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Testing the Equivalence of Survival Distributions using PP- and 
PPP-Plots 
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Abstract: This paper discusses the use of PP-plots for survival distributions where for a pair of survival distributions, one 
is plotted against the other. This is another way of visualizing the nature of the relationship between the two survival 

distributions along with typical Kaplan-Meier plots. For three survival distributions, the PPP-plot is introduced where the 
survival distributions are plotted against each other in three-dimensions. At the population level, measures of divergence 
between distributions are introduced based on areas and lengths associated with the PP- and PPP- plots. At the sample 

level, two test statistics are defined, based on these areas and lengths, to test the null hypothesis of equivalent survival 
curves. A simulation exercise showed that, overall, the new tests are worthy competitors to the log-rank and Wilcoxon 
tests and also to a Levine-type test and a Kolmogorov-Smirnov type test for the case of crossing survival curves. The 

paper also shows how the PP-plot can be used to estimate the hazard ratio and to assess the ratio of hazard functions if 
proportional hazards are not appropriate. Finally, the methods introduced are illustrated on two cancer data sets. 

Keywords: Crossing survival curves, Hazard ratio, Kaplan-Meier, Log-rank test, PP-plot, Wilcoxon test. 

INTRODUCTION 

 The typical way of drawing two or more survival 
curves for comparison purposes, is to plot the survival 
functions against time, as illustrated in Figure 1i where 
two survival curves from Weibull distributions 

  
(pdf : ( t) 1 exp{( t) })  with parameters 

 
= 0.3, = 1.0  (i.e. an exponential distribution) and 

 
= 0.2, = 1.5  are plotted. In addition to the survival 

curves, a QQ-plot can also be constructed where 
corresponding quantiles of the distributions are plotted 
against each other. This plot is shown in Figure 1ii for 
the two curves of Figure 1i. However, the additional 
plot proposed here is the PP-plot where the 
corresponding survival probabilities at time t for the two 
curves are plotted against each other as shown in 
Figure 1iii. For identical survival curves, the plot would 
simply be the diagonal from (0, 0) to (1, 1), or following 
the course of time, from (1, 1) to (0, 0). When 
corresponding times are added along the curve, this 
PP-plot contains the same information as in the 
standard survival plot of Figure 1i although the shapes 
of the individual curves are harder to assimilate. For 
instance, the median survival times for the two curves 
can be read from the curve in Figure 1i and from the 
curve in Figure 1iii (if plotted on a larger scale) as 2.3 
and 3.9. The PP-plot has a long history; two early 
papers describing their use are Wilk and Gnanadesikan 
[1] and Michael [2], but note that usual PP-plots, plot 
cumulative distribution functions (CDF) against each 
other, whereas here, one minus the CDFs are used. 
The only consequence is that the graph starts at (1, 1) 
and moves towards (0, 0), instead of from (0, 0) to  
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(1, 1). The PP-plot extends to three or more curves. 
Figure 1iv shows a PPP-plot in three dimensions for 
the two Weibull distributions of Figure 1i and another 

with parameters 
 
= 0.3, = 0.5 . 

The PP-plot lends itself to assessing differences in 
the survival probabilities and distributions, both at the 
population and sample levels. At the population level, 
the PP-plot can be used to define a new divergence 
measure for distributions. At the sample level, the PP-
plot gives rise to test statistics for the hypothesis of 
identical survival curves. The first statistic to be 
considered will be the estimated absolute area 
between the PP-curve and the diagonal of identical 
curves, the minimum theoretically being zero for 
identical survival curves, and with a maximum of 0.5. 
The second statistic is the estimated length of the PP-

plot, with a theoretical minimum of  2  and maximum 

of 2.  

Clearly, the PP-area is linked to the area under a 

Receiver Operator Characteristic curve (ROC curve), 

widely used in analyses of medical and other data [3]. 

There exists a research monograph on the subject [4]. 

The concept of a ROC curve has been extended to a 

ROC surface for the case of three populations [5] but 

this will not be analogous to the PPP-curve discussed 

here. The PP-area will only be equivalent to the much 

used area under the ROC curve (subtracting 0.5) when 

the PP-curve does not cross the diagonal line.  

The outline of the rest of the paper is as follows: the 

divergence measures are explored in the population 

PP- and PPP-plots section which is followed by a 

section on the use of sample PP- and PPP-plots where 

it is shown how lengths of curves and areas are 

calculated. Testing the equivalence of survival curves 
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is covered in the section on hypothesis testing which is 

followed by a section on estimation of the hazard ratio. 

There is a section describing the use of the PP- and 

PPP-plots on two cancer examples. Lastly, there is a 

discussion section. To calculate the length of a PP- or 

PPP- curve, or the area of the surface defined by the 

curve and the diagonal line requires some basic 

differential geometry; an outline of what is required for 

this paper is given in the Appendix. Note, the terms PP-

plot and PP-curve will be used interchangeably. 

POPULATION PP- AND PPP-PLOTS 

A standard method for measuring the “difference” 
between two distributions is to use the Kullback-Leibler 
(KL) divergence [6,7]. The KL divergence of the 
distribution  F , that has probability density function 

f (t) , from the distribution  G , that has probability 

density function 
  
g(t) , is given by 

  

D
KL

(F G) = f (t)
f (t)

g(t)
dt.  

Now 
  
D

KL
(G F )  is different from 

  
D

KL
(F G) and so 

the symmetric measure of divergence, 

  
D

KL
(F G) + D

KL
(G F )  is often used. 

Here it is suggested that the absolute area defined 

by the PP curve and the diagonal can be used as a 

measure of divergence. This area will be termed the 

PP-area. This could be useful when fitting parametric 

distributions to survival data for various groups and 

wishing to have a measure of the differences between 

the fitted distributions. 

Example 

Consider a PP-curve based on two exponential 

distributions, 
  
[exp(

1
t), exp(

2
t)] . The symmetric KL 

divergence is 

 

(
1 2

)2

1 2

=
(1 )2

, 

where 
 
=

2
/

1
. .  

The divergence as given by the PP-area is easily 
calculated to be 

 

1 2

2(
1
+

2
)
=

1

2(1+ )
.  

The length of the PP-curve (termed the PP-length) 

and subtracting  2  could be an alternative measure of 

divergence. For the two exponential distributions, the 
length of the curve is given by (see Appendix)  

  
{

1

2 exp( 2
1
t) +

2

2 exp( 2
2
t)

1

2 dt,
0

 

or if the curve is reparameterised as 
  
(u,u ),  the length 

is 

  
{1+ 2

u
2( 1)

0

1

}
1
2 du .          (1) 

Now, this particular PP-curve is of prime interest 
because it is the one obtained for any proportion 
hazards situation, since, in this case, for survival 

curves S
1
(t), S

2
(t)  and hazard ratio, 

  
, S

2
(t) = S

1
(t) . 

The PP-curve is given by [S
1
(t),S

1
(t) ] , or 

reparameterized as 
  
(u,u ) . Reversing the roles of 

  
S

1
(t)  and 

  
S

2
(t) , gives the parameterization 

  
(u,u

1

) . 

The integral (1) can be found. For 
 
= 1  the length is 

clearly  2 . When 
 
= 2 , the indefinite integral 

(excluding the constant of integration) of the integrand 
is  

  
{2 1+ 4u

2
+ sinh 1(2u)} / 4  

and hence the length of the curve is 1.4789. For 
general , the indefinite integral of the integrand is 

  

2
u

2 2 1 ( 1)u2

2 ( 2)
F

21
(a,b,c, z)         (2) 

where F
21
(a,b,c, z)  is the hypergeometric function with 

  

a = 1/ 2, b = ( 2) / {2( 1)},c = (3 4) / {2( 1)}and

z = u
2(1 ) / 2 .

  

For two arbitrary survival distributions, the PP-curve 

can be parameterized as 
  
[u,S

2
(S

1

1(u))] , or alternatively 

by 
  
[u,S

1
(S

2

1(u))] . Generally, the length of the curve will 

be impossible to find explicitly and so numerical 
integration will have to be used. This was done for the 
PP-curve in Figure 1iii, the length being 1.470.  

The difference or divergence between three (or 
more) distributions based on length is easily 
generalised from that for two distributions. The length 
of the curve in Figure 1iv is 1.903.  

In three dimensions, the area between the PPP-
curve and the diagonal has to be defined. Imagine a 



Testing the Equivalence of Survival Distributions International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 2      163 

closed wire frame made to follow the PPP-curve and 
the diagonal. A soap film held by the frame would have 
minimal surface area [8] and this could be used to 
define the PPP-area. However, this minimal surface 
area is difficult to calculate and so a pragmatic 
alternative is to use the ruled surface (see Appendix) 
where a straight line is drawn from a point on the 
diagonal, perpendicular to the diagonal, and meeting 
the PPP-curve. As this line moves along the diagonal, 
always perpendicular, and meeting the PPP-curve, it 
sweeps out the “ruled surface”. Using the formula 
(Appendix) for calculating the area of a ruled surface, 
the area between the PPP-curve and the diagonal in 
Figure 1iv is 0.0729. 

Finally, it would be possible to calculate various 

properties of these PP- and PPP-curves, e.g. curvature 

for PP-curves and curvature and torsion for the PPP-

curves using the Frenet formulae [8, 9] but this is not 

entered into here. 

SAMPLE PP- AND PPP-PLOTS 

In practice, survival curves are estimated using the 

Kaplan-Meier method (KM), the Nelson-Aalen or some 

other method (see for example [10]). Figure 4i shows 

the KM curves for two groups of cancer patients, 

details of which will be given later. Figure 4ii shows the 

corresponding PP-plot using the KM curves. Note, 

theoretically, the sample PP-plot will be a sequence of 

unconnected points and so an area or length will not 

exist, even in the limit of an infinite sample size. But, to 

be practical, the sample PP-plot is taken as the PP-plot 

that has the disjoint sequence of points connected 

together.  

Calculation of the Area between PP- and PPP-
Curves and the Diagonal 

The absolute area between the PP-plot and the 

diagonal can be easily found. One method is to view 

the PP-plot as a series of trapeziums with bases 

parallel to the x-axis, sides parallel to the y-axis and the 

fourth side formed by part of the diagonal. The width of 

the bases of the trapesiums are equal to the “jumps” 

parallel to the x-axis and the length of the sides are 

related to the “jumps” in the curve parallel to the y-axis 

(see Figure 4ii). Care has to be taken during 

programming of the procedure when the PP-plot 

crosses the diagonal. However, the preferred method 

here for finding the area is to orthogonally transform 

the PP-plot so that the diagonal becomes the x-axis 

and the y-axis is the difference in survival distributions. 

The resulting “saw-tooth” function is split into 

trapeziums in order to find the total area. Making this 

 

Figure1: Plots of (i) survival curves, (ii) QQ-plot, (iii) PP-plot and (iv) PPP-plot based on Weibull distributions 
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transformation allows the procedure to be easily 

extended to three or more survival curves. 

Let (p
1i
,p
2i
), i = 1,…,N  be the points in the original 

PP-plot. The coordinates of these points in the 

transformed plot are [
p
1i
+ p

2i

2
,
p
2i

p
1i

2
] = (x

i
, y
i
)  say. 

The area of the trapezium with base from 
  
(x

i
, y

i
)  to 

  
(x

i+1
, y

i+1
) , if the x-axis is not crossed, is 

  
( y

i+1
+ y

i
)(x

i+1
x

i
) / 2 , which can then be expressed in 

terms of the 
  
p

ij
's . If the x-axis is crossed then the area 

has to be calculated taking this into account. Note, the 
minimum of the calculated area is of the order 

1/ max(n
1
,n
2
)  where n

1
 and n

2
 are the number of steps 

in the x-axis and y-axis directions of the original PP-
plot. 

The sample PPP-plot, like the sample PP-plot, 
consists of a sequence of points, and again these will 
be joined. The area between the curve and the 
diagonal from (0,0,0) to (1,1,1) can be calculated in a 
similar manner to that for the PP-plot, although not in 
such a straightforward manner. First, the coordinates of 
the plot are transformed to a new set of orthogonal 

coordinates, 
  
(x

i
, y

i
, z

i
)  given by 

[( p
1i
+ p

2i
+ p

3i
) / 3,( p

1i
p
2i
) / 2,( p

1i
+ p

2i
2p

3i
) / 6].  

The area now comprises a series of “twisted” 
trapeziums, each with its base on the x-axis and sides 
orthogonal to the x-axis. Consider the ith twisted 

trapezium, and let its base be the line from (x
i 1
,0,0)  to 

  
(x

i
,0,0) . The sides are the lines from 

  
(x

i 1
,0,0)  to 

(x
i 1
, y
i 1
, z
i 1
)  and from (x

i
,0,0)  to (x

i
, y
i
, z
i
)  and the 

fourth side is the line from 
  
(x

i 1
, y

i 1
, z

i 1
)  to 

  
(x

i
, y

i
, z

i
).  

The area of this twisted trapezium will be defined as 
the area of the ruled surface obtained as the first side 
of the twisted trapezium is moved along the x-axis, 
following the top edge and ending at the second side. 

The ruled surface is given by 

  

D(u,v) = [(x
i 1

+ u(x
i

x
i 1

),0,0]+ [0,v{y
i 1

+ u( y
i

y
i 1

)},

v{z
i 1

+ u(z
i

z
i 1

)}],
 

from which the partial derivatives with respect to  u  and 

 v , 
 
D

u
 and 

 
D

v
, can be found and then the surface area 

found numerically using formula (1) in the Appendix. 
The area required is the sum of the individual areas of 
the twisted trapeziums, noting that in the special case 
where the top edge of the trapezium crosses the 

diagonal, the area is then formed as the area of two 
triangles. 

Calculation of the Length of PP- and PPP-Curves 

It would be pointless calculating the length of the 
sample PP-curve as the sum of the actual lengths of 
the horizontal and vertical steps within the plot as this 
would nearly always give the value 2. Instead, the PP-
curve is smoothed by fitting an appropriate function. 
There are several possible choices of function, 
including splines, but here the following polynomial is 
used and is fitted to the transformed points of the 

curve, (x
i
, y
i
) : 

y = x( 2 x)(
0
+

1
x +

2
x
2
+

3
x
3 ).   

Note, the polynomials are forced to pass through (0, 

0) and 
 
( 2,0) . The function can easily be fitted as a 

multiple linear regression. 

Similarly, for PPP-curves, multivariate multiple 
regression can be used to fit the polynomial 

  

( y, z) = [x( 3 x)(
10
+

11
x +

12
x

2
+

13
x

3 ),

x( 3 x)(
20
+

21
x +

22
x

2
+

23
x

3 )].
 

Higher order polynomials could of course be used. 

HYPOTHESIS TESTING FOR SURVIVAL CURVES 

Testing the equality of two or more survival curves 
has a long history, with the log-rank test (Mantel-Cox 
test, Peto-Mantel-Haenszel test) probably being the 
most widely used test for this purpose [11, 12]. The 
construction of this test and its relationship to the Cox 
proportional hazards model is described in many texts. 
Briefly, the test for the two group case can be 
constructed from a series of  2 2  tables, one for each 
of the distinct event times within the data, the entries in 
the table being the number of events for each group at 
the specific event time and the number surviving 
beyond the specific event time. The statistic is 

  

Q =

w
j
(d

1 j
e

1 j
)

j=1

r{ }
2

w
j

2v
1 jj=1

r
          (4)

where 
 
d

ij
 is the number of events in group i at the jth 

event time, 
 
e

ij
 is the expected number of events within 

group i at the jth event time, 
 
v

ij
 is the variance of the 

number of events within group i at the jth event time 

and w
j
= 1 . Let n

ij
 be the number of patients at risk in 
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the ith group just before the jth event time. Under the 
null hypothesis of identical survival functions and if 
censoring is independent of group, 

 
Q  has, 

asymptotically, a chi-squared distribution with one 
degree of freedom.  

This test is optimal under the proportional hazards 
assumption and so the new tests proposed here, like 
any other new test, are not expected to be more 
powerful in this particular case. However, in many 
situations, the log-rank test is not optimal and other 
tests are superior. Different weights in (4) give rise to 

various other tests: 
 
w

j
= n

j
 gives rise to the Wilcoxon 

test [13]; 
 
w

j
= n

j
 gives rise to the Tarone and Ware 

test [14] and these can outperform the log-rank test in 
various situations. For instance, the Wilcoxon test is 
more appropriate when the hazard ratio is more 
extreme at early survival than at later survival since 
early survival is given more weight; the Tarone and 
Ware test lies in between. A class of tests were 
introduced that were optimum for a range of 
alternatives to proportional hazards including the log-
rank and Wilcoxon tests [15]. Similarly, [16] introduced 
a class of tests that incorporated many of the existing 
tests.  

Several authors have considered the case of 
crossing survival curves or hazard functions [17, 18, 
19, 20]. [21] shows how the curves can be compared 

after pre-specifying a time point, t
0
, where the curves 

are expected to cross. [22] shows how Cox 
proportional hazards models can be adjusted by allow 
for crossing survival curves by introducing an 
interaction of treatment group with a covariate involving 
time (e.g. log of the time since surgery). However, this 
covariate has to be specified and modelled. [23] 
compared several methods for crossing survival curves 
and recommended a Levene-type test for this situation. 
[24] introduced a model that parameterises short-term 
and long-term hazard ratios and used this to develop a 
log-rank type test with adaptive weights [25]. On a 
different track from rank-type tests, Kolmogorov-
Smirnov type tests have been developed [26]. [27] 
proposed a test based on the absolute difference of the 
area under the survival curves and show that the test 
outperforms the log-rank, Wilcoxon and Kolmogorov-
Smirov tests for situations where survival curves cross 
and, where survival curves are close to start with but 
then diverge. The test is not very inferior under 
proportional hazards. The test statistic estimates the 
absolute difference under the survival curves using 
Kaplan-Meier estimates of the curves, with the variance 
of the statistic calculated using Greenwood's formula. 
There is a large drawback in that, unfortunately, the 
calculation needs the value of the correlations between 
absolute differences in the two estimated survival 
curves at all pairs of observed survival times. The 

authors take this correlation to be 0.5 for all pairs - but 
is this realistic? 

The two test statistics proposed here are the PP-
area and PP-length tests for the two group case and 
the PPP-area and PPP-length tests for the three group 
case which could be extended to four or more groups. 
These new tests are explored in the next two 
subsections. Under the proportional hazards 
assumption, there is a strong linear relationship 
between the squared PP-area and the PP-length and 
so the two tests based on these would be expected to 
perform similarly. The test using PP-length will 
probably perform better when the PP-curve keeps 
crossing or continually being attracted towards the 
diagonal, i.e. when the area is small but the length is 
large. One attractive feature of these tests is that the 
values of the test statistics have an immediate 
geometric interpretation, unlike that for the log-rank test 
say, which appears as just a number. 

Tests Based on PP-Area and PP-Length 

The distribution of the PP-area under the null 
hypothesis of identical survival curves is best 
determined by simulation since it would be very difficult 
to find its true distribution although some progress on 
this has been made and some simulation studies have 
given a hint as to the nature of the distribution (further 
details are available from the author). However, 
simulation to find critical values for the distribution of 
the PP-area under the null hypothesis is very easy 
since the only distribution needed for the simulation is 
the uniform distribution on the interval [0, 1]. This is 
because under the null hypothesis, the PP-curve, 

  
[S

1
(t),S

2
(t)] , can be re-parameterised as 

  
(u,u) . Table 1 

shows the 90%, 95% and 99% critical values for 

n
1
,n
2
= 50,100,200,500 , based on one hundred 

thousand simulations for each combination of sample 
sizes. Clearly, the critical values decrease as sample 
size increases. A similar simulation exercise was 
carried out for PP-length with critical values also shown 
in Table 1. 

When random censoring occurs, then the critical 
values do not significantly change for the PP-area test, 
for instance with 50% censoring the critical values for 
PP-area in Table 1 become 0.074, 0.083 and 0.101. 
For the PP-length test the changes are slight for a 
small amount of censoring, but become more 
pronounced with increased censoring, for example, 
with 50% censoring the three critical values in Table 1 

for 
  
n

1
= n

2
= 100  would be 1.449, 1.470 and 1.515. 

When censoring is heavy towards the end of the 
survival distributions, the PP-plot will not reach the 
origin and a choice has to be made as to whether (i) 
the final point is connected to the origin, essentially 
modelling the tail of the distributions and then the PP-
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area calculated from the origin to (1,1), or (ii) simply 
calculate the PP-area from the point where the PP-plot 
ends to the point (1,1) and similarly for PP-length. 

Also, in practice, it is recommended that the critical 

values of the distribution for particular values of 
  
n

1
 and 

n
2
 are found by simulation from the uniform 

distribution, but applying the pattern of censored values 
that has been seen in the data. So, if the ith ordered 
observation is censored in a particular group, then the 
ith ordered simulated observation is also censored for 
that group. 

Many simulations were carried out to investigate the 

dependence of the critical points on n
1
 and n

2
. To 

illustrate the findings, The 90%, 95% and 99% points 

for PP-area and PP-length - 2  were plotted (not 

shown here) against 

  

n
1
+ n

2
(1

n
1

n
2

)

1

2

,(n
1

n
2
)  for 

various values of n
1
 and n

2
. The values for (n

1
,n
2
)  

were randomly generated with each 
  
n

1
 and 

  
n

2
 taken 

from the discrete uniform distribution on (30, 500) with 

  
n

1
 taken as the minimum of the two sample sizes. 

Some equal sample size cases were also added. A 
very clear linear relationship was found. Also, it was 
noted from QQ-plots that 

k n
1
+ n

2
(1

n
1

n
2

)

1

2

PP area,k  a constant, 

approximately follows a chi-squared distribution on six 
degrees of freedom. However the approximation is not 
good enough in the tail of the distribution to allow the 
distribution to give required critical values. 

The power of the PP-area and PP-length tests was 
investigated using simulation and compared to that for 

the log-rank and Wilcoxon tests, the Levine-type test 
proposed by Le [23] and the Kolmogorov-Smirnov type 
test of Fleming [26]. The following three scenarios were 
considered: (i) proportional hazards using exponential 
distributions for the two distributions, the first with 

parameter 
 1

= 1  and the second with various values of 

2
; (ii) an exponential distribution with parameter 

 1
= 1  for the first distribution and for the second, a 

Weibull distribution with 
 2

= 1  and various values of 

 2
 giving crossing survival curves; (iii) an increasing 

hazards scenario without the survival curves 
necessarily crossing, using an exponential distribution 

for the first distribution with parameter 
 1

= 1  and an 

equal mixture of two exponential distributions with 

parameters 
  1

a  and 
  1

+ a  respectively for the 

second distribution.  

The results are shown in Figure 2i, ii and iii for the 
three scenarios where estimated power is plotted 
against the various distribution parameters. (The key is 
shown in Figure 2iii; A - PP-area test, L - PP-length 
test, LR - log-rank test, W - Wilcoxon test, LV - Levine, 
KS - Kolmogorov-Smirnov). The significance level has 
been chosen as 0.05 and the estimated power is given 
by the proportion of times, in ten thousand simulations, 
a test rejects the null-hypothesis of equivalent survival 

curves. The sample sizes were 
  
n

1
= n

2
= 100.  Figure 2iv 

shows the power for scenario (ii) but with different 
levels of censoring. Figure 2i shows that for the 
proportional hazards situation (i), the log-rank test is 
more powerful than the others, but the PP-area and the 
Wilcoxon tests have only slightly less power, the KS 
and PP-length test slightly less power again and, as 
expected, the Levine-type test has poor power. For the 
crossing survival curves, (ii), the Levine-type test and 
the PP-length tests have very similar and best power, 
the PP-area and KS tests have less power and the log-

Table 1: Critical Values for PP-Area and PP-Length Tests 

 n2=50 n2=100 n2=200 n2=500 

PP-area 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 

n1=50 0.100 0.117 0.151 0.087 0.101 0.130 0.079 0.092 0.119 0.074 0.086 0.111 

n1=100    0.071 0.083 0.107 0.061 0.071 0.092 0.055 0.064 0.082 

n1=200       0.050 0.058 0.076 0.042 0.049 0.063 

n1=500          0.031 0.037 0.047 

PP-length 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 

n1=50 1.470 1.481 1.504 1.456 1.465 1.484 1.450 1.457 1.473 1.446 1.452 1.466 

n1=100    1.443 1.449 1.461 1.436 1.440 1.450 1.431 1.435 1.443 

n1=200       1.429 1.432 1.439 1.424 1.427 1.431 

n1=500          1.420 1.421 1.424 
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rank test and the Wilcoxon test do badly. For the 
increasing hazard ratio situation (iii), the PP-area, the 
PP-length and the KS tests all perform similarly with 
the highest power, the Levine-type and Wilcoxon tests 
have less power and the log-rank test performs badly. 
Figure 2iv shows that for crossing survival curves 

(where 
 

= 1.6 ), power decreases as the censoring 

increases for all the tests except the PP-area test 
where power tends to increase. Clearly, the PP-length 
test has higher power than the Levine-type test when 
censoring occurs. At 50% censoring the power of the 
PP-area test matches that of the PP-length test. 

ESTIMATION OF THE HAZARD RATIO 

The PP-plot is ideal for estimating the hazard ratio 
in the case of proportional hazards, where the plot is 

characterized as 
  
(u,u ) . This function can easily be 

fitted in a variety of ways, for instance, using simple 

linear regression through the origin of 
  
log( p

2
)  on 

  
log( p

1
)  to estimate , or non-linear regression 

minimising 
  

( p
2i

p
1i

)
2

. The latter was the method 

used here but it does imply that the two distributions 
take different roles, one the “response” variable and 
one the “regressor” variable. It is straightforward to put 
the two distributions on an equal footing by taking the 

“error" associated with a point on the PP-plot as the 
distance from the point to the closest point on the 
diagonal (i.e. the line perpendicular to the diagonal that 
passes through the point on the PP-plot). The 
regression can be easily carried out on the transformed 
data. 

Many data sets were simulated for a variety of 
hazard ratios and sample sizes and the estimated 
hazard ratio compared to the true value. The results 
were also compared to the results from Cox 
proportional hazards models for estimating the hazard 
ratio. The bias and mean square error (MSE) were 
compared. The estimates based on the PP-plot were 
not quite as good as those based on Cox proportional 
hazards, Table 2 showing a small set of the 
comparisons. It is noted that the bias in estimating the 
hazard ratio is always positive. This means that the 
bias and MSE for the PP-curve estimate can be 

reduced by regressing 
  
p

2
 on 

  
p

1
 to obtain , the 

estimate of  and then regressing p
1
 on p

2
 to obtain 

 
, the estimate of 

 
1 / . The two estimates are then 

combined as 
  

/  which does reduce the bias but is 

still slightly greater than that from the Cox model.  

If proportion hazards are not appropriate in a 
particular situation, then the PP-plot allows a 

 

Figure 2: Plots of power, for significance level 0.05 for the following scenarios: (i) proportional hazards, (ii) crossing survival 

curves, (iii) an exponential distribution against a mixture of two exponential distributions, (iv) crossing survival curves with 
censoring. 
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description of how the ratio of the hazard functions 
deviates from a constant (proportional hazards). Let the 

two survival distributions be S
1
 and S

2
= f (S

1
)  where 

 
f  is an unknown monotonically non-decreasing 

function. Now a standard result is S '(t) = S(t)h(t)  and 

so from S
2
(t) = f{S

1
(t)},  

S
2

' (t) = f '{S
1
(t)}S

1

' (t)

S
2
(t)h

2
(t) = f '{S

1
(t)}S

1
(t)h

1
(t)

 

  

h
2
(t) / h

1
(t) =

f '{S
1
(t)}S

1
(t)

f {S
1
(t)}

         (5)

To model the ratio of the hazard functions, the 

function 
 
f  has to be chosen and fitted and ideally it 

passes through (0, 0) and (1, 1). Here, the chosen 

function is 
  
f (S

1
) = S

1

exp{ (S
1

)}
, where  is a polynomial in 

  
S

1
. Using equation (5), 

  
h

2
/ h

1
={1+ S

1
log(S

1
) '(S

1
)}exp{ (S

1
)} . This function is 

easily fitted to 
  
( p

1i
, p

2i
)  using standard least squares 

on the complementary log-log transformation for 
  
p

1
 

and for 
  
p

2
. Once fitted, the plot of 

  
h

2
/ h

1
 against 

  
p

1
 or 

against the corresponding times visually describes how 
the ratio of the hazard functions varies. Care has to be 
taken so that overfitting does not occur giving rise to an 
unrealistic plot. For illustartion, data were simulated 
from various exponential and Weibull distributions and 
the ratio of the hazard functions modelled. Figure 3 
shows some of these. Figure 3i shows the ratio of 
hazard functions obtained for data simulated from two 
exponential distributions with parameter values of 1.0 

and 1.25 using a polynomial of order 1 for 
  

(S
1
).  As 

expected, the ratio is more or less constant. Figure 3ii 
show a PP-plot for data simulated from an exponential 
distributions with parameter value of 1.0 and a Weibull 

distribution with parameter values of  = 1.25  and 

 
= 1.5 , together with a curve fitted for an order 3 

polynomial for . Figure 3iv shows the ratio of hazard 

functions based on this fitted curve, whilst Figure 3iii 
shows the equivalent when a polynomial of order only 1 
is chosen for .  

TWO CANCER EXAMPLES 

[21] uses data from a study comparing disease-free 

survival for autologous and allogenetic bone marrow 

transplants for follicular lymphoma [28]. Details are 

given in their paper where the emphasis is on survival 

after a pre-specified time point, but here the data are 

only used to illustrate the PP-plot, PP-area and PP-

length tests, comparing them to standard tests. There 

were 596 observations in the autologous group and 

175 in the allogenic group. 

Figure 4i shows the Kaplan-Meier survival curves 
and Figure 4ii the corresponding PP-plot. The various 
standard tests for equality of survival distributions gave 
the following results: log-rank, p = 0.443; Wilcoxon, p = 
0.169; Tarone, p = 0.666; Peto, p = 0.406; Modified 
Peto, p = 0.403; Fleming, p = 0.361. The area between 
the curve in the PP-plot and the diagonal (ending 
where the PP-plot ends and with a bounding line 
perpendicular to the diagonal) is 0.066 with estimated 
p-value <0.0001 based on the simulation of 100,000 
values under the null-hypothesis. The length of the PP-
curve was calculated as 1.028 with associated p-value 
of 0.005. The Levine-type test and the Kolmogorov-
Smirnov test both rejected the null hypothesis with p < 
0.0001.  

Figure 4iii shows how the ratio of hazard functions 

varies with 
  
p

1
 and equivalently, Figure 4iv shows how 

the ratio of hazard functions varies with time. The ratio 
starts with a value of approximately 2.3, drops rapidly 
to 0.1 and increases steadily to approximately 0.5. 

Table 2: Bias and MSE when Estimating the Hazard Ratio 

 
= 1.2  

 
= 1.2  

 
= 1.5  

 
= 2.0  

  Cox PH PP-curve Cox PH PP-curve Cox PH PP-curve 

n1 n2 bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE 

50 50 0.043 0.068 0.049 0.094 0.062 0.114 0.072 0.160 0.077 0.215 0.096 0.335 

100 100 0.018 0.033 0.018 0.046 0.015 0.064 0.028 0.070 0.030 0.095 0.043 0.138 

200 200 0.009 0.017 0.012 0.021 0.017 0.025 0.023 0.035 0.019 0.045 0.030 0.067 

= 1.5  

50 50 0.017 0.015 0.032 0.095 0.041 0.115 0.064 0.172 0.044 0.227 0.082 0.357 

100 100 0.019 0.031 0.016 0.042 0.027 0.054 0.038 0.080 0.036 0.098 0.038 0.137 

200 200 0.001 0.015 0.004 0.020 0.014 0.025 0.015 0.036 0.014 0.045 0.019 0.070 
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Figure 3: Ratio of hazard functions: (i) plot for two exponential distributions (
1
= 1,

2
= 1.2),  (ii) PP-plot and fitted curve for an 

exponential distribution 
 
(

1
= 1)  versus a Weibull distribution 

 
(

1
= 1, = 1.3)  and fitted curve for a polynomial of order 3, (iii) ratio 

of hazard functions if the fitted curve is chosen to be order 1 and (iv) ratio of hazard functions if the fitted curve is chosen to be 
order 3. 

The second example relates to survival times for a 

subgroup of patients within a pancreatic cancer trial. 

The patients of this subgroup have lymph nodes 

involved with the cancer, have had a resection where 

there has been a positive resection margin and then 

received chemotherapy. Interest here is in the 

difference in survival according to tumour 

differentiation, which is essentially how the cells of the 

tumour compare to cells of normal tissue. The 

categories are: well-differentiated which means the 

tumour cells are not too different from normal cells, 

then in decreasing order, moderately-differentiated and 

poorly-differentiated. Figure 5 shows the K-M curves 

for the three groups and the corresponding PPP-plot. 

Clearly, survival is worse when differentiation is poor. 

The log-rank statistic for differences in survival curves 

is 7.41 (p=0.025), the Wilcoxon test statistic is 15.91 (p 

<0.001), the PPP-area statistic is 0.259 (p=0.011) and 

the PPP-length statistic is 1.815 (p=0.014). All four 

tests reject the null hypothesis of equivalent survival 

distributions. Further analyses are not shown here 

where pairs of survival curves are compared using PP-

plots and comparisons of hazard functions made. 

DISCUSSION 

The main thrust of this paper has been to introduce 

two new tests for testing the null hypothesis of equal 

survival distributions. Alongside this, has been the 

proposal that PP-plots might be a useful graphical 

method for displaying differences in survival curves 

alongside standard Kaplan-Meier plots. Also a new way 

of estimating the hazard ratio has been suggested, or, 

if proportional hazards are not appropriate, a way of 

displaying the behaviour of the changing ratio of the 

hazard functions.  

The search for the ultimate test statistic that is the 

most powerful in all situations for testing for equal 

survival distributions is doomed to failure. Such a test 

does not exist. The new tests are in the same family as 

the log-rank test and its associated tests because they 

are non-parametric and only depend on the order of 

events and not on the times of the events. An 

appealing property of the new tests is that they are not 

designed for any particular situation for the survival 

distributions, unlike the log-rank test that is designed to 

perform well under proportional hazards. Another 
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Figure 4: Follicular lymphoma example: (i) KM curves, (ii) PP-plot, (iii) ratio of hazard functions plotted against 
  
p

1
 and (iv) ratio 

of hazard functions plotted against time. 

 

 

Figure 5: Pancreatic cancer example: KM curves and PPP-plot. 

property is that the tests can be conditioned on the 

observed censoring pattern within the survival data and 

do not rely on the assumption of random censoring, 

although non-random censoring can lead to bias in the 

estimation of the Kaplan-Meier curve, a problem for all 

log-rank type tests. From power considerations, it was 

shown that the tests perform well in various situations, 

outperforming other tests. 
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The PP- and PPP-area, the PP- and PPP-length 

tests were used on two data sets for illustrative 

purposes, one relating to follicular lymphoma and the 

other to pancreatic cancer. Whether there will be 

widespread use of the new tests and the PP- and PPP-

plots in the future will depend on availability of 

software. MATLAB (v 7.11.0584) programs were 

written for the analyses and graphs in this paper. 

However, an R-package will be built and deposited in 

the Comprehensive R Archive Network (CRAN) for 

others to use. Also further research is being 

undertaken on the distributional properties of the area 

and length tests. 
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APPENDIX 

Some basic differential geometry 

This section outlines some basic differential 
geometry of curves and surfaces needed for the PP- 
and PPP-plots.There are many introductory books (for 
example [8, 9]). 

Let I  be an open interval in the real line R . Then a 

curve in three-dimensional Euclidean space, E3 , is 
defined by the mapping 

   
x : I E

3,t [x
1
(t), x

2
(t), x

3
(t)] = x(t) . One can imagine 

the curve as the path mapped out as a particle moves 
in time  t  in the Euclidean space. For example, a 
particle starting at t = 0 and finishing at t = 2, when 
moving along the curve, (2+t, 3+4t, -5-t), will have 
described a straight line from (2,3, -5) to (4,11, -7). In a 

similar manner, curves can be defined in   E
2  and in  E

n  
in general.  

As the particle describes the curve, there is a notion 
of velocity and speed. The velocity vector of x at t is  

   
x '(t) = [x

1
'(t), x

2
'(t), x

3
'(t)].   

This is the velocity at the point 
   
x(t) . The speed of 

the curve at 
   
x(t)  is 

  
{x '

1
(t)2

+ x '
2
(t)2

+ x '
3
(t)2}

1
2 .   

 

Note, we require that curves are regular, which 
means at no point is the velocity vector zero. 

Example 

Consider the curve given by  

  
[exp(

1
t), exp(

2
t), exp(

3
t)]  for   0 < t < .  

This is the PPP-plot for three exponential survival 
functions. It has velocity vector 

  
[

1
exp(

1
t),

2
exp(

2
t),

3
exp(

3
t)]   

and speed 

  
{

1

2 exp( 2
1
t) +

2

2 exp( 2
2
t) +

3

2 exp( 2
3
t)}

1
2  at the 

point 
  
[exp(

1
t), exp(

2
t),exp(

3
t)] . 

The arc length, or distance along the path of the 

curve, from 
  
t = t

0
to t = t

1
 is given by  

  
{x

1

' (t)2
+

t
0

t
1

x
2

' (t)2
+ x

3

' (t)2}1/2
dt  

Example 

The arc length of the above curve defined by 
0 < t <1  is 

  
{

1

2 exp( 2
1
t) +

2

2 exp( 2
2
t) +

3

2 exp( 2
3
t)}

1
2 dt

0

1

  

and this, like for most curves, has no explicit solution 
and has to be found numerically for particular values of 
the parameters. 

Curves can be re-parameterised, changing the 

parameter t  to another. In the example, if 
  
u = exp( t),  

then the new parameterisation is 

  
(u 1 ,u 2 ,u 3 )   

and the arc length is now given by 

  
{

1

2
u

2
1

1/e

1

+
2

2
u

2
2 +

3

2
u

2
3 }

1
2 du .  

The Frenet formulas allow the geometry of a curve 
to be studied, assessing properties such as curvature 
and torsion, but these are not needed for this paper. 

Let D be an open set in   E
2 . A surface (or part of a 

surface) in   E
3  is defined by a one-to-one mapping  

x :D E
3,(u,v) [x

1
(u,v),x

2
(u,v),x

3
(u,v)] = D(u,v).  
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Example 

The mapping 
  
[u,v,exp(

1
u

2
u vuv)] , for 

  0 < u,v <  and 
  
0 v

1
,

2
, gives the surface of a 

bivariate joint survival function. 

The surface area of a surface over a particular 
region is given by 

  u v
{(D

u
D

u
)(D

v
D

v
) (D

u
D

v
)2}

1
2         (1) 

where D
u
 and D

v
 are partial derivatives and  is 

the dot product. 

Example 

For the bivariate exponential survival distribution 

above, with 
 1

=
2
= 2  and   v = 1 , the surface is given 

by 

  
D = [u,v,exp{ (2u + 2v + uv)}]   

and hence the partial derivatives are given by 

  

D
u
= [1,0, (2 + v)exp{ (2u + 2v + uv)}]

D
v
= [1,0, (2 + u)exp{ (2u + 2v + uv)}].

 

Then after some algebra the surface area between 

  0 < u,v <1  is given by 

  
[1+ (4 + u + v)exp{ (4u + 4v + 2uv)}]

1
2

0

1

0

1

 

which when calculated numerically has the value 
1.1017. 

Here, only one type of surface will be needed and 
that is a ruled surface which is a surface generated by 
the motion of a straight line called the generator or 

ruling. Let    x : I E
3  be a curve in   E

3  and let 

  
y : I E

3  be a smooth function so that 
  
y(u) 0  for all 

 u I . The ruled surface is given by 

  
D(u,v) = x(u) + vy(u), u I ,v R.  

 The curve 
  
x(u)  is called the directrix and 

  
y(u)  is 

the ruling. The surface area of the ruled surface is 
found as in the example above using formula (1). 
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