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Thesis Summary

In the presented thesis, we build the theoretical framework for the development
of temperature-based weather derivatives market in China. Our research is divided
into two separate studies due to their different scopes.

In the first study, we focus on the determination of the most precise model for
temperature-based weather derivative modeling and pricing in China. To achieve
this objective, a heuristic comparison of the new stochastic seasonal variation (SSV)
model with three established empirical temperature and pricing models, i.e. the Ala-
ton model [1], the CAR model [2] and the Spline model [3] is conducted. Comparison
criteria include residual normality, residual auto-correlation function (ACF), Akaike
information criterion (AIC), relative errors, and stability of price behaviors. The re-
sults show that the SSV model dominates the other three models by providing both
a more precise fitting of the temperature process and more stable price behaviors.

In the second study, novel forms of temperature indices are proposed and an-
alyzed both on the city level and the climatic zone level, with the aim to provide
a contract-selecting scheme that increases the risk management efficiency in the
agricultural sector of China. Performances of the newly-introduced indices are in-
vestigated via an efficiency test which considers the root mean square loss (RMSL),
the value at risk (VaR) and the certainty-equivalent revenues (CERs). According
to the results, agricultural risk management on the city scale can be optimized by
using the absolute-deviation growth degree-day (GDD) index. On the other hand, it
is suggested that climatic zone-based contracts can be more efficient compared with
city-based contracts. The recommended contract-selection scheme is to purchase
climatic zone-based average GDD contracts in climatic zone II, and to purchase
climatic zone-based optimal-weighted GDD contracts in climatic zone I or III.

Keywords: Weather derivatives, China, stochastic modeling, Monte Carlo simulation,

risk management, agricultural risk.
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Chapter 1

Introduction

Weather risks arise due to the unpredictability of weather variations. Regarding
to the world’s economy, the majority of market participants is affected by weather
risks. Especially industries in the sector of energy, agriculture, retail, construction
and transportation are claimed to be with the highest degree of weather sensitivities
[4]. As a possible hedging instrument, weather derivatives were first traded in the
US in 1996 and 1997 in the form of insurance [5]. In the year of 1999, weather
derivatives were officially launched by Chicago Mercantile Exchange (CME). At this
moment, a variety of weather products are being traded on the CME which cover
weather derivative contracts written on temperature, precipitation, frost, hurricane
and snowfall. As the most original type of weather products, temperature-based
derivatives are considered to be the most widely traded and with the most mature
market. So far, temperature contracts on the CME cover the United States, Canada,
Europe, Japan and Australia.

Despite of the booming markets in the USA and Europe, weather derivatives in
Asian countries are still underdeveloped. So far, Japan is the only country where
there are weather derivative deals taking place in the Asia pacific zone. However,
studies suggest that weather risk management tools, like weather derivatives, are in
great demand in developing countries, like China, from different aspects [6, 7]).

Among all the economic sectors that are exposed under weather uncertainties,
agriculture is always the priority to be considered when it comes to weather risk
management in China [8–10]. The importance of the agriculture industry is rec-
ognized for three reasons. First, agriculture is one of the most important sectors
in terms of the contribution of the GDP in China. Second, 45.23% of the popula-
tion of China live on farms [11]. Finally, agriculture in China is more sensitive upon
weather risks than in developed countries due to its extremely large rural population
and underdevelopment.

The major purpose of this thesis is to offer valuable information to those who
are interested in issuing temperature-based weather derivatives in China.
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Chapter 1. Introduction

1.1 Thesis structure and objectives

The essential barrier of studying temperature-based weather derivatives in China
is due to the absence of real market, where weather derivative transactions take
place. In this case, market-based researches and analyzes have to be discarded. In
this thesis, an attempt is made to build a systematic framework of temperature-
based weather derivative modeling in China as a foundation of opening the Chinese
weather derivative market.

Empirical analyzes are conducted based on the existing theory of temperature-
based derivative modeling, along with original approaches adopted to the reality of
Chinese market. Meanwhile, different possibilities of pricing methods are discussed,
considering that there is no accessible data of the market price. Through this study,
we hope to gain a comprehensive understanding of the temperature evolution, the
price and the market behavior towards weather risks. Further, we propose a range of
novel temperature-based indices, aiming to increase the efficiency of agricultural risk
management. The risk hedging efficiency of the proposed indices are investigated
empirically in order to test for their practical values.

The thesis is organized as follows.
In Chapter 2, an overview on different forms of temperature-based derivatives

and on relevant studies of temperature-based derivative modeling is provided. Struc-
tures of the most common valuation frameworks of temperature-based derivative
contracts are outlined. The objective of Chapter 2 is to introduce the research
background and preliminaries for the following chapters of temperature modeling
and pricing.

According to the scopes of the researches, the thesis is divided into two parts
from Chapter 3, namely the temperature modeling and pricing part (Chapter 3 and
4) and the contract design and agricultural risk management part (Chapter 5) .
In Chapter 3, we propose an new temperature model with temperature volatility
expressed by a stochastic process. The new stochastic seasonal variation (SSV)
model is then employed to fit the temperature data of twelve Chinese cities. Further,
a discussion on the possible pricing approaches is provided regarding to the price
risk that comes along with the stochastic process of the volatility. The objective
of Chapter 3 is to increase the preciseness of temperature modeling on the basis
of established temperature models, by removing heteroskedasticity via stochastic
volatilities.

In Chapter 4, we carry out a heuristic analysis on the model performances of the
proposed SSV model along with other three existing temperature models, i.e. the
Alaton model [1], the CAR model [2], the Spline model [3], in capturing Chinese tem-
perature fluctuation and in price behaviors. Recommendations on the application
of different models are made taking into account the residual normality, autocorre-
lation functions (ACF), the Akaike Information Criterion (AIC), monthly relative
errors (MRE) and contract prices. The major goal of this chapter is to examine
the SSV model, and to find a most suitable model for temperature modeling and
derivative pricing in China.

10



Chapter 1. Introduction

In Chapter 5, we look into the practical value of temperature-based derivatives
in reducing yield-variation risks for Chinese farm households. We first define a
variety of temperature indices based on both the city scale and the climatic-zone
scale. Next, an efficiency investigation on weather derivatives [12] are applied to
the new temperature indices. Through Chapter 5, we hope to increase the efficiency
of agricultural risk management in China. Meanwhile, we aim to reduce the model
dimension of temperature-based derivative pricing, and diverse the basis risk via
spatial aggregation with climatic zone-based contracts.

Contributions of the current study are fourfold. First, a novel temperature model
is developed, which takes into account the stochastic properties of the volatility
process. Second, the study investigates modeling performances of the proposed
temperature model along with other three standard existing temperature models,
targeting on determining the most precise model for Chinese temperature data.
Numerical studies based on thirty years of daily average temperature (DAT) data of
twelve Chinese cities are conducted in order to examine the goodness-of-fit and the
forecasting power of the temperature models. We hope to increase the reliability and
robustness of our conclusion via a larger DAT sample size in the empirical analysis.
Third, for the purpose of investigating the risk management scheme in agriculture-
related sectors, we present three new types of temperature-based growth degree-day
(GDD) indices. Efficiency tests on reducing agricultural yield-variation risks are
conducted, aiming to find the type of GDD indices with the highest risk reducing
power. Fourth, this study presents a novel type of temperature-based contracts,
i.e. the climatic zone-based GDD contract, which gives identical prices to all the
cities in the same climatic zone. The performance of the climatic zone-based GDD
contract is examined in order to verify its practical value.

11



Chapter 2

Review of temperature-based
weather derivatives

In this chapter, an overview of temperature-based derivative contracts is presented.
In Section 2.1, we introduce temperature-based derivatives in a general scope, with
particular focus on underlying temperature indices, contract specifications and pay-
off styles. In Section 2.2, we provide a literature review on the existing valuation
frameworks of temperature-based derivative contracts, where the advantages and
the disadvantages of each method are discussed.

2.1 Introduction of temperature-based derivative

contracts

Among all the weather derivative contracts that exist so far, temperature-based
contracts are by far the most popular and the most widely traded. There are three
reasons explaining why weather contracts written on temperature are more preferred.
First, temperature is one of the crucial factors for a broad range of sectors, including
agriculture, energy and retail, and has direct impacts on the profit of the business.
Second, adequate financial risks associated with weather changes can be reflected
by temperature changes. That is to say, even those sectors that are influenced by
other weather factors, such as frost, hail, and fog, can possibly control their risk
exposure via a temperature-based derivative contract. Typical examples of this
type of industries are transportation and aviation. Third, compared to derivatives
written on other weather factors, temperature-based derivatives cover an extensive
diversity of contracts (see Section 1.2 and 1.3), which are designed to satisfy the
needs of market participates facing all sorts of temperature-associated risks.

Apart from temperature-based derivatives, weather contracts written on precip-
itation, frost, hurricane and snowfall are traded in the CME as well. Second to
temperature, precipitation is another common of weather factor to be considered,
while dealing with weather risks, with respect to its great influence on a variety of
market sectors. Moreover, among the sectors that depends upon the precipitation

12



Chapter 2. Review of temperature-based weather derivatives

conditions, there is a considerable amount of them affected by temperature at the
same time. However, low correlation between the temperature and the precipita-
tion behaviors requires risk hedging schemes combining the two types of weather
risks. According to Pelka and Musshoff [13], it is actually better off to hold weather
derivative contracts written on a single weather index, i.e. the temperature index
and the precipitation index, and hedge associated risks separately, other than to hold
a single complex contract written on a mixed index based on multiple weather in-
dices. This argument arises as it is indicated in Pelka and Musshoff’s study [13]that
the mixed-index contract comes along with higher basis risks than the conventional
single-index contract.

In this section, we give a general introduction of temperature-based derivative
contracts from different angles. We first discuss the differences between weather
derivatives and weather insurances. Next, a list of temperature underlyings are in-
troduced together with a presentation of common payoff schemes of the temperature-
based contract.

2.1.1 Weather derivatives or weather insurance?

Weather derivatives are sometimes referred as weather index-based insurances in
the literature. However, the differences between insurances and derivatives cover
multiple aspects. One of the most fundamental differences is the payoff of a deriva-
tive claim is calculated from the market price of its underlying, while the payoff
of an insurance is calculated from the loss which is caused by the occurrence of a
particular (pre-specified) event. Furthermore, typical types of derivative contracts
include swaps, futures, options, etc..

Technically, weather derivatives and insurances play different roles in hedging
weather related risks. That is, weather derivatives are targeted on those weather
risks associated with higher probabilities and lower losses. For instance, a right
temperature-based derivative contract allows agricultural producers to hedge yield
risks resulted from adversely long cold period during the growing phase of a partic-
ular crop. Another example takes place in the energy sector, where weather changes
would lead to the volumetric risk, which is recognized as the most fundamental risk
of the industry. To be specific, as the demand of energy products fluctuates accord-
ing to the change of weather conditions, so does the price. From the perspective
of producers in the energy business, higher demands are often linked with higher
profits, while lower demands are related with lower profits, or even loss. Such un-
certainty of the profit forms the so-called volumetric risk. To address this problem,
one possible mechanism is to purchase a weather derivative contract that describes
the opposite situation to his favorable weather condition, thus to hedge the risk.

On the other hand, weather insurances are mainly targeted on more vital risks
that are related to weather catastrophes, which cause huge damages, such as flood,
hurricane, etc.. Moreover, weather-related insurances are usually devised in more
general forms which covers all possible risks that might be faced by a particular
market sector, which includes the weather risk. Most of the time, such insurance
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contracts are named after the particular sector that they are designed for, such as the
agricultural product insurance. In this sense, weather insurances tend to generate
higher transaction costs compared to weather derivatives.

2.1.2 Common underlyings of temperature-based weather
derivatives

Different from traditional financial derivatives, underlyings of temperature-based
weather derivatives are temperature indices which are non-tradable. So far, the
most frequently discussed and commonly traded temperature underlyings are the
cumulative average temperature (CAT), the cooling degree-day (CDD) and the heat-
ing degree-day (HDD). Contracts written on different temperature indices hedge
temperature-associated risks from different angles.

Cumulative average temperature (CAT)

Generally speaking, the most fundamental temperature variable which temperature
indices are calculated from is the so-called ”daily average temperature (DAT)”.
The definition of the DAT varies from country to country. In China, the DAT is
defined to be the mean value of the temperatures measured at four time point of the
day, namely 2:00, 8:00, 14:00, and 20:00 [14]. However, the most commonly-used
definition of a DAT is the average of the daily maximum and minimum temperatures.

Given the contract period, the cumulative average temperature (CAT) is define
as:

CAT p0, tq “
t
ÿ

i“1

T piq, (2.1)

where T piq stands for the DAT of day i.
On the Chicago Mercantile Exchange (CME), where weather derivative trans-

actions are organized, contracts written on the CAT are open to the Canadian and
the European markets.

Cooling degree-day (CDD) and heating degree-day (HDD)

Compared with CAT indices, degree-day indices are even more widely traded around
the world. Markets that have access to contracts written on degree-day indices, are
in the U.S, Canada, Europe, and Australia. Degree-day indices measure temperature
differences between the DAT and a pre-specified threshold (18 ˝C in Canada, Europe,
and Australia, and 65 ˝F in the U.S). On the daily scale, the definitions of the HDD
and of the CDD are respectively given by Eq. 2.2 and 2.3:

HDDpiq “ maxp18´ T piq, 0q, (2.2)
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CDDpiq “ maxpT piq ´ 18, 0q, (2.3)

where T piq denotes the DAT of day i.
With the contract period p0, ts, the accumulated HDD and CDD indices follow:

HDDp0, tq “
t
ÿ

i“1

maxp18´ T piq, 0q, (2.4)

CDDp0, tq “
t
ÿ

i“1

maxpT piq ´ 18, 0q. (2.5)

Considering different risk managing demands, temperature-based derivative trans-
actions divide the year into two seasons, i.e. the cold season and the warm season.
CDD contracts are generally issued in a warm season in order to hedge the risks
caused by the over-high temperatures, and the HDD contracts are issued in the cold
season to hedge the risks due to the over-low temperatures. However, applications of
HDD and CDD can be rather flexible. Technically, by changing the combination of
contract types (futures, put or call options) and indices (HDD or CDD) accordingly,
different sorts of temperature risks can be hedged in an efficient manner.

2.1.3 Temperature-based weather derivative contract types

To satisfy a variety of market participants with different financing purposes, temperature-
based weather derivatives are traded in multiple forms. Unlike weather insurances,
weather derivatives aim at reducing weather risks with a lower degree of damage,
but higher probability. For instance, holding a HDD derivative contract before win-
ter can help farm households offset the loss due to low yields under the forthcoming
low temperature.

Technically, transactions of weather derivatives are of the same dynamics with
the conventional commodity-based derivatives. To be specific, weather derivative
contracts are built between two parties, i.e. the buyer and the seller. The buyer,
who is also known as the portfolio holder, takes the short position in the transaction.
Note that when a risk-neutral method is applied to valuate a weather derivative
contract, one shall pursue from the buyer’s point of view.

Basically, the most widely-traded temperature-based weather derivative con-
tracts are futures, options written on the futures, and swaps. In the following part
of this section, brief explanations to the three types of temperature-based derivative
contracts are provided.

Temperature futures

Table 2.1 lists the major features of a temperature future contract. As it is discussed
in the previous section, common underlyings of temperature futures are the CAT,
the CDD and the HDD. In a temperature future contract, the contract size and the
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tick size specify the fundamental measures for the contract valuation. On the CME,
the contract size of temperature-based derivatives varies from country to country,
but the tick size stays one index point for all the regions. Basically, the contract
period of temperature futures can be either a month or a season (three months).
Further, it is claimed by CME that for the degree-day contract, market participants
can only have access to the CDD contracts during the warm months, and the HDD
contracts during the cold months.

Table 2.1: Contract specifications of temperature futures

Underlying Temperature index
Contract size The unit price of the underlying index
Tick size The minimum fluctuation
Contract period Monthly or seasonally

By holding a temperature future, one has the obligation to buy a particular
volume of temperature indices with a particular price on the expiration date. Note
that the volume and the price are pre-specified by the future contract. Wherefore
the holder of a future contract has the possibility of suffering from negative payoffs,
if the price of the temperature index is below his expectation at the expiration data.
In order to constrain the payoff deviation, there always exist upper and lower limits
on the payoffs in the real world transactions.

To mathematically express the payoff of a future contract, we let Xp0, T q denote
the value of the temperature index value during the contract period r0, T s, K denote
the strike level, α denote the tick size and L1 and L2 respectively denote the upper
and the lower limit of the temperature index value. Thus, the payoff P satisfies:

P “

$

’

&

’

%

α ˆ pL2 ´Kq, Xp0, T q ă L2

α ˆ pXp0, T q ´Kq, L2 ď Xp0, T q ď L2

α ˆ pL1 ´Kq, Xp0, T q ą L1

(2.6)

Theoretically, for the purpose of hedging risks, buyers shall purchase the temper-
ature future that is contrary to the favorable weather condition of their commercial
activities in the spot market.

Temperature options

Temperature-based options are traded in a close way with temperature futures. The
key difference between the two weather products is that temperature-based options
also give holders the right to give up exercising the option, which enables the holder
to avoid losses. As a result, the payoff of a temperature call option PC and of a
temperature put option PP respectively can be expressed as:
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PC “

#

α ˚maxrpXp0, T q ´Kq, 0s, Xp0, T q ď L1;

α ˚ pL1 ´Kq, Xp0, T q ą L1

(2.7)

PP “

#

α ˚ pK ´ L2q, Xp0, T q ă L2

α ˚maxrpK ´Xp0, T qq, 0s, Xp0, T q ě L2,
(2.8)

where the denotations follow the same specifications as those for future contracts.
With respect to the different payoff schemes of future and option contracts,

Figure 2.1 gives an example of payoff changes of a future contract, a call option
contract and a put option contract in response to different values of the temperature
index.

Figure 2.1: Temperature contract payoff diagrams
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Note that the strike prices of the temperature contracts in Figure 2.1 are all set
to be 500. Further, we let the tick size equal to one, and the upper and the lower
limits of the temperature index respectively equal to 800 and 100.

Temperature basket options

A temperature basket option is written on temperature indices of multiple re-
gions. This type of derivative contracts reduces the transaction cost of cross-regional
weather risk management. Market participates whose business is spread in multiple
locations and influenced by temperature risks are the major group of people bene-
fited from temperature basket options. On the other hand, issuers of temperature
basket options increase the market liquidity by encouraging transactions between
people from different places.
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From the modeling point of view, basket options could be the solution of the
model dimension reduction problem in pricing temperature-based derivatives [15].
Furthermore, the way that basket options are structured incorporates the idea of
spatial aggregation, which is claimed to be a possible resolution for diminishing the
basis risk of weather derivatives [16].

2.2 Temperature-based derivative contract valu-

ating

The major barrier of valuating temperature-based derivative contracts arises as the
underlying is non-tradable. To be specific, since there is no observable market price
for temperature, one cannot apply the classic non-arbitrage method, such as the
Black-Scholes model, which is commonly used for equity-based derivative pricing.
Generally, methods of valuating temperature-based derivatives can be grouped into
three categories.

2.2.1 Burn analysis and index modeling

The first category is the so-called burn analysis, which estimates temperature-based
derivative prices basing on historical payoffs of the contract. To apply burn analysis
to derive the fair price of a temperature-based contract, one needs to make sure that
the historical payoff data is properly detrended to be time-stationary before looking
into its distribution. For instance, a detrending process regarding to global warming
is needed in most cases in order to achieve the data stationarity, as temperature
increases year by year. After the detrending process, the fair price of the contract
theoretically equals to the expectation of historical payoffs. Further, an additional
risk loading might be added to the price in some cases, taking into account the
risk taken by the seller who has the probability of paying out [5, 17]. Technically,
one of the vital disadvantages of burn analysis is the loss of information, as it only
considers the overall payoff instead of the underlying itself, which may cause large
biases in the price prediction. Moreover, in markets without accessible payoff data,
such as China, burn analysis cannot be applied.

As an extension of burn analysis, index modeling models the distribution of the
underlying index, instead of the payoff. By employing different statistics of the index
distribution, index modeling provides a more accurate and more comprehensive
understanding to the temperature evolution than burn analysis. However, it is
claimed in some literature that index modeling is not necessarily a more advanced
model than burn analysis, as in reality, it can be rather difficult to find a suitable
known distribution to fit the data, especially when the size of the data is limited [5].

Generally, the most attractive advantage of burn analysis and index modeling
is their simplicity, since there is no simulation, or complex mathematics required in
order to find out the contract price.
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2.2.2 Utility-based modeling

The second class of temperature-based derivative pricing methods is based on the
argument of constructing equilibrium using the Utility Theory. Practically, utility-
based approaches are more commonly used for economical purposes, other than
financial engineering, as this type of approaches is built on a more macroscopical base
which usually draws emphasis on the achievement of economical equilibrium. On
the other hand, financial engineers tend to believe that prices of financial derivatives
can be reflected by the historical prices of the underlying asset, in which case no-
arbitrage models, or actuarial pricing approaches are more frequently adopted.

Generally speaking, in the valuation of temperature-based derivative contracts,
the most significant advantage of utility-based models is that they provide a possible
access to the derivation of the market price of temperature risk [18]. However,
utility-based approaches usually heavily rely on sophisticated assumptions on the
economical environment and on the utility function, which restricts the models’
performance in practice.

In this subsection, we provide overviews of three typical utility-based models
proposed to price temperature-based derivatives. The advantages and disadvantages
of each model will be discussed accordingly.

Cao and Wei model [18]

The first utility-based method is proposed in Cao and Wei’s study [18]. To determine
the fair price of temperature variables, Cao and Wei [18] build their model under the
framework of the Lucas model [19], in which a pure-exchange economy is assumed.
According to Lucas [19], a pure-exchange economy is formed when all goods in the
economy are produced costlessly by several productive units yi, i “ 1, ..., n, and
traded among consumers. Equilibrium occurs when the total consumption equals
to the total output. Cao and Wei [18] adopts temperature variables Yt into this
case as the output of one productive unit, equivalently an asset, and the aggregate
dividend δt is recognized as the total output/consumption. Thus, the equilibrium
exists when:

Xpt, T q ˆ Ucpδt, tq “ EpUcpδt, T qqqT , @t P p0, T q. (2.9)

where Xpt, T q denotes the contract price at time t, given that the future payoff at
time T is qT . Ucpδt, tq denotes the first order derivative of the utility function at time
t and consumption equals to δt. With repect to Eq. 2.9, in order to compute the
price of a temperature-based derivative contract, one needs to determine the time
dependent processes respectively of the payoff qt and of the dividend δt, together
with the utility function Upct, tq.

Starting off with the payoff process, contract payoffs can be derived from underly-
ing temperature indices, which are driven by the temperature evolution. According
to Cai and Wei [18], the daily average temperature of day t can be expressed as:
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Yt “ p
β

365
pt´

T

2
q ` Ȳtq `Rt, (2.10)

where Ȳt represents the N -year historical average temperature for each day of
the year which satisfies:

Ȳt “ ȳ365ˆ1 b lNˆ1, (2.11)

ȳd “
1

N

N
ÿ

yr“1

yyr,d, (2.12)

where d “ 1, 2, ..., 365, and lNˆ1 is a N ˆ 1 vector of ones.
Further, Rt in Eq.2.10 is the residual of daily temperature which follows an

auto-correlation process with lag k:

Rt “

k
ÿ

i“1

aiRt´i ` σt ˚ ξt, (2.13)

where

σt “ σ0 ´ σ1|sinpπt{365` φq|, (2.14)

and ξt „ i.i.dNp0, 1q.
The aggregate dividend follows a Markov process correlated with the temperature

process, which is expressed as:

ln δt “ α ` µ ln δt´1 ` υt, (2.15)

where

υt “ σεt ` σr
ϕ

a

1´ ϕ2
ξt `

m
ÿ

i“1

ηmξt´ms. (2.16)

In the preceding formulae, µ is the mean-reverting parameter which satisfies µ ď
1, and εt „ i.i.dNp0, 1q. Note that ϕ represents the contemporaneous correlation
between the temperature and the dividend processes.

Finally, Cao and Wei [18] specify the utility function as:

Upct, tq “ ep´ρtq
cγ`1t

γ ` 1
, (2.17)

with the rate of time preference ρ ą 0, and the risk parameter γ ď 0.
Therefore, one can valuate temperature-based weather derivative contracts by

applying temperature and consumption data to Eq. 2.11-2.17.
The most outstanding contribution of the Cao and Wei model [18] is that it

provides a solution to the estimation of the market price of risk (MPR). First of all,
it is a general consensus that temperature-related risks that stem from production
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variations are resulted from temperature fluctuations. However, to derive the price of
such risk mathematically is another story. Cao and Wei [18] argue that the inherent
risk premium of temperature contracts can be fully reflected by the correlation
between the aggregated dividend and the underlying temperature index. In this
way, the risk premium equals to zero only when the temperature and the dividend
processes are ”completely independent”.

The major drawbacks of Cao and Wei’s method [18] are twofold. First, the
model is built on an ideally specified environment with many assumptions, which
increases the level of the model risk. For instance, the pure exchange economy
described in the study can hardly be adopted to the real market. Further, the utility
function, the risk parameters, i.e. γ and ρ, and the mean-reverting parameter µ are
specified without empirical calibration, which may lead to large biases to the fair
price. Second, the utility function that is employed in the Cao and Wei model [18]
requires the consumption data, which complicates the valuation procedure. The
overall complexity of the Cao and Wei model [18] tends to generate greater model
risks than those straight-forward methods, namely burn analysis, index modeling,
and daily average temperature (DAT) models. Moreover, the complexity makes the
valuation more time-consuming and more costly.

Davis model [20]

Davis (2001) [20] proposes to price temperature-based weather derivatives basing
on the argument of utility maximization. The fundamental difference between the
Davis model [20] and the Cao and Wei model [18] is their basic assumptions on the
economic environment. Cao and Wei [18] argue ideally that the market participates
are affected by weather risks in an identical way, while Davis suggests that agents in
different sectors of the market face specific weather risks with different levels, and
will only purchase weather contracts if the purchase increases their utility.

To begin with, the underlying temperature variable Xt, i.e the accumulated
degree-day index, and the commodity price St are assumed to be log-normal with
correlation parameter ρ, thus:

dXt “ νXt dt` γXt dw1ptq, (2.18)

dSt “ µSt dt` σSt dw2ptq. (2.19)

Now assume the sales volume of the commodity vptq is linearly affected by the
temperature variable Xt. Therefore, vpXtq is given by:

vpXtq “ αXt. (2.20)

Thus, the profit Yt satisfies:

Yt “ αXtSt. (2.21)
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Substitute Eq. 2.18 and 2.19 into Eq. 2.21, the profit Yt can be written as:

Yt “ θYt dt` ξYt dwptq, (2.22)

where

θ “ ν ` µ` γσρ, (2.23)

ξ “
a

ν2 ` µ2 ` 2γσρ, (2.24)

and dw is a new Brownian motion, which follows:

dw “
1

ξ
pγ dw1 ` σ dw2q. (2.25)

Given that the objective is to maximize the utility, Davis assumes that the value
of the optimal portfolio at time T equals to the net profit YT . Thus, the temperature-
based contract price in an equilibrium condition satisfies:

PT “
ErU 1pYT qBpXT qs

ErUpYT qs
, (2.26)

where BpXT q denotes the contract payoff at time T , and Up˚q is the utility
function.

Further, Davis species the utility function to be logarithmic:

Upyq “ log y. (2.27)

Consequently, the pricing formula under the Davis model (2001) follows:

PT “ Er
Y0
YT
BpXT qs, (2.28)

where Y0 “ αX0S0.
Compared with the Cao and Wei model [18], the improvement of Davis’s method

is that it provides an access to the estimation of the risk parameters, which theoret-
ically increases the model accuracy. However, the Davis model inevitably displays
two typical weaknesses as an utility-based model. First, it is rather difficult and
time-consuming to acquire complete data sets of commodity prices. Second, there
is no solid evidence suggesting that the utility function employed is appropriately
specified and suitable for the considered situation. Besides the drawbacks as an
utility-based model, the major weaknesses of Davis model itself are twofold. In the
first place, according to Davis [20] , the contract price changes from sector to sector,
which brings up the transaction cost, in terms of both time and money. Next, the
model is loaded with simplified assumptions which restricts the practical value of
the model, and increases the model risk. For instance, the underlying index tends
to show heavy tails and residual heteroscedasticity [27] in reality, instead of being
log-normal as it is specified by Davis. Further, it is still arguable to simply presume
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the sales volume vptq to follow a linear function of the temperature index Xt without
any analytical evidence.

Platen and West model [17]

Platen and West derive their pricing model of temperature-based weather derivatives
basing on the argument of the growth optimal portfolio (GOP) via the so-called
”benchmark approach” [21]. The most significant difference between the Platen and
West model [17] and other utility-based models is that Platen and West include
actuarial pricing schemes to their model. In detail, suppose that there exists a
portfolio containing different volumes of different assets. Let S

pjq
i denote the price

of the security account for the jth asset at time ti, the corresponding price ratio h
pjq
i

is defined as:

h
pjq
i “

$

&

%

S
pjq
i

S
pjq
i´1

, S
pjq
i´1 ą 0

0, otherwise
(2.29)

for i “ 1, 2, ..., n and j “ 0, 1, ..., d, where S
p0q
i denotes the value of the domestic

saving account at time ti.
Thus, S

pjq
i can be expressed as:

S
pjq
i “ S

pjq
0

i
ź

m“1

hpjqm . (2.30)

Next, Platen and West [17] make an attempt to construct the so-called self-
financing portfolio, which assumes that changes of the value of the portfolio are
exclusively caused by changes of the value of the security accounts that forms the
portfolio. The proportion of each asset in the portfolio is expressed as a vector
process of π where π “ πi “ pπ

p1q
i , ..., π

pdq
i q, i “ 0, 1, ..., n, and

d
ÿ

j“0

π
pjq
i “ 1. (2.31)

Therefore, the price ratio of the self-financing portfolio Spπq is given by:

hpπqm “
Spπqm

Spπqm´1
. (2.32)

To determine the growth optimal portfolio (GOP), Platen and West [17] first let

the growth rate g
pπq
i of a given portfolio process Spπq be defined as:

g
pπq
i “ Erlnph

pπq
i`1q|Atis, (2.33)

Thereby, the optimal growth rate gi is the essential supremum which satisfies:
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gi “ ess supSpπqPV g
pπq
i , (2.34)

where V refers to the class of all self-financing portfolio processes that are strictly
positive. Assume that there exists a portfolio Spπq P V satisfying:

gpπqi “ gi ă inf . (2.35)

Such a portfolio can be recognized as the GOP if it is strictly positive for all π.
Next, by assuming that the payoff Htn of an European contingent claim, such as a
temperature-based weather derivative contract, is independent with the GOP value
S
pπq
n , the fair pricing of the contingent claim satisfies:

CHtn “ Er
S
pπq
i

S
pπq
n

|AtisErHtn |Atis, (2.36)

where tn is the expiration date, and i “ 1, 2, ..., n. Let

P pti, tnq “ Er
S
pπq
i

S
pπq
n

|Atis, (2.37)

and P pti, tnq is the fair price of a zero coupon bond [17] at time ti which expires
on tn. Thus, the general pricing formula of the European contingent claim is given
by:

CHtn “ P pti, tnqErHtn |Atis. (2.38)

With the fair pricing formula Eq. 2.38, the price of a temperature-based weather
derivative contract can be determined by the distribution of the contract payoff with
respect to the temperature process. Platen and West [17] incorporate the actuarial
idea to their model, which allows an emphasis on the risk neutral environment,
while pricing temperature-based derivative contracts. Therefore, the Platen and
West model [17] should be theoretically more accurate than other utility models, as
its result reflects more information of the temperature evolution. Further, Platen
and West [17] present their work in a more general case, which avoids assumptions
on the utility function and on the dividend/asset price behavior, which increases
the practical value of their model. Despite that the Platen and West model [17]
provides pronounced improvements in the theory of utility-based models, the absence
of considerations on the market price of temperature risk leaves the model in a less
robust position.

2.2.3 Daily average temperature (DAT) modeling

The third class of temperature-based contract pricing methods starts off with model-
ing daily average temperature (DAT). Contract prices are then derived with respect
to the distribution of the underlying temperature index. This type of methods also
allows Monte Carlo simulation of contract prices. At this moment, contract valu-
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ation based on daily temperature modeling has become the most popular method
in the field, and is being developped both theoretically and empirically by a great
number of studies.

The initial development of DAT models takes place in 2000 by Dornier and
Queruel [22], who propose to use a continuous-time Ornstein-Uhlenbeck (OU) pro-
cess to express the temperature evolution. The temperature volatility is assumed
to be constant in the Dornier and Queruel model [22]. Subsequentially, as temper-
ature data shows heteroskedasticity due to the volatility, an improvement is made
by Alaton et al. [1] who introduce the monthly-constant volatility. Considering
the OU process itself cannot model auto-correlation, Brody et al. [23] introduce
a fractional Brownian motion to the DAT OU process. Furthermore, Benth and
Saltyte-Benth [24] use a hyperbolic Levy-process to model the residual instead of a
Brownian motion.

Beside DAT models built on stochastic processes, a wide range of auto-regressive
models are applied to temperature data as well. For instance, Caballero et al. [25]
suggest to use ARMA and ARFIMA models. Jewson and Caballero [26] propose a
model called AROMA to process the slow decay of the autocorrelation function. An
ARCH model is suggested by Campbell and Diebold [27]. Additionally, in Benth et
al.’s study [28], the OU process is combined with an discrete autoregressive (AR)
process to get a continuous-time AR process which has higher orders, namely the
CAR model. Theoretically, there always exists a stochastic process to correspond
the econometric process, as the latter one can be considered as the representation
of a discretized form of the former one.

In the following part of this section, we introduce four typical temperature models
and their pricing schemes. We then discuss in detail about the strengthes and the
weaknesses of each model.

Dornier and Querel model [22]

Dornier and Querel [22] propose in their model to separate the DAT evolution into
two parts, i.e. the seasonal trend and the random walk. The first part, namely the
seasonality, is written as a sine function measuring both, the seasonal change and
the global warming, which follows:

µptq “ A`Bt` C sinpωt` ϕq, (2.39)

where t denotes the time measured daily and ω “ 2π{365.
Meanwhile, Dornier and Querel [22] employ an Ornstein-Uhlenbeck (OU) process

to express the random walk of the DAT fluctuation. The OU process by nature
ensures that DAT moves around the mean function given in Eq. 2.39, and does
not allow any drastic jump which leads to huge biases. Now the DAT process is
expressed as:

dT ptq “ ´αpµptq ´ T ptqq dt` σ dBptq, (2.40)
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where µptq is defined in Eq. 2.39. Further, α and σ denote respectively the
mean-reverting rate and the temperature volatility, which are both assumed to be
constant [22]. Solving Eq.2.40 by the Itō’s Lemma, the DAT of day t satisfies:

T ptq “ pT psq ´ µpsqqe´αpt´sq ` µptq `

ż t

s

e´αpt´τqσ dWτ , t ą s. (2.41)

where Tms is given by Eq.2.39 and Wt refers to a Brownian motion.
The most pronounced contribution of Dornier and Querel [22] is their application

of the OU process to the time series of daily temperature. However, the Dornier
and Querel model [22] fails to take several components of the temperature process,
such as the volatility evolution, the seasonality of the mean-reverting rate, and the
daily temperature autocorrelation, etc., into account which causes comparatively
large biases towards the real temperature distribution. More importantly, such bias
in the temperature distribution can reduce the reliability of pricing results through
the pricing machanism.

Alaton model [1]

The Alaton model [1] follows fairly similar dynamics with the Dornier and Querel
model [22]. Generally speaking, Alaton et al. [1] keep the OU process driven by a
mean sine function. At the same time, they modify the specification of the volatility
parameter σt to be monthly constant. The DAT process under the Alaton model [1]
satisfies:

dT ptq “ ´αpµptq ´ T ptqq dt` σt dBptq, (2.42)

where µptq is the temperature mean function (see Eq. 2.39).
According to Alaton et al. [1], a seasonal trend of the temperature volatility is

indicated when they analyze the DAT data of Stockholm. As a resolution, Alaton et
al. [1] propose to assume σt to be constants that change every month. It is suggested
by Alaton et al. [1] to estimate monthly volatilities with the mean value of the
temperature quadratic variation and the regressed estimation, aiming to achieve a
greater level of preciseness.

As it is explained by the Dornier and Querel model [22], the OU process models
temperature deviations from the mean seasonal function µt with a reverting rate α,
which can be solved by the Itō’s Lemma:

T ptq “ pT psq ´ µpsqqe´αt ` µptq `

ż t

0

e´αpt´τqσpτq dBpτq. (2.43)

Meanwhile, Alaton et al. [1] derive the approximation formula of temperature-
based option prices basing on the Martingale measure Q, given that the Black-
Scholes model cannot be applied in this case. Taking CDD call options as an exam-
ple, its payoff can be written as:
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Xn “

n
ÿ

t“1

max pTt ´ 18, 0q “
n
ÿ

t“1

Tt ´ 18n. (2.44)

With the assumption that Xn „ Npµn, σ
2
nq, the strike price and the risk free rate

are denoted by K and r, the CDD call option price follows:

CCDDpt0, tnq “ e´rptn´t0q
„

pµn ´KqΦ

ˆ

K ´ µn
σn

˙

`
σn
?

2π
e
´pK´µnq

2

2σ2n



, (2.45)

where Φ represents the cdf. of the standard normal distribution.
Compared with the Dornier and Querel model [22], Alaton et al. [1] provide

a more comprehensive valuation framework of temperature-based derivative con-
tracts, with monthly volatilities and approximation pricing formulae derived from
the temperature process. In their empirical study of Stockholm temperature data,
the result shows that the model performs in an arguably precise manner, with high
goodness-of-fit to temperature data and reasonable contract prices. Further, Alaton
et al. [1] look into the estimation of the market price of risk (MPR) by calibrating
their model to real prices of HDD option contracts. The result indicates that the
MPR is not necessarily constant.

Despite of the advantages in terms of simplicity and accuracy, the Alaton model
[1] fails to capture daily temperature fluctuations in the Monte Carlo simulation in
several empirical studies [7, 29], as only smooth trajectories are displayed. Techni-
cally, the fitting performance of the Alaton model [1] could be improved with more
sophisticated autocorrelation and volatility components.

Continuous auto-regressive (CAR) model [2]

The CAR model keeps the framework of the Alaton model [1] . Different from the
Alaton model [1], Benth et al. [2] add an CAR(p) process to the mean function
solved by the multidimensional Itō’s Lemma. Therefore, the daily temperature of
day t satisfies:

T ptq “ µptq `Xptq, (2.46)

where µptq is defined by Eq. 2.39,
and

Xpsq “ exppAps´ tqqXptq `

ż s

t

exppAps´ uqqepσpuq dBpuq, (2.47)

eq is the qth unit vector in Rp, q “ 1, . . . , p.

The parameter A is a pˆ p matrix given by:
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A “

»

—

—

—

–

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
´αp ´αp´1 ´αp´2 . . . ´α1

fi

ffi

ffi

ffi

fl

, (2.48)

where αq, q “ 1, . . . p, are assumed to be constants.
Meanwhile, the temperature variance is modeled with a truncated Fourier series

which is expressed as:

σ2
ptq “ c1 `

ÿ

k“1

npc2kcosp2kπt{365q ` c2k`1sinp2kπt{365qq. (2.49)

According to Benth et al (2008), the optimal orders of the CAR process and of
the truncated Fourier volatility process are respectively three and four.

With the determined temperature process, Benth et al. [2] derive the non-
arbitrage approximation pricing formula under the CAR model. For a CDD future
with c “ 18 at time t ď t0, its prices follows:

FCAR
CDDpt, t0, tnq “

tn
ÿ

t0

maxpT psq´c, 0q “

ż tn

t0

vpt, sqΨ

ˆ

mpt, s, e11exppAps´ tqXptqqq

vpt, sq

˙

ds,

(2.50)
where

mpt, s, xq “ Λpsq ´ c`

ż s

t

σpuqθpuqe11exppAps´ uqqep du` x, (2.51)

x “ e11exppAps´ tqqXptq, (2.52)

v2pt, sq “

ż s

t

σ2
puqpe11exppAps´ uqqepq

2 du, (2.53)

Ψpxq “ xΦpxq ` Φ1pxq. (2.54)

Thus, the price of a CDD option contract under the CAR model can be obtained
by:

CCAR
CDDpt, τ, t0, tnq “ e´rpτ´tqrmaxpFCAR

CDDpτ, t0, tnq ´K, 0qs. (2.55)

One of the most significant contribution of the CAR model is its prevailing
accuracy in capturing the heteroskedasticity of temperature residuals, as it tends
to achieve a higher degree of residual normality [7]. According to Zong and Ender
[7], the CAR model demonstrates a substantial improvement on residual normality
and error measures from the Alaton model [1] while being applied to Chinese DAT
data. Moreover, Schiller et al. [3] conclude that the CAR model is more powerful
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in temperature predictions than the Alaton model [1] in their study of the US DAT
data.

Further, using the CAR model, Benth et al. [30] calibrate the MPR for temperature-
based futures and options basing on the price data of Tokyo. Benth et al. [30] state
that by assuming the MPR to be zero, one actually underestimates the real price
of temperature risks. Instead, Benth et al. [30] suggest a seasonal MPR which is
reversed to the seasonal variation of the temperature process.

Spline model [3]

The Spline model [3] is proposed by Schiller et al. and is applied to the DAT data of
35 US weather stations. Different from the two stochastic models introduced above,
Schiller et al. [3] models the seasonal mean and the variance of DATs with two
bivariate surfaces obtained from their corresponding tensor product splines.

To be specific, let Td,y denotes the temperature at day d P 1, 2..., 365 of year
y P 1, 2..., n, which is given by:

Td,y “ µd,y ` σd,yRt. (2.56)

Schiller et al. [3] argue that both the mean temperature µ and the variance σ2

can be modeled with a tensor product spline. In general, let Xd,y be the tensor
product spline we are interested in, namely the seasonal mean temperature or the
DAT variance. Xd,y follows

Xd,y “ YDd,Kd b YDy,Ky, (2.57)

where YDd,Kd denotes the vector space of all splines with degree Dd and knot
sequence Kd in the day direction, and YDy,Ky is the vector space of all splines with
degree Dy and knot sequence Ky in the year direction.

Schiller et al. next model the residual Rt with an auto-regress on moving average
(AROMA) process [26] which is given by:

Rt “ φ1R̄m1,t ` φ2R̄m2,t ` ...` φrR̄mr,t `Bt, (2.58)

where Bt is the Brownian motion and R̄m,t stands for the mean of the residuals
in the past m days:

R̄m,t “

m
ÿ

i“1

Rt´i. (2.59)

Despite of the fact that the Spline model displays an exclusive strength in fitting
the US temperature data [3] in the comparison with the index modeling, the Alaton
model [1], and the CAR model [2]. In Zong and Ender’s study [7], the Spline model
[3] yields a lower rate of residual normality than the Alaton model [1] and the CAR
model [2] while being used to Chinese DAT data. For the reason that temperature
processes are highly localized, in Chapter 4, we are going to discuss the performance
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of the Spline model in fitting Chinese DAT data in a more elaborate manner.
Generally speaking, the Spline model [3] prevails other stochastic DAT models

with its prominent simplicity, which comes along with time-saving computation.
However, the usage of the Spline model [3] on the modeling of temperature-based
derivatives should be treated with caution, as one can hardly determine the dis-
tribution of temperature indices since temperature estimations are made by tensor
product splines. As a result, it is rather difficult to derive an analytical pricing
formula for temperature-based derivatives basing on the Spline model [3].

2.2.4 Modeling and pricing weather derivatives in China

Since there is no weather derivative market in China yet, one can neither calibrate
the market price of weather risk, nor adjust the model risk of different weather
models. Consequently, researches based on modeling and pricing weather derivatives
in China can only build their arguments on the models’ performances in terms of
modeling underlying weather factors.

Despite that the absence of trading data is restrictive, there still exist plenty of
studies aiming to provide precise modeling for weather derivatives in China. To be
specific, Goncu [29] applies a seasonal volatility model to capture the fluctuations
of the DAT data of Beijing, Shanghai and Shenzhen, thus to price the temperature-
based weather derivatives for those three cities. It is claimed that for degree-day
options of Beijing and Shanghai, price approximation formulae under the seasonal
volatility model tend to produce very close prices with the Monte Carlo simulation.
However, HDD option prices of Shenzhen obtained by the two methods tend to
diverge in Goncu’s study [29]. Meanwhile, Zong and Ender [7] carry out a model
comparison including two temperature models, namely the Alaton model [1] and the
CAR model [2], based on the DAT data of twelve Chinese cities. The result indicates
that the CAR model provides better fittings to the Chinese DAT data. Further,
Sun and Van Kooten [31] apply three different types of models, including Burn
Analysis, a stochastic mean-reverting model, and an autoregressive (AR) model, to
price derivative contracts written on growth degree-day indices for the Chinese city
Etuokeqi. It is argued by Sun and Van Kooten [31] that AR(1) process with a sine
function produces the most accurate result in temperature modeling, and the lowest
risk premiums of GDD options in Etuokeqi.

Besides studies of modeling temperature-based weather derivatives, Goncu [32]
uses a Markov Chain with jumps model for the precipitation time of Chongqing.
Additionally, Zhu et al. [33] introduce a drought option, which is written on the
temperature-precipitation joint index, for the purpose of hedging agricultural risks
caused by droughts. Zhu et al. [33] then price drought options hypothetically
using the DAT and the precipitation data of Ji’nan. Furthermore, Lou and Sun
[34] suggest to use agricultural insurance contracts written on precipitation and
temperature indices to hedge the freezing-damage risk of tea trees. Employing the
data of economic losses caused by freezing damage, precipitation and temperature of
Zhejiang Province, Lou and Sun [34] estimate the insurance premium rate basing on
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the information diffusion theoretical model, and design the tea tree freezing damage
insurance contract with the analytical result.
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Chapter 3

A new temperature model with
stochastic volatility

In this chapter, we introduce an innovative type of stochastic temperature models
with the attempt to fill in the gap of stochastic volatility modeling of daily average
temperature (DAT). The objective is to provide a higher level of goodness-of-fit to
the temperature data of Chinese cities, by achieving the normality of model resid-
uals. In detail, we propose to model the temperature volatility with an Ornstein-
Uhlenbeck (OU) process as an extension of Benth and S̄altynė-Benth’s work [24].
Subsquentially, we apply the so-called stochastic seasonal variation (SSV) model to
the DAT data of twelve Chinese cities, thus to investigate the model performance.
To the best of our knowledge, this model has not been discussed in the literature.

This chapter proceeds as follows. In the next section, we give a brief overview
of the DAT data applied in our study of temperature models. In the second sec-
tion, we explain the model dynamics of the SSV model with the presentation of its
mathematical framework. In the third section, we explain the parameter estima-
tion procedure of the SSV model. In the last section, we discuss possible pricing
approaches that could be applied based on the SSV model.

3.1 Data overview

In this chapter, we select twelve Chinese cities regarding to the Standard of Climatic
Zone Partition of China. It is a typical partition method used by Chinese architects
for the purpose of distinguishing construction standards among regions with different
climate characteristics. As it is displayed in Figure 3.1, the standard divides the
mainland of China into seven climatic zones.

Since the major factors of the partition method are temperature and precipita-
tion, we suppose the possibility that it is also valid for our joint modeling of temper-
ature derivatives. We are more interested with the four coastal climatic zones I, II,
III and IV, as they constitute the eastern part of China which is more economically
developed and with a higher chance of issuing weather derivative contracts first. In
this study, we select two to three cities from each of these four climatic zones. For
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Figure 3.1: Standard of Climatic Zone Partition of China

the rest of the climatic zones, namely V, VI, and VII, that cover the less developed
regions of China, we only include one city per climatic zone. Generally, the climate
of the four eastern climatic zones tends to be more humid with a greater amount of
precipitation than the three inland climatic zones in the west.

Table 3.1 gives an overview of the DAT samples of the twelve cities considered
in this study. Apart from Shanghai, the duration of the data is thirty years from
January 1983 to December 2012. Due to the change of meteo-stations, we only obtain
twenty years of Shanghai DAT data, which is from January 1993 to December 2012.

3.2 Model dynamics

Despite that the CAR model [2] outperforms the Alaton model [1] and the Spline
model [3] while being applied to Chinese temperature data [7], one can still observe
heteroskedasticity existing in the model residual. Further, for long-term temper-
ature forecasts, the CAR model still tends to generate large biases. Even if the
temperature volatility can be adjusted every day, the volatility remains determinis-
tic. As a result, we propose a new temperature model under which the temperature
variation is expressed as a stochastic process.

Similar with Alaton et al.’s work [1], we model the mean temperature process
with an OU process driven by a sine function. Hence, the temperature process is
expressed as:
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Table 3.1: Mean, standard deviation, max and min values of twelve cities’ daily tempera-
ture (May 1983 - June 2013)

Climatic Mean Standard Max Min
zone deviation

Harbin I 4.95 14.91 30.9 -30.9
Changchun I 6.20 14.07 30.4 -30.1
Beijing II 12.96 11.03 34.5 -12.5
Tianjin II 12.96 11.15 32.9 -14.1
Shanghai III 16.38 8.75 34.2 -4.8
Hangzhou III 17.01 8.93 35.0 -4.7
Nanjing III 15.95 9.38 34.5 -7.8
Guangzhou IV 22.43 6.17 34.2 3.3
Hainan IV 25.28 4.35 32.6 9.8
Kunming V 15.53 4.85 24.6 -3.0
Lhasa VI 8.54 6.70 22.6 -10.5
Urumchi VII 7.41 13.71 33.1 -27.2

dT ptq “ ´αpµptq ´ T ptqq dt` σt dBptq, (3.1)

where

µptq “ A`Bt` C sinpωt` ϕq, (3.2)

Next, instead of using a deterministic function to express the volatility as the
Alaton model [1] and the CAR model [2], we employ another OU process to model
the temperature volatility σ2. That is:

dσ2
ptq “ ´κpθptq ´ σ2

ptqq dt` ηptq dB2ptq, (3.3)

where B2ptq is a Brownian motion which is assumed to be independent with
the Brownian motion of the temperature process, and η2ptq is the volatility of the
temperature volatility. As the mean squared residual of the volatility process tends
to be more fluctuant in the cold season than in the warm season, seasonality exists
in the volatility of temperature variations. As a result, we assume that η2ptq is
piecewise-constant and takes different values in the cold season (November to April)
and in the warm season (May to October).

We build the SSV model on the argument that the temperature volatility fluc-
tuates over a particular mean θptq with a reverting rate κ. In this manner, the
selection of the mean θptq is crucial. In the early work of Mraoua and Bari [35], the
mean is set to be a constant. However, as seasonality can still be observed in the
volatility of Chinese DAT data [7], we let θptq be a truncated Fourier series which
is inspired by the CAR model [2], thus
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θptq “ c1 `
4
ÿ

k“1

pc2kcosp2kπt{365q ` c2k`1sinp2kπt{365qq. (3.4)

Note that the truncated Fourier series is specified with order four, which is
suggested by Zong and Ender [7] in their study of Chinese DAT data.

Solved by the Itō’s Lemma, Eq. 3.3 can be transformed as:

σ2
ptq “ pσ2

p0q ´ θp0qqe´κt ` θptq `

ż t

0

e´κpt´sqηpsq dB2psq. (3.5)

Mathematically, the SSV model follows rather similar dynamics with the Heston
model [41] which is a classic stochastic volatility model used in the stock (option)
pricing. Apart from the independent Brownian motions and the functional mean of
the volatility OU process, the SSV model allows negative volatility as well as the
Heston model. Nevertheless, we consider the SSV model to be a suitable candidate
to capture the temperature volatility process for two reasons. In the first place, the
temperature volatility exhibits a seasonality in its random walk, and it is reasonable
to believe that the daily volatility evolutes around the mean seasonal function, which
consents to the idea of the OU process. Second, compared with other stochastic
processes, the OU process has less parameters, which ensures the simplicity of the
model and lower computational cost.

3.3 Parameter estimation

In this section, we explain the procedure of estimating unknown parameters in the
SSV model.

To begin with, We employ the ordinary least squares (OLS) approach to estimate
the parameters in the sine function in Eq. 3.2, which contains parameter A, B, C
and ϕ. Table 3.2 gives the estimated value of the four parameters of the twelve
Chinese cities.

After determining the mean function of temperature seasonality, the time series
of the volatility is obtained by substituting the observed DAT T ptq and its corre-
sponding estimated values of µptq to the following equation:

σ̂2
ptq “ rT ptq ´ µptqs2. (3.6)

Now we move on to the next step in which the parameters in the volatility Fourier
series (see Eq. 3.4) , namely ci, i “ 1, 2, ..., 9, are estimated. We conduct the OLS
regression basing on the volatility estimator σ̂2ptq obtained from Eq. 3.6. Table 3.3
gives the results of the estimation.

Meanwhile, let quadratic variation be the estimator of ηptq, we have

ηptq “
1

t

t´1
ÿ

j“0

pσ̂2
j`1 ´ σ̂

2
j q

2. (3.7)
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Table 3.2: Estimated values of A, B, C, and ϕ of twelve cities in Mainland China

A B C ϕ
Harbin 3.986 1.776 ˚ 10´4 20.165 -1.851
Changchun 5.527 1.25 ˚ 10´4 18.876 -1.863
Beijing 12.406 1.022 ˚ 10´4 15.017 -1.852
Tianjin 12.814 0.278 ˚ 10´4 15.205 -1.874
Shanghai 16.29 2.212 ˚ 10´4 11.703 -2.071
Hangzhou 15.951 1.937 ˚ 10´4 11.82 -2.015
Nanjing 14.999 1.75 ˚ 10´4 12.561 -1.974
Guangzhou 21.819 1.123 ˚ 10´4 7.649 -2.021
Hainan 24.916 0.673 ˚ 10´4 5.237 -1.86
Kunming 14.505 1.872 ˚ 10´4 5.898 -1.739
Lahsa 8.060 1.441 ˚ 10´4 8.496 -1.84
Urumchi 5.942 3.241 ˚ 10´4 17.81 -1.839

Table 3.3: Estimated parameters of the truncated Fourier series of the SSV model

c1 c2 c3 c4 c5 c6 c7 c8 c9
Harbin 18.8545 9.4615 6.5011 -0.0145 -2.5202 0.6006 -2.7075 2.3878 0.3556
Changchun 19.9299 11.5163 5.4403 -0.4327 -2.7339 -0.1373 -1.9830 1.5268 1.2060
Beijing 8.9580 1.7619 3.3921 -0.6485 -1.2152 -0.2747 -1.5019 0.9502 0.0569
Tianjin 18.8545 9.4615 6.5011 -0.0145 -2.5202 0.6006 -2.7075 2.3878 0.3556
Nanjing 8.8268 2.4156 2.5868 -0.0586 -0.6045 -0.3277 -1.3580 0.1160 -0.1427
Hangzhou 9.5552 2.1217 3.3875 -0.2195 -0.1430 -0.2302 -0.7634 0.3357 -0.3379
Shanghai 8.8197 4.0621 2.2694 1.2786 -0.2947 0.3805 -1.3606 0.7884 -0.5382
Guangzhou 8.6944 5.7114 4.6297 -0.1766 1.9698 -0.6841 -0.4102 -0.3169 0.0885
Hainan 5.2052 3.2284 3.0350 -0.0927 1.1127 -0.2706 -0.4466 -0.5313 0.2545
Kunming 5.8087 1.4335 2.4915 -1.0379 -0.8924 -0.0415 0.0055 0.2688 0.0564
Lhasa 6.8182 1.9545 2.2312 1.6025 -0.2588 0.4893 -0.2447 0.5171 -0.5680
Urumchi 21.0326 5.4778 4.9290 -1.6419 -2.1118 3.5296 -1.7058 1.0004 0.9036

The estimated values of ηptq in the cold and the warm seasons are listed in Table
3.3.

The final step to estimate parameters of the SSV model is to calibrate the mean
reverting parameters of the OU processes, that is α and κ. As it is argued by Alaton
et al. [1], methods based on martingale estimation functions can be employed as time
intervals between two consecutive DAT observations are bounded away from zero.
As a result, approximations of the mean-reverting rates α and κ of the temperature
and the volatility processes respectively follow:

α “ ´ log

¨

˝

řn
i“1

µi´1´Ti´1

σ2
i´1

pTi ´ µiq
řn
i“1

µi´1´Ti´1

σ2
i´1

pTi´1 ´ µi´1q

˛

‚, (3.8)

κ “ ´ log

¨

˝

řn
i“1

θi´1´σ̂
2
i´1

η2i´1
pσ̂2

i ´ θiq

řn
i“1

θi´1´σ̂2
i´1

η2i´1

`

σ̂2
i´1 ´ θi´1

˘

˛

‚. (3.9)

Table 3.5 gives the values of α and κ obtained from the equations above.
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Table 3.4: Estimated values of ηptq in the cold and the warm seasons

Cold season Warm season
Harbin 5.9868 2.8884
Changchun 6.2205 2.7228
Beijing 2.5804 1.5107
Tianjin 5.9868 2.8884
Nanjing 2.7651 1.7152
Hangzhou 3.5856 2.1353
Shanghai 4.2581 1.7826
Guangzhou 2.6469 0.9445
Hainan 2.0417 0.5547
Kunming 2.0556 1.3460
Lhasa 2.0592 1.3903
Urumchi 6.6500 4.0239

3.4 Pricing temperature-based contract with the

SSV model

As the SSV model determines the underlying process of a temperature-based deriva-
tive contract, theoretically all the existing pricing schemes for temperature-based
derivatives can be applied. However, due to the fact that there is no existing weather
derivative market in China, it is unlikely to use the market-based pricing approaches
[5] which require the historical price data. Nevertheless, it is never a simple multi-
ple choice question to select the most suitable pricing approach, as a broad range
of factors, including costs, feasibility, accuracy, and model risks, need to be con-
sidered. In this section, we give a discussion on the possible pricing schemes of
temperature-based derivative pricing in the context of the SSV model.

3.4.1 Utility Theory

One of the feasible approaches to price temperature-based derivative contracts in
China is to apply the Utility Theory, which skips the computation of the market
price of risk. To implement the valuation, one needs to be able to forecast the future
payoff of the derivative contract, which can be done by employing the SSV model.
Therefore, existing Utility Theory-based models, such as the Cao and Wei model
[18], can be improvised by replacing the payoff processes described in the models
with payoffs determined by the SSV model. The advantage of incorporating the
SSV model with the Utility Theory is that it reduces model risks of the existing
Utility Theory-based models by providing a better fitting to the temperature, thus
to increase the accuracy of the payoff forecasting. On the other hand, such method
remains the disadvantages of those utility-based models, of which the price uncer-
tainty due to the altering selections of utility functions is the major concern that
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Table 3.5: Estimated values of mean-reverting parameters α and κ in the SSV model

α κ
Harbin 0.2600 0.7791
Changchun 0.2732 0.8310
Beijing 0.3034 0.7117
Tianjin 0.3360 0.7791
Nanjing 0.2880 0.5380
Hangzhou 0.3061 0.5198
Shanghai 0.4108 0.8383
Guangzhou 0.1825 0.5394
Hainan 0.1356 0.5199
Kunming 0.3102 0.5765
Lhasa 0.3458 0.5017
Urumchi 0.1579 0.4150

may affect the reliability of the pricing result.

3.4.2 Self-financing portfolio theory

Another possible approach to derive the pricing formula based on the SSV model
is to apply the self-financing portfolio theory, which is a broadly-used method for
derivative pricing in the complete market. One typical example is the Black-Scholes
model. However, underlyings of weather derivatives are weather factors that are not
tradable in the capital market. In this case, the most fundamental assumption of
non-arbitrage in the self-financing portfolio theory breaks down. As a result, due to
the market incompleteness that pertains to weather derivatives, improvisations on
the original method of the self-financing portfolio theory are required.

As it is described by Jewson et al. [5], one resolution of building non-arbitrage
to price temperature-based options is to consider the option contracts are written
on the temperature-based swaps which have accessible market prices. Let along the
limitation on the liquidity of the swap market [5], this method cannot be applied in
China as there has been no temperature-based swap transaction taken place so far.

To address the problems described above, tradable assets that are correlated with
price uncertainties of temperature-based derivatives shall be introduced. Given the
process of the correlated asset’s price, dynamic hedging can be adopted by using the
asset, the temperature-based derivative contract, and a bond to construct a non-
arbitrage portfolio, thus to solve the partial differentiation equation (PDE) of the
option price. An exposition of this method is provided by Broni-Mensah [36] based
on the Alaton model [1].

In the case of the SSV model, since the temperature volatility follows a stochastic
process as well as the DAT process, risks that come together with the uncertainty of
the volatility need to be considered while valuating temperature-based derivatives.
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Therefore, in order to derive option prices based on the SSV model, two tradable as-
sets, which are respectively correlated with temperature and temperature volatility,
need to be introduced. However, we can hardly consider the pre-discussed approach
to be realistic, as problems come along with the determination of the volatility-
correlated asset, which is even a tough issue in the equity-derivative market.

In conclusion, as neither the market-based pricing nor the derivation of PDE is
feasible to be applied to valuate temperature-based derivatives in China, we infer
that the self-financing portfolio theory is not the most suitable method under the
SSV model in this case.

3.4.3 Monte Carlo simulation

Compared to the pricing approaches described in the preceding sections, the Monte
Carlo simulation is considered to be the most straightforward method to price
temperature-based derivatives, as no further variable or assumption needs to be
incorporated. Technically, to apply the Monte Carlo simulation to financial deriva-
tives, a closed-form solution of the stochastic differentiation equation (SDE) is al-
ways preferred as it gives precise simulation results. However, it is unlikely to solve
the price of temperature-based derivatives explicitly under the SSV model given
that both the temperature and the volatility are modeled stochastically. As a con-
sequence, the Monte Carlo estimator can only be obtained after the continuous
temperature and volatility processes are discretized. Analogue to the Heston model
(1993), there exist a variety of simulation schemes when the volatility process is
modeled by an OU process [37–40]. In this section, we discuss briefly four typical
methods used to simulate the Heston model, after which, we introduce our impro-
vised simulation scheme for the SSV model.

To begin with, we explain analytically the volatility process under the Hes-
ton/SSV model, whose transition density is driven by a non-central chi-square dis-
tribution. To be specific, conditional on the volatility Vs at time s, the volatility Vt
at time t can be expressed as:

Vt “
η2sp1´ e

´κpt´sqq

4κ
χ12d pλq, (3.10)

where κ and η2s respectively denote the mean-reverting rate and the volatility
of the temperature volatility process, and χ12d pλq denotes a non-central chi-square
distributed random variable with d degrees of freedom and non-centrality parameter
λ. d and λ respectively follows:

d “
4θκ

η2s
; (3.11)

λ “
4κe´κpt´sq

η2sp1´ e
´κpt´sqq

Vs, (3.12)

where θ is the mean function of temperature volatility that is given by Eq. 3.4.
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Besides the convenience of few assumption, the major concern of employing the
Monte Carlo simulation stems from the trade-off between the computational cost
and the accuracy of price estimators. That is to say, a more accurate Monte Carlo
estimator requires a larger number of simulation paths and a smaller size of time
increments, both of which will result in a higher cost. Among the existing simulation
schemes of the Heston model [41], Broadie and Kaya’s method [37] guarantees ex-
act results from the volatility distribution. However, the limitations of the method
are widely recognized from a practical point of view. First, it is rather complex
and computationally expensive when the Fourier inversion of the conditional char-
acteristic function of the integrated volatility is involved in the simulation. Second,
Broadie and Kaya [37] hire an acceptance-rejection scheme to fix negative values
of the volatility, which can introduce significant biases during the parameter per-
turbation. Basing on the Broadie and Kaya’s work [37], Andersen [39] simplifies
the simulation scheme by employing a substitute distribution to replace the original
volatility distribution. The proposed distribution has matching moments with a
non-central chi-square distribution, but can be obtained by affine transformations
of uniform and normal random variables. Another simpler class of methods, that
is designed to implement the Monte Carlo simulation under the Heston volatility
model [41], are built on basic discretizing theories, other than the volatility distribu-
tion. For instance, Kahl and Jackel [38] discretize the stock price and the volatility
processes basing on the Balanced Implicit Method of Milstein et al. [42]. Moreover,
Lord et al. [40] apply the classic Euler-Maruyama method to discretize the SDEs,
along with a full truncation scheme to fix negative volatilities.

Empirical comparisons are conducted to the simulation schemes described above.
With respect to Van Haastrecht and Pelsser’s study [43], in the class of methods
built on discretizing theories, Lord et al.’s scheme [40] outperforms other methods
in the same class. While in the class of methods that focuses on the non-central chi-
square distribution of the conditional volatility, Andersen’s method [39] is claimed
to be in the dominant place. Furthermore, simulation schemes in the latter class
tend to give more robust results, and require less time steps than those in the former
class.

In the case of the SSV model, the Euler-Maruyama method is used to discretize
the SDE of temperature and volatility. We choose this method not only for its
simplicity. According to Van Haastrecht and Pelsser [43], the simulation result of
the Euler-Maruyama method can be maintained in an acceptable level with 32 time
steps per year. The time increment of DAT simulation is one day, that is 365 time
steps per year, which will certainly increase the preciseness of the simulation.

Meanwhile, instead of the full truncation method of Lord et al. [40], which fix
the negative values of the volatility with zero, we replace negative volatilities with
their absolute values. Such setting has been tested empirically along with the full
truncation method, the result indicates that the absolute value of volatility is a more
suitable option for the temperature simulation of Chinese cities. As a result, the
discretized temperature and volatility can be expressed as:
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ln T̂ pt`∆q “ ln T̂ ptq ´
|V̂ ptq|∆

2
`

b

|V̂ ptq| ` Z1

?
∆; (3.13)

V̂ pt`∆q “ V̂ ptq ` κpθ ´ |V̂ ptq|q ` η

b

|V̂ ptq|Z2

?
∆, (3.14)

where Z1 and Z2 are standard normal random variables that are independent
from each other.

Thus, the Monte Carlo simulation of DATs under the SSV model can be imple-
mented by: a) fix the starting data and obtain the initial value of DAT and volatility,
b) set the time increment ∆ to be one, c) generate the set of Z1 and Z2.

3.5 Summary

Considering the trade-off between the model complexity and its explanatory power,
it is expected that a model with more parameters generates more accurate results
than those with less parameters. Consequentially, in order to determine the most
suitable temperature model, we need to answer the question whether additional costs
of including stochastic volatility can be justified by its benefits. In the next chapter,
we carry out in-sample and out-of-sample model comparison tests to compare the
performance of the SSV model along with the performances of the Alaton model [1],
the CAR model [2] and the Spline model [3].
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Chapter 4

An empirical study on
temperature models

As the major barrier of studying weather derivative modeling in China is due to
the absence of real market data, one can only focus on the accuracy of temperature
modeling rather than on the derivative pricing in order to examine the performances
of different models. In this chapter, we utilize the DAT data described in the
preceding Chapter to conduct empirical analyses on the stochastic seasonal variation
(SSV) model along with three established empirical temperature and pricing models,
i.e. the Alaton model [1], the continuous auto-regressive (CAR) model [2], and the
Spline model [3]. We then compare heuristically the four temperature models, in
terms of simulation results, residual normality, auto-correlation function (ACF),
Akaike Information Criterion (AIC) and error measures, with the hope to find out
the most suitable model for modeling and pricing temperature-based derivatives
in China. Meanwhile, we look into the option prices generated by different models.
The results show that the SSV model dominates the other three models by providing
a more precise fitting of the temperature process. Further, the Spline model [3]
displays inconsistencies when it is applied to Chinese temperature data. This model
has the smallest relative errors, but the worst result for the normality of residuals.

There are three major contributions made in this chapter. First, we include a
variety of characteristic temperature models that are suggested by the literatures,
and apply them to thirty-year temperature data of twelve Chinese cities. With such
amount of data included, we aim to gain a robust conclusion on the temperature
modeling for China. Second, to the best of our knowledge, it is the first time that the
Spline model [3] is applied to Chinese temperature data, and compared with other
stochastic models. Third, we incorporate an elaborate analysis in order to gain a
better understanding of temperature-based derivative modeling in China from dif-
ferent aspect, and to select the most suitable model for Chinese temperature data.
With such a study, one can gain a comprehensive understanding of the temperature
dynamics of Chinese cities in different regions, thus to adapt the fundamental the-
ories of temperature-based weather derivative modeling to Chinese market from a
practical point of view.
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The chapter proceeds as follows. In the first section, we fit the Alaton model
[1], the CAR model [2], and the Spline model [3] to the DAT data of twelve Chinese
cities. We present the results of the parameter estimation for each model and city,
with the hope to gain a general understanding to the models’ performances. In the
second section, we compare analytically the Alaton model [1], the CAR model [2],
the Spline model [3] and the SSV model. The empirical results of the comparison
consists of residual normality, auto-correlation function (ACF), Akaike Information
Criterion (AIC), relative error, Monte Carlo simulation and option pricing as well
as implications of the results. In the last section, we look into the price behaviors
of the four temperature models through the prices of cooling degree-day, heating
degree-day, and growth degree-day options.

4.1 Parameter estimation of the empirical models

4.1.1 Alaton model [1]

In the literature review, we explain mathematically how the Alaton model [1] cap-
tures the temperature evolution, and derives approximate temperature-based con-
tract prices in the incomplete market. In this section, we apply the model analyti-
cally to the real DAT data of Chinese cities.

We start off with estimating the parameters of the Alaton model [1] in Eq.
2.39 and 2.42. We use the ordinary least squares (OLS) approach to estimate the
parameters in the mean seasonality function, A, B, C and ϕ. We employ the
results of the SSV model in Section 3.2 directly, as the OU processes of the models
are identical. Table 3.2 (see Section 3.2) gives the estimated values of the four
parameters of the Chinese cities.

After fitting the mean function to the temperature data, we are then able to
compute the volatility σ2. According to Alaton et al. [1], the temperature volatility
is monthly constant and equals to the mean value of the temperature quadratic
variation and its regressed estimator (see Eq. 4.2). For a given month p, the
quadratic variation is defined as:

σ2
p “

1

Np

Np´1
ÿ

j“0

pTj`1 ´ Tjq
2, (4.1)

where:
σp denotes the quadratic standard deviation of month p;
Np denotes the number of days in month p;
Tj denotes the temperature of day j during the month.

According to Alaton et al. (2002), the volatility estimator under the regressing
method is expressed as:
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T ptq “ pT psq ´ µpsqqe´αpt´sq ` µptq `

ż t

s

e´αpt´τqστ dWτ , t ą s. (4.2)

where:

rTj “ Tj ´ pT
m
j ´ T

m´1
j q. (4.3)

Np denotes the total number of days in month p.
Table 4.1 gives the result of the estimated monthly volatilities of the Alaton

model [1].

Table 4.1: Estimated values of volatility for the Alaton model [1] of twelve cities in main-
land China

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
Harbin 3.67 3.41 3.40 3.51 3.11 2.50 1.79 1.80 2.48 3.39 3.97 3.87
Changchun 3.81 3.72 3.61 3.73 3.09 2.38 1.75 1.87 2.64 3.76 4.24 4.16
Beijing 2.11 2.26 2.58 2.61 2.44 2.19 1.99 1.64 1.84 2.17 2.52 2.35
Tianjin 1.86 2.07 2.54 2.72 2.51 2.15 1.85 1.58 1.86 2.21 2.33 1.94
Shanghai 2.38 2.96 2.82 2.86 2.17 2.23 1.66 1.39 1.79 1.68 2.66 2.71
Hangzhou 2.25 2.57 2.88 2.71 2.36 2.03 1.71 1.48 1.75 1.83 2.29 2.36
Nanjing 2.19 2.41 2.76 2.65 2.29 1.97 1.72 1.55 1.73 1.90 2.34 2.37
Guangzhou 2.29 2.56 2.13 2.67 1.65 1.31 1.30 1.21 1.32 1.58 2.04 2.24
Hainan 1.72 1.81 2.02 1.64 1.24 0.98 0.84 0.91 0.91 1.04 1.46 1.70
Kunming 1.97 2.02 2.19 1.95 2.05 1.50 1.13 1.33 1.48 1.71 1.72 1.87
Lahsa 2.27 2.19 2.02 1.83 1.97 1.90 1.62 1.47 1.32 1.46 1.58 1.94
Urumchi 2.84 2.70 2.97 3.50 3.46 2.76 2.55 2.80 2.87 2.87 3.08 3.16

With the mean estimators of monthly volatilities, the mean reverting parameter
α has its estimator given by [1]:

α “ ´ log

¨

˝

řn
i“1

Tmi´1´Ti´1

σ2
i´1

pTi ´ T
m
i q

řn
i“1

Tmi´1´Ti´1

σ2
i´1

`

Ti´1 ´ Tmi´1
˘

˛

‚, (4.4)

Therefore, Table 4.2 gives the result of α of the twelve cities.

4.1.2 CAR model [2]

To estimate the parameters involved in the CAR model [2], we need to utilize the
convertibility between an auto-regress (AR) process and a CAR process. Recall that
the CAR model [2] defines the temperature process T ptq as:

T ptq “ µptq `Xptq, (4.5)
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Table 4.2: Estimated value of α of twelve cities in mainland China

α
Harbin 0.2821
Changchun 0.3091
Beijing 0.3121
Tianjin 0.2800
Shanghai 0.3008
Hangzhou 0.2636
Nanjing 0.2515
Guangzhou 0.2279
Hainan 0.1954
Kunming 0.2911
Lahsa 0.2616
Urumchi 0.1977

where µptq is defined by Eq. 2.39, and Xptq is the CAR(p) process which is given
by Eq. 2.47 and 2.48.

We replace the CAR process Xptq with an AR process yptq that follows:

yi`p “
p
ÿ

j“i

bjyi`p´j ` σiεi, (4.6)

where εi are independent, standard normally distributed random variables. As
it is proved by Benth et al. [2] that the optimal order of the AR (CAR) process is
three, we follow his approach. Hence, we have:

yi`3 “ b1yi`2 ` b2yi`1 ` b3yi ` σiεi. (4.7)

Finally, we transfer the AR(3) process into a CAR(3) process by using Benth et
al.’s solution [2]:

3´ a1 “ b1,

2a1 ´ a2 ´ 3 “ b2,

a2 ` 1´ pa1 ` a3q “ b3.

Table 4.3 lists the estimated values of AR(3) and CAR(3) process. Note that the
mean seasonality function µptq in Eq. 4.5 remains identical from that in the Alaton
model [1]. Thus, we employ the estimation results of µptq directly from the previous
section.

Different from the Alaton model [1], Benth et al. [2] propose a truncated
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Table 4.3: Estimated parameters of AR(3) and CAR(3) process

b1 b2 b3 α1 α2 α3

Haerbing 0.8444 -0.2094 0.1204 2.1556 1.5206 0.4854
Changchun 0.8645 -0.2714 0.1322 2.1355 1.5424 0.5391
Beijing 0.7726 -0.1165 0.0900 2.2274 1.5713 0.4339
Tianjin 0.8788 -0.2568 0.1337 2.1212 1.4992 0.5117
Hangzhou 0.9492 -0.3187 0.1003 2.0508 1.4203 0.4698
Nanjing 0.9488 -0.3174 0.1025 2.0512 1.4198 0.4711
Shanghai 0.8781 -0.28 0.1065 2.1219 1.5328 0.2954
Guangzhou 1.0782 -0.3993 0.0956 1.9218 1.2429 0.4167
Hainan 1.0393 -0.3105 0.0780 1.9607 1.2319 0.3492
Kunming 0.8117 -0.1538 0.0901 2.1883 1.5304 0.4322
Lahsa 0.7896 -0.0926 0.0811 2.2104 1.5134 0.3841
Urumchi 0.9953 -0.2622 0.0627 2.0047 1.2716 0.3296

Fourier series as a functional volatility σi “ σpiq to model the observed seasonal
heteroskedasticity of residuals after removing seasonal component and AR(3) pro-
cess:

σ2
ptq “ c1 `

4
ÿ

k“1

pc2kcosp2kπt{365q ` c2k`1sinp2kπt{365qq. (4.8)

In the study on the Stockholm temperature data, Benth et al. [28] find the
optimum orders for the truncated Fourier series equals to four. In our study on the
DATs of the Chinese cities, we keep the same specification as they are shown to
be suitable for Chinese temperature data in Zong and Ender’s study [7]. Table 4.4
gives the result of the parameters c1 to c9 estimated using the least squares method.

Table 4.4: Estimated parameters of seasonal volatility function of the CAR model

c1 c2 c3 c4 c5 c6 c7 c8 c9
Haerbing 7.8542 4.0041 1.2152 0.5701 -1.9496 0.4113 0.1414 0.0758 0.3161
Changchun 8.7863 4.9923 1.2327 0.0051 -2.1259 0.1087 -0.2900 0.0609 0.2408
Beijing 3.9743 0.3922 0.9666 0.0708 -0.7373 -0.0986 -0.3272 0.0492 -0.0163
Tianjin 3.5554 -0.1899 0.9953 -0.3571 -0.8115 -0.0290 -0.1305 0.0380 0.0365
Hangzhou 3.7754 0.6239 1.7720 -0.4665 -0.2793 -0.0153 -0.2585 0.0455 -0.2055
Nanjing 3.4677 0.6274 1.1431 -0.1427 -0.5266 -0.0220 -0.2949 0.0069 -0.0939
Shanghai 3.6615 1.2009 1.5928 -0.0453 0.2622 -0.2355 -0.5166 0.0348 -0.2897
Guangzhou 2.7028 1.1581 1.1987 -0.1467 0.2805 -0.1051 -0.2850 0.0896 -0.1150
Hainan 1.5156 0.7415 0.7582 -0.0767 0.1460 0.0474 -0.1332 0.0339 -0.0839
Kunming 2.5353 0.7192 1.0103 -0.2222 -0.2884 -0.0394 0.2453 -0.0713 -0.0399
Lahsa 2.7588 0.4149 1.0084 0.6218 0.2384 0.1368 0.2000 0.0408 -0.1436
Urumchi 6.6512 0.1391 0.8918 0.1284 -0.9269 1.6059 0.5340 -0.1125 0.2341

4.1.3 Spline model [3]

To fit the DAT process described by the Spline model [3], we start off with the
determination of the tensor product splines of the seasonal mean and the seasonal
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variation of DAT series. Analogues to Eq. 2.57, let SDd,Kd denote the vector space
of all splines with degree Dd and knot sequence Kd in the day direction and corre-
spondingly SDy,Ky in the year direction. The mean temperature µ follows:

µd,y “ SDd,Kd b SDy,Ky. (4.9)

As it is specified by Schiller et al. [3], a cubic spline with breaks approximately
every 60 days is used in the day direction. In the year direction, a linear trend with
breaks on the first and on the last year of the measured time is used to represent
the global warming. Following their specification, we obtain the knot sequences
respectively in the day and year direction according to the spline orders:

Kd “ t1, 1, 1, 1, 61, 122, 183, 203, 244, 305, 365, 365, 365, 365u; (4.10)

Ky “ t1, 1, 30, 30u. (4.11)

After the mean seasonal components are removed from the DAT series of the
twelve Chinese cities, there exists a similar seasonal trend in the squared residuals,
which is interpreted as the DAT variation. Hence, we construct another spline
surface following the Schiller et al.’s method [3]. The method remains the same
as the construction of the mean seasonality surfaces. Due to the high volatility of
Chinese temperature data, we reduce the number of breaks and make them more
centralized at the peak and the bottom of the cubic spline in order to get a smooth
surface. The specified break sequences for the spline of the variances are respectively
Kd “ 1, 183, 203, 365 in the day direction and Ky “ 1, 30 in the year direction. The
new break sequences are modified regarding to the plots of the twelve Chinese cities
in our study.

Figure 4.1 and 4.2 give respectively the estimated smooth spline surfaces of the
DATs and the DAT variances using the least square method. As it is shown in Figure
3, the tensor product spline is capable of capturing the DAT seasonality. However,
modeling the DAT variances of Chinese cities with a cubic spline in the day direction
may not be the most suitable case. Instead of a smooth pulse shaped curve, the
modeled variance in the day direction tends to create waves at the knots during
the interpolation. From this result, we infer that applying a stochastic process is a
better solution for the variance modeling for Chinese cities.

Finally, we estimate the parameters in the AROMA process (see Eq. 2.58 and
2.59) of the residuals after the mean and the variance are determined. The speci-
fications on the parameters are listed in Table 4.5 in accordance to Schiller et al.’s
study [3]. The least square method are used to implement the regression.

Table 4.5: Parameter specifications of the AROMA process

r m1 m2 m3 m4

4 1 2 ď 35 ď 35
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Figure 4.1: Estimated spline surface of DATs (Year: 1983-2012. X-axis: days. Y-axis:
years. Z-axis: temperature.).

Table 4.6 gives the estimated parameters of the AROMA process. In Table 4.6,
the values of m3 exclusively equal to three for all the twelve Chinese cities. This is
strong evidence supporting the assumption that the value of m3 constantly equals
to three of all the cities in mainland China.

4.2 Simulation results

4.2.1 Alaton model [1]

Figure 4.3 presents the simulated DAT using the Alaton model [1] against the real
DAT data. The simulation reveals the fundamental drawback of Alaton et al.’s
method [1] which neglects the seasonal variation of the temperature dynamic. This
observation directs us to the modeling of the temperature volatility in order to
structure a more precise model.

4.2.2 CAR model [2]

In the study on Stockholm temperature data, Benth et al. [2] find the optimum
order for the CAR(p) process and the truncated Fourier series respectively equals
to three and four. In our study on the DAT of Chinese cities, we keep the same
specifications as they are shown to be suitable for Chinese temperature data in Zong
and Ender’s study [7]. Figure 4.4 gives the simulated DAT (black) using the CAR
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Figure 4.2: Estimated spline surface of DAT variance (Year: 1983-2012. X-axis: days.
Y-axis: years. Z-axis: temperature variance).

model [2] against the real DAT data (blue). Generally, the simulated temperature
shows similarity with the real data. However, it is also noticed that the temperature
dynamics of the CAR model [2] shows a tendency of underestimating the volatility,
as the real temperature data seems to fluctuate in a more volatile manner.

4.2.3 Spline model [3]

Figure 4.5 gives the real temperature data (blue) and the simulated DATs of 2012
using the Spline model [3] (black). The simulated temperature shows an excellent fit
to the real data. We suspect that it is mainly contributed by the AROMA process
of the residual in the in-sample simulation. That is to say, the temperature model
corrects the estimation of today’s temperature with the real temperature in the near
past via the AROMA process.

4.2.4 SSV model

Figure 4.6 shows the mean squared residuals on an annual scale and its corresponding
estimated Fourier series. As it appears in Figure 6, the truncated Fourier series seems
to be a suitable option to capture the seasonal trend of the temperature variation
for all the twelve cities.

Figure 4.7 presents the simulated temperature variation with piecewise volatility.
The simulated variation displays good fits to the real data. Further, from Figure 4.7,
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Table 4.6: Estimated parameters of the AROMA process

City φ1 φ2 φ3 φ4 m3 m4

Harbin 1.0130 -0.5578 0.2011 0.1102 3 34
Changchun 1.0834 -0.7016 0.2658 0.1001 3 34

Beijing 0.8695 -0.3787 0.1802 0.0865 3 34
Tianjin 1.0795 -0.6794 0.2791 0.0862 3 35
Nanjing 1.2266 -0.8037 0.3664 -0.0851 3 4

Hangzhou 1.2475 -0.8223 0.3616 -0.0788 3 4
Shanghai 1.1063 -0.6695 0.2312 0.0429 3 10

Guangzhou 1.1320 -0.4990 0.0940 0.0616 3 35
Hainan 1.2571 -0.6879 0.1311 0.0241 3 11
Lhasa 0.9262 -0.4404 0.1895 0.0658 3 35

Kunming 0.8152 -0.2391 0.1245 0.0693 3 24
Urumchi 1.2438 -0.6135 0.0831 0.0433 3 8

a warm/cold season division of the year looks to be sufficient while being applied to
the estimation of volatilities of temperature variations.

With the simulated temperature volatility, we can simulate the DAT process
which follows Eq. 4.2. Figure 4.8 shows the simulated DAT using the SSV model
against the original DAT data. The simulated temperature data shows a close
performance to the observed data, with the highest goodness-of-fit to temperature
fluctuations compared to the Alaton model [1] and the CAR model [2].

4.3 Model comparison

4.3.1 Methodology

In order to gain a comprehensive understanding of the models’ behaviors, four
comparison criteria, including residual normality, auto-correlation function (ACF),
Akaike Information Criterion (AIC) and monthly relative error (MRE), are intro-
duced in this section.

Residual normality

The residual normality reflects the model’s explanatory power towards tempera-
ture evolutions. Normally-distributed residuals play not only a crucial role in the
exposition of the model’s goodness-of-fit, but also in the computation of accurate
derivative prices. As the random processes of the four models are formed based
on the Brownian motion (or the AROMA process, which contains a independent
identically normally distributed random variable), the residuals, after removing all
the other components, should hypothetically follow a normal distribution. There
exists a number of temperature-based weather derivative studies based on the argu-
ment of normal residuals, which includes Benth et al.’s study [2] [30], and Goncu’s

50



Chapter 4. An empirical study on temperature models

Figure 4.3: Original DAT data and simulated DAT using the Alaton model [1] (Year:
2012).
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study [29]. In this section, we perform three different normality tests, i.e. the
Kolmogorov-Smirnov test, the Jarque-Bera test and the Lilliefors test, to the resid-
uals. We acknowledge normality as long as the residuals of the model are accepted
by one of the three tests. Further, we present the histograms and the Q-Q plots of
the residuals in order to examine the performance of each model further.

Autocorrelation function (ACF) of residuals and squared residuals

Autocorrelation functions are widely used in the modeling of time series, especially
as a mathematical tool in the determination of time lags of autoregressive models.
It displays the pattern of inter-dependencies and seasonalities of the observed data.

In our investigation where the ACF serves as a model comparison criterion, we
present the ACF plots of model residuals and squared model residuals. The pur-
pose is to understand the evolutions and inter-dependencies of the residual and the
squared residual, thus to gain some indications on the models’ performances. Gen-
erally, the ACF of residuals gives an exposition of the modeling power towards the
long-term seasonality of the temperature process, and the ACF of squared residuals
reflects the modeling of the volatility process.

Akaike Information Criterion (AIC)

The AIC serves as a model comparison criterion that takes into account the trade-off
between the size of the model and its goodness-of-fit. Give a model with K unknown
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Figure 4.4: Original DAT data and simulated DAT using the CAR model [2] (Year: 2012).
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parameters, its AIC is originally defined as:

AIC “ ´2 logpLpθ̂|xqq ` 2K, (4.12)

where Lpθ̂|xq is the optimized likelihood function of the model regarding to its
parameter estimation. In a more peculiar case where the least square method is
applied, AIC can be expressed in the form:

AIC “ logpσ̂2
q ` 2

K

N
, (4.13)

where σ̂2 is the variance of estimated residuals, and N is the number of obser-
vations.

In the model selection, one could gain an general inference on the parsimony
of different models regarding their AICs. Specifically, models with a lower AIC is
preferable as they display a higher level of parsimony.

Monthly relative error (MRE)

In addition to the investigation of residuals, error measures are considered to be
necessary criteria as they serve as the indication of the model’s accuracy. In this
sense, we apply the MRE as our third model comparison criterion, which is defined
as [35]:
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Figure 4.5: Original DAT data and simulated DAT using the Spline model [3] (Year: 2012
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ERrelative “
Testimated ´ Tobserved

Tobserved
. (4.14)

We select relative errors rather than mean squared errors for the reason that
the former one presents not only the size of the fitting error, but also the scale of
the error compared to the observed data. Both in-sample and out-of-sample MREs
are compared among the temperature models in this section, with the aim to gain
comprehensive insights of the model’s goodness-of-fit and forecasting power.

4.3.2 Results and implications

In this section, we present the model comparison results among the Alaton model
[1], the CAR model [2], the Spline model [3] and the SSV model. The four selective
criteria, i.e. residual normality, ACF, AIC and MRE, are discussed on a empirical
base.

Residual normality

Table 7.1 in the Appendix gives the final results of the residual tests for each city
and each model. In the table, we also present the proportions of acceptance out of
the three normality tests.

From Table 7.1, we can see that the SSV model dominates the Alaton model
[1], the CAR model [2] and the Spline model [3] with accepted normality for eleven
cities’ residuals. Second to the SSV model, the CAR model has five cities with

53



Chapter 4. An empirical study on temperature models

Figure 4.6: Empirical temperature variation and its estimated Fourier series.
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normal residuals. These five cities, namely Beijing, Tianjin, Hangzhou, Nanjing
and Shanghai, exclusively cover the climatic zone II and III. Following the CAR
model [2], the Alaton model [1] shows a slight weakness. Three cities’ residuals
are accepted by the normality tests, respectively Tianjin from climatic zone II,
Nanjing from climatic zone III and Lhasa from climatic zone VI. Despite of the
outstanding performance of modeling the US temperature data [3], the Spline model
is the weakest model in the residual normality tests while it is applied to Chinese
data.

As it is displayed in Table 7.1, the residuals of Nanjing always follow a normal
distribution. We infer that the temperature models capture the DATs of the cities
from climatic zone II and III in a better way, as they show a higher frequency of
normal residuals.

In Figure 7.1 - 7.4 in the Appendix, the histograms of the residuals’ distributions
and their corresponding normal distributions are shown. From the histograms, we
observe an obvious difference between the Spline model and the other three models.
Especially for the cities from climatic zone IV, V, VI and VII, namely Hainan,
Guangzhou, Lhasa, Kunming and Urumchi, the residuals obtained from the Spline
model tend to display strong bias against the normal distributions. Agreeing with
the results of normality tests, the residuals obtained from the SSV model show
rather close fits to the normal distribution across cities. Although the normality
tests suggest that the CAR model [2] is better than the Alaton model [1], the
differences between them are very limited in the histograms.

In the Q-Q plots shown in Figure 7.5 - 7.8 in the Appendix, the results consid-
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Figure 4.7: Empirical and simulated temperature variations.
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erably translate into the conclusion we draw from normality tests and histograms.
To be noted here, we can observe that the residuals’ distributions from the Alaton
model [1], the CAR model [2] and the Spline model [3] tend to show a bias at the
end of the quantile line against the standard normal quantiles in the Q-Q plots. The
bias is caused by a steeper trend in the Q-Q plot which indicates that the residu-
als’ distributions are more dispersed compared to the standard normal distribution.
Obviously, the unfavorable dispersions of the residual distributions obtained by the
Spline model [3] are drastically more intense than those obtained by the Alaton
model [1] and the CAR model [2]. In accordance to the histograms, the residual Q-
Q plots from the Alaton model [1] and the CAR model [2] give very similar results.
The residual distributions of the SSV model show very similar quantiles compared
to the standard normal distribution.

ACF of residuals and squared residuals

Figure 7.9-7.12 show the ACF plots of residuals obtained from the Alaton model
[1], the CAR model [2], the Spline model [3] and the SSV model. According to
the results, residuals of the SSV model and the Spline model [3] fluctuate in more
steady manners without any observable seasonality in all the twelve cities. On the
other hand, the Alaton model [1] and the CAR model [2] reveal their weaknesses
in their residual ACF plots, where both of the two models show significant seasonal
patterns.

Since the ACF of residuals provides indications on the general modeling of long-
term evolutions of the time series, we infer that despite of the fact that the mean
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Figure 4.8: Original DAT data and simulated DAT using the SSV model (Year: 2012).
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functions of the Alaton model [1], the CAR model [2] and the SSV model are identical
(see Eq. 2.39 and 3.2), the stochastic volatility process attributes a higher level of
fitting power to the SSV model. Further, from the ACF result of the Spline model
[3], we believe that the method of employing tensor product splines to model the
mean temperature evolution is appropriate.

The ACF plots of squared residuals are provided in Figure 7.13-7.16. Opposite
to the results based on residuals, squared residuals of the CAR model [2] turn to
be more robust in their ACF plots, while those of the Spline model tend to show
seasonality. This observation indicates that truncated fourier series are more suitable
than tensor product splines while being applied to model the temperature volatility.
Additioanlly, squared residuals of the Alaton model [1] and the SSV model display
consistency with their residuals in the ACF plot.

With respect to the investigation of ACFs, it is concluded that the SSV model
outperforms the other three temperature models by capturing both the long-term
evolution and the volatility of the temperature process, while the Alaton model [1]
is the weakest while being applied to Chinese temperature data as it fails in both
aspects.

AIC

According to Eq. 4.12 and 4.13, the model size K needs to be determined before
looking into its AIC. Table 4.7 gives the number of estimated parameters in each of
the four temperature models. Note that in the Spline model [3], we count the tensor
products µ and σ2 as two parameters.

As the parameters of all the four models are estimated based on the least-square
method, AICs can be obtained by applying Eq. 4.13. Results are listed in Table
4.8, from which three major observations can be made.

First, the Alaton model [1] produces the highest AICs among all the four temper-
ature models. That is to say, although the Alaton model [1] has the smallest number
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Table 4.7: The number of parameters in Alaton et al.’s model (2002), the CAR model
(Benth et al., 2007), the Spline model (Schiller et al., 2012) and the SSV model.

Alaton et al.’s model CAR model Spline model SSV model
6 16 8 16

Table 4.8: AICs of Alaton et al.’s model (2002), the CAR model (Benth et al., 2007), the
Spline model (Schiller et al., 2012) and the SSV model.

Alaton et al.’s model CAR model Spline model SSV model
Harbin 3.67 0.04 2.04 -0.07
Changchun 3.71 0.03 2.16 -0.07
Beijing 2.92 0.04 1.37 -0.10
Tianjin 2.92 0.03 1.26 -0.13
Nanjing 2.99 0.04 1.24 -0.15
Hangzhou 2.95 0.03 1.33 -0.14
Shanghai 3.02 0.02 1.30 -0.14
Guangzhou 2.88 0.03 0.42 -0.16
Hainan 2.38 0.04 1.00 -0.05
Kunming 2.51 0.03 0.92 -0.12
Lhasa 2.66 0.02 1.00 -0.15
Urumchi 3.83 0.02 1.88 -0.09

of parameters, its poor fitting to the temperature heteroskedasticity and the seasonal
volatility brings up the AIC, and makes it the least parsimonious model.

Second, the Spline model [3] produces lower AICs than the Alaton model [1],
which indicates an increase of the model parsimony. However, it is still arguable of
the treatment which assumes the tensor product spline to be one parameter. As a
matter of fact, the number and the order of least-square estimated polynomials that
construct the spline depend on the order of the spline and the number of knots. In
this sense, the parameter counts of the Spline model can be rather high, so does the
AIC.

Last, although the CAR model [2] and the SSV model contain the largest number
of parameters, they manage to produce lower AICs compared to the Alaton model
[1] and the Spline model [3] in all the twelve cities. Further, as the only model that
generates negative AICs, the SSV model is the most preferable model as it shows
the greatest level of parsimony.

MRE

In this section, the model MREs are compared on both the in-sample and the out-
of-sample bases. The out-of-sample MRE is an informative factor in the model
comparison as it reflects the model’s forecasting power.

Figure 7.17 - 7.20 in the Appendix show the bar plots of the in-sample MREs
based on the simulated temperatures of the Alaton model [1], the CAR model [2],
the Spline model [3] and the SSV model. As it is shown in the figures, the simulated
DATs using the SSV model produce very close MREs with the Alaton model [1]
and the CAR model [2]. Inconsistent to the results of the residual normality check,
the Spline model [3] prevails over the other three models as it generates the smallest
error terms. As it is discussed in the previous section, the major concern here is
that the high goodness-of-fit stems from the in-sample simulation of the AROMA
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process. Regardless of this argument, the Spline model [3] is the most accurate
model to capture the temperature dynamics in terms of error measures. Further,
it is consistent among all the four models that the monthly relative errors tend to
show a seasonal pattern. To be precise, the large relative errors appear during cold
season while in warm season the relative errors are generally very small. In other
words, the SSV model cannot fully capture the seasonal variation of the Chinese
DAT data as well as the other three models.

Table 4.9 gives the total numbers of months in which the in-sample relative errors
of the Alaton model [1] and of the SSV model are smaller than those of the CAR
model [2]. The SSV model has more often smaller errors than the Alaton model [1]
and the CAR model [2] while the CAR model [2] shows a slightly better performance
than the Alaton model [1].

Table 4.9: Total number of months that the Alaton model [1] and the SSV model have
smaller MREs than the CAR model [2] in the in-sample simulation.

Alaton model SSV model
Harbin 5 5
Changchun 4 5
Beijing 3 8
Tianjin 2 7
Nanjing 5 6
Hangzhou 5 6
Shanghai 5 8
Guangzhou 5 7
Hainan 8 7
Kunming 5 6
Lhasa 3 6
Urumchi 3 6

In Table 4.10, we respectively give the total numbers of months in which the
Spline model [3] produces smaller in-sample relative errors than the Alaton model
[1], the CAR model [2] and the SSV model. The Spline model [3] has an exclusively
better performance than the three stochastic models in terms of the relative errors
across all the cities in the study. Additionally, from Table 4.10, we also notice that
differences among Alaton et al.’s model [1], the CAR model [2] and the SSV model
while being compared with the Spline model [3] are very minor.

Table 4.10: Total number of months that the Spline model [3] has smaller MREs than the
Alaton model [1], the CAR model [2] and the SSV model in the in-sample simulation.

Alaton model CAR model SSV model
Harbin 11 11 11
Changchun 11 11 11
Beijing 12 11 11
Tianjin 12 12 12
Nanjing 11 12 12
Hangzhou 11 11 11
Shanghai 11 11 11
Guangzhou 12 11 12
Hainan 11 11 11
Kunming 11 11 11
Lhasa 11 11 11
Urumchi 12 12 12

Meanwhile, Figure 7.21 - 7.24 in the Appendix give the out-of-sample monthly
relative errors of each city and each model. Similar with the in-sample MRE dia-
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grams, one can observe strong seasonal patterns of the out-of-sample MREs for all
the cities and models.

In order to investigate the out-of-sample MREs of the stochastic models, the
total numbers of months in which the Alaton model [1] and of the SSV model have
smaller relative errors than the CAR model [2] are listed in Table 4.11. Similar with
the in-sample results in Table 4.9, the difference of the MREs between the three
stochastic models is minor. However, the results of the out-of-sample comparison
distribute in a more volatile way. For instance, in the comparison between the
Alaton model [1] and the CAR model [2] for the city of Lhasa, there are only two
months in a year when the CAR model [2] has smaller MREs than the Alaton model
[1]. A similar case exists in the comparison between the SSV model and the CAR
model [2] for Urumchi. The small size of DATs employed in the out-of-sample tests
might be the cause of this instability.

Table 4.11: Total number of months that the Alaton model [1] and the SSV model have
smaller MREs than the CAR model [2] in the out-of-sample simulation.

Alaton model SSV model
Harbin 7 7
Changchun 5 7
Beijing 5 6
Tianjin 6 6
Nanjing 5 6
Hangzhou 5 7
Shanghai 2 6
Guangzhou 8 5
Hainan 5 4
Kunming 7 6
Lhasa 2 8
Urumchi 9 3

Table 4.12 presents the out-of-sample comparison between the Spline model [3]
and the stochastic models. In the case of Shanghai and Hainan, the Spline model
shows a consistent dominant performance with lower MREs. However, apart from
these two cities, the Spline model generates similar out-of-sample results of MREs
compared to the stochastic models.

Table 4.12: Total number of months that the Spline model [3] has smaller MREs than the
Alaton model [1], the CAR model [2] and the SSV model in the out-of-sample simulation.

Alaton model CAR model SSV model
Harbin 5 6 5
Changchun 5 6 6
Beijing 6 6 5
Tianjin 5 6 4
Nanjing 7 7 7
Hangzhou 7 7 6
Shanghai 10 11 10
Guangzhou 3 2 3
Hainan 12 12 12
Kunming 7 8 7
Lhasa 6 5 6
Urumchi 4 6 7
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Summary of model comparison results

With the hope to show the model comparison results from an overall perspective,
we make an attempt to rank the models’ performances in a quantified way. Table
4.13 shows the order and the summation of the orders of each temperature model
in each criterion discussed in the preceding sections. Models with lower summation
of orders are more preferable.

In conclusion, the SSV model occupies a dominant place in the model compari-
son. It gives the best performance among the four models for all the criteria except
the MRE. Additionally, the SSV model has the lowest summation of orders, which
indicates the best model performance.

The same summations of orders given by the CAR model [2] and the Spline
model [3] indicate a similarity between the two models’ performances. The CAR
model tends to produce more normally-distributed residuals and to be more parsi-
monious, while the Spline model tends to have a better forecasting power towards
the temperature evolution. In this sense, we infer that the CAR model is more
suitable for temperature-based derivative pricing due to its noise behaviors, while
the latter one is more suitable to be used as a temperature forecasting tool.

Finally, the Alaton model [1] is the least preferred model when it is applied to
Chinese temperature data. We infer that the weakness of the Alaton model [1] is
mainly due to its constant volatility.

Table 4.13: Ranking scores of Alaton et al.’s model [1], the CAR model [2], the Spline
model [3] and the SSV model.

Residual normality ACF AIC MRE Total
Alaton model 3 4 4 4 15
CAR model 2 3 2 4 11
Spline model 4 3 3 1 11
SSV model 1 1 1 4 7

4.4 Temperature-based option pricing

4.4.1 General settings

In the following sections, we present European option prices obtained from Monte
Carlo simulations of the four models considered in this study and computed with
the approximation formulae of the Alaton model [1] in Eq. 2.45 and the CAR model
[2] in Eq. 2.55. Technically, the Monte Carlo simulated prices are capable of offering
adequate information for the purpose of model comparison given that there are no
real market data of temperature-based derivatives in China yet. Nevertheless, we
strongly recommend the derivation of pricing formulae for the Spline model [3] and
the SSV model for future research.

In order to price temperature-based derivatives, the market price of risk (MPR)
is required as the underlyings, temperature indices, are not tradable. However,
without the real market data, one cannot determine the value or the dynamics of
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the MPR. Instead, specifications need to be given carefully before studying the
pricing of temperature-based derivatives. In this section, we assume that the value
of the MPR is zero (Goncu, 2011).

4.4.2 CDD and HDD call option prices

In Tables 4.14 and 4.15, the prices of HDD and CDD call options are respectively
listed. The tick size is assumed to be one unit of currency per degree-day index.
From Tables 4.14 and 4.15, three major aspects are discussed.

Table 4.14: HDD call options pricing using Monte Carlo simulation (MC) and approxi-
mation formulae (Contract Period: Jan. 2010).

Climatic City Strike price Option price Option price Option price Option price Option price Option price
zone Alaton Alaton CAR model CAR model Spline model SSV model

/RMB model model (MC) (MC) (MC) (MC)
I Harbin 750 319.64 320.94 281.22 274.54 312.32 238.63

Changchun 259.21 261.62 203.27 201.68 250.25 148.54
II Beijing 500 182.16 182.10 115.17 120.74 165.75 76.70

Tianjin 204.69 204.73 128.75 126.12 188.18 112.41
III Nanjing 200 244.22 244.45 233.03 233.97 229.97 160.98

Hangzhou 176.79 175.26 167.09 168.71 175.38 194.12
Shanghai 187.60 188.59 145.98 144.88 194.86 169.82

IV Guangzhou 50 56.17 57.60 37.30 39.15 58.72 40.09
Hainan 0 0 0 0 0 0

V Kunming 100 117.41 117.48 81.90 79.68 109.60 155.23
VI Lhasa 400 160.53 161.54 131.43 130.13 142.10 106.69
VII Urumchi 600 264.81 261.58 225.35 225.56 349.26 196.06

Table 4.15: CDD call options pricing using Monte Carlo simulation (MC) and approxima-
tion formulae (Contract Period: Jul. 2010).

Climatic City Strike price Option price Option price Option price Option price Option price Option price
zone Alaton Alaton CAR model CAR model Spline model SSV model

/RMB model model (MC) (MC) (MC) (MC)
I Harbin 100 87.95 88.48 139.49 138.47 81.35 140.98

Changchun 79.44 77.56 136.81 138.06 69.23 135.58
II Beijing 150 172.01 172.58 164.03 163.08 162.46 191.48

Tianjin 155.23 156.23 155.60 160.66 146.52 164.70
III Nanjing 200 124.57 123.94 136.06 139.04 124.27 142.60

Hangzhou 138.30 138.74 153.29 159.08 140.72 169.24
Shanghai 137.18 137.88 165.97 169.2 133.35 148.54

IV Guangzhou 250 114.65 115.42 136.58 137.55 107.02 109.30
Hainan 130.09 130.12 157.69 161.41 124.21 139.90

V Kunming 50 60.27 60.07 76.98 88.92 50.40 84.75
VI Lhasa 20 5.74 7.36 8.95 10.62 0 2.31
VII Urumchi 100 102.42 99.64 114.13 109.98 91.89 140.76

First, there are significant discrepancies among the prices obtained from different
models. In detail, the option prices obtained from the Alaton model [1] and from
the Spline model [3] are comparatively close while the CAR model [2] and the SSV
model generate close option prices. Moreover, the option prices of the CAR model
[2] and the SSV model exhibit an up to 20 percent variation from the prices of
the other two models. Further, compared with the prices of the Alaton model [1]
and of the Spline model [3], the prices obtained from the CAR model [2] and the
SSV model are lower/higher in the cold/warm season. Lastly, although the option
prices of the Alaton model [1] and the Spline model [3] seem to be close, the Alaton
model [1] tends to give higher prices for both HDD and CDD contracts. Due to
the absence of real market prices, we cannot judge which model is the best one in
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terms of temperature-based derivatives pricing. Nevertheless, from the results of
our study, we infer that model risk exists.

Second, the two pricing approaches, i.e. the approximation formula and the
Monte Carlo simulation, generate very similar results using the Alaton model [1]
and the CAR model [2]. For further research, we suggest to derive the approxima-
tion formula for the SSV model, thereby to conduct a more comprehensive analysis
between the two approaches.

Third, from Table 4.14 and 4.15, we notice that for all the four models involved,
the option prices of the cities from the same climatic zones stay close. Given that
the CDD/HDD call option contract specifications are consistent for the cities from
a same climatic zone, we infer that it is realistic to design a climatic zone-based con-
tract which is capable of hedging temperature risks for all the cities in one climatic
zone.

4.5 Summary

In this chapter, we analyzed the performances of the SSV model along with other
three empirical models, i.e. the Alaton model [1], the CAR model, and the Spline
model [3], in terms of temperature modeling.

With respect to the results of the study, the SSV model is primarily recom-
mended to be hired to model temperature data of Chinese cities. Despite of its
complexity, the SSV model dominates the other three empirical models with higher
rates of residual normality, which indicates an essential improvement on the mod-
eling. According to the results, we infer that it is necessary to include a stochastic
process to model the volatility of the DATs of Chinese cities.

On the other hand, although the CAR model [2] provides weaker performance
than the SSV model in terms of temperature modeling, it produces generally robust
results throughout the study. Especially in the pricing section, the CAR model
gives close price results between the Monte Carlo simulation and the approximation
formula. Further, option prices obtained from the CAR model and from the Monte
Carlo simulation under the SSV model are very close as well. Thus, we would
recommend the CAR model to be another reliable model for temperature-based
derivative pricing in China.

Further, as a more basic stochastic temperature model, the Alaton model [1]
tends to provide the least precise results throughout the study. Thus, we infer that
the Alaton model [1] is generally not an appropriate model for Chinese temperature-
based derivative modeling and pricing.

In particular, the Spline model [3] shows an excellent performance in reducing
error terms of temperature modeling. As a result, we recommend to apply the Spline
model to implement temperature forecasts for Chinese cities. However, due to its
weak performance in producing normal residuals, it is rather risky to employ the
Spline model [3] as an pricing tool.
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Chapter 5

Optimal growth degree-day index
design: agricultural risk
management in China

The yield farmers can harvest from their fields is heavily influenced by the weather
during crops’ growing seasons. Adverse weather conditions like excess rain, drought,
frost, extreme high temperatures, hail, storms, etc. can cause crop losses with
negative impact on farmers’ income [44]. Especially in developing countries with
limited access to the financial system, bad harvests have severe consequences for
small scale farmers and their families. Possible measures are off-farm employment,
selling of farm assets, withdrawal of their children from school, taking money from
dubious money lenders, etc. [45, 46]. The situation will be worse if weather fluctu-
ations increase due to climate change. To stabilize farmers’ income and to facilitate
adaptation to climate change, the introduction of financial hedging instruments like
insurance is seen as one part of action plans worldwide [47].

This chapter explores the practical value of temperature-based weather deriva-
tives as a risk hedging tool in the agricultural sector of China. Temperature-based
indices are investigated both on the city and on the climatic zone scale. There are
two major objectives of this chapter. In the first place, we make an attempt to
increase the risk hedging power of temperature-based derivative contracts by intro-
ducing new forms of temperature indices. In the second place, we aim to reduce
the model dimension of cross-regional contract valuation by designing a climatic
zone-based GDD contract, which provides identical prices to all cities covered by
the same climatic zone. There are four major advantages of model dimension re-
duction. First, it is more time-saving for issuers of the climatic zone-based contract
to implement the modeling and the pricing, as only an unique price is rendered
by each contract for all cities in one climatic zone. Second, in addition to modern
cities, the climatic zone-based contract can also cover small suburban regions where
no observed temperature data can be collected. Third, from the issuer’s point of
view, with more regions covered in the contract, the climatic zone-based contract
is impaired with lower transaction costs and higher profits, with increased number
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of transactions. Last, replacing individual local weather contracts with the climatic
zone-based contract increases the liquidity of the market.

The remaining part of the chapter is organized as follows. In the next section,
we provide a brief review of the research background and the motivation. Section
5.2 gives an overview of the temperature and the yield data used on this study.
Section 5.3 explains the novelly introduced GDD indices. And Section 5.4 describes
the efficiency test that is conducted to the indices in detail.

5.1 Application of temperature-based derivatives

in agricultural risk management

The primary concern of agricultural producers is the weather risks embedded in the
industry. Second to the USA, China has become one of the largest market for agri-
cultural insurance with its great potential demand [48]. Among all the agricultural
risk hedging instruments discussed so far, weather insurances and derivatives are the
most widely studied in the literature. Despite that traditional damaged-based insur-
ance contracts are one kind of financial hedging instruments, some disadvantages are
inherent in those contracts. Farmers have to prove their damage before they get any
indemnity which leads to high administration costs on both sides [45, 49]. Moreover,
traditional insurance bears the problem of asymmetric information, in particular ad-
verse selection and moral hazard. This means that farmers have better information
about their production risk and behavior than insurers. To overcome this imbalance
additional costs arise [45, 49]. To increase efficiency of farmers’ money and public
funding, alternative instruments for risk transfer like weather index insurance or
weather derivatives should be included in the portfolio. That those instruments
are feasible, even in developing countries is shown by several examples all over the
world: e.g. Malawi, Ethiopia, India, Vietnam, Thailand, Mongolia, Mexico, Central
America, Brazil, and Ukraine [55].

Given the size and importance of China, studies of efficiency of weather index
insurance or weather derivatives are comparatively scarce for China. According to
Heimfarth and Musshoff [9], 70% of the Chinese population are farm households who
are heavily affected by yield variations caused by weather uncertainty. Second to the
USA, China has become one of the largest markets for agricultural insurance with
a great potential demand [48]. Existing studies indicate that weather derivatives
can reduce agricultural risks associated with yield variations. Sun et al. [51] ana-
lyzed the efficiency of weather derivatives written on precipitation and temperature
indices. They measured the risk reduction power for corn production in Northeast
China using the mean root square loss (MRSL). The results of Sun et al. [51] in-
dicated that weather derivatives will only be efficient when the yield variation can
be explained by the weather index to a certain degree. Pelka et al. [52] found that
precipitation-based weather derivatives can reduce yield risk of maize based on data
of eight Chinese provinces. Ender and Zhang [10] studied the risk hedging power of
weather options written on growth degree-day (GDD) indices using efficiency tests
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proposed by Vedenov and Barnett [12]. They applied wheat and rice yield data from
Beijing and Shanghai. By comparing the distributions of farmers’ revenues with and
without GDD put options, the authors concluded that GDD options can reduce the
fluctuations of farmers’ income.

In reality, risk hedging for farm households is still systematically underdevel-
oped in China. The difficulty in launching weather derivatives for Chinese farmers
is twofold. First, the willingness of farmers to purchase such risk hedging instru-
ments is comparatively low, due to destitution and the lack of education. According
to Kong et al.’s study [53] of willingness to pay for weather insurance on Chinese
farm households , the authors concluded that the demand of Chinese farmers for
such insurance is elastic and highly correlated with price and compensation. Tur-
vey and Kong [8] suggested to cut the prices for Chinese farmers and to launch
subsidies if necessary as a result from their survey. Second, the derivative mar-
ket in China is still in a piloting stage without a fully developed regulating system
[52, 54]. Despite the fact that agricultural insurance has been authorized by the
China Insurance Regulatory Commission in 2004 [53], there is still a long way to
go to achieve greater market penetration. By the year 2007, only 0.2% of the gross
domestic product (GDP) of agriculture was insured [56]. In the same year, existing
agricultural insurance schemes launched by the Chinese government were identified
by the World Bank to be over-priced [54].

Additionally to problems arising from the current economic situation in China,
designing an efficient type of weather derivative contracts is another challenge for
launching weather derivatives in China. To be specific, prices of weather derivative
contracts are derived from weather processes which are highly localized. As a result,
the prices should theoretically vary from place to place with otherwise unchanged
contract specifications. But for the conventional city-based contracts, it is very time
consuming to implement the valuation city by city. Increased transaction costs, low
liquidity and inaccessible weather data are the major disadvantages of city-based
contracts. Goncu and Zong [15] proposed to reduce the model dimension of cross-
regional contract pricing in China by using a basket option covering multiple cities.

5.2 Data overview

In this study, we select eleven Chinese cities regarding to the Standard of Climatic
Zone Partition of China which is a typical partition method used by Chinese archi-
tects for the purpose of distinguishing construction standards among regions with
different climate characteristics. According to the standard, mainland China is di-
vided into seven climatic zones according to the climatic patterns of different regions.

The representative cities in this study are chosen as they are the capital cities
of the nine most agricultural productive provinces. This approach ensures that
the locations of representative cities are distributed evenly, and that the result is
relevant for the highest possible number of inhabitants. Table 1 gives an overview
of the cities included in the study, and their corresponding agricultural districts and
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climatic zones.Table 5.1 gives an overview of the cities included in the study, and
their corresponding agricultural districts and climatic zones.

Table 5.1: Agricultural cities

Climatic zone City District
I Harbin Heilongjiang
I Changchun Jilin
II Beijing Municipality
II Shijiazhuang Hebei
II Ji’nan Shangdong
II Zhengzhou He’nan
III Nanjing Jiangsu
III Hefei Anhui
III Wuhan Hubei
III Hangzhou Zhejiang
III Nanchang Jiangxi

In order to calculate GDD indices and option prices, thirty years (from Jan.
1984 to Dec. 2013) of daily average temperature data collected from the China
Meteorological Data Sharing Service System is used. Additionally, twenty-four years
(from Jan. 1984 to Dec. 2007) of annual yield data collected from the China
Agricultural Data Sharing System are used to conduct the efficiency tests. Note
that we apply the yield data rather than the production data as production also
depends on the crop acreage which changes from year to year.

5.3 Optimal city-based growth degree-day (GDD)

index and climatic zone-based GDD contract

design

Traditionally, the growth degree-day index is defined to be equal to the offset part of
daily average temperature Tt that exceeds the optimal growth temperature T optimal

of a particular crop, which can be expressed as1:

GDDt “ maxrTt ´ T
optimal, 0s. (5.1)

Given that the purpose is to manage yield variation risks due to the temperature
change, the aforementioned definition of the GDD can be rather unprecise and of
low-efficiency. The reason is that it by assumption only considers the impact of
higher temperature on the crop yields, which, in reality, is not true. As a matter
of fact, different species of crops have different responses to temperature changes.
During the growing phase, some crops might be benefited from higher temperature,

1Note: GDD indices are only considered on a city basis in this section of the thesis.

66



Chapter 5. Optimal growth degree-day index design: agricultural risk
management in China

while some might prefer lower temperature. In this section, we define three different
functional growth degree-day (GDD) indices. We then apply the continuous auto-
regressive (CAR) model [2] to model the temperature evolution and to compute the
prices of European call options that are written on the GDD indices. At last, an
efficiency comparison is conducted among the GDD indices basing on their option
prices.

According to the result of Chapter 4, the stochastic seasonal variation (SSV)
model provides a dominant performance, compared to the Alaton model [1], the CAR
model [2] and the Spline model [3], on the temperature modeling basis. However,
due to the fact that there is no benchmarking market data of temperature-based
derivative contract prices, we can hardly be sure about the SSV model’s accuracy
level in terms of derivative pricing as only the Monte Carlo simulation can be applied
when it comes to pricing. On the other hand, the CAR model [2] exhibits a similarity
with the SSV model throughout the study, with comparatively robust price results
in both the approximation formulae and the Monte Carlo simulation (See Section
4.3 for more details). Thus, we choose the CAR model in the following chapter as
the pricing mechanism for GDD contracts.

5.3.1 Designing the optimal city-based GDD index

Absolute deviation-based GDD index

We name the first type of city-based GDD indices the absolute deviation-based
GDD, by which we assume that positive and negative deviations of daily average
temperature (DAT) from the optimal growth temperature have same impacts on the
crop yield. In consequence, given the optimal growth temperature of a particular
crop T optimal, the GDD index of day t equals to the absolute value of deviations from
T optimal, which can be analytically expressed as:

GDDabsptq “ abspT ptq ´ T optimalq, (5.2)

where T ptq denotes the DAT of day t.
Considering a GDD contingent claim with contract period pt1, t2q, its accumu-

lated GDD index equals to the summation of daily indices, which follows:

GDDabspt1, t2q “
t2
ÿ

s“t1

GDDabspsq. (5.3)

In a more general case, for all types of daily GDD indices, the corresponding
accumulated GDD in the time interval pt1, t2q satisfies:

GDDpt1, t2q “
t2
ÿ

s“t1

GDDpsq. (5.4)
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Correlation-adjusted GDD index

As well as the absolute deviation-based GDD index, the correlation-adjusted GDD is
defined by temperature deviations from the optimal growth temperature. However,
signs of deviations are taken into account in this case, in order to reflect different
impacts of temperature on the crop yield. Three possible forms of correlation-
adjusted GDD on day t are defined below.

• GDD based on the absolute deviation

GDDcoradptq “ abspT ptq ´ T optimalq; (5.5)

• GDD based on the positive deviation

GDDcoradptq “ maxrT ptq ´ T optimal, 0s; (5.6)

• GDD based on the negative deviation

GDDcoradptq “ minrT ptq ´ T optimal, 0s, (5.7)

where T ptq is the DAT on day t.
The first form in Eq. 5.5 replicates the situation introduced by the absolute

deviation-based GDD index in Section 5.3.1. Meanwhile, the second (i.e GDD based
on the positive deviation)/third (i.e GDD based on the negative deviation) form
assumes that only the positive/ negative skewness affects the crop yield. Based on
the city scale, the form of correlation-adjusted GDD indices is selected to maximize
the correlation between the annual accumulated GDD and the annual yield. Note
that the annual accumulated GDD is computed from the summation of daily GDD
indices during the crop’s growing phase in the year.

GDD indicator function

We define the last type of the city-based GDD with an indicator function. Denote
the optimal growth temperature to be T optimal, the GDD indicator function of day
t follows:

GDDindf ptq “ ApT ptq´T optimalqˆ1tT ptqěT optimalu`BpT ptq´T
optimal

qˆ1tT ptqăT optimalu,
(5.8)

where T ptq is the DAT on day t. Meanwhile, Eq. 5.8 can be also written as:

GDDindf ptq “ AˆmaxrT ptq ´ T optimal, 0s `B ˆminrT ptq ´ T optimal, 0s. (5.9)

Note that Eq. 5.9 expresses the GDD index on a daily scale. Give the contract
period pt1, t2q, the accumulated GDD GDDipt1, t2q follows Eq. 5.4.
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The GDD indicator function assumes that both the positive and the negative
deviations from the optimal growth temperature affect the crop yield, but with
different levels of impact. The scaling parameters A and B respectively represent
the impact of higher and of lower temperature that deviates from the optimal growth
temperature, which can be estimated via the optimization mechanism:

argmax
A,B

|corrrGDDindf
k , Yks|, (5.10)

where Yk denotes the time series of annual yields in k years, and GDDindf
k refers

to the time series of corresponding annual GDD indices that are computed from
accumulations of daily GDDs during the crop’s growing phase.

5.3.2 Designing climatic zone-based GDD contracts

The standard of climatic zone partition divides mainland China into seven parts
according to the climatic patterns of different regions. Due to the large land area of
China, a well-designed climatic zone-based temperature contract can be particularly
economic and of great convenience. As the climatic zone-based GDD produces an
unique temperature index for all the cities in the same climatic zone, one of the most
outstanding advantage of such an index is cost reduction. To be specific, a spatially
standardized index saves the computational time of the modeling. Further, it brings
down the transaction cost when an unique index is traded in all the cities in the
climatic zone. As a result, such contract is beneficial for a variety of sectors that are
exposed under weather risks, such as agriculture-related industries, banking sector,
insurance companies, reinsurance, government, agricultural insurance schemes, etc.
The second advantage of the climatic zone-based weighted quadratic index is that
it incorporates the idea of spatial aggregation which is claimed to be able to reduce
the basis risk of temperature-based derivatives.

In this section, we introduce a new class of GDD contracts which is based on a
climatic zone scale. Three different approaches of calculating climatic zone-based
GDD indices are listed. In the empirical study, we valuate a range of European
option contracts written on the proposed indices using the CAR model [2]. Next,
efficiency comparisons are conducted both between the climatic zone-based and city-
based GDD indices and among the three types of climatic zone-based indices.

Average climatic zone-based GDD contracts

To calculate the climatic zone-based GDD, we first select a certain number of repre-
sentative cities that distribute evenly in the climatic zone. Let GDDiptq denote the
GDD index of representative city i, the climatic zone-based index can be expressed
as a weighted function of city-based indices, which follows:

GDDpw, tq “
n
ÿ

i“1

wi ˆGDDiptq, (5.11)
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where n is the total number of representative cities selected from the climatic
zone, and w “ wi, i “ 1, 2, ..., n is the set of weight parameters of the representative
cities. Therefore, it is crucial to find an suitable way to define the weight, as the
index value GDDpw, tq changes accordingly, as well as the contract efficiency.

In the first definition of weights, we let the weight parameter have equal values
in all the representative cities from the same climatic zone. Given the total number
of representative cities in the climatic zone n, the climatic zone-based weight is
expressed as:

wi “
1

n
. (5.12)

In this case, the climatic zone-based GDD is simply the average value of GDD
indices of representative cities. Therefore, we name this type of climatic zone-based
GDD index the average climatic zone-based GDD.

Analogue to the accumulated city-based index , the accumulated climatic zone-
based index GDDpw, t1, t2q is given by:

GDDpw, t1, t2q “
t2
ÿ

s“t1

GDDpw, sq. (5.13)

Yield-weighted climatic zone-based GDD contracts

Different from the average climatic zone-based GDD, we define the second type
of climatic zone-based weights with the yield that a particular crop grows in the
representative city. Specifically, considering a particular crop, we let wi be the
proportion that is expressed by the crop’s annual yield in city i over the total annual
yield of all the representative cities from the climatic zone. Thus, wi follows:

wiptq “
Yiptq

řn
s“1 Ysptq

, (5.14)

where Yiptq is the crop yield in city i at year t.

Optimal-weighted climatic zone-based GDD contracts

The third type of climatic zone-based GDD weights are designed to maximize the
absolute value of the correlation between the climatic zone-based GDD index and
the total yield. Let Yi be the set of annual crop yields in city i during time interval
Ω, wi satisfies:

w “ argmax|corrrGDDpw,Ωq,
n
ÿ

s“1

Yss|, (5.15)

with the constraint equality:
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n
ÿ

s“1

ws “ 1. (5.16)

5.4 Efficiency comparison among GDD contracts

5.4.1 GDD Contract Optimalisation

In this part, we propose a method to find out the optimal tick size for the GDD
contracts under the framework of Vedenov and Barnett’s work [12]. Despite that
the majority of empirical studies choose to neglect the discussion on the tick size of
the weather contracts, the tick size is a crucial factor in terms of contract designing
and optimalisation. Let Ȳ denote the long-term average yield of a crop, and Y det

t

denote the annual time-detrended yield of year t, which follows:

Y det
t “ Yt

Y tr
t

Y tr
t0

. (5.17)

where Y tr
t expresses the deterministic component of the annual yield Yt, which

can be estimated by regressing the following equation:

log pYtq “ a0 ` a1pt´ t0q. (5.18)

Thus, the optimal tick size λ of a GDD contract can be solved by minimizing
Eq. 5.19:

ÿ

t

maxrȲ ´ pY det
t ` λ ˚ P ´ λ ˚ P0q, 0s

2
. (5.19)

where P is the option prices under a CAR model [2] and P0 is the corresponding
payoffs. Under this condition, the tick size minimizes the aggregated semi-variance
of the loss [12, 57].

5.4.2 An empirical efficiency test

In order to compare the efficiency of the city-based and the climatic zone-based
GDD contracts in terms of risk reduction for farm households, we look into the
annual revenues of a certain crop with and without the considered GDD contracts.
According to Vedenov and Barnett [12], the revenue without the GDD contract
equals to the gross income of selling the commodity, which follows:

Rt “ pY det
t , t “ 1, ..., T, (5.20)

while the revenue with the GDD contract is given by:

R1t “ pY det
t ` contract payoff ´ contract price, t “ 1, ..., T, (5.21)
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where p is the commodity price of the corresponding crop, and Y det
t is the time-

detrended yield.
We apply three test criteria used by Vedenov and Barnett [12] in order to gain

some implications on the efficiency of weather contracts analytically. The definition
and the mathematical expressions of the test criteria are given below:

• The mean root square loss (MRSL).

MRSL “

g

f

f

e

1

T

T
ÿ

t“1

rmaxppȲ ´Rt, 0qs2. (5.22)

• The value-at-risk (VaR).

PrpR ă V aRαq “ α. (5.23)

• The certainty-equivalent revenues (CERs).

U “ 1´ expp´γRq. (5.24)

The first criterion, the MRSL, measures the semi-variance of the revenue dis-
tribution. A smaller MRSL indicates a lower level of revenue variation, thus less
pronounced yield risks. Meanwhile, the VaR is an inverse function of the cumulative
density function of the return distribution which measures the value of return at a
given risk level. By computing the VaR at different risk values, one can gain a gen-
eral understanding about the return distribution. Last, the CERs compute expected
revenues with a given level of risk aversion. Both the VaR and the CERs assess the
risk hedging power of an weather contract in different ways with the MRSL, in which
case a smaller value refers to a lower degree of risk exposition.

Remark that in the case of the CERs, we estimate the risk aversion level γ [58]
by the following equation:

ErUpRqs “ Upp1´ θq ˚ ErRsq. (5.25)

We then compute the value of γ in Eq.5.24 with different risk premiums θ, i.e.
0%, 5% and 10%. However, we find that with the yield data of Chinese cities, the
results across cities and risk premiums exclusively tend to 1. Under this condition,
the values of the CERs of a given city shall be proportional to the corresponding
values of the risk premiums. Thus, in Table 5.4 and 5.5, only the CERs with risk
premium 5% are given.

Our investigation of city-based and climatic zone-based GDD contracts can be
split into two consecutive efficiency tests. In the first efficiency test, we look into the
risk hedging performances of European call options written on the three city-based
indices. Two scenarios are considered when different city-based GDD indices are
compared. The first one (Case 1) is an ideal situation in which weather contract
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transactions take place in all the representative cities, while the second situation
(Case 2) is more practical which only allows one trading spot in each climatic zone.
In Case 2, the trading spots of each climatic zone are Changchun (Climatic zone
I), Shijiazhuang (Climatic zone I), and Hefei (Climatic zone I). The trading spots
are selected as they are located in the center of other representative cities in their
climatic zone. After the most efficient city-based index is determined, we conduct
the second efficiency test on the climatic zone-based GDD contracts, aiming to find
the best way to define weight parameters. Eventually, we compare the risk hedging
power of the city-based and the climatic zone-based GDD contracts, in order to
understand the practical value of the climatic zone-based contracts.

5.5 Results and Discussion

5.5.1 Efficiency analysis of city-based GDD indices

In this section, we present analytical results of the efficiency test on the city-
based GDD indices. The three city-based indices, i.e. the absolute deviation-based
GDD, the correlation-adjusted GDD, and the GDD indicator function, are com-
pared in terms of the mean root square loss (MRSL), the value-at-risk (VaR) and
the certainty-equivalent revenues (CERs). Discussions on the performances of dif-
ferent GDD indices are made, with the purpose to determine the most suitable and
efficient hedging underlying for agricultural risk reduction in China.

The MRSLs

Table 5.2 and 5.3 display the values of four types of MRSLs, which are obtained
from farmers’revenues without any GDD contracts, and with GDD call options
respectively written on the three different city-based GDD indices.

Table 5.2 describes a situation where accesses to GDD derivative transactions
exist in all the representative cities. As the MRSL measures the semi-variance of the
loss distribution, a smaller MRSL indicates a less risky situation. Three observations
are made from Table 5.2.

Table 5.2: Efficiency comparison among city-based GDD contracts: MRSL (Case 1).

City Climatic Without Absolute Correlation- Indicator
zone contract deviation Change adjusted Change function Change

Haerbin I 318.60 294.28 -0.08 303.82 -0.05 274.68 -0.14
Changchun 217.16 203.46 -0.06 212.50 -0.02 178.97 -0.18

Beijing II 153.10 95.85 -0.37 136.26 -0.11 100.53 -0.34
Shijiazhuang 294.83 161.37 -0.45 268.30 -0.09 267.17 -0.09

Ji’nan 309.45 160.51 -0.48 265.63 -0.14 295.06 -0.05
Zhengzhou 339.69 189.87 -0.44 286.00 -0.16 228.01 -0.33
Nanjing III 136.33 123.51 -0.09 129.91 -0.05 135.18 -0.01
Hefei 288.25 268.97 -0.07 260.87 -0.09 288.21 0.00

Wuhan 62.96 60.78 -0.03 59.69 -0.05 61.92 -0.02
Hangzhou 202.99 187.46 -0.08 180.27 -0.11 200.06 -0.01
Nanchang 182.02 178.00 -0.02 158.04 -0.13 180.42 -0.01

The first observation is that given a particular type of GDD indices, its MRSL-
reduction levels change from place to place. For instance, for the cities in climatic
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zone II, absolute deviation-based GDDs provide an outstanding performance with
significantly lower MRSLs, which indicate a lower level of revenue fluctuations, com-
pared to the correlation-adjusted GDD and the GDD indicator function. However,
when it comes to the cities in climatic zone I, the GDD indicator function gives the
best result among the three GDD indices. Similarly, in climatic zone III, MRSLs ob-
tained from the GDD indicator function have the highest values than those obtained
from the absolute deviation-based GDD and the correlation-adjusted GDD.

The second observation is that MRSLs obtained from a given type of GDD
indices tend to stay close to each other in the same climatic zone. Typical examples
can be found in climatic zone II when the absolute deviation-based GDD is applied,
and in climatic zone III when the GDD indicator function is applied. As a matter of
fact, the only exception of the pre-described phenomenon is in the case of the GDD
indicator function, with which MRSLs have huge variances in climatic zone II.

Last, compared with correlation-adjusted GDDs and GDD indicator functions,
absolute deviation-based GDDs tend to provide the most stable and acceptable
results in reducing MRSLs. To be specific, MRSLs obtained from absolute deviation-
based GDDs have either the lowest values (in climatic zone II), or the second lowest
values with limited differences from the lowest (in climatic zone I and III). On the
other hand, the correlation-adjusted GDD falls behind in the MRSL comparison in
climatic zone I and II, while in climatic zone III, it gives close result with the absolute
deviation-based GDD. Meanwhile, the GDD indicator function only outperforms the
other two GDDs in climatic zone I, while in climatic zone III, it give the poorest
performance with highest MRSLs among the three types of GDD indices.

In Table 5.3, only one representative city is allowed to operate GDD contract
exchanges in each climatic zone. The findings from Table 5.3 are threefold.

Table 5.3: Efficiency comparison among city-based GDD contracts: MRSL (Case 2).

City Climatic Without Absolute Correlation- Indicator
zone contract deviation Change adjusted Change function Change

Haerbin I 318.60 301.32 -0.05 308.28 -0.03 262.86 -0.17
Changchun* 217.16 203.46 -0.06 212.50 -0.02 178.97 -0.18

Beijing II 153.10 96.73 -0.37 139.26 -0.09 144.71 -0.05
Shijiazhuang* 294.83 161.37 -0.45 268.30 -0.09 267.17 -0.09

Ji’nan 309.45 165.88 -0.46 280.98 -0.09 276.69 -0.11
Zhengzhou 339.69 191.60 -0.44 309.04 -0.09 304.38 -0.10
Nanjing III 136.33 125.44 -0.08 124.76 -0.08 136.33 0.00
Hefei* 288.25 268.97 -0.07 260.87 -0.09 288.21 0.00
Wuhan 62.96 60.82 -0.03 59.25 -0.06 62.86 0.00

Hangzhou 202.99 188.19 -0.07 174.83 -0.14 202.80 0.00
Nanchang 182.02 169.26 -0.07 155.86 -0.14 181.34 0.00

First, the assumption that only allows one trading spot in the climatic zone
causes small changes in the MRSL. Contracts written on the GDD index of another
location in the same climatic zone (Case 2) tend to have lower risk hedging efficiency
compared with those written on their local GDD index (Case 1). However, it is
not always the case that the efficiency will be reduced if the GDD contract is not
written on the local DAT index. For instance, MRSLs of the cities in climatic zone
III decrease exclusively in Case 2 when the correlation-adjusted GDD is applied.

Second, climatic zone-based patterns can be observed from different angles of
MRSLs. As it has been already discussed in the previous paragraphes, MRSLs of
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the cities from the same climatic zone have close values when the type of GDD
indices is fixed. Moreover, from Case 1 to Case 2, MRSLs change in the same
manner (decrease or increase) for the cities in the same climatic zone for a given
type of GDD indices. One typical example is when the correlation-adjusted GDD is
applied, all the cities from climatic zone II and III display a lower MRSL in Case 2.

Third, the order of risk hedging powers of the three GDD indices remains the
same in Case 2. Even when only one exchange spot is allowed in each climatic zone,
the absolute deviation-based GDD still outperforms the other two types of GDD
indices.

The VaRs

Table 7.3 and 7.4 in the Appendix list VaRs respectively at risk levels 5%, 10%
and 20%, along with the increase of the VaR by holding a corresponding GDD
contract. Table 7.3 gives the VaR result in Case 1, which assumes that there are
GDD contract transactions in all the representative cities, while Table 7.4 displays
the VaRs in Case 2, which only allows one trading spot in each climatic zone.

We can find mainly two similarities between the result of the MRSL and the VaR
measures. First, inconsistency exists in the performances of a given type of GDD
index. For example, at risk level 5%, the absolute deviation-based GDD provides the
highest VaRs in climatic zone II, but the lowest in climatic zone I. Second, the more
realistic situation, in which there is only one trading spot among the representative
cities in the climatic zone, results in lower risk hedging efficiency of GDD contracts.
The major reason is due to the geographical risk caused by purchasing contracts
written on GDD indices of a different location. However, different from the result
of MRSLs, climatic zone-based pattern becomes less pronounced in the case of the
VaR. To be specific, given the type of GDD indices, larger variances can be observed
in the VaRs in the same climatic zones. Further, signs of VaR changes, that are
caused by switching from Case 1 to Case 2, vary from city to city in the climatic
zone.

Besides the observations discussed above, one can also notice that the perfor-
mances of GDD indices vary at different risk levels. For instance, the absolute
deviation-based GDD shows a higher level of risk reduction at risk level 5% com-
pared to the correlation-adjusted GDD and the GDD indicator function. However,
at risk level 20%, such superiority of the absolute deviation-based GDD dims as the
correlation-adjusted GDD tends to produces higher VaRs for the cities from climatic
zone III. Nevertheless, according to Table 7.3 and 7.4, we still consider the absolute
deviation-based GDD to be the most preferable index taking in to account that the
information at risk level 5% is more valuable in the case of risk management for Chi-
nese farmers who are highly risk-averse. Additionally, the absolute deviation-based
GDD tends to produce the most stable performances among all the three types of
GDD indices.
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The CERs

In Table 5.4 and 5.5, CERs with risk premium 5% are given respectively in Case 1
and Case 2.

Table 5.4: Efficiency comparison among city-based GDD contracts: CER (Case 1).

City Climatic Without Absolute Correlation- Indicator
zone contract deviation Change adjusted Change function Change

Haerbin I 535.77 570 0.06 559.06 0.04 591.72 0.10
Changchun 1001.27 1020.60 0.02 1013.07 0.01 1045.49 0.04

Beijing II 523.33 584.58 0.12 547.32 0.05 573.39 0.10
Shijiazhuang 236.90 367.49 0.55 269.15 0.14 271.23 0.14

Ji’nan 298.11 440.09 0.48 350.06 0.17 315.26 0.06
Zhengzhou 209.80 359.60 0.71 270.84 0.29 328.58 0.57
Nanjing III 674.57 688.7 0.02 98.82 -0.85 675.95 0.00
Hefei 405.35 427.2 0.05 441.80 0.09 405.58 0.00

Wuhan 524.97 529.53 0.01 531.23 0.01 524.91 0.00
Hangzhou 346.47 365.10 0.05 372.55 0.08 349.14 0.01
Nanchang 76.07 80.16 0.05 101.85 0.34 77.79 0.02

Table 5.5: Efficiency comparison among city-based GDD contracts: CER (Case 2).

City Climatic Without Absolute Correlation- Indicator
zone contract deviation Change adjusted Change function Change

Haerbin I 535.77 562.46 0.05 553.91 0.03 600.62 0.12
Changchun 1001.27 1020.14 0.02 1013.07 0.01 1045.49 0.04

Beijing II 523.33 585.37 0.12 540.07 0.03 537.09 0.03
Shijiazhuang 236.90 367.22 0.55 269.15 0.14 271.23 0.14

Ji’nan 298.11 436.11 0.46 332.32 0.11 336.27 0.13
Zhengzhou 209.80 357.97 0.71 247.01 0.18 251.33 0.20
Nanjing III 674.57 685.79 0.02 93.87 -0.86 674.54 0.00
Hefei 405.35 427.05 0.05 441.80 0.09 405.58 0.00

Wuhan 524.97 528.99 0.01 531.40 0.01 524.83 0.00
Hangzhou 346.47 362.46 0.05 377.13 0.09 346.88 0.00
Nanchang 76.07 90.15 0.19 104.02 0.37 76.82 0.01

The result of the CER measure supports the conclusion made from the previous
sections. Further, great similarities exist between the CERs and the MRSLs. Typical
expositions of the similarity are in climatic zone II when absolute deviation-based
GDDs are considered and in climatic zone III when GDD indicator functions are
considered. The former combination of climatic zones and GDD indices always
produces the highest level of risk reduction among the three different types of GDDs,
while the latter combination always produces the lowest level of risk reduction.
Moreover, from Table 5.4 and 5.5, we can again find the climatic zone-based pattern
that is described by MRSLs. Finally, despite that the performances of GDD indices
displays an inconsistency from climatic zone to climatic zone, the absolute deviation-
based GDD occupies the dominant place by producing comparatively better and
more stable results. Such stability indicates reliability of the risk hedging power of
the GDD index.

5.5.2 Efficiency analysis of climatic zone-based GDD con-
tracts

According to the conclusion of the previous section, we hire the absolute deviation-
based GDD index as the city-based index in this section. Subsequential, the climatic
zone-based index is obtained regarding to the weight of each representative city in
the climatic zone. Therefore, different types of weights lead to different values of
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climatic zone-based indices. This section includes three different types of weights
described in Section 5.3.2, i.e. the average weight, the yield-based weight and the
optimized weight. We first compare the result of the efficiency test that is based
on option contracts written on different climatic zone-based GDD indices. The
objective is to find the most efficient definition of climatic zone-based weights. Next,
we conduct an efficiency comparison between the climatic zone-based contract and
the city-based contract2, through which we hope to find out whether the climatic
zone-based contract is capable of replacing the city-based contract as an agricultural
risk management tool in China.

The MRSLs

Table 5.6 lists the MRSLs of climatic zone-based option contracts with respectively
the average GDD (Weight: Case 1), the yield-weighted GDD (Weight: Case 2) and
the optimal-weighted GDD (Weight: Case 3). The major observations from Table
5.6 are threefold.

First, the climatic zone-based GDD contract can be considered as an effective
risk management tool in terms of hedging weather risks for Chinese farm households.
As it is shown in Table 5.6, MRSLs are exclusively reduced by holding a climatic
zone-based GDD contract in all the cities considered.

Second, the three different types of climatic zone-based GDD indices generate
fairly close results in the MRSL measure, which indicates very similar performances
in smoothing return fluctuations. Especially between the average GDD contract and
the yield-weighted GDD contract, the percentages of the MRSL reduction stays the
same in nine out of eleven cities.

Last, when the MRSLs of climatic zone-based contracts are compared with those
of city-based contracts, there does not exist an unique way of defining the climatic
zone-based index in order to achieve a better performance. According to Table 5.6,
none of the three types of climatic zone-based indices manages to provide exclusively
lower MRSLs than the city-based index. Namely, the average GDD and the yield-
weighted GDD fail in Climatic zone I and III, while the optimal-weighted GDD fails
in climatic zone II. Consequently, we have to leave the climatic zone-based weight
flexible in order to adjust the performance of climatic zone-based contracts. In the
case of the MRSL measure, we recommend the combination of hiring the average
GDD index for cities in Climatic zone II, and hiring the optimal-weighted GDD for
cities in Climatic zone I and III as it generates the best result. Specifically, the
MRSLs obtained from the combination are always smaller than those obtained from
city-based contracts in Case 2 3. Even in Case 1 4, eight out of eleven cities have

2Note: City-based contracts in this section only refer to those city-based contracts written
on the absolute deviation-based GDD index, as they are identified as the most suitable type of
contract on the city scale for agricultural risk management in China (see Section 5.5.1).

3Note: Case 2 of city-based contracts describes a situation in which only one representative city
is allowed to issue GDD derivative contracts in each climatic zone.

4Note: Case 1 of city-based contracts describes a situation in which all the representative city
are allowed to issue GDD derivative contracts.
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lower MRSLs by following the scheme described by the combination.

Table 5.6: Efficiency comparison among climatic zone-based GDD contracts: MRSL.

City Climatic Without Weight: Change Weight: Change Weight: Change
zone contract Case 1 Case 2 Case 3

Haerbin I 318.60 300 -0.06 300.65 -0.06 295.11 -0.07
Changchun 217.16 203 -0.06 203.55 -0.06 200.07 -0.08

Beijing II 153.10 95.3 -0.38 94.9 -0.38 95.86 -0.37
Shijiazhuang 294.83 159 -0.46 159.38 -0.46 169.24 -0.43

Ji’nan 309.45 163 -0.47 163.36 -0.47 173.20 -0.44
Zhengzhou 339.69 189 -0.44 189.31 -0.44 200.43 -0.41

Nanjing III 136.33 126 -0.08 125.13 -0.08 124.26 -0.09
Hefei 288.25 269 -0.07 267.91 -0.07 262.82 -0.09

Wuhan 62.96 61.8 -0.02 61.53 -0.02 61.54 -0.02
Hangzhou 202.99 191 -0.06 189.46 -0.07 186.96 -0.08
Nanchang 182.02 170 -0.07 168.28 -0.08 163.70 -0.10

The VaRs

Table 7.5 provides the VaRs of climatic zone-based contracts. Inconsistencies can
be noticed between the result of the VaR measure and of the MRSL measure. The
findings are discussed in the following.

First, despite that the VaR result tends to produce a higher level of deviations
between different types of climatic zone-based indices than the MRSL, one can still
observe similarity between the average GDD and the yield-weighted GDD. As it is
shown in Table 7.5, for the same city, the VaRs obtained from the average GDD
and the yield-weighted GDD tend to stay in a very close interval, while the VaR
obtained from the optimal-weighted GDD tends to have larger difference with the
other two types of VaRs.

Second, according to Table 7.5, climatic zone-based contracts increase the values
of VaRs on the base of those without GDD contracts in most of the cities. It
indicates a risk reduction that is resulted from purchasing the climatic zone-based
GDD contract.

Third, the performance of climatic zone-based contracts becomes less promising
in the VaR measure. According to the result of MRSLs, by combining different
types of weighted GDD indices, the climatic zone-based contract can always have
a higher degree of risk reducing efficiency than the city-based contract. However,
it is no longer the case in the VaR measure. Taking the VaRs at risk level 5% in
Case 2 ( the more practical case!) as an example, all the three types of climatic
zone-based contracts fail in the comparison with city-based contracts in four out of
eleven cities, namely Changchun, Nanjing, Hefei and Hangzhou. That is to say, no
matter which type of climatic zone-based contract is applied, the city-based contract
is still a better risk hedging instrument in those four cities.
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Last, the VaR result suggests that the average GDD contract and the yield-
weighted GDD contract are better options than city-based contracts in Climatic zone
II, as they produce higher VaRs for all the cities in the climatic zone. Under this
circumstance, we recommend the average GDD contract considering its simplicity.

The CERs

The result of climatic zone-based CERs is shown in Table 5.7. Great similarity with
the result of MRSLs can be found.

First of all, being consistent with the result of MRSLs and of VaRs, the CERs
indicate that climatic zone-based contracts manage to reduce yield variations by
producing greater CERs. Further, the CERs result reveals the similarity between
the average GDD and the yield-weighted GDD as well as MRSLs and VaRs.

Furthermore, in the comparison with city-based contracts, the CERs result in
rather close conclusion with the MRSL, that is in Climatic zone I and III, the
optimal-weighted GDD contract outperforms all the other types of GDD contracts
which includes both city-based and climatic zone-based contracts, while in Climatic
zone II, the average GDD and the yield-weighted GDD contracts are the best choices.

Table 5.7: Efficiency comparison among climatic zone-based GDD contracts: CER.

City Climatic Without Weight: Change Weight: Change Weight: Change
zone contract Case 1 Case 2 Case 3

Haerbin I 535.77 563.7 0.05 562.99 0.05 568.88 0.06
Changchun 1001.27 1020.82 0.02 1020.40 0.02 1024.17 0.02

Beijing II 523.33 586.53 0.12 586.70 0.12 584.71 0.12
Shijiazhuang 236.90 368.95 0.56 368.85 0.56 361.87 0.53

Ji’nan 298.11 438.02 0.47 437.87 0.47 430.86 0.45
Zhengzhou 209.80 360 0.72 359.81 0.72 351.77 0.68

Nanjing III 674.57 685.29 0.02 686.19 0.02 688.20 0.02
Hefei 405.35 426.31 0.05 428.2 0.06 434.11 0.07

Wuhan 524.97 527.80 0.01 528.28 0.01 528.48 0.01
Hangzhou 346.47 360.4 0.04 362.12 0.05 365.67 0.06
Nanchang 76.07 89.48 0.18 90.97 0.20 95.40 0.25

5.6 Summary

In this section, we carry out efficiency tests in order to determine the optimal city-
based and climatic zone-based GDD indices for agricultural risk management in
China. Major conclusions are summarized in the following.

First, among all the three types of city-based GDDs, i.e. the absolute deviation-
based GDD, the correlation-adjusted GDD, and the GDD indicator function, the
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absolute deviation-based GDD is our primary recommendation as it provides overall
more robust results than the other two types of indices.

Second, efficiency results obtained from climatic zone-based GDD indices sug-
gests that climatic zone-based contracts can be a more efficient risk hedging instru-
ment compared with city-based contracts. Further, we recommend market partici-
pants who are exposed to the yield risk to purchase the climatic zone-based contract
written on the average GDD index, if he is located in climatic zone II; and to pur-
chase the climatic zone-based contract written on the optimal-weighted GDD index,
if he is located in climatic zone I or III.
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Conclusions

6.1 Research summary

The presented thesis constructed the fundamental modeling framework of temperature-
based weather derivatives in China on the theoretical and empirical basis. In the
first part of the thesis, existing temperature models and pricing approaches were
discussed deliberately taking into account the reality of Chinese market. Three es-
tablished temperature models respectively proposed by Alaton et al. [1], Benth et
al. [2] and Schiller et al. [3] were applied to model the daily average temperature
(DAT) data of twelve Chinese cities. Meanwhile, a novel temperature model con-
tains stochastic volatility modeling, namely the stochastic seasonal variation (SSV)
model, was introduced in order to achieve better goodness-of-fit and forecasting
power. Model comparisons were conducted among the four temperature models. In
the second part of the thesis, temperature-based derivative contracts were discussed
from a more practical perspective, which put emphasis on its usage as an agricultural
risk management tool. Three types of new temperature indices, namely the absolute
deviation-based GDD, the correlation-adjusted GDD, and the GDD indicator func-
tion, were proposed with the purpose of achieving greater degrees of risk reduction.
Further, temperature-based contracts on the climatic zone level were introduced
for the sake of spatial aggregation. Finally, efficiency tests involved the mean root
square loss (MRSL),the value-at-risk (VaR) and the certainty-equivalent revenues
(CER) were implemented with the aim to investigate the risk hedging power of the
proposed GDD indices.

Major findings of the study is summarized in the following.
First, there exists significant model risk in the temperature modeling. According

to the result of model comparison in Chapter 4, deviations in different levels can be
observed from the results of the four temperature models under investigation. Gen-
erally speaking, in the case of temperature modeling, the three stochastic models, i.e.
the Alaton model [1], the CAR model [2] and the SSV model, follow comparatively
close patterns. Especially in the error measure, monthly relative errors of the three
stochastic models tend to stay on a similar scale. However, in the case of derivative
pricing, huge deviations can be observed between the option prices obtained from
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the Alaton model [1] and those from the CAR model [2] and the SSV model.
Second, stochastic volatility modeling provided by the SSV model makes essential

improvements on both the goodness-of-fit and the forecasting power of temperature
models. As a result, the SSV model is considered to be the primary option for
temperature-based derivatives modeling and pricing in China. On the other hand,
the Spline model [3] displays an outstanding performance in the error measure. How-
ever, due to its instability with the residual normality, we wouldn’t recommend the
Spline model for application. Moreover, although the result of our model compari-
son suggests that the CAR model [2] has weaker performance than the SSV model.
As a classical stochastic temperature model, the CAR model provides rather robust
results. Especially in the pricing section, the CAR model produces close contract
prices between the Monte Carlo simulation and the approximation formula. Ad-
ditionally, option prices obtained from the CAR model and those from the Monte
Carlo simulation under the SSV model shows great similarity, which supports the
reliability of the pricing result. Thus, we consider the CAR model to be another
reliable model for temperature-based contract pricing.

Third, weather derivative contracts written on GDD indices are effective risk
hedging tools for agricultural risks that are related with yield variations in China.
Among all the three city-based GDD indices included in the study, namely the ab-
solute deviation-based GDD, the correlation-adjusted GDD, and the GDD indicator
function, the absolute deviation-based GDD is our primary recommendation as it
offers an overall stable performance with pronouncing risk reduction.

Fourth, deliberately-used climatic zone-based GDD contracts can be a more
efficient instrument for agricultural risk management than the city-based GDD con-
tract. Sufficient result suggests that for cities in climatic zone I and III, climatic
zone-based contracts written on the optimal-weighted GDD offers better risk re-
ducing performances than city-based contracts, and for cities in climatic zone II,
climatic zone-based contracts written on the average GDD and the yield-weighted
GDD performs better than the city-based contract.

6.2 Future research

In this section, we list four recommendations for future work with respect to the
results of this thesis.

First, considering the limited sample size of the out-of-sample test in the model
comparison, we suggest a back-testing comparison among the four temperature mod-
els, for the purpose of gaining stable results of their forecasting power.

Second, more elaborate analyses on price behaviors should be conducted to
learn more about the inherent model risk. Specifically, the major limitation of
temperature-based derivative study in China is the lack of market data of contract
prices, which give access to the market price of temperature risk. In this case,
utility-based models could be applied in empirical analyzes in order to investigate
the behavior of the market price of risk, thus take the entire research to another
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depth.
Third, for the research of agricultural risk management, we intend a study fo-

cused on GDD distributions. As the CAR model [2] prices temperature-based deriva-
tives with the assumption that the underlying indices are normally distributed, we
assume that with a deeper understanding of the GDD distribution, more precise
models for Chinese climatic-zone based GDD contracts can be derived.

Fourth, a temperature (weather)-yield regression model is recommended to be de-
duced and applied to Chinese data. The weather-yield model enables yield-forecast
based on the forecasting result of temperature (or other weather factors), with which
out-of-sample efficiency tests on GDD contracts can be then conducted.
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Appendix of figures

Figure A.1: Histograms of in-sample residuals from the Alaton model [1] (Year: 1983-
2012).
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Figure A.2: Histograms of in-sample residuals from the CAR model [2] (Year: 1983-2012).
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Figure A.3: Histograms of in-sample residuals from the Spline model [3] (Year: 1983-2012).
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Figure A.4: Histograms of in-sample residuals from the SSV model (Year: 1983-2012).
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Figure A.5: Q-Q plots of in-sample residuals from the Alaton model [1] (Year: 1983-2012).

−4 −2 0 2 4
−20

−10

0

10

20

Standard Normal QuantilesQ
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e Harbin

−4 −2 0 2 4
−20

−10

0

10

20

Standard Normal QuantilesQ
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e Changchun

−4 −2 0 2 4
−20

−10

0

10

20

Standard Normal QuantilesQ
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e Beijing

−4 −2 0 2 4
−20

−10

0

10

20

Standard Normal QuantilesQ
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e Tianjin

−4 −2 0 2 4
−20

−10

0

10

20

Standard Normal QuantilesQ
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e Nanjing

−4 −2 0 2 4
−20

−10

0

10

20

Standard Normal QuantilesQ
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e Hangzhou

−4 −2 0 2 4
−20

−10

0

10

20

Standard Normal QuantilesQ
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e Shanghai

−4 −2 0 2 4
−20

−10

0

10

20

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

Hainan

−4 −2 0 2 4
−15

−10

−5

0

5

10

Standard Normal QuantilesQ
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e Guangzhou

−4 −2 0 2 4
−15

−10

−5

0

5

10

Standard Normal QuantilesQ
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e kunming

−4 −2 0 2 4
−10

−5

0

5

10

15

Standard Normal QuantilesQ
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e Lahsa

−4 −2 0 2 4
−30

−20

−10

0

10

20

Standard Normal QuantilesQ
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e Urumchi

88



Chapter A. Appendix of figures

Figure A.6: Q-Q plots of in-sample residuals from the CAR model [2] (Year: 1983-2012).
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Figure A.7: Q-Q plots of in-sample residuals from the Spline model [3] (Year: 1983-2012).
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Figure A.8: Q-Q plots of in-sample residuals from the SSV model (Year: 1983-2012).
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Figure A.9: ACF of residuals from the Alaton model [1] (Year: 1983-2012).

0 200 400 600 800
−0.5

0

0.5

1

Harbin

0 200 400 600 800
−0.5

0

0.5

1

Changchun

0 200 400 600 800

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Beijing

0 200 400 600 800

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Tianjin

0 200 400 600 800
−0.5

0

0.5

1

Nanjing

0 200 400 600 800
−0.5

0

0.5

1

Hangzhou

0 200 400 600 800

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Shanghai

0 200 400 600 800
−0.5

0

0.5

1

Guangzhou

0 200 400 600 800
−0.5

0

0.5

1

Hainan

0 200 400 600 800
−0.5

0

0.5

1

Kunming

0 200 400 600 800
−0.5

0

0.5

1

Lhasa

0 200 400 600 800
−0.5

0

0.5

1

Urumchi

92



Chapter A. Appendix of figures

Figure A.10: ACF of residuals from the CAR model [2] (Year: 1983-2012).
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Figure A.11: ACF of residuals from the Spline model [3] (Year: 1983-2012).
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Figure A.12: ACF of residuals from the SSV model (Year: 1983-2012).
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Figure A.13: ACF of squared residuals from the Alaton model [1] (Year: 1983-2012).
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Figure A.14: ACF of squared residuals from the CAR model [2] (Year: 1983-2012).
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Figure A.15: ACF of squared residuals from the Spline model [3] (Year: 1983-2012).
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Figure A.16: ACF of squared residuals from the SSV model (Year: 1983-2012).

0 200 400 600 800
−0.5

0

0.5

1

Harbin

0 200 400 600 800
−0.5

0

0.5

1

Changchun

0 200 400 600 800
−0.5

0

0.5

1

Beijing

0 200 400 600 800
−0.5

0

0.5

1

Tianjin

0 200 400 600 800
−0.5

0

0.5

1

Nanjing

0 200 400 600 800

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Hangzhou

0 200 400 600 800

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Shanghai

0 200 400 600 800

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Guangzhou

0 200 400 600 800

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Hainan

0 200 400 600 800
−0.5

0

0.5

1

Kunming

0 200 400 600 800
−0.5

0

0.5

1

Lhasa

0 200 400 600 800
−0.5

0

0.5

1

Urumchi

99



Chapter A. Appendix of figures

Figure A.17: In-sample MREs of the simulated DATs using the Alaton model [1] (Year:
1983-2012).
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Figure A.18: In-sample MREs of the simulated DATs using the CAR model [2] (Year:
1983-2012).
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Figure A.19: In-sample MREs of the simulated DATs using the Spline model [3] (Year:
1983-2012).
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Figure A.20: In-sample MREs of the simulated DATs using the SSV model (Year: 1983-
2012).
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Figure A.21: Out-of-sample MREs of the simulated DATs using the Alaton model [1]
(Year: 1983-2012).
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Figure A.22: Out-of-sample MREs of the simulated DATs using the CAR model [2] (Year:
1983-2012).
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Figure A.23: Out-of-sample MREs of the simulated DATs using the Spline model [3] (Year:
1983-2012).
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Figure A.24: Out-of-sample MREs of the simulated DATs using the SSV model (Year:
1983-2012).
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Appendix of tables

Table B.1: In-sample residual normality test for the Alaton model [1], CAR model [2] and
the Spline model [3].

Proportion Final result Proportion Final result Proportion Final result Proportion Final result
(Alaton) (Alaton) (CAR) (CAR) (Spline) (Spline) (SSV) (SSV)

Harbin 0 Rejected 0 Rejected 0 Rejected 2{3 Accepted
Changchun 0 Rejected 0 Rejected 0 Rejected 1{3 Accepted
Beijing 0 Rejected 2{3 Accepted 0 Rejected 1{3 Accepted
Tianjin 1{3 Accepted 2{3 Accepted 0 Rejected 2{3 Accepted
Hangzhou 0 Rejected 1{3 Accepted 3{3 Accepted 1{3 Accepted
Nanjing 2{3 Accepted 2{3 Accepted 2{3 Accepted 2{3 Accepted
Shanghai 0 Rejected 1{3 Accepted 0 Rejected 0 Rejected
Guangzhou 0 Rejected 0 Rejected 0 Rejected 2{3 Accepted
Hainan 0 Rejected 0 Rejected 0 Rejected 2{3 Accepted
Kunming 0 Rejected 0 Rejected 0 Rejected 2{3 Accepted
Lhasa 1{3 Accepted 0 Rejected 0 Rejected 1{3 Accepted
Urumchi 0 Rejected 0 Rejected 0 Rejected 1{3 Accepted
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Table B.2: Out-of-sample residual normality test for the Alaton model [1], CAR model [2]
and Spline model [3].

Proportion Final result Proportion Final result Proportion Final result Proportion Final result
(Alaton) (Alaton) (CAR) (CAR) (Spline) (Spline) (SSV) (SSV)

Harbin 2{3 Accepted 2{3 Accepted 2{3 Accepted 3{3 Accepted
Changchun 2{3 Accepted 2{3 Accepted 2{3 Accepted 3{3 Accepted
Beijing 2{3 Accepted 2{3 Accepted 2{3 Accepted 1{3 Accepted
Tianjin 1{3 Accepted 2{3 Accepted 1{3 Accepted 2{3 Accepted
Hangzhou 2{3 Accepted 2{3 Accepted 0 Rejected 3{3 Accepted
Nanjing 1{3 Accepted 2{3 Accepted 1{3 Accepted 3{3 Accepted
Shanghai 0 Rejected 1{3 Accepted 0 Rejected 1{3 Accepted
Guangzhou 0 Rejected 2{3 Accepted 0 Rejected 3{3 Accepted
Hainan 0 Rejected 2{3 Accepted 0 Rejected 3{3 Accepted
Kunming 0 Rejected 2{3 Accepted 0 Rejected 3{3 Accepted
Lhasa 0 Rejected 2{3 Accepted 1{3 Accepted 3{3 Accepted
Urumchi 0 Rejected 2{3 Accepted 0 Rejected 3{3 Accepted
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Table B.3: Efficiency comparison among city-based GDD contracts: VaR (Case 1).

City Climatic Without Absolute Correlation- Indicator
zone contract deviation Change adjusted Change function Change

V aR0.05
Haerbin I 307.59 312.68 5.08 314.83 7.24 342.92 35.32

Changchun 764.75 786.84 22.08 776.31 11.56 819.11 54.35
Beijing II 394.05 470.93 76.88 413.07 19.02 489.35 95.30

Shijiazhuang 210.39 308.91 98.52 172.12 -38.27 159.86 -50.53
Ji’nan 231.54 400.90 169.36 207.33 -24.21 221.67 -9.87

Zhengzhou 153.25 264.35 111.10 144.79 -8.46 216.76 63.50
Nanjing III 580.83 592.05 11.23 574.05 -6.78 581.10 0.27
Hefei 239.09 277.08 37.99 227.42 -11.67 238.42 -0.67

Wuhan 455.55 462.45 6.89 462.64 7.09 457.87 2.32
Hangzhou 274.96 280.34 5.39 280.26 5.30 281.26 6.30
Nanchang 48.52 54.42 5.90 46.96 -1.56 47.69 -0.83

V aR0.1
Haerbin I 364.83 362.22 -2.62 364.06 -0.77 391.54 26.71

Changchun 838.16 855.54 17.37 837.21 -0.96 888.42 50.26
Beijing II 430.57 500.90 70.34 440.40 9.83 510.50 79.94

Shijiazhuang 216.70 328.45 111.75 192.51 -24.20 180.97 -35.73
Ji’nan 250.06 414.56 164.51 246.83 -3.23 245.03 -5.03

Zhengzhou 168.44 292.49 124.05 170.85 2.41 244.62 76.18
Nanjing III 614.00 612.12 -1.87 612.76 -1.24 613.80 -0.20
Hefei 304.69 329.77 25.08 300.76 -3.93 304.39 -0.30

Wuhan 490.54 496.97 6.43 497.63 7.09 491.70 1.16
Hangzhou 297.91 298.19 0.28 308.62 10.71 301.25 3.34
Nanchang 55.38 60.43 5.05 61.80 6.42 54.85 -0.53

V aR0.2
Haerbin I 422.08 436.53 14.45 437.91 15.84 464.48 42.40

Changchun 923.81 947.14 23.33 922.46 -1.35 969.29 45.48
Beijing II 467.08 542.87 75.79 488.22 21.14 542.23 75.15

Shijiazhuang 225.12 347.99 122.87 218.00 -7.13 212.65 -12.48
Ji’nan 272.28 433.69 161.41 292.92 20.64 277.73 5.45

Zhengzhou 186.66 325.32 138.66 209.95 23.28 283.62 96.96
Nanjing III 656.64 668.32 11.67 675.66 19.02 655.83 -0.81
Hefei 362.09 373.68 11.59 374.11 12.02 362.12 0.03

Wuhan 516.78 522.87 6.09 523.86 7.08 517.07 0.29
Hangzhou 320.85 329.42 8.57 353.20 32.35 327.91 7.06
Nanchang 63.62 69.43 5.82 76.64 13.02 64.87 1.25
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Table B.4: Efficiency comparison among city-based GDD contracts: VaR (Case 2).

City Climatic Without Absolute Correlation- Indicator
zone contract deviation Change adjusted Change function Change

V aR0.05
V AR0.05

Haerbin I 307.59 297.92 -9.67 303.79 -3.80 350.63 43.04
Changchun 764.75 786.84 22.09 776.31 11.56 819.11 54.35

Beijing II 394.05 471.94 77.89 420.56 26.51 397.18 3.13
Shijiazhuang 210.39 308.91 98.52 172.12 -38.27 159.86 -50.53

Ji’nan 231.54 379.57 148.03 218.46 -13.08 211.48 -20.06
Zhengzhou 153.25 262.20 108.95 142.61 -10.64 120.40 -32.86
Nanjing III 580.83 589.46 8.63 580.28 -0.55 580.78 -0.05
Hefei 239.09 277.08 37.99 227.42 -11.67 238.42 -0.67

Wuhan 455.55 462.84 7.29 460.61 5.06 460.39 4.84
Hangzhou 274.96 286.19 11.23 287.00 12.04 273.80 -1.16
Nanchang 48.52 36.97 -11.55 57.24 8.72 46.90 -1.62

V aR0.1
Haerbin I 364.83 362.23 -2.61 352.99 -11.84 414.02 49.19

Changchun 838.16 855.54 17.37 837.21 -0.95 888.42 50.26
Beijing II 430.57 501.79 71.22 449.55 18.98 429.05 -1.52

Shijiazhuang 216.70 328.45 111.75 192.51 -24.19 180.97 -35.73
Ji’nan 250.06 398.12 148.06 243.02 -7.04 241.47 -8.59

Zhengzhou 168.44 286.60 118.16 171.52 3.08 151.55 -16.89
Nanjing III 614.00 615.83 1.84 619.21 5.21 613.97 -0.03
Hefei 304.69 329.77 25.08 300.76 -3.93 304.39 -0.30

Wuhan 490.54 497.81 7.27 498.78 8.24 490.83 0.29
Hangzhou 297.91 298.98 1.07 317.71 19.80 297.11 -0.80
Nanchang 55.38 48.82 -6.56 69.94 14.56 53.60 -1.78

V aR0.2
Haerbin I 422.08 439.40 17.33 426.79 4.71 490.08 68.01

Changchun 923.81 947.14 23.33 922.46 -1.35 969.29 45.48
Beijing II 467.08 543.57 76.48 490.14 23.05 480.06 12.97

Shijiazhuang 225.12 347.99 122.87 218.00 -7.13 212.65 -12.48
Ji’nan 272.28 432.58 160.30 279.85 7.57 277.46 5.18

Zhengzhou 186.66 320.77 134.10 206.21 19.55 188.94 2.27
Nanjing III 656.64 664.17 7.53 669.25 12.61 656.64 0.00
Hefei 362.09 373.68 11.59 374.11 12.02 362.12 0.03

Wuhan 516.78 519.67 2.89 524.22 7.44 516.93 0.15
Hangzhou 320.85 329.99 9.14 367.60 46.75 320.42 -0.43
Nanchang 63.62 65.42 1.80 85.17 21.55 64.32 0.70
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Table B.5: Efficiency comparison among climatic zone-based GDD contracts: VaR.

City Climatic Without Weight: VaR Weight: VaR Weight: VaR
zone contract Case 1 Increase Case 2 Increase Case 3 Increase

V aR0.05
Haerbin I 307.59 294.03 -13.57 302.39 -5.2 311.74 4.15

Changchun 764.75 783.93 19.18 784 19.24 785.55 20.80
Beijing II 394.05 474.33 80.28 475.15 81.1 471.65 77.60

Shijiazhuang 210.39 314.74 104.35 311.04 100.66 288.10 77.71
Ji’nan 231.54 392.6 161.06 391.56 160.01 357.54 126.00

Zhengzhou 153.25 271.37 118.11 268.51 115.25 246.12 92.86
Nanjing III 580.83 588.33 7.5 588.9 8.07 586.25 5.42
Hefei 239.09 248.37 9.28 252.92 13.83 253.40 14.31

Wuhan 455.55 463.1 7.54 464.01 8.46 465.31 9.76
Hangzhou 274.96 282.84 7.88 281.77 6.82 279.70 4.74
Nanchang 48.52 41.46 -7.05 38.74 -9.78 45.40 -3.12

V aR0.1
Haerbin I 364.83 357.59 -7.24 353.69 -11.14 373.35 8.51

Changchun 838.16 853.44 15.27 853.38 15.21 855.16 17.00
Beijing II 430.57 503.79 73.22 504.57 74.01 501.27 70.70

Shijiazhuang 216.70 330.21 113.51 329.98 113.28 310.05 93.34
Ji’nan 250.06 409.36 159.3 411.14 161.08 379.13 129.08

Zhengzhou 168.44 294.67 126.23 292.17 123.73 277.79 109.35
Nanjing III 614 613.19 -0.81 613.04 -0.95 615.17 1.17
Hefei 304.69 318.42 13.73 323.71 19.02 316.26 11.57

Wuhan 490.54 498.21 7.67 495.03 4.49 496.49 5.95
Hangzhou 297.91 300.91 3.01 300.69 2.79 301.36 3.45
Nanchang 55.38 52.87 -2.51 50.92 -4.46 57.39 2.01

V aR0.2
Haerbin I 422.08 433.87 11.79 430.64 8.56 447.27 25.20

Changchun 923.81 946.11 22.3 945.88 22.07 947.97 24.16
Beijing II 467.08 539.13 72.05 539.88 72.8 542.74 75.66

Shijiazhuang 225.12 351.87 126.75 348.92 123.8 335.65 110.53
Ji’nan 272.28 431.7 159.42 430.71 158.43 422.33 150.05

Zhengzhou 186.66 327.29 140.62 325.3 138.63 309.47 122.80
Nanjing III 656.64 662.92 6.28 665.36 8.72 668.18 11.54
Hefei 362.09 370.96 8.87 376.81 14.72 379.12 17.03

Wuhan 516.78 520.15 3.37 521.62 4.84 523.21 6.43
Hangzhou 320.85 326.21 5.36 327.17 6.32 331.68 10.83
Nanchang 63.62 66.57 2.95 65.54 1.92 71.77 8.15
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