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Abstract 

Epilepsy, which affects 50 million people worldwide, is a chronic neurological condition 
characterized by a predisposition to generate spontaneous seizures. Antiepileptic drug 
resistance is a significant problem, the causes of which are poorly understood. 
Inflammation is purported to play a pathological role in the development of epilepsy 
following brain insult. High mobility group box-1 (HMGB1) has been implicated in the 
development of seizures and epilepsy in preclinical models and human studies. 
HMGB1 undergoes post-translational modifications, including acetylation and redox 
changes, which dictate its inflammatory extracellular function. Novel inflammatory 
blood biomarkers such as HMGB1 that are intricately involved in the epilepsy disease 
process per se may act as stratification markers to identify patients who may benefit 
from immunomodulatory interventions. This thesis aimed to characterise the role of 
HMGB1 in seizures and epilepsy and its utility as a clinical biomarker. Analysis of 24 
healthy volunteers undergoing a 24-hour blood-sampling study did not demonstrate 
any significant circadian fluctuations in serum HMGB1.  No intra or inter-subject 
variability was also observed in the biomarker. A further study involving patients with 
idiopathic intracranial hypertension (IIH, n=18), neuroinfection (n=15) and 
Rasmussen’s encephalitis (n=10) showed that there was no correlation between serum 
and cerebrospinal (CSF) fluid levels of HMGB1, regardless of blood brain barrier 
integrity. Subgroup analysis of bacterial meningitis showed that both CSF and serum 
HMGB1 was significantly elevated (as compared to IIH). Furthermore, CSF HMGB1 was 
more than 10-fold higher in those with bacterial (n=6) rather than viral meningitis 
(n=8). The expression pattern of HMGB1 acetylation and redox isoforms in brain and 
blood was examined in three distinct preclinical models of seizures and epilepsy 
including recurrent seizures and status epilepticus in the kainate-model, single seizure 
in the maximal electroshock test (MES) and chronic spontaneous seizures in the 
pilocarpine epilepsy model. In response to kainate-induced seizures, in both brain and 
blood, an early rise in non-acetylated and reduced HMGB1 isoforms was demonstrated 
consistent with functional chemotaxis. This was followed by a delayed 6-fold rise at 24 
hours in brain of the acetylated, disulphide inflammatory form of HMGB1. In serum, 
significant expression of the inflammatory isoforms was seen after 14 days, possibly 
coinciding with the onset of spontaneous seizures. Inflammatory isoforms of HMGB1 
were not identified within the first 24 hours following isolated MES-seizure in mice. 
Serum, but not brain, total HMGB1 was significantly elevated (by 311%) in chronic 
epileptic mice experiencing regular spontaneous seizures; however the contribution of 
the different isoforms remains to be elucidated. In humans with epilepsy, compared to 
both healthy controls (1.11±0.07ng/ml, p<0.0001) and those with well-controlled 
epilepsy (1.25±0.15ng/ml, p<0.0001), mean baseline total HMGB1 was significantly 
higher in patients with drug-resistant epilepsy (8.70 ±0.47ng/ml). Acetylated HMGB1 
was observed in drug-resistant patients alone; with a subset expressing the disulphide 
inflammatory form. In conclusion, these studies have provided insight into the 
potential of novel, circulating isoforms of HMGB1 to serve as mechanistic biomarkers 
of established drug-resistant epilepsy in humans. There is a need for future studies to 
examine the prognostic value of HMGB1 isoforms following first seizure for the early 
identification of those at greater risk of developing drug resistance and ultimately, 
those who may benefit from immunomodulatory interventions. 
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IFCC International Federation of Clinical Chemistry 
IFNγ Interferon-γ 
IGE Idiopathic generalised epilepsy  
IHC Immunohistochemistry 
IIH Idiopathic intracranial hypertension 
ILAE International League Against Epilepsy 
IL-1β Interleukin-1β 
IL-6 Interleukin-6 
IL-18 Interleukin-18 
IL-1RA Interleukin-1 receptor antagonist 
IL-1R1 Interleukin-1 receptor type 1  
i.p. Intraperitoneal 
IVIg Intravenous Immunoglobulin 
JME Juvenile myoclonic epilepsy  
KA Kainic acid  
LCMS/MS Liquid Chromatography-Tandem Mass Spectrometry 
LCMV Lymphocytic choriomeningitis virus 
LP Lumbar puncture 
LPS Lipopolysaccharide 



LRR Leucine-rich repeat 
MAb Monoclonal antibody 
MAPKs Mitogen-activated protein kinases 
MCAO Middle cerebral artery occlusion 
MES Maximal electroshock 
MRI Magnetic Resonance Imaging 
Nalps NACHT-, LRR-, and pyrin domain–containing proteins 
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells 
NLR Nucleotide-binding oligomerization-domain protein-like receptor 
NLRP3 NACHT, LRR and PYD-containing protein 3 
NMDA N-methyl-D-aspartate  
NIH National Institute of Health 
NO Nitric oxide 
PAMP Pathogen associated molecular pattern 
PET Positron emission tomography 
PGS Primarily generalised seizure 
PIL Patient information leaflet 
PRR Pattern recognition receptors 
RAGE Receptor for Advanced Glycation End products 
RE Rasmussen’s encephalitis 
RIPA Radio-Immunoprecipitation Assay 
ROC Receiver Operator Characteristic 
SAH Subarachnoid haemorrhage  
SD Standard deviation 
SE Status epilepticus 
SEM Standard error of the mean 
SGTCS Secondarily generalised tonic clonic seizure 
SPS Simple partial seizure 
SSSE Self-sustained status epilepticus 
TBS Tris-buffered saline 
TGFβ Transforming growth factor-β 
TLE-HS Temporal lobe epilepsy with hippocampal sclerosis 
TLR Toll-like receptor 
TNFα Tumour necrosis factor α 
TSS Transverse cerebral venous sinus stenosis 
VCAM1 Vascular cell adhesion molecule-1 
VGCC Voltage-gated calcium channel 
VGKC Voltage-gated potassium channel 
WB Western blot 
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1.1 Epilepsy 

Epilepsy is a chronic neurological condition characterized by an enduring 

predisposition to generate spontaneous epileptic seizures (Fisher et al., 2005) affecting 

approximately 50 million worldwide (Leonardi and Ustun, 2002). Diagnosis requires 

the occurrence of at least one epileptic seizure but also recognises the 

“neurobiological, cognitive, psychological and social consequences” of the condition 

(Fisher et al., 2005). The consequences of a persistent abnormality of the brain are far 

reaching and include significant morbidity and mortality with unique stigmatization of 

affected individuals and a high societal cost (~€15 billion/year in Europe (Pugliatti et 

al., 2007)).   

 Seizure 1.1.1

The point at which an individual brain generates a seizure is termed the seizure 

threshold. The threshold is a dynamic concept that fluctuates normally over time as a 

consequence of physiological variables including circadian rhythmicity and specifically 

in females, the menstrual cycle (termed catamenial seizures).  Anything that lowers the 

seizure threshold beyond a critical point will induce the clinical expression of a seizure. 

Epileptogenic abnormalities that lower the seizure threshold include alterations at the 

molecular, anatomical or circuit level and can be as a consequence of genetic, 

structural or metabolic anomalies. A number of other factors can further lower the 

seizure threshold to make the occurrence of a seizure more likely; these include stress, 

sleep deprivation, intercurrent infection, alcohol and various medications. 

 Seizures can either be generalized or focal in origin.  Generalized seizures are defined 

as “originating at some point within, and rapidly engaging, bilaterally distributed 

networks (Berg et al., 2010).” In contrast, focal seizures are those “originating within 

networks limited to one cerebral hemisphere” (Berg et al., 2010). In their 2010 report 

(Berg et al., 2010), The International League Against Epilepsy (ILAE) commission on 

Classification and Terminology, 2005–2009, revised the existing classification of 

seizures (1981), table 1.1. 
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Table 1.1 International League Against Epilepsy Classification of seizures (2010) 

Generalized seizures (originating at some point within, and rapidly engaging, 
bilaterally distributed networks.) 

Tonic Clonic (in any combination) 
Absence 

Typical 
Atypical 
Absence with special features 
Myoclonic absence 
Eyelid myoclonia 
Myoclonic 

Myoclonic 
Myoclonic atonic 
Myoclonic tonic 
Clonic 

Tonic 

Atonic 

Focal Seizures (originating within networks limited to one hemisphere.) 

Epileptic spasms 

Taken from the International League Against Epilepsy (ILAE) commission on 
Classification and Terminology, 2005–2009, reproduced from (Berg et al., 2010) 

 

A notable modification to the 1981 classification system was the elimination of the 

distinction in focal seizures between complex partial and simple partial, as pertains to 

consciousness/awareness. The new system instead recognises descriptors of focal 

seizures, and a glossary for descriptive terminology of ictal semiology is available 

(Blume et al., 2001). In brief, “simple partial” has been replaced by “without 

impairment of consciousness or awareness”. There may be observable motor or 

autonomic components with or without subjective sensory or psychic phenomena. The 

latter corresponds to the previous concept of an aura. “Complex partial” is now 

described as “with impairment of consciousness or awareness” or alternatively, 

“dyscognitive” (Blume et al., 2001). Lastly, the term “secondarily generalized” has been 

replaced by “evolving to a bilateral convulsive seizure.” 

All currently available antiepileptic drugs (AEDs) exert their effect through raising the 

seizure threshold; therefore, despite the “common” nomenclature; they are in fact 

purely symptomatic and exhibit no disease-modifying potential. Disease modifying 
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drugs are therefore needed and may have the potential to prevent and/or treat 

resistant forms of epilepsy. 

 ILAE Classification of epilepsy 1.1.2

The epilepsies are a complex group of disorders and classification is in evolution within 

the epilepsy community. In clinical practice, diagnosis of epilepsy follows a two-step 

process: 1) classification of seizure type and 2) assignment of cause (Shorvon, 2011). 

Advances in imaging and molecular chemistry have led to a greater understanding of 

the aetiopathological basis of many of the epilepsies. As such, The ILAE has recently 

proposed a new approach to the nomenclature. The new approach takes into account 

the underlying aetiology, categorising epilepsy on the basis of causality into genetic, 

structural/metabolic and unknown (Scheffer, 2010). The structural or metabolic 

category may in future become further subdivided to include immune and infectious 

causes but this remains under discussion (Scheffer, 2010). The classification terms and 

their concepts are described as: 

1. Genetic: Epilepsy occurs as a result of known or presumed genetic defect(s). 

The evidence for the genetic basis may arise from appropriately designed 

family studies or from specific molecular genetic studies that have been well 

replicated. Spontaneous seizures are at the core of the disorder (Berg et al., 

2010). 

2. Structural/metabolic: Where a substantially increased risk of epilepsy has been 

shown, in appropriately designed studies, to occur in association with a distinct 

structural or metabolic condition or disease (Berg et al., 2010). This includes 

acquired disorders such as head trauma, stroke and cortical malformations that 

may have an underlying genetic basis (for example tuberous sclerosis.) 

3. Unknown: “The nature of the underlying cause is as yet unknown (Berg et al., 

2010).” 

However, some aspects of this new approach, in particular the need for replacing the 

old terms idiopathic, symptomatic and cryptogenic (1989), have faced widespread 

disagreement in the epilepsy community (Wolf, 2010; Ferrie, 2010; Guerrini, 2010). In 

the original classification system, when epilepsy occurred as a result of an identifiable 
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brain defect, it was termed “symptomatic epilepsy.” There are a large number of 

potential causes for this including malformations of brain development, brain trauma 

(including stroke, cerebral metabolism and head injury) and infections of the central 

nervous system (CNS). By far the commonest form of symptomatic epilepsy, which 

would now be considered to be structural/metabolic (with the exception of the genetic 

forms that have been described), is symptomatic medial temporal lobe epilepsy (TLE) 

characterized by complex partial seizures arising from regions within the temporal 

lobe, usually the hippocampus or amygdala (Chang and Lowenstein, 2003, Bertram, 

2009). It is frequently, but not always, associated with a characteristic lesion involving 

selective neuronal loss in the CA1/CA3 region of the hippocampus and hilus, termed 

hippocampal sclerosis.  When an identifiable cause or structural lesion could not be 

identified but was assumed likely to be present the epilepsy was termed ‘cryptogenic’. 

The term ‘idiopathic’ was used to denote epilepsies with an assumed genetic 

aetiology. The original 1989 document broadly define idiopathic epilepsy as having no 

underlying cause, with the exception of a possible hereditary predisposition, and 

characterised them by age-related onset with specific clinical and electrographic 

parameters. 

The 2010 approach also introduced the concept of “electroclinical syndromes” wherein 

diagnosis reflects a cluster of electroclinical characteristics, which can be organized by 

typical age of onset (table 1.2) (Berg et al., 2010).  

 Epileptogenesis 1.1.3

Epileptogenesis describes the process by which a normal brain is functionally altered, 

as a consequence of a brain insult, into one able to generate abnormal electrical 

activity culminating in a spontaneous seizure (Rakhade and Jensen, 2009). Ictogenesis 

describes the propensity of the brain to generate spontaneous seizures. The 

mechanisms underlying epileptogenesis are likely multifactorial given the wide variety 

of aetiologies that lead to epilepsy. In adulthood, epileptogenesis occurring as a 

consequence of traumatic brain injury (Haltiner et al., 1997; Temkin, 2001; Garga and 

Lowenstein, 2006) or stroke has been well described (Hauser et al., 1993). 
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It is a process that may evolve over many years following a brain insult before the 

appearance of the first spontaneous seizure and there may be a sequence of varying 

mechanisms over this time course (Haltiner et al., 1997). 

Table 1.2 International League Against Epilepsy electroclinical syndromes arranged 
by age of onset 

Neonatal Period 

Benign familial neonatal epilepsy (BFNE) 
Early myoclonic encephalopathy (EME) 
Ohtahara syndrome 

Infancy 

Epilepsy of infancy with migrating focal seizures 
West syndrome 
Myoclonic epilepsy in infancy (MEI) 
Benign infantile epilepsy 
Benign familial infantile epilepsy 
Dravet syndrome 
Myoclonic encephalopathy in non-progressive disorders 
Childhood 

Febrile seizures plus (FS+) (can start in infancy) 
Panayiotopoulos syndrome  
Epilepsy with myoclonic atonic (previously astatic) seizures 
Benign epilepsy with centrotemporal spikes (BECTS) 
Autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE) 
Late onset childhood occipital epilepsy (Gastaut type) 
Epilepsy with myoclonic absences 
Lennox-Gastaut syndrome 
Epileptic encephalopathy with continuous spike-and-wave  during sleep (CSWS) 
Landau-Kleffner syndrome (LKS) 
Childhood absence epilepsy (CAE) 
Adolescent- Adult 

Juvenile absence epilepsy (JAE) 
Juvenile myoclonic epilepsy (JME) 
Epilepsy with generalized tonic–clonic seizures alone 
Progressive myoclonus epilepsies (PME) 
Autosomal dominant epilepsy with auditory features (ADEAF) 
Other familial temporal lobe epilepsies 
Less specific age relationship 

Familial focal epilepsy with variable foci (childhood to adult) 
Reflex epilepsies 

Modified from (Berg et al., 2010). 
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Seizures in early life may be triggered by external insults including prolonged febrile 

convulsions (Shinnar et al., 2008), trauma (Dinner, 1993) and hypoxic-ischaemic 

encephalopathy (Volpe, 2008) which, which may then be following delayed 

epileptogenesis, leading to the development of epilepsy in later life. 

Unravelling the mechanisms of epileptogenesis will involve first identifying whether 

different aetiologies trigger identical, overlapping or distinctly unrelated pathways 

leading to an abnormal epileptic focus.  

 Pharmacotherapy 1.1.4

Treatment of epilepsy began in 1857 (figure 1.1) with the use of potassium bromide in 

women with ‘‘hysterical epilepsy connected with the menstrual period.’’ This was 

followed by the hypnotic agent phenobarbital, its anticonvulsant properties discovered 

by chance by Alfred Hauptmann in 1912, and still the most commonly prescribed AED 

in the developing world (Kwan and Brodie, 2004).  Phenytoin was next; clinically 

evaluated in 1936, the first patient to take it was rendered seizure-free having 

experienced daily seizures for many years prior to its introduction (Merritt HH, 2004). 

Carbamazepine, sodium valproate and the benzodiazepines did not appear until the 

1960’s followed by the modern era of AED development beginning in 1975 with the 

establishment of the National Institute of Health (NIH) antiepileptic drug development 

programme.  

In the last 15 years alone the number of licensed drugs has more than doubled (table 

1.3). The post-1993 era of AED drug development has offered considerable 

improvement in terms of safety, improved tolerability and favourable 

pharmacokinetics (table 1.4) (Bialer, 2006; Bialer et al., 2007; Bialer et al., 2009). 

Despite the welcome advantages of newer AEDs which avoid adverse drug interactions 

and hypersensitivity reactions (Elger and Schmidt, 2008), their overall efficacy in new 

onset epilepsy is no better than that of the older AEDs (Kwan and Brodie, 2000; 

Marson et al., 2007c; Glauser et al., 2010; Brodie et al., 2007). In fact, despite a 

therapeutic arsenal of 24 drugs and 1 medical device, concern is growing that the 

efficacy of epilepsy therapeutics has not substantially improved in the last 20 years 

(Shorvon, 2009). 
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Figure 1.1 The introduction of antiepileptic drugs into the market from 1857 until 2009. 
The year given is that of first licensing, or the first mention of clinical use in Europe, the 
United States or Japan. Reproduced with permission from (Loscher and Schmidt, 2011), 
adapted from the original (Shorvon, 2009a). 

 

The SANAD (Standard and New Antiepileptic Drug) trial was designed to assess the 

clinical and cost effectiveness of new AEDs compared to standard AEDs and was 

divided into two arms (Marson et al., 2007c). Arm A compared new drugs lamotrigine, 

gabapentin, topiramate or oxcarbazepine with the existing first-line agent 

carbamazepine. In terms of 12-month remission from seizures, none of the new drugs 

proved superior in efficacy to carbamazepine. Lamotrigine was found to be non- 

inferior to carbamazepine (Marson et al., 2007a), whilst gabapentin and topiramate 

were inferior. Arm B studied lamotrigine and topiramate versus valproate for the 

treatment of generalised and unclassified epilepsy. The study showed a non-significant 

advantage of valproate over topiramate for time to 12 month remission, and that 

topiramate was significantly more likely to be withdrawn, mainly due to poorer 
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tolerability. Valproate was significantly superior to lamotrigine for time to 12 month 

remission (Marson et al., 2007b). 

Table 1.3 Antiepileptic drugs and devices currently approved by the Food and Drug 
Administration  

Before 1993 1993-2005 2009-2011 

Carbamazepine Felbamate Vigabatrin 
Clonazepam Gabapentin Rufinamide 
Diazepam Lamotrigine Lacosamide 
Ethosuximide Levetiracetam Clobazam 
Lorazepam Oxcarbazepine Ezogabine 

Phenobarbital Pregabalin  
Phenytoin Tiagabine  
Primidone Topiramate  
Valproic acid Vagus nerve stimulation  
 Zonisamide  

Reproduced from (Sirven et al., 2012) 

Table 1.4 Pharmacokinetic properties of some of the commonly prescribed 
antiepileptic drugs 

Drug Plasma 
protein 
binding (%) 

Time to 
steady state 
(days) 

Dosing 
frequency 

Initial monitoring 
frequency (weeks) 

Carbamazepine 70-80 3-10 bid, tid, qid 3,6 or 9 
Phenytoin 90 5-15 qd or bid 2-3 
Valproic acid 60-95 2-4 bid or tid 1-2 
Lamotrigine 50-55 5-15 bid none 
Levetiracetam <10 3-4 bid none 
Pregabalin 0 2 bid, tid none 
Gabapentin 0 1-2 tid none 
Topiramate 9-17 5-7 bid none 
Zonisamide 40-60 12-14 qd, bid none 

Adapted from (Schachter, 2007). Bid (bis in die) twice a day; tid (ter in die) three times 
daily; qd each day; qid four times daily. 

 

Valproate remains the drug of first choice for generalised epilepsies, with the 

exception of women of childbearing potential due to the risks of teratogenicity and 

neurodevelopmental problems (Bromley et al., 2014). 
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1.2 Epilepsy and drug resistance 

Despite the availability of many different anti-epileptic drugs, approximately one third 

of patients with epilepsy continue to experience seizures (Cockerell et al., 1995). 

In most cases, the reasons for this drug-resistance remain unknown. The spectrum of 

drug resistance is very wide, ranging from mild seizures with partial resistance to 

frequent, severe seizures unresponsive to multiple medications. The ILAE defines drug 

resistance as “failure of adequate trials of two tolerated and appropriately chosen and 

used AED schedules (whether as monotherapies or in combination) to achieve 

sustained seizure freedom (Kwan et al., 2010).”  

 Patterns of drug resistance 1.2.1

Three distinct patterns of drug-resistance in epilepsy have been suggested on the basis 

of epidemiological evidence: 

1. De novo drug resistance: Wherein patients exhibit drug-resistance prior to 

commencing AED therapy. It has been shown that, in patients in whom the first 

AED failed to achieve seizure control, the probability of future success with an 

alternative AED was only 11%, as compared to 41-55% in patients who ceased 

therapy for an alternative reason (e.g. idiosyncratic reactions) (Kwan and 

Brodie, 2000). 

2. Progressive drug resistance: Wherein resistance appears following an initial 

period of good control. This has been reported in some childhood epilepsies 

and mTLE (Berg et al., 2006). 

3. Waxing and waning resistance: Wherein intractability is not sustained. Patients 

may alternate between responsiveness and resistance to AEDs, possibly related 

to changes in drug bioavailability and tolerance to AEDs (Loscher and Schmidt, 

2006). A prospective study recently identified 5% per year of patients initially 

deemed to be drug-resistant enter seizure remission. However, a substantial 

proportion of these patients then relapse within a year (Callaghan et al., 2011). 

For many, surgical resection of the epileptic focus remains the only available treatment 

option however; many patients are unsuitable surgical candidates. Both the site of 

seizure origin and the possible post-surgical neurological outcomes must be rigorously 
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evaluated, at considerable expense. Complicating matters, most AEDs exhibit dose-

dependent adverse effects which result in up to 25% of patients discontinuing 

treatment for intolerable side effects prior to attaining a fully-effective dosage (Kwan 

and Brodie, 2000; Perucca et al., 2009).   

 Theories of drug resistance 1.2.2

Currently, three main theories exist to explain drug resistance in epilepsy. These can 

be divided into the drug transporter hypothesis, the drug target hypothesis, and the 

inherent severity model of epilepsy. 

1.2.2.1 The drug transporter hypothesis 

The most popular and extensively studied theory of drug resistance in epilepsy has 

been the multidrug transporter (MDT) hypothesis (Chayasirisobhon, 2009). This 

hypothesis states that drug penetration into the epileptic focus is impaired due to 

dysregulation of drug transporters (Chayasirisobhon, 2009). The MDTs involved in drug 

resistance in humans are either adenosine triphosphate-binding cassette (ABC) 

proteins (Tiwari et al., 2011) or SLC proteins (Huang and Sadee, 2006). Research efforts 

have focused predominantly on a single ABC transporter, P-glycoprotein (P-gp; also 

known as ABCB1). P-gp was first suspected to be involved in drug-resistance following 

the finding that expression was found to correlate with drug-resistance to cancer 

chemotherapy in Chinese hamster ovary cells in 1979 (Riordan and Ling, 1979). It was 

not until 1995 that it was shown to be increased in brain tissue taken from the 

epileptic foci of patients with drug-resistant epilepsy (Tishler et al., 1995). Since then, 

evidence from both experimental “proof of principle” and clinical studies supports 

overexpression of P-gp in varying pathologies associated with drug-resistant epilepsy, 

including focal malformations of cortical development, hippocampal sclerosis and 

tuberous sclerosis (Aronica et al., 2012). However, for overexpression of P-gp to be the 

causative factor in drug-resistance, then many (if not all) AEDs would be required to be 

substrates.  Yet despite years of intense research in this area, there remains a lack of 

convincing evidence that AEDs are high-affinity substrates for P-gp. (Dickens et al., 

2013; Loscher and Sills, 2007; Anderson and Shen, 2007; Rogawski, 2013). Multiple 

individual genetic association studies and at least three meta-analyses (Leschziner et 

al., 2007; Bournissen et al., 2009; Haerian et al., 2010) have not replicated an 
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association between ABCB1 polymorphisms and epilepsy drug resistance. As such, it is 

difficult to see how P-gp overexpression can satisfactorily explain drug-resistance in 

epilepsy and hence alternative theories are still sought. 

1.2.2.2 The drug target hypothesis 

The drug target hypothesis proposes that intrinsic (genetic) and acquired (disease-

related) alterations to the structure and/or functionality of AED targets in 

epileptogenic brain regions lead to reduced drug effects (Loscher and Potschka, 2005). 

Intrinsic alterations confer an inherited, inborn difference in the target that confers 

resistance. A common functional polymorphism in the SCN1A gene, which encodes an 

isoform of voltage-activated sodium channels, has been associated with 

responsiveness to the sodium channel blockers carbamazepine and phenytoin. In 

Japanese patients with epilepsy, the frequency of the AA genotype was significantly 

higher in those resistant to carbamazepine [odds ratio (OR) 2.7, 95% confidence 

interval (CI) 1.1–7.1; P = 0.04] (Abe et al., 2008). Similarly, in English and Chinese 

patients, the AA genotype was associated with a requirement for the maximum doses 

of carbamazepine and phenytoin (Tate et al., 2005; Tate et al., 2006). This genotype 

has also been associated with changes in cortical excitability (Menzler et al., 2014): in a 

study of 92 healthy volunteers receiving 400 mg carbamazepine, GG homozygous 

subjects (at rs3812718) showed increased cortical inhibition compared to AA 

homozygous subjects, suggesting that rs3812718 may be modulating the response via 

gamma-aminobutyric acid (GABA)ergic cortical interneurons (Abe et al., 2008; Tate et 

al., 2005).  

In the acquired form of the drug target hypothesis, the change in the target occurs in 

conjunction with epileptogenesis, as a result of seizures, or as a consequence of drug 

treatment. Neurobiological support for this hypothesis comes from preclinical studies 

using rat models of epilepsy. In kindled rats, using an electrical stimulus to induce an 

epileptic focus, sodium channels were found to exhibit reduced sensitivity to 

carbamazepine which normalised 5 weeks after kindling, indicating that the changes 

were related to the kindling and not the epileptic state (Vreugdenhil et al., 1998; 

Vreugdenhil and Wadman, 1999). Secondly, loss of hippocampal inhibitory 

neurotransmitter function has been shown in a rat model of temporal lobe epilepsy 
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resulting from alterations in the subunit composition of GABAA receptors (Brooks-

Kayal et al., 1998). What is more, resistance to benzodiazepines has been shown to 

develop during prolonged status epilepticus as a result of internalization of synaptic 

GABAA receptors (Wasterlain and Chen, 2008; Joshi and Kapur, 2012; Fritsch et al., 

2010). 

The drug target hypothesis has also encountered detractors. Many studies have failed 

to replicate an association between SCN1A polymorphisms and response to either 

carbamazepine or phenytoin (Table 1.5); therefore, the clinical validity of this 

pharmacogene in the vast majority of patients with acquired epilepsies remains 

uncertain. 

Perhaps more importantly, most patients with drug-resistant epilepsy are resistant to 

all AEDs. AEDs are known to have different mechanisms of action and drug targets, 

including subunits of voltage-gated sodium and calcium channels as well α2δ proteins 

that are associated with calcium channels, GABAA receptors, the GAT-1 GABA 

transporter, the GABA catabolic enzyme GABA transaminase, KV7/KCNQ/M potassium 

channels, the synaptic vesicle protein SV2A, and α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid  (AMPA) receptors (Meldrum and Rogawski, 2007). For the 

target hypothesis to be the unifying explanation for resistance then targets of all AEDs 

would need to be simultaneously modified, which seems improbable, particularly 

given the resistance seen to even the newer generation of AEDs which have novel and 

distinct molecular targets.  

1.2.2.3 The inherent severity hypothesis 

The inherent severity hypothesis proposes that there is a continuum in severity of the 

disease, which determines its relative response to medication (Rogawski, 2013). This 

follows the finding, consistently shown in prospective studies of newly-diagnosed 

epilepsy, that the single most important factor in determining medication response is 

the frequency of seizures in the early phase. Put simply, the easier the seizures are to 

trigger, the more frequently they will occur and the more difficult they will be to 

suppress. It has been consistently found that having multiple seizures prior to 

diagnosis is a risk factor for drug resistance, and this is likely to be correlated with 
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epilepsy type as well as intrinsic severity (Kwan and Brodie, 2000; Hitiris et al., 2007; 

Berg et al., 2001; MacDonald et al., 2000; Dlugos et al., 2001). 

Table 1.5 Sodium channel, voltage-gated type I alpha subunit (SCN1A) gene 
polymorphisms and response to anti-epileptic drugs in epilepsy 

Polymorphism Subjects Response Ref. 

SCN1A 
rs3812718 
(G>A) 

92 healthy European 
volunteers given 
400mg 
carbamazepine 

GG homozygotes increased 
carbamazepine-induced cortical 
inhibition than AA homozygous 
subjects 

(Menzler 
et al., 
2014)  

SCN1A 
rs3812718 
(G>A) 

228 Japanese 
epilepsy patients 

Frequency of the AA genotype 
was significantly higher in 
carbamazepine-resistant 
patients 

(Abe et 
al., 2008) 

SCN1A 
rs590478, 
rs8191987, 
rs3812718, 
rs2126152 

British epilepsy 
patients (425 
carbamazepine/281 
phenytoin) 

AA genotype required maximum 
doses of carbamazepine or 
phenytoin 

(Tate et 
al., 2005) 

SCN1A 
rs3812718 
(G>A) 

168 Taiwanese 
epilepsy patients 

AA genotype required higher 
maintenance dose of phenytoin 
than GG 

(Tate et 
al., 2006) 

Polymorphisms 
in SCN1A 
(including 
rs3812718) , 
SCN2A and 
SCN3A genes  

1504 epilepsy 
patients from 
Malaysia and Hong 
Kong  

No significant allele, genotype 
and haplotype association of 
polymorphisms in the SCN1A, 
SCN2A, and SCN3A genes with 
drug responsiveness 

(Haerian 
et al., 
2013)  

27 tagging 
SNPs of SCN1A 
(including 
rs3812718), 
SCN2A, and 
SCN3A. 

471 Chinese epilepsy 
patients 

No association between 
rs3812718 and drug 
responsiveness 

(Kwan et 
al., 2008) 

SCN1A 
rs3812718 
(G>A) 

485 North Indian 
epilepsy patients 

No association between 
rs3812718 and drug 
responsiveness 

(Kumari 
et al., 
2013)  

SCN1A, sodium channel, voltage-gated, type I, alpha subunit; SCN2A, sodium channel, 
voltage-gated, type II, alpha subunit; SCN3A, sodium channel, voltage-gated, type III, 
alpha subunit; ref, reference; SNP, single nucleotide polymorphism. 

 

Patients reporting more than ten seizures prior to initiation of therapy are more than 

twice as likely to develop drug-resistant epilepsy than those with two or less pre-
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treatment seizures (Hitiris et al., 2007; Mohanraj and Brodie, 2006). However, a theory 

based wholly on early seizure frequency has also been challenged.  Some patients with 

initially drug-resistant epilepsy do go on to achieve seizure freedom when treated with 

newer generation AEDs (Brodie, 2010; Luciano and Shorvon, 2007; Callaghan et al., 

2007). In contrast, some patients with infrequent seizures are drug-resistant. However, 

seizure-frequency should not be considered the only measure of disease severity. A 

person experiencing infrequent generalised seizures may be considered to have more 

severe epilepsy than a patient experiencing regular simple partial seizures that do not 

impact on activities of daily living. What is more, infrequent seizures can be 

misinterpreted for seizure remission (French, 2006). However, extending the 

classification of remission from 1 year to 5 years seizure-free does not change the 

outcome in terms of association of seizure frequency with chance of remission 

(MacDonald et al., 2000).  

Central to the intrinsic severity hypothesis is that dysfunction of neurobiological 

processes underlies the development of drug resistance. A prospective study following 

children with medial temporal lobe epilepsy (mTLE) from diagnosis showed that it was 

magnetic resonance imaging (MRI) lesions, and not seizure frequency, that predicted 

outcome (Spooner et al., 2006). The role of structural lesions in predicting resistance is 

further supported by the success of respective epilepsy surgery, irrespective of seizure 

frequency at onset (Schmidt and Loscher, 2005). However, the neurobiological 

processes underlying epileptogenesis remain poorly understood.  To date no molecular 

genetic studies have been performed in patients to compare those with low, versus 

high, seizure frequency at presentation (Rogawski, 2013). A genome-wide analytical 

approach could help to identify the central causal mechanisms that would help to 

support this hypothesis. 

 Predicting drug resistance 1.2.3

No single clinical factor has been found to be uniquely useful in accurately predicting 

drug resistance at diagnosis. Prognostic modelling of data from the largest randomized 

open-label trial of newly diagnosed epilepsy demonstrated that 12-month remission 

from seizures was less likely in (i) female patients, (ii) in adolescents and young adults 

(ages 11–36 years) and those with (iii) neurological insults, (iv) a high number of 
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seizures before starting treatment and (v) a short time between first seizure and 

treatment initiation (Bonnett et al., 2012). The recent French ESPERA study of 

polypharmacy in focal epilepsy demonstrated that the mean annual direct cost was 

2.3-times higher in drug-resistant than in drug-responsive patients (€4485 vs. €1926, P 

< 0.0001). The increased costs were largely attributed to the drugs used, and increased 

duration of hospitalization and number of investigations (de Zelicourt et al., 2014). The 

consequences of drug resistance can be severe, with mortality rates increased four- to 

sevenfold compared to drug-responsive patients (Sperling, 2004). 

This represents a major unmet clinical need. New anti-seizure treatments for epilepsy 

are unlikely to bridge this treatment gap and the next generation of therapies needs to 

possess disease-modifying properties. Such drugs could potentially be used to halt or 

reverse the progression of epilepsy in people with an established diagnosis or to delay 

or prevent the onset of epilepsy in susceptible individuals. The major problem 

encountered when designing drugs for delivery to the brain is created by the unique 

structural and functional properties of the blood brain barrier (BBB) (Abbott et al., 

2006). Free drug in blood must first pass the tight endothelial cells that create the 

mechanical barrier that is the BBB, limiting drug passage to and accumulation within 

the brain interstitial fluid (Abbott et al., 2006; Reese and Karnovsky, 1967). Only free 

drug within the interstitial fluid is able to access brain cells and their respective targets 

within. The alternative route of access to the brain is through the low protein 

cerebrospinal fluid (CSF) which surrounds the brain (and is actively secreted by the 

epithelium of the choroid plexus (Sakka et al., 2011)) Fluid turnover is slow, 3-4 times 

per day (Sakka et al., 2011). Furthermore, efflux transporters maintain low 

concentrations of free drug within the CNS.  

Development of disease-modifying drugs for epilepsy would be greatly enhanced by 

the identification of one or more biomarkers that predict onset and progression of the 

disorder and its response to treatment; these are currently lacking. Ideally, such a 

biomarker should be sensitive and specific in terms of its association with prognosis 

and non-invasive and inexpensive in terms of the method of its measurement. It 

should also mirror the underlying pathophysiology of the disorder or, in this case, the 
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mechanisms responsible for the generation and perpetuation of seizures, i.e. 

epileptogenesis. 

1.3 Epilepsy seizure models 

Preclinical animal models of epilepsy are heavily relied upon for the establishment of 

safety and efficacy of new AEDs prior to first in human trials (White, 2006). In order to 

move forwards with the discovery and development of new AEDs to target resistance, 

it is important to be confident that the preclinical animal models are fit for purpose. 

Animal models of seizure and epilepsy serve a variety of purposes in drug development 

including identifying new AEDs, to evaluate efficacy of new drugs against different 

types of seizure and epilepsies and for comparison to established therapies, to 

estimate effective plasma concentrations, to characterize preclinical efficacy in chronic 

administration (i.e. assessment of tolerance) and for discovery of disease modifying 

therapies following brain insult (Loscher, 2011). A variety of preclinical models have 

been described (figure 1.2). No single model can be used to evaluate all of the above 

described purposes. Models of acquired epilepsy, in which epilepsy or epilepsy-like 

conditions are induced by electrical or chemical methods in previously healthy (non-

epileptic) animals, will be discussed here. 

 Status epilepticus 1.3.1

1.3.1.1 Rodents 

Definitions of status epilepticus (SE) in mice can vary in the literature. Acute seizures 

are described according to the Racine scale (Racine, 1972) and are characterized as 

freezing and facial clonus (stage 1), masticatory movements and head nodding (stage 

2), wet dog shakes (stage 3) forelimb clonus-unilateral or bilateral (stage 4) followed by 

rearing and falling (stage 5) (Raedt et al., 2009; Pernot et al., 2011; Mouri et al., 2008). 

A generally acceptable definition of SE in mice is continuous convulsive seizure activity 

above Racine stage 3 for a minimum of 30 minutes with incomplete recovery of 

responsiveness between episodes (Cavalheiro, 1995; Leite et al., 1990; Loscher, 2002). 

SE in rodents (rats and mice) can be induced either by electrical stimulation or by a 

chemoconvulsant, such as kainate or pilocarpine. 
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Figure 1.2 Schematic overview of some of the available models of epilepsy or epileptic 
seizures, adapted from (Loscher, 2011). MES: Maximal electro shock; PTZ: 
pentylenetetrazole; SE: Status epilepticus; BLA: basolateral amygdala kindling 
epileptogenesis model 

 

1.3.1.2 Humans 

In humans, the spectrum of SE is very wide and indeed classification of SE in humans is 

a subject of much discussion. Generally speaking, most seizures terminate 

spontaneously. Closed-circuit video-EEG recordings have demonstrated that the 

majority of self-limiting seizures in fact last no longer than a few minutes (Theodore et 

al., 1994; Luders et al., 1993). As a result, the most recent definition by the ILAE Task 

Force on Classification and Terminology defined SE in humans as “a seizure that shows 

javascript:void(0);
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no clinical signs of arresting after a duration encompassing the great majority of 

seizures of that type in most patients or recurrent seizures without interictal 

resumption of baseline CNS function.” Therefore, failure to recover consciousness 

between convulsions and persistence of a neurological deficit are considered integral 

to the diagnosis. Improved level of consciousness would be expected within 20 to 30 

minutes of a convulsive seizure.  

 Electrical models of temporal lobe epilepsy 1.3.2

1.3.2.1 Kindling 

Electrical kindling involves the repeated application of short electrical stimuli to limbic 

brain regions (hippocampus or amygdala) which produces a progressive increase in 

electrographic and behavioural seizures (Loscher, 2002). The clinical phenomenology 

produced is very similar to the human condition (Sato et al., 1990; Loscher, 1999) with 

neuropathological changes reminiscent of mesiotemporal sclerosis found in many 

patients with TLE (Loscher, 1999; Goodman, 1998). It is commonly used as a model of 

elicited, not spontaneous, seizures. The associated epiphenomena include increased 

seizure severity and duration, decreased focal seizure threshold, development of 

spontaneous seizures upon further stimulation and neuronal degeneration in limbic 

brain regions. Kindling is certainly a chronic model of epilepsy which offers the 

advantage that seizures can also be elicited at will (Loscher, 1999).  

1.3.2.2 Self-sustaining limbic status epilepticus 

Sustained electrical stimulation of the hippocampus or amygdala can be used to induce 

a period of SE characterized by recurrent focal and generalized seizures which are 

uninterrupted. This is followed by the development of neuropathological features 

consistent with human mesiotemporal sclerosis and the development of recurrent 

spontaneous seizures arising typically after 3-4 weeks (Loscher, 2002) 

 Chemoconvulsant models of temporal lobe epilepsy  1.3.3

1.3.3.1 Kainic Acid 

The neurotoxin kainic acid (KA) is widely used in rodentsto induce epileptogenesis 

(Dudek FE, 2006). It can be administered systemically, through intraperitoneal, 
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subcutaneous or intravenous injection, or can be focally injected into the hippocampus 

or infused intracerebroventricularly. The method of administration affects the 

resultant pattern of cell loss and damage. Restricted injection of KA into the 

hippocampus limits neuronal damage primarily to the CA3 region (Jarrard, 2002).  

KA is a potent agonist of the AMPA/kainate class of glutamate receptors. The 

neurotoxic potency of KA is thirty–fold that of the excitatory neurotransmitter 

glutamate (Johnston et al., 1974). KA receptors are highly expressed in the 

hippocampus both presynaptically and postsynaptically (Bloss and Hunter, 2010) in 

addition to throughout the amygadala (Rogawski et al., 2003), basal ganglia (Jin and 

Smith, 2011), cerebellum (Wisden and Seeburg, 1993) and entorhinal cortex (Patel et 

al., 1986). Activation of KA receptors triggers membrane depolarization and excessive 

intracellular calcium influx. This in turn leads to neuronal death resulting from 

mitochondrial dysfunction and generation of reactive oxygen species (Nicholls, 2004; 

Schinder et al., 1996; Brorson et al., 1994). The KA model of TLE was initially developed 

by Ben-Ari and colleagues using an intra-amygdaloid injection of KA to induce the 

neuropathological features associated with human TLE (Ben-Ari and Lagowska, 1978; 

Ben-Ari et al., 1979).  

1.3.3.2 Pilocarpine 

The pilocarpine-SE model displays many of the clinical and histopathological 

manifestations of human mTLE (Covolan and Mello, 2000; Bankstahl and Loscher, 

2008; Turski et al., 1987b; Leite et al., 1990). The pilocarpine model of epilepsy in rats 

is probably the most extensively described pre-clinical model of epileptogenesis (Turski 

et al., 1987b; Turski et al., 1983). Although previously less well utilised in mice due to 

technical challenges, recently the model has been rigorously evaluated and optimized 

for use in drug discovery programmes (Mazzuferi et al., 2012). Systemic administration 

of pilocarpine induces a period of status epilepticus in rodents, characterized by 

generalised tonic-clonic convulsions. A latent period of variable duration follows with 

the appearance of spontaneous recurrent seizures (Leite et al., 1990; Cavalheiro et al., 

1991) (chronic epilepsy). Reorganization of hippocampal tissue results, with 

characteristic mossy fibre sprouting, interneuron loss and ectopic dentate granule cell 

proliferation, features shared by human mTLE (Wieser, 2004). What is more, 
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pilocarpine-treated rodents are relatively unresponsive to AEDs (Glien et al., 2002; 

Chakir et al., 2006). Pilocarpine exerts its effect via the M1 muscarinic receptor 

subtype, causing an imbalance between excitatory and inhibitory transmission and an 

elevation in glutamate levels. Seizures are then maintained by N-methyl-D-aspartate 

(NMDA) receptor activation (Nagao et al., 1996; Smolders et al., 1997). 

1.3.3.3 Bicuculline  

Bicuculline is an antagonist of the GABAA receptor (Curtis et al., 1970) which when 

locally applied causes epileptogenesis in the very early stages of postnatal 

development in rats (Soukupova et al., 1993). In contrast to the excitotoxic cell 

damage induced by KA (Balosso et al., 2008), bicuculline provokes seizures in the 

absence of neurodegeneration (Vezzani et al., 2000). 

 Behavioural manifestations of chemoconvulsant-induced seizures and 1.3.4

Status Epilepticus 

KA or pilocarpine (at variable doses depending on administration site and species) 

induces a period of repeated seizure activity. The chemoconvulsant is administered 

systemically or microinjected focally (e.g. into the hippocampus) or intraventricularly 

at doses sufficient to induce a seizure. This then induces a period of self-sustained 

status epilepticus (SSSE). The major limitation to models using systemic 

chemoconvulsants is high mortality. Most groups therefore limit the duration of SSSE 

to 1.5-2 hours by injection of the anticonvulsant diazepam. In both electrical and 

chemical models the duration of SSSE is crucial for the development of subsequent 

epilepsy and spontaneous epileptic seizures. It has been shown that if SSSE is 

interrupted at 30 minutes, spontaneous seizures do not arise (Lemos and Cavalheiro, 

1995). Therefore, standard practice is generally to interrupt the SSSE after 90–120 

minutes which allows reduced mortality but also a sufficient duration of SSSE to induce 

development of epilepsy (Loscher, 2002). 

Elicited kindled seizures and spontaneous seizures arising following the latent period in 

post-SE models are very similar. Therefore, the severity of these seizures is commonly 

rated by a scale that has been developed for kindled seizures. The spontaneous 

seizures are either partial (‘limbic’) or secondarily generalized (‘motor’), and are 
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accompanied by paroxysmal discharges in the electroencephalogram (EEG) (Loscher, 

2002). 

 Acute seizure models 1.3.5

The maximal electroshock seizure (MES) test has been used for decades for screening 

anticonvulsant therapies and remains one of the gold standards in early stage AED 

testing (Rogawski, 2006). It involves non-epileptic animals which are induced to have a 

seizure by an electrical impulse. The test involves a stimulus of sufficient intensity to 

induce maximal tonic extension of the hind limbs (Castel-Branco et al., 2009). The 

stimulus is approximately 5-10 times higher than the individual seizures threshold of 

the animals to avoid the bias of daily fluctuations in seizure threshold (Loscher et al., 

1991; Piredda et al., 1985; Swinyard and Kupferberg, 1985). The test is well 

standardized, has fixed parameters (in mice, 50 mA fixed current) and requires 

minimal expertise, as compared to the more intensive models involving SE. The 

stimulus is applied through transcorneal or transauricular (ear-clip) electrodes. In brief, 

the stimulus is applied followed by an immediate severe tonic seizure with maximal 

extension of the anterior and posterior legs and body stiffening. This is the tonic phase, 

usually lasting 10-15 seconds. After that, clonic seizures commence, characterized by 

paddling movements of the hind limbs and body shaking. The animal usually returns to 

an upright position within 20-30 seconds and starts moving around, apparently 

recovering its normal behaviour (Andre et al., 2002). The test is deemed positive if the 

animal exhibits tonic extensor seizure with rearward hind limb extension more than 

90⁰ from the body which is sustained for more than 3 seconds following 10 seconds 

after stimulation (Castel-Branco et al., 2009). Alternatively, acute seizures can be 

induced chemically. The subcutaneous pentylenetetrazol (PTZ)-induced seizure 

involves myoclonic jerking, clonic convulsion and/or tonic hindlimb extension. PTZ is a 

GABA-A receptor antagonist. Additionally, flurothyl is a convulsant fume that can 

induce a violent tonic clonic seizure in rodents, depending on their age (Sperber and 

Moshe, 1988). The mechanism of action is uncertain however increased sodium 

channel opening has been suggested (Woodbury, 1980).  
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1.4 Epilepsy and Inflammation 

Increasing evidence supports a link between inflammation and epilepsy, both in terms 

of epileptogenesis and the long term consequences of seizures (Vezzani et al., 2011a). 

Complex febrile seizures in childhood have long been associated with the later 

development of temporal lobe epilepsy, febrile illnesses in people with otherwise well-

controlled epilepsy can trigger seizures, and immunomodulatory agents such as 

steroids and adrenocorticotrophic hormone have shown efficacy in some epileptic 

encephalopathies and occasionally in refractory status epilepticus (Hart et al., 1994; 

Snead, 2001). More recently, it has been reported that surgically resected brain tissue 

from individuals with refractory focal epilepsy displays all of the hallmarks of a chronic 

inflammatory state, with infiltration of leukocytes, reactive gliosis, and over-expression 

of cytokines and their target proteins (Vezzani et al., 2011a). This is supported by data 

from studies of animal models that confirm the intimate involvement of inflammatory 

mechanisms in the generation of epileptic discharges and in the cellular damage 

associated with focal-onset seizures (Vezzani and Ruegg, 2011). Targeting brain 

inflammation may accordingly represent a novel therapeutic strategy for epilepsy, 

consistent with efforts to shift the focus away from the symptomatic control of 

seizures to disease-modifying treatments that better target the underlying 

pathological mechanisms. 

 The Immune System 1.4.1

The host adaptive defence against infection and tissue injury triggered by noxious 

stimuli can be divided into two general types of reactions: innate and adaptive immune 

reactions (Kumar, 2007; Nathan, 2002). As the name suggests, the innate immune 

system comprises cells that are ever present in order to respond to insults. These cells 

serve two main purposes: to trigger an immediate and contained inflammatory 

reaction to limit the spread of infection/injury and to trigger the second branch of 

immune reaction, adaptive immunity.  

Response to microbial infection is the most well characterized innate immune system 

response and is triggered mainly by Toll-like receptors (TLRs) and nucleotide-binding 

oligomerization-domain protein-like receptors (NLRs) (Barton, 2008).  These innate 

immune receptors are evolutionarily adapted to recognise specific, highly conserved 
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features of microbes; a process termed ‘pattern recognition’(Janeway, 1989). The 

lipopolysaccharide (LPS) component of the gram negative bacterial cell wall is a well-

recognised example of such a pathogen-associated molecular pattern (PAMP). PAMPs 

are carried by all organisms of a certain class and the host has evolved a set of pattern 

recognition receptors (PRRs) able to detect their presence. In addition to pathogen 

recognition, the immune system also responds to so called ‘sterile-injury’, molecules 

that are released from damaged and dying cells, termed damage-associated molecular 

patterns (DAMPS) (Chen and Nunez, 2010). 

In the brain, innate immunity is predominantly conferred by microglial cells, which act 

as the resident macrophages of the nervous system and represent the first line of 

defence against injury (Becher et al., 2000), but emerging evidence suggests that both 

neurons and astrocytes also play an important role (Vezzani et al., 2011d). Cytokines 

and chemokines released from activated microglia initiate a pro-inflammatory 

signalling cascade that ultimately leads to localised vasodilation, the extravasation and 

recruitment of leukocytes, and activation of the adaptive immune response, in which 

microglia also play a role by acting as antigen-presenting cells (Aloisi et al., 2000). 

Ordinarily, this process is halted by removal or elimination of the injurious stimulus, at 

which stage the immune response is scaled back and astrocytes and microglia turn 

their attention to repair, through the release of anti-inflammatory cytokines, the 

pruning of damaged synapses and the promotion of neuronal re-growth (Stoll et al., 

2000). However, under circumstances that remain poorly understood, the resolution 

of inflammation is compromised, the proliferation of activated microglia is 

perpetuated and their attendant cytotoxic functions exaggerated. In chronic 

neuroinflammation, astrocytes and microglial cells appear to act in a deleterious 

manner, contributing to rather than reversing the neuronal damage, by the sustained 

release of pro-inflammatory cytokines and chemokines and proteases such as 

cathepsins and metalloproteinases (PL, 2003). 

In addition to their role in immunological surveillance, microglia also play a crucial role 

in the healthy brain by monitoring and maintaining synapses (Nimmerjahn et al., 2005; 

Davalos et al., 2005). Synaptic pruning describes the process by which synapses are 

engulfed. Immunohistochemistry against the excitatory postsynaptic density marker 
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PSD95 has shown that microglia engulf synaptic material. Knock-out mice for the 

chemokine fraktaline Cx3cl1, expressed exclusively by microglia (Jung et al., 2000; 

Harrison et al., 1998) and essential for their migration (Ruitenberg et al., 2008), are 

deficient at synaptic pruning (Paolicelli et al., 2011).  

1.4.1.1 Toll-like Receptors 

TLRs are a class of at least 10 different protein receptors that span the cell membrane 

and contain both an extracellular, leucine-rich repeat (LRR) domain and an intracellular 

Toll/IL-1 domain (figure 1.3). TLRs link the recognition of extracellular PAMPs on 

bacteria, viruses, fungi and protozoa to the activation of their recognising cells which 

include dendritic cells (DCs), macrophages and neutrophils (Medzhitov, 2001; Akira et 

al., 2001). DCs act as the messenger between the innate and adaptive immune 

response, by presenting antigens to T-cells for recognition. Activation of TLRs initiates 

a downstream sequence of events leading to activation of the transcription factor 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) which in turn 

regulates the expression of genes that encode the inflammatory cytokines (Kawai and 

Akira, 2007).  
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Figure 1.3 Toll-like receptors and some of their important ligands, adapted from 
(Kaufmann, 2007) 

 

1.4.1.2 Nod-like Receptors 

In contrast to the ancient TLRs, the nod-like receptor (NLR) signalling mechanisms are 

less well characterised. NLRs are located in the cytosol and recognise intracellular 

DAMPS and PAMPs on pathogens that are able to penetrate the host cell (Ting et al., 

2006; Inohara et al., 2005). NLRs comprise a large family (figure 1.4), the functions of 

which are diverse and determined by a variable amino-terminal domain. In addition 

they contain an LRR domain and a conserved NACHT domain. The Nod subfamily 

including Nod-1 and Nod-2 function similarly to TLRs via NF-κB and can in fact be 

synergistic; their activation can lead to enhanced cytokine production in certain 

situations (Kobayashi et al., 2005). The NLRP subfamily also contains an N-terminus 

pyrin domain (PYD). The NLRP gene family encodes the NACHT-, LRR-, and pyrin 

domain–containing proteins (Nalps) which control assembly and activation of the 

inflammasome (Mariathasan and Monack, 2007).  
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Figure 1.4 The domain structure of Nods in humans. The amino-terminal effector-
binding domains (EBDs) are variable in Nods, along with a variable number of leucine-
rich repeats (LRRs). Nods are composed of an EBD, a centrally located nucleotide-
binding oligomerization domain (NOD) that mediates self-oligomerization, and a 
carboxyl-terminal ligand-recognition domain (LRD). Other abbreviations include α, α-
helix/coiled-coil rich; NC, NALP1/CARDINAL expanded homology domain; WD40R, 
WD40 repeat; BIR, baculoviral inhibitor-of-apoptosis repeat. Figure adapted from 
(Inohara et al., 2005). 

 

1.4.1.3 Inflammasomes 

Inflammasome complexes comprise three main components. They have a cytosolic 

PRR which is either an NLR or from the pyrin and HIN domain-containing (PHYIN) 

family of proteins. They also contain the procaspase-1 enzyme and an adaptor protein 

which enables interaction between the enzyme and receptor. Activation of NLRPs 

triggers recruitment of the adaptor apoptosis-associated speck-like protein containing 

a CARD (ASC) (Fernandes-Alnemri et al., 2009). ASC acts as the adaptor protein within 

the inflammasome between the PRR and the CARD of pro-caspase-1 (Case, 2011; Case 

and Roy, 2011; Faustin et al., 2007).  Inflammasome assembly ultimately leads to 

cleavage of procaspase-1 to the active caspase-1, the enzyme that cleaves inactive 

precursor cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) into active 

moieties (Cerretti et al., 1992; Thornberry et al., 1992; Schroder and Tschopp, 2010). 

There are several known inflammasome complexes that form in response to an 

infectious or sterile injurious insult. The type and combination of the components 
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determines the inflammasome formed. All are essential for the activation of pro-

inflammatory caspases necessary to initiate a potent inflammatory response.  

The inflammasome that is activated by DAMPs under sterile conditions (such as may 

occur during epileptogenesis) is the NACHT, LRR and PYD-containing protein 3 (NLRP3) 

inflammasome. This comprises the PRR NLRP3, the adaptor protein apoptosis-

associated speck-like protein containing a CARD (ASC), and pro-caspase-1 (figure 1.5).  

Figure 1.5 The Nod-like receptor, pyrin domain-containing 3 (NLRP3) inflammasome. 
Under normal conditions, NLRP3 is auto-repressed resulting from internal interaction 
between the NACHT domain and leucine-rich repeats. Upon exposure to pathogen-
associated molecular patterns (PAMPs) from microorganisms or damage-associated 
molecular patterns (DAMPs) from endogenous danger signals, the NACHT domain is 
exposed and auto-repression ceases. As a result, NLRP3 oligomerizes and recruits 
apoptosis-associated speck-like protein containing a CARD (ASC; also known as 
PYCARD) and pro-caspase 1, triggering the activation of caspase 1 and the maturation 
and secretion of pro-inflammatory cytokines such as interleukin-1β (IL-1β) and IL-18. 
CARD, caspase-recruitment domain; LRRs, leucine-rich repeats; NACHT, NAIP, CIITA, 
HET-E and TP1; PYD, pyrin domain. Figure reproduced with permission from (Tschopp 
and Schroder, 2010) 

 

In the brain, the NLRP3 inflammasome is primarily expressed in microglia although 

evidence for functional NLRP3 has been shown in neurons (Walsh et al., 2014). The 

NLRP3 inflammasome has recently also been shown to exert pro-inflammatory, yet IL-
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1-independent, effects including regulating the release of High Mobility Group Box-1 

(HMGB1) (Lamkanfi et al., 2010). 

 Cytokines 1.4.2

Cytokines are a diverse group of proteins produced by almost every cell and are 

involved in inter-cell communication of both the innate and adaptive immune 

response. They act to intensify the immunological response; binding to specific cell-

surface receptors to induce intracellular signal cascades that alter cell function by 

up/down-regulation of genes and their respective transcription factors. 

Generalization of cytokine function is difficult as their action is dependent upon a 

complex series of interactions between the cytokine and specific receptor, the role of 

the receptor being of equal importance. It is possible, however, to classify function 

into those that are broadly pro-inflammatory and those that are anti-inflammatory 

according to the up-regulation of genes coding for synthesis of mediator molecules 

during inflammation, namely type II phospholipase (PL) A2, cyclooxygenase (COX)-2, 

and inducible nitric oxide (NO) synthase. The enzymes encoded by these genes 

increase the synthesis of platelet-activating factor and leukotrienes, prostanoids, and 

NO. Pro-inflammatory cytokines include mainly the interleukin (IL)-1 family, IL-2, IL-6, 

tumour necrosis factor α (TNFα) and interferon-γ (IFNγ). Cytokine gene expression is 

triggered by various cell stressors including infection, inflammatory products, 

ultraviolet light, heat-shock and hyperosmolarity. All of these activate the mitogen-

activated protein kinases (MAPKs), which phosphorylate transcription factors for gene 

expression (Dinarello, 2000). The stimulus for the synthesis of pro-inflammatory 

genetic cascades is primarily the synergistic action of IL-1 and TNFα. IL-1 and TNF are 

potent inducers of endothelial adhesion molecules which are essential for recruitment 

of leukocytes into tissue via adhesion to the endothelial surface (Dinarello, 2000). 

Conversely, anti-inflammatory cytokines suppress the intensity of this cascade and 

include IL-4, IL-10, and IL-13. They have the ability to suppress genes for IL-1, TNFα and 

the chemokines. It must be borne in mind, however, that many cytokines have 

pleiotropic activity and may function differently depending upon the biological 

circumstances. For example, IFNγ is considered a pro-inflammatory cytokine because it 

augments TNF activity and induces NO. However it also possesses antiviral activity and 
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can activate cytotoxic T-cells. It is likely that an effective balance between the effects 

of pro-inflammatory and anti-inflammatory cytokines determines the outcome of 

disease.  

1.4.2.1 Inflammatory mediators and epilepsy 

Recent studies point to a significant contribution of inflammation in the 

pathophysiology of symptomatic epilepsy (table 1.6). 

1.4.2.2 Interleukin-1β and epilepsy 

Interleukin-1β (IL-1β) is probably the most extensively studied and important pro-

inflammatory mediator. Much of the early evidence to support a role for inflammation 

in epilepsy arose from studies of IL-1, its target, interleukin-1 receptor type 1 (IL-1R1), 

and its naturally occurring competitive antagonist, interleukin-1 receptor antagonist 

(IL-1RA) (Vezzani et al., 2000; Viviani et al., 2003; Vezzani et al., 2011d). All three are 

up-regulated in rodent brain as a result of seizures in a variety of experimental models, 

including those induced by electrical stimulation, kainate, bicuculline, and 

hyperthermia (Eriksson et al., 1999; Viviani et al., 2003; Dube et al., 2005; Ravizza and 

Vezzani, 2006). IL-1 expression in glial cells has been shown to remain elevated for up 

to 60 days after experimental status epilepticus (De Simoni et al., 2000) and elevated 

IL-1β has been reported in CSF from children with febrile seizures (Haspolat et al., 

2002; Ravizza et al., 2008h). Elevated IL-1β and IL-1R1 have also been observed in brain 

tissue from patients with a variety of pathologies including medial temporal lobe 

epilepsy with hippocampal sclerosis, focal cortical dysplasia, and tuberous sclerosis 

(Boer et al., 2008; Ravizza et al., 2006a; Ravizza et al., 2008a; Crespel et al., 2002). 

Similarly, several inflammasome-associated genes (IL-1β, IL-18, NLRP1, NLRP3, and 

caspase-1) showed increased transcript levels in brain tissue from patients with the 

epileptic encephalopathy Rasmussen’s encephalitis (RE) as compared to non-RE 

controls (Ramaswamy et al., 2013). In addition to their over-expression arising as a 

result of seizures, IL-1 and IL-1RA can also modulate susceptibility to seizure-inducing 

stimuli. When injected directly into the CNS, IL-1 exacerbates seizures induced by 
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Inflammatory mediators Population Outcome Comments Ref 

Interleukin-1β Rat model of epilepsy 
(Induced by KA and 
biccuculine) 

Both KA and bicuculine-induced 
seizures cause rapid increase in 
hippocampal IL-1β expression. 
Intrahippocampal injection of IL-1β 
10 min before KA enhanced by 
226% the time spent in seizures 

The proconvulsant effect was 
blocked by co-administration of 
the antagonist, IL-1RA. 

(Vezzani et al., 
1999) 

IL-1β, IL-6, and TNFα Rat limbic status 
epilepticus model  

Induction of IL-1β, IL-6, TNFα and 
inducible nitric oxide 6-24 hours 
after seizures. Intracerebral 
injection of IL-1RA significantly 
reduces behavioural seizures.  

 (De Simoni et al., 
2000) 

IL-1β and IL-1RA gene 
polymorphisms 

Human  focal epilepsy 
genomic DNA 

Strong association between 
homozygotes for the pro-
inflammatory IL-1β polymorphism 
(-599) in patients with TLE and HS 
as compared to non-epileptic 
controls and those with TLE 
without HS. 

Suggests a subtle anomaly during 
development could lead to HS in 
genetically susceptible 
individuals. 

(Kanemoto et al., 
2000) 

IL-1β, IL-6 and TNFα Rodent limbic seizure 
model (induced by 
KA, biccuculine or 
electrical) 

Limbic seizures rapidly and 
transiently enhanced IL-1β, IL-6 
and TNFα mRNA in the 
hippocampus. IL-1β remained 
persistently elevated 60days 
following seizure. 
Transgenic mice overexpressing ILI-
RA showed decreased susceptibility 

Pre-Injection of IL-1β enhanced 
the time spent in seizures; the 
effect was blocked by IL-1RA. 

(Vezzani et al., 
2002) 

Table 1.6 Studies examining the contribution of inflammatory mediators to epilepsy in experimental models and human epilepsy. 
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to bicuculline induced seizure 
IL-1β Rat hippocampal 

neuron cultures 
IL-1β dose-dependently enhanced 
NMDA-induced calcium increases 
with phosphorylation of the 
NR2A/B subunit which mediates 
excitotoxic neuronal death.  

The effect on the NMDA subunits 
was abolished by co-
administration of IL-1RA 

(Viviani et al., 
2003) 

IL-1β, IL-1RA and IL-6 Human drug-resistant 
epilepsy (10) plasma 

Highly pro-inflammatory cytokine 
profile (high IL-6, low IL-1Ra and 
low IL-1Ra/IL-1beta ratio) observed 
in plasma from patients with 
epilepsy. 

IL-1Ra significantly lower in 
epilepsy patients compared to 
controls (p<0.001) 

(Hulkkonen et al., 
2004) 

Interleukin-1β family (IL-
1β, IL-1RI, IL-1RII, IL-1RA) 
 

Human drug-resistant 
epilepsy, brain tissue 
from focal cortical 
dysplasia and 
glioneuronal tumors 
(27) 

Moderate to strong expression IL-
1β and IL-1RI in all specimens. 
Neuronal staining was positively 
correlated with seizure frequency. 

Developmental lesions 
associated with intractable 
epilepsy, high expression of IL-1β 
and its receptor and paucity of 
expression of natural antagonists 
(IL1-RII, IL-1RA) suggests 
ineffective inhibitory control. 

(Ravizza et al., 
2006a) 

IL-1β, interleukin-
converting enzyme 
(ICE/caspase-1) 

Rat model of epilepsy 
(KA), Caspase-1 KO 
mice and Organotypic 
hippocampal slice 
cultures 

Selective inhibition of ICE/caspase-
1 or caspase-1 gene deletion 
delayed time to seizure onset and 
number of seizures. 

Selective inhibition of brain IL-1β 
represents a novel anti-
convulsant strategy. 

(Ravizza et al., 
2006e) 

IL-1β 
IL-1RI 

Rat models of 
epilepsy (induced by 
pilocarpine and 
SSLSE) and 

Neuronal and glial activation of IL-
1β system. Monocytes and 
macrophages detected in areas of 
neuronal loss. IL-1β and IL-1RI 

Activation of IL-1 system during 
epileptogenesis may increase 
neuronal excitability and alter 
BBB permeability. 

(Ravizza et al., 
2008a) 
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IL-1R1: Interleukin-1 type-1 receptor; IL1-RII: Interleukin-1 type II receptor; IL-1RA: Interleukin-1 receptor antagonist; IL-6: Interleukin-6; TNFα: 
Tumour necrosis factor-α; mRNA: messenger-RNA; NMDA: N-methyl-D-aspartate receptor; KO: knock-out; TLE-HS: temporal lobe epilepsy with 
hippocampal sclerosis; KA: Kainic acid; RT-PCR: Reverse transcription-polymerase chain reaction); SSLSE: Self-sustained limbic status epilepticus; 
TLE: temporal lobe epilepsy; TGF-β: Transforming growth factor-β; BBB: Blood-brain barrier; ICAM-1: Intercellular Adhesion Molecule-1; VCAM-1: 
vascular cell adhesion molecule 1; E-selectin: endothelial; P-selectin: platelet; PBMC: peripheral blood mononuclear cell. Table reproduced from 
(Walker et al., 2015).

Human adult drug-
resistant TLE (18) 
undergoing resection. 

strongly immunoreactive in 
microvasculature in areas of BBB 
damage. 

TGF-β and BBB 
dysfunction 

Rat focal injury model 
and hippocampal 
slice cultures. 

Focal BBB breakdown activates a 
TGF-β receptor mediated signalling 
cascade in glia and local 
inflammation 

Damage to the microvasculature 
leads to serum extravasation into 
the brain and activation of TGF- β 
cascade. 

(Cacheaux et al., 
2009) 

Leukocyte adhesion 
molecules 

Mouse epilepsy 
model pilocarpine 

Seizure-induced up-regulation of 
vascular leukocyte adhesion 
molecules (I-CAM, VCAM-1, E-
selection, P-selectin)  

Antibody inhibition of leukocyte-
vascular interactions markedly 
reduced seizures, suggests a 
pathological link between 
leukocyte-vascular interactions, 
BBB damage and seizure 
generation. 

(Fabene et al., 
2008) 
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kainic acid and bicuculline (Viviani et al., 2003) and lowers the seizure threshold in 

models of febrile convulsions (Dube et al., 2005; Heida and Pittman, 2005). In contrast, 

IL-1RA has anticonvulsant activity following intracerebral administration and 

transgenic mice that over-express this protein in astrocytes have reduced seizure 

susceptibility (Vezzani et al., 2000; Auvin et al., 2010b). Similarly, IL-1R1 knockout mice 

are less sensitive to experimentally-induced febrile seizures (Dube et al., 2005) and the 

convulsant effects of bicuculline (Vezzani et al., 2000).  

The pro-convulsant effects of IL-1 are believed to be mediated via IL-1R1 dependent 

activation of neuronal sphingomyelinase and Src kinases, resulting in phosphorylation 

of the NR2B subunit of the NMDA receptor, stabilisation of the receptor at the cell 

surface, enhanced NMDA-mediated calcium (Ca2+) conductance, and an increase in 

glutamatergic neurotransmission and the propensity for excitotoxicity (Viviani et al., 

2003; Balosso et al., 2008). Other putative effects of IL-1 include a reduction in 

astrocytic glutamate uptake (Hu et al., 2000), an enhanced release of glutamate from 

glial cells, possibly via enhanced TNF- production (Bezzi et al., 2001), and the 

generation of acquired channelopathies (Viviani et al., 2007). 

 Pyroptosis 1.4.3

Pyroptosis is a form of programmed cell death mediated by caspase-1. Pyroptosis is 

dependent on the NLRP3 inflammasome complex and its unique feature includes loss 

of membrane integrity accompanied by an outflow of intracellular inflammatory 

components, most notably high mobility group box-1 (HMGB1) (Scaffidi et al., 2002).         

1.5 Epilepsy and inflammation  

 Disruption of the blood brain barrier. 1.5.1

The CNS was previously presumed to be an immunologically privileged site, separated 

from perturbations in the microenvironment of the peripheral blood by the 

mechanical barrier formed by the BBB. The resident astrocytes and microglia maintain 

independent CNS immunity. However, it is now understood that this concept of 

“privilege” is not wholly absolute and in some conditions, disruption of the BBB 

permits a link between the peripheral and central immune systems.  
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Using two-photon microscopy to examine the dynamics of lymphocytic 

choriomeningtis virus (LCMV) infected mice, fluorescently labelled CD8+ T-cells have 

been visualised in the mouse brain after infection (Kim et al., 2009). Immediately 

following intracerebral inoculation, CD8+ T-cells entered the subarachnoid space and 

contact LCMV infected stromal cells. The resultant T-cell activation leads to chemokine 

excretion, influx of monocytes and neutrophils and production of inflammatory 

cytokines. This inflammatory recruitment process results in disruption of the BBB and, 

ultimately, the development of fatal seizures in the mice. Furthermore, depletion of 

both monocytes and leukocytes in the mice using anti-CD8+ antibody significantly 

preserved vascular integrity, prevented BBB leakage and prevented rapid onset of 

seizures 6 days after inoculation with LCMV (Kim et al., 2009).  

Possible mechanisms for BBB breakdown in seizure disorders have been proposed. Up-

regulation of adhesion molecules, essential intermediaries for leukocyte recruitment 

into the CNS, has been identified in rodent models of seizures and epilepsy (Fabene et 

al., 2008). Peripheral injection of the chemoconvulsant pilocarpine is known to induce 

a mild inflammatory reaction with IL-1β release (Marchi et al., 2007). Elevated 

expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion 

molecule-1 (VCAM-1), P-selectin and E-selectin was identified 1 and 7 days following 

pilocarpine-induced SE (Fabene et al., 2008). These adhesion molecules are a hallmark 

of tissue inflammation. Disruption of the leukocyte-endothelial cell interaction resulted 

in a marked reduction of spontaneous convulsions during the chronic period, with 

reduced seizure frequency. Furthermore, when an antibody to α4 integrin was given 2 

hours before pilocarpine, it completely prevented convulsions (Fabene et al., 2008). 

This model argues convincingly for a role of leukocyte-endothelial cell interaction and 

consequent BBB leakage in epileptogenesis. Changes in expression of several 

potassium and glutamate homeostasis related genes in response to BBB breakdown in 

rats have been identified (David et al., 2009). During BBB breakdown, serum-derived 

albumin diffuses into the extracellular space leading to rapid up-regulation of the 

astrocytic marker glial fibrillary acidic protein (GFAP), followed by delayed 

development of an epileptic focus (David et al., 2009; Seiffert et al., 2004). The TGF-β 

signalling pathway is a candidate mechanism for delayed epileptogenesis following 
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extravasation of serum albumin into the brain (Tomkins et al., 2007). In rats in whom 

the BBB has been disrupted with either deoxycholic acid, serum derived albumin or 

TGF-β1; gradual development of hypersynchronous neuronal epileptiform activity is 

seen. Co-immunoprecipitation revealed a direct interaction between albumin and the 

TGF-β type II receptor (RII). Following activation of this receptor, phosphorylation of 

intracellular proteins called SMADs occurs. Phosphorylated SMAD 2 and/or 3 form a 

complex with the common mediator protein SMAD 4, resulting in translocation to the 

nucleus and transcriptional activation (Pavlovsky et al., 2005). The pathophysiological 

cascade leading to pro-inflammatory activation in epilepsy is described in figure 1.6. 

In humans, intravenous mannitol can be used to temporarily disrupt the BBB to allow 

intrathecal delivery of chemotherapy for the treatment of brain lymphoma. In 8 

patients undergoing BBB disruption for this purpose, 25% of 102 procedures resulted 

in motor seizures (Marchi et al., 2007). There were no seizures in patients receiving 

chemotherapy without BBB disruption. Seizures occurred exclusively within the time 

frame of the procedure and despite heavy premedication with the anticonvulsant 

thiopental. Findings were subsequently confirmed in an animal model, removing the 

potential confounders of chemotherapy and presence of lymphoma.  

However, BBB disruption is not necessarily a prerequisite of seizure activity, 

demonstrated elegantly in vitro in the isolated guinea pig brain (Librizzi et al., 2012). In 

this model seizures induced by the convulsant drug bicuculline have been shown to 

induce production of inflammatory mediators, despite the complete absence of blood-

borne molecules (Librizzi et al., 2012). This model demonstrates clearly that seizure 

activity alone is sufficient to induce brain-borne inflammation, in particular IL-1β. 

Targeting biologically active IL-1β using the human recombinant interleukin-1 

receptor-1 antagonist anakinra, reduced seizure duration by 80% in this model. In 

addition, seizures in this model induced long-standing BBB breakdown.   

Taken together, substantial evidence supports a temporal and what is more, causal 

relationship between BBB disruption, inflammatory activation and seizure generation.  
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 Autoimmunity 1.5.2

1.5.2.1 Auto-antibodies 

Autoimmune activation has been associated with certain epilepsy syndromes (Peltola 

et al., 2000a; Eriksson et al., 2001; Ranua et al., 2004; Rogers et al., 1994; Bartolomei 

et al., 1996), further suggesting that immune mechanisms are integral to seizure 

disorders. Numerous autoantibodies have been linked to seizure disorders including 

those targeted against voltage-gated potassium channels (VGKCs), voltage-gated 

calcium channel (VGCCs), Glutamate Receptor (GluR)3, glutamic acid decarboxylase 

(GAD), and the NMDA-subtype of glutamate receptor (NMDA-R). 

Antibodies against (GluR)3 (and GluR2 at low concentrations) have been detected in 

the serum of some patients with Rasmussen's encephalitis (Rogers et al., 1994). 

Experimental evidence suggests that these antibodies may activate cortical neurons 

and induce complement dependent and independent cytotoxicity (Twyman et al., 

1995; He et al., 1998; Levite and Hermelin, 1999), but, confirmatory clinical studies 

determining the frequency of these antibodies in consecutive series of patients, or in 

the general population are absent. Limbic encephalitis (LE) predominantly affects the 

medial temporal lobes characterised by seizures, psychiatric disturbance and loss of 

short-term memory. It can be both paraneoplastic, in association with certain tumour 

types (Darnell and Posner, 2003), or non-neoplastic in origin, wherein it is associated 

with elevated VGKC and NMDA receptor antibodies (Majoie et al., 2006; Reid et al., 

2009). GAD antibodies have also been reported in patients with stiff person syndrome 

(SPS) (Levy et al., 2005) and more recently, in patients with temporal lobe epilepsy 

(Liimatainen et al., 2010). Theoretically, inhibition or loss of GAD caused by these 

antibodies could cause a reduction in GABA synthesis with resultant reduced 

neuroinhibitory activity and lowered seizure threshold. In vitro studies support a 

pathogenic role in the development of epilepsy. 
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Figure 1.6 Schematic detailing the pro-inflammatory pathways involved in epilepsy. 
Events including neuro infection, head injury, prolonged febrile seizure result in 
activation of microglia, astroctyes and neurons and disruption of the blood brain 
barrier (BBB). Pro-inflammatory cytokines and damage associated molecular patterns 
(DAMPS) including, IL-1β and high mobility group box-1 (HMGB1), are released into the 
extracellular milieu. Signalling activation in neurons results in a rapid increase of NMDA 
receptor calcium (Ca2+) conductance via Src mediated phosphorylation of the NR2B 
subunit. This in turn leads to increased intracellular Ca2+, which causes neuronal 
hyperexcitability, decreased seizure threshold and network reorganization. Activation 
of the NFkB-dependant transcription of genes contributes to molecular and cellular 
changes involved in epileptogenesis, and perpetuates brain inflammation. The initial 
inciting events described may also cause glutamate-mediated activation of NMDA 
receptors in neurons which in turn promotes COX-2 activation via inducible Nitric Oxide 
(iNOS) and Phospholipase A2-mediated production of arachidonic acid (AA). Production 
of prostaglandin E2 activates EP1 and EP2 receptors which are coupled to intracellular 
signalling involving Ca2+ mobilization from intracellular stores and cAMP production. As 
a consequence of BBB disruption, serum-derived albumin passes into brain 
parenchyma, causing TGF-β signalling in astrocytes leading to NFkB dependent gene 
transcription, astrocyte dysfunction (decreased Kir4.1 and glutamate transporter) and 
pathological outcomes. Neuronal network hyperexcitability, cell injury, and network 
reorganization results, which are then responsible for the onset of seizures and the 
development of epilepsy. Figure adapted from (Vezzani et al., 2013). 
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Strong immunoreactivity is observed on application of GAD-Ab-positive sera from 

epilepsy patients to hippocampal neurons in culture. No reactivity was observed with 

sera from antibody negative patients, healthy control individuals or GAD-Ab positive 

type-1 diabetic patients (Vianello et al., 2006). Whether anti-GAD Abs are directly 

responsible for reduced activity of GAD in GABAergic neurons and hence reduced 

GABA levels or whether they are epiphenomena, produced secondary to damage to 

GABAergic neurons, remains unclear at present. Co-existent intrathecal synthesis 

(Liimatainen et al., 2010) would suggest an ongoing immune response and highlights 

those patients that may benefit from immunomodulatory therapy. 

1.5.2.2 Immunomodulatory Therapies 

Immunomodulatory interventions have proven efficacy in some of the catastrophic 

epilepsy syndromes of childhood which are otherwise resistant to antiepileptic drugs. 

Corticosteroids, intravenous immunoglobulins (IVIg) or plasmapheresis have been 

reported to be beneficial for Rasmussen’s encephalitis (Hart et al., 1994; Andrews et 

al., 1996), although no blinded, placebo-controlled trials have been undertaken to 

confirm efficacy. Likewise, numerous un-blinded studies have shown IVIg to be 

efficacious in the treatment of infantile spasms and Lennox-Gastaut syndrome (van 

Engelen et al., 1994a; van Engelen et al., 1994b; van Engelen et al., 1994c; Echenne et 

al., 1991; Duse et al., 1996), despite their differing clinical phenotypes.  

1.5.2.3 Autoimmune disorders and epilepsy  

The incidence of seizure disorders in systemic lupus erythematosus (SLE) is greater 

than that of the general population at 5.4%-10% (Mackworth-Young and Hughes, 

1985; Formiga et al., 1997; Liou et al., 1996; Herranz et al., 1994). SLE is a complex, 

multisystem disorder, predominantly affecting women during reproductive years, in 

which the CNS is commonly affected and autoantibody production, including 

antinuclear, anticardiolipin and anti-double-stranded DNA antibodies, are a frequent 

feature. Many theories exist exploring the relationship between autoantibodies and 

seizures in SLE, including anti-brain antibodies directly causing seizures (Rogers et al., 

1994; Mihailovic and Cupic, 1971), inhibition of chloride currents through the GABA 

receptor complex (Liou et al., 1994) and antiphospholipid antibodies directly affecting 

CNS tissue resulting in microvascular lesions (Liou et al., 1996).  
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Given the growing body of evidence, it seems likely that serum autoantibodies may be 

associated with some forms of epilepsy; however, it remains unclear whether they 

arise as a cause or a consequence of seizures.  

1.6 The High-Mobility Group Superfamily 

The high mobility group (HMG) superfamily members are responsible for mediating 

most of the structural changes in chromatin, a dynamic supramolecular nucleoprotein 

(Kornberg and Lorch, 1999). Genomic DNA in eukaryotic cells must be tightly 

compacted in the form of chromatin in order to fit into the cell nucleus. Access of 

regulatory factors to their cognate DNA binding sites on chromatin is achieved by 

folding and remodelling of the chromatin structure. Loosening this structure or even 

disruption of the nucleosome structure (by chromatin remodelling complexes), is 

achieved by DNA bending and unwinding, as well as by affecting the strength of DNA–

histone interactions by DNA methylation, post-translational modifications of histones, 

or incorporation of specific histone variants to chromatin. This allows access of specific 

transcription factors or other proteins (Venters and Pugh, 2009). The HMG proteins 

have been subdivided into three distinct structural families: HMGA (the HMG-AT-hook 

family), HMGN (the HMG-nucleosome binding family), and HMGB (the HMG-box 

family) (Bustin, 2001b; Gerlitz et al., 2009).  

 High Mobility Group A (HMGA) family 1.6.1

The mammalian HMGA protein family currently consists of four functionally active 

members, HMGA1a, b and c (alternative splice variants of one gene) and HMGA2 

(Nagpal et al., 1999). HMGA proteins are architectural transcription factors that both 

positively and negatively regulate the transcription of a variety of genes (Cleynen and 

Van de Ven, 2008). The DNA-binding regions of the HMGA proteins assume a planar, 

crescent-shaped configuration called the ‘AT-hook’ when specifically bound to the 

minor groove of short stretches of AT-rich DNA (Reeves and Nissen, 1990). HMGA 

proteins recognise DNA structure and are able to bend, straighten, unwind and induce 

looping in linear DNA molecules in order to regulate gene expression (Reeves, 2001; 

Evans et al., 1995) 
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 The High Mobility Group nucleosome binding (HMGN) family 1.6.2

The High-mobility group nucleosome binding (HMGN) family contains 5 members, 

HMGN1-5. The hallmark of the family is the highly conserved nucleosomal binding 

domain (Bustin, 2001a; Ueda et al., 2008; Crippa et al., 1992). All HMGN’s bind 

specifically to the 147 bp nucleosome core particle which is the building block of the 

chromatin fiber (Ueda et al., 2008). In this way they alter the structure and activity of 

chromatin and reduce compaction (Kugler et al., 2012). 

 High Mobility Group Box (HMGB) family 1.6.3

The High-Mobility Group Box (HMGB) family consists of 3 recognised members: 

HMGB1, -2 and -3 (Stros, 2010). The HMGB proteins all consist of two DNA binding 

domains (termed the A and B boxes) and a long acidic carboxyl terminus (Bianchi et al., 

1989). HMGB1 is a 25KDa highly conserved protein discovered 30 years ago (Goodwin 

et al., 1973) that has 99% sequence homology between mammals. It is widely 

expressed in most eukaryotic cells in several animal species, humans among them 

(Yang et al., 2005a). This reflects distinct biological functions despite wide species 

variation. HMGB1 is ubiquitous, with lowest tissue levels found in brain and liver 

(Mosevitsky et al., 1989) and will be discussed in detail in this review. 

1.6.3.1 High Mobility Group Box 2 and 3 

In brief, HMGB2 is highly expressed during embryogenesis and in adults, it is mainly 

expressed in testicles and lymphoid organs. Mice lacking the HMGB2 gene are viable, 

but knockout males have reduced fertility (Stros, 2010, Ronfani et al., 2001.) HMGB2 

protein overexpression has been demonstrated in hepatocellular carcinoma (Kwon et 

al., 2010b) and glioblastoma multiforme, wherein it is also correlated with shorter 

overall survival time (Wu et al., 2013). It has also been shown to be down-regulated in 

colorectal cancer cell lines (Shin et al., 2013). HMGB3 has been mapped to the X 

chromosome band q28 (Gao et al., 2015). It plays an important role in regulating the 

balance between haematopoietic stem cell proliferation and differentiation (Nemeth 

et al., 2006). Overexpression of HMGB3 mRNA has been found in metastatic breast 

cancers (Elgamal et al., 2013), which correlates with poor survival. More recently, 

overexpression has been linked to poor prognosis in oesophageal squamous cell 

carcinoma (Gao et al., 2015). 
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1.6.3.2 High Mobility Group Box-1 

HMGB1 is a 25KDa highly conserved protein comprising three major protein domains; 

two DNA binding regions (termed the A and B boxes) and a 30 amino acid acidic 

carboxyl terminus (Bianchi et al., 1989). Discovered 30 years ago (Goodwin et al., 

1973), it has myriad intracellular and extracellular functions. 

1.1.1.1.1 Nuclear role 

Primarily nuclear, HMGB1 bends deoxyribonucleic acid (DNA) and regulates 

transcription. It functions as an architectural factor to support the structure of 

chromatin through interaction with a myriad proteins to promote formation of 

nucleoprotein structures (Stros, 2010). Increasing the flexibility of DNA can recruit 

binding of additional transcription factors, achieved by looping and bringing the factors 

into closer proximity (Stros et al., 1994; Becker et al., 2008; Paull and Johnson, 1995). 

In addition, ATP-driven chromatin remodelling, giving access of specific DNA sites to 

transcription factors is enhanced by HMGB1 (Bonaldi et al., 2002).  

HMGB1 contains two nuclear localisation sequences (NLSs) located in the A box (NLS1, 

amino acids 28-44) and in the B box (NLS2, amino acids 179-185), respectively (Yang et 

al., 2013). Four conserved lysine residues are present in NLS1, and five are present in 

NLS2. They are susceptible to acetylation modification which signals migration to the 

cytoplasm where it is packaged into vesicles for release (Wang et al., 1999; Evankovich 

et al., 2010; Bell et al., 2006; Rovere-Querini et al., 2004; Kazama et al., 2008; Bonaldi 

et al., 2003; Scaffidi et al., 2002). Release occurs through a non-classical pathway as 

HMGB1 lacks the necessary leader signal sequence required for the classical 

endoplasmic-reticulum mediated pathway. In response to an inflammatory signal, 

acetylated HMGB1 is released following fusion of the vesicles with the plasma 

membrane (Nickel and Rabouille, 2009; Lamkanfi et al., 2010). HMGB1 can be released 

passively, from the nucleus of damaged or necrotic cells, or actively as part of the 

innate immune response from many different cells types including macrophages, 

monocytes, natural killer cells, endothelial cells, and platelets (Harris et al., 2012; Yang 

et al., 2013). Therefore depending upon the presence or absence of acetylation 
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modifications, it is possible to identify the mode of HMGB1 release (necrotic or 

immune-mediated).   

1.6.3.2.1 Acetylation modifications 

Acetylation of HMGB1 near the nuclear localization sequences blocks communication 

with the nuclear importer and inhibits re-entry into the nucleus (Lotze and Tracey, 

2005). Lysine residues susceptible to acetylation within the HMGB1 molecule act as 

markers of release mechanisms; non-acetylated HMGB1 is passively released during 

necrotic cell death, whereas acetylation promotes active release from immune cells 

following infection and sterile inflammation (Lamkanfi et al., 2010; Andersson et al., 

2014) 

1.6.3.2.2 Cytokine role and redox modifications 

HMGB1 contains three cysteine residues at positions 23, 45, and 106, which are 

sensitive to redox-dependent modifications. Once outside the cell, HMGB1 can act as a 

chemo-attractant through formation of a heterocomplex with the chemokine C-X-C 

motif chemokine 12 (CXCL12), together acting in synergy upon the CXC-receptor type 4 

(CXCR4) receptor in order to recruit leukocytes (Venereau et al., 2013). To form this 

effective heterocomplex, HMGB1 must be in the fully reduced form whereby all three 

cysteine residues contain a thiol group. It is in this fully reduced form that it is strictly 

referred to as simply “HMGB1” and more fully, HMGB1C23hC45hC106h, indicating the 

presence of a thiol group at each cysteine (Antoine et al., 2014). Through binding to 

the Toll-like Receptor 4 (TLR4), HMGB1 stimulates cytokine release and inflammation. 

Successful cytokine activation requires both the presence of a thiol group at C106 

(mandatory for HMGB1 to bind to the TLR4/MD2 complex (Schiraldi et al., 2012)) and a 

disulphide bond between C23 and C45 (Yang et al., 2012). This particular variant of 

HMGB1 is termed “disulphide HMGB1” or more specifically, HMGB1C23-C45C106h to 

indicate a single intramolecular disulphide bond between C23 and C45 and no post-

translational modification on C106 (Antoine et al., 2014). These specific redox 

modifications (figure 1.7) directly dictate the cytokine and chemotactic activities of 

HMGB1. In addition to binding via TLR4, extracellular HMGB1 also binds to the multi-

ligand receptor for advanced glycation end products (RAGE). RAGE has various binding 
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partners, including HMGB1, that are released during cellular or physiological 

stress(Sims et al., 2010). The promoter contains multiple functional NF-κB and 

specificity protein-1* transcription factor–binding sites (Li et al., 1998; Li and Schmidt, 

1997) and therefore ligand binding can potentially trigger an auto-inflammatory loop. 

To date, less is known about the HMGB1/RAGE axis however recent studies have 

suggested a role in neutrophil recruitment towards necrotic tissue, in the absence of 

macrophage-mediated signaling (Huebener et al., 2015). 

Once outside the cell, HMGB1 functions as a potent alarmin to activate innate and 

adaptive immunity. The absence of HMGB1 in mice is lethal; HMGB1-/- knockout pups 

die within 24 hours owing to hypoglycaemia (Calogero et al., 1999).  

1.6.3.2.3 Identification 

Total HMGB1 levels in serum, plasma or CSF can be quantified using a commercially 

available enzyme-linked immunosorbent assay (ELISA). Currently there are no specific 

antibodies able to detect the different molecular forms of HMGB1. Liquid 

Chromatography-Tandem Mass Spectrometry (LCMS/MS) is the only analysis method 

able to identify the structural and functional modifications of HMGB1 (Antoine et al., 

2012; Antoine et al., 2009).  

1.7 The role of HMGB1 in epilepsy 

 HMGB1 expression  1.7.1

Following seizure, IL-1β and HMGB1 are primarily expressed in microglia, although 

HMGB1 is also found in neurons (Eriksson et al., 1999; Maroso et al., 2010). Increased 

immunostaining for HMGB1 and its receptors, TLR4 and RAGE, has been demonstrated 

in the brain tissue of mice following induction of both kainate- and bicuculline-induced 

acute seizures and kainate-induced chronic epilepsy (Maroso et al., 2010; Iori et al., 

2013). Increased staining for HMGB1, TLR4 and RAGE, is detectable in an analogous 

pattern to that observed in mouse models of epilepsy in human hippocampal tissue 

obtained at surgery from patients with temporal lobe epilepsy and hippocampal 

sclerosis, and also in malformations of cortical development associated with 
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intractable seizures (Iori et al., 2013; Maroso et al., 2010; Maroso et al., 2011b; Zurolo 

et al., 2011).  

Figure 1.7  Different isoforms of high mobility group Box-1 (HMGB1) resulting from 
post-translational modifications. Reduced HMGB1 contains thiol groups on all 3 
conserved cysteine residues and functions as a chemoattractant. Disulphide HMGB1 
contains a disulphide bond between cysteine 23 and 45 and a thiol at cysteine 106. 
Through binding to the toll-like receptor 4 it stimulates release of pro-inflammatory 
mediators and the inflammatory cascade. Sulfonyl HMGB1 is fully oxidised contains a 
sulfonyl group on each cysteine and is considered to date to be immunologically inert. 
All forms of HMGB1 contain lysine residues that are susceptible to acetylation 
modification. Acetylated HMGB1 originates from inflammatory cells and as a 
consequence of acetylation, can no longer re-enter the nucleus. Non-acetylated 
HMGB1 is nuclear and is released by damaged and dying cells following nuclear burst. 

 

 HMGB1 and IL-1β exacerbate seizures 1.7.2

Microglia and astrocytes produce multiple inflammatory mediators in response to 

HMGB1 stimulation (Andersson et al., 2008; Pedrazzi et al., 2007). What is more, IL-1β 

can induce release of HMGB1 in both human (Zurolo et al., 2011) and rat (Hayakawa et 

al., 2010) cultured astrocytes. This suggests the possibility of a self-perpetuating 

feedback loop driven by both HMGB1 and IL-1β. 

In rodents, pre-treatment with intra-hippocampal HMGB1 and IL-β prior to treatment 

with bicuculline or kainate exacerbates seizures (Vezzani et al., 1999; Maroso et al., 

2011b; Vezzani et al., 2002). In contrast, intra-cerebral infusion of the endogenous IL-

1R1 antagonist IL-1Ra or its over-expression in astrocytes delays seizure onset and 

reduces duration following kainate (Vezzani et al., 2000) or reduces seizure behaviour 
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following bicuculline treatment or electrically-induced SE (Vezzani et al., 2002). Seizure 

onset is also delayed in mice lacking IL-1R1 (Vezzani et al., 2000). Similarly, selective 

inhibition of HMGB1 or TLR4 delays seizure onset and decreases seizure number and 

duration in both kainate- and bicuculline-induced acute seizure models and reduces 

the number of spontaneous epileptic seizures in the kainate model of chronic epilepsy 

(Maroso et al., 2011b). Knock-out of TLR4 or RAGE is also anticonvulsant in kainate 

models of acute and chronic seizures (Iori et al., 2013). Increased expression of IL-1β 

and HMGB1 signalling in a variety of experimental models and seizure disorders 

(Maroso et al., 2010; Maroso et al., 2011b; Zurolo et al., 2011; De Simoni et al., 2000; 

Plata-Salaman et al., 2000), in addition to their established pro-convulsive effects 

(Maroso et al., 2010; Vezzani et al., 1999; Sayyah et al., 2005), provides evidence that 

targeting IL-1β and HMGB1 may prove successful in the treatment of epilepsy. 

 Pro-convulsant mechanisms of HMGB1 and IL-1β 1.7.3

A fast signalling pathway has been characterised showing that IL-1R1 co-localises with 

the NR2A/B subunit of the NMDA receptor and IL-1β activation of this receptor results 

in phosphorylation of the NR2B subunit via Src kinases resulting in increased neuronal 

Calcium (Ca2+) influx (Viviani et al., 2003). This fast signalling pathway has more 

recently also been described for HMGB1 (Maroso et al., 2010). Activation of this 

pathway in vivo using ceramide to activate Src kinases mimics the IL-1β-mediated 

exacerbation of kainate-induced seizures, whereas, inhibition of Src kinases has the 

opposite effect (Balosso et al., 2008). The disulphide inflammatory form of HMGB1, 

but not its fully-reduced form, acts via TLR4 receptors to exacerbate kainate-induced 

seizures in a similar manner to that of IL-1β (Balosso et al., 2014). TLR4 receptors co-

localise with NR1 and NR2B subunits and disulphide HMGB1 enhances NMDA-

mediated Ca2+ influx via neutral sphingomyelinase and Src kinases mediating 

phosphorylation of NR2B (Balosso et al., 2014). Thus activation of this fast signalling 

pathway has been proposed as one mechanism for the pro-convulsive effects of both 

IL-1β and HMGB1. Other potential excitotoxic mechanisms include increasing 

astrocytic glutamate release, reduction of glutamate uptake and increasing the 

translocation of AMPA receptors into neuronal membranes (Ye and Sontheimer, 1996, 

Viviani et al., 2003, Bezzi et al., 2001). 
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 HMGB1 as a pharmacological target 1.7.4

A number of successful strategies have been shown to inhibit HMGB1 in various 

experimental pre-clinical models, including polyclonal and monoclonal antibodies 

(Yang et al., 2004), competitive inhibition with the truncated HMGB1 A-Box (Maroso et 

al., 2010), recombinant soluble thrombomodulin (Kudo et al., 2013), and selective 

alpha7-nicotinic acetylcholine receptor agonists (Wang et al., 2004) (figure 1.8). 

Indeed, nicotine has been shown to inhibit the NF-κB pathway and to suppress HMGB1 

release from human macrophages (Wang et al., 2004). Antagonists that neutralize 

HMGB1 have also demonstrated considerable success in pre-clinical models of various 

diseases, including severe sepsis, arthritis, colitis, trauma and cancer. For example, 

administration of anti-HMGB1 antibodies, even where delayed by up to 24 hours 

following caecal perforation in rodents, rescues the animals from otherwise lethal 

septicaemia (Qin et al., 2006, Yang et al., 2004). Treatment with HMGB1 antagonists 

has proven neuroprotective effects in animal models of stroke and head trauma. 

Following a 2-hour period of middle cerebral artery occlusion (MCAO) in rats, 

immediate and 6-hour post ischemia delivery of anti-HMGB1 monoclonal antibody 

(MAb) significantly improved the neurological deficit as defined by rota-rod tests (Liu 

et al., 2007). Microinjection of short hairpin RNAi for HMGB1 into the rats striatum 

after MCAO occlusion inhibits neuronal death and the expression of inflammatory 

mediators including IL-1β, inducible nitric oxide (iNOS), TNF-α and cyclooxygenase-2 

(COX-2) 24-hours after occlusion of the MCA (Kim et al., 2006). 
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Figure 1. 8 High Mobility Group Box-1 (HMGB1) can be targeted to potentially block the 
pro-inflammatory cytokine cascade. Figure adapted from (Lee et al., 2014) HMGB1: 
High Mobility Group Box-1; Ab: Antibody; RAGE: Receptor for Glycation End Products; 
TLR4: Toll-like Receptor 4; TLR2: Toll-like Receptor 2 

 

In the traumatic brain injury (TBI) rat model, inhibition of HMGB1 with ethyl pyruvate 

significantly improved the degree of resultant cognitive impairment, as determined by 

the beam walking performance of the rats pre and post injury (Su et al., 2011). A 

number of successful anti-inflammatory strategies, that directly or indirectly 

ameliorate HMGB1, have proven anti-seizure effects in preclinical models of seizure 

and epilepsy (table 1.7) 

Taken together, the evidence suggests that HMGB1, in conjunction with other 

essential inflammatory mediators including IL-1β and the inflammasome complex, is a 

critical mediator involved in the epileptogenic process that can exacerbate 
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Model Anti-
inflammatory 
therapy 

Target Timing (relative 
to brain insult)  

Outcome Ref 

Kainate seizure;  
rat 

IL-1Ra IL-1R1 Pre- and post- Reduction in seizure number and time in EEG seizure 
activity. 

(Vezzani et al., 
2002) 

Electrical self-sustained 
SE; rat 

IL-1Ra IL-1R1 Pre- and post- Reduction in seizure behaviour score. (Vezzani et al., 
2002) 

Kainate seizure; rat Pralnacasan 
 
 
 
VX-765 

Caspase-1 
 
 
 
Caspase-1 
   
  

Pre-  
 
 
 
Pre- 

Reduction in seizure-induced IL-1β. 
Delay in seizure onset  
Reduction in seizure number and time in EEG seizure 
activity. 
Delay in seizure onset. 
Reduction in seizure number and time in EEG seizure 
activity. 

(Ravizza et al., 
2006e) 

Kainate and bicuculline 
seizure models; 
mouse 

Box A 
LPS-Rs 
Cyp 

HMGB1 
TLR4 

Pre- Delay in seizure onset. 
Reduction in seizure number and time in EEG seizure 
activity. 

(Maroso et al., 
2010) 

Kainate  epilepsy 
model; 
mouse 

Box A 
LPS-Rs 

HMGB1 
TLR4 

Post- Transient (2 hour) reduction in number and frequency of 
spontaneous seizures. 

(Maroso et al., 
2010) 

Pilocarpine and 
electrical model of 
epilepsy; rat 

IL-1Ra and VX-
765 

IL-1R1 and 
caspase-1 

Post- Reduction in IL-1β expression in astrocytes and cell loss in 
rat forebrain. 
Frequency and duration of spontaneous seizures 
unaffected. 

(Noe et al., 
2013) 

Table 1.7 Anti-inflammatory therapies in experimental seizure models. 
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IL-1β: Interleukin-1β; IL-1Ra: Interleukin-1 receptor antagonist; IL-1R1: Interleukin-1 receptor 1; LPS-Rs: Rhodobacter sphaeroides 
lipopolysaccharide; Cyp: cyanobacterial lipopolysaccharide; HMGB1: High mobility group Box-1; TLR4: toll-like receptor 4; SE: status epilepticus; 
P2X7R: P2X7 receptor

Lithium-pilocarpine-
induced SE;  
rat 

IL-1Ra and CAY 
10404 

IL-1R1 and 
COX-2 

Concomitant Acute delay in seizure onset and decreased neuronal death. 
Reduction spontaneous seizure frequency, mossy fibre 
sprouting. 

(Kwon et al., 
2013) 

KA-induced SE; 
mouse 

A438079 P2X7R Pre- and post- Reduction in EEG seizure activity and seizure behaviour 
score. 

(Jimenez-
Mateos et al., 
2012) 

KA-induced SE; 
mouse 

A438079 P2X7R Pre Reduction in time in EEG seizure activity. (Engel et al., 
2012) 

Brilliant blue G P2X7R Pre Reduction in time in EEG seizure activity. 
Reduction in SE-induced IL-1β. 
Reduction in reactive microglia. 
Reduction in cell death 

anti P2X7R Ab P2X7R Pre Reduction in time in EEG seizure activity. 
 

A438079 P2X7R Post- (15 mins) Reduction in time in EEG seizure activity and total power. 

A438079 and 
lorazepam 

P2X7R Post- (1 h) Reduction in time in EEG seizure activity and total power.  
No effect on time in seizure activity when administered 
alone. 

Pilocarpine seizure 
model; mouse 

Carbenoxolone 
or probenecid 
OxATP, A438079 
OR A740003 

Pannexin1 
 
PZX7R 

Pre 
 
Pre 

Increase in seizure behaviour score and power. 
 
Increase in seizure behaviour score and power. 

(Kim and Kang, 
2011) 

KA-induced SE; 
mouse 

MFQ Pannexin1 Pre- Reduction in seizure behaviour score. (Santiago et al., 
2011) 



68 
 

seizures and be targeted to modulate seizure expression. As such, it is an attractive 

candidate as a biological marker (biomarker) of the epilepsy disease process. 

1.8 Biomarkers 

Biomarkers have been defined as “cellular, biochemical or molecular alterations that 

are measurable in biological media such as human tissues, cells, or fluids” (Hulka, 

1990). More recently, a National Institute of Health working group broadened this 

definition to include “a characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes, or pharmacological 

responses to therapeutic intervention” (Biomarkers Definitions Working, 2001). 

 Potential uses  1.8.1

Biomarkers have myriad potential clinical uses, particularly for drug development. 

They can be used to measure both normal and pathogenic biological processes, for 

diagnosis and prognosis, to monitor on and off-target effects of medical interventions 

and to stratify patient populations into those most likely to respond to treatment. They 

are relevant to the entire drug development process, from pre-clinical safety 

indications throughout early drug development trials in small populations to screening 

of large populations for safety signals post-marketing (figure 1.9.) 

 Ideal characteristics 1.8.2

The ideal qualities of a biomarker include sensitivity, the proportion of positive 

responses that a biomarker correctly identifies, and specificity, the proportion of 

negative responses that a biomarker correctly identifies as negative (Parikh and 

Ramachandran, 2007). In reality, biomarker development often involves a trade-off 

between the two. It should ideally be present in an accessible compartment such as 

blood or urine. It should demonstrate low baseline variability in health with a large 

dynamic range of quantification such that changes in levels are easily detectable. 

Ideally, measurable by a high throughput, simple technical analysis that is point-of-

care. The analysis should be cost effective (Parikh and Ramachandran, 2007). For drug 

development especially, translational biomarkers are highly sought after wherein the 

sequence homology between the pre-clinical species and humans is closely related. 

The Food and Drug Administration (FDA) issues specific guidance for biomarker 
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qualification (Food and Drug Administration, 2011) in the form of the biomarker 

qualification programme. The aim is to ensure that potential biomarkers are fit-for-

purpose. 

 

 

Figure 1.9 Biomarkers are relevant to the whole developmental pipeline for new drug 
candidates.  

 

 Epilepsy biomarkers 1.8.3

Biomarkers in epilepsy would have many potential uses:  

 To predict the development of epilepsy following brain insult 

 To predict the development of epilepsy following first seizure 

 To measure progression  

 To predict drug resistance 

 To predict susceptibility to adverse reactions to AEDs  

Currently, in terms of efficacy, the epilepsy field suffers from a lack of biomarkers able 

to reliably stratify at or near diagnosis, those with drug resistant epilepsy and those 

with an epilepsy that will respond to antiepileptic drugs. Biomarkers of early 

epileptogenesis are also difficult and costly to discover. Even after severe 
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epileptogenic brain insults, only a small proportion of individuals will go on to develop 

epilepsy, a process which may take more than 10 years to become apparent. As a 

result, prospective studies in patients with a brain insult have not been undertaken as 

they are complex to undertake and prohibitively expensive. Nonetheless, biomarkers 

able to identify a high-risk group for development of epilepsy post-brain insult are 

particularly sought after. Such a biomarker could enrich trial populations by including 

only those most likely to develop epilepsy. The ideal situation would be the 

identification of a panel of biomarkers charting the entire epileptogenic process 

covering the immediate post-insult epileptogenic period through to pre-

ictal/ictal/post-ictal and interictal phases. This will involve a combination of pre-clinical 

models and human patient studies. The advent of large-scale imaging technologies and 

clinical neurophysiology, along with genomics, proteomics, and metabolomics means 

the field of biomarker discovery and validation is likely to change in the near future, 

from isolated biomarker identification to panels of biomarkers.  

1.8.3.1 Neuroimaging biomarkers of inflammation 

Activation of astrocytes and microglia in patients with intractable epileptic encephalitis 

(Kumar et al., 2008; Banati, 2002) and focal cortical dysplasia (Butler et al., 2013) has 

been successfully shown using positron emission tomography (PET) using 11C-

PK11195, a marker of activated microglia. However, this tracer may not prove sensitive 

enough for the investigation of subtle inflammatory processes, such as that observed 

in TLE with hippocampal sclerosis (Banati, 2002). The novel radioligand 11C-PBR28, for 

detection of the inflammatory marker translocator protein (TSPO), demonstrated 

increased uptake and radioactivity in the seizure focus in patients with temporal lobe 

epilepsy (Hirvonen et al., 2012). This certainly requires further examination in a larger 

cohort to correlate PET imaging with the neuropathological findings at epilepsy surgery 

in order to elucidate the clinical utility of this modality as a biomarker. 

To conclude, drug resistance in epilepsy is a significant clinical and societal problem, 

the causes of which remain poorly understood. There is an unmet clinical need to find 

new ways to identify early those at greatest risk of developing drug resistance. 

Inflammation increasingly appears to play a critical role in epileptogenesis. Novel 

inflammatory biomarkers such as HMGB1, that are intricately involved in the disease 
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process itself, may represent a means to allow recognition of appropriate patient 

populations who might benefit from anti-inflammatory or immunomodulatory 

interventions.  

1.9 Aims of the thesis 

In order to assess whether HMGB1 can be developed as a useful, reliable, mechanistic 

biomarker for stratification of drug-resistant epilepsy the aims of the thesis were 

fivefold: 

1. To determine whether circadian rhythmicity affects expression of peripheral 

blood HGMB1 in healthy volunteers and to examine whether gender or 

ethnicity impacts upon peripheral blood HMGB1. 

2. To determine the concentration of, and relationship between, HMGB1 in paired 

serum and CSF samples from differing pathologies. 

3. To examine changes in HMGB1 expression in the mouse brain following KA-SE 

in a novel, non-surgical multiple-dosing model. To examine the contribution of 

the acetylation and redox isoforms of HMGB1 to KA-induced epileptogenesis 

and the time course expression of serum HMGB1 following KA-induced SE by 

quantification of the different molecular forms. 

4. To characterize total HMGB1 and both acetyl and redox isoform expression in 

the rodent brain and serum following both single isolated seizure and 

spontaneous epileptic seizure. 

5. To compare baseline blood total HMGB1 between patients with well-controlled 

(seizure-free) epilepsy and those with drug-resistant epilepsy and recent 

seizures. To characterize acetyl and redox isoforms of HMGB1 in blood in 

patients with well-controlled and drug-resistant epilepsy and to characterize 

changes in serum HMGB1 relative to timing of seizures. 
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2.1 Introduction 

2.1.1 Biomarker characteristics 

Biomarkers have been defined as “cellular, biochemical or molecular alterations that 

are measurable in biological media such as human tissues, cells, or fluids” (Hulka, 

1990). The ideal biomarker should display a number of key characteristics. It should be 

sensitive and specific to the organ or disease state of interest. Ideally it should be 

present within an accessible tissue (blood, urine) requiring only non-invasive sampling. 

There should be a large dynamic range allowing detection between states 

(disease/health, treatment groups) with low baseline variability in a healthy 

population. Analysis should be cost effective and applicable to any laboratory. In 

addition, translational biomarkers are able to bridge the preclinical-clinical gap and are 

particularly sought after for early clinical safety assessment of new therapeutics (table 

2.1). Biomarkers also provide a method for homogenous classification of a disease 

subtype. A biomarker may be described as “mechanistic” if it is in some way implicated 

in the causal pathway of the disease. It may not be the only determinant but it is 

strongly associated with the disease process. There are a number of intrinsic 

characteristics of a biomarker that are essential to its validity. These include 

knowledge of its background in a general population and an estimation of inter- and 

intra-individual variability.  

A hierarchical distinction exists between a biomarker and a surrogate marker or 

endpoint. The working definition of a surrogate marker is “a biomarker that is 

intended to serve as a substitute for a clinically meaningful endpoint and is expected 

to predict the effect of a therapeutic intervention” (Hunter et al., 2010; Biomarkers 

Definitions Working, 2001). Not all biomarkers will meet the stringent criteria that are 

required for surrogate endpoints (Fleming, 2005) including that (a) The surrogate 

endpoint must be correlated with the true clinical outcome; and (b) the surrogate 

endpoint must fully capture the net effect of treatment on clinical outcome (Fleming 

and DeMets, 1996). Biomarkers are particularly sought after in the pharmaceutical 

industry, the main attraction being the integration of biomarkers into the drug 

development pipeline with the aim to stop less promising compounds earlier (prior to 

movement into the costly phase of clinical development, phase III) (Bingham et al., 
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2006). This would optimize the total cost of drug development. Variability remains a 

major concern in biomarker utility. Validation is the process of assessing the biomarker 

and its measurement performance characteristics, specifically whether measurement 

methods provide accurate and reproducible data (Wagner, 2002). Qualification is the 

process of linking a biomarker both with a biological process and a clinical end point 

(Wagner et al., 2007; Wagner, 2002). The FDA issues specific guidance for biomarker 

qualification (Food and Drug Administration, 2011) in the form of the biomarker 

qualification programme, which was designed around the Interdisciplinary 

Pharmacogenomic Review Group, along with expert input from various different FDA 

centres, including the Centre for Drug Evaluation and Research, The National Centre 

for Toxicological Research and the Centre for Biologicals Evaluation and Research, 

among others. The aim is to ensure that potential biomarkers are fit-for-purpose (Lee 

et al., 2006). The process involves three stages towards acceptance under regulatory 

guidance: exploratory, probable valid and known valid or “fit-for-purpose” (Goodsaid 

and Frueh, 2007a; Goodsaid and Frueh, 2007b). Biomarker qualification is considered 

to be a multi-step process that is continuous and updated as new information 

becomes available. A number of different strategies have been proposed and are 

delineated by regulators led by the FDA  (Goodsaid et al., 2008). 

One important step in establishing the validity of a biomarker test and furthermore, its 

clinical utility involves assessment of inter-individual variability within a healthy 

population, including circadian variation. 

2.1.2 High Mobility Group Box-1 (HMGB1) 

A comprehensive description of HMGB1 can be found in chapter 1, section (1.6.3.2). 

HMGB1 is a 25kda ubiquitous, highly evolutionarily conserved protein with distinct 

intra and extra-cellular functions. In all cells, HMGB1 continuously shuttles between 

the nucleus and cytoplasm. Within the nucleus, HMGB1 bends DNA and regulates 

transcription (Avoli et al., 1996). Released passively from necrotic cells, HMGB1 can 

also be actively secreted upon inflammatory activation of the cell. In the extracellular 

milieu, dependent upon specific post-translational modifications, it can function as a 

chemoattractant (Schiraldi et al., 2012) or pro-inflammatory cytokine (Leite et al., 

1990). 
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Table 2.1 Ideal performance characteristics of a biomarker 

Characteristics of an ideal biomarker 

Safe to measure 

Easy to measure 

Low cost to measure 

Cost of follow-up test is relatively low 

Consistent across genders and ethnic groups 

Displays low baseline variability in health 

Displays large dynamic range of quantification 

Translational between preclinical species and humans 

Table expanded from (Parikh and Ramachandran, 2007) 

In humans, several disease states have been associated with high levels of peripheral 

blood HMGB1 including sepsis (Loscher, 2002; Sunden-Cullberg et al., 2005), 

disseminated intravascular coagulation (Coulter et al., 2002), acute coronary 

syndromes (Richter and Loscher, 2002; Roder et al., 1994; Sofroniew, 2009) and 

various cancers (Ledur et al., 1995; Blackburn et al., 1991; Guglielmo-Viret et al., 2007; 

Swanson et al., 1999). These studies suggest that HMGB1 has potential as a sensitive 

and specific biomarker for stratification of a sub-population of patients.  

2.1.3 HMGB1 in healthy individuals 

At present, the reference values for HMGB1 in health are not known. The International 

Federation of Clinical Chemistry (IFCC) recommends the mean value should be 

obtained from a minimum of 120 healthy subjects (Solberg, 1987).  The largest study of 

HMGB1 levels in a healthy Japanese population over 40 years of age (n=626) provides 

a mean value of 1.65 ± 0.04ng/ml (Fukami et al., 2009). Variation in baseline HMGB1 

may have important implications for the timing of blood sampling when considering 

HMGB1 as a predictive biomarker. At present, patterns of circadian variation in 

HMGB1 levels have not been established. 

2.1.4 Circadian rhythmicity 

Circadian rhythms are endogenous physiological cycles with a recurring periodicity of 

approximately 24 hours. They are generated by the suprachiasmatic nucleus which is 
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located in the anterior hypothalamus and is known as the ‘biological pacemaker’ 

(Golombek and Rosenstein, 2010). Circadian rhythms affect the expression of 

approximately 2 to 10% of genes in mammals (Storch et al., 2002). Blood-borne 

biomarkers are subject to variability in both sample processing and natural biological 

processes. In addition, circadian rhythmicity and diurnal variation is an important 

source of systematic variability, being consistent in nature as opposed to the random 

fluctuations around the mean inherent to steady-state periods.  

2.1.4.1 Circadian rhythmicity of HMGB1 

The circadian clock in eukaryotic cells is regulated by several proteins which form a 

feedback loop. These ‘clock-control’ genes vary depending upon tissue type. The target 

proteins are activated by the core-clock promoters by binding to specific DNA sites in 

their regulatory regions (Gekakis et al., 1998). Binding sites for non-histone proteins, 

including the HMG-family, have been found to be overrepresented in promoters of 

clock-controlled genes (Gekakis et al., 1998). 

In plants, expression of the HMGB1 gene is regulated by both an endogenous circadian 

mechanism and the light/dark cycle (Zheng et al., 1993). In rat photoreceptor nuclei, 

HMGB1 exhibits diurnal and circadian-clock dependent changes, with peak levels 

observed during the light phase. This protein fluctuation is sustained in complete 

darkness (Hoppe et al., 2007). 

2.1.4.2 Circadian rhythmicity of HMGB1 in epilepsy  

It has been demonstrated in studies of human focal epilepsy that endogenous 

circadian rhythms may cause a day/night pattern in seizures in temporal lobe epilepsy 

(Pavlova et al., 2004; Quigg et al., 1998). In a study of 90 seizures (41 occurring in 

temporal lobe epilepsy and 49 in extra-temporal lobe epilepsy) 50% of seizures 

occurring in the TLE group occurred between the hours of 15:00 and 19:00 (17% would 

be expected by chance, p<0.006) (Pavlova et al., 2004).  

2.1.5 Analytical validity in biomarker measurement 

Another important step in determining accuracy in biomarker trials concerns the use 

of accurate analytical methods. Accurate quantification of a particular biomarker in 

any biofluid requires the use of a method with appropriate analytical validity. 
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Specifically, the accuracy, reproducibility and reliability of the method needs to be 

adequately established. To develop and validate a biomarker test, several critical 

issues must be met. The current gold standard for measurement of total HMGB1 is the 

commercially available ELISA from Shino-Test Corp., Sagamihara, Japan. The 

manufacturer’s assessment of precision can be found in table 2.2 (full data sheet 

appendix). 

Table 2.2 Manufacturer’s assessment of test performance  

HMGB1 ELISA  

Dynamic range  2.5 - 80 ng/mL 
 

Sensitivity  1 ng/mL 
 

Specificity  
 

Cross-reaction with HMGB2 is < 2% 

Reproducibility Intra-assay coefficient of variation is < 
10% (n = 8) 
Inter-assay coefficient of variation is < 
10% (n = 8) 
 

Recovery  80 - 120% 
 

HMGB1: High mobility group box-1; ELISA: Enzyme-linked immunosorbent assay 

  2.1.1

2.1.6 Rationale 

In the presence of circadian variability, adjustments may need to be made in the 

interpretation of biomarker results and standardization of sampling time may be 

necessary. Particularly for prognostic clinical biomarkers, where patient sampling may 

be undertaken at any time during the day or night, it is essential that the presence of 

circadian rhythmicity be confirmed or excluded.  

The aims of this study were: 

1. To determine whether circadian rhythmicity affects expression of peripheral 

blood HGMB1 in healthy volunteers.  

2. To examine whether gender or ethnicity impacts upon peripheral blood 

HMGB1.  
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2.2 Methods 

Research participants (1-4) were recruited at ICON developmental solutions 

Manchester, United Kingdom. ICON is a contract research organization specializing in 

early phase clinical trials. The site suspended all studies in June 2013, following which 

study recruitment then relocated to ICON developmental solutions, San Antonio, 

Texas, United States of America (USA) in October 2013. 

2.2.1 Study population – Recruitment Process 

Subjects consisting of healthy male and female volunteers aged 18-45 years were 

recruited from the ICON Developmental solutions volunteer panel. 

The inclusion criteria were: 

 Subject was willing and able to give written informed consent 

 Healthy male or female subjects between 18 and 45  years of age inclusive 

 Body weight  between 50 and 100 kg 

 Body mass index between 18 and 32 kg/m2 

The exclusion criteria were: 

 Subject had a clinically significant abnormal medical history or physical 

examination.  

 Subject had a history of febrile illness within 4 weeks prior to admission. 

 Subject had a clinically significant abnormal laboratory test at screening. 

 Subject had admission vital signs outside normal limits (defined by blood 

pressure >140 systolic/90 diastolic, resting pulse >100 or <50 beats/minute, 

resting respiratory rate >  20 breaths/minute, oral temperature >37.3 ⁰c) 

 Current smoker or history of smoking within the 6 months prior to the 

screening visit. 

 Positive test for hepatitis B, hepatitis C or human immunodeficiency virus  

 Donated or lost more than 100 millilitres of blood in the 4 weeks prior to 

screening or donated or lost 500 millilitres of blood in the 3 months prior to 
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screening. Subjects were also willing not to donate blood for 3 months after the 

study. 

 Consumption of any prescription drug, non-prescription drugs, vitamin or 

dietary supplements within 2 weeks (whichever is longer) prior to study 

admission. Herbal supplements were discontinued at least 4 weeks prior to 

admission to clinical unit. 

2.2.2 Sample size calculation: 

To date, no intensive sampling circadian biomarker studies have been published in 

man. Most circadian studies undertake bi-daily sampling (morning and evening). This 

study was the first of its kind to examine 3-hourly samples across a complete 24-hour 

period. As such, a sample size calculation could not be performed based on published 

studies. An estimation of 24 individuals for an initial pilot study was undertaken with a 

view to increasing recruitment should it be felt necessary. Post-study analysis of the 

samples confirmed that 24 individuals were sufficient and no further patients were 

recruited.   

2.2.3 Ethical Approval: 

Ethical approval for this study was initially granted by the North West Research Ethics 

Committee Manchester Central (12/NW/0374). Approval covered collection of both 

blood and urine from the patients up to a maximum of 400mls/blood over a 24 hour 

sampling period. Approval covered analysis of blood for any potentially novel 

biomarker and/or inflammatory marker. Following relocation of the study to the San 

Antonio site in the USA, approval was granted by the institutional review board (LLC 

0327/014). 

2.2.4 Study Schedule 

2.2.4.1 Pre-study screening visit 

Healthy subjects (n=24) identified from the register were invited to attend a pre-study 

screening visit within three weeks of potentially starting the study. A trials physician at 

ICON explained the study and obtained written consent. Subsequently, eligibility 

screening was undertaken according to the protocol and screening bloods to confirm 

HIV and Hepatitis B and C serology were negative. 
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2.2.4.2 Study restrictions 

The restrictions for the volunteers enrolled onto the study were as follows: 

 Diet: All subjects were provided with standardized meals and snacks at set 

times during the inpatient admission. 

 Concurrent Medication: Any prescription/non-prescription drug, vitamin or 

dietary supplement was forbidden within 2 weeks of admission to the clinical 

unit. Herbal supplements were discontinued at least 4 weeks prior to 

admission. 

 Alcohol and caffeine: Subjects were required to refrain from alcohol and 

caffeine consumption from 48 hours prior to the screening visit and admission 

to the clinical unit. 

 Smoking: A minimum of 6 months non-smoking prior to the screening visit was 

required.  

2.2.5 Main Study Period 

The main study period was undertaken at the ICON Development Solutions Clinical 

Unit located on the Manchester Royal Infirmary hospital site (subjects 1-4) or at the 

Phase 1 unit, San Antonio Texas USA.  

On the day before sampling, subjects were admitted to the unit at 13.00 where 

suitability and consent were confirmed. Subjects were provided with a standardized 

meal at 18.00 followed by a standardized snack at 21.00 following which the subjects 

underwent a 10-hour overnight fast. On the day of the study a cannula was inserted at 

07:00 hours from which blood samples were drawn every 3 hours over a 24 hour 

period between 07:00 and 22:00 and then again at 00:00 on day 1 and 04:00 on day 2. 

Subjects were discharged at 08.00 on day 2. 

2.2.6 Sample Processing 

The cannula was flushed with 2 millilitres of 0.9% saline prior to each sample being 

taken and 0.5mls of blood was withdrawn and discarded. Samples for serum were 

collected in 9ml plain tubes, which were centrifuged within 15 minutes of collection or 

stored upright overnight at 4⁰C and centrifuged the following morning. Serum was 
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transferred in dry ice with temperature monitoring to the Wolfson centre laboratories, 

University of Liverpool for analysis. 

2.2.7 Serum HMGB1 quantification by ELISA 

Preparation of standards solution, detection antibody solution and read buffer was 

performed in accordance with the manufacturer’s instructions (Shino-Test Corp., 

Sagamihara, Japan). All reagents from the kit were allowed to warm at room 

temperature prior to preparation.  The standard stock (320ng/ml) was reconstituted 

with sample diluent. A series of standards were prepared by serial dilution of the 

calibrator by adding 100μl of the calibrator to 300μl of diluent, vortex-mixing, and 

repeating the process by adding 100μl of standard to 100μl of diluent and repeating 5 

times to generate a total of 7 standards.  The standards were left on ice for 10 

minutes. Following thawing on ice, samples were centrifuged at 2000xg for 1 minute. 

The 96-well plate was coated with sample diluent to which 10µl of serum sample was 

added in duplicate. The plate was sealed and samples were incubated overnight at 

37°C for 20 hours. Plates were washed 5 times in wash buffer (400µl/well) and air 

dried. Detection antibody solution (100µl/well) was added for 2 hours at room 

temperature. Following the subsequent washing step, substrate solutions were added 

in equal parts (100µl/well) and incubated at room temperature protected from light 

with foil seal for 30 minutes and the plate read at 450nm on Beckman Coulter version 

(DTX 880) Multimode Detector using multimode detection software. Results were 

fitted to the standard curve. 

The methodological characteristics of the ELISA have been assessed both by the 

manufacturers and external researchers previously (appendix, (Antoine et al., 2009)). 

Intra and inter-day imprecision and dilutional linearity were within an acceptable 

range.  According to the manufacturer, the limits of intra and inter-assay precision 

range from 0.2-80ng/ml with CV <15%. 

2.2.8  Statistical Analysis 

Statistical computations were performed using GraphPad Prism (GraphPad Software, 

San Diego, CA) and SPSS software. The mean (± standard error of the mean) 

concentrations for each time point were calculated. To test for variability in levels both 
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between individuals and between time-points, data were analysed using one-way 

repeated measures ANOVA.  Mauchly’s test of sphericity was undertaken to check that 

the assumption of sphericity was not violated. The analysis was undertaken both with 

and without including covariates to adjust for gender and race. 

2.3 Results 

2.3.1 Subject Characteristics  

A total of 24 healthy non-smoking subjects (table 2.3) underwent serial sampling over 

a 24-hour period. Subjects ranged in age from 19 to 46 years (mean 34 years). The 

individual characteristics of the subjects are outlined in table 2.4. 

Table 2.3 Demographics of the study population. 

Characteristics Subjects (n=24) 

Male/Female 14/10 

Caucasian/African American 16/8 

Age, years 34 (± 1.9), range 19-46 

Systolic BP mmHg 115 ± 2.2 

Diastolic BP mmHg 74.4 ± 1.8 

Heart rate, beats/minute 71 ± 2.6 

HMGB1 ng/ml 1.81 ± 0.05 

The data are shown as the mean values ± standard error of the mean. BP: Blood 
pressure. 

 

2.3.2 Circadian Variability 

The overall mean HMGB1 concentration was 1.81 ± 0.05 ng/ml (table 1-3). The median 

values and interquartile ranges plus minimum and maximum values for each subject 

are expressed as box plots (figure 2.1.A.) Individual profile plots are shown in figure 

2.1.B. 5/24 subjects had a single time point excluded due to sample haemolysis. 

There was no significant within-subject variability in HMGB1 concentration 

demonstrated across the sampling time frame from 07:00 on day 1 until the last 

sample at 04:00 on day 2 (Table 2.5), either when adjustments were made for race 
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(Caucasian: African-American) and gender (male: female) (p-value: 0.72) or when no 

adjustments were  made (p-value: 0.55). In both analyses, Mauchly’s test indicated 

that the assumption of sphericity had not been violated. 

2.3.3 Relationship between baseline HMGB1 and other clinical variables of 

health. 

A number of baseline safety blood tests were taken alongside the early morning 

HMGB1 sample together with measurement of blood pressure. Linear regression 

analyses comparing these variables are shown in figure 2.2. No significant association 

between HMGB1 and any of the clinical variables was identified.  

 

 

Figure 2.1 A. Box and whisker plots depicting high mobility group box-1 (HMGB1) 
concentrations over time. Each box represents the 25th and 75th percentiles. Lines 
outside the boxes represent the minimum and maximum limits. Lines inside the box 
represent the median with the dot representing the mean. Dotted line represents 
overall mean. B. Individual profile plots depicting baseline variability in HMGB1 
concentrations across a 24 hour sampling period. 

A. B. 



84 
 

Table 2.4 Individual patient characteristics and background medical history 

Sex Age Race Medical History Alcohol (units/ week) 

F 43 Caucasian Caesarean-section childbirth 1995, 1997 with tubal ligation 2002 0 
F 43 Caucasian None 0 

M 45 African American Appendicitis and appendicectomy 1975, left inguinal hernia repair 2007 0 
F 24 African American Menstrual cramps 2009, vaginal childbirth 2007, 2008, 2009,2012 0 
M 25 African American None 0 
M 46 Caucasian None 3 
M 28 Caucasian None 3 
F 41 Caucasian None 0 
M 41 Caucasian Crushed left zygomatic arch 1991 - surgical repair 1991, fractured left wrist 1985 6 
M 28 African American Right elbow laceration 2001 with skin graft 6 

M 43 Caucasian Bowel perforation due to gunshot wound to abdomen 1989 0 
M 27 Caucasian Headaches 30.08.2013 0 
M 39 Caucasian None 0.5 
M 26 Caucasian None 0 
F 28 Caucasian None 0.5 
F 19 African American None 0 
M 45 Caucasian None 0 
F 21 African American None 0 
M 21 Caucasian Skin abrasions 2013 1 

M 44 Caucasian None 4 
M 28 African American Adenoiditis 1998, tonsillitis 1998, tonsillectomy 1998 1 
F 39 Caucasian Ventricular septal defect 1979, open heart surgery 1979 4 
F 38 Caucasian Acne face 1990 - 2000, caesarean-section child birth 2011 and 2013 0 
F 38 African American None 1 
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Table 2.5 Table depicting the mean HMGB1 concentration per time point. 

 

Time point 

Mean [HMGB1] 

ng/ml 

 

S.E.M 

 

n 

Day 1 07:00 1.868 0.14 24 

10:00 1.610 0.14 24 

13:00 1.797 0.15 24 

16:00 1.788 0.15 24 

19:00 1.645 0.12 24 

22:00 1.735 0.14 24 

00:00 1.771 0.14 24 

Day 2 04:00 1.773 0.16 24 

The data are shown as the mean values ± standard error of the mean. 

2.4 Discussion 

The intensive sampling data from this study shows that HMGB1 concentrations in 

healthy subjects are not subject to any significant circadian variability. Furthermore, 

there is no significant degree of inter or intra-individual variability in the biomarker. It 

should therefore be acceptable to obtain HMGB1 biomarker samples at any time of 

day without the need to adjust for time, gender or race (applicable to Caucasian and 

African Americans). The mean value for HMGB1 in health in this cohort is in keeping 

with the largest analysis of serum HMGB1 in health in 626 Japanese subjects where 

the mean value was defined as 1.65 ± 0.04 ng/ml. The ongoing BIOPAR study (Antoine 

et al, unpublished data) examining HMGB1 in 200 healthy Caucasian subjects had a 

mean level of 1.18 ± 0.61 ng/ml (60% female, mean age 35 years), in keeping with the 

findings of the present study. When inter-individual variation in a biomarker is large in 

comparison to intra-individual variation, analysis of paired samples (before, during and 

after the event/exposure) is required to greatly enhance the power of the biomarker 

to detect exposure. However, this is not necessary for HMGB1 due to its low 

variability. 



86 
 

 

     

Figure 2.2 No significant association between clinical variables and baseline HMGB1 
(early morning samples.) Kendall’s Tau correlation is illustrated by the solid line, with 
the corresponding correlation co-efficient reported. 
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Variability, both biological and analytical, limits the clinical utility of candidate 

biomarkers. Biological variation, the random fluctuation of a constituent of the human 

body around the homeostatic setting point, has two components: within-subject 

(intra-individual) and between-subject (inter-individual) variation. Sources of intra-

individual variation include ageing, gender, body weight, diet, exercise, circadian 

rhythms, sleep cycles and pathological processes (Ricos et al., 2004). In order to assess 

the degree of intra and inter-individual variability in peripheral blood HMGB1, a 

prospective cohort of 24 healthy volunteers was undertaken across a 24 hour period 

(Chapter 2.) It was possible to conclude that the variation, both within and between 

subjects, was minimal and did not meet statistical significance at any time point, 

regardless of adjustments made for gender and ethnicity. The study was limited by  

small sample size (n=24) which had to be estimated as there were no similar studies 

available in the literature that utilise an intensive sampling time frame (3 hourly).  

Acknowledging the small sample size, a post-hoc power calculation was undertaken to 

illustrate the available power, using g*power sample size software (Faul et al., 2007). 

For the power calculations, variability between time-points was assumed to be 

approximately 0.005 (estimated from the data) and variability within time-points to be 

approximately 0.48 (again estimated from the data). It was also necessary to estimate 

correlation between pairs of observations from each subject, which is challenging: this 

was estimated, based on the data, to be in the range of 0-0.6. On this basis, power was 

estimated to be 13% if correlation was assumed to be low (=0) and 32% if correlation 

was assumed to be high (=0.6). Therefore, to achieve 80% power, a sample size of 162 

subjects would be required, assuming low correlation, and a sample of size of 66 

subjects assuming high correlation. Therefore, the sample size of 24 may be 

insufficient to categorically exclude the impact of circadian variability. Nevertheless, 

the sample size calculation is an estimate, the intensive sampling undertaken in this 

study is novel, and to undertake a study with this many patients in a controlled setting 

such as a clinical research facility would be prohibitively expensive. 

Within-subject variation is known to be much smaller than between-subject variation 

for the majority of substances assayed in laboratory medicine (Fraser, 2004). The 

reference change value (RCV) is a method for expressing the difference in a result from 
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a single individual with respect to his/her previous results, instead of on population-

based values and can be obtained in serial sampling studies (Harris, 1976). It accounts 

for both analytical and biological variation. The RCV tells the clinician whether the test 

result has changed in an important way, beyond the difference expected from the 

inherent sources of variation (Fraser, 2004). These sources include pre-analytical 

variation, analytical imprecision (CVA), and within-individual biological imprecision 

(CVI). The RCV can be calculated as: RCV = 21/2 × Z × (CVA2 + CVI2)1/2, where Z is the 

number of SDs appropriate to the probability. Unfortunately the RCV for the current 

study could not be calculated as it requires imputation of the analytical coefficient of 

variation, as determined by a standardised analysis method and requires a 

sophisticated laboratory information system (Cooper et al., 2011). It would require 

experimentation under controlled conditions on serum samples obtained from healthy 

subjects in order to determine the accurate within-plate and between-plate variability 

(CV), which was beyond the scope of this thesis. Despite some drawbacks, the RCV is 

increasingly felt to be a clinically relevant tool to determine variability in daily practice, 

beyond the conventional diagnostic sensitivity, specificity, and predictive values of 

positive and the negative tests (Henderson, 1993; Zweig and Campbell, 1993).  

Circadian variability in CNS biomarkers is not unheard of. Indeed, significant hour-to-

hour variability has been demonstrated in Alzheimer’s disease (AD) CSF biomarkers, 

amyloid β protein (Aβ) Aβ40 and Aβ42, in young non-demented participants (Bateman 

et al., 2007). This variability diminished in healthy older controls and patients with 

Alzheimer’s disease (Slats et al., 2012), demonstrating that consideration of time and 

subject-specific characteristics are important when developing biomarkers for clinical 

use. Between-subject and between-laboratory variability hinders the definition of 

clear-cut-off values for clinical practice and indeed, the variability in CSF biomarkers 

for AD is thought to be too high to allow determination of a universal cut-off value 

(Mattsson et al., 2013). Less is known about the variability in CSF biomarkers for 

Parkinson’s disease (PD) including DJ-1, α-synuclein, tau and β-amyloid peptides. Daily 

sampling across a 26-hour period in both healthy volunteers and patients with PD 

identified consistent levels across the patients but that Alpha-synuclein, Abeta 1-42, 

and Abeta 1-40, but not DJ-1, increased significantly over time (Frasier, 2013). 
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Different pre-analytical procedures between laboratories is reported to be, at least in 

part, responsible for the high variability found between study centres in the 

concentrations of both AD CSF biomarkers (Aβ42, total tau and phosphorylated tau) 

and the PD CSF biomarker (a-synuclein) (Mattsson et al., 2011; Mollenhauer et al., 

2010; Sunderland et al., 2003). It is therefore important to consider a standardized 

protocol for analysis when designing future HMGB1 biomarker trials. 

Few studies have examined variability in biomarker expression in peripheral blood 

during a designated, standardized inpatient stay wherein exercise can be limited (Kong 

et al., 2006; Hetland et al., 2008). Arguably, inpatient studies examine biomarker levels 

in a vacuum, with results that may not be generalizable to a population in whom 

exercise, stress levels and sleep patterns, among other factors, vary. However, initial 

studies where the objective is to identify within-subject factors are best undertaken 

under highly regulated conditions, such as the study undertaken here, with follow-up 

larger scale studies to identify whether such factors are clinically relevant undertaken 

in outpatient settings.  

Age is an important factor to consider, as reports have demonstrated that chronic, 

low-grade inflammation is linked with the aging process (Bruunsgaard and Pedersen, 

2003; Bruunsgaard et al., 2001; Forsey et al., 2003). However, the current study 

examined a narrow age range (19 to 46 years), a limitation of the majority of studies 

performed in clinical research units utilising trials registers. Thus, in the future, 

examination of HMGB1 at extremes of age is ideally required in order to account for 

this effect.  

Albeit a small sample size, the results of this study show that it should be acceptable to 

obtain serum HMGB1 biomarker samples at any time of day without the need to adjust 

for time, gender or ethnicity. These findings are particularly relevant to studies of 

seizure and epilepsy, whereby samples may be obtained at any time, ranging from an 

early morning epilepsy clinic to a middle-of-the-night emergency department.  
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Development of minimally invasive biomarker assays for early detection and effective 

clinical management of disease are highly sought after. For epilepsy in particular, 

biomarkers that predict onset and progression of the disorder and its response to 

treatment are currently lacking. The assessment of clinical validity of a biomarker is 

central to its development. Clinical validity is a measure of the markers diagnostic 

accuracy, that is, the degree to which it can be used to identify diseased patients from 

those that are free of disease. This in turn relies on comprehensive and accurate 

attainment of biomarker values in the healthy state. The data from the present study 

provide an accurate measure of health for comparison to any disease state.  
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Group Box 1 between Cerebrospinal 

Fluid and Peripheral Blood  
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3.1 Introduction 

Very limited data are available to assess the relationship between peripheral blood 

and centrally derived CSF levels of HMGB1, particularly in conditions in which there is 

evidence that the barrier isolating brain from blood, the BBB, is disrupted and 

therefore a conduit for transfer of the biomarker exists. 

3.1.1 Cerebrospinal fluid 

CSF is a low protein, clear colourless fluid that surrounds the brain and spinal cord. A 

third is is produced by the epithelial cells of the choroid plexus, the remaining two-

thirds is bulk flow of extracellular fluid and therefore bathes the brain. Fluid turnover 

in the brain is slow, 3-4 times per day (Sakka et al., 2011). CSF circulates slowly around 

the CNS in a pulsatile manner, produced at a rate of around 500-600mls per day and is 

constantly reabsorbed into the venous circulation across the arachnoid villi (Sakka et 

al., 2011). CSF cushions the brain and maintains electrochemical homeostasis. The 

concentration of albumin in the CSF ranges between 7.8-40mg/dL, corresponding to 

between 0-0.7% of that in peripheral blood (Fischbach, 2003). 

3.1.2 Blood-brain barrier 

The highly controlled and stable microenvironment of the central nervous system is 

maintained by an anatomical BBB within brain capillaries. The BBB shows much lower 

passive permeability than for other vascular compartments. Tight endothelial 

junctions, unfenestrated capillaries and paucity of pinocytic vesicles all contribute to 

reduced permeability (Redzic, 2011). The highly changeable composition of peripheral 

blood provides a constant stream of essential molecules and removes metabolic waste 

from the brain interstitial fluid. Exchange of molecules occurs across the BBB via 

various influx and efflux transporters (Pardridge, 1983). Ideal qualities for CNS 

penetration via the CSF include lipid solubility, low ionization or hydrogen bonding and 

low molecular weight (Pajouhesh and Lenz, 2005).  

3.1.3 Blood-brain barrier integrity 

The degree of permeability of the BBB can be estimated from the CSF/serum quotient 

for albumin (QALB). The albumin quotient is determined by CSF albumin/serum 

albumin x 100. If the blood-CSF barriers are intact, the albumin quotient is typically <7x 
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10-3 (Marshall, 2008). The passage of serum-derived albumin into the CSF across a 

disrupted BBB causes the quotient to rise. The degree of disruption may be quantified 

as <0.7%, normal; <2.0%, mild; <5.0% moderate; >5% severe (Janigro, 1999). 

Inaccuracies can arise when serum and CSF samples are analysed on separate 

analytical runs as a result of inter-assay variability and hence caution must be 

exercised that paired samples are analysed within the same run.  

3.1.4 CNS Immunity 

The CNS is considered an immunologically privileged site owing to the mechanical 

barrier provided by the CNS and the immunoregulatory characteristics of the resident 

microglial cells and astrocytes (Galea et al., 2007). Separation of CNS immunity from 

perturbations in the peripheral immune system serves to protect the limited 

regenerative capacity of the sensitive brain. CNS immune privilege is not wholly 

absolute and is limited at extremes of age and during CNS inflammation (Perry et al., 

1993; Lawson and Perry, 1995; Anthony et al., 1997).  Pro-inflammatory cytokines have 

been identified in the CSF of multiple neurological conditions in humans including 

spinal cord injury (Kwon et al., 2010a), multiple sclerosis (reviewed in (Mazzi, 2015), 

meningitis (Ichiyama et al., 1997; Mustafa et al., 1989; Ohga et al., 1994) and autism 

spectrum disorders (reviewed in (Xu et al., 2015). 

3.1.5 Neurological effects of High Mobility Group Box-1 

High mobility group box-1 (HMGB1, described in detail in 1.6.3.2) is a chromatin 

protein whose varied functions are dictated by post-translational modifications. 

Critical to the biological activity of the three potential redox isoforms are the highly 

conserved cysteine residues found at positions 23, 45, and 106. Fully-reduced HMGB1, 

complexed to CXCL12 and bound to CXCR4, recruits leucocytes and inflammatory 

mediators to sites of necrosis (Venereau et al., 2012). The main isoform that 

accumulates in the extracellular space and serum compartment during acute and 

chronic inflammation is disulphide-HMGB1, wherein a disulphide bond forms 

connecting Cysteine23 and Cysteine45. The resultant isoform binds TLR4 and activates 

macrophages/monocytes and other cells to produce cytokines and additional 

inflammatory mediators (Andersson et al., 2014; Antoine et al., 2014). Finally, in the 

fully oxidized state, HMGB1 is considered to be non-inflammatory. 
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In the brain, exogenous application of HMGB1 acts as a mediator of fever, anorexia 

and memory disturbance (Agnello et al., 2002; Mazarati et al., 2011). In addition it has 

been shown to increase both TNF and IL-1β expression (Agnello et al., 2002). 

3.1.6 The relationship between central and peripheral immune 

compartments. 

Strong evidence exists that the BBB is disrupted in both neuroinfection (Quagliarello et 

al., 1991; Paul et al., 1998; Nizet et al., 1997; Doran et al., 2005; Das et al., 2001) and 

seizure disorders (David et al., 2009; Seiffert et al., 2004; Tomkins et al., 2007; Tomkins 

et al., 2008; Pavlovsky et al., 2005) and therefore a conduit for transfer of biomarker 

exists. HMGB1 has been suggested to be involved in the aetiopathology of the several 

neurological conditions discussed in detail below. However, whether the source of 

HMGB1 is the peripheral or central immune system remains to be established. 

3.1.7 Neuroinfection 

3.1.7.1 The immune response to neuroinfection 

The innate immune response to neuroinfection is triggered by recognition of highly 

conserved PAMPs expressed by invading pathogens, most commonly Streptocococcus 

pneumoniae (Wetherington et al., 2008).  TLR activation leads to assembly of 

multimolecular complexes called inflammasomes. Inflammasomes are defined by 

expression of specific pathogen recognition receptors, for instance NLRP3 (NLR family, 

pyrin domain-containing 3) (Strowig et al., 2012). Inflammasomes control the 

production and release of pro-inflammatory cytokines including activated IL-1β and IL-

18 (Davis et al., 2011; Schroder and Tschopp, 2010). Consequently, this leads to the 

recruitment of blood-borne leucocytes into the leptomeninges via up-regulated 

expression of multiple leukocyte adhesion molecules (Wetherington et al., 2008). BBB 

disruption is a pathological feature of bacterial meningitis. The host response to 

bacterial infection continues even after antibiotics kill the bacteria and is a significant 

contributor to CNS injury.  

3.1.7.2 Bacterial meningitis 

In children with bacterial meningitis, significantly higher levels of CSF HMGB1 have 

been reported compared to aseptic (viral and culture/white cell count negative) forms 
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of the disease (mean difference 36.18, p<0.01) (Tang et al., 2008). In children with 

suspected meningitis, CSF HMGB1 was significantly higher in bacterial and aseptic 

cases when compared with febrile seizure and no CNS infection (bacterial 48.9 +/- 63.5 

ng/ml vs. 0.16 +/- 0.45 ng/ml, p<0.01; aseptic 4.85+/- 4.59 ng/ml vs. 0.16 +/- 0.45 

ng/ml, p< 0.05) (Asano et al., 2011). In both studies, HMGB1 correlated with CSF white 

cell count. Determination of peripheral blood HMGB1 was not undertaken in either 

study. In 4 adults with pneumococcal meningitis, western blot quantification of CSF 

HMGB1 revealed large concentrations (4>ug/ml) were present (Hohne et al., 2013). In 

peripheral blood, a larger study of suspected CNS infection in Malawian children 

revealed that HIV+ children with serious bacterial infections (SBI) had significantly 

higher serum HMGB1 than controls (SBI+, n=145 7.6 ng/ml vs. SBI- n=45 6.0 ng/ml, 

p=0.05) (Carrol et al., 2009). 

3.1.7.3 Viral central nervous system infection 

In 20 patients with pandemic H1N1 influenza-virus associated encephalopathy, serum 

HMGB1 was significantly elevated in those with poor outcome compared to those 

without neurological sequelae (median 17.4ng/ml vs. 6.8ng/ml, p<0.05) and 17 control 

afebrile children with neurological disorders (5.5ng/ml, p<0.001). In all subjects, the 

CSF HMGB1 level was <1.0ng/ml (Momonaka et al., 2013). HMGB1 in children with 

acute non-infectious encephalopathy has not been shown to be elevated (n=8, mean 

0.23 +/- 0.44 ng/ml). 

3.1.8 CNS immunity and non-infectious pathology 

3.1.8.1 Subarachnoid haemorrhage 

Subarachnoid haemorrhage (SAH), resulting from bleeding into the subarachnoid 

space (between the pia mater and arachnoid mater of the brain), usually occurs as a 

result of a ruptured intracerebral aneurysm. Inflammatory cytokines including 

interleukin-6 (IL-6), IL-18 and TNF-α have all been shown to be elevated in CSF 

following SAH (Janigro et al., 1999; Mathiesen et al., 1993; Osuka et al., 1998; Marchi 

et al., 2007; Nakahara et al., 2009; Zhu et al., 2012). A parallel rise in serum IL-6 was 

not seen in 12 patients with paired sampling after SAH (Mathiesen et al., 1993), 

suggesting the source of the cytokine production to be central in this condition. CSF 
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samples were obtained from the CSF drainage tubes at the site of postaneurysm clips 

in 39 patients with SAH.  

In addition, HMGB1 has also been shown to be significantly elevated following SAH 

(mean 25.2ng/ml day 3, 22.9ng/ml day 7, 10ng/ml day 14) compared to neurologically 

normal control subjects in whom CSF HMGB1 was undetectable (Nakahara et al., 

2009). However, this study involved patients undergoing craniotomy with drainage 

tube insertion, which may influence the degree of inflammatory reaction. A series of 

303 consecutive patients with SAH revealed that plasma HMGB1 level on admission 

was a significant predictor of poor functional outcome and mortality after 1 year, in-

hospital mortality and cerebrovasospasm (Zhu et al., 2012). 

3.1.9 CNS immunity and seizure disorders 

BBB disruption permits interaction between the peripheral and central immune 

system. Increasingly, evidence from both experimental models of seizure (Seiffert et 

al., 2004; Pavlovsky et al., 2005; David et al., 2009; Fabene et al., 2008) and human 

epilepsy (Marchi et al., 2007) support the notion that disruption of the blood brain 

barrier (BBB) sets in motion a cascade of downstream events leading to the 

development of an epileptic focus. Immune cells, including TGF-β and various 

leukocyte adhesion molecules, appear to contribute to the pathophysiology of seizure 

disorders by mediating BBB breakdown (reviewed in detail in chapter 1.5.1). What is 

not yet accurately known is whether the disruption occurs before (a prerequisite), 

during (pathophysiological) or after (a consequence) seizure. Indeed, ultrastructural 

animal studies and human epileptic tissue reveal that focal epilepsy often develops 

following localised breakdown of the BBB as a result of traumatic, ischaemic or 

infectious brain injury (van Vliet et al., 2007a; Oby and Janigro, 2006; Abbott et al., 

2006). The contribution of HMGB1 to BBB disruption has not been studied to date.  

3.1.10 Rasmussen’s encephalitis 

Rasmussen’s encephalitis (RE) is a rare, CNS inflammatory disorder characterized by 

intractable seizures, unilateral hemispheric atrophy and progressive neurological 

deterioration (Rasmussen et al., 1958). The aetiology remains undetermined, although 

lymphocyte infiltration and microglial nodules are characteristic (Bien et al., 2005), 
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suggesting a viral component may be responsible; however no pathological agent has 

ever been confirmed. The majority of seizures are focal motor seizures.  Epilepsia 

partialis continua (EPC), consisting of continuous focal seizures or repetitive focal 

motor seizures, usually affecting the hands or face, is a common feature and can last 

for days (Thomas et al., 1977). This eventually leads to a hemiparesis, and it has been 

suggested that recurrent seizure activity may be the causative factor in the 

neurological decline (Bien et al., 2002; Bien et al., 2005). The current understanding of 

RE is that of an immunologically-mediated disease, however the relative contributions 

of T-cells, B-cells and autoantibodies remains to be determined. The severity of the 

epilepsy and the degree of deficit may be reduced by the use of corticosteroids and 

other immunotherapies (Hart et al., 1994). Tacrolimus is an agent directed at T-cells 

which was tested in an open study of patients with RE and demonstrated that both 

hemispheric atrophy and the progression of hemiparesis was slower in the treated 

group compared to untreated controls (Bien et al., 2004). Rituximab is an anti-CD20 

antibody that destroys B-cells. A recent case report details a young woman with 

intractable seizures and RE was rendered seizure free for several months following 

intravenous rituximab therapy (Thilo et al., 2009).  To date, expression of HMGB1 in 

CSF or peripheral blood has not been examined in this condition.  

3.1.11 Idiopathic Intracranial Hypertension 

Idiopathic intracranial hypertension (IIH) was described at the end of the 18th century. 

It is characterised by headaches and nausea resulting from raised intracranial pressure 

in the absence of an obvious pathological brain condition.  Normal adult intracranial 

pressure is defined as 7.5-20cm H20 (Czosnyka and Pickard, 2004). The condition, 

originally described incorrectly as benign, carries the devastating potential for visual 

loss associated with papilledema and secondary optic atrophy. Diagnosis is made 

according to the modified Dandy’s criteria whereby the patients suffers symptoms of 

raised intracranial pressure, confirmed by a CSF opening pressure of >25cm H2O 

(patient lying in lateral decubitus position), with no localizing neurological signs, 

normal CSF constituents in the presence of a normal computed tomography/magnetic 

resonance imaging (CT/MRI) brain and no identifiable cause (Corbett and Mehta, 

1983). Generally speaking, the condition affects mainly obese females of childbearing 
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age with an estimated incidence of 3.5/100,000 in females 15 to 44 years of age 

(Radhakrishnan et al., 1993). The pathophysiology is not completely understood. 

Experimental studies suggest increased resistance to CSF outflow may be a plausible 

mechanism (Boulton et al., 1998). The histological features of the brain parenchyma 

are normal (Wall et al., 1995). Advances in neuroimaging, including gadolinium-

enhanced magnetic resonance venography and computed tomography venography, 

have revealed that transverse cerebral venous sinus stenosis (TSS) is common among 

patients with IIH (Farb et al., 2003). However, asymptomatic bilateral TSS does exist in 

patients with a normal intracranial pressure (Kelly et al., 2013). Treatments aim to 

reduce CSF production and consequently pressure on the optic nerves with lowering of 

CSF pressure via drainage (a procedure termed lumbar puncture).  

3.1.12 Rationale for case group collaborations 

In order to compare HMGB1 levels between compartments it is important to examine 

different disease states. There is no evidence to suggest, nor biological rationale, that 

the BBB is dysfunctional in IIH and it can therefore reasonably be assumed to be intact 

and this condition allows the measurement of biomarkers in two separate 

compartments (CSF and blood). BBB disruption is a pathological feature of 

neuroinfection and therefore, this condition allows measurement of biomarkers in two 

separate, but communicating, compartments.  

The aims of this study were: 

1. To determine the concentration of, and relationship between, HMGB1 in paired 

serum and CSF samples from individuals with headache under investigation for 

IIH, a non-inflammatory non-infectious CNS control (healthy control substitute). 

2. To compare HMGB1 concentrations in CSF and blood between non-

inflammatory conditions in which the BBB is intact (IIH) and in conditions in 

which it is disrupted (neuroinfection and Rasmussen’s encephalitis) 
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3.2 Methods 

3.2.1 Study Site 

The Walton Centre NHS Foundation Trust is a tertiary referral centre for neurology and 

neurosurgery. The Jefferson Unit day ward contains a clinic room for the purpose of 

diagnostic and therapeutic lumbar punctures. Patients with a suspected or confirmed 

diagnosis of IIH are referred to the Jefferson unit for drainage of CSF to relieve 

headaches associated with raised intracranial pressure.  

3.2.2 Study population  

Otherwise healthy male and female patients (over 16 years of age) with suspected or 

confirmed idiopathic intracranial hypertension were recruited from the Jefferson day-

unit admission register.  

The inclusion criteria were: 

 Patient was over 16 years of age 

 Patient was willing and able to give informed consent  

 Patient was scheduled to attend for diagnostic or therapeutic lumbar puncture 

for the diagnosis or treatment of IIH. 

 Patient was healthy with the exception of suspected/confirmed IIH. 

The exclusion criteria were: 

 Concomitant infection 

 Chronic inflammatory/immune-mediated medical condition  

 Patient was taking steroids or immunomodulatory therapies 

 Patient was unable to provide written consent 

 

3.2.3 Sample Size 

As this was a pilot study, which has not been conducted previously, an accurate 

sample size calculation could not be performed. The aim was to recruit 20 patients 

with suspected/confirmed IIH for initial analysis with a view to increased recruitment if 

the results showed significant variability in HMGB1 levels. The interim analysis on the 
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20 patients was discussed with a statistician to determine whether further recruitment 

was necessary. 

3.2.4 Ethical approval 

Ethical approval for this study was granted by the North West Research Ethics 

Committee Liverpool East (11/NW/0761). Approval covered the additional collection of 

blood (maximum 10mls) and CSF (maximum 5mls) from patients undergoing planned 

(non-emergency) lumbar puncture as part of their clinical care. Approval covered the 

analysis of novel inflammatory biomarkers.  

3.2.5 Recruitment 

Patients were identified from the list of patients awaiting a day case date for 

attendance for lumbar puncture at the Jefferson unit. All patients awaiting lumbar 

puncture for any reason were sent the patient information leaflet (PIL) in the post 

prior to admission. On the day of admission, the PIL was given to all patients admitted 

each morning for the procedure. The research physician confirmed that the PIL had 

been read and understood and sought consent to review the case notes. If the patient 

was suitable for inclusion in the study consent for inclusion was obtained. This covered 

the collection of additional blood and CSF from the patient whilst they were 

undergoing the scheduled lumbar puncture. Patients were included in the analysis if 

any of the following criteria were met: 

1. Confirmed IIH (CSF pressure >25mm H20) and attended for drainage. 

2. Suspected IIH confirmed at that procedure with normal CSF constituents and 

no other diagnosis confirmed. 

3. Suspected IIH excluded at that procedure with normal CSF constituents and no 

other inflammatory or immune mediated diagnosis confirmed. 

For criterion 3, if the opening pressure was not elevated, the patient was still included 

in the study providing review of the investigations (taken as part of the scheduled 

clinical care investigation) was normal. If the results of the investigations were 

abnormal or confirmed an alternative diagnosis (for example, multiple sclerosis, a 

known CNS inflammatory condition) the patients were then excluded from the study 

and the samples destroyed.  
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3.2.6 Data Collection 

The following data was collected from the medical case notes and interview with the 

patient: 

 Demographic details including age, sex, ethnicity, smoking status, alcohol 

intake 

 Symptomatology of presenting complaint requiring lumbar puncture 

investigation 

 Computed tomography/Magnetic resonance imaging brain results if 

undertaken 

 Medical history 

 Medication history (type, dose, strength and formulation of therapy) 

 Co-morbid illnesses 

3.2.7 Lumbar puncture and venepuncture procedures 

The research physician (Lauren Walker) adequately trained to perform the procedure 

unsupervised performed all lumbar punctures. Written consent for the procedure was 

taken following discussion of possible risks and side effects including low-pressure 

headache, infection, bleeding, temporary or permanent nerve damage (1:10,000-

1:100,000).  

The patients were positioned in the left lateral decubitus position with the neck and 

knees fully flexed. Aseptic technique was maintained throughout to minimise the risk 

of infection. A sterile drape covered the patient and wearing sterile gloves the 

patient’s lumbar spine area was cleansed twice with 5% chlorhexidine solution. The 

physician palpated to identify the appropriate lumbar vertebrae (L3/L4 or L4/L5). 

Lignocaine solution (2%, 0.5mls) was infiltrated under the skin and a 20 or 22 gauge 

spinal needle inserted perpendicular to the skin through the ligamentum flavum until 

it pierced the dura mater into the subarachnoid space. The stylet from the needle was 

withdrawn and a CSF column manometer connected to record the opening pressure 

and confirm that it was elevated.  After confirmation, the manometer was removed 

and the CSF allowed to drip out into collection tubes for analysis and until the CSF 
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pressure returned to the normal range. The stylet was replaced, the needle removed 

and pressure applied to the site, which was covered by a sterile dressing.  

Immediately following completion of the lumbar puncture, venepuncture was 

performed to obtain paired serum samples. Both CSF and blood were centrifuged 

immediately at 2000xg for 20 minutes, the samples were alliquoted and stored at -

80°C until analysis. 

3.2.8 CNS Infection samples  

Paired serum and CSF samples were kindly provided by Dr Griffiths and Dr McGill of 

the Liverpool Brain Infections Group.  Dr Griffiths provided samples from a paediatric 

Nepalese study investigating suspected Japanese encephalitis in patients with fever, 

reduced consciousness and confirmed bacterial or viral neuroinfection. Dr McGill 

provided samples from a Nationwide United Kingdom study (North Wales Research 

Ethics Committee – West, reference number 11/WA/0218) of patients with confirmed 

neuroinfection.  

3.2.9 Rasmussen’s encephalitis 

Stored, anonymized paired serum and CSF samples obtained from 10 children with 

confirmed RE prior to 2006 were obtained with ethical approval via the proportionate 

review service Research Ethics Committee-Greater Manchester West (13/NW/0879). 

The samples were considered existing holdings under the Human Tissue Act. They 

were obtained during the clinical care of the patients and stored at -80°C as excess 

sample following investigation.  

3.2.10 Serum and CSF HMGB1 quantification by ELISA 

A description of the ELISA for serum quantification is provided in 2.2.7. Owing to the 

relative dilution of CSF compared to serum, CSF samples were analysed according to 

the highly sensitive procedure (as per the manufacturer’s guidelines). The modification 

includes the use of 50μl of sample (as opposed to 10μl for the standard procedure) 

added to 50μl of diluent (instead of 100μl in the standard protocol). This produces 1:2 

dilution instead of the 1:10 produced for the standard protocol. A total of 50μl of each 

sample, standard and positive control is then added to the respective wells on the 

microtitre plate. The rest of the protocol is adhered to as per 2.2.7. 
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3.2.11 Calculation of the CSF:serum albumin quotient  

Analysis of serum and CSF albumin for the determination of QALB was kindly 

undertaken by the Neuroimmunology and CSF Laboratory, University College London 

Hospitals NHS Trust. 

3.2.11.1 Statistical analysis 

The mean and standard deviation for both compartments in each condition was 

calculated. Correlation between compartments was determined by the Kendall’s tau 

correlation coefficient (r). Correlation between blood and CSF biomarker levels and 

clinical variables in patients with neuroinfection was undertaken by Kendall’s tau 

correlation coefficient for continuous variables and Mann-Whitney test for binary 

variables. The distribution of the data for the CSF patients was non-normal and due to 

the small sample size non-parametric tests were used for association. The false 

discovery rate (FDR) (<0.05) was used to correct for multiple testing (Hochberg, 1995). 

A multiple imputation technique was attempted to account for the missing data but 

due to the small sample size and clustering of missing data within the same individuals 

this was felt to be too inaccurate. Therefore imputation was not performed.  

3.3 Results 

3.3.1 Demographics 

The demographic details of the healthy control substitute group with 

suspected/confirmed IIH are detailed in table 3.1. Twenty patients were recruited and 

analysed, 2 were later excluded due to a subsequent abnormal alternative diagnosis 

and the samples and results were discarded. 18/20 recruited patients were included in 

the final analysis. The mean age of the IIH patients was 36.8 years (range 20-58) with a 

female to male ratio of 10:8. 

The demographic details of the patients with neuroinfection are detailed in table 3.2. 

Sufficient CSF volume for analysis was provided for 19 patients. Paired serum was 

available for 15/19. The mean age was 15.5 years (range 1.5-68) with a female to male 

ratio of 10:9. Demographic details for the 10 patients with RE were not available. 
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Sex Age 
(years) 

Cigarettes/ 
day 

Alcohol 
units/ 
week 

Brain 
imaging 
(CT/MRI) 

Symptoms/Diagnosis Medical History Medications 

M 49 0 2 Normal Painless visual loss right eye Nil Paracetamol 1g QDS 

F 29 0 0 Normal Headache, papilloedema Nil Acetozolamide 250mg 
TDS 

M 32 0 0.5 Normal Back pain Pseudomeningocele 
following 
microdiscectomy 

Tramadol 50mg PRN 

F 26 0 0 Normal Headache, papilloedema Nil Nil 

F 44 20 0.5 Normal Headaches, diplopia, 
vomiting 

Osteoporosis, 
depression 

Citalopram 40mg OD 

F 44 0 0 Normal Headache Hysterectomy (fibroids) Nil 

M 58 0 2 Normal Headache Nil Nil 

F 52 0 0.5 Normal IIH confirmed IIH 2011 Nil 

M 48 0 2 Normal Headache Nil Nil 

F 41 0 0 Normal Headache Nil Nil 

F 58 0 0 Normal Headache Nil Nil 

M 32 0 4 Normal Headache Nil Nil 

M 20 0 0 Normal IIH confirmed IIH 2010 Nil 

M 19 0 16 Normal Headache Nil Nil 

F 44 20 0 Normal IIH confirmed benign breast lump, IIH 
1998 

Nil 

F 21 15 0 Normal IIH confirmed IIH 2010 Nil 

Table 3.1 Demographics of subjects with suspected or confirmed idiopathic intracranial hypertension 
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F 41 0 0 Normal Headache Nil Nil 

M 31 0 20 Normal Headache, nausea Hypertension Lisinopril 20mg OD 

 

 

 

Table 3.2 Demographic characteristics of patients with neuroinfection. 

Clinical Diagnosis Age Gender Ethnicity Fever within 14/7 Seizure Admission GCS (3-15) 

Viral encephailitis 11 Male SE Asian Yes Yes 9 

Unknown 2.0 Male SE Asian Yes Yes 10 

Encephalitis 9.0 Female SE Asian Yes Yes 10 

Transverse myelitis 10.0 Female SE Asian Yes No 14 

Japenese Encephalitis 12.0 Female SE Asian Yes Yes 15 

Viral encephalitis 5.0 Male SE Asian Yes Yes 15 

Dengue 9.0 Female SE Asian Yes Yes 14 

Viral encephalitis 6.0 Female SE Asian Yes No 15 

Viral encephalitis 12.0 Female SE Asian Yes No 9 

Demographics of subjects with idiopathic intracranial hypertension recruited to the “healthy control substitute” arm. M: Male; F: Female; 
CT; Computed Tomography; MRI: Magnetic Resonance Imaging; IIH: Idiopathic Intracranial Hypertension; g:gram; QDS: Four-times daily; 
mg:millograms; TDS Three-times daily; PRN: As required; OD:once-daily 
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Viral encephalitis 6.0 Female SE Asian Yes No 14 

Febrile convulsion 1.5 Male SE Asian Yes Yes 7 

Viral encephalitis 7.5 Male SE Asian Yes Unknown 15 

Pyogenic meningitis 11.0 Female SE Asian Yes No 15 

Unknown 8.0 Male SE Asian Yes No Unknown 

Unknown 13.0 Male SE Asian Yes Unknown Unknown 

Unknown 10.0 Male SE Asian Yes Unknown Unknown 

Cryptococcal meningitis 41.0 Male Caucasian Yes No 15 

Lymphoma 31.0 Female Caucasian Yes No Unknown 

Pneumococcal meningitis 68.0 Female Caucasian Yes No 8 

Pneumococcal meningitis 35.0 Female Caucasian Yes No 15 

The study subjects were combined from a paediatric study in South East (SE) Asia and a nationwide study across the United Kingdom of confirmed 
bacterial meningitis. GCS: Glasgow Coma Score, a numerical assessment of consciousness, minimum 3 and maximum 15.
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3.3.2 Blood-brain barrier integrity in suspected/confirmed idiopathic 

intracranial hypertension. 

A representative sample (n=7) of paired serum and CSF samples were analysed for the 

CSF:serum albumin quotient to assess the integrity of the BBB. The BBB was intact in 

all of the individuals examined; the results are given in table 3.3. 

Table 3.3 Blood brain barrier integrity determined by the cerebrospinal fluid:serum 
albumin ratio 

CSF 
Result 
mg/L 
(RR 90-360) 

Serum 
Result 
g/L 
(RR 34-50) 

QALB 
(CSF/Albumin 
ratio) 
(RR <7.2) 

01 270 01 45 6.00 

02 194 02 45 4.31 

03 106 03 41 2.59 

04 186 04 39 4.77 

05 106 05 46 2.30 

06 272 06 44 6.18 

07 104 07 42 2.48 

CSF: Cerebrospinal fluid; RR: Reference range 

3.3.3 HMGB1 in peripheral blood and cerebrospinal fluid 

The mean serum concentration (± standard error of the mean) of HMGB1 was: IIH 

(n=18) 1.43±0.54; CNS infection (n=15) 25.28±27.9; and RE (n=10) 1.89±1.49ng/ml. The 

mean CSF concentration of HMGB1 was: IIH (n=18) 0.35±0.22; CNS infection (n=19) 

4.48±6.56; and RE (n=10) 2.24±2.35 ng/ml. The individual values for CSF and serum 

HMGB1 are given in table 3.4. The summary statistics for the continuous and 

categorical variables are described in tables 3.5 and 3.6, respectively. 

3.3.4 Relationship of HMGB1 between compartments 

No correlation was identified between CSF and serum HMGB1 in any of the conditions 

examined (figure 3.1, a-f). 
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Table 3.4 Total values for high mobility group box-1 in paired cerebrospinal fluid and 
serum 

Idiopathic Intracranial 
Hypertension 
 

Neuroinfection Rasmussen’s encephalitis 

CSF 
HMGB1 
ng/ml 

Serum  
HMGB1 
ng/ml 

CSF 
HMGB1 
ng/ml 

Serum 
HMGB1 
ng/ml 

CSF 
HMGB1 
ng/ml 

Serum 
HMGB1 
ng/ml 

0.187 1.005 4.230 8.150 2.577 5.242 
0.165 1.299 7.460 43.490 1.090 7.590 
0.173 1.417 0.000 69.150 0.655 0.823 
0.335 1.292 2.800 13.080 1.254 1.034 
0.136 1.321 0.070 97.390 3.800 0.878 
0.180 0.924 1.170 17.170 0.710 0.822 
0.725 0.961 0.470 6.880 1.025 1.045 
0.232 2.418 0.570 40.340 5.135 1.018 
0.136 1.454 8.680 41.030 1.134 1.030 
0.158 1.402 0.000 0.610 1.529 2.863 
0.659 1.807 21.730 3.280   
0.232 1.049 0.000 4.440   
0.291 0.880 3.210 9.960   
0.548 2.507 16.300 14.670   
0.644 2.396 0.520 9.510   
0.563 1.012 24.002    
0.578 1.100 121.031    
  0.048    
  8.532    

CSF: cerebrospinal fluid; HMGB1: High mobility group box-1 

 

3.3.5 Association between serum/CSF HMGB1 and clinical variables 

In patients with neuroinfection, a significant positive correlation existed between CSF 

HMGB1 and CSF white cell count and history of seizure (table 3.7, figure 3.2). Both 

associations survived multiple testing with FDR. 
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Table 3.5 Summary statistics for continuous variables in patients with neuroinfection  

Variable n Mean SEM Median IQR 

Blood 
HMGB1 
(ng/ml) 

15 25.28 7.21 13.08 33.17 

CSF HMGB1 
(ng/ml) 

19 11.62 6.31 2.80 8.34 

CSF white 
cell count 
(x10 g/L) 

13 453.15 269.60 97.00 195.00 

CSF Protein 
(g/L) 

14 44.20 11.31 32.40 63.92 

CSF Glucose 
(mmol/L) 

13 41.77 9.33 47.00 44.90 

Glasgow 
coma score 

16 12.50 0.76 14.00 5.25 

Serum white 
cell count 
(x10 g/L) 

15 11.73 1.40 11.90 6.47 

Serum 
platelets 
(x10 g/L) 

12 329.83 59.94 265.00 364.80 

Serum 
haemoglobin 
(g/dl) 

15 11.69 0.70 11.30 3.35 

Summary statistics for cerebrospinal fluid (CSF) and blood high-mobility group box 1 
(HMGB1) in patients with neuroinfection. Results are expressed as mean, standard 
error of the mean (SEM), median and interquartile range (IQR). 

 

Table 3.6 Summary statistics for categorical variables in patients with neuroinfection 

Variable Categories n (%) 

Seizure* Yes 7 (44%) 

 No 9 (56%) 

Abnormal protein** Yes 8 (57%) 

 No 6 (43%) 

Summary statistics for binary variables assessed for relationship to HMGB1 in CSF and 
serum of patients with neuroinfection. *Status missing for 3 patients **Status missing 
for 5 patients 
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Table 3.7 Associations between clinical variables and serum and cerebrospinal fluid 
High Mobility Group Box-1   

Variable Serum 

p-value 

CSF 

p-value 

CSF white cell count 

(x10 g/L) 

0.53 0.003 

CSF Protein (g/L) 0.47 0.21 

CSF Glucose (mmol/L) 0.79 0.11 

Glasgow Coma Score 0.32 0.45 

Serum white cell count (x10 g/L) 0.09 0.93 

Serum platelets 

(x10 g/L) 

0.54 0.84 

Serum haemoglobin (g/dL) 0.53 0.96 

Seizure (Yes/No) 0.64 0.004 
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Figure 3.1 High-mobility group box 1 (HMGB1) concentrations across serum and 
cerebrospinal fluid (CSF) compartments in a.) Idiopathic intracranial hypertension (IIH), 
c.) Neuroinfection and e.) Rasmussen’s encephalitis (RE). Box and whisker plots 
represent mean ±SD, n= 18, 15 and 10 respectively. Regression analysis performed 
using Kendal’s Tau correlation coefficient between compartments is not significant in 
any condition tested, b.) IIH, d.) Neuroinfection, 3.) RE.  

 

a.) b.) 

r
2
 = 0.02, 

p=0.91  
 

c.) d.) 

r
2
 = 0.04, 

P=0.84 

e.) f.) 

r
2
 = 0.16 

P=0.53 
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Figure 3.2 Cerebrospinal fluid (CSF) High-mobility group box 1 (HMGB1) is significantly 
associated with CSF white cell count in patients with neuroinfection. Regression 
analysis was performed by Kendal’s Tau correlation coefficient. 

 

3.3.6 Relationship between conditions 

In patients with CNS infection, there was a wide range of CSF HMGB1 values. This likely 

reflects the mixed population of viral and bacterial meningitis. Indeed, the patients 

with the highest CSF HMGB1 all had confirmed bacterial meningitis. Overall, CSF 

HMGB1 was not higher in infection versus control; however, isolated analysis of the 

purely bacterial cases revealed significantly elevated CSF HMGB1 (figure 3.3, A). 

Regardless of aetiology (viral or bacterial), serum HMGB1 was significantly higher in 

CNS infection compared to the control group (figure 3.3, A).  

In patients with RE, CSF HMGB1 was significantly higher than the control group but this 

result was driven by a couple of outliers (individual values in table 3.1). There was no 

statistical difference identified between blood levels (figure 3.4). However, the group 

numbers were small (n=10). 

 

 

r
2
=0.846, p=0.003 
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Figure 3.3 A.) Blood, but not cerebrospinal fluid (CSF), High-mobility group box 1 
(HMGB1) was significantly higher in neuroinfection as compared to the healthy-control 
substitute (IIH). Data presented as mean ± standard deviation. Association was 
determined by Mann Whitney U test, **** p<0.0001.B.) Sub-group analysis of bacterial 
meningitis only (n=6) revealed significantly higher CSF HMGB1 as compared to control 
group.  
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Figure 3.4 Cerebrospinal fluid (CSF), but not blood, High-mobility group box 1 (HMGB1) 
was significantly higher in Rasmussen’s encephalitis (RE) as compared to the control 
group of patients with idiopathic intracranial hypertension (IIH). Data is presented as 
mean ± standard deviation. Association was determined by Mann Whitney U test, **** 
p<0.0001. 

 

3.4 Discussion 

This study demonstrates, in conditions involving both normal and abnormally high 

serum HMGB1 concentrations, that there was no correlation between CSF and serum 

HMGB1. Therefore, it is not possible to use peripheral blood HMGB1 as a surrogate 

measure for CSF levels, as there was no predictable relationship demonstrated in this 

study in any condition. Currently there are no inflammatory biomarkers, detectable in 

serum or CSF, with proven clinical utility for patients with epilepsy. CSF biomarkers are 

increasingly considered for other CNS disorders, in particular Alzheimer’s disease (AD). 

The core AD biomarkers (Aβ42, t-tau and p-tau) have shown sensitivity and specificity 

of 85–95% for AD in discriminating AD dementia from cognitively healthy controls 

(Landau et al., 2010; Andreasen et al., 2001; Johansson et al., 2011; Hansson et al., 

2006). Furthermore, they have been validated and applied, both in combination with 

and without other clinical indices including clinical data, brain MRI and PET, as an 
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affirmative diagnostic tool for AD (de Leon et al., 2004; de Leon et al., 2006; Formichi 

et al., 2006; Schmidt et al., 2015). In AD, CSF biomarker concentrations are acting as a 

surrogate for inaccessible brain tissue. CSF is mainly produced by the epithelium of the 

choroid plexus and acts both as a mechanical cushion and as a circulation system for 

the brain carrying peptides secreted in one region to another and eliminating waste 

from the brain and spinal cord into the blood circulation (Sakka et al., 2011).   

Ultimately it is resorbed back into the blood via the venous system.  There are small 

but consistent differences between blood and CSF. CSF has higher concentrations of 

sodium and chloride, but lower concentrations of potassium, magnesium, bicarbonate, 

glucose, amino acids and uric acid (Segal, 1993). CSF is also virtually depleted of 

proteins, reflecting the tight intracellular junctions of the BBB. In addition, the brain 

has a volume of interstitial fluid, the volume of which is approximately twice that of 

CSF, about 300 to 400 ml in humans (Segal, 1993). Together the CSF and ISF act as the 

circulatory network of the brain. Therefore it may be reasonable to assume that the 

CSF can act as a surrogate for brain tissue. CSF directly contacts nerve tissue and as 

such, its composition is affected by biochemical changes occurring in the brain (Anoop 

et al., 2010). However, whether peripheral blood can further act as a surrogate for CSF 

sampling in some neurological conditions remains to be established. Indeed, in the 

case of AD, the potential of blood-based AD markers has yet to be further evaluated. 

Conflicting data regarding blood Aβ levels, which are decreased in the CSF of AD 

patients, have been reported. One study reported increased plasma Aβ levels in 

familial AD (Cedazo-Minguez and Winblad, 2010) but others have found that plasma 

levels of Aβ 1–42 and Aβ 1–40 are unstable; levels that are elevated, reduced or 

sometimes even unchanged have been reported (Borroni et al., 2010). Different 

countries have adopted CSF biomarkers for AD to varying degrees. The National 

Institute on Aging and the Alzheimer's Association recognise the potential for CSF 

biomarkers in this disease; they do however state that further research, validation, and 

standardization (both pre-analytical and analytical) are required (Dubois et al., 2007; 

McKhann et al., 2011). An important step in determining accuracy with regards to 

biomarkers concerns the use of accurate analytical methods. In order to reduce 

variability between laboratories it is important to have established and well-validated 

cut-off values and rigorous quality control procedures. Accurate quantification of a 
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particular biomarker in any biofluid requires the use of a method with appropriate 

analytical validity, for which the Food and Drug Administration provides specific 

guidance for industry (Food and Drug Administration, 2001b). Specifically, the 

accuracy, reproducibility and reliability of the method need to have been adequately 

established. To develop and validate a biomarker test several critical issues must be 

met. The current gold standard for measurement of total HMGB1 is the commercially 

available ELISA from Shino-Test Corp., Sagamihara, Japan. The manufacturer’s 

assessment of precision can be found in section 2.1.4. However, validation data for the 

HMGB1 ELISA, specifically assessing accuracy in CSF measurements, is not available 

from the manufacturer. As CSF is constituently significantly different to plasma and 

serum, it is difficult to be confident that the assay is sensitive and specific enough to 

detect such low protein levels, particularly as are seen in health. Following the highly 

sensitive protocol, the manufacturer’s performance data gives a lower limit of 

quantification (at which level the assay can be said to be accurate with coefficient of 

variation <20%) of 0.1 ng/mL. Therefore, particularly in health, the levels of HMGB1 in 

CSF would be very close to the lower limit of accuracy of the assay.  

The present study is the first report to examine HMGB1 levels in both CSF and 

peripheral blood in IIH, which were found to be within the normal range for health. 

Recently, speculation about the contribution of some immunologic factors to the 

pathogenesis of IIH have been cited (Sinclair et al., 2008; Edwards et al., 2013; 

Altiokka-Uzun et al., 2015). Varying levels of cytokine expression in the CSF in IIH have 

been shown (Dhungana et al., 2009a; Dhungana et al., 2009b) but this was 

inconsistent. Some studies have shown that IIH patients show higher CSF IL-17, IL-4, IL-

2, IL-10 and IFN-γ levels than comparator patients with the inflammatory neurological 

condition multiple sclerosis (Edwards et al., 2013; Altiokka-Uzun et al., 2015). Similarly 

to the present study, there were however no correlations between serum and CSF 

cytokine levels. 

This study identifies for the first time, albeit in a small cohort, elevated CSF HMGB1 in 

patients with Rasmussen’s encephalitis when compared to the healthy control 

substitute, IIH. However, the numbers were small and require further exploration in a 

larger cohort. In recent years, attention has turned to the role of cytotoxic T cells in the 
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pathogenesis of RE. Spectral analysis of individual T cells from brain lesions indicates 

clonal expansion of CD8+ cells, suggesting an antigen-driven CD8+ T cell-mediated 

autoimmune process (Bauer et al., 2002; Bien et al., 2002). In addition, isoform specific 

analysis to examine the relative contribution of the acetylation and redox 

modifications to HMGB1 is required to determine whether the mechanisms of release 

is necrotic or inflammation driven and whether chemotaxis or cytokine activation are 

the dominant processes involved.  

In this study, CSF HMGB1 was significantly associated with elevated CSF white cell 

count. CSF pleiocytosis is associated with excessive host immune response in human 

meningitis and contributes to brain injury (Redzic, 2011; Gekakis et al., 1998; 

Woodbury and Davenport, 1952; guidelines, 2012). Furthermore, release of 

inflammatory mediators activates inflammatory cells and promotes vascular 

permeability, both of which are injurious to tissue, and are associated with poor 

neurological prognosis (Mustafa et al., 1989; Ohga et al., 1994; Ichiyama et al., 1997). 

Invading pathogens trigger recognition of PAMPS by Toll-like receptors 2 and 4 (Klein 

et al., 2008) leading to assembly of the NLRP3 inflammasome. Consequently, large 

numbers of blood-borne leucocytes are recruited into the leptomeninges. 

Furthermore, release of HMGB1 from inflammatory and/or necrotic cells is thought to 

be central to persistent inflammation in pneumococcal meningitis through its 

chemoattractant function (Hohne et al., 2013). Fully reduced HMGB1 recruits 

inflammatory cells to compartments undergoing necrosis (Andersson et al., 2014).  

Injection of HMGB1 into the CSF of mice induces a significant increase in CSF leucocyte 

counts, an effect blocked by pre-treatment with neutralizing anti-HMGB1 antibodies 

(Hohne et al., 2013). In a mouse model of pneumococcal meningitis, treatment with 

ceftriaxone plus HMGB1 antagonist therapy was associated with a significant 

amelioration of brain pathology compared to ceftriaxone alone (Hohne et al., 2013). 

The mechanisms responsible for the increases in CSF HMGB1 concentration in 

neuroinfection are unknown but could reflect intracerebral synthesis, leakage from 

blood across the disrupted BBB or a combination of these mechanisms.  

In summary, the findings from this study comparing the contemporaneous collection 

of CSF and serum show that no correlation in HMGB1 levels exists between bio-
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compartments in any condition examined, regardless of the integrity of the BBB.  It 

also identifies for the first time that HMGB1 levels are normal in IIH, despite recent 

reports suggesting an inflammatory pathogenesis. Lastly, elevated serum and CSF 

HMGB1 was identified in RE, where it may be contributing to the pathogenesis. 

However, numbers evaluated are small, and replication in a larger sample set with 

further exploration of the pathological isoforms is required.   
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4.1 Introduction 

Temporal lobe epilepsy (TLE) is a common, frequently difficult-to-control form of 

epilepsy characterized by complex partial seizures arising from regions within the 

temporal lobe, usually the hippocampus or amygdala (Chang and Lowenstein, 2003; 

Bertram, 2009). TLE arises as a consequence of some form of insult to the brain such 

as neuroinfection, neurotrauma, stroke, prolonged status epilepticus or complex 

febrile seizure. The process by which normal brain tissue develops a hyper-excitable 

focus from which spontaneous seizures arise is termed epileptogenesis. TLE is 

frequently associated with selective neuronal loss in the CA1/CA3 region of the 

hippocampus and hilus, known as hippocampal sclerosis. This distinct 

neuropathological pattern occurs along with granule cell dispersion and aberrant 

mossy fibre sprouting in the dentate gyrus (Berkovic et al., 1991; Thorn, 1997; 

Jackson et al., 1990; Buckmaster, 2012). In order to develop disease modifying “anti-

epileptogenic” drugs able to prevent the development of a drug resistant focus, we 

need to utilise experimental models of TLE that replicate both the histopathological 

and behavioural manifestations of the disease.  

Currently, the process of epileptogenesis remains incompletely understood. It is 

unlikely that continual development of anti-seizure drugs, targeting purely the 

clinical expression of seizures and developed and tested in models of isolated 

seizures, will yield a successful strategy for disease modification in epilepsy. It is 

essential that we first unravel the sequence of pathological events that occur within 

the brain following neurological insult. Furthermore, it has been postulated that 

“seizures may beget seizures” by aggravating neuronal damage and establishing a 

negative, deleterious cycle (Ben-Ari et al., 2008). Therefore, there remains a 

significant unmet clinical need for new drugs that can halt and even prevent the 

progression of epilepsy following brain insult. 

In the last decade, research efforts have focused on the role of inflammation in 

epileptogenesis. Where it is probable that epilepsy is a multifactorial process, 

targeting one isolated substrate such as inflammation, may alleviate the 

downstream cascade of events that leads to disruption of the BBB and development 

of a hyper-excitable focus. 
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4.1.1 The kainic acid model of seizures 

A comprehensive description of the KA model can be found in section 1.3.3.1. KA is a 

potent agonist of the (AMPA)/kainate class of glutamate receptors and is widely 

used in rodents, either by systemic or intrahippocampal injection, to induce 

epileptogenesis (Dudek FE, 2006). Activation of KA receptors triggers membrane 

depolarization and excessive intracellular calcium influx. This in turn leads to 

neuronal death as a result of mitochondrial dysfunction and generation of reactive 

oxygen species (Nicholls, 2004; Schinder et al., 1996; Brorson et al., 1994). The KA 

model induces neuropathological features consistent with human TLE (Ben-Ari and 

Lagowska, 1978; Ben-Ari et al., 1979). The hippocampus and amygdala are the usual 

sites of origin of resultant spontaneous electrographic seizures which then 

propagate to the neocortex (Ben-Ari, 1981; Levesque et al., 2009). Mortality in this 

model ranges from 5 to 30% (Levesque and Avoli, 2013). 

4.1.2 Behavioural manifestations of KA-induced seizures and Status 

Epilepticus 

KA (at variable doses depending on administration site and species) induces a period 

of repeated seizure activity, termed status epilepticus (SE). Definitions of SE in mice 

can vary in the literature. Acute seizures are described according to the Racine scale 

(Racine, 1972) and are characterized as: 

 freezing and facial clonus (stage 1) 

 masticatory movements and head nodding (stage 2) 

 wet dog shakes (stage 3)  

 forelimb clonus-unilateral or  

 bilateral (stage 4) followed by  

 rearing and falling (stage 5) (Raedt et al., 2009; Pernot et al., 2011; Mouri et 

al., 2008).  

A generally accepted definition of SE in mice is continuous convulsive seizure activity 

above Racine stage 3 for a minimum of 30 minutes with incomplete recovery of 

responsiveness between episodes (Cavalheiro, 1995; Leite et al., 1990; Loscher, 

2002). A prolonged duration of seizures (more than 30 minutes) may lead to 
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permanent neuronal damage and synaptic reorganization (Lowenstein et al., 1999). 

In humans, the spectrum of SE is very wide and indeed classification of SE in humans 

is a subject of much discussion. Generally speaking, most seizures terminate 

spontaneously. Closed-circuit video-EEG recordings have demonstrated that the 

majority of self-limiting seizures in fact last no longer than a few minutes (Theodore 

et al., 1994; Luders et al., 1993). As a result, the definition has undergone several 

revisions. The ILAE Task Force on Classification and Terminology defined SE in 

humans as “a seizure that persists for a sufficient length of time or is repeated 

frequently enough that recovery between attacks does not occur (1981).” In 1993, 

the American Epilepsy Society Working Group on Status Epilepticus stipulated a 

duration of “30 minutes or occurrence of two or more seizures without recovery of 

consciousness in-between (Brodie, 1990)” however this duration has progressively 

shrunk in recent years and a minimum length of 5 minutes has since been proposed. 

The latest definition includes “continuous, generalized, convulsive seizure lasting >5 

minutes, or two or more seizures during which the patient does not return to 

baseline consciousness.” Ultimately, failure to recover consciousness between 

convulsions and persistence of a neurological deficit are considered integral to the 

diagnosis. Improved level of consciousness would be expected within 20 to 30 

minutes of a convulsive seizure.  

4.1.3 Scientific rationale for the multiple dosing KA model of TLE 

Susceptibility to excitotoxic neuronal injury differs between mouse strains (McKhann 

et al., 2003; McLin and Steward, 2006; McLin et al., 2006). Administration of a single 

large dose of KA (by intraperitoneal injection) has the disadvantage that it may cause 

widespread severe neuronal damage, in excess of the severity observed in humans 

with TLE, characterized predominantly by cell loss in the hippocampal formation 

(Sloviter, 1996; Wieser, 2004). Following systemic administration of KA, spontaneous 

seizures occur 10-30 days after SE (White et al., 2010; Williams et al., 2006; Sharma 

et al., 2008; Lado, 2006; Drexel et al., 2012; Cherubini et al., 1983; Chauviere et al., 

2012). An alternative method is to use focal unilateral low dose injection of KA into 

the hippocampus creating a restricted focus of damage (Dudek FE, 2006; Ben-Ari, 

1985). Cell loss restricted to the CA3 region of the injected hippocampus is observed 
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7 days after KA injection (Balosso et al., 2005; Ravizza et al., 2006e; Balosso et al., 

2008) followed by the appearance of spontaneous epileptic activity occurring 

reproducibly from approximately 9 days after SE induction for several months (Iori et 

al., 2013). However, the disadvantage of intrahippocampal injection, particularly in 

studies examining neuroinflammation, is that it necessitates brain surgery. The 

animal must be anaesthetized, a section of the skull removed and a guide cannula 

inserted directly into the brain tissue with KA administered either under anaesthesia 

or at a later time point. Neuroinflammation occurs as a protective physiological 

consequence of brain tissue damage. Therefore neurosurgery models present a 

confounding factor when trying to distinguish the seizure-related effects from 

surgery-related effects. Examination of post-mortem human brain tissue taken 

following insertion of depth EEG electrodes shows that procedure-associated 

immunoreactivity and BBB leakage significantly exceeds the initial area of injury and 

persists up to at least 330 days following implantation (Liu et al., 2012).  

Consequently, for this study of neuroinflammation, the multiple low dosing KA 

model for rats was adapted to mice (Levesque and Avoli, 2013), whereby animals are 

given repeated low-dose systemic KA until the onset of convulsive SE. The model 

was selected for its consistent histological changes which resemble those seen in 

human medial temporal lobe sclerosis (Hellier et al., 1998).  KA passes the BBB very 

weakly; such low bioavailability means <1% actually reaches the target receptors in 

the brain (Berger et al., 1986). In multiple dosing, the cumulative dose received by 

individual mice may vary but the time period during which they undergo repeated 

seizures is consistent. By comparison to single dose regimens, multiple low dosing 

regulates seizure activity by titrating dose to the individual seizure threshold. In 

addition, multiple dosing is known to increase the mortality rate when compared to 

single dosing in rats. In the rat model, low mortality is coupled with more than 90% 

of rats developing spontaneous seizures in association with loss of hippocampal 

neurons, gliosis and mossy fibre sprouting (Hellier et al., 1998). However it must be 

borne in mind that, compared to intracerebral injection, the bioavailability of KA in 

the brain may vary between mice receiving different doses of KA systemically, 

introducing a possible source of bias.  
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4.1.4 Scientific rationale for choice of mouse strain 

Inbred mouse strains exhibit significant variability in their behavioural response to 

ictogenic stimuli, including chemoconvulsant agents (Schauwecker, 2002). High 

seizure-related mortality rates (57%) following a single injection of KA have been 

shown in C57 and C3H mice, as compared to the 129/SvJ or 129/SvEms mice in 

which KA is associated with a mortality rate between 0 and 8% (McKhann et al., 

2003). The C57BL/6J mouse strain was selected as it is the most common 

background strain used in transgenic studies; this work then forms a platform for 

future investigations.  

4.1.5 Aims 

To examine changes in HMGB1 expression by western blotting (WB) and 

immunohistochemistry (IHC) in the mouse brain following KA-induced SE in a novel, 

non-surgical multiple-dosing model. 

1. To examine the release of the acetylation and redox isoforms of HMGB1 

following KA-induced SE. 

2. To examine the time course of expression of serum HMGB1 following KA-

induced SE by quantification of the different molecular forms. 

 

4.2 Methods 

4.2.1 Therapeutics 

KA (10mg, Abcam, Cambridge, UK.) was dissolved in 2ml distilled water and 

sonicated for 20 minutes until completely dissolved and stored at -20°C until 

required. 

4.2.2 Experimental animals 

Adult male C57BL/6J mice (60 days old, 25-30g body weight, Charles River, Margate, 

UK) were housed at a constant temperature (23°C) and relative humidity with free 

access to food and water and a fixed 12-hour light/dark cycle. All efforts were made 
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to minimize the number of animals used and their suffering. All in vivo work was 

performed in accordance with the Animals (Scientific Procedures) Act, UK (1986).  

4.2.3 Incremental KA 

Prior to the induction of seizures, all animals were weighed and separated into 

individual cages.  Seizure intensity was evaluated according to a five-point seizure 

scale (Racine, 1972; Schauwecker and Steward, 1997), described in table 4.1. Mice 

were given repeated intraperitoneal (i.p.) injections of 5mg/kg KA at 30-minute 

intervals until the onset of convulsive SE characterised by the appearance of the first 

stage-five severity seizure. Generalized seizure activity was monitored and scored at 

5-minute intervals thereafter. SE in this model was defined as continuous convulsive 

seizure activity at or above Racine stage 3 for a minimum of 30 minutes with 

incomplete recovery of responsiveness between episodes. This is consistent with 

other models in the literature (Cavalheiro, 1995; Leite et al., 1990; Loscher, 2002).  

A major problem with systemic injection of KA is high mortality. Most research 

groups therefore limit the duration of SE with an anticonvulsant (Loscher, 2002). 

Seizure activity in this model was terminated after two hours by intramuscular (i.m.) 

diazepam (10mg/kg).  The use of diazepam at this dose and at this time-point does 

not interfere with subsequent epileptogenesis or the development of associated 

neuropathology (Ben-Ari et al., 1980; Aroniadou-Anderjaska et al., 2008; Halonen et 

al., 2001). Sham-treated controls were given i.p. distilled water at 30 minute 

intervals across a 3 hour timeframe (to mirror KA administration) followed by i.m. 

diazepam (10mg/kg).  

Table 4.1 Racine scale of seizure levels in rodents 

Stage Description 

1 Mouth and facial movements 

2 Head nodding 

3 Forelimb clonus 

4 Rearing 

5 Rearing and falling, loss of postural control 

Descriptors taken from (Racine, 1972) 
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4.2.4 Euthanasia 

Mice were euthanised according to The Humane Killing of Animals under Schedule 1 

to the Animals (Scientific Procedures) Act, 1986. KA-treated mice were sacrificed by 

rising CO2 at 3, 6, 24, 72 hours and 7 and 14 days following the onset of convulsive SE 

(figure 4.1). Control mice (n=4) were sacrificed 24 hours following repeated distilled 

water dosing. A total number of 28 mice were used in this study, 4 in each group. 

 

Figure 4.1 Schedule of dose administration, status epilepticus period and termination 
with diazepam. Blood and brain collection occurred according to the diagram at 3, 6, 
24, 72 hours and 7 and 14 days following the onset of status epilepticus. 

 

4.2.5 Blood sample collection 

Terminal blood samples were obtained by immediate cardiac puncture and stored 

on ice. Serum was isolated by centrifugation (5 minutes at 2000xg) and stored at -

20°C until analysis.   

4.2.6 Brain tissue processing 

Mouse brains were quickly removed and the right hemisphere rapidly dissected on 

ice under a stereomicroscope into cortex (frontal and dorsal), hippocampus, 

cerebellum and brainstem samples. Samples were then snap-frozen in liquid 

nitrogen and stored at -80°C until used for analysis. Dissected tissue samples from 

the extracted brains (15mg/sample/region) were homogenised on ice in lysis buffer 

(Radio-Immunoprecipitation Assay (RIPA) buffer, Sigma Aldrich, UK) containing 

protease inhibitor cocktail (2µl/ml lysis buffer) and β-mercaptoethanol (0.5µl/ml 

lysis buffer) for 30s using a TissueRuptor (Qiagen, UK). Homogenates were then 

centrifuged at 14,000 x g for 10 minutes at 4⁰C and the supernatants isolated, 

aliquoted and frozen at -80⁰C until required for analysis. 
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4.2.7 Protein Quantification 

Total protein amounts were measured using the BCA protein assay method (Sigma-

Aldrich, Cambridge, UK). Samples were diluted 1:10 and 1:20 and 9μl of each diluted 

sample was loaded in duplicate into round-bottom 96-well plates. A 200μl volume of 

BCA reagent (50:1 BCA:CuSO4) was added to each well and incubated at 37°C for 30 

minutes. Absorbance was measured at 570nm and results were fitted to a standard 

curve generated from known serially diluted concentrations of bovine serum 

albumin (BSA). 

4.2.8 Western Blot Analysis 

4.2.8.1 Reagents 

Reducing buffer consisting of 30:70 (v/v) NuPAGE™ Sample Reducing Agent (10X)/ 

NuPAGE™ LDS Sample Buffer (4X) (Life Technologies, UK.). Samples were heated at 

85⁰C for 5 minutes to denature the proteins. Running buffer was prepared by 1:20 

dilution of NuPAGE™ MOPS SDS Running Buffer (20X) (Life Technologies, UK.) in 

distilled water, with NuPAGE™ antioxidant (1:400) (Life Technologies, UK.) added, as 

necessary.  Transfer buffer was prepared by 1:20 dilution of NuPAGE™ Transfer 

Buffer (20X) (Life Technologies, UK.) in 80:20 (v/v) distilled water/methanol, 

supplemented with 1:1000 NuPAGE™ antioxidant to enhance transfer of proteins to 

membranes. Tris-buffered saline (TBS) with Tween-20 (TBST), comprising 10% TBS 

10X and 0.1% Tween 20 (Sigma Aldrich, UK), was prepared in distilled water.  

Chemiluminescence substrate solution consisted of 50:50 (v/v) mixture of Reagent A 

(luminol) and Reagent B (enhancer) from the Novex™ ECL HRP Chemiluminescent 

Substrate Reagent Kit (Life Technologies, UK.) 

4.2.8.2 Sample preparation 

Samples were defrosted on ice and the volume required from each sample to 

achieve the requisite amount of total protein (10μg/well, determined by BCA assay, 

section 4.2.7) was reduced by addition of 5μl/sample of reducing agent (Life 

Technologies, UK). Reduced and denatured samples were then cooled on ice for 10 

minutes and vortexed with a whirlmixer.    
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4.2.8.3 Sample loading and gel electrophoresis 

Assembly of the gel electrophoresis running tank (XCell SureLockTM Mini-Cell, 

Invitrogen, UK) was undertaken according to the manufacturer’s manual. The gel 

cassette (NuPAGE™ Novex 4-12% Bis-Tris gel, Invitrogen, UK) was inserted into the 

buffer chamber and the tension wedge locked. The tank was filled with running 

buffer (1X) supplemented with antioxidant. After the cathode chamber was 

completely filled with buffer, the external anode chamber was filled with running 

buffer (1X) without antioxidant, until the buffer reached the level of the wells of the 

gel.  Reduced and denatured samples were loaded onto the gel with a prism protein 

ladder, which contains 10 proteins that resolve into bands in the range of 2 – 250 

kDa (Biorad UK.) The safety lid was closed onto the tank, connected to a PowerPac™ 

300 (Bio-Rad, UK) set at 90V and the gel run for 10 minutes until the lanes had run 

straight.  Thereafter, the voltage was increased to 170V and the gel run for an 

additional 60 minutes.   

4.2.8.4 Transfer of proteins from gel to membrane 

After running, samples were transferred onto polyvinylidene difluoride membranes. 

Gels were placed in the transfer gel sandwich in the following order; white side of 

the cassette, sponge, filter paper, membrane, gel, filter paper, sponge and finally 

black side of the cassette sandwich placed on top. Sponges, membranes and filter 

paper were pre-soaked in 1X transfer buffer. A roller was used to gently roll out air 

bubbles from the sandwich and the cassette transferred into the module of the 

transfer tank (Mini Trans-Blot™ Cell, Bio-Rad, UK). To prevent overheating of the 

proteins, an ice pack and magnetic stirrer were added to the tank which was filled 

with 1X transfer buffer. The lid was aligned with the module in the tank and 

connected to a PowerPac™ set at 80V and run for 1.5 hours.  Once the transfer was 

complete, the membrane was removed and placed in a plastic tray.     

4.2.8.5 Blocking procedures and antibody incubations 

Confirmation of the transfer was made using Ponceau S dye (Sigma Aldrich, UK) 

added to the tray containing the membrane. The membrane was then cut into two 

parts with a scalpel, one containing the protein region for HMGB1 and one for actin. 

These were then washed with TBST to remove the Ponceau S dye. The membranes 
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were blocked with 10% non-fat dry milk prepared in TBST at 4⁰C overnight under 

gentle shaking. The membranes were incubated with primary antibodies, either 

rabbit polyclonal antibody to HMGB1 (Ab18256, 1:5000; Abcam) or mouse 

monoclonal antibody to actin (1:10,000; Sigma-Aldrich), prepared in 5% skim milk in 

TBST for one hour at room temperature with gentle shaking. Following primary 

antibody incubation, the membranes were rinsed with TBST for 20 minutes (TBST 

discarded and replaced at 5-minute intervals). Secondary antibody incubations, with 

horseradish peroxidase-conjugated anti-rabbit (HMGB1, 1:10,000; Sigma-Aldrich) 

and anti-mouse (actin, 1:10,000; Sigma-Aldrich), took place at room temperature for 

one hour with gentle shaking. After incubation the membranes were again rinsed in 

TBST for 20 minutes. 

4.2.8.6 Chemiluminescence detection of proteins, film exposure and development 

Protein bands were visualized by chemiluminescence. The membrane was incubated 

in pre-mixed chemiluminesence substrate solution for 60 seconds and the excess 

removed with tissue paper. The membranes were added to the development folder 

between acetate sheets. In the dark room, photographic film (Carestream™ Kodak™ 

BioMax™ light film, Sigma Aldrich, UK) was placed on top and developed for the 

optimum exposure time for each assay. The optimum exposure time had been 

developed previously and included 10-15 seconds for actin and 30-60 seconds for 

HMGB1. The films were developed in developer solution (Carestream™ Kodak™ 

autoradiography GBX developer/replenisher, Sigma Aldrich, UK) diluted to 1:4.5 with 

water, for 5 minutes.  The film was then transferred to fixative solution (Carestream® 

Kodak™ autoradiography GBX fixer/replenisher, Sigma Aldrich, UK) for 5 minutes, 

also diluted to 1:4.5 with water.   

4.2.8.7 Quantification 

Films were scanned using a GS-800TM Calibrated Densitometer (Bio-Rad, UK) and 

captured using Quantity One™ 1-D Analysis Software (Bio-Rad, UK).  Images were 

quantified using the ‘1D electrophoresis gel and western blot analysis’ within 

TotalLab Quant tools applications (TotalLab Ltd, UK), with densitometric quantitation 

of band volumes exported into Microsoft Excel.   
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4.2.9 Histopathology 

Histopathological analysis of the brain tissue samples and cell counting was 

performed by Dr Emanuele Ricci, Lecturer in Veterinary Pathology, University of 

Liverpool.  The left cerebral hemisphere was removed and post-fixed in 4% 

Paraformaldehyde (PFA) for 48 hours and rostro-caudally trimmed into serial 1mm 

thick sections. After routine processing for histology, serial 3μm-thick sections were 

cut, mounted on polylysinated glass slides (Superfrost Plus™; Menzel-Gläser, 

Braunschweig, Germany), dried overnight at 37°C, and then submitted to 

haematoxylin-eosin stain.  

4.2.9.1 Fluoro-Jade C 

Visualisation of Fluoro-Jade C labelled slides was performed according to a 

previously described protocol (Schmued et al., 2005). Briefly, after de-waxing and 

hydration, slides were rinsed for 2 minutes in distilled water, and then incubated in 

0.06% potassium permanganate solution for 10 minutes. Slides were then 

transferred for 10 minutes to a 0.0001% solution of Fluoro-Jade C (AG325, Chemicon 

International, Temecula, CA, USA) dissolved in 0.1% acetic acid vehicle. The proper 

dilution was accomplished by first making a 0.01% stock solution of the dye in 

distilled water and then adding 1 ml of the stock solution to 99 ml of 0.1% acetic 

acid. The working solution was used within 2 hours of preparation. The slides were 

then rinsed through three changes of distilled water for 1 minute per change. Excess 

water was drained onto a paper towel, and the slides were then air dried on a slide 

warmer at 50⁰C for at least 5 minutes. The air-dried slides were then cleared in 

xylene for at least 1 minute and then cover-slipped with DPX non-fluorescent 

mounting media. Fluoro-Jade C labelled slides were visualized using an 

epifluorescent microscope at the appropriate wavelengths (excitation: 495nm, 

emission: 521nm, fluorescein/FITC filter). 

4.2.9.2 HMGB1, GFAP and IBa1 

Microglia were detected using anti-ionized calcium binding adaptor molecule 1 

(Iba1), which is a microglia/macrophage-specific calcium-binding protein. GFAP is an 

intermediate filament protein that is expressed by astrocytes. Consecutive sections 

were de-waxed in xylene and re-hydrated through serial passages in solutions with 
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decreasing alcohol concentration (Xylene (neat) x2, 100% ethanol x2, 96% ethanol 

x1, 85% ethanolx1, 70% ethanolx1, each step was 2 minutes in duration). 

Endogenous peroxidase activity was quenched with a 30 minute incubation in 20% 

H2O2 in methanol at room temperature followed by 30 minute incubation with 

normal swine serum for Peroxidase Anti Peroxidase (PAP) method and normal horse 

serum (both Vector labs, Peterborough, UK) for ImmPRESS polymer method, in order 

to prevent non-specific antigen binding. Tissue sections were incubated overnight at 

4⁰C with primary antibody diluted in TBST [rabbit monoclonal anti-HMGB1, 1:250 

(Abcam EPR3507); rabbit anti-cow (GFAP), 1:500 (Dako Z0334); goat anti-Iba1 1:1000 

(LifeSpan Bioscience LS-B2402)]. After washing with TBST, a 30 minute incubation 

with swine anti-rabbit (1:100, Dako Z0196) was followed by two washes with TBST 

and a 30 minute incubation with PAP rabbit (1:250, Dako Z0113) at room 

temperature. For anti-Iba1 antibody only, anti-goat ImmPRESS polymer was added 

as a secondary antibody for 30 minutes at room temperature. 

4.2.9.3 Image processing and cell count 

Cell counting was performed by Dr Emanuele Ricci, Lecturer in Veterinary Pathology, 

University of Liverpool. For each animal, five non-overlapping microscopic fields 

consecutively centred on the hilus of the dentate gyrus, CA3, CA2 and CA1 (in 

duplicate) at 100x magnification were captured with a Nikon Eclipse 80i microscope. 

After setting appropriate threshold values with ImageJ Software 

(http://imagej.nih.gov/ij/), all images were processed and analysed using an 

appropriately designed batch plugin, with generated data exported into an Excel 

spreadsheet for statistical evaluation. Briefly, after splitting into colour channels, the 

appropriate threshold was set on the blue channel images and the percentage of the 

field occupied by GFAP positive astrocytes was evaluated. For HMGB1 positive cells, 

individual spherical objects were counted using the “analyse particles” function of 

ImageJ software (circularity level 0.30-1.00, size 355-infinity), whereas for Iba1 

marked cells, positive cells were counted with appropriate tested values (circularity 

0.00-0.90, size 500-infinity), after exclusion of small processes. 

4.2.10 Serum HMGB1 quantification by ELISA 

The HMGB1 ELISA method has been described in section 2.2.7.  
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4.2.11 Liquid chromatography tandem mass spectrometry  

LCMS/MS was performed by Dr Ros Jenkins, Senior Experimental Officer and Dr 

Daniel Antoine, Lecturer in Pharmacology, University of Liverpool. All chemicals and 

solvents were of the highest available grade (Sigma-Aldrich, UK). Samples were pre-

cleared with 50 μl protein G-Sepharose beads for 1 hour at 4°C. Supernatant HMGB1 

was immunoprecipitated overnight with 5 μg rabbit anti-HMGB1 (Abcam; ab18256) 

for 16 hours at 4°C. The resultant pellet was subjected to SDS-polyacrylamide gel 

electrophoresis. Protein bands were excised from Coomassie blue–stained gels and 

destained by incubation with 50% acetonitrile/50mM ammonium bicarbonate 

followed by vacuum drying. Gel pieces were rehydrated in 50mM ammonium 

bicarbonate containing 40 ng/μl endoproteinase (GluC) (HMGB1) and incubated for 

16 hours at 37°C. Peptides were extracted by incubation with two changes of 60% 

acetonitrile (ACN)/1% trifluoroacetic acid (TFA) and the resulting supernatants dried. 

Extracts were desalted using C18 ZipTips according to the manufacturer's 

instructions and reconstituted in 5% ACN/0.1% TFA. For LC-MS/MS analysis, samples 

were delivered into a QSTAR Pulsar i hybrid mass spectrometer (Applied Biosystems, 

Foster City, CA) by automated in-line liquid chromatography (integrated LC-Packings 

System, 5 mm C18 nano-precolumn, and 75 μm × 15 cm C18 PepMap column 

[Dionex, CA]) via a nano-electrospray source head and 10-μm inner diameter PicoTip 

(New Objective, Woburn, MA). A gradient from 5% ACN/0.05% TFA (vol/vol) to 48% 

ACN/0.05% TFA (vol/vol) in 60 min was applied at a flow rate of 300 nl/min. Mass 

spectrometry (MS) and tandem mass spectrometry (MS/MS) spectra were acquired 

automatically in positive ion mode using information-dependent acquisition 

(Analyst; Applied Biosystems). Database searching was performed using ProteinPilot 

2 (Applied Biosystems) with the latest version of the SwissProt database, with the 

confidence level set at 80%, and with biological modifications allowed. Analysis 

yielded more than 75% sequence coverage. Free thiol groups within HMGB1 were 

alkylated for 90 minutes with 10 mM iodoacetamide at 4°C. Cysteine residues in 

disulphide bonds were then reduced with 30 mM Dithiothreitol (DTT) at 4°C for 1 

hour followed by alkylation of newly exposed thiol groups with 90 mM N-

Ethylmaleimide (NEM) at 4°C for 10 min. Samples were subjected to trypsin 

(Promega, Southampton, UK) or GluC (New England Biolabs, Herts, UK) digestion 
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according to manufacturer's instructions and desalted using ZipTip C18 pipette tips 

(Millipore). Characterization of whole protein molecular weights, acetylated lysine 

residues, or redox modifications on cysteine residues within HMGB1 were 

determined as described previously by whole protein electrospray ionization or 

tandem mass spectrometry (Nystrom et al., 2013; Antoine et al., 2012) using either 

an AB Sciex QTRAP 5500 or an AB Sciex TripleTOF 5600 (Sciex Inc.). Peptide analysis 

was determined using an AB Sciex QTRAP 5500 equipped with a NanoSpray II source 

by in-line liquid chromatography using a U3000 HPLC System (Dionex), connected to 

a 180 μm × 20 mm nanoAcquity UPLC C18 trap column and a 75 μm × 15 cm 

nanoAcquity UPLC BEH130 C18 column via reducing unions. A gradient from 0.05% 

TFA (v/v) to 50% ACN/0.08% TFA (v/v) in 40 min was applied at a flow rate of 

200nl/min. The ionspray potential was set to 2200–3500 V, the nebulizer gas to 19, 

and the interface heater to 150°C. 

4.2.12 Statistical analysis 

Statistical analysis was undertaken using Graph Pad Prism Software (Graph Pad 

Prism, San Diego, CA). Pearson’s correlation coefficient was calculated to investigate 

the relationship between quantitative variables of interest, whilst variables were 

compared between groups using one-way ANOVA with Dunnett’s correction for 

multiple comparisons (normally distributed data) or non-parametric Kruskal Wallis 

with Dunnett’s correction (where data was not normally distributed). 

4.3 Results 

4.3.1 Seizure threshold and sensitivity to kainic acid 

The mean duration of convulsive seizures (minimum Racine stage III and above) was 

79.8±7.48 minutes, range 30-120). Sensitivity to KA varied within the group (figure 

4.2). There was no relationship between animal weight and the cumulative dose of 

KA that was required (figure 4.3) or between the cumulative dose of KA and 

resultant seizure severity (figure 4.4). Seizure severity was determined by the 

cumulative Racine stage V score (the total number of stage 5 generalised seizures 

occurring throughout the 120 minute period). The mortality rate of the study was 

4%.  
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Figure 4.2 The cumulative dose of kainic acid (KA) required to achieve status 
epilepticus (onset of Racine stage V seizures) expressed as percentage of the total 
number of treated animals (n=24).  

 

 

Figure 4.3 Relationship between animal weight and total dose of kainic acid (KA) 
required to induce convulsive seizures following intraperitoneal administration of KA 
at 5mg/kg every 30 minutes. Weight is expressed as mean ± standard error of the 
mean. Pearson’s correlation is illustrated by the solid line, with the corresponding 
correlation co-efficient reported. 
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Figure 4.4 Relationship between the cumulative Racine seizure severity score 
(expressed as mean ± standard error of the mean) and the cumulative dose of kainic 
acid (KA) required to induce convulsive seizures. Pearson’s correlation is illustrated by 
the solid line, with the corresponding correlation co-efficient reported. 

 

4.3.2 Control mice 

No seizures were observed in the control mice. The control group of mice, a small 

sample (n=4) of vehicle-injected control mice, injected i.p. with distilled water 

(2ml/kg) 8 times at 30-minute intervals, were sacrificed 24 hours following the initial 

injection. The degree of animal handling of the vehicle-only control mice was 

deemed sufficient to account for the stress experienced by the KA-treated mice and 

there was no significant difference in brain or serum HMGB1 expression in the 

control group. 

4.3.3 Brain expression of HMGB1 

4.3.3.1 Total HMGB1 expression in brain homogenates by western blotting 

4.3.3.1.1 Hippocampus 

At each time point (3, 6, 24, 72 hour, 7 and 14 days) the level of HMGB1 expression 

normalized to β-actin expression was compared to vehicle-only control. A significant 

increase in hippocampal HMGB1 from 24 hours following KA-induced SE (control 

0.67±0.09 vs 1.70±0.15 (HMGB1/actin ratio, arbitrary units), P ≤ 0.01) persisted to 14 

days (1.77±0.32, P ≤ 0.001, figure 4.5). Western blotting quantified the total cellular 

R² = 0.0072 

0

20

40

60

80

100

120

140

0 10 20 30 40

C
u

m
u

la
ti

ve
 R

ac
in

e
 V

 s
co

re
 

Cumulative KA dose mg/kg 



136 
 

expression of HMGB1, in this context expression that occurs as a consequence of an 

inciting event (the KA-induced neuronal damage.)  

4.3.3.1.2 Cerebellum 

Western blotting revealed a significant increase in cerebellar expression of HMGB1 

at 6 hours following the onset of convulsive SE (control 1.04±0.04 vs 3.59±0.53, 

p<0.001, figure 4.7) 

 

 

 

 

 

 

Figure 4.5 Hippocampal expression of high-mobility group box-1 (HMGB1) as 
determined by western blotting at various time-points up to 14 days following the 
onset of convulsive seizures. Data is presented as mean ± standard error of the mean 
(n=4/time-point; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by one way ANOVA 
with Dunnett’s post-hoc correction for multiple comparisons). 

 

 

 

 

 

 

Figure 4.6 Western blot images showing expression of high-mobility group box-1 
(HMGB1) in various brain regions from a vehicle-treated control animal and in a 
further animal at 24 hours following onset of convulsive seizures. Membranes were 
also stained for β-actin as a loading control to confirm uniformity. CB: Cerebellum; 
FC: frontal cortex; DC: dorsal cortex; Hip: hippocampus; BS: brainstem. 
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Figure 4.7 Expression of high-mobility group box-1 (HMGB1) in the cerebellum as 
determined by western blotting at various time-points up to 14 days following the 
onset of convulsive seizures. Data is presented as mean ± standard error of the mean 
(n=4/time-point; ***p<0.001 by one way ANOVA with Dunnett’s post-hoc correction 
for multiple comparisons). 

4.3.3.1.3 Cortex 

In the frontal cortex, a trend towards increased HMGB1 expression was seen across 

time peaking at 24 hours following SE but expression was not significantly different 

from control at any of the time-points investigated (figure 4.8). In the dorsal cortex, 

HMGB1 expression peaked at 24 hours following the onset of SE (control 0.45±0.05 

vs 0.90±0.71, p<0.05) and returned to baseline by 72 hours (figure 4.9).  

 

Figure 4.8 Expression of high-mobility group box-1 (HMGB1) as determined by 
western blotting in the frontal cortex at various time-points up to 14 days following 
the onset of convulsive seizures. Data is presented as mean ± standard error of the 
mean (n=4/time-point.) 

*** 
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Figure 4.9 Expression of high-mobility group box-1 (HMGB1) as determined by 
western blotting in the dorsal cortex at various time-points up to 14 days following 
the onset of convulsive seizures. Data is presented as mean ± standard error of the 
mean (n=4/time-point; *p<0.05 by one way ANOVA with Dunnett’s post-hoc 
correction for multiple comparisons). 

 

4.3.3.1.4 Brainstem 

In the brainstem, western blot quantification of HMGB1 expression revealed a 

significant increase compared to control at 6 hours (control 0.27±0.05 vs 1.04±0.12, 

p<0.001) and 24 hours (0.95±0.10, p<0.0001) following the onset of convulsive SE 

(figure 4.10).  

Figure 4.10 Brainstem expression of high-mobility group box-1 (HMGB1) as 
determined by western blotting at various time-points up to 14 days following the 
onset of convulsive status epilepticus (SE). Data is presented as mean ± standard 
error of the mean (n=4/time-point; ***p<0.001, ****p<0.0001 by one way ANOVA 
with Dunnett’s post-hoc correction for multiple comparisons). 

* 



139 
 

 

4.3.3.2 Hippocampal histopathology  

4.3.3.2.1 Haematoxylin and Eosin Staining and Neuronal cell death by Flourojade C 

Starting from 1 hour post SE, minimal neuropathological changes were restricted to 

the appearance of slightly vesiculous nuclei of astrocytes, associated with mild 

interstitial oedema at 6 hours post SE. Scattered shrunken, hypereosinophilic and 

pyknotic neurons (“red dying neurons”) were observed at 24 hours post SE, mainly 

within the CA1 layer, and appeared specifically and intensely marked by Fluoro-Jade 

C. Occasional necrotic neurons were also scattered within the entorhinal area and 

thalamic nuclei. 

4.3.3.2.2 HMGB1 staining of the hippocampus 

Three hours following the onset of SE, HMGB1 positive nuclei staining increased 

significantly (p < 0.0001, figure 4.11). Within the hippocampi of examined animals, 

scattered nuclei within the strati oriens, radiatum and lacunosum-moleculare of the 

Cornu Ammonis and the polymorph layer of the dentate gyrus were specifically 

labelled. Within the hippocampal hilus, CA3 and CA2, up to 60% of pyramidal 

neurons were strongly labelled.  At six and 24 hours post SE, the number of positive 

cells and signal intensity dropped back to the level of control animals, before the 

occurrence of a further intense peak of immunoreactivity at 3 days post SE (figures 

4.11 and 4.12 A-D) characterized by prevalent localization of strongly HMGB1 

positive cells within CA2 and the neuropil of the adjacent stratum lucidum.  

4.3.3.2.3 Astrogliosis and Microglial activation 

Following KA-induced SE, GFAP positive astrocytes progressively increased in 

number (predominantly in the stratum oriens and radiatum of the Cornu Ammonis), 

becoming statistically more numerous at 6 hours (p<0.001) and reaching a peak at 

24 hours (also p<0.001) followed by a minimal decrease to levels that were not 

significantly different from control at 14 days (figure 4.13 A). Cells had a 

characteristic increase in signal intensity acquiring large GFAP positive cytoplasm 

with prominent and short cell projections (figure 4.12, E-H).  
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Similarly, at 24 hours post-SE, Iba1 positive microglia showed a significant increase in 

number (figure 4.13 B) and with a prominent change in morphology, becoming 

bipolar or stellate with large strongly labelled cytoplasm and few, shorter and thicker 

cell processes when compared to the less numerous and finely arborized cells in 

control animals (figure 4.12, I-L). Morphological changes in Iba-1 positive cells were 

interpreted as signs of microglial cell activation whereas the increase in cell number 

within the hippocampus was postulated to represent the local recruitment visible as 

early as 24 hours after SE. HMGB1 is produced predominantly by astrocytes and not 

cells of microglial morphology. 

 

 

 

 

 

 

 

 

Figure 4.11 Hippocampal expression of high mobility group box-1 (HMGB1) by 
immune staining. Cell count was determined by ImageJ software 
(http://imagej.nih.gov/ij/). Data is presented as mean ± standard error of the mean 
(n=4/time-point; **p<0.01, ****p<0.0001 by one way ANOVA with Dunnett’s post-
hoc correction for multiple comparisons). 
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Figure 4.12 Representative photomicrographs of high mobility group box-1 (HMGB1), 
Glial fibrillary acidic protein (GFAP) and Ionized calcium binding adaptor molecule 1 
(Iba1) immunoreactivity in the hippocampi of kainic acid (KA)-treated C57BL/6 mice 
(A-L). 40x magnification (A-H) and 200x magnification (I-L). 

 

4.3.3.2.4 Acetylation status 

Analysis of the isoforms of HMGB1 present in hippocampal homogenates was 

undertaken by LCMS/MS. Non-acetylated HMGB1 peaked 3-6 hours following KA-

induced seizures, which was followed by a significant rise in the acetylated form at 

24 hours (figure 4.14).  
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Figure 4.13 Quantification of area occupied by GFAP positive astrocyte processes (A) 
and microglial cells by Iba-1 (B). Data is presented as mean ± standard error of the 
mean (n=4/time-point; ****p<0.0001 by one way ANOVA with Dunnett’s post-hoc 
correction for multiple comparisons). 
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Figure 4.14 (A) Mass spectrometric characterization of high-mobility group box-1 
(HMGB1) acetylation isoforms from mouse hippocampal homogenates following 
convulsive kainic acid status epilepticus (KA-SE), with data reported as mean fold 
change from baseline ± standard error of the mean (n = 4/time-point, *p<0.05, 
**p<0.01 by Kruskal Wallis test with Dunnett’s post-hoc correction for multiple 
comparisons). (B) Representative spectrum of the tandem mass spectrometric 
characterization of a peptide (amino acids 180–188) covering the lysine (K) residues 
within the nuclear localization sequence (NLS) 2 of HMGB1, depicting the 
hyperacetylated state of HMGB1-NLS2. Acetyl modifications are represented as (ac) 
on specific lysine residues (K181, K182, K183, and K184). 

 

4.3.3.2.5 Redox status 

Significantly elevated expression of both reduced and disulphide HMGB1 isoforms 

was observed at 6 hours and peaked at 24 hours following KA-induced seizures 

(figure 4.15). The predominant isoform was the reduced, chemoattractant form, 
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which would be consistent with leukocyte recruitment to the site of damage for the 

purpose of repair. 

 

 

 

 

 

 

 

Figure 4.15 Mass spectrometric characterisation of high-mobility group box-1 
(HMGB1) redox isoforms from mouse hippocampal homogenates following 
convulsive kainic acid status epilepticus (KA-SE), with data reported as mean fold 
change from baseline ± standard error of the mean (n=4/time-point, *p<0.05 by 
Kruskal Wallis test with Dunnett’s post-hoc correction for multiple comparisons). 

 

4.3.4 Serum expression of HMGB1 

4.3.4.1 Total HMGB1 quantification by ELISA 

Serum HMGB1 rose significantly at 3 hours following the onset of convulsive seizures 

as compared to vehicle-only control (control 5.01±0.35ng/ml vs 16.54±0.85ng/ml, 

p=0.05) and returned to basal levels by 24 hours (4.30±2.3ng/ml). Fourteen days 

after SE, serum HMGB1 showed a second, significant elevation (control 

5.01±0.35ng/ml vs 18.03±5.73ng/ml, p<0.05, figure 4.16a). 

4.3.4.2 Mass spectrometric characterisation of HMGB1 isoforms in mouse serum 

following convulsive status epilepticus 

In KA-treated mice, mass spectrometric characterisation revealed that the early rise 

in HMGB1 was attributable to the non-acetylated, fully-reduced isoform of HMGB1 

(figure 4.16c). Acetylated, disulphide HMGB1 was undetectable until fourteen days 
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following seizure onset, at which point a significant elevation was seen (figure 4.16b 

and c). 

            

 

Figure 4.16 (a) Quantification of HMGB1 by ELISA in serum from control animals and 
at 3, 6, 24, 72 hr and 7 and 14 days after kainic acid status epilepticus (KA-SE). 
Results are expressed as the mean (± SEM) concentration in ng/ml (n=4/time-point, 
*p<0.05 by one-way ANOVA). (b & c) Mass spectrometric characterization of HMGB1 
acetylation and redox isoforms in mouse serum at various time-points up to 14 days 
following kainic acid status epilepticus. Results are expressed as mean fold change 
from baseline ± standard error of the mean (n = 4/time-point, *p<0.05, ***p<0.001, 
by Kruskal Wallis test with Dunnett’s post-hoc correction for multiple comparisons). 
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4.4 Discussion 

In this study, using a novel, multiple i.p. dosing model of KA-induced seizures, no 

correlation between the total cumulative dose of KA given and the time to onset of 

Racine Stage V seizure or severity of seizures was identified. Indeed, a wide variation 

in dose-response was seen across the C57BL/6J mice. The observed variability is 

consistent with previous reports in the literature that have suggested that C57BL/6J 

mice show inconsistent responses to systemic KA (Schauwecker and Steward, 1997; 

Yang et al., 2005b; McKhann et al., 2003; Kurschner et al., 1998). What is more, 

these and other studies suggest a genetic source of resistance to KA-induced 

neurotoxicity in the C57BL/6J strain (McKhann et al., 2003; Schauwecker, 2011; 

Benkovic et al., 2006; De Sarro et al., 2004; McLin et al., 2006). Despite the variation 

in the occurrence of seizures, significant inflammatory-driven changes evidenced by 

microglial activation and astrogliosis were seen in the mice, with concomitant 

necrotic-release of HMGB1 confirming sensitivity of the mice to repeated KA-dosing. 

In comparison to the traditional single, high-dose systemic KA model, the model 

used in this study was labour intensive. Dosing at 30 minute intervals with a wide 

dose range (from 60 minutes to 3.5 hours) coupled with 5-minute observations of 

seizure activity throughout the 2-hour SE period meant that a maximum of 4 mice 

could be observed at any one time. For studies involving euthanasia at 3 and 6 hours 

following SE onset, the length of the study day ranged from a minimum of 10 to a 

maximum of 15 hours including time for euthanasia, serum collection, brain 

dissection and sample processing. As a result, animals were ordered at different 

times. As the ordering was weight- and gender-based (males, 25-30mg), despite 

originating from the same supplier, identical parentage cannot be guaranteed. The 

C57BL/6J strain is the most widely used in-bred strain of laboratory mouse for 

models of human disease and is mass produced across different study sites. 

Therefore, the variation in dose sensitivity may be due in part to small differences in 

the genetic lineage. One possible solution to address this would be to develop an in-

house C57BL/6J strain whereby offspring from the same parents are used for all 

studies in order to guarantee a constant lineage. However, this homologous ‘ideal’ 

does not accurately reflect the human condition. As a matter of fact, there is no 
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single animal model of epilepsy that can fully represent the disease, particularly 

given the diverse array of seizure disorders that are subsumed under the umbrella of 

epilepsy. Ultimately, a degree of variability between rodents was deemed acceptable 

as it more accurately represents the true clinical situation, wherein epilepsy severity 

ranges from mild, occasional seizures to daily, uncontrolled generalised convulsions. 

An alternative solution for future studies would be to increase the number of 

animals used per time-point in an effort to overcome inherent variability.  

Prolonged seizures result in the release of glutamate and other excitatory 

neurotransmitters. The hippocampus is particularly vulnerable to excitotoxic 

neuronal injury, having a relative wealth of glutamate receptors. The mechanisms 

responsible for glutamate-toxicity include intracellular Ca2+ influx leading to 

increased Ca2+-dependent signalling, and oxidative stress with free radical 

production and consequent protein and DNA damage (Wang et al., 2005; Rodriguez-

Moreno and Sihra, 2004; Carriedo et al., 2000). In the present study, total 

hippocampal HMGB1 expression rose significantly at 24 hours and persisted from 7 

days until 14 days following the onset of SE. It is postulated that cells are 

damaged/die as a consequence of KA-induced prolonged SE which in turn induces 

living cells to increase their intracellular pool of HMGB1, which is expressed and 

detected by western blotting and immunohistochemistry (figure 4.16). Prolonged 

up-regulation in expression of HMGB1 in the hippocampus, the major site of KA-

induced damage in this preclinical epilepsy model, suggests a prolonged, 

inflammatory-mediated insult with incomplete resolution. This is further supported 

by reactive astrogliosis and microglial activation visible from 24 hours by IHC 

analysis. Astrogliosis describes the ‘swelling’ of astrocytes as they extend projections 

that then surround damaged and dying neighbouring cells (Sofroniew, 2009) in an 

effort to limit the degree of neuronal loss and demyelination in response to injury 

(Sofroniew, 2005; Barres, 2008). Unfortunately, the absence of video EEG in this 

study means that it was not possible to determine definitively whether the mice 

underwent epileptogenesis following SE and/or developed spontaneous recurrent 

seizures. However, the duration of convulsive seizures experienced by the mice in 

this study is consistent with epileptogenic-inducing brain insults in other epilepsy 
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models in the literature and therefore it is possible that epileptogenesis was 

occurring in the mice. The prolonged expression of HMGB1 (24 hours until 14 days) 

certainly suggests that HMGB1 is overexpressed during the critical epileptogenic 

period. What remains to be seen is whether it continues to be expressed in the 

chronic epileptic phase, and a definitive model of spontaneous epileptic seizures is 

required to confirm this. 

Mass spectrometric (MS) characterisation of HMGB1 isoforms in hippocampal 

homogenates represents a means to identify the amount of HMGB1 that is released 

from cells into the extracellular milieu, in contrast to western blotting and IHC which 

confirm changes in cellular expression. MS analysis revealed a shift in the isoforms 

present, from an early non-acetylated form (3-6 hours) to acetylated HMGB1 at 24 

hours. Non-acetylated HMGB1 resides in the nucleus where it functions as an 

architectural factor to support the structure of chromatin (Stros, 2010). HMGB1 in its 

acetylated form cannot re-enter the nucleus and thus builds up in the cytosol (Lotze 

and Tracey, 2005). Acetylation promotes active release from immune cells following 

sterile inflammation (Lamkanfi et al., 2010; Andersson et al., 2014). Therefore, the 

shift from non-acetylated to acetylated HMGB1 likely represents delayed immune 

activation to an initial cellular insult. With respect to function, fully-reduced HMGB1 

acts as a chemoattractant (Venereau et al., 2012) whereas disulphide HMGB1 has 

been shown to be the only form capable of inducing cytokine production (Yang et al., 

2012). Therefore, significant elevations in both reduced and disulphide isoforms at 

24 hours following SE likely represents initiation of the inflammatory cascade for 

repair and correlates with the significant rise in cellular expression at 24 hours seen 

by western blotting.  

In primary mouse hippocampal neuron cultures, the disulphide-containing isoform of 

HMGB1 has been shown to enhance NMDA-induced Ca2+ increase in neuronal cell 

bodies in a dose-dependent manner (Balosso et al., 2014). The effect was mediated 

by TLR4 and blocked by pharmacological inhibition of HMGB1 using the competitive 

antagonist, Box-A, and a TLR4 selective antagonist. Oxidized HMGB1, considered to 

be immunologically inert, was incapable of achieving this effect (Balosso et al., 

2014). 
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Figure 4.13 Graphical representation of the time course of cellular release of high 
mobility group box-1 (HMGB1) (detected by mass spectrometry) and expression 
(detected by western blotting and immunohistochemistry) as a consequence of brain 
insult. 

NMDA receptor currents are governed by a balance between phosphorylation 

(increase) and dephosphorylation (decrease) (Salter, 2009). Phosphorylation is a key 

form of enhancement of NMDA receptor function achieved by the Src family of 

protein tyrosine kinases, expressed in neurons of the adult CNS (Cotton and Brugge, 

1983). Activation of presynaptic NMDA receptors, following tyrosine 

phosphorylation of the NMDA receptor subunit 2B (NR2B) (Yu et al., 1997), 

contributes to excitatory neurotransmission by promoting Ca2+-dependent glutamate 

release (Martin et al., 1991; Suarez et al., 2005). Selective inhibition of Src family 

tyrosine kinases with 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4-d] 

pyrimidine, (PP2) prevented the effect of disulphide HMGB1 on NMDA-induced Ca2+ 

influx (Balosso et al., 2014). Importantly, the same signalling is induced by IL-1β via 

the IL-1R1 receptor (Viviani et al., 2003). Furthermore, both IL-1R1 and TLR4 are 

contained within the same receptor superfamily and share both a common 

Toll/interleukin-1 receptor domain and the same adaptor protein (MyD88), both of 

which are essential for intracellular signalling activation (O'Neill and Bowie, 2007). 

This data emphasises the potential key role of disulphide HMGB1 as a pathological 

mediator in seizure, with a specific neuronal action.  
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In peripheral blood, LCMS/MS analysis confirmed that the early rise seen in HMGB1 

was due to the non-acetylated, fully-reduced form. This suggests that early HMGB1 

release into the blood may originate from necrotic cells in the brain, in keeping with 

the purpose of chemotaxis and repair. This is supported by increasing evidence from 

both experimental models (van Vliet et al., 2007e; Tomkins et al., 2007; Pavlovsky et 

al., 2005) and human epilepsy (Marchi et al., 2007; Tomkins et al., 2008; van Vliet et 

al., 2007a) which suggests that disruption of the BBB, permitting spill-over of brain 

derived mediators into the peripheral system, is a key event in association with 

seizures. Changes in expression of several potassium and glutamate homeostasis 

related genes in response to BBB breakdown in rats have been identified (David et 

al., 2009). In patients with post-traumatic epilepsy, BBB permeability to the MRI 

contrast medium has been demonstrated co-localised with the presumed epileptic 

focus (Tomkins et al., 2008; Tomkins et al., 2011). Examination of resected human 

epileptic brain tissue reveals anatomical abnormalities involving endothelial cells, 

basal membrane and abnormal tight junctions of the BBB (Cornford, 1999). What 

remains to be fully clarified is whether this occurs as a prerequisite, or as a 

consequence, of seizure activity. At present, insufficient clinical evidence exists to 

confirm that BBB impairment has a definitive role in the generation of epilepsy. 

Sterile inflammation represents a physiological mechanism to protect and repair 

brain tissue after injury. A disrupted BBB permits communication between the 

peripheral and central immune system and hence, elevations in serum HMGB1 in 

this study may represent spill-over from the necrotic cells within the damaged brain 

across the disrupted BBB. However, the impact of muscle injury resulting from 

repetitive seizure activity cannot be excluded in this study and could be responsible 

for the early rise in necrosis-derived, reduced HMGB1. Unfortunately, due to the  

relatively large volume of serum required for both ELISA and LCMS/MS in this study 

(~200μl), insufficient sample was available for analysis of muscle breakdown 

products, such as creatine kinase, which could have helped to support or exclude 

this hypothesis. Interestingly, there was a delay in the appearance of the acetylated, 

disulphide form of HMGB1 in the peripheral blood, which was undetectable until 

fourteen days following seizure onset at which point a significant elevation was 

observed. Studies of the KA model of epilepsy have revealed that spontaneous 
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epileptic activity occurs reproducibly from approximately 9 days after SE induction 

and persists for several months (Iori et al., 2013). However, the absence of video 

electroencephalography in this study is a limitation, it is not possible to determine 

whether the mice underwent epileptogenesis and/or developed spontaneous 

recurrent seizures. Indeed, mice are less likely to develop spontaneous seizures in 

response to KA compared to rats (McKhann et al., 2003). That being said, the late 

appearance of the inflammatory form could represent one of two potential sources: 

1) Spill over from the CNS due to an ongoing, localised inflammatory reaction, 

possibly as a result of failure of mechanisms to resolve inflammation or 2) 

peripherally generated HMGB1 arising in response to the development of 

spontaneous epileptic seizures. 

HMGB1 has recently been revealed to be a critical mediator in the systemic response 

to brain injury in both experimental and clinical stroke (Liesz et al., 2015). 

Specifically, HMGB1 signalling via the receptor for glycation end products (RAGE) 

induces cytokine secretion in the periphery leading to sickness behaviour (weight 

loss and hypothermia) in mice. The initial release of the non-acetylated and fully 

reduced form of HMGB1 from necrotic cells post-stroke was followed by delayed 

appearance of the disulphide form in serum (but not brain) at 24 hours, suggesting 

maturation to the cytokine-stimulating form occurs following initial necrotic release.  

In conclusion, this study shows that multiple, low-dose KA administration in C57BL6 

mice induces a brain insult with activation of the innate immune response mediated 

by the resident microglia and astrocyte population. Concomitant to this, increased 

expression of HMGB1 occurs in the hippocampus, and other brain regions, from 3- 6 

hours following the onset of convulsive seizures. Mass spectrometric analysis of 

hippocampal tissue confirmed that the early rise resulted from necrotic processes, 

with the purpose of leukocyte recruitment and repair, which was then followed by 

an inflammation-driven persistent process at 24 hours. Early release of HMGB1 into 

the peripheral blood is likely to have resulted from a necrotic process, possibly 

attributable to spill-over from the central-nervous system. A delayed rise in the 

inflammatory, disulphide form of HMGB1 occurred 14 days after the KA-SE period, 

which may coincide with the appearance of spontaneous seizures and provides proof 
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of principle that HMGB1 represents a pathological isoform, directly connected with 

the disease process. HMGB1 can induce a persistent pathological inflammation at 

the site of brain insult, which exceeds the natural homeostasis, turning a once 

protective repair into a pathologically hyperexcitable neuronal focus. Further 

investigations to determine whether isoforms of HMGB1 are relevant to provoked 

seizures, the process of epileptogenesis, spontaneous epileptic seizures or any 

combination of the three is required. 
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5.1 Introduction 

HMGB1 is critically involved in the initiation of the inflammatory cascade in epilepsy 

and contributes to seizures (Maroso et al., 2010; Balosso et al., 2014; Iori et al., 

2013). In addition, it appears to be overexpressed in both brain and blood in relation 

to prolonged seizure activity (chapter 4). The acetylated disulphide form of HMGB1, 

originating from inflammatory cells and capable of inducing cytokine release via 

TLR4, is the one believed to be responsible for its pathological effects in epilepsy 

(Maroso et al., 2010; Balosso et al., 2014; Iori et al., 2013). These effects can be 

compounded by the redox state of the extracellular milieu; oxidative stress and 

cellular injury not only result in the release of cytosolic HMGB1 but also in the 

generation of reactive oxygen species (ROS) which, in turn, promote the stabilization 

of HMGB1 in its disulphide form. Thus, there is a vicious cycle that links neuronal 

injury, the pathological isoform of HMGB1, ROS production, and neuroinflammation. 

This cascade represents a potential source of biomarkers for CNS disorders in which 

inflammation is a key pathogenic contributor.  

Data from the kainate model (chapter 4) add to the available evidence that HMGB1 

is released following prolonged, recurrent seizures as a result of a chemically-

induced brain insult. In addition, it identified for the first time, delayed expression of 

inflammatory disulphide HMGB1 occurring in brain (24 hours) and blood (14 days) 

which may contribute to a persistent, pathological inflammation at the site of insult. 

What remained unclear from this model was whether the release of HMGB1 

occurred as a result of the brain insult, the seizure activity, or both. What is more, 

particularly in relation to the potentially pathological disulphide isoform, whether 

inflammatory isoforms of HMGB1 are released following single or recurrent seizures 

and in normal brain and/or epileptic brain. The disulphide-containing isoform of 

HMGB1 has been shown to enhance NMDA-induced Ca2+ increase in neuronal cell 

bodies which contributes to excitatory neurotransmission (Balosso et al., 2014). The 

specific mechanism of neuronal action suggests that HMGB1 is involved in the 

disease process itself and is not simply a marker of recent seizure activity. In order to 

address these issues, the expression of HMGB1 needed to be examined in models 

exhibiting the following: 
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1. Brain damage vs. no brain damage 

2. Chemically induced seizures vs. electrically induced seizures 

3. Recurrent seizures vs. isolated seizures 

4. Epileptic brain vs. non-epileptic brain 

5. Provoked seizures vs. spontaneous epileptic seizures 

Different experimental models of seizures and epilepsy were required in order to 

address whether HMGB1 plays any role in isolated acute seizures (on the 

background of a normal, healthy brain) or spontaneous, unprovoked seizures arising 

from an epileptic brain and included the MES test and the pilocarpine-SE model of 

epilepsy.  

5.1.1 The maximal electroshock seizure test 

The MES test (described in section 1.3.5) has been used for decades for screening 

anticonvulsant therapies and remains one of the gold standards in early stage AED 

testing (Rogawski, 2006). It involves non-epileptic animals which are induced to have 

a single seizure by an electrical impulse. The test involves a stimulus of sufficient 

intensity to induce maximal tonic extension of the hind limbs (Castel-Branco et al., 

2009). The stimulus is approximately 5-10 times higher than the individual seizure 

threshold of the animals to avoid the bias of daily fluctuations in seizure threshold 

(Loscher et al., 1991; Piredda et al., 1985; Swinyard and Kupferberg, 1985). The 

stimulus is applied through transcorneal or transauricular (ear-clip) electrodes. In 

brief, the stimulus is applied followed by an immediate severe tonic seizure with 

maximal extension of the anterior and posterior legs and body stiffening. This is the 

tonic phase, usually lasting 10-15 seconds. After this, clonic seizures commence, 

characterized by paddling movements of the hind limbs and body shaking. The 

animal usually returns to an upright position within 20-30 seconds and starts moving 

around, apparently recovering its normal behaviour (Andre et al., 2002). The test is 

deemed positive if the animal exhibits tonic extensor seizures with rearward hind 

limb extension more than 90⁰ from the body which is sustained for more than 3 
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seconds and occurring within 10 seconds of the stimulation (Castel-Branco et al., 

2009). The animals do not go on to develop further spontaneous seizures.  

5.1.2 The mouse pilocarpine model 

The pilocarpine-SE model displays many of the clinical and histopathological 

manifestations of human mTLE (Covolan and Mello, 2000; Bankstahl and Loscher, 

2008; Turski et al., 1987b; Leite et al., 1990) and is described in detail in section 

1.3.3.2. Systemic administration of pilocarpine induces a period of SE in rodents, 

characterized by generalised tonic-clonic convulsions. A generally acceptable 

definition of SE in rodents is continuous convulsive seizure activity above Racine 

stage 3 (described in section 4.1.2) for a minimum of 30 minutes with incomplete 

recovery of responsiveness between episodes (Cavalheiro, 1995; Leite et al., 1990; 

Loscher, 2002). A latent period of variable duration follows with the appearance of 

spontaneous recurrent seizures (chronic epilepsy) (Leite et al., 1990; Cavalheiro et 

al., 1991). Reorganization of hippocampal tissue results, with characteristic mossy 

fibre sprouting, interneuron loss and ectopic dentate granule cell proliferation, 

features shared by human mTLE (Wieser, 2004). Pilocarpine exerts its effect via the 

M1 muscarinic receptor subtype, causing an imbalance between excitatory and 

inhibitory transmission and an elevation in glutamate levels. Seizures are then 

maintained by NMDA receptor activation (Nagao et al., 1996; Smolders et al., 1997). 

5.1.3 Hypotheses and aims: 

The hypotheses for this study were as follows: 

1. The pathological disulphide isoform of HMGB1 will not be significantly 

released as a consequence of isolated seizures.  

2. As a consequence of recurrent spontaneous epileptic seizures, baseline 

HMGB1 in peripheral blood in epileptic mice exposed to pilocarpine-SE is 

expected to be greater than healthy controls. 

The aims of this study were as follows: 
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1. To characterize HMGB1 acetyl and redox isoform expression in brain and 

blood following a single seizure in normal, non-epileptic mice using the MES 

model. 

2. To characterize HMGB1 expression in brain and serum following both single 

isolated seizures and spontaneous epileptic seizures using the MES and 

pilocarpine models. 

3. To examine the relationship between spontaneous seizure frequency and 

HMGB1 expression in blood using the pilocarpine epilepsy model. 

5.2 Methods 

5.2.1 MES model 

The MES test and preparation of serum and brain samples from MES-exposed 

animals was generously undertaken at our request by colleagues in the Department 

of Pharmacology & Toxicology at the University of Utah under the direction of 

Professor Steve White. 

5.2.1.1 Mice 

Adult male CF1 albino mice (18-25 g) were obtained from Charles River (Portage, 

Michigan, USA), maintained on an adequate diet (Prolab RMH 3000) and allowed 

free access to food and water, except during the brief period they were removed 

from their home cage for MES testing. All mice were housed in plastic cages in 

specially constructed rooms with controlled humidity, exchange of air, and 

controlled lighting (12 hours on/off cycle). Mice were housed, fed, and handled in a 

manner consistent with the recommendations in the National Council Publication, 

"Guide for the Care and Use of Laboratory Animals". All studies were conducted in 

accordance with the Institute of Laboratory Resources polices on the humane care of 

laboratory animals and approved by the University of Utah’s Institutional Animal 

Care and Use Committee (IACUC). 

5.2.1.2 MES test procedure 

A total of 24 mice were used in this study; 20 mice were subject to MES seizures, 

with the remaining 4 mice acting as unstimulated controls. MES seizures were 
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induced with a 50 mA alternating current (frequency = 60 Hz, duration = 0.2 

seconds), delivered via silver chloride coated corneal electrodes using an apparatus 

similar to that originally designed by Woodbury and Davenport (Woodbury and 

Davenport, 1952). A drop of 0.5% tetracaine hydrochloride in 0.9% saline was 

applied to the cornea prior to electrode placement. The current delivered was 

independent of the external resistance and approximately five times that necessary 

to evoke a tonic hind-limb extension seizure. All stimulated animals in this study 

experienced a hind-limb extension seizure from which they were allowed to recover. 

5.2.1.3 Euthanasia and Sample processing 

At each time-point of 1, 4, 8, 16 and 24 hours after the MES-induced seizure, four 

mice were killed by decapitation and a truncal blood sample was obtained. The 

whole brains were rapidly dissected onto dry-ice, wrapped in aluminium foil, and 

stored at -80⁰C. Serum and brain samples were shipped on dry-ice to the University 

of Liverpool for analysis, with temperature monitored throughout the transit period. 

5.2.1.4 Brain tissue processing and analysis 

Frozen brains were defrosted on aluminium foil over ice. The brain was dissected 

under a microscope. The hippocampus was removed for analysis; the other brain 

regions (cortex, cerebellum and brainstem) were stored at -80⁰C. Hippocampal 

tissue (15mg/sample) was homogenised on ice in lysis buffer (Radio-

Immunoprecipitation Assay RIPA-buffer, Sigma Aldrich, UK) containing protease 

inhibitor cocktail (2µl/ml lysis buffer) and β-mercaptoethanol (0.5µl/ml lysis buffer) 

following the protocol described in detail in section 4.2.6. Hippocampal 

homogenates were analysed for the presence of total HMGB1 following the 

procedures for protein quantification and western blot analysis described in section 

4.2.7 and 4.2.8 respectively.  

5.2.2 The pilocarpine-SE model of epilepsy 

The pilocarpine test and preparation of serum and brain samples from pilocarpine-

treated animals was kindly undertaken at our request by colleagues at UCB Pharma 

(Braine l’Alleud, Belgium), under the direction of Dr Rafal Kaminski. 
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5.2.2.1 Mice 

Male NMRI mice (Charles River, France) weighing 28–32 g (5–6 weeks old) were used 

for all experiments in this study. All procedures were carried out according to the 

Helsinki declaration and the guidelines of the European Community Council directive 

86/609/EEC. A local Ethics Committee approved all performed experiments. 

5.2.2.2 Electroencephalography electrode placement 

Mice were surgically implanted with EEG electrodes and allowed to recover for 2 

weeks. The video-EEG recordings in mice were performed according to a previously 

described protocol (Kaminski et al., 2009). Mice were anesthetized with 

medetomidine hydrochloride (0.5 mg/kg ip, Domitor, Pfizer) and ketamine (50 mg/kg 

i.p, Imalgene, Rhône- Mérieux) for stereotactic implantation of EEG electrodes. A 

monopolar depth electrode was implanted into the right hippocampal CA1 region 

(coordinates vs. bregma: −1.94 mm anteroposterior, −1.0 mm lateral, −1.25 mm 

depth). Three monopolar cortical electrodes, frontal left (+1.0 mm anteroposterior, 

−2.0 mm lateral) and occipital left/right: (−4.0 mm anteroposterior, ±4 mm lateral) 

were also positioned on the dura mater. A ground electrode was placed in the left 

prefrontal bone. EEG activity from hippocampal and cortical electrodes was recorded 

with a Model 15 Neurodata Amplifier System (Grass Technologies; West Warwick, RI, 

USA). 

5.2.2.3 Induction of Status Epilepticus 

Figure 5.1 describes the protocol for seizure induction. After recovery from electrode 

insertion mice were connected to the video-EEG recording system and pre-treated 

with N-methylscopolamine bromide (1 mg/kg, i.p.) in order to limit the peripheral 

cholinergic effects of pilocarpine (Curia et al., 2008; Turski et al., 1987a). Thirty-

minutes later, mice were treated with pilocarpine (300mg/kg) via i.p injection. SE 

appeared within the first hour after pilocarpine injection. SE was interrupted after 2 

hours by diazepam injection (10 mg/kg, i.p) and continuous video-EEG monitoring of 

the mice was undertaken (24 hours per day) for a 7-week period. 
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5.2.2.4 Video EEG monitoring  

A video recording system (Sanyo DSR300) equipped with removable hard drives 

allowing uninterrupted recording capacity was used to monitor the mice. The 

recording system consisted of 8 cameras mounted in front of each Plexiglas cage 

housing individual animals. The cameras were installed inside a sound-proof cabin 

equipped with 12 hour light–dark cycle. Cameras were capable of infrared recording 

during the dark phase. Video image was captured at 50 frames per second. Custom 

made software (UCB Pharma) was used to capture the video signal to digitally 

synchronize it with the EEG signal for verification of each seizure event (Mazzuferi et 

al., 2012). Seizures were scored during off-line video review by two independent 

observers. The videos were reviewed at 3× to 6× fast-forward speed and whenever a 

seizure was detected the video was rewound and reviewed at normal speed to 

precisely annotate the severity and the duration of each seizure (Mazzuferi et al., 

2012). 

 

Figure 5.1 The design of the long-term continuous video-electroencephalography 
(EEG) monitoring pilocarpine study. Mice were surgically implanted with EEG 
recording electrodes 14 days before induction of status epilepticus (SE). Pilocarpine 
(300 mg/kg, intraperitoneal (i.p.)) was injected after 30 minutes baseline EEG 
recording. SE was limited to 2 hours by diazepam (10 mg/kg, i.p.) injection. Adapted 
from (Mazzuferi et al., 2012). 
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5.2.2.5 Euthanasia  

Mice were sacrificed 28 days after the onset of SE by i.p. injection of 0.3 ml of 

pentobarbital (Nembutal, 60 mg/ml).  

5.2.2.6 Control mice 

Control NMRI mice (n=4) underwent EEG-electrode insertion, were pre-treated with 

N-methylscopolamine bromide (1 mg/kg, i.p), and 30 minutes later were given 

vehicle (1% methyl cellulose (in water) + 0.1% Tween 80 + 0.1% antifoam). This was 

followed two hours later by diazepam injection (10 mg/kg, i.p.). An additional control 

group (n=5) of healthy male NMRI mice weighing 28–32 g (5–6 weeks old) was also 

used for serum analysis. 

5.2.3 Sample processing  

The brain was removed and bisected. The right brain was frozen whole in aluminium 

foil. The left brain was immersed in 10% formalin and then embedded in paraffin and 

stored for future use. Blood samples were allowed to coagulate at 4⁰C for 30 

minutes, centrifuged at 1000 x g for 10 minutes at 4⁰C, and the resulting serum 

stored at -80⁰C. Serum and brain samples were shipped on dry-ice to the University 

of Liverpool for analysis, with temperature monitored throughout the transit period. 

5.2.4 Brain tissue processing and analysis 

The frozen right brain sections were defrosted on aluminium foil over ice. The right 

brain was dissected under a microscope and the hippocampus removed for analysis. 

Hippocampal tissue (15mg/sample) was homogenised on ice in lysis buffer (Radio-

Immunoprecipitation Assay RIPA-buffer, Sigma Aldrich, UK) containing protease 

inhibitor cocktail (2µl/ml lysis buffer) and β-mercaptoethanol (0.5µl/ml lysis buffer) 

following the protocol described in detail in section 4.2.6. Hippocampal 

homogenates were analysed for the presence of total HMGB1 following the 

procedures for protein quantification and western blot analysis described in section 

4.2.7 and 4.2.8 respectively. 

5.2.5 Statistical analysis 

Statistical analysis was undertaken using Graph Pad Prism Software (Graph Pad 

Prism, San Diego, CA). Single variable comparisons between groups were made using 
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either one-way ANOVA with Dunnett’s correction for multiple comparisons or the 

non-parametric Kruskal Wallis test with Dunnett’s correction. Single variable 

comparisons between two-groups (treated versus control) were made using the 

Mann Whitney test. A paired t-test was used to analyse comparisons within the 

same group of animals. 

5.3 Results 

5.3.1 MES 

5.3.1.1 Brain total HMGB1 abundance in the hippocampus by western blotting 

At each time point (1, 4, 8, 16 and 24 hours) the level of HMGB1 expression 

normalized to β-actin expression was compared to vehicle-only control. Following a 

single seizure in the MES model, a trend towards increased hippocampal HMGB1 

was observed from 8 hours (control 0.16 ±0.01 vs 0.29 ±0.06 HMGB1/actin ratio, 

arbitrary units) which reached significance at 24 hours (0.37±0.06, p≤0.0072, figure 

5.2). 

 

 

Figure 5.2 Quantification of western blots for high mobility group box-1 (HMGB1) in 
mouse hippocampal homogenates from control mice and from mice at various time-
points following maximal electroshock seizures. Data are expressed as mean ± 
standard error of the mean, n=4/timepoint, **p<0.001, by one way ANOVA with 
Dunnett’s post-hoc correction. 
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Analysis of the isoforms of HMGB1 present in hippocampal homogenates was 

undertaken by LCMS/MS to allow identification and quantification of the type and 

amount of HMGB1 that is released from cells. Following an isolated MES-induced 

seizure, the non-acetylated and reduced forms of HMGB1 peaked significantly at 24 

hours (figure 5.3 and 5.4). 

 

Figure 5.3 Mass spectrometric characterization of high mobility group box-1 
(HMGB1) acetylation isoforms from mouse hippocampal homogenates at various 
time-points following maximal electroshock (MES) seizures. Data is presented as fold-
increase relative to the baseline. Error bars (means ± standard error of the mean, n = 
4/timepoint, **p<0.01 by Kruskal Wallis test with Dunnett’s post-hoc correction.) 
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Figure 5.4 Mass spectrometric characterization of high mobility group box-1 
(HMGB1) redox isoforms from mouse hippocampal homogenates at various time-
points following maximal electroshock (MES) seizures. Data is presented as fold-
increase relative to the baseline. Error bars (means ± standard error of the mean, n = 
4/timepoint, ***p<0.01 by Kruskal Wallis test with Dunnett’s post-hoc correction.) 

 

5.3.1.2 Serum expression of HMGB1 

5.3.1.2.1 Total HMGB1 by ELISA 

Total serum HMGB1 showed a non-significant peak 4 hours following MES seizures 

(control 9.22±1.24 vs 19.69±5.64ng/ml, figure 5.5). Isoform analysis and 

quantification by LCMS/MS confirmed that this early rise, seen both in the MES 

model and in the KA model (chapter 4), was due to the non-acetylated, fully-reduced 

form of HMGB1 (figure 5.6, A and B.). 



165 
 

 

Figure 5.5 Quantification of high mobility group box-1 (HMGB1) by ELISA in serum 
from control animals and at 1,4,8,16 and 24 hours after maximal electroshock 
seizures. Results are expressed as the mean (± standard error of the mean) 
concentration in ng/ml (n=4/time-point). 
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Figure 5.6 Mass spectrometric characterization of high mobility group box-1 
(HMGB1) acetylation (A.) and redox (B.) isoforms in mouse serum following maximal 
electroshock (MES) seizures . Data is presented as mean ± standard error of the 
mean, n=4/timepoint, *p<0.05, by Kruskal Wallis test with Dunnett’s post-hoc 
correction. 

 

5.3.2 Pilocarpine-SE 

5.3.2.1 Total HMGB1 abundance in the hippocampus by western blotting 

Twenty-eight days following the onset of SE, there was no significant difference in 

hippocampal HMGB1 abundance, as measured by western blotting, between the 

healthy controls (mean HMGB1/Actin ratio = 0.422 ± 0.09 arbitrary units, n=4) and 

those with spontaneous seizures resulting from pilocarpine-SE (0.5251 ± 0.057, 

n=18, figure 5.7). 



167 
 

 

Figure 5.7 Hippocampal high mobility group box-1 (HMGB1) expression in the brain 
of mice treated with pilocarpine-status epilepticus (SE) compared to vehicle-only 
control. Results are expressed as the mean (± standard error of the mean) ratio of the 
optical densities of HMGB1 and actin bands, n=4 control and n=18 pilocarpine-SE. 

 

5.3.2.2 Serum expression of HMGB1 

In pilocarpine-treated epileptic mice, serum total HMGB1 was significantly higher 

than that of representative control NMRI mice (control 5.32±0.92ng/ml vs 

16.59±2.072ng/ml, p=0.0011, figure 5.8).  

 

 

 

 

 

 

 

 

Figure 5.8 Quantification of high mobility group box-1 (HMGB1) by ELISA in mouse 
serum from control (n=5) and mice exposed to pilocarpine-status epilepticus and 
experiencing spontaneous epileptic seizures (n=18). Results are expressed as the 
mean (± standard error of the mean, **p<0.01 by Mann Whitney test) 

** 
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5.3.2.3 Relationship between serum HMGB1 and seizure frequency 

Serum total HMGB1 was not influenced by (or indeed, did not influence) the 

frequency of convulsive seizures (Racine stage 3-5) occurring in the 14 days prior to 

sacrifice (figure 5.9).  

5.3.2.4 Relationship between serum HMGB1 and time-since-last seizure 

No relationship was identified between serum total HMGB1 concentration and the 

time since last seizure activity (Racine stage 3-5, Mann Whitney U, p=0.3564). Mice 

were subcategorized into those that had experienced a convulsive seizure within the 

preceding 72 hours prior to sacrifice and those that had been seizure-free in that 

period (figure 5.10). A 72-hour cut-off was chosen solely to ensure adequate 

numbers of animals in each of the comparator groups.  

 

 

Figure 5.9 Relationship between total serum concentration of high mobility group 
box-1 (HMGB1) and total number of convulsive seizures (Racine stage 3-5) 
experienced across a 14 day period prior to sacrifice. Spearman’s rank correlation is 
illustrated by the solid line, with the corresponding correlation co-efficient reported. 
The dotted line represents the mean concentration of serum HMGB1 in healthy 
control mice (n=5, 5.32ng/ml) 
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Figure 5.10 Box and whisker plots depicting serum high mobility group box-1 
(HMGB1) concentrations in mice exposed to pilocarpine-status epilepticus. Each box 
represents the 25th and 75th percentiles. Lines outside the boxes represent the 
minimum and maximum limits. Lines inside the box represent the median. Time since 
last seizure comparison was performed by Mann Whitney test, ns: not-significant, 
p=0.3564. 

 

5.4 Discussion 

Both clinical and experimental evidence suggest that HMGB1 is involved in the 

pathogenesis of seizure disorders (Maroso et al., 2010; Zurolo et al., 2011). What 

remained unclear was whether up-regulation occurred as a consequence of brain 

insult, seizures, epileptogenesis or the chronic epileptic state. Together with work 

undertaken in the KA-model (chapter 4), the present study aimed to identify and 

clarify whether HMGB1 expression in brain and blood is involved in provoked 

seizures in normal brain (MES), provoked seizures following brain insult (KA), and/or 

spontaneous epileptic seizures (pilocarpine-epilepsy) and to provide evidence that 

HGMB1 expression in blood is not simply a marker of recent seizures. 

Following an isolated MES-induced seizure, the non-acetylated form of HMGB1 in 

brain peaked at 24 hours, consistent with a purely necrotic release process. This is in 

contrast to the KA-SE model (chapter 4), wherein the non-acetylated form of HMGB1 

in brain peaked much earlier, at 3-6 hours following KA-induced seizures. This was 
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then followed by a delayed but significant rise in the acetylated form in brain at 24 

hours in the KA model only. This difference in timing likely reflects the extreme 

difference in models of isolated seizures versus prolonged SE. The MES test is 

proposed to be a predictive model of generalized tonic-clonic seizures limited to 

hind-limb extension followed by clonus (Krall et al., 1978). The entirety of the seizure 

activity lasts less than a minute. In contrast, the excitotoxic glutamate analogue 

kainate causes widespread neuronal damage to pyramidal cells in the CA3 area of 

the injected hippocampus (Balosso et al., 2008; Ravizza et al., 2006e).  

In the majority of animal models of SE, marked gliosis, axonal sprouting, neuronal 

cell loss and consequent neurogenesis is seen. However, neuronal damage has been 

shown to most likely result from the seizure activity itself, rather than as a 

consequence of the metabolic disturbances that occur alongside SE (Walker et al., 

2002). This was revealed by experiments using the GABA antagonist bicuculline to 

induce SE in adolescent baboons. Bicuculline-induced SE caused hyperpyrexia, 

severe hypotension, and profound hypoglycaemia in the baboons (Meldrum and 

Brierley, 1973). However, when the same study was undertaken in paralyzed and 

mechanically ventilated baboons, to prevent the systemic disturbances, significant 

neuronal damage was still observed as a consequence of seizures, indicating that 

prolonged seizure activity is the key pathogenic feature in these models (Meldrum et 

al., 1973). In addition, the intensity and duration of SE is critical in determining 

whether an animal will develop spontaneous seizures. Rescue therapy with 

diazepam within 30 minutes of SE onset limits the degree of neuronal damage and 

fewer of the animals exhibit spontaneous seizures (White, 2002). Therefore, it is 

unsurprising that the degree of HMGB1 expression in the brain following a single, 

brief (<1 minute) seizure was minimal and delayed compared to prolonged, 

recurrent seizures in the KA model (30 minutes). Furthermore, expression of the 

inflammatory isoforms of HMGB1 was almost absent in the MES-exposed brain.  

HMGB1 in its acetylated form cannot re-enter the nucleus and thus builds up in the 

cytosol (Bonaldi et al., 2003; Lu et al., 2012; Lu et al., 2014), which is consistent with 

active inflammatory production. In the KA-SE study (chapter 4), mixed expression of 

reduced and disulphide HMGB1 peaked at 24 hours. By contrast in this study, 
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following an isolated seizure the rise was in the reduced form alone. Fully-reduced 

HMGB1 acts as a chemoattractant (Venereau et al., 2012) whereas disulphide 

HMGB1 has been shown to be the only form capable of inducing cytokine production 

(Yang et al., 2012). The relative lack of inflammatory isoforms of HMGB1 in this study 

of MES seizures showed that HMGB1-mediated inflammatory repair was not 

initiated as a consequence of a single seizure. The study is limited by a duration of 24 

hours and it is therefore possible that inflammatory isoform expression is delayed 

beyond this time point. However, this is unlikely, given its appearance within 24 

hours in the KA-SE model wherein seizure severity is much more severe. MES 

seizures are not known to induce lasting brain injury and indeed, MES-exposed 

rodents do not go on to develop spontaneous epileptic seizures (White, 2002). 

Therefore, the brain results of this study support the notion that HMGB1 

inflammatory isoforms are relevant to the epileptogenic process and the subsequent 

development of epilepsy, and are not merely seizure-related phenomena.  

In peripheral blood following single MES-seizure, a non-significant trend towards 

early release (4 hours) of HMGB1 was seen, and LCMS confirmed the isoform 

present to be non-acetylated and predominantly in the reduced form. This suggests 

that early release of HMGB1 following seizure activity is from damaged cells with the 

capacity to induce chemotaxis for the purpose of repair (Venereau et al., 2012). A 

later rise in the reduced and to a lesser extent, disulphide isoforms, was seen at 24 

hours in the absence of a corresponding elevation in brain. This transient rise occurs 

likely as a result of monocyte and macrophage release consequent to seizure activity 

and is indicative of a recent seizure. Indeed, in the KA-SE model, 14 days following 

the initial SE, a significant rise in acetyl and disulphide HMGB1 was seen, possibly 

coinciding with the onset of spontaneous epileptic seizures. As discussed in detail in 

chapter 4, maturation of HMGB1 in peripheral blood, from the necrosis-released 

reduced form to the cytokine-activating disulphide form occurs following 

experimental stroke in mice (Liesz et al., 2015). A similar pathology appears to be 

happening here, with the reduced isoform released early following a seizure 

(examined in two distinct models, KA and ME) then replaced by the acetylated, 

disulphide pathological isoforms two weeks after the initial insult. 



172 
 

Taken together, the findings of this study demonstrated that inflammatory isoforms 

of HMGB1 are not significantly released, in brain or blood, as a consequence of an 

isolated seizure on the background of normal brain. The study is limited in its time 

frame to 24 hours following seizures at which point a significant rise in total HMGB1 

was seen. It is possible that HMGB1 release, and isoform expression, changes after 

the first 24 hours and therefore a longer study, up to 72 hours following a single 

seizure, would be required to exclude this possibility.  

In the pilocarpine model of chronic epilepsy, total hippocampal HMGB1 did not 

differ significantly between mice experiencing recurrent seizures and the sham-

operated controls, suggesting that by 28 days following the initial SE, changes in 

localised HMGB1 expression in brain have resolved. In the KA model, total 

hippocampal HMGB1 expression remained significantly elevated from 1 to 14 days 

following the initial SE; therefore resolution of the protective inflammatory reaction 

driven by HMGB1 likely occurs between 14 and 28 days after brain insult. Taken 

together, this suggests that HMGB1 is continuously expressed following both initial 

brain insult and during the critical epileptogenic period, wherein changes are 

occurring in the hippocampus leading to an excitable focus for future seizures (Wang 

et al., 2005). Further investigation is required to determine whether the isoforms 

released differ between healthy animals and those experiencing spontaneous 

seizures.  

In contrast, in the peripheral blood, the epileptic mice experiencing recurrent 

spontaneous seizures expressed significantly more HMGB1 than control, seizure-free 

animals. This suggests that ongoing release of HMGB1 may occur as a consequence 

of recurrent seizure activity, but that the source of the HMGB1 may not be spill over 

from the CNS and may in fact represent peripheral synthesis. Indeed, it is possible 

that peripheral immune production of HMGB1 is a driver for seizure activity, crossing 

the disrupted BBB and entering the brain to aggravate the hyperexcitable focus and 

induce seizures. This may then contribute to an ongoing cycle involving lowered 

seizure threshold and consequently, seizures. This is followed by local release of 

inflammatory mediators including IL-1β and HMGB1. Inflammatory mediators in turn 

induce intracellular Ca2+ influx and further seizure activity. Alternatively, it is also 
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possible that peripheral release of HMGB1 occurs as a consequence of muscle injury 

resulting from recurrent seizure activity. However, no relationship was 

demonstrated between serum HMGB1 and either the total number of spontaneous 

convulsive seizures experienced or the time since last seizure. Furthermore, there is 

data on file at UCB from accelerometry measurements in these animals which would 

suggest that they were less active (and moved less far each day) following 

pilocarpine-treatment than they had done previously, despite experiencing recurrent 

seizures. Together, this argues against the possibility that HMGB1 is simply a marker 

of recent seizure activity, released as a consequence of muscle insult. This requires 

further exploration in humans experiencing both complex partial and generalised 

seizures, in order to identify the relative contribution of the seizure type. 

Furthermore, analysis of the muscle injury marker creatine kinase (CK) would help to 

elucidate whether HMGB1 is released as a consequence of muscular involvement. 

The white blood cell count (WBC) is known to increase following vigorous physical 

exercise (McCarthy and Dale, 1988; Tossige-Gomes et al., 2014) and could 

potentially be the source of peripheral HMGB1. 

It is possible that there are other, non-seizure related factors that are involved in the 

expression of HMGB1 in peripheral blood in chronic epilepsy. Various brain insults 

are associated both with disruption of the BBB (Abbruscato and Davis, 1999; Betz et 

al., 1994; Brown and Davis, 2002; Banks, 1999) and a high risk of developing epilepsy 

(Annegers et al., 1988; Annegers et al., 1998; Jennett, 1975; Burn et al., 1997; 

Richardson and Dodge, 1954; Sander et al., 1990). Therefore, activation of central 

immunity in response to brain injury can foreseeably trigger activation of the 

peripheral immune response, through spill over of inflammatory mediators from the 

CNS. Indeed, within 24 hours of clinical stroke, stroke patients have been shown to 

have significantly higher HMGB1 serum concentrations than controls (Muhammad et 

al., 2008). Similarly, in experimental stroke, elevated HMGB1 serum levels occur 4 

hours following occlusion of the middle cerebral artery, without a concomitant rise 

at the mRNA level (Muhammad et al., 2008). This suggests that, in the early stages, 

HMGB1 is probably attributable to a spill-over from necrotic neural cells. In contrast, 

delayed appearance of the disulphide form of HMGB1 in serum (but not brain) has 
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been shown 24 hours following experimental stroke, suggesting a delayed 

maturation in the periphery which may well contribute to ongoing release in some 

individuals. Therefore recurrent seizure activity may be perpetuating release of 

inflammatory mediators, including HMGB1, which have the demonstrated capacity 

to provoke and exacerbate seizures (Maroso et al., 2010). Additionally, SE in humans 

has been associated with excessive muscular activity and relative leucocytosis 

(Simon, 1985). However, few studies have examined the relationship between single 

seizure and WBC. In a study involving various seizure types (38 simple partial 

seizures, 109 complex partial seizures and 91 generalized tonic–clonic seizures) one 

third of generalized seizures were associated with a significant increase in WBC 

count. Mean post-seizure sampling time was 21.62 ± 19.33 hours, indicating that in 

those in which WBC is elevated, the response is delayed. A clear correlation between 

the length of a seizure and increase in WBC count was seen. Further analysis is 

required to determine the isoforms present in both brain and blood in the 

pilocarpine epilepsy model, in particular the disulphide and acetylated isoforms that 

were shown to be significantly elevated 14 days following KA-SE (Chapter 4). This will 

help to determine whether release is driven by peripheral immune activation. 

In conclusion, the results of this study show that inflammatory isoforms of HMGB1 

are not significantly involved within the first 24 hours following isolated MES-

induced seizures in mice. In addition, serum, but not brain, total HMGB1 is 

significantly elevated in chronic epileptic mice experiencing regular spontaneous 

seizures, the underlying driver for this release remains unclear at present. 
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6.1 Introduction 

6.1.1 Inflammation and epilepsy 

Substantial experimental and clinical evidence supports activation of inflammatory 

pathways as aetiopathological in epilepsy disorders (Vezzani and Granata, 2005). 

Increased microglial and astrocyte inflammatory mediators, including IL-1β, IL-6 and 

TNFα, trigger a downstream cascade of events leading to activation of adaptive 

immunity and recruitment of leukocytes into the CNS (Nguyen et al., 2002; Vezzani 

and Granata, 2005). Inflammation is therefore purported to play a pathological role 

in seizure generation and the associated neuropathology. Studies have 

demonstrated that lowering the seizure threshold from the development of 

hyperexcitability contributes to cell loss, astrogliosis and damage to the blood brain 

barrier (Vezzani et al., 1999; De Simoni et al., 2000; Vezzani et al., 2000; Vezzani et 

al., 2002; Allan et al., 2005; Balosso et al., 2005; Dube et al., 2005; Heida and 

Pittman, 2005; Oby and Janigro, 2006; Vezzani and Baram, 2007; Ravizza et al., 

2006a).  

The role of inflammation during the epileptogenic period in rodents has been well 

characterized. Activation of the IL-1β system during epileptogenesis is associated 

with neurodegeneration and BBB breakdown (Ravizza et al., 2008a). Furthermore, in 

both rats and brain tissue taken at epilepsy surgery from humans with chronic 

epilepsy, IL-1β and IL-1 receptor type 1 have been shown to be persistently 

expressed by astrocytes, microglia and neurons, as well as by monocytes and 

macrophages (Ravizza et al., 2008a). What is more, phenotypic changes in activated 

microglial cells have been described in chronic epileptic tissue associated with 

malformations of cortical development (Ravizza et al., 2008a; Boer et al., 2008).  

6.1.2 Inflammatory mediators in peripheral blood 

Whilst many studies have investigated the brain expression of inflammatory 

mediators following seizure (Eriksson et al., 1999; Vezzani et al., 1999; De Simoni et 

al., 2000; Plata-Salaman et al., 2000; Turrin and Rivest, 2004; Shinoda et al., 2003; 

Ravizza and Vezzani, 2006; Gorter et al., 2006), fewer have progressed to examine 

their subsequent expression in peripheral blood, and fewer still have done so in 
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humans. Clinical studies have identified that inflammatory cytokines are increased in 

serum or plasma after seizures (Lehtimaki et al., 2004; Lehtimaki et al., 2007; 

Lehtimaki et al., 2008; Peltola et al., 2000b). Interleukin-6 (IL-6) and Interleukin-1 

Receptor Antagonist (IL-1RA) are elevated in CSF and plasma within 24 hours 

following both focal seizures and those with secondary generalization with tonic-

clonic activity (Lehtimaki et al., 2004; Lehtimaki et al., 2010). In patients with 

established drug refractory TLE, IL-6 is significantly elevated 6 hours post-ictally 

(Alapirtti et al., 2009). Baseline levels of highly sensitive C-reactive protein (CRP) are 

significantly higher in patients with drug resistant TLE as compared to healthy 

controls and secondary generalization of seizures in these patients is associated with 

a significant elevation of CRP (Alapirtti et al., 2012).  

The growing number of studies reporting an association between inflammatory 

mediators (Aronica and Crino, 2011) and auto-antibodies (Rogers et al., 1994; Levy et 

al., 2005; Liimatainen et al., 2010) in association with epilepsy also highlights the 

possibility of an immune-mediated disorder amenable to immunotherapy in some 

individuals. 

6.1.3 Aims 

The aims of this study were: 

1. To compare baseline blood total HMGB1 between patients with well-

controlled (seizure-free) epilepsy and those with drug-resistant epilepsy and 

recent seizures. 

2. To characterize changes in serum HMGB1 relative to timing of seizures in 

patients with drug refractory epilepsy. 

3. To characterize acetyl and redox isoforms of HMGB1 in blood in patients with 

well-controlled and drug-resistant epilepsy 

6.2 Methods 

Research participants were recruited at the Walton Centre NHS Foundation Trust 

(n=15) and Tampere University Hospital, Finland (n=50). 
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 Study Sites 6.2.1

6.2.1.1 Walton Centre NHS Foundation Trust, UK 

The Walton Centre has a world-class reputation for epilepsy services, having 

conducted the largest ever randomised controlled trials of treatment (SANAD, 

(Marson et al., 2007c)). The comprehensive epilepsy service includes inpatient video 

electroencephalography (EEG) telemetry wherein patients are admitted for 5-10 

days for continuous monitoring of brain wave activity by EEG and video surveillance.  

6.2.1.2 Tampere University Hospital, Finland 

In order to increase the sample size of the study, 50 patients with epilepsy who were 

admitted to the EEG department in Tampere University Hospital, Finland, were also 

recruited. The collaborating group was responsible for the design and conduct of the 

study at their site. Details of the methodology can be found (Alapirtti et al., 2012). 

6.2.2 UK Study population- Recruitment Process 

The study population was recruited from the Walton Centre outpatient services. The 

patients included those with known drug-resistant epilepsy awaiting elective 

admission for video EEG telemetry, usually as part of pre-operative assessment for 

surgical resection. The admissions were a planned part of the patients care. 

6.2.2.1 UK Patient Identification 

Patients were identified by weekly review of all referral forms for inpatient video 

EEG received by the Neurophysiology department. Referral forms originated from 

the clinical care team.  

6.2.2.2 UK Pre-screening criteria 

Patients were selected if the indication for video EEG included the following: 

 Chronic drug-resistant focal epilepsy for pre-surgical evaluation 

 Chronic focal epilepsy with a change in seizure pattern or frequency 

 New diagnosis of epilepsy 

Patients were excluded if the indication for video EEG included the following: 
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 Diagnostic uncertainty where non-epileptic attack disorder (NEAD) is 

suspected. 

Following identification of potentially suitable patients, an invitation letter and a 

copy of the PIL was included with the patient’s standard hospital invitation letter and 

sent to the patient in advance of the scheduled admission. 

The inclusion criteria were: 

 Patient willing to take part 

 Over 16 years of age 

 Written informed consent obtained 

 Patient with presumed focal epilepsy  

 Scheduled for admission for video EEG telemetry to record seizure activity 

The exclusion criteria were: 

 Concomitant infections (within 14 days) 

 Taking steroids or immunomodulatory therapies 

 Any inflammatory or chronic illness 

 Unable to obtain written consent 

6.2.3 Control population 

72 healthy volunteers without a history of seizure served as healthy controls. The 

controls were recruited from the healthy control arm of the BIOPAR study. BIOPAR is 

an ongoing observational biomarker study collecting longitudinal blood samples 

from 200 patients with paracetamol overdose. Twenty age and sex-matched patients 

with established (diagnosis > 12 months prior) well-controlled epilepsy who had 

been seizure free for longer than 6 months served as epilepsy controls. Epilepsy 

controls were recruited through the epilepsy outpatient clinic at the Walton Centre.  
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6.2.4 Ethical Approval 

Ethical approval for the UK study (Pro-inflammatory Profile of Seizure (PPS) Study: 

Mapping the Inflammatory Response Following Seizure) was granted by the National 

Research Ethics Committee North West Haydock Park (10/H1010/55). The Tampere 

study protocol was approved by the ethics committee of Tampere University 

Hospital. All patients provided written informed consent. 

6.2.5 Data collection 

The data collected for all patients (Walton and Tampere) was equally 

comprehensive. The following data was collected from the medical case notes and 

interview with the patient: 

 Demographics (age, sex, ethnicity, smoking status, alcohol consumption) 

 Medications and allergies (name/form/dose/duration) 

 Medical history, including recent illnesses and prescriptions 

 Age at diagnosis 

 Seizure frequency, date/time of last seizure, duration seizure-free 

 ILAE Epilepsy classification 

 Seizure semiology 

 Aetiology 

 MRI report 

 Baseline EEG 

 Family history 

 Previous febrile seizures 

6.2.6 Seizure classification: 

The studies commenced recruitment prior to the first major overhaul of the epilepsy 

and seizure classification system by the ILAE. Accordingly, seizures and epileptic 
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syndromes were classified according to the ILAE 1981 diagnostic criteria 

(Commission on Classification and Terminology of the International League Against 

Epilepsy, 1981). Localization of the seizure focus was recorded, and seizures were 

categorized as simple partial (SPS), complex partial (CPS), primary generalized (PGS) 

or secondarily generalized tonic clonic seizure (SGTCS). 

6.2.7 Study Schedule 

6.2.7.1 Patient Recruitment 

At the Walton Centre (UK site), patients were admitted to the ward for video EEG 

telemetry on a Monday morning. The research physician and/or nurse attended the 

patient on admission and confirmed prior receipt of the PIL. Following discussion of 

the study, if the patient consented to inclusion, baseline blood samples were 

obtained for routine haematology and biochemistry and a 9ml serum sample for 

biomarker analysis. 

6.2.7.3 Study specific procedures 

The specific investigations undertaken by the participants included: 

 Brain magnetic resonance imaging 

All patients underwent a diagnostic brain MRI examination on a 1.5 (Tampere) or 3 

(Walton) Tesla machine (General Electric Signa HD, Milwaukee, WI, U.S.A.). Evidence 

of any of the following was classed as abnormal: Hippocampal sclerosis, cortical 

dysplasia, vascular lesions, gliosis and/or abnormal increased flair signal at the focal 

site. 

 Electroencephalography 

All the patients (Walton and Tampere) underwent continuous video-EEG monitoring 

for electro-clinical characterization of their seizures as part of the routine clinical 

evaluation for possible epilepsy surgery.  Ictal scalp recordings were obtained using 

synchronous digital video and 24-channel standard bipolar EEG. Electrodes were 

placed according to the International 10–20 System with additional mastoid and 

anterior cheek electrodes. 
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6.2.7.4 Video EEG procedure  

At both sites, anti-epileptic drug therapy was reduced and/or omitted and sleep 

deprivation/photo-stimulation techniques were used in order to increase the 

likelihood of seizure occurrence. The EEG output was recorded in the 

Neurophysiology department and was reviewed retrospectively every 24 hours 

throughout the patient’s stay. Any time that the nursing staff or patient reported a 

seizure the Neurophysiology department was contacted and they then reported on 

the presence of an EEG correlate. An official report for the duration of the recording 

was produced for each patient by a Consultant Neurophysiologist.  

6.2.7.5 Seizure identification 

Seizures were identified by any of the following methods: 

 Self-reporting: Patient notified a member of nursing staff who then contacted 

the neurophysiology department for confirmation. 

 Nurse-reported: Nurse in charge of monitoring the video telemetry 

surveillance screen identified an atypical activity and contacted the 

neurophysiology department for confirmation. 

 Neurophysiology-reported: The neurophysiology technicians contacted the 

clinical care team to advise of an EEG pattern consistent with seizure. 

6.2.7.6 Blood sampling 

Following seizure activity at the UK site, a 9ml blood sample was obtained 

immediately and further samples taken 1, 2, 4, 6 and between 8-12 hours following 

the first (index) seizure. A further sample was obtained upon discharge where 

possible once the subject had been seizure free for over 12 hours. At the Tampere 

collaborator site, blood samples were obtained 3, 6, 12, and 24 h after the index 

seizure.  

6.2.8 Sample Processing: 

Samples were collected in 9ml serum separator tubes. Samples collected during the 

hours of 08:00 and 18:00 were left upright to coagulate for 10 minutes and then 

centrifuged at 2000 x g for 20 minutes. Samples collected by the nursing staff out-of-
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hours were stored upright in a designated research fridge at 4°C overnight and then 

processed the following morning. Serum was stored in 500µl aliquots at -80°C until 

analysis. 

6.2.9 Serum HMGB1 quantification by ELISA. 

The HMGB1 ELISA method has been described in section 2.2.7. 

6.2.10 Serum creatine kinase 

Creatine kinase (CK) is an enzyme expressed by various cells types, including 

predominantly skeletal muscle and myocardium (heart muscle). CK analysis was 

undertaken by the Clinical Chemistry department at the Royal Liverpool University 

Hospital. 

6.2.11 Statistical Analysis  

Statistical analysis was performed in SPSS. Baseline total HMGB1 was compared 

between 65 patients with drug resistant epilepsy and 20 controls using Kruskal Wallis 

one-way ANOVA. To test for clinical associations with baseline HMGB1, continuous 

variables (age, epilepsy duration, seizure frequency, index seizure duration) were 

tested for association using linear regression, binary variables (MRI, EEG 

normal/abnormal) using t-test and categorical variables (gender, epilepsy type, 

seizure type, number of AEDs) using one-way ANOVA. Monthly seizure frequency, 

index seizure duration and epilepsy duration showed skewed distribution and the 

data was log transformed to achieve normality. Due to the multiple tests 

undertaken, the false discovery rate was also calculated for each test. To test for 

association between clinical variables and the presence of the disulphide-HMGB1 

isoform, continuous variables were tested for association using the t-test and 

categorical variables using Chi-square or Fisher’s exact test.  
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6.3 Results: 

6.3.1 Patient demographics 

6.3.1.1 Epilepsy 

A total of 67 patients (37 women and 30 men, mean age 34.8 years, range 17-65 

years) with DRE were admitted to the video-EEG monitoring units of the Walton 

Centre NHS Foundation Trust (n=17) and Tampere University Hospital, Finland 

(n=50) respectively. The patient characteristics are described in table 6-1. Two of the 

67 patients had haemolysed baseline samples which were then excluded from the 

analysis. Summary statistics for the patient characteristics are described in tables 6-2 

(continuous variables) and 6-3 (categorical variables).
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   Epilepsy characteristics Recorded seizure 

   Epilepsy 
syndrome 

Duration 
(Yrs) 

Seizure 
freq/ 
month 

AEDs 
(Number) 

Brain Imaging Type Duration 
(secs)  Age 

(Yrs) 
Sex 
(M/F) 

1 36 F TLE 17 16 2  Hippocampal sclerosis CPS 72 

2 58 F TLE 42 17.5 3 Hippocampal sclerosis CPS 61 

3 33 F TLE 22 4 2 Hippocampal sclerosis, left parietal gliosis, left frontal signal 

change 

CPS 67 

4 26 M xTLE 22 14 2 Cortical dysplasia in right parietal lobe CPS 11 

5 43 M TLE 2 1 1 Normal SGTCS 71 

6 22 F xTLE 3 1 0 Normal SGTCS 96 

7 52 F xTLE 52 47.5 3 Cortical dysplasia in left frontal lobe and venous anomaly in 

left parietal lobe 

CPS 325 

8 39 M TLE 12 15 2 Normal CPS 13 

9 16 F xTLE 1 35 4 Normal CPS 17 

10 26 M xTLE 9 200 3 Vascular lesion in the right temporoparietal lobes SPS 50 

11 45 F IGE 32 1.5 4 Vascular lesion left frontotempoparietal lobe PGS 70 

12 30 M TLE 25 2.5 3 Hippocampal sclerosis and hamartoma CPS 60 

13 41 F xTLE 31 31 2 Normal CPS 24 

14 52 M TLE 52 5 3 Hippocampal sclerosis and signal change in left frontal lobe CPS 105 

Table 6.1 Clinical characteristics of patients with drug-resistant epilepsy 
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15 31 F xTLE 31 75 3 Normal CPS 192 

16 58 F TLE 32 9.5 3 Normal CPS 83 

17 22 F xTLE 17 60 4 Cortical dysplasia in right frontal lobe CPS 14 

18 28 M TLE 16 1 2 Hippocampal sclerosis SGTCS 62 

19 57 F TLE 56 3 1 Hippocampal sclerosis CPS 115 

20 20 F TLE 14 26 3 Cortical dysplasia in right and left temporo-parietal lobes SPS 6 

21 37 M xTLE 37 6 3 Normal SGTCS 101 

22 21 M xTLE 4 22.5 3 Signal change in right frontal lobe  CPS 12 

23 23 M xTLE 23 30 3 Normal CPS 20 

24 33 M xTLE 15 5 1 Normal CPS 20 

25 32 M TLE 7 0.5 1 Hippocampal sclerosis CPS 182 

26 23 F xTLE  25 1 Normal CPS 5 

27 45 M xTLE 5 75 3 Signal change in the right gyrus cingulare  SPS 60 

28 38 M TLE 4 4 4 Gliosis in right temporal lobe CPS 142 

29 27 F IGE 17 0.5 2 Normal  PGS 60 

30 35 M TLE 35 6 2 Normal  CPS 67 

31 18 F xTLE 7 15 2 Cortical dysplasia in the left frontal lobe SPS 26 

32 44 F TLE 26 0.5 2 Hippocampal sclerosis SGTCS 129 

33 42 M TLE 39 10 2 Hippocampal sclerosis CPS 414 

34 32 M xTLE 25 60 2 Left vascular lesion and bilateral cortical dysplasia CPS 25 
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35 49 F xTLE 31 0.5 3 Normal SPS 5 

36 47 F xTLE 36 240 2 Right cortical dysplasia CPS 34 

37 20 F xTLE 4 0.5 2 Normal CPS 41 

38 27 F IGE 18 1.5 1 Normal PGS 65 

39 39 F TLE 19 22 2 Hippocampal sclerosis CPS 34 

40 31 F xTLE 5 240 3  Right slight hemimegaloencephalia CPS 26 

41 28 F TLE 24 8 2 Hippocampal sclerosis CPS 90 

42 47 F TLE 4.5 3 3 Left parietal gliosis after meningeoma operation (8/01) and 

left temporo-mesial atrophy 

CPS 7235 

43 25 M xTLE 13 60 3 Vascular lesion in right frontotemboral lobe CPS 135 

44 45 M xTLE 44 70 4 Normal CPS 5 

45 46 M TLE 33 5 1 Cortical dysplasia in left occipital lobe CPS 77 

46 17 M xTLE 15 28 3 Normal SGTCS 68 

47 43 M TLE 24 30 2 Cortical dysplasia in left temporal lobe CPS 39 

48 27 F IGE 6 4 1 Normal  PGS 67 

49 31 F TLE 19 3 2 Hippocampal sclerosis CPS 118 

50 32 M TLE 9 4 2 Signal change in left amygdala CPS 78 

51 27 F TLE 8 28 3 Normal SGTCS n/a 

52 20 F IGE 3 4 2 Normal CPS n/a 

53 30 F TLE 18 2 3 Hippocampal sclerosis CPS n/a 
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54 28 F TLE 2 4 2 Normal SPS n/a 

55 46 M TLE 25 28 3 Normal SGTCS n/a 

56 26 F TLE 16 4 4 Normal CPS n/a 

57 53 M TLE 28 12 3 Hippocampal sclerosis CPS n/a 

58 39 M IGE 14 6 4 Normal SGTCS n/a 

59 32 M TLE 9 4 3 Hippocampal sclerosis CPS n/a 

60 65 F TLE 40 1 2 Normal CPS n/a 

61 31 M IGE 12 12 3 Normal CPS n/a 

62 60 F TLE 13 4 4 Normal CPS n/a 

63 23 F xTLE 14 8 2 Normal SGTCS n/a 

64 22 F xTLE 22 84 2 Normal SGTCS n/a 

65 46 M xTLE 8 12 3 Left hippocampal atrophy CPS n/a 

M: Male; F: Female; TLE: Temporal Lobe Epilepsy; xTLE: Extra-temporal lobe epilepsy; IGE: Idiopathic Generalised Epilepsy; CPS: Complex Partial 
Seizure; SGTCS: Secondarily Generalised Tonic Clonic Seizure; PGS: Primary Generalised Seizure; SPS: Simple Partial Seizure; n/a: information not 
captured



189 
 

Table 6.2 Summary statistics for continuous clinical variables examined in patients 
with drug-resistant epilepsy. 

Variable n Mean SD Median IQR 

Age 65 35.18 11.96 32 29.00 
Epilepsy Duration 65 19.53 13.70 17 27.00 
Seizure Frequency 65 27.31 48.65 9.50 24.00 
Index Seizure Duration 52 213.38 995.62 66 71.50 
Baseline HMGB1 65 8.70 3.81 8.94 2.91 
Peak post-seizure HMGB1 59 10.56 4.88 9.85 2.46 

SD: standard deviation; IQR: Interquartile range 

 

Table 6.3 Summary statistics for categorical clinical variables examined in patients 
with drug-resistant epilepsy. 

Variable Categories n(%) 

Gender Male 29 (45%) 
 Female 36 (55%) 
Epilepsy Type IGE 7 (11%) 
 TLE 32 (49%) 
 xTLE 26 (40%) 
Index Seizure Type PGS 4 (6%) 
 CPS 44 (68%) 
 SPS 6 (9%) 
 SGTCS 11 (17%) 
High highly-sensitive C-
reactive protein (CRP)* 

Yes 33 (63%) 

 No 19 (37%) 
Redox Disulphide Yes 24 (37%) 
 No 41 (63%) 
MRI Normal 30 (46%) 
 Abnormal 35 (54%) 
EEG Normal 4 (6%) 
 Abnormal 61 (94%) 
Number of AEDs 0 1 (1%) 
 1 8 (12%) 
 2 24 (37%) 
 3 24 (37%) 
 >3 8 (12%) 

TLE: Temporal Lobe Epilepsy; xTLE: Extra-temporal lobe epilepsy; IGE: Idiopathic 
Generalised Epilepsy; CPS: Complex Partial Seizure; SGTCS: Secondarily Generalised 
Tonic Clonic Seizure; PGS: Primary Generalised Seizure; SPS: Simple Partial Seizure; 
MRI: Magnetic Resonance Imaging; EEG: Electroencephalography; AEDs: 
Antiepileptic drugs.*Status for 15 patients missing (UK study) 
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6.3.1.2 Controls 

Seventy-two healthy volunteers without history of seizure served as healthy controls 

(37 women and 35 men, mean age 34.1 years, range 19-66 years). Twentypatients 

with established (diagnosis > 12 months prior) of well-controlled epilepsy (9:11 

symptomatic:idiopathic, 12:8 monotherapy:dual therapy) who had been seizure free 

for longer than 6 months served as epilepsy controls (12 women and 8 men, mean 

age 33 years, range 18-59 years), described in table 6.4. Comparative characteristics 

of the patient groups are described in table 6.5. 

 

Table 6.4 Clinical characteristics of patients with well-controlled epilepsy who have 
been seizure-free for longer than 6 months. 

 Age 
(years) 

Sex Epilepsy 
Syndrome 

Duration 
(years) 

Duration 
seizure-
free 
(months) 

AEDs 
(number) 

1 26 M TLE 11 24 1 

2 73 F IGE 18 24 1 
3 19 M JME 2 12 1 
4 45 F IGE 26 11 2 

5 39 F TLE 2 11 2 
6 19 F TLE 9 6 2 
7 28 M xTLE 10 6 1 
8 24 M IGE 5 14 2 
9 42 F xTLE 34 13 1 
10 24 F xTLE 12 20 1 
11 27 M JA 11 24 1 
12 32 M IGE 4 6 1 
13 25 F xTLE 22 24 2 
14 59 M IGE 2 6 1 
15 21 F IGE 2 15 2 
16 42 F TLE 8 10 1 

17 24 F TLE 11 14 1 
18 22 F IGE 15 84 1 
19 48 M xTLE 3 36 1 
20 21 F IGE 6 18 1 

M: Male; F: Female; TLE: Temporal Lobe Epilepsy; IGE: Idiopathic Generalised 
Epilepsy; JME: Juvenile Myoclonic Epilepsy; xTLE: Extra-temporal lobe epilepsy; JA: 
Juvenile Absence 
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Table 6.5 Comparative characteristics of the patient groups.  

 Healthy 
controls 

Epilepsy 
seizure-free 
(min. >6m) 

Drug-resistant 
epilepsy 

Number of Patients 72 20 65 

Age, years (range) 34.1 (18-49) 33 (19-73) 35.1 (17-65) 
Male/Female 35/37 8/12 29/36 
Epilepsy Type 
(symptomatic/Idiopathic) 

n/a 9/11 58/7 

Mean duration epilepsy, years 
(range) 

n/a 10.7 (2-34) 19.5 (1-56) 

Anti-epileptic therapy 
(mono/polytherapy)    
(mono/dual/triple/Quad) 

0 12/8              
12/8/0/0 

8/57          
8/24/25/8 

Mean monthly seizure frequency 
(range) 

0 0.004 (0-0.2) 27.31 (0.5-240) 

Serum HMGB1 ng/ml, mean ± 
s.e.m 

1.11±0.07 1.25±0.15 8.70 ±0.47 

HMGB1: High mobility group box-1 

 

6.3.2 Measurement of HMGB1 

6.3.2.1 Baseline 

Compared to both healthy controls (1.11±0.07ng/ml, p<0.0001) and those with well-

controlled epilepsy (1.25±0.15ng/ml, p<0.0001), mean baseline total HMGB1 was 

significantly higher in patients with drug-resistant epilepsy (8.70 ±0.47ng/ml) (figure 

6.1). 

6.3.2.2 Correlation with clinical variables 

An association between baseline HMGB1 and duration of the index seizure was 

identified (table 6.6); however this association did not withstand correction for 

multiple testing with FDR. Abnormal brain MRI correlated with high baseline HMGB1 

(p=0.007, table 6.6, figure 6.2).  
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Figure 6.1 Quantification of total serum high mobility group box-1 (HMGB1) by ELISA 
in healthy controls and patients with well-controlled seizure-free epilepsy and drug 
resistant epilepsy.  Results are expressed as the mean (± standard error of the mea, 
n=72, 20 and 65 respectively; ****p<0.0001 by Kruskal Wallis one way ANOVA.)
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Table 6.6 Tests of association between clinical variables and baseline high mobility 

group box-1. 

Variable N p-value 

Age 65 0.736 
Gender 65 0.829 
Square Root Epilepsy 
Duration 

64 0.219 

Log Seizure Frequency 65 0.492 
Log Index Seizure Duration 50 0.028 
Epilepsy Type 65 0.866 
MRI Abnormal 65 0.009 
EEG Abnormal 65 0.574 
Number of AEDs 65 0.036 

Continuous variables (age, epilepsy duration, seizure frequency, index seizure duration) 
were tested for association using linear regression, binary variables (MRI, EEG 
normal/abnormal) using t-test and categorical variables (gender, epilepsy type, seizure 
type, number of AEDs) using one-way ANOVA. 

 

Figure 6.2 In patients with drug-resistant epilepsy, abnormal brain magnetic resonance 
imaging (MRI) was significantly correlated with elevated baseline high mobility group 
box-1 (HMGB1). Error bars (means ± standard error of the mean, n=65); **p< 0.01 by t-
test. 

 

6.3.2.3 Post-translational modifications of HMGB1 

Clear separation of isoform expression was visible between the patient groups 

depending on whether they were drug-responsive or not. Thus, acetylated HMGB1 was 

observed in drug-resistant epilepsy patients alone; these patients could be further sub-
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stratified on the basis of the disulphide inflammatory form (figure 6.3). There was no 

significant association between the presence of disulphide HMGB1 and any of the 

clinical variables tested (table 6.7.) 

 

 

Figure 6.3 The acetylated form of high mobility group box-1 (HMGB1) was observed in 
drug resistant patients alone, and these individuals could be further sub-stratified on 
the basis of redox state of HMGB1. Disulphide inflammatory HMGB1 was detectable in 
a sub-cohort of patients with drug-resistant epilepsy with significantly higher baseline 
HMGB1. Data is presented as the mean (± standard error of the mean, n=72, 20 and 65 
for controls, epilepsy seizure-free and drug resistant epilepsy respectively; **p<0.01, 
****p<0.0001 by Kruskal Wallis one way ANOVA.) 
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Table 6.7 Testing association with disulphide high mobility group box-1. 

Variable N p-value 

Age 65 0.801 
Gender 65 0.900 
Square Root Epilepsy 
Duration 

64 0.733 

Log Seizure Frequency 65 0.606 
Log Index Seizure Duration 52 0.606 
Epilepsy Type 65 0.079 
MRI Abnormal 65 0.183 
EEG Abnormal 65 1.00 
Number of AEDs 65 0.713 

Continuous variables tested with t-test and categorical variables, Chi-square or Fisher’s 
exact test used. 

 

 

 

6.3.2.4 Peak Post-Seizure 

59/65 patients experienced a seizure during the video-EEG inpatient admission. The 

baseline and peak-post-seizure samples are described in table 6.8. Peak post-seizure 

HMGB1 was significantly elevated compared to baseline admission HMGB1 (figure 

6.5).  

An association between peak post-seizure HMGB1 and age was identified (table 6.9); 

however this did not withstand correction for multiple testing with FDR. 

 

6.3.2.5 Post-seizure profiles 

Post-seizure serum samples were collected from patients that experienced an 

inpatient seizure at different time points (range 0.5-24 hours). Individual profile plots 

for total HMGB1 at baseline and following seizure are shown in figure 6.6.  
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Figure 6.4 Quantification of high mobility group box-1 (HMGB1) by ELISA in human sera 
at baseline and the peak post-seizure sample. Peak post seizure sample timing varies 
between patients (0.5-24 hours). Results are expressed as the mean (± standard error 
of the mean, *p<0.01 by paired two-tailed t-test) 

 

6.3.2.6 Creatine kinase 

Postictal creatine kinase (CK) rises are postulated to be characteristic of generalized 

tonic clonic seizures, resulting from intense muscle contraction and muscle ischeamia 

(Wyllie et al., 1985). The normal range for CK in males is 40-320U/L and 25-200U/L in 

females. Baseline and peak HMGB1 post-seizure samples were analysed for the 

presence of CK in 54 patients who experienced a seizure (table 6.8). CK was elevated 

above the normal range in only 5 subjects, all male (mean baseline 1098 ±1107.2U/L, 

mean peak 886.3 ±576.6 U/L).  In 4/5 subjects, both baseline and peak post-seizure 

were elevated.  
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Figure 6.5 Individual profile plots detailing changes in expression of peripheral blood 
high mobility group box-1 (HMGB1) following inpatient seizure in patients with drug 
resistant epilepsy.  
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Table 6.8 Baseline and peak post-seizure high mobility group box-1 and creatine 
kinase in patients experiencing an inpatient seizure on video-
electroencephalography  

 Baseline 
HMGB1 

Peak 
HMGB1 

Hours 
following 
seizure 

Index 
seizure 
Type 

Baseline 
CK U/L 

Post-
seizure 
CK U/L 

Elevated 
(Y/N) 

1 7.52 6.43 6 CPS ns 65 N 
2 4.92 7.03 3 CPS 70 55 N 
3 7.89 6.76 12 CPS 65 55 N 

4 11.25 24.37 12 CPS 100 75 N 
5 9.13 14.33 6 SGTCS 1250 785 Y 
6 12.82 18.62 24 SGTCS 80 60 N 
7 17.75 10.24 3 CPS 105 75 N 
8 10.51 12.44 24 CPS 105 80 N 
9 9.02 12.69 3 CPS 120 90 N 
10 9.30 24.92 3 SPS 320 270 N 

11 13.21 12.35 12 PGS 45 95 N 
12 8.78 12.77 24 CPS 175 85 N 
13 7.43 9.76 24 CPS 30 30 N 

14 9.73 18.74 3 CPS 80 85 N 
15 4.43 4.49 12 CPS 70 60 N 
16 5.20 6.38 24 SGTCS 305 340 Y 
17 9.56 8.87 24 CPS 50 50 N 
18 7.24 8.95 12 SPS 55 40 N 
19 9.71 9.15 6 SGTCS 305 240 N 
20 8.63 9.08 24 CPS 75 65 N 
21 7.53 8.92 6 CPS ns 25 N 
22 8.47 9.16 24 CPS 45 55 N 
23 10.09 10.17 6 CPS 35 35 N 
24 8.44 9.44 6 CPS 55 35 N 

25 8.27 10.33 12 SPS 1475 1475 Y 
26 8.05 9.18 6 CPS 50 75 N 
27 8.94 9.50 12 PGS 40 55 N 
28 9.46 9.95 24 CPS ns 35 N 
29 9.47 10.73 6 SPS 45 60 N 
30 20.97 9.79 12 SGTCS 95 175 N 
31 18.64 10.67 3 CPS 85 55 N 
32 12.72 10.49 24 CPS 50 40 N 
33 9.16 9.57 12 SPS 65 60 N 
34 10.89 9.25 12 CPS 90 95 N 

35 9.64 10.58 24 CPS 60 45 N 
36 10.54 9.87 12 PGS 20 35 N 
37 9.78 11.66 3 CPS 45 55 N 
38 10.34 8.95 3 CPS 30 25 N 
39 10.31 21.50 24 CPS 45 40 N 
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40 10.35 11.11 3 CPS 110 65 N 
41 11.12 10.09 12 CPS 40 45 N 
42 8.33 9.34 24 SGTCS ns 50 N 
43 12.24 9.85 12 CPS 90 335 Y 
44 10.40 9.61 3 PGS 290 175 N 
45 8.25 11.12 3 CPS 20 60 N 
46 12.24 9.85 3 CPS 90 55 N 
47 5.353 6.581 1 SGTCS 155 55 N 
48 6.874 12.163 3 SGTCS 155 120 N 
49 8.593 25.591 2 CPS 40 30 N 

50 3.179 3.564 6 CPS 50 40 N 
51 2.453 2.068 2 SGTCS 2835 1495 Y 
52 1.684 2.709 6 CPS 135 150 N 
53 1.556 3.479 4 CPS 170 170 N 
54 3.821 4.291 8 SGTCS 20 20 N 

HMGB1: High-mobility group Box 1; CK: Creatine kinase; Y: Yes; N: No; CPS: Complex 
partial seizure; SGTCS: Secondarily generalized tonic clonic seizure; PGS: primarily 
generalized seizure; SPS: Simple partial seizure 

 

Table 6.9 Testing association with log-peak-post seizure high mobility group box-1. 

Variable N p-value 

Age 59 0.012 
Gender 59 0.349 
Square Root Epilepsy 
Duration 

58 0.321 

Log Seizure Frequency 59 0.849 
Log Index Seizure Duration 50 0.871 
Epilepsy Type 59 0.314 
MRI Abnormal 58 0.269 
EEG Abnormal 58 0.665 
Number of AEDs 58 0.243 

All continuous variables tested for association using linear regression, binary variables 
tested for association using t-test and categorical variables tested for association using 
ANOVA 

 

6.4 Discussion 

This study has identified for the first time that novel, circulating isoforms of HMGB1 

may serve as mechanistic biomarkers for established drug-resistant epilepsy in 

humans.  The appearance of the cytokine-activating disulphide form late in the disease 
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process may represent maturation of HMGB1 in the peripheral system and persistence 

of a functionally relevant pathological isoform.  

A complex interaction of excitatory and inhibitory potentials governs the degree of 

neuronal excitability. Pro-inflammatory cytokines affect this balance via two main 

processes: alteration of voltage and receptor-gated ion channels (Viviani et al., 2007) 

and/or changes in glutamate and γ-aminobutyric acid receptor expression (Viviani et 

al., 2007; Vezzani et al., 2011d). Increasingly, evidence from both experimental models 

(Pavlovsky et al., 2005; Seiffert et al., 2004; Tomkins et al., 2007; van Vliet et al., 

2007e) and human epilepsy (Marchi et al., 2007; Tomkins et al., 2008; van Vliet et al., 

2007a) support the notion that disruption of the BBB sets in motion a cascade of 

downstream events leading to the development of an epileptic focus. Brain 

extravasation of serum-derived albumin following SE occurs in human TLE and the 

extent of BBB disruption correlate with seizures in rats (van Vliet et al., 2007a). 

Subsequent transformation and proliferation of neighbouring astrocytes during early 

epileptogenesis is a pathological hallmark in many patients with TLE (reviewed in 

(Binder and Steinhauser, 2006; Wetherington et al., 2008; Heinemann et al., 2000)). 

Cytokine release from perivascular glia has been implicated in reduced Kir234.1 

channels (Binder et al., 2006; Djukic et al., 2007; Kivi et al., 2000; Schroder et al., 2000), 

crucial for regulation of the brain's extracellular potassium. Impaired buffering 

contributes to seizures by enhanced synaptic plasticity with increased 

neurotransmitter release and NMDA receptor activation. A disrupted BBB permits 

communication between the peripheral and central immune system. Up-regulation of 

HMGB1 and IL-1β/IL-1R1 is evident in neurons and glia from surgical specimens of 

drug-resistant epilepsy (Tomkins et al., 2007; Ravizza et al., 2008a; Boer et al., 2008; 

Cedazo-Minguez and Winblad, 2010; Curia et al., 2008; Ravizza et al., 2006a). Through 

shared pathways, both HMGB1 and IL-1β drive activation of neuronal IL-1R1 which 

induces Src kinase-mediated tyrosine phosphorylation of the NR2B subunit of the 

NMDA receptor. The consequent neuronal calcium influx results in seizures (Balosso et 

al., 2008; Viviani et al., 2003).  

Sterile inflammation, driven by damage-associated molecular patterns (DAMPS), 

represents a physiological mechanism to protect and repair brain tissue after injury. In 
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drug-resistant epilepsies arising as a consequence of brain insult, DAMPs including 

disulphide HMGB1, may induce a persistent pathological inflammation which exceeds 

this natural homeostasis, turning a once protective repair into a pathologically 

hyperexcitable neuronal focus. Indeed, persistent pathological isoforms may represent 

inadequate anti-inflammatory mechanisms in some individuals, which may have a 

genetic origin. A disrupted BBB permits communication between the peripheral and 

central immune system. It is increasingly evident that neuroinflammatory processes 

are key to establishing a chronic epileptic focus following epileptogenesis (Vezzani et 

al., 2011a).  In this study of patients with long-standing drug-resistant epilepsy, 

elevated serum HMGB1 may have two possible origins. Either spill-over from the CNS 

of brain-derived HMGB1 and/or a peripheral immune response to an epileptogenic 

insult wherein HMGB1 crosses the disrupted BBB for the purpose of repair.  

The diagnostic performance of a test or the accuracy of a test to discriminate diseased 

cases from normal cases was evaluated using ROC curve analysis. For any given 

population with a disease, it is rare to observe a perfect separation between diseased 

and healthy groups. The ROC curve plots the true positive rate (sensitivity) as a 

function of the false positive rate (100-specificity), reviewed in detail in chapter 1. A 

test with a perfect discrimination between diseased and healthy will have a curve that 

passes the upper left corner of the graph, which is 100% sensitive and specific. Thus 

the closer the curve to the top left, the higher the overall accuracy. ROC curve analysis 

in this study supports the notion that HMGB1 could provide a measure of separation 

between drug responsiveness and drug resistance in patients with established chronic 

drug resistance. However, the ability of HMGB1 to predict resistance at first 

presentation remains to be elucidated. 

In this study, abnormal MRI, defined as the presence of hippocampal sclerosis, cortical 

dysplasia, vascular lesions, gliosis and/or abnormal increased flair signal at the focal 

site, was associated with elevated baseline HMGB1. The MRI abnormalities described 

are aetiologies that are often considered for surgical treatment and have been shown 

to carry an almost six-fold risk of persistent seizures compared with cryptogenic 

epilepsy, in which the cause is unknown (Liimatainen et al., 2008). An observational 

study of over 2200 patients with epilepsy found that hippocampal sclerosis (HS), 
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cerebral dysgenesis, and dual pathology (HS and another lesion) were associated with 

a low rate of seizure-freedom (11%, 24%, and 3%, respectively) (Semah et al., 1998). 

The presence of a neurological insult was found to be a significant risk factor for time 

to treatment failure in the SANAD study, a randomised controlled trial in which 

standard antiepileptic drugs were compared with new treatments (Bonnett et al., 

2012). This suggests that abnormal imaging is an indicator of increased risk of drug 

resistance and a need for earlier consideration of surgical treatment. Epilepsy surgery 

ranges from focal resection of the epileptogenic cortex (antero-mesial temporal lobe 

and other focal cortical resections) to interventions that remove or isolate the cortex 

of a grossly diseased hemisphere. It is majorly underutilized, in the United States of 

America, under 1% of patients with drug-resistant epilepsy are referred to epilepsy 

centers (Engel, 2013). The largest and longest prospective study of epilepsy surgery, 

covering outcome data annually until 19 years post-surgery, validated the long-term 

effectiveness of epilepsy surgery showing continuous seizure free epilepsy in over 50% 

of patients. In this study, the average delay from diagnosis to surgery was 20 years (de 

Tisi et al., 2011), highlighting the need to consider and refer for surgery at an earlier 

stage in appropriate candidates. A mechanistic biomarker, able to stratify early those 

at the greatest risk of drug-resistance, could significantly aid the physicians decision to 

refer early. At early post-surgical follow-up, freedom from seizures has been reported 

in 60-70% of patients (J Engel Jr, 1993; Wiebe et al., 2001; Tellez-Zenteno et al., 2005); 

however this should perhaps be viewed with a note of caution, as some studies report 

seizure freedom rates declining to 40–50% at 10 years (McIntosh et al., 2004; Dunlea 

et al., 2010; Salanova et al., 1999; Dupont et al., 2006; Foldvary et al., 2000). 

Therefore, the need for better pharmacotherapy is not diminished by the availability 

or suitability of epilepsy surgery.  

HMGB1 is ubiquitous in cells and can be released as after muscle injury. HMGB1 

expression was elevated in skeletal muscle after hind-limb ischaemia in a murine 

model of muscle injury (Lin et al., 2005). A recent review undertaken to assess the 

sensitivity and specificity of CK to differentiate between epileptic seizure and 

psychogenic non-epileptic seizure (PNES) determined that a marked rise in CK, above 

the 95.7th percentile, has a high specificity, but low sensitivity, for the diagnosis of 
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epileptic seizure. However, limited data is available to determine whether CK can 

differentiate between convulsive and non-convulsive seizure (Brigo et al., 2015). In the 

present study, elevated CK was identified in 5 patients experiencing a seizure, 3 of 

which were secondarily generalized, one was a complex partial seizure and the other a 

simple partial seizure. In only 2 cases CK was elevated >4 times above the normal 

range. Serum CK levels have been shown to rise markedly following generalized 

seizures, usually with a delay of at least 3 hours and with a peak concentration 

occurring after more than 36–40 hours (Wyllie et al., 1985; Chesson and Kasarskis, 

1980; Chesson et al., 1983). The mean peak-HMGB1 time following seizure was 11.4 ± 

8 hours, and therefore potentially CK levels could continue to rise as a consequence of 

seizure activity and later time point analysis would be required to fully exclude this 

possibility. However, the majority of patients in this study had frequent, recent 

seizures and therefore one would expect high baseline levels of CK in all the subjects if 

that were to explain the persistence of the pathological isoform. Indeed, 23/65 

subjects had a seizure (any type) within 24 hours of the admission. Furthermore, for 

those experiencing regular generalized tonic clonic seizures (14/59), mean monthly 

seizure frequency in this group was 12.2 ± 22.7, therefore; it is unlikely that 

persistence of the inflammatory isoform in the drug resistant group can be explained 

by recurrent muscle injury related to frequent seizure activity, as one would expect 

much higher baseline CK. Persistence of the inflammatory disulphide-HMGB1 in 

patients with drug-resistant epilepsy and frequent seizures cannot therefore be 

attributed solely to muscle damage as a consequence of seizures. 

Initially in this study, recruitment was restricted to a single site in the UK. Recruitment 

to the study was slower than expected, resulting from the vast majority of requests for 

inpatient video EEG telemetry originating from diagnostic uncertainty, particularly 

where Non-epileptic attack disorder (NEAD) was suspected. Opening a second site for 

recruitment in the UK was not possible; other UK-based video-EEG sites were 

approached (London) but due to the relative labour-intensive nature of the study, 

particularly for collection of post-seizure samples out of hours, a second site could not 

be found. In order to obtain sufficient samples to examine the relationship between 

seizures and HMGB1 in epilepsy, we collaborated with the epilepsy research group in 
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Tampere, Finland, who had previously undertaken a serial-sampling inpatient EEG 

study examining other peripheral inflammatory biomarkers. The study design shared 

several similarities, in particular the classification of epilepsy and seizure, inclusion of 

drug-resistant pre-surgery patients, inclusion of focal and non-focal epilepsies and 

exclusion of patients with inter-current illness or co-morbidities. Sufficient similarities 

existed for the patient groups to be considered comparable. However, the post-seizure 

sampling time frame for the two studies differed. Initial design of the UK study 

involved intense sampling immediately following seizure and at 30 minute intervals. As 

more information about HMGB1 because available over time, it was realized that as a 

late mediator of inflammation, it would be prudent to collect samples at later time 

points. An amendment to the study with ethical approval was made and as a result, 

some of the earlier UK patients had missing data for samples at later time points (>6 

hours). The study in Tampere identified significantly higher baseline highly-sensitive 

CRP in patients with drug-resistant epilepsy temporal lobe epilepsy compared to 

healthy controls (Alapirtti et al., 2012). The authors also found that a significant 

increase in CRP from baseline was prompted by secondarily generalized tonic-clonic 

seizures. The present study found no association between HMGB1 and the elevated 

CRP found in the patients with TLE. Furthermore, in the majority of patients, HMGB1 

did not rise significantly further following generalized tonic–clonic seizure, in keeping 

with the absence of elevations in CK, further suggesting that the high baseline HMGB1 

is not related to the muscular activity component seizure. HMGB1 is known to be a 

late mediator of systemic inflammation, particularly in clinical sepsis, where serum 

HMGB1 levels increased significantly (Wang et al., 1999). 

Inflammatory processes in the CNS are increasingly accepted as key contributors in the 

aetiopathogenesis of epilepsy. As an inflammatory mediator implicated in the 

mechanisms of seizure generation, HMGB1 shows promise as a novel translational 

biomarker able to stratify drug-responsiveness from drug-resistance in patients with 

established epilepsy. Future studies are now required to examine HMGB1 in those 

with first isolated seizures of varying aetiology and newly diagnosed epilepsy to 

determine whether it has any prognostic value. Furthermore, a subset of drug-

resistant patients was identified expressing the disulphide form of HMGB1. No 
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association with any clinical variable was found, suggesting that this particular 

biomarker may be a novel means to stratify those most amenable to 

immunomodulatory therapy. Currently available AEDs suppress the clinical expression 

of seizure but have no impact on disease progression. Failure to control seizures occurs 

in up to 40% of patients, further complicated in many by intolerable adverse effects 

that limit the attainment of therapeutic dosage. Next generation AEDs need to possess 

antiepileptogenic properties. Parallel development of mechanistic biomarkers able to 

predict progression of disease and treatment response would be invaluable for drug 

discovery in this area. Monoclonal antibodies targeting HMGB1 are already showing 

considerable success in other preclinical models of disease (Kokkola et al., 2003; 

Schierbeck et al., 2011; Yang et al., 2006; Chorny and Delgado, 2008).  It may be the 

case that some isoforms of HMGB1 are protective and therefore development of 

isoform-specific antibodies is the next logical goal. 

In the presence of normal brain MRI and EEG, currently the physician’s ability to 

predict both recurrences after first seizure and treatment response is severely limited. 

Arguably, no patient group would benefit more substantially from identification of 

circulating biomarkers of disease progression and treatment response than those with 

epilepsy. Further studies examining the prognostic value of HMGB1 isoforms in first 

presentation of seizure are certainly warranted. 
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Final Discussion 
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The overall aim of this thesis was to examine the potential for blood HMGB1 to act as a 

mechanistic biomarker in epilepsy, particularly for the early identification of drug 

resistance. Overexpression of HMGB1 and its receptor TLR4 has been identified in 

brain tissue in both experimental models and humans with drug resistant epilepsy (Iori 

et al., 2013; Maroso et al., 2010; Maroso et al., 2011b; Zurolo et al., 2011). In rodents, 

exogenous application of HMGB1 prior to chemoconvulsant challenge exacerbates 

seizures. Furthermore, selective inhibition of HMGB1 or TLR4 delays seizure onset and 

decreases seizure number and duration (Maroso et al., 2010). HMGB1 undergoes 

extensive post-translational modifications which dictate its inflammatory functions. In 

mice, the disulphide-containing cytokine isoform of HMGB1 has been shown to 

increase neuronal cell death in vitro and exacerbate kainate-induced seizures in vivo 

(Balosso et al., 2014). The mechanism involved is tyrosine phosphorylation of the NR2B 

subunit of the NMDA receptor, which ultimately enhances Ca2+ influx in neuronal cell 

bodies (Balosso et al., 2014). Taken together, these studies provide proof-of concept 

that HMGB1 plays an important role in the development of seizures and epilepsy. 

The results of the thesis reveal that peripheral blood HMGB1 exhibits low baseline 

variability in health, is detectable following experimental seizures in rodents in a model 

independent fashion and is over-expressed in peripheral blood in patients experiencing 

regular seizure activity. , Presence of the acetylated isoform stratifies resistance 

(regular seizures) from responsiveness (absence of seizure activity), and a subset of 

resistant patients express the pathological disulphide form which may indicate 

aberrant inflammation in some.   

Diagnosis and treatment of epilepsy suffers from a lack of reliable biomarkers. 

Currently, there is no way to predict whether epilepsy will occur following potential 

epileptogenic insults to the brain. What is more, the diagnosis of epilepsy is based on 

clinical criteria that appear once seizures develop, but the pathophysiological process 

may begin years before. There is no way to diagnose epilepsy prior to the occurrence 

of seizures and in most cases; treatment is not commenced following first seizure until 

further seizures occur. The pharmacological management of epilepsy involves a degree 

of trial and error of the AED therapeutic arsenal. And even after treatment 

commences, there is no definitive means to predict the development of drug-
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resistance, which is seen in about 30% of patients. In addition, development of 

disease-modifying anti-epileptogenic drugs is hampered by a lack of understanding of 

the mechanisms underlying the development of an epileptic focus following brain 

insult. Early in drug development, biomarkers to demonstrate target engagement and 

proof of mechanism are of high value. What is more, such biomarkers are also of 

importance in phase III clinical trials, to label a drug as having disease-modifying 

effects. Therefore there are several areas wherein biomarkers would enhance epilepsy 

management including: 

1.) Prediction of epilepsy following brain insult 

2.) Prediction of epilepsy following first seizure; to differentiate between a 

reactive, unprovoked isolated seizure and definitive epilepsy. 

3.) Prediction of response to therapy (resistant versus responsive) to facilitate 

early alternative therapy, such as surgery, avoiding prolonged drug trials with 

associated cost and morbidity. 

4.) Facilitate early pre-surgical evaluation. 

5.) Improve drug discovery by streamlining screening of potential new AEDs. 

6.) Reduce clinical trial costs by enriching patient populations. 

7.) Marker of epileptogenicity to determine definitively that an epilepsy condition 

has been a) prevented or b) cured. 

 

The findings outlined in this thesis are therefore timely, and contribute to the growing 

body of literature. 

Focal epilepsy arises as a result of some form of insult to the brain, such as hypoxic 

brain injury or prolonged febrile convulsion in childhood (Shinnar et al., 2008; Volpe, 

2008; Dinner, 1993). As a consequence, a normal physiological acute inflammatory 

reaction occurs with the subsequent release of inflammatory mediators including IL-1β 

and HMGB1. Both have been shown to promote neuronal damage and exacerbate 

seizures in various pre-clinical seizure and epilepsy models (Viviani et al., 2003) and 

both have been shown to be up-regulated in human brain tissue at epilepsy surgery 

(Zurolo et al., 2011). In addition, both can trigger the release of the other, potentially 

setting up an auto-feedback loop for prolonged release (Steer et al., 2006; Keyel, 
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2014). Through mechanisms already discussed (1.7.3), HMGB1 can lower the seizure 

threshold from whence a clinical seizure arises. It may be the case, in some individuals, 

that this initial neuroprotective inflammatory response to insult fails to resolve. Some 

individuals may continue to produce pathological mediators of inflammation, including 

the disulphide form of HMGB1, that aggravate the initial insult leading to a permanent 

state of localised hyperexcitability resulting from excessive intracellular Ca2+ influx and 

glutamate release. In this way, pathological isoforms of HMGB1 may be integral to the 

initial period of epileptogenesis following brain insult and indeed to the maintenance 

of the epileptic state. Both centrally, through localised release in brain, and 

peripherally, by activation of the peripheral immune response.  

In the early post-brain insult or seizure phase, passive release of non-

acetylated/reduced HMGB1 in the periphery may originate from muscular insult 

resulting from ongoing seizure activity.  This could be followed, in some individuals, by 

a late phase production of the inflammatory acetylated/disulphide isoforms, triggered 

in response to the initial muscular insult. Frequency of seizure activity at baseline is 

associated with a greater risk of developing drug resistance (Hitiris et al., 2007; 

Mohanraj and Brodie, 2006), raising the possibility that there may be a critical 

threshold in the biomarker level, over which point the late phase of inflammatory 

HMGB1 may be triggered. Indeed, in peripheral blood, in two independent seizure 

models (KA, chapter 4 and MES, chapter 5) non-acetylated, reduced HMGB1 showed 

early release consistent with necrosis and functional chemotaxis for leukocyte 

recruitment and repair. An enduring disruption to the BBB, as is postulated to occur in 

epilepsy (reviewed in detail in 1.5.1), potentially permits a bi-directional link between 

the peripheral and central immune system, allowing peripherally generated HMGB1 to 

cross into the CNS and aggravate the epileptogenic focus. However, despite 

examination in different disease states and biofluids in humans and different pre-

clinical models of seizures and epilepsy (KA, MES and pilocarpine), no direct link 

between central levels of HMGB1 and peripheral levels was identified. No correlation 

between CSF and serum HMGB1 was identified in any condition examined (headache, 

neuroinfection or Rasmussen’s encephalitis). Examination of paired serum and CSF 

HMGB1 samples taken from patients with epilepsy is now required, in order to 
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determine whether there is a direct relationship between the compartments. Through 

an existing collaboration, this work is currently underway to collect paired samples in 

newly diagnosed epilepsy. Reports of elevated CSF biomarkers for the detection of 

subtle pathological insults following seizures have been made. The cytoplasmic 

enzyme neuron-specific enolase (NSE) is part of the glycolytic pathway for the 

conversion of glucose to pyruvate and is essential for cellular energy metabolism 

(Marangos et al., 1978; Zomzely-Neurath, 1982). It is regarded as a marker of acute 

brain injury in stroke, global ischemia, and coma. CSF-NSE levels have been shown to 

be elevated compared with the levels for normal control subjects in patients within 24 

hours of experiencing SE. Elevated CSF-NSE also correlated with elevations in the 

CSF/serum albumin ratio, a measure of BBB integrity (Correale et al., 1998). Elevated 

CSF-NSE has also been reported in children experiencing non-febrile seizures (Ko et al., 

1990) and in adults with epileptic seizures (Royds et al., 1983), but the numbers 

studied were small. More recently, in 22 patients with newly presenting, untreated 

generalised seizure, no significant difference between CSF and serum NSE compared to 

neurologically normal controls  was demonstrated within 24 hours of the seizure 

(Palmio et al., 2001).  This likely reflects a difference in pathology; prolonged SE may 

lead to hippocampal damage whereas, short, uncomplicated seizures, however 

frequent, may not result in neuronal damage sufficient to cause release of a biomarker 

that reflects acute brain injury. However, in the case of seizure disorders, repeated 

convulsive seizure activity may lead to the continual, low-grade production of HMGB1, 

either centrally or peripherally, with consequent aggravation of the initial underlying 

brain insult. Therefore one would expect a direct link between CSF levels and 

peripheral blood levels, resulting either from spill-over from the CNS across a disrupted 

BBB, or peripheral production crossing into the CNS. However, it may be the case that 

continued production of HMGB1 occurs only in some individuals, those that go on to 

develop poor control, and therefore longitudinal follow-up of these patients will be 

required. 

Two weeks following the induction of SE with KA, acetylated and disulphide HMGB1 

was significantly elevated, likely resulting from immune activation. The cause of this 

delayed immune activation is not currently known. It is possible that the appearance of 
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spontaneous convulsive seizures in the mice led to low-grade production of non-

acetylated/reduced HMGB1 from convulsive muscle injury. As a result, delayed 

maturation of the inflammatory isoforms occurs, which may then have a pathological 

role. Failure to detect the appearance of the non-acetylated/reduced forms may 

reflect the time points selected (7 and 14 days) and more frequent sampling would be 

required to identify this. The pilocarpine model of epilepsy (chapter 5) demonstrated 

significantly higher total serum HMGB1 in epileptic animals; however no significant 

elevation occurred in brain (as assessed by western blotting.) At present, this argues 

against the theory that central HMGB1 passes over into the peripheral blood however 

extracellular release of the protein has yet to be determined by LCMS/MS, and this 

analysis is currently underway. In contrast, in the KA model, significantly elevated total 

intracellular hippocampal HMGB1 persisted until 14 days in concert with elevated 

peripheral expression. However, extracellular release, determined by LCMS/MS, did 

not show a corresponding elevation in brain. The discrepancy between the models 

may in part reflect the timing of sampling; both models examined the relative early 

time course of the disease process when major epileptogenic changes are underway. 

Subtle changes in expression may have been missed due to the wide time course over 

which sampling occurred (3, 7 and 14 days in KA and 28 days in pilocarpine.) Further 

limitations of the pilocarpine model include its restriction to the detection of purely 

convulsive seizures. Movement plates within the home cages detected convulsive 

seizure activity and the video correlate was used to confirm the presence of a 

generalised seizure. Periods of non-convulsive seizure activity and focal, limbic seizures 

are not detected in this model. Therefore, further work is underway through an 

existing collaboration utilising a chronic epilepsy model with continuous video-EEG 

surveillance to capture all periods of abnormal brain activity which can then be related 

to biomarker expression. In addition, early epileptogenic periods will be analysed 

alongside the true chronic epileptic phase occurring 5 months following the initial 

brain insult, in an attempt to address the unanswered questions highlighted by the 

present models. Particularly, whether there is a direct link between hippocampal 

expression of HMGB1 isoforms at the site of injury and the subsequent levels released 

into, or produced by, peripheral blood. 
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Analogous to the findings in the KA model,  patients with ongoing seizures expressed 

only the acetylated form of HMGB1, while a sub-cohort of those expressed both 

reduced and disulphide isoforms (chapter 6). Current clinical evidence to suggest that 

counteracting inflammation is therapeutically beneficial in adult epilepsy in humans is 

limited (Walker et al., 2013). However, with growing evidence to support its potential 

contribution to the generation of seizures, and possibly to epileptogenesis itself, anti-

inflammatory agents can be considered as candidates in the ongoing search for novel 

AEDs. The compounds arguably showing greatest promise, and furthest down the 

development pipeline, are inhibitors of interleukin converting enzyme (ICE)/caspase-1, 

the protease that catalyses the conversion of the inactive precursor pro-IL-1β to active 

IL-1β (Kuida et al., 1995). Inhibition of ICE/caspase-1 reduces the release of IL-1β in 

organotypic hippocampal slices following exposure to pro-inflammatory stimuli 

(Ravizza et al., 2006e), decreases acute seizure activity following intrahippocampal 

kainate in rats (Ravizza et al., 2006e), and restricts the generalization of seizures in a 

rapid kindling model (Ravizza et al., 2008a). These effects are closely correlated with a 

reduction in the expression of IL-1β in hippocampal astrocytes. They are unsurprisingly 

absent in mice in which the corresponding gene has been knocked out and that 

consequently display an inherent resistance to experimental seizures (Ravizza et al., 

2006e). In addition, IL-1β signalling can be blocked via its natural antagonist, 

interleukin-1 receptor antagonist (IL-1Ra). Human recombinant IL-1Ra (Anakinra) is 

licensed for the treatment of moderate to severe rheumatoid arthritis (Food and Drug 

Administration, 2001a). Anakinra competitively inhibits the binding of IL-1α and IL-1β 

to the IL-1 receptor and thus inhibits the effects of this pro-inflammatory cytokine 

(Urien et al., 2013). Such targeted anti-IL-1β interventions have led to a considerable 

reduction of seizures in various models in seizure and epilepsy (Akin et al., 2011; 

Vezzani et al., 2002; Vezzani et al., 2000; Vezzani et al., 1999; Ravizza et al., 2008h; 

Ravizza et al., 2006e; Maroso et al., 2011b; Maroso et al., 2010; Auvin et al., 2010a). In 

addition, blockade of IL-1 and TLR4 has been shown to be neuroprotective (Allan et al., 

2005; Ross et al., 2007; Vezzani et al., 2013). Systemic administration of VX-765, a 

prototypic ICE/caspase-1 inhibitor, increased the time to seizure onset and decreased 

cumulative duration of electrographic seizures induced by acute intrahippocampal 

kainate; whilst in the chronic model, VX-765 decreased the time spent in spontaneous 



213 
 

epileptic activity by up to 75%. This anticonvulsant action was again correlated with a 

reduction in the expression of IL-1β in hippocampal astrocytes and microglia (Maroso 

et al., 2011a). More recently, in two independent rat models of epilepsy, 

pharmacological blockade of IL-1β-mediated signalling, using IL-Ra and VX-765, 

afforded significant neuroprotection in the form of decreased IL-1β expression in 

astrocytes and cell loss in rat forebrain (Noe et al., 2013). Through collaboration 

(Vezzani, unpublished data) we investigated the effect of pharmacological blockade of 

IL-1β-mediated signalling on HMGB1 biomarker expression in an electrically-induced 

SE model of epilepsy (details of model in appendix). Five months following electrically-

induced SE, epileptic seizures were associated with persistence of the acetyl and 

disulphide inflammatory forms of HMGB1. In the treated rats only, complete 

prevention of the disulphide, cytokine-stimulating form of HMGB1 in peripheral blood 

was seen from 15 days following the initial SE and persisting at 5 months (unpublished 

data in appendix). These findings confirmed the previously reported efficacy of VX-765 

in preclinical models, further supports its proposed mechanism of action, and suggest 

that this class of compounds merits further evaluation as putative AEDs. 

VX-765 (developed by Vertex Pharmaceuticals Incorporated) was originally developed 

for the treatment of inflammatory and autoimmune conditions (Randle et al., 2001). It 

is a pro-drug with good oral bioavailability, whose active metabolite, VRT-043198, is 

known to cross the BBB following systemic administration, making it an attractive 

candidate for the treatment of CNS disorders with a proposed inflammatory 

component. A phase 2a study was completed in drug-resistant partial epilepsy (Vertex, 

2011), the results of which suggest that it is safe and well tolerated when administered 

over a 6-week period. In terms of preliminary efficacy data, the mean percent 

reduction in seizure rates were 15.6% in the VX-765 group compared to 7.0% in the 

placebo group with a ≥50% reduction in seizures in 18.8% of subjects in the VX-765 

group versus 8.3% in the placebo group. However, the response rates did not meet 

statistical significance (Bialer et al., 2013). A 13-week dose-ranging phase 2b trial was 

prematurely curtailed following a business-related decision from Vertex in 2012 (Bialer 

et al., 2013). Response rates for the 20 subjects already enrolled will eventually be 

available but the study will be substantially underpowered. A future opportunity may 
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be to undertake further studies by stratifying patients based on a biomarker such as 

HMGB1. 

Agents targeting early pro-inflammatory cytokines have proven ineffective in treating 

sepsis, even in large-scale clinical trials (Abraham et al., 1998; Fisher et al., 1994). A 

major difficulty in developing therapeutics that target cytokines such as TNFα and IL-1β 

is that they are released early in the development of a systemic inflammatory response 

(Tracey et al., 1986), leaving a very narrow therapeutic window for administration of 

an effective antagonist. In the case of focal epilepsies, where inflammation-driven 

epileptogenesis occurs over a latent period following brain insult, a broader 

therapeutic window is required. Therapeutic strategies targeting late-acting, clinically 

accessible mediators, such as HMGB1, would be preferable. Experimental sepsis 

induced by caecal perforation reveals this broader therapeutic window in which 

HMGB1 functions in action. Anti-HMGB1 antibodies and ethyl pyruvate, a simple 

aliphatic ester of pyruvic acid with proven anti-inflammatory action (Shin et al., 2014a), 

rescue mice from otherwise lethal sepsis even when administered 24 hours following 

onset (Ulloa et al., 2002; Yang et al., 2004). Anti-HMGB1 antibodies have high 

molecular weights which may prevent their access to the intact brain.  However, 

disruption of the BBB, now seen as pathognomonic in seizures, potentially provides a 

unique opportunity for delivery of anti-epileptogenic antibodies into the brain. A fully 

humanized anti-HMGB1 antibody would be required prior to moving into the clinic. In 

addition, ethyl pyruvate has been shown to inhibit HMGB1 phosphorylation and 

release in activated microglia following experimental stroke (Shin et al., 2014b). 

Several small molecules have been investigated in recent years for their ability to 

inhibit HMGB1 activity. Glycyrrhizin is a natural triterpene found in roots and rhizomes 

of liquorice (Glycyrrhiza glabra) (Mollica et al., 2007). Glycyrrhizin inhibits the 

chemoattractant and mitogenic activities of HMGB1 and has a weak inhibitory effect 

on its intranuclear DNA-binding function (Mollica et al., 2007). It has been investigated 

in pre-clinical models for its anti-HMGB1 properties in many conditions including liver 

injury (Ogiku et al., 2011; Gwak et al., 2012), sepsis (Wang et al., 2013), colitis (Vitali et 

al., 2013) and intracerebral haemorrhage (Ohnishi et al., 2011). In the post-ischaemic 

mouse brain, administration of intravenous Glycyrrhizin after occlusion of the middle 
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cerebral artery was neuroprotective and associated with almost complete cessation of 

HMGB1 secretion compared to untreated control (Kim et al., 2006). A similar 

neuroprotective effect was seen in the spinal cord injury model in rats, with reduced 

release of inflammatory cytokines along with HMGB1 inhibition (Gong et al., 2012). 

Given its preclinical success in a wide range of conditions, further exploration of 

glycyrrhizin and structural analogues is warranted in the search for effective HMGB1 

inhibitors. 

Growing evidence suggests that statins, 3-hydroxy-3-methylglutaryl-coenzyme A 

(HMG-CoA) reductase inhibitors, exhibit a neuroprotective action in an array of 

neurological diseases including stroke, Alzheimer’s disease, Parkinson’s disease and 

epilepsy (van der Most et al., 2009; Stepien et al., 2005; Reiss and Wirkowski, 2009). In 

addition to their lipid lowering activity, statins exert pleiotropic effects and their anti-

inflammatory properties are well established. Both atorvastatin and simvastatin afford 

neuroprotection from ischemic brain injury in rodent models of stroke, including 

attenuation of the vascular inflammation and atherosclerotic lesion area, with 

decreased expression of HMGB1, RAGE, TLR4 and NF-κB (Wang et al., 2010; Liu et al., 

2013). Atorvastatin and simvastatin have also been shown to improve cognitive 

performance in a rodent model of spatial memory (Vandresen-Filho et al., 2015), and 

improved biochemical and behavioural alterations in an experimental model of 

Parkinson’s disease (Kumar et al., 2012). In cell culture, in a dose-dependent manner, 

atorvastatin inhibits HMGB1-induced vascular endothelial activation by reducing 

intercellular adhesion molecule-1 (ICAM-1) and E-selectin with resultant reduced 

leukocyte-endothelial adhesion (Yang et al., 2010). Elevated expression of ICAM-1, 

vascular cell adhesion molecule-1 (VCAM-1), P-selectin and E-selectin has also been 

identified following pilocarpine-induced status epilepticus (Fabene et al., 2008), which 

has been implicated in BBB breakdown, a pathological step in the development of an 

epileptic focus. Disruption of the leukocyte-endothelial cell interaction results in a 

marked reduction in spontaneous seizures in this epilepsy model (Fabene et al., 2008). 

It is biologically plausible that the pleiotropic anti-inflammatory effects of statins, 

targeting leukocyte-endothelial interactions, could exhibit anti-epileptogenic effects in 

terms of preventing BBB leakage, an avenue that certainly warrants further exploration 
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given the preclinical evidence in various models of neurological disease. However, to 

date, the uptake, distribution and metabolism of statins in brain is not well 

understood. Furthermore, the dose-response relationship of statins if used in such an 

indication will need careful study.  Conflicting data exists, a small study of CSF levels of 

statins following 5 days of treatment found that pravastatin did not pass the blood-

brain barrier (Botti et al., 1991). In addition, an in situ rat brain perfusion study using 

radiolabelled compound also concluded that pravastatin did not cross the BBB (Saheki 

et al., 1994). However others have found that simvastatin, lovastatin and pravastatin 

are all detectable in the brain of mice following 21 days of statin therapy (Johnson-

Anuna et al., 2005; Thelen et al., 2006). The conclusion of the studies is that lipophilic 

statins cross the BBB, but are rapidly eliminated. Statins may conceivably afford a 

degree of anti-inflammatory and thereby neuroprotective action following brain insult 

which may prove anti-epileptogenic. However, further studies addressing the CNS 

pharmacokinetics and pharmacodynamics, and dose-response relationships, of statins 

in brain are first required in order to understand the mechanisms of statin-induced 

neuroprotection.  

There are a number of outstanding questions arising from this research that require 

further exploration. Firstly, the true reference interval for HMGB1 in health remains 

unknown at present. Throughout the world, there are many ongoing studies for 

defining reference intervals. According to the IFCC guidelines, reference intervals for 

analytes are defined as the central 95% of values from a reference population 

(minimum 120 individuals). Total HMGB1 and the relative isoform expression will be 

determined in 200 healthy individuals through the healthy control arm (n=200) of the 

ongoing BIOPAR study (Antoine et al, unpublished data), a longitudinal observational 

study examining biomarkers in paracetamol overdose. Secondly, this thesis identified, 

for the first time, overexpression of HMGB1 in CSF and blood in Rasmussen’s 

encephalitis. Further analysis is required to examine the isoforms present in order to 

determine both the mechanism of release (necrotic versus inflammatory) and the 

functional role (cytokine, chemotaxis or immunologically inert) of the different 

isoforms of HMGB1 in this condition. This may contribute to the understanding of the 

pathological course of RE, particularly the proposed inflammatory mechanism. In 
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addition, HMGB1 isoform analysis in CSF and blood in neuroinfection is required. 

Potentially, both central (e.g. microglia) and peripheral (e.g. white blood cells then 

invading the CNS) production of HMGB1 is possible in neuroinfection. Identification of 

the isoforms present may prove a useful tool for stratification in neuroinfection and for 

the identification of therapeutic targets. Thirdly, further analysis of the isoforms 

present is needed in the epileptic mice with spontaneous seizures to identify whether 

the expression reflects the findings in the human study. Specifically, whether the mice 

express the acetylated form (seen in drug-resistant humans) or the non-acetylated 

form (seen in those who are seizure free.) This would clarify whether the model 

reflects the drug-responsive or drug-resistant phenotype of the human disease and 

would serve as a platform for further investigation into the pathological differences.  

Activation of innate immunity and inflammatory pathways as a consequence of 

epilepsy is, on the basis of available evidence, almost beyond doubt. This is an 

important finding with therapeutic potential for the control of pre-existing seizure 

disorders. To date, very few studies have examined the use of immunomodulatory 

agents in focal epilepsy syndromes (Walker et al., 2013). The animal model data 

presented in this thesis supports the existing literature that inflammatory pathways 

involving HMGB1/TLR4 and the IL-1β/inflammasome axis are causally involved in 

epileptogenesis. However, whether there is a direct link between brain and serum in 

epilepsy requires further evaluation. The results of this thesis suggest, in different 

animal models of seizure and in different disease states in man, that there is no direct 

correlation. Further analysis is ongoing to clarify some of the gaps in the knowledge 

highlighted by these studies. Examination of brain tissue taken from patients with 

drug-resistant epilepsy (Vezzani et al., 2011a) is limited by the absence of comparative 

control tissue, specifically that people with well-controlled epilepsy do not undergo 

resective epilepsy surgery. Therefore it is not possible to know whether the 

overexpression of inflammatory mediators identified in drug-resistant brain tissue 

occurs as a cause/consequence of the epileptic state or drug-resistance, or perhaps 

both. A potential means to address whether biochemical markers of inflammation 

reflect central inflammation, and whether or not this is relevant to both well-

controlled and poorly-controlled epilepsy, would include advanced neuroimaging of 
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inflammation. Future studies, examining the prognostic capability of HMGB1 isoforms 

as a biomarker of drug-resistance, should include imaging modalities able to identify 

neuroinflammation. This may include positron emission tomography or magnetic 

resonance spectroscopy, able to examine cell turnover and microglial activation 

through assessment of choline and myo-inositol. Immunohistochemical evidence of 

HMGB1 activation (nucleus to cytoplasmic shift) has recently shown correlation with 

both very high-field and specific MRI and also a deoxyhaemoglobin-sensitive T2* 

sequence in a rat model of febrile status epilepticus (Choy et al., 2014).  

Given the complex, multifactorial nature of epilepsy and epileptogenesis, it seems 

unlikely that a single biomarker will be able to predict both the development of 

epilepsy following first seizure and the risk of drug-resistance, in addition to assessing 

epileptogenicity. It is more likely that a panel of biomarkers rather than one single 

marker will meet these criteria in the future. That being said, HMGB1, through its 

involvement with inflammasome assembly and its intrinsic link to IL-1β activation and 

release, is uniquely placed to serve as an anchor for future exploratory studies of 

inflammatory biomarkers in epilepsy. In addition to patient stratification, HMGB1 

shows promise as a novel therapeutic target for the prevention of epileptogenesis 

following brain insult, with both anti-seizure and neuroprotective effects (Balosso et 

al., 2014). However, the long-term safety of an immunomodulatory intervention that 

targets a fundamental pathway that exists to protect rather than do harm needs to be 

rigorously established. This argues again for the need for mechanistic biomarkers of 

the disease process that can be easily measured and used as a quantifiable measure of 

treatment response.  

The emerging data on inflammation and epilepsy represent a potentially novel avenue 

for drug development in epilepsy and one that is not only distinct from previous 

approaches but also based on sound neurobiological evidence. Biomarkers that are 

also putative drug targets represent the ideal to the pharmaceutical industry for 

companion drug-diagnostic development.  However, until the mechanisms underlying 

epileptogenesis can be fully elucidated, including unravelling whether it occurs as a 

result of concurrent, overlapping or divergent mechanisms, the development of 

disease-modifying drugs for epilepsy remains in its infancy. However, early surgical 



219 
 

intervention provides the best opportunity to avoid the irreversible adverse 

consequences of recurrent seizures. A means to definitively identify patients who have 

epilepsy conditions that will never respond to AEDs at the outset would still be 

tremendously advantageous. 

As an inflammatory mediator implicated in the mechanisms of seizure generation, 

HMGB1 shows promise as a novel translational biomarker able to stratify drug-

responsiveness from drug-resistance in patients with established epilepsy. Future 

studies are now required to examine HMGB1 isoforms in those with first isolated 

seizures of varying aetiology and those with newly diagnosed epilepsy to determine 

whether it has prognostic value. 
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Appendix 

Assay validation data for the serum determination of High Mobility Group Box-1 from a 

male CD-1 mouse dosed with paracetamol 530mg/kg for 5 hours. 

 Parameter HMGB1 (ng/ml) 

Intra-assay variation Range 178-192 

 Mean 187 

 SD 5.5 

 CV (%) 2.9 

Inter-assay variation Range 175-192 

 Mean 185 

 SD 6.4 

 CV (%) 3.5 

Samples assayed once on 5 separate days (inter-assay variation) or 5 times on one day 
(intra-assay variation). Samples range, mean, standard derivation of the mean (SD) and 
coefficient of variation (CV) is included for analysis. HMGB1: High Mobility Group Box-
1. Table adapted from (Antoine et al., 2009) 

 

The electrical kindling rat model of epilepsy involves sustained electrical stimulation of 

the hippocampus or amygdala, via surgically implanted depth electrodes, to induce a 

period of SE characterized by recurrent focal and generalized seizures which are 

uninterrupted. This is followed by the development of neuropathological features 

consistent with human mesiotemporal sclerosis and the development of recurrent 

spontaneous seizures arising typically after 3-4 weeks (Loscher, 2002). Rats were 

divided into 3 experimental groups: 

1. Sham-operated rats implanted with electrodes but not electrically stimulated 

(Sham);  

2. Rats experiencing SE and treated with vehicle;  

3. Rats experiencing SE, and treated with a combination of anakinra and VX-765 

(Treatment). Drugs were administered for 5 or 7 consecutive days starting 3 hours 

after the end of electrical stimulation. 
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Peripheral blood samples were obtained via the tail vein at 7, 15 and 90 days following 

electrical kindling. 

 
 

Mass spectrometric quantification and characterization of (a.) total high mobility group 
box-a (HMGB1), (b.) acetylation and (c.) redox isoforms from rat sera (n=10/group) 7, 
15 and 90 days following electrical kindling. Results are expressed as the mean ± 
standard error of the mean, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by 2-way 
repeated measures ANOVA with Tukey correction for multiple comparisons. 

 

 


