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Review
It has become increasingly clear that parasites can have
significant impacts on the dynamics of wildlife popula-
tions. Recently, researchers have shifted from using
observational approaches to infer the impact of para-
sites on the health and fitness of individuals to using
antiparasite drug treatments to test directly the conse-
quences of infection. However, it is not clear the extent
to which these experiments work in wildlife systems, or
whether the results of these individual-level treatment
experiments can predict the population-level conse-
quences of parasitism. Here, we assess the results of
treatment experiments, laying out the benefits and lim-
itations of this approach, and discuss how they can be
used to improve our understanding of the role of para-
sites in wildlife populations.

The impact of parasites on individuals and wildlife
populations
Parasites (defined broadly to include any disease-causing
organism, from viruses and bacteria to parasitic helminths
and ectoparasites) are ubiquitous in natural systems and
can have significant effects on host survival and reproduc-
tion [1,2]. Conventional wisdom suggests that parasites
negatively affect host fitness due to ‘disease’, the patholog-
ical state caused by parasite infection, growth, and repli-
cation within the host and by damage caused by the
response of the host to infection. The potential impact that
parasites can have on their wildlife hosts is most often
apparent when a newly emerging disease sweeps through a
population of conservation or economic importance, caus-
ing, in some cases, devastating losses [3,4]. Increasingly,
we see examples in wildlife, such as chytridiomycosis
decimating amphibian populations [5,6], ash dieback
changing the distribution of ash trees [7], marine mammal
morbillivirus causing population crashes [8], and a suite of
pathogens associated with the collapse of honeybee
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colonies [9]. Typically, these occur through the introduction
of a novel parasite into a naı̈ve host population either
directly, or indirectly through host species invasions, in
which a host species moves into a new area, bringing its
parasite community with it [10]. In these cases, there is a
clear effect of the parasite on both the individual hosts in the
new area (typically they die, or are otherwise severely and
obviously affected) and their populations (the abundance is
often dramatically reduced). These devastating epidemics
rightly attract much attention and the seeming increase in
these events has raised serious concern about the role of
infectious disease for wildlife conservation [3,11,12].

However, less commonly considered is the ‘everyday’
impact that endemic parasites have on their wildlife host
individuals, or the role they have in regulating or driving the
dynamics of their native host populations. This may be
either because parasites, by living inside their hosts, are
literally overlooked or, by typically (although not always)
being physically small, they are assumed to be inconsequen-
tial (but see [13]). Furthermore, unlike predator–prey rela-
tionships, where the interaction is clear (an individual gets
eaten), the negative effects of endemic parasites on their
hosts may be covert or sublethal, with hosts often being left
alive and with no obvious adverse effects. Hence, quantify-
ing (or even noticing) the impact of parasites on their host
individuals is difficult. In addition, even if parasites are
accurately quantified it can be hard to disentangle the
cause-and-effect relationship between levels of parasitism
and observed measures of host condition or fitness, for
example, if weaker or sicker individuals tend to get higher
levels of infection than healthy or stronger hosts [14]. These
challenges are exacerbated when we move to assess the
impact of parasites at the host population level. Historically,
it has been argued that endemic diseases are unlikely to
have a major role in regulating natural populations (e.g.,
[15]). However, the potential regulatory force of parasites on
their host populations has been clearly demonstrated theo-
retically since the pioneering work of Anderson and May
[16,17]. However, this body of theory also shows that detect-
ing or demonstrating those impacts in natural host popula-
tions is far from straightforward ([18,19]; Box 1). In
particular, this theory suggests that attempting to infer
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Box 1. Theoretical expectations of the effects of parasitism on host populations

Here, we present an overview of epidemiological theory that reveals

the potentially complex relationships between parasite virulence (the

detrimental effect that a parasite has on its individual host),

prevalence of infection, and consequences for the population

dynamics of the host [18,19].

The basic model considers a directly transmitted microparasite (e.g.,

a virus or bacteria) infecting a single host species (Equations I and II):

dU

dt
¼ aH � Hðb þ BHÞ � bUI [I]

dI

dt
¼ bUI � Iðb þ BHÞ � Ia [II]

where U is the density of uninfected hosts, I is the density of infected

individuals, and H is the total population density (H = U + I). Hosts are

born at per capita rate a and die at a density-dependent rate b + BH

(where B is the strength of density dependence); in the absence of the

parasite, the host population stabilises at carrying capacity, K = (a – b)/

B. Uninfected hosts become infected at density-dependent transmis-

sion rate b, and infected hosts suffer parasite-induced mortality at rate

a. This model predicts a nonlinear relation between virulence at the

individual host level (a) and host density at the population level

(Figure IA, unbroken black line). In particular, the greatest popula-

tion-level impact occurs at relatively low levels of individual-level

virulence. Correspondingly, the predicted prevalence of infection rap-

idly declines with increasing virulence (Figure IA, broken red line).

Together, these two results show that the greatest level of host

population suppression is caused by a relatively benign parasite at

the individual level, with a relatively low population-level prevalence.

A qualitatively similar pattern is seen if we consider the parasite to be a

macroparasite (e.g., parasitic helminth [16] and Box 2; Figure IB, where

the broken red line shows mean parasite burden, rather than parasite

prevalence).

This basic model can be modified to consider various alternative

scenarios. For example, if the parasite affects host fecundity (e.g., by

reducing body condition) rather than host survival, we see a rapid

decline in host population size with increasing virulence, and no

recovery of the host population at high virulence levels (Figure IC).

Furthermore, the reduction in parasite prevalence with increasing

virulence is less dramatic than seen under mortality-inducing

parasites. Hence, parasites that greatly affect host fecundity rather

than survival can have a substantial impact on the host population,

with little impact on their own prevalence.

Finally, parasites may transmit in a frequency-dependent manner

(e.g., sexually transmitted diseases; [60,61]). This can be modelled

by replacing the transmission terms in both Equations I and II (bUI)

with bUI/H. In this case, the parasite can greatly suppress the host

population, potentially driving it locally extinct at low-to-intermedi-

ate virulence levels (Figure ID). However, high virulence levels can

result in the parasite driving itself extinct. Notably, in this scenario,

unlike that seen under density-dependent transmission, the parasite

is able to maintain a relatively high prevalence while still suppres-

sing the host population. In this case, reasonably highly prevalent

parasites may be indicative of high potential for host population

suppression.
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Figure I. Predicted scaling relations between parasite virulence at the individual level (additional host mortality rate or reduced host fecundity rate due to infection) and

equilibrial host population abundance relative to an uninfected population (unbroken black lines) and parasite prevalence or mean burden (broken red lines). (A) A

microparasite that affects host survival; (B) a macroparasite (helminth) that affects host survival (broken red line shows mean parasite burden); (C) a microparasite that

affects host fecundity; and (D) a microparasite with frequency-dependent (‘FD’) transmission.
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parasite impacts purely from observational data, as has
historically been the case, can be challenging.

To overcome these challenges, an increasing number of
studies have used antiparasite treatment experiments of
wildlife hosts to perturb levels of parasitism and more
directly quantify the impacts of infection. Given the increas-
ing interest in adopting treatment approaches to under-
stand host–parasite dynamics in their natural setting, it
is timely to review the ways in which they are being used and
their findings. Here, we collate examples of such studies
from the literature to assess the reported effects of treatment
on the target parasites, host health, and, where possible,
host population dynamics. We highlight the power of these
experimental approaches for understanding the impact of
infection at the individual level, while acknowledging their
limitations, and focus on how the combination of theory and
large-scale experiments may improve our understanding of
the consequences of parasitism for wildlife populations.

The use of treatment-based approaches for inferring the
individual-level impacts of parasitism
We collated 51 studies reporting a total of 66 antiparasite
treatment experiments on noncaptive wildlife populations
(several papers reported experiments with more than one
drug; Table 1). From the information provided in these
papers we assessed: (i) the wildlife host–parasite systems
and antiparasite drugs that have been used in these studies;
(ii) how effective the drug treatment approaches were at
reducing target parasites; (3) whether treatment improved
individual host health and fitness; (4) whether treatment
had any detectable effects on nontarget, co-infecting para-
sites; and, lastly, (5) whether treatment studies elucidated
the population-level consequences of parasitism.

Which drug treatments have been used in wildlife
studies and in which systems?
A range of antiparasitic drugs have been used to reduce
parasitism in wild animal populations, with most drug-
treatment experiments using anthelmintics to target nem-
atode infections (41/66 experiments; Figure 1A). By far the
most common drug used was the standard veterinary and
human deworming drug ivermectin, which was used in
13 experiments to target nematode parasites (Table 1),
but given its wide-target parasite spectrum, was also used
in four experiments to target a range of ectoparasites (bot-
flies, mites, and lice; Table 1). Since its discovery in 1973,
ivermectin has been used to treat humans and domestic
animals across the globe, because it is relatively inexpen-
sive, effective across a broad range of parasites, and impor-
tantly, can be used to treat an individual successfully with a
single oral or topical dose [20]. The other antinematode
experiments tended to use common deworming drugs
(e.g., levamisole, fenbendazole, and albendazole), while
the remaining antiectoparasite experiments used common,
topical pyrethrin-based insecticides (e.g., permethrin)
(Table 1). There were also several less-common drug targets
for other, non-nematode anthelmintic trials (e.g., targeting
cestodes [21] or digenean trematodes [22]). Importantly, we
found very few studies that used drugs to reduce or clear
infection with microparasites (Figure 1A), including the use
of antiprotozoals [23–25] and antibiotics [26,27].
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While there was some taxonomic diversity in the hosts
being treated, 38% of the host–parasite studies (25/66)
investigated the impacts of parasitism in artiodactyl hosts,
comprising deer species and wild or feral sheep (Table 1).
The next most common host taxa were birds (16/66) and
rodents (10/66), but there were also studies on lagomorphs
(rabbits and hares; 7/66), and marsupials (4/66). Overall
the majority of studies involved herbivore or omnivore
hosts, although a small number of experiments (4/66) were
carried out on carnivores (Figure 1A; Table 1).

Does drug treatment reduce parasite prevalence and/or
intensity in wildlife?
Many studies provided information on the effect of treat-
ment on the target parasite (55/66; 83%), assessed either in
terms of the prevalence of infection (proportion of hosts
infected), mean parasite abundance (mean number of
parasites or parasite eggs shed per host), or mean parasite
intensity (mean number of parasites or parasite eggs shed
per infected host). The efficacy of antiparasite treatment
was assessed by either comparing these metrics of parasite
infection between treated animals and control animals
(given water or a relevant placebo) or by measuring the
reduction in these metrics before and after treatment. We
summarise these results qualitatively, categorising them
as either reporting a positive effect of treatment (a signifi-
cant reduction in any of the above metrics post treatment)
or no effect of treatment (no significant change in any of the
above metrics); none of the studies reported an increase in
the target parasite prevalence, abundance, or intensity
post treatment. Most studies that provided information
on efficacy (49/55; 90%; with the remaining studies not
documenting the effects of treatment on the target para-
sites) reported a reduction in the target parasite following
treatment, suggesting that antiparasite treatments often
have a detectable, desired negative effect on the target
parasite(s) (Figure 1B). However, for some drugs (particu-
larly some of the less well-used antinematode drugs, such
as cambendazole, thiabendazole, and dichlorvos), there
was no reported effect of treatment (Figure 1B). By con-
trast, all insecticidal treatments were reported to cause
some detectable reduction in the target parasite(s)
(Figure 1B).

We also considered whether a reported effect was ‘con-
text dependent’, that is, where the authors reported a
reduction in parasite infection, burden, or intensity due
to treatment, but only in a subset of the data (e.g., between
host sex or age classes, or between target parasite species
or years within the same study). Note that not all studies
allowed assessment of context dependence in their design
or analyses (i.e., they only had one cohort of individuals
within one time period, etc.). Nevertheless, of the 55 studies
that provided any information on efficiency, nearly half of
the studies (27) reported context dependence in the effect of
treatment such that, although a reduction in the target
parasite was reported, this was only seen in a certain
subset of the individuals (Figure 1B). In particular, signifi-
cant reductions in the target parasite were often only
detected in certain age or sex classes [28,29], or only by
certain parasite species within mixed infections [29–31]. In
addition, it was commonly found that the effect of the drugs



Table 1. Antiparasite drug treatment studies in wildlife

Drug type Drug name Target parasite(s) Host species Dose and/or administration Refs

Anthelmintic Ivermectin Nematode,

Heligmosomoides

polygyrus

Yellow-necked mouse,

Apodemus flavicolis

10 mg/kg, injection, repeated

doses

[28]

Wood mouse, Apodemus

sylvaticus

10 mg/kg, oral, repeated

doses

[32]

Nematode,

Trichostrongylus

retortaeformis

Mountain hare, Lepus

timidus

0.1 ml, injection, single dose [62,63]

Nematodes,

Protostrongylus spp.

Mountain sheep, Ovis

canadensis

0.5 mg/kg, injection, single

dose

[64]

Oral via feed, single and

repeated doses

[34]

Several nematode species White-footed and deer mice,

(Peromyscus leucopus and

Peromyscus maniculatus)

200 mg/kg, oral, single dose [39,45]a

Snowshoe hare, Lepus

americanus

0.4 mg/kg, injection, single

and repeated doses

[31]

0.3 mg/kg, injection,

repeated doses

[47,54]

Svalbard reindeer, Rangifer

tarandus

Oral, repeated doses [37,50]

Ivermectin, moxidectin

and albendazole

Several strongyle

nematode species

Kangaroo, Macropus

giganteus

Single, injection, and oral [65]

Ivermectin,

praziquantel and

pyrantel pamoate

Several helminth species Florida panther, Puma

concolor

Mixed, injection, and oral;

repeated

[66]

Abamectin Several nematode species Svalbard reindeer,

R. tarandus

23–45 mg/kg/day, slow-

release capsule

[30]

Moxidectin Several nematode species Svalbard reindeer,

R. tarandus

0.2–0.4 mg/kg, injection,

single dose

[37,50]

Levamisole

hydrochloride

Nematode,

Trichostrongylus tenuis

Red grouse, Lagopus

lagopus scoticus

2 mL, oral, single [36,43,46]a

Levamisole

hydrochloride

Several nematode species White-footed mouse,

P. leucopus

15 mg/kg, injection, single [35]

Tramisol (levamisole) Several helminth species Cottontail rabbit, Sylvilagus

floridanus

8 mg/kg, oral, single [67]

Nematode,

Protostrongylus spp.

Bighorn sheep, Ovis

canadensis

17.8–24.4 mg/kg, oral, single [68]

Fenbendazole Several nematode species White-tailed deer,

Odocoileus virginianus

30–60 g, oral (via feed) [69]

Lungworm,

Protostrongylus spp.

Mountain sheep,

O. canadensis

3 g, oral, repeated [70]

Several nematode species Alpaca, Vicunga pacos 15 mg/kg, oral [25]

Several nematode species Goshawk, Accipiter gentilis

and white-tailed sea eagle,

Haliaeetus albicilla

1–2 ml, sprayed nests, single

dose

[71]

Lungworm,

Protostrongylus spp.

Bighorn sheep,

O. canadensis

Oral via feed, repeated dose [72]

Mixed helminths Brown pelican, Pelecanus

occidentalis

22 mg/kg, oral, repeated

dose

[73]

Albendazole Nematode, Osteragia

gruehneri

Soay sheep, Ovis aries Oral (via bolus), repeated

dose

[53]

Several nematode species Svalbard reindeer,

R. tarandus

Oral (via bolus), repeated

dose

[37]

Several nematode species Kangaroo, M. giganteus 3.8 mg/kg, oral, repeated

dose

[65]

Mixed helminths Brown pelican, Pelecanus

occidentalis

10 mg/kg, oral, repeated

dose

[73]

Cambendazole Lungworm,

Protostrongylus spp.

Bighorn sheep,

O. canadensis

30 mg/kg, oral, single [68]

Thiabendazole Lungworm,

Protostrongylus spp.

Bighorn sheep,

O. canadensis

120 cc, oral, single [68]

Flubendazole Several nematode species Pheasant, Phasianus

colchicus

Oral (via feed), repeated

dose

[44]a

Pyrantel pamoate Nematode,

Heligmosomoides

polygyrus

Yellow-necked mouse,

A. flavicolis

100 mg/kg, oral, repeated

dose

[38]

Review Trends in Parasitology May 2015, Vol. 31, No. 5

203



Table 1 (Continued )

Drug type Drug name Target parasite(s) Host species Dose and/or administration Refs

Pyrantel pamoate Raccoon roundworm,

Baylisascaris procyonis

Raccoon, Procyon lotor 90 mg, oral (bait), single/

repeated dose

[74]

Dichlorvos Lungworm,

Protostrongylus spp.

Bighorn sheep,

O. canadensis

120 cc, oral, single [68]

Netobimin Several nematode

species

Mouflon, Ovis musimon 7.5 mg/kg, oral, single [29]

Clorsulon Mixed helminths Brown pelican,

P. occidentalis

10 mg/kg, oral, repeated

dose

[73]

Piperazine

dihydrochloride

Mixed helminths Brown pelican,

P. occidentalis

109 mg/kg, oral, repeated

dose

[73]

Praziquantel Mixed cestode species Snow goose, Chen

cearulescens

10 mg/kg, injection, single

dose

[21]

Alceolar echinococcosis,

Echinococcus

multilocularis

Red fox, Vulpes vulpes 50 mg, oral via bait, single/

repeated dose

[75]

Triclabendazole Fascioloidiasis,

Fascioloides magna

White-tailed deer,

O. virginianus

10 mg/kg, oral, single dose [22]

Insecticide Ivermectin Botfly, Cutebra spp. Townsend vole, Microtus

townsendii

10 mg/mL, topical, single

dose

[76]

Louse, Trichodectes canis Wolf, Canis lupus 200 mg/kg, injection, single

dose

[77]

Sarcoptic mange,

Sarcoptes scabiei

Spanish ibex, Capra

pyrenaica

0.2–0.4 mg/kg, injection [78]

Mite, Psoroptes ovis Bighorn sheep,

O. canadensis

500 mg/kg, injection, single

dose

[79]

Fly, Philornis downsi Darwin’s finches (Geospiza

spp.)

1%, nests sprayed, single

dose

[80]

Fipronil Fleas, to indirectly remove

Trypanosoma microti

Field vole, Microtus agresti 10 mg/kg, oral, repeated

dose

[81]a

Pyrethrum (pyrethrin

based)

Lice, Ischnocera spp. Rock dove, Columba livia 1%, fumigation repeated

dose

[33]

Permethrin (pyrethrin

based)

Mixed ectoparasites Red squirrel, Tamiasciuris

hudsonicus

Topical, repeated dose [82]

Pyrethrin Mixed ectoparasites Goshawk, A. gentilis and

white-tailed sea eagle,

H. albicilla

Sprayed nests, single dose [71]

Dichlorvos (2-

dichlorovinyl dimethyl

phosphate)

Mixed ectoparasites Cottontail rabbit, Sylvilagus

floridanus

Topical (collar), single dose [67]

Antiprotozoal Toltrazuril Coccidiosis, mixed

coccidian species

Alpaca, V. pacos 15 mg/kg, oral [25]

Coccidiosis, Isospora spp. Laughing thrush, Dryonastes

courtoisi

12.5 mg/kg, oral, repeated

dose

[24]

Carnidazole Trichomoniasis,

Trichomonas gallinae

Pink pigeon, Columba mayeri 10 mg, oral, single/repeated

dose

[23]

Primaquine Mixed protozoan blood

parasites

Blue tit, Cyanistes caeruleus 0.1–0.05 mg, injection, single

dose

[83]

Antibiotic Oxytetracycline

(tetracycline based)

Mixed bacterial species Reindeer, R. tarandus 20 mg/kg, injection, single

dose

[26]

Doxycycline

(tetracycline based)

Lyme disease, Borrelia

bugdorferei and

Anaplasma

phagocytophium

Mixed rodent species 500 mg/kg, oral (via bait),

repeated dose

[27]

aIndicates population-level drug treatments; all other references refer to individual-level treatment experiments.

Review Trends in Parasitology May 2015, Vol. 31, No. 5
varied with time, either on a short timescale, such that
treated hosts were rapidly re-infected [24,25,32], or on
longer timescales, such that the reported efficacy of treat-
ment varied across the season or between years [30,33,34].

Does drug treatment benefit the health or fitness of
treated individuals?
Across the range of studies, authors reported individual
host fitness consequences of treatment in a variety of ways
which, for simplicity, we group into effects on: (i) host
204
survival; (ii) host fecundity (grouping various measures
relating to the number of offspring produced or matured, or
body condition of those offspring, depending on the infor-
mation presented); and (iii) other metrics of host ‘health’,
typically relating to measures of body condition (fat scores
or weight relative to body length), or other physiological
measures. For each of these categories, we scored the
reported effects in terms of whether they were ‘positive’
(i.e., a significant improvement in any of the metrics post
treatment, or compared with untreated control animals),



0

2

4

6

8

10

12

Iv
er

m
ec

�n

Le
va

m
iso

le

Fe
nb

en
da

zo
le

Al
be

nd
az

ol
e

M
ox

id
ec

�n

Ab
am

ec
�n

Py
ra

nt
el

Ca
m

be
nd

az
ol

e

Di
ch

lo
rv

os

Fl
ub

en
da

zo
le

N
et

ob
im

in

Th
ia

be
nd

az
ol

e

Iv
er

m
ec

�n

Py
re

th
rin

-b
as

ed

Di
ch

lo
rv

os

Fi
pr

on
il

Pr
az

iq
ua

nt
el

Tr
ic

hl
ab

en
da

zo
le

Cl
or

su
lo

n

M
ix

ed
*

Fe
nb

en
da

zo
le

Al
be

nd
az

ol
e

Pi
pe

ra
zin

e

Le
va

m
iso

le

To
ltr

az
ur

il

Pr
im

aq
ui

ne

Ca
rn

id
az

ol
e

Te
tr

ac
yc

lin
e

Iv
er

m
ec

�n

Le
va

m
iso

le

Fe
nb

en
da

zo
le

Al
be

nd
az

ol
e

M
ox

id
ec

�n

Ab
am

ec
�n

Py
ra

nt
el

Ca
m

be
nd

az
ol

e

Di
ch

lo
rv

os

Fl
ub

en
da

zo
le

N
et

ob
im

in

Th
ia

be
nd

az
ol

e

Iv
er

m
ec

�n

Py
re

th
rin

-b
as

ed

Di
ch

lo
rv

os

Fi
pr

on
il

Pr
az

iq
ua

nt
el

Tr
ic

hl
ab

en
da

zo
le

Cl
or

su
lo

n

M
ix

ed
*

Fe
nb

en
da

zo
le

Al
be

nd
az

ol
e

Pi
pe

ra
zin

e

Le
va

m
iso

le

To
ltr

az
ur

il

Pr
im

aq
ui

ne

Ca
rn

id
az

ol
e

Te
tr

ac
yc

lin
e

Ar�odactyl (n=25)Key:

Key:

Key:

Bird (n=16)
Rodent (n=10)
Lagomorph (n=7)
Marsupial (n=4)
Carnivore (n=4)

0

2

4

6

8

None

Posi�ve (context dependent)

Posi�ve

An�nematode Insec�cidal Anthelmin�c AP Ab

N
um

be
r o

f s
tu

di
es

(B)

0

2

4

6

8

10

12

14

Su
rv

iv
al

Fe
cu

nd
ity

O
th

er

Su
rv

iv
al

Fe
cu

nd
ity

O
th

er

Su
rv

iv
al

Fe
cu

nd
ity

O
th

er

Su
rv

iv
al

Fe
cu

nd
ity

O
th

er

Su
rv

iv
al

Fe
cu

nd
ity

O
th

er

An�nematode Insec�cidal Anthelmin�c An�protozoal An�bio�c

Nega�ve

None

Context dependent

Posi�ve

(C)

(A)

TRENDS in Parasitology 

Figure 1. The number of antiparasite treatment studies in wildlife populations, showing (A) the drug used and host taxon studied, (B) reported measurements of efficacy of

treatment against the target parasite, and (C) reported effects of treatment on host fitness (survival, fecundity or ‘other’ measure of host health; see main text for details).

Numbers in each segment refer to the number of experiments reporting that effect. All drugs are broken down by whether the drug was primarily as an antinematode,

insecticidal, anthelmintic (targeting helminth parasites other than nematodes), antiprotozoal (AP), or antibiotic (Ab). The treatment marked ‘Mixed*’ was a single study that

used a combined treatment of ivermectin, praziquantel, and pyrantel pamoate to target mixed helminth infections.
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‘none’ (no significant effect in any metrics), or ‘negative’ (a
significant reduction in any metrics). Furthermore, as with
our drug efficacy scores, we also considered whether a
reported effect was ‘context dependent’ (i.e., a change in
a host health metric that varied between subsets of indi-
viduals, such as ages or sexes). Again, many studies did not
explicitly seek such context dependency in their analyses,
so we were unable to assess its occurrence in all studies.

In total, 37/66 experiments (56%) provided information
on the health effects of treatment, reporting a total of
53 measures of host effects (many studies sought more
than one effect of treatment on the host). Of these, 33 (62%)
reported a beneficial effect of treatment on the host by at
least one of the above metrics (Figure 1C). However, as
with the efficacy measures of treatment, many positive
effects on host fitness that were detected were found to be
context dependent, varying with host age or sex [21,35], or
between different years (e.g., [36]) or with previous infec-
tion burdens [37]. In 19 out of the 53 reported measures of
host fitness (36%), treatment was found to have no detect-
able effect on any metric of host fitness and, in one case
(studying nematode and coccidia infections in alpacas),
treatment was reported to reduce host health [25].

The consequences of treatment for the broader parasite
community
Antiparasite treatment studies can not only highlight the
consequences of the target parasite on host fitness, but also
give insight into the occurrence of interactions between co-
infecting parasites, although few studies explicitly monitor
these indirect consequences of treatment for the nontarget
parasite community. In the few examples in wildlife that
have investigated these effects [32,38,39], the authors
examined whether treatment to remove the target parasite
species (these were nematodes in all cases) had conse-
quences for the abundance or prevalence of another co-
infecting parasite species (ticks [38]; coccidia and cestodes
[39]; coccidia and blood-borne Trypanosoma spp. and Bar-
tonella spp. [32]). In each of these cases, there was a
corresponding increase in some of the co-infecting parasite
species, suggesting that the target parasite was in some
way suppressing infections (either directly, via the im-
mune response of the host, or through competition for
shared resources [40]) by the nontarget parasite species.
Importantly, a recent analysis of two of these studies
demonstrated that neither cross-sectional nor longitudinal
observational data could accurately detect the within-host
interactions demonstrated through antiparasite treatment
studies [41]. Thus, these experimental studies are crucial
for uncovering important within-host interactions among
the parasites that may affect the efficacy of treatment and
the net benefits of treatment for host health [42]. Clearly,
however, more experimental studies are needed that look
at a wider range of perturbations (treatment targets),
monitor a wider range of nontarget parasite taxa, and
follow the health and fitness of treated individuals.

Scaling the individual-level impact of parasites to the
population-level consequences
From the above studies, it is clear that parasites can have
important consequences for individual-level health and
206
fitness, but what are the consequences for such impacts
at the population level? Intuitively, we may expect highly
virulent parasites and/or those at high prevalence to be
having the greatest impact on their host population. If so,
then comparing host densities across different populations
with differing disease prevalences may be expected to be a
viable means to infer disease impacts; if a given parasite is
having a major effect, then populations with high infection
levels may be expected to have lower mean host lifespans
and/or smaller population sizes compared with those with
low infection levels. However, such approaches are unable
to decouple the dynamic relationship between host life-
span, host population size, infection risk, and the impact of
infection. It may be, for example, that positive relation-
ships between individual lifespan and infection state are
observed if longer-lived hosts are more likely to accumulate
parasites. Similarly, larger host populations may present
more transmission opportunities, leading to positive rela-
tionships between population size and disease prevalence.
Such effects are likely to obscure, or even overturn, any
signal of the direct effect of infection on individual host
health or host population size.

These concerns are supported by basic epidemiological
theory ([18,19]; Box 1), which shows that the scaling rela-
tions between disease impacts at the individual and popu-
lation levels are far from straightforward, often involving
strong nonlinearities (Box 1, Figure I). In particular, highly
virulent parasites at the individual level are likely to kill
their hosts before they can transmit onwards, effectively
burning themselves out, and so may be at low prevalence
and are unlikely to have a significant effect at the host
population level. The parasites that may have the greatest
population-level impact are those of intermediate viru-
lence, which have some (but not a substantial) effect at
the individual level, and are able to transmit to many
hosts, resulting in major effects at the population level.
As such, parasites that are observed relatively rarely (or
have relatively low mean infection burdens for parasitic
helminths) and are relatively benign, may be the ones that
are having the greatest population-level impact (Box 1).

Given these complexities, drug treatment experiments
have the potential to reveal the true impact of parasites at
the population level, for example, by comparing host abun-
dance or dynamics between drug-treated and untreated
populations. However, few studies have performed such
population-level treatment experiments (but see [43–45]).
This is probably because there are various logistical issues
that mean the viability of this approach may be limited, for
example, due to the lack of suitable replicate populations
and appropriately matched controls, and constraints on
the levels of drug efficacy and treatment coverage that can
be attained, particularly for population-level assessments.
For example, in Box 2 we show theoretically that high
levels of both treatment coverage and drug efficacy may be
needed to reveal the effect a macroparasite is having on its
host population size. Furthermore, there may be additional
problems associated with deciding the appropriate scale to
define a coherent population in the wild, and determining
the required duration of time needed to sustain treatment.
However, these problems may not be insurmountable,
and population-level drug treatment experiments can be



Box 2. Theoretical assessment of the utility of antiparasite treatment approaches to quantify the impact of parasites on host

populations

Here, we modify the host–macroparasite used previously (Box 1; [18])

to incorporate the effect of anthelmintic treatment. Following the

approach of [84], we assume sustained application of a treatment of

efficacy h applied to a proportion g (drug coverage) of the host

population. Treatment increases the parasite mortality at rate c = –

log(1–gh) [84]. The full equations of this system are shown by

Equations I and II:

dH

dt
¼ aH � Hðb þ BHÞ � aP [I]

dP

dt
¼ blPH

g þ bH
� Pðb þ m þ a þ BH þ cÞ � ða þ mÞP2

H

1 þ k

k
[II]

where H is the host population density and P is the size of the parasite

population. As before (Box 1), hosts are born at per capita rate a and

die at a density-dependent rate b + BH, or due to parasite infection at

per capita rate a. Parasites produce infective stages at rate l, which

die at rate g and infect hosts at rate b. They die at rate m or when hosts

die (at rate b + a + BH) or through treatment at rate c. Finally, para-

sites are distributed across the host population according to the

parameter k, which is an inverse measure of the degree of aggrega-

tion [16].

This model shows that increasing treatment coverage increases the

change in host population size relative to an untreated population

(Figure I). However, this relationship is not linear, with little change in

host population density over much of the range of treatment

coverage; only at very high coverage do we see a dramatic increase

in population size post treatment, because it is released from the

regulatory effects of the parasite. Furthermore, if drug efficacy is

<100%, there is a dramatic reduction in the treatment effect.

Qualitatively similar results are seen if it is assumed the parasite

affects host fecundity rather than host survival (not shown). Overall,

although treatment experiments can reveal population-level impacts

of disease, the levels of coverage required to detect this may be

problematic for many wildlife systems.
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Figure I. The predicted relationship between anthelmintic treatment coverage

(proportion of host population treated) and host population density relative to

the untreated population, for different levels of drug efficacy.
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informative for understanding the role of parasites in
wildlife. The first, and arguably still the most complete,
study of this kind documented both the individual- and
population-level effects of the nematode Trichostrongylus
tenuis in contributing to population crashes in red grouse
populations in northern England ([36,43,46]; see Box 3 for
details). Other studies investigated the role of parasites in
wildlife populations, in combination with other important
factors, such as nutritional status, predator–prey dynam-
ics, and resource availability [35,45,47,48]. It is likely that
the population-level effects of these sublethal endemic
parasites may be best understood when measured in con-
junction with key factors determining individual fitness
and population survival. These population-level studies
show the value of adopting integrated approaches that
combine some or all of observational (ideally longitudinal)
empirical studies, individual-level treatment experiments,
mathematical modelling to predict population-level
impacts, and ultimately population-level experiments, to
test those predictions (Box 3).

Concluding remarks and future directions
It is well recognised that parasites can have devastating
effects on their individual hosts and on their host popula-
tions [1,2]. However, detecting those effects, particularly
for endemic parasites, is a major challenge in disease
ecology and conservation. Theory shows that the scaling
relationship between the individual-level impacts of dis-
ease and the population-level consequences of those
impacts can be nonlinear and, indeed, non-monotonic
([18,19]; Box 1), meaning that it is difficult to understand
the role of endemic parasites in shaping host population
and community dynamics through observational studies
alone [49,50]. For that reason, experimental perturbations
are essential.

Conceptually, drug treatment experiments seem an ideal
method of assessing the individual- and population-level
impacts of parasitism. However, such approaches can
be logistically challenging; in particular, for assessing
population-level impacts, high levels of drug coverage
(proportion of the population treated) are likely to be
needed to be able to detect an effect of treatment (Box
2). Indeed, even at the individual level, there are chal-
lenges with conducting and interpreting the results of
treatment experiments in wildlife. There is a variety of
drugs that can be applied to wildlife systems, making it
difficult to decide the appropriate drug, dose, and admin-
istration method to maximise the potential for a signifi-
cant reduction in the target parasite ([51]; but see Table 1),
while also minimising the potential for toxic effects on the
host, or knock-on effects on the wider ecosystem as could
happen for drugs that persist in the environment. Many
available antiparasite drugs are known to have toxic
effects on some animals, and their doses are closely regu-
lated for veterinary use. Obviously it is essential that such
guidelines are accurately followed in any wildlife treat-
ment experiment, and all doses and frequencies of treat-
ment are clearly described.

Our review of the literature showed that most of these
drugs can reduce parasite infection, burden, or intensity in
treated individuals and that this reduction is often, but
not always, associated with a benefit for host condition,
207



Box 3. Experimental approach to link individual- and population-level effects of parasitism in the red grouse system

Although treatment experiments have been used to assess the impact

of parasite infection in many systems, few have successfully linked

individual and population levels as well as Hudson and colleagues

[36,43,46,85]. By investigating Trichostrongylus tenuis infection in red

grouse populations in Northern England, these authors demonstrated

the strong role that this parasite can have in contributing to the

famous multiannual grouse population cycles (4–8 years [86]).

Observational studies suggested that high levels of T. tenuis infection

correlated with poor breeding success [87], and preliminary models

proposed that this negative effect could underlie the multiannual

fluctuations in red grouse abundance [86]. To move beyond the

correlations, the authors directly assessed the impact of parasitism on

bird fecundity by comparing (i) levels of parasitism and (ii) grouse

‘breeding production’ of control birds (which received water) with birds

treated orally with an anthelmintic (levamisole hydrochloride)

[36,46]. Treatment reduced both mean parasite eggs per gram (EPG;

Figure IA) and the mean number of worms per bird (not shown),

although there was variability in the extent of reduction between years;

parasite EPG, for example, was reduced by �95% in 1982 but only by

�70% in 1983. Treatment positively affected bird survival (Figure IB)

and fecundity [clutch size (Figure IC), and also hatching success and

number of chicks surviving (not shown)]. Again, there was substantial

context dependency with between-year variation in effect size.

These data were used to parameterise a mathematical model

to predict that T. tenuis drove the grouse population cycles

[85]. Importantly, Hudson and colleagues then tested these

predictions using a large-scale population-level treatment experiment

across six sites followed over 9 years [43]. The authors treated

grouse with replicated, timed population-level treatments, chosen

to coincide with predicted crash years in abundance [n = 2; treated

once, n = 2; treated twice (both coinciding with separate predicted

crash years), and n = 2: control]. Even though estimated levels of

treatment coverage ranged from 15% to 50%, these treatments were

shown to dramatically reduce the tendency for the populations to

cycle [43].

Overall, this body of work demonstrates the challenges inherent in

understanding parasite impacts on wildlife: context dependency in

effect sizes (e.g., varying treatment effects on parasites and host

fitness across years, possibly due to varying parasite pressure) and

logistical challenges (e.g., achieving and maintaining sufficient

treatment coverage for population-level experiments). Nevertheless,

through a combination of long-term observational data, individual-

level treatment experiments, mathematical modelling, and popula-

tion-level experiments, this work provided the first (and still one of

few) demonstration of the impact of parasites on host individuals and

populations.
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Figure I. The effect of levamisole treatment (blue bars) on (A) mean T. tenuis egg output per gram of faeces (EPG), (B) red grouse survival, and (C) mean red grouse

clutch size, relative to those of untreated control birds (red bars) [46]. The asterisks denote statistically significant effects of treatment, as reported by the relevant

papers.
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survival, or reproduction. However, we also discovered that
not all drugs were efficacious for treating wildlife parasites
(i.e., there was not always a detectable effect of treatment on
the target parasite) and that reducing parasite infection was
not always good for the host; sometimes, there were no
detectable benefits to the host of treatment, or those effects
varied significantly across subsets of the population. One
point to make here is that in 11 out of 66 treatment experi-
ments there was no apparent attempt to assess the effect of
treatment on the target parasite. Hence any subsequent
change in host fitness or behaviour in those studies cannot
be unambiguously attributed to parasite reduction (e.g.,
they may arise through the direct effect of the drug on
the host). A second important finding was that drug efficacy
can be variable, not only between different drugs and host–
parasite systems, but also within a host–parasite system
(Figure 1B); in many cases, there were notable context
dependencies, such that the impact of treatment on the
target parasite varied between years or months, or among
subsets of the host population (i.e., with host age and/or sex)
or between parasite species within mixed infections
(similar parasite species specific responses to treatment
208
have previously been noted in human drug treatment pro-
grammes [52]). Context dependencies were also observed in
the impact of treatment on various metrics of host fitness
(Figure 1C). Previous studies have shown that parasite
effects on host fitness are often mediated through interac-
tions with other forces (e.g., predation, competition, nutri-
tion, or environmental stress [2,45,53]). Hence, it can be
challenging to extrapolate results from one context (e.g., an
experiment carried out in one year or one location) to
another (e.g., the same experiment carried out in another
year or another location). Ideally, what are needed are
sufficiently extensive trials that span multiple contexts
(e.g., years, locations, host groups, and parasite species)
in concert with manipulation of other factors (e.g., predator
presence and/or absence [54] or resource availability [45]),
with appropriate randomized controls and levels of replica-
tion. Clearly, there are major logistical challenges associat-
ed with achieving such extensive studies, and it is possible
that theory may be able to provide some guidance of the
important contexts to consider, by exploring the extent to
which different key parameters are affected by variation in
different biological processes.
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In addition, there are various considerations that need
to be made when designing a treatment experiment in
wildlife. One particular issue is that currently available
drugs typically target broad taxonomic groups of para-
sites (such as ‘nematodes’ or ‘ectoparasites’) as opposed to
specific parasite species, making it difficult to identify
which parasites may be having the documented impact
on host health or fitness [51]. Similar issues are well
known in community-wide parasite control programmes
in human populations, resulting in considerable variabil-
ity in treatment success, both in terms of responses of
target parasites and benefits to individuals [52,55–
57]. With this in mind, it may be that using vaccination,
as opposed to drug treatments, could provide the neces-
sary finer-scale methods to target specific parasite spe-
cies, providing greater precision than the coarse-scale
approach adopted by current drug treatment experi-
ments; however, there is only a limited set of vaccines
currently available for wildlife parasites. A second issue
that needs to be considered relates to the diversity of
parasites typically infecting individual hosts in natural
settings [40]. There may be unexpected increases in
infections by potentially harmful, nontarget parasites
following treatment [32,39], potentially masking or even
adversely affecting host health responses to treatment
[42]. Clearly, the choices of drug, dose, and frequency of
administration then have to be carefully thought
through, as do the levels of monitoring of target and
nontarget parasites and host health metrics before and
after treatment.

At the population level, the logistical challenges asso-
ciated with carrying out the necessary large-scale experi-
mental manipulations are magnified; it is over 15 years
since this method was first used to demonstrate the effects
of parasitism on host population dynamics [43], but that
study remains one of the few that have been carried out at
the population level (but see, for example, [45]). Although
there are logistical issues with carrying out such large-
scale perturbation experiments, those problems are not
insurmountable, and need to be overcome. It is nearly
40 years since Anderson and May showed theoretically the
potential for parasites to regulate their host population
and alter host population dynamics [16], and there is
currently great interest in the role of parasites in struc-
turing larger ecological communities [58,59]; however, we
still have few experimental tests of the theory or demon-
strations of their impact at the population level, much less
at the community level. Nevertheless, we would urge
researchers and funders to appreciate the value of experi-
mental manipulations, at both the individual and popula-
tion levels, as perhaps the best tool for understanding the
role of parasites in driving population and community
dynamics.
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