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Distributed Optimal Lexicographic Max-min Rate Allocation in Solar
Powered Wireless Sensor Networks

Shusen Yang and Julie McCann, Imperial College London

Understanding the optimal usage of fluctuating renewable energy in Wireless Sensor Networks (WSNs) is

complex. Lexicographic Max-min (LM) rate allocation is a good solution, but is non-trivial for multi-hop
WSNs, as both fairness and sensing rates have to be optimized through the exploration of all possible
forwarding routes in the network. All current optimal approaches to this problem are centralized and
off-line, suffering from low scalability and large computational complexity; typically solving O(N2) linear

programming problems for N -node WSNs. This paper presents the first optimal distributed solution to
this problem with much lower complexity. We apply it to Solar Powered WSNs (SP-WSNs) to achieve
both LM optimality and sustainable operation. Based on realistic models of both time-varying solar power
and photovoltaic-battery hardware, we propose an optimization framework that integrates a local power

management algorithm with a global distributed LM rate allocation scheme. The optimality, convergence,
and efficiency of our approaches are formally proven. We also evaluate our algorithms via experiments
on both solar-powered MicaZ motes and extensive simulations using real solar energy data and practical

power parameter settings. The results verify our theoretical analysis and demonstrate how our approach
outperforms both the state-of-the-art centralized optimal and distributed heuristic solutions.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms: Design, Algorithms, Theory, Performance

Additional Key Words and Phrases: Solar Powered Wireless Sensor Networks, Power Management, Lexico-
graphic optimality, Distributed multi-objective optimization, Max-min fairness

1. INTRODUCTION

The top two challenges facing wireless sensor networks (WSNs) are that of network-wide
longevity and maintenance after deployment. The ability to conserve energy is core to both
these challenges. Therefore harvesting energy from the environment brings a step change
that ensures the viability of WSN for real world deployments [Sudevalayam and Kulkarni
2011; Sharma et al. 2009]. However, the ability of the WSN to meet their requirements while
maximizing longevity will be compromised if the system is not able to exploit renewable
energy optimally. Various environmental energy sources exist, such as solar, thermal, wind
and vibrational. Of these, solar energy has been more widely considered and Solar Pow-
ered WSNs (SP-WSNs) have been attracting a growing interest in various research fields
including hardware system design (e.g. [Taneja et al. 2008]), node-centric power manage-
ment schemes (e.g. [Kansal et al. 2007]), as well as network-wide algorithms (e.g. [Liu et al.
2011]).
Renewable solar energy provides an opportunity to achieve so-called Energy Neutral

Operation (ENO) [Kansal et al. 2007]; that is, the solar-powered node achieves theoretically
perpetual operation ( it always has energy). The main power management goals for solar-
powered sensor nodes, therefore, are to achieve both ENO while maximizing capacity or
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workload, rather than to simply maximize their lifetime (e.g. [Moser et al. 2010; Niyato
et al. 2007]). To facilitate this, both the time-varying nature of solar power and the behaviors
of photovoltaic-battery hardware system (e.g. battery recharging inefficiencies) should be
realistically modeled.
In SP-WSNs, each senor node collects environmental data then forwards sensor data to

a sink, or to multiple sinks, in a multi-hop fashion. Besides ENO at each sensor node,
SP-WSNs aim at achieving the following two nework-wide objectives: (1) high network
throughput for better solar energy resource utilization; (2) fair sensing rate assignment for
all nodes across the network. However, there is a fundamental trade-off between network
throughput and fairness for given solar energy resources. On one hand, if we only maximize
network throughput, the sensors that are farthest from the sinks, or those which have poor
solar harvesting opportunities, will be allocated much lower sensing rates than those closer
to the sink, resulting in potentially unacceptable bias in the readings coming from network.
On the other hand, absolute fairness (i.e. enforce equal sensing rates for all nodes) would
lead to significant reduction in network throughput and inefficient solar energy usage (e.g.
energy may be lost due to the battery overcharging).
Max-min fairness [Bertsekas and Galager 1992] is a well-recognized approach to balance

the tradeoff between network throughput and fairness, and is widely adopted in rate al-
location and control schemes in WSNs [Liu et al. 2011; Rangwala et al. 2006; Sridharan
and Krishnamachari 2009]. In the context of WSNs, we describe a sensing rate allocation as
max-min fair if no sensor can be allocated a higher rate without reducing the rate of another
sensor that has equal or lower rate. Classic max-min rate allocation assumes that underlying
end-to-end data traffic routes [Bertsekas and Galager 1992; Liu et al. 2011; Rangwala et al.
2006; Sridharan and Krishnamachari 2009] are predetermined, and purely adjusts the sens-
ing rates at the transport layer. Therefore, there exists a huge number of classic max-min
rate allocations for a given network, because the number of all possible underlying routes
is of exponential order of the number of nodes in the network.
In this paper, we focus on a generalization of max-min rate allocation, the Lexicographic

Max-min (LM) rate allocation [Chen et al. 2007; Hou et al. 2008; Liu et al. 2011; Radunovic
and Boudec 2007], for SP-WSNs with arbitrary topologies. LM rate allocation jointly opti-
mizes the end-to-end routes and the sensing rate allocation at the network and transport
layers respectively, i.e. it computes the optimal max-min rate assignment by exploring all
possible routes and energy resources in SP-WSNs. Therefore, LM rate allocation is optimal
over all possible classic max-min allocations for a given network.
Theoretically, it is proven that the LM vector is uniquely optimal over any given convex

and compact set [Radunovic and Boudec 2007]. This means that as long as the network con-
straints (energy in SP-WSNs) form an unique convex and compact set for all possible rate
allocations, the LM rate allocation will be the unique optimal solution. To compute the LM
vector, an approach called max-min programming is proposed in [Radunovic and Boudec
2007]. All current optimal solutions [Chen et al. 2007; Hou et al. 2008; Liu et al. 2011] to
the LM rate allocation problem in WSNs can be considered as specific implementations of
the max-min programming approach. However, all these solutions are centralized and suf-
fer from a large computational complexity; of the order of solving N2 Linear Programming
(LP) problems for aN -node WSN. Therefore, although they are solvable in polynomial-time,
their centralized nature and complexity still prohibits their use in practical applications.
Furthermore, such centralized approaches may lead to loops in the computed routes as-
sociated with the LM rate allocation, leading to large end-to-end delays and unnecessary
network resource costs.
It is recognized that distributed approaches are more suitable for WSNs as they allow

the system to both scale and be resilient to change and failure. Recently, two distributed
algorithms, DLEX and DLEX-DAG [Liu et al. 2011], were proposed to compute the max-min
fair rate allocation, based on predetermined routing tree (single-path routing) and directed

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:3

acyclic graphs (DAG, i.e. multi-path routing) respectively. Furthermore, both of them are
designed only for WSNs with a single sink, which restricts their application in large-scale
WSNs where multiple sinks exist (e.g. [Shah-Mansouri et al. 2009]). In contrast, LM rate
allocation considers all possible routes over arbitrary network topologies with either a single
sink or multiple sinks. To the best of our knowledge, there exists no distributed solution to
LM rate allocation problem yet.
In this paper, we focus on fully distributed solution to the LM rate allocation. In doing

so, we demonstrate that designing a distributed solution for LM rate allocation is much
more difficult than the traditional distributed Network Utility Maximization (NUM)-based
rate control scheme; well-studied over the past decade [Chiang et al. 2008]. The core reason
for this is that LM rate allocation is inherently a multi-objective optimization problem (e.g.
[Huang 2007; Salles and Barria 2008]), while NUM-based rate control algorithms normally
solve single-objective convex optimization problems only (i.e. they typically maximize ag-
gregated concave utility functions such as α-fairness [Mo and Walrand 2000; Lan et al.
2010]).
The main contributions of this paper are summarized as follows:
(1) We present a systematic approach to LM rate allocation in SP-WSNs with arbi-

trary topologies and multiple sinks (or a single sink). This is formalized as a joint power
management, routing, and rate allocation problem. The formalization considers both the
time-varying nature of the solar power and realistic photovoltaic-battery hardware behav-
iors; such as battery capacity, recharging inefficiencies, and energy leakage. We decompose
the formalized problem into two sub-problems: a LP problem for Local Power Management
(LPM) that optimizes power for each node, and a multi-objective optimization problem for
the network-wide LM rate allocation.
(2) An efficient Local Power Management (LPM) algorithm is proposed to compute the

maximum feasible energy consumption budget for each sensor node to ensure ENO. Com-
pared with solving LP at runtime, our LPM algorithm remains optimal with a much lower
complexity (similar to a sorting operation), which is suitable for sensor nodes with limited
computation resources.
(3) We develop the first distributed optimal approach to the global LM rate allocation

problem. It operates by iterating through two distributed algorithms: a dual-decomposition-
based algorithm, namely the Distributed Maximum Common Rate (DMCR) and the LM
rate Determination (LMD); a graph-theoretic scheme. Our DMCR-LMD approach is not
only fully distributed, but also achieves a worst-case complexity ofO(N) LPs to compute LM
rate allocation for a N -node SP-WSN, which is much more efficient than current centralized
approaches requiring O(N2) LPs.
(4) We present theoretical proofs of the optimality, convergence, and efficiency for both

the individual algorithms and the whole system. Furthermore, we also demonstrate several
nice properties of our approaches such as the loop-free optimal routing with respect to the
LM rate allocation.
(5) The LPM algorithm is evaluated on a solar-powered MicaZ mote. Using a realistic

power model and parameter settings, we also constructed simulations to evaluate the per-
formance of our DMCR-LMD approach, in terms of optimality, overheads, convergence,
and scalability. Simulation results verify our theoretical analysis and demonstrate that our
approach manages to achieve much better fairness than the state-of-the-art distributed al-
gorithms DLEX and DLEX-DAG, and with much lower complexity compared with the
centralized approaches. In addition, we also study important practical issues such as how
to overcome errors in solar power prediction to ensure ENO for realistic scenarios, through
LPM parameter adjustments.
The remainder of this paper is organized as follows: the next section presents system

model. We present the LPM algorithm in Section 3. Sections 4 and 5 respectively discuss the
DMCR and LMD in detail. Section 6 provides rigorous theoretical analysis of the proposed
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algorithms. In Section 7, we discuss practical issues of implementing DMCR-LMD approach
in real SP-WSNs. The evaluation of our approach is presented in Section 7. Section 8
discusses the related work and we finally we conclude the paper in Section 9.

2. SYSTEM MODEL

We consider a multi-hop SP-WSN that consists of several sensor nodes, and one or multiple
sinks. The SP-WSN can be represented as a directed graph G(V ∪ S,L) where V is the set
of all sensor nodes, S is the set of all sinks, and L is the set of all logical links. For each
node x ∈ V ∪ S, define Nx as the set of all one-hop neighbors of x excluding x.
Sensor node x collects environmental data (e.g. temperature and humidity) at a sensing

rate rx ≥ 0. A data packet is sent in a multi-hop manner to any sink in S. Let fx,y ≥ 0 be
the transmission rate at which node x transmit sensor data to node y, (x, y) ∈ L.

2.1. Energy Model

δ
η

 

Fig. 1. Prediction interval and energy flow.

To model the time-varying solar power, time is divided into identical discrete slots with
duration δ (e.g. [Challen et al. 2010; Moser et al. 2010]). Due to the predicability of solar
power, a prediction algorithm (e.g. [Bergonzini et al. 2010]) is assumed to be used to estimate
the harvesting profile of every non-overlapping prediction interval consisting of L slots, as
shown in Figure 1 (a). At the beginning of every prediction interval, harvested energy hi

x in
every future slot i ∈ I is estimated, where I={1, 2, ..., L}. Based on the predicted harvesting
profile of every prediction interval, our distributed algorithms calculate the optimal LM rate
allocation and corresponding routes for this prediction interval.
Let the long-term average energy cost (Joule per bit) of sensing, receiving and transmit-

ting be Es, Er, and Et respectively. Then, the total energy consumption ECx, x ∈ V of
every slot in a given prediction interval is set to be same and is represented as:

ECx = Esrx + Er

∑
y∈Nx

fy,x + Et

∑
y∈Nx

fx,y (1)

Emin ≤ ECx ≤ Emax (2)

Where Emin and Emax are the lower and upper bounds of energy consumption. For
instance, we measured a MicaZ mote [Mic ] with the fixed power level 0DB. When
turn the CC2420 transceiver off and keep Micro-Controller Unit (MCU) idle, we get
Emin ≈ 13.7δ × 10−3 J; when turn the CC2420 transceiver on and keep Micro-controller
unit (MCU) active, we get Emax ≈ (78.4+Psensor

max )δ×10−3 J, where Psensor
max is the maximum

power consumption of sensor depending on the specific sensor hardware. In addition, Emin

can also be defined by application requirements.
Figure 1.b shows a sensor node’s internal energy flow model, which considers a realistic

rechargeable battery model with battery capacity Bmax, recharging efficiency η < 1 and a
constant leakage Eleak for each slot. Similar power system models are also used in realistic
power management algorithms [Kansal et al. 2007; Moser et al. 2010]. hi

x can be either
stored in the battery or be directly consumed. Let Bi

x be the residual energy of sensor
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node x’s battery at the beginning of every slot i. If ECx is larger than hi
x in slot i, which

means that ECx − hi
x amount of energy will be discharged from the battery; Otherwise,

η(hi
x−ECx) amount of energy will be recharged into the battery, according to the inefficient

recharging process. In summary, the following constraints represent the proposed battery
model:

Bi+1
x = Bi

x + η|hi
x − ECx|+ − |ECx − hi

x|+ − Eleak (3)

0 ≤ Bi+1
x ≤ Bmax (4)

Where |x|+ = x, if x > 0, and |x|+ = 0, otherwise.
Finally, we also consider the so-called final state constraint [Moser et al. 2010]

BL+1
x ≥ φ (5)

The parameter φ < Bmax ensures that there is enough initial energy for next prediction
interval, which influences the long-term performance of the system and feasible solution of
LPM problem (see Proposition 3.2 in subsection 3.1). Given the existence of solar prediction
errors in practice, a smaller φ results in a more aggressive power system behavior and a
high risk to deplete battery. On the other hand, a larger φ may lead to battery overcharging
(i.e. lose solar harvesting opportunity) and poor performance. In this paper, we treat φ as
a constant protocol parameter witch can be set according to application scenarios. Dynam-
ically adjusting φ over different prediction intervals such as [Moser et al. 2010] is outside of
the scope of this paper.

2.2. Wireless Data Forwarding Model

Due to the law of flow conservation, we have for all sensor node x ∈ V

rx +
∑
y∈Nx

fy,x −
∑
y∈Nx

fx,y = 0 (6)

Constraint (6) means that the sum of forwarding rates of i’s all outgoing links must be
equal to that of its all incoming links plus its sensing rate.
We define the packet reception ratio (PRR) over a wireless link (x, y), PRRx,y, as the

probability of successfully transmitting a data packet from node x to y. We define

cx,y = cmaxPRRx,y

as the logical link-layer capacity of a wireless link (x, y), where cmax is the data rate of the
wireless radio (e.g. 250 kbps for IEEE 802.15.4 radio). Consider the link capacity constant,
we have transmitting a data packet from node x to y. We define

0 ≤ fx,y ≤ cx,y (7)

Here cx,y represents the average link capacity over a prediction interval. Due to the
dynamic nature of wireless channel quality, instantaneous PRRx,y and cx,y changes over
time, but can be accurately estimated at runtime in practical WSNs [Gnawali et al. 2009;
Moeller et al. 2010]. However, since SP-WSN is statically deployed, the Euclidean distance
between two any pair of nodes is fixed. As a result, the average Signal-to-Noise Ratio (SNR)
at the receiver of each wireless link is fixed. Therefore, it is clear that the average link
capacity cx,y, (x, y) ∈ L for different prediction intervals are nearly the same. Therefore,
the average link capacity cx,y of a prediction interval can be predicted by using schemes
such as EWMA [Cox 1961] with a high degree of accuracy.
Due to the limited size of solar panel, energy is the dominant bottleneck resource of

SP-WSNs rather than wireless capacity [Liu et al. 2011; Hou et al. 2008; Sudevalayam and
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Kulkarni 2011]. To focus on energy aspect, we use above simple channel model. However,
the essence of our solution to the LM rate allocation problem is nonetheless still preserved,
and our approach can be extended to more complex wireless models.

2.3. Problem Formalization

We first define a feasible sensing rate allocation as follows:

Definition 2.1 (Feasibility Condition). A rate allocation is represented as a |V|-dimension
vector R = (r1, r2, · · · , r|V|). R is feasible if under R there exists a power management and
a routing scheme such that all the constraints (1)–(7) can be guaranteed.

The objective of this paper, the optimal LM rate allocation, is defined as follows:

Definition 2.2 (Lexicographic Optimality). Let R = (r1, r2, · · · , r|V|) be a feasible rate

allocation which is sorted in non-descending order. Any two such vectors R and R
′
have

the following relationships: 1) If ri = r
′

i for any i = 1, 2, · · · |V|, then R is lexicographically

equal to R
′
; 2) If there exist a prefix (r1, r2,· · · , ri) of R and a prefix (r

′

1, r
′

2, · · · , r
′

i) of R
′

such that ri > r
′

i, and rj = r
′

j , for 1 ≤ j ≤ i − 1, Then R is lexicographically greater than

R
′
. R is lexicographically optimal if it is lexicographically greater than all other feasible

rate allocations.

The lexicographically ordering takes into account the objectives of providing both high
throughput and fairness. Let LM∗ be the lexicographically optimal rate allocation, then
the LM rate allocation problem is:

Objective LM∗ (8)

Subject to Constraints (1)− (7)

It worth noting that although all constraints (1)–(7) is linear, the LM rate allocation
problem (8) is inherently a multi-objective optimization problem rather than a LP problem
such as the classic Maximum-Flow Problem.
Problem (8) can be naturally decoupled into two sub-problems by introducing an auxiliary

variable ECmax
x , which is the maximum feasible ECx, x ∈ V:

ECmax
x = max

<Constraints (1)−(5)>
{ECx} (9)

The first sub-problem (9) is the LPM problem which can be solved locally on each node,
because all constraints (1)-(5) only require parameters of each sensor node’s internal power
system. Based on the energy budget ECmax

x , the second sub-problem is

Objective LM∗ (10)

Subject to Constraints (6) and (7)

Esrx + Er

∑
y∈Nx

fy,x + Et

∑
y∈Nx

fx,y ≤ ECmax
x (11)

The second sub-problem has two sets of variables rx and fx,y, x ∈ V, y ∈ Nx. Conse-
quently, the optimal solution of this problem produces the optimal rate vector LM∗ and
the optimal fx,y over every link, i.e the optimal routes corresponding to LM∗. Theorem 2.3
shows the uniqueness of LM∗.

Theorem 2.3. Optimal LM rate allocation LM∗ in our system model is unique.
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Fig. 2. LM∗ for a SP-WSN with seven sensor nodes and a sink. Assume Es = Er = Et = 1 unit, link
capacity is 50 unit, and the maximum feasible energy consumption of all sensor nodes are 20 units. (a) The
network topology. (b) the first maximum common rate and corresponding routes (date forwarding directions
and rates). (c) LM∗ and corresponding optimal routes.

Proof. Firstly, the solution to LPM problem (9), ECmax
x , is unique according to Propo-

sition 3.3 in Section 3. Therefore, constraints (6), (7), and (11) define the unique feasible
region of a rate allocation R = (r1, r2, · · · , r|V|), say X , which is a convex and compact
set (i.e. a polyhedron), since ECmax

x is unique. Define a function ϕ(R) = R over X . Ob-
viously ϕ(R) is a continuous and increasing function in R. According to Theorem 1 and
Proposition 3 in [Radunovic and Boudec 2007], there exists a unique optimal maximin
vector(ϕ(r1), ϕ(r2), · · · , ϕ(r|V|)). Therefore, the optimal LM rate allocation LM∗ in our
system model is unique.

2.4. Overview of Distributed Solution

Define LMx as the LM rate of a sensor node x ∈ V (i.e. LMx is unique, and is an entry
of vector LM∗). Let V(r) = {x|LMx ≤ r, x ∈ V} be the set of sensor nodes whose LM
rates are not larger than a given real number r. For instance, in Figure 2.41, V(0) = ∅,
V(2) = {A,B,C,D,E}, and V(5) = {A,B,C,D,E,F,G}.
Let the sensors in V(r) take their LM rates, and all sensors in V − V(r) take a common

rate, Define C(r) as the maximum feasible common rate of all the sensor nodes in V −V(r):
C(r) = max

<constraints (6),(7), and (11),rz=LMz,∀z∈V(r),rx=ry,∀x,y∈V−V(r))>
{rx}

For instance, in Figure 2.4, C(0) = 2 restricted by bottleneck node E, and C(2) = 5,
restricted by bottleneck nodes F and G. Note that both V(r) and C(r) are functions of r
and will be commonly used in our latter discussions.
Current centralized solution [Chen et al. 2007; Hou et al. 2008; Liu et al. 2011] to LM

rate allocation can be considered as specific implementations of the max-min programming
approach[Radunovic and Boudec 2007]. In our context, max-min programming can compute
LM∗ by iteratively solving two kinds of LP problems: Maximum Common Rate (MCR) and
Maximum Single Rate (MSR). In each MCR-MSR cycle, MCR computes C(r) for all sensor
nodes in V −V(r) and then MSR checks whether LMx = C(r) for each node x ∈ V −V(r).
The iteration rule of r for each MCR-MSR cycle is

rn = C(rn−1) r0 = 0,

Hence, LM∗ in non-descending order has the following structure:

(C(r0), ..., C(r0), C(r1), ..., C(r1), ..., C(rn), ..., C(rn))

1Note that although Figure 2.4(a) is illustrated as a bidirectional graph for brevity, all the links in it is
directional.
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In Figure 2.4, for instance, LM∗ in non-descending order is (2, 2, 2, 2, 2, 5, 5) and it needs
two MCR-MSR cycles to compute LM∗ and corresponding optimal routes. It worth noting
that although LM∗ is unique, the routes corresponding to LM∗ may not be unique. For
instance, fA,B = fB,A = 0 in Figure 2.4(c). However, we can also get a feasible optimal
routing corresponding to LM∗, by resetting fA,B = fB,A = 1 and keep all other data
forwarding rate constant. However, this route contains a loop.
It can be seen that MCR-MSR approach are not only centralized but also suffer a very

large overhead, i.e. solving O(|V|) MCR and O(|V|2) MSR problems. In addition, the routes
corresponding to the LM rate allocation computed by above centralized approach may exist
loops, which leads to large end-to-end delay and unnecessary network resource costs.

Fig. 3. Logical flow of our distributed DMCR-LMD approach.

Due to its optimality, our approach, DMCR-LMD iterations, adopts the similar logical
flow of max-min programming, but computes LM∗ in a fully distributed way and with much
lower complexity. Figure 3 shows the logical flow of our distributed approach. After solving
LPM locally, nodes run two level of iterations to compute LM∗. The high level is the global
DMCR-LMD cycles, and the low level is the iterations of each DMCR.
At each DMCR-LMD cycles, the dual-decomposition based DMCR method calculates the

maximum common rate C(r). Then the graph-theoretic scheme LMD determines the LM
rates of all nodes in V−V(r) simultaneously rather than solving |V−V(r)|MSR problems one
by one. Our LMD scheme requires nearly no calculations and at most 1 control packet per
node for the whole procedure of LM∗ calculation. Further more, our distributed approach
can guarantee loop-free routes (Lemma 6.2 in Section 6).

3. LOCAL POWER MANAGEMENT

This section focuses on the the first sub-problem (9), the local power management problem,
which aims to maximize the average energy consumption ECx for every x ∈ V in a given
prediction interval.

3.1. Properties of the LPM problem

Due to our practical power model (e.g. finite battery capacity Bmax, recharging inefficiency,
and all possible solar power hi

x ≥ 0, i ∈ I), it is difficult to solve LPM problem (9) directly.
In addition, not arbitrary given parameters (e.g. B1

x and Eleak) would result in a feasible
solution of the LPM problem, i.e. ECmax

x ∈ (Emin,Emax). For instance, if the given initial
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battery level and estimated solar power are too small, the final batter level BL+1
x would

not be able to reach a large φ even when ECx = Emin. Consequently, before presenting the
algorithm, we first introduce some very important properties of LPM problem and discuss
feasible parameter settings in practice.

Proposition 3.1 (Monotonicity). Bi+1
x (ECx) is a monotonic non-increasing func-

tion of ECx for any given slot i ∈ I.

Proof. See the appendix.

Two sufficient conditions to grantee that LPM always has a feasible solution are shown
in proposition 3.2.

Proposition 3.2 (Feasibility). Two sufficient conditions to grantee that LPM has a
feasible solution are

∀i ∈ I, hi
x − Emin ≥ Eleak/η (12)

B1
x + η

∑
i∈I

(hi
x − Emin)− EleakL ≥ φ (13)

Proof. See the Appendix.

In practice, condition (12) and (13) nearly always holds for daytime of sunny days with
carefully selected final state parameter φ. We test this based on a solar powered sensor node
with a 9× 3.8cm2 solar panel. For night or bad-weather days, neither constraints (12) nor
(13) would be guaranteed. However, (12) and (13) are sufficient conditions for feasibility
of LPM problem but not necessary conditions to ensure ENO (i.e. battery is not depleted
for every slot). We can set φ carefully to store energy during daytime to avoid battery
exhausting during night.
Finally, the optimal solution ECmax

x has the following property.

Proposition 3.3 (Optimality and Uniqueness). If there exist two energy consump-
tion levels EC1

x and EC2
x ∈ [Emin, Emax]. EC1

x is the maximal ECx that satisfies

Bi+1
x (ECx) ≥ 0, ∀i ∈ I, and EC2

x is the maximal ECx that satisfies the BL+1
i (ECx) = φ.

The optimal solution of sub-problem (9) is ECmax
x = max(Emin,min(EC1

x, EC2
x,Emax)).

Proof. From proposition 3.1, ECmax
x = min(EC1

x, EC2
x) can satisfy both the con-

straints (4) and (5). Consider ECx ∈ [Emin,Emax], Proposition 3.3 obviously holds.

3.2. LPM Algorithm

Based on the properties 3.1 and 3.3, we design the LMP algorithm. The pseudo-code is
shown in Algorithm 1.

The main idea of the LPM algorithm is to gradually decease ECx from a theoretical
upper bound (line 1) until both the two constraints ∀i ∈ I,Bi+1

x ≥ 0 and BL+1
x ≥ φ are

just guaranteed. The slot pointer i represents the current slot and j records slot 1 or the
last slot in which the battery level reaches Bmax. L1 and L2 represent the number of slots
between j and i, in which ECx is smaller than and larger than the harvested solar energy
respectively. For instance, Figure 4.a shows the value of a ECx and solar energy from slot
j to a slot k (Bk+1

x < 0) and Figure 4.b shows the corresponding battery level in all slots
before k + 1. In Figure 4, if i = k, then L1 = 6, L2 = 8. E represents

E = Bj
x +

∑
ECx≥ht

x

ht
x +

∑
ECx<ht

x

ηht
x, t ∈ [j, i]
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ALGORITHM 1: The operation of a node x ∈ V at the beginning of each prediction interval (LPM algorithm).

Input: Initial battery level B1
x, battery capacity Bmax, final state constraint parameter φ, recharging efficiency

η, leakage Eleak, and harvesting profile hi
x, ∀i ∈ I.

Output: The maximum feasible energy consumption ECmax
x

1: ECx ← min(Emax,
∑

i∈I(h
i
x +B1

x − φ)/L− Eleak);
2: i← 1; j ← 1;Bj

x ← B1
x;L1 ← 0;L2 ← 0;E ← B1

x;
3: while i ≤ L do
4: if hi

x > ECx then /∗ recharging in slot i ∗/
5: Bi+1

x = Bi
x + η(hi

x − ECx)− Eleak;
6: L1 ← L1 + 1;
7: E ← E + ηhi

x − Eleak;
8: else /∗ discharging in slot i ∗/
9: Bi+1

x = Bi
x + hi

x − ECx − Eleak;
10: L2 ← L2 + 1;
11: E ← E + hi

x − Eleak;
12: end if
13: if Bi+1

x > Bmax then /∗ battery is overcharged∗/
14: Bi+1

x ← Bmax;
15: E ← Bmax;
16: j ← i+ 1;
17: Bj

x ← Bmax;
18: L1 ← 0;L2 ← 0;
19: i← i+ 1;
20: else if Bi+1

x < 0 then /∗ decrease ECx∗/
21: ECx ← E/(ηL1 + L2);
22: i← j;
23: Bi

x ← Bj
x;E ← Bj

x;L1 ← 0;L2 ← 0;
24: else if Bi+1

x < φ ∧ i = L then /∗ decrease ECx∗/
25: ECx ← (E − φ)/(ηL1 + L2);
26: i← j;
27: Bi

x ← Bj
x;E ← Bj

x;L1 ← 0;L2 ← 0;
28: else
29: i← i+ 1;
30: end if
31: end while
32: return max(ECx,Emin)

With a ECx, there may be a slot when the battery level reaches Bmax(line 13). j always
records such latest slot. L1, L2, and E are updated to record the corresponding values after
slot j. ECx is only updated by lines 21 and 25.

Lemma 3.4. Let EC
′

x be the updated ECx, thus EC
′

x must be smaller than ECx.

Proof. For line 21, since Bk+1
x (ECx) < 0, we have

ECx > (Bj
x +

∑
ECx>ht

x

ht
x +

∑
ECx<ht

x

ηht
x − (L1 + L2)Eleak)/(ηL1 + L2)

= E/(ηL1 + L2) = EC
′

x
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For line 25, similarly, we can obtain BL+1
x < φ ⇔ EC

′

x < ECx.

Since ECx is feasible for all slots before k+1, EC
′

x is therefore feasible for all slots before

k + 1, according to Proposition 3.1 and Lemma 3.4. Consequently, having calculated EC
′

x,

the LPM algorithm only rechecks the feasibility of EC
′

x in slot k+1. To this end, the LPM
algorithm recalculates the battery levels from slot j to slot k+1 (lines 22 and 26), because

Bj
x remains Bmax or B1

x for any EC
′

x < ECx, according to Proposition 3.1.

For a calculated EC
′

x, let the corresponding numbers of slots between j and k be L
′

1 and

L
′

2 respectively, in which harvesting energy is smaller and larger than EC
′

x. For instance,

in Figure 4, L
′

1 = L1 + 4 and L
′

2 = L2 − 4. When the energy consumption level drops from

ECx to EC
′

x, the following three cases would happen.

 Fig. 4. An example to explain LPM algorithm.

Lemma 3.5. For any given 1 < k ≤ L such that Bk+1
x (ECx) < 0 if k < L; or

Bk+1
x (ECx) < φ, otherwise the last updated ECx is the maximum feasible energy con-

sumption for all slots before k.

Proof. See the Appendix.

Theorem 3.6. The output of the LPM algorithm is the optimal solution of sub-problem
(9).

Proof. According to Lemma 3.5, the last updated ECx is always the maximum feasible
energy consumption for all slots before k + 1, and the algorithm ends when k = L and
Bk+1

x (ECx) ≥ φ.

Now we discuss the computation overhead of the LPM algorithm. For a given j and k,
both the cases 2 and 3 happen at most k − j + 1 times before k is updated (because there
are k − j + 1 slots between slots k and j). Consequently, in above two worst cases, our
LPM needs at most O(L2) simple arithmetic calculations to compute ECmax

x . In practice,
we can choose large Bmax and δ such that cases 2 and 3 rarely happen, then the number
of simple arithmetic calculations reduces to O(L). In summary, the overhead of our LPM is
similar to a sorting operation for L elements, which is suitable for sensor nodes with limited
computing capacity.
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4. DISTRIBUTED MCR

Let the maximum common rate computed in the last DMCR-LMD cycle be r ≥ 0, then the
current DMCR aims to compute C(r) for all nodes in V −V(r) (please see Figure 3 for the
logical flow of our DMCR-LMD approach). For instance, if the current DMCR is in the first
DMCR-LMD cycle, then r = 0. C(r) can be calculated by solving the following problem:
∀x, y ∈ V − V(r), z ∈ Nx, p ∈ V(r)

Maximize
∑

x∈V−V(r)

rx (14)

Subject to rx − ry = 0 (15)

rx − r ≥ 0 (16)

rp − LMp = 0 (17)

0 ≤ fx,y ≤ cx,y (18)

rx +
∑
z∈Nx

fz,x −
∑
z∈Nx

fx,z = 0 (19)

ECmax
x − Esrx − Er

∑
z∈Nx

fz,x − Et

∑
z∈Nx

fx,z ≥ 0 (20)

Constraint (15) enforces all rx to be equal, according to the objective of the MCR problem.
Constraints (19) and (20) refer to flow conservation law and energy constraints respectively.
Also, since x ∈ V − V(r), constraint (16) ensures that the lower bound of rx is r. Further,
constraint (17) highlights that every node p ∈ V(r) should keep their sensing rate as LMp

which has been determined by previous DMCR-LMD cycles.
The objective of problem (14) is to calculate the maximum common rate C(r) of sensor

nodes in V−V(r) (i.e. rx, x ∈ V−V(r)), as well as the corresponding optimal routes (fx,z, z ∈
Nx). DMCR is based on dual-decomposition which is commonly used in distributed network
optimization. In contrast to existing approaches, however, DMCR deals with two novel
problems as follows:
Heterogeneous Decomposition. From the problem formalization (14)-(20) we can see

that not only all sensor nodes in V but also every node x ∈ V −V(r) and every node z ∈ Nx

are part of the current DMCR calculation. A simple example is shown in Figure 5, nodes 2,
6, and 7 who are in V(r), will not involve in current DMCR, because their LM rates and the
corresponding optimal routes (represented as directional solid lines) have been determined
in previous DMCR-LMD cycles. Since the current DMCR calculation is to compute the
maximum common rate C(r) of the nodes in V −V(r) (i.e. nodes 1, 3, 4, 8, 10, 11, and 12),
as well as the routes (flows over links that represented as dotted lines), not only the nodes
in V −V(r), but also the nodes 5 and 9 who are the neighbors of nodes 4, 8, 10, 11 are part
of the current DMCR calculation. Nodes 5 and 9 only calculate the optimal flows over links
(5, 4), (5, 8), (9, 10), and (9, 11). Our DMCR manages to decouple the original problem
(14) into different subproblems for each node x ∈ V − V(r) and each node z ∈ Nx.
Disconnected Network Topology. Current dual-decomposition-based schemes always

deal with the connected network. In our case, however, with absence of nodes in V(r), the
sub-graph consists of only nodes in V − V(r) would not be connected. As shown in Figure
5, for instance, nodes in V − V(r) are separated into two sub-sets, sharing no link between
each other. Consequently, the rate equality constraint (15) can not be aware by all nodes
in V − V(r) in a distributed fashion. In this case, since there is no centralized controller,
DMCR parallel calculates two maximum common rates respectively for the two sub-sets,
which is different from original centralized LP approach. In fact, this is a good property of
our DMCR, because multiple maximum common rates can be parallel found in one DMCR
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calculation, which may result in less DMCR-LMD cycles than that of centralized MCR-
MSR. Our simulation results show that the number of DMCR-LDM cycles can be 150%
less than that of MCR-MSR cycles, which will significantly reduce the system convergence
time and overheads.

( )r−V V ( )rV

 

Fig. 5. An example for DMCR.

We construct the dual problem of the primary problem (14) by introducing the Lagrange
multipliers λx, νx for energy constraint (20) and flow conservation constraint (19) respec-
tively at each node z ∈ Nx, x ∈ V − V(r), and the Lagrange multiplier ρx,y for rate equality
constraint (15) for node pairs x ∈ V − V(r) and y ∈ (V − V(r)) ∩ Nx. The corresponding
Lagrangian is

L(r, f, λ, υ, ρ)

=
∑

x∈V−V(r)

rx(1− λxEs − υx +
∑

y∈Nx∩(V−V(r))

(ρx,y − ρy,x))

+
∑

x∈V−V(r)

∑
z∈Nx

(fx,z(υz − υx − Etλx − Erλz))

+
∑

x∈V−V(r)

λxECmax
x (21)

The dual function is:

D(λ, ν, ρ) = sup
r≤rx,0≤fx,z≤cx,z

L(r, f, λ, υ, ρ) (22)

Then we have the dual problem

Minimize D(λ, ν, ρ) (23)

Subject to λ ≥ 0 (24)

Since the objective function of problem (14) is not strictly concave (i.e. linear) in both
primary variables r and f , the solution should be recovered [Xiao et al. 2004]. We use
the strictly concave term

∑
x∈V−V(r) log rx to replace the objective function(14), because

maximizing rx is equal to maximizing log(rx) with the equal constraint (15). We also add
a small strictly concave regularization term −ε

∑
x∈V−V(r)

∑
z∈Nx

f2
x,z for variable f to the

objective function (4). The regularized objective of the primary problem (14) is∑
x∈V−V(r)

log rx − ε
∑

x∈V−V(r)

∑
z∈Nx

f2
x,z (25)
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By choosing ε small enough, the solution of the regulated problem can be arbitrary close
to that of the original problem (14). The corresponding regularized dual problem is

Minimize sup
rx≥r,0≤fx,z≤cx,z

 ∑
x∈V−V(r)

log rx − rx(λxEs + υx −
∑

y∈Nx∩(V−V(r))

(ρx,y − ρy,x))

+
∑

x∈V−V(r)

∑
z∈Nx

(fx,z(υz − υx − Etλx − Etλz)− εf2
x,z) +

∑
x∈V−V(r)

λxECmax
x


Subject to λ ≥ 0

(26)

We use a sub-gradient algorithm to solve the regulated dual problem (26). The algorithm

starts from the initial values λ
(0)
x , ν

(0)
x , ρ

(0)
x,y: For the kth iteration step of the sub-gradient

algorithm, each node x in V − V(r) solves the following two simple maximizing problems:

r(k)x =argmax
r≤rx

(log rx − rx(υ
(k)
x +

∑
y∈(Nx∩V−V(r))

(ρ(k)xy − ρ(k)yx )− λ(k)
x Es) (27)

f (k)
x,z =arg max

z∈Nx,cx,z≥fx,z≥0
(fx,z(υ

(k)
z − υ(k)

x − Etλ
(k)
x − Erλ

(k)
z )− εf2

x,z) (28)

For each node x ∈ V − V(r), the next step λ
(k+1)
x , υ

(k+1)
x , ρ

(k+1)
x,y , y ∈ Nx ∩ (V − V(r))are

computed as

λ(k+1)
x =|λ(k)

x − l(k)(ECmax
x − Esr

(k)
x − Er

∑
z∈Nx

f (k)
z,x − Et

∑
z∈Nx

f (k)
x,z )|+ (29)

υ(k+1)
x =υ(k)

x − l(k)

(∑
z∈Nx

(f (k)
x,z − f (k)

z,x )− r(k)x

)
(30)

ρ(k+1)
x,y =ρ(k)x,y − l(k)

(
r(k)y − r(k)x

)
(31)

Where l(k) is the step length of the kth iteration, one condition for the convergence of the
subgradient algorithm is (see Lemma 6.1 in Section 6.1):

∞∑
k=1

(l(k))2 → 0,
∞∑
k=1

l(k) → ∞ (32)

For instance we can set L(k) = 1/k. From (27)-(31), each node x ∈ V − V(r) exchanges all
updated flow and dual variables with its neighbors in V − V(r), but only obtain fz,x, λz,
and νz from its neighbors z ∈ V(r) ∩Nx in every iteration step.
As we have mentioned, besides every node x ∈ V − V(r), every node z ∈ V(r) ∩ Nx is

part of the current DMCR calculation to compute the the amount of data forwarded over
links (z, x) should also be determined. The calculation is based on the following Theorem:

Theorem 4.1. For each node z ∈ V(r) ∩Nx, x ∈ V − V(r), its optimal incoming flows
are sent by nodes only p ∈ Nz ∩ V(r) and have been determined before the current DMCR
calculation.

Proof. According to Lemma 6.3 in Section 6.2, since z ∈ V(r), for any forwarding path
P (p, z), p ∈ V(r). Since p is z,s neighbor, p ∈ Nz ∩ V(r).
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According to Theorem 4.1, the forwarding rate fz,p, p ∈ Nz ∩ V(r) have been predeter-
mined in previous DMCR-LMD cycles. Since rz has also be determined (i.e. LMz), node z
only updates fz,x, x ∈ V − V(r) in its kth step as follows

f (k)
z,x =arg max

cz,x≥fz,x≥0,z∈Nx∩V(r),x∈V−V(r)
(fz,x(υ

(k)
x υ(k)

z − Etλ
(k)
z − Erλ

(k)
x )− εf2

z,x) (33)

Then, the λ
(k+1)
z and υ

(k+1)
z are updated as

λ(k+1)
z =|λ(k)

z − l(k)(ECmax
z − EsLMz

− Er

∑
p∈Nz∩V(r)

fp,z − Et

∑
x∈Nz∩(V−V(r))

f (k)
z,x )|+ (34)

υ(k+1)
z = υ(k)

z − l(k)

∑
x∈Nz

f (k)
z,x −

∑
p∈Nz∩V(r)

fp,z − LMz

 (35)

In summary, every node x ∈ V −V(r) updates its primary and dual variables using (27)-
(31), and every node z ∈ V(r)∩Nx, x ∈ V −V(r) in updates its primary and dual variables
(33)-(35). It is obvious that all information for (27)-(35) is either local or can be obtained
by neighbor nodes, therefore DMCR is fully distributed.
DMCR calculates C(r) (i.e. maximized rx) and corresponding optimal routes (i.e. fx,y

and fy,x, x ∈ V − V(r), y ∈ Nx). One nice property of our approach is that the optimal
routes calculated by DMCR is loop-free( Lemma 6.2 in Section 6).
In order to focus on the global multi-objective LM rate allocation problem, DMCR only

adopts the basic dual-decomposition techniques: augmented Lagrangian and sub-gradient
algorithms, which may result in relatively large convergence time. However, the convergence
speed of DMCR could be significantly improved (e.g. hundreds of times faster) by using
recent-proposed distributed convex optimization techniques such as [Necoara and Suykens
2008; Wan and Lemmon 2009].
When current DMCR computation completes, every node x ∈ V −V(r) records C(r) and

data forwarding rates over its optimal incoming and outgoing links, for the forthcoming
LMD to determine whether C(r) is its LM rate or not (please see Figure 3 for the logical
flow of our DMCR-LMD approach).

5. LM RATE DETERMINATION

Let C(r) be the maximum common rate computed by the last DMCR. After computing
C(r), each node x ∈ V − V(r) should determine whether C(r) is its LM rate (i.e. LMx) or
not (Please refer to Figure 3 for the logical flow of our DMCR-LMD approach.). This can
be achieved by solving the following LP problem (i.e. the MSR problem)

Maximize rx (36)

Subject to ry = C(r), ∀y ∈ V − V(r)− {x} (37)

constraints (16)− (20)

If the maximized rx is equal to C(r), then the LM rate of node x, LMx is equal to C(r);
otherwise, LMx is larger than C(r). However, this approach is not only centralized, but also
requires solving |V −V(r)| LP problems to determine the LM rates of all nodes in V −V(r).
Furthermore, each of these LP problems has the similar complexity of MCR problem (14).
Therefore, this approach is obvious too heavy for resource-limited SP-WSNs.
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For readability, we call sensor nodes in V − V(r) whose LM rates are equal to and larger
than C(r) as New LM Rate (NLMR) nodes and Larger LM Rate (LLMR) nodes respectively.
Obviously, the goal of solving |V −V(r)| LP problems (36) is to determine all NLMR nodes
and LLMR nodes. In this section, we develop LMD, a fully distributed graph-theoretic
scheme to achieve this goal. In contrast to solve |V − V(r)| LP problems one by one, LMD
manages to determine the state of each node x ∈ V−V(r) simultaneously (i.e. x is a NLMR
node or LLMR node), with extremely low overhead.

5.1. Graph-theoretic Understanding of the LM rate Determination Problem

Before presenting the LMD scheme, we first analyze the LM rate determination problem
from graph theory perspective. We define a temporary graph formed after the last DMCR:

Definition 5.1 (Temporary Graph). A temporary graph G(S ∪ V,F , r) forms after the
calculation of the last C(r), where F is the set of allocated forwarding rate over every
link (i.e. end-to-end routes from network-wide perspective), which is calculated by the last
DMCR and previous DMCR-LMD cycles.

( )rV

( )r−V V

( )r−V V

 

Fig. 6. An example of a temporary graph.

Figure 6 illustrates an example of a temporary graph2. Actually, the process of the LM∗

calculation can be seen as determining the new LM rates and corresponding temporary
graphs step by step. The first temporary graph forms after the calculation of C(0), and the
last temporary graph forms when all LM rates have been found and represents the optimal
routing corresponding to LM∗.

Definition 5.2 (Saturated Node and Unsaturated Node). We call a sensor node x in a
temporary graph G(S ∪ V,F , r) a saturated node, if

Esrx + Er

∑
y∈Nx

fy,x + Et

∑
y∈Nx

fx,y − ECmax
x = 0

or

fx,y = cx,y, ∀y ∈ Nx

; otherwise, x is called an unsaturated node.

2It worth noting that Figure 6 is a temporary graph, but Figure 5 is not a temporary graph, because Figure
5 describes the network states before a DMCR, rather than after a DMCR.
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Definition 5.3 (Path and Forwarding Path). Given a temporary graph G(S ∪ V,F , r), a
path P (s, d) with source s and destination d, s ∈ V, d ∈ S ∪ V, is a sequence of links. If
fx,y > 0, ∀(x, y) ∈ P (s, d), then P (s, d) is a forwarding path. If P (s, d) is a forwarding path,
it is called the source node s′s downstream path, and the destination node d′s upstream
path. If all sensor nodes in a path is unsaturated, then we call this path an unsaturated
path, otherwise we call it a saturated path.

An arbitrary path may not be a forwarding path, but each sensor node x ∈ V must have a
downstream forwarding path to the sink in every temporary graph G(S ∪V,F , r), r ≥ C(0),
because x must have a non-zero sensing rate (i.e. rx ≥ C(0) >0) for any temporary graph,
and the flow injected into the network (i.e. rx) must be transmitted to the sink, according
to the flow conservation law.
Theorem 6.8 in Section 6.2 provides a condition to determine the state (NLMR or LLMR)

of a node in V − V(r): Let P (x, s) ∈ G(S ∪ V,F , r) be an arbitrary path from a node
x ∈ V − V(r) to an arbitrary sink s ∈ S. Except for the destination s, this path consists of
nodes only in V−V(r). If all such paths are unsaturated, then x is a LLMR node. Otherwise,
x is a NLMR node.
From theorem 6.8, saturated nodes in V−V(r) form a saturated cut or multiple saturated

cuts between a set of unsaturated nodes in V−V(r) and all sinks in a given temporary graph.
Take Figure 6 for instance, saturated nodes 10, 11, 12, and 6 form a cut which separates
the set of unsaturated nodes 1, 2, 3, 4, and 5 from the two sinks. All possible forwarding
paths from these nodes to the two sinks, which only consists of nodes in V −V(r), must via
the saturated nodes 6, 10, 11, and 12. According to Theorem 6.8, nodes 1 2, 3, 5, 6, 10, 11
and 12 are NLMR nodes and other unsaturated nodes in V − V(r) are LLMR nodes.

5.2. The LMD scheme

Fig. 7. Illustration of LMD operating durations.

The Pseudo-code of the LMD scheme is described in Algorithm 2. The LMD scheme
multicasts a one-hop control packet, Max-min Notice (MN) packet. As shown in Figure 7,
LMD starts at time T0(r) when the last DMCR is finished, and complete at time Tn(r) when
next DMCR starts. The upper bound of the duration[T0(r), Tn(r)] is determined by the per-
hop transmission delay and network diameter (see the proof of Lemma 6.14 in Section 6.2),
which can be easily estimated in practice.
At T0(r), every node x in V − V(r) records C(r) and it local flow information calculated

by the last DMCR. Consequently, x can locally determine its state (i.e. saturated or un-
saturated). At T0(r), every node initiates as a LLMR node (line 1, in self check at T0(r)),
it then checks whether it is a saturated node or not (line 3) by simply calculating its local
constraint (20). After self-checking, every saturated sensor node x in V −V(r) sets its state
as NLMR and multicasts a one-hop MN packet to all its upstream neighbors in V − V(r)
(lines 3-7). During the MN packet transmission phase, the MN packets generated by the
saturated nodes in V − V(r) are relayed through their upstream neighbors in V − V(r).
In the MN packet transmission phases (T0(r), Tn(r)), when an unsaturated node x receives

a MN packet from its downstream neighbor y (line 1), x knows it is a NLMR node and sets
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its state as NLMR (line 2), then it records the ID of the sender of this packet (line 3). Then
x checks whether its every downstream neighbor in Dx(r) has sent it a MN packet and its
upstream neighbor set Ux(r) is non-empty (line 4). If yes, x multicasts a MN packet to all
node(s) in Ux(r) (line 5).

ALGORITHM 2: Pseudo-code of the LMD for a sensor node x ∈ V − V(r).

Control Packets:
Maxmin Notice(MN)

Variables:
x.state : this value could be NLMR or LLMR, determine this value is the objective of LMD.
Nx(r) = Nx ∩ (V − V(r)).
Dx(r) = {y|y ∈ Nx(r), fx,y > 0}: the set of x’s all downstream neighbors in set Nx(r).
Ux(r) = {y|y ∈ Nx(r), fy,x > 0}: the set of x’s all upstream neighbors in set Nx(r).
SNx : the set of neighbors who have sent MN packets to x.

Function:
multicast(Ux(r)): multicast a MN packet to all nodes in the set Ux(r).

Self Check at T0(r)
1: x.state← LLMR;
2: SNx ← ∅;
3: if x is saturated then
4: x.state← NLMR;
5: if Ux(r) ̸= ∅ then
6: multicast (Ux(r));
7: end if
8: end if

Receive a MN packet from y ∈ Dx(r) before Tn(r)
1: if x is unsaturated then
2: x.state← NLMR;
3: SNx ← SNx ∪ {y};
4: if(Dx(r) = SNx) ∧ (Ux(r) ̸= ∅) then
5: multicast(Ux(r));
6: end if
7: end if

Take Figure 6 for example, nodes 6, 10, 11, and 12 know that they are saturated after
self-checking and send MN packets to their upstream neighbors 4 and 5 respectively. At
Tn(r), the unsaturated nodes 1, 2, 3, 4, and 5 have received MN packets but only nodes 3
and 5 have been sent a MN packet respectively. The MN packet transmission procedure is:
firstly 10 → 4 and {11, 12, 6} → 5, then 5 → {3, 4}, finally 3 → {1, 2}.
Consequently, every node x ∈ V−V(r) manages to determine its state (LLMR or NLMR)

at Tn(r) as follows: x is a NLMR node, if it is a saturated node, or an unsaturated node
and has received a MN packet; x is a LLMR node, if x is an unsaturated node and has not
receive any MN packet.
At Tn(r), all LLMR nodes and their neighbors will be part of the calculation of the next

DMCR-LMD cycle. It is obvious that each NLMR node transmits at most one MN packet
for entire procedure of the LM∗ calculation. Theorem 6.16 in Section 6 demonstrates the
accuracy of LMD scheme.
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6. PERFORMANCE ANALYSIS

In this section, we provide rigorous analysis of the system performance. The main results
are as follows.
Firstly, DMCR converges arbitrarily close to the optimal solution of problem (14) (Lemma

6.1). The routes computed by any DMCR is loop-free, including the optimal routes with
regards to LM∗ (Lemma 6.2).
Secondly, LMD let each node in V −V(r) know it is a NLMR node or LLMR node before

Tn(r) (Theorem 6.16). LMD determines the LM rate for every node with at most 1 control
packet for the whole procedure of LM∗ calculation (Theorem 6.17).
Thirdly, the whole system (LPM, DMCR, and LMD) converges to optimal LM rate

allocation LM∗ and corresponding optimal routes (Theorem 6.18).

6.1. Analysis of DMCR

Lemma 6.1. Each DMCR can converges arbitrarily close to the optimal solution of prob-
lem (14) as ε → 0.

Proof. Let the optimal dual variables be (λ, ν, ρ)∗ that minimize the regulated dual
function Dε(λ, ν, ρ) (26). At the kth step of the subgradient algorithm, we have

∥(λ, ν, ρ)(k+1) − (λ, ν, ρ)∗∥22
= ∥(λ, ν, ρ)(k) − l(k)g(k) − (λ, ν, ρ)∗∥22
= ∥(λ, ν, ρ)(k) − (λ, ν, ρ)∗∥22 − 2l(k)g(k)T ((λ, ν, ρ)(k) − (λ, ν, ρ)∗) + (l(k))2∥g(k)∥22
≤ ∥(λ, ν, ρ)(k) − (λ, ν, ρ)∗∥22 − 2l(k)(Dε((λ, ν, ρ)(k))−D∗

ε((λ, ν, ρ)∗)) + (l(k))2∥g(k)∥22
where ∥ · ∥ is the Euclidean norm operator and the last inequality is based on the definition
of subgradient. Applying the inequality above recursively, we have

∥(λ, ν, ρ)(1) − (λ, ν, ρ)∗∥22 − 2

k∑
i=1

l(i)(Dε((λ, ν, ρ)(i))−D∗
ε((λ, ν, ρ)∗)) +

k∑
i=1

(l(i))2∥g(i)∥22

≥ ∥(λ, ν, ρ)(k+1) − (λ, ν, ρ)∗∥22 ≥ 0

Assume the subgradient is bounded ∥g(k)∥22 ≤ G (this can be easily achieved by adding
sufficient large upper bounds for both r and f), then we have

Dε((λ, ν, ρ)(k))−D∗
ε((λ, ν, ρ)∗) ≤

∥(λ, ν, ρ)(1) − (λ, ν, ρ)∗∥22 +G2
∑k

i=1(l
(i))2

2
∑k

i=1 l
(i)

According to step size updating rule (32), i.e.
∑∞

i=1(l
(k))2 → 0,

∑∞
i=1 l

(i) → ∞, we have

lim
k→∞

Dε((λ, ν, ρ)(k)) = D∗
ε((λ, ν, ρ)∗)

Consider the strong duality of the system and the expression of Dε(·), we can conclude
that as ε → 0, DMCR converges to the optimal solution of problem (14).

Lemma 6.2. The routes calculated by any DMCR are loop-free.

Proof. Let λ∗
x, ν

∗
x, f

∗
x,y be the optimal value of λx, νx, fx,y respectively. From equations

(18) and (23), we have:

f∗
x,z =

{
−(∆υ∗+Etλ

∗
x+Erλ

∗
z)

2ε
−(∆υ∗+Etλ

∗
x+Erλ

∗
z)

2ε > 0

0
−(∆υ∗+Etλ

∗
x+Erλ

∗
z)

2ε ≤ 0
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Where ∆ν∗x = ν∗x−ν∗z . Suppose there is a loop such that f∗
x1,x2 > 0, f∗

x2,x3 > 0, · · · , f∗
xn,x1 >

0, which implies:

υ∗
x1 − ν∗x2 < −Etλ

∗
x1 − Erλ

∗
x2

· · ·

υ∗
xn − ν∗x1 < −Etλ

∗
xn − Erλ

∗
x1

Taking a telescopic sum of above inequations from 1 to n, we get:

0 < −(Et + Er)
n∑

i=1

λ∗
xi

Which is impossible, because (Et + Er)
∑n

i=1 λ
∗
xi

is always non-negative.

6.2. Analysis of LMD

Lemma 6.3. Consider an arbitrary forwarding path P (x, y) in a temporary graph G(S ∪
V,F , r), if y ∈ V(r), then x ∈ V(r).

Proof. We prove Lemma 6.3 by contradiction. Suppose there is a forwarding path
P (x, y), x ∈ V − V(r) and y ∈ V(r), then we have LMx ≥ C(r) > LMy. Therefore, we can
set rx = C(r)−∆r and ry = LMy +∆r, where ∆r < (LMy +LMx)/2, by reducing the ∆r
amount of flow over P (x, y). Since the amount of flow over P (x, y) is reduced, the unchanged
sensing rates of other nodes on P (x, y) are still feasible. As a result, we have a new feasible
rate allocation, in which rx = C(r)−∆r, ry = LMy +∆r, rm = C(r), ∀m ∈ V −V(r)−{x},
and rn = LMn, ∀n ∈ V(r) − {y}. This new rate assignment is lexicographically greater
than LM∗, which conflicts with the fact that LM∗ is the unique lexicographically optimal
feasible rate allocation (Theorem 2.3).

Lemma 6.3 means that data traffic generated by any node in V − V(r) will not pass any
node in V(r).

Definition 6.4. Real and Fake saturated nodes: Consider a saturated node x, and an
unsaturated node y, x, y ∈ V − V(r). If there exist two forwarding paths P (y, x) and
P (y, s) s ∈ S in G(S ∪ V,F , r), where P (y, s) consists of pure unsaturated nodes, then
x is called a fake saturated node. Otherwise, it is a real saturated node.

Lemma 6.5. For a temporary graph G(S ∪ V,F , r), the probability that a fake saturated
node exists is zero.

Proof. Suppose there is a fake saturated node x in a temporary graph in G(S+V,F , r),
such that an unsaturated node y has a forwarding path to x and a forwarding path to a sink.
In this case, x can also be unsaturated by reducing the ∆r amount of flow on P (y, x) and
increasing the same amount of flow on P (y, s). All nodes in V−V(r) can still keep the sensing
rate of C(r). As long as ∆r is smaller than the residual capacity of path P (y, s), this is still a
feasible solution to DMCR. Hence, node x is not the bottleneck of the network. Let λ∗

x be the
optimal dual variable λx computed by any DMCR. According to complementary slackness
condition [Boyd and Vandenberghe 2004], λx > 0, if x is saturated; λx = 0, otherwise. Since
λx is a continuous variable, there exists infinite λx > 0 but only one λx = 0. Therefore, the
probability that x is a fake saturated node is zero.

For instance, the probability that node 15 in Figure 6 is a saturated node is zero.

Lemma 6.6. For a temporary graph G(S ∪ V,F , r), all real saturated nodes in V − V(r)
are NLMR nodes.
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Proof. Supposed a real saturated node is x is a LLMR node, then we can write rx =
∆r + C(r), where ∆r > 0 and all other nodes in V − V(r) keep the sensing rate of C(r).
To guarantee feasibility, x has to reduce its ∆r relay flow of its upstream nodes. Let y be
an arbitrary upstream node of x, then y has to reduce the flow on P (y, x) and increase the
same amount of flow on a forwarding path P (y, s), according to the flow conservation law.
To relay the additional flow, P (y, s) must consist of all unsaturated nodes, which means x
is a fake saturated node. This conflicts with the supposition.

Lemma 6.7. For a forwarding path P (x, y) in G(S ∪ V, F , r), x, y ∈ V − V(r). If x is
unsaturated and y is saturated, then there must exist at least one saturated node on every
path P (x, s), ∀s ∈ S.

Proof. According to Lemmas 6.5 and 6.6, lemma 6.7 obviously holds.

Since there is no fake saturated node, in later discussions we will directly use the term
”saturated node” as a shorthand notion of ”real saturated nodes”.

Theorem 6.8. Let P (x, s) ∈ G(S∪V,F , r) be an arbitrary path from a node x ∈ V−V(r)
to an arbitrary sink s ∈ S. Except for the destination s, this path consists of nodes only
in V − V(r). If all such paths are unsaturated, then x is a LLMR node. Otherwise, x is a
NLMR node.

Proof. If x is a saturated node, then it is a NLMR node according to lemma 6.6.
If x is an unsaturated node, suppose x is a LLMR node, then we can write rx = ∆r+C(r),

and ry = C(r) and rz = LMz, where ∆r > 0, y ∈ V − V(r), and z ∈ V(r). According to
flow conservation law, there must exist a forwarding path P (x, s), s ∈ S, which is able to
relay the incremental flow ∆r, i.e.P (x, s) must consist of pure unsaturated sensor nodes and
the minimal residual capacity of node on P (x, s) is larger than ∆r, which conflict with the
supposition.

Definition 6.9 (Temporary Upstream Path Enclosure (TUPE)). For a given G(S ∪
V,F , r). Let P(x) be the union of unsaturated nodes in V − V(r) on all upstream paths
of an arbitrary saturated node x ∈ V − V(r). Denote the saturated cut X be a set of sat-
urated node in V − V(r) such that ∀x, y ∈ X,P(x) ∩ P(y) ̸= ∅. We define a TUPE as
P(X) = ∪x∈XP(x).

It can be seen all nodes in P(X) are unsaturated in V − V(r) and X separates these
unsaturated nodes from all sinks. For example, in Figure 6, X = {6, 10, 11, 12} and P(X) =
{1, 2, 3, 4, 5}.

Lemma 6.10. All unsaturated nodes in a TUPE P(X) are NLMR nodes.

Proof. Since every unsaturated sensor node y in a TUPE must has one downstream
saturated node, there must be a saturated node on y,s all downstream paths, according to
Lemma 6.7. Furthermore, according to theorem 6.8, y is a NLMR node.

Definition 6.11. For a node y ∈ P(X), let P(y,X) be set of all forwarding paths
P (y, x), x ∈ X. DenoteD(y,X) as the maximal hop count of all forwarding paths in P(y,X).
In addition, denote Dis(y,X) = 0, if y ∈ X.

For example, in Figure 6, X = {6, 10, 11, 12}, D(5, X) = 1, D(4, X) = 2, and
Dis(10, X) = 0.

Lemma 6.12. For any node y ∈ P(X), Dis(y,X) ≤ |P(X)|.
Proof. According to Lemma 6.2, there is no loop in any temporary graph. Conse-

quently, the maximal possible Dis(y,X) = |P(X)|, when all nodes are distributed as a
linear topology.
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Lemma 6.13. For any node y, z ∈ P(X), if z is a downstream neighbor of y, then
Dis(z,X) < Dis(y,X).

Proof. According to Lemma 6.2, z will not be an upstream node of y. Hence, it is
obvious that Dis(z,X) < Dis(y,X) by definition.

Lemma 6.14. Every node y ∈ P(X) can know it is a NLMR node before Tn(r).

Proof. Let the duration of transmitting a MN packet be ∆T . At T0(r), all saturated
nodes in X multicasts a MN packet to all their upstream neighbors. At T0(r) + ∆T , if
Dis(y,X) = 1, y can receive MN packets from all its downstream neighbors belong to X.
Consequently, it can know that it is a NLMR node and multicasts a MN packet to its all
upstream neighbors. Otherwise, y just stores the packet. At T0(r) + 2∆T , if D(y,X) = 2,
then it have two kinds of downstream neighbors z : Dis(z,X) = 1 or Dis(z,X) = 0,
according to Lemma 6.13. It is obvious that in both cases, z has transmitted a MN packet
to y. Consequently, y can know it is a NLMR node and multicasts a MN packet to all its
upstream neighbors. By repeating this process, we can see that every y can receive MN
packets from its all downstream neighbors at T0 + Dis(y,X)∆T . According to Lemma
6.12, we can set |P(X)|∆T ≥ Tn(r) ≥ maxy∈P(X){Dis(y,X)∆T} such that y ∈ P(X) can
successfully know it is a NLMR node before Tn(r).

Lemma 6.15. If a node x does not belong to any TUPE, it will know it is a LLMR node
at Tn(r).

Proof. First, it is obvious that x is LLMR node. Second, since every P (x, s) consists
of pure unsaturated node, x can not receive any MN packet, i.e. x will know it is a LLMR
node at Tn(r).

Theorem 6.16. LMD lets each node in V − V(r) know it is a NLMR node or LLMR
node before Tn(r) in a fully distributed way.

Proof. Saturated nodes can know they are NLMR nodes by self-checking, according
to Lemma 6.6. There are two categories of unsaturated nodes: in a TUPE and not in any
TUPE. Lemmas 6.14 and 6.15 respectively state that all unsaturated nodes can know they
are NLMR nodes or LLMR nodes before Tn(r).

6.3. Analysis of The Whole System

Theorem 6.17. Each node sends at most a MN packet for the whole procedure of the
LM∗ calculation.

Proof. We prove this theorem by contradiction. In a DMCR-LMD cycle, a sensor node
x ∈ V can send at most one MN packet to its upstream neighbor(s) only if it belongs to a
TUPE of the temporary graph in this DMCR-LMD cycle. According to Lemma 6.10 and
Theorem 6.16, x will determine its LM rate at the end of this DMCR-LMD cycle. Suppose
x sends more than one MN packet, which means that x determines multiple LM rates in
several DMCR-LMD cycles. This conflicts with the fact that LMx is unique.

Theorem 6.18. Our approach LPM+DMCR+LMD converges to the optimal LM rate
allocation and corresponding optimal routes.

Proof. From Theorem 3.6, LPM computes ECmax
x for each node x ∈ V. With the en-

ergy consumption constraints provided by LPM, The system begin to run multiple DMCR-
LMD cycles. At each DMCR-LMD cycle, DMCR first manages to converge to the maximum
common rate and corresponding temporary graph (Lemma 6.1) and then LMD can deter-
mine LM rate (Theorem 6.16). As each DMCR-LMD cycle can determine at least one
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LM rate, the whole system will converge to the optimal within at most |V| DMCR-LMD
cycles.

7. DISCUSSION OF PRACTICAL ISSUES

In practical SP-WSN, the wireless channel quality is time-varying, and data transmissions
are unreliable, due to the stochastic nature of wireless channels. This has significant impact
on the practical implementation of our SP-WSNs. In order to guarantee the optimality of
the DMCR-LMD approach in practical SP-WSNs, the following practical issues should be
considered:

Establishment of the stable SP-WSN Graph G(V ∪ S,L). Our DMCR-LMD ap-
proach assume that the topology of the SP-WSN G(V ∪ S,L) remains constant over a pre-
diction interval. However, since the wireless link capacity is time-varying, the topology of
G(V∪S,L) may also change. In order to avoid this, a wireless link (x, y) is consider in L, only
if both PRR values PRRx,y and PRRy,x are higher than a threshold PRRmin (e.g. 90%).
All weak links are not considered. By doing this, although link capacity is time-varying, the
topology of G(V ∪ S,L) remains static over time with an extremely high probability. This
is because the probability of a slow-fading link (x, y) ∈ L fails (i.e. cx,y = 0) for a given
duration (e.g. a prediction interval) is close to zero, according to both practical observations
[Baccour et al. 2012] and wireless communication theory (e.g. Rayleigh fading channel).
Reliable control packet transmissions. To ensure the successful transmission of con-

trol information, all control packets of DMCR and LMD should be set as link layer unicast
messages (i.e. with link layer acknowledgements). A control message will be transmitted
again, until it is successfully received.This will not increase the communication overhead sig-
nificantly (less than twice), because the expected transmission times or the ETX [De Couto
et al. 2003; Gnawali et al. 2009] value over each link, is small (smaller than 1/PRR2

min).

8. EVALUATION

8.1. Evaluation of LPM

In this subsection, we evaluate LPM using our own developed solar powered sensor node
shown in Figure 8 (a), which consists of following components: a MicaZ mote with Emin =
30.4 J and Emax = 167.9 J, a 9×3.8 cm2 solar panel, a battery with capacity Bmax = 10.7 KJ,
efficiency η = 74.8%, and a circuit board to power the MicaZ mote and control the battery
recharging and discharging process. We set the duration of a slot δ = 30 minutes and the
length of prediction interval as L = 6. The experiment last for two days which consists 96
slots and 16 prediction intervals.
Figure 8 (b) and (c) show the results of LPM algorithm for two day, which consists

of 12 prediction intervals. We developed a simple solar power prediction algorithm based
on weather-condition awareness and the Exponentially Weighted Moving Average(EWMA)
Scheme[Cox 1961] to predicted hi

x, i ∈ I in the beginning of every prediction interval. The
initial battery level of the first prediction interval was 1 KJ and the final state constraint φ
was set as 1 KJ for all prediction intervals.
It is obvious that both the node’s battery level and energy consumption varies according

to the harvested solar power dynamics. It can be seen that LPM problem (9) has a feasible
solution during most prediction intervals of daytime. However, problem (9) does not have
a feasible solution during every night. As a result, LPM algorithm returns Emin and the
battery level linearly reduces caused by both Emin and Eleak. From Figure 8 (b) and (c), we
can see that a properly selected φ is robust to solar prediction errors and poor harvesting
opportunities, which manages to avoid battery exhausting in real world implementation.
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Fig. 8. Evaluations of LPM on a real solar-powered sensor node.
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Fig. 9. The topology of a 20-node SP-WSN.

8.2. Performance of the Whole System: A Case Study

In this subsection, we simulate the performance of our distributed approach in one prediction
interval by considering a randomly deployed SP-WSN with 18 solar powered sensor nodes
and two sinks, illustrated in Figure 9 (a). Every sensor node sends data to any of the two
sinks. The real outdoor solar energy data collected in [sdf ] was used in our simulations.
The data was appropriately scaled to create a solar profile for a solar panel (9 × 3.8 cm2)
and assign to each sensor node with a random vibration of ±5%. We set δ=5 minutes3

and L=96 (i.e. 8 hours). The parameters η , η, Bmax were set as the same as in the LPM
experiment and Eleak, Emin, Emax are 6 times less than that in LPM experiment (since the
value of δ in this experiment is 6 times less than that in LPM experiment). We set initial
battery level and final state constraint parameter as B1

x = 500 ± 50J and φ = 500 ± 50J
respectively.
We set Et, Er, and Es as 3×10−7, 3×10−7, and 1.5×10−7 J/bit respectively4. In addition,

we also set the the duration [T0(r), Tn(r)]=10 seconds for each LMD and the regularization
parameter ε=0.02 and step size lk=0.6/k for the kth iteration step of the DMCR.

3we set δ=5 minutes according to the solar data granularity.
4Et, Er were approximated by considering power consumption of MicaZ mote (MCU and CC2420 radio),
and maximum data transmission of CC2420. Es are approximated by power consumption of typical sensors,
TinyOS timer (e.g. several readings per millisecond), and ADC (10 bits).
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(e) the second temporary graph

0 5 10 15
0

30

60

Node ID

ba
tte

ry
 e

xh
au

st
in

g 
sl

ot
 n

um
be

r

 

 

SPA
LPM

(f) battery exhausting slot number

Fig. 10. Simulation results of a 20-node SP-WSN.

After each node calculates its maximum feasible energy consumption by LPM, LM∗

was computed by two DMCR-LMD iterations. Figure 10 (a) shows the LM rate allocation
LM∗ calculated by a centralized LP solver [Grant and Boyd ]. Figure 10 (b) and (c) show
the convergence of the two DMCR computations. It is clear that after several iterations,
sensor nodes’ rates tend to be equal and converge to the optimal maximal common rate
(in kbps): C(0)=9.53, C(9.53)=16.92, C(16.92)=24.45, and C(24.25)=25.51. Figure 10 (d)
and (e) show the corresponding optimal routes calculated by the two DMCRs, i.e. the two
temporary graphs. The width of each edge in the graph is proportional to the amount of
allocated data rate. Specifically, Figure 10 demonstrates the optimal routes with regards to
LM∗. The saturated cuts of the first temporary graph are {3, 4, 7, 15, 16} and {8}; and the
saturated cuts of the second temporary graph are {6, 13, 11} and {9}.
In the whole two DMCR-LMR iterations, only 13 MN packets are transmitted (i.e. the

communication overhead of LMD is only about 0.72 packet per node.) and the average
communication overhead of the two DMCRs is about 68.6 packets per node. Hence, the
total overhead is about 69 control packets per node plus some very simple calculations
on each node, which is acceptable in current real WSN deployments. On the other hand,
the centralized approach requires every node sends highly reliable local information to a
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powerful device and then solve 1+ 18+ 1+6+1+2+1+1 = 31 LP problems for 4 MCR-
MSR cycles (totally millions of matrix calculations) and then the powerful device transmits
the calculated LM rate to each sensor node with high reliability. Obviously, our distributed
approach has much more promising potential for practical SP-WSN implementation.
The whole system converges within two DMCR-LMD cycles which is only half of the

number of centralized MCR-MSR cycles. The total convergence time is about 120 DMCR
steps plus 2× [T0(r), Tn(r)] = 20 seconds for LMD. If we set the length of a iteration step of
DMCR is one second (i.e each node does simple arithmetic calculations and sends a beacon
per second), then LM∗ can be calculated within about 140 seconds which is less than the
duration of a slot (5 minutes). Consequently, we can compute LM∗ either at the beginning
of a prediction interval or in an additionally allocate slot before a prediction interval in
practice, depending on the duration of a slot.
The major complexity of centralized approach is the O(|V|2) MSR problems. Since we

develop the extremely lightweight LMD for LM rate determination problems, the key
complexity source of our distributed approach is DMCR (especially the first one). Con-
sequently, current developed techniques for distributed optimization such as the smooth
Lagrangian[Necoara and Suykens 2008] and the event-triggered approach[Wan and Lemmon
2009] can be adopted to significantly reduce (an orders of magnitude) the communication
overhead and convergence time of DMCR and therefore the whole system.
Theoretically, our whole system should achieve energy neutral operation. However, since

there is no prefect solar power predictor in practice, we run simulations to study the impact
of prediction errors on the system performance. We set the predicted solar profile of each
node be ±20% different from its real solar power in every slot. Figure 10 (f) shows the
number of battery exhausting slot for our distributed LM rate allocation with LPM and
Solar Power Average (SPA). In the SPA simulation, each node x uses the average solar power
over the whole prediction interval as ECmax

x . It is obvious that without considering hardware
details, many nodes (especially the saturated nodes) run out of energy for many slots. With
the presentence of the prediction error, there are still 3 saturated nodes run out of battery
in a slot even when LPM is adopted, which shows that prediction error is an important
practical issues to affect the ENO performance. To check whether we can avoid battery
exhausting by adjusting parameter settings, we also run two additional simulations with
larger initial battery levels and corresponding φ and shorter the prediction interval length
respectively. Both simulations achieve ENO for multiple prediction intervals. In addition,
dynamically adjust nodes’ sensing rates without losing optimality would also an approach
to prevent node run out of energy, which will be our future work.
In addition, we also constructed an simulation to evaluate the impact of the reliable

wireless channels on the performance of our DMCR-LMD approaches. For each link (x, y),
its packet reception ratio PRRx,y was set as a time-varying variable with a random expected
value of 90%± 10%. Beside unreliable wireless link, all other parameters remain the same.
The simulation results show that DMCR-LMD manages to compute the optimal LM rate
allocation and corresponding optimal routes, shown in Figure 10 (a) and (e) respectively.
However, the communication overhead of our approach in this SP-WSN with unreliable
links is 19.2% more than that in SP-WSN with prefect links.

8.3. Sub-optimality Study

This subsection compares our optimal distributed approaches with recent proposed sub-
optimal approach DLEX (compute LM∗ with a predefined routing tree) and a heuristic
approach DLEX-DAG (compute LM∗ with predefined multi-path routes) based on simula-
tions.
Since both DLEX and DLEX-DAG are both designed only for the WSN with single sink,

we changed sink 1 in Figure 9 into an additional sensor node 18, while the topology and
all other parameters remain the same. We construct an arbitrary shortest path tree (SPT).
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Fig. 11. Simulations of LM rate allocation for original topology, predetermined Shortest Path Tree (SPT)
and Directed Acyclic Graph (DAG). (a) LM∗ for a SP-WSN with a single sink. (b) Communication over-
heads of our approach over three topologies. (c) LM∗ for a SP-WSN with 3 sinks.

Then a DAG is generated as follows: for every sensor node x, if it has a neighbor y which
is closer to the sink than y, then x adds an outgoing link (x, y) with probability 0.5.
Figure 11 (a) shows that the optimal LM∗ achieve better fairness (i.e. lexicographically

greater) than LM∗ of both predetermined SPT and DAG. It is worth noting that LM∗-
DAG is the optimal LM rate allocation, which is not lexicographically less than the approach
DLEX-DAG, since DLEX-DAG is heuristic for a given DAG. Hence, even we provide the
optimal routes (i.e. last temporary graph) with respect to LM∗ as the DAG, DLEX-DAG
can not guarantee to computer LM∗.
Figure 11 (b) illustrate the communication overhead. It is clear that DMCR overhead for

the SPT and DAG is significantly smaller the original topology. The main reasons are two-
folds: (1) the number of primary variables (fx,y, (x, y) ∈ L) of SPT and DAG is much smaller
than that of original topology; (2) shortest path tree and DAG provide a good initialization
to direct DMCR convergent towards the sub-optimal. For complexity, the overheads of our
approach are around 30 one-hop control packets per node and several simple calculations,
but DLEX-DAG requires a large number of (could be exponential in |V|) of Depth-First
Searches (DFS) and multi-hop control packets.
In fact, for any given SP-WSN topology, the optimal routes with regards to the optimal

LM∗ is the optimal DAG among all possible DAGs (the number of all possible DAGs is
exponential in the number of all links). However, there is no existing scheme that can de-
termine this optimal DAG in arbitrary SP-WSN topology and heterogeneous nodes’ energy
resource (e.g. solar power and battery) without calculating LM∗. Consequently, any given
DAG without calculating LM∗ could almost never be the optimal. As an example, we also
run a simple simulation over a SP-WSN with 3 sinks, by changing node 17 in Figure 9 into
sink 3, while the topology and all other parameters remain the same. Figure 11 (c) shows the
optimal LM∗ is still much fairer than LM∗ with an arbitrarily constructed shortest-path
DAG (i.e. every node sends data to the nearest sink with a arbitrary shortest multi-path
routing).

8.4. Scalability Study

In this subsection, we study the scalability of our approach based on simulations. We created
three randomly deployed SP-WSNs with 50, 75, and 100 nodes, illustrated in Figure 12(a),
(c), and (e) respectively. To investigate the adaptiveness of our approach for different number
of sinks, we randomly assign 3, 4, and 5 sinks to the three SP-WSNs respectively. Except
for the network topology, all parameter settings are the same as that in subsection 7.2. The
calculated optimal LM rate allocation is shown in Figure 13 (a), and corresponding optimal
routes are shown in Figure 12((b), (d), and (f) respectively. There exist several routing
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(a) 50-node topology (b) 50-node optimal routing

(c) 75-node topology (d) 75-node optimal routing

(e) 100-node topology (f) 100-node optimal routing

Fig. 12. Topology and optimal routing for a 50-node SP-WSN with 3 sinks, a 75-node SP-WSN with 4
sinks, and a 100-node SP-WSN with 5 sinks. All sinks are marked as red squares.
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loops in the centralized approach for the 75-node and 100-node simulations, while all routes
computed by our distributed approach are loop-free.
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Fig. 13. LM rate, convergence, and control overhead of the three SP-WSNs

Finally, 13 (b) shows that our distributed approach can reduce global loop number by
up to 150% , compared with the centralized approach. As a result, the system convergence
time and overhead are significantly reduced. From Figure 13 (c) we can see the commu-
nication overheads for the LMD is always less than one MN parcket per node, which is
independent with the SP-WSN scale and can be ignore. The main source of overhead is still
from DMCR, which can be significantly improved by using advanced distributed optimiza-
tion techniques. Compared with the dramatic complexity of centralized approach (e.g. The
100-node SP-WSN need to solve 124 LP problems to compute LM∗, and collect reliable
multi-hop information collection and dissemination), our distributed approach achieves a
much more light overhead.

9. RELATED WORK

9.1. Lexicographic Max-min Fairness

Max-min fairness has been considered in various wireless networking schemes [Nace and
M.Pioro 2008; Shah-Mansouri et al. 2009; Rangwala et al. 2006; Sridharan and Krishna-
machari 2009; Liu et al. 2011]. Approximated max-min fairness has also been considered
in many NUM-based schemes [Chiang et al. 2008] by using the aggregated α-fair utility
function[Mo and Walrand 2000; Lan et al. 2010]. Many of these approaches are distributed,
however, none of them considers the LM rate allocation.
The concepts of Lexicographic ordering and max-min fairness are closely related.

[Radunovic and Boudec 2007] presents detailed discuss of max-min fairness, lexicographic
ordering, and Pareto optimal. As a specific application of LM fairness, LM rate allocation
are studied in capacity-constraint WSNs[Chen et al. 2007], lifetime-restricted WSNs [Hou
et al. 2008], and ENO-restricted SP-WSNs[Liu et al. 2011]. All these approaches are based
on iterating solving the following two problems: (1) computing the value of each level of
LM rate vector, and (2) determine the set of sensor nodes in each level. All of [Chen et al.
2007; Hou et al. 2008; Liu et al. 2011] use a LP (i.e. MCR problem) for the first problem
at each LM rate level, which results in a total complexity of O(N) LPs for a N -node WSN.
For the second problem at each LM rate level, [Chen et al. 2007; Liu et al. 2011] require to
solve O(N) LPs (i.e. MSR problem), while [Hou et al. 2008] adopts a so-called Parametric
Analysis (PA). The total complexity of both MSR and PA at all LM rate levels are O(N2)
LPs. Hence, the complexity of all the three approaches are O(N)+ O(N2) = O(N2) LPs5.

5[Radunovic and Boudec 2007] claims that the complexity of max-min programming is O(N) LPs, since the
complexity of the second problem are not explicitly considered.
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Since our LMD scheme achieves totally O(1) complexity for the second problem at all LM
rate levels, the complexity of our DMCR-LMD approach is at most O(N) LPs.

9.2. Energy Harvesting WSNs

There are several power management schemes for individual solar-powered sensor nodes.
Stochastic approaches such as [Sharma et al. 2010] may perform poorly in practice, since
the complex time-varying dynamics of solar power is quite difficult to model as a piecewise
or periodically stationary process. Finite-horizon deterministic schemes [Kansal et al. 2007;
Moser et al. 2010; Chen et al. 2011; Gorlatova et al. 2011] is based on the predictability of
solar power prediction. None of them considers the impact of time-varying solar power on
the network-wide performance.
On the other hand, there are also several network-wide schemes for energy harvesting

WSNs, including routing [Eu et al. 2010b], activation [Jaggi et al. 2008], cooperative com-
munication[Li et al. 2011], medium access control [Eu et al. 2010a], rate allocation [Liu et al.
2011] and cross-layer optimization [Liu et al. 2010]. Among these network-wide schemes,
only [Liu et al. 2011] and [Liu et al. 2010] integrates power management component to en-
sure ENO. However, [Liu et al. 2011] does not consider solar prediction errors and assumes
an ideal battery model with 100% recharging efficiency and no leakage. SnapIt[Liu et al.
2010] relies on frequent and precise battery level measurement. However it is extremely
difficult to meter a slightly changed battery level at runtime in practice [Kansal et al. 2007;
Taneja et al. 2008]. In addition, it does not consider recharging inefficiency and battery
leakage neither. In contrast, our system adopts a more realistic power model that captures
the key properties of solar-battery hardware system, and does not require frequent online
battery monitoring. Further more, considering there is no prefect solar power predictor, we
adopt multiple prediction intervals and final state constraints to adapt to solar prediction
errors, which results in much more reliable performance in real SP-WSNs. For a recent
comprehensive survey of energy harvesting WSNs, we refer the reader to [Sudevalayam and
Kulkarni 2011].

10. CONCLUSIONS

This paper investigates a multi-objective optimization problem, the Lexicographic Max-min
(LM) rate allocation, for solar-powered WSNs with arbitrary topologies. We first develop
an efficient power management algorithm that manage to achieve long-term sustainable op-
erations while providing maximum feasible energy budget constraint for each solar-powered
sensor node. Then, we present a fully distributed solution to the global LM rate allocation
problem, based on iterating a dual-decomposition based algorithm DMCR and a graph-
theoretic scheme LMD. To our knowledge, the proposed DMCR-LMD approach is the first
fully distributed optimal solution to the LM rate allocation problem. We formally prove
the optimality, convergence, and efficiency of the whole system. The proposed algorithms
are evaluated via experiments on solar-powered MicaZ motes and extensive simulations us-
ing real solar energy data and practical power parameter settings. The experiment results
verify our theoretical analysis and demonstrates that our approach outperforms the state-
of-the-art centralized optimal and distributed heuristic solutions, in terms of complexity,
optimality, scalability. Our future work is to extend the our approach to the general LM
fair application-defined utilities and design real-time schemes that better adapt to the solar
prediction errors.

APPENDIX

Proof of Proposition 3.1. According to constraints (3)-(5), it that Bi+1
x is a non-

increasing in both ECx and Bi
x. For all i ∈ I, We write
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Bi+1
x = f(ECx, B

i
x)

...

= f(ECx, f(ECx, ..., f((ECx, B
1
x))))

SinceB1
x is fixed,Bi+1

x is a monotonic non-increasing function of pure ECx for all i ∈ I.

Proof of Proposition 3.2. The first condition (12) is to grantee that ∀i ∈ I, Bi+1
x >

0. To prove this, we choose a ECx ∈ (Emin, hmin) where hmin is the minimal hi
x, i ∈ I, then

the battery recharges in every slot i ∈ I. Let β = hmin − Eleak/η ∈ (Emin, hmin), we have
Bi+1

x = Bi
x+η(hi

x−ECx)−Eleak ≥ Bi
x+η(β+Eleak/η−ECx)−Eleak ≥ 0 ⇔ ECx ≤ Bi

x/η+β,
∀i ∈ I. Since B1

x ≥ 0, there must exists an optimal solution ECmax
x ∈ (Emin, β) such that

∀i ∈ I, Bi+1
x ≥ 0.

The combination of both two conditions (12) and (13) can guarantee BL+1
x ≥ φ. To prove

this, we choose a ECx ∈ (Emin, hmin) and define

γ = B1
x + η

∑
i∈I

(hi
x − Emin)− LEleak − φ

= BL+1
x − φ+ ηLECx − ηLEmin

≥ 0 (38)

We set ECx ∈ (Emin, hmin) then there are two cases:

Case 1. ∀i ∈ I, Bi
x < Bmax. In this case, we have BL+1

x ≥ φ ⇔ ECx ≤ γ/ηL + Emin,
i.e. there must exists a ECmax

x ∈ (Emin,min(hmin, γ/ηL+Emin)) such that BL+1
x ≥ φ is

satisfied.
Case 2. ∃i ∈ I,Bi

x = Bmax. Let j be the first slot the battery is fully recharged then for
any i ≥ j, Bi+1

x = Bmax ≥ φ. Therefore, the optimal solution in this case is ECmax
x ∈

(Emin, β).

Proof of Lemma 3.5. The calculation of EC ′
x (lines 21 and 25 of the LMP algorithm)

assumes that L′
1 = L1and ∀t ∈ [j, k], Bt

x(EC ′
x) ≤ Bmax. When the energy consumption level

drops from ECx to EC
′

x, the following three cases would happen.

Case 1. L
′

1 = L1 and ∀t ∈ [j, k] , Bt
x(EC

′

x) ≤ Bmax. In this case, Bk+1
x (EC

′

x) = 0 if

k < L; or Bk+1
x (EC

′

x) = φ, otherwise. The reason is that this case is the assumption of
the EC ′

x calculation.

Case 2. ∃t ∈ [j, k], Bt
x(EC

′

x) > Bmax. In this case, Bk+1
x (EC

′

x) < 0 if k < L; or

Bk+1
x (EC

′

x) < φ, otherwise. The reason is that with EC ′
x, some energy will be wasted

in some slots between j and k due to battery overcharging.
Case 3. L

′

1 > L1. In this case, Bk+1
x (EC

′

x) < 0 if k < L; or Bk+1
x (EC

′

x) < φ, otherwise.
From the calculation of EC ′

x, we have

Bk+1
x (EC ′

x)− 0, k < L
Bk+1

x (EC ′
x)− φ, k = L

}
= (η − 1)

(∑
t∈H

ht
x + EC

′

x∆L

)
where H = {t|(t ∈ [j, k]) ∧ (ECx > ht

x) ∧ (EC
′

x < ht
x)} and ∆L = L

′

1 − L1. Consider
η < 1, ht

x > 0, EC ′
x > 0 and ∆L > 0, we have:

Bk+1
x (EC ′

x)− 0, k < L
Bk+1

x (EC ′
x)− φ, k = L

}
< 0
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If either cases 2 or 3 happens, LPM algorithm will recheck the feasibility of ECx over
slots j to k until case 1 happens, according to Proposition 3.1 and Lemma 3.4. Consider the
battery level Bk+1

x in case 1 and Propositions 3.1, the last updated ECx is the maximum
feasible energy consumption for all slots before k.
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