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Abstract—Cooperative communication has been shown to have
great potential in improving wireless link quality. Incorporating
cooperative communications in multi-hop wireless networks has
been attracting a growing interest. However, most current re-
search focuses on either centralized solutions or schemes limited
to specific network problems. In this paper, we propose a
distributed framework that uses Network Utility Maximization
(NUM) to optimize the following joint objectives: flow control,
routing, scheduling, and relay assignment; for multi-hop wireless
cooperative networks with general flow and cooperative relay
patterns. We define two special graphs, Hyper Forwarding
Graphs (HFG) and Hyper Conflict Graphs (HCG), to represent
all possible cooperative routing policies and interference rela-
tions among the cooperative relays respectively. Based on HFG
and HCG, a stochastic mixed-integer non-linear programming
problem is formulated. We then propose lightweight algorithms
to solve these in a fully distributed manner, and derive the
theoretical performance bounds of these proposed algorithms.
Simulation results verify our theoretical analysis and reveal the
significant performance gains of our framework, in terms of
throughput, flexibility, and scalability. To our knowledge, this
is the first distributed cross-layer optimization framework for
multi-hop wireless cooperative networks with general flow and
cooperative relay patterns.

I. INTRODUCTION

Cooperative communication schemes [1]-[7] are well-
recognized as an effective way of exploiting spatial diversity to
significantly improve the quality (e.g. capacity and reliability)
of wireless links at the physical layer. The key idea is that mul-
tiple wireless single-antenna devices cooperatively share their
antenna resources and aid each other’s wireless transmission
by forming virtual and distributed antenna arrays. During the
last decade, such schemes have been extensively studied at the
physical layer in two-hop wireless networks.

Recently, there has been an increasing interest in incor-
porating cooperative communication schemes in multi-hop
wireless networks [8]-[12] to improve the end-to-end network
performance such as throughput [9], energy consumption [13],
and reliability [12]. However, these proposed schemes are
often centralized or restrictive. Specifically, most of them
focus on specific cases such as network topologies (e.g. two-
hop networks [9]), traffic flow patterns (e.g. single source-
destination pairs [8]), network problems (e.g. routing [13]), or
cooperative relaying patterns (e.g. single relay [10]).

For cross-layer optimization in multi-hop networks with
general network topologies and traffic flow patterns, Net-
work Utility Maximization (NUM) approaches [14]-[16] have

shown to be powerful tools, but most of them focus on wireless
networks with pure SISO links. The use of NUM techniques
for wireless cooperative networks is however very few [9],
[17]. Further, such work is still restricted to specific network
topologies (e.g. two-hop networks [9]) or cooperative relay
patterns (single relay [17]).

In this paper, we propose a distributed cross-layer optimiza-
tion framework for joint flow control, routing, scheduling, and
relay assignment in multi-hop wireless cooperative networks
with general network topologies, cooperative relaying, and
traffic flow patterns, by combining the NUM technique with
novel graph-theoretic approaches. Our overarching goal is
to design lightweight and efficient distributed algorithms for
maximizing network utility (e.g. throughput and fairness) by
exploiting the broadcast advantages of wireless transmissions,
the potential capacity gains of cooperative transmissions, and
useful interactions among different layers.

The proposed framework considers time-varying Rayleigh-
fading channels, and the following three one-hop wireless
transmission schemes [13]: direct transmission over single-
input single-output (SISO) links, broadcast over virtual single-
input multiple-output (SIMO) links, and cooperative beam-
forming (e.g. [18]) over virtual multiple-input single-output
(MISO) links. We assume that time division multiple access
(TDMA) is adopted at the link layer and use the commonly-
used node exclusive model (e.g. [19], [20]) to model interfer-
ence among hybrid direct, broadcast, and beamforming links.
The following four key issues are addressed in our framework.

o Cooperative Scheduling and Relaying. At the link

layer, how to schedule the hybrid direct, broadcast and
beamforming links for concurrent contention-free trans-
missions. This scheduling problem also determines co-
operative relay assignment: the scheduling of a virtual
SIMO or MISO link implies that a set of nodes incident
to the scheduled link are assigned as cooperative relays.
o Cooperative Routing. At the network layer, how to
compute optimal end-to-end cooperative routing policies
(single path or multipath), which consist of sequences of
hybrid one-hop direct, broadcast, and beamforming links.

« Flow Control. At the transport layer, how to allocate the

rate of each flow to achieve network utility optimization
and system stability (i.e. the allocated flow rates can be
afforded by the underling routing, scheduling and time-
varying channel capacities).

o Complexity Reduction. The optimal cooperative routing



problem [13], [21] and the optimal scheduling problem
(even for wireless networks with pure direct links) [22]
have been proven to be NP-hard in general. Consequently,
the tradeoff between complexity and optimality is also a
key issue considered in our framework.

A. Our Contributions

The major contributions of this paper are summarized as
follows:

o« We propose two specific concepts of graphs, the Hy-
per Forwarding Graph (HFG) and the Hyper Conflict
Graph (HCG), to respectively represent general end-to-
end cooperative routing policies and interference relations
among hybrid direct, broadcast, and beamforming links
under the node-exclusive interference model. Based on
HFG and HCG, we formulate a stochastic mixed-integer
non-linear programming problem for joint flow control,
routing, scheduling, and cooperative relay assignment in
multi-hop wireless cooperative networks, characterized
by the Rayleigh-fading channel model.

o A distributed global optimal algorithm is developed to
solve the formulated optimization problem by using La-
grangian duality theory and novel graph-theoretic ap-
proaches. The proposed algorithms automatically adjust
flow rates, as well as select forwarding links and coop-
erative relays based on the time-varying channel state.

o As the optimal solution to the cooperative scheduling
problem has high computational complexity, we propose
a lightweight greedy algorithm to solve the cooperative
scheduling problem in a fully distributed way. In addition,
the number of all possible cooperative relays could be of
the exponential order of the total number of nodes in the
network, but most of them are not useful for forwarding
data. To further reduce the system complexity, we develop
an effective scheme to delete such useless relays.

o We provide formal proofs for the optimality and con-
vergence of the global distributed system, and derive
the worst-case performance and overhead bounds of the
greedy scheduling algorithm. Simulation results demon-
strate that 80.2% network throughput improvement can be
achieved by incorporating cooperative communications,
and the performance of the distributed greedy scheme
with much less convergence time is close to the optimal
(more than 88%).

o We also provide three useful extensions: global outage
probability minimization, all possible cooperative routing
policies, and Lyapunov queueing systems, which demon-
strate the flexibility of our framework.

B. Related Work

1) Multi-hop Wireless Cooperative Networks: Recently,
there have been increasing research efforts in applying cooper-
ative communication in multi-hop wireless networks [8]-[12],
[23], [24]. For distributed approaches, the cross-layer schemes
proposed in [23], [25] are heuristic and cannot provide perfor-
mance guarantees. Based on dynamic programming, energy-
aware cooperative routing algorithms are developed in [13],

[26] for general cooperative relaying patterns and network
topologies, as for our paper. However, their approaches con-
sider the delivery of individual messages rather than end-
to-end flows. [12] presents a distributed routing scheme to
minimize end-to-end outage probability based on the Bellman-
Ford algorithm. However, it is limited to the linear network
topologies and single source-destination pair. [8] presents a
centralized approach to maximize the rate of a single end-to-
end flow. [10] aims to maximize the minimal rate of multiple
competing flows (i.e. max-min optimization). However, this
work is not only centralized and deterministic, but also only
considers the specific three-node model for cooperative relay-
ing.

2) Network Utility Maximization: NUM techniques [14],
[27], [28] such as Lagrange duality and Lyapunov optimization
have been studied extensively for various problems in wireless
networks with pure direct links, including routing [29], flow
control [30], random access control [28], power control [31],
and scheduling [32]. In addition, NUM-based approaches have
also been used in network coding and opportunistic routing to
exploit broadcasting advantages (i.e. receiver-side diversity) of
wireless communications [33]—[35], which are similar to our
work. However, none of above focus on wireless networks
with cooperative communications that exploit the wireless
diversities on both the receiver and transmitter sides. Recent
comprehensive surveys of NUM research can be found in
[14]-[16].

3) Using NUM in Wireless Cooperative Networks: Little
NUM-based research exists for wireless cooperative networks
[9], [17]. In [9], a centralized approach is proposed that
extends backpressure algorithms to rwo-hop wireless networks
with general cooperative communication patterns. In contrast
to [9], we focus on a fully distributed approach for multi-
hop wireless cooperative networks with arbitrary network
topologies. [17] formalizes a deterministic convex optimiza-
tion problem for joint congestion control and power control.
However, it assumes restrictive cooperative relaying (i.e. single
relay) and traffic patterns (single commodity). More impor-
tantly, wireless interference is not addressed. By taking general
cooperative relaying patterns, time-varying channel states, and
interference among hybrid direct, broadcast, and beamforming
into account, the stochastic optimization problem, considered
in our framework, is much more realistic and challenging than
that in [17].

Compared with the above related work, our cross-layer
framework considers not only the distributed and stochastic
nature of multi-hop wireless networks, but also general net-
work topologies, traffic flow patterns, and cooperative relaying
patterns. To our knowledge, this is the first work that takes all
these issues into account for multi-hop wireless cooperative
networks.

C. Outline

The remainder of this paper is organized as follows. Section
2 presents the system models and problem formalization.
Section 3 proposes the distributed algorithms of our framework
and corresponding theoretical analysis. Three useful exten-
sions are provided in Section 4. Section 5 presents extensive



simulations. Finally, we conclude the paper in Section 6. All
proofs are placed in Appendices A-D, which can be found in
the supplemental material.

II. SYSTEM MODEL
A. Channel Model

We consider a set of statically-deployed nodes that inter-
communicate through wireless links. The system operates at
discrete time slots ¢ = {0, 1, ...}. Each node is equipped with
a single omnidirectional antenna. For a wireless transmission,
the signal-to-noise ratio (SNR) at the destination y from source
z can be modeled as

SNR,, = P,H,,/BN, (1)

where P, is the transmission power of x, B is the channel
bandwidth, Ny is the noise spectral density, and H, , is the
power gain. We assume that the transmission power is fixed
but not necessarily identical for different nodes. Considering
both path loss and Rayleigh fading, H,, is exponentially
distributed with mean H,, = dis,, where dis,, is the
Euclidean distance between nodes x and y, and « is the
path loss exponent. H, , is assumed to be independently and
identically distributed (i.i.d.) over the time slot. We further
assume that power gain is independent across the links.

The wireless network can be described as a directed graph
G(N, L), where N is the set of all nodes and L is the set of all
direct transmission links (i.e. SISO links). A link (z,y) € L
is considered to exist if the long-term mean SN R, ,, is larger
than a predefined small threshold; all other weak links are
ignored. Every link (z,y) € L can communicate using direct
transmissions. The link capacity of (z,y) is

Coy = Blogy(14+ SNR, ) )

It is worth noting that the actual transmission data rate
should be smaller than the link capacity. To focus on the
systematic cross-layer approach, we do not consider specific
physical-layer details (e.g. modulation and coding), and we
assume that (2) is the maximum transmission data rate that can
be achieved without a decoding error'. However, the essence
of our cross-layer approach is nonetheless preserved.

Let N, = {y|(z,y) € L} be the set of all one-hop neighbors
of a node x. Besides direct transmission, our model also
considers the following two kinds of one-hop transmission
schemes:

Broadcast. A node x can broadcast a message to a set of
nodes RS C N, |RS| > 2. In order to ensure that all nodes
in RS can correctly receive the message, the link quality
of a broadcast transmission is constrained by the minimum
SNR, .,z € RS. Therefore, the capacity of the virtual SIMO
link (z, RS) can be defined as:

" = Bl 1 in SNR,,. ., 3
Cz,RS ogo(1+ min SNR.) 3)
Cooperative Beamforming. If a set of nodes RS C

Ny, |RS| > 2, have duplicate copies of a message to be for-
warded to y, they can phase-align and scale their transmission

'We can also define the e— outage capacity such as in [36] to model the
capacity-outage tradeoff.

signals so that the message can be received coherently by .
The destination node receives multiple copies of the same
information transmitted through different wireless channels
and the equivalent capacity for virtual MISO link (RS, y)
is derived as:

crsy = Blogy(1+ >  SNR.,) (4)
z€RS

For further details and real-world implementation of this
physical layer scheme, we refer the reader to [6], [7], [18]
and references therein. We assume that the channel capacities
(2)-(4) can be estimated at the beginning of every slot. Since
power gain H, , is i.i.d. over time, the capacities (2)-(4) of
direct, broadcast, and beamforming links are also i.i.d. over
time.

B. Topology Model and Hyper Forwarding Graph

We denote a relay set as a set of nodes receiving the same
broadcasting messages or sending messages through beam-
forming. To represent end-to-end cooperative routing policies
and all possible relay sets, we define a Hyper Forwarding
Graph (HFG) as follows.

Definition 1. A given wireless network G(N, L) has a cor-
responding Hyper Forwarding Graph Gy(N UR,LU L(R),
where R is the set of relay sets and L(R) is the set of virtual
SIMO and MISO links:

R = {RS|z, y€ N, RS C N, N N,, |[RS| > 2)}

L(R) = U

zEN,RSCN,NR

((z, RS) U (RS, x))

Figure 1(a) shows an example of G(N, L). Since node pairs
(1, 5) and (2, 4) shares three neighbors {2, 3, 4} and {1, 3, 5}
respectively, the corresponding HFG shown in Figure 1(b)
has 8 relay sets, as well as 16 virtual SIMO and 16 MISO
links, where SISO links are represented as black solid lines
and virtual SIMO/MISO links are represented as red dashed
lines. Note that although Figure 1 (a) and (b) are illustrated as
undirected graph for readability, all the links are bidirectional.

HFG can represent a very large class of end-to-end cooper-
ative routing polices. In Figure 1, for instance, routing policy
1 — {2, 3} — 5 means that node 1 first broadcasts data to
nodes 2 and 3, then they send data to node 5 by beamforming.
The generalized version of our framework, which considers all
possible cooperative routing polices is provided in Subsection
4.2.

For readability, we use the terms a hyper node and a hyper
link to refer to a vertex and an edge in a HFG respectively.
In a given HFG, a hyper node ¢ € N U R can either be a
node or relay set. For a hyper node i« € N UR, we define a
hyper neighbor table N; = {j|(i,7), (i,j) € LUL(R)}. It is
obvious that if a hyper node i € R, then j € N; must be a
node; otherwise, j can be either a node or a relay set. In the
rest of this paper, unless specifically mentioned, we will use
the notations (¢, 7) and (z,y) to refer to a hyper link and a
direct link respectively.
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Fig. 1. An example of HFG and HCG. The 8 relay sets are: a={1, 3},
b={1, 5}, c={5, 3}, d={1, 3, 5}, e={2, 3}, £={2, 4}, g={3, 4}, h={2, 3, 4}.

C. Hyper Conflict Graph and Link Rate Region

We assume that time division multiple access (TDMA) is
adopted at the link layer. We use the commonly-used node
exclusive model (e.g. [19], [20]) to model interference, under
which no node can transmit or receive simultaneously (in the
same slot). This captures the half-duplex nature of the majority
of current wireless transceiver hardware. To reflect contention
relations among hybrid SISO, virtual SIMO, and virtual MISO
links, we define the hyper conflict graph (HCG) as follows:
Definition 2: A given HFG has a corresponding HCG
G.(V,E), where every vertex in V represents a hyper link
in the HFG (hence V.= LUL(R)). An edge in E means that
the two corresponding transmission links in the corresponding
HFG can not be both active at the same time. If two hyper
links (i,7), (@', j") € LNL(R) are in the following three cases,
then the edge ((i,j),(i',j")) € E.

Case 1. Both of them are SISO links: the two sets of nodes
{i,5} and {i',j'} satisfy {i,5} N {i’,j'} # 0.

Case 2. One hyper link is a virtual SIMO or MISO link
and the other is a SISO link: assume i is the relay set,
then (i U {j}) N {¢',§'} # 0.

Case 3. Both of them are virtual SIMO or MISO links:
assume i and i’ are the two relay sets, then (i U {j}) N
(@ u{i}) #0.

For instance, Figure 1 (c) shows the complement of the
HCG with regards to the HFG in Figure 1 (b). From HFG
and HCG, we can clearly see that both the routing topology
and interference relation for multi-hop wireless cooperative
networks are much more complex than that of traditional
wireless networks with pure SISO links.

A given set of hyper links in a HFG can transmit simulta-
neously only if it is an independent set? of the corresponding
HCG. Define channel capacity vector ¢ € RLLUL(R) , where
each entry ¢; is the random capacity of a hyper link [ defined
by (2)-(4). For a given ¢, we define the | LUL(R)|-dimensional
contention-free rate vector s¥(¢) for HCG’s kth independent
set I*, where the I’s entry in s¥(c) is

e [, if lel®
s1() _{ 0, otherwise

Then the link rate region for a given network state c is

2An independent set is a set of vertices in a graph, no two of which are
adjacent.

defined as a convex hull of all possible s*(c) :
II(c) = {s(c)ls(c) = Y _ a*s*(c),a" > 0,3 a" =1}
k k

Hence, for a given ¢, no |L U L(R)|-dimensional vector
outside II(c) is feasible for any scheduling policy.

D. Multi-commodity Traffic Flow Model

Let D be the set of all commodities (destinations)® and
S C N be the set of all source nodes. Let r%(t), s # d be the
data generation rate of source node s for commodity d € D
at slot ¢. Define the source rate vector r(t) € Rf'x Pl where
each entry is 74(t).

Let fffj (t) be the data forwarding rate over hyper link
(i,j) € LU L(R) for commodity d at slot {. We define
fii(t) = D aep f{fj(t). Due to the link capacity constraint,
fi,j(t) < ¢ ;(t). We define the |L U L(R)|-dimensional for-
warding rate vector f(t), where each entry is f; ;(t). According
to the link rate region constraint, f(¢) € II(c(¢)). Finally, we
define the mean rate vectors ¥ = limy_, 1/t ,r(t) and

S=limg l/t th(t)

E. Problem Formalization

Based on the HFG structure and the link rate region
constraint, the joint flow control, cooperative routing and
scheduling problem is formalized as follows Vi € N U'R:

max Ud(ri(t)) (5)
ns SES,Zd:GD
subject to  r{+ > L <> fllitd  (6)
JEN; JEN;
f(t) € 1(e(t)), vt = 0 @)

where the transport-layer utility function UZ(rl(t)) of
source node s is a differentiable, increasing, and strictly
concave function such as the logarithmic function for the
proportional fairness [37]. The objective (5) is to maximize
the long-term average of the aggregate utilities, which results
in a high throughput and fair flow rate allocation.

Constraint (6) states the flow conservation law at the net-
work layer, i.e. for commodity d in a hyper node i, the
sum of long-term average forwarding rates allocated to all ¢’s
outgoing links must be not less than that of its all incoming
links plus its source rate (note that 7¢ = 0, Vi ¢ S). In
addition, this constraint also implies that flow splitting and
multipath routing may be used to achieve the optimality. Since
neither specific relay sets nor end-to-end routes are assigned
in advance, f{fj7 (4,7) € LUL(R),d € D represents the long-
term optimal average cooperative relay set assignments and
routing policies.

Constraint (7) considers both physical-layer capacity and
link-layer interference constraints, which ensures that f(t)
should be in the link rate region for every slot t. Due to the
stochastic and discrete nature of II(c(t)), problem (5) is in

3For notational brevity, we assume that each commodity only has one
destination. Our framework can be straightforward to extend to the context
of multi-destination commodities.



/|utility function |—{ r(f) | congestion
\transport layer / price

P
|

routing and forwarding |

(network layer 1 complexity
reduction
‘ forwarding link selection L l
relay set assignment

HFG

scheduling
Jink layer ; ad ‘HCG
("SISO and virtual o(f
SIMO/MISO links original
(physical layer [ CSlatslots graph

Fig. 2. Architecture of the cross-layer framework.

the form of stochastic mixed-integer programming, which is
generally difficult to solve (e.g. §P-hard [38]).

It worth noting that the form of problem (5) looks similar
as existing NUM-based flow control formalizations in wireless
networks with pure SISO links e.g. [16], [31]. However, the
constraints (6) and (7) are established based on the proposed
HFG and HCG respectively rather than the original graph.
Therefore, problem (5) has a much more complex structure
in terms of cooperative routing and scheduling (e.g. the co-
operative routing policies and interference relations in Figure
I)than existing NUM-based flow control problems in wireless
networks with pure SISO links.

For notational brevity, this paper defines the objective
(5) as the time-average utility > g cp Ud(rd(?))
rather than the utility of time-average source rates
Y ses.aep Ul(rd(t)). Due to Jensen’s  inequality,
Ysesaep ULrd(t)) < X icsaep Us(ri(t)). However, the
approaches introduced in this paper can be easily extended to
maximize the } s ;cp U d(rd(t)), by introducing auxiliary
variables as in [15].

ITII. JOINT ALGORITHMS FOR FLOW CONTROL,
COOPERATIVE ROUTING AND SCHEDULING

This section presents distributed solutions to problem (5).
The architecture of the proposed distributed cross-layer frame-
work is shown in Figure 2. In the initialization phase, nodes
establish the HFG and corresponding data structures based on
the original G(IV, L) in a fully distributed manner (Subsection
3.1). For every time slot ¢, each node obtains the Channel State
Information (CSI) and computes the capacities of its corre-
sponding links according to (2)—(4). Then each node operates
a distributed global algorithm (Subsection 3.2) to allocate
source rates r(t) and hyper link forwarding rates f(t) based
on a congestion price and cooperative scheduling (Subsection
3.3). Here the congestion price is the Lagrangian multiplier
associated with constraint (6), and this is proportional to the
data queue backlog for a commodity in a node (e.g. [31]).
In addition, a complexity reduction scheme is developed in
Subsection 3.4 to delete useless cooperative relays and virtual
SIMO/MISO links. We assume that all control messages used
in our distributed algorithms are error-free.

A. Initialization—Distributed HFG Establishment

Variables:

Naz = UyeNI (Ny U {y}) - {:c}

z.ID: an integer represents z’s unique identification number.
x.R: the set of all relay sets containing x.

Functions:

gen(z, R) = {RS|(z € RS) A (RS C R) A(|RS| > 2)}
A—Relay Set Construction and Representative Selection

1: 2. R < 0;

2: for all y, z € No do

3: | for all RS € gen(z, Ny, N N.) do

4: if RS € z.R then //RS already exists, update Nrs
5: | Nrs < Nrs U{y, 2};

6: else /lconstruct RS and Ngs
7: z.R + z. RU{RS}; Nrs « {y,z};

8: if vm € RS — {z} s.t. .ID > m.ID then

9: | REP(RS) «

B—Neighborhood Notification for Relay Sets

1: for all RS € z.R do

2: | if © = REP(RS) then

3: | inform RS to all nodes in Ngs;

C—Received Notification from REP(RS)

1. N, « N, U{RS};

Fig. 3. The pseudocode of Algorithm 1: Distributed HFG establishment for
every node x € N.

After the deployment of the wireless network G(N, L),
every node x € N can obtain its neighbor table N,. Then,
node x can establish its two-hop neighbor table which contains
the set of nodes Nog = U,cn, (Ny U {y}) — {z}, by
broadcasting a one-hop beacon that contains N,. To construct
HFG in a fully distributed manner, we develop Algorithm 1
shown in Figure 3.

Relay sets are generated by a local function gen(x, N,N\N)
(line 3, part A). For a set of nodes R and a node = € R,
gen(z, R) returns the set of R’s all subsets containing x. For
instance, if R is a set of three nodes {1, 2, 3}, then gen(1, R)
returns the set of 3 relay sets: {1, 2}, {1, 3}, and {1, 2, 3}.

Every node z stores x.R, the set of all relay sets containing
x. For every relay set RS, the node with the maximal ID in
RS is selected as the unique representative of RS, denoted
as REP(RS). The set of all other nodes in RS is denoted as
REST(RS), i.e. REST(RS) = RS—{REP(RS)}. In addition,
hyper neighbor tables N are also established for all hyper
node 7 € N UR. Above local topology information estab-
lished by Algorithm 1 is acquired to facilitate the distributed
solutions for the problem (5). In the later sections, we will
see that only REP(RS) is on behalf of RS to participate the
distributed operations and all other nodes in REST(R.S) may
be requested by REP(RS) for some information about R.S.

B. The Global Distributed Cross-layer Algorithm

Before solving the stochastic problem (5), we first consider
a deterministic reference system in which the link capacity is
constant over time. We relax constraint (6) by introducing a
Lagrangian multiplier A € RINYRIXIP| for each hyper node
and commodity. The resulting partial Lagrangian is obtained
as
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where \? is the congestion price for commodity d in hyper
node ¢. Then the corresponding dual problem is

pinD(A) = max{L(r.f, )}

€))

where > represents the entry-wise inequality. The dual
problem can be hierarchically decomposed into the following
two sub-problems:

cmi _ ddy _ \d,.d
sub-1 : I§1>_1_1(’]1D1(A) = max Z (U2(re) — Asre) (10)
s€S, deD
sub—2:r>\n>i_1(}D2 = max Z Z Zw LA
- 'LENURJEN deD
where wd =\ — )\? and II is the corresponding static

link rate region. The first sub-problem (10) is the flow control
problem at the transport layer. For the second sub-problem
(11), since (4, j) can be either a SISO, virtual SIMO, or virtual
MISO link, the determination of fgj can be interpreted as a
hybrid cooperative routing, relay assignment, and scheduling
problem, ranging from physical layer to network layer. As can
be seen, the global problem decomposes into a number of local
optimization problems for every source node (the first sub-
problem) and for every hyper link (the second sub-problem),
and these sub-problems interact though congestion prices.
Since the objective function of first sub-problem is strictly
concave, it admits a unique maximizer as for a given A\%:

(rhy = U2 () (12)

where Uglfl() represents the inverse function of the util-
ity function UZ()’s first derivative. For every hyper link
(i,5) € LU L(R), we define the optimal commodity d; ; =
arg maxde pw? . and corresponding congestion price differ-

]
d : d __ I
er(11t1a1 w; i = MaXgep wj ;. We assign f; = fij,if d=d;

©,5°
;i = 0, otherwise. Then, for a given A, we have the set of

optimal scheduled links F' as

2

(i,)ELUL(R)

F={fi;lfi;€ argr?glgf wi i fig} (13)

which is the maximizer of the second sub-problem (11). We
will discuss the scheduling problem in detail in Subsection
III-C. In this subsection, we suppose that F' can be obtained.

Due to the convexity and non-differentiability of dual prob-
lem (9), it can be solved by using the sub-gradient algorithm.
The algorithm starts from the 0*"' step with initialized A(0).
At the k" step, the vector g(A(k)) € RINURIXIPI is defined
as a subgradient of dual function D(A) at point A(k), where

each entry is
Zfldj ijdz_ i

JEN; JEN;

g (N (k i#d (14)

Therefore, the the congestion price is updated as

AN (k+1) = |X(k) = vgd A (k)4 i £d  (15)

where v > 0 is a constant step size, and |a|; = a, if @ > 0;
lal+ = 0, otherwise. If i = d, then \¢(k) = 0 for all & > 0.

Based on by the above deterministic reference system, we
develop Algorithm 2 shown in Figure 4; the global cross-layer
algorithm for the original stochastic problem (5), in which
channel capacity ¢; ;(t) varies over slot ¢ due to fading. In
Algorithm 2, all variables in slot ¢ correspond to the kth step
of the subgradient algorithm in the deterministic reference
system. We assign an upper bound 7r,,,, of the flow rate
maximizer (line 1, part A) to ensure the convergence of
Algorithm 2 (Theorems 1 and 2 below). r,,,; can be set to
be sufficiently large to remain the optimality of Algorithm 2.
F(t) is the output of the cooperative scheduler at slot ¢, which
will be discussed in next subsection in detail. It is obvious that
Algorithm 2 shows the flow control, scheduling, and routing
(i.e. next hop selection and data forwarding) processes for
every slot ¢ > 0. It also implies the relay set assignment: if a
virtual SIMO link (2, RS) or MISO link (RS, z) is scheduled,
then relay set RS is assigned in a slot ¢.

Input: Constant step size v, and A\?(0),Vi € NUR,d € D.

Output: Optimal r;i(t), ff,y(t), and fZRS(t), fﬂsyz(t), vt >
0,z€N, ye€ N, RSE€R, z € Ngs.

A—A node x at time slot t.

01: if x € S then

02: | for all de D do

03: ‘ rd (t) « mln(rmaz,USd/ 1()\‘1( t);
04: F(t)<transmission_scheduler (A(t)); /Ischeduling
05: for all i € N;, d € D do //routing for SISO/SIMO links
06: lf(f“( ) € F(t)) A (d = d} ;) then

/flow control

o

07: ‘ FEit) < wi ;(t)ew,i(t); //forwarding data for d
08: else
09: | | £t

10: for all d € D,d;éx do
1 [ AZ(E+1) + [AS(E) — 798 (8)+

B—A relay set RS at time slot t.
//REP(RS) is on behalf of RS to participate the operations.

/lupdate A2

1: F(t)+transmission_scheduler (A(t)); //scheduling
2: for all z € Nrs, d € D do // routing for virtual MISO links
3: |if (frs,z(t) € F(t)) A (d = dj ;) then

4 | fhs.(t) < whs . (t)crs,=(t); //forwarding data for d
5: |else

6 ‘ f}%S,z (t) <~ O;

7 for all d € D do

8 | Mis(t+1) = [Nas(t) — vghs(t)]+

Fig. 4. The pseudocode of Algorithm 2: a distributed algorithm for joint
flow control, cooperative routing and scheduling. The operations of a node
z € N and a relay set RS € R.

// update A% g

1) Performance Analysis: Suppose F'(t) can be obtained
in every slot ¢ > 0, then we can show the convergence of
Algorithm 2 by Theorems 1 and 2 as follows. The proofs of
the two theorems are presented in Appendix A, available in
supplemental material.

Theorem 1. The expected average congestion price E[X(t)]
converges statistically to the optimal congestion price X* as
t — oo and v — 0, where X(t) =1/t>", A(t)

Theorem 2. The dual function D(E[X(t)]) statistically

converges to the optimal D(X*), as t — oo and v — 0,



where D(X) = 1/t>", D(X).

Since the utility function UZ(r?) is strictly concave, strong
duality holds. Hence, the duality gap is zero. Therefore,
Theorem 2 implies that the primary variables 74(t) and gj (t)
converge statistically to the optimal.

C. Scheduling for Hybrid direct, broadcast and beamforming
Links

This subsection focuses on the scheduling problem (11). At
time slot ¢, define an undirected link (7, j) with weight w; ; =
max{wj ;(t)c; ;(t), w,;(t)c;i(t)}, for each corresponding pair
of directed hyper links (4, j) and (7, ) on HFG. Then, the net-
work state can be represented as an undirected weighted hyper
scheduling graph (WHSG) G,,(NUR, L*UL"(R), W(t)),
where L" U L*(R) is the set of all weighted undirected links.
The optimal scheduling problem can be formalized as the

following integer programming problem,

max Z 5wywi,y + Z /Bx,RSw;RS
x,yeEN zEN,RSER
(16)
subject to
ﬁx,y = ﬂy,wa Baﬁ,y € {07 1} (17)
ﬁw,RS = BRS,wa /BI,RS € {07 1} (18)
> Byt Y Brrs<1 Vee N (19
YEN, RSEN,
S Bers+ Y. Bey<1 VRSER (20)
2ENRs zEN,,yERS

The objective (16) is to compute the maximum aggregate
weights of all scheduled links. Constraints (17) and (18) state
that the binary variable j;; represents the activity of an
undirected link (¢,7) € L* U L*(R). Constraints (19) and
(20) ensure that the active links must be contention-free from
the aspects of nodes and relay sets respectively, under the
node-exclusive model. Denote the optimal solution of problem
(16), the set of scheduled links with maximum aggregate total
weight, as Sopt(G)-

1: Sgre(Guw) < 05 Lrem + L*UL*(R);

2: while Lyc,,, # 0 do

3: pick locally heaviest link (,5) € Lyem;

4: | Sgre(Guw) <= Sgre(Guw) U{(i,5)}

5. | if (i,5) € L then // both 7 and j are nodes
6: | remove (¢, j) and links incident to (¢, ) from Lyem;
7 if (¢,5) € L(R) /It or j is a relay set
8 remove (4, j), all links incident to (,7), and all links
8: incident to all elements of the relay set from Lyep,;

Fig. 5. Pseudocode of Algorithm 3, a centralized cooperative greedy
scheduling scheme.

Since integer programming is NP-hard in general, it is
prohibitive to compute the optimal solution of (16) at every
slot ¢. To reduce complexity, we propose Algorithm 3 shown
in Figure 5, a greedy solution to problem (17), inspired by the
Longest-Queue-First (LQF) greedy scheduling schemes used
in wireless networks with pure SISO links (e.g. [39]). The
output of Algorithm 3 is denoted as Syr.(G). To compute

Sgre(Gyw) in a fully distributed way, we develop Algorithm 4
summarized in Figures 6 and 7.

Variables:

x.JFR: the set of x’s all free relay sets, x.F R C x.R.

x.FN: the set of z’s all free neighbors, z.FN C N,.

RS.FN: the set of all free neighbors of RS € z.FR.
x.optimal_state: one end of the x’s locally heaviest hyper link

which could be either « itself or a relay set RS € x.FR.
x.optimal_neighbor: the other end of x’s local heaviest link.
x.schedule_ready: a boolean value represents whether x is ready

to schedule.
x.schedule_state: a boolean value that represents whether = has

been scheduled or not.

Control Messages:
scheduling-apply (SA), scheduling-reply(SR), and drop

Functions:

send(7', source, destination): the source multicasts/unicasts a
one-hop control message with type T € {SA, SR, drop} to
the destination.

C_query(RS): Discussion between REP(RS) and REST(RS)
to check whether a link incident to RS is locally optimal of all

nodes in RS.
C_confirm(R.S): when a link incident to relay set RS is sched-

uled, REP(RS) informs this information to REST(R.S).

Fig. 6. Definitions of Algorithm 4 (distributed greedy scheduling) for a node
z € N.

In Algorithm 4, a node or a relay set that is not involved in
any scheduled hyper link is termed as free. After initialization
in part A, every node © € N executes and repeats the while
loop of part B and processes the triggered events (parts C—F),
until the text condition of the while loop occurs, i.e. x itself or
a relay set containing x is scheduled (z.scheduled_state=true),
or = has no free neighbor (z.FN = ().

Algorithm 4 has two levels of operations. The upper level is
the greedy scheduling for all links in L*UL*(R), based on se-
lecting the locally optimal link and exchanging three one-hop
control messages: schedule apply (SA), schedule reply (SR)
and drop. For a relay set RS, only REP(RS) is on the behalf
of RS for the upper level scheduling process. The lower level
is to ensure that information symmetry between REP(R.S) and
REST(RS) of a relay set RS € R, which is implemented by
two functions C_query (RS) and cooperative_confirm(RS).
The interface between the upper and lower level operations is
the variable x.scheduled_ready. REP(R.S) is qualified to send
a SA or reply a SR only if REP(RS).scheduled_ready=true
(line 14 in B and line 10 in C').

At the upper level, every node x selects a local
heaviest-weighted free hyper link (i}, j*) =(x.optimal_state,
x.optimal_neighbor) from its own point of view. If x =i, or
x =REP(i%), then x sends a SA with source i to j* (ie.
x.optimal_neighbor) in order to request the scheduling of link
(i, 4%). If 5% is a node, x directly sends the SA message to it;
otherwise x sends the SA to REP(j}) (part B). Either the SA
request can be granted (part C), if the link (i%, j*) is also the
locally heaviest link for j¥*; or (i%,j%) is eventually dropped
(parts C' and D). If (i%, jX)* is dropped, then x selects a new
locally heaviest link.

At the lower level, for a relay set RS, the two functions



A—initialization

1: 2. FN < Ng; x.scheduled_state<+— false; x.FR <+ z.R;
2: for all RS € x.FR do

3: |RS.FN «+ N&rs;

B—locally optimal link selection and scheduling apply
01: while (x.scheduled_state=false)\(x.FN # () do

02: W] 4 MaXjer FN Wy ;3 J° < argMaXjez FN Wy ;3
03: x.optimal_state<— x; x.optimal_neighbor<— j*;

04: x.scheduling_ready+— false;

05: | if 3(RS,y) s.t. RS € x.FR,y € RS.FN then

06: W3 < MAX(RSex.FR,yeRS.FN) (Wks )}

07: (RS™,y") < arg max(psecs. FR,yc Npg) (Whs,y):
08: if ws > w] then //x.optimal_state# x

09: x.optimal_state<— RS™; x.optimal_neighbor<— y™;
10: if x = REP(z.optimal_state) then

11: | z.scheduling_ready<C_query(x.optimal_state);
12: else //x.optimal_state=x

13: | x.scheduling_ready<—true;

14: if z.scheduling_ready= true then

15: \ send(SA, x.optimal_state, x.optimal_neighbor);

C—received a (SA,1i,j) message
01: if ¢ = x.optimal_neighbor then

02: | if x.optimal_state = = then

03: x.scheduled_state<— true;

04: send (SR, z,1i); send (drop, z,z.FN);

05: for all RS € z.FR s.t. REP(RS) =z do

06: | send (drop, RS, RS.FN);

07: | else //x=REP(x.optimal_state)

08: if z.scheduling_ready=false then

09: | w.scheduling_ready<— C_query(z.optimal_state));
10: if x.scheduling_ready=true then

11: x.scheduled_state<— true;

12: send (SR, z.optimal_state, 1);

13: C_confirm(z.optimal_state); send(drop, z,z.FN);
14: send (drop, x.optimal_state, x.optimal_state. FN);

15: else if z.optimal_state=x then //j is a node, x deletes ¢
16: | . FN « o FN — {i};

17: else //j is a relay set, x deletes ¢

18: | w.optimal_state. FN < x.optimal_state. FN — {i};

D—received a (SR, i, j) message

1: x.scheduled_state<— true;

2: If x.optimal_state= x then

send(drop, z,z.FN);

for all RS € z.FR s.t. REP(RS) =z do
| send (drop, RS, RS.FN);

else
send (drop, xz.optimal_state, x.optimal_state. ' N ),
C_confirm(z.optimal_state);

T.FN «— . FN — {i};
for all RS € z.FR do
if © € RS then
| ©.FR <~ z.FR - {RS};
if i € RS.F'N then
6: | RS.FN < RS.FN —{i};

Fig. 7. Operations of Algorithm 4 (distributed greedy scheduling) for a node
Tz € N.

3:

4.

5:

6:

7:

8:

E—received a (drop,i,j) message
1: ;
2:

3:

4.

5:

C_query (RS) and C_confirm (RS) need to communicate
between the REP(RS) and the node(s) in REST(RS). We
discuss their operations and logical flows based on Figure
8. The action of the C_query(RS) function is the two-way
handshake between REP(RS) and REST(RS) during [ty, to]
in Figure 8 (a)-(d). If REP(RS) finds that a free link incident
to the relay set RS, say [*, is its locally heaviest link, it
sends a Cooperative Apply (CA) message to REST(RS) to
check whether [* is also locally optimal for all nodes in
REST(RS). Every node in REST(R.S) responses to REP(R.S)

AT VO Ry
1 i[ack | [ i iladk) !
REST(RS} : ack : : : : : : |
I R [ o
REP(RS) AT —SAL___[CCL [CA] [CC) (SR
Nt L 1 1 [SRT | Al o)
i1 ) 3 t h 8
(a) (b)
o o
| | lﬂl | |
REST(RS) : [mack] | : [mack] |
] | I ] | ]
REP(RS) {CAT A
Nrgras) . . : [SA] : | [drop
t t 51 5]
(©) (d)
Fig. 8. The time table of distributed scheduling of a hyper link incident

to RS, where Nj, o denotes the optimal neighbor of REP(RS). (a) and (b)
shows successful handshakes between REP(RS) and REST(R.S), while (c)
and (d) show two unsuccessful cooperative handshakes.

by sending a Cooperative Reply (CR, ack or nack) message
carrying the result. If every node in REST(RS) replies an
ack, REP(RS).schedule_ready is set as true (line 11 in B and
line 09 in C'), then REP(R.S) is qualified to attend the upper
level scheduling (i.e. sends a SA or replies a SR); otherwise,
REP(RS) deletes RS from REP(RS).FR, and selects its new
locally heaviest link.

During [t2,t3] shown in Figure 8 (a) and (b), when a link
I* € L¥(R) incident to a relay set RS is successfully sched-
uled, REP(RS) calls the C_confirm (RS) function (line 13 in
C and line 8 in D), i.e. REP(RS) multicasts a Cooperative
Confirm (CC) message to all nodes in REST(R.S) to inform
them that [* is successfully scheduled (I* is the locally heaviest
link for all nodes in RS). Upon receiving the CC message,
every node y € REST(RS) sets y.scheduled_state as true, then
sends a drop message to all its free neighbors and relay sets
RS, y = REP(RS).

It is worth noting that the upper-level control messages SA,
SR and drop are sent over one-hop links and the lower-level
messages CA, CR and CC may cover two hops (at most two
hops), which is feasible because the two-hop neighbor table
No,,x € N was established in the initialization phase (i.e.
Algorithm 1).

1) Performance Analysis: Theorems 3, 4, and 5 below
provide analytical results for the communication overhead,
convergence and optimality of Algorithm 4 respectively. The
proofs of the three theorems and supporting lemmas are
presented in Appendix B, available in supplemental material.
Theorem 3. The total number of control messages sent by
Algorithm 4 is not more than 4 + 2 maxgser |RS| per hyper
link.

According to Theorem 3, the per hyper link communication
overhead of Algorithm 4 is O(1) with respected to |[LUL(R)|,
which demonstrates the scalability of Algorithm 4.

Theorem 4. Algorithm 4 terminates for every node x € N.

Theorem 5. At least 1/ maxgrser |RS| + 1 performance
of the optimal solution of problem (16) can be achieved by
Algorithm 4, i.e.
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where W (Sgre(Guy)) and W (Sopi(Gy)) are the aggregated
weights of greedy scheduling Sgre(G.,) and optimal schedul-
ing W (Sopt(Gw)) respectively.

It is worth noting that Theorem 5 provides a very loose
lower bound for the optimality of Algorithm 4. Through
simulation in Section 5, we will show that Algorithm 4 can
achieve more than 88% performance of the optimal scheduling
in practice.

D. Complexity Reduction

It can be seen that |R| and |L(R)| is of the order of

|N|27, where 7 is the average network degree of original
graph G(N, L). Therefore, even a small-scale (especially
dense) network can produce large-scale HFG and HCG (see
the example shown in Figure 1). This results in high system
complexity such as the low convergence speed of Algorithm
2. To reduce the complexity, we propose a simple scheme
operating in the initialization phase (followed by Algorithm
1), which deletes virtual SIMO and MISO links that would
almost never be used to forward data.
Definition 3. Consider two nodes x and y such that |N; N
Ny| > 2, then a long-term 2-Hop Hyper Routing Policy (2-
HHRP) is denoted as a triple (x, i, y), i € Ny N N,. Consider
the flow conservation law and node-exclusive model, the long-
term mean capacity of (x, i, y), 6.1,71,3,; can be approximately
estimated as min(cy ;,¢; ) /2.

To maximize the aggregate flow rates, Algorithm 2 tends
to select hybrid direct and cooperative routes consisting of
sequences of 2-HHRP triples (z,4,y),z,y € N,i € N, N N,
with large capacity and small interference (i.e. small-size 7).
Hence, we propose a complexity reduction scheme as follows:

A. For all z,y € N,|N, N Ny| > 2, delete all broad-
cast links (z, RS) and beamforming links (RS,y), if
32 € RS, st. Cp.y > Cyrsy. This is because
that both (x, z,y) and (x, RS,y) have the same routing
functionality, but Cy ., > C, s, and (z,2,y) has a

smaller interference.
B. For all RS € R, z, y € N, delete broadcast

link (z, RS) and beamforming link (RS,y), if RS =
NN Ny. The reason is that we can find two hyper nodes
Q1,142,110 Nig = 0,43 Uiy = N, N N, such that the
maximum data rate transmitted by using two 2-HHRP
triples (x,i1,y) and (z,1i2,y) is larger than using one 2-
HHREP triple (x, N, N Ny, y). This is formally proved in
Theorem 6 below.

Theorem 6. For any x,y € N,|N, N\ Ny| > 2, there exist two
hyper nodes i1,i2,i1 Uiy = Ny N Ny, i1 Nia = () such that
Cm,NlﬂN!“y < (Ow,il,y + Cw,iz,y)/z
Proof. Please refer to Appendix C, which can be found in
supplemental material.

The simulation results (Section 5) show that the proposed
scheme can significantly reduce system complexity. However,
formal analysis of this scheme remains part of our future work.

IV. EXTENSIONS
A. Outage Probability Minimization

Outage probability [1] is a key metric in cooperative com-
munications. Our framework can be extended to balance the
tradeoff between network utility and global (multipath end-to-
end) outage probability, by introducing an aggregated penalty
=V iperonm) P74 in the original objective function (5).
Here, PPY" is the outage probability for a hyper link (i, j),
which is a complex non-linear function of forwarding rate
fi,j- V€ [0,4+00] is control parameter that is chosen to
affect a desired tradeoff between the network utility and outage
probability.

We use a linear approximation for outage probability,
PPUt x cost; jfij, (i,5) € LU L(R), where the expression
of cost; ; is provided in Theorem 7 below.

Theorem 7. For Rayleigh-fading channels, the closed-form
expression of cost; ; is

1n(2)mi,j/3 1,7 €N
cost; j = 1 ||(In(2))9 T, SNR; y/B i€ N, jeR
n(2) Y ,c; Qz/B i€ER, jEN
where
(SNR,, ;
Qgc — HmEz( 7]) (21)

Hmei)m#a:(SNRm’j —SNR, ;)

Proof. Please refer to Appendix D, which can be found in
supplemental material.

A fully distributed cross-layer framework that jointly op-
timizes network utility and global outage probability can be
obtained by redefine w; ;(t) as A;(t) — A;(t) — Vcost; ; in
(subproblem11). By redefining w; ;(t), all proposed algo-
rithms can be directly used without modification.

B. All Possible Cooperative Routing Policies

The currently-defined HFG considers a large class of coop-
erative routing policies, but not all possible routing policies.
For instance, assume that there is a flow with source node
4 and destination node 2 in Figure 1, the following routing
policy can not be presented by currently-defined HFG: node
4 first broadcasts data to {3, 5}, then {3, 5} send data to 1 by
using beamforming, and finally {1, 3, 5} send data to 2 using
beamforming.

Definition 4. For a given HFG Gy(N UR,L U L(R), the
completed hyper forwarding graph (C-HFG), G%(R', L'(R'),
represents all possible end-to-end cooperative routing policies,
where

R=(UJpUJc U

{y} URS)JR
zEN RSeR,yeENRs

L/(R/) = {(R517R52)|R51,R52 S R/, RS 75 RSQ,
Jdz € RSy, y € RS, s.t. © € N}

C-HFG is defined at the network layer. By using C-HFG,
the example routing policy mentioned above can be expressed



as {4} — {3,5} — {1,3,5} — {2}. The well-known three-
node cooperative relay pattern [1], [10], [17] can also be
represented easily by using C-HFG. In Figure 1, for instance,
{1} — {1,2} — {3} represents the routing policy that node 1
first sends data to node 2 via direct transmission, then nodes
1 and 2 send data to node 3 using beamforming. Compared
with HFG, C-HFG has more vertexes and edges.

At the physical layer, we define the sets of all possible
SISO and virtual SIMO/MISO links LP"Y as

LPhy — U

zEN,iCNLNR/

{({z}, )} U{G{})}

The capacities of each link (i, ) € LP"¥ can be computed
by (2)~(4).

At the link layer, we bridge the gap between network-layer
routing policies and actual physical-layer data transmissions
by defining a link mapping rule

M: L'(R) — LP"

For an edge (RS, RS2) € L'(R’), if RS: C RSj, then
M(RS1, RS2) = 0, since RS can send data to RS without
any physical-layer transmission; otherwise,

M(RS;, RSy) =
{(i,§)li € RS1,j € RS2 — RS1N RSy (i,j) € LP"}

For instance, in Figure 1, edge ({3,4},{3,5}) can be
mapped into two SISO links (4, 5) and (3, 5), and one virtual
MISO link ({3,4}, 5).

Now we discuss how to generalize our framework to con-
sider all possible cooperative routing policies. We can first
establish C-HGF in a distributed way by slightly modifying
Algorithm 1. Then we can develop a global algorithm similar
as Algorithm 2 by introducing a congestion price A% for
every relay set RS € R’ and commodity d € D. For
(RS1,RS2) € L'(R’) in slot ¢, an unique optimal physical-
layer transmission link

¢ij(t)

1*,j%) = ar max
(i 7%) g(i,j)eM(Rsl,ng),
can be obtained. Since (i*,j*) € LP", Algorithm 4 can be
directly used for scheduling without modification.

C. Stochastic Queueing Networks

Lyapunov queuing (e.g. [31]) is a popular research area
in stochastic network optimization and shows great promise
for practical implementations. Our current dual-decomposition
based framework can be transferred to the Lyapunov backpres-
sure system, with the following three simple modifications:

1. Transfer the unit of channel capacities (2)—(4) from (bits
per second) to (packets per second).

2. Define the queue backlog ¢¢ in every hyper node i
for every commodity d, and replace the congestion price A\¢
throughout this paper by corresponding ¢. Instead of using
subgradient, the queue backlog updating process is

@+ =g +ri+ D> fL= D fhl i #d

JEN; JEN;

3. Modify the flow controller as

rd(t) = min(rmas, UL (¢2(t)/V)), Vs € S

S

where V' € [0,+400] is a control parameter for the trade-
off between the network utility and average queue backlog
(delay).

V. SIMULATIONS

In this section, we present numerical simulations to demon-
strate the convergence, efficiency and performance gain of
the proposed algorithms, as well as to provide quantitative
understanding of the optimization at different layers. In partic-
ular, we compare the following three versions of the proposed
cross-layer framework: (1) using pure SISO links and the
perfect scheduler* (which we term as direct-optimal); (2) using
hybrid SISO and virtual SIMO/MISO links, and the perfect
scheduler (cooperative-optimal); (3) using hybrid SISO and
virtual SIMO/MISO links, and the distributed greedy scheduler
(cooperative-greedy).

A. Simulation Setting

We consider 10 and 25-node networks shown in Figures 9
(a) and (b) respectively. We set channel bandwidth B = 20
MHz, transmission power P, = 20 dbm,Vz € N, noise power
BNy = —80 dbm, and path loss exponent o« = 4. We use the
proportional-fair utility function U2(r) = log(r?),s € S,d €
D [37], and set step size v = 0.3 and 7,4, = 20 Mbps. The
channel capacity of every hyper link is computed in every time
slot based on nodes’ locations and a generator of exponential-
distributed random variables (for the Rayleigh-fading power
gain).

B. Results

We first consider the 10-node network. The location of each
node can be inferred from Figure 9 (a). Two competing multi-
commodity flows (4—8) and (5—0) are considered in this
network.

Figure 10 (a) shows the logical topology of the original
HFG established by Algorithm 1, which contains 28 relay sets,
65 broadcast links, and 65 beamforming links. Figure 10 (b)
illustrates the HFG after complexity reduction (the scheme in
Section 3.4), including six remaining relay sets ({9,2}, {1,2},
{1,9}, {3,7}, {5,3}), and {7,5}, six remaining broadcast links,
and six remaining beamforming links. Note that Figure 10
illustrates the logical topology of the HFGs rather than the
actual physical deployment of the 10-node network. It can
be seen that the proposed complexity reduction scheme can
significantly reduce the scale of the HFG.

Figure 11 (a)-(c) show the source rate evolution of direct-
optimal, cooperative-optimal, and cooperative-greedy schemes
respectively. It can be seen that the source rate of each
flow converges within the neighborhood of a fixed value and
oscillates around them, exhibiting limit-cycle behavior. The
oscillations are due to the non-differentiability of the dual

4The perfect scheduler is a centralized solver for problem (16).
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Fig. 10. Hyper forwarding graph and complexity reduction for the 10-node network.
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function and the time-varying channel capacities. It can also
be interpreted as the dynamic scheduling process in every slot.

From Figure 11 (d)-(f), we can see that the time-average
source rates of all algorithms converge smoothly, which ver-
ifies the statistical convergence proof. We can also see that
all the three simulations show similar convergence speed,
which implies that increasing the network degree (i.e. adding
additional relay sets as neighbors for nodes) does not lead to
significant reduction in convergence speed. The two reasons
for this are: (1) there exist only a small number of relay sets
after the complexity reduction; (2) the convergence speed of
dual-decomposition schemes is less sensitive to the network
degree than to the network diameter”.

The average network throughput of cooperative-optimal is
ra + 1Y ~ 8.27 Mbps, which is about 80.2% higher than
that of direct-optimal (around 4.95 Mbps). The throughput
can be further improved by extending HFG to C-HFG defined
in Subsection 4.2. As expected, the network throughput of
greedy-cooperative is less than that of optimal-cooperative
(about 7.38 Mbps), but the degradation rate of throughput
is only around 10.76%, which demonstrates that the actual
performance of the greedy scheduling scheme (i.e. Algorithm
4) is much better than the lower bound provided by Theorem
5. This exciting result demonstrates that the proposed greedy
scheduling scheme has great potential to perform well in
practical wireless cooperative networks. Figure 12 shows the
long-term routing results of the three schemes. It is clear that
flow splitting and multipath routing are used to maximize the
utilities (and flow rates).

The above results are for the 10-node network. The results
of 25-node network are similar and we abbreviate our discus-
sion. As shown in Figure 9 (b), there are two flows S1 — D1
and S2 — D2. Figure 13 shows the convergence of average
source rates for the three cross-layer schemes. The conver-
gence speeds of this 25-node network simulation are larger
than that of 10-node network, but are similar to that of the three
cross-layer schemes. The network throughput of cooperative-
greedy is around 10.51 Mbps which is about 41.64% higher
than that of direct-optimal (7.42 Mbps) and only 1.7% lower
than that of cooperative-optimal (10.69 Mbps).

All results above show that our cross-layer framework
can indeed improve the network throughput (and utility)

SSimilar observations can also be found in wireless networks with pure
SISO links such as [40].

(b) cooperative-optimal routing

(c) cooperative-greedy routing

Long-term optimal routes of the three schemes for the 10-node network.
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Fig. 13.  Convergence results of the 25-node network.

significantly, and the proposed light-weight greedy scheduling
algorithm is promising for practical implementations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a fully distributed cross-layer
optimization framework for joint flow control, routing, relay
assignment, and scheduling in multi-hop wireless cooperative
networks with time-varying fading channels. We first present
two specific graphs, THe Hyper Forwarding Graph (HFG) and
the Hyper Conflict Graph (HCG) to respectively represent
general end-to-end cooperative routing policies and interfer-
ence relations among hybrid direct, broadcast, and beamform-
ing links. Then we formalize the cross-layer problem as a
stochastic mixed-integer non-linear optimization problem, and
propose distributed optimal and greedy solutions to the for-
malized problem, based Network Utility Maximization (NUM)
techniques and novel graph-theoretic approaches. The conver-
gence and optimality of the global system is formally proven,
and the explicit performance and complexity bounds of the
greedy scheduling algorithm are derived. Simulation results
verify our theoretical analysis and show the advantages of our
approach in terms of convergent speed, network throughput,
and the performance of the greedy scheduling. In addition,
three useful extensions are also provided to demonstrate the
flexibility of the proposed framework.

There are several interesting research directions, including



effective complexity reduction schemes for C-HFG, extensions
to general interference models, and NUM using physical SINR
interference models. In addition, it could be fruitful to combine
stochastic network optimization and cooperative relaying to
address other network issues, such as hard QoS guarantees,
incentive schemes, and application-layer traffic burstiness.
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APPENDIX A
PROOFS OF THEOREMS 1-2

Proof of Theorem 1. Consider the Lyapunov function

VA®)) = 3 Xienur, aep (M ()= ()], where |\ (1)~
(A9)*| represents the absolute value of \¢(t) — (A\9)*. Then
its conditional expected drift for slot ¢ is:

E[AV(A®)IA(®)]

E[V(A(E+1)) = V(A@)IA@D)]
= EV(IA®#) —g(A®)]+) = VAD)AD)]
[ )

= E[V(AQ®) —18(A1)) = VAD)IA®)]
E[—7g(A(1))T[A(t) = A7 + ing(A(t))Tg(A(t))IA(t)}

~



where |(A(f) — AX¥)|. represents the entry-wise absolute
value of (A(t) — A¥). Using the law of iterated expectations,
we have

E[AV(A(D))]
1
= E[-1g(A)TIA®) = A'[e + 1778(A (1) "8 (A())]
For every entry of subgradient g(A(t)), we have
ElgfA®)] = E[Y £ = Y fil0) —ri@)]
JEN; JEN;
< E[D> i)+ Y ciilt) +ri(t)]
JEN; JEN;
= 2 Z m + "maz = 0;
JEN;
where ¢; ; = E[c; j(t)] < oo. The first inequality is based

on fe.(t) < ¢ (t),Vt > 0,(i,j) € NUR,d € D . Since

2]
|\;lis bounded by |N UR|, o; < co. Hence, we can see that
E[g(A(t))] is bounded by o € RINVRIXIDI where each entry

is max;e yuRr ;. Now we have:

EIAVA®)] £ =10 BAD)] - N + {7700 @2)

Summing over k € {0,1,....t — 1}, we get

€

%aﬂ ST EAGK)] - A
k=0

< %(E[V()\(O))] —E[V(A(K)] + iv%Tat)
< S EVAO) + 7%

Taking a lim sup yields, we have
1 t—1 20_
lim sup(| = g EA(k)] — A%e) < 7
t—o0 t 4
k=0

Hence, we have:
2 2

A =27 < im sup(E[X(t)]) =A™ + 17

4 t—o00 4

Hence A(t) converges to A™ statistically as step size v — 0
and time ¢t — +4o00. O

Proof of Theorem 2. Consider (22), we have

< EA®)TIA —EAD). + 1170

e — 1
< D) = DAWM)|e + (Voo
where the second inequality is based on the definition of

sub-gradient. Summing over k € {0,1,...,¢t — 1}, we obtain

E[AV(A(1))]

~ D EDA®)] < %E[V(A(O))] D) + %vcha

Taking a lim sup yields, we have:

t—1
timsup + S E[DARK)] < D) + 1100

t—o00 k=0

Since D(X) is convex, from Jensen’s inequality, we get:

liirisup D(E[X(t)]) = D(lim sup E[% i A(E))

oo t—o00 =0

< li?isup % X_: E[D(A(k))] < D(A") + inJTJ
" k=0

Since VA, D(A) > D(X*), we have

D(X\*) < limsup D(E[X(t)]) < D(X*) + 1'yzo'TO' O

t—o0 4

APPENDIX B
PROOFS OF THEOREMS 3-5 AND SUPPORTING LEMMAS

Algorithm 4 is an asynchronous random process during slot
t of Algorithm 2. We define d,, as the event that the n'® link
(in, jn) € L* U L*(R) is scheduled (in order of occurrence).
dp is the wake up event and J; is the event that the first link
is scheduled. We set the initial remaining hyper link set as
LY, = L“U L“(R). When an event §, occurs, the L7,

updates as follows:
If (in,jn) € L, then
Liem = Licm —{(z,9)} U{(RS,2)},

Vo € {in, jn}, Yy € in.FN U j, . FN,
VRS € i, FRUj,.FR, Vz € RS.FN

If (in,jn) € L*(R), let 4, be the relay set, then
Llw= Lol —{(z9)} U{(RS,2)},

rem rem

Vo € {k,jn}, Vk € ipn, Yy € k.FN U jn. FN,
VRS € k. FRUj,.FR, Yz € RS.FN (24)

(23)

Lemma 1. There is at most 2 upper-level messages (SA, SR,
and drop) sent over each link (i,j) € L™ U L*R, during the
scheduling process.

Proof. (i,j) can be either scheduled or dropped. If (i,j) is
scheduled at 6,,, then a SA and a SR is sent by ¢ and j (or j
and 7); otherwise, a drop message is sent by ¢ (or j) at 6, (a
SA may also be sent before d,,). In both cases, link (i, j) will
not be part of the scheduling process after d,,. O
Lemma 2. There is at most 2+2|RS| lower-level messages
(CA, CC, ack, and nack) sent for the 2-way handshake process
of C_query() and C_cofirm() for every relay set RS € R
Proof. Recall that only REP(RS) is on behalf of RS to
attend the upper level scheduling process. If a relay set
RS is scheduled, one CA and one CC messages are sent
by REP(RS), and |RS| — 1 ack(s) are sent by REST(RS);
otherwise, one CA is sent by the REP(R.S) and |RS|—1 ack(s)
or nack(s) are sent by the REST(RS). Combine this with
Lemma 1 and the fact that the maximal hop count between
any pair of nodes in RS is 2, Lemma 2 obviously holds. [J
Proof of Theorem 3. For a link /; € L": at most two upper-
level messages are transmitted, no matter /; is scheduled or
dropped, according to Lemma 1. For a link Iy € L*(R), two
upper-level messages and 2+2|RS| lower-level messages are
transmitted, regardless [5 is scheduled or dropped, according to
Lemmas 1 and 2. In summary, the total control message over



all hyper links is bounded by (4+2 maxgser |RS])|L*(R)|+
2|L| < (44 2maxgrser |[RS|)(|L(R) U L|). 0
Lemma 4. The n'" scheduled link (i,j) € L* U L*(R) is
locally heaviest weighted link for both i and j at 6,.
Proof. Suppose i sends the SA and j replies SR between d,,—1
and d,,. There are two cases:
Case 1. (i,7) € L* (both i and j are nodes). ¢ sends a
SA, since w;; > max(w; , Wrs.m), Vk € i.FN,RS €
i.FR,m € RS.FN; i replies a SR, since w;?:j > max
(w3, wrs,m), Yk € j.FN,RS € j.FR,m € RS.FN.
Case 2. (i,j) € L“(R). Let i be the relay set. Then
REP(z) sends a SA with the source i or replies a SR,
because (i, 7) is locally heaviest for both REP(z) and all
nodes in REST(%) (by using CA, CR and CC). j replies
a SR according to the same reason of case 1.
In both cases, link (4, j) is the locally heaviest link for both
7 and j. U
Proof of Theorem 4. For any node x € N, the while loop in
part B of Algorithm 4 has the following cases:
Case 1. Terminate when z or a relay set in . R is
scheduled.
Case 2. Terminate when its free neighbor table is empty.
According to Lemma 1, x and each relay set RS,
REP(RS) = z, can receive at most 1 drop or 1 SA from
each of their hyper neighbors. From parts D and E, such
non-optimal neighbors will be removed from their free
neighbor tables, resulting in the L7, = updating processes
(23) and (24). One condition of the while loop x.FN = ()
implies that RS.FN = (,VRS s.t. REP(RS) = .
Case 3. Wait for a SR message from z.optimal
_neighbor. x.optimal_neighbor will either reply a SR
to x.optimal_state or send a drop when it is sched-
uled for other link. Therefore, the while loop will
either stop (when z is scheduled) or search for its
next new locally heaviest link( when it receives a
drop from z.optimal_neighbor or a relay set contains
x.opttmal_neighbor), until case 1 or case 2 happens.
From the above three cases, the while loop of each node
can terminate. Therefore, Algorithm 4 finishes when all nodes
in N terminate.
Definition 5. Maximal and optimal schedule of G,,: A max-
imal schedule Syazimal IS a schedule (a set of links in
L* U L*(R)) such that ¥l ¢ Spazimal, Smazimal U {l} is
no longer a schedule any more i.e. Spazimal Ul is not a
feasible solution of problem (16). The optimal schedule S,p:
is the schedule with the largest aggregated weights which is
the optimal maximizer of problem (16).
Lemma 5. When Algorithm 4 terminates, the resulting
Sgre(Guw) is a maximal schedule.
Proof. Suppose there exists a link (¢,7) € L* U L*(R) such
that Sg,..(Gw)U{(¢,7)} is also a feasible solution of problem
(16). Then the scheduled states of both ¢ and j must be false,
hence neither ¢ nor j has sent a drop to each other. In addition,
neither ¢ nor j has sent a SA and SR to each other, otherwise,
the scheduled states of both ¢ and j must be true. Hence, ¢
has at least one free neighbor j, and j has a free neighbor <.
Therefore, due to their false scheduled states and non-empty

free neighbor sets, Algorithm 4 does not terminate, which
contradicts the termination of Algorithm 4 demonstrated in
Theorem 4. (|
Proof of Theorem 5. We compare Sy,.(Gy,) and Syp(Gyy)
by showing that the follow inequality

n w;,b
Zw»s 4 S ((a,b)ESopt (Gw))A(aENF,.  VDENT ) 25)
=0 teadk = MaXRSER |RS| +1

holds for every scheduling event d,, n = 0,1,2,... until

Algorithm 4 terminates, where, N, ;’fm is the set of all scheduled
hyper nodes (by using Algorithm 4) before §,, (includes 9,,).
The proof is based on mathematical induction.

Obviously, it holds for §y, since both sides of (25) are equal
to zero. Suppose (25) holds at §,,_; for any given n. Then at
dn, the left hand side increases w; ; . If (tn, Jn) € Sopt(Gw),
the right hand side increases w; ; /(maxpser |RS|+ 1),

then obviously (25) holds. If (iy,jn) ¢ Sopt(Gw ). then there
are two cases:

Case 1. (i, j,) € L". There are at most two links (a, i,,),
(b,jn) € S5, (Gy) incident to iy, jn, according to the
node-exclusive model. Note that both (a,4,) and (b, j,)
can be either direct, broadcast, or beamforming links.
According to Lemma 4, (i,,j,) is the locally heaviest
weighted link, and we have 2w} . > wg,; + wp; .
Therefore, the increment of the right hand side is not
larger than 2w; . Since maxpser [RS|+1 > 2, (25)
holds for this case.

Case 2. (ip, jn) € L*(R). Let iy, be the relay set. Under
the node exclusive model, there is at most one hyper link
(b,jn) € Sg,i(Gp) incident to jy,, and at most [i,,| direct
links incident to all elements (nodes) of 7,,. Therefore,
the increment of the right hand side is not larger than
w; i /(lin| + 1), according to Lemma 4. Since [iy| is
upper bounded by maxpgser |RS|, (25) holds for this
case.

Hence, (25) holds for any scheduling event d,,,n > 0.
From Lemma 5, Algorithm 4 terminates with the maximal
scheduling. Therefore, we have

W(Syre(Gu) > 1

W (Sopi (G O
T MaxXprseRr |RS‘ +1 ( pt( )>

APPENDIX C
PROOFS OF THEOREM 6 AND A SUPPORTING LEMMA

We first study the capacity property of an arbitrary beam-
forming link (RS,y), RS € R,y € N.
Lemma 6. Denote a partition (i.e. the set of all non-
overlapping non-empty sub-sets) of RS be Prs, we have:

Ci,y(t) < crsy(t) < D ciyy(t),VPrs, Viy C RSVt >0

i2€PRS

Proof. The left hand side equality obviously holds according



to (4). For the right hand side inequality, we have:

CRrs,y(1)
cz,y(t)
=Blogy( Y 2° 5 —|RS|+1)
zERS

czy () .
= Blog,( Y (D 275 —lia| +1) —|Prs| +1)

i2o€EPRs zE€i2

Cig,y(t)
< Blog,( Z 275
i2€PRs
Cig,y(t)
<5 Y g =Y 0
i2€PRS i2€PRs

where the first and second equality use the increasing and
concave properties of the logarithmic function respectively.]
Corollary 1.

Ciry <CRSy < Y Gy VPrs,Vi1 CRS  (26)

12€PRs

Proof of Theorem 6.

Cuz,N.AN,.y min(Cz,N,NN, s CN.AN,y)/2
min(min(¢; i, , €z.i,); CN,AN, )/ 2
< min(min(Cg i, ; Ca,ig)s Ciy,y + Cin,y)/2
< min(Cy 4y, Ciy y) + Min(Cq iy, Ciy y) /2

(6%1171/ + 6-”671'241)/2

where the first and second inequalities are due to (26) and
the concavity of the min() function respectively. d

APPENDIX D
PROOF OF THEOREM 7

Let E[SNR; ;] = SNR; ;. If (i, ) is a direct link, we get

PPyt = Pile;;/B < fi;/B]

1—exp(—(279/% —1)SNR, ;) (27
SNR; ;(27/8 — 1)
(025NR:;/B)fi, (28)

Q

where (27) is due to Rayleigh fading, and the two approx-
imations use first two terms of Taylor expansion. If (i, ) is a
broadcasting link, from f; ; = f; ,, Yy € j and channel state
is independent across links, we have

P;;-Lt = Pr[ci’j/B < fZ’J/B}
= Prlmax(ciy/B) < fi;/B]
yea

= ] - exp(=(2/+/? —1)SNR; )

yEJ

~~ (ln2)|j‘ Hmi,y(fi,j/B)lj‘

ISH]

(151 2)7 T SNR;.,/B)f:

yEJ

Q

If(i, 7) is a beamforming link, by using equation (2.3) in

[41] we have
out
B

PI‘[CL]‘/B < fl,]/B]
Pr((} (SNR.;)/B < fi;/B]

€L

_ / S Qo exp(~SNR, ;275 —1))d(25 1)
0

el

— 3.(Q.(1 - exp(~SNR, ;2% —1)))/SNR, ;)

TEL

> (Q:(n2SNR, ;/B)/SNR. ;)i

el

%

= (In2) (Qu)/B)fi;

€l

where @, is defined by (21). O



