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Abstract

Randomised Clinical Trials (RCT) are one of the most powerful tools of medical re-
search and provide the basis for changing clinical practice. In oncology, the RCT is
of particular importance in searching for new therapies and treatment approaches for
patients diagnosed with cancer. Many of these trials have overall survival as a primary
endpoint and are often designed with marginal e�ects being of clinical interest. As a
result trials are typically large and are expensive in both time and money.

Given the substantial cost involved in running clinical trials, it is an ethical imper-
ative that statisticians endeavour to make the most e�cient use of any data obtained.
A number of methods are explored in this thesis for the analysis of survival data from
clinical trials with this e�ciency in mind. Statistical methods of analysis which take
account of extreme values of covariates are proposed as well as a method for the analysis
of survival data where the assumption of proportionality cannot be assumed. Beyond
this, Bayesian theory applied to oncology studies is explored with examples of Bayesian
survival models used in a study of pancreatic cancer. Also using a Bayesian approach,
methodology for the design and analysis of trial data is proposed whereby trial data
are supplemented by the information taken from previous trials. Arguments are made
towards unequal allocation ratios for future trials with informative prior distributions.
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Chapter 1

Introduction

1.1 Background

Cancer will e�ect more than one in every three people with 331, 000 new diagnoses in
the UK in 2011 alone [Source http://www.cancerresearchuk.org]. On average, an
adult patient being diagnosed with cancer will have a 50% chance of surviving 10 years
although this prognosis varies widely depending on the patient and the type of cancer.

The search for new treatment strategies is ongoing, with 552 clinical trials listed as
open to recruitment by Cancer Research UK (CRUK) at the time of writing. Whilst
many of these trials may be early Phase I or Phase II trials, Phase III trials are of
the greatest interest with the aim of changing clinical practice and being considered
the gold standard of evidence, providing ‘...one of the most powerful tools of clinical
research’ [1].

Clinical trials specific to oncology are typically conducted to assess the e�cacy of
one or more new treatments against the current clinical standard. Often trials are set to
search for small or marginal improvements in patient performance and as a consequence
can take years to run and may recruit hundreds of patients in order to provide su�cient
evidence on which to base a conclusion.

Furthermore, many trials fail in the respects of identifying a new treatment to be
superior to a current clinical standard. A recent review by Amiri and Kordestani [2]
showed that 62% of a review of 235 published phase III trials failed to demonstrate
statistical significance. There is therefore plenty of scope for new methodology to
accurately assess therapies at an earlier stage and provide guidance as to the chances
of a therapy being e�ective in a Phase III study.

Due to the severity of the disease, many such trials depend upon the evaluation
of time-to-event endpoints, such as time to disease progression or ultimately, time to
death. This thesis shall consider methods for the design and analysis of oncology trials
with a time-to-event endpoint.

1
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1.2 Bayesian methods in clinical trials

The use of Bayesian methodology in clinical trials is an attractive prospect as it is a
natural framework under which greater e�ciency may be obtained. In particular, Berry
[3, 4] argues that a Bayesian approach can be more ethical and in keeping with scientific
principles of accumulating information. A study by Perneger and Courvoiser [5] shows
that medical professionals are more inclined to interpret results in a Bayesian fash-
ion, and with the growing interest, direct comparisons of the theoretical and practical
di�erences between Bayesian and Frequentist frameworks have been discussed [6, 7, 8].

However, despite the attractions of the Bayesian approach, as well as expectations
of their growing influence (see for example Fleming and Yin [9]), clinical trials to date
have been dominated by frequentist methodology. Part of this may be due to the desire
to travel the ‘...path of least resistance’ [10] as there is a vast and well established
framework of methodology established in terms of sample size, trial design, interim
analysis and trial analysis. Furthermore, Whitehead [1] and Howard [11] both argue
that clinical trials should remain objective and not influenced by any prior information.

Despite these arguments, the anticipation of greater Bayesian influence has been
noted. Lewis and Wears [12] provided an introduction to the benefits of a Bayesian
approach with further discussions on the appropriate framework continued with Herson
[13] introducing a series of four papers in the Statistics in Medicine Journal [14, 15, 16,
17] to discuss practical Bayesian approached to a multi arm trial. More recently, reviews
by Ashby [18] and Grieve [19] detail the increased use of Bayesian methods over the
past quarter of a century whilst Berger [20] describes an objective Bayesian approach
to counter the perceived subjective nature of this approach compared to frequentist
approaches.

With the recognition that Bayesian techniques can be more demanding, Speigelhal-
ter et al. [21] along with Abrams [22] and Abrams and Ashby [23] provide practical
applications of Bayesian methods in clinical trials. More recently a series of publication
by the Clinical Trials journal [24, 25, 26] give an introduction of Bayesian theory to
non statisticians.

With the advancement of Bayesian methodology coupled with advancements in
computing power and software, which previously proved an impediment to all but the
simplest of Bayesian analyses, there are few practical issues preventing further uptake
of Bayesian methods as noted by Moye [27].

1.3 Aim

The aim of this thesis is to explore statistical methods that may be used to improve
the accuracy and e�ciency of the analysis of survival data in cancer clinical trials with
a time-to-event endpoint. The main areas of interest under investigation are
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• The analysis of survival data with outlying covariate values

• The analysis of survival data with non-proportional hazards

• The design and analysis of clinical trials with a time-to-event endpoint from a
Bayesian perspective

• E�cient use of data through Bayesian clinical trial design

Throughout, the main emphasis will be to maximise the ability of investigators to
assess the di�erence between two treatments through a single e�cacy parameter.

1.4 Datasets

A summary is provided with regards to datasets that are to be used throughout this
thesis.

1.4.1 ESPAC-3

Pancreatic Cancer is one of the most dangerous forms of cancer. Despite being the 10th
most prevalent form of cancer, it is the 5th most common cause of death [Source: CRUK
website http://www.cancerresearchuk.org/cancer-info/cancerstats/mortality/

cancerdeaths/#Twenty]. The overall 5 year survival rate from the time of diagnose is
4 ≠ 5% [28, 29] which is due in part to pancreatic cancer being asymptomatic in the
early stages. Most often, before a patient is diagnosed the cancer has advanced and
although surgery can improve prognosis it is only possible for between 10% to 20% of
all patients.

ESPAC-3 is an international multi-centre randomised phase III trial set up to in-
vestigate the use of chemotherapy as adjuvant, post surgery, therapy for patients with
pancreatic cancer. The trial was essentially split into two separate trials dependent
upon the type of tumours patients presented with. Patients with ducal pancreatic
adenocarcinomas constitute the majority of the dataset (n=1090) with a second group
consisting of patients who had ampullary and ‘other’ types of cancers (n = 431).

Aside from the the e�ect of the treatment regimen, other variable which are of
interest are

• Resection Margins - Classed as negative or positive this determines if any can-
cerous cells are detected in the margins of a resected tumour following surgery

• Tumour Size - Given as the maximum of two perpendicular measurements

• Tumour Di�erentiation - Defined as how well a tumour resembles the tissue of
origin, categorised as Well, Moderate and Poor
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• Involved Lymph Nodes (N stage) - Defined as the presence/absence of cancerous
cells in the lymph nodes

• Metastasis (M stage) - Defining whether or not the cancer has spread from the
primary site to other part of the body

• Tumour (TNM) Stageing - A composite variable of N stage, M stage and eval-
uations of the primary tumour (T stage). Full definition given at http://www.

cancer.gov/cancertopics/factsheet/detection/staging.

• World Health Organisation (WHO) Performance Status - A 5 point scale describ-
ing general patient health provided by the World Health Organisation .

• Cancer Antigen 19.9 (CA19.9) - A tumour marker known to be associated with
pancreatic cancer.

Survival estimates are obtained via the method of Kaplan and Meier [30] and are
shown in Figure 1.1 with confidence intervals obtained via Greenwood’s formula [31] for
both the ‘Ductal’ and the ‘Ampullary/Other’ patients. Figure 1.1 shows the improved
survival outlook for the Ampullary/Other patients compared with the Ductal patients
with respective median survival (95% confidence intervals) of 39.2 months (32.6, 50.0)
and 21.2 (20.3, 23.4).

Analysis of the ductal patients has been previously published [32] and have shown
that whilst there was no significant di�erence between the two chemotherapy regi-
mens in the study, resection margins (included as a stratification factor), lymph node
involvement, tumour di�erentiation, tumour size and WHO performance status are
all significant prognostic indicators which a�ect overall survival. It should be noted
that although patients in the Ductal group were randomised to an observational arm,
these are not included due to previous results of the ESPAC-1 trial [33] showing that
chemotherapy o�ers a survival benefit over observation only in this tumour group and
so recruitment to this arm of the ESPAC-3 trial was stopped.

Analysis of the ‘Ampullary’ patients has also been published [34]. The main results
show that for this tumour group, chemotherapy o�ers an improvement over observation
only, although there was again no evidence of a di�erence between the two chemother-
apy regimens.

The data from the ESPAC -3 trial has also been used to further evaluate the timing
of the beginning of therapy following surgery and it’s e�ects on patient prognosis [35].
Here it is shown that delaying the start of therapy may be beneficial to patients as it is
more important to ensure that patients to receive the full intended course of planned
therapy.
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Figure 1.1: Kaplan Meier survival estimates for the ’Ductal’ and ’Ampullary/Other’
patients of the ESPAC-3 (V2) trial

1.4.2 Gastric cancer dataset

A second dataset used in this thesis is that taken from a trial investigating both
chemotherapy and chemotherapy plus radiotherapy for the treatment of gastric cancer.
Full details of the trial have been published [36].

Data are available from 90 patients and consist of survival time, censoring indicator
and treatment arm only. Figure 1.2 shows a Kaplan Meier graph showing the survival
estimates. The results from the trial are of particular interest statistically due to the
crossing survival curves as this will violate one of the most common assumptions of
proportional hazards in the analysis of survival data.

1.5 Discussion

This chapter serves as background to the research that is to be presented in this thesis.
The rest of this thesis is structured as follows. Chapter 2 will provide an introduction
to the statistical methods for the analysis of survival data that are to be used. Some
practical discussion on the di�erences of the uses of frequentist and Bayesian survival
models are also presented.

In Chapter 3, the problem of analysing survival data in the presence of extreme value
covariates is explored and a method of altering the linear predictor of a Cox proportional
hazards model to allow for more robust estimation is presented. Chapter 4 focusses
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Figure 1.2: Kaplan Meier survival estimates for the chemotherapy and chemotherapy
plus radiotherapy arms of a trial for patients su�ering from gastric cancer

on the problem of non-proportional hazards. A review of methods for detecting non-
proportionality and assessing treatment e�ects in this scenario are presented. Following
this, a new method for modelling non-proportional survival models is proposed.

Bayesian analyses of survival data with applications to the ESPAC-3 trial are con-
sidered in Chapter 5 and some of the benefits over frequentist analyses are introduced.
Chapter 6 introduces the concepts behind Bayesian sample size calculation and the
ViP trial, currently running at the Liverpool Cancer Trials Unit, is considered from
a Bayesian perspective. In Chapter 7, a method for deriving prior information from
summary information of previously concluded trials is introduced and the e�ect on the
design and analysis of a clinical trial explored. Chapter 8 explores allocation ratios that
di�er from the standard 1:1 in both a frequentist and Bayesian framework, again with
applications to the design of the ViP trial. Some discussion and the scope for further
work is given in Chapter 9.
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Chapter 2

Analysis of Survival Data in
Frequentist and Bayesian
Frameworks

2.1 Introduction

In this chapter, a brief overview is provided of the di�ering viewpoints to analysing time-
to-event data that are given by frequentist and Bayesian frameworks. Initially a sum-
mary is provided of some of the philosophical di�erences between the two approaches,
following this an exploration is provided into the di�ering methods for analysing sur-
vival data which will be used throughout this thesis.

Primary focus is on proportional hazards models and an overview of the class of
fully parametric models as well as the semi-parametric model defined by Cox [37]
is provided. The piecewise exponential model first proposed by Friedman [38] and
sometimes referred to as a Poisson regression model is explored in further detail as is
a class of models that are defined using a counting process notation [39], shown to be
related to the Cox model by Anderson and Gill [40].

Following exploration of these methods, a summary of the Gibbs sampling method-
ology as proposed by Gelfand and Smith [41] is described as a popular tool for estimat-
ing required densities for all but the simplest Bayesian models. Lastly, some practical
issues for fitting proportional hazards models are discussed. Where appropriate, exam-
ples of the methodology are given by fitting models to the Ductal patients from the
ESPAC-3 dataset.

2.2 An overview of frequentist and Bayesian methodology

Here a brief description of both the frequentist and Bayesian methodologies is given
and some key comparisons highlighted.

7



2.2.1 Frequentist methodology

Much of the development of frequentist methodology is attributed to the work carried
out by R.A. Fisher in the early 20th century. As an example, consider the situation
where data x are available which are modelled dependent upon some set of parameters
◊. Under a frequentist framework, the data are considered to be produced from some
data-generating function dependent upon the ‘true’ value of ◊. An estimates of ◊,
denoted ◊̂, is derived from a single observed realisation of the data from the generating
function. Of import to note here is that the ‘true’ value of ◊ is considered to be
some fixed but unknown quantity with the data being considered a random variable.
Much of frequentist methodology is then based on the theoretical basis of being able
to continuously sample data from the same data generating function ad-infinitum and
estimating the theoretical error that exists between ◊ and ◊̂.

Estimation of ◊̂ given the realised data is most often obtained using ‘likelihood’
theory. Generally it is assumed that the data are taken from some known distribution
or family of distributions. Fixing ◊ at some theoretical value, denoted ◊̃, the probability
of observing x is calculated given some assumed distribution. Based on the results, a
value of ◊̃ is then searched for that is most likely under the data and assumed likelihood
and is denoted as ◊̂. Estimates of parameter precision are then estimated from the
curvature of the likelihood function at this point.

Under standard notation, denote the likelihood as L(◊̃|x). It is more common
however to work on the log scale and define the log likelihood

l(◊̃|x) = log L(◊̃|x). (2.1)

2.2.2 Bayesian methodology

The introduction of Bayesian methodology can be attributed to a posthumous paper
entailed ‘An essay towards solving the Problem in the Doctrine of Chances’ by the
Reverend Thomas Bayes in 1763 [42]. Despite its early inception, frequentist methods
remain the dominant methodology in modern statistics. In part this was due to the
lack of modern sampling techniques that require substantial computing power (see for
example [41]). Indeed for all but the simplest Bayesian models, computation methods
were complex and it was often impossible to find any analytical solutions. Whilst
advances in theory and computing have made Bayesian methods more accessible, their
uses in practice still remain somewhat limited.

Considering again the situation of estimating parameter ◊ associated with data x,
recall that in the frequentist framework, parameters are considered to be a fixed but
unknown quantity with the data being a random variable. Here Pr(x|◊) is evaluated
where Pr(.) represents some probability density. Bayesian methodology by contrast,
does not concern itself with the data that may be observed if resampling were carried
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out perpetually but considers the data, once observed, to be a fixed quantity and allows
the parameters to be the random variables; thus instead evaluating Pr(◊|x).

Evaluation of Pr(◊|x) is determined via use of Bayes’ theorem for conditional prob-
ability:

Pr(◊|x) = Pr(x|◊)Pr(◊)
Pr(x) . (2.2)

Under conventional notation, define

Pr(◊|x) ≥ posterior density

Pr(x|◊) ≥ likelihood

Pr(◊) ≥ prior density

Pr(x) ≥ marginal density.

All inferences are made on summaries of the posterior probability density. Note
that the marginal density P (x) is simply the probability of observing the data which
is not dependent upon the parameter ◊. Where interest lies only in the evaluation of
◊, (2.2) is simplified to

Pr(◊|x) Ã Pr(x|◊)Pr(◊). (2.3)

From (2.3) the dogma of Bayesian methodology is obtained, that the posterior is
a product of the information obtained from the data and the information taken from
prior knowledge.

2.2.3 Comparisons

There are two key distinctions to be observed when comparing frequentist and Bayesian
methodology. Firstly, the frequentist method takes all of the information about ◊ only
from the observed data. Bayesian methodology by contrast uses information from
both the data and prior beliefs. A frequentist may argue that as Bayesian methods
are dependent upon subjective beliefs, their analysis can never be truly objective and
is therefore open to abuse. It should be noted however that firstly, prior densities
are often set that allow only negligible amounts of information to enter an analysis
and secondly, that given enough data, the amount of information in the data will
far outweigh any information taken from prior densities. Furthermore the claim of
objectivity is somewhat misleading as even in a frequentist framework, the results
obtained from any model will depend upon the chosen likelihood and any associated
assumptions that are required.

A second distinction is in the inference drawn in each framework. Frequentist
inferences are typically made on quantities such as parameter estimates with associated
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standard errors as well as P-values and 95% confidence intervals. The formal definition
of a frequentist P-value is ‘the probability of obtaining a value of a test statistic as or
more extreme as the one actually observed, given that the null hypothesis is assumed
to be true’. Whilst it is a probability statement, it is conditioned on both the ‘null
hypothesis’ and data that were never observed.

Bayesian inferences are based on posterior distributions, these allow direct prob-
ability statements such as ‘what is the probability that one treatment is better than
the other?’. Table 2.1 provides a summary to illustrate some key di�erences in the
interpretation of model parameters

Summary Measure Frequentist Bayesian Distribution
Point of central tendency Parameter estimate Posterior mean/median
Measure of spread Parameter standard error Posterior standard deviation
Interval estimation Confidence interval Credibility interval
Method of testing P-values Direct probability statements

Table 2.1: Definitions of the key methods of inference under frequentist and Bayesian
frameworks

Finally, the point is made that in medical research, the tendency by medical profes-
sionals is to interpret statistical analyses as if they have been carried out in a Bayesian
framework [5] leading to arguments that all statistical methods in medical research
should be Bayesian. Despite this, frequentist approaches still provide the ‘...path of
least resistance’ [10] for day-to-day statistical procedures and as with many areas of
research, practicalities outweigh any philosophical preference.

2.3 Computational methods of the analysis of propor-
tional hazards models

In this section, exploration is given to the formulation of likelihoods for various forms
of proportional hazards models. Introducing some notation, let T be a non-negative
random variable representing an individual survival time with t being a realisation of
that random variable. Define the hazard function, h(t), as being the instantaneous risk
of observing an event, so that

h(t) = lim
�tæ0

Pr(t < T Æ t + �t|T > t)
�t

.

Let f(t) and F (t) be the density function and cumulative distribution function for T
and so

F (t) = Pr(T Æ t) =
⁄ t

0

f(u)du.

The compliment of the distribution function is the survival function S(T ), which is
often of primary interest and defined as

S(t) = Pr(T > t) = 1 ≠ F (t).
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Lastly define the cumulative hazard function H(t) =
s t

0

h(u)du and note the identities

h(t) = f(t)
S(t)

S(t) = exp
)

≠ H(t)
*
.

When modelling proportional hazards data, it is generally assumed that the hazard for
an individual or group of individuals is related to some baseline hazard function with

h(t|x) = h
0

(t)G(z, ◊),

where h
0

(t) is the baseline hazard function and G(.) is some non-negative function
of some covariates z and parameters ◊. Traditionally set G(z, ◊) = exp(zT

—), where
◊ = — [37]. Here and throughout, — shall be used to represent the log hazard ratio for
a covariate z. This is attractive as it allows exp(—) to be expressed as a hazard ratio
and defines the multiplicative increase/decrease in the risk of observing an event due
to a unit increase in z.

Under the special case of all events being observed, a likelihood for estimating — for
i = 1, ..., n patients is defined as

L(—|z, t) =
nŸ

i=1

f(ti).

This is simply the product of the probabilities that patient i survived up until time
ti. The analysis of survival data is typically complicated by the presence of censored
data however. When data are censored, the exact time of an event is not known,
but it may be known that an event occurred before some point (left censored), after
some point (right censored) or between two points (interval censored) in time. In this
thesis, only right censored data are considered and it is assumed that the censoring
mechanism is completely independent of the observed event times. Denote C as the
random variable for censoring observations and define ‹i = I(Ti < Ci) where I(.) is
the indicator function. Further denote the observed data as D = {Di}, Di = (ti, ‹i, zi)
and, allowing for censoring, re-define the likelihood as

L(—|D) =
nŸ

i=1

f(ti)‹
iS(ti)(1≠‹

i

) =
nŸ

i=1

h(ti)‹
iS(ti). (2.4)

In the following sections, some of the methods that have been developed to estimate
parameters in survival models are evaluated which will be utilised throughout this
thesis.

2.3.1 Parametric models

Parametric survival models are characterised by the assumption that the density func-
tion follows some known distribution. They have been widely discussed and used in
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practice, see for example [43, 44]. A further review is available at https://files.nyu.

edu/mrg217/public/parametric.pdf. Table 2.2 gives details for some of the most
commonly used distributions, though this is by no means exhaustive. Presented are
the hazard functions and the survival functions from which full likelihoods are formed.

Distribution h(t) S(t)
Exponential ⁄ exp(≠⁄t)

Weibull ⁄flt(fl≠1) exp(≠⁄tfl)

Gompertz ⁄ exp(flt) exp
)≠⁄

fl (exp{flt} ≠ 1)
*

Log-Logisitic ⁄fltfl≠1

1+(⁄t)fl

1

1+(⁄t)fl

Lognormal
1

tfl

Ô
2fi

exp

#
≠1
2fl

2 {ln(t)≠ln(⁄)}2
$

1≠�

) ln(t)≠ln(⁄)
fl

* 1 ≠ �
)

ln(t)≠ln(⁄)

fl

*

Table 2.2: Definitions of hazard and survival functions for a selection of parametric
models; note that � represents the standard normal distribution function

From Table 2.2, likelihoods for a wide range of models can be easily defined and
routines exist in all statistical packages to obtain parameter estimates. Further, note
that the exponential model can be expressed as a special case of the Weibull model
with fl = 1. To illustrate the uses of parametric models the likelihoods of the Weibull,
Log-Logistic and Lognormal models are fitted for patients from the ESPAC-3 dataset.
Models are fit using the ‘survreg’ function in R and results are presented on the log
scale in Table 2.3. Note here that as the fl parameter for the Weibull model is close to
one, then a simpler exponential model may be justified in this case.

Distribution log ⁄ log fl

Weibull -3.78 (0.029) -0.02 (0.024)
Log-Logisitic -3.31 (0.031) 0.14 (0.022)
Lognormal 3.28 (0.030) -0.42 (0.025)

Table 2.3: Model parameters for Weibull, Log-Logistic and Lognormal parametric sur-
vival models. Results are presented in the form of means (standard errors)

Each model is assessed graphically via calculation of the survival function. This
is compared against the Kaplan Meier [30] estimates and presented in Figure 2.1. It
is seen here that the closest fit to the non-parametric survival estimates is obtained
by the lognormal model. This model may still not provide an adequate fit however
and will produce consistently larger survival estimates between c15 - 60 months than
the non-parametric estimate (the converse is true outside of this range). Whilst fully
parametric models can be advantageous due to the information they provide about the
baseline hazard function, problems can ensue if the observed data do not follow any
particular distribution.
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Figure 2.1: Fitted parametric curves to ductal patients from the ESPAC-3 dataset

2.3.2 Cox’s semi-parametric model

Cox introduced his proportional hazards model in 1972 [37] and as of 2005, it was the
second most widely cited statistical paper (source [45]), second only to the publication
by Kaplan and Meier [30]. Under standard proportional hazards modelling, define the
hazard for each observation i as

hi(t) = h
0

(t) exp{—

T
z

i

},

where zi is a vector of covariates for patient i. Cox demonstrated that estimation of
the key parameters of interest, —, could be carried out without the need to specify a
baseline hazard function. Parameter estimation is carried out via a partial likelihood
which states that the probability of observing an event for patient i at time t is the
ratio of the hazard function for patient i against the sum of the hazards for all other
patients at risk of an event at time t. That is for patient i, assuming no tied survival
times, the likelihood is defined by

hi(t)q
jœR hj(t) .

Here the summation over R refers to all patients at risk at time t. As the base-
line hazard function is considered equal for all observations, this cancels from both
the numerator and the denominator. Taking the product over all patients gives the
likelihood
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L(—|D) =
nŸ

i=1

exp(—T
z

i

)
q

R exp(—T
z

i

)
. (2.5)

Note the likelihood does not explicitly depend upon time, only the ordering of the
observed event times. This is referred to as a semi-parametric method because it still
utilises asymptotic parametric assumptions to make inferences about — but leaves the
baseline hazard function completely unspecified. Some alterations of the likelihood have
been proposed for the occurrence of tied event times, see for example Efron’s method
[46].

Cox’s model has become extremely popular, especially in medical statistics as often
the question of main interest lies in comparing two groups of patients, for example two
sets of patients given two di�erent treatments in a clinical trial. In this context, the
main question of interest is which group performs best, which is shown by the hazard
ratio. Here then there is little need to understand the baseline hazard function so long
as the assumption of proportionality is satisfied.

2.3.3 Piecewise exponential models

In this section, the piecewise exponential model (PEM) first proposed by Friedman [38]
is explored. Though this is a fully parametric model, it is included separately due to
the added complexity.

To understand the basic premise of the PEM, considered initially the simple expo-
nential model with definitions given in Table 2.2. Here it is assumed that the hazard
rate is constant and independent of time. The PEM extends the simple exponential
model by partitioning the time domain using some ‘time-grid’ and assuming only that
the hazard rate is constant within each partitioned interval.

The extra flexibility in the PEM has made it a popular alternative for modelling
survival data when some estimate of the baseline hazard function is required and it
has been shown by Breslow [47] to be analytically equivalent to the Cox model when
the time-grid is defined by each observed event. The PEM can also be related to a
class of models referred to as change point-models (see for example [48]) whereby the
underlying hazard of a group of patients is considered to change at given points in time
and the aim is usually to estimate the time-points at which a change occurs. The PEM
is considered here as a means of estimating an accurate baseline hazard function and
retain interest in modelling di�erences by means of the hazard ratio.

PEMs have become particularly popular in a Bayesian framework as they provide
su�cient flexibility to accurately estimate a baseline hazard function whilst allowing
the user to limit the number of parameters required to describe the baseline hazard
function. In large datasets in particular, this can help to reduce the computational
burden required in fitting survival models. A Bayesian approach was proposed by
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Gammerman [49] who also explored a dynamic approach to estimating hazard functions
[50] as well as Zelterman et al. [51] who explored smooth transitions between time-
partitions. Malla and Mukerjee [52] consider an estimator for the PEM which allows
for reliable estimation beyond the last observed event. Usually a constant hazard ratio
across all partitions is assumed but allowing the hazard ratio to vary with time can
be applied as has been shown by Sinha [53]. In practice, Koissi [54] used a PEM in a
Bayesian framework with an added frailty component to study child mortality in the
Ivory Coast. PEMs have more recently been applied to the analysis of case-control
data [55] and meta-analysis [56] in both a frequentist and Bayesian framework.

Whilst the PEM is an attractive option for the analysis of survival data, inferences
upon the hazard ratio can not always be considered to be independent from the choice
of time-grid. Some popular methods are the aforementioned Breslow [47] method or the
approach by Kalbfleisch [57] who argued for the specification of time-grids to be defined
prior to any analysis to avoid any chance of bias in ensuing parameter estimates. These
and further methods are explored in Chapter 5.

To define the PEM, consider initially the standard parametric exponential model
with density function

f(ti|◊) = ◊ exp(≠◊ti),

and associated survival function

S(ti|◊) = exp(≠◊ti).

The likelihood function for ◊ is written as

L(◊|D) =
nŸ

i=1

f(ti|◊)‹
iS(ti|◊)1≠‹

i = ◊÷ exp
)

≠ ◊›
*

where ÷ =
qn

i=1

‹i and › =
qn

i=1

ti. All information regarding covariates and parameter
estimates enter the model via ◊ = (“ + —

T
z) where “ = log ⁄. Here “ is the parameter

associated with the baseline hazard rate and the parameters — explains the hazard
ratios associated with covariates z.

The standard exponential model therefore has a single parameter “ which incorpo-
rates all information relating to the baseline hazard. The PEM extends the standard
model by partitioning the time axis into a J smaller intervals. Throughout this thesis,
it is assumed that there exists a proportional relationship in which — is constant across
all partitions, that is —

j

= — for all j œ J . Following the definition of Ibrahim et al.
[58] the likelihood is defined as:

L(⁄, —|D) =
nŸ

i=1

JŸ

j=1

!
⁄j exp(—T

zi)
"”

i,j

‹
i

exp
;

≠ ”i,j

Ë
⁄j(ti ≠ aj≠1

) +
j≠1ÿ

g=1

⁄g(ag ≠ ag≠1

)
È

exp(—T
zi)

<
. (2.6)
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Here ”i,j is an indicator variable which takes the value 1 if the ith patient has
an event in the jth interval and zero otherwise. The time grid is defined by aj for
{j = 1, ..., J} and for completeness define a

0

= 0. Further note the special case of
J = 1 where equation (2.6) reduces to the standard exponential model.

The behaviour of the PEM is illustrated by making use of the ESPAC-3 data. To
fit the model, a somewhat arbitrary time grid of a = {0, 6, 12, 24, 48, 72, 96} is set.
The model is fitted in ‘R (Version 3.0)’. Despite its popularity, methods for fitting the
PEM are not directly available in all statistical packages. Work carried out by Laird
and Oliver [59] however provide an illustration as to how the PEM can be fitted using
standard generalised linear model techniques. This is based on the observation that
the likelihood formulation can be equivalent to that of a Poisson distribution where
the event indicator is the response variable and the logarithm of time is included as
a model o�set. This formulation also facilitates the fitting of the PEM in a Bayesian
framework using the statistical package WinBUGS. See the Appendix for a function
written in R which facilitates the organisation of data and fitting of the PEM as well
as code for model fitting in WinBUGS.

Plots of the survival functions from both the standard exponential model and the
PEM are given in Figure 2.2 for the patients with ductal adenocarcinomas from the
ESPAC-3 data along with the set time-grid. Here, the extra flexibility gained by as-
suming a piecewise constant hazard rate allows the fitted model to closely resemble the
Kaplan Meier survival estimates.

Figure 2.2: Fitted exponential and piecewise exponential survival curves to the ESPAC-
3 dataset

16



Exploration of the PEM for analysing time-to-event data from clinical trials shall
be given in Chapters 5-8 when considering the application of Bayesian methods to the
design and analysis of clinical trials.

2.3.4 Counting process models

Using counting process notation to model survival data is a popular approach due to the
flexibility allowed. Fully parametric, semi-parametric and non-parametric approaches
can all be encompassed within this framework. A detailed descriptions of counting
processes are provided by Fleming and Harrington [60] with applications to survival
data being provided by Anderson et al. [61]. Throughout this thesis, the counting
processes used are based on the approach developed by Anderson and Gill [40] where the
baseline hazard function is estimated non-parametrically but the parameters associated
with patient covariates are estimated parametrically. Anderson and Gill demonstrate
that this approach is an analogue of the proportional hazards model defined by Cox
[37] and further show that estimated parameters are asymptotically e�cient.

Whilst concentrating primarily on counting processes for right censored survival
data, they have been used as a platform for more complex models. Anderson [61] gives
examples of counting processes for survival data illustrating their use for modelling
frailty components, whilst Clayton [62, 63] demonstrated Monte Carlo estimation pro-
cedures for Bayesian inference and their use for the analysis of recurrent event data.
Further developments of counting process models have also been carried out by Chen
[64] and Cheng [65] who consider the survival or hazards function to follow a transfor-
mation model where the proportional hazards model is a special case of a wider class
of models.

Taking previous notation, assume Ti to be a random variable representing the sur-
vival time for observation i and further define Ci to be a random variable representing
censoring time. An event is observed for the ith observation whenever Ti Æ Ci. Define
ti = min(Ti, Ci) and ‹i = I(Ti < Ci) and note that for observation i with associated
covariates zi, the data Di = (ti, ‹i, zi) are observed.

Define a counting process, N(t), as a right continuous process with ‘jumps’ of size
1 which counts the number of events that have occurred up to some time t. Further,
simultaneously observe the ‘at risk process’, Y (t), which defines the number of obser-
vations that are candidates for an event at any given point in time. In its general form,
the counting process is considered as representing a group of homogeneous observations.
Concentration here is on the multivariate counting process and for each i = 1, 2, ..., n

observations define

Ni(t) = I{t
i

Æt,d
i

=1}

Yi(t) = I{t
i

Øt}.
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Primarily, interest lies in modelling the ‘intensity’ function which in a survival
context is an analogue to the hazard function. This is essentially the probability of
there being a jump in the counting process over some small interval between t and
t + ”t conditional on all information gathered prior to t. The conditional component of
this probability is referred to as the ‘filtration’, labeled Ft≠. The intensity process for
a single observation is then

–i(t)”t = Pr{[N(t + ”t) ≠ N(t)] = 1|Ft≠}.

The cumulative intensity function labelled A(t) is further defined as

A(t) =
⁄ t

0

–(u)”u.

Note the intensity function is a random variable, as is the filtration, and that Y (t)
is a fully predictable process. Many of the properties of the counting process are based
upon the observation that the process defined by Ni(t) ≠ Ai(t) is a Martingale which
is denoted Mi(t). That is to say, the expected value of the process M at some point
t
(i+1)

is the value of the process at the previous point in time, ti. Formally

E[M(ti+1

)|M(ti), M(ti≠1

), ..., M(t
0

)] = M(ti).

A non-parametric of estimate of the cumulative intensity function, Â(t), was pro-
posed by Aalen [66], given by

Â(t) =
⁄ t

0

I
¯Y (u)>0

Ȳ (u)
dN̄(u).

For illustration, Figure 2.3 takes a random sample of 10 patients from the ESPAC-
3 dataset and illustrates graphically the behaviour of the counting process Ni(t), the
at risk process Yi(t) and the cumulative intensity estimate using the Nelson Aalen
estimator Â.

Under the special case of right censored survival data, the intensity process becomes
an analogue of the hazard function. From this, it is apparent that a survival function
can be defined via S(t) = exp{≠A(t)}.

An attractive feature of the counting process notation is illustrated by the definition
of the multiplicative intensity model in a survival context as given by Aalen [66]. Given
the observed data D and parameters ◊, define a cumulative intensity/hazard function
as

Ai(t, ◊) =
⁄ t

0

–i(u, ◊)Yi(u)du

Here the cumulative intensity function is dependent upon two structures, the first is
some unknown function of the baseline hazard function and a possible set of covariates
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Figure 2.3: Illustrations of the counting process, at risk process and the cumulative
intensity process. Red lines indicate censored patients within the trial.
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and secondly the at risk process Yi(t). In the context of survival analysis, –(t) can
be defined to incorporate more than one type of event and hence model competing
risks. Furthermore by varying definitions of Y (t) (and by extension, N(t)) models with
complex censoring mechanisms and/or recurrent events can be defined.

For the inclusion of covariates, unless otherwise specified, assume that the standard
proportional hazards relationship exists and define

–i(t) = –
0

(t) exp{—

T
zi(t)}.

Note that in this form z is allowed to vary over time. Here –
0

(t) is some base-
line intensity process which can take a parametric form although only non-parametric
estimation is considered here. Following the definitions given earlier in this section, let

S(t) = exp{≠A(t)},

and further define dNi(t) to be

dNi(t) =
I

0 if patient i does not experience an event at time t
1 if patient i does experience an event at time t.

This naturally leads to the likelihood formulation given by

L(◊|D) =
nŸ

i=1

; Ÿ

tØ0

–i(Di, ◊)dN
i

(t)
<

Si(Di, ◊).

In order that the likelihood is correctly specified, it is ensured that the baseline
hazard function is specified in terms of a step function, and –

0

(t) is specified by �
0

{t}.
Further specify tú as the maximum observed event time given by sup{t : ”Ni(t) = 1, i =
1, ..., n} and take the log to obtain

l(◊|D) =
nÿ

i=1

⁄ tú

0

log[�
0

{u} exp{—

T
z(u)}]dN(u)≠

⁄ tú

0

�
0

{u} exp{—

T
z(u)}Yi(u)du. (2.7)

Note here that the first integral is only evaluated over patients with an observed
event whereas the second integral is evaluated over all observations. Throughout this
thesis, the formulation of Anderson and Gill is considered whereby the baseline hazard
function is considered to be non-parametric but the parameters associated with the
covariates, z(t) are estimated parametrically. In this case, estimation of parameters of
the likelihood given by (2.5) can be achieved via the use of Non-Parametric Maximum
Likelihood Estimators (NPMLE) where each step in the counting process, �

0

{t}, is
treated as a parameter to be estimated.

In this thesis the counting process will be used in Chapter 4 when some exploration
is given to widening the class of models available to explain the relationships between
patient hazards in randomised controlled trials.
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2.4 Bayesian estimation

Up to this point, the analysis of survival data has been considered in a frequentist
framework with the development of likelihood formulations under di�ering scenarios.
In this section, some discussion is provided regarding the fitting of models in a Bayesian
framework. Initially, the special case of the parametric exponential model with no
covariates and a gamma prior distribution is considered. Though somewhat limited,
this special case is used to re-enforce the basic concepts of Bayesian methodology.
Following this, an illustration is given regarding the di�culties encountered when the
model is extended to include covariates. Finally, an exploration of sampling methods is
given, in particular the Gibbs sampler, for providing solutions to more complex models.

2.4.1 Exponential model with gamma priors - no covariates

Considering the parametric Exponential model with no covariate and data Di = (ti, ‹i),
the likelihood is defined as

L(⁄|D) =
nŸ

i=1

⁄‹
i exp{≠⁄ti}.

In this simple case it is shown that the total observed survival time, ’ =
qn

i ti and
the total number of events ÷ =

qn
i ‹i are su�cient for estimating ⁄ with a solution

provided by ⁄̂ = ÷/’.
Consider the special case of a prior distribution for the hazard parameter ⁄, Pr(⁄),

which follows a gamma distribution with scale and shape parameters (Ê, ›). The density
function is given by

Gamma(Ê, ›) ≥ ›Ê⁄Ê≠1 exp{≠›⁄}
�(Ê) .

Here �(.) is the gamma function. This prior distribution is shown to be conjugate
for the exponential distribution as the posterior distribution itself also has a gamma
distribution. To see this, evaluate the posterior distribution as

Pr(⁄|D) Ã Pr(D|⁄)Pr(⁄)

=
!
⁄÷ exp{≠⁄’}

"
⁄Ê≠1 exp{≠›⁄}

= ⁄÷+Ê≠1 exp
)

≠ ⁄(’ + ›)
*
,

and thus Pr(⁄|D) follows a gamma distribution given by Gamma(÷ + Ê, ’ + ›). The
posterior distribution can be directly summarised using

E(⁄|D) = ÷ + Ê

’ + ›

and
V ar(⁄|D) = ÷ + Ê

(’ + ›)2

.
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It is shown therefore that the posterior summaries are a direct combination of the
observed data and prior beliefs. As an example, an exponential model is applied to
the ductal patients in the ESPAC-3 data and the hypothetical situation where prior
information is available which takes the form Gamma(300, 15000) is considered.

Prior
Likelihood
Posterior

Figure 2.4: Prior, likelihood and posterior densities for an Exponential model fitted to
the ESPAC-3 dataset

The fit of the exponential model to the ESPAC-3 data is shown in Figure 2.2. In
Figure 2.4 the densities of the hazard parameter ⁄ from the prior, likelihood and the
posterior are shown. This shows how the inclusion of an informative prior compliments
the information from the likelihood. In this situation, there is a large amount of infor-
mation in the data and a highly informative prior is required to have any noticeable
e�ect on the posterior distribution. What is notable here is not only the shift in the
point estimation but also the increase in the precision when comparing the posterior
distribution to the estimated obtained from the likelihood alone.

2.4.2 Exponential model with gamma priors - with covariates

Here it is demonstrated that di�culties ensue when the exponential model is extended
to include a single covariate, z.

Formally define the likelihood for parameters ◊ = (⁄, —) and data D = (ti, ‹i, zi) as

L(◊|D) =
nŸ

i=1

!
⁄ exp{—T zi}

"‹
i exp

)
≠ ⁄ exp{—T zi}ti

*
.

Following the Bayesian paradigm, prior distributions for both ⁄ and — are required.
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Following the laws of conditional probability define

Pr(◊|D) Ã Pr(D|◊)Pr(◊)

= Pr(D|⁄, —)Pr(⁄|—)Pr(—)

= Pr(D|⁄, —)Pr(⁄)Pr(—),

if it is assumed a-priori that the parameters that describe the baseline hazard and the
parameters that describe e�ects of covariates are independent.

Following the example of Section 2.4.1, set a prior for ⁄ based on a gamma dis-
tribution and further set the prior for — to be a normal distribution. Note from (2.3)
that to evaluate posterior distributions, only the terms directly dependent upon ◊ are
required and define

Pr(⁄) Ã ⁄Ê≠1 exp{≠›⁄}

Pr(—) Ã exp
;

≠ (— ≠ µ)2

2‡2

<
.

A full form for the posterior distribution is written as

P (◊|D) Ã
nŸ

i=1

⁄‹
i

+Ê≠1

!
exp{—T zi}

"‹
i exp

;
≠

3
⁄

!
exp{—T zi}ti + ›

"
+ (— ≠ µ)2

2‡2

4<
.

Of primary interest are the marginal densities for ⁄ and — from which posterior
inferences can be made, denote as

Pr⁄(◊|D) =
⁄

Pr(◊|D)d—

Pr—(◊|D) =
⁄

Pr(◊|D)d⁄.

Given the form of the likelihood this is not straightforward even in this relatively simple
situation. Estimation can be achieved by approximating the posterior distribution
for instance via a Laplace transformation or via simulation techniques which shall be
explained in the following Section.

2.4.3 Monte Carlo Markov Chain simulation

Markov Chain Monte Carlo (MCMC) simulation is a class of stochastic algorithms
for sampling from probability densities. They follow the Monte Carlo property that
states that given some probability distribution fi(◊), a sequence of random observations
◊1, ◊2... can be drawn where at any point m, the distribution of ◊m depends only
upon ◊m≠1. Using techniques such as this in a Bayesian framework facilitated the
construction of marginal posterior distributions using a large number of samples taken
directly from the joint posterior distribution. These samples can then be directly used
to obtain inferences upon key parameters of interest.
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Whilst there are a number of di�ering MCMC routines that can be applied, con-
sideration is given here to the Gibbs sampler first proposed by Gemen and Gemen [67]
and applied in a Bayesian setting by Gelfand and Smith [41] as well as the Metropolis
Hastings rejection sampling routine [68, 69]. Greater details of both these methods
are described by Gelmen et al. [70]. A direct application of the Gibbs sampler for
proportional hazards models is given by Dellaportas and Smith [71].

With respect to the Gibbs sampler, suppose there exists a posterior distribution
Pr(�|D) where the parameter vector can be divided into P components � = (�

1

, ..., �P ).
The Gibbs sampler is a routine which, at each iteration, draws a sample from each com-
ponent of � conditional on the values of all other components. Allow the sequence of
iterations m to be denoted as superscripts and the parameter components P to be
denoted as subscripts. At each iteration a sample is randomly generated from the
probability distribution given by

Pr(◊p|�m≠1

≠p , D).

where �m≠1

≠p gives the most recent state of each component other than p at iteration
m such that

�m≠1

≠p = (�m
1

, ..., �m
p≠1

, �m≠1

p+1

, ..., �m≠1

P ).

Under this routine each draw of component �m
p is updated dependent upon both

the previous value �m≠1 and the most recent states of all other components of �m≠1

≠p .
It is sometimes the case that for a given posterior density, marginal distributions

for each �p will be known analytically in which case the sampling procedure can be
used directly. When it is not, rejection algorithms are required, such as the Metropolis
Hastings algorithm of which the Gibbs sampler is a special case as shown by [70].

The Metropolis Hasting algorithm, [68, 69] works on the basis that an evaluation of
the state of �m

p with respect to �m≠1

≠p can be made by drawing a proposed future state
�ú

p from a ‘jumping’ distribution Jm(�ú|�m≠1). Note that the jumping distribution is
conditional on �m≠1

p only and not on the previous state for the other parameters being
evaluated �m≠1

≠p .
Taking a draw from the jumping distribution, the posterior distribution is evaluated

under the proposal state and the previous state for �p. Formally evaluate

r = Pr(�ú|D)/Jm(�ú|�m≠1)
Pr(�m≠1|D)/Jm(�m≠1|�ú) .

The inclusion of the jumping distribution in the numerator and denominator is
required only if they are asymmetric. In the case of a symmetric distribution, that is
Jm(◊a|◊b) © Jm(◊b|◊a), simplification to

24



r = Pr(◊ú|D)
Pr(◊m≠1|D) ,

can be used. The estimate r is used to evaluate the proposal state. Under the Metropolis
Hastings routine, if �ú is a state which provides a more likely solution (i.e. is closer to
some local maximum within the neighbourhood of �m≠1) a value of r Ø 1 is obtained
and it is accepted with probability 1, otherwise it is accepted with probability r. It is
defined as

◊m
p =

I
◊ú

p with probability min(r, 1)
◊m≠1

p otherwise.

Computationally, for each draw of each parameter in the sampling procedure, the
following routine is defined:

1. Draw a single value from the jumping distribution �ú
p ≥ Jm(�ú|�m≠1)

2. Calculate r based on �ú
p and �m≠1

p

3. Draw a single value ‘ru
Õ from a uniform distribution with limits (0,1)

• if r > ‘ru
Õ then set �m

p = �ú
p

• otherwise set �m
p = �m≠1

p

An illustration of the use of the Gibbs sampler is given for the exponential model
with a single covariate as described in Section 2.4.2. For notation purposes, set � =
◊ = (“, —). To start the procedure, starting values are required and set to ◊0 = (“0 =
≠3.4, —0 = 0.1). Figure 2.5 gives a graphical representation of the Gibbs sampler
illustrating how the estimates from each parameter converge upon some solution. Also
illustrated are the marginal distributions for “ and —.

Once the process has converged, samples are continued to be drawn in order to
construct the joint and marginal posterior densities from which inferences can be made.
Results in Table 2.4 give the posterior summaries that are obtained.

Parameter Mean Median Std. Dev 95% Cred. Int
“ -3.52 -3.52 0.03 (-3.57, -3.46)
— -0.09 -0.09 0.06 (-0.20, 0.02)

Table 2.4: Summaries of posterior distribution obtained via Gibbs sampling

Algorithms for the Metropolis Hasting algorithm can be easily coded in many sta-
tistical packages and examples for the piecewise exponential model are included in the
Appendix. In many situations however, the BUGS (Bayesian inference Under Gibbs
Sampling) suite of packages such as WinBUGS and OpenBUGS are utilised. Issues
on convergence and model fit are covered by Gelman et al. [70] and are discussed as
necessary within the thesis.
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Figure 2.5: An illustration of the Gibbs sampler for the exponential model with a single
covariate

2.5 Practical issues for fitting proportional hazards mod-
els

Ideally, the decision of which model to fit, and whether or not to fit it in a frequentist
or Bayesian framework should depend upon philosophical beliefs and the nature of
the data that are being analysed. Often however, the decision will be based on more
practical issues.

Typically, Bayesian models will be reliant on some sampling routine. Whilst these
are very flexible they can be computationally intensive and di�cult to code. In partic-
ular, the counting process model will require an extra ‘node’ to be estimated for each
step in the counting process and sampling over a large number of parameters can in-
crease the time to simulate across each iteration. Furthermore, highly correlated nodes
can lead to issues such as slow convergence rates and high auto-correlation, both of
which require extra samples to be taken.
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In a frequentist framework, the counting process method can also cause computa-
tional issues due to the empirical likelihood method which e�ectively requires an extra
parameter for each step in the counting process to be estimated. If there is only a
single parameter of interest and Ÿ steps in the counting process therefore, estimation
of parameters and their standard errors may require the inversion of a matrix with
dimensions (Ÿ + 1, Ÿ + 1).

When large datasets are observed therefore, it may be worthwhile to consider para-
metric alternatives to the counting process. In particular, a piecewise model will still
retain a good deal of flexibility required to accurately estimate a hazard function whilst
reducing the number of parameters that are required.

2.6 Discussion

In this chapter a brief overview of the di�erent philosophical di�erences between fre-
quentist and Bayesian methodology was provided with some indication as to how sur-
vival models are fitted in both frameworks.

In particular, an introduction to both the piecewise exponential model and the
counting process notation are provided. In both cases connections to the popular Cox
model are noted. Following this, some background to the computational issues inherent
in Bayesian analysis are discussed and estimation via the Gibbs sampler was introduced.
Provided throughout were some basic examples of how these methods can be used to
analyse clinical trial data. It should be noted however, that the methods listed here are
by no means exhaustive, no comment is made for example on the flexible parametric
models proposed by Royston and Parmar (see for example [72, 73]), or other methods,
such as accelerated failure time models, which may be applied to survival data.

In the chapters that follow, an exploration of methods for analysing time-to-event
data in a clinical trial context is given using the methods introduced in this chapter.
In particular, methods of analysis that improve the e�ciency of clinical trial data are
investigated with the aim of extracting more information from the time consuming and
costly process of running a clinical trial.
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Chapter 3

Analysis of Survival Data with
Unbounded Covariates

3.1 Introduction

In this chapter, some investigation is given to the method by which continuous co-
variates enter a survival model. In particular, covariates which are prone to outliers
or extreme value observations are investigated and a new approach is proposed which
gives a scientific rational for an amended form.

The chapter is structured as follows, Section 3.2 gives an overview of robust meth-
ods for handling covariates. In Section 3.3 a new parameterisation is proposed with
justifications. Section 3.4 provides a simulation study to demonstrate reliable estima-
tion of model parameters. Section 3.5 explores model diagnostics in the form of model
residuals and a generalised influence function. The new parameterisation is applied
to the ESPAC-3 dataset in Section 3.6 paying particular attention to the e�ect of the
biomarker post operative Cancer Antigen 19.9 (CA19.9). Discussion is given in Section
3.7.

3.2 Robust estimation in proportional hazards modelling

Under standard proportional hazards modelling, covariates enter the model through a
link function given by

exp(—T
z).

This is convenient as exp(—) gives the hazard ratio which gives the multiplicative
increase (decrease) in hazard for each unit increase (decrease) in a covariate z. For
categorical covariates this is particularly useful as individual hazard rates for each group
of observations can be obtained. For some continuous covariates however, assuming this
functional form may not be appropriate and can lead to misleading interpretations. This
is particularly true for continuous covariates that are prone to extreme values.
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Note here that large covariate values are referred to as extreme covariate values as
opposed to outliers as outliers may refer to data points that are observed or measured
in error and by extension may be considered for removal or given reduced influence in
any model estimation procedure.

It has been noted by Viviania et al. [74] that the presence of only a single extreme
value observation can be enough to violate any model assumptions of proportionality.
By extension, any covariate that violates this assumption is di�cult to interpret in a
meaningful fashion through a hazard ratio. A common method to curb the influence
of extreme value observations is to apply some transformation, g(z) and model this
instead. Common suggestions are g(z) = log(z) and g(z) = z≠1. Often this is su�-
cient, but when it is not the user is confronted with the di�culty of either accepting a
model with evidence of non-proportionality, searching for further transformations until
evidence of non-proportionality disappears, or applying more complex statistical meth-
ods such as a fractional polynomial approach. Each method can have adverse e�ects
on both model fit and interpretation, especially if there is any interaction/confounding
between the covariate with extreme value observations and other covariates of interest.

Some previous methods to account for extreme value observations have concentrated
on amendments to the likelihood formulation. A good overview is given by Farcomeni
and Ventura [75] with two approaches in particular given specific attention; an approach
based on a weighted likelihood formulation for the Cox model, most notably proposed
by Bednarski and Sensiani [76] and Minder et al. [77] and secondly the method of
‘trimmed’ likelihoods given by Viviani and Farcomeni [74].

For weighted Cox regression with N observations, a log likelihood is proposed in
the form:

l(—) = log(L(—)) =
Nÿ

i=1

A(ti, zi)
5
zi ≠

q
jœR A(ti, zi)zj exp(—T zj)

q
jœR A(ti, zi) exp(—T zj)

6
.

Here A(ti, zi) is a smooth non-negative function which has a limit of zero which is ob-
tained for either large values of t or —T z. This method then down-weights or completely
ignores patients who either have large covariate values or who live longer than may be
expected.

A second approach introduced by Viviani [74] and explored by the same author
[78] is a trimmed likelihood. This is based on the idea that any likelihood formulation
is trimmed by excluding the observations which give the smallest contributions to the
likelihood. Specifically, it is considered that the data consist of [n(1 ≠ Í)] ‘clean’ ob-
servations and [nÍ] contaminated observations. The hazard rate for each observation
is given by

⁄(t, zi) =
I

⁄
0

(t) exp(—T zi) if i œ Iú

⁄i(t) otherwise.

Here Iú is an indicator function denoting whether patients belong to the ‘clean’ or
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‘contaminated’ dataset. Under a trimmed likelihood, H(Í) is defined as a class of all
subsets of cardinality [n(1 ≠ Í)] from the vector of integers (1, ..., n). The likelihood is
then given by

LT RIM (—) = maxIœ(H(Í))

Ÿ

iœI

A
exp(—T zi)q

jœR exp(—T zi)

B

.

Whilst either procedure may produce more robust hazard ratios they do not solve
the problem of non-proportionality. More troublesome may be that the model is explic-
itly treating some data as less valuable than others, possibly without any predilection
for doing so. In certain situations therefore, these methods can be criticised as trying
to amend the data to fit a model whereby it should be the goal of a statistician to
produce a model to fit the data.

3.3 New parameterisations for proportional hazards mod-
elling

An alternative approach is proposed whereby the function by which covariate enter a
model is altered to explicitly allow for extreme value observations. Methods of altering
the function by which covariates enter a model are not new. As an example, take the
fractional polynomial methods as proposed by Royston and Altman [79] which explore
a range of possible transformations of z to search for the best model fit. This approach
may still result in unreliable estimates at the extremities of the observed covariates
values and cause di�culties with extrapolation. Furthermore, the final functional form
that is obtained, whilst being a good fit of the data to the model, may not be cohesive
with scientific rational between the underlying relationship between a covariate and the
response.

The model proposed here allows for initial exponential growth in the relationship
between a covariate and survival function but also with the inclusion of an upper
asymptote. This is chosen to allow for the scientific rational whereby there may be an
important di�erence between a ‘small’ and a ‘big’ value of a covariate in explaining pa-
tient survival but little or no di�erence between a ‘big’ and ‘very big’ value. Reasoning
such as this often leads to the desire to dichotomise a covariate, an approach which
comes at a cost as shown by Altman [80] and Royston et al. [81].

Define the parameters required to estimate the e�ect of a covariate as (◊). For
the standard parameterisation (◊

S

) = — and f(◊
S

) = exp(—T z) are obtained. The
proposed alternative function has two parameters (◊

R

) = {Ï, —} and is given by

f(◊
R

) = 1 + Ï exp(—z)
Ï + exp(—z) . (3.1)

The relationship between an observed covariate and the e�ect on some baseline
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hazard function is shown in Figure 3.1. Here models can be shown to have a similar
e�ect for smaller values for z but diverge wildly as z increases. The role of — in (3.1)
is to control the initial rate of growth with Ï providing the asymptote. Interpretation
as — as a hazard ratio is no longer valid, instead it is defined as the maximum rate of
unit increase. It is the unit rate of increase that is observed as z æ 0. Further, Ï is
interpreted as a maximum hazard rate.

f(z
, θ

)

z

f(z, β)
f(z, β, ϕ)

Figure 3.1: Figure to show the functional representation of the standard and new
parameterisation for the linear prediction.

Justification for f(◊
R

) is given by the fact that it is possible to bound a function
f(◊), above and below, by using a family of transformations with the the form

” + Ï exp(—z)
Ë + exp(—z) . (3.2)

This is an adaption of the logistic function and has asymptotes Ï and ”/Ë. Re-
strictions are placed on the parameters: ” Ø 0, Ï Ø 0 and Ë Ø 0 in order for f(◊

R

) to
be non-negative. The first derivative of f(◊, z) is (ËÏ ≠ ”)— exp{—z}/[Ë + exp{—z}]2

and in order for a positive — to have positive slope for f(.), and correspondingly, a
negative — to have a negative slope for f(.), then ”<ËÏ. Also, f(.) is monotonically
increasing in z which is usually a useful property in practice. A particular fractional
polynomial might not possess this property. Model 3.2 has the property that the
hazard function is symmetric regarding the baseline hazard, i.e. f(◊, z) and f Õ(◊Õ, z)
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have the same functional form for the two models h(◊, t, z) = h(◊, t, z)
0

f(◊, z), and
h(◊, t, z)

0

= h(◊, t, z)/f(◊, z).
A desirable property for f(◊, z) is that when — = 0, implying that the covariate has

no e�ect on survival, thenf(◊, z) should have the value unity. This implies Ë = ”+Ï≠1
and leads to

f(◊, z) = ” + Ï exp{—z}
” + Ï ≠ 1 + exp{—z} (3.3)

The asymptotes for model 3.3 are Ï and ”/(” + Ï ≠ 1) and it still retains baseline
hazard symmetry. For Ï>1, positive — will give a positive slope for f(.) and negative
— a negative slope. The value of z which has no e�ect on the baseline hazard is z = 0.
If this should be a di�erent value then the variable z should be adjusted accordingly
with a linear transformation. Note if a parameter is entered into the model, replacing
z by z ≠� with estimation of �, then it can be shown that, by rearranging parameters,
model 3.3 reverts back to model 3.2.

The slopes of the logistic function at +z and ≠z are identical. For model 3.3 to
have this property, then Ë = 2 ≠ Ï and hence

f(◊, z) = 2 ≠ Ï + Ï exp{—z}
1 + exp{—z} (3.4)

where the asymptotes are Ï and 2 ≠ Ï. This model loses its baseline hazard symmetry.
For model 3.3 to have reciprocal asymptotes, Ï and 1/Ï, then Ë = 1 giving

f(◊, z) = 1 + Ï exp{—z}
Ï + exp{—z} . (3.5)

This model retains baseline hazard symmetry.
Lastly the standard Cox model is obtained by letting Ï æ Œ in 3.5, or by letting

Ï = 0 which will negate the — coe�cient. If Ï = 1 then f(◊, z) = 1 with z having no
e�ect on the hazard function. Throughout the rest of this chapter, concentration in on
model 3.5 although other models could be used and fitted to data in a similar manner.

3.4 Simulation study

A simulation study is carried out to demonstrate that parameters in the robust model
can be accurately estimated.

Data are simulated for both a covariate and a two-level factor to replicate the
scenario of a single covariate with extreme value observations measured as part of a
two arm clinical trial. Denote the log hazard ratio for the treatment factor as —trt and
the parameters for the continuous covariate as Ï, —cov. Parameters for the simulation
are set arbitrarily as:

—trt = 0.15, —cov = 0.05, Ï = 5.
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The treatment factor, ztrt, is simulated to ensure that there are 50% of patients
assigned to each arm. The covariate is simulated to satisfy log(zcov) ≥ N(3.5, 1.5).
Survival times are simulated from an exponential distribution with a hazard parameter
set as ⁄ = 0.5. Of the simulated data, 5% of survival times randomly selected as
censored to replicate the data that are observed in practice. This approach makes is no
assumption over the form of the censoring distribution, but any bias due to informative
censoring will be small due to the small amount of censoring that is induced. Data sets
of size 100, 250, 500 and 1000 are considered. For each set of parameters, 1000 datasets
are simulated resulting in 4000 datasets in total.

To each sampled dataset, a standard model with linear predictor defined by exp(—trtztrt+
—covzcov) is fit along with the new parameterisation given by

exp(—trtztrt)
1 + Ï exp(—covzcov)
Ï + exp(—covzcov) .

using the partial likelihood given by (2.5). Each model is assessed in terms of parameter
bias, accuracy, coverage and average confidence interval length (ACIL) following the
recommendation of Burton et al. [82]. The results are given in Table 3.1. Evaluations
of model performance for —trt are considered across both models. Evaluations of —cov

and Ï are only provided for the new parameterisation.

N Parm.

Standard Model New Model

Est. (se.) Bias Acc. Cov. ACIL Est. (se.) Bias (◊10

≠3
) Acc. Cov. ACIL

100

—
trt

0.13 (0.20) 0.02 0.04 0.95 0.81 0.15 (0.20) 4.1 0.04 0.95 0.82

—
cov

0.003 (0.002) 0.06 (0.03) 6.3 0.001 0.92 0.09

Ï 6.35 (3.68) 1356 15.38 0.97 13.20

250

—
trt

0.130 (0.13) 0.02 0.02 0.95 0.51 0.15 (0.14) 1.9 0.02 0.94 0.51

—
cov

0.002 (0.001) 0.05 (0.02) 2.3 5 ◊ 10

≠5
0.93 0.06

Ï 5.31 (1.12) 310 1.35 0.97 4.33

500

—
trt

0.14 (0.09) 0.02 0.01 0.95 0.36 0.15 (0.09) 4.4 0.01 0.94 0.36

—
cov

0.002 (0.003) 0.05 (0.01) 1.0 4 ◊ 10

≠5
0.93 0.04

Ï 5.20 (0.73) 203 0.57 0.97 2.91

1000

—
trt

0.13 (0.06) 0.02 0.004 0.95 0.25 0.15 (0.06) 0.04 0.004 0.96 0.25

—
cov

0.001 (0.001) 0.05 (7e-3) 0.6 5 ◊ 10

≠5
0.91 0.03

Ï 5.07 (0.49) 70 0.25 0.96 1.98

Table 3.1: Results of the simulation study to compare performance of the standard
model and the new parameterisation

Considering initially the new parameterisation, it is observed that for datasets of 250
or larger, acceptable levels of bias, accuracy, coverage and average confidence interval
length are obtained for each parameter. For datasets of size 100, reasonable estimates
of —trt and —cov are obtained but there is a reasonably large bias obtained for Ï. It
should be observed that this parameter, estimating the upper asymptote, is going
to be dependent upon the number of extreme value observations that are observed.
For smaller datasets, the number of extreme covariate values will be small and as
a consequence estimates of Ï will be less reliable. It is also worth noting that the
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standard errors associated with Ï are relatively large compared to the standard errors
associated with other parameters, this is again due to the variability induced by this
parameter being driven by data in the extremes of the distribution for zcov.

Observing the estimates of coverage, by chance it is reasonable to expect the ‘true’
parameter values to be included in the confidence interval 95% of the time. There is
some small but consistent divergence with Ï being constantly larger than 0.95 which
may be explained in part due to the relatively large ACIL. Considering —cov the coverage
estimate is consistently lower than 0.95 however. This may be of little concern due to
the small bias observed and may be a result of correlation between —cov and Ï.

Of further interest is the estimates of —trt for both the standard and new parame-
terisations. Estimates of bias for the new parameterisation are consistently small. For
the standard parameterisation however, there is a consistent negative bias despite the
data being simulated without any correlation structure between the covariates. This
illustrates that incorrectly specifying the relationship between a continuous covariate
and the underlying hazard function can have adverse e�ects other covariates in the
model and may result in biased estimates. This point is reinforced by Figure 3.2. This
shows kernel density plots of all estimates of —trt from the datasets with a sample size
of 1000 and demonstrates a consistent shift for the standard model. This shift between
distributions demonstrates a negative bias when models are incorrectly specified.

β
−0.26 −0.13 0.00 0.13 0.26 0.39 0.52

Standard Model
New Parameterisation

Figure 3.2: Figure to show the distribution of estimated —trt for standard and new
parameterisations.
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3.5 Model diagnostics

In this section, the new parameterisation is explored with respect to model diagnostics.
In particular, a form of model residuals based on the those first proposed by Schoenfeld
[83] are explored as well as an analytical form for an influence function following the
method Reid and Crapeau [84].

3.5.1 Model residuals

Taking Cox’s partial likelihood, Schoenfeld’s methods for obtaining residuals is based
on noting that the score function of the likelihood for a single covariate, is obtained
from

Nÿ

i=1

#
log

)
f(zi, ◊)

*$Õ
≠

#
log

) ÿ

jœR

f(zj , ◊)
*$Õ

= 0,

where Õ represents a first derivative with respect to ◊. Residuals are obtained by
observing

Nÿ

i=1

##
log

)
f(zi, ◊̂)

*$$Õ
≠ E

#
log

)
f(zj , ◊̂)

*Õ
|R

$
= 0.

Here R represent the group of patients at risk at time ti. From this, it is seen that

E
#
log

)
f(zj , ◊)

*Õ
|R

$
=

#
log

) ÿ

jœR

f(zj , ◊)
*$Õ

.

For any given individual covariate zi at time ti therefore, an expected value can be
derived from all other covariate values still at risk at time ti. Note that this condition
only holds so long as there is no relationship between model parameters and time.
Considering the model defined by (3.1), a score function satisfies

Nÿ

i=1

‹i

5
log

)
Ï exp(—z)

*
≠ log

)
Ï ≠ 1 + exp(—z)

*
≠ log

; ÿ

jœR

Ï exp(—z)
Ï ≠ 1 + exp(—z)

<6
= 0.

Analytical forms for the residuals are then obtained by di�erentiating with respect
to — and Ï and equating to zero. For — the following is obtained:

Nÿ

i=1

‹i

5 (Ï ≠ 1)z
Ï ≠ 1 + exp(—z) ≠

q
jœR

Ïz(Ï≠1) exp(—z)

[Ï≠1+exp(—z)]

2
q

jœR
Ï exp(—z)

Ï≠1+exp(—z)

6
= 0, (3.6)

and respectively for Ï:

Nÿ

i=1

‹i

5 exp(—z) ≠ 1
Ï(Ï ≠ 1 + exp(—z)) ≠

q
jœR

exp(—z)(exp(—z)≠1)

[Ï≠1+exp(—z)]

2
q

jœR
Ï exp(—z)

Ï≠1+exp(—z)

6
= 0. (3.7)
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Model residuals obtained using Shcoenfeld’s method have been used as a means of
assessing the assumption of proportionality. A widely used example is that by Grambsh
and Thernau [85] who develop a test based on the correlation between residuals and
the rank of time. More details on the uses of residuals to assess proportionality are
provided in Chapter 4.

3.5.2 Influence function

Here an analytical form of an influence function is presented. The algebra that follows
is extremely involved and complex and the interested reader is advised to follow the
paper by Reid and Crepeau [84] upon which the methodology presented here is based.

Define the score function from a partial likelihood given in a general case as

Nÿ

i=1

‹i

5
“1 ≠

q
jœR “2q
jœR “3

6
. (3.8)

It can be seen that both (3.6) and (3.7) are special cases of (3.8) as indeed is the
score function obtained for the standard Cox model. Specifically “1, “2 and “3 are a set
of functions whose exact form will depend on the likelihood formed. For the standard
parameterisation with a single covariate fS(◊), set

“1 = “1

1

= z,

“2 = “1

2

= z exp(—z),

and

“3 = “
3

= exp(—z).

For the new parameterisation proposed, definitions are given by “1 = {“1

1

, “2

1

} with

“1

1

= (Ï ≠ 1)z
(Ï ≠ 1 + exp(—z))

and,

“2

1

= exp(—z) ≠ 1
Ï(Ï ≠ 1 + exp(—z)) .

Next “2 = {“1

1

, “2

1

} with

“1

2

=
ÿ

jœR

Ïz(Ï ≠ 1) exp(—z)
[Ï ≠ 1 + exp(—z)]2

and
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“1

2

=
ÿ

jœR

exp(—z){exp(—z) ≠ 1}
[Ï ≠ 1 + exp(—z)]2

Lastly

“
3

= Ï exp(—z)
Ï ≠ 1 + exp(—z) .

In this general form, a influence function is evaluated by noting that the data
observed are contaminated by some small amount of noise. Following the notation
of Reid and Crepeau [84], define the empirical cumulative distribution function for
time T , a single covariate Z and a censoring indicator � by H(t, z, ”). Further define
the marginal function for T and Z as H(t, z). The empirical function for the Cox
partial likelihood formulation places a point mass of magnitude n≠1 on each uncensored
observation. A generalised score function based on the empirical distribution is then
obtained by

⁄

N
”i

;
“1(◊) ≠

5s
“2(◊)I(t̃ Ø t)”Hn(t̃, z̃)s
“3(◊)I(t̃ Ø t)”Hn(t̃, z̃)

6<
”H(t, z, ”) = 0.

Here I(.) is the indicator function. Observing that the infinite sample defines the
parameters as a set of functionals of the empirical distribution, ◊ = ◊(H), the score
function is defined as:

⁄

N
”i

;
“1(◊(H)) ≠

5s
˜tØt “2(◊(H))”Hn(t̃, z̃)

s
˜tØt “3(◊(H))”Hn(t̃, z̃)

6<
”H(t, z, ”) = 0

For the purposes of obtaining an influence function, it is assumed that data are
generated from the empirical distribution function H(.) with some small contamination
‘(G(.)). A form of influence measure for parameters ◊ is evaluated from ‘≠1(◊(H +
‘G) ≠ ◊(H)) = 0 as ‘ æ 1. Defining for the k = 1, 2, 3 sets of functions, “

k

(◊ + ‘◊̇),

⁄

N
”i

;
“1(◊ + ‘◊̇) ≠

s
˜tØt “2(◊ + ‘◊̇)”H(t̃, z̃) + ‘”G(t̃, z̃)

s
˜tØt “3(◊ + ‘◊̇)”H(t̃, z̃) + ‘”G(t̃, z̃)

<
”H(t, z, ‹) + ‘”G(t, z, ”) = 0.

A solution is obtained by first solving the inner integrands and then expanding into
the outer integrands. Begin by noting that the Taylor series expansion of “

k

(◊ + ‘◊̇)
to the second order is given by

“

k

(◊ + ‘◊̇) = “

k

(◊) + Ò“

k

(◊)T ‘◊̇ + 1
2(‘◊̇)T Ò2

“

k

(◊)(‘◊̇).

Here Ò“

k

(◊) is a vector of first derivatives with respect to ◊ and Ò2

“

k

(◊) is the
matrix of second derivatives. Note that

1
2(‘◊̇)T Ò2

“

k

(◊)(‘◊̇) ƒ 0,
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and evaluate the inner integrand for the term containing “2(◊). Re-write as:

⁄

˜tØt
“2(◊)”H̃ + ‘

⁄

˜tØt
Ò“2(◊)T

◊̇”H̃ + ‘
⁄

˜tØt
“2(◊)”G̃ + ‘2

⁄

˜tØt
Ò“

k

(◊)T
◊̇”G̃ (3.9)

Note that ”H̃ is used to abbreviate ”H(t̃, z̃) and likewise for ”G̃. For further brevity,
define

s
“

k

(◊)”H̃ = �
k

and note that the last term in (3.10) ƒ 0 due to ‘2. The inner
intergrand containing “2(◊) is re-written as

⁄

˜tØt
“2(◊)”H̃ + ‘”G̃ = �̃2 + ‘�̃2

Õ T
◊̇ ≠ ‘“(◊)2

where �̃2
Õ

is the integral of the vector of first derivatives,
s

˜tØt Ò“

k

(◊)”H̃. Using
the same process, re-write the integrand including “3(◊) as

1
s

˜tØt “3(◊)”H̃ + ‘”G̃
= [�̃3]≠2[�̃3 ≠ ‘�̃3

Õ T
◊̇ ≠ ‘“(◊)3]

In this form, evaluate both inner integrands as
s

˜tØt “2(◊)”H̃ + ‘”G̃
s

˜tØt “3(◊)”H̃ + ‘”G̃
=

5 �̃2
�̃3

6
+ ‘

5 �̃2
Õ
�̃3 ≠ �̃2�̃3

Õ

(�̃3)2

6T

◊̇ ≠ ‘
5 �̃2“(◊)x0

3

+ �̃3“(◊)x0
2

(�̃3)2

6

Applying a Taylor series expansion to all terms in the outer integrand, a full form
for ◊(H + ‘G) is expressed as:

⁄

N
‹i

I

“1(◊) + ‘Ò“1(◊)T
◊̇ +

5 �̃2
�̃3

6
+ ‘

5 �̃2
Õ
�̃3 ≠ �̃2�̃3

Õ

(�̃3)2

6T

◊̇≠

‘
5 �̃2“(◊)x0

3

+ �̃3“(◊)x0
2

(�̃3)2

6J

”H + ‘”G = 0. (3.10)

Expanding out the integrands, the following is obtained:

⁄

N
‹i

;
“1(◊) +

5 �̃2
�̃3

6<
”H + ‘

5 ⁄

N
‹i

;
Ò“1(◊) +

5 �̃2
Õ
�̃3 ≠ �̃2�̃3

Õ

(�̃3)2

6<
”H
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‘
⁄

N

5 �̃2“(◊)x0
3

+ �̃3“(◊)x0
2

(�̃3)2

6
”H + ‘

⁄

N
‹i

;
“1(◊) +

5 �̃2
�̃3

6<
”G = 0 (3.11)

Note that to obtain influence measures, we evaluate ‘≠1(◊(H +‘G)≠◊(H)) = 0 and
it is clear that first term in (3.12) disappears. A solution for the influence measures, ◊̇

can be given in the form

‘Q◊̇ = ‘R.
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Here Q is a matrix of dimension fl ◊ fl where fl is the number of parameters in ◊ .
Individual elements of Q are given by

qrs =
⁄

N
‹i

;
Ò“r

1

(◊) +
5 �̃rÕ

2,s�̃
3

≠ �̃r
2

�̃Õ
3,s

(�̃
3

)2

6<
”H

where �̃rÕ
2,s is the rth element of �̃2 di�erentiated with respect to the parameter s

and similarly for �̃Õ
3,s. R is a vector of length fl with elements

Rr = ‹i

;
“r

1

(◊) +
5 �̃r

2

�̃
3

6<
+

⁄

N

5 �̃r
2

“(◊)x0
3

+ �̃
3

“(◊)r,x0
2

(�̃
3

)2

6
”H.

Solving for ◊̇ is obtained via

◊̇ = RQ

≠1.

3.6 Application to ESPAC 3 data

The methodology introduced here is applied to the ESPAC-3 trial. Of particular interest
are the group of patients who had pancreatic ductal adenocarcinomas (PDAC) and for
whom a value CA19.9 was recorded post operatively (n=759). It is considered that
data for this covariate are missing completely at random and no bias is introduced by
considering a complete case analysis. Previously published analyses [32] are followed
‘forcing’ into the model the terms ‘Resection Margin’ (Negative vs. Positive) as a
stratification factor and ‘Treatment Arm’ (5FU vs. Gemcitabine) as the key covariate
of interest. Also identified as important are ‘Lymph Nodes’ (Negative vs. Positive),
‘Tumour Di�erentiation’ (Poor vs. Moderate vs. Well) and ‘Smoking Status’ (Never
vs. Past vs. Present vs. Missing).

The behaviour of post operative CA19.9 is given by a histogram in Figure 3.3 and
is shown to be prone to extreme value observations. This is further illustrated by a
median (inter quartile range) of 24(10, 63) but with a number of observations greater
than 1, 000. Only values up to 2, 000 are displayed, the largest recorded value is 37, 000.

A number of di�ering modelling approaches are considered. As a reference, analysing
post operative CA19.9 directly is considered. Two further models, applying a log trans-
formation and a fractional polynomial approach are also considered. Lastly the new
parameterisation is applied.

Models are assessed directly using the log likelihood estimates and Akaike’s Infor-
mation Criterion (AIC) [86]. For each model, residuals are investigated and compared
using the methods of Grambsh and Thernau [85]. Influence measures are used to assess
the e�ect of each individual observation.

Note that for the new parameterisation, a definition of the key covariate of interest
(CA19.9) is given as zcov and all other covariates as z. Further consider the parameter
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Figure 3.3: Histogram showing the behaviour

estimates associated with z as B. Residual estimation for both Ï and — in light of
other terms is defined as
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The results of the reference model, the log transformed model and the new parame-
terisation are given in Table 3.2. Considering initially the reference model, small values
for both —CA19.9 and its standard error are observed. This is a consequence of the large
extreme values observed. Taking as an example a median value for Post Operative
CA19.9 as 24, a hazard ratio of 1.02 is obtained showing very modest increases in the
baseline hazard. For extreme values of 2, 000, 5, 000 and 37, 000, hazard ratios of 1.17,
1.49 and 18.9 are obtained. A clinician however may find it di�cult to believe that a
patient with Post Operative CA19.9 value of 37, 000 has an instantaneous risk of death
of almost 20 times that of than a similar patient with a zero value.

A log-transformed approach gives an improved model fit as shown by an AIC of
6881.80 (Compared to 6911.94 for the reference model). Considering reference values of
post Operative CA19.9 (24, 2, 000, 15, 000 and 37, 000), hazard ratios of 1.95, 4.93, 7.53
are 9.11 are obtained. Here, extreme hazard ratios are avoided to some extent. Patients
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Factor Level Reference Log transf. New Param.
coef se(coef) coef se(coef) coef se(coef)

Resec. Margin Negative
Positive 0.21 0.09 0.19 0.09 0.18 0.09

Treatment 5FU
Gem. -0.12 0.08 -0.10 0.08 -0.09 0.08

Lymph Nodes Negative
Positive 0.55 0.10 0.48 0.10 0.46 0.10

Tumor Di�.
Poor
Moderate -0.29 0.10 -0.29 0.10 -0.30 0.10
Well -0.64 0.15 -0.62 0.15 -0.63 0.15

Smoke. Status

Never
Past 0.09 0.10 0.08 0.10 0.08 0.10
Present 0.24 0.12 0.26 0.12 0.27 0.12
Missing 0.22 0.18 0.22 0.18 0.17 0.18

Post Op CA19.9 —CA19.9 8 ◊ 10≠5 2 ◊ 10≠5 0.21 0.03 0.01 4 ◊ 10≠4

ÏCA19.9 3.77 0.70
likelihood (AIC) -3446.97 (6911.94) -3431.90 (6881.80) -3420.40 (6860.80)

Table 3.2: Results for models fitted to the ESPAC-3 data with di�erent strategies for
post operative CA19.9

with a median value of Post Operative CA19.9 are almost twice as likely to die at any
given time point as those with a zero value. A nine-fold increase in risk is observed for
the most extreme patient.

The new parameterisation o�ers further improvement over the log-transformed
model with an AIC of 6860.80. The parameter that represents the upper asymptote,
ÏCA19.9 shows that an estimated maximum hazard of 3.77 is obtained. A hazard ratio
of 1.19 is obtained for a median Post Operative of CA19.9 value of 24. All other ref-
erence values gives a hazard ratio of 3.77 obtained from the upper asymptote. From
a clinical perspective, this is the most attractive model with modest small increases in
the Post Operative CA19.9 resulting in modest increases in the hazard ratio and larger
values curtailed to ensure that unrealistic hazard ratios are not obtained.

Results for the model fitted using a fractional polynomial approach are included
in Table 3.3. Judging the model based on AIC alone, this gives the best fit (AIC
= 6847.35). The transformations chosen by the fractional polynomial approach are
100/(x + 1) and log(x + 1)/100. These might not be immediately obvious to clinicians
and the factor of 100 in each may suggest that changing the units with which Post
Operative CA19.9 is measured may improve modelling. Continuing to use the refer-
ence points of 24, 2, 000, 5, 000 and 15, 000 hazard ratios of 1.73, 3.61, 4.50 and 5.90 are
obtained.

An illustration of the fitted relationship for the e�ect of Post Operative CA19.9 from
each model is given on the log scale in Figure 3.4. The standard and log transformed
models both show a linear increase. It is shown that the e�ect of the log transformation
is to alter the rate of increase. Considering the new parameterisation, the ‘growth’ for
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Factor Level coef se(coef)

Resec. Margin Negative
Positive 0.20 0.09

Treatment 5FU
Gem. -0.11 0.08

Lymph Nodes Negative
Positive 0.46 0.10

Tumor Di�.
Poor
Moderate -0.27 0.10
Well -0.69 0.15

Smoke. Status

Never
Past 0.07 0.10
Present 0.27 0.12
Missing 0.21 0.18

Post Op CA19.9 100/(CA19.9 + 1) 0.02 4 ◊ 10≠3

log((CA19.9 + 1)/100) 0.32 0.03
likelihood (AIC) -3411.86 (6847.35)

Table 3.3: Results of models fit to the ESPAC-3 data using a fractional polynomial
approach to model post operative CA19.9

the function occurs at a Post Operative CA19.9 value of exp(4) ¥ 50 with an upper
asymptote at around exp(6) ¥ 400.

Whilst the fractional polynomial model provides the best fit to the data, Figure
3.4 shows no value of Post Operative CA19.9 will have zero e�ect on the baseline haz-
ard function within the observed range of data. This can make clinical interpretations
troublesome. Furthermore, confounding between post operative CA19.9 ant other co-
variates may occur as a baseline hazard function is amended to account for this. This
can be seen somewhat in the analysis of the ESPAC-3 dataset with some amendments
in the point estimates, especially for the Tumour Di�erentiation covariates.

It is worth noting at this point that there are small adjustments in parameters
estimates for covariates other than post operative CA19.9. Whilst any shift is generally
small, it is still shown that bias can enter into a model if continuous terms with extreme
value observations are not modelled correctly.

3.6.1 Model diagnostics

In this section, the four models fitted are considered in terms of their model diagnostics.
Initially, models are considered in terms of their residuals, following this, influence
measures are compared.

Residual measures are obtained for the — coe�cient only for the standard (reference)
and log transformed models. For the fractional polynomial model, two sets of residu-
als are obtained, one for each transformation applied. For the new parameterisation,
residuals are provided for each parameter, Ï and —.
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Figure 3.4: Figure showing the e�ect that various parameterisations have on the base-
line hazard function

All residuals are plotted against time. Due to the di�ering relationships that are
observed, direct evaluations against time, such as plotting regression models and as-
sessing the slope parameter to assess proportionality (as proposed by Grambsch and
Therneau [85]) are not provided and all assessments are visual. Further justification for
this is also given by the lack of standard relationship that would meet the assumptions
of simple linear regression, most notably that of all observations being drawn from iden-
tically drawn distributions which is shown by an apparent mean-variance relationship
between the residuals and time for log transformed components.

Considering initially the reference model, there are some obvious extreme, positive
outliers. These all occur before 40 months and distort the figure to make further
evaluations di�cult. There is also evidence of variability in the residuals that reduces
in time. Considering the log transformed residuals, it is observed that the extreme
outliers have been accounted for. However, there is still a relationship which shows
that variability in the residuals decreases with time.

Residuals from the fractional polynomial models are considered for each transfor-
mation individually. For the transformation given by ((z + 1)/100)≠1 there are again
some outliers, though none as extreme as for the reference model. For the transforma-
tion given by log((z + 1)/100), a similar relationship to the log transformed model is
observed whereby outliers appear to have been accounted for although the relationship
between the residuals and time still persists.

For the new parameterisation, both Ï and — are considered collectively. Here, the
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residuals show the e�ect of the upper asymptote as there are upper and lower bounds
that appear on both plots. These plots show that this is the functional form that is
most successful in controlling the relationship between time and residual variability,
especially for the residuals associated with —. The e�ect of the residuals for Ï is less
pronounced - however it should be noted here that Ï is the term associated with the
upper asymptote and that small values of Post Operative CA19.9 will have little e�ect
upon the estimation of this parameter.

Figure 3.5: Residual measures for models fit to the ESPAC-3 dataset

Turning attention to the influence measures, these are obtained for both censored
and uncensored observations. In the Figure 3.6 presented, crosses mark the observed
events and circles the censored times. Here the scale range on the y-axis is not pro-
vided as it is the relative di�erence between influence measures that are of interest.
The scale of the y-axis di�ers between parameters due to the parameter estimate and
comparing between models is of little use. Influence measures are plotted against Post
Operative CA19.9, on the log scale, to observe any functional relationships. Initially
considering the reference model, there is no obvious relationship with Post Operative
CA19.9 with no observation having particularly large e�ects on the parameter estima-
tion. Considering the log-transformed model, it is observed that there is some central
point of Post Operative CA19.9 just short of 4. Either side of this point, there is a
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general divergence with both small and large values of Post Operative CA199 having
relatively large e�ects upon parameter estimation.

For the fractional polynomial model, the influence measures associated with the
((z + 1)/100)≠1 term show that very small values of Post Operative CA19.9 can have
a disproportionally large influence upon parameter estimation. There are also some
large positive influence measures associated with Post Operative CA19.9 values greater
than 6. For the term given by log((z + 1)/100), there is a similar relationship to the
standard log transformed model although here the divergence from some central point
is less pronounced. Large values of Post Operative CA19.9 are again associated with
typically large, positive influence measures.

Considering the new parameterisation, there is neither the divergence away from
some central point, nor any large influence measures associated with small values of Post
Operative CA19.9. The Ï parameter is associated with some large positive influence
measures. This is to be expected as this is the parameter associated with setting
the upper asymptote. This parameter is driven by the amount of ‘large’ data that
are observed and any single one can have a relatively large e�ect on the parameter
estimate. It should be noted here that this parameter is e�ectively bounded below
by zero and there is a limit on the negative e�ect any observation can have on the
parameter estimation therefore making large positive influence values more pronounced.
Considering —, upon first inspection, aside from two large influence measures there is
a fairly flat relationship between Post Operative CA19.9 and the influence measures,
even at large values. Upon closer inspection, there is some change in the relationship
between log Post Operative CA19.9 values of 4 and 6, and again between 6 and 8. This
change, although small, can be seen to correspond to the points in the function that
are chiefly concerned with the growth of the functional relationship and immediately
afterwards as shown by Figure 3.4.

3.7 Discussion

In this chapter, some attention has been given to the functional form by which covariates
enter a survival model. It has been shown that the linear relationship typically given
by exp(—z) may not always be appropriate. Typical strategies to account for this
depend upon finding some satisfactory transformation of z to obtain either a model
that satisfies all diagnostic assessments or provide an optimal fit of the data to the
model.

It has been shown that this approach can firstly give misleading results and secondly,
results in models that are di�cult to interpret in a meaningful fashion. It has also been
shown that failure to correctly model covariates can introduce some level of bias through
confounding into the estimation of other parameters within a model.

As an example, data are taken from the ESPAC-3 trial to investigate the e�ect
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Figure 3.6: Influence measures for models fit to the ESPAC-3 dataset, observed events
are represented by a cross, censored events by a circle.

that Post Operative CA19.9 has upon the survival of patients undergoing resection
for pancreatic ductal adenocarcinomas. Strategies investigated included a standard
‘reference’ approach, using a basic log transformation and using more complete set
of transformations as given by a fractional polynomial model. Compared to these
approaches was a new parameterisation which was developed based on providing a
functional form that would be in-keeping with clinical thinking based on the e�ect that
Post Operative CA19.9 has with patient survival.

The results show that, as may be expected, the worst model in terms of model AIC
was the reference model. Interestingly however, aside from a few outliers within the
residual plots, this form performed reasonably well in terms of the model diagnostics.

The best performing model was the model that was obtained using fractional poly-
nomial techniques. Whilst this may have the best AIC however, there are issues with
this model as no value of Post Operative CA19.9 will have a zero e�ect upon the baseline
hazard function. Furthermore, as the covariate enters the model through two di�er-
ent transformations, direct interpretations are di�cult without the aid of graphical
representations. Neither a standard log transformation nor the fractional polynomial
approach solve all of the issues with regard to model diagnostics either.
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The new parameterisation performs better than the standard log transformed model,
although not as well as the fractional polynomial model in terms of model AIC. Whilst
the new parameterisation may not perform as well in terms of model fit, it is more
acceptable from a clinical perspective.

For the analysis of the ESPAC-3 data, a maximum hazard ratio of 3.77 is obtained
for the new formulation which is not achievable with any other linear predictor. Based
on this new formulation, clinicians can state that any patient who presents with a
large Post Operative CA19.9 will have a 4 fold increase on the baseline hazard function
relative to a similar patient with a low value. Under other formulations a similar
patient may be given an unrealistically poor prognosis due to the limitations of the
model assumed. This is still the case even under a fractional polynomial approach.

Another benefit over the fractional polynomial approach is that by assuming some
known functional form (as we do with the standard notation as well as the new parame-
terisation), extrapolation beyond the observed range of the data is possible. Predictions
under the fractional polynomial approach, more so than other approaches, depend on
the location of the data on which the model are fit and model performance in the
extremities can often be compromised to provide the best fit of the model. This is
unfortunate as it is often the patients who lie in the extremities upon who clinicians
may find it more di�cult to provide a prognosis for. By assuming that the functional
form has an upper asymptote it can also be stated that if a patient presents with a
covariate value larger than anything that has yet been observed, the e�ect will still be
a 3.77 fold increase in the baseline hazard function relative to a similar patient.

Another advantage of the new parameterisation is that the parameter that controls
the growth rate of the function, —, can be estimated without any undue influence from
‘large’ covariate values. This is illustrated by the residual plots with the plots given by
— for the new parameterisation giving the most satisfactory results in terms of model
residuals and influence measures.

Drawbacks of this approach are, like the standard form, a functional form is as-
sumed which may be wrong. Furthermore, the estimation of the upper asymptote is
dependent on the number of ‘large’ covariate values that are observed and estimation
may become unreliable for covariates that do not have a large number of outliers or in
small datasets as was demonstrated in the simulation study. It should also be noted
that the use of a more complex functional form may depend on the form of the co-
variate. Whilst in general, the model was developed for biological covariates which
have the natural bounds [0, Œ), interpretation of model parameters may be altered to
transformed covariates which are subject to some shift in location and some care should
be taken.

Whilst there was generally little di�culty in using standard partial likelihood ap-
proaches in estimating model parameters, model residuals could not be obtained in the
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standard fashion due to the non standard functional form. Analytical forms for the
residuals, based on the methodology behind Schoenfeld residuals are produced along
with an analytical form for the influence measures based on the methodology of Reid
and Crepeau.

In the following chapter, some investigation of the assumptions inherent to survival
models are carried out, with particular reference to the assumption of proportionality
which dominate current statistical practice.
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Chapter 4

Use of an Asymmetry Parameter
in the Analysis of Survival data

4.1 Introduction

In this chapter, some exploration of the analysis of time-to-event data is carried out
where the assumption of proportional hazards is not met. A review of current available
methods is explored and applied to a historical gastric cancer dataset. An overview of
an alternative method to the Kaplan Meier plot for visualising survival data, the PP
plot, is given and its uses for assessing model fit investigated. Lastly a new method
allowing for direct modelling without proportional hazards is proposed.

4.2 Non-proportional hazards

By far the most popular method of modelling the association between a set of covari-
ates and a time-to-event outcome is via the proportional hazards model. Despite its
popularity however, the suitability of this approach is dependent upon the assumption
of proportionality. Indeed, the hazard ratio to which many have become familiar is
only a valid measure under this assumption. Moreover, non-proportional hazards do
occur in practice, a notable example being Mok et al.[87]. In light of this, much work
has been carried out both in assessing the proportionality assumption and in analysing
data in which this assumption is violated.

The reasons for the occurrence of non proportional hazards can be wide and varying.
For example, considering a simple two arm trial, non proportional hazards can occur
if the e�ect of a single treatment is seen to decay over time at a greater rate than
another treatment. Conversely a new treatment may be associated with severe early
toxicities, but with the survival outcome of these patients improving following the
initial dangerous phase. Both of these situation are examples of time-dependencies in
the modelling of patient performance and result in notable biases if modelled assuming
proportional hazards as noted by Schemper [88]. In other situations, inclusion of time
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dependencies may not be appropriate and alternate methods such as the inclusion of
‘cure fractions’ or modelling on an odds scale may be attempted.

In this Sections that follow, a brief review is provided on some of the methods that
have been applied to assessing the assumption of proportional hazards. Following this,
there is some exploration of various methods that are applied to modelling survival
data in this context. Lastly, a case study of a gastric cancer dataset in which non-
proportional hazards are observed is used to illustrate the suitability of some of the
di�erent methods proposed.

4.2.1 Assessing proportionality

The first step in assessing proportionality typically occurs via visual inspection. In
many cases, such as with crossing survival curves, Kaplan Meier estimates will quickly
identify where non-proportional hazards exist. Other scenarios are less obvious. Of
further use may be the ‘log negative log’ plot. Formally, take the survival function
estimated by the method of Kaplan and Meier as S(t), the transformed quantities Sl(t)
are obtained such that

Sl(t) = log[≠ log{S(t)}].

Under the assumption of proportional hazards, plotting Sl(t) against the log of time
across di�erent treatment groups should produce plots of parallel lines. Any departure
from this can be taken as evidence against proportional hazards although there is a
lack of any formal test to assess this. A further approach is that taken by Arjas [89]
where the cumulative number of events for di�erent levels of a covariate are plotted
against cumulative hazard estimates. Under proportional hazards, di�erent levels of a
categorical variable should show a similar relationship to one another, any divergence
is then evidence of non-proportionality.

Expanding on visual assessments, a number of more formal approaches for testing
the assumption of proportionality have been developed. An empirical comparison is
provided by Ng’andu [90] and much of the rational for testing proportionality is based
on assessing the relationship of a model against time. The remainder of Section 4.2.1
shall be concerned with providing a brief overview of a number of approaches available.

Linear correlation test

A test proposed by Harrell [91] is obtained from Fisher’s z (not to be confused with the
notation for patient covariates) transformation of Pearson’s correlation between rank
time and model residuals as obtained by Schoenfeld’s method. Given the observed
correlation, fl̂, a formal test statistic, z, is obtained as

z = fl̂
Ò

(nµ ≠ 2)/(1 ≠ fl2),
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where nµ is the number of uncensored observations. Comparing z against a standard
normal distribution tests the null hypothesis that fl = 0. A significant p-value gives
evidence for a model fit which is not time independent and therefore not proportional.

Weighted residuals test

This is the test as proposed by Grambsch and Therneau [85]. Briefly, under a model
where the coe�cients are allowed to vary with time, that is —(t) = — +“g(t), it is shown
that the expected value of the Schoenfeld residuals for the kth death time, where — is
assumed to be known can be expressed as

E[rk(—)] ¥ V (—, tk)G(tk)“.

Here V (—, tk) is the variance of — at the kth death time and G(tk) is a diagonal
matrix with elements, g(tk) which are some functions of time. Grambsch and Therneau
show that a test for —(t) = — (or “ = 0) is equivalent to a generalised least squares test
on the Schoenfeld residuals.

Score process test

A test based on the score process was proposed by Therneau et al. [92] and is based on
martingale residuals. Here, under the counting process notation, martingale residuals
denoted M̂i(t) and defined in Section 2.3.4, can be interpreted as the di�erence between
the observed number of events and the expected number of events at time t. A test
for non proportionality for each of J covariates can be obtained by summing over each
patient’s score process at time t. A test is derived from supt

q
i Lij(—̂, t) where

Lij(—̂, t) =
⁄ t

0

{Xih(s) ≠ X̄j(b, s)}dM̂i(s),

with ‘large’ value providing evidence against proportional hazards.

Omnibus test

The most popular omnibus test is that provided by Moreau [93] and Quigley [94]. The
method explicitly allows for interaction between time and covariates. Specifically, the
time domain is partitioned into k disjoint intervals and the predictor is specified by

exp{(— + “k)z}.

A model is proposed here whereby the hazard ratio for a covariate is only piecewise
constant. Moreau proposed a test for assessing H

0

: “
1

= “
2

= ... = “k = 0. Similar
tests can be obtained by assuming models such as Freidman’s Piecewise Exponential
Model [38], or a flexible parametric approach [73] and allowing for the interaction
between the covariates and the partitions in the time domain.
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Time dependent covariate test

The inclusion of a time dependent covariate to check the PH assumption was proposed
in the original paper by Cox [37]. Considering a single two level covariate, the predictor
of a model is defined as

exp{—z + “zg(t)},

where g(t) is some function of time. Commonly g(t) = t and g(t) = log(t) are used.
If it is assumed true that “ = 0, a test for “ = 0 can be obtained from a likelihood
ratio test statistic using ≠2 ln{L(—̂, 0)/L(—̂, “̂)} ≥ ‰2

�p where �p is the change in the
degrees of freedom between the null model and the time dependent model.

4.2.2 Modelling non-proportional hazards

This section explores various methods of assessing the e�ects of a covariate on a time-
to-event response when proportionality can not be assumed.

Time dependent covariates

As introduced by Cox [37] and defined in Section 4.2.1, this method of modelling
explicitly allows for the e�ect of a covariate to vary with some function of time g(t).
This method is particularly useful in comparing two treatments from a randomised trial
where the e�ect of a treatment may decay with time. However, if the nature of the
covariate has no obvious relationship with time, or the relationship is not adequately
explained by some linear function, then this approach may be insu�cient. Furthermore,
the model itself is dependent on the user deciding the function of time to be used.

Historically, Stablein et al. [95] consider both t and t2 as functions of time to model
the treatment e�ect in the gastric carcinoma dataset. The process of model estimation
is also associated with some di�culties, as noted by Fisher and Lin [96]. Zucker and
Karr [97] consider a non-parametric approach, using a penalised likelihood to fit a
model with time varying covariates.

Further attempts have been made to model in a time-dependent fashion [95, 98]
which have been applied to modelling cancer data [99, 100]. Lustbader [101] show that
the Wilcoxon test can be obtained from the Cox model with time dependent covariates
under certain conditions.

Time dependent coe�cients

Time dependent coe�cients have a linear predictor ⁄(t) = f{—(t), z} which is not to
be confused with time dependent covariates where ⁄(t) = f{—, z(t)}. Examples of
this may be a biological variable in a clinical trial which changes with time and whose
influence may be important in describing a patient’s response to treatment. Treating
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such a variable as fixed throughout time can lead to misleading results and the violation
of the proportional hazards assumption.

Models such as these have been considered by Murphey [102] as well as Cai and
Sun [103] who consider local linear procedures for estimating parameters. In both
cases, time dependent covariates are included directly through inclusion of observed
z(t). Alternatively, z(t) may itself be expressed as a function of time, for example a
drug whose concentration may decay over time may have z(t) = exp(≠zt). Models
with some time relationship may be sensitive to the assumed dependency on time.

As an alternative to this, Giorgi et al. [104] investigate a relative survival model
using B-splines to model both baseline mortality rates and the relationship between
coe�cient estimates and time. More popular recently is the method of joint modelling
of survival data with longitudinal data first introduced by Henderson et al. [105]. Here
a time dependent covariate is modelled longitudinally and the smoothed relationship
with time is allowed to a�ect a survival model. A further overview of this method is
given by [106] whilst Tseng et al. [107] apply the methodology to accelerated failure
time models. Chi and Ibrahim [108] bring together joint modelling and cure fraction
modelling. An advantage of the joint modelling procedure over more standard methods
is that they allow for errors in measurement and a smoothed estimate of the e�ect of
a covariate with time to be incorporated into a survival model.

Piecewise models

A method which may be seen as an extension of Moreau’s Omnibus test [93] is the use
of piecewise models, the most popular being the Piecewise Exponential Model (PEM)
proposed by Friedman [38]. Here, non-proportional hazards can be accounted for by
allowing for the interaction between the covariate estimates and the time-grid used to
partition the time domain. Whilst these methods can be extremely useful in explaining
the nature of any relationship with time, they can be costly to fit in the number of
parameters that are required and are themselves dependent upon the points at which
the time domain is partitioned.

Flexible parametric models given by [73] can be considered in a similar fashion to
piecewise models. Here a spline function with knots Ÿ is fitted to the cumulative hazard
function. Parameter estimates — can be interacted with the spline function in the same
fashion as they can with the PEM.

Accelerated failure time models

An alternative to proportional hazards modelling is the accelerated failure time ap-
proach. For full description see Kalbfleisch and Prentice [109]. Here, under parametric
forms of the proportional hazards model, define

S—(t, z) = [S
0

{g(t, Ÿ)}]exp(—z)
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where g(t, Ÿ) is some parametric family set to describe the behaviour of a baseline
survival (or hazard) function. Under an accelerated failure time model,

S—(t, z) = [S
0

{g(t, Ÿ, exp(—z))}]

is obtained. Here the predictor acts directly in a multiplicative fashion on time (or in
an additive fashion on the log of time). Specifically

log(ti) = ≠zi— + log(‹i)

where log(‹i) is the error term that is set from some parametric distribution. Note
here that ‹i is not to be confused with the notation in Chapter 2. Typically, unlike PH
models, AFT models are predominantly dependent upon some distributional assump-
tion. AFT models however do have the advantage that they do not depend upon the
assumption of proportional hazards.

Restricted mean survival

A method proposed by Royston and Parmar [110] is that of restricted mean survival
(RMST). The RMST is calculated up to time point tú, denoted by µ(tú), and is evalu-
ated as the area under the survival curve to time tú

µ(tú) =
⁄ tú

0

S(u)du.

Royston and Parmar show that estimates can either be taken directly from the Ka-
plan Meier estimates, using a pseudo value approach to obtain standard errors or using
a parametric modelling approach. The di�erence in mean survival times µ

2

(tú)≠µ
1

(tú)
can be used to assess di�erences between treatment groups irrespective of the form
of the relationship. In this way direct comparison between groups can be calculated
when non-PH are observed. Formal tests based on the di�erence are only shown to be
powerful under the PH assumption.

Averaged hazard ratios

Averaged hazard ratios were proposed by Schemper [88] and later by Xu and O’quigley
[111]. Here the score function for Cox’s partial likelihood is supplemented by a weight
function, fr(t), such that

U =
Nÿ

i=1

fr(t)
5
z ≠

q
R z exp{—z}

q
R exp{—z}

6
.

Options for the weight function suggested are the number of patients at risk or
the scaled Kaplan Meier estimates. Schemper suggests use of the scaled Kaplan Meier
estimates but does not state whether these should be stratified by treatment arm. It
is shown that this approach can help produce hazard ratios which are less susceptible
to the systematic bias introduced from a non-proportional relationship.
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Cure fraction

The analysis of survival data where a proportion of the population under inspection are
cured in the sense that their survival profile converges to that of the overall population
can be a cause of non proportionality. This is because under proportional hazards, sur-
vival functions only converge theoretically at values of zero and one. Take for example,
the mixture cure model as explored by Lambert [112], the survival function is redefined
as

S(t) = ÷ + (1 ≠ ÷)S(u)

where ÷ is the cure fraction to be estimated. They have been further applied to a
general class of semi-transformational survival models by Yin and Ibrahim [113].

Proportional odds

Proportional odds models [114, 115] have gained some interest as they assume a di�er-
ent underlying relationship between a covariate and a time-to-event outcome. These
have been explored further by Chen et al. [116], looking at the inclusion of external
time-varying covariates. Murphy [117] considered a maximum likelihood estimator.
These models were made more accessible by Cheng et al [64] who describe a semi-
parametric transformational model based on either the logarithmic or Box Cox family
of transformations. Both the proportional hazards and the proportional odds models
are special cases of this model.

Outlying covariates

As has been detailed in Chapter 3, a single outlying covariate value can be enough for
a non-proportional hazard relationship to be observed. Here, a usual approach is to
transform the covariate or to apply some functional form to explain the relationship a
covariate has with the baseline hazard function.

Additive models

Some use of additive models as described by Aalen [118] has been explored as this model
does not rely on a proportional hazards assumption [119]. Here a covariate structure
acts on a baseline hazard function in an additive fashion as opposed to a relative scale
as for proportional hazards models such that

h(t|z) = h
0

+ —T x.

Details for fitting a semi-parametric additive model have been provided by [120].
This approach has been explored with applications to breast cancer [121] and gastric
cancer [122] datasets.
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Figure 4.1: Figure to illustrate the process of obtaining a PP-plot from Kaplan Meier
survival estimates

4.3 The PP-plot

PP-plots have been used and developed by Cox [123] as a method of visualising and
measuring the relationship between two survival distributions. It is given special atten-
tion here as they are a recently developed approach that will be used throughout this
chapter. Whilst originally used to test for di�erences between survival distributions,
here that are used only to visualise survival data as a time independent alternative to
the Kaplan Meier plot.

The PP-plot o�ers an alternative to the widely used Kaplan Meier plot. Whereas
the Kaplan Meier plots shows survival estimates against time, the PP-plot plots the
estimated survival of two (or more) survival functions against one another. Where more
than one survival function is visualised, one survival function is chosen as a reference
level against which other survival functions are measured.

Figure 4.1 gives an illustration of the formation of the PP plot. Here the Kaplan
Meier estimates from both arms of the gastric cancer dataset are displayed along with
the formation of the PP plot as it develops over time.

Importantly, the form of the PP-plot allows comparison between two groups of
patients which are independent of time. As an example here, comparing survival esti-
mates against log(t) would change the visual inspection of the Kaplan Meier plot but
not the PP- plot. This gives the PP-plot an advantage over the Kaplan Meier plot
in many situations as the Kaplan Meier estiates may be prone to large shifts at time
points where data are sparse, a point which is further noted by Schemper [88].

A further advantage of the PP-plot is that it facilitates the visualising of fitted
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models without the need to specify some fitted baseline hazard (or survival) function.
For example, visualising the fit of a Cox model would require that first some non-
parametric baseline survival estimates are obtained. This may be achieved by ensuring
any covariates are coded within the design matrix as (-0.5, 0.5) for each factor level
as opposed to (0,1). A pooled Kaplan Meier estimate over all covariates can provide a
baseline survival function with which to adjust. Nevertheless Kaplan Meier plots can
quickly become ‘busy’.

For a PP-plot, under the proportional hazards model,

S
1

(t) = S
0

(t)◊ (4.1)

where ◊ is a hazard ratio and Sk(t), k = 0, 1 are survival functions. The relationship
between two survival function can then be directly plotted without the need for a
baseline survival function. Furthermore as two survival functions that obey the PH
assumptions must satisfy equation 4.1. the PP plot can be used to assess PH visually.

In the development of the PP-plot, Cox utilised the fact that the plot area is unity
and that two equivalent survival curves will follow the diagonal from (1, 1) to (0, 0).
Two tests are then developed based upon the area between the curve and the diagonal
and the arc length of a fitted curve. Cox goes on to show that these tests retain good
levels of power irrespective of PH assumptions.

Throughout the remainder of this chapter, PP-plots shall be used, predominantly
as a tool for illustrating model fit under di�ering assumptions.

4.4 Case study - gastric cancer dataset

The data used in this section are from the gastric cancer dataset [36]. Initially, pro-
portional hazards are assessed visually and via the time dependent covariate test, the
weighted residual score test and the linear correlation test following the recommenda-
tions of Ng’andu [90]. Following this, modelling of the data are carried out using a time
dependent covariate and piecewise and restricted mean survival approaches.

4.4.1 Assessing non proportional hazards

A Kaplan Meier plots is shown in Figure 4.2 (repeated from Figure 4.1) and shows clear
crossing of the survival curves. The log negative log plot is also included, from which
it is clear that the proportional hazard assumption is not met since the two curves are
not parallel.

Of the three formal testing approaches taken, both the weighted residual and linear
correlation depend upon the calculation of the Schoenfeld [83] residuals, {ri}, informa-
tion for which is given in Chapter 3. Figure 4.3 shows the residuals plotted against
time along with a fitted spline function to give some indication of the correlation the
time.
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Figure 4.2: Survival estimates illustrated by means of a Kaplan Meier and log negative
log plots
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dataset
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Both the weighted residuals and the linear correlation approaches depend upon the
correlation fl between time (in its absolute and rank form respectively) and the residuals.
These correlations are given in Table 4.1 along with tests for their significance based
on the appropriate test statistic. Note that the test statistic for the linear correlation
test is usually presented on the standard normal scale; here the test statistic is squared
to be presented on the ‰2 scale to remain consistent.

Also shown in Table 4.1 are the results for fitting a standard Cox model with a
time-dependent covariate. Here the test is based on twice the di�erence in the model
deviance between the models with and without the time-dependent covariates. All
three methods show high levels of significance as is to be expected given the visual
inspections.

Test fl ‰2 p
Weighted Resid. -0.35 10.29 <0.001

Linear Correlation -0.40 15.51* <0.001
Time dep cov. 9.20 <0.001

Table 4.1: Table to show the results of testing the PH assumptions via the weighted
residuals, linear correlation and time dependent covariates method. *linear correlation
test statistic is expressed as a Chi-square test statistic to remain consistent.

4.4.2 Modelling non proportional hazards

Given that non-proportional hazards have been established, some consideration is given
to the modelling techniques for non PH models. Specifically, the time-dependent covari-
ate, restricted mean survival and piecewise models are considered. Where appropriate
model fit is illustrated using the PP-plot. Some discussion on the model results are
presented.

Time dependent covariate

The time dependent covariate method is used in Section 4.1.1 in order to test the PH
assumption. Under the basis of time dependent covariates, the e�ect of the treatment
is assumed to change constantly with time. Some functional form of time is required
and here it is assumed that the treatment e�ect changes in a linear fashion with the
natural logarithm of time although other functions of time may be considered.

Table 4.2 details the model fit. Initially, the standard model with no time-dependent
covariate is fitted. Here a hazard ratio (95% confidence interval) of 1.11 (0.73, 1.72)
shows no significant di�erence. A test of the PH assumption in Section 4.1.1 shows the
time-dependent model to be an improvement over the standard model. The results in
Table 4.2 show that both coe�cients are now statistically significant at the 0.05 level.

Interpretation of the time-dependent model however cannot be made independent
of time. Here for example, the hazard ratio at 30 days is given by exp(4.15 ≠ 0.69 ◊
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coef exp(coef) se(coef) z Pr(>|z|)
Arm 0.11 1.11 0.22 0.48 0.63
Arm 4.15 63.64 1.51 2.76 0.01

Arm ◊ log (time) -0.69 0.50 0.25 -2.75 0.01

Table 4.2: Results of a standard and time dependent proportional hazard model fitted
to the gastric cancer dataset.
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Figure 4.4: Figure to illustrate the fit of a time dependent covariate model using a
Kaplan Meier and PP-plot.

log(30)) = 6.05. At 30 days therefore, the hazard of an event is roughly six times
that for chemotherapy group as it is for the chemotherapy and radiotherapy group.
At 365 days, a hazard ratio of 1.08 is obtained. Whilst still a greater hazard in the
chemotherapy group, the e�ect is greatly reduced. By 500 days a hazard ratio of 0.87
is obtained showing that at this point, there is a greater hazard on the Chemotherapy
plus Radiotherapy arm.

Figure 4.4 gives an illustration of the model fit both on the Kaplan Meier plot and
through the PP-plot. Visual inspection of both graphs show that incorporation of a
time-dependent e�ect gives a reasonable fit to the data.

Piecewise model

A second modelling approach is to fit a piecewise model. The example given here is
the Piecewise Exponential Model (PEM), full details of which can be found in Chapter
2. Similar approaches can be taken by assuming the flexible parametric approach of
Royston and Parmar [73].

Under a standard PEM model, the baseline hazard function would be estimated
to be piecewise constant hazard rate but with a single hazard ratio estimated across

60



all partitions. The alternative under non-PH is to allow separate hazard ratios to be
estimated in each partition.

The results of both the standard model and the non-PH model are included in Table
4.3. Here, the time-grid is partitioned arbitrarily at a = (0, 182, 365, 730, 1460, 3044)
where time is measured in days. There is some clear increase in the hazard ratio over
time however the decrease from 1.26 to 1.14 in the last two partitions may be taken as
some evidence that the monotonic relationship assumed when fitting a time-dependent
covariate model is not valid.

Prop. Hazards Non Prop. Hazards
Parameter Estimate Std. Error Estimate Std. Error

⁄
1

-6.70 0.25 -6.20 0.27
⁄

2

-6.34 0.24 -5.93 0.30
⁄

3

-6.28 0.22 -6.38 0.33
⁄

4

-6.96 0.30 -7.71 0.58
⁄

5

-7.88 0.47 -8.34 0.71
—

1

0.10 0.22 -1.15 0.52
—

2

-0.69 0.45
—

3

0.23 0.42
—

4

1.26 0.66
—

5

1.14 0.91

Table 4.3: Table to show results from a PEM for proportional and non proportional
hazards.

Interpretation is aided by plots of the hazard ratio over time and a PP-plot given
in Figure 4.5. Here plots of the hazard ratio show clearly the increase of the hazard
through time. Confidence intervals of the time dependent hazard ratios are illustrated
by the shaded areas. These increase due to the smaller amount of information (i.e.
events) available in the later time partitions. The standard model is also represented
as a horizontal line for comparison.

The PP-plot also shows a good fit of the model to the data. The step-wise nature
of the model is also clearly visible.

The PP-plot also illustrates how the nature of the hazard function is dependent on
how the time-grid is defined. In some situations, definitions of the time-grid may be
guided by knowledge of the treatments involved. Usually however, the decision will
either be pragmatic or data-driven. Lastly, it should be noted that the piecewise model
is a relatively computer intensive approach, with ten parameters needed to be estimated
compared to just two with a time-dependent approach.

Restricted mean survival

Here the restricted mean survival times (RMSTs) are applied using a flexible parametric
modelling approach. Here flexible parametric models are fit to each treatment arm
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Figure 4.5: Figure to illustrate the fit go the piecewise exponential model

separately. Given a parametric form for the hazard function, estimated RMST can be
directly obtained as the area under the each survival curve. Standard errors for each
estimate are robustly estimated using a bootstrap approach. Analyses are carried out
using the ‘postestimation’ command in Stata version 12.

The definition of the RMST as the area under the survival curve between times 0
and the ‘maximum time’ tú means that estimates are somewhat dependent upon the
definition of tú. Here, four values, tú = 1500, 2000, 2500 and 3000 are used.

Analyses are carried out fitting spline functions for each treatment arm with five
degrees of freedom. This can be thought of as similar to the piecewise approach with
five partitions in the time-grid. Results are given in Table 4.4 in the form of RMSTs
with associated standard errors and 95% confidence intervals. Also presented are the
di�erence in RMST between treatment arms. The results show that for all definitions
of tú the RMST is larger in the chemoradiotherapy arm. For tú = 3000 however the
di�erence has become almost negligible. The largest di�erence is observed for a value of
tú = 1500. As tú increases, the standard errors of the RMST estimates increase and the
di�erence between treatments decrease. For none of the estimates is there significant
evidence that the two survival profiles are di�erent from one another.

Overall, from using RMST estimates, there is no conclusive evidence of a di�erence
in the two treatment arms. It is clearly highlighted however that interpretations are
somewhat dependent on tú. In the context of a randomised clinical trial, tú may be
defined a-priori to fit in with a design feature of the trial. It is a shortcoming of this
procedure however that model interpretations may be directly dependent on this user
set parameter.
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tú Treatment Arm Restricted Mean Survival Di�. between means
est (se) 95% CI est (se) 95% CI

1500 Chemo. 517.7 (76.1) (368.5, 666.8)
Chemoradio. 630.4 (64.5) (503.6, 756.4) 112.8 (99.7) (-82.7, 308.3)

2000 Chemo. 593.4 (99.4) (398.5, 788.2)
Chemoradio. 677.18 (80.46) (519.5, 834.88) 83.81 (127.89) (-166.9, 334.5)

2500 Chemo. 662.6 (121.9) (423.7, 901.5)
Chemoradio. 708.2 (91.2) (529.4, 887.0) 45.56 (152.3) (-252.9, 344.0)

3000 Chemo. 727.34 (144.58) (444.0, 1010.7)
Chemoradio. 729.6 (103.7) (526.3, 932.9) 2.3 (178.0) (-346.5, 351.1)

Table 4.4: Estimates of restricted mean survival times for each arm and their di�erence
for various ’maximum time’ points tú

4.4.3 Discussion

Three approaches were explored for the modelling of a gastric cancer dataset with non-
proportional hazards, the time dependent covariate approach, a piecewise approach and
an approach based on restricted mean survival times. Whilst there are few di�culties in
applying each method, model interpretations can vary and addressing the key question
of interest, is one treatment better than another, is fraught with di�culty.

Both the time dependent covariate and piecewise approaches provide reasonable fits
to the data but also have their shortcomings. For the time dependent covariate approach
the user must specify the nature of the relationship with time. Here —(t) = —

0

+
—

1

log(t) is used. This assumes some linear relationship with the natural log of time, an
assumption which may not be valid in light of the results from fitting a piecewise model.
The piecewise approach is itself dependent on the setting of a reasonable time-grid and
is more expensive to fit due to the potentially large number of parameters required.
Nevertheless, both approaches demonstrate that firstly there is good evidence that the
two treatment arm have responses that are not taken from the same distributions.
Secondly, it is shown that initially the hazard for an event is significantly greater for
the Chemotherapy compared to the Chemotherapy plus Radiotherapy arm.

Analysis using RMST attempts to directly answer the question of which treatment
arm should be preferred. Whilst from a clinical perspective this may be the most useful
as it is attempting to identify the group with the best overall survival, it is flawed by
the dependence on the setting of tú. Furthermore, under crossing hazards like the ones
seen here, comparing the two groups with only a single parameter may be viewed as
oversimplifying the problem.
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4.5 Modelling non-proportionality via an asymmetry pa-
rameter

In this section, a new approach to the analysis of survival data with non-proportional
hazards is proposed. Here, models are re-parameterised so that, as opposed to interpret-
ing in terms of a hazard ratio, models are assessed in terms of a dispersion parameter,
measuring the magnitude of divergence due to a covariate and an asymmetry parameter
measuring departure from proportionality.

Assume that time-to-event models are expressed in terms of a counting process [40]
and consider the semi-transformational models [64, 65] which allow for the form of the
survival models to be interpreted on scales other than the hazard scale. Following this
notation, each patient is defined via a counting process, N(t), which records the number
of events until time t. Also let Y (t) be the at risk process defined as Y (t) = I(T Ø t)
where I(.) is the indicator function. Let Z be a n ◊ p covariates matrix with associated
parameters —. A conditional survival function is defined as

S(t|Z) = �{exp(—T Z)�(t)},

where �(t) is a non-decreasing function,
s t

0

⁄(u)du with ⁄ as the intensity function
to the associated counting process. Note that this conflicts slightly with the notation
used in Section 2.3.4 and is not to be confused with the rate parameters used in the
exponential and piecewise exponential models. Allowing �(.) to be either the Box-Cox
or logarithmic family of transformations allows the estimation of both the proportional
hazards or proportional odds models as special cases. Specifically, �(x) = exp(≠x)
gives a proportional hazards model and �(x) = (1 + x)≠1 gives the proportional odds
models. In the special case of the proportional hazards function, note that ⁄ is an
analogue to the hazard function. This class of models is extended by introducing a
second ‘asymmetry’ parameter which allows for departure away from the assumption
of proportionality. The asymmetry parameter, denoted –, acts on a set of covariates U

which may contain elements of Z. As an example, when modelling a single two level
covariate, the definition would be U = Z. The relationship for conditional survival is
re-defined as

S(t|Z, U) = �{exp(—T Z)�(t)exp(–T U)}. (4.2)

In this form, model (4.2) looks similar to the relationship observed by assuming
a Weibull distribution where both the scale and shape parameter are allowed to vary
dependent on covariates. The similarity ends here however, as this approach requires no
dependency on a parametric form for a baseline hazard function. A formulation similar
to this was proposed by Quantin et al. [124] who propose a test on – as a means of
assessing proportionality. Full details describing the behaviour of the ◊ = (—, –) are
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given in Section 4.5.2. Justification for the derivation of the asymmetry parameter with
respect to the proportional odds model are given in Section 4.5.1.

With respect to model estimation, given (4.2), a hazard function is defined as

h(t|Z, U) = �Õ{exp(—T Z)�
0

(t)exp(–T U)}
�{exp(—T Z)�

0

(t)exp(–T U)}

5
exp(—T Z + –T U)�

0

(t)(exp{–T U}≠1)⁄
0

(t)
6
.

Here ⁄
0

is a baseline intensity process. A log likelihood function is given by

l(t|Z, U, ◊) =
nÿ

i=1

‹i

5
log(⁄

0

(t)) + —T Z + –T U + (exp{–T U} ≠ 1) log(�
0

(t))+

log
!

≠ �Õ) exp(—T Z)�
0

(t)exp(–T U)

*"6
+ (1 ≠ ‹i)

5
log

!
�

)
exp(—T Z)�

0

(t)exp(–T U)

*"6
,

(4.3)

where ‹i = 1 represents an observed event and ‹i = 0 represents a censored observation.
In order to maximise the likelihood, it is necessary to express the intensity function
in terms of a step function and replace ⁄(t) with �{t}. Maximisation of (4.3) as
a non parametric maximum likelihood estimation (NPMLE) can be carried out using
standard maximisation techniques available in statistical packages. Some simplification
of (4.3) can be achieved when all event times are unique. Note that an estimate of the
cumulative intensity function is obtained by

Ĥ(t|Z, U) = ≠ log
!
Ŝ(t|Z, U)

"
.

As a cumulative intensity process can be defined for all patients at observed time-
points, an estimate of the intensity process is obtained via

ĥ(t|Z, U) = Ĥ(t|Z, U) ≠ Ĥ(t ≠ |Z, U) (4.4)

where H(t ≠ |Z, U) is the cumulative hazard function at the observed time point im-
mediately prior to t. The log likelihood under this formulation is estimated by

l̂(t|Z, U) =
nÿ

i

‹i log
)
ĥi(t|Z, U)

*
+ log

)
Ŝi(t|Z, U)

*
. (4.5)

In this form, only a definition of a survival function is required in order to produce
parameter estimates. Use of the NPMLE is straightforward for small datasets. For
larger datasets however, the routine can be di�cult to compute due to the need to
invert a large matrix in order to obtain standard errors for the fitted parameters. More
attractive in this case may be an approach similar to that taken by Yin and Zeng
[125] who provide an e�cient algorithm which uses a Lagrange multiplier to allow the
step sizes given by �{t} to be calculated via a set of recursive equations. Parameter
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estimation can then be reduced to maximising over fl + 2 parameters, where fl is the
number of parameters of interest. Furthermore, it is illustrated that evaluating the
model via a profile likelihood - taking the cumulative hazard function to be a nuisance
parameter, standard errors of the key parameters of interest can still be obtained. More
details are provided by Murphey[126]. As a guide, the model will fit to datasets of size
approximately 100 and provide standard error estimates within a few minutes. For
larger datasets, greater than 250 observations say, parameter estimates can be found
relatively quickly but standard error estimates via a Hessian matrix may take a few
hours. Models are fit using the ‘optim’ functions in R [127]. Code is provided in the
Appendix for reference.

4.5.1 Derivation of the asymmetry parameter

Here, derivation of the asymmetry parameter with respect to the proportional odds
model is given.

It has been noted by Chen [64] that a transformation of S(t) = 1/(1+�(t)) will yield
a proportional odds model. Considering only the condition where survival between two
groups is compared, the proportional odds model is defined as satisfying the condition:

logit{S
1

(t)} = logit{S
0

(t)} + Â

where „ is the odds ratio between two survival functions. Considering the two survival
functions as being naturally bounded by (0, 1) there has been much work on the analysis
of parametric ROC curves which include the comparisons on similarly bounded function
with the inclusion of asymmetry parameters. Define the following structures

V = logit{S
1

(t)} ≠ logit{S
0

(t)}

W = logit{S
1

(t)} + logit{S
0

(t)}.

The relationship between the survival functions is then estimated via the regression
formula

V = Í + ËW.

The above can be rearranged to provided a solution for S
1

(t) in terms of S
0

(t) such
that:

S
1

(t) = inv.logit
;

Í + logit(S
0

(t))(1 + Ë)
1 ≠ Ë

<
.

Recalling S(t) = (1 + �(t))≠1 and noting that inv.logit(x) = (1 + exp(≠x))≠1, re-write
the above as

�
1

(t) = exp
;

≠ Í + logit(1/(1 + �
0

))(1 + Ë)
(1 ≠ Ë)

<
.
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Lastly note that logit{1/(1 + �
0

)} = ≠ log(�
0

) and rearrange to

�(t) = exp
;

≠ Í

(1 ≠ Ë)

<
exp

;
log(�

0

(t))(1 + Ë)
(1 ≠ Ë)

<
. (4.6)

From (4.6) define
�

1

(t) = Ê{�
0

(t)}›

where Ê = exp{≠Í/(1 ≠ Ë)} and › = 1+Ë
1≠Ë . It follows that when measuring the di�erence

between two levels of a covariate in terms of their relative survival odds, an asymmetric
(or non-proportional) model can be formulated in terms of a divergence parameter Ê

and an asymmetry parameter ›.

4.5.2 Illustration of the parameter of asymmetry

To simplify the notation, define „ = exp{—T Z} as a function of covariates that defines
the departure away from H

0

due to Z, and “ = exp{–T U} as a function of asymmetry
due to U . Model (4.1) becomes

S(t|Z, U) = �{„(H
0

(t)“)}.

Here, consider „ to be a parameter which measures the divergence due to parame-
ters for Z. Further, “ acts on the survival/hazard function with values of “ > 1 resulting
in greater divergence at lower probabilities and values of “ < 1 giving greater diver-
gence at higher probabilities. Here the dispersion parameter can be thought of acting
proportionally on an adjusted cumulative hazard function. Under the special case of
“ = 1, „ is interpreted as the standard proportional hazards/odds parameter if the
transformations as given by [64] are followed.

Illustration of the behaviour of the model parameters when modelling a single two-
level covariate is illustrated via the PP-plot. This method has the advantage that it
does not require time to be included on the plot, this may be particularly attractive
as the Cox proportional hazard method for estimation of covariates does not directly
include time either. Figures 4.7, 4.8 and 4.9 demonstrate traditional Kaplan Meier
plots of survival functions against the PP-plot so that the reader may make direct
comparisons.

Figure 4.6 shows the behaviour of „ and “ are illustrated for both the special cases
of the proportional hazards and proportional odds model. In each plot, the diagonal
is refered to as the null line, as a curve that follows the diagonal would represents two
identical survival functions. In both plots, the solid line in the upper triangle represents
the standard proportional hazards/odds line. The upper triangle in each plot illustrates
the e�ect of the asymmetry parameter given a fixed value for „. Conversely, the lower
triangle shows the di�erent relationships that can be modelled by fixing “ and allowing
„ to vary. These plots illustrate the wide range of flexible models that can be achieved
from the two parameters.
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Figure 4.6: Figure to illustrate the flexibility of proportional hazards and proportional
odds models with the inclusion of asymmetry parameters.

It is shown from Figure 4.6 that value of „ ”= 1 has the e�ect of dragging the fitted
model away from the null diagonal line, but only with a value of “ = 1 is proportionality
attained. With a value of “ ”= 1, „ can no longer be regarded as a hazard ratio (or an
odds ratio) and thus „ is referred to as a dispersion parameter. Here in the presence
of non-proportionality, „ can still be interpreted as a parameter which measures the
magnitude of the overall di�erence between two treatments in a similar fashion to a
hazard ratio. The e�ect of the asymmetry parameter “ is also illustrated with values of
“ > 1 resulting in greater divergence at higher probabilities and values of “ < 1 giving
a greater divergence at lower probabilities.

Note here only the special cases of the proportional hazards and proportional odds
models are included. A wider range of models can be achieved by allowing some model
between a hazards model or an odds model using either the Box-Cox or logarithmic
class of functions as described by Chen [64].

4.6 Simulation study

In this section, simulation studies are carried out for the special cases of the hazards
and odds relationships. The purposes of these studies are firstly to demonstrate that
parameter estimates can be reliably estimated and secondly to show that assuming
proportional relationships where they are not justified can have adverse e�ects both in
parameter bias and precision.
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4.6.1 Hazards models

Two sets of survival time data were simulated using similar methods to that described
by [128]. Here, for the ‘control’ group, the cumulative hazard function follows an
exponential distribution with

Hc(t) = ⁄t.

Arbitrarily fix ⁄ = 0.2. Measuring time in months, this ensures that the baseline
survival function approaches 0 at around 12 months (Figure 4.7). In a similar fashion,set
up the cumulative hazard function for the experimental group as

HE(t) = „{(⁄t)“}.

To simulate survival times, generate two sets of random survival probabilities, de-
noted SC and SE , from a uniform distribution with limits (0, 1). Survival times tC and
tE are obtained via

tC = ≠ log(SC)
⁄

(4.7)

and

tE =
exp

;
log

!
≠log(S

E

)

"
≠log

!
„
"

“

<

⁄
.

The purpose of this approach is to simulate data from two distributions which
are known not to follow proportional hazards assumption. Fix the parameters „ =
2, “ = 0.75 (— = 0.69 and – = ≠0.28 respectively). The value for „ is chosen as
a value representative of what is observed in published clinical trials whereas “ is
chosen to represent a situation where asymmetry may not be directly obvious from
a Kaplan Meier plot. Figure 4.7 illustrates the fitted survival function using both
a Kaplan Meier and a PP plot. On the PP plot, both the simulated relationship
and a proportional hazards relationship are displayed showing how asymmetry may
be visualised more clearly This relationship is set up to mimic a scenario whereby
there is an apparent treatment e�ect but that it does not become immediately obvious.
This type of situation is not uncommon in medical studies whereby an experimental
treatment may have a delayed e�ect with little or no improvement being observed at
the early stages.

To evaluate model performance, the recommendations of Burton[82] are followed.
Defining the true parameters to be estimated as ◊, estimated parameters, ◊̂, are evalu-
ated using measures of bias, accuracy and coverage as defined in Table 4.5.

A total of 250 datasets are simulated for two sample sizes (n = 100, 250) where n is
the total number of patients in each dataset. Censoring was included by selecting 10%
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Figure 4.7: Figure to show the behaviour of the proportional hazards models with the
inclusion of asymmetry parameter

Evaluation crite-
ria

Formula

Bias ¯̂◊ ≠ ◊

Accuracy (¯̂◊ ≠ ◊)2 + (SE(◊̂))2

Coverage Proportion of times 95% CI for ◊̂ includes
◊

ACIL 1

N
sim

qN
sim

i=1

3.92 ◊ SE(◊̂i)

Table 4.5: Model performance parameters: ◊ is the true parameter estimate, For Nsim

individual simulations, ◊̂i is the parameter estimate with associated standard error
SE(◊̂i). Based on Nsim the standard error of ◊̂ over all simulations is SE(◊̂). ¯̂◊ =
qN

sim

i=1

ˆ◊
i

N
sim

. ACIL: average confidence interval length.

observations at random to be censored. To each dataset the proposed non-proportional
model is fit as well as a proportional hazards model for reference. The hazard ratio
obtained by fitting a proportional hazards model here is of little general interest but
does give some illustration of the e�ect on parameter estimates of fitting an incorrect
model.

The results of the simulation study are given in Table 4.6. Considering initially the
parameter estimates from a non-proportional model, a level of bias that may reasonably
be expected to occur by chance and the coverage associated with the 95% confidence
interval is what may be expected. There is little change in the bias due to the increase
but the accuracy and ACIL both decrease as is to be expected.

Comparing the proportional hazards estimates of — to the non-proportional hazards
estimates, there is a larger estimate of bias as a consequence of a mis-specified model
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and greater uncertainty over the model estimates shown by larger standard error and
ACIL estimates. This suggests that mis-specifying a model may result in error in both
the point estimate and the confidence interval of the point estimate. In this instance
the bias suggests a consistent upwards bias but this may not necessarily be the case for
other scenarios. The shift in the point estimate is also demonstrated by the consistent
drop in the Coverage for the model that assumes proportional hazards

Sam. Size Model Parameters Mean (SE) Bias Acc. Cov. ACIL

N = 100
Prop. — = 0.69 0.73 (0.25) 0.03 0.06 0.93 0.87

Non-Prop. — = 0.69 0.69 (0.22) 0.00 0.05 0.96 0.80
– = ≠0.28 -0.29 (0.19) -0.01 0.04 0.96 0.75

N = 250
Prop. — = 0.69 0.73 (0.15) 0.04 0.02 0.91 0.54

Non-Prop. — = 0.69 0.70 (0.12) 0.01 0.02 0.93 0.49
– = ≠0.28 -0.30 (0.11) -0.01 0.01 0.96 0.46

Table 4.6: Results of the simulation study for survival data on a hazards scale. Results
are given in terms of overall estimates of the mean and standard error, along with
estimates of bias, accuracy, coverage and average length of the 95% confidence interval.

The simulation study shows that parameters can be constantly and reliably esti-
mated using standard maximisation techniques. It also demonstrates, that analysing
assuming proportional hazards can lead to inflated estimates in terms of both bias and
standard error.

4.6.2 Odds models

As with the simulation study for the hazards function, the purpose of the simulation
study here is to demonstrate that parameters can be reliably estimated for the propor-
tional odds model. The methods for simulating data are detailed in the Section 4.6.1.
Survival times for the control arm are simulated using (4.6) and survival times for the
experimental arm are simulated using

tE = ⁄≠1 log
5

exp
; log(1 ≠ SE(t)) ≠ log(SE(t)) ≠ log(„)

–

<
+ 1

6
.

Data are simulated using the same parameters as for the hazards models (— = 0.69,
– = ≠0.28). Figure 4.8 shows the behaviour of the proportional odds function in
both a Kaplan Meier and PP-plot. On the PP plot both the proportional and non-
proportional odds models are shown for comparison. It may be observed here that the
di�erence between the proportional and non-proportional models is less obvious for an
odds relationship than it is for a hazards relationship.

The results from the simulation study are included in Table 4.6 and some notable
di�erence are observed to the use for the hazards models. Here whilst there is again
some evidence of a positive bias for the proportional odds model, there is also some evi-
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Figure 4.8: Figure to show the behaviour of the proportional odds models with the
inclusion of an asymmetry parameter

dence of consistent negative bias for the non-proportional odds model. The asymmetry
parameter is consistently measured with a level of bias which is considered acceptable.

Regarding coverage, for the models with a sample size of N = 100 then the coverage
is what might be expected. For sample sizes of N = 250 however, coverage rates greater
than what might be expected are observed for — in both the proportional and non-
proportional models. The reduction in the ACIL for the non-proportional parameter
— compared to the proportional models is evidence of the greater precision for this
parameter under the non-proportional model.

Sam. Size Model Parameters Mean (SE) Bias Acc. Cov. ACIL

N = 100
Prop. — = 0.69 0.76 (0.39) 0.07 0.15 0.94 1.42

Non-Prop. — = 0.69 0.64 (0.34) -0.05 0.12 0.93 1.29
– = ≠0.28 -0.31 (0.18) -0.03 0.03 0.94 0.75

N = 250
Prop. — = 0.69 0.74 (0.16) 0.05 0.03 1.00 0.89

Non-Prop. — = 0.69 0.63 (0.14) -0.07 0.03 0.97 0.81
– = ≠0.28 -0.30 (0.13) -0.01 0.02 0.93 0.46

Table 4.7: Results of the simulation study on an odds scale. Results are given in
terms of overall estimates of the mean and standard error, along with estimates of bias,
accuracy, coverage and average length of the 95% confidence interval.

4.7 Application to cancer trials

In this section the asymmetry parameter is applied to both a univariate dataset using
data from a clinical trial for gastric cancer and a multivariable dataset using data from
the ESPAC-3 trial for pancreatic cancer.
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Figure 4.9: Figure to show the fit of a standard Cox model and a model with an
included asymmetry parameter

4.7.1 Gastric cancer dataset

The use of the asymmetry parameters is illustrated by applying the method to a dataset
of 90 patients taken from the gastric cancer dataset as described in Section 1.4.2. Figure
4.9 illustrates both the survival probabilities as calculated via the method of Kaplan
and Meier as well as the PP-plot; both clearly show that the assumption of proportional
hazards is not appropriate.

Four models are fitted to the data, both the hazards and odds models with and
without the asymmetry parameter. Results are presented in Table 4.8 and illustrate
that for both the proportional hazards and the proportional odds models, allowing for
the inclusion of an asymmetry parameter improves the fit of the model as is shown
by the change in the model likelihoods. The best model in terms of the likelihood is
the non-proportional hazards model. The results of the proportional hazards and the
non-proportional hazards models are both illustrated as fitted models in the PP-plot
in Figure 4.7. Here on the PP-plot, the results of the Cox proportional hazards model
(green line) and the model with an additional asymmetry parameter (purple line) are
included. The improved fit of the model including the asymmetry parameter is clearly
shown. Of interest is the e�ect on the dispersion parameter —̂ for the proportional and
non-proportional hazard models. This parameter gives a measure of overall dispersion
away from the null line of no di�erence between two levels of a covariate. Here the esti-
mate (standard error) of —̂ increases from 0.11(0.22) to 0.25(0.24) showing an increase
in the divergence favouring chemoradiotherapy over chemotherapy.

Further, note that although the asymmetry parameter acts in the same fashion
to the hazards and the odds models, the interpretation of the model parameters does
di�er. Here for example, for the odds model, there is little di�erence in the divergence
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between the two models with and without the asymmetry parameter with estimates
of —̂ = 0.75(0.38) and —̂ = 0.75(0.39) respectively. Here then, whilst including the
asymmetry parameter does improve the fit of the model, it does not have any substantial
e�ect on the divergence due to —̂.

Clinical interpretation of the data depends on the model that is chosen. Here,
assuming a hazards relationship is preferable due to the improved model fit, the asym-
metry parameter is itself significant at the 5% level based on a Wald test giving evidence
of non-proportionality. That significance of the asymmetry parameter is su�cient ev-
idence to show that the two survival distributions are di�erent. This can be further
verified by a comparison of models via a likelihood ratio test.

That —̂ is not significant at a 5% level here shows that despite the increased magni-
tude, there is still not enough evidence to show that the divergence away from the null
line is important which may be expected due to the crossing survival curves. Note how-
ever, that the importance of the divergence parameter is dependent upon the assumed
relationship between treatments (hazards or odds).

Model Param. coef exp(coef) se(coef) Z P-Value Likelihood
Prop. Hazards —̂ 0.11 1.11 0.22 0.48 0.63 389.43

Non-Prop.Hazards —̂ 0.25 1.29 0.24 1.05 0.29 384.52
–̂ -0.60 0.55 0.19 -3.14 <0.001

Prop. Odds —̂ 0.75 2.13 0.38 2.00 0.05 388.67

Non-Prop. Odds —̂ 0.75 2.11 0.39 1.92 0.05 385.78
–̂ -0.47 0.63 0.19 -2.41 0.02

Table 4.8: Results of applying the asymmetry parameter to the gastric cancer dataset
under the special cases of the proportional hazards and proportional odds models

4.7.2 ESPAC-3 data

The asymmetry parameter is further explored with respect to data taken from the
ESPAC-3. Of particular interest here are a group of patients who had tumours classified
as either ‘Ampullary’ or ‘Other’. Previous analyses of these data have been published
[34] and have shown that the addition of chemotherapy o�ers improved survival over
an observation arm. Here a complete case analysis is carried out removing patients
with missing data.

Analysis is based on 427 patients. Resection Margin (Negative vs. Positive) and
Chemotherapy covariates are ‘forced’ into the model as a stratification factor in the
trial design and the key covariate of interest respectively. Also included are terms
for Tumour Type (Ampullary vs. Other), Lymph Nodes (Negative vs. Positive) and
Tumour Di�erentiation (Well vs. Moderate vs. Poor). Taking the standard propor-
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tional hazards model, the assumption of proportionality is investigated via inspection
of Schoenfeld’s residuals [83] and tested via the method of Grambsh and Therneau [85].
The results are given in Table 4.8. Inspection of the residuals show that it may not
be appropriate to assume proportional hazards with respect to the Tumour Di�erenti-
ation covariate. In particular the ‘Poor’ level of this covariate has significant (P=0.02)
evidence of non-proportionality. To account for this, the model is refitted including the
asymmetry parameter for this variable only.

Categorical Variable (Level) Correlation ‰2

1

P-value
Resection Margins (Positive) -0.02 0.12 0.73
Treatment Arm (Gem) 0.02 0.06 0.81
Treatment Arm (Obs) -0.00 0.00 0.98
Tumour Type (Other) 0.00 0.00 0.98
Lymph Nodes (Positive) 0.07 1.39 0.24
Tumour Di�. (Moderate) -0.07 1.15 0.28
Tumour Di�. (Poor) -0.15 5.50 0.02

Table 4.9: Results of assessing each variable for proportional hazards via the Schoenfeld
residuals

The results of both the standard proportional hazards model and the model that
includes the asymmetry parameter are included in Table 4.9. Here it is shown that
the inclusion of the asymmetry parameter for the ‘Moderate’ level is not significant
(P=0.356) but that it is for the ‘Poor’ level (P=0.035). This is encouraging as it agrees
with what is observed in the analysis of Schoenfeld’ residuals in Table 4.8. It is further
observed that for the ‘Poor’ level of Tumour Di�erentiation, the e�ect is to change the
estimate (standard error) given for — from 0.745 (0.241) to 0.656 (0.264). The results
show that having a poorly di�erentiated tumour will increase the overall hazard and
that this divergence increases as survival probabilities decrease. Again there is little
change in the e�ect of — for the ‘Moderate’ level of this covariate.

It is important to note that as the asymmetry parameter is included only for the
Tumour di�erentiation variable, the dispersion parameters for all other variables can be
interpreted directly as hazard ratios. Lastly, it is valuable to note that by altering the
modelling approach for Tumour Di�erentiation, there is also some e�ect on other terms
due to confounding. Although, alterations are small, there are reductions in the (log)
hazard ratios for all the terms apart from Resection Margins for which there is a small
increase. There are no detectable di�erences in the standard errors for parameters that
are modelled without the inclusion of an asymmetry parameters.

4.8 Discussion

In this chapter an investigation into the modelling of survival data was carried out when
the assumption of proportional hazards is not met. A review was provided on both
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Proportional Hazards Non-Proportional Hazards
Factor Levels Parm. coef se(coef) P. Val. coef se(coef) P. Val.
Resection
Margins

Negative
Positive —Rpos -0.005 0.174 0.977 0.014 0.174 0.935

Chemotherapy
5FU
GEM —GEM -0.148 0.161 0.358 -0.137 0.161 0.397
Obs. —Obs 0.262 0.157 0.095 0.257 0.157 0.101

Tumour
Type

Amp.
Other —Oth 0.675 0.143 <0.001 0.657 0.143 <0.001

Lymph
Nodes

Negative
Positive —Lpos 0.932 0.150 <0.001 0.928 0.150 <0.001

Tumour Di�. Well
Mod. —Mod 0.375 0.223 0.092 0.366 0.228 0.109

–Mod -0.182 0.198 0.356
Poor —P oor 0.745 0.241 0.002 0.656 0.264 0.013

–P oor -0.441 0.209 0.035

Table 4.10: Results of applying the asymmetry parameter to the ESPAC 3 (V2) pan-
creatic cancer dataset

methods for detecting non-proportional hazards and of methods of modelling data when
proportionality can not be assumed. Throughout, the main focus is in assessing the
di�erence between two treatments with the aim of determining which of two treatments
is superior.

Data taken from a gastric cancer dataset were used as a case study and three
analysis methods in particular were used: a time-dependent covariate approach, a
piecewise approach, a restricted mean survival approach. Virtues and drawbacks of
each approach were discussed.

Following this, an approach for modelling under non-proportional hazards was in-
troduced whereby an asymmetry parameter is included into the class of semi transfor-
mational models of [64] and [65], based on the counting process notation of [40]. In
this setting, the asymmetry parameters o�er a wide variety of models and allow for the
direct of modelling of non-proportional hazards without introducing any explicit depen-
dence on time. Furthermore, it allows for the overall comparison of two treatments via
a dispersion parameter which can be interpreted as a hazard ratio when proportionality
can be assumed.

The use of an asymmetry parameter does come with some loss of interpretation
when compared to the standard proportional models. A particular attraction of the
Cox model is that the hazard function for a patient with covariates, z, can be expressed
as a multiplicative form of the baseline hazard function. It is argued here however
that when the assumption of proportionality is not met, this interpretation is of little
practical use and in severe cases, as with the gastric cancer dataset, an average hazard
ratio may be misleading in suggesting little di�erence between two treatment arms.

Throughout, the use of PP-plots as proposed by [123] are incorporated as an im-
proved means of visualising the modelled relationship between two levels of a categorical
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variable. It was demonstrated that when including the asymmetry parameter, although
the exponent of the parameter that acts proportionally on the baseline hazard function
may no longer be referred to as a hazard ratio, it can still be interpreted as a measure
that causes overall divergence away from the null line of no-di�erence and that this
measure is independent of time. The asymmetry parameter does not directly cause
divergence from the null line but accounts for the lack of symmetry in the model with
exponent values > 1 accounting for larger divergence at higher survival probabilities
than there are at lower probabilities and values < 1 resulting in larger values at lower
survival probabilities.

The approach advocated here o�ers an alternative to the traditional modelling
approach of accounting for departure from proportionality by introducing some depen-
dency on time. Removing time from the model is advantageous as it removes the user
from specifying the underlying nature of a models dependency on time. Further, in
many situations, time may be a somewhat arbitrary construct on which to introduce a
dependency. It has been shown with the use of a pancreatic dataset how model asym-
metry can be easily incorporated to account for a non-proportional relationship in a
multivariable setting where some variables may be associated with non-proportionality
but not all.
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Chapter 5

Bayesian Analysis of
time-to-event data

5.1 Introduction

In this chapter some exploration of the current uses of Bayesian methods for the analysis
of survival data are given. Initially a brief overview is given of Bayesian methods
applied in practice. Following this, the data from the ESPAC-3 trial are analysed from
a Bayesian perspective using a piecewise exponential model and some of the practical
issues discussed. Lastly, an investigation for the use of di�ering definitions of the time-
grid for the piecewise exponential model are investigated and recommendations given
for future use.

5.2 The use of Bayesian methods for the analysis of time-
to-event data

The analysis of survival data in a Bayesian framework presents a particular challenge
due to the sometimes complex censoring patterns that can occur and the often inade-
quacy of parametric models to correctly model a baseline hazard function. A detailed
exploration of Bayesian survival models has been extensively explored by Ibrahim et
al.[129] who detail the use of both parametric and non-parametric approaches.

Bayesian non-parametric approaches to the analysis of survival data have been long
established with Kalbefleish [57] and Synoms [130] both proposing methods that can be
used. The use of a Bayesian piecewise exponential model was given particular attention
by Gammerman [49] who developed a dynamic approach to ensure a smoothed hazard
function is obtained.

As the capabilities for computation expanded with technology, so did the advances
in Bayesian survival analysis with Arjas and Gasberra [131] exploring the uses of the
MCMC sampler to fit survival models. The use of Bayesian survival models were further
expanded to handle frailty terms [132, 133] piecewise frailty terms [134], and survival
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fractions [135, 113]. In the practical situation, Gustafson [136] explored Bayesian sur-
vival methods within a multicentre trial.

A direct comparison of frequenstist and Bayesian survival methods was carried out
by Gomez et al. [137], whilst a general overview of Bayesian proportional hazards was
provided by [138]. The formulation of survival models as a counting process allowed for
the exploration of more complex survival models with di�ering functional forms [65] and
censoring patterns [53]. More recently, Bayesian survival models have been expanded
into joint modelling with longitudinal data [108], individual patient data meta analysis
[56] and semiparametric modelling [139].

The e�ort to apply Bayesian methods in a practical setting has also increased. Most
notably Berry et al. [140] consider Bayesian approaches for analysing non-proportional
hazards whilst in a more general sense, He et al. [141] consider Bayesian survival
models for direct use in medicine and Omurlu [142] considers a direct comparison
between Bayesian models and the Cox model.

5.3 Applied Bayesian analysis of ESPAC-3 data

In this section a Bayesian survival model is fitted to the ESPAC-3 data. In particular
the piecewise exponential model (PEM) as detailed in Chapter 2 is utilised. The full
dataset is analysed to replicate the final analysis of a clinical trial.

The PEM is chosen as it o�ers a more flexible approach than standard parametric
models whilst methods such as the counting process model [39] are not considered as
the large number of parameters required for estimation result in an unfeasible compu-
tational burden.

Following Bayes theorem, the posterior distribution is given as

Pr(◊|D) Ã Pr(D|⁄, —)Pr(⁄)Pr(—).

Note that this assumes a-priori independence of both ⁄ and —, i.e. Pr(—|⁄) = Pr(—).
The quantity Pr(D|⁄, —) is the likelihood function for the PEM dependent on the
baseline hazard parameters ⁄ and the log hazard ratio — given by

Pr(D|⁄, —) =
NŸ

i=1

JŸ

j=1

!
⁄j exp(—z)

"”
i,j

‹
i exp

;
≠ ”i,j

Ë
⁄j(ti ≠ aj≠1

)+

j≠1ÿ

g=1

⁄g(ag ≠ ag≠1

)
È

exp(—z)
<

, (5.1)

where ti is the event time for observations i = 1, 2, .., N . Throughout this thesis,
the hazard rate is presented on the log scale, “ = log ⁄. Prior distributions for both “
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and — are based on normal distributions. That is

Pr(—k) Ã exp
;

≠ (—k ≠ µ—
k

)2

2‡2

—
k

<

and
Pr(“j) Ã exp

;
≠

(“j ≠ µ“
j

)2

2‡2

“
j

<
.

For the prior distributions, let µ“
j

and ‡“
j

be the mean and variance parameters for
the prior distributions for the log hazard rate parameters and µ—

k

and ‡—
k

the prior
parameters for the log hazard ratios. Note that for practical purposes set µ“

j

= µ—
k

=
0 and ‡“

j

= ‡—
k

= 1000, ’(j, k) which are considered vague, uninformative prior
distributions for data analysis.

The full posterior distribution for this model is clearly complex and so models are
applied in a Bayesian framework making use of the MCMC procedure described in
Chapter 2. MCMC routines are produced in R with code available in the Appendix.
Here, following initialisation, Normal jumping kernals with mean equal to the current
value of each parameter and variance set to obtain an e�cient algorithm are used as
the jumping distribution for the MCMC procedure (see Gelman et al. [70] for details).

It is noted from initial models that there is a large amount of correlation between the
successive log baseline hazard parameters and that this correlation can lead to biased
estimates. MCMC routines can be improved by searching for orthogonal transforma-
tions of the model parameters. Here however, a batch sampling technique is applied
where, as opposed to sampling from each baseline hazard parameter individually, they
are sampled collectively as a ‘batch’. That is, for each iteration, a sample from the
conditional distribution

Pr(⁄|—
1

, ..., —k, D),

is taken. Samples from the conditional distributions for — are obtained in the normal
fashion.

The full model is applied following the published analysis by Neoptolemos et al. [32]
with the added inclusion of a variable to account for Diabetic status which has since
been shown to be of some importance (unpublished). Cancer Antigen 19.9 (CA19.9)
is not included in this analysis due to a large number of missing values. For all factor
variables of interest, patients with missing values are included as an extra category. For
the continuous measurements, tumour size, a dummy covariate is included to account
for missing values, the log transformed Tumour Size for each patient is then included
as a nested covariate. This approach assumes that missing data are missing completely
at random. Lastly, as a piecewise exponential model has been chosen, a time-grid is
required. Here a time-grid is somewhat arbitrarily set as a = (0, 6, 12, 24, 48, 72, 96, tú)
where tú represent the maximum observed survival time in the data.
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Initially 10, 000 samples are drawn from 3 chains to assess model convergence. Fig-
ure 5.1 illustrates the model fit of each chain via a history plot for both the first log
hazard rate parameter, “

1

and the log hazard ratio —Arm for the treatment identifier.
Here it is shown that for “

1

, whilst the chains have converged to be drawing from
the same density, there is a large amount of auto-correlation. Auto-correlation here
refers to the correlation between successive measurements in the same chain for the
same parameter within the MCMC routine and is not confused with the correlation
between parameters which was the motivation for using a batch sampling routine. The
auto-correlation is shown in Figure 5.1 by the chains for ⁄

1

not directly fitting over one
another and is confirmed by the associated autocorrelation plot. The chains for —Arm

however show a much smaller degree of correlation and give the desired ‘fat caterpillar’.
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Figure 5.1: History and Autocorrelation plots for “
1

and —

As the main parameter of interest is the log hazard ratio, model inferences may
still be made on what has been drawn. It is somewhat prudent however to account for
any autocorrelation as it is observed. In this instance applying a thin of 100, and only
recording the 100th sample of each draw from the posterior distribution, can account
for the observed auto-correlation. A further 50,000 samples are then drawn from the
posterior distribution. The results, again for “

1

and —Arm are shown in Figure 5.2. Here
it is shown that for “

1

the three chains fit on top of each other . The auto-correlation
plots also show that whilst not completely removed, the amount of correlation between
successive recorded draws is greatly reduced. Considering —Arm, all evidence of any
correlation whatsoever has been completely removed and each successive draw from
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the posterior densities can be considered as independent.
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Figure 5.2: History and Autocorrelation plots for “
1

and — with a thin of 100

Having ensured that each chain is drawing from the posterior distribution and hav-
ing accounted for the auto-correlation, simulation draws can be used to make inferences
about the model. In this instance interest lies in summarising the posterior densities
of the log hazard ratios. Model results are presented in terms of parameter means
(standard deviations) and associated 95% credibility intervals.

Model results are included in Table 5.1. Here the results of the log baseline hazard
parameters are included for reference along with the standard regression parameters.
Here a parameter is considered as being important if the 95% credibility doesn’t include
zero. For example, having positive resection margins increases the hazard compared to
negative resection margins (log hazard rate = 0.229, 95% CI = (0.088, 0.366)). There
is however no evidence of the Treatment e�ect being important in explaining overall
survival (log hazard rate = ≠0.059, 95% CI = (-0.192,0.073)).

A further advantage of the Bayesian approach is that the posterior random variables
can be transformed to create structures of interest. As a straight forward example, with
posterior draws of —Arm (which is denoted —̃Arm), the hazard ratio is easily obtained by
calculating exp{—̃}. Here the point estimate, standard deviation and 95% credibility
interval on the exponential scale without any further work necessary. This approach
also allows for the calculation of an estimated survival function using the baseline
hazard parameters. Given the survival likelihood for the piecewise exponential model
defined in Chapter 2, define the survival function as
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Mean (Std. err) 95% Cred. int.
Baseline Hazard

“
1

-4.560 (0.214) (-4.984, -4.146)
“

2

-3.533 (0.198) (-3.914, -3.152)
“

3

-3.286 (0.192) (-3.659, -2.908)
“

4

-3.512 (0.196) (-3.895, -3.125)
“

5

-4.105 (0.230) (-4.564, -3.651)
“

6

-4.745 (0.339) (-5.453, -4.118)
“

7

-5.787 (0.815) (-7.521, -4.427)
Diagnostic Factor Factor Level
Resection Margin Negative

Positive 0.229 (0.071) (0.088, 0.366)
Treatment Arm 5FU

Gemcitabine -0.059 (0.068) (-0.192, 0.073)
Lymph Nodes Negative

Positive 0.595 (0.083) (0.435, 0.759)
WHO perf. Status 0

1 0.196 (0.075) (0.047, 0.343)
2 0.319 (0.117) (0.091, 0.539)

Tumour Di�. Well
Moderate 0.127 (0.105) (-0.077, 0.337)

Poor 0.435 (0.117) (0.210, 0.665)
Smoking Status Never

Past 0.101 (0.079) (-0.055, 0.251)
Present 0.257 (0.101) (0.055, 0.452)
Missing 0.210 (0.137) (-0.058, 0.477)

Diabetic Status Non Diabetic
Diabetic 0.230 (0.08) (0.072, 0.386)
Missing -0.086 (0.232) (-0.557, 0.353)

Tumour Size Dummy ind. -0.326 (0.295) (-0.915, 0.253)
log (Tum. Size) 0.182 (0.07) (0.049, 0.321)

Table 5.1: Summaries of the posterior distributions for all parameters of the piecewise
exponential model fitted to the ESPAC-3 data. Summaries are presented in the form
of Means (Std. errors) and 95% Credibility Intervals

S(ti, ◊) = exp
;

≠
Ë
⁄j(ti ≠ sj≠1

) +
j≠1ÿ

g=1

⁄g(ag ≠ ag≠1

)
È<

. (5.2)

From this survival function each set of draws from the MCMC routine is used to
define an estimate of the survival function using the observed survival times ti from the
data. Repeating this process for all draws a posterior estimate of the baseline survival
function is obtained. Figure 5.3 illustrates the baseline survival function defined by the
posterior densities of “j as well as fitted survival functions for patients with negative
and positive levels of the Lymph Node variable. Lymph nodes are chosen here as the
binary covariate with the greatest divergence and therefore best suited to illustrating
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the di�erence in survival functions.

Figure 5.3: Illustration of the survival functions obtained from iteration of the MCMC
sample for a) all patients and b) patients with negative (green lines) and positive (red
lines) levels of the Lymph Node status variable

This shows how a Bayesian approach can be used to answer more specific clinical
questions of interest. Clinicians may, for example, be interested in the probability
that a patient will survival beyond 24 months and how this probability changes based
on their Lymph Node status. Using (5.1) set t = 24 and use the posterior densities
to provide a density giving the probability that a patient within the trial is alive at
24 months following randomisation. Figure 5.4 shows these densities for all patients
and separated by Lymph Node status. Here it is shown that the overall probability
of surviving up to 2 years for all patients is 0.504 (95% CI = (0.370, 0.624)). For
patients with negative Lymph Nodes this is 0.601 (95% CI = (0.474, 0.708)) whereas
for patients with positive Lymph Nodes it becomes 0.396 (95% CI = (0.265, 0.524)).
This shows how patients with positive Lymph Nodes have a poorer prognosis compared
to negative Lymph Node patients and allows for model interpretations in a fashion that
is acceptable to both clinicians and patients.

Considering a more complicated example, take a non-diabetic patient who was
a previous smoker and presented with a zero WHO performance status. Following
surgery, a tumour was removed which was shown to be well di�erentiated and of size
20mm. It was also shown that the patient had positive resection margins and positive
lymph nodes. The probabilities that a patient lives up to 6 - 60 months with associated
95% credibility intervals are given in Table 5.2.

Note at this point that all summaries are based on explaining the data that have
already been observed. Of further interest may be able to predict the performance
of parameters should future data be collected. Summaries here are obtained via the
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Figure 5.4: Derived Posterior densities showing the probability of patients surviving up
to 24 months within the trial for a) all patients and b) patients with negative (green
density) and positive (blue density) of the Lymph Node status variable

Months Estimated Survival (95% CI)
6 0.94 (0.91, 0.95)
12 0.78 (0.72, 0.82)
24 0.49 (0.39, 0.58)
36 0.34 (0.24, 0.43)
48 0.23 (0.15, 0.32)
60 0.19 (0.11, 0.27)

Table 5.2: Table to show the estimated survival probabilities and associated 95% cred-
ibility intervals over the course of 60 months.

posterior predictive distribution. The positive predictive distribution of n future data
Dn is given by.

⁄

Œ
Pr(Dn|◊)Pr(◊|D)”◊.

Given the complex form of the posterior distribution, Pr(◊|D), this evaluation is non
trivial. Approximations can be formed however by assuming a distributional form for
the posterior parameter of interest. As an example, it may be of interest for clinicians
to predict the performance of the log hazard ratio for the treatment arm should further
patients be randomised into a clinical trial.

Assume that the posterior distribution for —Arm follows a normal distribution,

Pr(—Arm|D) ≥ N(µArm, ‡2

Arm),

where µArm and ‡2

Arm are the mean and variance of the posterior distribution for —Arm.
Using the formulation of [21], a predictive posterior distribution can be given by

Pr(Dn|—Arm) ≥ N(µArm, ‡2

Arm + ‡2

D
n

,Arm),
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where ‡2

D
n

,Arm is the variance that is expected to be observed from a future trial with
n observations. Previous estimates of ‡2

D
n

,Arm = 4/m have been proposed [143] where
m is the number of events. It is prudent to notice that this assumes an equal number
of events in each treatment arm; a more accurate formulation is therefore given by
‡2

D
n

,Arm = 1/E
0

+ 1/E
1

where E
0

and E
1

are the number of events in future treatment
arms. Given the parametric form for the survival function given by (5.1), a future
study with N patients which is designed with a minimum follow up of tú will have an
estimated number of events in the control arm E

0

= [NS(tú, ◊
0

)]/2 and equivalently
for E

1

. An estimate of the variance of the log hazard ratio from a future study with N

observations is then given by

‡2

D
n

,Arm = 4 ≠ 2{S(tú, ◊
0

) + S(tú, ◊
1

)}
NS(tú, ◊

0

)S(tú, ◊
1

) .

Figure 5.5 shows the posterior distribution for —Arm as well as posterior predictive
distributions for the same parameter for future trials of size 500 and 750. If it is taken
that a clinically important di�erence is given by a log hazard ratio of log(0.8) = ≠0.22
(illustrated) then the probability that Gemcitabine will be shown to be at least this
much better than Capecitabine is 1% for the observed posterior distribution, and 18%
and 14% for future datasets of 500 and 750 patients respectively.

−0.6 −0.4 −0.2 0.0 0.2 0.4

log hazard ratio

Post. Dist.
Post. Pred. 500
Post. Pred. 750

Figure 5.5: Posterior distribution for —Arm and associated predictive posterior distri-
bution for future datasets of size 500 and 750
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5.4 Time-grids and the piecewise exponential model

A necessary requirement of the PEM is to set a time-grid, and despite its use in practice,
there is no recommended method for how the time-grid should be set. Some discussion
on the matter has been provided by Sahu et al. [132] and a review is provided by Han
et al. [144].

Specific methods for use in a Bayesian framework have been proposed by Demarquie
et al. [145, 146], whilst Goodman et al. [48] propose an approach for selecting change
points in a piecewise model based on maximum likelihood approaches. Han et al. take
a di�erent approach, starting with a saturated model, where each unique event results
in a new partition in the time grid and reducing the piecewise model to only include
partitions of import. Each of these approaches may not be appropriate for all situations
however and generally concentrate on the accurate estimation of a single cumulative
hazard function. Interest in this chapter is primarily on the hazard ratio, with the
hazard function being considered a set of nuisance parameters. In this context, little
discussion is o�ered on the choice of the correct time-grid in the literature.

Given that the model parameters and the time-grid can not be considered to be
independent of one-another, the need is highlighted for further investigation. In this
section, a review of some of the techniques used in practice are presented as well as
proposing some further methods. In the section that follows this is applied to a simu-
lation study with the aim of providing recommendations for future use. Some popular
methods from the literature are investigated although the method of Han et al. [144] is
not considered as some preliminary exploration shows that initial investigations require
the comparison of pairwise disjoint single event intervals. Evaluations on such intervals
can sometime be unreliable resulting in time-grids that do not always give an appro-
priate fit to the hazard function. Likewise, the method as proposed by Goodman et al.
[48] is altered slightly into the ‘split-likelhood’ method presented. This still produces
time-grids in a forward step-wise fashion based on maximum likelihood methods but is
less stringent than the Wald test approach suggested by Goodman et al [48].

It is assumed that the choice of time-grid is to provide as much flexibility as is
required to describe the behaviour of baseline hazard function. Simultaneously, it is
desirable to avoid wasting information by allowing too many partitions, this is especially
true in a Bayesian framework where including extra parameters may greatly increase
the computational burden.

5.4.1 Fixed time grid (Kalb.)

Kalbfleisch [57] proposed that a time-grid is set for the analysis before any of the data
are observed. Whilst it requires some underlying knowledge of the data, it may be ad-
vantageous as it ensures a level of objectivity is imparted into any analysis. Conversely
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there is also some risk of having empty partitions or a time-grid which provides an
unsatisfactory fit to the data. In practice, a fixed time-grid may be used by observ-
ing an appropriate parametric survival or cumulative hazard functions and choosing
reasonable points, or by setting time points based on convenient landmarks.

5.4.2 Fixed number of events (n.event)

Under this strategy, the user sets the number of events that are observed in each
partition. The time-grid is then fully dependent on the observed data. This has the
advantage that ‘thinner’ partitions will be observed in ‘busier’ areas of the distribution.
However, it may cause problems as fixing a small number of events for a large dataset
will result in an unnecessary large number of partitions.

5.4.3 Fixed number of intervals (n.part)

An alternative approach to fixing the number of events is to fix the number of inter-
vals that are required, partitions are then set to occur at regular intervals. Here the
model dimensionality and computation e�ort required can be directly managed but the
possibility remains that partitions may be placed at unsuitable points.

5.4.4 Paired event partitions (paired)

The motivation behind this approach lies in the situation where a trial is set up to
determine the di�erence between two treatment regimens. Here it may be considered
beneficial to have partitions which contain events from each treatment group. Defining
the observed event times for the control arm and experimental arm of a trial as tc and
te respectively, the time-grid is set by

1. Set a
0

= 0

2. Define a
1

= max(min(tc), min(te))

3. Redefine t≠a1
e and t≠a1

c where t≠a1
c are the event times for the control arm with

the event included in the first partition removed, and likewise for t≠a1
e

4. Repeat steps 2 and 3 to set further partitions

5. Continue until one or both of tc and te has no event times left and set aJ =
max(tc, te)

Whilst it may be advantageous to have an event from each arm to influence the
estimation of the baseline hazard function, it can result in wide partitions if there are
large di�erences between the treatment arms or a large number of partitions if the two
arms are similar to one another.
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5.4.5 Random time-grid (Demarqui)

The method as defined by Demarqui [145, 146] is tailored for use in a Bayesian frame-
work. Here the-time grid itself is considered to be a random variable to be estimated.
Using this approach, each event time is a candidate to define a partition in the time-
grid. Demarqui then proposes the use of the posterior predictive distribution to estimate
the time-grid. Whilst appealing, a drawback of this approach is it is only set up at
present for models without any covariates. Evaluating posterior predictive distributions
when covariates are included is more problematic. A two-step approach is taken here
whereby the first step estimates the time-grid based on a model with no covariates.
This time-gird is then treated as fixed and applied to the model with covariates.

5.4.6 Split likelihood partitions (split.lik)

In a similar fashion to the method as set out for the random time-grid, a time-grid is
obtained by searching for a model that provides the best fit. Here, instead of posterior
predictive distributions, models are evaluated based on the log likelihood as applied by
the following steps

1. Start with a standard exponential model (i.e. a single hazard parameter)

2. Consider each event time as a possible partition in the time-grid and calculate
the likelihood for all possible two parameter hazard models

3. Select the partition that gives the best likelihood providing this is an improvement
on the single parameter model

4. Repeat this process until no further improvement can be obtained.

This approach, unlike the random time-grid method can easily incorporate covari-
ates. Again a two-step approach whereby the time-grid is compiled in the first step
and the model is evaluated in the second step.

5.5 A simulation study to compare the performance of
di�ering time-grids

In the previous section, a series of strategies that may be used to set a time-grid
were defined. In this section, each method is applied as part of a simulation study to
determine which time-grid strategy may be the most appropriate. It is assumed that
in fitting a model with a PEM, the main interest is in the log hazard ratios ◊ and the
parameters for the baseline hazard function, ⁄, are treated as nuisance parameters.
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5.5.1 Simulation study design

The simulation study is designed following the recommendations of Burton et al. [82].
The primary outcome of the simulation study are the estimate of the log hazard ratio
parameters. These are compared against the ‘true’ values from which the data are
simulated using measure of bias, mean square error, coverage and average confidence
interval length (ACIL). Formal definitions of each of these measures are provided in
Table 4.5.

To understand the full behaviour of the e�ects of time-grids on hazard ratios, pa-
rameter estimation is considered under a series of di�erent scenarios as outlined by:

• censoring: 5%, 10%, 25%, 50%

• Sample Size: N = 100, 250, 500

Data are assumed to follow a relationship similar to that of patients with advanced
pancreatic cancer as displayed in Figure 5.5. There are a total of 4 ◊ 3 = 12 scenarios.
For each scenario, 500 datasets are simulated.

5.5.2 Simulation of data

Given that PEM models are applied under di�ering time-grids, simulating data from a
PEM itself may produce some bias towards whatever time-grid was used in the simula-
tion process. Furthermore, it is desirable to avoid using any standard distributions as
firstly, they often do not represent the hazard functions that are observed in practice
and secondly, if the data are known to follow some parametric distribution, it removes
the need for a PEM altogether.

In light of this, an approach is used similar to that described by Bender [128] to
simulate survival time data. Here for the ‘control’ group, describe a cumulative hazard
function that is dependent on time but does not follow any specific distribution such
that

S
0

= g(t).

Here g(t) is a function of time ‘t’ alone. The approach by Bender is to simulate sur-
vival probabilities from a uniform distribution and then derive observed survival times
using the function g(t). Whilst Bender uses this approach to illustrate the simulation
of data from standard parametric distributions, this method can be easily adapted to
handle more complex survival functions as shown by Crowther et al. [147].

Given the definition of g(t), survival data are simulated on a patient level adjusting
for covariates such that.

Si = Sexp{—

T (z
i

)}
0

.
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For the purposes of this simulation study, data are simulated for patients randomised
to one of two treatment arms with a log hazard ratio of —Arm = 0.6. Data are simulated
to ensure that half of the patients are randomised to each treatment arm. A second
covariate is simulated which follows a standard normal distribution zcov ≥ N(0, 1) and
is connected to the baseline survival function via a log hazard ratio of —cov = 0.1.

Given survival estimates at defined time-points, a survival function, g(t) is obtained
assuming a spline function and adjusted due to the appropriate covariates. Survival
times for each patient are obtained using a five step process defined below. No admin-
istrative censoring is applied as part of the simulation study.

1. Simulate treatment arm and covariate information for each patient

2. For each patient, calculate survival function based on baseline priors and covariate
values

3. Simulate survival probabilities from a uniform distribution

4. Derive survival times

To aid interpretation, this process is illustrated in Figure 5.6.
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Figure 5.6: Illustration of the process of simulating survival time data using cubic
splines to estimate the baseline survival function
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5.5.3 Analysis of results

The results of the study are presented here in terms of model bias as a means of
evaluating the point estimate and the ACIL as a means of evaluating the measure of
spread of the point estimates. Further results on model accuracy and coverage are not
included here for brevity.

Table 5.3 shows the results from the simulation study. For the time-grid defined
by the number of events, partitions are defined by having five, ten and twenty events
in each partition. In a similar fashion, time-grids defined by the number of partitions,
five ten and twenty partitions are chosen.

The results in Table 5.3 show that all approaches demonstrate good levels of bias
at all sample sizes. As is to be expected, the bias reduces as sample sizes increase. In
terms of ACIL, again the length of the confidence interval is as to be expected. Relative
inspections show that larger ACIL are observed for the paired approaches. Choosing
this approach may therefore result in credibility intervals which are artificially large.

Due to the large amount of information, graphical methods are applied. Here, each
set of results from each of the twelve scenarios are standardised so as to be represented
on the same scale. Figure 5.7 shows the standardised absolute bias against the stan-
dardised absolute ACIL. Both the bias and ACIL are standardised by subtracting the
overall mean for each summary and scaling by the observed standard deviation. Here,
points that are represented towards the bottom left corner represent the best perform-
ing time-grid. This plot is useful for showing firstly the best performing time-grids and
secondly consistency of di�erent strategies across the di�erent scenarios.

Take for example, the Demarqui time-grids (orange), these are not only the best
performing, but they are consistent across di�erent scenarios. Also good performers
are the fixed time-grid approach (Kalb. - light blue) and the scenario defined by having
5 partitions (n.part (5) - dark green). Also highlighted in Figure 5.7 are the results
from the Cox model (black) for reference.

In terms of consistency of performance, the approaches based on the number of
events per partition and those based on at least 10 or 20 partitions (shades of red and
green respectively) demonstrate the greatest spread indicating that these approaches
are somewhat dependent on either the number of events or the censoring mechanism
employed. The paired events (shades of blue) show clear evidence of consistently larger
ACIL estimates. Lastly note that the results of including an exponential model results
in consistently the largest bias although the ACIL are among the smallest observed.
This illustrates how assuming the wrong relationship can result in systematically biased
estimates.
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Figure 5.7: A visualisation of the simulation study results via standardised bias and
ACIL estimates.

5.6 Discussion

This section investigated the use of Bayesian techniques for the analysis of time-to-
event data. In a pure Bayesian framework, direct fitting of the standard Cox model is
troublesome due to the di�culty of using MCMC techniques on the partial likelihood
formulation in statistical packages such as WinBUGS. Furthermore, there are practical
advantages in having a parametric form for the baseline hazed function that can aid in
practical interpretation of any survival model.

The approach chosen as an alternative to the Cox model is the piecewise exponential
model as detailed in Chapter 2. This has the advantage of being flexible enough to fit a
large number of hazard functions and provides a fully parametric form for the survival
function. Furthermore, the work by Laird and Oliver [59] allows that the models easily
fit in a Bayesian framework.

This approach was applied to the analysis of the data from the ESPAC-3 trials. All
models are applied using manual MCMC routines coded using the statistical package
R and some practical issues discussed. It was shown how models such as these can
provide an improved insight into patient prognosis from a clinical perspective.

A necessary requirement of the PEM is the setting of a time-grid, denoting the points
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in the time domain within which the hazard rates are constant. A number of di�erent
strategies were investigated and it was shown that a time-grid that is considered itself
as a random quantity to be estimated, as introduced by Demarquie et al. [145], to be
the most consistent and reliable approach.

Generally however, a wide number of approaches gave consistently reliable ap-
proaches and the overall levels of bias associated with any approach were small. As
a result any reasonable approach may be chosen and attention should be on limiting
the computational burden - especially for large datasets. For example, choosing a fixed
time-grid as proposed by Kalbfleish can result in reliable estimates and can greatly
reduce the computational burden. For simplicity, this is the approach that is taken
throughout the reminder of this thesis.
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Censoring
Sample Size Time-Grid 5% 10% 25% 50%

100

Kalb. -0.01 (0.84) 0.02 (0.87) 0.01 (0.95) 0.02 (1.17)
n.event (5) -0.02 (0.84) 0.03 (0.88) 0.01 (0.96) 0.03 (1.18)
n.event (10) 0.01 (0.85) 0.05 (0.89) 0.03 (0.96) 0.05 (1.20)
n.event (20) 0.04 (0.87) 0.07 (0.89) 0.05 (0.98) 0.06 (1.20)
n.part (5) 0.04 (0.87) 0.07 (0.89) 0.05 (0.98) 0.05 (1.20)
n.part (10) 0.03 (0.86) 0.05 (0.89) 0.03 (0.97) 0.03 (1.18)
n.part (20) -0.01 (0.85) 0.01 (0.87) 0 (0.95) -0.01 (1.16)
paired (1) 0.04 (0.88) 0.07 (0.91) 0.06 (1.00) 0.07 (1.24)
paired (3) 0.05 (0.9) 0.08 (0.94) 0.07 (1.03) 0.08 (1.3)
paired (5) 0.05 (0.93) 0.09 (0.96) 0.08 (1.07) 0.08 (1.39)
Demarqui 0.00 (0.82) 0.02 (0.84) 0.00 (0.92) 0.03 (1.13)
Split Lik. 0.07 (0.83) 0.11 (0.86) 0.08 (0.94) 0.11 (1.16)

Exponential -0.16 (0.81) -0.14 (0.83) -0.15 (0.91) -0.13 (1.12)
Breslow 0.04 (0.87) 0.07 (0.90) 0.05 (0.98) 0.06 (1.20)

Cox 0.04 (0.87) 0.07 (0.90) 0.06 (0.98) 0.08 (1.21)

250

Kalb. 0.01 (0.53) -0.01 (0.54) 0.00 (0.60) 0.03 (0.73)
n.event (5) 0.01 (0.53) -0.01 (0.54) 0.02 (0.60) 0.03 (0.73)
n.event (10) 0.03 (0.53) 0.04 (0.55) 0.05 (0.61) 0.07 (0.75)
n.event (20) 0.07 (0.54) 0.05 (0.56) 0.05 (0.61) 0.08 (0.75)
n.part (5) 0.07 (0.54) 0.05 (0.56) 0.06 (0.61) 0.09 (0.75)
n.part (10) 0.07 (0.54) 0.05 (0.56) 0.06 (0.61) 0.08 (0.75)
n.part (20) 0.06 (0.54) 0.04 (0.56) 0.04 (0.61) 0.05 (0.74)
paired (1) 0.07 (0.55) 0.05 (0.56) 0.06 (0.62) 0.09 (0.76)
paired (3) 0.08 (0.55) 0.06 (0.57) 0.07 (0.63) 0.10 (0.78)
paired (5) 0.08 (0.56) 0.06 (0.58) 0.07 (0.64) 0.11 (0.79)
Demarqui 0.03 (0.52) 0.00 (0.53) 0.01 (0.58) 0.04 (0.71)
Split Lik. 0.08 (0.52) 0.06 (0.54) 0.08 (0.59) 0.11 (0.72)

Exponential -0.13 (0.51) -0.15 (0.52) -0.14 (0.57) -0.12 (0.71)
Breslow 0.07 (0.54) 0.05 (0.56) 0.06 (0.61) 0.09 (0.75)

Cox 0.07 (0.54) 0.05 (0.56) 0.06 (0.61) 0.09 (0.76)

500

Kalb. 0.02 (0.37) 0.01 (0.38) 0.02 (0.42) 0.01 (0.52)
n.event (5) 0.03 (0.38) 0.02 (0.39) 0.03 (0.42) 0.00 (0.51)
n.event (10) 0.07 (0.38) 0.02 (0.38) 0.07 (0.43) 0.02 (0.52)
n.event (20) 0.07 (0.38) 0.06 (0.39) 0.07 (0.43) 0.06 (0.53)
n.part (5) 0.07 (0.38) 0.06 (0.39) 0.08 (0.43) 0.06 (0.53)
n.part (10) 0.07 (0.38) 0.06 (0.39) 0.08 (0.43) 0.06 (0.53)
n.part (20) 0.07 (0.38) 0.06 (0.39) 0.07 (0.43) 0.06 (0.53)
paired (1) 0.07 (0.39) 0.06 (0.4) 0.07 (0.44) 0.06 (0.53)
paired (3) 0.08 (0.39) 0.06 (0.4) 0.08 (0.44) 0.07 (0.54)
paired (5) 0.08 (0.39) 0.07 (0.4) 0.08 (0.44) 0.07 (0.54)
Demarqui 0.04 (0.37) 0.02 (0.38) 0.03 (0.41) 0.02 (0.5)
Split Lik. 0.09 (0.37) 0.07 (0.38) 0.08 (0.41) 0.08 (0.51)

Exponential -0.13 (0.36) -0.14 (0.37) -0.13 (0.41) -0.14 (0.5)
Breslow 0.07 (0.38) 0.06 (0.39) 0.08 (0.43) 0.06 (0.53)

Cox 0.07 (0.38) 0.07 (0.39) 0.08 (0.43) 0.07 (0.53)

Table 5.3: Table to show the results of the simulation study for a number of di�ering
time-grids in terms of bias (ACIL)
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Chapter 6

Bayesian Design of Clinical Trials
with Time-to-Event Endpoints

6.1 Introduction

In this chapter, Bayesian methodology for the design of clinical trials is reviewed,
paying particular attention to Bayesian sample size calculations. Initially an overview
of the literature of Bayesian methods with respect to clinical trials design is given,
following this Bayesian sample size methodology is reviewed and the key di�erences to
frequentist approaches highlighted. The application of Bayesian methods to survival
data is emphasised along with the importance of specifying a baseline hazard function.
Finally, the ViP trial, investigating two chemotherapy treatments for patients with
advanced pancreatic cancer, is re-designed from a Bayesian perspective. Note that
throughout this chapter, whilst trial design is considered from a Bayesian perspective,
no consideration is given to the uses of informative priors to inform trial design and
analysis, this will be explored in Chapter 7.

6.2 Bayesian clinical trials

In practice, frequentist clinical trial design methods are dominant. Many funding bodies
in particular will request frequentist quantities such as power and alpha levels to be
set. There remains however, a large quantity of literature investigating Bayesian design
methods for clinical trials. As far back as 1988 Sylvester [148] explored a Bayesian
method for the design of phase II clinical trials, and these methods have begun to be
used in practice.

Most notable is the MD Anderson centre, which as of 2005 had 20% of all trials
designed from a Bayesian perspective [149]. More recently, two further reviews of
Bayesian methodology, one with regard to medicine [18] and another more specific to
the pharmaceutical industry [19] have evaluated the development of Bayesian methods
over the previous 25 years.
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It is clear that the decision over whether to use a frequentist or Bayesian frame-
work (or some mix of the two) in clinical trials is a topic of some debate and given
the increasing literature with respect to Bayesian trial design, Statistics in Medicine
presented two publications by Berry [150] and Whitehead [1] who argue the case for
each framework respectively. Here in particular, Berry argues against the ‘rigidity’ of
the frequentist framework and notes that interpretations of trial results under a fre-
quentist design are less direct, do not make use of all available information and are
valid only under the pre-specified design conditions. The point is further made that
frequentist designs are typically dependent upon two quantities, ‘power’ and ‘clinically
relevant di�erence’ which are both chosen arbitrarily and often manipulated to ‘...give
a sample size acceptable to investigators and sponsors’. A point reinforced by Amri and
Kordestani [2] who note that the observed true magnitude of a di�erence is ‘...nearly
always less than what was predicted at the time the trial was designed’. It is further
noted that as a Bayesian trial can be analysed independent of any design conditions, no
formal design parameters are required to begin a trial. Whitehead by contrast argues
that for phase III trials in particular, a Bayesian approach should be discouraged due
the possibility for subjectivity to enter the interpretation of results and that when a
specific question is required to be answered, the frequentist approach can provide ‘...one
of the most powerful tools of clinical research.’

With the growing accessibility of Bayesian techniques the Statistics in Medicine
journal presented four further papers prefaced by Herson [13] with the specific aim of
investigating the Bayesian analysis of cancer clinical trials. Specifically Wieand and
Cha [17] introduce a trial designed under a frequentist framework to compare five
treatments against a control arm for the treatment of patients with colorectal cancer.
To the trial data, Dixon and Simon [14] consider using a Bayesian subset analysis
to analyse the trial, whereas Freedman and Spiegelhalter [15] use Bayesian sequential
stopping rules with informative priors on the hazard ratios. Lastly, Greenhouse [16]
provides a review of the methods applied and shows that the overall conclusions between
the two frameworks are in agreement.

Despite the dominance of frequentist methodology, interest in the Bayesian ap-
proach was clearly growing and to this end, Spiegelhalter et al. [151] provided a set
of practical approaches for applying Bayesian techniques to clinical trials with Hughes
[152] suggesting a set of guidelines for reporting of trials in a Bayesian framework.
Following this, Spiegelhalter et al. published a book discussing the use of Bayesian
methodology in medical research [21].

Still, practical uptake has been slow and consequently publications by Howard et
al. [11], Gonen [10] and Moye [27] all encouraging the use of Bayesian methods. Fur-
thermore, Berry [153, 3] argues for the use of Bayesian techniques in cancer research,
citing the increased e�ciency and making ethical arguments. Lastly both Perneger [5]
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and Berry [4] argue that Bayesian methods are more readily interpretable by medical
professionals.

The majority of the literature concerning Bayesian methodology for trial design
focuses around Phase I and Phase II trials. Phase I trials concerned with dose esti-
mation are explored by Gatsonis and Greenhouse [154] and Whitehead [155]. A trial
that makes uses of an adaptive Bayesian approach to assess both e�cacy and safety
is considered by Berry et al. [156], whereas Fan et al. [157] consider Bayesian Phase
I trials designed from a decision theoretic perspective. Chevret [158] considers Phase
I trials using a continual reassessment method, a unique feature of Bayesian designs
which allows for the trial to be assessed after each individual patient is evaluated.

For Bayesian techniques following on from phase I trials, Thall and Estey [159] con-
sider an approach for screening treatments to determine which is the most appropriate
to carry through to a Phase II trial. For Phase II designs, both Tan and Machin [160]
and Lewis and Berry [161] consider group sequential designs. Both Bandyopadhyay et
al. [162] and Zhao et al. [163] consider two stage designs with a survival endpoint.
Johnson and Cook consider the continual reassessment method in a Phase II setting
whereas Parmar et al. [164] consider the monitoring of clinical trials using ‘enthusiastic’
and ‘sceptical’ priors with applications. Resnic [165] focuses on Bayesian methodology
to monitor trial safety.

Adaptive designs, whereby the trial design is altered based on accumulated results
have been explored by Berry [166, 167] and Yin et al. [168]. The latter of these use a
predictive probability approach whereby the predicted results of the trial are estimated
and used to inform the randomisation procedure during the trials progress. These are
further utilised by Inoue et al. [169] who propose a method for seamlessly expanding
from Phase II to Phase III, by Lee and Liu [170] who show that a predictive probability
approach can be more e�cient than frequentist approaches and by Hong and Shi [171]
who use the approach to aid the decision to progress to a Phase III trial.

6.3 Bayesian sample size calculation

In this section, the theory behind Bayesian sample size calculations is considered. Pre-
vious reviews of which, and comparisons to a frequentist framework, have been given
by Addock [172] and more recently Inoue et al. [173]. Please note that throughout
this chapter, the traditional notation for Type I and Type II error rates as – and —

respectively are used. These are not to be confused with the intensity function and log
hazard rate parameters used in previous and forthcoming chapters.

Sample size calculations for specific data types have been previously explored, see
M’Lan et al. [174] for binomial responses and Joseph and Belisle [175] for normal
responses. Both Gould [176] and Gubbiotti and De Santi [177] consider the design of
equivalence studies. Typically however, due to the added complexity in the Bayesian
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framework, there are few analytical solutions to the Bayesian sample size problem. As
a result simulation techniques are generally required, an approach for which is well
defined by Wang and Gelfand [178] and Rubin and Stern [179]. These make use of
utility functions on the posterior distribution of interest such as those described by
Lindley [180] and Pham-Gia [181].

Under the typical design of a Phase II/III randomised clinical trial, the aim in a
frequentist framework is to control the Type I and Type II error rates. These design
parameters are defined conditional on some fixed minimum clinically relevant di�erence,
denoted ”. A di�erence that must be observed for a trial to be determined a success.

Using the notation of Chow et al. [182] denote the trial outcome as positive (nega-
tive) using C = + (C = ≠) and the ‘true’ outcome as T = + (T = ≠). In a frequentist
framework the definitions for – and — are given by

– =Pr(C = +|T = ≠)

— =Pr(C = ≠|T = +).

A frequentist trial will then control designed parameters conditional on the ‘true’
trial outcome which can never be known. Further criticisms of the frequentist approach
to be noted are:

• Typically frequentist sample size calculations will be based on some estimate of
the standard deviation for the key parameter of interest. This parameter is often
treated as known when it rarely is.

• Often prior information regarding the treatment e�ect or behaviour about a par-
ticular treatment arm may be available at the design stage but must be disre-
garded in a frequentist framework.

• Setting a minimum clinically relevant di�erence, ”, can be di�cult in practice.

Further di�culties have been noted as to the e�ect on trials that a minimum clini-
cally relevant di�erence can have. In many areas, such as oncology, any improvement,
however small, may be considered clinically relevant. Designing trials on this basis re-
sults in unfeasibility large trials however. This can lead, as has been previously noted,
to values of ” being set to satisfy a sample size calculation and therefore undermines
the rigorous philosophy of a frequentist design. Furthermore, it allows for trials to
observe a statistically significant di�erence but a point estimate that does not pass the
criterion of being clinically relevant.

Bayesian sample size estimations are advantageous as they not only account for
any parameter uncertainty, in key or nuisance parameters, but also can build in prior
information at the design stage. Furthermore, as Bayesian designs typically rely on
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simulation approaches, any layer of complexity/variability required can be built into
the modelling approach and provide more informed sample size calculations than may
otherwise be available.

To describe Bayesian sample size calculations, first consider that a trial is to be
conducted which will collect data x which it is planned to model based on some pa-
rameters ◊. Assume the final analysis will be based on a model which will provide a
log likelihood of the form l(◊|x). Given Pr(x|◊) is proportional to l(◊|D) and the prior
distribution for the model parameters, Pr(◊), the marginal distribution for the data x

is

Pr(x) =
⁄

�

Pr(x|◊)Pr(◊).

The full posterior distribution in a Bayesian analysis is dependent on the marginal
distribution. The Bayesian approach to sample size calculations are not based on
controlling Type I and Type II error, rather they concentrate on controlling aspects of
the posterior distribution. Denote the statistic on which the posterior distribution is
evaluated as T (x). Many forms of T (x) have been previously proposed. Three popular
approaches given by Joseph and Belisle [175] are the Average Coverage Criterion (ACC),
the Average Length Criterion (ALC) and the Worst Outcome Criterion (WOC) with
Wang and Gelfand suggesting two further approaches, the Average Posterior Variance
Criterion (APVC) and the probability of detecting a treatment e�ect of size ”ú. These
criteria are described in further detail in Sections 6.3.1 to 6.3.5.

Typically, analytical solutions are not available and so simulation approaches are
required. The approach taken is set out by Wang and Gelfand [178, 183]. The general
formulation is

1. Sample a value ◊̃ from the prior distribution Pr(◊)

2. Sample data x̃ from the marginal distribution, dependent on ◊̃

3. Calculate T (x̃)

4. Repeat the process for a total of N simulations

From N simulations we can directly calculate E[T (x)] as the arithmetic mean of
T (x̃) over all simulations and P[T (x)] œ A as being the proportion of the N simulations
for which T (x̃) belongs to A.

6.3.1 Average coverage criterion

Here some fixed length of the posterior distribution is set and the aim is to estimate
the coverage of the posterior distribution provided by a given sample size. Define the
point estimate (mean or median) of a symmetric posterior distribution for Â and set
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some fixed length l such that an interval A(y(n)) = (Â ≠ l/2, Â + l/2) can be formed.
Given some – Ø 0, define the ACC as

E[Pr(Â œ A(y(n))|y(n))] Ø 1 ≠ Ÿ.

For non symmetric distributions, the length l can be amended to represent some
highest posterior density (HPD) such that A(y(n)) = {Â : Pr(◊|y(n)) Ø cn(l)}. Here
cn(l) is chosen such as the Lebesque measure of A(y(n)) = l. Typical values of Ÿ are
0.05 or 0.1 which are equivalent to 95% and 90% credibility intervals.

6.3.2 Average length criterion

Similarly to the ACC, here the coverage of the posterior density is fixed and a length
of some desirable credibility interval is calculated for a given sample size. As with
the ACC we can define the length l either assuming a symmetric distribution or
via an HPD for non-symmetric distributions. Firstly define the interval A(y(n) =
(F ≠1

Â|y(n)(Ÿ/2), F ≠1

Â|y(n)(1 ≠ Ÿ/2)) where F ≠1

Â|y(n)(Ÿ/2) defines the Ÿ/2 quantile of the pos-
terior distribution. The ALC is obtained by a given n which satisfies

E[F ≠1

Â|y(n)(1 ≠ Ÿ/2) ≠ F ≠1

Â|y(n)(Ÿ/2)] Æ l.

6.3.3 Worst outcome criterion

For each of the ACC and the ALC there is a 50% chance that the the coverage/length
will be greater than what is desired as it only controls the required quantities on average.
When this is of concern, the worst outcome criterion (WOC) is a viable alternative.
Here, of instead of using the expectation some appropriate subset of the sample space
S

0

is defined such that

inf
ynœS0

[Pr(Â œ A(y(n))|y(n))]

6.3.4 Average posterior variance criterion

The average posterior variance approach aims to control the variance of the posterior
distribution V ar(Â|y(n)) and seeks an n for some ‘ Ø 0 such that

E[V ar(Â|y(n))] Æ ‘.

6.3.5 E�ect size criterion

In the clinical trials setting, it is often the case that interest lies in whether or not a
parameter is greater than (or less than) some pre-specified e�ect size. This may, or
may not be analogous to a minimum clinically relevant di�erence under a frequentist
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framework. Setting some threshold value as Âú, a sample size n is obtained which
satisfies

E[Pr(Â > Âú|yn)] Ø Í.

Here Í is some given quantile of the posterior distribution. In many situations it is
simply set that Âú = 0 which would represent evidence of some positive e�ect.

6.3.6 Successful trial criterion

The e�ect size criterion is extended by considering that at the outset of a trial, there
are conditions under which the trial would be considered a success. The Successful
Trial Criterion (STC) is then set up to estimate the probability that the posterior
distribution of the key parameter of interest meets some pre-defined criterion.

Taking for example the situation where a trial would be defined a success if a
su�cient proportion of the posterior density Â is greater than (or less than) some
threshold value Âú, we estimate n to satisfy the criterion

P
)
Pr(Â(Ë) Ø Âú|y(n))

*

where Â(Ë) is the Ë level of the posterior distribution. Here for example, setting Ÿ = 0.1
and Âú = 0 would consider the trial a success only if the 0.1 quantile of the posterior
distribution is less than zero. Note that this criterion can be used to provide Bayesian
equivalents of the frequentist Type I and Type II error rates although these are some
what dependent on the prior distributions that are set for the parameters in the model.
Treating all design parameters as fixed and setting prior distributions for the parameter
of interest to match the null and alternative hypotheses with zero variance will give
results analogous to frequentist Type I and Type II errors.

6.4 Bayesian sample size for survival data

Here it is shown how Bayesian design criteria are applied to time-to-event data. An
illustration is provided with respect to the ViP trial carried out at the Liverpool Cancer
Trials Unit to compare a treatment arm of combination chemotherapy, consisting of
gemcitabine and vandetanib, against an arm of gemcitabine alone in patients with
advanced pancreatic cancer.

Sample size calculations for clinical trials such as this are traditionally carried out
in two steps. Firstly, the number of events are calculated, typically using Schoenfeld’s
formula [184] or Freedman’s approximation [185]. Having determined the number of
events required, some information is required regarding the survival distribution for the
patient population under consideration to calculate the number of patients required.
Often this step is carried out assuming the survival distribution to be fixed without
allowing for any parameter variability.
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An approach to Bayesian sample size calculations for survival data is proposed based
on the assumption of proportional hazards and using a Piecewise Exponential Model
(PEM), the likelihood for which is obtained by equation (2.6) in Chapter 2.

The PEM is dependent upon a parametric baseline hazard function, defined by
the parameters ⁄ and the log hazard ratio —. Prior distributions for both of these are
required. From an analysis perspective, it may be desirable to leave both of these vague
and uninformative. This can be damaging regarding trial design however as declaring
that all survival functions are equally likely is unrealistic. In reality there is a good
basis of information on the survival function. Indeed, it is typically treated as fixed in a
frequentist framework. Methods for deriving baseline hazard parameters for the design
and analysis of survival data are the main topic of Chapter 7 and are not discussed any
further here.

The approach of Wang and Gelfand is followed in setting informative ‘design’ priors
to estimate a sample size without specifying that these are required for the analysis of
future trial data.

Given data D, define the marginal distribution for the piecewise exponential model
as

Pr(x) =
⁄

�

Pr(D|⁄, —)Pr(⁄)Pr(—).

Simulating times from the sampling distribution is not straight forward due to
the complex nature of the likelihood in use. Survival times are then simulated from
the marginal distribution using the method of Bender [128] and following the steps of
Section 5.5. Assuming a derived survival function S(t|⁄) given by (5.2), and derived
from parameters taken from the design priors for ⁄ and —, a single patients survival is
obtained by simulating from a uniform distribution with limits (0, 1). A survival time,
t̃, is then derived based from

t̃ = [≠ log(S(t) ≠
j≠1ÿ

g

(ag ≠ ag≠1

)]/⁄j + aj (6.1)

This formulation requires that it is known which partition each patient belongs. For
a large number of observations, using (6.1) can become cumbersome. On this basis, a
set of survival times may be taken from

tú = [log{S(t)} ≠ �]„≠1, (6.2)

where � =
qJ≠1

i=1

qi
g=1

„g≠1

rg and r is the distance between successive measurements
of the time-grid such that rg = ag ≠ ag≠1

. In this form, tú is a vector of length J ≠ 1.
Further adjust tú

j = min(0, tú
j ) and tú

j = max(sj , tú
j ) for each j. Following this, set

t̃ =
qJ

j=1

tú to obtain simulated survival times t̃.
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Denote S
0

(t|⁄) as the survival function for the control arm and S
1

(t|⁄, —) = S
0

(t|⁄)exp{—}

as the survival function for the experimental arm. The approach taken is to first simu-
late survival probabilities S

0

(t|⁄, —) and S
1

(t|⁄, —) from a standard uniform distribution
and use the results above to generate survival times. A censoring mechanism is gen-
erated assuming that the censoring mechanism is independent of the data generating
mechanism for the survival times. In this case, censored patients are established by
firstly applying ‘administrative’ censoring to any survival time larger than the maxi-
mum follow-up time of the study. Secondly, random censoring is applied using the same
approach as Section 3.4 whereby a small number of patients are randomly selected as
censored to control the overall censoring rate to match that of previous trial data.

6.4.1 Bayesian design of ViP

Here application of Bayesian sample size theory to the ViP trial for advanced pan-
creatic cancer is carried out. Note however that although a Bayesian methodology is
being applied, no advocation for the use of any informative priors is included here.
Investigations into informative design priors that may be used for the Bayesian design
of a clinical trial are the main focus of Chapter 7. Please note that throughout this
section, the notation of — to represent the log hazard ratio is retained and is not to be
confused with the power attributed to a study design.

The initial trial was designed from a frequentist perspective with Type I and Type
II error rates both set to 0.1 and a minimum clinically important di�erence given by
a hazard ratio of 0.6. The initial sample size formula concluded that 100 events were
required for the trial.

Information regarding the survival distribution for the intended patient population
is derived from 3 previous trials [186, 187, 188], all of which included a group of patients
with a similar prognosis who received gemcitabine alone. Figure 6.1. shows the survival
curves from these trials. Using this information the initial sample size calculation
estimated that 120 patients with a minimum of 12 months follow-up would be required
to obtain 100 events.

To estimate the required sample size, definitions are required for the criteria under
which the trial is designed. That is, for the ACC a length ‘lÕ is required, for the ALC a
coverage level is required, for the e�ect size criterion a threshold value Âú is required and
for the successful trial criterion an Ë level of the posterior distribution and a threshold
value are both required.

Re-designing ViP from a Bayesian perspective requires re-evaluating the initial aims
of the trial as noted by Simon [189]. As has been previously stated, both the Type I and
Type II error rates are quantities that are calculated by conditioning upon some fixed
value of the key parameter of interest (typically — = 0 and — = ”). As the Bayesian
perspective assumes — to itself be random variable, fixing it at some arbitrary values is
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Figure 6.1: Kaplan Meier plot of the trials including a Gemcitabine arm in patients
with advanced pancreatic cancer in preparation for the design of the ViP trial

not appropriate.
The ViP trial will be a success in a frequentist framework if a one-sided P-value less

than 0.1 is observed. From a Bayesian perspective, the trial is considered successful if
less than 10% of the posterior distribution is greater than zero. Based on this, setting
a desired coverage for the ALC of (0.1, 0.9) seems reasonable. A minimum clinically
relevant hazard ratio of 0.6 (a log hazard ratio of ” = ≠0.51) was set and with this is
mind, l/2 Æ ” is required and a value of l = 0.8 is chosen as a conservative measure
to ensure that if a clinically relevant di�erence is observed, then a posterior credibility
interval should not contain zero.

For completeness, an e�ect size of interest is set as being Âú = 0. Another option
may be to set Âú = ” however here it is considered that any value of — > 0 is of clinical
interest. For a successful trial criterion set Ë = 0.1 and retain Âú = 0. Here, a successful
trial is defined if <10% of the posterior distribution is greater than zero. This allows
evaluation of success directly under conditions that replicate the initial trial design.

A summary of the design conditions are given in Table 6. For completeness when
designing the trial the variance criterion (VAC) is also assessed by setting a standard
deviation of ‡ = 0.24. This is chosen to give an approximate 95% interval length to
match the conditions of the ACC. Lastly, the worst outcome criteria (WOC) is set as
being the maximum length obtained to give a coverage of (0.1, 0.9).

Having defined the design criteria for the trial, the estimation of these criteria are
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Design Criterion Critical Value
ALC coverage = (0.1, 0.9)
ACC length = 0.6
VAC ‡ = 0.241
ESC Âú = 0
STC Âú = 0, Ë = 0.1
WOC coverage = (0.1, 0.9)

Table 6.1: Table illustrating the design criteria for the Bayesian design of the ViP trial.

illustrated through the means of a single sampled dataset. Following the design priors
approach of Wang and Gelfand [178], prior distributions for the baseline hazard function
and the log hazard ratio are required from which the data will be sampled. The prior
distributions for the baseline hazard function in turn depend upon the specified time-
grid. Here a fixed time grid of a = (0, 3, 6, 12, 18, 30) is set. The design priors for the
log baseline hazard parameters ⁄ and the log hazard ratio — are set as

⁄ ≥MV N(“, �
“

) (6.3)

— ≥N(log(0.6), 1/3). (6.4)

With values of “ = (≠2.68, ≠2.12, ≠2.02, ≠2.15, ≠2.73), the covariance matrix,�“ is
a diagonal matrix with elements given by (0.33, 0.41, 0.50, 0.58, 0.66). Further discussion
on the derivation of prior distributions for the baseline hazard function are the topic
of Chapter 7. The prior for — is set to have a mean equal to the minimum clinically
relevant di�erence of the original trial design, and a variance of 1/3. This keeps the
trial design consistent with the initial trial design, the value for the variance is chosen
so that 99% of the prior distribution is of approximate length two.

To describe the sampling procedure of a Bayesian design, initially a single dataset
is investigated. Sampling a single set of parameters from the prior distributions, values
are obtained such that ⁄̃ = (≠3.62, ≠2.63, ≠2.31, ≠1.66, ≠1.74) and —̃ = 0.34. A single
dataset of 100 patients is sampled from these parameters using the approach defined
in Section 5.5. The Kaplan Meier estimates from these data are shown in Figure 6.2.
Also shown are a set of 1,000 draws from the baseline hazard function from which the
data are sampled.

To the sample data a Bayesian piecewise exponential model is fit with non-informative
prior distributions. For simplicity, in this case the time-grid is kept as fixed. In practice
however, redefining the time-grid in light of the sampled data may be carried out. The
model parameters from this model are given in Table 6.2. Note that the model param-
eters do not match exactly the sampled parameter estimates from the design priors,
due to the random variability that is introduced in the sampling of survival times.

For the single dataset, the posterior distribution for — is used to estimate the design
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Figure 6.2: Illustration of the behaviour of the survival function under the sampling
priors for ⁄. Also plotted are the data from a single simulated dataset, the sampled
parameters here are ⁄̃ = (≠2.96, ≠2.18, 2.04, ≠2.11, ≠2.82) and —̃ = ≠0.34

Mean (Std. Dev.) (95% Cred. Int)
⁄

1

-2.638 (0.257) (-3.166, -2.159)
⁄

2

-2.619 (0.279) (-3.191, -2.105)
⁄

3

-2.168 (0.212) (-2.597, -1.763)
⁄

4

-2.666 (0.335) (-3.366, -2.044)
⁄

5

-1.645 (0.237) (-2.135, -1.204)
— -0.245 (0.205) (-0.658, 0.153)

Table 6.2: Table showing the parameter summaries from the analysis of a single sampled
dataset from the sampling distribution with design priors.

criterion defined in Section 6.3 with the criteria set in Table 6.1. Figure 6.3 shows
the posterior probability density from the single sampled dataset. Also shown are an
illustration of how each criterion is evaluated. Note that the worst outcome criteria is
not included here as this is only evaluated over all simulated datasets.

It is observed that for this sample dataset, the length of the posterior distribution
that covers the 80% credibility interval is 0.85. Conversely, for a fixed length of l = 0.6,
we would obtain a coverage of 0.75. The e�ect size criterion here shows that 0.01% of
the posterior distribution is greater than Âú = 0. Lastly the successful trial criterion
here gives a value of 1 as the 10% quantile of the posterior distribution is greater than
the threshold value indicating that we would conclude from this trial that the treatment
is e�ective and worthy of further investigation.
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Figure 6.3: The posterior distribution distribution for —̃ from a single sampled dataset
with Bayesian sample size criterion

The full Bayesian design criteria are obtained by simulating further datasets and
evaluating the criteria over all simulated datasets. Expectations of ACC, ALC, VAC
and EFC are obtained by taking the arithmetic mean of the criteria and the probability
of a successful trial is calculated as the proportion of occasions that a successful trial is
observed. The WOC is obtained as the maximum length giving a coverage of (0.1, 0.9)
over all datasets.

Data are simulated under total sample sizes of N = (60, ..., 150) by intervals of ten.
For each sampled dataset 5% of the observations are randomly selected to be censored
and further administrative censoring is applied on any survival time t Ø 24 where time
is measured in months.

Five hundred datasets are sampled in total. The results are shown in Figure 6.4.
Here the e�ect that an increased sample size has on each criterion is shown. Taking
initially the ALC, to obtain a coverage of (0.1, 0.9) the length of the posterior distri-
bution required decreases with increased sample size. For example, given the fixed
coverage level, 100 patients are required to ensure an interval length of 0.6 is obtained
(illustrated).

Considering the ACC, it is shown that with a fixed length of 0.6, the coverage of the
posterior distribution increases with the sample size. Here a sample size of 100 ensures
a coverage of 0.8 which is not surprising considering the similarities to the ALC. The
VAC illustrates how the variance (standard deviation) decreases with the increased
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sample size. Here again 90 patients are required to obtain a standard deviation of
0.241.

The ESC and STC are both included here but these criterion are dependent upon
the prior distribution for —. Taking for example the ESC, it is shown how there is a
general decrease from approximately 0.15 to less than 0.1 as sample sizes increase. This
decreases as sample sizes increase as the posterior distribution for — is here more depen-
dent upon the prior distribution Pr(—) and less dependent upon the prior distribution
for the baseline hazard parameters. The STC decreases in a similar fashion. Note
that as here, the Pr(— > 0) is being measured and a decrease in beta is desirable then
1 ≠ STC may be of greater interest. Here for example, as the sample size increases to
150 patients there is approximately an 80% chance of a successful trial being observed.
This is again dependent upon the prior distributions set however and should be treated
with some caution.
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Figure 6.4: Bayesian sample size criteria for the ViP trial

Finally the WOC is considered and it is observed that whilst this decreased with
an increased sample size, as expected due to its relationship to the ALC, there is much
more variability in this criterion. The reason for this is illustrated in Figure 6.5. Here
an illustration is given to the calculation of both the ALC and the WOC. Presented
are the estimated lengths that give the required coverage from each individual sampled
dataset. Both the ALC which is the arithmetic mean of all estimated lengths and the
WOC which is the maximum observed length are shown. In this case the WOC is some
way o� the rest of the estimated lengths and may be considered an outlier. This helps
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to explain the more erratic nature of the WOC.
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Figure 6.5: An illustration of the calculation of the ALC and WOC criteria

Given the six criteria considered in this section, the ALC and the ACC are consid-
ered the most appropriate criteria to use in this setting. The VAC provides a reliable
estimate but it is considered that setting a desired variance (or standard deviation) may
not be a straight forward undertaking prior to a trial. Both the ESC and the STC are
quantities that are overly dependent on the prior distribution for — with the 1 ≠ STC

in particular being interpreted as the probability of observing a statistically important
di�erence. In this regard, similarities to frequentist Type I and Type II error rates
can be obtained but care should be taken here as traditional Type I and Type II error
rates are dependent upon fixed known di�erences between two treatment arms whereas
the STC takes this di�erence (through the prior for —) as a random variable. There is
reduction in the variability for both the STC and ETC for larger sample sizes as there
is less e�ect from the variability about ⁄ and the criteria become more dependent on
the prior distribution for —.

When there is a reasonable amount of prior information the ESC and STC quantities
may be appropriate, however the extra variability in these results suggests that more
simulations may be required which may be computationally expensive. The WOC may
be an appropriate measure conceptually but has practical di�culties which render it
unsuitable in this instance. A utility based on the 90th quantile of the distribution of
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interval lengths may be one solution here as a more conservative measure than the ALC
without the erratic nature of the WOC.

The ALC and ACC both have the attractive properties of controlling desirable as-
pects of the posterior distribution and providing stable estimates upon which sample
sizes can be estimated. They may be criticised as they only control the required quan-
tities on average [182]. That is to say, prior to a trial beggining, there is only a 50%
chance that the trial will control the desired parameter at a given quantity, however
compensations can easily be made to account for this. The choice on whether to control
the length of the interval or the coverage is somewhat arbitrary, and the best choice
may be to use whichever criterion is most accessible to clinicians. Fixing the cover-
age in this case may be the more straight forward approach as many clinicians will
understand the concept of 95% confidence intervals, and may even interpret them as
credibility intervals from the onset [5].

6.5 Discussion

In this chapter the main ideas behind the use of Bayesian methodology for the design
of clinical trials were introduced. The main concepts are compared to the frequentist
methodology typically used in practice and some arguments made for the Bayesian
approach. Bayesian sample size methods typically require some sort of simulation
techniques and it is illustrated how these techniques are applied to a survival context.
Lastly some application to the design of the ViP trial was given.

The purpose of any trial is to gain new information. In a clinical trial setting this will
often, if not always require comparing some new experimental treatment to a placebo
or active control. Intuitively, the concepts of Type I, Type II error and a minimum
clinically relevant di�erence are not as accessible as direct Bayesian probabilities. These
quantities all depend upon estimating some fixed but unknown quantity, declaring that
it needs to pass some threshold value to be of clinical import and then calculating
sample sizes based on these assumptions. Whilst it is claimed that the frequentist
approach has the advantage of objectivity [1], this can be misleading as

• The idea of a clinically relevant di�erence (CRD) is inherently subjective

• Sample size calculations will often be based on assumptions such as the base-
line hazard rate. Typically Bayesians will allow these parameters to be random
variables whereas frequentist methodology will treat them as fixed.

• Parameters such as the CRD, Type I and Type II rates will often be set to arrive
at a suitable sample size [150].

Bayesian designs have the advantage that they can answer the clinical question di-
rectly. For example, ‘what is the probability that an experimental treatment is better
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than the control?’. Sample size calculations are based on the principle of controlling as-
pects of the posterior distributions as opposed to controlling against the chance of being
wrong. Furthermore, Bayesian designs have the added advantage of flexibility, allowing
for changes in the trial without harming the final interpretation whereas frequentist
P-values, being a probability statement based upon the theoretical reproducibility of
the data, can be di�cult to define following alteration to the trial design once the trial
has begun.

Lastly the point is made that a Bayesian design typically implies a Bayesian analysis
although this need not be the case. Furthermore, Bayesian designs do not imply that
some sort of informative priors are going to be incorporated into the analysis of any
trial and can be utilised more for the added freedom they give as opposed to attempting
to alter any analyses with prior opinions.

The flexibility of Bayesian designs can result in additional complexity. Whilst a
Bayesian simulation approach to sample size calculation allows for variability to be
built into multiple aspects of a trial design, it does inhibit the development of a ’one
size fits all’ design package. Typically the user is required to write some simulation
routine tailored to the study they are designing. Here, simulation routines were written
in the statistical package ‘R’, using the code that is provided in Appendix A4. The
di�culty in producing Bayesian designs compared to ease of the standard approach goes
some way to explaining the dominance of the frequentist approach. There is ground
being made however and Bayesian designs are becoming more common which is best
demonstrated by the increasing number of trials designed by a Bayesian approach at
the MD Anderson Cancer Center [149] and there uses in the design of studies with rare
disease [?].

In the next chapter, some exploration into informative priors are made. In partic-
ular, informative prior distributions on the baseline hazard function are set with the
aim to show how such priors can be used to design clinical trials which make a more
e�cient use of costly data.
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Chapter 7

Bayesian Design and Analysis of
a Cancer Clinical Trial with a
time-to-event endpoint

7.1 Introduction

In this chapter, a Bayesian design of a cancer clinical trial with a time-to-event endpoint
using informative priors is considered. Again the ViP trial coordinated by the Liverpool
Cancer Trials Unit (LCTU) is used as an example and a design proposed which makes
use of the historical information available for a single arm of the trial.

This chapter is structured as follows, firstly a review of the uses of historical infor-
mation in the design and analysis of clinical trials is provided. Following this, a method
by which informative prior distributions can be derived from summary information for
a single arm of a trial with a time-to-event endpoint is proposed. Also used are local
step and trapezium priors which are uninformative only when observed data agree with
prior information and are designed to encourage likely solutions when only sparse data
are available.

Lastly, it is demonstrated that the proposed methodology can be incorporated into
the design of the ViP trial, resulting in a trial that can be carried out with fewer
patients.

7.2 Historical controls in clinical trials

All clinical trials with a time-to-event endpoint are designed with reference to previous
trials and/or data. Typically however, whilst historical information may guide issues
such as sample size calculations or estimated event rates, this information is discarded
when analysing the final results of a trial.

The exploration of more formal inclusion of historical information has gained at-
tention. As far back as 1976, Pocock [190] was making a case for the use of historical
controls in clinical trials. Importantly here, Pocock introduces six key criteria which
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should be met in order to compare experimental treatments against historical controls.
It has been noted by Speigelhalter et al. [21] that these conditions may be overly strin-
gent and some relaxation may be reasonable, especially where some allocation is given
to a control arm.

A further review by Sacks et al. [191] in 1982 compared the uses of randomised
controlled trials to historical control trials and noted that using historical controls alone
can lead to bias in the interpretation of trial results. Results such as this have lead to
the domination of randomised control trials.

Attention has been given to the use of historical information to inform elements of
a trial. Initially, the methodology was confined to carcinogenicity studies, Tarone [192]
in particular introducing a method to incorporate historical information in a test for
trends which has been used and adapted in practice [193, 194, 195]. With respect to
trial design, Thall and Simon [196] consider the use of historical information for the
formal use in the design of Phase II studies.

As an extension of the analyses for carcinogenicity trials, methodology for the incor-
poration of historical information to the analysis of Poisson means has been developed
[197, 198] with application of historical controls to the analysis of bioassay data ex-
plored by Chen et al. [199]. Whilst methodology has being developed, its application
outside of carcinogenicity trials remained sparse, despite reviews of Bayesian methods
by Racine et al. [200] commenting on the ‘...tremendous scope for improved design and
analysis using historical information’.

More recently, interest has grown with Ibrahim et al. [201] considering using his-
torical information to adjust covariates in logistic regression models and French et al.
considering their use in three-state models[202]. Chen et al. [203] consider the inclusion
of historical controls into the the Bayesian design of non-inferiority trials with a binary
endpoint.

One approach that has gained popularity is the use of power priors, see for example
De Santis [204]. Here, it is assumed that some previous clinical trial data are available
in their entirety. Historical and current data can then be analysed simultaneously with
the results of the historical data informing the current data weighted by some power
parameter. This approach was applied to survival data by Ibrahim et al. [58] and
further by De Santi [183] who considers this approach for the use of Bayesian sample size
calculations with a simple example set to the parametric exponential survival model.

Further to this, Neuenschwander et al. [205] introduce a meta-analytical approach
of previous trial data for summarising the control information (MAP). Here a single
parameter Îú is assumed to contain all information about a control arm in a trial.
The meta analysis approach allows for both within and between study variability to
be summarised and the authors suggest using the predictive distribution of Îú as a
prior distribution for inclusion in the design and analysis of a future trial. Gsteiger et
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al. [206] summarise Neuenschwander’s approach for the case of over dispersed Poisson
data. Importantly here, aggregate data as well as complete data are used in estimating
Îú.

The idea of a set of robust priors termed ‘commensurate’ has also been explored by
Cook, [207] Fuquene et al. [208] and Hobbs et al.[209]. Here prior distributions influence
the likelihood along with a ‘commensurability’ parameter which measures the degree
of agreement between the information in the prior distributions and that collected in
the data. Where the data agree with the prior information the priors are relatively
informative; where there is poor agreement however, the posterior distributions are
more dependent upon the observed data and the e�ect of the priors is lessened.

A recent review of the di�ering methods of incorporating historical information
in the evaluation of a treatment e�ect is given by Viele et al. [210] comparing the
[205] MAP method to the power prior approach, Pocock’s method and more rudimen-
tary methods of pooling data. Though no recommendations are given, the authors
do promote the methods as a means for obtaining smaller more e�cient trials and for
considering trials with allocation ratios other than the standard 1:1.

Whilst there is some well established methodology for the formal incorporation of
historical priors into the analysis of clinical trials data, some key questions still remain
unanswered. To date, much of of the methodology depends upon historical information
being known in its entirety. This is often impractical. Furthermore, developing priors
only on available data may introduce a level of selection bias into any analysis.

Whilst Gsteiger et al. [206] do explore the inclusion of aggregate data, the appli-
cation of such an approach to survival data presents a number of challenges. Under a
standard two arm trial, the control arm can be defined by the set of baseline hazard
parameters and in the vast majority of survival models, su�cient information will not
be reported for an aggregate meta analytical approach to be a viable option. Further-
more, it is unlikely that a single parameter will be su�cient to contain all information
regarding the control arm of a trial in this context.

In the remainder of this chapter, a method is proposed for estimating baseline hazard
parameters where only summary information is available. Following the estimation of
a historical baseline hazard function, some discussion is given to the definition of prior
distributions and the e�ect these priors have on the design and analysis of a trial with
a time-to-event endpoint.

7.3 Derivation of priors for baseline hazard parameters

Here a method is proposed for the estimation of baseline hazard parameters where only
summary information is available.

Assume initially that prior information, Dp = (Ëp, tp), is available which takes the
form of survival probabilities Ëp at associated time points tp. This information could
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be taken from obtained datasets, published material such as Kaplan Meier curves or
derived from expert opinion.

It is further assumed at the design stage that the data will be modelled using one
of the parametric family of models, i.e. a model which includes some parametric de-
scription of the baseline hazard function as well a hazard ratio upon which the trial will
be assessed. Methodology is presented here specific to the piecewise exponential model
as this provides a flexible modelling approach with practical applications. Adaption to
other parametric forms are not presented here but can be easily obtained.

Assume a PEM and that previous data, Dp, are available in the form of a set of sur-
vival probabilities {�p} along with associated time points {tp}. This information could
be taken from obtained datasets, published material or derived from expert opinion.
Given Dp, the objective is to convert the prior survival probabilities {�p} into survival
probabilities, {„j}, at time points corresponding to those in the time grid used in the
analysis of the PEM {aj}. Estimates of {„j} could be obtained via simple linear inter-
polation or by fitting a spline model with knots Ÿ such that �p = f(tp, Ÿ); estimates
of „j can be taken as the fitted values of the spline function at the partitions of the
time grid. It is the structure {�j} and the time-grid {aj} which are used to estimate
{“j}, the hyper parameters which define the point estimates of the prior distributions
Pr(⁄).

From the definition of the PEM given by 2.2, a survival function is defined as

S(t) = exp
;

≠
Ë
⁄j(t ≠ aj≠1

) +
j≠1ÿ

g=1

⁄g(ag ≠ ag≠1

)
È<

.

Replacing ⁄j with “j and evaluating the survival function at partitions in the time
grid,

„j = exp{≠“j(aj ≠ aj≠1

)}„j≠1

(7.1)

is obtained. Consequently point estimates for prior distributions on a baseline
hazard function are derived via

“j = ≠
log( „

j

„
j

≠1

)
aj ≠ aj≠1

.

A graphical illustration of the process of obtaining point estimates for the prior
densities is given in Figure 7.1.

The full form of the prior distributions depend on whether hazard ratios are mea-
sured on the standard or log scale. Including baseline hazard parameters on a nomi-
nal scale, priors are set using a Gamma distribution for each “j individually such as
� ≥ (÷j , ’j) which is constrained by “j = ÷j/’j . For practical and computational con-
venience, throughout this thesis all baseline hazard parameters are defined on the log
scale and È = log(“) defined. Prior distributions are defined such that
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Figure 7.1: Figure to illustrate the process of deriving parameters for informative prior
distributions on a baseline hazard function. Figure a): the prior estimates of survival
probabilities and associated times are obtained. Figure b): a spline function fitted to
the prior estimates. Figure c): data are observed (rug plot) and the time grid is set.
Figure d): prior parameter estimates “ are obtained and the resulting piecewise model
estimate is given.
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Pr(log(⁄)) ≥ MV N(È, �). (3)

Here � is a j ◊ j covariance matrix with elements fli,j which quantifies the degree
of confidence in the prior parameters. It is assumed a-priori that all baseline hazard
parameters are independent and set fli,j = 0 if i ”= j. This is not to assume that the
baseline hazard parameters themselves are independent, only that there is no prior
knowledge of any correlation between prior parameters. Here this assumption is made
for convenience but may be relaxed by assuming structured correlation structures. Full
definitions of the diagonal elements are non trivial and discussed further in Section
7.3.2

7.3.1 Prior precision for the baseline hazard function

A particular challenge in this approach is to set the precision of the prior distribu-
tions. Fully data dependent methods such as those proposed by Neuenschwander [205]
are based on predictive distributions which allow for both between and within study
variability. Deriving prior probabilities from summary information however makes it
di�cult to obtain reliable estimates of both within and between study variability.

In deriving prior distributions from summary information, clinicians and statisti-
cians need to determine to what degree a future trial can be considered relative to
historical information. Whilst this may be no easy task, this does o�er an advantage
over fully data dependent approaches as prior distributions can be amended to reflect
the degree to which future data are believed to relate to historical information, or
to what extent any scepticism over the validity of historical information exists. For
example if the historical information is taken from data collected a number of years
previously, clinicians may wish to inflate prior variability to account for the fact that
medical standards may have progressed.

Two approaches are explored here, a graphical approach and an approach based
on the e�ective number of events. Both approaches are adapted to weight more prior
information on the earlier partitions as these prior survival estimates are expected to
be more reliable.

For the graphical approach, each of the j diagonal elements of the matrix � is
defined by fljj = cÎj where c is an overall level of variability and Î is a variance inflation
function. In practice, appropriate values of c and Î will be dependent on the amount
of data being analysed and the time-grid that is set and it is for this reason that a
graphical approach is proposed. Examples of prior survival functions are given in Figure
7.3. These figures are obtained by taking samples from the design prior distributions
based on informative priors and converting into survival functions using equation (5.2).
Figures such as these can also be useful in explaining to medical professional how the
prior information is likely to impact on future data analysis.
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As an example, useful functions of Î may be to increases from one to two by
equal steps over the J categories. Other approaches are applicable, for example let-
ting Î = 1/

Ô
aj≠1

, which has the property of allowing prior precision to decrease at a
rate proportional to the assumed survival function.

A more practical approach may be to determine the prior information in the number
of e�ective events. For example, given a prior baseline function, a clinician may state
that they want this function to have the equivalent e�ect of 20 events in an upcoming
trial.

Following this approach, consider that for each individual interval in the PEM,
the hazard rate parameter can be considered to follow a gamma distribution with
parameters ÷j and ’j , where ÷j can be taken as the number of events observed within
an interval and ’j is the patient time at risk. This distribution has mean given by

“j = ÷j’≠1

j

which is estimated using (7.1). As prior distributions are defined on the log scale,
variability about log(“j) can be obtained via the delta method such that

V ar(log “) =V ar(“)[(log “)Õ]2

=÷’≠2(÷’)2

=÷≠1 (7.2)

where Õ represents the first derivative. Denoting hazard rates on the log scale
therefore shows that variability about a baseline hazard rate can be determined using
only the number of events within each interval. Given that a hazard rate and an
e�ective number of events (Ep) has been pre-specified therefore, the prior variability
for each partition ÷j can be defined as

÷j = Ep(„j+1

+ „j)
2

qJ
i=1

„i

.

.
This again weights the available events so that more prior events are attributed to

earlier time partitions as these are the partitions upon which estimates are considered
to have greater reliability. For the remainder of this paper, prior distributions are
formed based on the e�ective number of events approach.

It is lastly noted that it may be reasonable in practice to set more than one set of
prior distributions. Ultimately however, a single scenario may need to be defined on
which a future trial will be assessed.
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7.3.2 Definition of the time grid

A brief note is included here to highlight that the time-grid, which is generally assumed
fixed for the PEM will play an important role in both the derivation of prior parameters
and the analysis of the data. It is possible to have one time-grid that is responsible
for deriving prior distributions, perhaps in a design setting, and a second time-grid
which is data dependent and is used for analysing trial data. One complication in this
approach however is that prior distributions based on the ‘design’ time-grid would have
to be amended in light of the ‘analysis’ time-grid.

Whilst this approach is both feasible and in some respect desirable as the ‘design’
time-grid may be sub-optimal for analysis of trial data, it does introduce an extra layer
of complexity. For this reason, a fixed time-grid as proposed by Kalbfleisch is used
throughout the remainder of this thesis for both the design and analysis of trial data.

7.4 The analysis of time-to-event data with informative
priors on a baseline hazard function

Here, an exploration of the e�ects of an informative prior on the baseline hazard func-
tion is carried out with specific application to the GemCap trial.

Data to be analysed are taken from the Cunningham trial (GemCap) [186], a trial
to investigate the use of Gemcitabine and Capecitabine for the treatment of patients
with advanced pancreatic cancer. The trial recruited a total of 534 patients. The final
analysis, although showing some survival benefit for the Gemcitabine and Capecitabine
arm (P-value = 0.08).

Aside from the GemCap trial, two further trials are available: Herman et al.[187]
and Van Cutsem et al. [188], with total sample sizes of 319 and 301 patients respec-
tively, both of which contain a Gemcitabine arm and are used to estimate baseline
hazard priors. Table 1 provides summaries of the prior information in terms of sur-
vival estimated at given time-points taken from the Herman and Van Cutsem trials
along with arithmetic means of the two, {„p} which shall be use to derive prior point
estimates.

Time (Months) 1 3 6 9 12 15 18 21
Hermann (2005) 0.98 0.84 0.63 0.40 0.30 0.19 0.10 0.06

Van Cutsem (2009) 0.96 0.78 0.50 0.36 0.21 0.18 0.15 0.15
„p 0.97 0.80 0.55 0.37 0.25 0.18 0.12 0.10

Table 7.1: Derivation of prior survival estimates at given time points.

Using a fixed time grid given by a = (0, 3, 6, 12, 18, tú) where tú the maximum
observed time, baseline hazard point estimates, È, are obtained using the methods
outlined in Section 7.2. Here estimates of È = (≠2.60, ≠2.08, ≠2.03, ≠2.10, ≠2.59) are
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obtained.
Figure 7.2 shows the Kaplan Meier survival estimates of each treatment arm of the

GemCap trial along with the fixed time-grid and the survival function derived from the
prior point estimates. Of main interest here is to compare the prior survival function
against the estimates obtained from the Gemcitabine arm of the GemCap trial. Figure
7.2 shows a general good level of agreement although the survival estimates in the
Gemcitabine arm are slightly below that of the estimates obtained from the prior data.
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Figure 7.2: Kaplan Meier estimates from the GemCap data along with an estimate of
the survival function obtained from the point estimates of the prior distributions

Some consideration is now given to the level of variability that is attributed to the
prior point estimates. Here the e�ective events approach as defined in Section 7.3.2 is
followed. In practice, multiple priors which give varying degrees of belief, reflected in
di�ering total number of e�ective events may be set to reflect a reference, sceptical and
optimistic approach suggested by Speigelhalter et al. [21].

It is noted that an attraction of the MAP approach is to account for uncertainty
both within and between studies wheres the pooled baseline estimates e�ectively ignore
any between study variation. With reference to the GemCap study therefore, whilst the
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prior information is reasonably consistent, there may still be a desire to use relatively
vague priors to ensure that the data remain dominant in the interpretation of the trial.
Despite the prior data being derived from approximately 300 events therefore, e�ective
event sizes of 10, 25, 50 and 100 events are investigated. Figure 7.3 provides a graphical
illustration of the survival functions that are obtained from these e�ective numbers of
events.

Figure 7.3: Illustration of the survival functions obtained from informative baseline
hazard priors

For the purposes of this analysis, ’ = 50 e�ective events are chosen to define the
prior distributions, being a scenario which will well accentuate the e�ect of the in-
formative priors without being overly influential. The data from the GemCap trial
are re-analysed using a PEM. Two models are applied, a ‘reference’ model with vague
uninformative priors and a model incorporating an informative baseline hazard prior.
Figure 7.4 shows the prior densities for all parameters along with the posterior densities
for the reference model and the model with informative priors.

The e�ects of the informative priors is shown to reduce the posterior estimate of each

122



log baseline hazard parameter which is as expected as the prior estimate of the survival
function is consistently higher than the Kaplan Meier estimate for the Gemcitabine
arm as shown in Figure 7.2. Each baseline hazard parameter is also estimated with
a greater degree of precision. The log hazard ratio also has a point estimate which is
closer to zero, again as expected as Figure 7.2 illustrates that the prior information
will ‘drag’ the survival curve for the control arm closer to the experimental arm. More
importantly, the precision of the estimate of the log baseline hazard has increased,
without any prior information being included on this parameter.

The full set of parameter estimates from each model are given in Table 7.2. Here
there are some results which may be slightly non-intuitive. As an example, the pos-
terior distribution for È

4

with an informative prior has mean ≠2.25 which may be
unintuitive given the reasonably good agreement between the prior distribution and
the data respectively (≠2.10 and ≠2.12). Upon further inspection, it is clear that there
is some correlation between the baseline hazard parameters and that all baseline hazard
parameters must be considered collectively. It may also be noted that an informative
baseline hazard function has the e�ect of smoothing the baseline hazard function. This
can be shown graphically.

Lastly, the e�ect on the log hazard rate is again noted with some shrinkage towards
zero, in agreement with Figure 7.4. Also associated with the shrinkage is an increase in
the parameter precision as the standard deviation decrease from 0.09 for the reference
model to 0.06 for the informative model.

Parameter Time-grid È ‘Reference’ Informative (’ = 50)
log(⁄

1

) 3 -2.60 -2.36 (0.17) -2.55 (0.10)
log(⁄

2

) 6 -2.08 -1.91 (0.17) -2.07 (0.11)
log(⁄

3

) 12 -2.03 -1.84 (0.16) -1.99 (0.11)
log(⁄

4

) 18 -2.10 -2.12 (0.20) -2.25 (0.15)
log(⁄

5

) 42 -2.59 -2.33 (0.26) -2.52 (0.21)
— -0.15 (0.09) -0.06 (0.06)

Table 7.2: Results of applying informative baseline hazard priors to the analysis of
GemCap

Aside from the results of parameters in Table 7.2, Figure 7.5 shows the resulting
survival functions that are obtained from the reference and informative models. In each
case, the Kaplan Meier survival estimates for the Gemcitabine arm are included for
reference. These show explicitly how the survival function is increased and is estimated
with a larger precision compared to the reference model. Note that the Kaplan Meier
estimates do not agree entirely with the survival estimates obtained in the reference
model, this is as the model estimates are also influenced by the experimental arm as
well as the control arm and that some evidence of non-proportionality can distort this
estimate.
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Figure 7.4: Illustration of prior and posterior densities for a selection of parameters for
the analysis of GemCap data
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Figure 7.5: Illustration of fitted survival function for a) vague and b) informative prior
distributions

7.5 Local step and trapezium priors

Here local step and trapezium distributions are introduced for use in clinical trial
design and analysis. Previous e�orts for the use of non-standard prior distributions in
trial design have been explored by Cook et al. [207], Fuquene et al. [208] and Hobbs
et al. [209]. Here these priors are termed as being ‘robust’ in that they have less
influence when there is disagreement between the priors and the observed data. Hobbs
et al. in particular present commensurate priors where the influence of the priors is
discounted when there is disagreement with the data. Locally flat priors by contrast are
only uninformative when there is broad agreement between prior information and the
observed data. The aim of locally flat priors is then to discourage unlikely solutions.
This approach may be particularly useful when data are sparse or expensive to obtain
and the user wishes to encourage a set of likely solutions.

The local step and trapezium priors are characterised by being flat uninformative
only within some given bounds. The motivation for these priors lies in the fact that
prior to a trial taking place, previous information and/or expert opinion may reliably
show a parameter to fall within an interval but that a point estimate may be more
di�cult to obtain. These are both applied to priors on the baseline hazard function.

‘Step’ prior distribution

The step distribution is characterised by solutions within some inner bounds having a
greater density than those outside of the inner bounds. Outer bounds define the upper
and lower limits outside of which the probability density is zero. The step distribution
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requires five parameters to be set (a, b, c, d, p). The extreme points of the distribution,
a and d give the outer bounds, the inner limits are given by b and c. The result is a
step type distribution where a predefined proportion ‘p’ of the distribution lies between
b and c. Formally the distribution is defined as:

fistep(x) =

Y
________]

________[

0 if x < a
(1≠p)(b≠a)

[(b≠a)+(d≠c)]

2 if a Æ x < b
p

c≠b if b Æ x Æ c
(1≠p)(d≠c)

[(b≠a)+(d≠c)]

2 if c < x Æ b
0 if x > d

.

Note that for a symmetrical distribution, the density between the intervals [a, b)
and (c, d] simplifies to 1≠p

2(b≠a)

. Figure 7.6 shows the behaviour of the step distribution
with the given limits. Here the limits are set to produce a symmetrical distribution but
this need not be the case.

Step Prior

0

a b c d

Figure 7.6: Illustration of the behaviour of the Step distribution

‘Trapezium’ prior distribution

A second approach is to define a trapezium distribution. Here the same limits (a, b, c, d)
are defined although p is no longer required. The distribution is similar in its properties
to the ‘Step’ distribution above but di�ers in that the densities between the points (a,
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b) and (b, c) reduce at a linear rate as opposed to a stepwise fashion. Define the density
for x under this distribution as

fitrap(x) =

Y
________]

________[

0 if x < a
(x≠a)

”(b≠a)

if a Æ x < b
1

” if b Æ x Æ c
(d≠x)

”(d≠c)

if c < x Æ d
0 if x > d

Figure 7.7 show the behaviour of the trapezium prior with the same limits set as
for the step-prior.

Trapezium Prior

0

a b c d

Figure 7.7: Illustration of the behaviour of the Trapezium distribution

7.5.1 Survival analysis with various prior distributions

Here, uninformative (reference), normal, local step and trapezium priors are applied
to the analysis of the GemCap data presented in Section 7.3. Parameters are set
for the locally flat priors with the inner and outer bounds, (a, b, c, d), derived from the
0.005, 0.1, 0.9 and 0.995 quantiles respectively of the normal distributions used to define
the prior distributions Pr(⁄) in the analysis of the GemCap data in Section 7.3.

The results are presented in Table 7.3 and show that similar, although less accen-
tuated results are obtained for local step and trapezium priors than for priors based on
normal distributions. This is shown by both the reduced e�ect on the point estimate

127



and the smaller increase in precision for all baseline hazard parameters as well as the
log hazard ratio. Comparing the step and trapezium priors, the step distribution model
has the greater influence on model parameters, the standard error of the hazard ratio
for the step model and trapezium model are 0.06 and 0.07 respectively. Even so, the
diminished e�ect of the trapezium prior distribution still o�er a notable increase in
the precision of the posterior distributions of the estimates obtained from the reference
model.

Parameter Time-grid È ‘Reference’ Normal Step Trapezium
log(⁄

1

) 3 -2.60 -2.36 (0.17) -2.55 (0.10) -2.53 (0.11) -2.50 (0.11)
log(⁄

2

) 6 -2.08 -1.91 (0.17) -2.07 (0.11) -2.05 (0.11) -2.03 (0.13)
log(⁄

3

) 12 -2.03 -1.84 (0.16) -1.99 (0.11) -1.98 (0.12) -1.95 (0.13)
log(⁄

4

) 18 -2.10 -2.12 (0.20) -2.25 (0.15) -2.25 (0.16) -2.23 (0.17)
log(⁄

5

) 42 -2.59 -2.333 (0.27) -2.52 (0.21) -2.53 (0.21) -2.47 (0.24)
— -0.15 (0.09) -0.06 (0.06) -0.07 (0.06) -0.08 (0.07)

Table 7.3: Results of applying informative baseline hazard priors to the analysis of
GemCap with locally flat priors

The results presented are as to be expected as the priors used are only informative
for solutions that do not agree with the prior information. In general, less information
will be included into a model when locally flat priors are used as the priors are only
influential when they disagree with the data that have been observed. It should be
noted here that these priors di�er from the robust priors proposed by Cook et al.
[207]. The local step and trapezium priors proposed here are uninformative when the
data agree with the priors but discourage the data when they do not agree with prior
estimates.

The use of local step and trapezium priors may be particularly attractive to clini-
cians as they encourage solutions which are in keeping with current medical thinking.
The aim of these priors therefore is not to estimate one solution on which to base prior
distributions but to define a range of likely solutions. Taking for example the design
of a study with a time-to-event endpoint, clinicians may be nervous in accurately esti-
mating a survival function for the control arm before the trial has commenced. More
confidence may be given to statements such that it is not expected that all patients will
die within the first month following the trial opening or that the median survival for a
certain group will be within a given set of bounds. Locally flat priors aim to discount
solutions by stating that parameter estimates outside the (a, d) limits are not possible.
Further, any solutions that lie outside of the (b, c) bound, but within (a, d), are justified
by arguing that any solution outside of these bounds would be met with scepticism by
the general medical community.
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7.6 Bayesian design of the ViP study

Here a Bayesian design of the ViP trial with the inclusion of informative priors on the
baseline hazard function is considered.

The target population for the trial is the same as for the three trials that are
illustrated in Figure 6.1, with the GemCap trial in particular being administered in the
same trials unit. ViP, in a similar fashion to the previous trials, also includes a control
arm which is Gemcitabine alone. Furthermore, the data shown in Figure 6.1 were also
used in the trial design, informing the sample size calculation.

To illustrate the e�ect of the informative baseline hazards, two approaches are
taken. Firstly, a fully Bayesian sample size technique is followed based on the sam-
pling methodology of Wang and Gelfand [178] and De Santis, [211]. Secondly an ap-
proach is taken whereby the main e�cacy parameter of interest is assumed fixed at
pre-determined values. The purpose of this second approach is to obtain quantities
similar to the frequentist Type I and Type II error rates for comparison with the initial
trial design.

7.6.1 Bayesian sample size for ViP

The Average Length Criterion (ALC) is chosen as the utility function on which to
base sample size calculations and it is define a-priori that a posterior length of 0.6 is
of interest to obtain a coverage of 90%. Prior point estimates are obtained using the
estimates that are given in Table 7.1 along with the survival estimates that are obtained
from the GemCap trial.

Data are sampled using the marginal distribution of the Bayesian PEM as shown in
Section 6.2. Prior variability is defined using the e�ective number of events approach
and e�ective number of prior events are set as ’ = 10, 20, 30 and 50. Design priors
are set from Normal distributions with the most informative log baseline hazard priors,
(’ = 50) along with a prior distribution for the log hazard ratio of N ≥ (log(0.6), 0.5).
This is chosen to replicate the initial design parameters of the ViP trial. For each
sampled dataset, administrative censoring is applied to any survival time greater than
24 months. Patterns of censoring are obtained using the same methods as Section 3.4
and Section 6.4.

Data are simulated for total sample sizes of 60 to 150 by increments of ten. The
resulting ALCs from each set of simulations, for each model are shown in Figure 7.8.
These show the resulting ALC estimates obtained from varying sample sizes for un-
informative priors and informative priors based on the four e�ective event scenarios
described above. This shows how the behaviour of the ALC criterion alters depending
on the prior distributions set. Including prior information improves the behaviour in
all cases. Improvement is negligible for the less informative of the locally flat priors

129



however. Normal priors consistently out perform the locally flat priors in passing the
0.6 threshold at smaller sample sizes.
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Figure 7.8: Figure to show the performance of the ALC for normal, step and trapezium
prior distributions

The results are given in Table 7.4. As a reference model, where the priors remain
uninformative, 98 patients are required on average to ensure that a length of 0.6 will
contain 90% of the posterior distribution. This is smaller than the 120 patient required
for the frequentist design which is in part due to the di�ering approaches of the two
methodologies as a Bayesian approach attempts only to control some aspect of the
posterior distribution whereas frequentist approaches by contrast attempt to control
against two types of error. Some disparity is also expected based on the parameters
chosen on which to base the Bayesian design.

Sample size estimates show that as more information enters the model through the
priors, smaller numbers of patients are required to control the width of the posterior
distribution. In the most extreme case, 74 patients are required to obtain an ALC of
0.6. Again, this e�ect is accentuated for normal priors compared to the locally flat
alternatives. Considering the locally flat priors, the Step prior has a larger e�ect than
the Trapezium prior.

E�ective Sample Size
’ = 10 ’ = 20 ’ = 30 ’ = 50

Normal 92 86 78 74
Step 94 88 79 74

Trapezium 97 92 84 76

Table 7.4: Sample size estimates for the ViP trial under various di�ering priors on the
baseline hazard function under the ALC.

Both Figure 7.8 and Table 7.4 show that smaller sample sizes are obtained for the
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Normal priors in comparison to the locally flat priors in terms of the ALC. The locally
flat priors may still be preferred in practice as they may be easier to derive and can
inform a trial design and analysis without a-priori setting a point estimate for the most
likely solution.

7.6.2 Bayesian type I and type II error rates

To evaluate Bayesian Type I and Type II error rates, a Successful Trial Criterion (STC)
is utilised. In the context of the ViP trial, according to the initial design parameters,
the trial is a success only if Ø 90% of the posterior distribution is less than zero. To
evaluate Bayesian Type I and Type II error rates, two special conditions of the STC are
considered where the design priors for — are set to fixed values of 0 and ” respectively.
Specifically setting — = 0 and calculating the STC will give the Type I error rate
and equivalently — = ” for a Type II error rate. Whilst from a Bayesian perspective,
sampling from a distribution where the key parameter of interest is considered fixed is
inappropriate, this method allows estimation of quantities analogous to the frequentist
Type I and Type II error rates.

To ensure that reliable estimates of Type I and Type II errors are obtained, 2000
datasets are simulated following the same procedure as in Section 5.1 but with a fixed
sample size of 120 patients to replicate the initial ViP design. The aim here is to show
the ‘error rates’ can be improved over the proposed design as opposed to searching for
a sample size based on controlling Type I or Type II error rates.

The results are given in Table 7.5 and show that for the reference model, design pa-
rameters similar to that for the ViP trial are obtained. As with sample size calculations
based on the ALC, as more information enters into the design through informative pri-
ors, the Type I and Type II error rates improve. Considering prior distributions based
on normal distributions, for the most informative priors Type I and Type II error rates
of 0.07 and 0.08 respectively are obtained. Again, the e�ect is lessened for locally flat
priors with only the most informative priors having any noticeable e�ect on the Type
II error rates.

It is also of interest to note that there is a plateau in the e�ect that increasingly
informative priors have. This is due to the reasoning that as more information enters
the prior distributions through e�ective events, the further information that obtained
from the events in the control arm during the course of a trial is reduced. Design
parameters here become more dependent on what is observed in the experimental arm
as the data form the control arm contribute less towards the estimate of the log hazard
ratio.

There is little e�ect on the Type I error rates, showing when data are simulated
with the e�cacy parameter fixed at zero the e�ect of falsely concluding that a new
therapy is superior does not change.
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E�ective Prior Events
Priors Error 10 20 30 50

Reference Type I 0.12 0.11 0.12 0.11
Type II 0.10 0.10 0.11 0.12

Normal Type I 0.11 0.09 0.10 0.09
Type II 0.08 0.07 0.07 0.07

Step Type I 0.11 0.10 0.10 0.10
Type II 0.09 0.07 0.07 0.08

Trapezium Type I 0.11 0.10 0.10 0.10
Type II 0.10 0.08 0.08 0.08

Table 7.5: The e�ect of di�erent priors and e�ective prior events on Bayesian Type I
and Type II error rates

7.7 Discussion

In this chapter, a method by which summary information on the survival rates can
be taken from previous trials or expert information and incorporated into the design
and analysis of clinical trial data with a time-to-event endpoint has been introduced.
As an example, the GemCap trial carried out at the Liverpool Cancer Trials Unit is
used. It was shown that increased precision in the log hazard ratio can be achieved.
Though in this instance this also results in some shrinkage towards the ‘null point’ of
no di�erence.

It is argued here that the main interest in any trial with at time-to-event endpoint is
the (log) hazard ratio, however this quantity may only be deemed as clinically important
if the survival rates in the control arm agree with the current medical thinking. Take
for example the situation of a positive result showing the experimental arm to be
an improvement over a control arm, but where survival probabilities in the improved
experimental arm do not show any improvement over previously published data. In
situations such as these, it is not immediately clear whether the within trial comparison
should take precedence and an important di�erence declared or whether the results on
the new therapy should be compared against other available information on patient
performance.

In some way at least, the results of a single trial are always going to be compared
against other trials or respective data available to the medical community. The Bayesian
methods here allow for that information to be formally incorporated into the design
and analysis and can therefore further inform the clinical decision making process.

Further introduced were the local step and trapezium priors, which penalise solu-
tions which do not agree with prior information but have no e�ect when the data agree
with previous evidence. It is argued that these priors may be particularly attractive as
they do not require a single most likely solution be defined a-priori, rather that a set
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of solutions within given bounds all deemed to be equally likely are defined. They may
be of particular use in situations where data are sparse or expensive to collect and can
therefore be used to encourage likely solutions without being overly influential.

The step and trapezium priors and the normal priors are applied to the design of
the ViP trial and show that by incorporating prior information on the baseline hazard
function, smaller sample sizes based on the average length of the posterior distribution
of the log hard ratio are obtained. Considering trial design on the basis of Type I and
Type II error rates, small improvements are also observed when trial designs incorporate
informative prior distributions.

There have been recent methodological advances in the incorporation of historical
information into the design of clinical trials, most notably the use of commensurate
priors and power priors. Despite this however, there is still yet to be many examples of
these approached being used in practice. This chapter introduced some of the practical
steps that must be considered in the design of a clinical trial with a time-to-event out-
come which incorporates historical information. In the next chapter the methodology
presented here is extended into trial design to investigate the possibility of deviation
away form the standard 1:1 allocation ratios that is common in randomised controlled
trials.
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Chapter 8

Unequal Allocation Ratios in a
Bayesian and Frequentist
Framework

8.1 Introduction

This chapter is concerned with the optimal allocation of patients to treatment arms in
a two-arm clinical trial using reliable prior information. Initially a review is given on
the allocation ratios that are used in practice. Following this, some theoretical results
are obtained for binary and continuous outcomes where prior information is available.
Analytical results for the optimal allocation ratios are obtained and applied to simple
examples.

The use of informative priors for survival outcomes are investigated for a standard
exponential and a PEM. An analytical form for the optimal allocation ratio is derived
based on the assumption of all patients having equal follow-up.

8.2 The use of unequal allocation ratios in practice

Whilst the use of unequal allocation ratios is not new, they are relatively rare. Much is
made over the statistical preference for equal allocation ratios with Schultz and Grimes
[212] going as far as to claim that an equal allocation ratio itself can be treated as an
endpoint in a trial.

Whilst there are some examples of unequal allocation ratios used in practice, liter-
ature devoted to this topic is relatively rare. A review by Dumville et al. [213] carried
out in 2006 identified 65 trials that have been carried out using unequal allocation
ratios. Reasons for unequal allocation were identified as cost, further arguments for
which are given by Vozdolska et al. [214] and the need for a learning curve with newer
experimental therapies/treatments. Ethical issues were highlighted as a possible rea-
son for unequal allocation, a point further made by Alvin [215] who argues that 1:1
allocation should only be used when there is true equipoise between two treatments.
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Lastly Dumville et al. consider unequal allocation ratios for ‘other’ conditions such as
multi-arm trials or trials which wish to compensate for an inflated drop-out rate for
one particular treatment.

What is highlighted is the lack of any statistical justification for the use of allocation
ratios other than 1:1. Some research has been carried out on the use of unequal alloca-
tion ratios for binary endpoints, most notably Raudenbush [216], Raudenbush and Li
[217] and Raudenbush et al. [218] who consider optimal designs for binary endpoints
for cluster randomised trials, multisite trials where the treatment e�ect is expected to
vary across sites and under an adaptive randomisation method respectively. Under a
Bayesian perspective, Brooks [219] investigates optimal allocation about an odds ratio
for trials with a binary endpoint.

Throughout the remainder of this chapter, it is assumed that prior information may
be available for each arm of a two-arm trial individually and not on the main e�cacy
parameter of interest. For instance, the prior interpretation might be on the mean in
each arm of a trial but not on the di�erence in means.

Note that throughout this chapter, the notation shall be used whereby N is the
total number of patients randomised to a trial with n

1

and n
2

being the number of
patients randomised to each treatment arm. The proportion of patients randomised to
arm one is given by “, i.e. n

1

= “N , n
2

= (1 ≠ “)N .

8.3 Optimal allocation ratios under Bayesian analysis

In this section some investigation into optimal allocations for a variety of di�erent
outcomes is explored. The overall aim for each outcome is to optimise the amount of
information that can be gained on the key e�cacy parameter of interest, ”. Calcula-
tions are then presented based on minimising the associated standard error. For each
outcome, the methods are then extended into a Bayesian framework allowing for prior
distributions to be placed on each arm individually.

8.3.1 Normal outcomes

Assuming that data from each arm of a two arm trial are summarised by the associated
means, define the key e�cacy parameter of interest to be the di�erence between means
such that

” = µ
2

≠ µ
1

with an estimated standard error given by

se(”) =
Ò

‡2/n
1

+ ‡2/n
2

.

For simplicity it is assumed that there is equal variation in each treatment arm.
The estimated standard error from a future trial with N total patients is then given by
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se(”) =
Ò

‡2/N“ + ‡2/N(1 ≠ “).

It is straight forward to show by squaring both sides and di�erentiating with respect
to “ that the smallest estimate of se(”) will be obtained by a value of “ = 0.5.

Extending into a Bayesian framework, it is now assumed that informative priors
are available for each treatment arm individually. Let {xij , i = 1, 2; j = 1, ..., ni} be
the observations that will be obtained from the two arms of the trial. Note that the
first treatment arm will be designated as the control arm when appropriate. For the
convenience of conjugate Bayesian analysis, it is assumed that the prior information
for the mean of the control arm is given by

fi(µ
1

) ≥ N(m
1

, ·
1

)

and likewise for the prior distribution associated with µ
2

. Taking the variance of µi

as fixed, the posterior distribution for µi is a normal distribution when the data and
the prior information both follow a normal distribution. A form for the posterior
distribution, given the data, D, is given as

fi(µi|D) ≥ N
3

µ
0

/·2

i +
qn

j=1

xij/‡2

(1/·2

i + n/‡2) , (1/·2

i + ni/‡2)≠1

4
,

see for example [21] . The di�erence between the means of the two posterior distribu-
tions, ”fi, has a standard error given by

se(”fi) =
Ò

(1/·2

1

+ N“/‡2)≠1 + (1/·2

2

+ N(1 ≠ “)/‡2)≠1.

Squaring both sides and di�erentiating with respects to “, an expression for the
allocation ratio that minimises se(”fi) is given by

“ = ‡2(·2

1

≠ ·2

2

) + N·2

1

·2

2

2N·2

1

·2

2

.

Note here that if vague uninformative priors are placed on each treatment arm such
that ·2

1

= ·2

2

æ Œ then a solution of “ = 0.5 is obtained as would be expected. Taking
the example of informative priors for a single arm only, allowing ·2

2

æ Œ gives

“ = ‡2 + N·2

1

2N·2

1

. (8.1)

It is of interest to note that the optimal precision of ”fi here is not dependent on the
prior point estimates, m

1

or m
2

. As may be expected it is dependent upon the total
number of patients that are to be randomised.

Table 8.1 gives the allocation ratio for the number of patients to be allocated to the
control arm under di�ering degrees of prior information. These results are based on
standardised data, i.e. ‡2 = 1. Table 8.1 also illustrates the condition that as the total
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number of patients increases, the optimal allocation ratios tend towards “ = 0.5. This
is to be expected as when data sets increase in size, posterior distributions are more
dependent upon the observed data than they are on the prior distributions.

·2

1

·2

2

N = 20 N = 50 N = 100 N = 250
0.05 0.1 0.25 0.40 0.45 0.48

0.25 0.10 0.34 0.42 0.47
0.5 0.05 0.32 0.41 0.46
Œ 0.00 0.30 0.40 0.46

0.1 0.25 0.35 0.44 0.47 0.49
0.5 0.30 0.42 0.46 0.48
Œ 0.25 0.40 0.45 0.48

0.25 0.5 0.45 0.48 0.49 0.50
Œ 0.40 0.46 0.48 0.49

Table 8.1: Optimal allocation ratios for standardised data under di�ering prior distri-
butions and varying total sample sizes.

Figure 8.2 gives a contour plot to display the behaviour of the optimal allocation
function for Normal outcomes under di�ering total sample sizes and the variability
about the prior distribution for µ

1

. This shows how for smaller sample sizes, the e�ect
of informative prior distributions is more pronounced. Beyond sample sizes of 200 say,
only prior distributions with a high degree of precision will have any meaningful e�ect
on deviation away from the 1:1 allocation ratio.

Example

As a simple example, consider a two arm trial comparing a new therapy against current
clinical practice. The primary outcome of the study follows a normal distribution, and
previous data for the clinical practice arm have shown that an estimated outcome, µ

1

,
follows a normal distribution such that µ

1

≥ N(100,
Ô

10). A previous estimate for
the standard deviation for the population of interest is ‡ = 20. For simplicity, this
parameter shall be treated as fixed though there is no requirement for this assumption.
It is determined that a sample size of 100 shall be used. Using (8.1), an optimal
allocation ratio of 0.35 is obtained.

As a method of verification, Bayesian sample size estimates were carried out under
a variety of di�erent allocation ratios using the average length criterion (ALC) as
proposed by Joseph and Belisle [175] as the utility function of choice. This is set
up to measure some fixed quantity of the posterior distribution, for example the 95%
credibility interval. The results of the design simulations are given in Figure 8.2 and
show general agreement with the lowest ALC given for a proportion of 0.35.
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Figure 8.1: Contour plot to show optimal allocation ratios for di�ering total sample
sizes and estimates of prior variability for the control arm ·

1

8.3.2 Binary endpoint

Sample size calculations for a binary endpoint have been considered in detail by Sam-
bucini [220] and M’Lan et al. [174] although neither consider unequal allocation ratios.
Under a binary endpoint, it is assumed that a trial of two treatments is carried out
to assess the number of successes and failures in each arm. Given the probability of
a success in each treatment arm as p

1

and p
2

respectively, the distribution of data is
given in Table 8.2.

Treatment Success Failure Total
Trt 1 k

11

= N“p
1

k
12

= N“(1 ≠ p
1

) N“
Trt 2 k

12

= N(1 ≠ “)p
2

k
22

= N(1 ≠ “)(1 ≠ p
2

) N(1 ≠ “)
Total Np N(1 ≠ p) N

Table 8.2: Table to display the distribution of data for a two-arm trial with a binary
endpoint

Let kj1

be the number of successes in treatment arm j and kj2

be the number of
failures. The key e�cacy parameter is then given by the odds ratio defined by

OR = k
11

k
22

k
12

k
21

.
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Figure 8.2: Figure to demonstrate the behaviour of the ALC design criterion under
di�ering allocation ratios for a fixed sample size of 100 patients.

Other measures of e�cacy such as the risk di�erence or the relative risk are not
considered here. Measuring the odds ratio on the log scale, an estimated associated
standard error for a future trial is given by

se(log(OR)) =
; 1

N“p
1

+ 1
N“(1 ≠ p

1

) + 1
N(1 ≠ “)p

2

+ 1
N(1 ≠ “)(1 ≠ p

2

)

<
1/2

.

Squaring both sides and di�erentiating with respect to “ gives an optimal allocation
ratio of

“ = (1 + A)≠1, (8.2)

where

A =
;

p
1

(1 ≠ p
1

)
p

2

(1 ≠ p
2

)

<
1/2

.

The behaviour of the allocation ratio based on varying expected response rates in each
of the two treatment arms is illustrated in Figure 8.2. Under standard trial design for
a superiority trial, it is customary to assume the null hypothesis that p

1

= p
2

thereby
giving the optimal allocation ratio of 0.5. It is argued here however that it may be
of greater benefit to design a trial under the alternative hypothesis. This is as under
a positive or borderline positive trial, being one that is close to showing a clinically
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important di�erence, a standard error which is sub-optimal will be obtained if the trial
is designed with an equal allocation ratio. Under an equal allocation ratio, the standard
error of the log odds ratio will only be optimal when there is no di�erence between the
treatment arms, a scenario where the precision of the log odds ratio is of the least
interest.

It is shown by (8.2) that under the alternative hypothesis, an equal allocation ratio
will be obtained when the mean success rate, given by p̄ = (p

1

+ p
2

)/2, is equal to
0.5. When an increase in the success rate is considered desirable, for p̄<0.5 a optimal
standard error is obtained when a greater proportion is given the the experimental arm.
For p̄>0.5 an optimal standard error is obtained when a greater proportion is given to
the control arm.
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Figure 8.3: Contour plot to show the optimal allocation ratio for a trial with estimated
response rates in each arm.

Extending into a Bayesian design and assuming that the likelihood for the number of
successes in each arm follows a binomial distribution, a conjugate analysis for a binary
endpoint can be obtained by setting a prior distribution using a Beta distribution with
parameters –j , —j . It is straight forward to show that a posterior distribution for each
arm is itself given by a Beta distribution defined by

Beta(–j + kj1

, —j + kj2

).
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A log odds ratio under informative priors, denoted log{ORfi(◊|D)} is

log(ORfi(◊|D)) = (–
1

+ k
11

)(—
2

+ k
22

)
(–

2

+ k
21

)(—
1

+ k
12

) .

For a future trial with unobserved data, an estimated standard error is obtained
via

se{log(ORfi(◊|D))} =
; 1

p
1

(–
1

+ —
1

+ N“) + 1
(1 ≠ p

1

)(–
1

+ —
1

+ N“)+

1
(1 ≠ p

2

)(–
2

+ —
2

+ N(1 ≠ “)) + 1
(1 ≠ p

2

)(–
2

+ —
2

+ N(1 ≠ “))

<
1/2

.

Here is is worth noting that a-priori –
1

¥ p
1

(–
1

+ —
1

). Squaring both sides and
di�erentiating with respect to “, an optimal allocation ratio for an analysis with infor-
mative priors is obtained when

“ = N ≠ A(–
1

+ —
1

) ≠ (–
2

+ —
2

)
N

Ó
1 + A

Ô . (8.3)

An illustration of the optimal allocation ratio for binary outcomes with informative
priors on the control arm is given in Figure 8.4. Here it is shown that as the sample size
increases, allocation ratios tend towards the allocation ratio that are obtained where
no prior information is included. Binary outcomes do di�er to normal outcomes here
as even at reasonable large sample sizes, optimal allocate ratios other than 1:1 will still
be obtained.

Note that unlike the optimal allocation for the normal outcome, the point estimate
of the response rate is important in determining the optimal allocation ratio. It can
be shown that when both – = — = 0 for both arms of the trial, the optimal allocation
ratio formula become (8.2).

As the optimal allocation ratio here depends upon the mean outcome rate itself,
there may be some discussion on what value of p

2

, being the rate of success in the
experimental group, should be set at in terms of trial design. As has been noted,
setting p

2

= p
1

ensures an optimal standard error for the log odds ratio only when
there is no di�erence between the treatment arms. Conversely, setting p

2

= ”, some
minimum clinically relevant di�erence, would ensure an optimal allocation ratio only
when this di�erence is observed. It may be argued that the most information is required
about the e�cacy parameter for borderline trials and in this case setting p

2

to some
value between p

1

and the clinically relevant di�erence may be advised.

Example

As an example, a two arm trial with a binary endpoint is considered. As with the
previous section, the sample size is fixed at 100. A prior distribution for the mean
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Figure 8.4: Figure to show the behaviour of the optimal allocation ratio for a binary
endpoint with di�erent total sample sizes and estimates for the performance of the
control arm

response rate in the control arm, p
0

is set as p
0

≥ Beta(12, 28). This is equivalent
to assuming a mean (standard deviation) for the response as 0.3 (0.087). A clinically
relevant di�erence is defined a-priori as being an odds ratio of 0.42 which is equivalent
of an absolute increase from a response rate of 30% in the control arm to 50% in the
experimental arm. Note that as the mean response rate is <50% it is expected that
more patients should be randomised to the experimental arm.

From (8.2) an optimal allocation ratio of 0.36 is obtained resulting in 36 patients
being randomised to the control arm and 64 patients being randomised to the exper-
imental arm. Bayesian sample size calculation simulations were carried out with data
simulated from two binomial distributions with mean proportions equal to 0.3 and 0.5
respectively. The average length criterion of the log odds ratio was used as the utility
function of interest. Figure 8.5 shows the agreement here with an allocation ratio of
0.35 providing the smallest ALC on average.

8.3.3 Survival outcomes

Studies with a time-to-event outcome are typically designed with either a log-rank
test or some proportional hazards modelling. As the log-rank test is most powerful
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Figure 8.5: Results of the Average length Criterion (ALC) for an example study with
a binary endpoint and informative priors on the control arm

under the proportional hazard assumption, the key e�cacy parameter of interest is the
hazard ratio, „, typically measured on the log scale. An estimate for the standard error
of log(„) is given by

se(log(„)) =
Ò

(1/E
1

) + (1/E
2

),

where E
1

and E
2

are the number of events in the control and experimental arm respec-
tively (see for example Parmar et al. [143]). In a trial setting with a fixed sample size,
the smallest standard error is obtained when there is an equal number of events in each
arm. Under traditional designs with a 1:1 allocation ratio, the smallest standard error
will occur with a hazard ratio „ = 1. As with a binomial endpoint, designing a trial
assuming the null hypothesis in a frequentist approach ensures an optimal standard
error is obtained only when there is no di�erence between the treatments.

In this context the aim prior to a study beginning should be to distribute the
anticipated number of events evenly across the treatment arms. For any single patient
on a trial, the probability of observing an event before time t is given by 1 ≠ S(t). Let
the survival function for the control group be S

1

(t) and for the treatment group, S
2

(t)
and hence

S
2

(t) = S
1

(t)„.
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Without any prior information, the smallest standard error is obtained when

“ =
;

1 +
Û

1 ≠ S
1

(t)
1 ≠ S

1

(t)„

<≠1

. (8.4)

Figure 8.6 gives a contour plot to illustrates the behaviour of di�ering allocation
ratios based on varying hazard ratios and baseline survival estimates at the point of
analysis. This shows that under the null hypothesis log „ = 0 the optimal allocation is
always 0.5. The optimal allocation for values of log „ ”= 0 di�er from 0.5 but it should
be noted that even under the most extreme estimates there is relatively little deviation
away from 0.5.
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Figure 8.6: Contour plot to show optimal allocation ratios for a trial with a time-to-
event endpoint based on baseline survival rates and an assumed hazard ratio

Whilst this is a general result that may be used in any trial with a time-to-event
outcome, extending into a Bayesian framework may result in some di�culties since
there is no generic conjugate analysis and will only be possible for the simplest of
models. For illustration, the Exponential survival model is considered making use of
a gamma prior distribution. Extensions to the more flexible Piecewise Exponential
Model are included in later in this section.
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Exponential model

Here, the survival distribution for the control arm is S
1

(t) = exp{≠⁄
1

t}. The likelihood
is given by

rN“
i=1

⁄‹
i

1

exp{≠⁄
1

ti}, where ‹i is an indicator variable (1 = event, 0 = non-
event). The maximum likelihood estimate of ⁄

1

is ⁄̂
1

=
q

‹i/
q

ti = ÷i/Îi.
Extending to a Bayesian analysis, a conjugate prior distribution is a Gamma(›, ‘)

where › and ‘ are the scale and shape parameters. In practice, › may be selected as
the e�ective prior number of events and ‘ derived to satisfy the a-priori estimate of ⁄.

The posterior distribution of ⁄
1

has a probability density which is proportional to
⁄÷1+›1≠1

1

exp{≠⁄
1

(Î + ‘)}. The posterior mean and variance of ⁄
1

are (÷
1

+›
1

)/(Î
1

+ ‘
1

)
and (÷

1

+›
1

)/(Î
1

+‘
1

)2 respectively. Thus the prior distribution essential adds ›
1

events
with extra patient risk time of ‘

1

.
Using the delta method, the approximate mean and variance of log(⁄

1

) are log{(÷
1

+
›

1

)/(Î
1

+ ‘
1

)} and 1/(÷
1

+ ›
1

) respectively. Similar arguments apply for the treatment
arm. The di�erence in log(x

2

) and log(x
1

) leads to the estimate of „ with

se{log(„)} = {1/(÷
1

+ ›
1

) + 1/(÷
2

+ ›
2

)}1/2.

Now ÷i = N“{1 ≠ exp(⁄it)} = N“k
1

, say, under the prior distribution. After some
algebra the optimum value of “ is

“ =
N

Ô
k

1

Ô
k

2

+
Ô

k1Ô
k2

›
1

+ ›
2

N [k
1

+
Ô

k
1

Ô
k

2

]
. (8.5)

It can be seen that setting ›
1

= ›
2

æ 0 and dividing (8.5) through by
Ô

k
1

will give
equation (8.4).

Example

As an example, again take a trial which is to have a total sample size of one hundred
patients. The endpoint for the patient group is taken to be tú = 24, measured in
months and it is estimated that patients undergoing the standard therapy will have a
survival estimate S(tú) = 0.5. For the new therapy being investigated it is envisaged
that a hazard ratio of „ = 0.75 is obtained which is equivalent to an improvement in
the survival rate at tú to 0.59.

Before the trial begins, there is already a source of reliable information on which the
survival estimates in the control arm are made and it is considered that this information
should represent ten events within the analysis of the trial, (›

1

= 10). There is no
information for the experimental arm (›

2

= 0). Using (8.5) an optimal allocation ratio
of 0.36 is obtained with a greater proportion of patients allocated to the experimental
arm.

As the optimal allocation ratio for survival endpoints are more complex, a contour
plot is given in Figure 8.7. This shows how optimal allocation ratios are dependent
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both on the baseline survival rate and the hazard ratio. Also shown here is the optimal
allocation ratio for the scenario described above.
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Figure 8.7: Heat map to show optimal allocate ratios dependent on total sample size
and trial hazard ratio. Included (green dot) is the optimal allocation ratio for the
scenario described above.

As a means of verification, Bayesian sample size calculations were carried out via
simulation. The results are displayed in Figure 8.8. Here with a fixed sample size of
100 it is shown that the smallest ALC for the hazard ratio is observed at approximately
0.36 in agreement with what is obtained from (8.6).

Piecewise exponential model

Here the basis behind optimal allocation for an exponential model is expanded into the
analysis under a piecewise exponential model (PEM).

Assuming a time grid with J intervals at a
1

, ..., aj+1

, the hazard rate in each interval
is defined as ˆ⁄(j) = ÷(j)/Î(j) where ÷(j) are the number of events in the observed interval
and Î(j) is the total patient time at risk for the jth interval. Note that for the jth interval
patient time at risk is limited by aj+1

≠ aj .
For each individual interval, the expected number of events for the control arm is

given by
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Figure 8.8: ALC estimates obtained from bayesian design simulations. Included (red
dot) is the optimal allocation ratio for the given scenario.

N“[1 ≠ exp{≠⁄j(aj ≠ aj≠1

)}].

Over all intervals, the total expected number of events obtained is then

N“
Jÿ

j=1

[1 ≠ exp{≠÷j/Îj(aj ≠ aj≠1

)}].

Expressing as N“k
1

and equivalently N(1 ≠ “)k
2

then allocation ratios may be
obtained as for the exponential distribution.

Extending into a Bayesian framework and allowing each individual partition to have
an informative prior based on a Gamma distribution with prior parameters ›j and ‘j ,
a posterior distribution for each interval is given as

Pr(⁄j |D) ≥ �(÷j + ›j , Îj + ‘j).

The e�ective number of observed events in the jth interval is then

÷j + –j = N“
5
1 ≠ exp

;
÷j + ›j

Îj + ‘j
(aj ≠ aj≠1

)
<6

.
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Following similar arguments as for the exponential model and noting that a-priori,
each hazard rate ⁄j can be considered independent, an estimate of the standard error
for the log hazard ratio is

se{log(„)} = {1/(
Jÿ

j=1

[÷
1j + ›

1j ]) + 1/(
Jÿ

j=1

[÷
2j + ›

2j ])}

where the subscript 1j identifies the jth interval of the control arm and 2j identifies
the jth interval from the experimental arm. Now

qJ
j=1

÷
1j =

qJ
j=1

N“[1≠exp{⁄
1

j(aj ≠
aj≠1

)}] = N“k
1

and similarly for the experimental arm. Following the same steps as for
the exponential model therefore, an optimum value for the standard error is obtained
by

“ =
N

Ô
k

1

Ô
k

2

+
Ô

k1Ô
k2

qJ
j=1

›
1

+
qJ

j=1

›
2

N [k
1

+
Ô

k
1

Ô
k

2

]
. (8.6)

In terms of an optimum allocation ratio therefore, it is only required to know the
total number of e�ective events that are used to derive prior distributions and not what
intervals the events fall in.

8.3.4 Accounting for recruitment

It should be noted that the estimation of optimum allocation ratios in survival studies,
being inherently dependent on the number of events that are observed are also depen-
dent upon the recruitment rate in a trial, which is denoted as –(t) for the purposes of
this discussion.

Following [44], if the recruitment rate is constant over an accrual period, define
–(t) = – and let t– denote the time taken to recruit all the patients into a trial. The
trial then continues until t–+f , the point at which the last patient recruited has had
some pre-determined fixed follow-up time. Then the number of events in the control
and treatment arm are N“–≠1

s t
–+f

t
f

{1≠S
1

(u)du} and N(1≠“)–≠1

s t
–+f

t
f

{1≠S
1

(u)„du}
respectively.

For the simple exponential model, it is straight forward to show that the expected
number of events in the control arm, ÷

1

is

N“–≠1

5
t– + ⁄≠1

1

)
exp(≠⁄

1

t–+f ) ≠ exp(≠⁄
1

tf )
*6

,

with a similar expression for the experimental arm.
Estimation of the number of events in the piecewise exponential model is less

straightt forward as it requires the integration of a complex survival function.
Given a survival function with a given time-grid a;

S(t) = exp{≠[⁄j(t ≠ aj≠1

) +
j≠1ÿ

g=1

⁄g(ag ≠ ag ≠ 1)}.
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It is assumed that integration is desired between two limits (t–, t–+f ). Integration
is carried out here by defining the time grid as aú = (t–, ah, t–+f ) where ah are the
elements of the initial time-grid a that lie between the limits of integration.

A form for
s t

–+f

t
–

S(t)dt is obtained by first noting that for the jth interval

⁄ a
j+1

a
j

S(t)dt = exp
Ó

≠
j≠1ÿ

g=1

⁄g(ag ≠ ag≠1

)
Ô ⁄ a

j+1

a
j

exp{≠⁄j(t ≠ aj)}dt

= exp
Ó

≠
j≠1ÿ

g=1

⁄g(ag ≠ ag≠1

)
ÔË

⁄≠1

j exp{≠⁄j(t ≠ aj)}
Èa

j+1

a
j

= ⁄≠1

j

Ë
exp

Ó
≠

j≠1ÿ

g=1

⁄g(ag ≠ ag≠1

)
Ô

≠ exp
Ó

≠
jÿ

g=1

⁄g(ag ≠ ag≠1

)
ÔÈ

Defining Ej = exp
Ó

≠
qj

g=1

⁄g(ag ≠ag≠1

)
Ô

and completing the integral by summing

over all j intervals, define
s t

–+f

t
–

S(t)dt =
qJ

j=1

⁄≠1

j (Ej≠1

≠ Ej) where Ej are defined
in terms of the time grid aú. Noting that Ej = Ej≠1

exp{≠⁄j(aj ≠ aj≠1

)}, a set of
recursive formula are produced, meaning that given the intervals and the estimated
hazard rates are fixed, estimation of the full integral can be obtained relative to the
integral of the first interval in the time-grid.

An estimation of the number of events based on a constant accrual rate is then
given by

N“–≠1

5
t– ≠ ⁄≠1

j (Ej≠1

≠ Ej))
6

In practice, the rate of recruitment will rarely be considered constant from the start
of a trial, neither will it be simple to apply some function of time to estimate recruit-
ment. In practice therefore, it may be more straight forward to define recruitment in
terms of the number of patients per month (say). Here, define the total number of
months of recruitment as (m = 1, ..., M) and nm as the number of patients recruited
in month m then the number of events is expressed as

Mÿ

m=1

nm“(1 ≠ S(t–+m))

which is straight forward to calculate for any form of survival function.

8.4 Optimal allocation ratio for the ViP trial

The design of the ViP trial is considered allowing for the allocation ratio to di�er from
1:1. As with the design of ViP in Chapter 7, two approaches are taken to evaluate trial
design; a fully Bayesian design using the Average Length Criterion (ALC) and Bayesian
equivalents of Type I and Type II error rates.
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As is shown from (8.7) the optimal allocation ratio for a trial depends both on
the total sample size and the amount of information included through the prior dis-
tributions, here denoted by the e�ective number of prior events. Table 8.3 shows the
estimated optimal allocation ratios using equation (8.4) for varying total sample sizes
and e�ective number of events in the prior distributions for the control arm.

E�ective Prior Events
Sample Size 10 20 30 50

60 0.34 0.26 0.18 0.01
70 0.36 0.28 0.21 0.07
80 0.36 0.30 0.24 0.11
90 0.37 0.32 0.26 0.15
100 0.38 0.33 0.28 0.18
110 0.38 0.34 0.29 0.20
120 0.39 0.34 0.30 0.22
130 0.39 0.35 0.31 0.23
140 0.39 0.36 0.32 0.25
150 0.39 0.36 0.33 0.26

Table 8.3: Table to show estimated allocation ratios under di�ering total sample sizes
and e�ective prior events.

Bayesian sample size calculation

The total sample size for the study is determined using the simulation approach detailed
in Chapters 6 and 7. Data are simulated from the design priors for both ⁄ and — as
detailed in Chapter 7. Only the number of patients allocated to each treatment arm
di�ers based on table 8.3.

For each simulation, the length of the 90% credibility interval is estimated and
the mean over all simulations is calculated to give the average length criterion (ALC).
Prior distributions for data analysis the baseline hazard function are defined based on
Normal, Step and Trapezium priors as detailed in Chapter 7. Uninformative vague
prior for the baseline hazard function are included as a reference. All priors on the log
hazard ratio are vague and uninformative.

The results are displayed graphically in Figure 8.9. Here four separate figures show
the ALC for each of the four di�erent prior distributions that are used. In each figure,
the estimated ALC across varying sample sizes are displayed for four di�erent e�ective
event scenarios. The intersection of the vertical and horizontal lines shows the design
conditions obtained under equal allocation in Chapter 7. Here 98 events are required
to obtain an ALC of 0.6.

Considering initially the non-informative reference priors, it is shown that there is
an increase in the ALC for each sample size for the larger ‘e�ective prior events’ used
to determine the trial allocation ratio. This is misleading however as e�ective prior
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events are included to calculate the optimal allocation ratio but are not included in the
analysis of the trial data. The deterioration of the design parameters here is the cost
of an unequal allocation when all information from a trial is taken from the data.

Considering the informative priors, all reduce the ALC in comparison to the results
obtained under equal allocation in Chapter 7. The Normal distribution has the most
accentuated e�ect on the posterior ALC. The Trapezium priors have the least e�ect
which is consistent with previous findings.
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Figure 8.9: Figure to show the ALC for di�erent types of priors and di�erent number
of e�ective events.

The sample sizes required to obtain, on average, an ACL of 0.6 for each of set of
priors and set of e�ective prior event are given in Table 8.4. These can be compared
directly to the sample sizes given for equal allocation ratios given in Table 7.3. Com-
parisons here show the normal priors have a greater e�ect over the locally flat priors
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and also how the sample sizes with amended allocation ratio are consistently smaller
than equivalent sample size calculations with equal allocation ratios.

E�ective Sample Size
’ = 10 ’ = 20 ’ = 30 ’ = 50

Normal 89 78 74 67
Step 96 82 77 70
Trapezium 97 96 83 72

Table 8.4: Sample size estimates for the ViP trial under various di�ering priors on the
baseline hazard function under the ALC.

Bayesian Type I and Type II error rates

Here design criteria are presented in terms of estimated Type I and Type II error rates.
As in Chapter 7, sample sizes are fixed at 120 to replicate the initial design of the ViP
trial. Table 8.5 gives the Bayesian Type I and Type II error rates that are obtained.

The results obtained here can be directly compared to those obtained in Figure 7.4
for equal allocation ratios. There are two points of note to be made, firstly there is a
reduction in the Type I error rate as the e�ective prior events increase. This can be
attributed to the unequal allocation ratios that are obtained. As is consistent through-
out, the optimum design parameters are obtained when normal prior distributions are
used. Di�erences in the Type I error rates between distributions are small however.

The second point to note is that the e�ect of the Type II error rate. Here for
the reference models, where trials are designed based on informative priors but vague
uninformative prior distributions are included in the analysis, there is a increase in the
Type II error rate for larger e�ective prior events which is a consequence of the unequal
allocation ratio. This shows that if informative prior distributions are used to inform
a trial design, not including the same prior distributions in the analysis of a trial can
have adverse e�ects.

For the normal, step and trapezium priors there is a notable decrease in the Type
II rate, to a greater extent than what is observed in Table 7.4 for equal allocation.

8.5 Discussion

In this chapter, an investigation was carried out into the optimal design for clinical
trials based on amendments to the proportion of patients allocated to each treatment
arm in a two-arm trial. Clinical trials designs are proposed based on the assumption of
attempting to maximise the precision about the main e�cacy parameter of interest for
normal, binomial and time-to-event endpoints in frequentist and Bayesian frameworks.

For a normal outcome in a frequentist framework, it is simple to show that the most
information is obtained for a 1:1 allocation ratio. For both binary and time-to-event
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E�ective Prior Events
Priors Error 10 20 30 50

Reference Type I 0.11 0.09 0.07 0.08
Type II 0.13 0.12 0.15 0.25

Normal Type I 0.09 0.08 0.07 0.09
Type II 0.10 0.06 0.07 0.06

Step Type I 0.10 0.08 0.08 0.10
Type II 0.10 0.07 0.09 0.06

Trapezium Type I 0.11 0.09 0.07 0.08
Type II 0.13 0.10 0.09 0.09

Table 8.5: The e�ect of di�erent priors and e�ective prior events on Bayesian Type I
and Type II error rates

endpoints however, an equal allocate ratio is only optimal when there is no di�erence
between the control treatment and the experimental treatment, a scenario under which
the precision of the e�cacy parameter is of the least interest.

Optimal allocation ratios are initially obtained for binary and time-to-event out-
comes in a frequentist framework based on providing an optimal precision for the e�-
cacy parameter under the alternative hypothesis. Whilst there is some discussion on
whether the optimal allocation should be based on some value between the null and
alternative hypotheses, with the aim of providing the most precision under borderline
results, this was not explored any further in this chapter.

As an extension, analytical expressions for the optimal allocation ratios are pro-
vided for each outcome in the presence of informative priors in a Bayesian framework.
Expressions are based on being able to define prior distributions for the response in the
control and experimental arms separately. No prior distributions are defined directly
for the e�cacy parameter. Examples are given whereby prior distributions are derived
for the control arm of a trial with the aim of obtaining as much information as possible
on the precision of an e�cacy parameter. Examples are typically set in the context
of a Phase II trial and aim to provide the most e�cient and informative approach for
determining whether a new therapy is suitable for expansion into a phase III trial.

Whilst trials designs that have deviated from the standard 1:1 have been criticised
(see for example Korn et al. [221]), much of this criticism has been based on the
arguments that non standard designs, such as adaptive trials, whilst ethically appealing
can lead to a loss of statistical power. It has been shown that this may be misleading
in both a Bayesian and frequentist framework, especially for binary and time-to-event
endpoints as optimal precision, and by extension trial power, can be obtained from
an unequal allocation ratio when there is some evidence of e�cacy. In some cases
ethical issues may be raised as it may be that increased allocation is given to a less
e�ectual treatment as a means of maximising the statistical information. Where an
unequal allocation ratio is both ethically and statistically appealing however, it should
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be encouraged.
In a Bayesian framework, it is shown that design parameters can be improved by

unequal allocation for all types of endpoint when there is reliable prior information
available for one or both treatment arms.
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Chapter 9

Discussion

9.1 Introduction

This chapter provides an overview of the research that has been carried out within this
thesis as well as some suggestions for further work. Further discussions on the uses of
methodology included in this thesis are also provided.

9.2 Topics covered

The focus of this thesis has been on the design and analysis of clinical trials with a
primary endpoint of overall survival. In particular the aim has been to investigate
methods which may influence the way trials are designed or data analysed which allow
for greater information to be obtained than is provided under standard methodology.

The first approach taken is to introduce a new parametric form for the linear pre-
dictor in the analysis of proportional hazards models with unbounded covariates. This
form is motivated by clinical application and whilst it doesn’t provide an improvement
over more complex methods such as the flexible parametric models approach, it does
facilitate clinical interpretation and allows for intuitive extrapolation beyond the scope
of the observed data.

Following this, the problem of analysing data with non-proportional hazards is
explored. Proportional hazards being by far the most popular method of survival
analysis. Non-proportional hazards do occur in practice however, and the appropriate
method in this scenario is not always clear. Chapter 4 explores current methods for
detecting and modelling non-proportional hazards and introduces the idea of modelling
data with the inclusion of an asymmetry parameter. The di�erence between two levels
of a covariate is here expressed by a divergence parameter (as opposed to a hazard ratio)
which measurers the absolute di�erence and an asymmetry parameter which accounts
for non proportionality. This approach is applied to a gastric cancer dataset and it is
shown how a direct comparison can still be made despite the non-proportional nature
of the data.
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Chapters 5 - 7 concentrate on the application of Bayesian methodology to the design
and analysis of a cancer clinical trial. Chapter 5 concentrates on analysing survival
data from the ESPAC-3 trial using a piecewise exponential model (PEM), practical
issues are discussed and some advantages of incorporating a Bayesian framework are
explored when it comes to evaluating a treatment e�ect. Chapter 6 investigates the
methods involved in the design of clinical trial based on Bayesian criteria and provides
a comparison against the frequentist framework.

In Chapter 7, some investigation into the incorporation of historical control in-
formation is explored. Specifically, summary information is obtained from previously
published clinical trials and this information is used to develop a set of informative prior
distributions which describe the behaviour of the baseline hazard/survival function. It
is shown that this approach can improve the design parameters of a clinical trial. This
methodology is further applied to the ViP trial currently being run at the Liverpool
Cancer Trials Unit.

Finally Chapter 8 investigates allocation ratios. Under standard trial clinical trials
design, an allocation other than 1:1 is rare in a two arm trial. Optimal allocation ratios
are investigated on the basis of minimising the expected size of the standard error for the
key e�cacy parameter. It is initially shown that in a frequentist framework, for binary
and survival outcomes, a 1:1 allocation ratio is only optimal under the null hypothesis.
Under successful or borderline successful trials therefore, a sub-optimal standard error
is obtained which may inhibit the conclusions that can be drawn. The idea is extended
to a Bayesian framework and the inclusion of informative historical controls considered.
Depending on the precision of the prior distributions that are included, it is shown here
that optimal trials can be designed with a larger proportion of patients being allocated
to the experimental arm. In the most extreme cases with informative priors, no patients
are recruited to the control arm of a trial. These methods are again incorporated into
the design of the ViP trial.

9.3 Further work

There are a number of area on which further work may be carried out following the
completion of this thesis. Considering the example of the asymmetry parameter in-
troduced in Chapter 4, some di�culty was met with parameter estimation in large
datasets. Specifically, under a counting process notation, large datasets required the
inversion of a large matrix in order to obtain a standard error estimate. This step
is computationally expensive and slows the procedure down. E�cient algorithms in-
cluding a legrange estimator are available for proportional hazard models and applying
these to the model with an asymmetry parameter would be a worthwhile step.

Considering the Bayesian survival data, there is already a large body of literature on
both the Bayesian analysis of survival data and the inclusion of Bayesian methodology
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for clinical trial design. The use of Bayesian methodology for trials with time-to-event
endpoints is still rare in both practical applications and the literature however. Whilst
there is scope for work to investigate further methods of defining prior distributions on
the baseline hazard, the biggest impact would be through practical application of the
design approaches.

Considering prior derivation, Chapter 7 introduces a method based on the e�ective
number of events which is intended to be intuitive to clinicians. The number of events
are then distributed proportional according to the assumed behaviour of the survival
curve and a set of prior distributions formed from the results.

Lastly, considering allocation ratios, there has been a large portion of literature
already attributed to adaptive allocation, these are typically based on assessing the
treatment e�ect and allocating a greater proportion of patients to the therapy that is
working. Should ethical issues allow, there may be some scope therefore in adapting the
allocation ratio during the course of a trial to minimise the standard error associated
with the e�cacy parameter with the aim of maximising the information that can be
obtained from a clinical trial.

9.4 Summary

Clinical trials never occur in a vacuum. They are a form of research which on their
completion will contribute towards the general pool of clinical information available.
Whilst Phase III trials may be designed with the intention of changing medical practice
therefore, on their completion, they will not be evaluated in isolation. More that
the information taken from any trial will be compared against other trials and other
anecdotal evidence before practice is changed.

Furthermore, clinical trials are expensive in both time and money. It is an ethical
imperative therefore that the statistician endeavours to make the most e�cient use of
any data that are obtained. Whilst e�ciencies can be obtained in the accurate analysis
of trial data, this process of e�cient analysis begins at the design stage of any trial.

The inclusion of prior information to reflect this wider knowledge does not only hold
advantages in that it better reflects the clinical environment, it allows for potentially
large saving in both time and money and can provide answers to a greater level of
precision than may have been previously feasible. As an example in the most extreme
case, the ViP trial with a standard frequentist design required 120 patients which were
recruited over a period of approximately 18 months. With a fully informative design
only 70 patients would have been required which could potentially prevent 50 patients
being given a potentially harmful treatment. Perhaps the greater impact however would
be that the trial would have completed recruitment in a total of 13 months, saving 5
months. The trial would have completed recruitment and reported sooner and through
predictive posterior distributions would in a better position to inform future design.
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Finally the point is made that whilst this thesis concentrates on the design of phase
II clinical trials the methodology proposed is not confined to this scenario. For example,
the inclusion of priors on the baseline hazard may be useful in analyses of data where
data are di�cult or costly to obtain such as the analysis of rare disease data.
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Appendix A

Code

A.1 Piecewise Exponential Model

Included is a function written in R to fit a piecewise exponential model based on a
generalised linear model assuming a poisson distribution, log link function and log(t)
as a model o�set. Required are a vector of survival times, ‘T’, a vector of censoring in-
dicators, ‘CEN’, a set of partitions, ‘part. and a formula for the explanatory covariates,
‘form’.

PEM <≠ function (T,CEN, part , form ){

### S e t t i n g s t r u c t u r e s
n<≠length (T)
n . part<≠length ( part )≠1

t .mat<≠matrix (0 , n , n . part )
w.mat<≠t .mat

### Def in ing time , t t , and ob s e r va t i on
### ind i ca to r , w. mat , in vec t o r form
for ( i in 1 : n){

t t<≠T[ i ]≠ part ; t t
t t [ which( tt <0)]<≠0
t .mat [ i , ]<≠t t [ 1 : n . part ]
w.mat [ i ,max(which( tt >0)) ]<≠1

}

for ( i in 1 : n . part ){
t .mat [ which( t .mat [ , i ]> d i f f ( part ) [ i ] ) , i ]<≠d i f f ( part ) [ i ]}
w.mat<≠w.matúCEN

### d e f i n i n g s t r u c t u r e s f o r l o g l i n e a r model
re sp<≠c (w.mat)
time<≠log ( c ( t .mat)+0.000001)
i n t<≠gl (n . part , n )
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### S e t t i n g formula
i f ( form==˜1) modmat<≠matrix (1 , n , 1 ) else
modmat<≠model . matrix ( form )

n . co<≠ncol (modmat)
coef .mat<≠matrix (NA, nún . part , n . co )

for ( i in 1 : n . co ){
coef .mat [ , i ]<≠rep (modmat [ , i ] , n . part )

}

colnames ( coef .mat)<≠colnames (modmat)

### F i t t i n g models
i f (n . part==1) logl in<≠glm( re sp˜coef .mat ,
family=” po i s son ” ( l ink=log ) , of fset=time ) else

logl in<≠glm( re sp˜≠1+i n t+coef .mat ,
family=” po i s son ” ( l ink=log ) , of fset=time )

return ( logl in )
}

A.2 PP plot

Included is a function for producing a PP plot based on the survival estimates obtained
via the method of Kaplan and Meier. Required are a survival object (obtained using
the ‘Surv’ function in the package ‘survival’) and an associated vector of covariates,
z. Results can be presented using ‘res = TRUE’. The output can be included on an
already exciting plot using ‘add=TRUE’.

PPplot <≠ function ( s . ob , z , r e s=FALSE, add=FALSE){

### Organis ing Factor and g e t t i n g s u r v i v a l e s t ima t e s
l e v<≠levels ( factor ( z ) )

KM<≠s u r v f i t ( s . ob˜z )

### S e t t i n g up requ i r ed s t r u c t u r e s
l 1<≠length (which( z==lev [ 1 ] ) )
l 2<≠length (which( z==lev [ 2 ] ) )

t0<≠KM$time [ 1 : l 1 ]
t1<≠KM$time [ ( l 1 +1):( l 1+l2 ) ]
s0<≠KM$ surv [ 1 : l 1 ]
s1<≠KM$ surv [ ( l 1 +1):( l 1+l 2 ) ]
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### Sor t ing data s t r u c t u r e s
T<≠sort ( c ( t0 , t1 ) )
surv0<≠1
surv1<≠1

for ( i in 1 : length (T) ){
surv0<≠c ( surv0 ,max(0 , s0 [ which( t0==T[ i ] ) ] ) )
surv1<≠c ( surv1 ,max(0 , s1 [ which( t1==T[ i ] ) ] ) )

i f ( surv0 [ i +1]==0) surv0 [ i +1]<≠surv0 [ i ]
i f ( surv1 [ i +1]==0) surv1 [ i +1]<≠surv1 [ i ]

}

### P l o t t i n g
i f (add==FALSE){
plot ( surv0 , surv1 , typ=” s ” , xl im=c ( 0 , 1 ) , yl im=c ( 0 , 1 ) , main=”PP p lo t ” ,
xlab=”Treatment 0” , ylab=”Treatment 1” )
points ( surv0 , surv1 , pch=”+” )
abline ( a=0,b=1, l t y =2)
}

i f (add==TRUE){
l ines ( surv0 , surv1 , typ=” s ” , xl im=c ( 0 , 1 ) , yl im=c ( 0 , 1 ) , main=”PP p lo t ” ,
xlab=”Treatment 0” , ylab=”Treatment 1” )
points ( surv0 , surv1 , pch=”+” )
}

### Returning r e s u l t s
r e t<≠l i s t ( surv0 , surv1 )
i f ( r e s==TRUE) return ( r e t )

}

A.3 Modelling non-proportional hazards using a non-parametric
maximum likelihood estimation

Included is a function for fitting generalised survival model based on a non-parametric
maximum likelihood estimation NPML of a counting process. Models can be fit on both
a hazards and an odds scale with and without a asymmetry parameters. Required are a
vector of survival times, ‘time’ and a vector of censoring indicators ‘cen’. Both formulas
for the inclusion of covariates as dispersion parameters ‘zp’ and asymmetry parameters
‘za’ can be provided. Setting ‘cf = TRUE’ facilitates the estimation of a cure fraction.
The model option may be set to ‘hazard’ or ‘odds’ (defaults to ‘hazards’) and dictates
the scale on which models are fitted. The hessian option details whether the model
hessian should be extracted and by extension, parameter standard errors are obtained.
Large datasets with the hessian set to TRUE may take a while to fit.
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CPgen <≠ function (time , cen , z p=0,z a=0,
c f=FALSE, model=” hazard ” , he s s i an=FALSE){

### S e t t i n g necessary s t r u c t u r e s
n . ob<≠length ( time )
n . event<≠sum( cen )

### Sor t ing c o v a r i a t e s in t o matrix format
i f ( z p !=0) Z p<≠as . matrix (model . matrix ( formula ( z p ) ) [ , ≠1 ] )
else Z p<≠matrix (0 , n . ob , 1 )
i f ( z a !=0) Z a<≠as . matrix (model . matrix ( formula ( z a ) ) [ , ≠1 ] )
else Z a<≠matrix (0 , n . ob , 1 )

### Ordering data
ord . id<≠order ( time )
time<≠time [ ord . id ]
cen<≠cen [ ord . id ]
Z p<≠as . matrix (Z p [ ord . id , ] )
Z a<≠as . matrix (Z a [ ord . id , ] )

### Number o f parameters
n . beta<≠ncol (Z p)
n . alpha<≠ncol (Z a )

### F i t t i n g a cox model to g e t s t a r t i n g va l u e s
s . ob<≠Surv (time , cen )
cox .mod<≠coxph ( s . ob˜Z p)
start<≠log ( coxph . d e t a i l ( cox .mod)$hazard )
start<≠c ( start , log ( 2 ) , rep ( ≠0.4 ,n . alpha ) )

i f ( c f==TRUE){
start [ 1 : n . event ]<≠start [ 1 : n . event ]+ log ( 0 . 9 )
start<≠c ( start , inv . l o g i t ( 0 . 1 ) )

}

### v a r i a b l e ID v a r i a b l e s
beta . id<≠(n . event +1):(n . event+n . beta )
alpha . id<≠(n . event+n . beta +1):(n . event+n . beta+n . alpha )
i f ( c f==TRUE){gamma. id<≠length ( start )}

####### Like l i hood func t i on
Lik<≠function ( start , model=model , c f=c f ){

#### Def in ing parameter va l u e s
b . l i n e<≠exp( start [ 1 : n . event ] )
beta<≠start [ ( n . event +1):(n . event+n . beta ) ]
alpha<≠start [ ( n . event+n . beta +1):(n . event+n . beta+n . alpha ) ]
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i f ( c f==TRUE) gam<≠l o g i t ( start [ length ( start ) ] )

### S e t t i n g model s t r u c t u r e s
phi<≠exp( beta%ú%t (Z p ) )
a lp<≠exp( alpha%ú%t (Z a ) )
LAM<≠cumsum(b . l i n e )
jump . id<≠cumsum( cen )

P<≠t (matrix ( t ( phi ) , n . ob , n . ob ) )
A<≠t (matrix ( t ( a lp ) , n . ob , n . ob ) )
#pat . id<≠cb ind ( jump . id , c ( 1 : n . ob ) )

G<≠(Pú (LAM[ jump . id ] ˆA) )
g<≠diag (G)

### Def in ing L i k e l i h ood

h1<≠rbind (0 ,G)
h1<≠h1[≠nrow( h1 ) , ]
h1<≠G≠h1
h<≠diag ( h1 )

i f ( toupper (model)==”HAZ” | toupper (model)==”HAZARD”
| toupper (model)==”HAZARDS” ){

Su<≠exp(≠g )
fu<≠húSu

}

i f ( toupper (model)==”ODD” | toupper (model)==”ODDS” ){
Su<≠1/(1+g )
fu<≠hú (Suˆ2)

}

i f ( c f==TRUE){
S<≠gam+(1≠gam)úSu
f<≠(1≠gam)ú fu

}

i f ( c f==FALSE){
S<≠Su
f<≠fu

}
f [ which( f ==0)]<≠0 .999

≠sum( log ( f )úcen+(1≠cen )úlog (S ) )

}
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### Maximising l i k e l i h o o d
op<≠optim( start<≠start , fn=Lik , c f=cf , model=model , method=”BFGS” ,
control=l i s t ( trace=TRUE, maxit =100) , he s s i an=hes s i an )

#### Present ing r e s u l t s
par<≠op$par
sd<≠NA
i f ( he s s i an==TRUE){

hess<≠op$ he s s i an
i f ( z a==0) hess<≠hess [≠alpha . id ,≠alpha . id ]
sd<≠sqrt ( diag ( solve ( hess ) ) )

}

BETA<≠matrix ( cbind (par [ beta . id ] , exp(par [ beta . id ] ) , sd [ beta . id ] ) , n . beta , 3 )

BETA<≠cbind (BETA,BETA[ , 1 ] /BETA[ , 3 ] )
BETA<≠cbind (BETA, 2 ú(1≠pnorm( abs (BETA[ , 4 ] ) ) ) )
BETA<≠as . data . frame (BETA)
names(BETA)<≠c ( ” c o e f ” , ” exp ( c o e f ) ” , ” se ( c o e f ) ” , ”Z” , ”PR(>|Z | ) ” )

ALPHA<≠matrix ( cbind (par [ a lpha . id ] , exp(par [ a lpha . id ] ) ,
sd [ a lpha . id ] ) , n . alpha , 3 )
ALPHA<≠cbind (ALPHA,ALPHA[ , 1 ] /ALPHA[ , 3 ] )
ALPHA<≠cbind (ALPHA, 2 ú(1≠pnorm( abs (ALPHA[ , 4 ] ) ) ) )
ALPHA<≠as . data . frame (ALPHA)
names(ALPHA)<≠c ( ” c o e f ” , ” exp ( c o e f ) ” , ” se ( c o e f ) ” , ”Z” , ”PR(>|Z | ) ” )

i f ( c f==TRUE) {
GAMMA<≠matrix ( cbind (par [gamma. id ] , l o g i t (par [gamma. id ] ) ,
sd [gamma. id ] ) , n . beta , 2 )
GAMMA<≠cbind (GAMMA,GAMMA[ , 1 ] /GAMMA[ , 2 ] )
GAMMA<≠cbind (GAMMA, 2 ú(1≠pnorm( abs (GAMMA[ , 3 ] ) ) ) )
GAMMA<≠as . data . frame (GAMMA)
names(ALPHA)<≠c ( ” c o e f ” , ” l o g i t ( c o e f ) ” , ” se ( c o e f ) ” , ”Z” , ”PR(>|Z | ) ” )
}

i f ( z a !=0){
i f ( c f==TRUE) r e t<≠l i s t ( ”Beta”=BETA, ”Alpha”=ALPHA,
”Gamma”=GAMMA)
i f ( c f==FALSE) r e t<≠l i s t ( ”Beta”=BETA, ”Alpha”=ALPHA)

}

i f ( z a==0){
i f ( c f==TRUE) r e t<≠l i s t ( ”Beta”=BETA, ”Gamma”=GAMMA)
i f ( c f==FALSE) r e t<≠l i s t ( ”Beta”=BETA)

}
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r e t

}

A.4 Markov Chain Monte Carlo routine for fitting Bayesian
piecewise exponential models

Included is a function for fitting Bayesian piecewise exponential model with a single
covariate using batch sampling for the baseline hazard function. Code below includes
vague normal priors for the baseline hazard parameters and the log hazard ratio. Re-
quired are the number of simulations desired ‘SIMS’, the number of models (chains)
to be set ‘n.mod’, a list of starting parameters ‘THETA’. The burn in ‘burn’ and thin,
‘thin’ are both required. The parameter ‘CC’ sets the variance parameter for the base-
line hazard function. In this form, the variance parameters are inflated due to the
number of partitions.

MCMCnorm <≠ function (SIMS , n . mod ,THETA, burn , thin ,CC){

### S e t t i n g s t r u c t u r e s and i n i t i a t i n g procedure
n . parm<≠length (THETA)
C<≠CCúseq (1 , 2 , length=(n . parm≠1))
r e s u l t s<≠array (NA,dim=c (SIMS , n . parm , n .mod) )
r e s u l t s [ 1 , , ]<≠THETA

### MCMC rou t ine
for ( i in 2 : SIMS){

### C o l l e c t i n g r e s u l t s from prev ious i t e r a t i o n
mcmc . r e s<≠r e s u l t s [ ( i ≠1) , , ]
prev . parm<≠mcmc . r e s

######
### Base l ine hazard parameters
######

### simu la t ing proposa l va l u e s
prop . parm<≠prev . parm
prop . parm [ 1 : ( length ( part ) ≠1) , ] <≠
rnorm(n .modú ( length ( part ) ≠1) ,prev . parm [ 1 : ( length ( part ) ≠1 ) , ] , 0 . 1 )

### Eva lua t ing prev ious and proposa l va l u e s
prop . l i k<≠PEMlik (prop . parm) +
colSums ( log (dnorm(prop . parm [ 1 : ( n . parm ≠1) , ] , pr . est ,C) ) )
prev . l i k<≠PEMlik (prev . parm) +
colSums ( log (dnorm(prev . parm [ 1 : ( n . parm ≠1) , ] , pr . est ,C) ) )
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### Simula t ing acceptance p r o b a b i l i t y and e v a l u a t i n g
acc . prob<≠exp(prop . l i k ≠prev . l i k )
acc . check<≠runif (n .mod)
acc . id<≠which( acc . prob>acc . check )

### Saving accepted r e s u l t s
mcmc . r e s [ 1 : ( length ( part ) ≠1) , acc . id ] <≠ prop . parm [ 1 : ( length ( part ) ≠1) , acc . id ]

######
### l o g hazard r a t i o parameters
######

### simu la t ing proposa l va l u e s
prev . parm<≠mcmc . r e s
prop . parm<≠prev . parm
prop . parm [ n . parm , ]<≠rnorm(n . mod , prev . parm [ n . parm , ] , 0 . 1 )

### Eva lua t ing prev ious and proposa l va l u e s
prop . l i k<≠PEMlik (prop . parm) +
log (dnorm(prop . parm [ n . parm , ] , 0 , 1 0 0 0 ) )
prev . l i k<≠PEMlik (prev . parm) +
log (dnorm(prev . parm [ n . parm , ] , 0 , 1 0 0 0 ) )

### Simula t ing acceptance p r o b a b i l i t y and e v a l u a t i n g
acc . prob<≠exp(prop . l i k ≠prev . l i k )
acc . check<≠runif (n .mod)
acc . id<≠which( acc . prob>acc . check )

### Saving accepted r e s u l t s
mcmc . r e s [ length ( part ) , acc . id ]<≠prop . parm [ length ( part ) , acc . id ]
r e s u l t s [ i , , ]<≠mcmc . r e s
}

### Applying burn in and th in and r e t i r i n g r e s u l t s
id<≠seq ( burn , SIMS , by=thin )
r e s u l t s [ id , , ]

}
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Appendix B

Publications

Attached is the publication for ”A robust parameterisation for the analysis of survival
data in the presence of covariates with extreme value observations”
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A Robust Parameterization for Unbounded Covariates Within the 
Cox Proportional Hazards Model 

Richard J. Jackson* and Trevor F. Cox 

Cancer Research UK Liverpool Cancer Trials Unit, University of Liverpool, Liverpool, UK 

Abstract: The Cox proportional hazards model is widely used in the analysis of medical data either for survival or time to 
a particular event. Factors and continuous covariates can be easily incorporated into the model and hazard ratios 

calculated. The model can however be distorted when extreme value observations occur within a continuous covariate 
and the hazard ratio can become extremely large. To overcome this, transformations of the covariate are often made, 
which can be simple, e.g. log, or more sophisticated such as the fitting of a fractional polynomial. This paper takes a 

different approach and makes a transformation based on the logistic function that has the property that the hazard ratio 
is bounded. The models are introduced and discussed. Model diagnostics based on Schoenfeld residuals and the 
influence function are established and then data from a pancreatic cancer trial are used to illustrate the model. 

Keywords: ESPAC 3 trial, hazard ratio, influence function, logistic function, Schoenfeld residuals. 

INTRODUCTION 

Cox proportional hazards modeling is in widespread 

use in medical and other contexts [1]. Here robust 

hazard models are proposed that extend the Cox 

model. Survival data will be the main focus but the 

robust models proposed can be used in any time-to-

event situation. Survival data from a pancreatic cancer 

randomized controlled trial will be used for illustration. 

For the Cox model, the hazard function, �, is 

modeled as 

  
� = �0 exp �T

x( )  

where x is a vector of covariates and � a vector of 

coefficients. For a factor, xi, the associated coefficient, 

�i, leads to the hazard ratio, �i = exp (�i), whilst for a 

continuous variable �i gives the increase in hazard ratio 

per unit increase in the value of the continuous 

variable. One problem with continuous variables is that 

modeling the hazard in such a linear way can mean 

large or extreme values of x are associated with very 

high hazards when this may be unrealistic in practice. 

The presence of only a single extreme value 

observation can be enough to violate any model 

assumptions of proportionality [2] and biased estimates 

produced. Also, the interpretation of the hazard ratio is 

awkward or inappropriate. To overcome these 

problems, sometimes a simple transformation can be 

made, for instance, log(x), or x
-1

 and this can be 

sufficient for obtaining a good model fit. A more 

sophisticated model is achieved by using a fractional 
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polynomial approach [3], which uses a mixture of 

transformations, but both simple transformations and 

fractional polynomials can still be influenced by 

extreme observations. In this paper a transformation 

based on the logistic function is proposed that can 

improve the model fit and guard against extreme 

observations having undue influence on the overall 

model.  

Some previous methods to account for extreme 

value observations have concentrated on amendments 

to the likelihood formulation. A good overview is given 

by Farcomeni and Ventura [4] with two approaches in 

particular given specific attention: an approach based 

on a weighted likelihood formulation for the Cox model, 

notably proposed by Bednarski [5] and Minder and 

Bednarski [6] and secondly, an approach using 

`trimmed' likelihoods given by Viviani and Farcomeni 

[2]. For weighted Cox regression, a likelihood is 

proposed in the form: 

 

1 �( ) = log L �( )( ) = A ti ,zi( )i=1

N� zi �
R j( )A ti ,zi( )z j exp �Tz j( )�

R j( )A ti ,zi( ) exp �Tz j( )�

�

�

�
�
�

�

	

�
�
�

 

Here A ti, zi( ) is a smooth non-negative function 

which takes a value zero for either large values of t or 

�
T
z and R (j) the usual risk set at time ti. This method 

down-weights or completely ignores patients who either 

have large covariate values or who live longer than 

may be expected. The second approach uses a 

trimmed likelihood by excluding observations that give 

the smallest contribution to the likelihood. Whilst either 

procedure may produce more robust hazard ratios they 

do not cure the problem of non-proportionality. More 

troublesome may be that the model is explicitly treating 

some data as less valuable than others and a possible 
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criticism is that the methods can be seen as trying to 

amend the data to fit a model as opposed to producing 

a model to fit the data. 

A ROBUST PARAMERIZATION 

Let the hazard function be modelled as 

 
� = �0f �, x( )  

where �=(�, �, �, �) are parameters to be estimated. 

The family of transformations proposed here has the 

form  

 

f �, x( ) =
� + � exp � x( )
� + exp � x( )

           (model 1) 

This is an adaption of the logistic function and has 

asymptotes � and �/�. Restrictions are needed on the 

parameters: ��0, ��0, ��0, in order for f(�,x) to be non-

negative. The first derivative of f(�,x) is (� �-

�)�exp(�x)/{�+exp(�x)}
2
 and in order for a positive � to 

have positive slope for f, and correspondingly, a 

negative � to have a negative slope for f, then �<��. 

Also, f(�,x) is monotonically increasing in x which is 

usually a useful property in practice. A particular 
fractional polynomial might not possess this property. 
Model 1 has the property that the hazard function is 

symmetric regarding the baseline hazard, i.e. f(�,x) and 

1/f(�,x) have the same functional form for the two 

reciprocal models �=�0f(�,x), and �0=�/f(�,x). 

A desirable property for f(�,x) is that when � = 0, 

implying that the covariate has no effect on survival, 

then f(�,x) should have the value unity. This implies 

�=�+�-1 and leads to model 2. 

f �, x( ) =
� + � exp � x( )

� + � �1+ exp � x( )
          (model 2) 

The asymptotes for model 2 are � and �/(�+�-1) 

and it still retains baseline hazard symmetry. For �> 1, 

positive � will give a positive slope for f and negative � 

a negative slope. The value of x which has no effect on 

the baseline hazard is x=0. If this should be a different 

value then the variable x should be adjusted 

accordingly with a linear transformation. Note if a para-

meter is entered into the model, replacing x by x-� with 

estimation of �, then it can be shown that, by rear-

ranging parameters, model 2 reverts back to model 1.  

The slopes of the logistic function at +x and –x are 

identical. For model 2 to have this property, then �=2-� 

and hence 

 

f �, x( ) =
2 � � + � exp � x( )

1+ exp � x( )
          (model 3) 

where the asymptotes are � and 2-�. This model loses 

its baseline hazard symmetry. 

For model 2 to have reciprocal asymptotes, � and 

1/�, then �=1 giving 

 

f �, x( ) =
1+ � exp � x( )
� + exp � x( )

           (model 4) 

This model retains baseline hazard symmetry.  

Lastly the standard Cox model is obtained by letting 

� become infinite in model 4, or by letting � = 0 which 

will negate the � coefficient. If � = 1 then f (�, x) = 1 

with x having no effect on the hazard function. 

In this paper, concentration is on model 4 although 

the other models could be used and fitted to data in a 

similar manner to that for model 4. 

Fitting The Model 

Suppose the explanatory variables consist of p-1 

binary variables, x1,…,xp-1, representing various factors 

and one continuous covariate, xp, to be fitted in the 

proportional hazards models. The hazard for the ith 

observation is  

 

�i = �0 exp �1x1 + ...+ �p�1xp�1( ) 1+ � exp �pxp( ){ } /

� + exp �pxp( ){ }
 

and then the partial likelihood is given by 

  

�i

j�R i( )�i�

�

�
	

�	




�
	

�	

� i

i=1

N

�  

where R(i) is the risk set at theith survival time and �i is 

the censoring value (1 – the event occurred, 0 – the 

time is censored). Here, the partial likelihood was 

maximized using the “optim” package within the 

statistical package R.  

A Simulation Study 

A small simulation study was carried out to 

investigate model fitting and accuracy. Survival times 

were simulated from an exponential distribution with 

baseline hazard set at 0.5 and with 5% of observations 
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randomly censored. Explanatory variables were a two-

level factor representing treatment within a two-arm 

clinical trial alongside a continuous covariate. 

Parameters for the robust model are denoted by (�trt, 

�cov, �cov). Firstly, a check was made on whether the 

new model could be fitted adequately to data arising 

from the standard Cox model by fixing the value of  

�cov to be zero when simulating the data. The 

parameters (�trt, �cov) were given the values (0.15, 

0.05). Patients were split equally between the two 

arms. The covariate was simulated as log (x) � N (3.5, 

1.5). Sample sizes of 100, 250, 500 and 1000 were 

used, each time simulating 1000 datasets. Each fitted 

model was assessed in terms of bias, accuracy, 

coverage and average confidence interval length 

(ACIL) [7]. Table 1 shows the results of fitting the 

standard Cox model and the new model. It can be seen 

that there is very good agreement between the 

estimates for two models. The estimated values of �cov 

(not shown) for the robust model were large enough to 

essentially make the model equivalent to the standard 

Cox model. 

Next, data were simulated from the robust model 

formulation with the parameters (�trt, �cov, �cov) and 

given the values (0.15, 0.05, 5). Table 2 shows the 

results of the simulations where the new model, the 

standard Cox model, the standard Cox model with log-

transformed covariate values and a fractional 

polynomial model are fitted. The new model fits the 

data well and recovers the true parameter values 

accurately. The bias in the treatment coefficient is very 

small. There is some small reduction in the coverage 

for �cov in the robust models and upon further 

inspection, this can be attributed to some skewness in 

the distribution of �cov. The standard model 

underestimates the treatment coefficient even for a 

sample size of 1000. Note, �cov cannot be compared 

across the two models. The log-transformed model 

achieves similar bias to the robust model but the 

fractional polynomial model offers little improvement 

over the standard model. 

MODEL DIAGNOSTICS 

Two model diagnostics are explored for the new 

model, (i) residuals based on standard Schoenfeld 

residuals [8] and (ii) an analytical form of an influence 

function following the method of Reid and Crapeau [9]. 

Residuals 

Schoenfeld residuals for a particular covariate are 

calculated using the partial derivative of the partial log-

likelihood function with respect to the covariate’s 

associated parameter and evaluating this at the 

maximum likelihood estimate. For robust model 4, 

there are two parameters � and � and so two 

Shoenfeld type residuals will be calculated. 

Differentiating the log-likelihood with respect to � gives 

�ii=1

N�
exp �xi( ) �1

� � �1+ exp �xi( ){ }
�

exp �x j( ) �1( ) exp �x j( )( )
� �1+ exp �x j( ){ }

2j�R�

� exp �x j( )
� �1+ exp �x j( )j�R�

�

	

�
�
�
�
�
�
�
�




�

�
�
�
�
�
�
�
�

 

and with respect to �, 

  

�ii=1

N�
� �1( )xi

� �1+ exp �xi( )
�

� � �1( )x exp �x j( )

� �1+ exp �x j( ){ }
2j�R�

� exp �x j( )
� �1+ exp �x j( )j�R�

�

	

�
�
�
�
�
�
�
�




�

�
�
�
�
�
�
�
�

.  

Table 1: Results of Fitting the Standard and the Robust Model to Data Simulated from the Standard Model (�=0) 

Standard model New model 

N Param. Est. (s.e.) Bias Acc. Cov. ACIL Est. (s.e.) Bias Acc. Cov. ACIL 

�trt 0.128 (0.231) 0.022 0.054 0.94 0.848 0.129 (0.227) 0.021 0.052 0.93 0.844 
100 

�cov 0.05 (0.005) 0 0 0.99 0.022 0.05 (0.005) 0 0 0.92 0.02 

�trt 0.127 (0.134) 0.023 0.018 0.69 0.518 0.126 (0.133) 0.024 0.018 0.68 0.516 
250 

�cov 0.05 (0.003) 0 0 0.68 0.013 0.049 (0.004) 0.001 0 0.63 0.012 

�trt 0.151 (0.093) -0.001 0.009 0.97 0.361 0.144 (0.097) 0.006 0.009 0.94 0.36 
500 

�cov 0.05 (0.002) 0 0 0.96 0.009 0.049 (0.002) 0.001 0 0.92 0.009 

�trt 0.152 (0.063) -0.002 0.004 0.95 0.253 0.148 (0.067) 0.002 0.005 0.93 0.252 
1000 

�cov 0.05 (0.002) 0 0 0.93 0.006 0.049 (0.002) 0.001 0 0.78 0.006 



334     International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 4 Jackson and Cox 

The individual terms to the right in the overall sums 

give the Shoenfeld type residuals, a pair for each 

observed survival time. The residuals are not linked to 

x directly, but to the terms to the left within the overall 

sums. 

Influence Function 

The influence function measures the rate of change 

in a statistical functional when there is a small amount 

of contamination from another distribution and is 

defined as 

 

I x( ) = lim��0

T 1� �( )F + �� x� T F( ){ }
�

�

�

�
�

	

�





,  

where T is the statistical functional giving the para-

meter of interest, F is the underlying distribution of the 

data and �x is the contamination introduced into the 

distribution. Replacing F by Fn, the empirical 

distribution function, T(Fn), will be the estimate of T(F) 

and the corresponding empirical influence function will 

measure the dependence of the estimate on particular 

data values. 

Table 2: Simulation Results to Assess Fitting of the Robust Model 

N Param. Standard model New model 

 Est. (s.e.) Bias Acc. Cov. ACIL Est. (s.e.) Bias Acc. Cov. ACIL 

100 �trt 0.127 (0.203) 0.023 0.042 0.954 0.811 0.154 (0.204) �0.004 0.042 0.9522 0.820 

�cov 0.003 (0.002) 0.056 (0.028) �0.006 0.001 0.916 0.094 

�cov 6.35 (3.682) �1.35 15.381 0.968 13.206 

250 �trt 0.132 (0.130) 0.018 0.017 0.95 0.515 0.152 (0.135) �0.002 0.018 0.938 0.507 

�cov 0.002 (0.001) 0.052 (0.016) �0.002 0 0.932 0.055 

�cov 5.313 (1.120) �0.313 1.353 0.968 4.33 

500 �trt 0.135 (0.092) 0.015 0.009 0.946 0.355 0.154 (0.091) �0.004 0.008 0.938 0.356 

�cov 0.002 (0.001)     0.051 (0.010) �0.001 0 0.932 0.037 

�cov  5.197 (0.725) �0.197 0.565 0.966 2.911 

1000 �trt 0.131 (0.061) 0.019 0.004 0.954 0.25 0.150 (0.061) 0 0.004 0.964 0.25 

�cov 0.001 (0.001)  0.050 (0.007)) 0 0 0.914 0.026 

�cov  5.067 (0.493) �0.067 0.247 0.962 1.984 

N Param. log transformed models Fractional polynomial model 

 Est. (s.e.) Bias Acc. Cov. ACIL Est. (s.e.) Bias Acc. Cov. ACIL 

100 �trt 0.156 (0.220) -0.006 0.048 0.952 0.813 0.122 (0.249) 0.028 0.063 0.914 0.777 

�cov 0.357 (0.083) 

�cov 

250 �trt 0.146 (0.129) 0.004 0.017 0.95 0.505 0.136 (0.169) 0.014 0.029 0.932 0.503 

�cov 0.344 (0.049) 

�cov 

500 �trt 0.147 (0.092) 0.003 0.008 0.948 0.355 0.14 (0.131) 0.01 0.017 0.928 0.353 

�cov 0.344 (0.035) 

�cov 

1000 �trt 0.145 (0.062) 0.005 0.004 0.95 0.25 0.137 (0.079) 0.013 0.006 0.95 0.249 

�cov 0.341 (0.025) 

�cov 
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Read and Crepeau establish the influence function 

for the proportional hazards model. They show this to 

be 

   

I = A�1
�

�( )�i zi � z j exp �� z j( ) / exp �� z j( )Ri�Ri�{ }
+A �1

�

�( )Ci

�

�( )
 

where 

   

A
�

�( ) = n�1 � ii=1

N� z jz j
T exp �� z j( ) / exp �� z j( )�Ri�Ri�

�

�
�
�

zj
Ri� exp �� z j( ) / exp �� z j( )Ri�{ } zj

Ri� exp �� z j( ) / exp �� z j( )Ri�{ }
T �

�
�
�
 

and 

Ci �( ) = exp �T zi( )

� jtj�ti�

zk exp �T zk( ) / exp �T zTk( )Rj�{ }
2

Rj�
	

�





�

�
�
�

�zi � jtj�ti� 1 / exp �T zk( )Rj�{ }

�

�

�
�
�
�
�
�
�

�

�









 

The algebra involved to arrive at this result is heavy 

and not particularly informative. A similar result was 

found for the robust models 1, 2, 3 and 4 where the 

algebra was even more involved and lengthy and so is 

not repeated here. Details are available from the 

authors and also will appear in a PhD thesis written by 

Jackson. 

APPLICATION TO DATA FROM THE ESPAC 3 
TRIAL 

Robust model 4 was applied to data from the 

ESPAC-3 trial set up to investigate the effect of 

adjuvant chemotherapy on patients with resectable 

pancreatic cancer. Of particular interest are the group 

of patients who had pancreatic ductal 

adenocarcinomas (PDAC) and for whom a value of 

post operative CA19.9 was recorded (n=759). It is 

reasonably assumed that information for this covariate 

is missing completely at random and no bias is 

introduced by considering a complete case analysis. 

Previously published analyses [10] are followed, forcing 

the terms `Resection Margin' (Negative vs. Positive) 

and `Treatment Arm' (5FU vs. Gemcitabine) into the 

model as stratification factors. Also identified as 

important are `Lymph Nodes' (Negative vs. Positive), 

`Tumour Differentiation' (Poor vs. Moderate vs. Well) 

and `Smoking Status' (Never vs. Past vs. Present vs. 

Missing). 

Figure 1 gives a histogram of CA19.9 values which 

is seen to have a very skewed distribution and prone to 

extreme value observations. The median (inter quartile 

range) is 24 (10, 63) but there are a number of 

observations greater than 1,000; only values up to 

2,000 are displayed, the largest recorded being 37,000. 

 

Figure 1: Histogram of post operative CA19.9 values. 

Four models were fitted to the data, (i) standard Cox 

proportional hazards with raw CA19.9 data (Reference 

model), (ii) standard Cox proportional hazards with log 

transformed CA19.9 (Log model), (iii) a fractional 

polynomial model for CA19.9 (Frac. polyn. model) and 

(iv) robust model 4(Robust model). Table 3 shows the 

log-likelihood, Akaiki’s information criterion (AIC), the 

model coefficients and their estimated standard errors. 

For the reference model, small estimates of � and for 

the estimated standard error are obtained. This is a 

consequence of the large extreme values observed. 

Taking as an example, the median value for CA19.9 as 

24, a hazard ratio of 1.02 is obtained showing very 

modest increases in the baseline hazard. For extreme 

values of 2,000, 5,000 and 37,000, hazard ratios of 

1.17, 1.49 and 18.9 are obtained. A clinician, however, 

may find it difficult to believe that a patient with CA19.9 

value of 37,000 has an instantaneous risk of death of 

almost 20 times that of a patient with a zero value. The 

log-transformed model gives an improved model fit as 

shown by an AIC of 6882 compared to 6912 for the 

reference model. The hazard ratios for the reference 

values of 24, 2,000, 5,000 and 37,000 for CA19.9 are 

1.95, 4.93, 5.90 and 9.11 respectively. Here, extreme 

hazard ratios are avoided to a small extent. Patients 

with a median value of CA19.9 are almost twice more 

likely to die at any given time point as those with a zero 

value.  
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The fractional polynomial model had the lowest AIC 

with a value of 6847. The fractional polynomial that was 

produced was 

 

�1 �
100

CA19.9 +1
+ �2 � log

CA19.9 +1( )
100

�
�
�

��

�
�
�

	�
 

This pair of transformations chosen by the fractional 

polynomial software might not be interpretable by 

clinicians and one problem with fractional polynomial 

regression is that a new data set generated under the 

same conditions can easily give rise to different 

transformations. As an illustration, the ESPAC 3 data 

were randomly split into two equal sized subsets of the 

data and fractional polynomial models fitted separately 

to both. The functional form of the two fractional 

polynomials differed. They were 

�1 � CA19.9 +1( ) / 1000{ }
�0.5

+ �2 � log CA19.9 +1( ) / 1000{ }  

and 

�1 � CA19.9 +1( ) / 100{ }
�2

+ �2 � log CA19.9 +1( ) / 100{ }  

Returning to the fractional polynomial model fitted to 

the whole dataset, for the reference points of 24, 2,000, 

5,000 and 37,000,hazard ratios of 1.73, 3.64, 4.55 and 

7.79 are obtained.  

 

Figure 2: Hazard ratios plotted against log (CA19.9) for the 
four fitted models. 

Model 4 has an AIC value of 6861 which is less 

than that for the log transformed model but more than 

that for the fractional polynomial model. The upper 

asymptote is 3.77 which corresponds to a maximum 

Table 3: Results of Fitting Four Models to the ESPAC 3 Pancreatic Adenocarcinoma Survival Data 

Model 

 (i) Reference (ii) Log (iii) Frac. polyn. (iv) Robust model 2 

  Log-lik. AIC Log-lik. AIC Log-lik. AIC Log-lik. AIC 

  -3447 6912 -3432 6882 -3412 6847 -3420 6861 

Factor Level coef. s.e. coef. s.e. coef. s.e. coef. s.e. 

Resec. Margin Neg. 

 Pos. 0.21 0.09 0.19 0.09 0.20 0.09 0.18 0.09 

Treatment 5FU 

 Gem. -0.12 0.08 -0.10 0.08 -0.11 0.08 -0.09 0.08 

Lymph N. Neg. 

 Pos. 0.55 0.10 0.48 0.10 0.46 0.10 0.46 0.10 

Tumour Diff. Poor 

 Mod. -0.29 0.10 -0.29 0.10 -0.27 0.10 -0.30 0.10 

 Well -0.64 0.15 -0.62 0.15 -0.69 0.15 -0.63 0.15 

Smoke Never 

 Past 0.09 0.10 0.08 0.10 0.07 0.10 0.08 0.10 

 Present 0.24 0.12 0.26 0.12 0.27 0.12 0.27 0.12 

 Missing 0.22 0.18 0.22 0.18 0.21 0.18 0.17 0.18 

CA19.9 � �1=0.02 3.87e-3 3.77 0.70 

 � 7.95e-5 1.54e-5 0.21 0.03 �2=0.32 0.03 0.01 0.00 

The fractional polynomial fitted was �1� 100/(CA19.9+1) + �2� log{(CA19.9+1)/100. 
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hazard ratio of also 3.77. A hazard ratio of 1.19 is 

obtained for the median CA19.9 value of 24. The other 

reference values of 2,000, 5,000 and 37,000 all have a 

hazard ratio of 3.77 obtained from the upper 

asymptote. From a clinical perspective, this is the most 

attractive model with modest small increases in the 

CA19.9 resulting in modest increases in the hazard 

ratio and larger values curtailed to ensure that 

unrealistically large hazard ratios are not obtained. This 

is highlighted in Figure 2 where the hazard ratio is 

plotted against log (CA19.9) for all four models. The 

hazard ratio for the log transformed model follows an 

exponential curve while for the standard Cox model the 

hazard ratio follows a curve exp (exp(x)) because the 

x-axis is on the log-scale. For the fractional polynomial 

model the hazard ratio first decreases and then 

increases which is unrealistic in practice and could 

make clinical interpretations troublesome. Furthermore, 

there is no value of CA19.9 that has zero effect on the 

baseline hazard function within the observed range of 

data and this may affect confounding in other 

covariates as the baseline hazard function is amended 

to account for this. This can be seen somewhat in the 

analysis of the ESPAC-3 dataset with some 

amendments in the point estimates, especially for the 

Tumour Differentiation covariates. Model 2 has the 

desired shape of curve for the hazard function and is 

bounded whereas all other models can have the 

hazard ratio increase indefinitely. 

Model diagnostics 

Model diagnostics were calculated for the four 

models, firstly residuals and then influence measures. 

Figure 3 shows Shoenfeld residuals for the parameters 

associated with CA19.9 for the four models fitted. The 

scales on the graphs are not comparable. The 

residuals from the extreme values can be seen in the 

plot for the reference model and also the two plots for 

the fractional polynomial model. The variance of 

residuals for the log model decreases as survival time 

increases. The two plots for robust model 4 show how 

the asymptote controls the residuals and also shows 

that the variability of the residuals with time is much 

less than for the other models. 

Figure 4 shows the influence measures obtained for 

the four models, plotted against log (CA19.9) and 

where crosses mark observed events and circles 

censored events. For the reference model, there is no 

obvious relationship of the influence measures with 

 

Figure 3: Schoenfeld residuals for the four models. 
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CA19.9, whereas for the log-transformed model there 

is a central point of CA19.9 around the value 4. Either 

side of this point, there is a general divergence with 

both small and large values of CA19.9 having relatively 

large effects upon parameter estimation. For the 

fractional polynomial model, the influence measures 

associated with the {(x+1)/100}
-1

 term show that very 

small values of CA19.9 can have a disproportionally 

large influence upon parameter estimation. There are 

also some large positive influence measures 

associated with log (CA19.9) values greater than 6. For 

the term given by log {(x+1)/100}, there is a similar 

relationship to that seen for the log transformed model 

although here the divergence from some central point 

is less pronounced. Large values of CA19.9 are again 

associated with typically large, positive influence 

measures. For robust model 4, there is neither the 

divergence away from some central point, nor any 

large influence measures associated with small values 

of CA19.9. However, the parameter � is associated 

with some large positive influence measures. This is to 

be expected, as this is the parameter associated with 

setting the upper asymptote. The estimate of the 

parameter is driven by the amount of `large' data that 

are observed and any single data value can have a 

relatively large effect on the estimate. Upon first 

inspection of the plot for �, apart from two large 

influence measures, there is fairly flat relationship with 

log(CA19.9), even at large values. Upon closer 

inspection, there is some change in the relationship 

between log (CA19.9) values of 4 and 6, and again 

between 6 and 8. This change, although small, can be 

seen to correspond to the points in the function that are 

chiefly concerned with the growth of the functional 

relationship and immediately afterwards as the 

asymptote is approached. 

DISCUSSION 

A method has been given to robustly model a 

continuous covariate in the Cox proportional hazards 

situation that automatically guards against extreme 

values and sets asymptotes for the minimum and 

maximum hazard ratios. This can be very useful in the 

clinical context. The model was successfully 

demonstrated on survival data following resection for 

pancreatic adenocarcinoma where CA19.9 is used as a 

biomarker. The distribution of CA19.9 is highly skewed 

and so was a good candidate for the robust 

parameterization.  

 

Figure 4: Influence measures for the four models. 
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[207] J. D. Cook, J. M. Fúquene, and L. R. Pericchi, “Skeptical and Optimistic Robust
Priors for Clinical Trials,” Revista Colombiana de Estad́ıstica, vol. 34, no. 2,
pp. 333–345, 2011.
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