear translocation, 

amplitude of translocation and peak-to-peak interval are labelled on the graph. 
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3.3.1 Single Cell p65 Dynamics 

Oscillations in p65 nuclear-cytoplasmic movement were detected in HepG2 cells 

following continuous TNFα stimulation (Fig. 3.4). Sustained oscillations in  p65 

nuclear translocation occurred in over 95% of cells, as previously seen in the 

SK-N-AS cell line (Nelson et al., 2004). Nuclear peaks were asynchronous 

between cells after the first peak. This heterogeneity is an observed feature of 

the NF-κB system, posited as a deliberate design feature and hypothesized to 

control a robust population immune response (Paszek et al., 2010). This is also 

seen at the tissue level (A. Adamson, C. Walker and E. Borysiewicz, University of 

Manchester, unpublished observations). 

The variability of the HepG2 p65 oscillatory period in response to TNFα 

stimulation was investigated. The average period and standard deviation of p65 

oscillations were calculated for each individual HepG2 cell (Fig. 3.5). The mean 

p65 oscillatory period was 98 ± 25 min in HepG2 cells and the cell periods were 

normally distributed, according to the D'Agostino & Pearson omnibus normality 

test (performed in Prism). No outliers were identified using the ROUT method 

in Prism. The standard deviations of the cell periods were very variable, ranging 

from 4 to 45 min, with a median of 17 min. This large variability between cells 

could be caused by differences in the timing of feedback loops such as A20 or 

IκBε (Paszek et al., 2010).  

The peak intervals from oscillating p65 transfected cells were pooled and 

HepG2 cells were found to have a mean oscillation period of 98 ± 25 min whilst 

the SK-N-AS oscillatory period was 102 ± 17 min (Fig. 3.6) (SK-N-AS data 

courtesy of Dr C. Harper, University of Manchester). The population mean and 

distributions were compared using the two-sample t-test assuming unequal 

variances and no significant difference was found between the cell lines 

(P<0.01) (Fig. 3.6). This test was used to compare the population means for SK-

N-AS and HepG2 cell lines because the Kruskal-Wallis test confirmed that the 

data were normally distributed while the F-test determined that the variances 

were unequal. A probable cause of this difference is the difference in sample 

size. On average only 3.1 translocations were imaged per SK-N-AS cell whereas  



 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: p65 Localisation in Response to Continuous TNFα Stimulation. Individual traces of p65 localisation, defined as 

Nuclear/Total Fluorescence (N/T), in HepG2 cells in response to continuous 10 ng/ml TNFα, grouped by biological repeat (n=4).
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for HepG2 cells this number was 5.4. In conclusion, p65 oscillated at the same 

frequency in the two cell lines following TNFα stimulation 
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Figure 3.5: Mean period of p65 oscillations in transiently transfected p65-

dsRedXP HepG2 cells. (●) = Average period ± 1 S. D. per cell. Cells ordered 

by oscillatory period. Solid orange line = mean period of all cells. Orange dashed 

lines: Upper (Q3) and Lower (Q1) quartiles.. 

 

 

Figure 3.6: Histogram of p65 peak intervals pooled from all cells to 

compare the HepG2 (red) and SK-N-AS (purple) cell lines, expressing 

p65-dsRedXP and treated with continuous 10 ng/ml TNFα. Peak periods 

grouped in 10 minute intervals and expressed as a percentage of total number of 

peaks. HepG2: cells n= 25, peaks n= 135. SK-N-AS: cells n= 21, peaks n=66.  
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3.3.2 Single Cell IκBα Dynamics  

To complement the p65 data, IκBα degradation and resynthesis dynamics were 

investigated. SK-N-AS and HepG2 cells transiently transfected with the IκBα-

EGFP BAC were treated with 10 ng/ml TNFα and the degradation and 

resynthesis of IκBα followed by confocal microscopy (Fig. 3.7A, data provided 

by Dr. A. Adamson). 

 

 

 

Figure 3.7: IκBα-EGFP oscillations compared in HepG2 and SK-N-AS 

cells treated with 10 ng/ml TNFα. A Example of EGFP-IκBα fluorescence 

intensity in a single SK-N-AS cell (Arbitrary Units) over time (minutes) adjusted 

so that TNFα addition is at t=0. B Histogram of IκBα trough intervals in 

transiently transfected HepG2 (red) and SK-N-AS (purple) cells. HepG2: cells n 

= 20, peaks n = 133. SK-N-AS: cells n = 43, peaks n = 617. 
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The troughs indicate IκBα degradation while the peaks are periods of 

resynthesis. Trough appearance times and trough-to-trough intervals were 

calculated for individual cells as for p65. Trough intervals were pooled to form a 

histogram (Fig. 3.7B), comparing HepG2 and SK-N-AS cells. The mean period for 

IκBα oscillations in HepG2 cells was 98.9 min ± 25.7 and was 101.9 min ± 21.2 

in SK-N-AS cells (A. Adamson, unpublished). This suggests IκBα signalling 

dynamics are not significantly different between the cell lines.  

3.3.3 Combining p65 and IκBα Dynamics 

Work utilising the p65-dsRedXP and IκBα-EGFP BACs has conclusively shown 

that IκBα and p65 oscillate out of phase with each other in response to TNFα 

treatment, as can be seen in Figure 3.8 (A. Adamson, unpublished). Given these 

out of phase oscillations in SK-N-AS cells, it could be expected that the mean 

period and peak interval distributions for p65 and IκBα in HepG2 cells would be 

virtually indistinguishable, assuming they are oscillating likewise. In HepG2 

cells, IκBα oscillated at 99 ± 26 min and p65 oscillated at 98 ± 25 min, while a 

histogram demonstrated that p65-dsRedXP and IκBα-EGFP peak and trough 

interval distributions aligned precisely (Fig. 3.9). This strongly implied that p65 

and IκBα were oscillating out of phase with each other in HepG2 cells also. It 

would be very interesting if the same pattern could be seen for STAT3 and 

SOCS3, hence the work to construct the fluorophore constructs described below. 

In summary, the previous sections on p65 and IκBα dynamics established that 

the HepG2 and SK-N-AS cells lines oscillated at the same frequency in response 

to TNFα stimulation. In conjunction with the strong response to IL-6 signalling, 

the HepG2 cell line was the preferred candidate for studying STAT3 and NF-κB 

signalling cross-talk. The next stage of the project was to make and test the 

STAT3 and SOCS3 expression constructs in the HepG2 cells. 
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Figure 3.8: Out of phase oscillations of p65 and IκBα in a single cell. 

Stable BAC transfection of SK-N-AS cell, expressing p65-dsRedXP (red) and 

IκBα-EGFP (green) in response to 10 ng/ml TNFα (A. Adamson, unpublished). 

 

 

Figure 3.9: Comparing the distribution of peak intervals for p65 and IκBα. 

p65-dsRedXP plasmid and IκBα-EGFP BAC transiently transfected HepG2 cells 

treated with 10 ng/ml TNFα. IκBα: cells n = 20, peaks n = 133. P65: n= 25, 

peaks: n= 135.  
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3.4 Overview of Expression Vector Cloning 

A key goal of the project was to investigate the single cell signalling dynamics of 

the STAT3 and SOCS3 proteins by imaging their bulk subcellular movements in 

real time using live cell fluorescence confocal microscopy. Therefore the first 

aim was to assess the fluorescent protein fusions expressed from transiently 

transfected plasmid vectors. There was a concern that the position of the 

fluorescent protein might affect the functionality of the STAT3 protein, based on 

previous work with STAT6 (Nelson et al., 2002). This study found that N-

terminal tagged STAT6 was more transcriptionally active than the C-terminal 

tagged version. Consequently two versions of STAT3 were generated placing the 

EGFP moiety at either the N- or C-terminal (Fig 3.10B), using the Invitrogen 

Gateway® cloning system (Section 3.4.1).  

 

Figure 3.10: EGFP positions on STAT3. A Illustration of the active STAT3 

dimer conformation bound to DNA with the two locations for the EGFP tag 

indicated (GFP). N-terminal domain (N). C-terminal domain (C), including the 

DNA-binding region, and the regulatory phosphorylation sites. Based on the 

published structures of STAT3β (Becker et al., 1998) and STAT1 (Chen 1998).  

B Schema of the two STAT3 expression plasmids, ordered from 5’ to 3’. 

  

B A 



Setting up the Model System 

 

~ 89 ~ 
 

The structure of the active STAT3 dimer bound to DNA (Fig. 3.10A) and 

knowledge of the roles of the different domains of STAT3 suggested that C-

terminal placement of EGFP could obstruct access to the phosphorylation sites 

in the C-terminal region, affecting activation and/or deactivation of the dimer. A 

fluorescent protein tag at the N-terminal domain should have less risk of 

functional effects, but constitutive basal shuttling and subcellular localisation 

could potentially be affected. These concerns necessitated the evaluation of the 

EGFP-STAT3 and STAT3-EGFP constructs, after which a decision about the best 

location for the fluorescent protein in the STAT3 BAC could be made. 

An expression vector for SOCS3 under the control of the inducible SOCS3 

promoter was a key target because it should be a good reporter of STAT3 

signalling dynamics. Initially, a CMV-promoter driven SOCS3 expression vector 

tagged with EGFP was generated. Only a C-terminal tagged construct was made 

because the SOCS3 protein structure did not suggest any major functional 

problems would arise from a C-terminal tag. However, constitutive expression 

of CMV-driven SOCS3 could prevent STAT3 activation. Therefore a SOCS3 

fluorescent protein fusion BAC was attempted. STAT3 and SOCS3 BACs would 

allow the fluorescent fusions to be expressed under the control of the 

appropriate native promoters and other regulatory sequences, increasing the 

likelihood of visualising realistic expression dynamics of single cells. The 

methods for this work are described in Section 2.3. In addition to the BACs, a 

SOCS3-EGFP plasmid driven by the SOCS3 proximal promoter sequence was 

constructed as an intermediate measure. 

3.5 Production of STAT3 Fusion Vectors 

The Gateway protocols described in Section 2.2 were used to generate STAT3 

expression vectors tagged with EGFP at the N- and C-terminals, hereafter 

defined as EGFP-STAT3 and STAT3-EGFP respectively. The STAT3 coding 

sequence was amplified from SK-N-AS cells to generate cassettes with and 

without a STOP codon. These were integrated into empty entry vectors. The 

STAT3 entry vectors were combined with EGFP destination vectors to produce 

the final expression vectors, driven by the viral CMV promoter to ensure high 

expression levels.  
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3.6 Examining the Functionality of the EGFP-tag 

Orientations for STAT3 Expression Plasmids  

To address the potential issues on STAT3 functionality caused by the position of 

the EGFP-tag outlined in the cloning overview, the STAT3 fluorophore fusions 

were compared by size, phosphorylation in response to a pulse of IL-6 and 

ability to induce the SOCS3 promoter luciferase. Finally cellular expression was 

investigated by live cell fluorescence microscopy. 

3.6.1 Pulsed IL-6 Treatment Protocol Optimisation 

A stimulation protocol able to uncover phosphorylation kinetics was needed to 

assess the effect of the EGFP tag on activation and deactivation of the STAT3 

constructs. Continuous IL-6 stimulation was insufficient for evaluating the 

constructs because it led to sustained phosphorylation (Figure 3.11A) of STAT3, 

which would mask any dephosphorylation effects. Therefore a 30 min pulse of 

IL-6 was tested (Figure 3.11A) as per Section 2.5. This is a common protocol for 

IL-6 stimulation of HepG2 cells (Pranada et al, 2004; German et al, 2011) and it 

resulted in transient phosphorylation of endogenous STAT3, that peaked at 30 

min and returned to initial levels within 90 min. The transient phosphorylation 

made the 30 min IL-6 pulse ideal for assessing the impact of EGFP tag position 

on STAT3 activation and deactivation. 

The washing process for the 30 min pulse was tested to control for any effects 

on basal STAT3 phosphorylation. Washing followed by non-conditioned media 

replacement (Fig. 3.11B) caused a rapid drop in STAT3 phosphorylation that 

lasted for at least 6 h, so washing followed by replacement with conditioned 

media (i.e. from a matched but untreated dish of cells) was tried. Adding 

conditioned media prevented the drop in phospho-STAT3, indicating that 

differences between the conditioned and non-conditioned media were 

responsible, rather than the wash protocol itself. The nature of the difference 

was not investigated further since it was sufficient to know that conditioned 

media prevented the down-regulation of STAT3 signalling. In light of this 

finding, all subsequent pulsed treatments of the HepG2 cells were carried out 

using conditioned media replacement.  
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Figure 3.11: Optimisation of pulsed stimulation protocol for assessing 

phosphorylation of STAT3 constructs. A STAT3 Y705-phoshporylation in 

HepG2 cells exposed for 30 min or continuously to 20 ng/ml IL-6 over 6 hours. 

B The effect of washing untreated cells with MEM and replacing with either 

non-conditioned or conditioned media. Blots representative of three 

independent repeats.  

 

3.6.2 Phosphorylation of EGFP-tagged STAT3 Proteins in 

Response to Pulsed IL-6 

The EGFP-tagged STAT3 constructs were the expected size, approx. 130 kDa, by 

Western blot and did not differ from each other (Fig. 3.12A). However the 

constructs did differ significantly in their pattern of Y705-phosphorylation in 

response to a 30 min pulse of IL-6. EGFP-STAT3 followed the phosphorylation 

of endogenous STAT3 closely, but exhibited a slightly slower dephosphorylation 

rate (Fig. 3.12B). 

STAT3-EGFP on the other hand was not appreciably dephosphorylated (Fig. 3 

12C). Instead it maintained a high phosphorylation level for the 8 h period 

studied, even though the endogenous STAT3 returned to its original 

phosphorylation level by 2 h. That STAT3-EGFP was not being 

dephosphorylated suggested that it might remain transcriptionally active long 

after the original stimulus had been removed. By contrast it could be 

hypothesized that the endogenous STAT3 were not transcriptionally active 

B 
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between 1.5 and 8 h because Y705 phosphorylation is responsible for 

maintaining the active dimer conformation. Consequently the STAT3-EGFP 

protein perturbed the endogenous system, which could confound any 

experiments performed with it. To test this, luminometry assays were 

performed and the construct imaged by confocal microscopy. 

 

 

 

Figure 3.12: Comparing IL-6 induced phosphorylation of EGFP-STAT3 

and STAT3-EGFP to endogenous STAT3. Western blots representative of 

n=3 replicates for A STAT3 protein from untransfected HepG2 cells, and HepG2 

cells transfected with either EGFP-STAT or STAT3-EGFP 24 h after seeding. 

Blotted with STAT3 Ab; HepG2 cells expressing B EGFP-STAT3 and C STAT3-

EGFP, stimulated with 20 ng/ml IL-6 for 30 min and lysed at indicated intervals. 

Blotted with pY705-STAT3 and α-tubulin. 

 

3.6.3 Transcriptional Activity of EGFP-tagged STAT3 Proteins 

The transcriptional activity of the EGFP-tagged STAT3 constructs was examined 

by end-point luminometry (Section 2.6) using the SOCS3-proximal promoter 
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driven firefly luciferase (SOCS3-lucF) construct generated in Section 2.2.5. The 

effect of the expression vectors upon unstimulated cells was assessed by 

comparison of SOCS3-lucF induction in cells transfected with EGFP-STAT3, 

STAT3-EGFP or EGFP alone (Fig. 3.13A), in accordance with the transfection 

protocols in Section 2.4.4. The STAT3 expression plasmids significantly altered 

basal SOCS3 induction, with EGFP-STAT3 lowering induction (P<0.01) and 

STAT3-EGFP increasing induction (P<0.001) (2-way ANOVA). Induction of 

SOCS3 in response to 30 min of 20 ng/ml IL-6 was also assessed (Fig. 3.13B). IL-

6 stimulated samples were normalised to their unstimulated controls and then 

all samples were normalised to the EGFP untreated control. This was to 

highlight the fold-induction in transcription caused by IL-6 stimulation. IL-6 

caused approximately a 2-fold increase in SOCS3 transcription, regardless of 

EGFP expression vector. Both EGFP-STAT3 and STAT3-EGFP expressing cells 

significantly increased SOCS3 induction over the EGFP control (P<0.05), 

however there was no significant difference between the STAT3 expression 

vectors.  

There was considerable inter-replicate variation across the four biological 

replicates performed. The variation was largely due to the poor transfection 

rates of HepG2 cells (Section 2.4.4), leading to extremely low luminescence 

levels. Averaging the replicates masked the degree of conflict between them so 

only the most internally reliable biological replicate with the strongest 

luminescence readings is presented (Fig. 3.13). 

Only two trends were consistent across all replicates. Firstly, STAT3-EGFP 

increased basal SOCS3 induction above that of EGFP and EGFP-STAT3 cells in 

the untreated case. It was not possible to determine the effect of EGFP-STAT3 

relative to the EGFP control, as it was seen to both increase and decrease basal 

transcriptional activity. Secondly, EGFP-STAT3 and STAT3-EGFP expressing 

cells induced SOCS3 more strongly than the EGFP control when stimulated with 

IL-6. The increase in transcription could be primarily attributed to over-

expression of EGFP-tagged STAT3. However, it was not possible to identify a 

difference between the two constructs in response to IL-6. This was unexpected, 

based on the Western results where STAT3-EGFP was phosphorylated at a 
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higher rate for longer than EGFP-STAT3. In conclusion, the poor reproducibility 

of the data meant that the differences seen between the IL-6-induced 

transcriptional activity of the N- and C-terminal EGFP-tagged STAT3 constructs 

could not be reliably confirmed. 

 

 

Figure 3.13: ppSOCS3-lucF Induction before and after IL-6 treatment. 

Cells transfected with ppSOCS3-lucF in a 1:1 ratio with either EGFP, EGFP-

STAT3 or STAT3-EGFP. A Raw luminescence values for untreated cells, in 

arbitrary units. B Luminescence 3 h after 30 min of 20 ng/ml IL-6 treatment. 

Statistical analysis of the results was performed in GraphPad Prism, using two-

way ANOVA with multiple comparisons. * = P<0.05, ** = P<0.01, *** = 

P<0.001. Error bars represent 1 standard deviation. Results obtained from n=1 

biological replicate. 

  

A 
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3.6.4 Cellular Localisation of Fluorescent STAT3 Proteins 

The final stage in identifying the best fluorescent STAT3 construct was to study 

the subcellular localisation of the two constructs. This could reveal protein 

expression abnormalities and any obstacles to trafficking and movement within 

the cell, as well as confirming their fluorescence.  

Cells expressing EGFP-STAT3 and STAT3-EGFP were classified according to 

observed pattern of subcellular localisation. Several differences in localisation 

became apparent between the two constructs. EGFP-STAT3 was evenly 

distributed between the nucleus and cytoplasm in all cells (Fig. 3.14A), in line 

with published immunocytochemistry reports of endogenous STAT3 in HepG2 

cells (Meyer et al, 2002). However many STAT3-EGFP expressing cells displayed 

additional features (Fig. 3.14B). Some contained bright fluorescent protein 

aggregates, while others had a bright ring surrounding the nucleus, termed a 

perinuclear ring. These features were often found together. An additional 

observation was that the level of STAT3-EGFP aggregation varied over time. In 

some cells the volume of aggregates decreased, with a few losing them entirely. 

Other cells however accumulated aggregates and underwent apoptosis, 

suggesting that their presence could affect cell fate. The cells with the expected 

spatial distribution were usually the very faintest ones, suggesting there may be 

some link between the amount of STAT3-EGFP expressed and the abnormal 

localisation. The percentages of cells displaying each phenotype were calculated 

(Fig. 3.14C) and over 75% of STAT3-EGFP cells were found to exhibit abnormal 

features whereas none of the EGFP-STAT3 cells were affected.  
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Figure 3.14 Comparison of N- and C-terminal EGFP-tagged STAT3 

subcellular localisation phenotypes. Representative pictures of untreated 

HepG2 cells expressing A EGFP-STAT3, with nuclei ringed in yellow. N = 

Nucleus, C = Cytoplasm; B STAT3-EGFP. Nucleus and cytoplasm are marked, as 

are a Perinuclear Ring and Aggregates. Scale bar is 20 μm. C Graph of 

percentage of cells showing each of the spatial characteristics: even STAT3 

distribution between N and C; aggregates; perinuclear ring; aggregates and 

perinuclear ring; and ‘other’. At least 50 cells were counted for each expression 

plasmid, from n=3 independent replicates. 
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The perinuclear ring phenomenon noted in Figure 3.15 was briefly studied 

using z-stack imaging (Fig. 3.15). It was observed that the bright spots of 

fluorescence were apparently evenly distributed around the nucleus, enclosing 

it. One possible explanation is that STAT3-EGFP becomes trapped at the Nuclear 

Pore Complex, although whether it is inside or outside of the nuclear envelope 

cannot be determined from the z-stacks. It is also unknown from these studies 

whether these spots were dynamic and exchanging with their surroundings or 

whether they were static features. 

 

Figure 3.15: Z-stack of a HepG2 cell expressing STAT3-EGFP displaying 

the perinuclear ring phenotype. 10 slices, each 0.6 μm thick, from a 25 slice 

stack 15 μm deep, starting at the base of the cell. Thin yellow ring marks the 

footprint of the cell where it is attached to the glass dish. Inside the bright green 

fluorescent ring is the nucleus. Scale bar represents 10 μm. 

 

The presence of aggregates and perinuclear rings in the majority of STAT3-

EGFP expressing cells, versus their complete absence in EGFP-STAT3 cells, 

indicates that the C-terminal localisation of EGFP affects the basal expression 

and nucleocytoplasmic shuttling of STAT3 in a way that the N-terminal tag does 

not. It is unlikely to be a problem with post-translational folding as the fusion is 

fluorescent; the most likely explanation is that a C-terminal EGFP tag affects the 

formation of the U-STAT3 dimer. Combined, these data indicate that the STAT3-

EGFP construct is unsuitable and that the EGFP-STAT3 fusion should be used for 

imaging STAT3 signalling dynamics. Furthermore, an N-terminal fluorescent 

protein tagged STAT3 BAC should be constructed (Section 3.8). 
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3.7 Cloning and Expressing the CMV-driven SOCS3-

EGFP Expression Vector 

The SOCS3 coding sequence was amplified from HepG2 cells stimulated for 2 h 

with 20 ng/ml IL-6 because it is an inducible and labile mRNA. Gateway cloning 

protocols were followed as for STAT3. Only a C-terminal tagged version was 

produced because the protein structure (Babon et al., 2006) locates the SH2 

binding domain in the middle of the protein and the Kinase Inhibitory Region 

towards N-terminus, suggesting that the fluorescent tag would not interfere 

with the function of SOCS3. The CMV-SOCS3-EGFP construct was expressed in 

HepG2 cells and was observed mainly in the cytoplasm (Fig. 3.16), in agreement 

with published reports (Ben-Yair et al., 2002; Babon et al., 2006). Given this 

positive result, cloning of the SOCS3 BAC began. 

 

 

Figure 3.16: Untreated HepG2 cells expressing SOCS3-EGFP under the 

control of the CMV promoter. Yellow scale bar represents 20 μm. 

 

3.8 SOCS3 and STAT3 Bacterial Artificial 

Chromosomes 

The BACs were intended to supersede the plasmid constructs for EGFP-STAT3 

and SOCS3-EGFP, as they would allow protein expression to be controlled by the 

endogenous promoters and downstream regions. The methods used to engineer 

the BACs are described in detail in Section 2.3. Briefly, two BACs were selected, 

one for SOCS3 and one for STAT3, so that the gene of interest was towards the 

middle of the BAC vector. This was to ensure that as much of the upstream and 

downstream regulatory regions as possible were included. The BACs were maxi-
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prepped and transformed into the SW102 bacterial strain by electroporation of 

cold-competent SW102 cells, with chloramphenicol and tetracycline selection 

for presence of the BAC. BAC DNA was prepared from multiple selected colonies 

and was screened by Pulse-Field Agarose Gel Electrophoresis of restriction 

digest fragments (Fig. 2.3 in Section 2.3.5).  

The STAT3 BAC was successfully transformed into SW102 cells after multiple 

attempts. Since the EGFP-STAT3 fusion was identified as the best orientation 

(Section 3.6), primers to introduce the EGFP cassette at the N-terminal of STAT3 

had to be designed. However, by this stage, the EGFP-STAT3 plasmid was 

producing very promising results in response to IL-6 signalling. In order to 

devote more time to these microscopy experiments, work on the STAT3 BAC 

was temporarily suspended. The EGFP-STAT3 plasmid microscopy experiments 

worked well and are discussed further in Chapter 4. 

In contrast to the STAT3 BAC, attempts to transform the SOCS3 BAC into SW102 

cells were unsuccessful. It appeared that the SOCS3 BAC was undergoing 

homologous recombination events during the transformation process, causing 

regions of the BAC to be lost. Although the cultures were grown at 32°C to 

inhibit the recombination machinery, this process is not always completely 

efficient.  

Problems in the early stage of the BAC engineering process are associated with 

subsequent difficulties with the introduction of the fluorescent protein cassette 

(A. Adamson, personal communication). In light of this and the successful EGFP-

STAT3 plasmid, the decision was made to cease further attempts with the 

SOCS3 BAC. However, in order to provide a means to investigate SOCS3 

expression and to support the STAT3 work, a STAT3-inducible SOCS3 

expression plasmid was produced.  
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3.9 Cloning and Expression of Socs3 Proximal 

Promoter-driven SOCS3-EGFP 

SOCS3 inhibition of STAT3 signalling depends on its induction by STAT3 (Babon 

et al, 2014). Therefore it was necessary to place the expression of the SOCS3-

EGFP fusion protein under the control of the SOCS3 promoter (as opposed to 

constitutive expression from the CMV promoter). The existing SOCS3-EGFP 

plasmid was manipulated further to place expression of the fusion protein 

under the sole control of 1 kb of the SOCS3 proximal promoter. The selected 

promoter sequence contained the TATA box, Transcription Start Site and 

conserved STAT3 and NF-κB binding sites, and was also used in the 

construction of the SOCS3 Firefly luciferase reporter used the validation of the 

STAT3 plasmids.  

The proximal promoter was amplified from the SOCS3 BAC using specific 

primers. A series of restriction digests and a ligation step (Section 2.2.4 and Fig. 

3.17) successfully generated a SOCS3 proximal promoter-driven SOCS3-EGFP 

fusion. The construct was verified by restriction digest and sequencing. This 

plasmid is hereafter referred to as ppSOCS3-EGFP. 

Imaging HepG2 cells transfected with the ppSOCS3-EGFP construct showed that 

it was expressed predominantly in the cytoplasm (Fig. 3.18), as per CMV-driven 

SOCS3-EGFP. This was a positive outcome, however the poor transfection 

efficiency of HepG2 cells coupled with the inducible SOCS3 proximal promoter 

meant that identifying cells transfected with the construct prior to imaging 

them was extremely difficult. Furthermore, transfection event during mitosis 

was enough to induce SOCS3-EGFP expression, because the cells became 

fluorescent after mitosis. This is a known potential issue with transient plasmid 

transfections (Pellegrin et al, 2002) and it limited the usefulness of the 

ppSOCS3-EGFP construct. Use and optimisation of other transfection techniques 

may have improved transfection efficiency and partially overcome this issue. 

The ideal solution would have been to develop a stable cell line with the 

plasmid. 
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Figure 3.17: Schematic of cloning steps necessary to convert SOCS3-

EGFP into ppSOCS3-EGFP. SOCS3 proximal promoter was amplified from 

the SOCS3 BAC then subjected to a two-step restriction digest to create sticky 

ends. Pre-existing SOCS3-EGFP expression vector was similarly digested. 

Ligation of digested vector and SOCS3 proximal promoter cassette generated 

the ppSOCS3-EGFP expression vector. 

 

 

Figure 3.18: Untreated HepG2 cells expressing ppSOCS3-EGFP, 12 h 

after transfection. Scale bar represents 20 μm. 
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3.10 Discussion 

3.10.1 General Summary 

This chapter covered the groundwork of the thesis, detailing the choice of cell 

line and the generation of the fluorescent fusion proteins needed to investigate 

STAT3 and SOCS3 signalling through fluorescence microscopy. The HepG2 cell 

line was selected because it was responsive to both IL-6 and TNFα, which would 

allow cross-talk between STAT3 and p65 to be investigated at a later point. 

Signalling dynamics in response to TNFα were characterised in detail at the 

single cell level to compare the HepG2 cell line to the well defined SK-N-AS line. 

This demonstrated that p65 and IκBα oscillated at the same frequency in the 

two cell lines and also revealed that oscillations in HepG2 cells were more 

heterogeneous.  

Following this work, several fluorescent fusion protein expression vectors were 

constructed. The effect of fluorescent tag position on STAT3 activity was 

assessed, showing that the N-terminal placement of the EGFP-tag had fewer 

effects than the C-terminal alternative; therefore the EGFP-STAT3 construct was 

selected for STAT3 imaging. Two SOCS3-EGFP constructs were developed, one 

under the control of a constitutive CMV promoter, and the other under the 

control of the SOCS3 proximal promoter. These constructs were forerunners to 

a SOCS3 BAC that unfortunately did not progress past the first engineering 

stage. Work on a STAT3 BAC was halted at a similar stage because by that point 

the EGFP-STAT3 plasmid was producing good preliminary data; these results 

are discussed in the next chapter. 

3.10.2 Cell Line Cytokine Responsiveness 

Comparison of IL-6 responsiveness of the HepG2 and SK-N-AS cell lines 

revealed that only the HepG2 cell line responded to IL-6. STAT3 was 

phosphorylated on Tyr705 in HepG2 cells in response to IL-6 but this did not 

occur in SK-N-AS cells. SOCS3 mRNA transcription was also induced in HepG2 

but not SK-N-AS cells, indicating a lack of STAT3-mediated transcriptional 

activity in the latter. This lack of IL-6 response made the SK-N-AS cell line 

unsuitable for the intended study on IL-6 and TNFα cross-talk, but the HepG2 
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cell line could be used. Investigation of TNFα signalling in HepG2 cells showed 

that p65 and IκBα temporal dynamics were similar to those in SK-N-AS cells, 

whose NF-κB dynamics are relatively well understood (Ashall et al., 2009). 

There were minor differences in IκBα dynamics between the cell lines, where 

IκBα protein was degraded more slowly in HepG2 cells but was also 

resynthesized more rapidly. This difference could perhaps be attributed to 

greater heterogeneity at the single cell level, which could be explored through 

fluorescence imaging of NF-κB. 

3.10.3 SOCS3 Expression Vectors  

An inducible expression vector for SOCS3 under the control of the SOCS3 

promoter was expected to be the best reporter of STAT3 signalling dynamics. 

This was because work with IκBα, the inducible repressor of p65 signalling, only 

produced useful results regarding long-term p65 activity when expressed under 

its own promoter from a BAC expression vector (A. Adamson, personal 

communication). Early attempts with constitutive IκBα expression plasmids 

could only capture the initial IκBα degradation event and not the subsequent 

cycles of resynthesis and degradation (Nelson et al, 2004, and unpublished 

observations). Unfortunately the SOCS3 BAC was unsuccessful very early on and 

as expected the CMV-driven plasmid and the proximal promoter-driven 

plasmids were of limited use. 

A successfully constructed SOCS3 BAC could have provided evidence for the 

hypothesized SOCS3 oscillations in single cells. Ideally the experiments would 

be performed in stably transfected HepG2 cells, overcoming the issues related 

to transient transfection and enabling higher throughput microscopy 

experiments. Furthermore BAC transgenic mice could have been generated. In 

the future, SOS3 transgenic mice could be made without using BACs, instead 

utilising the new “genome editing” technologies of Zinc-Finger Nucleases, 

TALENs and CRISPR/Cas9 (reviewed Doudna & Charpentier, 2014; Gupta & 

Musunuru, 2014). These technologies can be used to introduce a fluorescent 

protein cassette at a specified locus within the genome and thus do not disturb 

copy number of the target gene, removing the negative effects of over-

expression and also reducing or eliminating endogenous protein expression. 
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However these techniques require specific expertise or use of commercial 

applications and may have other drawbacks. 

Transgenic mice expressing a SOCS3 fluorescent protein fusion would have 

many uses. They would enable the study of SOCS3 in infection and inflammation 

(reviewed in Rottenberg & Carow, 2014), and for investigating LIF/STAT3 

signalling in embryogenesis (Sekkaï et al, 2005; Xie et al, 2009). They would 

also facilitate investigation into cross-talk between STAT3 signalling with other 

STATs and other signalling networks such as MAPK (Bode et al, 2001; Ehlting et 

al, 2007) and NF-κB (McFarland et al, 2013). These are just some of the 

potential applications of a SOCS3 transgenic mouse. 

3.10.4 STAT3 Phosphomutants and phosphomimetics 

In addition to the SOCS3 constructs and the fluorescent protein-tagged STAT3 

constructs, the use of STAT3 phosphomutant and phosphomimetic proteins was 

considered. A STAT3 phosphomutant (STAT3-Y705F) has a dominant negative 

function, and was crucial to the discovery that Tyr705 phosphorylation is 

essential for STAT3 nuclear translocation and transcriptional activity in 

response to cytokines (Nakajima et al, 1996; Bhattacharya & Schindler, 2003; 

Pranada et al, 2004). Given that the dominant negative phosphomutant 

completely abrogates cytokine-induced STAT3 nuclear translocation, it would 

be futile to use it in this study of STAT3 nuclear translocation dynamics. 

Furthermore, there are no STAT3-Y705 phosphomimetics available in the 

literature, probably due to the general difficulty in mimicking phospho-tyrosine. 

Whereas phospho-serine and phospho-threonine can be successfully mimicked 

with glutamate, tyrosine usually cannot because of the aromatic ring in its side 

chain. Consequently using phosphomimetics and phosphomutants as line of 

approach was discounted. 

3.10.5 Fluorescent-tag Effects on STAT3 Function 

The structure of the STATs and the functions of the domains are well 

understood, and were reviewed in the Introduction. The domains each have 

different roles and the N-terminal domain, and the C-terminal SH2 domain and 

Transactivation Domain (TAD) are particularly important to dimerisation of 
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both unphosphorylated and phosphorylated STATs. Therefore the position of 

the EGFP tag, itself bigger than either the TAD or the N-terminal domain, could 

impact the function of the STAT3 fusion. Investigation of the orientation of the 

EGFP tag relative to the STAT3 protein revealed that the N-terminal position 

had few apparent effects on STAT3 function, whilst the C-terminal tagged 

STAT3 construct, STAT3-EGFP, was considerably perturbed. As a result the 

EGFP-STAT3 construct was selected for the project.  

The first difference between the EGFP-tagged STAT3 constructs was in their 

tyrosine phosphorylation kinetics. STAT3-EGFP exhibited persistent tyrosine 

phosphorylation, even as the endogenous STAT3 was dephosphorylated, whilst 

EGFP-STAT3 only showed a minor delay in dephosphorylation of approximately 

30 min. Dephosphorylation of the STAT3 dimer requires a switch from the 

parallel to antiparallel configuration (Mao et al, 2005; Zhong et al, 2005) and the 

Tyr705 phosphorylation site is located at the C-terminal domain interface. In 

both cases, the perturbation could be due to the EGFP moiety interfering with 

dimer switching between the parallel and antiparallel conformations, or from 

direct steric hindrance effects, thus inhibiting phosphatase activity (Zhong et al, 

2005).  

Further issues were seen in imaging STAT3-EGFP. Whereas EGFP-STAT3 had a 

subcellular distribution that matched endogenous STAT3 (Meyer et al, 2002), 

the majority of STAT3-EGFP cells had perinuclear rings and aggregates. These 

phenotypes suggest that nuclear trafficking, a constitutive process requiring 

NLS and NES motifs in the coiled-coil domain (Vinkemeier, 2004), of U-STAT3 

was affected. These effects may be explained through the effects of the C-

terminal tag on dimer conformation switching, possibly as a result of the size of 

the EGFP moiety, which is larger than the TAD and the N-domain.  

In the antiparallel conformation, the C-terminal domain is close to the coiled-

coil domain, where the NLSs and NESs of STAT3 are located (Vinkemeier, 2004). 

EGFP could hinder importin and exportin access to these sequences (Komeili & 

O'Shea, 2001). An inability to readily change conformation could also cause 

issues with transport through the Nuclear Pore Complex, leading to the speckled 

appearance of the perinuclear ring. Interestingly, this effect has not been 
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reported elsewhere so it is possible that these negative effects on STAT3-EGFP 

are due to the specific linker sequence being too short or inflexible, or 

incompatibility with this cell type, as these are generally known issues with 

artificial linker sequences. To determine whether this is the case, different 

linker sequences could be tested. Regardless of whether these problems with 

STAT3-EGFP dephosphorylation and subcellular distribution and transport are 

specific to this particular construct or all such C-terminal tagged STATs, EGFP-

STAT3 was the most suitable construct for the rest of the project.  
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4.1 Introduction 

In Chapter 3, different cell lines were tested to establish a good model system 

for the analysis of the dynamics and function of STAT3 signalling. The HepG2 

cell line was chosen because it gave a good STAT3 response, unlike the SK-N-AS 

cells. In addition, HepG2 cells exhibited robust NF-κB oscillations in response to 

TNFα stimulation. Plasmids that expressed STAT3 fluorescent fusion proteins at 

N- and C-termini were examined to determine their behaviour. The N-terminal 

fusion was found to mimic the phosphorylation dynamics of endogenous STAT3 

at the population level and exhibited a cellular localisation that closely matched 

the endogenous protein. The optimal media for STAT3 pulse stimulation 

experiments was also determined. 

Having developed a good model system, the next aim was to investigate 

whether STAT3 oscillations could be observed in single cells by time-lapse 

fluorescence microscopy. This could confirm biochemical experiments that had 

suggested such oscillations might occur (Yoshiura et al, 2007). To achieve this, 

live cell confocal microscopy was performed on cells treated with IL-6, under 

conditions similar to those successfully used to analyse NF-κB dynamics 

(Nelson et al, 2004). In addition to studying the response to constant IL-6 

stimulation, the cells were subjected to different length pulses of cytokine 

treatment. The aim was to determine the minimum stimulation time needed to 

induce a full STAT3 translocation to the nucleus, to gain a better understanding 

of receptor and STAT3 activation dynamics and to decide whether a repeat 

pulsing protocol would be suitable.  

Further to the experimental microscopy work, a small gene expression study 

was carried out using Fluidigm qPCR technology to investigate the HepG2 

response to IL-6. This was to serve two purposes. Firstly, to study in detail core 

components of the STAT3 signalling pathway, some of which are key to the 

model, by building upon experimental results published elsewhere. Secondly, to 

give context to the microscopy data from the continuous and pulsed IL-6 

treatments by establishing whether the length of IL-6 stimulation may alter 

gene expression patterns. If changes were found, this could be correlated to any 
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treatment-dependent differences seen in STAT3 signalling dynamics, thus 

highlighting their importance. 

At the very start of this project, a mathematical model of STAT and SOCS 

oscillations had been developed by Dr Núria Domedel-Puig in the laboratory of 

Prof. Jordi Garcia-Ojalvo. This generic model was subsequently adapted for IFN-

β signalling through STAT1, with negative feedback from SOCS1, by fitting to 

population-level data, under which circumstances STAT1 demonstrated 

transient oscillatory dynamics (Pertsovskaya et al, 2013). The availability of 

quantitative, single-cell microscopy data presented an opportunity for an 

improved parameterisation of the generic STAT:SOCS model, leading to a 

deeper understanding of STAT3-SOCS3 signalling at the single-cell level, leading 

to further predictions. This work was performed in collaboration with Dr N. 

Domedel-Puig, Dr E. Abad, and Prof. J. Garcia-Ojalvo, Universitat Pompeu Fabra, 

Spain. 

4.2 Imaging EGFP-STAT3 Dynamics in HepG2 Cells 

HepG2 cells were prepared for time-lapse confocal fluorescence microscopy and 

transfected with EGFP-STAT3 as described in Section 2.4.4. Cells were imaged 

for up to 20 h and the data analysed according to Sections 2.9-.10. The results 

for untreated cells and cells treated with 20 ng/ml IL-6 (Section 2.5) for 5, 15 

and 30 min with a conditioned media chase, or continuously, are presented in 

the following sections.  

4.2.1 Untreated EGFP-STAT3  

Untreated HepG2 cells expressing EGFP-STAT3 showed no significant change in 

fluorescence over time (Figure 4.1). Part A shows a single HepG2 cell expressing 

EGFP-STAT3 over a 5 h period. Cell traces of Nuclear/Total Fluorescence were 

grouped by independent biological replicate (B, C, and D). This showed that ROI 

tracker produced somewhat noisier data (B and C) than whole cell tracker (D) 

but the techniques gave similar standard deviations for the N/T ratio over all. 

The average of all cells over time was calculated (E) and a line of best fit 

determined (black dashed line in E), giving the equation  y = 0.001x + 0.50. 

This indicated that STAT3 fluorescence remained stable over time and was 
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evenly distributed between the cytoplasmic and nuclear compartments, on 

average (N/T = 0.5 ± 0.05). This is in line with a previous study that indicated 

that in unstimulated HepG2 cells 50.4 ± 7.4 % of STAT3 was nuclear (Meyer et 

al., 2002). 

 

 

Figure 4.1: Analysis of untreated HepG2 cells expressing EGFP-STAT3.  

A Untreated HepG2 cell expressing EGFP-STAT3, imaged over a 5 h period. Scale 

bar:20 μm. B-C Nuclear/Total fluorescence (N/T) for all cells from three 

independent experiments over time (h). B and C tracked by ROI, D tracked using 

Whole Cell method. E Average of all cells. Thin green line is experimental 

average. Green shaded area is equal to ± 1 S.D. Black dashed line is the line of 

best fit.   
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4.2.2 30 min IL-6 Stimulation 

A 30 min pulse of IL-6 triggered a transient net movement of EGFP-STAT3 into 

the nucleus of HepG2 cells (Figure 4.2 and 4.3). As with unstimulated cells, most 

displayed an even N:C distribution before treatment. Addition of IL-6 caused 

EGFP-STAT3 to shift rapidly to a predominantly nuclear localisation (0.8 ± 0.05 

N/T) which peaked at 35 min (Fig. 4.3F). Fitting the increase gave the rate 

equation y = 0.55 e 0.91t. After 35 min, nuclear occupancy by EGFP-STAT3 

started to decline, returning slowly to the unstimulated resting state over a ~6 h 

period. This decrease could be fitted to a first order decay equation of y = 0.47 e 

-0.66t, giving a half-life of 1.05 h, which is slightly longer than the P-STAT3 half-

life from the Westerns in Section 3.6.2. 

 

 

Figure 4.2: Transient nuclear translocation of EGFP-STAT3 in a HepG2 

cell after 30 min IL-6 treatment. HepG2 cell expressing EGFP-STAT3, imaged 

over a 5 h period. 20 ng/ml IL-6 added at t = 0.5 h for 30 min before 

conditioned media replacement. Scale bar:20 μm. 
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Figure 4.3: N/T EGFP-STAT3 in response to 30 min pulse IL-6 (20 ng/ml) 

followed by conditioned media replacement.  

A and C display traces from all cells analysed in an experimental replicate. B and 

D show the average of all cells in that experiment (black line), ± 1 S.D (green 

shaded area). E shows the two replicates together and their interpolated 

average (black dashed line). F Fitting of first order exponential growth and 

decay equations (red lines) to the population average. All x-axes adjusted so 

that t0 represents the time of IL-6 addition. 
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4.2.3 Comparing 5 and 15 min IL-6 Pulses to the 30 min Pulse 

Cells expressing EGFP-STAT3 and responding to a 5 or 15 min pulse of IL-6 

responded with the same strength nuclear translocation as for 30 min IL-6 (Fig. 

4.4A). STAT3 translocated to the nucleus and returned to the resting 

distribution after a 5 or 15 min IL-6 pulse with the same temporal dynamics as 

for a 30 min pulse. However the percentage of cells responding to a 5 or 15 min 

pulse was only around 33 %, compared to 73 % for a 30 min pulse (Fig. 4.4B). 

This 2.2-fold increase in the number of responding cells between 15 and 30 min 

implies that in order for the majority of the population to respond, additional 

signalling events, requiring IL-6 to be present at the cell membrane, occur 

between 15 and 30 min after stimulation. 

 

 

Figure 4.4: Comparing effects of short IL-6 pulses on EGFP-STAT3 

nuclear translocation in HepG2 cells. 20 ng/ml IL-6 added at t=0, and 

removed 5, 15 or 30 min later, followed by conditioned media replacement. N = 

1 replicate for each condition. A Comparing different length pulses. Average N/T 

for all cells for each condition. Mean of cells indicated by solid or dashed line 

and shaded area represents ± 1 S.D. B Percentage of responding cells for each 

pulse length. 
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4.2.4 Continuous IL-6 Stimulation 

HepG2 cells expressing EGFP-STAT3 and subjected to continuous IL-6 

stimulation demonstrated a sustained nuclear translocation of EGFP-STAT3 

(Fig. 4.5). Cells were analysed using Cell Tracker and the N/T fluorescence 

calculated from the raw cytoplasmic and nuclear fluorescence values (Fig. 4.6). 

This analysis revealed that the sustained presence of EGFP-STAT3 in the 

nucleus was oscillatory in nature. The nuclear EGFP fluorescence oscillated 

around a new, higher set point whilst the cytoplasmic fluorescence oscillations 

were the inverse of the nuclear oscillations (Fig. 4.6). Since it is known that 

STAT3 levels are stable over time even in the presence of IL-6 (Siewert et al, 

1999; Wormald et al, 2006) and that it is the tyrosine phosphorylation state 

which controls STAT3 nuclear translocation rather than degradation and 

resynthesis (Bhattacharya & Schindler, 2003; Meyer et al, 2003), this finding 

strongly suggests that the nuclear EGFP-STAT3 oscillations were due fluctuating 

net tyrosine phosphorylation of EGFP-STAT3. 

 

 

Figure 4.5: Sustained nuclear translocation of EGFP-STAT3 in a HepG2 

cell under continuous IL-6 treatment. HepG2 cell expressing EGFP-STAT3, 

imaged over a 4 h period. 20 ng/ml IL-6 added at t = 0 h. Scale bar:20 μm. 
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Figure 4.6: Sustained nuclear translocation of EGFP-STAT3 in a HepG2 

cell under continuous IL-6 treatment. HepG2 cell expressing EGFP-STAT3, 

imaged over an 84 h period. 20 ng/ml IL-6 added at t = 1 h. Cytoplasm (C,  

blue), Nucleus (N, red) and Nuclear/Total (N/T, purple) fluorescence values. 

 

Representative graphs of N/T ratios for IL-6 stimulated EGFP-STAT3 cells are 

presented in Figure 4.7A. Some cells became fluorescent after stimulation and 

so could not be used in determining first peak characteristics, however they 

provided good quality data for later time points. Other cells underwent mitosis 

after stimulation. Daughter cells which remained fluorescent were analysed, an 

example of which is included. Averaging the cells (n = 26) (Fig. 4.7B) obscured 

the nuclear oscillations of individual cells so cells were analysed individually 

using the peak detection tool (Section 2.11.2) to determine quantitative values 

for peak appearance, peak amplitude and peak-to-peak intervals. Fig. 4.7C 

illustrates one cell with the peaks of its nuclear oscillations marked.  

The data revealed a sharp shift from the resting state to a predominantly 

nuclear localisation (0.9 N/T ± 0.05) that took 35 ± 9 min on average (Fig 

4.8A), consistent with the 30 min pulse data. After the first peak, the proportion 

of nuclear EGFP-STAT3 dropped in all cells but not back to the resting level. 

Amplitude of peaks was relatively consistent within cells and less so between 

cells, varying by 0.05 to 0.20 points below the level set by the first translocation. 

Subsequent peaks and troughs could be seen in over 90% of cells analysed. 

Furthermore, the nuclear oscillations were sustained for up to 16 h after the 

addition of IL-6 in cells that were analysable at later time points.  
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Figure 4.7: EGFP-STAT3 sustains nuclear oscillations over many hours in 

response to continuous stimulation with IL-6.  

20 ng/ml IL-6 added at t0. A Example N/T traces from individual cells 

expressing EGFP-STAT3 from n=4 biological replicates. Some cells have delayed 

starting points as they became fluorescent after IL-6 was added and others have 

gaps due to mitosis. B Average of all cell traces (n=26 cells), purple shaded area 

represents ± 1 S.D. C An N/T EGFP-STAT3 trace with position of peaks marked 

(black crosses). Peaks determined through use of Excel tool discussed in Section 

2.11.2.  
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The nuclear oscillation peaks appeared to display a regular frequency and so 

were analysed in detail (Fig. 4.8B-D). The peak-to-peak intervals were grouped 

by cell (Figure 4.8B, each interval is represented by a circle), and no discernible 

differences between experimental replicates in the mean or variance of the 

intervals were found. To test whether order of the peaks affected the peak-to-

peak interval, in each cell the peak 1 – peak 2 interval was compared to the 

mean of the subsequent peak-to-peak intervals using two-way ANOVA (Fig. 

4.8C). No significant difference was found, suggesting that other factors 

contribute to the peak-to-peak interval variation. The intervals from all cells 

were displayed in a histogram (Fig. 4.8D). They ranged from 40 to 174 min, 

fitted a normal Gaussian distribution, and the mean interval was 93 ± 26 min. 

Intervals from 140 to 180 min could have been due to normal variation in 

period or due to noise leading to missed peaks, as an interval of 180 min is long 

enough to contain an additional peak, giving two intervals of approximately 90 

min each.  

STAT3 nuclear oscillations were observed before and after mitosis, and the 

translocations after mitosis were likely due to IL-6 still being present in the 

media at high concentrations. However cell numbers were not high enough to 

determine whether the cell cycle had any effect on timing. This might prove an 

informative line of enquiry in the future since the cell cycle is known to affect 

other signalling systems e.g. NF-κB (Dr J. Ankers, submitted for publication). 

The consistent peak amplitudes, regular frequency and sustained nature of the 

repeated STAT3 nuclear translocations combined to form an oscillatory 

response to continuous IL-6 stimulation in single cells that has yet to be 

reported elsewhere. These oscillatory signalling dynamics were in line with the 

predictions from the initial iteration of the STAT3-SOCS3 model and the 

quantitative single cell data obtained will be used to improve it.  
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Figure 4.8: Timing the Peaks of EGFP-STAT3 Nuclear Translocations in 

response to continuous IL-6 stimulation.  

Bars represent Mean ± 1 S.D. in A, B and C. A Appearance times of first peak 

(P1) for each cell in minutes. B Time between subsequent peaks (coloured 

rings) for each cell, excluding Peak 1 – Peak 2 (P1-P2). Each colour represents 

one biological replicate (n=4). Horizontal dashed line indicated mean peak-to-

peak time across all cells. C Comparison of P1-P2 interval to mean of peak-to-

peak timing for P2-P3 onwards. D Histogram of all peak-to-peak intervals. 

Median (solid line) and mean (dashed line) indicated. Dotted curve indicates 

Gaussian distribution of the data.  
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4.3 Transcriptional Responses to Differential IL-6 

Stimulation 

IL-6 is known to be a key driver of the Acute Phase Response, which occurs as a 

result of the liver responding to systemic infection (Moshage, 1997). The 

transcriptional responses of a variety of IL-6-induced target genes and STAT3-

SOCS3 signalling components were investigated using qPCR to serve two 

purposes. Firstly, to provide detailed timing and amplitude information 

regarding mRNA transcription of various components of the STAT3 signalling 

network, particularly SOCS3, so that the STAT3-SOCS3 model parameters could 

be constrained accordingly. Secondly, to determine whether any genes 

responded differently to pulsatile versus continuous IL-6 stimulation. Since 

STAT3 oscillates under continuous but not pulsatile IL-6 stimulation, this would 

suggest that some genes could require sustained STAT3 oscillations for 

maximum expression. To these ends, a number of relevant genes were selected 

for detailed analysis. 

4.3.1 Selecting Target Genes 

The IL-6-Receptor (IL6R) and gp130, which together comprise the IL-6 receptor 

complex, were selected in case transcription dynamics of the receptor complex 

played a role in regulating IL-6 signalling. STAT3 was selected because it is self-

induced in response to IL-6 (Ichiba et al, 1998) and the increased level of 

unphosphorylated STAT3 has been shown to be important for cross-talk with 

NF-κB (Yang et al, 2007). SOCS-1, 2 and 3, were selected because they are 

inducible inhibitors of STAT signalling, (reviewed in Krebs & Hilton, 2001). 

SOCS3 was of particular interest since Yoshiura et al., (2007) provided a very 

detailed time-course of SOCS3 mRNA oscillations showing a 2 h period. 

However their work was in a different cell line with a tendency to synchronise, 

so obtaining HepG2-specific data was essential. Whilst the SOCS1-3 proteins 

have previously been well characterised, less is known about SOCS-5 and 7, so 

they were included to determine whether they might also be linked to the IL-6 

pathway response. 
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Two genes, hepcidin and γ-fibrinogen, were chosen, because as components of 

the liver’s Acute Phase Response, they are part of the outcome of IL-6 signalling 

(Castell et al, 1989). They are also known to be differentially regulated by 

different cytokine combinations (Bode et al, 2012a), and so were potentially 

relevant for understanding any STAT3 - NF-κB cross-talk utilising IL-6, TNFα 

and IL-1β. Other genes included were IL-6, IL-10, and IL-15, as they were 

potential sources of paracrine and autocrine signalling, but they were not 

reliably detected in any of the samples. The reference genes were cyclophilin A, 

β-tubulin, GAPDH, and PolR2A, as discussed in Section 2.8.7. 

4.3.2 Summary of Fluidigm qPCR Methods 

HepG2 cells were stimulated either continuously or for 30 min with 20 ng/ml 

IL-6, as described in Section 2.8.2. The cells were lysed at the appropriate times 

to generate a detailed 24 h time-course. The early time points from 0 to 1.5 h 

were chosen to provide close coverage for early response genes, such as SOCS3. 

Lysates were collected at 2 h intervals between 2 to 8 h and a final 24 h sample 

was taken to capture mid and late responding genes. cDNA samples were 

prepared and subjected to Fluidigm qPCR (Sections 2.8.3-4, 6). Analysis was 

performed in qBase+ as described in Section 2.8.7. The mean ± 1 S.D. of n=3 

independent repeats are presented in Figure 4.6. The reference genes did not 

change over time under any of the tested conditions so cyclophilin A is given as 

an example.  

4.3.3 STAT3 Transcriptional Responses to IL-6 

Looking first at the IL-6 receptor complex components, it was clear that the 

receptor complex was hardly affected by IL-6 signalling (Fig. 4.9). IL6R showed 

no change while gp130 was slightly up-regulated. Gp130 increased by 

approximately 1.5-fold in the first 1.5 h, which was sustained for the duration of 

the experiment, under both the 30 min pulse and continuous stimulation. This 

finding was in line with work by (Schooltink et al, 1992) in HepG2 cells that 

showed that IL-6 up-regulated gp130. STAT3 mRNA did not change during the 

first hour then increased to 1.5 fold at 2 h, which was sustained under 

continuous IL-6 but not the 30 min pulse. The increase seen with continuous IL-
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6 is supported by work in hTERT-HME1 cells, an immortalised epithelial line, 

performed by (Yang et al, 2005). 

Of the SOCS genes, SOCS1 detection was unreliable across replicates while 

SOCS5 and 7 did not change in response to IL-6 (data not shown). SOCS2 did not 

appear to distinguish between length of IL-6 stimulation, peaking between 45 

and 90 min with a 3-fold increase before returning to initial levels between 2 

and 4 h in both conditions (Fig. 4.9). SOCS3 however did distinguish between 

the 30 min pulse and continuous IL-6. In both cases, its mRNA was undetectable 

in unstimulated cells. However, it appeared within 15 min of IL-6 addition, 

rising sharply to peak at 45 min with a 10 to 20-fold increase, before returning 

to a low level by 2 h. From 2 to 8 h, SOCS3 was still detectible after the 30 min 

pulse, whereas it was present at a higher level under continuous IL-6 until 24 h. 

When combined with the knowledge that SOCS3 oscillates at the population 

level in synchronous cells (Yoshiura et al, 2007), this finding suggests that 

SOCS3 could be transcribed in a heterogeneous manner across the population. 

An analogous situation is found in SK-N-AS cells where oscillating levels of IκBα 

transcripts in single cells are averaged out across the population leading to a 

seemingly steady rate of transcription. Consequently, only the data for the first 

two hours of SOCS3 transcription will be used to refine the model (as this time 

frame contains the first peak in SOCS3 mRNA where the cells are far more likely 

to be synchronised).  

Hepcidin and γ-fibrinogen confirmed the strong HepG2 response to IL-6 (Fig. 

4.9). Hepcidin increased approximately 3-fold, peaking 2 h post stimulus, and 

did not differ between conditions. γ-fibrinogen did differ, showing a stronger 

and sustained response to continuous stimulation. After 1 h of IL-6 stimulation, 

γ-fibrinogen mRNA expression increased 2-fold in both conditions. Under 

continuous IL-6, expression slowly increased, reaching 3-fold induction at 24 h, 

whereas after the 30 min pulse expression was constant between 2h and 8 h, 

before decaying to the basal level at the 24 h time point. 
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Figure 4.9: Normalised mRNA fold-change for selected STAT3 signalling 

components and target genes. HepG2 cells stimulated with 20 ng/ml IL-6 for 

30 min (♦) or continuously (■). Mean + 1 S.D. for n=3 independent 

experiments.  
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The results for IL-6, IL-10 and IL-15 are not presented because they could not 

be consistently detected across biological replicates. Thus it appears that these 

genes were not responsive to IL-6 alone in HepG2 cells, despite indications in 

the literature that these genes and their products are involved in regulatory and 

cross-talk events downstream of IL-6 signalling in other cell types and tissues. 

In summary, some genes were transcribed differently depending on whether a 

30 min pulse or continuous IL-6 stimulation was given. These were STAT3, 

SOCS3, gp130 and γ-fibrinogen, and they showed either a stronger or more 

sustained induction in response to continuous IL-6. Conversely, the IL6R, SOCS2 

and Hepcidin genes responded the same way to both conditions. In addition, the 

detailed, time-resolved information about early SOCS3 mRNA transcription will 

be used to constrain the parameter for the SOCS3 mRNA component of the 

model.  
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4.4 Modelling STAT3:SOCS3 Signalling Dynamics 

4.4.1 The Initial Model 

The first iteration of the STAT-SOCS model developed in Prof. J. Garcia-Ojalvo’s 

group was based upon the work presented in (Yoshiura et al, 2007). Using 

Western blots to measure phospho-STAT3 and SOCS3 protein levels in serum 

synchronised cells, this study found they oscillated co-dependently with a 2 h 

period (Section 1.2.8). In order to capture these oscillations in phospho-STAT, a 

three-component ordinary differential equation (ODE) model describing STAT 

activation and its repression by SOCS was developed (Fig. 4.10) (Domedel-Puig, 

unpublished).  

The three components of the generic STAT-SOCS model represented phospho-

STAT, SOCS mRNA and SOCS protein (Fig. 4.10). Non-linear Hill terms were 

used to capture the induction of SOCS mRNA by active P-STAT and the 

repression of STAT phosphorylation by SOCS. Half of the parameter values were 

obtained from published works and the remainder were fitted manually (Table 

4.3). Key constraints were the rates of STAT inactivation, degradation of SOCS 

mRNA and SOCS protein, and the rates of translation and transcription of SOCS 

mRNA. This basic representation was able to create a temporal delay that led to 

a stable limit cycle with robust, sustained oscillations in P-STAT and SOCS 

protein. The model was resistant to a range of parameter changes whilst 

stochasticity introduced through SOCS3 mRNA molecule numbers did not affect 

the oscillatory period (Domedel-Puig, unpublished). This resilience in the face 

of added noise suggested that STAT3/SOCS3 oscillations would be robust in 

vivo.  

The intention was to test the generic model which predicted STAT oscillations 

in individual cells against the live single cell microscopy data and to expand the 

generic model so that the available single cell time-lapse microscopy data 

presented in Section 4.2 could be utilised effectively.  
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Figure 4.10: The initial STAT3-SOCS3 model, illustrating the SOCS3 

negative feedback loop.  

A Illustration of the model. B Model schematic. Components are: signal (S), 

inactive STAT (A), phosphorylated STAT (A*), SOCS mRNA (r) and SOCS protein 

(R).  = degradation. C Model equations. β  = production rate, λ = decay rate, k 

= half-maximal constant, p and q = Hill coefficients. Figures and equations by N. 

Domedel-Puig (unpublished). 

 
The primary limitation of the model was the lack of nuclear and cytoplasmic 

compartments, with active and inactive STAT levels being modelled instead. The 

microscopy data obtained does not differentiate between phosphorylated and 

unphosphorylated STAT3. Instead the key read-outs are the relative nuclear and 

cytoplasmic fluorescence levels. Whilst nuclear/total STAT3 could be used as a 

proxy for U/P-STAT3, this would not make the best use of the available data. In 

addition, the lack of compartmentalisation also meant that one reaction 

represented multiple biological processes that together regulate the balance of 

inactive cytoplasmic STAT3 and transcriptionally active nuclear STAT3. As 

described in Section 1.2.4-5, transcriptional activation and inactivation of 

C 
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STAT3 requires its phosphorylation in the cytoplasm, shuttling of phospho-

STAT3 into the nucleus, and dephosphorylation for subsequent nuclear export. 

This provided a strong motivation for the explicit modelling of nuclear and 

cytoplasmic portions, as well as phosphorylated and non-phosphorylated 

populations of STAT3. This additional complexity would also facilitate the 

inclusion of experimentally determined and published transport rates.  

Another potential issue identified with the initial model was the presence of two 

relatively large Hill coefficients in the terms representing the activity of 

phospho-STAT3 and SOCS3. Essentially a large Hill coefficient acts as a sudden 

switch between two states at a given threshold whereas smaller coefficients 

produce a gradual shift from one state to the next. Inclusion of a large Hill 

coefficient is often an indication that the model has over-simplified some key 

aspect of the system being portrayed. In the first case, the transcription of SOCS 

mRNA presumed a high degree of cooperation at the promoter, suggesting 

multiple P-STAT dimers are required for transcription. The large Hill coefficient 

for the inhibitory effect of SOCS protein upon the production of active STAT 

implied a certain quantity of SOCS protein was required for inhibition. By 

implementing an expanded model of the STAT3-SOCS system, it may be possible 

to reduce non-linearity in the Hill terms for these two events. Hence the model 

could be made to better reflect the known biological situation. 

4.4.2 Summary of Data Used to Re-fit the Model 

The microscopy experiments presented earlier in this chapter allowed for the 

quantification of STAT3 behaviour under unstimulated and IL-6-stimulated 

conditions. It became clear early on that the initial model did not reflect STAT3 

nucleocytoplasmic oscillations as visualised through fluorescence microscopy. 

Therefore we sought to update and expand the model, addressing the potential 

issues outlined in the previous section so that the characteristic features of the 

data could be used to constrain the model. Early experimental data (Fig. 4.11) 

was used in the first round of refitting, however it was derived from a very 

limited number of cells and only covered a 6 h period. Subsequently better 

quality data from experiments lasting up to 16 h became available. Statistical 

analysis quantified the spatio-temporal characteristics of the nucleocytoplasmic 
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STAT3 oscillations caused by continuous IL-6 stimulation. This detailed 

quantitative data (summarised in Table 4.1) was used to reproduce an idealised 

STAT3 oscillating cell (Fig. 4.12), against which an expanded and re-

parameterised version of the STAT3-SOCS3 model could be tested. The 30 

minute pulse data supplied a rate for the return of post-stimulus STAT3 nuclear 

occupancy to the resting condition after the removal of the stimulus, providing 

an additional constraint for the model.  

 

Figure 4.11: Average of total nuclear STAT3 from a limited number of 

HepG2 cells under continuous IL-6 stimulation. Solid green line = average, 

dotted line = ± 1 S.D. 

 
Figure 4.12: An idealised oscillating cell. Generated according to the average 

population characteristics described in Table 4.1, for the first 6 h post-IL-6 

stimulation. 
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STAT3 Protein 
Dynamic 

Behaviour 
Time N/T 

Localisation 
Time to  

First Peak 

Unstimulated NA NA 50 ± 7 % NA 

30 min IL-6 Half-life 
Decay 

63 min 80 ± 0.5 % 35 min 

Continuous IL-6 Period of 
Oscillation 

93 ± 26 min 80 ± 0.5 % 35 min 

SOCS3 mRNA 

Continuous IL-6 
Transient 

peak 

Max at 45 min 

Min at 1.5 h 
NA NA 

Table 4.1: Key features of the data used to parameterise the model. 

 

4.4.3 Extending the Initial Model 

The initial model was extended so that the issues discussed earlier could be 

addressed and the average population characteristics (Table 4.1) used to 

constrain the model. The model was separated into nuclear and cytoplasmic 

compartments, necessitating the split of the non-linear equation for the 

production of P-STAT3 into equations 1 through 5, Table 4.2. Signal from the 

receptors was introduced (Equation 1), including a biologically meaningful 

number of Receptor molecules (R) and a decay rate (λR) so that receptor 

turnover could be included if necessary. Non-phosphorylated and 

phosphorylated populations of cytoplasmic STAT3 were explicitly modelled 

(Equations 2 and 3, respectively), as were the non-phosphorylated and 

phosphorylated populations of nuclear STAT3 (Equations 4 and 5, respectively). 

To achieve this, linear terms for phosphorylation of cytoplasmic STAT3 (kpC) 

and the nuclear import rate for P-STAT3 (kimp) were incorporated. 

Compartmentalisation meant that the basal nucleocytoplasmic shutting of latent 

STAT3 dimers (kimpL) could also be incorporated as a constitutive rate. This was 

important for the equal nucleocytoplasmic distribution of STAT3 of the resting 

state and modelling the 30 min pulse data. Additionally, dephosphorylation 

rates for cytoplasmic and nuclear P-STAT3 (kdpC and kdpN respectively) and a 
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nuclear export rate for STAT3 (kexp) were introduced. These changes (Fig 4.13) 

meant the model more accurately reflected the biological STAT3 activation and 

deactivation processes and STAT3 nuclear transport. The new equations were 

developed by Dr E. Abad after discussions with myself and Prof. J. Garcia-Ojalvo. 

The parameters for the these new terms were drawn from the literature where 

possible or were fitted by Dr Abad.  

 

 

Figure 4.13: Schematic of the new compartmentalised STAT3-SOCS3 

model, provided by Dr Abad.  
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𝑑𝑅

𝑑𝑡
= 𝑆 − 𝜆𝑅 ⋅ 𝑅 

 

 

(1) 

𝑑𝑆𝑇𝐴𝑇𝐶

𝑑𝑡
= 𝑘𝑒𝑥𝑝 ⋅ 𝑆𝑇𝐴𝑇𝑁 − 𝑘𝑖𝑚𝑝𝐿 ⋅ 𝑆𝑇𝐴𝑇𝐶 + 𝑘𝑑𝑝𝐶 ⋅ 𝑝𝑆𝑡𝑎𝑡𝐶 … 

                 −𝑘𝑝𝐶 ⋅ 𝑅 ⋅
𝑆𝑇𝐴𝑇𝐶

𝑆𝑇𝐴𝑇𝐶 + 𝑊𝐴
+

𝑆𝑂𝐶𝑆𝑞

𝑊𝐼
𝑞 − 𝜆𝑆𝑇𝐴𝑇 ⋅ 𝑆𝑇𝐴𝑇𝐶  

 

 

(2) 

𝑑𝑝𝑆𝑇𝐴𝑇𝐶

𝑑𝑡
= 𝑘𝑝𝐶 ⋅ 𝑅 ⋅

𝑆𝑇𝐴𝑇

𝑆𝑇𝐴𝑇𝐶 + 𝑊𝐴
+

𝑆𝑂𝐶𝑆𝑞

𝑊𝐼
𝑞 − 𝑘𝑖𝑚𝑝 ⋅ 𝑝𝑆𝑇𝐴𝑇𝐶 … 

                      −𝑘𝑑𝑝𝐶 ⋅ 𝑝𝑆𝑇𝐴𝑇𝐶 − 𝜆𝑆𝑇𝐴𝑇 ⋅ 𝑝𝑆𝑇𝐴𝑇𝐶 

 

 

(3) 

𝑑𝑆𝑇𝐴𝑇𝑁

𝑑𝑡
= 𝑘𝑑𝑝𝑁 ⋅ 𝑝𝑆𝑇𝐴𝑇𝑁 − 𝑘𝑒𝑥𝑝 ⋅ 𝑆𝑇𝐴𝑇𝑁 − 𝜆𝑆𝑇𝐴𝑇 ⋅ 𝑆𝑇𝐴𝑇𝑁 + 𝑘𝑖𝑚𝑝𝐿

⋅ 𝑆𝑇𝐴𝑇𝐶  

 
 

(4) 

𝑑𝑝𝑆𝑇𝐴𝑇𝑁

𝑑𝑡
= 𝑘𝑖𝑚𝑝 ⋅ 𝑝𝑆𝑇𝐴𝑇𝐶 − 𝑘𝑑𝑝𝑁 ⋅ 𝑝𝑆𝑇𝐴𝑇𝑁 − 𝜆𝑆𝑇𝐴𝑇 ⋅ 𝑝𝑆𝑇𝐴𝑇𝑁 

 

 

(5) 

𝑑𝑚𝑆𝑂𝐶𝑆

𝑑𝑡
= 𝑘𝑇 ⋅

𝑝𝑆𝑇𝐴𝑇𝑁
𝑛

𝑝𝑆𝑇𝐴𝑇𝑁
𝑛 + 𝑊𝑠𝑜𝑐𝑠

𝑛 − 𝜆𝑚𝑆𝑂𝐶𝑆 ⋅ 𝑚𝑆𝑂𝐶𝑆 

 

 

(6) 

𝑑𝑆𝑂𝐶𝑆

𝑑𝑡
= 𝑘𝑆𝑂𝐶𝑆 ⋅ 𝑚𝑆𝑂𝐶𝑆 − 𝜆𝑆𝑂𝐶𝑆 ⋅ 𝑆𝑂𝐶𝑆 

 

(7) 

  

Table 4.2: Model Equations. 𝑆𝑇𝐴𝑇, 𝑝𝑆𝑇𝐴𝑇, 𝑆𝑂𝐶𝑆 and 𝑚𝑆𝑂𝐶𝑆 represent 

levels of STAT3, phosphorylated STAT3, SOCS3, and SOCS3 mRNA respectively, 

formulated in terms of molecule numbers per cell. Cytoplasmic and nuclear 

species are denoted by the subscripts 𝐶 and 𝑁. Parameter values are defined as 

in Table 4.3. Equations developed by Dr E. Abad.  



Modelling Observed STAT3:SOCS3 Dynamics 

 

~ 131 ~ 
 

4.4.4 Parameterisation of the Model 

Parameters for the model were drawn from various published sources while 

others were fitted through local parameter searches (Table 4.3). Ultimately, two 

different parameter sets were required to capture both 30 min and continuous 

IL-6 stimulation (parameters different for 30 min IL-6 are highlighted in red). 

The total number of STAT3 molecules was assumed to be stable over the period 

modelled, and was based on the number of STAT1 molecules per cell (1x105) 

(Wenta et al., 2008). Therefore the STAT3 protein degradation rate (λSTAT) was 

set to zero whilst STAT3 protein synthesis was not included. Nuclear import of 

latent STAT3 (kimpL) was drawn from Fluorescence Localisation After 

Photobleaching experiments in unstimulated HepG2 cells (Herrmann et al., 

2007), (half-life recovery of fluorescence, 26 min). Rates for cytoplasmic 

phosphorylation (kpC) and cytoplasmic and nuclear dephosphorylation of 

STAT3 (kdpC and kdpN) were fitted through local parameter searches. The rates 

used for the nuclear import of P-STAT3 (kimp) and the nuclear export rate of 

STAT3 (kexp) were determined experimentally by Cimica et al., (2011) (half-life 

import rate, 6 min; half-life export rate, 8-10 min). It should be noted that 

although the equations were compartmentalised, the nuclear and cytoplasmic 

compartments were not explicitly modelled so their volumes are implicitly 

assumed to be equal. The transcription rate for SOCS3 was adapted from Yu et 

al., (2002) whereas the translation rate for the production of SOCS3 protein was 

fitted. The SOCS3 mRNA degradation rate was obtained from Ehlting et al., 

(2007) (mRNA life-life, 17 min) and the SOCS3 protein degradation rate was set 

to match the mRNA stability so that protein and mRNA levels remained 

proportional over time. The Hill constant of half-maximal activation for the 

activity of phosphorylated STAT3 (WA), the dissociation rate for SOCS3 

inhibition (WI), and the rate of SOCS3 transcription by active nuclear STAT3 

(WSOCS3) were manually determined through local parameter searches during 

fitting of the model. 
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Table 4.3: List of STAT3/SOCS3 model parameter values 

Name Symbol 
Value 

Cont./Pulse 
(mean±SD) 

Units Reference 

Receptor production rate  

(active by endogenous ) 

𝑆 0 min-1 NA 

Transcription rate for SOCS3 𝑘𝑇 19±12 min-1 Yu et al,  

2003 

Translation rate for SOCS3 𝑘𝑆𝑂𝐶𝑆 13±6 min-1 * 

Phosphorylation STAT3 rate 𝑘𝑝𝐶 44±22 min-1 * 

Dephosphorylation STAT3 rate 𝑘𝑑𝑝𝐶 0.12±0.04 min-1 * 

Maximum import rate (pSTAT3) 𝑘𝑖𝑚𝑝 0.026±0.007/ 

0.018 

min-1 Cimica  

et al, 2011 

Constitutive import rate (STAT3) 𝑘𝑖𝑚𝑝𝐿 0.043±0.02 min-1 Hermann  

et al, 2007 

Export rate (STAT3) 𝑘𝑒𝑥𝑝 0.04±0.02 min-1 Cimica  

et al, 2011 

Nuclear STAT3 Dephosphorylation rate 𝑘𝑑𝑝𝑁 0.034±0.01 

/0.017 

min-1 * 

STAT3 phosphorylation activation  

(Hill’s constant; half maximal activation) 𝑊𝐴 38220±11956 molecules * 

Dissociation constant for the receptor -

inhibitor SOCS3  

(Hill’s constant; half maximal activation) 
𝑊𝐼 48097±30800 molecules * 

SOCS3 transcription activation  

by nuclear pSTAT3 

(Hill’s constant; half maximal activation) 
𝑊𝑠𝑜𝑐𝑠

𝑛  12148±16220 molecules * 

Co-operativity of SOCS3 protein over 

STAT3 dimers 

𝑞 3±1.4 - NA 

Co-operativity of STAT3 on SOCS3  

gene promoter 

𝑛 4±1 - NA 

Receptor internalization/degradation rate 𝜆𝑅 0 min-1 NA 

SOCS3 mRNA degradation rate 𝜆𝑚𝑆𝑂𝐶𝑆 0.035±0.01 min-1 Ehlting  

et al, 2007 

SOCS3 protein degradation rate 𝜆𝑆𝑂𝐶𝑆 0.033±0.01 min-1 Siewert  

et al, 1999 

STAT3 protein degradation rate 𝜆𝑆𝑇𝐴𝑇 0 min-1 NA 

Total STAT3 level 𝑆𝑇𝐴𝑇𝑡𝑜𝑡𝑎𝑙 1E5 molecules Wenta  

et al, 2008 

Total IL6 receptor level 𝑅𝑡𝑜𝑡𝑎𝑙 500 molecules 
Zöhlnhofer  

et al., 1992 

  * Parameter fitted manually using local parameter searches. 
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4.4.5 Model Simulations 

Early attempts at expanding the model used one set of parameters to capture 

data for both the 30 min IL-6 pulse and continuous IL-6 stimulation. However, 

these attempts could not generate sustained STAT3 oscillations under 

continuous stimulation. Instead, two parameter sets were required, one for each 

stimulation regime. The most recent version of the model captured oscillations 

in N/T STAT3 with a 90 min period in response to continuous IL-6 stimulation, 

and SOCS3 mRNA and SOCS3 protein also oscillated (Fig. 4.14). Nuclear STAT3 

oscillations were sustained over a 10 h period, in accordance with the imaging 

data.  

Outputs from the extended model (Fig. 4.15) reflected the 30 min IL-6 pulse 

data well, generating single transient peaks in Nuclear STAT3, SOCS3 mRNA and 

SOCS3 protein levels. This was achieved by setting the level of active receptor to 

zero, 30 min after beginning simulation. The biological regulation of receptor 

activity is highly complex (Section 1.2.2.4) but IL-6-bound receptors are 

internalised within 5 min and subsequent activation and deactivation processes 

occur inside the cell. Therefore from a statistical perspective, removal of IL-6 

from the media sets the active receptor level to zero. Although not an accurate 

reflection of receptor dynamics, it was sufficient for modelling IL-6 pulse data.  
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Figure 4.14: Simulation Outputs from the Expanded Model for 

Continuous IL-6 Stimulation in HepG2 cells. 10 h simulation. Graphs of IL-6 

Receptor, Nuclear STAT3 Fluorescence, SOCS3 mRNA and SOCS3 protein. 

 

 

Figure 4.15: Simulation Outputs from the Expanded Model for 30 min 

Pulse IL-6 in HepG2 cells. Run time of 5 h. Graphs of IL-6 Receptor, Nuclear 

STAT3 Fluorescence, SOCS3 mRNA and SOCS3 protein  
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4.4.6 Observations on the Iterative Model Fitting 

The simulations from the initial STAT:SOCS model created by Domedel-Puig did 

not reflect the newly available single cell STAT3 microscopy data. Therefore 

additional complexity representing STAT3 nuclear import/export was 

introduced into the model so that the model could use and capture the STAT3 

data effectively. Even though the model has a small number of equations, it was 

complex enough to capture both oscillatory and transient dynamics in response 

to two different stimulation regimes. In doing so, two different solutions were 

generated. Values for half of the parameters were initially obtained from the 

literature, whilst the remainder were obtained by fitting to the data. Whilst 

refining the model to better reflect the data, certain parameters originally 

provided by the literature were significantly modified. These were the various 

import and export rates for the different STAT3 species, thus highlighting their 

central importance to the model.  

4.4.6.1 Nuclear and Cytoplasmic Compartmentalisation 

The first fundamental change to the initial model was introducing nuclear and 

cytoplasmic compartments. This allowed for separate populations of phospho- 

and non-phospho-STAT3 in the two compartments which in turn enabled 

nuclear import and export of both latent and active STAT3 to be modelled 

directly, making better use of the experimental data available. However, since 

no term was included for the relative sizes of the cytoplasmic and nuclear 

compartments, they are assumed to be the same size even though this is not the 

case in most cells. Experience from other models of oscillating systems (Ashall 

et al., 2009) suggests that an explicit representation of the compartment sizes is 

necessary for generating oscillatory dynamics. Therefore it may be useful to 

update the model so that compartment sizes are included. 

4.4.6.2 Importance of U-STAT3 and Import/Export Rates 

One novel feature of the model was the inclusion of nucleocytoplasmic 

transport of unphosphorylated STAT3 (U-STAT3). This phenomenon is 

functionally relevant, as U-STAT3 transcribes a specific subset of genes distinct 

from the targets of P-STAT3. Constitutive shuttling of U-STAT3, which also 

occurs with STAT5 and STAT6 (reviewed in Reich, 2013), was essential for 
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capturing the decay of the transient nuclear translocation under the pulse 

stimulus. Interestingly, the two parameter spaces together indicated that 

neither the absence nor presence of U-STAT3 trafficking affected the oscillatory 

dynamics under continuous stimulation, providing another possible role for U-

STATs. Nuclear import of U-STAT3 was modelled at a rate approximately three 

times slower than for P-STAT3. There are conflicting reports in the literature 

regarding whether phospho- and non-phospho-STAT3 shuttle at the same rate 

(Herrmann et al, 2007; Cimica et al, 2011). Resolving this question 

experimentally is difficult because fluorescently-tagged proteins cannot 

distinguish between different phosphorylation states. Consequently existing 

studies have considered transport rates before and after stimulation of STAT3.  

4.4.6.3 Receptor Dynamics 

Experimentally, the temporal dynamics of the IL-6 receptor are complex, 

context-dependent and not fully understood. Much of the published work on 

receptor dynamics was obtained from population-based methods and thus does 

not account for intercellular variation, which could be significant given the level 

of heterogeneity seen in STAT3 oscillations. In light of the complex biology, a 

receptor turn-over rate was included. However it proved unnecessary for 

generating oscillatory dynamics in this model of STAT3:SOCS3 signalling. In the 

future it may prove beneficial to reconsider receptor dynamics in more detail, 

and perhaps move from a two-state active-inactive receptor model to a three 

state motif, similar to the IKK module (Ashall et al, 2009). Further pulsing 

experiments with repeat pulses with different length intervals could also shed 

light on receptor dynamics, perhaps indicating a refractory period for receptor 

activation. 

  



Modelling Observed STAT3:SOCS3 Dynamics 

 

~ 137 ~ 
 

4.5 Discussion 

4.5.1 Live Cell Imaging of STAT3 Oscillatory Dynamics 

The nucleocytoplasmic translocation dynamics of STAT3 were investigated by 

performing live cell imaging of the EGFP-STAT3 construct developed in the 

previous chapter. Four conditions were tested. EGFP-STAT3 in unstimulated 

HepG2 cells did not change its nuclear to cytoplasmic ratio over time, remaining 

evenly distributed between the two compartments, in line with published works 

(Meyer et al, 2002). A 30 min IL-6 pulse caused a single, transient 

nucleocytoplasmic translocation of STAT3, again in agreement with the 

literature (Pranada et al, 2004). However, this is the first study to quantify the 

dynamics of the translocation, including the rapid exponential accumulation in 

the nucleus and the first order exponential decay rate returning the cell to its 

resting state within 6 h. Interestingly the decay rate for the return of N/T STAT3 

to the resting state was slightly longer than the half-life of P-STAT3, as 

determined by Western bot. This implies that N/T STAT3 does not directly 

correlate with P-STAT levels, one explanation for which might be that it takes 

some time for U-STAT3 to be exported from the nucleus after it has been 

dephosphorylated. 

Continuous IL-6 stimulation resulted in STAT3 nucleocytoplasmic oscillations 

with an average period of approximately 90 min, confirming the prediction that 

STAT3 is capable of oscillating in single cells from the modelling of population-

level oscillations (Yoshiura et al, 2007). The STAT3 oscillations were sustained 

over a long period (up to 16 h), indicating that the system can reach a robust 

limit cycle state. This study is the first to image and quantify STAT3 at a high 

time resolution for an extended period of time. Other studies have been of short 

duration (Pranada et al, 2004) or have focused on the specific mechanisms of 

nuclear import and export (Bhattacharya & Schindler, 2003; Cimica et al, 2011; 

Vogt et al, 2011), without considering the wider dynamics of the system. An 

early study in STAT1 imaged it at hourly intervals for up to 24 h but did not 

quantify the images, while the low time resolution means any dynamics would 

have been overlooked (Köster & Hauser, 1999). Meanwhile, early imaging 

studies of STAT6 were also for a period of less than 2 h (Nelson et al, 2002; 
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Nelson et al, 2003). It would be extremely interesting to repeat these studies 

with extended imaging, higher temporal resolution and image quantification to 

discover whether oscillatory dynamics are a feature of other STATs.  

The characteristic shape of the STAT3 oscillations was different to those of 

p65/NF-κB (Section 3.3). Instead of sharp, clearly defined translocations to and 

from the nucleus, STAT3 oscillations were broad, and the majority of STAT3 

remained in the nucleus after stimulation. In effect, STAT3 oscillated around a 

new, higher set point (around 80% nuclear/total STAT3). This made 

quantifying the oscillations more complex, introducing a potential source of 

error into the analysis. However, it should be remembered that bulk nuclear 

accumulation of STAT3 is a proxy for the transcriptionally active phospho-

STAT3. It may be that nuclear STAT3 obscures more defined oscillations of the 

P-STAT3 population. Furthermore, since U-STAT3 has roles in transcription 

(Yang et al, 2007), it may be functionally relevant that STAT3 oscillates around 

a higher set-point after IL-6 stimulation, even if not all the STAT3 in the nucleus 

is phosphorylated. Also relevant is the existence of other signalling systems 

with complex and oscillatory dynamics, e.g. calcium signalling and the circadian 

clock, have differently shaped oscillatory responses (Meyer & Stryer, 1988; 

Goldbeter, 1995; Tyson et al, 1999). 

A major hurdle with imaging STAT3 was the range of expression levels from the 

transient plasmid transfection, and the variable concentration of STAT3 in the 

nuclear and cytoplasmic compartments after IL-6 stimulation. Many fluorescent 

cells could not be imaged because they were too bright or too faint, whilst other 

cells exceeded the detection range of the microscope after stimulation due 

nuclear accumulation of STAT3. Often fluorescence in the nuclear compartment 

saturated the channel whilst other cells lost cytoplasmic fluorescence. This led 

to many cells having to be discarded during the image analysis due to the poor 

quality data produced. In an attempt to address this issue, two different 

detection channels were set up to capture overlapping ranges of fluorescence; 

unfortunately this was insufficient. The ideal solution would be the creation of a 

stable EGFP-STAT3 HepG2 cell line, which would enable more data to be 

collected more efficiently, and improve the statistical robustness of the data. 
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The effects of short IL-6 pulses on STAT3 were also considered. Pulses of 5 and 

15 min resulted in far fewer cells responding with a nuclear translocation, 

however the cells that did respond, exhibited a full strength translocation. This 

suggests the existence of a threshold of activation. The pY705-STAT3 Western 

blots in Section 3.6.2 indicated that STAT3 was equally phosphorylated at 15 

min as at 30 min. Furthermore some cells were able to produce a full STAT3 

translocation after only 15 min of IL-6. Together these data suggest that 

additional signalling events, other than Y705-phosphorylation and occurring 

between 5 and 30 min after stimulation, are necessary for the induction of a full 

STAT3 nuclear translocation in the majority of cells. Indeed, it has been 

reported that whilst 80% of IL-6-bound receptors are internalised within 5 min 

of IL-6 treatment, IL-6-induced MAP Kinase signalling via Erk1/2 is essential for 

full S727 phosphorylation of STAT3, which is in turn needed for maximal gene 

transcription (German et al, 2011). S727 phosphorylation appears within 5 min 

of IL-6 addition but accumulates very slowly, reaching a maximum 30 to 45 min 

after IL-6. This time-scale fits with the hypothesis that signalling events 

occurring between 15 and 30 min post-stimulation with IL-6 are necessary for 

the majority of cells to respond with a STAT3 nuclear translocation. 

An experiment with repeated short pulses of IL-6 was initially considered as it 

would have facilitated the investigation of a possible refractory period and the 

role of receptor dynamics. This approach was very successful for probing p65 

responses to TNFα and generated data that considerably constrained the NF-κB 

model (Ashall et al, 2009). However the requirement for 30 min IL-6 

stimulation for the majority of cells to respond made this a challenging 

approach, given the ~90 min period of STAT3 oscillations. Ideally a set of 

experiments would be performed where the cells are stimulated with IL-6 for 

30 min, followed by media replacement and an increasingly long rest period, at 

intervals from 15 min after stimulation up to 120 min post-media-replacement, 

before the application of a second 30 min IL-6 pulse or continuous stimulation. 

This would cover the period between the first STAT3 nuclear peak and the 

second peak and would inform our understanding of SOCS3-dependent 

signalling deactivation and the proposed refractory period (Wormald et al, 

2006), as well as the possible role of receptor dynamics in STAT3 activation. 



Modelling Observed STAT3:SOCS3 Dynamics 

 

~ 140 ~ 
 

Multiple repeat pulses would be difficult practically because of the 90 min 

STAT3 period and because of the significant cellular heterogeneity. 

4.5.2 STAT3-Induced Gene Expression Study 

The purpose of the qPCR study was to investigate whether there was any 

correlation between STAT3 signalling dynamics and the strength of 

transcriptional induction in response to differently timed IL-6 stimuli for a 

limited set of target genes. There were very few differences between the pulsed 

and continuous IL-6 protocols and those that were seen were small and limited 

to later time points. Due to the variability of the data, and the small fold-

changes, these differences were unlikely to be significant. Consequently it was 

not possible to correlate the limited effects to the differences in STAT3 

signalling dynamics. However the data was sufficient to indicate that there was 

IL-6 induced STAT3-mediated gene expression and the SOCS3 data was able to 

constrain the STAT3:SOCS3 model. 

To re-address the question of whether gene expression can be related to 

signalling dynamics, it would be better to test a wider array of genes. This could 

be done using a microarray or Nanostring technology. It would be useful to 

perturb STAT3 signalling in different ways, such as performing repeat pulses, 

using different stimuli or adding inhibitors, as this could affect both STAT3 

dynamics and gene expression. Finally single cell transcriptional data from a 

SOCS3 reporter would further inform on the dynamics of the system and could 

provide additional support for the STAT3:SOCS3 model. 

4.5.3 Modelling STAT3:SOCS3 Signalling Dynamics 

4.5.3.1 Summary  

We sought to assess basic cellular responses to a strong STAT3 agonist, IL-6, by 

combining experimental and modelling approaches. The purpose of the model 

was to replicate the statistically determined key features of STAT3 

nucleocytoplasmic translocation dynamics in response to differently timed 

stimulus regimes. By representing only the fundamental aspects of STAT3 

signalling transduction and SOCS3 inhibition using a minimalist ODE approach, 

the STAT3 dynamics in response to continual and pulsed IL-6 stimulation were 
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modelled. In the course of the model fitting, the importance of the balance 

between nuclear import and export rates for P-STAT3 and U-STAT3 to STAT3 

oscillations became apparent. Altering the import and export variables changed 

the amplitude and timing of STAT3 oscillations, however oscillatory dynamics 

were maintained across a range of parameters. The robustness of oscillation 

dynamics and the effect of SOCS3 negative feedback were not assessed in detail 

so this represents a key area for further work. 

4.5.3.2 Future Approaches to Improve the Model 

Models are inherently flawed so generating different solutions was not unlikely. 

It indicates that there may be more than one solution to the model and that 

conducting a sensitivity analysis is an important next step. One approach for 

sensitivity analysis entails changing specific parameters by fixed amounts on a 

case-by-case basis – this can lead to a better solution within a localised 

parameter space. Another option is to fit the model to the existing microscopy 

data on a cell-by-cell basis, constraining the parameters within a certain range 

and stopping the fitting once it approaches a certain level of best fit. This can 

give an indication of the range of reasonable values for key parameters. A much 

more intensive approach would be to perform a global sensitivity analysis. This 

searches the entire parameter space for possible results and so may identify 

non-intuitive solutions to the model (Rand, 2008).  

Collecting more types of experimental data would also aid the modelling 

approaches aimed at identifying better solutions. Work within the NF-κB system 

has highlighted the importance of good quality data and perturbing 

experimental systems to constrain mathematical models. The first effort should 

be towards obtaining extensive good quality single cell data, and this is best 

achieved using stable cell lines. Secondly, perturbations to the experimental 

system can be particularly informative. In the NF-κB system, perturbations have 

included repeat pulsing protocols (Ashall et al, 2009), low dose stimulation 

(Turner et al, 2010), and temperature changes (C. Harper, unpublished), 

amongst others. In this STAT3 system, repeating short pulses of IL-6 with 

different intervals between pulses may be the most informative initially, and 

would aid understanding of the effect of receptor dynamics upon the system. 
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Another approach for the future would be to target specific measurements for 

key parameters such as the import and export rates for different STAT3 species, 

or for levels of SOCS3 mRNA or protein. 

4.5.3.3 Future Investigation of STAT3 and NF-κB Cross-Talk 

The ultimate goal was to investigate cross-talk between NF-κB/p65 and STAT3, 

with the intention of modelling any systemic effects on their respective 

nucleocytoplasmic translocation dynamics. In order for such modelling to be 

possible, it was necessary to have both the pre-existing Ashall NF-κB model and 

this STAT3:SOCS3 model defined in comparable terms. Compartmentalising the 

STAT3:SOCS3 model was one step towards this, as was converting the initial 

model into realistic molecular numbers, achieved by deriving the parameters 

from biologically meaningful data. However, although necessary, these steps are 

not sufficient for combining the two models into one. The number of possible 

interaction mechanisms (Section 1.4) is so large that testing all possible model 

combinations becomes unfeasible. The following chapter therefore considers 

the dynamic responses of STAT3 and p65 to dual IL-6 and TNFα stimulation and 

other stimulus regimes as a means to further constrain the two models, thus 

providing a way around the complexity of cross-talk between the two networks. 

 



Cross-talk Between STAT3 and NF-κB 

 

~ 143 ~ 
 

 

 

 

 

 

Chapter 5  
Cross-Talk Between STAT3 and p65 
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5.1 Introduction 

This chapter addresses the final key aim of the thesis which was to investigate 

the cross-talk between STAT3 and NF-κB in terms of their single cell dynamics 

in response to different cytokines. IL-6, TNFα and IL-1β drive the acute phase 

response and it is known that gene expression is affected by the interplay of 

these three cytokines (Schindler et al, 1990; Snyers & Content, 1992). The 

interaction of NF-κB/p65 and STAT3 is vital to the expression of a subset of APR 

genes, including Serum Amyloid A, whereas for other genes, the interaction 

between p65 and STAT3 is inhibitory (Bode et al, 2012a). The outcome also 

depends on which cytokines are activating, as TNFα and IL-1β may have 

different effects even though they both signal via p65. Although there are many 

different proposed mechanisms for STAT and NF-κB cross-talk (Section 1.4), the 

particular focus here is on intracellular cross-talk between STAT3 and p65. Both 

indirect and direct interactions have been recorded for p65, U-STAT3 and P-

STAT3 (Bode et al, 1999; Yoshida et al, 2004; Hagihara et al, 2005; Yang et al, 

2007; Lee et al, 2009), as a result of IL-6, TNFα or IL-1β signalling in 

combination. More recently, a mechanism for IL-1β inhibition of IL-6 signalling 

acting via MAPK as opposed to NF-κB was elucidated (Radtke et al, 2010).  

NF-κB was already known as an oscillatory signalling system (Nelson et al, 

2004; Ashall et al, 2009) whilst STAT3 was a suspected oscillator. Therefore, in 

light of the various direct and indirect interaction mechanisms, it was possible 

that they may function as a coupled oscillator (Wang et al, 2011). If that were 

the case, then the dynamics of one system might be able to modulate the 

dynamics of the other. In a strongly coupled oscillator, this could occur as 

synchronous oscillations. In a weakly coupled oscillator however, the interplay 

of the dynamics could be much more subtle and more difficult to detect.  

In the previous chapter, STAT3 was established as a strong oscillator in HepG2 

cells that responded to continuous IL-6 stimulation with sustained 

nucleocytoplasmic oscillations. In Chapter 3, the TNFα-induced NF-κB dynamics 

were characterised for HepG2 cells. This chapter therefore builds upon this 

work and seeks to investigate the interplay of STAT3 and p65 signalling 

dynamics in response to IL-6, TNFα and IL-1β. Numerous control experiments 
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were performed to assess the effects of co-transfection and co-stimulation of 

single transfections upon signalling dynamics. The importance of the timing of 

cytokine stimulation for transcription factor activation and cross-talk was also 

investigated. Cross-talk initiated by IL-6 and TNFα signalling was assessed first 

and a small gene expression study was carried out in an attempt to relate gene 

expression to the pattern of STAT3 and p65 interaction. The role of IL-1β 

signalling in HepG2 cells and its cross-talk with IL-6 was considered later. 

 

5.2 Results 

To assess the effects of cytokine cross-talk on STAT3 and p65 signalling 

dynamics, extensive experimental controls were necessary. Combinations of 

single and co-stimulation with single and co-transfections were tested because 

protein over-expression and altered expression ratios may affect protein 

interaction equilibria. The effect of Transcription Factor co-transfection on 

individual stimuli (IL-6 and TNFα) was assessed, as was the effect of co-

stimulation (IL-6 + TNFα) on single TF expression. Continuous stimulation was 

used throughout. Once the controls were available, the STAT3:p65 co-

transfection, co-stimulation experiments were performed. IL-6 and TNFα were 

applied simultaneously or separately with a pre-determined delay in order to 

assess the importance of the timing of cytokine stimulation upon cross-talk. IL-6 

and TNFα were considered first in Section 5.3, while IL-6 and IL-1β were 

considered later in Section 5.5.  
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5.3 IL-6 and TNFα Induced STAT3 and p65 Cross-Talk 

5.3.1 Controlling for Transcription Factor Activation Under 

Co-Transfection and Co-Treatment Conditions 

5.3.1.1 STAT3 and p65 – Continuous IL-6 Stimulation 

Continuous IL-6 stimulation of STAT3:p65 co-transfected HepG2 cells suggested 

that STAT3 oscillated as per the continuously IL-6 stimulated STAT3 results 

presented in Chapter 4, and also demonstrated that p65 did not exhibit 

nucleocytoplasmic oscillations (Fig. 5.1). However only two STAT3 oscillating 

cells were obtained. An additional 9 cells were analysed and they showed the 

initial STAT3 nuclear translocation, but subsequent oscillations could not be 

detected due to the limited dynamic range of the microscope’s detector. No p65 

response was observed in these responding cells. This extremely limited data 

set meant that no statistical analysis could be performed but it did confirm that 

STAT3 was capable of oscillating when co-expressed with p65 and that p65 did 

not respond when STAT3 was stimulated with IL-6.  

 

Figure 5.1: N/T Fluorescence Traces from EGFP-STAT3, p65-dsRedXP 

dual-transfected HepG2 cells stimulated with 20 ng/ml IL-6. Green solid 

line: STAT3, red dashed line: p65. 
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5.3.1.2 STAT3 – Continuous IL-6 and TNFα 

Co-stimulation of EGFP-STAT3 singly transfected HepG2 cells with IL-6 and 

TNFα indicated that STAT3 was capable of oscillatory dynamics under these 

conditions (Fig. 5.2). However only one cell was successfully imaged and 

analysed, despite running multiple experimental replicates. This again meant 

that no statistical analysis could be performed so it was not possible to 

determine what effect, if any, p65 over-expression had on the dynamics of the 

STAT3 oscillations.  

 

Figure 5.2: N/T Fluorescence Trace from an EGFP-STAT3 HepG2 cell, 

co-stimulated with 20 ng/ml IL-6 and 10 ng/ml TNFα. Green solid line: STAT3. 

 

5.3.1.3 STAT3 and p65 – Continuous TNFα 

Oscillations were observed for p65 when co-expressed with STAT3 and treated 

with TNFα, and no STAT3 response was detected (Fig. 5.3A). Peak intervals, 

mean cell period and average oscillatory period (Fig. 5.5C) were calculated from 

cell traces (Fig. 5.5B) as in Chapter 3. When p65 and STAT3 were co-expressed 

and only p65 was stimulated with TNFα, p65 oscillated with an average period 

of 87 ± 20 min. This was 12.5 ± 4 min faster than when p65 was expressed 

alone and treated with TNFα (period, 99 ± 15min), and was significantly 

different at the P<0.05 level (independent t-test) (Fig. 5.5D). 
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Figure 5.3: p65 Data from EGFP-STAT3, p65-dsRedXP dual-transfected 

HepG2 cells stimulated with 10 ng/ml TNFα. A Example N/T cell traces. 

STAT3: green dash, p65: solid red line. B All p65 cell traces, n = 13 cells. C Mean 

peak intervals by cell (n=13 cells) and colour-coded by replicate (n=3). Each 

circle represents one peak interval (min) (n=63 peaks). Error bars represent 

mean cell period ± S.D. Dashed horizontal line represents the mean of all cell 

periods. 
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5.3.1.4 p65 – Co-stimulation with Continuous IL-6 and TNFα 

When p65 was expressed alone and co-stimulated with IL-6 and TNFα, it 

oscillated with a period of 93.5 ± 10 min, which was not significantly different 

to the response to TNFα stimulation alone (99 ± 15 min) (independent t-test 

with Welch’s correction for unequal variance, P=0.15) (Fig. 5.5B).  

 

 
Figure 5.4: p65 Data from p65-dsRedXP singly-transfected HepG2 cells, 

stimulated with 10 ng/ml TNFα. A Selected p65 cell traces, n = 13 cells. B 

Mean of cell peak intervals by cell (n=25 cells) and colour-coded by 

experimental replicate (n=2). Each circle represents one peak interval (min), 

n= 160 peaks. Error bars represent mean cell period ± S.D. Dashed horizontal 

line represents the mean of individual cell periods.   
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5.3.1.5 Comparing p65 Dynamical Behaviour Across Control Experiments 

The peak intervals (Fig. 5.5A and C) and cell periods (Fig. 5.5.B and D) from the 

p65:TNFα+IL-6 and p65+STAT3:TNFα were compared to the original 

p65+TNFα experiments presented in Section 3.3. Co-stimulating p65 with TNFα 

and IL-6 did not change the mean cell oscillatory period but did decrease the 

intercellular variance (Fig. 5.5 B), as measured with the F-test (P<0.05). 

 

 

 

Figure 5.5: Comparing a) IL-6 and TNFα Co-stimulation to TNFα 

Stimulation and b) STAT3+p65 Dual Transfection to p65 Single 

Transfection. A and C: comparing pooled peak intervals (min) from all cells 

across all experiments. B and D: comparing individual mean cell periods (min). 

10 ng/ml TNFα and 20 ng/ml IL-6. Each point represents a single peak interval 

or cell period and error bars in all graphs show population Mean ± S.D. 
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Co-expressing p65 with STAT3 did affect the p65 oscillatory period, decreasing 

it by 12.5 min to 87 min on average (Fig. 5.5.D), and this was also seen when all 

the peak intervals were pooled (Fig. 5.5C). This was a significant change but one 

possible explanation is that there were half as many cells for p65+STAT3:TNFα 

as for p65+TNFα so slower oscillating cells may not have been sampled. If 

however the difference remained after additional cells were collected then one 

explanation is that the excess STAT3 was able to interact with p65 and use its 

NLS to shift the p65 nuclear import/export equilibrium in favour of faster 

oscillations. This hypothesis is suggested by the work of various groups which 

have demonstrated that U-STAT3 and p65 can interact directly to drive gene 

transcription (Yoshida et al, 2004; Yang et al, 2007). 

5.3.2 STAT3 and p65 Dynamics in Response to IL-6 and TNFα 

Co-stimulation in Co-Transfected Cells 

HepG2 cells co-transfected with p65-dsRedXP and EGFP-STAT3 were co-

stimulated with IL-6 and TNFα to determine whether the oscillatory dynamics 

of either protein were affected by the other when activated by cytokines. One 

hypothesis was that the two systems may be coupled and thus capable of re-

enforcing their dynamics, leading to increased synchronisation in the 

oscillations. However, STAT3 and p65 oscillate with a very similar period when 

expressed alone and stimulated by one cytokine: 94 ± 12 min and 99 ± 15 min, 

respectively. The similarity in the average period, coupled with the degree of 

intracellular peak interval variation and intercellular period variation and also 

the wide STAT3 peaks, as opposed to the ‘sharp’ p65 peaks, could make it hard 

to classify the exact behaviour of the cells. Consequently, the systems 

synchronously oscillating could look very similar to the systems oscillating at 

their ‘typical’ speed but oblivious to each other, with a high degree of peak 

alignment in both cases. To attempt to address this issue, as well as applying the 

IL-6+TNFα simultaneously, they were applied with a 45 min delay between the 

IL-6 stimulation and TNFα stimulation. The 45 min delay was chosen because it 

is half of the 90 min STAT3+IL-6 oscillatory period. This should therefore start 

the oscillations precisely out of phase by 180°. If the systems were to 

synchronise, this could appear through a change in period over time, until the 
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oscillations were in phase. Alternatively the systems might be weakly coupled, 

in which case a number of different effects on the systems might be seen. To 

address this possibility, the population characteristics of peak interval 

distribution and mean oscillatory period were carefully considered, and 

statistically compared to the control experiments in Section 5.2.1. 

5.3.2.1 IL-6 and TNFα Simultaneous Co-Stimulation 

STAT3 and p65 oscillations were observed when co-transfected HepG2 cells 

were simultaneously stimulated with IL-6 and TNFα (Fig. 5.6). Shape and 

amplitude of the oscillations were similar to those seen previously for TNFα-

stimulated (Fig. 3.4) and IL-6-stimulated (Fig. 4.5) HepG2 cells. Peak intervals 

and mean cell periods were determined as before (Fig. 5.7A, B) and the intervals 

from all cells were pooled (Fig. 5.7C) so that STAT3 and p65 could be compared 

across the sample population. The mean STAT3 peak interval was 103.8 ± 33.0 

min and the median was 96.8 min, whilst the p65 mean interval was 93.1 ± 26.6 

min and the median 91.1 min. The peak interval data were analysed using the 

Mann-Whitney test as the data were not normally distributed and this indicated 

that the 5.8 min difference between the medians was significant at the P<0.05 

level. The mean STAT3 cell period was 103.6 ± 16.4 min and the p65 mean cell 

period was 96.0 ± 16.0 min (Fig. 5.7D). The p65 and STAT3 oscillatory periods 

were compared using the unpaired t-test (the data were normally distributed), 

and the 7.6 min difference in the means was not significant (P=0.12). 
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Figure 5.6: Example Cell Traces for simultaneously co-stimulated HepG2 

cells co-expressing STAT3 and p65. Treated with 10 ng/ml TNFa and 20 

ng/ml IL-6. STAT3 = blue line, p65 = pink line.  
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Figure 5.7: A) STAT3 and B) p65 Peak Intervals, C) pooled peak intervals 

and D) Cell Periods, for simultaneous IL-6 + TNFα co-stimulation of co-

transfected HepG2 cells. 10 ng/ml TNFα and 20 ng/ml IL-6. A, B) Cells 

colour-coded by experimental replicate (A: n=6; B: n=8). Each circle represents 

one peak interval (A,B,C) or one cell period (D). Error bars represent mean cell 

period ± S.D. * = significantly different at P<0.95.  
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5.3.2.2 Comparison of IL-6 + TNFα Simultaneous Stimulation to Transfection 
and Stimuli Controls 

The timings of p65 and STAT3 oscillations under IL-6 and TNFα simultaneous 

co-stimulation were compared to the single transcription factor, single stimulus 

data, and in the case of p65, to the IL-6+TNFα co-stimulated p65 cells and the 

TNFα stimulation of p65 and STAT3 co-expressing cells (Fig. 5.8 and 5.9).  

There were no significant differences in the distributions of pooled peak 

intervals from all the p65 experiments (Fig. 5.8A and B). In all four experiments 

p65 oscillated with a mean peak interval frequency of approximately 98 min. 

When the cell periods were compared, no difference was found between the co-

expression, co-stimulation p65 oscillatory period (96.0 ± 16.0 min, Fig. 5.7D) 

and the cells expressing only p65, whether TNFα or TNFα and IL-6 were 

applied. However, p65 was found to oscillate significantly faster (P<0.05) at 

86.2 ± 9.0 min when co-expressed with STAT3 and stimulated with TNFα only, 

than under the other conditions. This was addressed in Section 5.2.1.5, in 

relation to Figure 5.5.  

STAT3 oscillated more slowly when co-stimulated with IL-6 and TNFα and co-

expressed with p65 than when expressed alone and stimulated with IL-6 (Fig. 

5.9). The average period was 103.6 ± 3.6 (mean ± SEM) compared to 93.7 ± 2.4 

min for STAT3 stimulated with IL-6, a significant difference of 9.9 ± 4.3 min, 

(P=0.027). The STAT3 period when co-expressed and co-stimulated was very 

similar to the p65 period from the same experiment (Fig. 5.7D), so it is possible 

that STAT3 oscillations were being slowed down by TNFα-induced p65 

signalling.   
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Figure 5.8: Comparison of TNFα Peak Intervals from IL-6+TNFα, co-

transfected HepG2 cells to transfection and stimuli controls. A Pooled 

peak interval data with population mean ± S.D. by experiment. B Histogram of 

relative frequencies (%) of peak interval data by experiment. C Mean 

oscillatory period. Cell counts: p65+TNFα, n=25; p65, IL-6+TNFα, n=25; 

p65+STAT3, TNFα, n=13; p65+STAT3, IL-6+TNFα, n=25. Error bars = mean ± 

S.D. Two-tailed unpaired t-test with Welch’s correction for unequal variance 

performed in Prism. * = significant at P < 0.05; ‘ns’ = not significant.   
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Figure 5.9: Comparing STAT3 data for simultaneous IL-6+TNFα 

stimulation of co-transfected HepG2 cells to IL-6-treated STAT3-

transfected cells. A Peak interval data (mins). B Mean cell periods (min). Cell 

numbers: n=21 for IL-6+TNFα, STAT3+p65; n=26 for STAT3 + IL-6. Error bars 

= mean ± S.D. * = significant at P < 0.05. Statistical comparison performed in 

Prism using the Mann-Whitney test for peak intervals because data were non-

parametric and the un-paired t-test for cell periods. 

 

It is unfortunate that no data were obtained for the experiments of i) STAT3 

alone co-stimulated with IL-6 and TNFα and ii) STAT3 co-expressed with p65 

and stimulated with IL-6 only. This could have helped infer whether it was 

simply over-expression of p65 slowing down the STAT3 response, or whether it 

was an effect of oscillating TNFα-activated p65. 

 

5.3.2.3 Studying Single Cell Effects on STAT3 and p65 Oscillations 

Studying the effects on oscillation frequency at the sample population level 

suggested it was likely that p65 was affecting the period of STAT3. However, 

pooling the data masks effects at the single-cell level, even as it increases 

statistical power. Therefore the period of STAT3 and p65 oscillations were 

considered on a cell by cell basis (Fig. 5.10). First the mean period ± S.D. for 

STAT3 and p65 were plotted for each cell (Fig.5.10A).   
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Group 
 1   2   3  

Mean SD N Mean SD N Mean SD N 

STAT3 94.3 10.2 8 118.0 6.9 7 96.1 25.4 4 

p65 96.9 9.6 8 95.4 6.2 7 113.5 19.6 4 

 

Figure 5.10: Mean Cell Periods for STAT3 and p65, paired by cell, for co-

transfected, simultaneously co-stimulated HepG2 cells. 10 ng/ml TNFα 

and 20 ng/ml IL-6. Blue circle (STAT3) and red triangle (p65) = mean 

oscillatory period, error bars represent ± 1 S.D. A Mean ± S.D. period for STAT3 

and p65 for each cell. B Linked STAT3 and p65 periods, n= 19 cells. C Cells split 

into groups according to characteristic features of the relationship between p65 

and STAT3 periods. D Table of p65 and STAT3 mean period characteristics by 

group, time ± S.D. in mins.   
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From this, given the degree of variation, it was clear that there was not a simple 

correlation between p65 frequency and STAT3 frequency. The cell periods were 

plotted on a graph linking STAT3 and p65 together by cell (Fig. 5.10B). A by-eye 

analysis suggested that there might be a number of groups with different 

relations between p65 and STAT3 period. The magnitude and direction of the 

difference between the matched p65 and STAT3 periods were calculated. From 

this, three groups were identified: 1 – STAT3 oscillating slightly faster than p65; 

2 – STAT3 oscillating markedly slower than p65; 3 – STAT3 oscillating markedly 

faster than p65 (Fig. 5.10C).  

The mean STAT3 and p65 periods were calculated for each group (Fig. 5.10D). 

Whereas in Groups 1 and 2, p65 was oscillating close to it’s ‘basic’ TNF-α 

frequency of 99 min, in Group 3 it oscillated approximately 14 min slower. In 

Group 1, STAT3 also oscillated at its ‘basic’ frequency of approx. 94 min. In 

Group 2, STAT3 oscillated approx. 25 min slower than STAT3 expressed alone 

and stimualted with IL-6. The average frequency in Group 3 was close to the 

‘basic’ frequency but the variation was much larger.  

In summary, in Group 1 both STAT3 and p65 oscillate as though they were 

expressed and stimulated alone. In Group 2, p65 likewise oscillated as though 

expressed and stimulated alone, however, STAT3 was slowed considerably. 

Group 3 was the inverse of Group 2, in that STAT3 oscillated as per STAT3+IL-6 

and p65 was considerably slowed down, but in addition the variation between 

cells was greater. More widely, looking at the relationship between STAT3 and 

p65 signalling cell-by-cell revealed that there is not a simple, direct cross-talk 

effect betewen STAT3 and p65 when both are activated simultaneously within a 

cell. Rather there are at least three different possible outcomes for the 

relationship beween the two transcription factors. These different dynamic 

behaviour subsets were masked by the analysis performed on the pooled data 

sets for p65 and STAT3.  

The number of cells was enough to identify the relationships described here, 

although it was not large enough for a thorough statistical analysis. In addition, 

the grouping analysis here was performed manually based on a visual 

inspection of the data. Ideally, a prinicple component analysis would be 
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performed on a larger set of cells to test the identified groups. For example, it is 

possible that Group 1 contains some cells that do not quite fit the group 

definition but which definitely do not belong in either group 2 or 3. With more 

cells for analysis, the groupings applied to the data set should be be more 

definitive. 

This data raises several interesting questions about what the mechanisms of 

interaction are that enable the different dynamic relationships to emerge, what 

the biological differences are that result in the different oscillatory regimes and 

whether the biological outcomes differ between the groups. Group 1 also raises 

the question of whether STAT3 and p65 in these cells are oscillating at 

extremely similar frequencies because they have become entrained by each 

other, or whether they are acting completely independently and are oscillating 

at their ‘basic’ frequencies. To address this possibility, inhibitors that act at 

different points in the two signalling pathways could be used to identify 

differences between the groups of cells. 

5.3.2.4 Staggered Co-Stimulation 

To ascertain whether STAT3 and p65 were affecting each others’ oscillatory 

dynamics, the cells were stimulated with a 45 min delay between the IL-6 and 

TNFα. Under this ‘staggered stimulus’ protocol, the first nuclear peaks of STAT3 

and p65 were not synchronised (Fig. 5.11). Rather, STAT3 responded with a 

nuclear translocation within 30 min of IL-6 stimulation, then p65 translocated 

to the nucleus approximately 30 min after the addition of TNFα, giving a gap 

between their peaks of 35 min. It was difficult to determine the exact intervals 

between subsequent STAT3 and p65 nuclear peaks, due in part to the broad 

curves of the STAT3 peaks. Therefore STAT3 and p65 peaks were determined 

separately using the Peak Detection spreadsheet tool as before, and the 

population characteristics calculated independently (Fig. 5.12). 

The variance between STAT3 and p65 peak intervals by cell appeared to be 

quite large (Fig. 5.12A and B respectively). When the peak intervals were 

pooled (Fig. 5.12C) and the populations analysed using to D’Agostino & Pearson 

omnibus normality test in Prism, the STAT3 peak intervals were normally 

distributed but the p65 peaks were not. The medians of the data sets were not 
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quite significantly different (Mann-Whitney test, P = 0.06). Comparison of the 

mean cell periods found that while p65 oscillated with a period of 84.7 ± 6.7 

min, and STAT3 oscillated at 91.4 ± 17.5 min, the difference of 6.7 min was not 

significant (t-test with Whelch’s correction for unequal variance) (Fig. 5.12D). 

However the difference in the variance of the data sets was significant, with the 

p65 data spread being much more compact (P<0.01). 

  

 

  

Figure 5.11: Example Cell Traces for co-transfected STAT3 and p65 

HepG2 cells, staggered co-stimulation with 10 ng/ml TNFa and 20 ng/ml 

IL-6. STAT3 = green line, p65 = pink line.  
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Figure 5.12: A) STAT3 and B) p65 Peak Interval Data, C) Pooled Interval 

and D) Cell Period data from co-transfected HepG2 cells, staggered co-

stimulation with 10 ng/ml TNFα and 20 ng/ml IL-6. Cells colour-coded by 

experimental replicate (A: n=14; B: n=16). Each circle represents one peak 

interval (min). Error bars represent mean cell period ± S.D.  

1 2 3 4 5 6 7 8 1 0 1 1 1 2 1 4

4 0

8 0

1 2 0

1 6 0

2 0 0

C ell

S
T

A
T

3
 P

e
a

k
 I

n
te

r
v

a
l

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

4 0

8 0

1 2 0

1 6 0

C ell

p
6

5
 P

e
a

k
 I

n
te

r
v

a
l 

(m
in

)

S T AT 3 p 6 5

2 0

6 0

1 0 0

1 4 0

1 8 0

P
e

a
k

 I
n

te
r
v

a
l 

(m
in

)

S T AT 3 p 6 5

6 0

8 0

1 0 0

1 2 0

C
e

ll
 P

e
r
io

d
 (

m
in

)

A 

B 

C D 

S
T

A
T

3
 P

e
a

k
 I

n
te

rv
a

ls
 (

m
in

) 
p

6
5

 P
e

a
k
 I

n
te

rv
a

ls
 (

m
in

) 



Cross-talk Between STAT3 and NF-κB 

 

~ 163 ~ 
 

5.3.2.5 Comparing Staggered and Simultaneous Stimuli Protocols 

Pooled p65 peak intervals from the staggered stimuli protocol were not found 

to be significantly different to TNFα alone or simultaneous IL-6 and TNFα on 

p65 and STAT3 co-transfected cells (Fig. 5.13 A). The STAT3 pooled peak 

intervals under the staggered protocol were not significantly different to the IL-

6 stimulation of STAT3 transfected cells, or to the simultaneous stimulation of 

co-transfected cells (Fig. 5.13B). However, the simultaneous stimuli protocol 

was different (P<0.05) to the IL-6 stimulation of STAT3 alone (Fig. 5.13B). 

A similar comparison was performed for the mean cell periods (Fig. 5.14). 

Although the pooled intervals were not significantly different for p65, the mean 

cell periods of the simultaneous and staggered stimuli conditions were 

significantly different (P = 0.02) (Fig. 5.14A). When p65 was stimulated 45 min 

after IL-6, it oscillated at 85.2 ± 2.6 min (mean ± SEM, N=16 cells), compared 

to 96.0 ± 3.2 min (Mean ±SEM, N=25 cells) when stimulated simultaneously.  

STAT3 oscillated 12.3 min faster under the staggered stimuli protocol than 

when simultaneously stimulated, however this did not quite reach significance 

(P = 0.06). The oscillation frequencies were: 91.4 ± 5.0 min (Mean ±SEM, 

N=12 cells) for staggered stimuli vs. 103.6 ± 3.6 min (Mean ±SEM, N=21 cells) 

for simultaneous stimulation.  

Considering the STAT3 and p65 mean cell periods from the simultaneous and 

staggered stimuli protocols together, in both conditions a general trend of p65 

oscillating faster than STAT3 could be seen. In addition, when the stimuli were 

staggered, both STAT3 and p65 oscillated faster than when the stimuli were 

added simultaneously. In both conditions the difference between STAT3 and 

p65 oscillation frequency verged on being significant; it is likely that with more 

cells for the staggered stimuli protocol (there were half as many cells available 

as for the simultaneous co-stimulation), that these differences would reach 

significance. 
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Figure 5.13: Comparing simultaneous and staggered co-stimulation Peak 

Intervals to single stimuli experiments. Pooled peak intervals with 

population mean ± S.D, by experimental condition. A p65 data for p65+STAT3 

co-transfected cells, comparing simultaneous and staggered co-stimulation to 

TNFα alone. B STAT3 data for p65+STAT3 co-transfected cells, comparing 

simultaneous and staggered co-stimulation to STAT3 transfected cells, 

stimulated with continuous IL-6. 
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Figure 5.14: Cell Periods for A) p65 and B) STAT3 treated 

simultaneously (IL-6+TNFα) or staggered (IL-6 then TNFα), and 

combined in C). Error bars represent Mean ± S.D. * = P<0.05. ** = P<0.01. 
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5.3.2.6 Comparing Co-Stimulation Protocols to Single Stimuli and 

Transfection Controls 

The co-stimulation protocols were compared to the single stimulus and 

transfection control experiments (Fig. 5.16). In general there appeared to be 

two main oscillation frequencies for p65 (Fig. 5.16A). TNFα alone and TNFα+IL-

6 stimulation of p65 alone, and the simultaneous TNFα+IL-6 stimulation of p65 

and STAT3 co-transfected cells, all oscillated at 96.0 min. On the other hand, 

STAT3 and p65 co-transfected cells, stimulated with TNFα alone, or with IL-6 

followed by TNFα 45 min later oscillated 11 min faster, at 85.6 min.  

 

 

Figure 5.15: Comparing A) p65 and B) STAT3 oscillations under 

simultaneous and staggered co-stimulation conditions to all controls. 

Error bars represent Mean ± S.D. * = P<0.05. 
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stimulated p65 could have been expected to oscillate at the same speed as the 

co-transfection with TNFα experiment and the staggered stimuli experiment. 

Instead it oscillated at the same speed as the p65 alone experiments. It could be 

imagined that when STAT3 is over-expressed and activated by IL-6, there is less 

STAT3 available to affect p65 signalling. Instead, when it is not activated (co-

transfected with TNFα only stimulation), or is activated at a different time (co-

transfection, staggered stimulation), STAT3 is able to affect the oscillation 

frequency of p65. In order to test this, it would be necessary to express p65 

alone then perform the staggered stimuli protocol. If the phenomenon was the 

effect of over-expressing STAT3, then the p65 alone, staggered stimuli 

experiment should oscillate at the same speed as p65 alone with TNFα and IL-6. 

If it were a direct effect of delaying the stimuli so the systems are asynchronous, 

then p65 should oscillate at the faster speed of 86 min. 

STAT3 also displayed two main oscillation frequencies. STAT3 expressed alone 

and stimulated with continuous IL-6 oscillated at 93.7 ± 2.4 min, whilst STAT3 

co-expressed with p65, and subjected to the staggered stimulus protocol 

oscillated at 91.4 ± 17.5 min, which was not different to STAT3+IL-6. 

Meanwhile, STAT3 co-expressed with p65 and simultaneously stimulated with 

IL-6 and TNFα oscillated considerably slower than these, with an oscillation 

frequency of 103.6 ± 16.4 min. Unfortunately, due to the lack of control data, 

particularly co-expressed STAT3 with IL-6 stimulation alone, it is not possible to 

make many deductions or inferences about the possible cause of these 

differences. It is unlikely to be a simple over-expression artefact, otherwise it 

would be expected that STAT3 under both the simultaneous and staggered 

stimuli protocol would oscillate at a similar, slower speed. Instead the results 

seem to suggest that initiating STAT3 signalling first through the application of 

IL-6 prior to the addition of TNFα allows the STAT3 signalling to occur 

independently of TNFα-p65 signalling, even once p65 signalling has started.  

This is different to the behaviour of p65, which seems to be partially influenced 

by the over-expression of STAT3. It is interesting to note that the two systems, 

p65 and STAT3, are affected differently by the presence of the other system, 

which gives some indication of the complexity of their emergent dynamics. 
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5.3.2.7 Staggered Stimuli - Single Cell Effects on STAT3 and p65 Oscillations 

The cells from the staggered stimuli protocol were analysed as per the 

simultaneous stimuli protocol, in Section 5.2.2.3. As with the simultaneous 

stimulation, it was clear from the paired STAT3 and p65 oscillatory periods (Fig. 

5.15A), that there was no direct correlation between the average periods of 

STAT3 and p65. Linking the cells and considering the magnitude and direction 

of the difference between STAT3 and p65 periods (Fig. 5.15B) however did not 

reveal any obvious groupings because there were too few cells. 

 

 
 

 
Figure 5.16: Mean Cell Periods for STAT3 and p65, paired by cell, for co-

transfected, staggered co-stimulation HepG2 cells. 10 ng/ml TNFα and 20 

ng/ml IL-6. Blue circle (STAT3) and red triangle (p65). A All cells with mean 

oscillatory period, error bars represent ± 1 S.D. Dashed lines indicated mean 

period for STAT3 and p65. B Cell periods paired by cell. N= 14 cells.  
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5.3.3 Summary of TNFα and IL-6 Co-Stimulation Experiments 

This section of the chapter on the cross-talk between STAT3 and p65 when 

stimulated with IL-6 and TNFα demonstrates that the oscillatory period of the 

two signalling systems are more variable than suspected and that they can 

relate to each other in different ways. For example co-expressing STAT3 and 

p65 and stimulating simultaneously with IL-6 and TNFα slows down STAT3 

oscillations whereas the p65 oscillatory period is unaffected on average. On the 

other hand, co-expressing p65 and STAT3 and stimulating them with IL-6 and 

delaying TNFα stimulation for 45 min allows STAT3 to oscillate at its ‘primary’ 

frequency yet speeds up p65 oscillations until they are faster than STAT3 on 

average. There also appear to be some complex effects on the frequency of p65 

from over-expressing STAT3. Another important observation is that considering 

the behaviours of individual cells is critical for detecting complex and conflicting 

effects at the single cell level that are otherwise masked by population averages. 

For example, the different relationships between p65 and STAT3 oscillations in 

response to simultaneous stimulation.  
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5.4 IL-6 plus TNFα Simultaneous Co-stimulation Gene 

Expression Study 

To gain a deeper understanding of the STAT3 and NF-κB dynamics in response 

to IL-6 and TNFα cross-talk, mRNA expression of a set of target genes was 

evaluated. Building on the continuous IL-6 mRNA expression study presented in 

Section 4.3, continuous TNFα and IL-6 plus TNFα stimuli were investigated. The 

previously selected STAT3 pathway and APR genes were included, as were 

three feedback genes for TNFα signalling, i.e. IκBα, IκBε and A20. The 

experimental and data analysis methods were as per Section 4.3, and the stimuli 

used were a) 20 ng/ml IL-6, b) 10 ng/ml TNFα and c) 20 ng/ml IL-6 plus 10 

ng/ml TNFα. The pulsing protocol was not used, nor was the staggered stimuli 

protocol, consequently the results presented below are only relevant to the 

simultaneous IL-6 plus TNFα co-stimulation experiments. 

The genes for the IL-6 receptor components i.e. IL6R and gp130 did not differ 

between stimulation protocols (Fig. 5.17). However the IL-6 responsive genes, 

STAT3, SOCS2 and SOCS3, were similar in that they responded to IL-6 alone and 

to IL-6 plus TNFα stimulation but not TNFα alone. Furthermore, SOCS3 had a 

weaker first peak under co-stimulation and did not maintain a lower sustained 

level after the initial wave of induction. STAT3 did show a sustained increase 

under co-stimulation but at a slightly lower level than for IL-6 alone (Fig. 5.17). 

These results suggest that TNFα co-stimulation dampens the response of certain 

IL-6 responsive genes slightly but does not eliminate the response all together.  
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Figure 5.17: IL-6 Signalling and Feedback Genes. SOCS3, SOCS2,  

IL-6Receptor, gp130 and STAT3. HepG2 cells treated with continuous 20 ng/ml 
IL-6 (purple square, dotted line), continuous 10 ng/ml TNFα (teal hexagon, 
dashed line) or 20 ng/ml IL-6 with 10 ng.ml TNFα (pink triangle, solid line). 
Mean ± SEM, from N=3 independent replicates.  
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A similar effect was seen for the APR gene Hepcidin. Its initial response within 

the first 2 h was the same under both IL-6 and IL-6 plus TNFα but subsequently 

decreased faster under IL-6 plus TNFα than IL-6 alone (Fig. 5.18). On the other 

hand, γ-fibrinogen responded to IL-6 alone but was inhibited by TNFα even in 

combination with IL-6. Serum amyloid A was different to both γ-fibrinogen and 

hepcidin in that it could only be induced by IL-6 plus TNFα co-stimulation in 

HepG2 cells. 

 

 

 

Figure 5.18: Acute Phase Response Genes. A γ-Fibrinogen, B Hepcidin,  
C Serum Amyloid A. HepG2 cells treated with continuous 20 ng/ml IL-6 (purple 

square, dotted line), continuous 10 ng/ml TNFα (teal hexagon, dashed line) or 
20 ng/ml IL-6 with 10 ng.ml TNFα (pink triangle, solid line). Mean ± SEM, from 
N=3 independent replicates.  
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Figure 5.19: NF-κB Feedback loop genes. A IκBα, B IκBε, C A20. HepG2 

cells treated with continuous 20 ng/ml IL-6 (purple square, dotted line), 
continuous 10 ng/ml TNFα (teal hexagon, dashed line) or 20 ng/ml IL-6 with 10 
ng/ml TNFα (pink triangle, solid line). Mean ± SEM, from N=3 independent 
replicates. 
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stimulation than TNFα alone. The difference for A20 was slight, and more 
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5.5 IL-6 and IL-1β-Induced STAT3 and p65 Cross-Talk 

IL-1β is another activator of the Acute Phase Response in hepatocytes. In 

addition to activating NF-κB/p65 signalling, it down-regulates IL-6 signalling 

via STAT3 by increasing degradation of phosphorylated gp130 (Radtke et al, 

2010). This finding suggested that IL-1β signalling could significantly perturb 

the IL-6-induced oscillatory STAT3 dynamics and perhaps affect p65 dynamics. 

To this end, p65 dynamics in response to IL-1β were investigated, both with and 

without STAT3 over-expression, and STAT dynamics in response to IL-6 plus IL-

1β were investigated, using the same approach as for IL-6 plus TNFα co-

stimulation. 

 

5.5.1 IL-1β Oscillations are Faster than TNFα in HepG2 Cells 

IL-1β stimulation of p65 transfected HepG2 cells gave the surprising result that 

p65 oscillated 23 min faster on average under IL-1β stimulation than in 

response to TNFα stimulation (Fig. 5.20). The median period was 76.7 min in 

response to IL-1β, which was significantly faster (P<0.0001) than for TNFα-

induced p65 oscillations. In this instance, due to data having a significantly non-

parametric distribution, the medians and interquartile ranges are presented 

instead of the mean ± SD, and the medians were compared using the Mann-

Whitney test in Prism. This result was unexpected because in the SK-N-AS cell 

line p65 oscillates at the same frequency in response to TNFα and IL-1β 

(Adamson, unpublished observations). 
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Figure 5.20: Results from p65-transfected HepG2 cells, stimulated with 

10 ng/ml IL-1β, compared to 10 ng/ml TNFα stimulation. A p65 cell traces, 

n = 18 cells. B Median cell peak intervals by cell (n=17 cells, n= 1 experiment). 

Each circle represents one peak interval (min), n= 85 peaks. Dashed horizontal 

line represents the median of individual cell periods. C Pooled peak intervals 

(min) from all cells. D Individual median cell periods (min). Error bars show 

median with interquartile range. Data points represented by stars are outliers. 

Statistical comparison using Mann-Whitney test; **** = P<0.0001. 
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5.5.2 Effect of STAT3 Over-Expression on IL-1β Signalling 

The effect of over-expressing STAT3 in HepG2 cells on IL-1β-induced p65 

oscillations was assessed as for TNFα-induced oscillations (Fig. 5.21). Over-

expression of STAT3 significantly slowed IL-1β-induced oscillations by 7.5 min, 

giving a median cell period of 84.0 min (Mann-Whitney test, exact P-value 

0.015) (Fig. 5.22 A and B). Also of note is the cell with a doubled first peak 

where p65 does not rapidly exit the nucleus (Fig. 5.21A). 

STAT3 over-expression also appeared to decrease intercellular heterogeneity of 

IL-1β-induced p65 oscillations in HepG2 cells. Visual comparison of the 

population means ± SD of individual cell traces for p65 alone to p65 with STAT3 

transfected cells seemed to suggest that the nuclear translocations were more 

synchronous across the population from the second peak onwards when STAT3 

was co-expressed with p65 (Fig.5.22C). Whilst the number of cells was 

comparatively small, there were a similar number of cells for each condition (17 

vs. 18 cells). This suggests that it is not due to averaging vastly different number 

of cells. To test this further and with statistical significance, more cells should be 

imaged and analysed. A power calculation could be performed to indicate 

approximately how many cells would need to be analysed. To test the 

observation of an apparent decrease in intercellular heterogeneity in the co-

expression experiment would require advanced mathematical and statistical 

analysis beyond the scope of this project.  
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Figure 5.21: p65 Data from p65 and STAT3 co-transfected HepG2 cells, 

stimulated with 10 ng/ml IL-1β. A p65 cell traces, n = 18 cells. B Median cell 

peak intervals by cell (n=18 cells, n= 2 replicates). Each circle represents one 

peak interval (min), n= 87 peaks. Error bars represent median cell period with 

interquartile range. Dashed horizontal line represents the median of individual 

cell periods.  
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Figure 5.22: Comparing 10 ng/ml IL-1β stimulation of p65- and 

STAT3+p65-transfected HepG2 cells. A pooled peak intervals (min).  

B Individual mean cell periods (min). Each point represents a single peak 

interval or cell period and error bars show population Median ± Interquartile 

range * = P<0.05 C Average of all cell traces, for IL-1β+p65 (red) and IL-

1β+p65 and STAT3 (orange). Solid line = average; shaded area to dashed line = 

+1 S.D. 
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The comparisons of p65 behaviour in response to IL-1β, both when expressed 

alone and with STAT3, with the equivalent TNFα experiments were compiled so 

that the general trends could be observed more easily (Fig.5.23). In addition the 

p65 and STAT3 co-expression IL-1β and TNFα experiments were compared 

using the Mann-Whitney test and were not found to be significantly different; in 

fact they were highly similar. In Section 5.2.1.5, it was suggested that excess 

STAT3 monomers may directly interact with p65 such that STAT3 NLS signals 

drive faster p65 oscillations. This additional finding that STAT3 slows down IL-

1β-induced p65 oscillations however modifies this idea. It appears that STAT3 

co-expression stabilises p65 oscillations at a frequency between the two 

extremes of TNFα and IL-1β stimulation of p65 expressed alone.  

 

 
Figure 5.23: IL-1β vs TNFα experiments, with p65 alone vs. p65 and 

STAT3. A Pooled peak intervals (min). B Mean cell periods (min). Error bars 

show population median with interquartile range. * = P<0.05, ** = P<0.01, *** 

= P<0.005, **** = P< 0.001. The Mann-Whitney test with exact P-value 

calculations was performed in Prism due to non-parametric distributions. 
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The explanation is not as simple as STAT3 forcing p65 to oscillate at the same 

speed as STAT3 because the p65 oscillations are 5-10 min faster than STAT3 

stimulated with IL-6. This suggests a synergistic effect upon nuclear trafficking. 

It is not possible to determine from the data available whether there is a direct 

interaction between STAT3 and p65 or whether an excess of U-STAT3 is altering 

other signalling events that affect p65 oscillations in turn. If there were a direct 

interaction, it could be possible to detect a correlation between the relative 

levels of STAT3 and p65 expression and the speed of the oscillations. However, 

many more cells would be needed to perform this analysis with any statistical 

power.  

5.5.3 IL-1β and IL-6 Co-Stimulation of Co-Transfected HepG2 

Cells 

Cross-talk between STAT3 and p65 in response to IL-6 plus IL-1β was examined 

in HepG2 cells co-expressing STAT3 and p65. Initial visual inspection of the p65 

and STAT3 cell traces from cells co-stimulated with 20 ng/ml IL-6 and 10 ng/ml 

IL-1β indicated that the relationships between the STAT3 and p65 responses 

were highly complex (Fig. 5.24-26). A variety of different responses were 

observed for both STAT3 and p65, including response patterns not seen in 

earlier experiments, and no obvious correlations could be identified between 

the different responses.  

The responses seen were classified as follows: p65: early and late oscillators, 

and responders with a broad first peak, typically somewhat delayed. STAT3: 

non-responders, early oscillators, and late responders, which were further 

subdivided into mid, mid-late, and late responders. The characteristics of these 

groups are described in Table 5.1. Examples of: p65 responders (early, late and 

‘broad’) with STAT3 non-responders (Fig. 5.24); p65 early and late oscillations 

with STAT3 early oscillations (Fig. 5.25); and examples of p65 responders 

(early, late and ‘broad’) with STAT3 late responders (mid, mid-late and late) 

(Fig. 5.26), are presented on the following pages. Due to the complexity of the 

responses, p65 and STAT3 cell traces are treated separately. 
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 Response Description 

p65 Early oscillations Oscillations of typical amplitude. First 
peak median: 22 min post-stimulation 

Late oscillations Oscillations of typical amplitude. First 
peak after 40 min post-stimulation; 
median response time 56 min. 

Broad first peak. 
Subsequent 
oscillations 
optional 

Oscillations of typical amplitude. First 
peak wider than average, often doubled. 
First peak median: 52 min post-stimulus. 

STAT3 None N/T ratio did not increase above 60% 

Early oscillations First peak around 35 min post-
stimulation. Amplitude of first peak 
typically between 60 and 70%. 
Subsequent peak of increasing amplitude. 

Late: “mid” Median peak time 82 min post-stimulus. 
Atypical oscillations. 

Late: “mid-late” Median peak time 250 min post-stimulus. 
Not oscillatory, rather a gradual increase 
in N/T ratio is seen. 

Late: “late” Median peak time 460 min post-stimulus. 
Not oscillatory, rather a gradual increase 
in N/T ratio is seen. 

Table 5-1: Descriptions of STAT3 and p65 responses to IL-6 and IL-1β  

co-stimulation in STAT3 plus p65 co-transfected cells. 
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Figure 5.24: Example cell traces of p65-responsive, STAT3 non-

responsive cells for 20 ng/ml IL-6 and 10 ng/ml IL-1β co-stimulated 

HepG2 cells expressing STAT3 and p65. STAT3: blue line, p65: purple line. 
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Figure 5.25: Example cell traces of p65-responsive, STAT3-responsive 

cells for 20 ng/ml IL-6 and 10 ng/ml IL-1β co-stimulated HepG2 cells 

expressing STAT3 and p65. STAT3: blue line, p65: purple line. 
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Figure 5.26: Example cell traces of p65-responsive, STAT3 late-

responsive cells for 20 ng/ml IL-6 and 10 ng/ml IL-1β co-stimulated 

HepG2 cells expressing STAT3 and p65. STAT3: blue line, p65: purple line. 
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5.5.3.1 p65 Responses to IL-6 and IL-1β Co-stimulation 

The p65 responses were categorised into three groups according to the time of 

the first peak maxima (Table 5.1; Fig. 5.28A). Peak intervals were calculated for 

each cell and the cells were grouped by time to first peak (Fig. 5.27). 

Comparison of the pooled peak interval groups (Fig. 5.28B) using the Mann-

Whitney test did not reveal any significant differences however, comparison of 

the mean cell periods (Fig. 5.28C) identified some significant differences.  

 

 

Figure 5.27: Peak interval data by cell for p65 from p65+STAT3 

expressing HepG2 cells, stimulated with 20 ng/ml IL-6 and 10 ng/ml  

IL-1β. A Early responders, B Late responders, C Responders where the first 

peak is broad and there are subsequent oscillations.  
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Figure 5.28: Characteristics of p65 responses to 20 ng/m, IL-6 and 10 

ng/ml IL-1β co-stimulation. A Time of first peak appearance. B Pooled peak 

intervals. C Cell periods for early (15 cells), late (6 cells) and broad first peak (3 

cells) p65 responders, compared to the IL-1β+p65 (16 cells) and IL-1β, 

p65+STAT3 controls (18 cells). * = P<0.05; ** = P<0.01. 

The mean period of the early oscillators was 79.0 ± 11.0 min and they were 

significantly faster, by 13.8 min, than the late oscillators with a mean period of 

92.9 ± 13.7 min (P<0.05). Neither group was significantly different to the IL-1β 

stimulation of p65 and STAT3 co-transfection experiment however the early 

oscillators were faster and the late oscillators slower. Whilst the late oscillators 

were 14.6 min slower than the p65 with IL-1β control (P<0.01), the early 

oscillators were not different to either the ‘IL-1β, p65 alone’ control group 

(mean cell period: 78.2 ± 7.9 min) or to the IL-1β stimulated p65 plus STAT3 

co-transfected cells (mean cell period: 84.6 ± 8.5 min). Together, these results 

suggest that IL-6 can cause a subpopulation of co-transfected, co-stimulated 
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cells to oscillate at a slower rate, whilst leaving the other group seemingly 

unchanged. Finally, the ‘broad peak’ oscillators could not be statistically 

compared to the other groups because of the small sample size (n=3 cells).  

Having examined p65 oscillatory dynamics in response to different stimuli 

when transfected into HepG2 cells alone and with STAT3, the distributions of 

p65 mean cell periods for all the different conditions tested were compared 

(Fig. 5.29). This highlighted the range of oscillation frequencies p65 can exhibit, 

from 76.5 min for ‘IL-1β and p65’ to 102.4 min for ‘TNFα and p65’. It is 

particularly interesting that the extremes of oscillation frequency seen were 

from p65 expressed alone and stimulated with a single stimulus, whether TNFα 

or IL-1β. 

 

Figure 5.29: Variability of p65 responses to different stimuli and 

combinations thereof, when expressed alone or with STAT3. Min-to-max 

box plots indicating median oscillation frequency. 
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5.5.3.2 STAT3 Responses to IL-6 and IL-1β Co-stimulation 

STAT3 responses under the IL-6 plus IL-1β regime were visually inspected and 

manually classified into groups (Fig. 5.30). Cells where STAT3 did not exhibit 

any net nuclear accumulation were classified as non-responders; they were the 

largest group (Fig. 5.30B). (For these purposes, net nuclear accumulation is 

defined as an N/T fluorescence ratio increase above 0.65 that could be 

confirmed by visual inspection. This was chosen based on the average 

fluctuations in non-stimulated controls, where the basal N/T ratio was between 

0.4 and 0.6 (Chapter 4, Fig. 4.2).) 

The second identifiable group was the ‘early’ responders. The first nuclear 

translocation in these cells occurred within 35 min of stimulation (Fig. 5.30A) as 

with IL-6 stimulation alone. However, the amplitude of the first peak was 

generally smaller, between 0.6 and 0.7, (Fig. 5.25) than under IL-6 stimulation 

alone, where the first peak is usually between 0.8 and 0.9 (Chapter 4, Fig. 4.3-

4.5). Subsequent peaks increased in amplitude, eventually reaching N/T ratios 

between 0.8 and 1. 

All cells that did not respond with a nuclear peak within 40 min were initially 

classed as ‘late’ responders (Fig. 5.30A) and were as numerous as the non-

responders. Subsequent consideration of the time of first peak data suggested 

the presence of three subgroups. The Mid responders’ first peak was 80-90 min 

after stimulation (lower and upper quartiles), and in addition their first peak 

was often ‘full strength’ i.e. N/T between 0.8 and 0.9. Several of these cells went 

through mitosis almost immediately after that first nuclear translocation, which 

raises the possibility of a cell cycle effect. 

The final two classes were the ‘mid-late’ and ‘late’ cells, of which there were 8 in 

total (Fig. 5.26 and .30). The response pattern in these cells was very different 

to the early and mid responders and was completely different to anything seen 

in response to IL-6 or IL-6 plus TNFα. Instead of oscillatory dynamics, in these 

cells STAT3 gradually accumulated in the nucleus. For these cells, the peak 

detection spreadsheet tool was poor at identifying peak maxima, and as such 

the first peak appearance times may be inaccurate. However it was sufficient to 

give an indication of the cells’ responses. 
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Figure 5.30: STAT3 Responses to IL-6+IL-1β in p65+STAT3 HepG2 cells. 

A Cells grouped according to time of first peak appearance. B Number of cells 

for each response. 

Further to assessing first peak appearance time and peak amplitude, the peak 

intervals were determined for all cells, and are presented by group according to 

time to first peak (Fig. 5.31A-E). No additional distinctions could be made for 

the subgroups within the ‘late’ responders group based on the peak interval 

data. The variation between cells was much greater than for IL-6 stimulation of 

STAT3 alone, or indeed, for IL-6 with TNFα. The majority of cells were not 

reliable oscillators and so calculating the mean period of oscillation for each cell 

would have confounded the analysis. As such, only the pooled peak intervals for 

each condition are presented (Fig. 5.31). Due to the limited number of cells and 

peaks, statistical comparison of pooled peak data for each group to the IL-6-

stimulated STAT3-expressing cells from Chapter 4 was not possible (Fig. 5.31F). 

However, visual inspection and a qualitative consideration of the data (Fig. 5.25 

and 5.26) indicates that STAT3 signalling in response to IL-6 is severely 

curtailed in the presence of IL-1β. Less than a sixth of cells respond to IL-6 with 

regular oscillatory dynamics when co-treated with IL-1β, and those that do, do 

not exhibit full-strength translocations initially. 40% of cells exhibit a delayed 

response to IL-6, indicated by a gradual and time-delayed nuclear accumulation 

of STAT3, which may or may not also have had some oscillatory characteristics. 

Another 40% of cells did not respond to IL-6 at all (Table 5-2B). 
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Figure 5.31: Peak interval data by cell for STAT3 from p65+STAT3 

expressing HepG2 cells. Stimulated with 20 ng/ml IL-6 and 10 ng/ml IL-1β.  

A Early responders, B “Late” responders, C-E “Late” responders further divided 

according to appearance time of first peak: C Mid-responders, D Mid-Late 

responders and E Late responders. F Pooled Peak Intervals by response type, 

compared to STAT3 stimulated with IL-6. Error bars represent mean ± SD. 
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5.5.3.3 Combining p65 and STAT3 Responses to IL-6 plus IL-1β 

After considering the p65 and STAT3 responses under the IL-6 plus IL-1β 

regime separately, it was possible to combine the data and investigate the 

possibility of correlation between the different behaviours. However all possible 

combinations of STAT3 and p65 response were well represented. The 

combinations were not equally represented but the number of cells in each 

group was too low for statistical analysis. Thus whilst there are discernible 

effects on the signalling dynamics of the two transcription factors at the 

population level, investigating whether there are any correlations between 

them will require a much larger data set than is currently available. 

In the interim, the distribution of STAT3 and p65 responses were compared to 

the single transfection, single stimulus control experiments. I.e. the p65 data 

was compared to the IL-1β treatment of p65 (Table 5-2A), while the STAT3 data 

was compared to the IL-6 stimulation of STAT3 (Table 5-2B). For p65, the 

percentage of immediately responding cells halved, with the remaining cells 

either having a delayed start or a broad first peak. For STAT3, the percentage of 

non-responding cells increased from 25% to 40% and no cells oscillated in the 

same way as when under IL-6 stimulation alone. Instead 20% of cells had 

oscillatory dynamics that increased in amplitude over time. The final 40% of 

cells responded with either delayed, irregular and intermittent nuclear 

translocations or with a gradual nuclear accumulation that was delayed for 4 to 

8 h after stimulation.  

These comparisons indicate the strength of the inhibitory effect of IL-1β on IL-6-

induced STAT3 signalling but also demonstrate that the inhibition of STAT3 

dynamics is neither absolute nor consistent across the population. Furthermore, 

the p65 dynamics are also affected under this co-stimulatory cytokine regime in 

a way they are not when stimulated with IL-1β alone, whether co-expressed 

with STAT3 or not. These results indicate that there are complex synergistic 

effects between IL-6 and IL-1β and suggests that the outcome for each pathway 

depends on additional and unknown differences between individual cells.  
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                     p65 

Immediate Late Broad First Peak 

Cell Count 15 10 5 

Observed % 50 33.3 16.7 

Expected† %  99 0 1 

 

 STAT3 

Strong Oscillator Early Late Non-Responder 

Cell Count 0 6 12 12 

Observed % 0 20 40 40 

Expected‡ %  75 0 0 25 

 

Table 5-2: STAT3 and p65 Behaviours in Response to 20 ng/ml IL-6 plus 

10 ng/ml IL-1β. A p65 behaviours and B STAT3 behaviours, by response type 

to IL-6 plus IL-1β co-stimulation. Displaying: Cell count; observed count as a 

percentage of the total number of cells (Observed %); and expected percentage 

based on control experiment (Expected %): † p65 stimulated with IL-1β alone, 

and ‡ STAT3 stimulated with IL-6 alone.  

A 

B 
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5.6 Discussion 

5.6.1 General Summary 

This chapter addressed the effects of cross-talk between STAT3 and NF-κB upon 

their dynamics. As described in Chapter 1 and Section 5.1, a large number of 

studies have found evidence of inter- and intra-cellular cross-talk between NF-

κB and STATs, and a number of mechanisms have been proposed. The approach 

taken here was to ignore the mechanisms and instead look at the consequences 

for STAT3 and p65 dynamics in single cells. As described in Chapter 3, the 

HepG2 cell line was chosen for the cellular model because it showed 

independent responses to both IL-6 and TNFα. Therefore the results described 

here may only be applicable to this cell line and should be carefully considered if 

applied beyond this context.  

The major observations of this chapter can be summarised as follows. Firstly, 

nucleocytoplasmic oscillations in STAT3 and p65 occur independently of each 

other under the various conditions tested. Secondly, there is considerable 

heterogeneity in the timing of individual p65 and STAT3 peaks within cells, 

indicating the two systems are mostly independent. Contrary to these 

observations however, stimulation of one pathway or the co-expression of the 

other fluorescent fusion protein can significantly affect the timing of responses 

in the first pathway when considered statistically at the population level. 

Different combinations of stimuli and TFs resulted in a range of p65 oscillatory 

periods observed. Interestingly, co-expression with STAT3 had a stabilising 

effect on the period of p65, keeping the average period within the upper and 

lower limits of TNFα and IL-1β stimulation of p65 alone, respectively. In 

addition, IL-6 stimulation was able to effect changes in the p65 dynamic 

response to IL-1β, an effect not noted by Radtke et al, (Radtke et al, 2010). No 

correlations could be identified between the STAT3 and p65 response to IL-6 

plus IL-1β co-stimulation. In general, this suggests that STAT3 and p65 are 

weakly linked, most likely through one or more of the different mechanisms 

proposed for STAT3 and p65 interaction, in addition to the reported effects on 

gp130 receptor turn-over (Radtke et al, 2010). Only a large, carefully controlled 
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study would be able to elucidate further details regarding the effects of STAT3 

and p65 cross-talk on their signalling dynamics. 

5.6.2 Dynamics of p65 in Response to TNFα and IL-1β 

One finding of note was that p65 oscillated at two vastly different frequencies 

depending on whether the stimulus was TNFα or IL-1β. Both these stimuli 

converge on the same point in the NF-κB signalling pathway, the IKK complex 

that ubiquitinates IκBα, resulting in the release of active p65. In SK-N-AS cells 

these stimuli result in the same p65 frequency of approximately 100 min (A. 

Adamson, unpublished observations). Since there are no molecular biology or 

qPCR data available for the IL-1β stimulation of HepG2 cells, it is not possible to 

determine a cause for the significantly faster IL-1β-induced oscillations. 

However it could be hypothesized that temporal or amplitude differences in the 

NF-κB feedback loops, such as IκBα, IκBε and A20, may account for the 

difference in oscillatory speed. Alternatively, there may be differences in the up-

stream signalling events between the IL-1β and TNFα receptors and the IKK 

complex that are responsible. 

An additional observation was of a few cells with a double-width first peak, also 

described as a ‘broad first peak’. This was the first time it was seen in HepG2 

cells, and it was only seen under IL-1β stimulation. Doubled first peaks have 

been intermittently observed in SK-N-AS and SHEP cells (Dr D. Spiller, 

University of Manchester, personal communication) but the cause is unknown. 

It was believed to be an artefact of the plasmid expression system or a problem 

with the incubation system on the microscope, however because it has now 

been seen in three unrelated cell lines it could be biologically important. 

5.6.3 Limitations of the STAT3 Data 

The data obtained for p65 were good in both quality and quantity, however the 

control experiments for STAT3 were lacking. This meant that while the effect of 

STAT3 on p65 dynamics was reasonably well quantified, the reverse was not 

true for STAT3 itself. Data were only obtained for STAT3 stimulated with IL-6, 

and for STAT3 co-expressed with p65 and stimulated with IL-6 and TNFα, 

simultaneously and staggered by 45 min. Even within this limited data set, it 
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was clear that the period of STAT3 could be perturbed to different degrees 

depending on the context. However, it would be very useful to know how 

exactly STAT3 responded to co-stimulation when expressed alone and to IL-6 

when co-expressed with p65. 

The STAT3 response to co-stimulation IL-6 and IL-1β was fascinating. IL-1β co-

stimulation disrupted the STAT3 response but did not abolish it entirely. The 

proportion of non-responding cells increased in comparison to IL-6 stimulation 

alone but 60% of the cells responded in some fashion. A small set responded 

with oscillations similar to stimulation with IL-6 alone, except that the first peak 

was often significantly damped. In these cells, the strength of the oscillations 

increased over time. In a larger set of cells, the STAT3 response was delayed by 

anywhere between 4 and 8 h. Some of these cells oscillated erratically but in 

others, STAT3 accumulated in the nucleus over time. No correlation could be 

found between the STAT3 response and the p65 response which suggests that 

the causes may reside within a different pathway or be the result of complex 

interactions up-stream of p65. 

5.6.4 Gene Expression in Response to IL-6 and TNFα  

The differing STAT3 and p65 dynamics in response to IL-6 plus TNFα 

simultaneous co-stimulation compared to separate IL-6 and TNFα stimulation 

may have functional consequences for gene transcription, according to the 

results of the limited gene expression study performed here. Representatives of 

three different groups of genes were assayed. Genes for the components of the 

IL-6 signalling pathway, the early response NF-κB negative feedback genes, and 

the APR genes were sampled, and different trends were seen within each group. 

The IL-6-responsive genes STAT3 and SOCS3 had similar responses at early 

time-points to IL-6 and TNFα as to IL-6 alone but the later dynamics were 

weaker under co-stimulation than IL-6 alone. SOCS2 responded similarly to 

both co-stimulation and IL-6. The NF-κB feedback genes responded similarly to 

both TNFα and IL-6 plus TNFα, indicating that IL-6 did not inhibit p65/NF-κB 

transcription. Instead IL-6 acted synergistically with TNFα, increasing the 

strength of A20 and IκBε transcription. This is interesting because IκBε has a 
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role in creating intercellular heterogeneity (Paszek et al, 2010), whilst A20 has 

been shown to decrease SOCS3 expression (da Silva et al, 2013). This could 

explain the effects of co-stimulation upon STAT3 signalling i.e. the longer STAT3 

oscillation periods. The three selected APR genes each responded differently to 

co-stimulation. The responses were in line with published results in the 

literature (Hagihara et al, 2005; Pietrangelo et al, 2007; Asselin & Blais, 2011; 

Fish & Neerman-Arbez, 2012; Tiwari et al, 2013), and agree with the idea that 

TF binding sites in the promoters are more important for determining gene 

expression patterns (Grivennikov & Karin, 2010). It does not rule out the 

potential importance of nucleocytoplasmic shuttling dynamics in determining 

promoter occupancy however. 

In order to thoroughly test the importance of spatiotemporal dynamics for gene 

expression in this context, a much larger study would need to be performed and 

different stimulation regimes tested. Ideally, the staggered stimulation protocol 

would be tested, as would IL-1β stimulation and IL-1β with IL-6. It would be 

interesting to investigate whether IκBα, IκBε or A20 transcription correlates 

with the variety of STAT3 and NF-κB dynamics in response to IL-6 plus IL-1β. A 

more representative gene set with additional reporters for NF-κB activity and 

the APR would be especially helpful. For this, a microarray or Nanostring set 

would be more efficient than the Fluidigm approach. Another option for 

correlating TF dynamics to transcriptional activity would be to obtain single cell 

transcription data, using single cell luminescence in conjunction with single cell 

fluorescence microscopy. This could be done with luciferase reporters for IκBα, 

IκBε and SOCS3. Transcriptional dynamics in response to cytokine signalling has 

been successfully characterised using this approach for prolactin signalling in 

pituitary cells (Harper et al, 2011; Featherstone et al, 2012).  
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6.1 Summary 

In this thesis I investigated STAT3 localisation dynamics in single cells and 

intracellular cross-talk between STAT3 and NF-κB; a core hypothesis was  that 

they might be interacting oscillatory systems. The work on STAT3 dynamics 

demonstrated that following cytokine activation, STAT3 is capable of oscillating 

in single cells. This supported and expanded upon previous work that had 

suggested the presence of oscillations at the cell population level (Yoshiura et al, 

2007). Furthermore, whilst a number of reviews have recently been published 

summarising the possible mechanisms of interaction between the STAT and NF-

κB systems and the biological importance thereof (Grivennikov & Karin, 2010; 

Bode et al, 2012a), no work has been published on the dynamical mechanisms 

or consequences that might underlie such interactions. In addition, the present 

work expands upon published studies looking at the mechanism of IL-1β 

inhibition of STAT3 signalling (Radtke et al, 2010; Bode et al, 2012a). It suggests 

that whereas the effects at the population level are relatively straightforward, at 

the single cell level the mechanisms of STAT3 inhibition are highly complex and 

variable between cells.  

6.2 Cell Lines and Genetic Tools 

A key issue at the beginning of the project was to identify the best cellular model 

and to generate new genetic tools needed to study the STAT3 pathway in single 

cells. The NF-κB tools were already available, including plasmids and BACs for 

p65 and IκBα, as well as stable p65 and IκBα BAC cell lines (SK-N-AS and HeLa) 

and later during the project, transgenic reporter mice. An IL-6-responsive cell 

line was required to study STAT3 signalling. In the initial studies it was found 

that the SK-N-AS cell line was unresponsive to IL-6. The HepG2 cell line had 

previously  been extensively used for imaging STAT3 signalling (Pranada et al, 

2004). In our experience this cell line was good for live cell imaging due to the 

large cell size, with an easy to identify nucleus as well as limited cell mobility. 

HepG2 cells can also be transiently transfected, with a rate of ~10%. The TNFα-

induced NF-κB/p65 dynamics in HepG2 cells were found to be highly similar to 

those in the SK-N-AS cell line and so the HepG2 cell line was selected as the 

main cell line for the project.  
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STAT3 fluorescent fusion plasmids were successfully generated. Tagging at the 

N- and C-termini was investigated to check for effects on STAT3 expression, 

phosphorylation kinetics and transcriptional activity. Previous studies in our lab 

using STAT6 had shown that the choice of tag orientation affected the fusion 

protein’s function (Nelson et al, 2004). Tagging at the C-terminus significantly 

perturbed STAT3 expression and phosphorylation kinetics whereas N-terminal 

tagged STAT3 was only mildly affected and, as far as could be measured, the 

behaviour of the fluorescent fusion protein was considered similar enough to 

the endogenous STAT3 to allow it to be valid for functional studies. Whether the 

results of the N- versus C-fusion proteins reflected a general difference or were 

specific to the linker of the cell line used remains to be clarified. There can be 

major potential issues with fluorescent fusion proteins and therefore tag 

orientation should always be considered when generating a new imaging 

construct. 

Prior to these studies it was uncertain whether the STAT3 constructs would be 

able to capture the signalling dynamics of the system. It was possible that the 

only component that would move between the cytoplasm and nucleus would be 

phosphorylated STAT3. This might only be a minor fraction of the total STAT3, 

meaning that it might not be observable. Therefore SOCS3 reporters were 

thought to be necessary. Since SOCS3 is a short-lived inducible inhibitor of 

STAT3 signalling, plasmid constructs were not ideal for various reasons. Firstly, 

simple expression plasmids are usually under the control of a strong 

constitutive promoter and therefore gene induction dynamics are not captured 

by the reporter. Constitutive expression plasmids result in high expression 

levels of the reporter and so may perturb the system, especially in the case of an 

inhibitor such as SOCS3. It would therefore be necessary to incorporate the 

SOCS3 gene promoter. Furthermore, because plasmids use simple cDNA coding 

sequences as opposed to the endogenous gene structure, the duration of the 

half-lives of the mRNA and the protein might not reflect the endogenous gene 

products and so may alter the feedback dynamics, thus perturbing the overall 

dynamics of the system. Finally, there is a known issue with transient 

transfection of reporter plasmids where certain cell lines lose plasmids quickly. 
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Loss of the plasmid means that for short lived proteins with high turn-over rates 

such as SOCS3 or IκBα, subsequent rounds of expression may not be detected.  

To overcome the limitations of the plasmid expression system, the construction 

of STAT3 and SOCS3 BACs was attempted. BACs enable a fusion protein to be 

expressed under the control of the native human gene promoter, and retain the 

native gene intron/exon structure and 5’ and 3’ sequences that direct mRNA 

processing and stability (Adamson et al, 2011). The SOCS3 BAC was found to be 

difficult to construct very early on in this project and this might have been a 

major problem. As an alternative, a SOCS3 fluorescent fusion under the control 

of the proximal SOCS3 promoter and a SOCS3-luciferase were constructed. 

Unfortunately the SOCS3-luciferase and the proximal promoter-SOCS3-EGFP 

construct were not very efficient and were affected by the transfection issues 

discussed above. Progress was made with cloning the STAT3 BAC, but by this 

point in the project the STAT3 plasmid was found to report STAT3 dynamics 

successfully. Due to time constraints, the proximal promoter SOCS3 fusion 

construct was not fully characterised and the STAT3 BAC was discontinued; 

instead the use of the STAT3 fluorescent fusion plasmid was made the focus of 

the project.  

There are additional genetic tools that could be used in the future to overcome 

the limitations of the plasmid expression system. One approach is the 

generation of stable cell lines using the fusion expression plasmids. This would 

be useful for STAT3 but perhaps less so for the SOCS3 reporters. Stable 

transfection reduces the issues surrounding variable transfection rates, protein 

over-expression and the loss of the plasmid over time, leading to more stable 

protein expression levels. This was attempted for the STAT3 fusion plasmid 

however the HepG2 cell line is very resistant to the antibiotic geneticin, which 

was used as the selection marker in the expression plasmid. Reverse 

engineering to replace the resistance cassette in the plasmid would make this a 

feasible approach. Another option for the generation of stable cell lines might be 

lentiviral technology, although again this is less suitable for expression of 

inducible repressor proteins because there is not always sufficient room for the 

insertion of extensive promoter regions. More recent technologies for protein 
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expression include zinc-finger proteins, TALENS and CRISPR/cas9 to make 

specific changes to a target genetic locus (for review see Gupta & Musunuru, 

2014). These technologies can enable a fluorescent protein cassette to be 

introduced directly into the target gene locus and so result in one or two copies 

of the fusion gene being expressed in the place of the endogenous gene  (Gupta 

& Musunuru, 2014). This could be particularly useful for inducible repressors 

and if mouse genes are used, could allow the derivation of knock-in transgenic 

reporter mice. 

6.3 Live Cell Imaging Approach 

Live cell imaging formed the core technique used in this project because it has 

considerable advantages for studying longitudinal spatiotemporal signalling 

dynamics in single cells. This is in marked contrast to classical molecular 

biology techniques. It provides semi-quantitative time-resolved data for 

individual cells which overcomes population averaging effects that mask 

intercellular variation. This type of data also facilitates statistical analysis of a 

sample population and is excellent for testing and improving mathematical 

models of a dynamic system. In addition to live cell fluorescence microscopy 

other key techniques are Fluorescence Correlation Spectroscopy (FCS) and 

Fluorescence Cross-Correlation Spectroscopy (FCCS). These techniques can 

reveal whether different fluorescent proteins are associated together under 

particular conditions, and can determine dissociation constants. They can also 

infer how many fluorescent molecules there are within a cell and if used in 

conjunction with a stable cell line and Western blotting they can give an 

absolute quantification of both the fluorescent fusion protein and the 

endogenous protein. This can be very useful for mathematical models (for 

reviews see Ankers et al, 2008; Mullassery et al, 2008; Spiller et al, 2010).  

There are some limitations to the live cell imaging techniques, both technical 

and analytical. Live cell imaging requires temperature-controlled microscopes 

capable of maintaining focus over extended periods of time, if experiments are 

to be run for between 8 and 48 h. Technological advances in microscopy and 

computing power have resulted in automated data collection and vastly 

improved image quality (Rabut & Ellenberg, 2004) but are financially costly 
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thus limiting availability. Furthermore, once the images are collected they must 

be processed and analysed. Image analysis is a very labour- and time-intensive 

process with the current software available (Shen et al, 2006; Du et al, 2010). In 

this project, over 350 cells were fully analysed. In addition a considerable 

number of cells were analysed but generated unusable data due to cell 

movement out of the field of view, overlaps between the cells or cell division or 

cell death during the experiment. Image analysis therefore requires 

considerably more time than running the microscopy experiments themselves 

and  represents the biggest bottleneck in the live cell imaging workflow. 

Improved image analysis tools would therefore make a significant difference to 

the field. 

Despite the data analysis limitations, this project generated a large quantity of 

unique data regarding cytokine-induced, temporally sustained STAT3 

oscillations in single cells, which has not been reported elsewhere. It has also 

extended our knowledge of the implications of cross-talk between STAT3 and 

p65 for their respective signalling dynamics. 

6.4 Modelling Dynamic Systems 

The semi-quantitative, time-resolved data generated through single cell imaging 

lends itself to the mathematical modelling of system dynamics. We collaborated 

with a group of theoreticians in Spain, led by Prof. J. Garcia-Ojalvo, who had 

independently constructed a basic and generic mathematical model of STAT-

SOCS signalling. In this case, the work presented in Chapter 4 that demonstrated 

and quantified the key characteristics of STAT3 oscillations disproved their 

existing generic model but indicated that it could be improved. I worked closely 

with Dr E. Abad as the model was updated and expanded to integrate the new 

findings. The improvements have not resulted in a single parameter set that 

captures both the pulsatile and continuous stimulation regimes, indicating that 

further work is required. Experimentally, more and better-quality STAT3 single 

cell data remains to be generated and a reporter for SOCS3 dynamics would be 

extremely beneficial. In association with improved global fitting of the model to 

the biological data and published literature, this would lead to a deeper 
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understanding of STAT3 signalling dynamics and to the generation of additional 

testable hypotheses for future biological experiments.  

Despite models representing an abstraction, there is little doubt that they are an 

extremely useful tool for understanding biological systems and their 

interactions. Given the complexity of cytokine signalling within the immune 

system and the importance of understanding the molecular basis of disease, it is 

clear that an interdisciplinary, systems biology approach can contribute 

meaningfully to our understanding. 

6.5 NF-κB Dynamics 

The study of NF-κB nuclear translocation oscillatory dynamics only emerged 

within the last decade. There is a strong suggestion that the dynamics are 

functionally important for the temporal regulation of gene expression (Ashall et 

al, 2009). The published studies have only used a few cell lines, for example SK-

N-AS and HeLa (Nelson et al, 2002; Nelson et al, 2004), fibroblasts (Tay et al, 

2010) and macrophages (Sung et al, 2014). This project studied a different cell 

line, HepG2, and found it to be a strong oscillator with a similar period to 

previously characterised cell lines. Until now no published studies have 

considered perturbations of the period in different cell lines. I demonstrated 

that the period of NF-κB oscillations could be significantly perturbed in the 

HepG2 cell line through changing the stimulus used and by co-expressing STAT3 

with NF-κB. Changing the period of oscillation by using different stimuli was 

particularly interesting; in the SK-N-AS cell line, TNFα and IL-1β result in the 

same period of 100 min (Dr A Adamson, personal communication) whereas in 

HepG2 cells, IL-1β stimulation caused NF-κB to oscillate 23 min faster than 

under TNFα. The cause of this cell line difference is unknown but two possible 

explanations are: firstly, differences in the pathway between the receptor and 

the IKK complex, and secondly, differences in the strength or timing of negative 

feedback loops. Furthermore the plasticity of the period in HepG2 cells is 

supported by observations in NF-κB transgenic mice, where the oscillatory 

period is as fast as 60 min in certain cell types (Dr C Walker, personal 

communication). The significant differences in oscillatory period with stimulus 
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are likely to be functionally relevant, given the role of frequency encoding of 

information with regards to gene expression patterns (Ashall et al, 2009). 

6.6 STAT3 Dynamics 

STAT3 shares many common features with other STATs, including constitutive 

nucleocytoplasmic shuttling (STAT1, STAT5 and STAT6), and negative feedback 

by SOCS1-3 and CIS. Whilst CIS, SOCS1-3 are not unique to each STAT, they do 

have strong preferences for classes of signals mediated by particular receptor 

types. Additionally, there is considerable evidence that feedback from multiple 

SOCS expressed at different levels can shape the nature of the STAT response, 

for example biasing IL-6 signalling via STAT3 towards a pro-inflammatory 

response, instead of the STAT1 anti-inflammatory response (Wormald et al, 

2006). Therefore the core components necessary for oscillatory dynamics are 

present for several other STATs in conjunction with specific SOCS besides 

STAT3 and SOCS3.  

The lack of a SOCS3 reporter was a big disappointment and might have 

presented significant problems for the project. Even so, a SOCS3 reporter alone 

may have generated incomplete data and been misleading. In the future, being 

able to report on SOCS3 and SOCS1 expression in addition to STAT3 would 

represent a major step forward. With accurate reporters in stable cell lines, it 

would be possible to perform knock-down experiments of SOCS feedback using 

siRNA to perturb STAT signalling. Data from such perturbation experiments 

would be especially useful for developing the STAT3:SOCS3 model presented 

here, for example by including multiple feedbacks as has been done for NF-κB 

signalling models (Paszek et al, 2010). 

STAT3 was found to exhibit strong sustained nucleocytoplasmic oscillations in 

response to continuous IL-6 signalling at the single cell level in the HepG2 cell 

line. To our knowledge, this is the first demonstration of this phenomenon for 

any STAT in individual cells. Oscillatory STAT3 dynamics were observed at the 

population level in synchronised cells (Yoshiura et al, 2007) and attenuated 

transient oscillations have been seen for IFNγ-induced P-STAT1 and SOCS1 

mRNA in macrophages (Pertsovskaya et al, 2013). The STAT3 



General Discussion 

 

~ 205 ~ 
 

nucleocytoplasmic oscillations were only seen under continuous stimulation; 30 

min and shorter pulses of IL-6 triggered a single, transient nuclear accumulation 

of STAT3. It remains to be determined whether these STAT3 dynamics are 

biologically important, although evidence from signalling networks with strong 

oscillatory dynamics, such as p53 and ERK1/2 (Lahav et al, 2004; Shin et al, 

2009), suggests that it is likely. A small gene expression study was performed 

but it was limited in scope and the differences seen between the 30 min and 

continuous data were small and as such, the significance could not be 

determined. This could be addressed by expanding the scope of the study to 

include more genes and test conditions, and other technologies such as 

Nanostring or RNA-Seq could be used.  

6.7 Cross-talk Between STATs and NF-κB 

Intercellular and intracellular cross-talk between STATs and NF-κB has been 

documented in various circumstances, involving different combinations of 

STATs, NF-κB dimers, cell lines and stimuli. The mechanisms for intracellular 

cross-talk are incompletely understood, due in part to the complexity and 

context-specific nature of the phenomenon. The known points of interaction 

between STAT3 and p65/NF-κB were discussed in Section 1.4 and are 

illustrated in Figure 6.1, with interactions through feedback loops and MAP 

Kinase signalling (Fig. 6.1A) and interactions at promoters of target genes (Fig. 

6.1B) being shown. Efforts towards untangling cross-talk between the NF-κB 

and STAT networks have focused on the potential mechanisms and functional 

outcomes but have not generally considered the consequences on signalling 

dynamics of the transcription factors.  

To limit the scope of the cross-talk question, this project focused on p65 and 

STAT3, joint mediators of the acute phase response to infection, in the HepG2 

cell line, a model for the APR. The signalling dynamics of p65 have previously 

been studied in depth (Nelson et al, 2004) and have been found to be important 

for target gene transcription (Ashall et al, 2009), whilst STAT3 is capable of 

oscillatory dynamics at the population level (Yoshiura et al, 2007). At the 

beginning of the project, the dynamics of p65 were characterised in the HepG2 

line whilst STAT3 was found to oscillate in single cells in response to IL-6.  
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Figure 6.1: Known cross-talks between STAT3 and NF-κB. A Cross-talk 

mediated by feedback loops and other signalling events. Note the 

autocrine/paracrine IL-6 feedback, which is driven by STAT3 and NF-κB 

signalling. Various events lead to increased SOCS3 and therefore inhibit STAT3 

signalling. SOCS3 can also limit NF-κB transcription. MAPK components and p38 

are a critical link between STAT3 and NF-κB. B The three key modes of 

interaction at gene promoters, each driving a different subset of genes. 

  

A 

B 
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Therefore the final aspect of the project was to consider STAT3 and p65 

together in HepG2 cells because if cross-talk did occur, their respective 

signalling dynamics could be perturbed. 

In general, STAT3 and p65 dynamics were perturbed by cytokine co-

stimulation. IL-6 co-stimulation with either TNFα or IL-1β produced different 

effects, both on p65 and STAT3 dynamics. The effects were not unidirectional; 

instead both transcription factors were perturbed. Additionally, TNFα and IL-1β 

affected IL-6-activated STAT3 in different ways. IL-1β significantly inhibited 

STAT3 signalling whereas TNFα did not inhibit STAT3, thus serving to highlight 

the importance of context in cross-talk studies. Interestingly, while subtle 

effects could be detected at the population level through the statistical analysis, 

there appeared to be no correlation under any stimulation protocol between the 

behaviour of the two pathways within individual cells. However, consideration 

of the population statistics also masked differences between groups of cells with 

similar dynamic responses. This was particularly noticeable under the 

simultaneous IL-6 and TNFα co-stimulation protocol and under IL-6 and IL-1β 

co-stimulation. Another interesting observation was the effect of delaying one 

cytokine stimulus in relation to the other. Staggered stimulation with ‘IL-6 then 

TNFα’ resulted in different signalling dynamics for p65 and STAT3 in 

comparison to simultaneous stimulation, suggesting that the order in which 

cells detect different cytokine signals is vital to the final outcome. This could be 

especially important in whole organisms where waves of different cytokines are 

responsible for moving the immune response through the different stages 

necessary to clear infection and repair tissue damage.  

The inhibitory effect of IL-1β upon IL-6-induced STAT3 dynamics was in line 

with the work by Radtke et al., (2010). Whilst Radtke and colleagues elucidated 

the primary mechanism of inhibition, which entailed down-regulation of the IL-

6 receptor, they were not able to consider the differences between cells, nor any 

differences that occurred later than 3 h after stimulation. Furthermore, they 

only provide an explanation for the effect on STAT3 signalling, whereas in the 

data presented here, p65 dynamics were also shown to be affected by co-

stimulation. One possible mechanism might be via SOCS feedback (Park et al, 
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2003; Kiu et al, 2007; Strebovsky et al, 2011). RNAi experiments may help 

elucidate the role of SOCS feedback in the cross-talk between STAT3 and NF-κB, 

as may the use of inhibitors for MAPK components. 

Future work should consider both the functional consequences of perturbing 

STAT3 and NF-κB dynamics and the possible mechanisms for the observed 

effects. Ideally, the gene transcription study should be extended to consider IL-

1β, and the effects of staggering cytokine co-stimulation. RNA-seq might be a 

useful alternative to qPCR-based approaches. With regards to mechanistic 

studies for the effects of cross-talk, use of inhibitors for different pathway 

components could be informative if combined with traditional molecular 

biology approaches as well as advanced fluorescence microscopy techniques. 

Fluorescence cross-correlation spectroscopy could be used to detect any direct 

interactions between STAT3 and p65 proteins under different co-stimulation 

protocols. Ideally, such experiments would be performed in a dual-transfected 

stable cell line, as the biggest bottleneck for the cross-talk studies was obtaining 

enough cells with comparable fluorescence levels. Increased numbers of cells 

for the different conditions tested, including controls for STAT3, would improve 

the statistical strength of the observations presented here. Finally, it would be 

an interesting challenge to combine the existing models of STAT3 and NF-κB 

signalling dynamics in order to capture cross-talk effects. 

6.8 Concluding Remarks 

In summary, this investigation demonstrated oscillatory STAT3 dynamics in 

single cells and investigated the effects of cross-talk between STAT3 and NF-κB 

upon their respective dynamic profiles. STAT3 was found to be a strong 

oscillator under IL-6, and it is likely that the oscillatory dynamics are important 

in determining the biological outcome, given our understanding of other 

signalling networks. The characterisation of STAT3 oscillations enabled the re-

fitting of an existing generic STAT:SOCS model into a specific STAT3:SOCS3 

model that was able to capture two different dynamic STAT3 nuclear 

translocation profiles. The cross-talk effects were considerably complex, with a 

variety of subtle and conflicting results observed in addition to considerable 

intercellular variation. In general then, these findings highlight the flexible 
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nature of the STAT3 and NF-κB signalling networks and their ability to integrate 

signals from other pathways, whilst also reminding us that we have barely 

scratched the surface of the processes by which they interact. Furthermore, it 

emphasizes the importance of the cellular context, whether that be the cell type, 

the extracellular milieu, or the signals the cell has previously seen. In order to 

tease apart the interactions and dependencies of the cytokine signalling system, 

precise and thorough experiments must be performed in conjunction with 

detailed, quantitative analysis. Results so generated can then be used to define 

new models of cytokine-induced cross-talk with the aim of understanding the 

biological complexities of integrating multiple signalling systems. 
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