Structure-borne sound transmission on

frameworks of beams

Thesis submitted in accordance with the requiremefthe

University of Liverpool for the degree of Doctor Bhilosophy

by

Xing Wang

July 2015






Abstract

Many engineering structures are built from framegorof beams, particularly
lightweight structures. For the purpose of noisati® from airborne and structure-
borne sources, it is useful to be able to predibtation transmission across these
frameworks. This thesis investigates the potentss of Advanced Statistical Energy
Analysis (ASEA) to predict structure-borne sourahmission when the beams support
multiple wave types due to wave conversion at threejon. In contrast to Statistical
Energy Analysis (SEA), ASEA is able to account fogh propagation losses and

indirect coupling through the use of ray tracing.

SEA and ASEA were validated through comparison wiasurements and numerical
experiments with Finite Element Methods (FEM). Wheath beam supports at least
two local modes for each wave type in the frequelbagd of interest and the modal
overlap factor is at least 0.1, FEM and measurerdat# tend to have average values
which form smooth curves such as those predicte@B4& and ASEA. It was shown
that SEA and ASEA models could incorporate EulerBalli and Timoshenko theory
by changing over from Euler-Bernoulli to Timosherkoup velocity when calculating
the coupling loss factors. However, comparisonshwieasurements were not
conclusive although there were indications thatitable crossover frequency could be

when Timoshenko and Euler-Bernoulli group velositifer by at least 26%.

Agreement between FEM and ASEA indicates that iappropriate to ignore phase
effects in the ray tracing approach used with ASERAs was particularly noteworthy
for the three-bay and five-bay truss beams as these perfectly periodic for which
phase effects could be important. Results for ganiction, a rectangular beam frame
and a five-bay truss with relatively long beams agldtively high internal loss factors
demonstrated that ASEA was able to incorporate pigipagation losses. This was not
possible with SEA. For a three-bay truss beam watlatively short beams ASEA
showed close agreement with FEM and measurememtBrrmomg that there was
significant indirect coupling rather than high pagation losses. There are indications
from the five-bay truss beams that ASEA may no &nge accurate in predicting the
response on beams that are at least three struginions away from the source
beam, particularly when ASEA predicts high propamatosses on the receiving beam.
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1. Introduction

1.1 Background

Many engineering structures are constructed froamé&works of beams for which
prediction models are needed to determine vibratimmsmission across these
frameworks for noise control purposes. Such modsdsrelevant to machinery that is
directly connected to the beams as well as towglght structures where frameworks
of beam support thin plates which form separatind/@r flanking walls/floors that

provide sound insulation.

For coupled beams that form a two-dimensional jon¢tfour possible incident waves
can be considered: Type A bending waves (defined as having displacement in the
same plane as the junction), Type B bending wawfined here as having
displacement perpendicular to the plane of the tjang longitudinal waves and
torsional waves. For beams that are perpendicdaedch other at the junction,
excitation of Type A bending waves generates lamtjital waves at the junction, and
excitation of Type B bending waves generates toadiavaves at the junction. This
thesis considers the following models: Bending vsawaely (B model), Bending and

Longitudinal model (BL model) and Bending and Torsll wave model (BT model).

For prediction models of sound and structure-b@mend in the audio frequency range
there are often sufficiently large numbers of motledt statistical approaches can be
used, such as Statistical Energy Analysis (SEA)Hbwever for frameworks of beams

the number of modes in one-third octave or octavadb is not as high as with plates
and acoustic cavities. In addition, most framewark®eams have a repeating pattern
such that they form a periodic structure and SERAoissuited to prediction on perfectly

periodic structures. Advanced SEA (ASEA2] has been shown to be able to
incorporate features of structure-borne sound waian such as indirect coupling and
high propagation losses. In addition, ASEA has &lsen used to model bending wave
transmission across a periodic ribbed plagd. [Therefore this thesis investigates

whether ASEA could be used to model frameworkseafnbs with multiple wave types.



1.2 Literature review

The choice of prediction model for vibration transsion across coupled beams partly
depends on the wavelength in relation to the besngth and whether the framework of

beams is periodic with a repeating unit cell.
1.2.1 Isolated junctions of beams

Much of the literature looks at isolated planarcions formed by two, three or four
beams connected at a single junction. For suchtipurs; the following wave models
can be given: bending wave only (pinned junctiohshgitudinal wave only model

(collinear beam systems with longitudinal wave &t@in), torsional wave only model
(collinear beam systems with torsional wave exaitgt bending and longitudinal wave
model and bending and torsional wave model. Thertgjof studies have focused on
the bending and longitudinal coupling model anddbtof-plane bending and torsional
wave model on collinear discontinuity, non-collinerner junction, L-junction, T-

junction, X-junction and H-junction.

Assuming only bending (Euler-Bernoulli theory) afahgitudinal waves on semi-
infinite beams, Creme#] and Cremeet al [5] derived transmission coefficients from
wave theory for an L-junction of beams (althouglihvan incident longitudinal wave it
was assumed that both beams had the same matepalies). For T- and X-junctions,
Cremer, Heckl and Ungar [5] stated the bending weasrgsmission coefficients around
the corner and across the straight section of @metipon, but not the transmission
coefficients involving longitudinal wave motion. &ner, Heckl and Petersson [6] gave
a general derivation for an X-junction where albaives could have different material
properties and different cross-sections. This agpgtavas adapted to derive results for a
T-junction. For these T- and X-junctions, asymputakpressions were only given for
bending wave transmission coefficients (i.e. natsth involving longitudinal wave
motion) and the graphed transmission coefficiemtgegno indication that some values

can be frequency-dependent.

Lyapunov [7] studied the flexural wave transmissiom an articulated joint that

connected beams and plates with a blocking masseWseory was developed and



compared with measurements which indicated a hegres of vibration isolation was

possible.

Wang and Kinsman [8] used Timoshenko beam theosyudy the dynamic response of

a portal frame to show the free vibration and fdroesponse.

Rosenhouset al[9] used the wave theory and experimental workttmly bending and
longitudinal wave transmission on T-junction witlwalded joint, screw-fastened joint
and a joint with a rubber layer. For these typegunttion there was close agreement

between the theoretical and experimental mode shape

Under nearfield bending wave excitation, Mace [1@drived the reflection and
transmission matrices for beam discontinuities ahdwed that in some cases it is

necessary to consider the effect of nearfields.

Moor [11] extended previous studies on L-, T- anguMctions to an isolated beam
junction with arbitrary orientations. Analytical meations in terms of impedance were
carried out to calculate the reflection of and srarssion coefficients of incident in-
plane bending, longitudinal, out-of-plane bendingl dorsional wave excitation. All

beams were assumed to be identical to simplifydéevations, but no experimental

validation was carried out.

Horner and White derived transmission coefficidntsthree beams coupled together at
a single junction J2] and for two non-collinear beams3] both with variable angles
between them. The equations quoted in the formegremahat give transmission
coefficients for bending wave excitation appeab#&in error because when they are
implemented, the sum of the transmission coeffisi@loes not equal unit. Horner and
White assumed the junction was a rigid mass whekeasg and Pinningtonif,15]
derived transmission coefficients for L-junctionghwspring-dashpots incorporated in
the junction.

Richard et al [16] studied the coupling of bending and longinadiwaves on a T-
junction. Measurements showed good agreement wiitle £lement method, indicating
that power of bending and longitudinal waves carsdygarated when both exist in one

beam.



Ouisse and Guyader [17] also studied the BL motiebo-collinear beam junction with
arbitrary angle using wave theory. This providedeaplanation for hypersensitivity of

vibration transmission when beams are connectedrtdin angles.

Jee-Hun Song and Suk-Yoon Hong [18] studied a Bldehéor a non-collinear beam
junction with a spring and dashpot at the beamtjanc This aimed to build a non-
conservative modelling technique to predict vilmatiransmission in the mid- and high-

frequency ranges.

Mei [19,20,21,22,23] applied Timoshenko beam theorythe study of bending and

longitudinal wave coupling on a T-shaped, H-shaged L-shaped beam junctions. For
the L-junction and a portal beam frame, controllia were dynamically identical to

stiffness of spring attachments were introducedhat joint to control the bending,

longitudinal and torsional motion. These studieghhghted the importance of using
Timoshenko beam theory at high frequencies.

As well as wave theory, other forms of analysisehagen considered for isolated beam
junctions including Fourier technique, asymptotiodal analysis and the receptance

method.

Lee and Kolsky [24] employed the Fourier technidaesolve the longitudinal and
bending pulse transmission between two non-colfimeds with arbitrary connection
angle but assuming the same materials and crotisrsetimoshenko beam theory was
adopted to describe the bending motion, and gooeeatents between measurements
and analytical calculations were achieved. Atkimgl adunter [25] studied the L-
junctions with right angle analytically and expeemtally for comparison with Lee and
Kolsky’s work. Yong and Atkins [26,27] also usecetRourier technique to predict
bending and longitudinal wave transmission on twno-nollinear rods and a T-junction
of rods. Timoshenko beam theory was used and wawrsiio be able to accurately

describe the bending wave motion. Similar reseaachbe found by Thomas [28].

Farage and Pan [29] adopted the receptance mattibd study of power flow in planar
coupled beam structures. A BL model was used fooracollinear beam junction and
X-junction and validated against a finite elemeinidel. Using the receptance approach,



Besharaa and Keane [30] also numerically studied ltjunction with the joint

modelled by three sets of springs and dashpots.

The above literature concerned the BL model. FerBf model assuming only bending
waves (Euler-Bernoulli theory) and torsional waweessemi-infinite beams, HeckB1]
derived the transmission coefficients from waveotliefor frameworks of beams
formed from T- and X-junctions, and Sabli82] derived those for an L-junction. In
both cases the junction that connects the beamssismed to be massless with a rigid
cross-section that does not support wave motion. [@B] used the modal theory
(asymptotic modal analysis) on a BT model of X-jime. The results were compared
with SEA predictions. As mentioned before, by usmgedance in the derivation Moor
[11] also calculated the out-of-plane bending amdsional wave transmission
coefficients on L-, T and X-junctions but assumialg§ beams identical. The power
evaluation equations for different kinds of wav@dy on beams were also given in
terms of impedance. Tso and Norwo@d] [produced a general derivation to calculate
transmission coefficients for a three-dimensionakttion of beams with arbitrary cross-

section.

In terms of experimental validation of wave mod&srtzeet al [35], Hinsch B6] and
Rosenhouset al [37] validated the bending and longitudinal wave mddeai Cremer
[5]. Extending the experimental validation to thending and torsional wave model,
Gibbs and Tattersall3B] showed agreement between measured and predieted |
differences for an L-junction of square cross-sectbeams. In these experimental
studies the bending wavelength was at least siggithe beam thickness at the highest
frequency under consideration; hence it was appateprto consider only Euler-
Bernoulli theory. Doyle and Kamle [3()] captured time signals for bending waves
incident on beam junctions. This indicated thateEBernoulli theory was adequate but
that Timoshenko theory was likely to be necessarfigh frequencies. Troshin and
Sanderson [41,42] examined energy flow on a T-jonabf rectangular beams with two
experimental methods: structural intensity techeigbased on finite-difference
approximation and mobility energy flow techniqueng, Liu and Nilsson [43] studied
the effect of the overlap of joint on the vibratidransmission loss based on
measurements on a two collinear beam systems. €attial [44,45] provided a

measurement method in which the measured strucespbnse is used to calculated the
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far field scattering matrix. Thus the reflectiondatransmission coefficients of the
bending and longitudinal wave motions were obtaineda collinear beam junction
(beams with discontinuity). Muggleton and Mace][4fs0 measured beams with a
discontinuity as well as a right-angled pipe. Begdiand longitudinal wave
transmission coefficients were calculated from mead data through an averaging
procedure and compared with theoretical estimateswas concluded that this
measurement method using an averaging approachtas advantages although bias
errors exist between the measured transmissiorfideats and predicted which was

attributed to the theoretical model.
1.2.2 Large frameworks of beams

Beam frames that comprise several isolated beantigurs have been studied by many
researchers, particularly periodic beam structwieish exhibit the periodic properties
of pass and stop bands [e.g. 47,48,49,50,51].

Heckl [31] derived the bending and torsional traission coefficients on the isolated T
and X-junctions which formed a one dimensional bedth periodic discontinuity and

a two-dimensional periodic beam grillage. The attg¢ion of bending waves on the
grillage structure was solved using wave theoryoXi51] analysed the periodic truss
beam using periodic structure theory and FEM. hiewn that the periodic truss has an

attenuation zone when only in-plane displacemerstemsidered.

Phaniet al [52] examined the band gaps and spatial filteqpg@nomenon on four
specific planer beam frames: hexagonal honeycoimb, khgomé lattice, triangular

honeycomb and a square honeycomb.

Uhrig [53] gave a detailed derivation of the tramsfatrix, and Yun and Mak [54]
studied a periodic dual-beam structure with trarsveconnections using Transfer
Matrix Method (TMM). A coupling transfer matrix wasised to describe the
relationship between the velocities and the foroésthe coupled bending and
longitudinal waves at the two sides of the conmgctbeams. Using the dynamic
continuity conditions at joints and Bloch wave thegropagation constants of flexural
and longitudinal waves were calculated. Experimentalidation showed close

agreement with TMM by measuring the mobility at jinection [55].
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Langley [56] applied the direct-dynamic stiffnessthod to a six-collinear beam frame
and a beam grillage. It was pointed out that theshmd treats each beam in the frame as
a single element regardless of the frequency ardiaspdistribution of excitations

because the mean power flow is calculated.

Shanker and Keane [57] presented a general methexhtuate the power flow in beam
frames of rigid joint. This method was based on rieeptance theory, and the global
response was predicted by summation of individuadoupled beams from Green

functions.

Sablik et al [58] studied a three-dimensional framework of bgawith bending,

longitudinal and torsional waves using transmissiogfficients incorporated in SEA.
Structural resonance was introduced in the SEA yaiglwhich provided large
fluctuations in the response. Comparison with mesmants indicated that these

fluctuations did not always occur.
1.2.3 Statistical Energy Analysis

Statistical Energy Analysis (SEA) is intended fdnet prediction of vibration
transmission between weakly coupled subsystemseatherresponse is multi-modal in
the frequency band of intere€9]. Fahy and Mohammed@] showed that coupling
loss factors determined from bending wave theooyiged suitable estimates when the
larger of the modal overlap factors for two coupbecims was at least unit, although the
effect of low mode counts was not investigatedoleams. Compared to plates, the local
modes of beams are relatively widely spaced whielams that mode counts are often
low when using constant percentage bandwidths; ehnemoen considering bending
modes in one-third octave bands there may onlyngensode in each band over a wide
frequency rangesfl]. If the modal overlap is sufficiently high, th&uavies and Wahab
[62] have shown that reasonable predictions can be\aadh with SEA even when the
bending mode count is only one or two on each beamik and Galbrungg] have
shown that fluctuations in the coupling betweendoegp waves on two beams can be
estimated based upon the mobility of the receibegm subsystem; however, this is
only feasible for one wave type. Bending mode c®uim constant percentage
bandwidths increase with increasing frequency; h@methey only start to become

greater than unit at a frequency where modes bamioccur that correspond to
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longitudinal and/or torsional wave motion. So jastthe bending mode count becomes
multi-modal, longitudinal and/or torsional modescwith mode counts that are unit.

SEA is well-suited to the analysis of structuredmorsound where there is wave

conversion at junctions between subsystems; hdnsedhesis assesses the application
of SEA to frameworks of beams which support moentbne wave type.

1.2.4 Advanced Statistical Energy Analysis

Statistical Energy Analysis (SEA) has been showmdosuccessful in solving many
vibro-acoustic problems in engineering [64]. Howe\tkere are instances where errors
occur with some types of structural assembly [65586 You et al [68] compared
random energy flow analysis with SEA to investigstieictural vibration power flow in
planar beam frameworks. The energy levels on stésgsthat are distant from the
excited subsystem showed that large differencest ebx@tween the two methods
indicating that SEA was less reliable. For cougdctural subsystems, the assumption
in SEA is that there is no coupling between physicdisconnected subsystems.
However, in some situations there can be signifigagirect coupling, i.e. tunnelling
mechanisms [689]. To incorporate indirect coupling within a st#étal framework of
analysis, Heron [2] developed Advanced StatistiEaérgy Analysis (ASEA) which
combines SEA and ray tracing (ignoring phase efjettt track the power transmitted
between coupled subsystems. This approach was atedidwith excitation of
longitudinal waves at one end of an in-line arragin rods. ASEA agreed well with the
exact result which was in contrast to SEA whichres@émated the vibration response
for subsystems that were physically disconnectenh fihe source subsystem. However,
this example primarily confirmed the ability of ABEo account for propagation losses
rather than indirect coupling between non-adjacendt. Yin and Hopkins [3] used
ASEA to predict bending wave transmission across ¢oupled plates where one plate
was a periodic ribbed plate. ASEA was used at Higlquencies where each bay
supported local modes and could be modelled apaate subsystem. This showed that
indirect coupling between bays at high-frequenearas sufficiently dominant that SEA
underestimated the responsea0dB on the furthest bay whereas ASEA gave close
agreement with measurements and FEM models. Tlsonear this was that ASEA
accounted for spatial filtering due to transmissagnoss each rib that led to non-diffuse

vibration fields on the most distant bays. Wilsamd aHopkins [f0] extended the
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application of ASEA to large structures built framany coupled plates by introducing a
beam tracing method to increase the computatidifialemcy. This allowed modelling
of large periodic box-like structures for which 8ph filtering of bending waves
becomes apparent in the low- and mid-frequency esargfter only a few structural
junctions. This showed that the inclusion of indireoupling in ASEA was able to
provide significantly better estimates than SEA wimates had at least one or two
bending modes in each one-third octave band (nmdalap was relatively high due to
significant coupling losses). Therefore, this teensiders the application of ASEA to
beams across a wide frequency range. In the heffuéncy range the Timoshenko
bending theory is applicable and propagation losaes expected to become
increasingly important due to lower group speedsitthat in the case of the Euler-
Bernoulli theory. Heron [2] considered the posgipithat ASEA could be extended to
multiple wave types, but no results were reporidus extension to multiple wave types

is considered in this thesis.
1.2.5 Discussion

Many researchers have focused on isolated junctbbsams but relatively little work
has been carried out using these models to predcation transmission on larger
frameworks of beams in engineering structures nwrwhich have repeating patterns.
In addition, the wave theory derivations are scatt@cross the literature, with different
assumptions about which beams have identical nahtproperties and cross-section.
Many structures such as framed-walls or floors heW&amework of beams that can be
described by L-, T- and X- junctions (i.e. rightgded junctions) where the collinear
beams usually have identical material propertied enoss-section. Hence, this thesis
provides a consistent set of derivations for thgpes of junctions for B, BL and BT

models.

The literature review in this chapter indicatest th&ew researchers have carried out
analysis up to sufficiently high frequencies andnomented that Timoshenko beam
theory [26,27] is required. However, the literatdiees not consider how Timoshenko
theory can be incorporated in SEA and ASEA. In thiesis prediction and
experimental work will be carried out over the aufitequency range (20 Hz-20 kHz) in

order to assess the differences between Euler-Braod Timoshenko theory.



The literature on SEA indicates that relatively fstudies have considered its use with
large frameworks of beams. Hence there are fewdatdins on systems of coupled
beams, which consider the following combinationfadtors: low mode counts, low
modal overlap, multiple wave types, different bexgdivave theories, propagation losses
and indirect coupling as well as increasing unaertain measurements at high
frequencies. ASEA has not previously been used tmei realistic engineering
frameworks of beams and has only considered oneewgpe hence this thesis
investigates whether ASEA could be used to modehéworks of beams with multiple

wave types.

In the literature, validations of analytical modéds vibration transmission on coupled
beams have been carried out using Finite Elementhdde (FEM) [71,72] and
experimental work. Both these approaches will lus this thesis.

1.3 Thesis aims

This thesis investigates the prediction of vibmattoansmission using FEM, SEA and
ASEA for frameworks of beams with multiple wave égpup to high frequencies where
Timoshenko beam theory is valid. The frameworksenrabnsideration are comprised

of beams that are connected at right-angles to eiheln.
The four main aims and original aspects of thisithare:

1. To implement ASEA for frameworks of beams with npl# wave types.

2. To identify the local mode requirements in termsnaide counts and modal overlap
factors such that SEA and/or ASEA give reasonalslimates of the dynamic
response on frameworks of beams that support nailtipve types.

3. To investigate whether SEA and ASEA models can ripm@ate both Euler-
Bernoulli and Timoshenko theory by changing oveonfr Euler-Bernoulli to
Timoshenko group velocity when calculating the dmgp loss factors, and to
identify a suitable crossover frequency.

4. To investigate whether ASEA can provide more adeupaedictions than SEA by

accounting for propagation losses and/or indireapding (i.e. tunnelling).
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1.4 Thesis layout

Chapter 2 describes the different wave types amthots the wave theory derivations
used to determine the transmission coefficienteéen L-, T- and X-junctions for three
different models (B, BL and BT models).

Chapter 3 describes Statistical Energy AnalysisA|SEhd Advanced Statistical Energy
Analysis (ASEA) that are used to predict vibrattamsmission on coupled frameworks

of beams.

Chapter 4 describes Finite Element Methods usedadael the frameworks of coupled

beams.

Chapter 5 describes the experimental work used @asore material properties of
Perspex (Young’'s modulus and internal loss factarg) vibration level differences on

coupled Perspex beams.

Chapter 6 compares measurements, FEM, SEA and A8E#o models (BL and BT
models) of an L-junction, a rectangular beam fraand a three-bay truss beam. This
chapter considers both Euler-Bernoulli and Timog&betheory for FEM, SEA and
ASEA models in order to assess (a) the validitf:BM elements and (b) the proposal
to implement thick beam theory in SEA and ASEA legaunting for the change in

group velocity.

Chapter 7 describes the results from parametridietuusing numerical experiments
with FEM, SEA and ASEA to investigate:

1. The effect of different junction and boundary cdiualis with an L-junction.

2. The effect of uncertainty in the material propertien the validity of zero
transmission coefficients predicted using wave théar T- and X-junctions.

3. The effect of uncertainty in the material propestigith periodic frameworks of

beams using a five-bay truss beam as an example.
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2. Wave theory for junctions of beams

2.1 Introduction

In this chapter, descriptions are given of waveagiqus on beams and solutions of the
transmission coefficients for bending, longitudirsadd torsional wave excitations on
various right-angled, rigid beam junctions whichrnfioframe structures. This is in
preparation for the calculation of transmissionffioents for combinations of semi-
infinite beams. This is to give confidence into ttalculation of the coupling loss
factors required for the network of beam structaescribed in chapter 3.

The combination of semi-infinite beams with riginigals can be divided into L-, T- and
X-junctions. Transmission coefficients for the B debare calculated in one direction
and the consistency relationship is used to deternaalues in the opposite direction.
However, this is not possible with the BL and BT dals; hence the transmission
coefficients are calculated in both directions. rEfiere the T-junction is considered as a
T123- junction and a T124-junction in which beans lalways chosen as the source
beam. In all four beam junctions, namely L-, T128424- and X- junctions, two

different wave types are individually considerediasident waves with BL or BT

model.
2.2 Wave types

2.2.1 Longitudinal waves

For an infinite solid, pure longitudinal waves aagtur, but for finite structures such as
beams it is a ‘quasi-longitudinal wave’ although Bvevity it is often referred to as a
longitudinal wave. For quasi-longitudinal wavesheams, the wave motion equation

can be found in [5, 6]

9%(F, ,v, 0%(F ,

where E is the Young’s modulusF, is axial force andvy is axial velocity. The

corresponding propagating wave speed is

12



¢ = = (2-2)
0
VL
R [ R
ox
-

Figure 2.1 Force relation in a beam element fogililinal wave motion.

From Figure 2.ne can readily write the force equation accordiegvton’ Law
oF, oV,
F -| F +—=dx|=pAdx)— 2-3
L ( L o j PAAX) ot (2-3)
Thus one can solve axial for¢e as follows

F =-pA| aaLtL dx (2-4)

This equation can be used for derivation of ax@akté when velocity expression is
assumed. One can also write another equation ax@ltforce by introducing the force

impedanceZ, = AJGp = p A¢ on a semi-infinite beam [73]
Fo=2Z v (2-5)

This gives the power transmitted by the axial farcthe x direction as [11]

P =1Re(F /)= Re@ y V)
2 2 (2-6)

1 1
=>Re, v [ =-PAG M

where * indicates the complex conjugate .
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2.2.2 Torsional waves

Beams can also support torsional wave motion wiadirgpoints of the same cross-
section experience circumferential displacementaiathe beam axis. The relationship
between the torsional momevii on each cross-section and the rota#bns [5,61]

06,

M. =T— 2-7
=T (2-7)

whereT is the torsional stiffness.

M, > M+

Figure 2.2 Moment relation in a beam element fositmal wave motion.

By calculating the torque equilibrium relation orsraall piece of the beam element in

Figure 2.2, one has

oM oo
M. —| M, +—TLdx |=Odx—- -
o~ +Bra|-oa %)
The angular velocityw, is given by
w, =06, /ot (2-9)

and the mass moment of inertia per unit lengtlefsdd as
O=pJ (2-10)
Solving equation (2-8) gives
M, =-0f 22 ax (2-11)
t
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By combining the two equations (2-7) and (2-8) ara obtain the equation for

torsional wave motion [6]

2 2
Ta (MTZ’alr):G)a (MTZ’OJF) (2_12)
0x ot

The torsional wave speed is then given by

o | T ]
wrfE- [T 219

For beam with circular cross-section, the torsiastdfnessT is the product of shear

modulusG and the polar moment of inertiaSo the torsional wave velocity for circular

T _[G
= |—=.]= 2-14
= = 2 @14)

For a rectangular beam cross-sectibx h (assumingb > h), the polar moment of

cross-section is

inertia is

_bh*+0’h

J 2-15
B (2-15)

and the torsional stiffness can be calculated ysiag1]
7= SO 1—192htanr£lbj (2-16)

3 b 2h

On a semi-infinite beam the moment impedance i [73
Z = M, _ Oc; (2-17)
eT

Thus the power transmitted by torsional wave caodbeulated as [11]
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P :%Re(MT Dfu?)=% Re¢ s [ )
(2-18)

1 1
=ZRe@, Jar[ =2 0c |w|

2.2.3 Bending waves
2.2.3.1 Euler —Bernoulli theory

Analysis of bending wave considers flexural motdong they direction and rotational
motion aboutz axis. Generally only pure bending wave is congden thin beams
which have cross-sectional dimensions that are rsuwdller than the wavelength. Thin
beam theory is often referred to as Euler-Berndhéiory. As the wavelength decreases
with frequency, there exists a limiting frequency thin beam theory. The thin beam
limit is defined as the frequency at which the begdvavelength equals six times the

cross-sectional dimension undergoing lateral despteent [5].

Take a beam element into consideration shown inrEi@.3. The rotational inertia of
the cross-section for thin beam is ignored whetingithe moment equilibrium relation
equation. The shear force on the cross-sectiohimfiieam will only make contribution
to the lateral displacemeit Hence the deflection angle only includes the elapgle

caused by the moment. Therefore the angle of ostator slope)d, can be
approximately expressed as

g -0

L= (2-19)

Differentiation with respect of time produces tle¢ation between angular velocity,

and the lateral velocity, giving

06, _ 0°& _ 0V,
ot oxot 0x

w, = (2-20)

From the basic geometric analysis, the bending momwen be related to the radius of

the neutral surface

16



1 0x° 0°¢
— 7 = (2-21)
I 2
A £1+(65j] o
0x

wherel is the moment of inertia of cross-section abbuaixis. The product oEl is

bending stiffnes® and the bending moment is usually given as

2
M, = —El % (2-22)

The negative algebraic sign indicates that thectoe of the moment is opposite to that

which can produce positive curvature.

|
NG NN

B - FB+aidx MB+6'\/I
X dx 16)4 0X

B dx

Figure 2.3 Force and moment relation in a beam emeiior bending wave motion.

By ignoring the moment of inertia, one can write thoment equilibrium of an element

on the right side in Figure 2.3 as

oM
MB—(MB+ B j—FBdX:O (2-23)
0X
Then the shear force is given by
oM 0%¢
Fo=——E2=El— 2-24
® X 0x° (2-24)

Differentiating with respect to time for equatio(%22) and(2-24), one can solve the

moment and shear force in terms of the velocity

17



0%,

M. =-El | B dt 2-25

8 ax2 ( )
ang

FB = Elj 3 dt (2-26)

The velocity can be described in the fog v, ( X) €, which allows the moment and

force to be written as

M, =~ L% () (2-27)
iw  0X

F, = £ 9% () (2-28)
iw 0OX

According to the Newton’s law, the force relatidrao element in thg direction is

oF ov
F-| R +—2dx = pA—_2 2-29
2 ( o j pAT (2-29)
whereA is the cross-section area.

Then the one-dimensional form of bending wave agoas [5, 6]

0 9°
—EIW(VB,a)B,MB,FB):pAF(VB,a)B,MB,FB) (2-30)
This fourth-order differential equation has fourot® corresponding to propagating
waves and near-fields in the positive and the megatirection. The bending

wavenumber is

(2-31)

The phase velocity of bending wave is defined by thtio of angular velocity to

wavenumber

18



. Elef
PA

c, = “f = (2-32)

In contrast to longitudinal and torsional waveg phase velocity for bending wave is
frequency dependant; hence, bending waves areildedgas dispersive. For this reason
it is necessary to calculate the group velocitwlich the bending energy travels since
the group velocity is not the same as phase vglderom equation (2-31) one can solve

C,=—= 2? =2¢, (2-33)
When evaluating the power carried by bending wawes, has to take the both flexural

wave motion and rotational motion into account [8Efom Fahy [73] the force

impedance on semi-infinite beam is
ZB:_B:—B_:_IoAq3 (2-34)

and the moment impedance on semi-infinite beam is

7 _Mg _ Elky _1-i pAg

" of1H) 2 K (2-35)
Thus the bending wave power on a beam can be esqutes
1 1 1 1
P, :ERe( F, m/g)+E Re{ M, [&f ) =2 RéZ,\, mg)+_2 REZ,w, (14
(2-36)

1 1
ZERe(ZB )|VB|2 +§ Re(, }aé|2

Considering the relationships (2-20), (2-34) aBeB%) the bending wave power is

calculated as

R, =2 Re@ Jul’ +- Re@, K|y = p Ag| o’ 2-37)
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2.2.3.2 Timoshenko theory

In contrast to Euler-Bernoulli theory, both rotgtonertia and shear deformation are
considered in Timoshenko theory [75]. The angleotdtion consists of two parts: the

angle for pure transverse bendi@@gnd the anglg/for shear force deformation. The

total angle of rotation (or slope) is

dé
=0+ 2-38
| y (2-38)
The shear force is given by
F=-Ky (2-39)

where K is the shear stiffness. For homogeneous beam sexti®n, the shear stiffness

obeys
K=— (2-40)

The parametekis called the ‘shear stress distribution parametéith is related to the
shape of the beam cross-section [5]. For a rectanguoss-section, it is 1.2, and for
circular section it is 1.18. In some literatureg[€Z6,77] the shear coefficieatis used

in Timoshenko beam theory, which is related toghear stress distribution parameter

by
- (2-41)
K

The table below is taken from [77] and gives th&uwation of shear coefficient in

terms of Poisson’s ratig¢ for different cross-sections.
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Table 2.1 Shear coefficients

Cross-section Shear coefficienk’
6(1+
Circular %
WU
Hollow circular 6(1+ ) (1+ m2)2
m= I;nner/router (7+6/J)(1+m2)2+(20+ 121)[]12
10( 1+
Rectangular 12(+—1;,ul)
2(1+
Thin-walled round tube 4$,+—3:U)
1)
_ 20(1+ )
Thin-walled square tube M

Substituting (2-38) and (2-40) into (2-39) gives

F=—"D)=-20125%

GA G df_)
K K\ dx

As with the Euler-Bernoulli theory, the bending memhis given by

M:EI%
dx

Equilibrium of rotational motion gives the followgrequation of motion

2
Fdx+ M —(M +aﬂdxj =—p|dx¥
0x ot

and the differential equation for force in thdirection is

0%&

ot

F —(F +6_Fde = p Adx
0x

(2-42)

(2-43)

(2-44)

(2-45)

Inserting (2-42) and (2-43) into (2-44) and (2-4Bperates the following equations
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GA( %0 3%
_(a_i—eJ B2 5Pl S5 =0 (2-46)
2 2
& 06 0°¢ _
98 _ HaZ% - 2-47
(ax 6xj AFTS (2-47)

By eliminating the parametéone can obtain the following fourth-order differiaht

equation for bending wave motion on a Timoshenkanbe

9*¢ 9%¢ ( j 0°%¢ WP 1k 6“5
-pol| 1+ 2-48
ox* ot? P G )oxot? G ot ( )

The detailed derivation is given in Appendix 1.damparison with Euler-Bernoulli
theory, one can find that three additional ternesiatroduced. Timoshenko [75] shows
that only the term with the coefficiept appears when only the moment of inertia of the
cross-section is taken into account. Note thatfolueth item with coeﬁicienpl% IS
always larger than the third term becalisés greater thars, and«is always larger
than unit for homogeneous structures [5]. Henceaibh be concluded that shear
deformation is more significant than the momentinefrtia of cross-section for a thick
beam. From Cremeet al [5], the last term in equation (2-48) is negligidince it
represents the higher-order correction which restidm the combined effects of

moment of inertia and shear deformation.

To solve this equation, we assume the following egeh solution by separating

variables
E(x ) =€e“g(¥ (2-49)
Inserting this equation into (2-48) yields

d4(0(X) dz(”(X)
dx* dx?

+— (o() 0 (2-50)

where

a=£2 (2-51)



422
b= igK@ﬁ—@j) (2-52)

which are defined by the reduced modulMg, [78] and the second spectrum cut-off

frequencyfc, [79] as follows

i = i + Ll (2-53)
M, E G
a)CO = 27TfC0 = ﬂ (2-54)
Pl K

For beams with idealised boundary conditions, Staptt al [80,79] propose that
Timoshenko theory should only be used below thers®spectrum cut-off frequency.

The characteristic equation corresponding to thetlieorder differential equation

(2-50) is

k* + ak? +2 =0 (2-55)

This equation has four solutions of the wavenunkber

__[ra-va'-b _|[~a=v&-b
=" 2 - 2
(2-56)
—a+va’ - b —atVd&-b
e =y

and the general solution for the Timoshenko wavegom (2-48) can be written as
£=d“(ae"+ g &+ ab'+ al) (2-57)

whereay, ay, azg anda, are to be determined by the initial conditions.a\s positive,

a-b can also be shown to be positive as follows
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a2—b:£'0wzj2—4p2w2k(af—w 2)

M, EG
2 2 2
GG e T

- 2 ( Ex - sz W+ 40°k W >0
EG EG

The two variables; and k, are purely imaginary and correspond to positived an

negative traveling waves. When< «,, thenb is negative. This results in a positive

value for—a ++va2? —b. Thusks and ks are real values which represent nearfield

waves. However, the two variabliesandk, will be purely imaginary whew> a,. In

this case the evanescent near field waves becoopageting waves. The paramedgs

is also called second spectrum cut-off frequenciimoshenko beam theory.

The bending phase velocity of the propagating wawebe calculated using
CB -— (2-59)

To determine the group velocity for Timoshenko thedifferentiating equation (2-55)
with respect tk gives
da dw

4k +— k2 + 2ak+

1o, (2-60)
dow ok 4dw &

hence for the propagating bending wakg) (n the positivex-direction, the group

velocity is

_dw_ 4k’ +2ak

o T, 1 oo
dw 4 dw
and insertinga andb gives
2EGK + p(Ex + O ko’ (2-62)

o 20°kw’ + p(Ek + G)K'w— p ke’ w
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As the wavenumbek;, is complex, the imaginary part of the group vilois used in

the calculation of the coupling loss factors.
2.2.3.3 Thin beam limit

As noted earlier, Euler-Bernoulli theory applies whte wavelength is much larger
than the cross-sectional dimensions. A crossoeguincy from the Euler-Bernoulli to
Timoshenko theory can be defined by the percentadffierethce between the phase
velocity for Euler-Bernoulli theory and that of tH@moshenko theory. Assuming the

solution of the equation (2-48) has a sinusoidahfaith unit amplitude
E(x,t) = geX g4 (2-63)

Inserting this solution into equation (2-48) ansagng the last term as justified by

Cremeret al [5] produce

4 2

E(QJ —f —|—(1+E)w{2—”} =0 (2-64)
PAl G A G Ag
which can be rewritten as

1

4
G =(1+ 4;f(1+3j | ] (2-65)

Ca(thin) G ) Mg

wherecgin)is the phase velocity of Euler-Bernoulli theoryidetl in equation (2-32).

For circular cross-section with diameter

L - i[ij (2-66)

and for rectangular cross-section,

- 4(0) o
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In both cases this term approaches zero where #velength is much larger than the
dimensions of beam cross-section. Thus, using e¢lcernsl-order Taylor expansion on

the right side, equation (2-65) can be rewritten as

% :1—772(1+E)—| . (2-68)
CB(thin) G MB

Consider a beam with rectangular cross-sectieri.@), and the Poisson ratie=0.3,

equation (2-68) becomes

G 1 and ) _
=1 3.35{/1 j (2-69)

Ca(thin) B
Thus, the difference would be less than 10% onlgmtihe wavelength satisfies
A, 25.8h (2-70)

Following the approach by Hopkins [61], the pereget difference between phase

velocities is defined as

Coriy — 0
B(thin) CB — X% (2_71)
Ca(ihin) 100
Combining equations (2-71) and (2-68) gives
X% Ex) |
—=r|1+— |— 2-72
100 ( G j AL’ ( )

From the relationship between wavelength and wawden, one can calculate that

2
A= 2n :gﬁf_EL (2-73)
Kg f\pA

By inserting equation (2-73) into equation (2-72)eacan get the thin beam bending
limit, faenin), for anX% difference between thin beam and thick beam phelseity
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0 -1
i =22 [EA, B (2-74)
100 77\ pl G
or in terms of the longitudinal phase velocity gains
_X%2c [A(, Ex)"
o =00 21 (28 (279

Note the thin beam bending limit can also be appfa plates and Cremeat al [5]
based the thin plate limit 0x=10%.

2.2.4 Modal density and modal overlap

When studying coupled beams the exact boundaryitbomsl are not always known
exactly, but idealised boundary conditions can $eduo give analytical calculations of
the natural frequencies for the isolated beamsf@rdocal modes which are relevant to
modelling with SEA and ASEA). Thus the local modes isolated beams with
different boundary conditions are given in Tabl2 [Z.3].

Table 2.2 Natural frequencies for beams.

Wave type Boundary condition Natural frequency (Hz)
Clamped-clamped, n _
Free-free oL ¢.n=1,2,3..
Longitudinal on—1
Clamped-free ,n=1, 2, 3,...
p L G
Clamped-clamped, n _
Free-free oL G.n=1,2,3..
Torsional
Clamped-free 2n—1CT n=1, 2,3
p 4L ’ ’ ) yeee
Clamped-clamped, m [El (2n+1) B
— — ,h=1,2,3,..
Free-free 8\ pAl L
2
Clamped-free n E(Zn 1) ,n=1, 2, 3,...
8\ pAL L
Bending >
Clamped-pinned, T [El (4n+1 B
. — [— ,n=1,2,3,...
Free-pinned 32\ pAl L
2
Pinned-pinned T ﬂ(ﬂj ,n=1,2,3,..
2\ pALL
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With group velocities for different wave types hetformer sections, one can calculate

the statistical modal densitg(f), using

n(f) :% (2-76)

9

The modal overlap factor, M, is defined to indictte degree of overlap in the modal

response.

Af
M = —3dB — § f 2-77
Af l]ﬂ( ) ( )

where Af,; is the half power bandwidtifyf is the average frequency-spacing between

adjacent mode frequencies, amds the loss factor.

2.3 Properties of beams used for parametric studies andalculation

examples for wave theory transmission coefficients
Along with the derivations on basic beam junctiotise material properties and
dimensions for these models are given in Table 2.3.

Table 2.3 Material properties and dimensions ohiseased for parametric studies and
calculation examples for wave theory transmissmeffecients.

Material [ Density| Young's | Cross-section| Poisson’s Length of Internal
(kg/m®) | modulus (m) ratio beam 1 and 2| loss factor
(Pa) (m)
Perspex| 1250 6.9x10 0.02x0.01 0.3 1.3, 1.0 0.06

Low mode counts tend to occur in beam systemsjcpéatly for longitudinal wave
motion in the low-frequency range. Figure 2.4, FeggR.5, Figure 2.6, Figure 2.7,
Figure 2.8 and Figure 2.9 show the local mode ctortType A bending, longitudinal,
Type B bending and torsional modes for the twoasal beams (lengths, 1.3m and 1.0

m) for one-third octave bands over the frequenagearom 10 Hz to 20 kHz.

These mode counts are calculated assuming threedaogu conditions. These are
pinned-pinned, pinned-free, and free-free. The ltesapply directly to the isolated
beams with these idealised boundary conditionsaaadndicative of the mode counts

for the coupled beams in the junctions and fram&sior
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The first longitudinal mode occurs in the 1000 Hie<hird octave band for the pinned-
pinned and free-free 1.3 m beam, and in the 5000hizthird octave band for the
pinned-free 1.3 m beam. The first torsional modeucs in the 400 Hz one-third octave
band for the pinned-pinned and free-free 1.3 m hedmie it is in the 200 Hz one-third

octave band for the free-pinned 1.3 m beam.
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Figure 2.4 Mode counts in one-third octave bandspioned-pinned beam: (a) Type A
bending wave, (b) longitudinal wave.
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Figure 2.5 Mode counts in one-third octave bandsfriee-pinned beam: (a) Type A
bending wave, (b) longitudinal wave.
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Figure 2.6 Mode counts in one-third octave bandsfifee-free beam: (a) Type A
bending wave, (b) longitudinal wave.
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Figure 2.7 Mode counts in one-third octave bandgioned-pinned beam: (a) Type B
bending wave, (b) torsional wave.
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Figure 2.8 Mode counts in one-third octave bandsfriee-pinned beam: (a) Type B
bending wave, (b) torsional wave.
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Figure 2.9 Mode counts in one-third octave bandsffee-free beam: (a) Type B
bending wave, (b) torsional wave.

2.4 Bending only model (B model)

For a bending only model, Craik [81] solved thdaetion and transmission coefficients
in detail for plates that form X-junction, T-juneti, and L-junction from the wave fields
of displacements. These results can be readilyarted into a bending only model for

beam junctions as long as the incident wave argyleero. This section derives the
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transmission coefficients based on the wave fieldgelocity for consistency with the

BL and BT models derived later in this chapter.

For B model, a rigid massless junction beam is usegdansmit bending moments with
zero displacement (pinned) at the beam junctiaifit¥he derivation is initially shown
for an X-junction, as this can subsequently be ueederive transmission coefficients

for the T- and L-junctions.
2.4.1 X-junction

The coordinate system for an X-junction is showrrigure 2.10 showing the bending
moments and the velocities for each beam. It isimed that beams 1 and 3 are

identical, as are beams 2 and 4.

> M
M Y/ W, V, B3
il Beam 1 A A B1 A 3 °B3 Beam 3 %
Iy A

Figure 2.10 X-junction: B model, Type A bending wasxcitation on beam 1.

Consider an incident bending wave (Type A) withtuwamplitude travelling in the
positivex-direction towards the junction on beam 1, the e#yoof the incident wave is

V,,, = € e g (2-78)
B1+

The bending wave field of beam 1 can be descriteedha sum of incident wave,

reflected wave and nearfield. That is
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Vo1 = (e_ikBlX + rBlBleikBlx + rN1é<mx) Ch (2-79)

In beam 2, 3 and 4, the bending velocities can bigew as the sum of the transmitted

bending wave and nearfield:

Ve2 = (tslsze_iszy + the_szy) Ch (2-80)
Vo = (tosaaf " + 1,67 & (2-81)
Vas = = (torn @™ + 1, €%) & (2-82)

where subscripts B and N represent bending waves nearfields respectively,
indicates the complex amplitude of the reflectedvaya indicates the complex
amplitude of the transmitted wave.

For the bending only model, the beam junction suased to be free to rotate and can

only transmit moments (i.e. a pinned boundary dioal where

Vg, =1+ gty =0 (2-83)
Vg, = tgp 1y, =0 (2-84)
Vgs = tgipsttys=0 (2-85)

Vgs = ~tops —tha =0 (2-86)

Continuity of angular velocity at the junction re@s that

% = % (2_87)
ox oy

Ny _ Mg (2-88)
ox  0X

Noy _ IVou (2-89)
ox oy

Inserting the velocities into the last three equaigives
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_ikBl + ikBerlBl +k Bl N1 ™ =ik 83 B1s2~ k B n: (2'90)
_ikBl + ikBerlBl kBlr N1 ik 8l Bigs™ Bg N: (2'91)
_ikBl + ikBerlBl +k gl N1 ™ =ik 8} B1ma” k gk n. (2'92)

The moment equilibrium condition requires that suen of all the moments acting on

the junction equals zero, hence
Mg, ~Mg, =M g+ Mg, =0 (2-93)
By using equation(2-25), the moments due to bendiogions are calculated as

0%y, : . i
M B1 -B ,[ aXBl dt= I_zl[(_'ksl)z -I_(lksl)2 rBlBl+ sz1 N1j| em (2_94)

(_1_ Mg er)eiaI

BZ__BJ-

— _szaz

iw

) [( 'ksz) BlBZ+(_kBZ)2tN2i|é(d

(2-95)

(_tBlBZ + th) e

<

_ 0%y, _—B . 2 2 it
B3 — -B S dt = (_lksa) tBlBS+(_kBS) tys e
I ox’ wu[ J (2-96)
— _Bsksa

| ot
iw

(_tBlBS + tNa) €

B4 dt— B
iw

[( IkB4) toipst (_k54)2 tN4:| e
(2-97)

(_t5134 + tN4) e

Then the equation (2-93) becomes

kélBl + kél Ei le1B1™ szlBerl_ szZBZtBlBZ-I- kzssztN

5 ) ~ (2-98)
_kss %tslsa + kas BStNB_ k284 B4tBlB4+ sz4 B4tN4_ 0
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From equations (2-83), (2-84), (2-85) and (2-86¢ @an get the four parametess,

tn2, thz @and tng in terms ofrgigs, teise, tsiss andtgigs. Combining equations (2-90),
(2-91), (2-92) and (2-98), and eliminatingi, tn2, tnz and tyg givesthe following
equations ofg1g1, ts1s2, ts1gza@ndtsigs, Which can be solved to give the amplitude of the

transmitted waves.

—Kgy Hikg, kg, +iKg, 0 0 MB1g1 Kgy +ikg,
—Kg, +ikg, 0 ~Kgs + 1Kg, 0 la1e — Kg; +1Kg, (2-99)
—Kgy K, 0 0 —key +ikg, (| toies Kg; +1Kg,

kélB.L - kéz B - l‘és B, - |é4 B ltees _kélBl

It is assumed that beams 1 and 3 are identicalieabeams 2 and 4, such thaf = kg, ,

= kg,. Two parametergy and ¢/ can now be defined as

y=ke y=Ble (2-100)

Solving the matrix equation (2-99) gives

_ (=i -ix
Mo1m1 —W (2-101)

1-i
laig2 = lgips = 2()(_'_(/,) (2-102)

- X
tBlBS - (1+ i ) ()( +lﬂ) (2'103)

Using the bending wave power defined in equati@d@@R-the transmission efficiencies

for each beam are

”HCB1|V81| = ]Jzz()”z””)z”z (2-104)
Ml T 4(x+y)

B1B1 —
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) G| Ve 0.5
Tgigo = Tgipa = % = /\/‘;[/|t BleI2 = il 7" > (2-105)
M Goa Ve, 2(x+y) (\FJ’\/Z]
v \x

miCB1|V53+2 2 )(2 0.5
Toips =5 — |t = = 2-106
B1B3 W{CB1|V51+2 | 5133| 2()("'41/)2 (14_1//)2 ( )

X

The subscript positive sign refers to incident veasad transmitted propagating waves,
while the negative sign corresponds to reflecteddbe waves. For conservation of

energy it can be checked that the total transmisstefficient equals unit,

+Tom t T apat T (2-107)

TBlBl B1B2 B1B3 B1B4 1

If the material properties and dimensions of bearard the same as beam 2, then
x=w=1, andrgip2 reaches its maximum value wherggi=0.625, andrgig= 78183=
‘L'B]_B4:O.125.

2.4.2 T-junction

MBZ
2y W,
/ x Beam 2
VB%
V Vv M
Mﬂ; Beam 1 Akl A B1 0{33 /83 Beam 3 % v

Figure 2.11 T123-junction: B model, Type A bendimgve excitation on beam 1.

The T-junction can be seen as a variant of an Xtjan without beam 3 (T124-
junction) or without beam 4 (T123-junction). The weafields on each beam of T-
junction are the same as that of X-junction. Fa T123-junction showed in Figure
2.11, the boundary conditions are the same as 2tipm except equations (2-86) and
(2-89). The matrix equation (2-99)rexduced to
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_kBl + ikBl _ksz + iksz 0 Me181 k31+ ik B1
_kBl + ikBl 0 _kss + ikss toipo | = kBl+ ikBl (2'108)
kEz;lBl - kéz Bz - iés Bd tBlBB - k1231 51

The solution is given by

Y-y ]
Mg1g1 = i (2)( +_[//) (2-109)
1 ]
lgig2 = W (2-110)
2x
= 2-111
toips (1+j)(2)(+‘//) ( )
from which the transmission efficiencies are cated as
m.{CB1|V51-|2 2 ()(""//)2 + x°
lgpr=— 7 = = 2-112
B1B1 n_!l,-CB1|VBl+|2 | BlB]J (2/Y+w)2 ( )
G| Vo] 2 1
Tgig2 = M :)(w|t|3132|2 =<K 7 = 5 (2-113)
mCBl|VBl+ (2)(""//) L 27)( N zpj
Ve N2y
[ G| Voo 2y 05
Tgips = M - |t51|33|2 = X 7= > (2-114)
LA @x+y) (L, v
2x

For conservation of energy it is checked that tima sf all transmission coefficients on

the T123-junction equals unit.
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Figure 2.12 T124-junction: Bending only model, Tyfpebending wave excitation on

beam 1.

Figure 2.12 considers bending wave excitation (Tyyeof beam 1 on the T124-

junction. Similarly, one can get the following rega matrix equation to calculatggs,

tgig2andtgipa:

_kBl + ikBl _ksz + ikBZ 0 Me1g1 k51+ ik B1
_kBl + ikBl 0 _kB4 + ikB4 toigy | = k51+ ikBl (2-115)
szlB.L - kéz Bz - k§4 B4 [T - kél a

Solving this matrix equation gives

+2]
Mgig1 =~ )g( A 21;[/ (2-116)
- 1= ) (2-117)

t =t =
B1B2 ~ 'B1B4 X+

and the transmission efficiencies of the T124 jiomcare

— “!’L,%1|V|31-|2 _ 2_/Y2+(2¢’)2
= =l T — 55 2-118
Tgip1 'C51|V51+|2 | BlB]J ()("' )2 ( )
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! V +2
) E:Z:VBZ |2 = XWltesed =
1| "Bl+

TBlBZ - Z-BlB4 -

_ (2-119)

XY _ 1
T

As before, conservation of energy can be checketsare that,, ;. + 755, + 7515, = 1.

2.4.3 L-junction

The L-junction under consideration is shown in FegR.13.

zZ
i' Y Beam 2
X
W)
d)

V, \Y
Mﬂ; Beam 1 et / Bl P2
N

MBZ

!

-
>

Figure 2.13 L-junction: Bending only model, TypebAnding wave excitation on beam
1.

The continuity of rotational velocity is the same equation (2-87) and the moment

equilibrium condition isVig1-Mg,=0, therefore the matrix equation for L-junction is

{—km +iky —Kgpt ikBZM rmﬂ _ [ Kent ikﬂ (2-120)
kél B - kéz B 1o a kél B

Solving this equation gives

4]

fosor = —ﬁ (2-121)
1-i

towe == (2-122)

The transmission efficiencies are
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1 Y _2 2 42
Bm:—n”;:l:jl'z =|r31mJ2=—())(( +5)z (2-123)
1| "Bl+

, 2
\[
Tg1p2 = M =Xy |t|3132
M Gy [ Vo

_ 2xy 2
]

Conversation of energy requires that, + 75,5, =1. Table 2.4 shows the transmission

|2

(2-124)

coefficients for X-, T- and L- junctions with bemdj only models when all beams are
identical.

Table 2.4 Transmission coefficients of bending anlydel fory=y=1.

TBlBl TBlBZ z-BlBS TBlB4
X-junction 5/8 1/8 1/8 1/8
T123-junction 5/9 2/9 2/9
T124-junction 5/9 2/9 2/9
L-junction 1/2 1/2

2.5 Bending and longitudinal wave model (BL model)

For the bending and longitudinal wave model (BL eipdt is not possible to treat the
T-junction and L-junction as a special case of Kejion. Due to the structural
symmetry in the X-junction and T-junction, not bfams transmit two wave types. The
consistency relationship is no longer useful withltiple wave types; hence in this
section (and in section 2.6), different beam juntdi are considered separately with

respect to the incident wave type and structunainsgtry.

In this section, bending and longitudinal wave nisdee derived for the X-junction, T-
junction and L-junction. An incident bending or tptudinal wave is applied on the
source beam 1 and the beam junction is unpinnetdlder generation of longitudinal

waves at the junction.
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2.5.1 X-junction
2.5.1.1 Bending wave excitation

Figure 2.14 shows the X-junction under considerat®eams 1 and 3 and beams 2 and

4 are identical in X-junction.

Figure 2.14 X-junction: BL model, Type A bendingweaexcitation on beam 1.

Assume that an incident bending wave (Type A) witit amplitude travels on beam 1
of an X-junction in the positive x-direction. Theeriling wave field on beam 1 is
composed of three parts, namely the incident waefiected wave, and nearfield. Both
bending and longitudinal waves are transmitted do#ams 2 and 4. Due to structural
symmetry, the bending waves on beams 2 and 4 haveaime magnitude but propagate
in opposite directions. Hence there will be zersptiicement in the-direction at the
junction. Also, the magnitude of longitudinal wan®tions on beams 2 and 4 are the

same, but the phases differ. The wave fields oh baam are described by

VBl

:(e‘ikBlX + I € + eré‘le) ¢ (2-125)

Vo = (toaee€ ™ + t,6%Y) & (2-126)
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Vs = (toyes€ ™ + t,6"") & (2-127)

Vs = = Loy + ,6%Y) & (2-128)
V,=V,=0 (2-129)

vV, =ty 6" ¢ (2-130)

v, =t 84 e (2-131)

wherer indicates the complex amplitude of the reflecteavev andt indicates the
complex amplitude of the transmitted wave with swipgs B, L, and N indicating

bending waves, longitudinal waves and nearfieldagavespectively.

In addition to the two parameteysand y defined in (2-100), two more frequency-

dependant parameters are defined here

B = m'Z,CBZ, ,32:% (2-132)
maG, e,

where m; and m;, are the mass per unit lengths.

Continuity of the angular velocity at the juncticquires that

OVg; _ OVg, OVgy _ 0V,

ox 9y ox  0X (2-133)
which yields
IMgpey M H M grea T M o= (2-134)
IMgqgy 1y Hit grpatt 3= (2-135)
Continuity of the velocity in thg-direction at the junction requires that
Vg; =V Vg = Vs (2-136)

Thus one gets the following two equations
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+r =-1 (2-137)

Meigs v e =

+r =-1 (2-138)

faier v ~Teigs T na

In thex-direction the displacement is zero, such that
Ve, = 0(= V) (2-139)
hence,

+t,=0 (2-140)

tBlBZ N2

At the junction k,y)=(0,0), zero displacement in tlkedirection does not mean that the
force in thex-direction is also zero. Due to symmetry, the begdnotion on beams 2
and 4 are symmetric about thaxis, whilst the shear force due to bending innte2
and 4 are balanced in tielirection, Fg,-Fg4=0. Also, in they-direction,F »=F 4, and

force equilibrium requires that
Fo,—2F,-Fg =0 (2-141)

According to equation(2-4), the axial force duehe longitudinal wave in beam 2 can

be written as

mz'[ L dy=- n@ tBleéd M ¢ $1|_2 (2-142)

The shear force due to the bending wave is caldilatcording to equation (2-26)

B_[ k dt_l_[ |k31)3+(ik51)3 rB1Bl+(kBJ)3rN1]eW

(1 Mgig1 ~ ier)e _m'lcsl(l_ rBlBl_irN])eim

(2-143)

d%, A
ross] o= gk ekl e

3 _ _ ”
= 20 (1 i) = MG i) €

Inserting (2-142), (2-143) and (2-144) into (2-14dne gets
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IBZrBlBl +i IBJ Nl+ IBE BlB3+i IBtZ N3+ 2 BlLZ: IB H (2_145)

At the junction Mg,=-Mg4, and moment equilibrium gives
Mg, —2M g, —-M ;=0 (2-146)

Based on (2-25), the moments due to bending mo#omns

GRY . . ,
Mg, =-B J. aXBl dt= i_zl[(_'km)z +(|k51)2 g1t sz1 Nlj| e (2-147)

(_1_ Mg er)emI

=-B I i [( 'kaz) BlB2+(_kBZ)2 thJ e
2 (2-148)
—B,ks, it
=== (g, tH,)€
i ( B1B2 N2)
— Bl . 2 2 i
Mg, _Bj dt= |:(_IkBl) t3133+(_k51) th} e
BlkB (2-149)
i ( B1B3 N3)
Inserting these results into (2-146) gives
Tagpy Tl T 2 g, = 20 T gt (3= 1 (2-150)

Combining (2-134), (2-135), (2-137), (2-138), (20)4(2-145) and (2-150) gives a

matrix with seven unknowns

i1 iy x 0 0 O]frgp [

i1 0 0 i 1 O} ry [

1 1 0 0 0 0 -1ty -1

1 1 0 0 -1 -1 0| t,|=-1 (2-151)
0O 0 1 1 0 0 O} tgps 0

B iB, 0 0 B iB 2| ty| |B,

-1 -1 % - 1 -1 0fty,] [ 1

The transmission coefficients can now be derivethf(2-6) and (2-36)
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, 2
_ mlcsl| VBl—| _= |r5151|2 (2-152)

Tgig = ,
M Gay| Voo
— - m'2032| VBZ+2 _ 2
Toipo =Toipu=— — 7 — XY |t BlBZI (2-153)
M Gay | Voo
- ni%1| V83+ ’ _ 2
Tgips = . 2~ |tBlB3| (2'154)
M Cay | Voo
Tgy1 =Tz = 0 (2'155)
L vl
n 2| L2+ 1 2
Tgio = Tgya = 2 , 2 - 2 |tBlL2| (2'156)
M, Cay | Voo B,

Example transmission coefficients are plotted imguFé 2.15 using the material
properties and dimensions in Table 2.3. This cordithat the sum of the transmission

coefficients is unit hence there is conservatiorewérgy. Note that,,,and 7, ,are

constant whereas other transmission coefficierdsfraquency-dependant (unless they

are zero at all frequencies).

—e—BIBL
- B1B2(=B1B4)

_g 0.81- —e- BIB3 ’
= - e - BIL1(=B1L3)

L 06l - B B1L2(=B1L4)

g O oo 0o 9o o o - o Sum -
RS

7

é 0.4+ =
(2}

c

®

~ 0.2 -

S8 -85 % S 5--0 3 s 00 o o —V e o o o9 o o o o °

OF TR - o 0-90 0090 000 0-0 0-0-0 0-0¢ 0 00 000 0-0 ¢ 00 o —

| | | | | | | | | | | | | | | | |
125 20 31.5 50 80 125 200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k

Frequency (Hz)

Figure 2.15 Transmission coefficients for X-junati®dL model, incident bending wave

on beam 1.
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2.5.1.2 Longitudinal wave excitation

Figure 2.16 X-junction: BL model, longitudinal wae&citation on beam 1.

Consider an incident longitudinal wave travellimgthe positivex-direction towards the
X-junction on beam 1. This will generate bendingves (Type A) on beams 2 and 4,
and a longitudinal wave on beam 3. Due to strutsyametry, the bending motions on
beam 2 and 4 have the same amplitude but trawsposite directions, which will lead
to balanced moments in tlalirection and zero rotational displacement atjtimetion.
Hence no bending wave is reflected to beam 1 ostnitted to beam 3. The wave fields

for each beam are

v, = (e g, de) @ (2-157)
vV,=V,=0 (2-158)

Vg =1, 6 e (2-159)

Vg = Vg3 =0 (2-160)

Vo = (L€ + (%) & (2-161)



Vs = (L€ + t,€) & (2-162)

As discussed, the rotational displacement at thetjon is zero. This can be translated

as

Nz _ (2-163)

oy
Then one can solve the following expression
it g, +ty, =0 (2-164)
Continuity of velocity in thex-direction at the junction requires that
Vi = Ve V= Vs (2-165)
which gives the following two equations to be sdlve
=TI et =1 (2-166)
Tl Tty =1 (2-167)
In thex-direction,Fg,=-Fg4, and force equilibrium requires that

F,-2F,-F;=0 (2-168)

The forces can be calculated using (2-4) and (2-28)

1 .
Ll d — - él"t
mJ x= 'w"i( k. ruuj (2-169)
= n‘lcu( - LlLl) G
BZ 3 3 ot
B_[ dt = 0 [ 'ksz) tLlBZ+(_kBZ) th} e
. (2-170)
B,k o Ny
=28 (tLlBZ +|tN2)eM = rr{2CEsz( Lt 'th) e
- j i dx= - iaonf— — il (2-171)
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Substituting these forces into equation (2-168ppoes
M +tLlL3 + Zﬁlt L1B2 +2 IBI N2 = 1 (2'172)

Combining (2-164), (2-166), (2-167) and (2-172)eoran solve the four unknown

parameters,, ,, t ., t s, andt, from the matrix equation set

0
-1
11 0 0|ty
1 1268 28] t,

i 1 r-Ll L1
1 1 tLlL3 —

0
0
(2-173)

L =)

Solution of equation (2-173) allows the reflectiand transmission coefficients to be

calculated using

1, 2
LU )
11 = 1—2 = |rLlL1| (2‘174)
P CHI
T2 =T34 =0 (2-175)
1 2
B E niq_l | s B 5
Ty3= ﬁ - |tL1L3| (2‘176)
MG
Ti1g1 = TLlBS =0 (2'177)
7 2
MGyl
Tiage = Tiaps = 12—|822 = 2,81|t L152|2 (2-178)
PG

Example transmission coefficients are shown in fEgR.17 using the material

properties and dimensions in Table 2.3.
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Figure 2.17 Transmission coefficients for X-junatiddL model, incident longitudinal

wave on beam 1.
2.5.2 T123-junction

For the T-junction, Figure 2.18 shows the two cabas are considered for excitation
on the cantilever beam of the T124-junction and ohthe other beams for the T123-
junction. It is assumed that the material propsréed the cross-sectional dimensions

are identical for beams 1 and 3 and beams 2 and 4.

(a) (b)

Figure 2.18 T-junction: (a) T123-junction; (b) TXR&ntion.
2.5.2.1 Bending wave excitation

Figure 2.19 shows the T123-junction under constdmraor which the coordinates of

the junction line arex(y)=(0,0).
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Figure 2.19 T123-junction: BL model, Type A bendimgve excitation on beam 1.

Consider an incident bending wave (Type A) trawgllin the positive x-direction
towards the junction on beam 1. Both bending amdgitadinal waves will be
transmitted to beam 2. Due to symmetry, longitudimaves in beams 1 and 3 have the
same magnitude but travel in opposite directio® ihcident wave is assumed to have

unit amplitude and the wave fields are given by

Vg, = (e o g @+ eréW) h (2-179)
Vep = (toap €Y + i 8Y) & (2-180)
Vs = (Lops€ "o + f 87" & (2-181)

V=l € e (2-182)
Vio =ty € € (2-183)
Vig = ~lgy € e (2-184)

There are eight unknowns to be solved; hence emgrtions need to be established.
Continuity of velocity in bothx andy directions at the junction requires that
Ver = V2 = Ve i = "\ (2-185)

which gives three equations
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+r (2-186)

Meigs v e = -1

+r =-1 (2-187)

faier v ~Teigs T na

Ms1i1 +t5132 +t N2 = 0 (2‘188)

Continuity of angular velocity at the joint requsrenat

OVg; _ OV, ’ 0Vg, _ OVgg (2-189)
0x oy ox  0X
from which
iMgey H s H M g T A o = (2-190)
IMg1py F1 g it gpstt \a = (2-191)

Force equilibrium relationships in te andy-directions are given by
FLl + FBZ + FL3 =0 (2_192)
Foi—F,—Fg =0 (2-193)

Based on equations (2-4) and (2-28) the last twaatons yield the following two

expressions
2, —1 Bl gipot Bt =0 (2-194)
=i B g1t B a7l B gisat O wa it gu=1 B (2-195)
Moment equilibrium for bending motion on the thimsams is described by
Mg, —-Mg, =My, =0 (2-196)
from which one can solve the following equation@ding to (2-25)
Foig: — Mg~ W grpo T ot gigatt o= —1 (2-197)

Thus, the eight boundary conditions give the madgmation as
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1 1 0 0 0 0 0 -1ry] [-1
1 1 0 0 -1 -1 0 0|ry -1
0O 0 1 1 0 0 1 0|ty 0
i 1 0O O O Of°t i
| 1 O O i 1 0 O}t [

0 0 -ig B 0 0 2 0|ty 0

-iB, B, 0 0 B, B, 0 4 |Iryy, 45

1 -1 -y ¢y -1 1 0 0ty | -1

Solution of equation (2-198) allows the reflectiand transmission coefficients to be

calculated using

/ y 2
L LS (2-199)
M Gay | Ve
M, Goo | Vo]
Topr = —— 22 = YUt (2-200)
M Gy | Voo
M, Cay | Vo]
Tgips = % = |tBlBB|2 (2'201)
M Gay | Ve
L.y f
1 1-
Tgi1 = Tgys = 2miC.31| V31+|2 = 2,2[: |rBlLl|2 (2'202)
AL
B 2.2
Tgio miC51| %o, 2 2,32 |t|31|_2| ( 03)

Example transmission coefficients are shown in fEgR.20 using the material
properties and dimensions in Section Table 2.3s Tidicates the importance of wave

conversion ag,, , increases with increasing frequency although, and 7, , are

nearly zero.
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Figure 2.20 Transmission coefficients for T123-ume. BL model, incident bending

wave (Type A) on beam 1.

2.5.2.2 Longitudinal wave excitation

MBZ
z w, . Fe
Beam 2
X
Vey
M F WV Wy V, M
Bl Bl Beam 1 \ / 51 /B ’ Beam 3 * Fa
5 . /
FLl VLl . V'/ 3 FL3

Figure 2.21 T123-junction: BL model, longitudinaawe excitation on beam 1.

Now consider an incident longitudinal wave travejliin the positive x-direction
towards the junction on beam 1. This will lead eméiing waves (Type A) on beams 1,
2 and 3, a longitudinal wave reflected onto beamnt, a longitudinal wave transmitted
to beam 3. Due to structural symmetry, Type A begdivaves on beams 1 and 3 have
the same magnitudes but travel in opposite direstiovith a phase difference of

between them. This causes zero displacement igp-threction at the junction. Thus, in
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beam 2 there is only bending wave motion. The emidvave is assumed to have unit

amplitude; hence the wave fields can be describddl@ws

v, = (e g, de) @ (2-204)
v, =0 (2-205)

Vg =t 6 e (2-206)

Vor = (4,8 + 1, €5%) & (2-207)
Vap = (tmp€™ + t,€%7Y) & (2-208)
Vo = = (tye € "% + t,87) & (2-209)

Continuity of angular velocity at the junction res that

OVey _ OV, (: ~ avst (2-210)
X oy 0X
which produces
itLlBl -l-tN1-|-iA4:LlBZ-|-)(t N2=O (2'211)

Continuity of translational velocity at the junatiin x- andy-directions requires that

Vi, =V =V sV =—V,=0 (2-212)
which gives
te Tl Ty, =1 (2-213)
T, =1 (2-214)
tiyp tty, =0 (2-215)

In they-direction,Fg1-Fg3=0, and in the-direction, equilibrium of forces requires that
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F,—Fs—F,=0 (2-216)
Equations (2-4) and (2-28) gives
Bitie VB ottt =1 (2-217)
At the junction, Ms1=Mg3, and moment equilibrium gives
2M_, -M_, =0 (2-218)
According to (2-27), one can derive that
2t g~ A Yt e, T, =0 (2-219)

The six boundary conditions generate the followimagtrix equation,

i 1 ix x 0 O0][ty,] [0]
0 0 1 1 -1 0|ty 1
0O 0 0O 0 -1 1t 1
B2 = (2-220)
1 1 0 0 0 0ty 0
0 0 B iB 1 1ny 1
2 2 ¢ ¢ 0 O)t,;] [0

Solution of (2-220) allows the reflection and tramssion coefficients to be calculated

using

—_ n-ﬁ%l|VBl-|2 :Zﬁl

Tiagy = Tiaps = 1 > yw |tLlBl|2 (2‘221)
E rnicl_l| \{_1+
! V +2
Ly (2-222)
5 MG s
1
E niq_1| \{_1-|2 2
T, = ﬁ = |rL1L1| (2‘223)
n".q_l| \{_1+|

2
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T2 =0 (2-224)

2

1
it

TLl L3 —

: ~ =t (2-225)
P CHI

Example transmission coefficients are shown in FEg@22 using the material

properties and dimensions in Table 2.3. Apart from, andr , ,, the transmission

coefficients are zero or nearly zero.

= —e— L1B1(=L1B3)

@ 0.8F L1B2 |
2 —e— LiL1

E ~ e - L1L2
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Figure 2.22 Transmission coefficients for T123-jume: BL model, incident

longitudinal wave on beam 1.
2.5.3 T124-junction
2.5.3.1 Bending wave excitation

Figure 2.23 shows the T124-junction under considmrdbr which the coordinates of

the junction line arex(y)=(0,0).
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Figure 2.23 T124-junction: BL model, Type A bendingve excitation on beam 1.

Consider an incident bending wave (Type A) travgllin the positive x-direction
towards the junction on beam 1. Both bending andyitodinal waves will be
transmitted onto beams 2 and 4. Due to symmetrye Fyjppending waves on beams 2
and 4 have the same magnitude but travel in oppalsiections. Hence there will be
zero displacement in thedirection at the junction. Similarly, the phases different
but magnitudes are the same for longitudinal wavebeams 2 and 4. The wave fields
of T124-junction for bending wave excitation areatdsed by

Vg = (€77 + 1y, €9 + ) & (2-226)
Vo = (Loe€ " + 1,,6') & (2-227)
Vs = = (Lo + ,6%Y) & (2-228)

v, =0 (2-229)
Vio = by €Y € (2-230)



Via = _tBleékLzy Ch (2-231)

Totally there are five unknown variables to be sd/wehich will need the following

five boundary condition equations.
For continuity of angular velocity at the junction,

Vg, _ 0Vg,

= 2-232
X ay ( )

Continuity of velocity inx- andy-directions at the junction gives
Vor =V, s Vg, =7V, =0 (2-233)

In the x-direction, Fg,-Fg4=0, and in they-direction, F ,=F 4, and force equilibrium

requires that
Fe,—2F,=0 (2-234)
At the junction Mg,=-Mg4, and moment equilibrium gives
Mg —2M,, =0 (2-235)

Solve these boundary condition equations as previpaut; one can get the following

matrix equation

i1 iy oy O[fee ]| [0]

1 1 0 0 -1 ry -1

O O 1 1 Oty (= O (2-236)
B g 0 0 20t,| |5
11 -1 -% 2 Ofty,] |-1

Solution of (2-236) allows the reflection and tramssion coefficients to be calculated

using

_ miCB1| V|31-|2 _

Toip1 = —; = |2 (2-237)
M Gy Vo

|2 |r5151
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2

B 1 T VA

2
Tgigr = Tpigs = 7= X¢/|t BlBZI (2-238)
M G| Vol
Tg ;=0 (2-239)
SR
s 2| L2+ 1 2
Tgyo = 2 ; 2 = > |tBlL2| (2-240)
MG % 25

Example results for the perspex beam junction desdrin Table 2.3 are shown in

Figure 2.24. With increasing frequency, , increases from zero to 0.2 although,,

remains similar.

—<— BlB1
s B1B2 (=B1B4)
8 08 —e- BIL1 ]
= B1L2(=B1L4)
[}
Sum
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(2]
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Figure 2.24 Transmission coefficients for T124-fime. BL model, incident bending
wave (Type A) on beam 1.

60



2.5.3.2 Longitudinal wave excitation

Figure 2.25 T124-junction: BL model, longitudinal weaexcitation on beam 1.

Consider an incident longitudinal wave travellinghe positive x-direction towards the
junction on beam 1. This will generate Type A begdivaves on beams 2 and 4, and a
longitudinal wave reflected on beam 1. At the junttithe rotational displacement is
zero due to balanced bending moments from beamsd24a The incident wave is

assumed to have unit amplitude; hence the wavesfedd be described as follows:

vy = (€M gy, @) & (2-241)
V,=V,=0 (2-242)

Vg, =0 (2-243)

Vo = (tLus€ ™ + ,€%Y) & (2-244)
Vs = (tum€ + t,6Y) & (2-245)
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There are three unknowns; hence three boundary tcmmglare required. Continuity of

velocity in thex-direction requires that
Vie = Va2 (2-246)

At the junction, the velocity is zero in tigedirection. In addition, the angular velocity is

zero where

0Vg, _

2-247
oy ( )

In thex-direction,Fg,=Fg4, and force equilibrium requires that
F,-2F,=0 (2-248)

For the bending moment, ¢#Mg,=0; hence these three equations give the following

matrix equation

-1 1 1 ry,] 1
0 i 1 |[ty,|=|0 (2-249)
1 26 26|ty 1

Solution of (2-249) allows the reflection and tramssion coefficients to be calculated

using
1, 2
MG\ ;
1= 1—2 = |rL1L1| (2'250)
P CH
Lo =Taa = 0 (2'251)
Tipr =0 (2-252)
, 2
— —_ rnZCB \V + _ 2
Tiago = Tiaps = 12—|BZ|2 = 2,31|t |_le| (2-253)
oM s
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Example transmission coefficients are shown in FEg@26 using the material

properties and dimensions in Table 2.3.
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Figure 2.26 Transmission coefficients for T124-fima: BL model, incident

longitudinal wave on beam 1.
2.5.4 L-junction
2.5.4.1 Bending wave excitation

Figure 2.27 shows the L-junction under considerat@rwhich beams 1 and 2 have a
different cross-section and material propertiese Tltjunction is an asymmetric
structure; hence Type A bending waves and longialdinaves are reflected or

transmitted in all beams. The coordinates of tinetjon line areX,y)=(0,0).
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I:Ll

VLl

Figure 2.27 L-junction: BL model, Type A bending veasxcitation on beam 1.

Consider an incident bending wave (Type A) with wmtplitude travelling in the
positivex-direction towards the junction on beam 1. The wawlkel$ on each beam can

be described as follows:

Vg, = (€7 + p o o + 1 eeX) & (2-254)
Vay = (tgyg€ o + 1,€°2) & (2-255)
V,, =l € (2-256)

Vv, =t €1 e (2-257)

Continuity of angular velocity at the junction res that

OVoy _ OVey (2-258)
X oy
Continuity of velocity at the junction kandy directions gives
Ve = Viy Va = "\ (2-259)

As indicated in Figure 2.27, the relationships betwsgear and longitudinal forces are
Fe.=F Fu=-Fg, (2-260)

The moment equilibrium relationship is
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M,~M,=0

(2-261)

The six equations result in the following matrix he solved for the reflection and

transmission coefficients

i1 ix x 0 Ofrge| [0 ]
1 1 0 0 0 -1 ry -1
0O 0 1 1 1 Of|tge| | O
B 1B, 0 0 0 1it, | |5
0 0 B iB -1 0| rey 0

__1 1 ¢ ¢ O O_ _tBlL2_ L 1_

Solution of this matrix gives the same result astegd in Cremeret

transmission coefficients can be then calculatedlasvs

V.
Tgipr = ml, CBl| Bl|2 :|r5151J2
CBl| VBl+|
1 2
V +
Tgipy = mz,CBZ—|822 = )(l,U|tBle|2
M, Goy | Ve
1 r 2
_Enlcl_1|\{1-| _)(‘// 2
Tgyh = , > |rBlLl|
m c§31|V51+| ﬁZ
1 ] 2
: 5”& CLZ | \Pn B 1

Z-BlLZ -

> 2,32 |t|31|_2|2

M Gy | ey

Example transmission coefficients are shown in FEg@r28 using

properties and dimensions in Table 2.3.
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Figure 2.28 Transmission coefficients for L-juncti®L model, incident bending wave

(Type A) on beam 1.
2.5.4.2 Longitudinal wave excitation

Consider an incident longitudinal wave with unit aityale travelling in the positive x-
direction towards the junction on beam 1 for whick tvave fields on each beam are

described as follows:

v, = (e 4, @) ¢ (2-267)
v, =t, e e (2-268)

Vo, = (1€ + 1, €) e (2-269)
Vo = (typ€" % + 1, €Y) & (2-270)

The boundary conditions are the same as that fodibg wave excitation on the L-
junction in part 2.5.4.1. This gives the followingatrix equation from which the six

variablesr, 5, I;, t g, t,;, 1y, @andt , ,can be determined.
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i1 iy x 0 0|[r 0
1 1 0 0 0 -1 ry 0
0 0 1 1 1 Oft -]

_ 82 = (2-271)
,32 Iﬂz 0 0 0 1|ty 0
0 0 /81 i:81 =1 O rn -1
_—1 1 ¢ -w 0 O _tLle_ L O_

Note that the coefficients in the left matrix ahe tsame as (2-262); it is only the right

side of the matrix equation that is different. Trensmission coefficients are calculated

using the following equations

o melw] 28
L1B1 1

LA Xy

|tLlBl|2 (2'272)

2

1 V .
Tiigy = :[nzf:BZ—|B22 = 2ﬁ1|tLlB2|2 (2'273)
om G| Vs
1 ] 2
E m q_1| \4_1-| 2
1= lr—z = |rL1Ll| (2'274)
oM G| Vol
1 ] 2
oMy G| V]
e 55— Xil ol (2-275)
5 G| Vo 2

Note that these are general solutions for whichntla¢erial properties and dimensions

of beams 1 and 2 are different whereas in Crezhet [5] the results are given for the
identical beams of L-junction.

Example transmission coefficients are shown in FEgR.29 using the material
properties and dimensions in Table 2.3.
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Figure 2.29 Transmission coefficients for L-junatiddL model, incident longitudinal

wave on beam 1.
2.6 Bending and torsional wave model (BT model)

In the bending only model and the bending and kodginal model, incident bending
waves (Type A) have motion in the same plane asuthetion such that only bending
and longitudinal waves are generated at the junctio this section, Type B bending
wave motion is normal to the plane of the junctwmich results in the generation of
torsional waves instead of longitudinal waves. Begdnd torsional wave models (BT
models) are derived for X-, T- and L-junctions whiall have rigid unpinned junction

and semi-infinite beams.
2.6.1 X-junction
2.6.1.1 Bending wave excitation

Figure 2.30 shows the X-junction under considerafar which the coordinates of the
junction line are X,y)=(0,0). Beams 1 and 3 and beams 2 and 4 ardigdkin X-

junction.
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Figure 2.30 X-junction: BT model, Type B bendingweaxcitation on beam 1.

Consider an incident bending wave (Type B) witht @mplitude travelling on beam 1
in the positivex-direction towards the junction. The transmitteddiag wave on beams
2 and 4 have opposite moments at the junction énxitlirection, hence there is no

torsional wave motion on beams 1 and 3.

Vg, = (e‘”‘le + Iy, €+ eré‘le) ¢ (2-276)
Vo = (toaee€ ™ + t,6%) & (2-277)

Vs = (torms€ ™ + t,6') & (2-278)

Vs = (toree € + 1,,€Y) & (2-279)

Wy =W, =0 (2-280)

W, = Wty 64 = —iky, by €Y & (2-281)
W, = W22 64 = — ik, by, €7 & (2-282)
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where subscripts B, T and N indicate bending wat@sjonal waves and nearfields
respectively, andw=-ikg; is the complex amplitude of the angular velocitedo the
incident bending wava&.he bending wave numbers correspond to bending wet®n

that is out-of-plane of the junction.

The following parameters are defined for the BT eipd

wZ w’Z
=12 =2 2-283
AT Bk T Bk, (2259
_ke  5_Blk 2-284
o PTBRK (2289

whereZr; is the impedance for torsional wave motion. Noi& the calculation of is
different from that in the BL model since the bemgdivave motion is along a different

dimension of the beam cross-section.

Continuity of bending velocity at the junction imetz-direction requires that

Va; = Vs Vi = Vas (2-285)

Therefore
[ O S R | (2-286)
A T S | (2-287)

Continuity of rotational velocity in thg-direction requires that

vy, Vg,
=W, — =0 2-288
X 29X 2 ( )

In thex-direction, rotational velocity at the junction isre. Hence

0Vy,
oy

=0 (2-289)

Thus one obtains the following three equations,
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Me1m1 —ir ni Hogima = 1 (2'290)
toips — it na = Lgito (2'291)
itBlBZ e = 0 (2'292)

The bending moments from beams 1 and 3 must bendsdaby the moments from
torsional wave motion on beams 2 and 4, hdvgg=-Mr4. The moment equilibrium

relation is expressed as
Mg, —2M,,~M, =0 (2-293)

From (2-25) and (2-11) one has

iat

=-B j Bl dt= _[(_iksl)z +(ikBl)2 Mot szl Nl]e

= _BlkBl (_1_ Mo1p1 * er)em

iw

(2-294)

0%y, . _-Bi, . .
Mo =B, 52t at =2 (k) o (o ] (2-295)
_Blkél

i (_tBlBB+tN3) e

0 =Kt
My, = -0, [ “hdy = ~iwo, e (2-296)
T2

= —iZ ,Kg e 1,8
Thus equation (2-293) becomes
—lg1p1 F i Flaies—t nat 2U48 5= 1 (2-297)
For the shear forces due to bending motion irettiieection,
Fo, —2F,,~Fy, =0 (2-298)

From equation (2-28) the shear forces are
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RY . . :
B1 — BlJ.—?,ldt = %[(_lksl)s + ( 'kBl)3 g1t (k 31)3 r Nlj| e”
(2-299)
= BlkBl (1 rlBlBl Nlpi(bt

=B I Bz dt= iw [ |k82)3 t3132+(_k32)3 thJ e

(2-300)
BZKBZ H iat
= t +it,)e
w ( B1B2 N2)
%, . \3 3 i
BB - BJ Bs dt _%[(_lkm) tBlBS+(_kBl) th] e
B (2-301)
= —LBL (5 it )€
w ( B1B3 N3)
Then (2-298) can be reduced to
8181 Hir Nt 2 B1s2 T a4 N2 T BlB3+it na= 1 (2-302)
These boundary condition equations result in tHeviang matrix,
(1 1 -1 -1 0 0 O[rgy] [-1
1 1 0 0 -1-1 0fr,| |-1
1 -i 0 0 0 0 1|ty 1
O 0 0 0 1 - -1t,|=]0 (2-303)
0O 0 i 1 0 0 O|tgps 0
-1 1 0 0 1 -1 24| ty 1
1 i 28 a8 1 i 0 |[tarro| | 1

Solution of (2-303) allows the reflection and tramssion coefficients to be calculated

using

\.
z-BlBl %Blt | BlBl| (2'304)
1| VBl+
\: +
TBlBZ = Z-BlB4 M = ﬁ|t BlBZI (2_305)
1| VBl+|
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2

’ \V + 2
TBlB3 = m,LQS1| = 2 _|tBlB3| (2'306)
M Cay| Voo
TBlTl = TBlT3 =0 (2'307)
1 2 1
5 O.Cr, |wT2+ E © 2CT2k%31 2 )
Toirz = Teata == = - |tBlT2| = ?|t31T2| (2-308)
M, G | Vo m G,

Example transmission coefficients are plotted imuFé 2.31 using the material

properties and dimensions in Table 2.3.
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Figure 2.31 Transmission coefficients for X-junati®T model, incident bending wave

(Type B) on beam 1.
2.6.1.2 Torsional wave excitation

Figure 2.32 shows an incident torsional wave withit @amplitude travelling in the

positivex-direction towards the junction on beam 1.
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Figure 2.32 X-junction: BT model, torsional wavecgation on beam 1.

Due to structural symmetry, the transmitted bendvages (Type B) on beams 2 and 4
have the same magnitude but travel in oppositectitines. Hence the shear forces from
bending motion on beams 2 and 4 are balanced ardirfgedisplacement is zero in the

z-direction at the junction. The wave fields arealid®d by

W, = (e +r g r) e (2-309)
@, =w,=0 (2-310)

W, =t e (2-311)

Vg1 = Vg =0 (2-312)

vy, = k;B'z(tTlee-iszy + 60 & (2-313)
Vo, :ki—Bz(tHBZészy + 1,6 & (2-314)

The following boundary conditions at the junctioansist of continuity of angular
velocity inx-direction, bending velocity equal to zero in thdirection and equilibrium

relation of moments ir-direction:
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Wry = Wy Wry = a_y (2-315)
Vg, =0 (2-316)
M, =2M,, M, =0 (2-317)

In (2-317), the moments due to torsional wave nmotand bending wave motion are

calculated as follows based on (2-11) and (2-27)

M, = _@J_ag:rl dx = _ic‘ﬂl(-i-ka e = ZTl(l_ rTlTl) e’ (2-318)

_lle ile
jot
M, = —Olj. agira dx = —iaelﬁ = ZTltTlT3ém (2-319)
1Ky
RY -B, —ir |
Mg, = _sz—gzdt =-_BZ_[(_'k82)2 briga * (_kB2)2 tNZ} ¢
oy iw kg, (2-320)
- B, ks,

) (_tTlBZ +tN2) e

The above boundary conditions result in the folloyvmatrix equation

0 0 -1 -1|t, 1
1 -i O 1)t | | O ».301
1 1 0 0/|ry 0 (2-321)
2 =2 ~f, —H,][tys ~H;
Solving (2-321) gives the following reflection attdnsmission coefficients:
1 2
7910T1|wr1-| 2
I = 1_ . o = |rTlTJJ (2-322)
5910T1|a1r1+|
Trin2 = Tra =0 (2-323)
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2

1
n elch | wr3+

2

I = 1 5 :|tTlT3| (2-324)
E @1CT1|0')T1+|
Trig1 = TTlB3 =0 (2'325)
Ll MG,

— — rn’ZCB \ + k2 2 _ 2 2
Trigo = Tripa = 1 2 B ) 1 = |tTlBZ| __|tTlBZ| (2'326)
5 @lcl'l|wT1+ 5 elCTl 2

The energy conservation principle can be expreased
Triry 4 2T pp t Typps =1 (2-327)

Example transmission coefficients are plotted imguFé 2.33 using the material
properties and dimensions in Table 2.3. A larggerton of the torsional wave power
that is incident on the junction is reflected ar ttransmission coefficients are

relatively small.
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Figure 2.33 Transmission coefficients for X-junatioBT model, incident torsional

wave on beam 1.
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2.6.2 T123-junction
2.6.2.1 Bending wave excitation

Figure 2.34 shows the T123-junction under constamrador which the coordinates of
the junction line arex(y)=(0,0). It is assumed that the material propsrtind the cross-

sectional dimensions are identical for beams 13and

F
V B3
AB3 C;)B3 Beam 3 Mg,

-t
]

V.
I:Bl Mg Beam 1 El %1

M b 2 M
= Wy «+5— 4%7 Wr3 S5

Figure 2.34 T123-junction: BT model, Type B bendmgve excitation on beam 1.

An incident bending wave (Type B) with unit amptleu travels in the positive-

direction towards the junction on beam 1 and theen&elds can be described as:

Vg = (€77 + gy €9 + o) & (2-328)
Ve, = (tosae€ ™ + 16" & (2-329)
Vs = (lp1ae€ " + 1,€°) & (2-330)

The torsional waves in beams 1 and 3 have the saagmitude but travel in opposite

directions; hence the torsional wave fields fohbalhms can be written as

Wy = @t BlTleilex e’ =- ikBlt‘BlTlé(Tlx ¢ (2-331)
Wr, = "')otBsze_iszyéaI = ikBltBlTZe_iszy ¢ (2-332)
Wrs = %tBlTle_ilex e =- ikBltBlTléileX ¢ (2-333)
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Continuity of bending velocities in thedirection at the junction requires

Va; = Vios Vi = Vas (2-334)

This produces
A T ! (2-335)
T T L e | (2-336)

The rotational velocity of bending motion in beafhsand 3 must equal the angular
velocity of torsional wave motion on beam 2. Alslee angular velocity of torsional
wave motions in beams 1 and 3 must equal the oo@tivelocity of bending wave

motion on beam 2. Therefore continuity of angulkaliogity at the junction requires that

Vg, OVg,

=, 2=, (2-337)
= aaL;Z (2-338)
This results in three equations

Foipy — I g H i =1 (2-339)
toims —itns—tae, =0 (2-340)
iXtgigo + Xy — it g1, =0 (2-341)

The shear force equilibrium relationship in theirection is given by
Fo,—Fg,—Fgs =0 (2-342)

The calculations of these forces are exactly thmesas (2-299), (2-300) and(2-301).
Then (2-342) becomes

Mg ir nt la B1B2 +i ﬁ n2 H BlBS+it N3~ 1 (2'343)
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At the junction,Mr;=-Mr3 and the moment equilibrium relationships in theandy-

directions are
Mi1=Mg =M 3 =2M ;=M g, =0 (2-344)
Mg ~Mgs =M, =0 (2-345)

According to (2-11) and (2-25)t:andMg: are calculated as

at

9 R [ - -
M:, = —@1'[ g:rl dx= _Iaﬁl% =1Z Kt BlTléaI (2-346)
T1
RY -B - '
M B2 ~ _Bz'[ P 22 dt= i_a;[(_lksz)z toig t (_sz)2 tNZ} e
2 y (2-347)
_ 2k52 j ot
= -t +t,,)€e
” ( B1B2 N2)
Thus (2-344) becomes
Xaigo =Xy, + 204517, = 0 (2-348)

The calculations foMg;, Mgz andMr, are the same as (2-294), (2-295) and (2-296). So,

equation (2-345) becomes
“Tg1pr T ng tlaes ~t nat UL garo™ 1 (2'349)

Combining the eight boundary condition equationggithe following matrix equation

1 -1 -1 0 0 0 O|rg!| [-1]
1 0O 0 -1-1 0 Ofry -1
1 -i 0 0 0 0 0 1tz 1
0O 0 0 0O 1 i 0 -1t 0
_ N = (2-350)
O 0Oy x O 0 4+ 0|(tgps 0
1 i g i 1 i 0 Of ty 1
0 0 x x 0 0 2 Oty 0
11 0 0 1 -1 0 p|ltgr| |1]

Solving (2-350) allows the following reflection artthnsmission coefficients to be

calculated:
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’ Y 2
L LS (2-351)
M oy | Ve

2

V +
Tgipp = % = :8|t3132|2 (2-352)
M Gay | Voo

2

<Ml (2:359)

TBlB3 -

rn.II.QB1| VBl+

1 2 1

n @lCTl|a)T1—| A elchkél

Toaims = Tpars = 2 ! 7 = 2 / |tBlTl|2 = Mhsmjz (2'354)
M Gay | Voro

MG, 2x?

1 2 1
5 @2CT2 |wT2+| E © 2CT2k?31

Tgiro = , - |2
M Gy | Vo

(2-355)

B1T2|

|2 / |tBlT2|2 = %|t

m G,

Example transmission coefficients are plotted imuFé 2.35 using the material

properties and dimensions in Table 2.3.
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Figure 2.35 Transmission coefficients for T123-jimt. BT model, incident bending

wave (Type B) on beam 1.

2.6.2.2 Torsional wave excitation

|\/lTl

FBl

FBZ
V,
z B2 M
y 4%—32
/ X Beam 2 9_)82
Cow
V V FBS
Mg Beam 1 f’l %1 AB3 W3 Beam 3 Mg,
>4 K M
Wrp—(»! L&» Wrs 5"

Figure 2.36 T123-junction: BT model, torsional waxeitation on beam 1.

Consider an incident torsional wave travelling e tpositivex-direction towards the

junction on beam 1 which generates bending wavgpgB) on beams 1, 2 and 3.

Bending waves transmitted to beams 1 and 3 haveahee magnitudes but travel in

opposite directions. This causes balanced bendiogents and zero rotation due to

bending waves on beams 1 and 3 at the junctiors Mieians that there is no torsional

wave transmitted to beam 2. This incident wavesisumed to have unit amplitude;

hence the wave fields can be described as follows:
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Wry = (e_iknx + rT1T1elknx) e

w, =0

— —ikrix Jat
wI'S _tTlTSe ™ é

= —i jKg1x g1X) ¢
Vo1 = k_(tnBlé + tNlé( ) ¢

Bl

i
kBZ

Va2 =

— i —ikgx kg x) g
Va3 __(tTlBle e ) &
B1

(tTlBZe_iszy + thészy) &

(2-356)

(2-357)

(2-358)

(2-359)

(2-360)

(2-361)

Continuity of bending velocity and rotational valyat the junction requires that

VBl = VBZ (Or VB3 = VBZ)

OVey _ =0
0X
0Vg, _ oV, _
dy Wy, _ay Wr;

This gives
Mgt Xt~ e~ =0

ity g 1y, =0
+it

e N2 Frm = 1

“trpo it ne " Lrire = 0
Equilibrium of shear forces in the z-direction reqa that
FBl - Fsz - Fss = 2F|31_ Fsz =0
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(2-362)

(2-363)

(2-364)

(2-365)

(2-366)

(2-367)

(2-368)

(2-369)



According to (2-28), one can calculate that

Bl =B ,[ Bl dt= Ek_[(lkm) Lret kBlstNl:| e
< o (2-370)
- ilsla; (itTlBl -t Nl) e
=B _[ Bz dt= icw k |:( 'ksz) T182+(_k82)3 tN2i| C
Bk > (2-371)
= szzaj ( ity g, + N2) e
Then (2-369) is reduced to

2 (g~ 20t R g = B, = 0 (2-372)

Bending moments in thedirection are balanced by bending motion on bearasd 3.

The equilibrium relationship for moments in thdirection can be expressed as
M, -Mg-M,,=0 (2-373)

Since the wave fields abr;, wrs andvg, are the same as that in section 2.6.1.2, the
calculations ofMr;, Mg, andMy3 are also the same as shown in (2-318), (2-319) and
(2-320). From (2-373) one can get

g Pl T UL it M 1= M (2-374)

Combining the six boundary condition equations gitlee matrix equation as

X X -1 -1.0 0] Lrigs 0

[ 1 0 0 0 0]ty 0

0 0O -1 i -1 Ot 1
_ TR = (2-375)

0 0O -1 i 0 -1t 0

0

2y 2x i - 0 0|y
0 0 -1 1 4 Wltus] [H]

Transmission coefficients for torsional wave exaa on the T123-junction are

calculated using
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1 2
§@1CT1|wr1-| 2
Trim = 1 S = |rT1T]J (2-376)
591CT1|a)r1+|
Trr, =0 (2-377)
1
591CT1|0)T3+|2 ’
Ii73 = 1—2 = |tT1T3| (2'378)
Eelch|le+|
, MG 2
|Gy | Vorr k 2
Tr1p1 = Tr1p3 = 1mlCBl| = ST - |tT1B1|2 :i|tTlBl|2 (2-379)
E e1CT1|C()T1+ E G)lCTl 2
| mo,
b Go | Vo k 2
Ty = 1mZCBZ| e (2-380)
EelCT1|a)T1+ EelCTl 2

Example transmission coefficients are plotted imguFé 2.37 using the material

properties and dimensions in Table 2.3.
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Figure 2.37 Transmission coefficients for T123-jimre. BT model, incident torsional

wave on beam 1.
2.6.3 T124-junction
2.6.3.1 Bending wave excitation

Figure 2.38 shows the T124-junction under constdmrador which the coordinates of
the junction line arex(y)=(0,0). It is assumed that the material propsrtind the cross-
sectional dimensions are identical for beams 24and
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Figure 2.38 T124-junction: BT model, Type B bendmgve excitation on beam 1.

Consider an incident bending wave (Type B) tramgllin the positivex-direction

towards the junction on beam 1. The transamittending waves (Type B) on beams 2
and 4 have opposite moments at the junction inxtd@ection; hence there is no

torsional wave motion on beam 1. The incident wiavessumed to have unit amplitude;

hence the wave fields can be described as follows
VBl = (e_ikBlX + rBlBlékBlX + eréle) éd
VBZ = (tBlBZe_iszy + tN2e_szy) éﬂ
VB4 = (tBlBZészy + tNZéBzy) éd
@, =0

— —ikry Aot — 3 <ikpoy
wrz_wotsme e = IkBltBlTZe " él

Wy = C‘)otBszeiszyéa1 == ikBltBlTZé(sz g
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(2-382)

(2-383)

(2-384)

(2-385)
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At the junction continuity of bending velocity ihd z-direction

in they-direction requires that

VBl = VBZ
Vg, =
ox 2

Rotational velocity in the-direction is zero,

0V,
ay

0=a,

Shear force and moment equilibrium requires that
FBl = 2FBZ

Mg, =2M,

and rotational velocity

(2-387)

(2-388)

(2-389)

(2-390)

(2-391)

The calculations of these forces and moments aaetlgxthe same as in (2-293) and

(2-298). The above five boundary condition equatidafine the matrix equation as

-1 -1 1 1 0]ty [1]
i 1 0 0 i ry| [
0 0 i 1 0ty,|=|0
-1 1 0 0 2l ty 1

L i -1 28 -28 0 Il tsar2 _i i

(2-392)

Solution of (2-392) allows the reflection and tramssion coefficients to be calculated

using
nl’CB1| V|31-|2 2
Tgip = . 2 = |r5131|
M Goy | Vo
, 2
\
Tgigr = Tgipa = M = :8|t BleI2
M Goy | Vo

Tgiri = 0
87

(2-393)

(2-394)

(2-395)



1 2 1
E @2CT2 |C‘)T2+ E © ZCTZk?BI

e e T L forml” = Sfterd” (2:396)

Example transmission coefficients are plotted iguFé 2.39 using the material

properties and dimensions in Table 2.3.
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Figure 2.39 Transmission coefficients for T124-juma: BT model, incident bending

wave (Type B) on beam 1.
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2.6.3.2 Torsional wave excitation

MTlé

Figure 2.40 T124-junction: BT model, torsional waxeitation on beam 1.

Now consider an incident torsional wave travellinghe positivex-direction towards
the junction on beam 1. Bending waves (Type B)t@esmitted to beams 2 and 4. Due
to structural symmetry, the shear forces from bagdnotion on beams 2 and 4 are
balanced and bending displacement is zero inztheection at the junction. The
incident wave is assumed to have unit amplitudeycbethe wave fields can be

described as follows:

Wy = (e_ikux + rTlTleilex) e (2-397)
Wy, =W, = 0 (2'398)
Vg, =0 (2-399)
Vea :;I(tTlsze_iszy + the_szy) & (2-400)
K,
Voo = 1 (e + 1,,827) & (2-401)
B2

89



At the junction, continuity of angular velocity the x-direction and bending velocity in

z direction requires that

0V,
= 2-402
Vg, =0=V, (2-403)

At the junction,Mg,=Mg4, and the moment equilibrium relationship in thdirection
gives

M;,~M,,+M_,,=M_-2M_,=0 (2-404)

The calculations of the moments due to torsionalioncand bending motion are the
same as equations (2-318) and(2-320). The threendaoy conditions give the

following matrix equation
-1 i =1[trye, 1
1 1 0 t,|=|0 (2-405)
2 2 ]| Thn H;

Solving (2-405) allows the following reflection artctansmission coefficients to be

calculated:
1 2
*61CT1|wr1-| 2
I = ﬁ = |rT1T1J (2-406)
5 1CT1|wr1+
Tty =T117a =0 (2-407)
Trp =0 (2-408)
Ll MG,
B N 111~ AV N 2 2 2
TTlBZ - TTlB4_ 1 222 ) - 1 = |tTlBZ| _7|tTlBZ| (2'409)
5 @1C"r1 | Wry 5 © €11 2

The numerical calculation with the perspex T124cfion demonstrates that
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Trimi Y lriga ¥ T rips = 1 (2'410)

Example transmission coefficients are plotted imuFé 2.41 using the material

properties and dimensions in Table 2.3.
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Figure 2.41 Transmission coefficients for T124-jiore. BT model, incident torsional

wave on beam 1.
2.6.4 L-junction

2.6.4.1 Bending wave excitation

FBZ MT
z ¥ Beam 2 / %Msz
Z’X
Voo,
FBl Mg, Beam I VB]lu :()Bl aﬁz >
%
Mo, le‘é‘;

Figure 2.42 L-junction: BT model, Type B bendingweaxcitation on beam 1.
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For the L-junction, both wave types exist underdieg or torsional vibration load. In
the first case, we assume a bending wave on beahhel directions of velocity are

shown in Figure 2.42.

The wave fields for each beam are described as

Vg, = (€7 + p o, &% + 1 @) & (2-411)
Vg, = (tg;p,6 2 + t,€%Y) & (2-412)

W, = Wt £ 6 = — ik, by, € & (2-413)
Wy = Wt gy £ €% = — kg, g, ,€17Y & (2-414)

As stated by Sablik [32], the paramekgr in equation (2-414) could also be replaced
by ks». This would not affect the results becatse; is always a frequency-dependant
parameter. However, to continue using the calaatbased on similar assumptions to

previous parts, the paramekgi is used here.
The continuity of bending velocity and rotationalacity at the junction requires that

_ OVg, _0Vyy

Va1 = Vg1 Wr = a_y’ T2~ W (2'415)

In the z-direction, the shear forces due to bendiogons in beam 1 and 2 are balanced
to each other.
For = Fe (2-416)

At the joint, the bending moment in one beam shagdal the moment of torsional

wave motion in another beam. This boundary condlitian be described as
M BL = MTZ’ M T M B2 (2'417)

As the assumed wave fields are the same, the $treas in equation (2-416) are the
same as that in equation (2-298), whilst the momenéquation (2-417) are exactly the
same as that in equation (2-293) and (2-344).
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Thus, the six boundary conditions form the follogvimatrix equation

(1 1 -1 -1 0 Orge| [-1
1 -0 0 0 1r,| |1
0 O X T')( -1 Oty - 0 (2-418)
1 i g i 0 0]ty 1
-1 1 0 0 0 4| tynl| |1
L 0 0 —x x 4 0_ oo 0]

By solving the matrix equation, one can calculdte transmission coefficients for

bending wave excitation on L-junction using thddaling expressions

] v 2
Tgipy = M = |rBlBl|2 (2'419)
M Goy [ V.
2
V +
Tgipp = % = :8|t3132|2 (2-420)
M Gy | Voo
1 > 1
SOcnlen] SOcnke
Tgim1 = 2 — 12 = 2 1. - |tB1T1|2 :IUL[:“BHJZ (2‘421)
M G| Ve MG 2x
1 1
EOZCT2|alr2+|2 Eechszf 2 U 2
Tgiro = , 2 = , t|31T2| = _1|tBlT2| (2'422)
M Goa | Vo MGy ?

Example transmission coefficients are plotted iguFé 2.43 using the material

properties and dimensions in Table 2.3.
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Figure 2.43 Transmission coefficients for L-junati®@T model, incident bending wave

(Type B) on beam 1.
2.6.4.2 Torsional wave excitation

In this case, a torsional wave is excited on beamh&reas in the X- and T- junctions no
torsional waves were generated under bending waeigagon. This incident wave is

assumed to have unit amplitude; hence the wawdsfigdn be described as follows:

oy, = (e 4 ) € (2-423)
W, =t e e (2-424)

Vy, = kI_Bl (trip e + t,€°) & (2-425)
Vg, = ki—m(tTlee—iszy +1,6%) & (2-426)

The boundary conditions are the same as that afibgnvave excitation on L-junction
in section 2.6.4.1. The only difference is duetie different inertial conditions. The

shear forces from two bending motions are calcdlate
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B.[ s dt___[(lksl) TlBl+(kBl)3tNl:| ém

B (2-427)
— 1 —it t iat
akBl ( trip, + Nl)e
BZ =B '[ Bz dt= E}k_[( 'ksz) 182 T (_sz)3 tN2j| ém
B1 (2-428)
- szsz

akBl (itTlBZ -t Nz)em

The moments of bending motions and torsional metiareach beam are calculated as

=i T1 'le

M, ==0;[ =5 a%dx— 'aﬁ[ ! +T“Tl]ei“=zn(1- fm) € (2-429)

T2 =-0 J‘awr2 dy_ IC«B Tll(TZ e = ZthTszém (2'430)

T2

9%, :
MBI:_B.[ Bl dt__Bl I |:(IkBl) TlBl-i-(kBl)2 tNl:| é‘d

ox’° iw Ky, (2-431)
- _Blkél _t t it
aj(Bl ( T1p1 + Nl)e
0%, i . :
Mg, =-B _[ asz dt= Icil)z kBl |:(_Ik82)2 g+ (_k32)2 th] e
B kB (2-432)
= a;(Blz (_tTlBZ +tN2) e

Applying these calculations in (2-416) and (2-41@hd combining the boundary
condition (2-415) one can obtain the matrix equatio

I 0 1 1 -1 -1|[ryn] [ O
0 0 0 —x ix|tur -1
1 1 - 0 0ty 0

= (2-433)
-1 1 0 0ty 0

M
H, 0 0 0 X =X tT1|32 H,
0 i -1iB8 -8B t. | 0
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By solving the parameters,,, t.,;,, t;;5 andt..,, one can calculate the power

transmission for an incident torsional wave

1
35()1CT1|‘L%112 2
It = 1—2 = |rTlT]J
E§()lCTl|CdT1+
1 2
Tt = 592CT2|0}F2+ = MZ |rT1T1|2
1
22()1CT1|CL%1+2 /Jé[?
o nig,
e _ miCl31| Ve1+ kél |t |2 _2_)(2|t
TiB1 — 1 5 - 1 TiB1|
E G)lch |a)T1+ E C) €1 2
. MG,
T — rn’ZCBZ| V32+ kél |t |2 _
TiB2 — 1 ) - 1 TiB2| ~
EECDlCT1|a)T1+ Ei()lch

2—)(2|t
2

T1BIj

TlBJ

|2

2

(2-434)

(2-435)

(2-436)

(2-437)

Example transmission coefficients are plotted iguFé 2.44 using the material

properties and dimensions in Table 2.3.
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Figure 2.44 Transmission coefficients for L-junatioBT model, incident torsional

wave on beam 1.

2.7 Comparison of transmission loss for bending wavesnoisolated

beam junctions for the B and BL models

In this section, the transmission loss from andaeni Type A bending wave to a
transmitted Type A bending wave is compared for Bhand BL models. This gives
insight into the effect of longitudinal wave gerteya on bending wave transmission.
Note that comparison with the BT model is not passbecause this only considers

Type B bending waves.
The transmission logR on the isolated beam junctions is calculated ufshg
1
R=10 Iog(—j (2-438)
r
Figure 2.45 (a), Figure 2.45 (b), Figure 2.46 angufe 2.47 allow comparison of
transmission losses from the B and BL models ferlthunction, T124-junction, T123-

junction and X-junction, respectively. The matepabperties and dimensions are given
in Table 2.3.
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For the B model the transmission loss is indepenaénfrequency, whereas the
transmission loss for the BL and BT models aredesgy-dependent except with B1B2
for the BL model.

For the L-junction (Figure 2.45 (a)) the differenoetween B and BL models is less
than 2 dB below 5 kHz, but this increases to 3.atB0 kHz.

For T123- and T124-junctions, transmission aroumel ¢orner (B1B2) is exactly the
same in the BL and BT models and the largest diffee between B and BL (or B and
BT) models is only 1.2 dB at 20 kHz.

For the X-junction, the frequency-independent tnaission loss around the corner
(B1B2) in B model is the same as that in BL model.

Figure 2.46 (b) and Figure 2.47 (b) show that tm@esion across the straight section
(B1B3) in BL model initially increases with frequen but decreases in the high
frequency range. However the largest differencevéen B and BL model for two cases
is less than 2 dB.
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Figure 2.45 Comparison of transmission losses letwie and BL model: (a) L-

junction: (b) T124-junction.
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Figure 2.46 Comparison of transmission losses latviBeand BL model for the T123-

junction.
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2.8 Summary

In this chapter, the theory describing bending,gitudinal and torsional waves on
beams was introduced. For bending waves, the gvelgrity has been derived for
Timoshenko theory considering both rotatory ineati@ shear deformation. This makes
it possible to introduce a new proposal in thissihéo incorporate Timoshenko theory
in SEA and ASEA by changing over from Euler-Berioth Timoshenko group
velocity when calculating the coupling loss factors

Full wave theory derivations are given for B, BLdaBT models for L-, T- and X-
junctions of semi-infinite beams assuming a rigidssless junction and where only the
co-linear beams on T- and X-junctions have idehtinaterial properties and cross-

sectional dimensions.
Under this assumption, this work has originallyided these models which include:

(1) the bending only models on all beam junctions;

(2) the BL model of L-junction with longitudinal wave@tation;
(3) the BL model of T123- and T124- junctions;

(4) the updated BL model of X-junction;

(5) the BT model of T124-junction.

This provides a consistent set of derivations #énatnot available in the literatures.
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3. Statistical energy analysis and advanced statistit@nergy

analysis

3.1 Introduction

This section describes Statistical Energy Analy8&A) and Advanced Statistical
Energy Analysis (ASEA) that are used to predictrafion transmission on coupled

frameworks of beams.
3.2 Statistical energy analysis

3.2.1 |Introduction

This section describes the framework of analydatisical Energy Analysis (SEA) [1].
Application of this method requires prediction bktloss factors and then, from the
power balance equations, prediction of the acouséidormance of the system to

determine the energy in each subsystem.
3.2.2 Loss factors

In SEA, three loss factors are defined: internssifactor §; ), coupling loss factorrg; )

and total loss factory ).

The internal loss factor (ILF) describes the inhématerial damping. When the beam
deforms while undergoing wave motion, the interogakes convert vibrational energy
into heat. Compared with other parameters whicleritees material properties, such as
density or Young’s modulus, ILFs are not easy tedmt. It depends on the type of
wave motion, frequency, temperature, amplitude ddration, and manufacturing

process. However, uncertainty in the internal fassor can often be tolerated when the

sum of coupling loss factors is much greater ti@nnternal loss factor.

The coupling loss factor (CLF) describes the endogges from one subsystem (e.g.
beam) via connections (e.g. mechanical connectioadiation coupling) to other

subsystems. The power flow, from subsystemtoj is given by
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Vvij = Ea)[zj (3-1)

In any system there will be power flow in both ditens giving the net power roM_\{j

as
W, = Earg, - Ea, (3-2)

In general, the coupling from subsysteto j will not be the same as coupling frgrto
I though they are related. The consistency relatipn®r subsystemisand;j is

N =N/, (3-3)

This equation relates the modal densitywith the CLF in each direction. It is valid for
coupling between all types of subsystem and camsbd to calculate any CLF. For any
type of wave on a subsystemthat is incident upon the junction connectingsysbems

I andj, the transmission coefficient is

), E
W,

(3-4)

ij

V\/ij
7. =——— =
VVin,'

where the incident power &/

in,i?

and transmitted power W, . The coupling loss factor

is therefore given by

gy = (3-5)
WE,
where the transmission coefficients for beam jumsihave been calculated in Chapter
2. The power that is incident upon a boundary i®mened by the mean free path
which quantifies the number of times that vibratienergy is reflected from the
boundaries of a beam every second. For a bhehat is connected at both ends to other
beams or plates, the mean free path is simplyethgth of the beam, and half the power

will be incident on each end giving the relatiopshetween CLF and; as

C,.T:

=9 3-6
=t (36)
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Based on (3-6), in this thesis it is proposed tmituce both the Euler-Bernoulli and the
Timoshenko theory into the SEA and ASEA formulatiynusing the appropriate group

velocity as derived in section 2.2.3.

The total loss factor (TLF) for subsystans the sum of the internal loss factor for

subsystem plus all the coupling loss factors from subsysiémother subsystems,
J - .
1T =17; +Z,7|j (i#]) (3-7)
i1

From (3-7) we can calculate the total loss fadfioaccurate prediction is not possible,
another simple method is to measure the reverberétne which is related to TLF by
[81]

_6In10

= 3-8
n 2T (3-8)

3.2.3 Matrix SEA

The power balance equations for each subsystem formatrix solution for N

subsystems [61]

i m My M 0 TN 1_ I El_ —Vvin,l/a)—

1, 7, s 0 2 Ez Vvin,2/w

Ths s s s E3 = \Nin,z/w (3‘9)
v on M 0 N _EN_ _Vvin,N/a)_

The matrix elementsi,[j] wherei#j are the coupling loss factors, and the diagonal

elements are the total loss factor. This equataombe simplified into the form
W
7][E] = [_} (3-10)
w

where|[]the square matrix of loss factors [i&] is the column matrix for energy of

subsystems, anﬁ%} is the column matrix for power inputs divided bggalar
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frequency. Since the loss factors can be calculfxted transmission coefficient, and

the input power can be predicted or measured,ubgystem energies are determined by
1| W
GEORES (311
w

For homogeneous beams, the energy associated acth lending and longitudinal
wave is given by the product of mass of the beach spatial average mean-square

velocity associated with that wave motion,
E=m( ‘;>t,s (3-12)
And for torsional wave it is

E=M <a)2>t (3-13)

Typically, we are interested in the vibration lewdifference, D, between source

subsystem and receiver subsystgm
1oiE ) 1016 1+ 1016™
D, =10lg(=-)=10IgEs )+ 10IgE— (3-14)
J E, v m

3.3 Advanced statistical energy analysis

3.3.1 Introduction

This section describes Advanced Statistical Enéngalysis (ASEA) as introduced by
Heron [2].

For coupled structural subsystems, the assumptid®EA is that there is no coupling
between physically disconnected subsystems. Howeveome situations there can be
significant indirect coupling, i.e. tunnelling mesfisms [67,69]. To incorporate indirect
coupling within a statistical framework of analyslderon [2] developed Advanced
Statistical Energy Analysis (ASEA) which combineEASand ray tracing (ignoring

phase effects) to track the power transmitted betweoupled subsystems. This
approach was validated with excitation of longihadiwaves at one end of an in-line

array of six rods. ASEA agreed well with the exasult which was in contrast to SEA
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which overestimated the vibration response for gstiesns that were physically

disconnected from the source subsystem. Howevirettample primarily confirmed

the ability of ASEA to account for propagation lessrather than indirect coupling
between non-adjacent rods. Heron [2] consideredptssibility that ASEA could be

extended to multiple wave types, but no resultseweported. This extension to

multiple wave types is considered in this thesmglwith ASEA’s ability to account

for indirect coupling (tunnelling) as well as prggadion losses.

3.3.2 Derivation

Returning to the SEA matrix, the general SEA powalance matrix equation fay

subsystems can be rewritten as

N
+>n -n - r .

N7, ; 171 N2 L/ Ein] [P
! E/mn | | R

— + -

W n’l,712 nﬂZZ kZ; nﬂ 2k r-LII7N 2 : (3_15)
N E,/n R
N e N/ Z N |- NN §
i k=N ]

wheren is the modal density for subsysteéyw, is the internal loss factor for subsystem
i, andz, is the coupling loss factor from subsysteéno subsysten) (i #j). With

knowledge of the loss factors and power input, subsystem energies can be
calculated. Usually not all subsystems are phylgicabnnected to every other
subsystem, so some coupling loss factors are metiwei loss factor matrix. In addition
there is no indirect coupling between disconnecsetbsystems. In contrast, all
subsystems in ASEA can transfer energy to eachr otteether they are directly
connected or not. Indirect coupling between phylsicisconnected subsystems is also

referred to as a ‘tunnelling mechanism’.

Following the ASEA derivation by Heron [2], equati@3-15) can also be rewritten as
follows

AE +ME =P (3-16)
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where E is a column vector of modal energies as

E=[E/n E/n - E/n] (3-17)

Pis a column vector of input powaV, is a diagonal matrix of modal overlap factors,

and A is a coupling matrix where

N/, 0 0
0 n 0
M= : 2,:722 . : (3-18)
0 o ...... N7
- _
Znﬂlk NSl 0 TN
k#l
N
A=cw N/, ; NSl =+ ~NNn2 (3-19)
N
Ny Z M7
L k#N |

Note that each column oA sums to zero as required for power balangeis a

symmetric matrix due to the consistency relatiopshi

If we split the total modal energy in equation (3-16) into two parts, available modal
energye, and unavailable modal energly, Available energy is the stored modal
energy considered in SEA whereas unavailable medalgy describes subsystem
energy which is unavailable for further transmiesishich accounts for propagation
losses as a wave travels across a subsystem. Als&tAytis then defined using the

following two matrix equations [2]

Ae + Me = P
available powerto o Jiapie bower lost  available power input
available power transfer (3-20)
Be + Md = Q

available power to unavailable power lost  unavailable power input
unavailable power transfer (3-21)
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For N subsystemsAand B are N xN matrices in which the eleme#,i) represents

the available power per unit modal energy tranetefirom subsystem to available

power per unit modal energy in subsysteand elemenB(j,i) represents the available

power per unit modal energy transferred from sulesysto unavailable power per unit

modal energy in subsystgm

Once theA,B, P and Qare known, the subsystem response can be calcuiaed

e+d. From equations (3-20) and (3-21) the total meaergy is given by
e+d=M7(Q+R) (3-22)

where R=(M-B)(M +A)™P . For rain-on-the-roof excitation (forces with unit
magnitude and random phase over the entire soult®ystem, see section 4.8),is

zero because all the input power is availablei@amgmission. Thus equation (3-22) can

be simplified to
e+d=M"*M -B)(M +A)*P (3-23)
Summing equations (3-20) and (3-21) gives
(A+B)e+tM(e+d)=P+Q (3-24)

Compared to equation (3-16), we can find that exglocess of splitting the total modal
energyE , the coefficient matrixA + B must also meet the requirement of summing to

zero for each column.
3.3.3 ASEA for a system of coupled beams

For a system ol coupled beam subsystems, consider a subsysietin total available

energyE . Modal energyg is given by = E/n, wheren is the modal density. For a
beam, the modal density is=2L, /¢ ;, wherel, andc,; are the length and group

velocity of subsystem Thus the modal energy can be rewritten as

Ec. .
== (3-25)
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Assuming equipartition of energy travelling in badirections along the beam, the

powerR travelling in one direction along subsysteoan be calculated by

P :E'T/2 (3-26)

wheret is the time for wave traveling from one end of lf@am to the other,

dmfp

Gy,

t=

=h (3-27)
ng

Substituting (3-27) into (3-26) and combining w{B125) gives the available power per

unit modal energyP, ; which is the initial available power ready for tséer at each end

of beam subsystemThat is

a,l

p=R_q (3-28)
ei

With knowledge of the initial power per unit modailergy P, ; that is incident at the end

of subsystem, we can calculate matricesandB by tracking the initial power across

subsystems using the following steps:

Step I All elements of théN x N matricesAandB are set to zero at the beginning of
the calculation. Further power transfer from aua#ato unavailable or available power

per unit modal energy is recorded and accumulatedatricesA andB .

Step 2 The initial available power per unit modal enefgy is added to element, ()

of matrix A as the initial available power per unit modal eyargident at a particular
end of the subsystem Note that it is not critical which subsystem isosen as
subsystem because every subsystem will eventually be corsiland the power is

always normalized to modal energy.

Step 3 Multiplying the initial power per unit modal emgr P,; by the appropriate

transmission coefficient gives the incident powethe receiving subsystepwhich is

coupled to subsysteirat one end, where
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P.=1,R, (3-29)
and the power per unit modal energy that is reflgéttack to subsystenis given by

Pi=tR (3-30)

S, 1

wherer, is the reflection coefficient. All subsystems whiare coupled to subsystam

form different paths for power flow. These trandedt and reflected powers now

become the ‘starting available power’ in subsystemdi.

Step 4 Calculate the power loss. When the starting pgwegrunit modal energ¥, ;

propagates along subsyst¢nthis available power per unit modal energy walvh an

exponential decay with distan¢gcaused by the internal damping, as described by the

internal loss factoy ; . Thus the remaining power striking the far endufsysten is

R =R exptwr;L/g;) (3-31)
The power per unit modal energy lost in subsygtele to internal losses is
Ri=R;-R, (3-32)

This lost power should be subtracted from eleni&fit) because it is transferred from

available power per unit modal energy originategubsystem to unavailable power
per unit modal energy in subsystem and is no longer available for further

transmission.

Step 5 Calculated the new ‘starting available power éach subsystem. If subsystem
k is coupled with subsystemthe new ‘starting available power’ for subsysteamdk

are
R.=r,P., P =rP (3-33)

s kejpr TsiT lile]

wherer, andr; are the transmission and reflection efficiencielse Teflected power

per unit modal energy, ; may or may not be tracked any further. If it &t to be
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tracked, it must be considered as residual poweachwimust be subtracted from the

elemenB(j,i) .

Step 6 Track the new ‘starting available power’ and r@p&teps 4 and 5. The matrices
A andB are updated through the process with the elementsolumni being
recalculated. This whole process can stop at agestkeaving the remaining power in

each subsystem. This remain poWgrin subsysten) should be subtracted from the

element , i) of matrixA. Note that it is only the columinin the matricesA andB that
require updating because all the power originates fsubsystenn. Checks should be

carried out to sum each column af+ B as these must equal to zero at every stage.

The number of subsystems across which the initalgp is tracked is called the ASEA
level number. This also equals the number of tites$ the power is tracked in the
source subsystem. When the level number is zeme tiseno transfer from available
power to unavailable power and the result is edentao SEA. Use of ASEA therefore
requires an indication that convergence has belieaed. For six in-line coupled rods,
Heron [2] proposed a rule of convergence thatékellnumber should be at least equal
to the number of subsystems minus two. For ASEAystems of coupled plates where
each plate was coupled to at least four other glatéison and Hopkins [70] used a
level number equal to the number of subsystems folusto give<0.1dB difference
between ASEA leveN and leveIN-1. For the coupled beam systems in this paper, a
level number equal to the number of subsystems plas has been used to give
<0.02dB difference between ASEA lewland levelN-1.

An example of ASEA levels is shown in Figure 3.t &m in-line array of beams with

three subsystemsj andk.
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Figure 3.1 Example of ASEA level numbers up to ASEA
Step 7 Repeat steps 2 to 6 for all other beam junctinrsibsysten.
Step 8 Repeat steps 2 to 7 for all the other subsystems.

Step 9 The final results of matricesa andB are calculated from the summation of all

matricesA , andB, , produced in steps 6, 7 and 8.

Jy Ji Y

A= A 4D A Y A (3-34)
k=1 k=1 k=1
J Ji I

B=3B, ++3 B+ +3 B, (3-35)
k=1 k=1 k=1

where J, is the number of junctions in subsystérand theN is the number of total
subsystems. Note th& , andB, , correspond to the coupling between subsystanth

another subsystem through junction
Step 10 Solve equation (3-23) using matricasandB .

It is worth noting that without steps 4 and 5 tHgoathm processes the power in

exactly the same way as SEA, which is defined aSA®
3.3.4 Example: Heron’s six in-line rods

ASEA produces different results depending on thenlmer of power transfer across
subsystems. Thus ASEA can be thought as a seri@gppbximations, ASEAO (SEA),
ASEA1, ASEA2, ASEAS etc, which converge with insee ASEA level number.
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When the ASEA level number becomes larger, the etsnof matrix A tend towards

zero and the ASEA calculation essentially just Inees ray tracing.

As an example of ASEA, a simple structure is takem Heron [2] that consists of six
different rods arranged in a line. The six rodsarkengths 23, 28, 25, 24, 29 and 21 m
and their mass per unit lengths are 1, 10, 3, An8 2 kg/m, respectively. The
longitudinal wave velocity is 5000 m/s, and theemtl loss factor is 0.02. The driving

point impedance for longitudinal excitation is detaed using
Z, = pAg (3-36)

Longitudinal wave transmission coefficient from system 1 to 2 on a discontinuity of

beam is given by [5]

4
Tl = 2 (3-37)
( 2., /Z”J
ZLZ ZLl
This structure is driven at the end of the firdd mith a unit force. The velocity level

differences for beams 2, 3, 4, 5 and 6 are caledlap to 10 kHz with a frequency
bandwidth of 50 Hz.

1 2 3 4 5 6

I» >
Figure 3.2 In-line array of six rods.

Figure 3.3 shows that with increasing frequencyval® kHz, ASEAO (or SEA) over-
predicts the response on the receiving rod comptredlSEA; at 10 kHz, this over-
prediction is=70 dB discrepancies for the most distance rod Gom¢2] noted that
ASEA results converge such that the ASEA level nanghould be at least the number
of subsystems minus two. Note that the converg@hfcd&SEA is not monotonic with
increasing ASEA level number because on rod 6, ASB/Nes a better result than
ASEA3.

112



0 : 0 ‘
- e ®
o -50 1@ -50f |
= =
< <
2 2
P >
=y o
Q -100 18 -100 :
-150 L L L L L L L L L 1 -150 L L L L L L L L L 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency (Hz) Frequency (Hz)
0 : : : : : 0 ‘ ‘ ‘ ‘ ‘
(© (d)
o )
S RS
< <
> >
n
s E ~
 -100 18 -100 ~
™~
-150 L L L L L L L L L 1 L L L L L L L L L 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency (Hz) Frequency (Hz)
0
o -50f
o)
<
2
b))
L=y
 -100
-150 L L L L L L L L L 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency (Hz)
Figure 3.3 Velocity level difference: , ASEAO(SEA)—, ASEAL;,———_,
ASEA2; .. _. , ASEA3,—._._ , ASEA4; ____ JASEAG.

113



3.4 Summary

This chapter gives detailed descriptions of how $BA ASEA have been implemented

to predict vibration transmission across framewafkiseams.

Heron only validated the ability of ASEA to modelsangle wave type propagating
along an in-line array of six very long beams (forgnan unrealistic engineering
structure). This structure had high propagatiosdssand did not show any significant
tunnelling. In this thesis ASEA will be used to @ss its ability to account for indirect
coupling (tunnelling) as well as propagation losa&s multiple wave types on more
realistic engineering structures. To ensure corererg all ASEA calculations are

carried out to an ASEA level number equal to theltoumber of subsystems plus two.

114



4. Finite element methods

This section describes the finite element methoEMJ used to model the beam
junctions. In FEM, the structure under analysisligretized into a mesh of elements
that are connected at nodal points; the mass ipddnat the nodes in each element.
With then degrees of freedom of all nodes in the mesh asrtkaown parameters, the
general equation of motion for linear systems urstieady-state excitation by sinusoidal

point forces is [71]

0% , ~ 08
M—2+C =2+KE=F 4-1
o> ot : (“4-1)
whereg§ is the vector of displacement of the nodess the vector of applied forceyi
is mass matrix,C is the damping matrix, an is the stiffness matrix. Assuming the

damping is proportional to the mass and stiffneain) that is
C=aM +KK (4-2)

wherea andb are constant. Then the equation (4-1) can be ¢¢edas

9’ d
> +C i+K &, =F, (4-3)

M
P ot? P ot

by using the following transformation

g, =08 (4-4)

F =0®'F (4-5)

@M@ =diag(M,,-- M, ) =M, (4-6)
@K@ =diag( K, K,,) =K, (4-7)
®'Co =diag(C, - C,,) =C, (4-8)
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where @ is the matrix of eigenvectors abo and K. M, C, and K, are

orthogonalized diagonal matrix.

The damping in FEM is applied using the criticaimbéng or constant damping ratio,

Coqr; foOr i order mode. It's defined as

— Cpi i = -
chr,i - z(qui (I _1’ 2’ n) (4 9)

The relation between critical damping and intetass factor is [61,82]

(4-10)

chrj =

NS

4.1 Element type

For beam elements in ABAQUS, there are severakmfft kinds of finite element
types, including ‘Euler-Bernoulli’-Type Beam andiffoshenko’-Type Beams with
solid, thin-walled closed and thin-walled open ergsctions. Euler-Bernoulli beam
elements in bending ignore the rotary inertia &f theam cross-section hence these
elements don't allow transverse shear deformatiRlane sections that are initially
normal to the beam axis will remain plane and ndrrttee beam axis. In
Abaqus/Standard, the Euler-Bernoulli beam elemémthide B23, B23H, B33, and
B33H, which can be used only to model slender beathe beam cross-section
dimensions are much smaller than the typical deganalong its axis. Timoshenko
beam elements (B21, B22, B31, B310S, B32, B320PEP1, PIPE22, PIPE31,
PIPE32, and their ‘hybrid’ equivalents) allow traesse shear deformation and can be
used for both thick beams and slender beams. Tdmesit types are described in the
Abaqus Analysis User’'s Manual [83].

4.2 Excitation

Rain-on-the-roof excitation is applied using foraggh unit magnitude and random
phase over alN nodes on the source subsystem. The reason toehaoson-the-roof
excitation for SEA is that it provides statistigalhndependent input forces. However,

when rain-on-the-roof is applied in a numerical moek like FEM, each set of random
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numbers will give a different response. For thigsan, each model is solved with 10
different sets of rain-on-the-roof in order to gisemean value with 95% confidence

intervals [70].

Rain-on-the-roof tends to be used to excite bendiages [70], however, in this thesis

it is also used to excite longitudinal and torsiomaves.
4.3 Junction

For the FEM models that are compared with the Behdtie displacement in the three
coordinate directions is pinned but for the BL &idmodels no constraints are applied

to the junction nodes.
4.4 Element size and mesh error

The element size is chosen by considering the acgurequired and is usually
described with bending wave length in the structarsuitable size is usually smaller
thanA,/6 [61].

To check and assess the adequacy of the elementtbiz mesh error is assessed
through the comparison of injected power and thevgsocontained in the whole

structure [84].

The injected power at a single frequency is catedldrom all the random forces dh

nodes and the relevant nodal velocities
W —ZNllRe{F v (4-11)
in n 2
The complex velocity can be written in terms ofpté€ement as

Viak (4-12)

The input power from ROTR forces is then given by

i('m(F)Re(é)- Ref )Im¢ ) (4-13)

n=1

W, =2
2
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The total energy for bending waves within the gtrceeis stored in thE nodes
A1l L& 2
E=m(v >:§ > mlg,| (4-14)
n=1

Note that equations (4-13) and (4-14) can be apfl@h for bending and longitudinal
wave motion. However in this thesis it is also rssesey to assess the input power of

torsional moment of force which is given by

V\/m:ZF:‘éRe{M W}n:i% RYM O )} s
n=1 n=1 4_15

p

:%’Z{m(l\/l)Re(ﬂ)— ReM )Im@ )

n=1

whereM and 0 are the input moment of force and responded toasidisplacement on
each node, respectively. The total rotational eneng a beam witHP nodes can be

calculated using

E:iﬁg(pmm«)nf}:i{ﬁwml‘wﬂndz}

n=1 n=1

e (4-16)
:EaprJLn|9n|2

whereL, is the element size, adds the polar moment of inertia of the cross-sectio
The power leaving the structure can be calculatea the total wave energy

W, =onE (4-17)

(o]

The element size can then be assessed by the fzgreeerrore, ., between input

power on source subsystem and output power onladlystems

e .= w x100% (4-18)

n

Since FEM is an asymptotic method, smaller elen®pné means more accurate

modelling. Mesh errore ., can be used as an indicator to assess the meSENf
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model. Note that the output power is calculatethassum of that from all subsystems

of the structure, while the input power is from Humirce subsystems.

An example is considered for an L-junction with e ends with material properties
given in Table 2.3. Rain-on-the-roof excitationTgfoe A bending waves are applied for
B model, and for BL model Rain-on-the-roof excibatiof Type A bending waves and
longitudinal waves are applied. For BT model Rairtoe-roof excitation of Type B
bending waves and torsional waves are applied. dlament type is B33, and the
element size is 0.005 m. A comparison of input poarel output power alongside the
mesh error based on the B, BL and BT models arenshio Figure 4.1, Figure 4.2 and
Figure 4.3.
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Figure 4.1 B model of L-junction: (a) comparisoninéident power and output power

under Type A bending wave excitation, (b) meshremader Type A bending wave
excitation.
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Figure 4.2 BL model of L-junction: (a) comparisohirmcident power and output power

under Type A bending wave excitation, (b) meshremader Type A bending wave
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excitation, (c) comparison of incident power andpoti power under longitudinal wave

excitation, (d) mesh error under longitudinal waxeitation.
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Figure 4.3 BT model of L-junction: (a) comparisdniecident power and output power

under Type B bending wave excitation, (b) meshrearmder Type B bending wave

excitation, (c) comparison of incident power andpoti power under torsional wave

excitation, (d) mesh error under torsional wavetaton.

At 20 kHz the wave length ; of Type A bending and Type B bending are 0.046 oh an

0.065 m, respectively. Thus, the element size @feTAx and Type B bending should be

<A;/10(about 0.005 m).

Referring back to 2.3 for pinned-pinned isolatedrbethe fundamental mode of Type
A bending, longitudinal, Type B bending and torsibwaves are 10 Hz, 1 kHz, 12.5 Hz

and 400 Hz, respectively. In general, above theldomental mode the mesh error is

always below 20% (e.g. the mesh error above 40fbHtorsional excitation) except for
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a few frequencies with the Type B bending excitatidhis indicates the choice of
element size is reasonable. In chapters 6 ande7eldment size is also chosen to be
0.005.

4.5 Comparison of driving-point mobility from FEM with an

analytical model

A comparison is now made of the driving point mitpifrom Abaqus and the analytical

result.

0.5L | |

Figure 4.4 Simple supported beam.

The driving point mobility for a finite beam (Eul&ernoulli theory) with idealised
boundary conditions can be calculated using therabfrequencies and modes shapes.

For force excitation ak and transverse velocity response;atthe mobility is given by

Fahy [60]

- 2 (O, (%))
Y :%:lwz Vo XY

! = pSL[wﬁ (1+in) —coz] (4-19)

wherey, (x)is thenth natural mode function, and, is the natural radial frequency.

For a pinned-pinned boundary conditign(x) :\/Esinknbx, k,=nm/L and n=1,2,3

etc.

The Perspex beam is 1 m x 0.02 m x 0.01 m with natproperties described in
section 2.3 FEM shows close agreement with theytoal result in Figure 4.5 which

validates that the element type B33 and the elesieatare appropriate.
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Figure 4.5 Driving-point mobility at the mid-poiof a pinned-pinned beam.

4.6 In-plane vibration due to bending wave motion

Bending waves on a beam not only cause out-of-pldmation but they also cause in-
plane vibration. In this thesis it is necessargatculate energy levels from FEM data
that represent bending wave energy as well astlaigal wave energy. Therefore this

section investigates the in-plane vibration hauescue to bending wave motion.

4.6.1 Bending and in-plane motion on isolated beam

An isolated 1.0 m beam with pinned-pinned boundareee-pinned boundaries, and
free-free boundaries is investigated to investigatplane motion under lateral single

force excitation of bending wave motion. Figure @y shows that in-plane vibration is

negligible compared to bending wave vibration fibbaundary conditions.

(a)

X = °®
77 Z

pinned, and free-free boundary conditions.
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Figure 4.7 Bending and in-plane energy on isolaesim.

4.6.2 BL model: Coupling between bending and longitudinalwaves on an L-

junction with different boundary conditions

To assess the generation of longitudinal wave moénd its coupling with bending
motion, the driving-point mobility at a point onleitd of the way along beam 1 (1.3m)
in the L-junction is determined when it has pinmedis (Figure 4.8 (a) ) and free ends
(Figure 4.8 (b)). The mobility is calculated usiRGM and compared with the analytical
result for a pinned-free beam and a free-free beBine driving-point mobility is
determined with a transverse force to excite bendiave motion, denoteds;, and with

an axial force to excite longitudinal wave motidenotedy, .

@) (b)
P 2
Y B Y; B
Y 1 Y I
— .4>

X

Figure 4.8 L-junction with (a) pinned ends andf(be ends.

Figure 4.9 compares the driving-point mobilities lmam 1 that forms the L-junction
with pinned ends with beam 1 as an isolated bedme. deaks in the driving-point
mobility Yg for beam 1 in the L-junction differ from those whieeam 1 is isolated. The
reason for this is that the former correspond tbal bending modes of the L-junction
and the latter correspond to local bending modebebeam where the end that forms

the junction has a free boundary. For this reaBemtode frequencies are different.

124



On the isolated beam there are no local longitudmades below 400 Hz and_
calculated using FEM has lower values than thathenisolated pinned-free beam. On
beam 1 in the L-junction there are low peaks tr@duo in Y, that is predicted using
FEM below 400 Hz. These correspond to the peak4 ifrom FEM that occur at the
global bending mode frequencies of the L-junctidihis is due to the axial force
exciting longitudinal waves on beam 1 that are estad back into bending waves on
beam 1. Although bending wave motion has an inglaglocity component that
appears iny,, the latter is sufficiently low that it will notave a significant effect on
estimates of the longitudinal wave energy. Abov® B2 where there are longitudinal
modes, values ofy, calculated using FEM and the analytical model shdose

agreement at the modal peaks.

The driving-point mobilities for the L-junction whe the beams have free ends are
shown in Figure 4.10. Below 800 Hz there are n@iltmdinal modes buY, calculated
using FEM for the L-junction has significantly hgghvalues than the analytical values
for the free-free beam with peaks correspondingthte global bending modes.
Compared toY, calculated using FEM in Figure 4.9, the high peek$igure 4.10
indicate that free ends for the beams that formlthenction produce significantly
higher in-plane vibration due to bending wave motitan pinned ends. The peakin
calculated using FEM are typically 10-30 dB beldve peaks inYg calculated using
FEM. This has implications when calculating in-gaenergy from FEM models
because it is only appropriate to use FEM to cateulongitudinal wave energy at and
above the fundamental longitudinal mode of eachrbdzor this reason the graphs of
energy level differences calculated using FEM arg shown at frequencies above the

fundamental longitudinal mode of each beam in Gérapd and 7.

125



Re(Y,) - FEM,L-junction
|- - - - Re(Yy) - FEM,L-junction

Re(Y,) - Analytical, isolated beam
- - - - Re(Yp) - Analytical, isolated beam

(sN/wT 81 gp) ({Ale

d)o160]0Z

10

10°

Frequency (Hz)

Figure 4.9 Driving-point mobility at a point that one-third of the length along beam 1

in L-junction with pinned ends and when it is anlased beam (pinned-free).
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Figure 4.10 Driving-point mobility at a point thigt one-third of the length along beam

free).

1 in L-junction with free ends and when it is aoladged beam (free

4.7 Summary

This chapter describes the approach used for thie fielement models with a

commercial code, Abaqus 6.12. Details are givejayrihe type of beam element used

to model Euler-Bernoulli and Timoshenko theory, ridgih-on-the-roof excitation, (c) the

calculation and assessment of mesh errors when b#twns support bending,

longitudinal or torsional wave motion.
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The calculation of mesh errors for beams suppotbegding, longitudinal or torsional
wave motion show that the element size is sufficfen Type A and Type B bending

waves when the element size i3\ 5/10.

In this thesis FEM is used to calculate in-planevevanergy for longitudinal wave
motion in the presence of bending wave motion. Thsotentially problematic because
bending waves also give rise to in-plane vibrationestigations were therefore carried
out check whether the in-plane motion this couldpbablematic when using FEM to
validate BL models using SEA and ASEA in chapte@n@ 7. Two assessments were
carried out: (a) investigating bending wave exmtatbon isolated beams with different
boundary conditions and (b) investigating drivingifig mobility on L-junctions of BL
model with pinned ends and free ends. These coadirthat bending waves cause
longitudinal motion below the fundamental longituai mode but that in-plane motion
tends to be negligible compared to the bending wagBon. Hence it is important that
FEM is only used to calculate longitudinal wave rgyeat and above the fundamental
longitudinal mode of each beam. Therefore in thedaon of FEM, SEA, ASEA
against measurements in Chapter 6 any energy digfetences involving longitudinal
wave energy are only shown at frequencies abovéutidamental longitudinal mode.
In Chapter 7 (section 7.2), numerical experimemnésused to investigate the effect of
junction and boundary conditions with the L-junctiand some examples of energy
level differences involving longitudinal wave engrgre shown below the fundamental
longitudinal mode. One reason for this is thatungby experimental studies on complex
beams it might be difficult to estimate the fundaiaélongitudinal mode; therefore it is
of interest to see whether rain-on-the-roof exdtatof longitudinal waves causes a
wave field below the fundamental longitudinal madeich has similarities to a modal
or diffuse longitudinal wave field.
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5. Experimental work

This chapter describes the experimental work usecheéasure material properties of
Perspex (Young’'s modulus and internal loss factarg) vibration level differences on
coupled Perspex beams. Perspex was chosen foredra because (a) it can be cut
accurately, (b) it has smooth surfaces, (c) itlvagnoined to form a rigid junction using
cyanoacrylate adhesive, and (d) it has highernaldosses than most metals. However,
to test the prediction models in this thesis ihésessary to cover frequencies up to 20
kHz and it was not known whether properties sucthasroung’s modulus and internal
loss factor varied over this frequency range. Heheeas critical that these properties

were measured.
5.1 Measurement of Perspex properties

For the prediction models it is necessary to knawedisions, density, elastic modulus,

Poisson’s ratio and internal damping.
The measured density for the Perspex was 1184%kg/m
Poisson’s ratio was assumed to be 0.3 as indicatéd ].

The Young’s modulus was determined from measuresnantording to ISO/PAS

16940 [85]. This requires measurement of the impyedance at the centre point of a
short beam sample. This input impedance is thesfiearfunction between the injected
force and the velocity at the same point. The p&akke impedance curve correspond

to resonance frequencie§,of the beam sample. Then the Young's modulus can be

calculated using the following equation [61].

E —ﬂ("L mty (5-1)

wherem' is the mass per unit lengthjs the moment of inertia of the beam cross-
section,L is the length of the beam, and the paramgtisra constant corresponding to
thei™ resonance frequenc§,£1.8750,1,=4.694103=7.85476/,=10.99554).
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The internal loss factor can also be calculateshgushis impedance measurement.
According to ISO/PAS 16940 [85], it can be calcathfrom the resonance frequency
and the half-power bandwidth (3 dB down poindd) ., ; using

— A.I:3dB,i
,7int,i - f

(5-2)
i
Figure 5.1 shows the experimental setup of impeeldest in this work in which the
force transducer (B&K Type 8200) gives the forcgnsal, while the laser vibrometer
(Polytec PDV100) measures the velocity. The laserometer is used instead of an
accelerometer to avoid mass loading to the beanplsanthe force transducer is
screwed into the beam sample and connected th#iesby bolt with two nuts, so that
the beam sample could be excited at frequencies A kHz. Analysis was carried out

using FFT analyser on B&K Pulse using excitatiothwvhite noise.

Polytec PDV100
Laser vibrometer
I
B&K Pulse 1/0 Box I Laser beam
Analyzer 3560 ' I /
I
B&K 2690 | Beam sampl
ple
i3] conditioning amplifier \ —
| « Xk < . « - B&kswo
;‘!« ¢| m Force transducer
PC with B&K LAB Shop _ T B&K Shaker
o _.e]
- ee _§
AR T A\
B&K 2706

Power amplifier

Figure 5.1 Experimental setup for measuring impedarf beam sample

Figure 5.2 shows an example of the measured impgedan a 0.5 m beam with first
four resonance modes below 2000 Hz.
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Figure 5.2 Driving-point impedance at the centrmpof the 0.5 m beam sample.

To obtain modal responses up to 20 kHz, five Perggam samples are measured with
lengths, 0.15 m, 0.17 m, 0.2 m and 0.5 m. All tamgles have a cross-section, 0.02
mx0.01 m (as used for the junctions). The beam k=mmpith a length of 0.15 m are
used to give two different sets of modal frequesidig measuring across the different
directions of the cross-section. The results fehdzeam sample are listed in Table 5.1.

Table 5.1 Perspex properties.

Beam length (m) Mode Fr?ﬂ;)ency Youn?éprg;)dulus Internal loss factor (-)
1 589.4 4.99 0.0467
0.15 2 3567 4.65 0.0332
(Bending Type A) 3 9260 4.00 0.0328
4 20380 5.04 0.0224
0.15 1 1173.8 4.94 0.0398
(Bending Type B) 2 6280.3 3.60 0.0310
3 18563 4.02 0.0350
1 465 5.12 0.0489
017 2 2855.9 4.92 0.0354
3 7486 4.31 0.0329
4 13454 3.63 0.0346
1 336.5 5.14 0.0594
0.2 2 2098.1 5.08 0.0364
' 3 5627 4.66 0.0333
4 10335 4.10 0.0308
1 51 4.61 0.0686
05 2 331 4.94 0.0529
' 3 929.8 4.97 0.0417
4 1808.5 4.90 0.0379

130




Young's modulus shows no significant variation witlcreasing frequency/u~0.11;
hence the mean value is used to describe Persmakfegquencies up to 20 kHz. The
mean value of the Young's modulus is 4.59%P@ with a standard deviation of
0.51x1G Pa.

The measured ILFs are plotted against frequendyigare 5.3. This indicates that the
internal loss factor varies with frequency. Belo@0B8 Hz the ILF increases with
decreasing frequency. However the ILF is relativaynstant between 3000 and 20000
Hz and has a mean value of 0.0330 with a standawvéhiibn of 0.0015. Note that that
this value is lower than the value of 0.06 thatasmetimes quoted in the literature [e.g.
3]; hence it appears that the generic name ‘Pergpeisufficient to describe the
properties of all the different varieties. For aogelastic material the damping and
stiffness are dependent upon frequency and temyperalhree states, the rubbery
region, the transition region and the glassy regian be used to describe the material
behaviour [73,86,87] over a broad frequency raridee ILF is a maximum in the
transition region, and then decreases into thesglasgion. In this work, all the
experiments are conducted at room temperature dr@®iC and the ILF mainly

depends on the frequency.

[ [
o  Measurement
Best fit line ||

Internal loss factor (-)

gl Sy N AN Y IR
|
|
|
|
|
e el i Bl e
|
|
|
|
|

1 1.2 14 6 18 2
Frequency (Hz) x 10"

Figure 5.3 Measured internal loss factors.

For the prediction models it is convenient to hagémates of the ILFs for each one-
third octave band, hence a linear polynomial fitth@ measured ILFs is used to

determine values at the one-third octave band edregguencies. The polynomial fitted
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ILFs shown in Figure 5.4 will be used in the conpam of analytical models and
experiments. These internal loss factors (alongh viRbisson’s ratio and Young's

modulus) are summarized in Table 5.2.

771 T T T T 1
0.065
0.06
0.055
0.05
0.045

0.04

Internal loss factor (-)

0.035

0.03

0.025

0.02 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
125 20 31.5 50 80 125 200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k

One-third octave band frequency (Hz)

Figure 5.4 Internal loss factors for each thirdasetband.

Table 5.2 Measured material properties of Perspex.

Material Density (kg/m) Young’s modulus Poisson’s ratio
(Pa)
Perspex 1183.74 4.59x10 0.3
Frequency (Hz) Internal loss factor ({) Frequertdy)( Internal loss factor (-)
10 0.0558 500 0.0519
12.5 0.0557 630 0.0508
16 0.0557 800 0.0495
20 0.0557 1000 0.0479
25 0.0556 1250 0.0459
31.5 0.0556 1600 0.0431
40 0.0555 2000 0.0399
50 0.0554 2500 0.0359
63 0.0553 3150 0.0324
80 0.0552 4000 0.0324
100 0.0550 5000 0.0324
125 0.0548 6300 0.0324
160 0.0546 8000 0.0324
200 0.0542 10000 0.0324
250 0.0538 12500 0.0324
315 0.0533 16000 0.0324
400 0.0527 20000 0.0324
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5.2 Vibration measurement on coupled beams

5.2.1 Spatial average

The vibration transmission on frameworks of beamgvaluated by the energy level
difference given by equation(3-14). In the FEM miedeis possible to use rain-on-the-
roof excitation but this is not feasible for labtory measurements, hence the energy
level difference is determined using point exattatfor a number of different excitation
positions by averaging the results. This approaeh be used to approximate

statistically independent excitation such as rairtfee-roof [88].

For each excitation position on the source beara, gdpatial average mean-square
velocity is needed for the source and receivingnisedor which the energy level
difference specific to the excitation position &aulated using

D, =10lg— 2= (5-3)

wheres is thes" excitation positionM andN are the numbers of measuring points on

source and receiving beams respectivelyand m; are the mass of subsystenend;.

The energy level differenc®g j, between the source and receiving subsystemeis th
calculated by taking the mean value of all eneepel differences for all excitation

positions using
1 T
De; = ?Z De; (5-4)
s=1

The standard deviatiog,; of all T shaker positions can then be calculated by

T ) 1 T )
Z DE,ij s —*(Z DEjj 5)
— s=1 T s=1

T-1

Sis = (5-5)
According to [61] the spatial variation can be ddmx with an estimate of 95%

confidence interval calculated using the standtatissical formula
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S
Clgsy, = %to.gm (5-6)
wheret, ., is the value of student t-distribution farl degrees of freedom and a

probability of 0.975.
5.2.2 Experimental setup

The velocity levels on the beams are measured lgy Rblytec PDV100 laser

vibrometer. A broadband excitation signal is applever the frequency range from 10
Hz to 20000 Hz. A graphic equalizer (Ultragraphiised to adjust the amplifications in
each one-third octave band so that a relativelysiteectrum is obtained on the source

beam. The experimental setup is shown in Figure 5.5

ST

IPolyt.ec PDV100 Laser beam Beam frame
Laser vibrometer
B&K Pulse 1/0 Box
| - Analyzer 3560
Nl : B&K Shaker
PC with B&K LAB Shop ' e , ‘0 @
!g _ e
w2l
FBQ 6200 B&K 2706
Ultragraph equalizer Power amplifier

Figure 5.5 Experiment setup for vibration measur@sien beam junctions.

Before the measurements, several beams with ceasigis 0.02 mx0.01 m were cut
from the same Perspex plate. These beams are ¢ednesing cyanoacrylate adhesive

to form different beam junctions and a truss beam.

Each beam frame is suspended using elastic baods deveral vertical supports. A
spirit level is used to make sure that the beammdrdies in the horizontal plane. To
ensure a well-focused laser spot on the transpg@enspex beam, the positions to be
measured on the beam are marked with dark blueTpenlaser vibrometer is placed on
a platform for which the height can be adjusted.
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Figure 5.6 Experimental setup for measurement @ieTA bending wave motion on L-

junction (relevant to BL model).

As shown in Figure 5.6, Figure 5.9 and Figure StfElsource beam and the shaker are
connected in the horizontal plane by a bolt whghkdrewed into the shaker. In this way
the bending displacement occurs in the horizontahg so that the BL model can be
measured. If the source beam is excited in thaceérntirection shown in Figure 5.7,
out-of-plane bending wave motions and torsionalevanotions can be generated in the
beams. To measure the BT model, the laser vibranmsefdaced on a tripod to measure
the velocity on the upper surface of the beams shiowFigure 5.8, Figure 5.10 and
Figure 5.12.

Background vibration was measured to ensure thatsitinal level is at least 10 dB
above background at all points on all beams. Tihe tiverage of each measuring points
was carried out for 30 seconds.
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Figure 5.7 Bolt connection between shaker and beam.

Figure 5.8 Experimental setup for measurement @eTy bending wave motion on L-

junction (relevant to BT model).
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Figure 5.9 Experimental setup for measurement gieT bending wave motion on

rectangular beam frame (relevant to BL model).

Figure 5.10 Experimental setup for measurementypleTB bending wave motion on

rectangular beam frame (relevant to BT model).
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Figure 5.11 Experimental setup for measurementypeTA bending wave motion
three-bay truss beam (relevant to BL model).

Figure 5.12 Experimental setup for measurementypleTB bending wave motion

three-bay truss beam (relevant to BT model).
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5.3 Beam constructions

Measurements were carried out on an L-junctiorqueae beam frame and a three-bay

truss beam frame, each with excitation of Type A Brbending waves.

An L-junction was formed from a 1.3 m length (bedjand a 1.0 m length beam
(beam 2) with a cross section of 0.02 m x 0.01 eaB lengths 1.3 m and 1.0 m were
measured from the centre line of the joint. Theaamgular beam frame was formed by
joining together two L-junctions.

Ten excitation positions and six measurement mostwere used for the L-junctions
and the rectangular beam framework as indicateBigure 5.13 (a) and (b). On the L-
junction and the rectangular beam framework thesonesnent positions were chosen to

be away from the nearest excitation position bgast 0.04 m and 0.05 m, respectively.

The three-bay truss beam was made from beams #rat@40 m and 0.45 m in length
with a cross-section of 0.02 m x 0.01 m. These Iseara approximately half the length
of the beams used in the rectangular beam frameinarkder to (a) reduce propagation
losses, (b) increase the likelihood of indirectlong and (c) allow measurable velocity

levels on the furthest beam.

The three-bay truss beam is modelled as ten couygachs in SEA and ASEA, but to

minimise the number of glued joints it was builhrfr six beams as indicated in Figure
5.13 (c). Four excitation positions and four meamgnt positions were used on each
beam as shown in Figure 5.13 (c). Out-of-plane cigés were measured on all beams

except beams 2, 5 and 8 which were not essenigalalthe structural symmetry.
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® Excitation positions for BL model B Measurement positions for BL model
% Excitation positions for BT model 4 Measurement positions for BT model

Beam 2

® Excitation positions for BL model B Measurement positions for BL model
% Excitation positions for BT model 4 Measurement positions for BT model

(b)

® Excitation positions for BL model B Measurement positions for BL model
% Excitation positions for BT model 4 Measurement positions for BT model

Figure 5.13 Sketch of the excitation and measurémesitions on (a) L-junction, (b)

rectangular beam frame, (c) three-bay truss beamdr
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5.4 Summary

In this chapter, measurements of the Perspex beapeies such as density, Young’s

modulus and internal loss factor are reported.

The Young’'s modulus and internal loss factor aréemeined using an impedance
method. Based on five beam samples of which thenesece frequencies are distributed
from 10 Hz to 20 kHz, the calculated internal ltsstors show dependent on frequency.
Thus the interpolated internal loss factors from linear polynomial fitted values are

given for each one-third octave band.

Measurements of vibration level differences wereried out on an L-junction,
rectangular beam and three-bay truss. A laser mibter was used to measure out-of-
plane velocity on the coupled beams in order tacaearors due to mass loading at high
frequencies. The experimental setup used for vdraheasurements on coupled beams
(BL and BT models) was described which will be ugadthe validation of the FEM,
SEA and ASEA models in Chapter 6.
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6. Comparison of measurements with FEM, SEA and ASEA

6.1 Introduction

This chapter compares the experimental results prgllictions using FEM, SEA and
ASEA. It begins with a summary of the dynamic pmigs of the beams in terms of the
phase and group velocities, mode count and modadlayy factors in section 6.2. In
later sections, comparisons of measurements, FEM, &d ASEA are carried out for
BL and BT models of an L-junction, a rectangulaameframe and a three-bay truss

beam.

In this chapter the modelling using FEM assumes th@re is no uncertainty in the
material properties of dimensions of beams thanftre L-junction, rectangular beam
frame and three-bay truss beam. This means thahthae-bay truss beam represents a

perfectly periodic structure.

This chapter considers both Euler-Bernoulli and @shrenko theory for FEM, SEA and
ASEA models in order to assess (a) the validitf &M elements and (b) the proposal
to implement thick beam theory in SEA and ASEA legaunting for the change in

group velocity.

The material properties and geometric dimensionth@fbeams for measurements and

analysis in this chapter are given in Table 5.2 sextion 5.3.
6.2 Dynamic properties of the beams

6.2.1 Group and phase velocities

The analysis up to 20 kHz would be below the secpettrum cut-off frequency but
which is sufficiently high to assess whether chagghe group velocity in the coupling
loss factor is sufficient for the SEA and ASEA misdéor Type A bending waves (i.e.
across the 10mm dimensiorf};=61441 Hz, andgin=10537 Hz and for Type B
bending waves (i.e. across the 20 mm thicknégsB0720 Hz andghin=5268 Hz.
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Figure 6.1 Group and phase velocities for (a) Tgpkeending waves and (b) Type B
bending waves. Percentage difference in the growpphase velocities from Euler-
Bernoulli and Timoshenko theories relative to EdBernoulli theory for (¢c) Type A

bending waves and (d) Type B bending waves.

Figure 6.1 (a) and (b) allows comparison of theugrand phase velocities calculated
with Euler-Bernoulli and Timoshenko beam theory.tWincreasing frequency, the
effects of rotatory inertia and shear deformati@edme important. This leads to the
phase and group velocities for Timoshenko theoringpdower than with Euler-

Bernoulli theory and tending towards a plateauamathan continually increasing with
frequency. Figure 6.1 (c) and (d) shows that thecgrdage differences between
Timoshenko and Euler-Bernoulli theory become lardgergroup velocity than phase
velocity. Hence although the thin beam limit is dhon a 10% difference in phase
velocity, the corresponding percentage differemcgroup velocity is a factor 6f2.5

times higher. It is the latter which is relevantthe calculation of the coupling loss
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factor and will be assessed through comparison easorements, FEM, SEA and
ASEA.

6.2.2 Mode count and modal overlap

The local modes counts for 1.3 m and 1.0 m pergeexn in measurements are shown
in Figure 6.2 assuming both ends of the beam aamenm#d for bending modes,
longitudinal and torsional modes. This idealisedurmary condition provides a
reasonable estimate for the rectangular beam flameonservative estimates for the L-

junctions where each beam has one free boundary.

Below 315 Hz there is no more than one bending niwdmach one-third octave band
for Type A and Type B bending modes and no longitaidor torsional modes. Of
relevance to the BT model is that (a) between 32%iktl 4 kHz there are no more than
two torsional modes in each band and between odehare Type B bending modes
and (b) between 5 kHz and 20 kHz there are betviwenand five Type B bending
modes and between three and thirteen torsional sniodeach band. Of relevance to the
BL model is that (a) between 800 Hz and 4 kHz themo more than one longitudinal
mode in each band and between one and three Tygnéding modes and (b) between
4 kHz and 20 kHz there are between two and sevee Rybending modes and between
one and six longitudinal modes in each band. Hériseonly above 4 kHz that all wave
types have at least two modes in each band asdhttthis frequency that the transition

from Euler-Bernoulli to Timoshenko theory is exptto be significant.
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Figure 6.2 Mode counts for 1.3 m and 1.0 m beaa)sType A bending waves (b) Type

B bending waves (c) Longitudinal waves (d) Torslomaves.

The modal overlap factors in Figure 6.3 are showsingilower and upper values that
are determined from the two different beam lengih@ m and 1.3 m) in the isolated L-
junction and the rectangular beam frame. Thesecateulated using the statistical
modal densityn(f), instead of the mode count to give smoother aurier bending and

longitudinal waves the modal overlap factor doet bregin to approach unit until 20

kHz although for torsional waves it reaches ung\e10 kHz.
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Figure 6.3 Modal overlap factors for 1.3 m and h.@eams with (a) BL model and (b)

BT model.

Local mode counts of the isolated beams (length th4nd 0.4 m) are shown in Figure

6.4 and are calculated by assuming clamped bowgsdatieach end. The implication of

using shorter beams than the former group of beartisat the lowest mode occurs in

the 125 Hz octave band. In this chapter it is aotetl that when consecutive frequency

bands have at least one local mode on the sourcecaiving beams the modal

fluctuations can be significantly reduced, and tamlitates comparison with SEA and

ASEA. Hence using octave bands for the three-hastwill satisfy this requirement.
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Figure 6.4 Mode counts for 0.45 m and 0.4 m bedn)sType A bending waves (b)
Type B bending waves (c) Longitudinal waves (d)sSlamal waves.

The modal overlap factors for the 0.45 m and 0.4Beams are shown in Figure 6.5.
These have been calculated using the statisticdbhaensity in order to give smooth
curves, and use the total loss factors that arermé@ied from the two different lengths
(0.45 m and 0.40 m) and two different cases irtlihee-bay truss. For Type A bending,
Type B bending, longitudinal and torsional motidhe modal overlap factors are all
smaller than unit within the considered octave lsadnoim 125 Hz to 16 kHz.
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6.3 BL model on L junction

Figure 6.6 shows results for the BL model of thgihetion with excitation of Type A
bending waves on beam 1. H&:1/Eg, the comparison of seven nominally identical L-
junctions in Figure 6.6 (a) confirms that the bargiof the junctions and the test

procedure is repeatable with 1.8 dB over the efraguency range.
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Figure 6.6 L-junction - BL model with bending waegcitation on subsystem B1: (a)
comparison of measured data on seven nominallyticér-junctions; (b) comparison
of measurements, FEM, SEA and ASEA; (c) and (d) gamson of FEM, SEA and
ASEA. —e— , Measurement—— , FEM (Euler-Bernoulli elemr®nt—o— , FEM
(Timoshenko elements),  , SEA (Euler-Bernoulli growglocity); —___, SEA
(Timoshenko group velocity); , ASEA (Euler-Bernouroup velocity); ,
ASEA (Timoshenko group velocity). Results from measnents and FEM are shown

with 95% confidence intervals.

Figure 6.6 (b) compares measured and predi€tetEs,. Below 315Hz there are only
bending modes and there are large modal fluctustiorthe energy level difference.
This is attributed to the fact that (a) each onedtbctave band typically contains only
one local bending mode which is attributed to eitine source or the receiving beam
and (b) modal overlap factors that are typically2<@ee Figure 6.3). Hence whilst there
is reasonable agreemert 6.5 dB) between measurements and FEM (nominally

identical results for Euler-Bernoulli and Timosherdements), SEA and ASEA could
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only give a reasonable estimate of the resportbe ifrequency bands were much wider
than one-third octave bands. Between 315 Hz andztke mean values from the FEM
models using Euler-Bernoulli and Timoshenko elememe within 1dB of each other.
In this frequency range, measurements show reasorgbeement<{ 2.7 dB) with
FEM, SEA and ASEA models. Between 2 kHz and 12.3,kHe mean values from the
FEM models using Euler-Bernoulli and Timoshenkaredats become larger than 1dB
but the 95% confidence intervals tend to overlapaAd above the 12.5 kHz band, the
difference between Timoshenko and Euler-Bernoulloug velocities is>26%;
meanwhile, the FEM models using Euler-Bernoulli dmthioshenko elements differ by
3.9 dB to 7.2 dB and the confidence intervals mgéy overlap. Between 12.5 kHz and
20 kHz the two FEM models differ by 2.1dB to 7.2dBe two SEA models by 1.1dB to
1.6dB and the two ASEA models by 1.2dB to 1.8dBndee only FEM indicates
significant differences. Between 12.5 kHz and 20zkiHEM using Euler-Bernoulli
elements shows closest agreement with SEA and A&tAg Euler-Bernoulli group
velocity, and FEM using Timoshenko elements showsest agreement with SEA and
ASEA using Timoshenko group velocity. However, thean values for measurements
show closer agreement with FEM, SEA and ASEA udtder-Bernoulli elements,
rather than Timoshenko elements which would havenbexpected. This can be
attributed to the fact that the 95% confidence tBior the measurements ar2dB.
With <2dB difference between the predicted values Euler-Bernoulli and
Timoshenko theories it is not possible to draw refr@onclusions on the validity of

Timoshenko theory from the measured data on thisttion.

Figure 6.6 (c) and (d) allow an assessment of tim¥ersion from bending waves on the
source subsystem to longitudinal waves on a rengisubsystem. Between 10 Hz and
630 Hz there is in-plane motion but this is dudémding wave motion because there
are no local longitudinal modes in this frequenagge. Hence results are only shown
from 800 Hz to 20 kHz. Above 2.5 kHz there is askeone longitudinal mode in
consecutive frequency bands and the fluctuations significantly reduced in
comparison to those between 800 Hz and 2.5 kHavé@st 4 kHz and 20 kHz there are
(a) at least two bending and two longitudinal moaegach band and (b) the modal
overlap factors increase from 0.4 to 1 for bendmgdes, and from 0.1 to 0.9 for
longitudinal modes. Compared to lower frequencies REM curves in this frequency

range are smooth which facilitates comparison \BEA and ASEA. FoiEgi/E;; on
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Figure 6.6 (c), the 95% confidence intervals folMFESing Euler-Bernoulli elements
overlap the SEA and ASEA predictions using EulerrAelli group velocity. However,
the average values for FEM using Timoshenko elesngindw much closer agreement
with ASEA using Timoshenko group velocity. F&gi/E > on Figure 6.6 (d) the
confidence intervals from FEM using Euler-Bernoalhid Timoshenko elements tend to
overlap each other up to 16 kHz. These confidenternvals also overlap SEA and
ASEA predictions using Euler-Bernoulli or Timoshenyroup velocities; hence as with
the bending energy level differences it is not gmego conclude which group velocity
is more appropriate on this L-junction.

Figure 6.7 allows an assessment of conversion fomgitudinal to bending waves with
longitudinal waves excited on the source subsystérine L-junction. In contrast to
Figure 6.6 with bending wave excitation, the 95%fmtence intervals for FEM data
with Euler-Bernoulli and Timoshenko elements overlaence there is no significant
difference between them. FBr1/E > on Figure 6.7 (c), the fluctuations are signifityan
reduced above 2.5 kHz where both beams have at dees longitudinal mode in

consecutive frequency bands.
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Figure 6.7 L-junction - BL model with longitudinalave excitation on subsystem L1:
comparison of FEM, SEA and ASEA—-— , FEM (Euler-Barlicelements);—— ,
FEM (Timoshenko elements),  , SEA (Euler-Bernoullogp velocity);——__ ,
SEA (Timoshenko group velocity); , ASEA (Euler-Beufli group velocity);

, ASEA (Timoshenko group velocity). Results fromNrEare shown with 95%

confidence intervals.
6.4 BL model on rectangular beam frame

Figure 6.8 shows results for the BL model of thetargular beam frame with excitation

of Type A bending waves on beam 1.

152



20 T T T T T T T T T T T T T T T T T 20

(@) (b)

oL qol
12,520 31550 80 125 200 315 500 8001.25k 2k 3.15k5k 8k 12.5k20k 12.5 20 31.5 50 80 125 200 315 500 8001.25k 2k 3.15k 5k 8k 12.5k20k
One-third octave band frequency (Hz) One-third octave band frequency (Hz)

30 T
(d)
25
-
20}
—~ —~ °
) ) \
R R
3 ba
W 14 151
(1] o
o o
=y =y
E] E]
4 10}
5b
T T O Y R S SO S S 0 | | | | | | | |
125 20 31.5 50 80 125 200 315 500 8001.25k 2k 3.15k 5k 8k 12.5k20k 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
One-third octave band frequency (Hz) One-third octave band frequency (Hz)
30 T T T T T T T T 40 T
(© (®
25 g 35
__ 20p 4. 30f
o _ o
= =
. 3
W 1s5¢ 14
= =
(] (]
o o
p=y k=
2 2
10} R
5+
0 | I | | | I | | 10 | I | | | I | |
800 1.25k 2k 3.15k 5k 8k 12.5k 20k 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
One-third octave band frequency (Hz) One-third octave band frequency (Hz)

Figure 6.8 Rectangular beam frame - BL model widnding wave excitation on
subsystem B1: (a), (b) and (c) comparison of mesmsents, FEM, SEA and ASEA; (d),
(e) and (f) comparison of FEM, SEA and ASEA.— , Measent—— , FEM
(Euler-Bernoulli elements);—-— , FEM (Timoshenko elensg; , SEA (Euler-
Bernoulli group velocity),-—__ , SEA (Timoshenko growglocity); , ASEA
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(Euler-Bernoulli group velocity); , ASEA (Timoshemigroup velocity). Results

from measurements and FEM are shown with 95% cendid intervals.

As with the L-junction, the main difference betweehe Euler-Bernoulli and
Timoshenko models occurs above 2 kHz for whichtitvee FEM models differ by up to
7 dB whereas the two SEA models only differ by oplt6 dB and the two ASEA
models by up to 1.7 dB. On Figure 6.8 (a) and ii@asurements above 2 kHz show
closest agreement with FEM, SEA and ASEA using EBErnoulli theory for
transmission to beams 2 and 3 (both of which arectly connected to beam 1).
However, for transmission to beam 4 (which is nlmygically connected to the source
beam) the results in Figure 6.8 (c) indicate thBMFwith either Euler-Bernoulli or
Timoshenko elements agree closely with measuremEnptstransmission to beams 2
and 3, SEA and ASEA models are within 0.2 dB ofheather. For transmission to
beam 4, ASEA is=0.9 dB lower than SEA. Up to 10 kHz, ASEA is lowthan SEA
which indicates the presence of tunnelling mechmasjsut this indirect transmission
appears to be underestimated because the levelatitfes from measured and FEM
data are lower than ASEA. Above 10 kHz, ASEA intksathat there is no tunnelling
but there are significant propagation losses. THessome more pronounced when
using Timoshenko instead of Euler-Bernoulli thealye to the lower group speed

which increases the power lost as the wave propagatross each beam.

Figure 6.8 (d), (e) and (f) assesses the conveiffsoon bending waves on the source
subsystem to longitudinal waves on a receiving ystlesn. ForEg,/E ;1 on Figure 6.8
(d), FEM using Euler-Bernoulli elements shows cttsagreement with SEA using
Euler-Bernoulli group velocity and FEM using Timesiko elements shows closest
agreement with ASEA using Timoshenko group velodigr Eg,/E, > on Figure 6.8 (e)
the confidence intervals from FEM using Euler-Bedlioand Timoshenko elements
overlap up to 20 kHz and both show closest agreemi¢im SEA or ASEA using Euler-
Bernoulli group velocity. Above 2 kHz foEgi/E 4 on Figure 6.8 (f) there is clear
evidence that FEM with Euler-Bernoulli elementswhalosest agreement with ASEA
using Euler-Bernoulli group velocity, and FEM witfimoshenko elements shows
closest agreement with ASEA using Timoshenko greefocity. At 20 kHz the
difference between Euler-Bernoulli and Timoshenkagls is=7dB for both FEM and
ASEA. The fact that ASEA shows close agreement WAEM using Timoshenko
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elements and that the energy level differences M8EA are higher than SEA confirms
the presence of significant propagation losses usecshis mechanism is included in
ASEA, but not in SEA. It also confirms the assuroptin ASEA that phase effects can

be ignored.
6.5 BT model on L junction

Figure 6.9 shows results for the BT model of thpihetion with excitation of Type B

bending waves on beam 1.
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Figure 6.9 L-junction - BT model with bending waggcitation on subsystem B1l: (a)
comparison of measurements, FEM, SEA and ASEA,; (@)and (d) comparison of
FEM, SEA and ASEA—— , Measurement,o— , FEM (Euler-Beih elements);
—o—, FEM (Timoshenko elements);  , SEA (Euler-Bernogltoup velocity);
—_—_, SEA (Timoshenko group velocity); , ASEA (EulertBeulli group
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velocity); , ASEA (Timoshenko group velocity). Résufrom FEM are shown

with 95% confidence intervals.

For Eg1/Eg>, Figure 6.9 (a) shows that below 315 Hz therelange fluctuations which
are due to (a) only one local bending mode (nddoed modes) in either the source or
the receiving beam in each frequency band and @jamoverlap factors that are
typically <0.2 (see Figure 6.3). These fluctuatiomsluce significantly as soon as
consecutive frequency bands contain at least orad lwending mode. As with the BL
model there is reasonable agreement between measuieand FEM (Euler-Bernoulli
and Timoshenko elements). Above 315 Hz there atie bbending and torsional modes
but there are large fluctuations in the first femntds which reduce significantly as soon
as consecutive frequency bands contain at leastosaétorsional mode. Between 315
Hz and 5 kHz, the confidence limits of both measwerts and FEM (Euler-Bernoulli
and Timoshenko elements) tend to overlap both B &d ASEA predictions. At and
above the 6.3 kHz band, the difference between 3ivaonko and Euler-Bernoulli group
velocities is226%. For 6.3 kHz to 20 kHz it is found that the tieM models differ by

1 dB to 3.5 dB, the two SEA models by 1dB to 2.6ai8l the two ASEA models by 1.2
dB to 2.9 dB. Up to 20 kHz there is overlap betwd#en95% confidence intervals from
measurements and both FEM models such that bo#r-Belrnoulli and Timoshenko

elements can be considered as appropriate.

Figure 6.9 (b) and (c) allow an assessment of time@rsion from bending waves on the
source subsystem to torsional waves on a receisulggystem. There are no local
torsional modes between 10Hz and 250 Hz; howewgetis in-plane motion due to the
bending wave motion. For this reason, resultsBgVEr, and Eg1/Er, are only shown
from 315 Hz to 20 kHz. Between 6.3kHz and 20 kHzr¢hare (a) at least two bending
and two torsional modes in each band and (b) theéainaverlap factors increase from
0.4 to 0.7 for bending modes, and from 0.5 to drddrsional modes. In this frequency
range the FEM results are relatively smooth. Ab63=kHz forEgi/Er; on Figure 6.9
(b) andEg1/Er, on Figure 6.9 (c), FEM using Euler-Bernoulli elerteeshows closest
agreement with SEA or ASEA using Euler-Bernoullogp velocity, and FEM using
Timoshenko elements shows closest agreement with@EASEA using Timoshenko
group velocity.
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Figure 6.10 L-junction - BT model with torsional veaexcitation on subsystem T1.:
comparison of FEM, SEA and ASEA—-— , FEM (Euler-Barlicelements);—— ,
FEM (Timoshenko elements),  , SEA (Euler-Bernoullogp velocity);—_—__ ,
SEA (Timoshenko group velocity); , ASEA (Euler-Beufli group velocity);

, ASEA (Timoshenko group velocity). Results from aserements are shown

with 95% confidence intervals.

Figure 6.10 allows an assessment of conversion foysional to bending waves with
torsional waves excited on the source subsystetimeof -junction. As with longitudinal
wave excitation, FEM results with Euler-BernoulliBmoshenko elements are similar
with overlapping 95% confidence intervals. Hén/Er,, the mean FEM data follow
ASEA rather than SEA above 3.15 kHz.
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6.6 BT model on rectangular beam frame

Figure 6.11 shows the results for the BT modelhaf tectangular beam frame with

excitation of Type B bending waves on beam 1.
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Figure 6.11 Rectangular beam frame - BT model \b#émding wave excitation on
subsystem B1: (a), (b) and (c) comparison of messeants, FEM, SEA and ASEA; (d),

(e) and (f) comparison of FEM, SEA and ASEA«— , Measent—o— , FEM
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(Euler-Bernoulli elements);—— , FEM (Timoshenko elersg; , SEA (Euler-
Bernoulli group velocity),-—__ , SEA (Timoshenko growglocity); , ASEA
(Euler-Bernoulli group velocity); , ASEA (Timoshemlgroup velocity). Results

from measurements and FEM are shown with 95% cenéd intervals.

On Figure 6.11(a), (b) and (c) the confidence wrakr for measurements and FEM
(Euler-Bernoulli or Timoshenko elements) tend temap below 315 Hz. FdEgi/Es>
and Eg1/Egs between 315 Hz and 5 kHz, FEM using Euler-Bernand Timoshenko
elements are nominally identical, and the diffeezgompared with measurements is
between 0.1 dB and 2.9 dB. Hes:1/Eg4 between 315 Hz and 2 kHz, FEM using Euler-
Bernoulli and Timoshenko elements are similar, #mel difference compared with
measurements is between 0.2 dB and 2.2 dB. HowéweEg:/Eg4 above 2 kHz it is
clear that there is closest agreement with FEM gudibmoshenko elements; this is
evident near the peak in the energy level diffeeemt 4 kHz. In general, the
measurements above 2 kHz follow the trends indicétg FEM using Timoshenko
elements. Below 2 kHz, comparison of FEM with SE&I&ASEA indicates that for
Eg1/Es», Egi/Essz and Egi/Egs, SEA and ASEA tend to overestimate the energylleve
difference. Above 2 kHz, FEM using Euler-Bernowlements follows the general
trends of SEA or ASEA using Euler-Bernoulli grouplacity. In comparison, FEM
using Timoshenko elements shows close agreemert $EA or ASEA using
Timoshenko group velocity. FoEgi/Egs above 6.3 kHz, FEM using Timoshenko
elements closely follows ASEA using Timoshenko greelocity. This agreement, and
the fact that ASEA has significantly higher enelgyel differences than SEA, indicates
that ASEA correctly incorporates these high propiagdosses.

Figure 6.11 (d), (e) and (f) allow an assessmenh®fconversion from bending waves
on the source subsystem to torsional waves on @vieg subsystem. Above 2 kHz
there are at least two bending and two torsionadesan each frequency band (modal
overlap factor is at least 0.2 for both bending amd torsional waves) and the FEM
curves become relatively smooth. Fyi/Er, andEgi/Ers between 2 kHz and 20 kHz,
FEM using Euler-Bernoulli elements follows the gexti¢rends of SEA or ASEA using
Euler-Bernoulli group velocity, and FEM using Tinhesko elements closely follows
ASEA using Timoshenko group velocity. Again, thetirms the assumption in ASEA
that phase effects can be ignored. Referring backan 0, the transmission coefficients
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from bending waves on one beam to torsional waveshe other beam are highest
above 6.3 kHz. Hence the combination of high pragtiag losses with Timoshenko

group velocity and wave conversion at each junctiesults in high energy level

differences (e.g. 34 dB fdEgi/Egs at 20 kHz predicted using ASEA and FEM using
Timoshenko elements).

6.7 BL model on the truss

6.7.1 Bending wave excitation

Figure 6.12 shows the results for the BL modelhef three-bay truss with excitation of

Type A bending waves on beam 1.
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Figure 6.12 BL model of bending wave transmissiartle truss beam frame (Source
subsystem: B1): (a), (b), (c), (d), (e) and (f) amson of FEM, SEA and ASEA
predictions with measurements; (g), (h), (i), (R), () and (m) comparison of FEM,

SEA and ASEA predictions—e— , Measuremento— , FEM ¢éEernoulli
elements);—— , FEM (Timoshenko elements); , SEA (EBlernoulli group
velocity); ——__, SEA (Timoshenko group velocity); , ABHEuler-Bernoulli
group velocity); , ASEA (Timoshenko group velocity)Results from

measurements and FEM are shown with 95% confideneerals.

Figure 6.12 (a) to (f) compares measured and pestlienergy level differences for the
BL model where bending waves are excited on theceosubsystem and the receiving
subsystem represents bending wave energy. Foreottands from 125 Hz to 1 kHz
there are only bending modes and each band typicalhtains at least one local
bending mode for the source and receiving beamgeheral there is close agreement
(<3 dB) between the average values from measursme&iM (Euler-Bernoulli and

Timoshenko elements) and ASEA (Euler-Bernoulli &nchoshenko group velocity).
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For Egi1/Egs (i.e. adjacent coupled beams) SEA and ASEA areimaiy identical;
however, as the source and receiving subsystenmrigzemore distant from each other,
ASEA gives significantly lower energy level differges than SEA. This indicates the

importance of indirect coupling when there is dognding wave motion.

Between 2 kHz and 16 kHz there are both bending Emgjitudinal modes.
Measurements show closer agreement with FEM usuigriBernoulli elements than
Timoshenko elements f&iz1/Egs, Es1/Egs, andEgi/Egg. However, forEgi/Eg4, Eg1/Egy7,
and Egi1/Eg10, measurements and FEM using Euler-Bernoulli ordshenko elements
are similar. In general, FEM using Euler-Bernoeléments shows closest agreement
with ASEA using Euler-Bernoulli group velocity, afEM using Timoshenko elements
shows closest agreement with ASEA using Timoshegrkap velocity. This is clearer
for Egi/Egs and Egi/Egg than for Egi/Egs, Egi/Es7, and Egi/Egio. With increasing
frequency, the generation of longitudinal wavesdslly increases the indirect coupling
and ASEA gives significantly lower energy levelfdiences than SEA as the beams
become more distant from the source. However, dhgebt differences between SEA
and ASEA do not always occur in the highest fregydand; for example, the largest
difference forEgi/Egg is=3 dB in the 8 kHz band which reducess®dB at 16 kHz. In
general, measurements and FEM show closer agreemibnASEA rather than SEA

due to the existence of indirect coupling.

Figure 6.12 (g) to (m) allow comparison of predicenergy level differences for the
BL model where bending waves are excited on theceosubsystem and the receiving
subsystem represents longitudinal wave energy. el'mesults show similarly close
agreement between FEM and ASEA that were identdieove when both the source
and receiving subsystems contain bending wave gn&hg main finding is that ASEA

provides a better estimate of vibration transmissi@an SEA.
6.7.2 Longitudinal wave excitation

Figure 6.13 shows the results for the BL modehef three-bay truss with excitation of

longitudinal waves on beam 1.
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Figure 6.13 BL model of longitudinal wave transrmosson the truss beam frame
(Source subsystem: L1): comparison of FEM, SEAAS&A predictions—o— , FEM

(Euler-Bernoulli elements);—-— , FEM (Timoshenko elensg;, _, SEA (Euler-
Bernoulli group velocity),-___ , SEA (Timoshenko growglocity); , ASEA
(Euler-Bernoulli group velocity); , ASEA (Timoshemlgroup velocity). Results

from FEM are shown with 95% confidence intervals.

Figure 6.13 (a) to (g) allow comparison of predicémergy level differences for the BL
model where longitudinal waves are excited on thace subsystem and the receiving
subsystem represents bending wave energy. In deleifEg:, E 1/Egs, EL1/Es7 and
EL1/Esi0 Show closer agreement between FEM and ASEA thafEgs, E 1/Egs and
E.1/Ego. The largest difference between FEM and ASEA oaxeuth E, 1/Egg and is=5
dB. This is unlikely to be attributed to low modeuats for longitudinal modes because
this difference is almost constant between 2 kHy HhkHz over which the mode count

increases from one to five modes on each beam.

Figure 6.13 (h) to (m) allow comparison of predicenergy level differences for the
BL model where longitudinal waves are excited or Hource subsystem and the
receiving subsystem represents longitudinal wawegn Referring back to Figure 2.22
for the T123-junction it is seen that the transimisscoefficientz ;.3 > 0.7 above 2
kHz; hence there will be strong coupling of longinal wave energy between
subsystems L3 and L6, and L6 and L9. However, tisereasonable agreement between
FEM and ASEA for both Euler-Bernoulli and Timoshertkeory forE ;1/E 3 E 1/Ei6
and E 1/Ee. In contrast, forE1/E 4 E1/E; and E1/E 10 there are significant

differences between FEM and ASEA and these diffta¥enbecome larger as the
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receiving subsystem is more distant from the sowubsystem, on average the
differences are 3 dB, 5 dB and 10 dB respectivEhis indicates that incorporating

high coupling loss factors (due to high transmissioefficients) does not cause any

obvious problems with strong coupling.

6.8 BT model on the truss

6.8.1 Bending wave excitation

Figure 6.14 shows the results for the BT modehefthree-bay truss with excitation of

Type B bending waves on beam 1.
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Figure 6.14 BT model of bending wave transmissiortte truss beam frame (Source
subsystem: B1): (a), (b), (c), (d), (e) and (f) @amson of FEM, SEA and ASEA
predictions with measurements; (g), (h), (i), (R), (I) and (m) comparison of FEM,

SEA and ASEA predictions—e— , Measuremento— , FEM ¢é&@ernoulli
elements);—— , FEM (Timoshenko elements); , SEA (EBkernoulli group
velocity); —___, SEA (Timoshenko group velocity); , ABHEuler-Bernoulli
group velocity); , ASEA (Timoshenko group velocityResults from

measurements and FEM are shown with 95% confidenesrals.

Figure 6.14 (a) to (f) allow comparison of measuwl predicted energy level
differences for bending wave excitation where b&blirce and receiving subsystems
contain bending wave energy. The two octave barms 250 Hz to 500 Hz have only
bending modes and each band typically containsast lone local bending mode for the
source and receiving beams. Fyi1/Egs, Egi/Egs, Esi/Egs, and Esi/Eg; there is close
agreement (<3.5 dB) between measurements, FEM, StHAASEA (Euler-Bernoulli

and Timoshenko theory are nominally identical). lewer, for the more distant
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subsystems 9 and 10, SEA overestimates the enevgy difference by=3.8 dB and
there is closer agreement between measurements, &EMASEA £3.4dB with

confidence interval overlapped each other).

For octave bands from 1 kHz to 16 kHz there ard li@nding and torsional modes.
Measured data tends to show closest agreement ¢83.@/ith FEM and ASEA using
Timoshenko rather than Euler-Bernoulli theory. Thsparticularly evident at and
above the 8 kHz band where the difference betwasmdhenko and Euler-Bernoulli
group velocities i£26%. Hence there is evidence to support usingctimssover point

to change from using Euler-Bernoulli to Timosheigkoup velocity in ASEA.

However, one unexplained feature occurs with thhést beam (Figure 6.14 (f)); FEM
using Euler-Bernoulli elements and ASEA using Ed8ernoulli group velocity does
not show close agreement as it did with the futtbeam in the rectangular beam frame

in section 6.6.

Figure 6.14 (g) to (m) allow comparison of predicenergy level differences for the
BT model where bending waves are excited on theceosubsystem and the receiving
subsystem represents torsional wave energy. InrgerfeEM using Euler-Bernoulli
elements shows closer agreement with ASEA usingreEBérnoulli group velocity, and
FEM using Timoshenko elements shows closer agreemdth ASEA using

Timoshenko group velocity.
6.8.2 Torsional wave excitation

Figure 6.15 shows the results for the BT modehefthree-bay truss with excitation of

torsional waves on beam 1.
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Figure 6.15 BT model of torsional wave transmissonthe truss beam frame (Source
subsystem: T1): comparison of FEM, SEA and ASEAdmteons.—— , FEM (Euler-
Bernoulli elements);—— , FEM (Timoshenko elements); ~ SEA (Euler-
Bernoulli group velocity),-—__ , SEA (Timoshenko growglocity); , ASEA
(Euler-Bernoulli group velocity); , ASEA (Timoshemlgroup velocity). Results

from FEM are shown with 95% confidence intervals.

Figure 6.15 (a) to (g) allow comparison of predicemergy level differences for the BT
model where torsional waves are excited on thecgogubsystem and the receiving
subsystem represents bending wave energy. In deaadhparticularly at and above 8
kHz, the FEM (Euler-Bernoulli and Timoshenko eletsgrcurves fall in-between the
SEA and ASEA predictions.

Figure 6.15 (h) to (m) allow comparison of predicenergy level differences for the

BL model where torsional waves are excited on thee subsystem and the receiving
subsystem represents torsional wave energy. Irasinto Figure 6.15 (a) to (g), it is

only at and above 8 kHz that FEM (Euler-Bernoutidarimoshenko elements) curves
fall in-between the SEA and ASEA predictions. Bel@wHz, FEM is higher than SEA

and ASEA forEr1/Ers, Er1/Ere andEri/Ere, but FEM is lower than SEA and ASEA for
Er1/Era, Er1/Er7 andEqy/Er1o.

6.9 Summary

SEA and ASEA have been used to predict vibraticandgmission across beam

frameworks that are formed by solid, rectangularsstsection beams which support

multiple wave types. To assess the validity of ¢hesdels at high frequencies where
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Timoshenko beam theory is valid for bending wavdiomp an assessment has been
made into whether coupling loss factors can beutatied using wave transmission
coefficients predicted using Euler-Bernoulli theobut using Timoshenko group

velocity to calculate the coupling loss factors.

Comparison with measurements on Perspex beamsEvduBing Euler-Bernoulli and
Timoshenko elements have been carried out to gaight into the validity of this
approach when there are low mode counts, low modatlap, multiple wave types,
different bending wave theories, propagation losses indirect coupling. An isolated
L-junction of beams, a rectangular beam frame atitree-bay truss beam have been
investigated for bending wave excitation leadingetther bending and longitudinal
wave motion, or bending and torsional wave motiorath beams. The rectangular beam
framework has relatively long beams which give tisehigh propagation losses. The
three-bay truss beam is formed from relatively sheams and tunneling mechanisms

were more important than propagation losses.

In general, there are large fluctuations in thergynéevel differences when (a) there is

only one local mode in each frequency band in eithe source or the receiving beam
and (b) there are intermediate frequency bands mettocal modes on the source and
receiving beams. When consecutive frequency baade ht least one local mode on

the source or receiving beams the fluctuationssagaificantly reduced. When each

beam supports at least two local modes for eaclevisgye in the frequency band of

interest and the modal overlap factor is at leakt PEM and measurement data tend to
have average values which form smooth curves ssdhase predicted with SEA and

ASEA.

When Timoshenko and Euler-Bernoulli group velogittkffer by>26%, measurements

using bending wave excitation showed closest ageaerwith FEM using Euler-

Bernoulli elements when longitudinal waves wereegated at the junction, but closest
agreement with FEM using Timoshenko elements whesidnal waves were generated
at the junction. It would have been expected tdineoshenko elements in both cases;
for this reason clearer conclusions were souglautiin comparison of FEM, SEA and
ASEA. The results showed that when the differenesvben Timoshenko and Euler-

Bernoulli group velocities waz26% there were significant differences between FEM

174



models using Euler-Bernoulli and Timoshenko elemeRor receiving subsystems that
were not directly coupled to the source subsysteEM using Euler-Bernoulli and
Timoshenko elements showed closest agreement vWBtBAA(rather than SEA) using
Euler-Bernoulli and Timoshenko group velocitiespesgively. One reason for this is
that wave conversion and propagation losses beceonare important for more distant
subsystems; hence there were clear differences ebatwSEA and ASEA. The
agreement between FEM and ASEA indicates that & reasonable assumption that
phase effects can be ignored in the ray tracingcagmbh used with ASEA. ASEA results
for the L-junctions and the rectangular beam fralmmonstrated that unlike SEA it was

able to incorporate high propagation losses.

The rectangular beam framework has high propagatieses at high frequencies
whereas the response of the three-bay truss beanmdigect coupling. Comparison of
measurements and FEM has not led to a conclusizside on the validity of Euler-
Bernoulli or Timoshenko theory at high frequenciewever when the difference
between Timoshenko and Euler-Bernoulli group veiesi was >26% there are
significant differences between FEM models usindeEBernoulli and Timoshenko
elements. For these FEM models there are closesemgnt with ASEA (rather than
SEA) using Euler-Bernoulli and Timoshenko group oegies respectively. This
validates the approach proposed in this chaptamcmrporate Timoshenko theory into
SEA or ASEA purely by changing the group velociged to calculate the coupling loss

factors.

Analysis of the three-bay truss beam shows thatA\&&n be used to predict vibration
transmission across a finite periodic frameworkbeims where all beams supports
local modes, even when the beams are identicaérimgt of material properties and
dimensions. For periodic structures the existerigeghase effects might be expected to
invalidate the use of ASEA. However, close agredntmiween FEM and ASEA
indicates that it is a reasonable assumption thase effects can be ignored in the ray
tracing approach used with ASEA. In Chapter 7 nucakexperiments will be carried
out to investigate a truss beam with high propagdtisses and the effect of uncertainty

in the material properties.
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7. Parametric studies using FEM, SEA and ASEA

7.1 Introduction

This chapter uses parametric studies using nuntengeeriments with FEM, SEA and

ASEA to investigate the following:

(1) The effect of different junction and boundary cdiualis with an L-junction.

For the experimental validation in Chapter 6 it was considered feasible to have a
pinned junction; hence only the BL and BT modelsern@nsidered. However, with
numerical simulations it is possible to investigatepinned junction in order to
assess the validity of the wave theory transmissmefficients for a bending only
model. In addition, the experimental validation @am L-junction was only carried
out with free boundary conditions but with numekiesperiments it is now possible

to compare free and pinned boundary conditions thighB and BL models.

(2) The effect of uncertainty in the material propexrtien the validity of zero
transmission coefficients predicted using wave mhéar T- and X-junctions.

This investigation is carried out because in Chapté& was seen that there were
some beams on the three-bay truss that were gadrpendicular or parallel to the
source beam that showed better agreement than ithadlse other orientation. One
possible reason for this is that the zero transomssoefficients that were predicted
using wave theory do not apply when there is uaadst in the material properties.
Hence this investigation looks at isolated T- anguictions for which zero
transmission coefficients occur because with L4ioms all the transmission
coefficients have a finite value. It is considelietportant to include this in the
thesis because the existing literature [5,6] isegitinclear on this issue, or makes no

clear statements about it.

(3) The effect of uncertainty in the material propertigth periodic frameworks of

beams using a five-bay truss beam as an example.
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This investigation is carried out because in Chatg was seen that on the three-
bay truss some beams that were either perpendiculaarallel to the source beam
showed better agreement than those in the othemtation. In engineering, physical
realisations of perfect periodic structures areswal; hence it iS necessary to
investigate the effect of variation in the beampemies. For practical purposes it
was not possible to measure a truss-beam with thare three bays because there
would not have been sufficient signal to noiseoratn beams after the third bay.
This also meant that it was not feasible to meaauress beam with longer beams
which would have increased the importance of prapag losses. For these reasons,
numerical experiments on a five-bay truss are camed where the beams are the
same length as used in the isolated L- and T-janstiand an assessment is made of

the effect of uncertainty in the material propestie

This chapter only considers Euler-Bernoulli theasyit is only FEM, SEA and ASEA

models that are being compared.

The material properties, dimensions and mode cdonthie beams are given in section

2.3.

7.2 Investigation into the effect of junction and boundry conditions

with the L-junction

In section 4.6.2 it was shown using an L-junctibattin-plane vibration occurs due to
bending wave motion. However, the in-plane vibmatieas sufficiently low that it was
still possible to quantify the longitudinal wave eegy above the fundamental
longitudinal mode. Section 7.2.1 shows the effégpbioning the junction so that only
Type A bending waves are generated (B model) wisidompared with the BL model.
Section 7.2.2 complements section 4.6.2 by showhegvibration level differences for

the BL model with different boundary conditions.

In this section, energy level differences involvioggitudinal wave energy are shown

below the fundamental longitudinal mode to
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7.2.1 Comparison of B and BL models

L (a) I (b) I

Fa P P 0

Figure 7.1 Sketch of isolated L-junction with (a)r®del and (b) BL model

This section compares the results of isolated bpartions with B model and BL
model. Take the L-junction shown in Figure 7.1 sameple. The natural mode counts of
the isolated beams 1.3 m and 1.0 m with free-freentary condition are given in
Figure 2.5. The fundamental longitudinal mode oa $ingle free-pinned beam occurs

in the 500 Hz one-third octave band.

Figure 7.2 and Figure 7.3 show the energy levéedihces calculated from the ratio of
source subsystem energy to receiving subsystengenen all figures, SEA/ASEA
predictions with Euler-Bernoulli beam group velgcéire compared against the results

from the FEM model using Euler-Bernoulli beam eleme

Figure 7.2 (a) allows comparison B§1/Eg; for the B and BL models. Between 10 Hz
and 500 Hz the bending mode count is sufficiertly (approximately one mode per
band) that there are large fluctuations in the Fid¥h; however, both SEA and ASEA
give a good estimate of the mean value over thisflequency range. Above 500 Hz
there are at least one bending mode in each ore dbtave band; good agreements
exist between FEM, SEA and ASEA in either the BBarmodels. Above 500 Hz, the
energy level differencér the BL model is larger than that with the B rabtlecause
less power is transmitted to bending subsystem B2nwlongitudinal waves are
generated at the junction. Note that for this diyeconnected receiver subsystem there
IS no advantage in using ASEA instead of SEA bezandirect coupling is negligible

and the propagation losses are small.

Figure 7.2 (b) show$gi/E; and Figure 7.2 (c) showSgi/E >, with excitation of
bending modes in beam 1 and receiving subsystenishvdonsider the longitudinal

mode energy. There are no local longitudinal mdétee-free) below 500 Hz. For this
178



reason there are large differences between FEM SEW/ASEA below 500 Hz in
Figure 7.2 (b) and Figure 7.2 (c). This confirmattit is not appropriate to calculate
longitudinal wave energy levels from FEM below faedamental longitudinal mode.
Between 500 Hz and 2.5 kHz SEA and ASEA still gaveeasonable estimate of the
mean value from FEM although there are only a fewgitudinal modes in this

frequency range.

In Figure 7.2 (b) there is closer agreement betweelM and ASEA than with SEA
above 1.25 kHz. However, in Figure 7.2 (c) theraassignificant difference between
SEA and ASEA.

Figure 7.3 (a) showk,1/Eg1, Figure 7.3 (b) showk,,/Es, and Figure 7.3 (c) shows
EL1/EL> with excitation of longitudinal modes in beam 1 amteiving subsystems
which consider either bending or longitudinal energAbove the fundamental
longitudinal mode, FEM shows agreements both wi8EA and SEA.

In conclusion, only small improvements are gaingdubing ASEA on a small system
such as an L-junction at high-frequencies. Thisrga has highlighted the problems in
validating the BL model below the fundamental Idadinal mode. Above the
frequency at which successive one-third octave vdrade at least one local mode on
each beam subsystem, there is good agreement et and statistical models
based on SEA or ASEA.
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Figure 7.2 Vibration transmission on L-junction (Bhodel - Source subsystem: B1).
—o—, FEM with B model—o— , FEM with BL model;---. , SEA witB model;
—, SEA with BL model; , ASEA with B model; , ASEWith BL

model. Results from FEM are shown with 95% confaemtervals.
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Figure 7.3 Vibration transmission on L-junction (Bhodel - Source subsystem: L1).
—o—, FEM with BL model; , SEA with BL model, , ASEAith BL

model. Results from FEM are shown with 95% confaeimtervals.

7.2.2 Comparison of pinned and free boundary conditions wh the BL model

In the section 7.2.1 it is concluded that good agrents between the FEM simulation
and SEA/ASEA prediction would only occur above thand where the first

longitudinal fundamental mode frequency exist, @lih the in-plane motion can be
induced below the fundamental mode frequency dueetmling motion. Referring back
to the results in section 4.6.2, one might ask leevinduced in-plane motion affects
the out-of-plane response of beam structures wherdibg and longitudinal wave

couple to each other. So in this section FEM islusecompare L-junctions with pinned
and free ends alongside SEA and ASEA predictions.
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From Figure 2.5 and Figure 2.6 it is shown that filnedamental longitudinal mode
frequency occurs in the 500 Hz one-third octavedidan the free-pinned beam and the

1k Hz band for the free-free beam.
\ ®
Yy
X (a) (b)

LT

Figure 7.4 Sketch of isolated L-junction of BL modéth (a) pinned ends and (b) free

ends

Figure 7.5 (a), (b) and (c) shows the energy lalference with Type A bending
excitation on beam 1, and Figure 7.6 (a), (b) acslows the energy level difference

with longitudinal excitation on beam 1.

In Figure 7.5 (a), from 10 Hz to 500 Hz the two FENtves fluctuate around the SEA
and ASEA curves but they have different peaks amaighs because the global modes
are different due to the different boundary cowais. For receiving subsystems L1 and
L2, Figure 7.6 (b) and (c)), FEM simulation witledér ends gives much higher vibration
levels than that with pinned ends below the fundaaidongitudinal mode at 1000 Hz.
This is due to greater in-plane motion that is gatesl with free ends as seen in the
comparison of impedances on Figure 4.9 and Figur®. Similarly, with longitudinal
wave excitation on beam 1 shown in Figure 7.6, F&Mulation with free ends still
provides higher vibration level than that of pinnedds below the fundamental
longitudinal mode frequency. The main concern istthelow the fundamental
longitudinal mode, FEM sometimes shows closer agese with SEA and ASEA for
beams with free ends than with pinned ends. In>germental study (rather than
numerical studies as in this chapter) the fundaaidanhgitudinal mode frequency for
complex beams might not be known or measurableti@adnight lead to an incorrect

conclusion when compared against SEA or ASEA.

The induced in-plane motion due to bending waveionobelow the fundamental

longitudinal mode frequency affects the FEM estenat longitudinal wave energy;
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hence it is not appropriate to use this estimakavwbthe fundamental longitudinal mode.
In purely experimental studies on complex beammight be difficult to estimate the
fundamental longitudinal mode; hence care alwaysisdo be taken if measuring in-

plane motion and attributing it to longitudinal veagnergy.

It is concluded that FEM, SEA and ASEA show goodeagient as long as there is at

least one local mode in both the source and rewpsubsystems.
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Figure 7.5 Vibration transmission on L-junction hviifferent boundary condition (BL
model - Source subsystem: BLbo— , FEM with BL moafefree end;—— , FEM
with BL model of pinned end;—— , SEA with BL model; , ASEA with BL

model. Results from FEM are shown with 95% confadeimtervals.
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Figure 7.6 Vibration transmission on L-junction kviifferent boundary condition (BL
model - Source subsystem: LY)o— , FEM with BL modkfree end—— , FEM
with BL model of pinned end;—— , SEA with BL model; , ASEA with BL
model. Results from FEM are shown with 95% confaeimtervals.

7.3 Investigation into zero transmission coefficients gdicted with

wave theory

7.3.1 BL model for T- and X-junctions

Transmission coefficients are zero between cedabsystems in the derivations of BL
and BT models for T- and X- junctions as they ammmetric structures. Hence in the
FEM simulation these perfectly symmetrical struetuhave an extremely low level
response. To verify the existence of zero transomssoefficients, uncertainties in the
Young's modulus are introduced, so that the stmestuare no longer perfectly
symmetrical in terms of their material propertiaki{ough they remain symmetrical in
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terms of their dimensions). In this section twofatiént FEM models are considered:
one model (“uniform material”) using the same Yosngodulus value for all beams
and another model (“random material”) where undetyais introduced using the
Monte Carlo technique to generate an ensemblenglitections with different Young's
modulus. These values are generated randomly freamraal distributiorN(u, o) which

is a reasonable assumption for material properfid®e mean Young's modulus
corresponds to the value in Table 2.3 and the atandeviation is calculated assuming
wo=0.3. In general, whem/c<0.3 it is possible to avoid bias due to extremieies in
the distribution [89].

T- and X-junctions are considered as indicated igufe 7.7. Pinned boundary
conditions are used for the ends of the beams becmom sections 4.6.2 and 7.2.2 it
was shown that in-plane vibration due to bendingasais lower with pinned ends
compared to free ends. For T123-junction, beam#d & are the same length. For
T124-junction, beams 2 and 4 are the same lengthXHunction, beams 1 and 3 are

the same length, and beams 2 and 4 are the sagth.len

y (@) (b) (© Q0
2
X 2 2

1 3 1 1 3

o

Figure 7.7 Beam junctions with pinned ends: (a) 3FjLihction, (b) T124-junction, (c)

X-junction.

Referring back to section 2.3 the first longitudimende on the free-pinned beam occurs
in the 500 Hz one-third octave band for 1.3 m &®G30 Hz one-third octave band for
1.0 m. So in this section the results with longitadl motion in either source subsystem
or receiving subsystem are only shown from 500 &12@ kHz, while energy level

differences for Type A bending waves are shown fidniHz to 20 kHz.
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7.3.1.1 T123-junction

For the T123-junction, consideration is given te issumption in the derivation that

Ti1L2 IS Zero.

The energy level differences with Type A bending/gvaxcitation are shown on Figure
7.8 for which there is good agreement between FENf¢rm material), SEA and
ASEA indicating that the wave theory transmissiogfticients are correct.

The energy level differences for longitudinal waesitation are shown on Figure 7.9
and this allows greater insight into whether it@srect thatr 1, is zero. FOlE 1/E > in
Figure 7.9 (d), FEM with uniform material has arergy level difference >150dB from
10 Hz to 20 kHz. This indicates thati > being zero is likely to be the correct
assumption for transmission between L1 and L2 enwlave theory derivation (section
2.5.2.2). However, in Figure 7.9 (d) FEM (randomtenal) is similar to ASEA and
significantly lower €100dB) than FEM (uniform material) although the rgyelevel
difference is still relatively high at43 dB. In section 2.5.2.2 the derivation for semi-
infinite beams assumes structural symmetry suchTiyyae A bending waves on beams
1 and 3 will have the same magnitude but travebpposite directions with a phase
difference of Tt between them causing zero displacement in yHagrection at the
junction. Therefore beam 2 has bending wave mdiidmo longitudinal wave motion.
The result corresponding to FEM (uniform materiapresents an extreme example
because beams 1 and 3 are identical in lengths-s@stion and material properties and
therefore the bending waves that are transmitteéd beaams 1 and 3 not only have a
phase difference at between them when they leave the junction butfalsa standing

waves (modes) on these beams which reinforcesadhnidition at the junction.

With FEM (random material), the energy level diffiece is lower because the T123-
junction is not perfectly symmetrical when uncenrtgiis introduced into the material

properties of all the beams. Hence, strictly spegkihe assumption in the wave theory
derivation that beam 2 has no longitudinal waveiomots no longer true. In addition,

beams 1 and 3 are no longer identical and theréfi@enodal displacement on beams 1
and 3 is no longer identical. However, it could dd@med that the ensemble average
value of the Young’s modulus (i.e. the mean valadhe same for beams 1 and 3, and

therefore it is appropriate to use the wave theenyvation in section 2.5.2.2. Another
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reason that FEM (random material) shows good ageaemith ASEA is because there
are a number of other transmission paths that trésubngitudinal wave motion on
beam 2; the most direct paths are L1-B1-L2, andBBiL2 but there are many other

longer paths which are possible.

The above finding is important because for realcttres there will always be some
uncertainty in the material properties and dimemsicsuch that there will be
longitudinal wave motion on beam 2. However, thergy level on beam 2 50 dB

below the source subsystem and for most practmakrcontrol problems it will not be
critical to estimate the longitudinal wave energyl®eam 2. It is therefore noteworthy
that E 1/Eg1, Ei1/Egz, Ei1/Ess, Ei1/Els show negligible difference between FEM
(uniform material) and FEM (random material) anchfaon that the wave theory

derivation is appropriate.

This investigation also gives an opportunity toegsswhether there is a problem with
strong coupling when longitudinal waves are excdad.1 as the source subsystem and

the receiving subsystem is L3.

Transmission coefficient;; 3 > 0.7 above 2 kHz. For this reason one might cmnsi
that strong coupling exists between L1 and L3 witichld be problematic for SEA but
not ASEA.

ASEA involves ray tracing and therefore ignoresggheffects but there is no sign that
this adversely affects the prediction, as can @ 8/ the good agreement between
FEM and ASEA.
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Figure 7.8 Vibration transmission on T123-junctigBL model - Source subsystem:

Bl). ——, FEM with uniform materiak—-— , FEM with randomaterial;
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Results from FEM are shown with 95% confidencerirdks.
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Results from FEM are shown with 95% confidenceriraks.
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7.3.1.2 T124-junction

For the T124-junction, consideration is given te tAssumption in the derivation

(section 2.5.3) thatgyi 1, 7i112 , TL1s1 @nd 7114 are zero.

The results from the T124-junction are shown wiltipd A bending wave excitation on
Figure 7.10 and longitudinal wave excitation on uUfegy 7.11. The energy level
differences shown in Figure 7.10 (c) and Figurel {d), (d) and (e) indicate that FEM
(uniform material) values are much higher (>150ttn FEM (random material) and
that FEM (random material) is close to ASEA. Hetlee conclusions and analysis for

T123-junction also apply to T124-junction.
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Figure 7.10 Vibration transmission on T124-juncti@L model - Source subsystem:
Bl). —o—, FEM with uniform materiak—— , FEM with randomaterial;

SEA (Euler-Bernoulli group velocity); , ASEA (Eul&ernoulli group velocity).
Results from FEM are shown with 95% confidencerirdks.
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Figure 7.11 Vibration transmission on T124-juncti@L model - Source subsystem:
L1). ——, FEM with uniform materiak—— , FEM with randomaterial;

SEA (Euler-Bernoulli group velocity); , ASEA (Eul&ernoulli group velocity).
Results from FEM are shown with 95% confidencerirdks.
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7.3.1.3 X-junction

For the X-junction, consideration is given to tres@mption in the derivation (section

2.5.1) thatrgiy1, Te1L3, fi1B1 »7i1B3, Tiil2 @and7iy 4 are zero.

The results from the X-junction are shown with Tydebending wave excitation on

Figure 7.12 and longitudinal wave excitation onurey7.13.

The energy level differences shown in Figure 7d)? (f) and Figure 7.13 (a), (c), (e),
and (g) are much higher (>150 dB) than FEM (unifommaterial). However FEM
(random material) is close to ASEA. Hence the acasiohs and analysis for T123-

junction also apply to the X-junction.
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Results from FEM are shown with 95% confidenceriraks.
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Figure 7.13 Vibration transmission on X-junctionL(Biodel - Source subsystem: L1).
—o—, FEM with uniform materiak—— , FEM with random ma#; __, SEA
(Euler-Bernoulli group velocity); , ASEA (Euler-Bmoulli group velocity).
Results from FEM are shown with 95% confidencerirats.
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7.3.2 BT model for T- and X-junctions

Referring back to section 2.3 on the free-pinneahiethe first torsional mode is in the
200 Hz one-third octave band, and the first TypleeBding mode is in the 20 Hz one-
third octave band for 1.3 m. Hence in this sectios results with torsional motion in
either the source subsystem or receiving subsyatenonly shown from 200 Hz to 20
kHz, while energy level differences of Type B bemgimotions to Type B bending

motions are shown from 20 Hz to 20 kHz.
7.3.2.1 T123-junction

For the T123-junction, consideration is given te tAssumption in the derivation

(section 2.6.2) thatri2 is zero.

The results from the T123-junction with Type B bemgdwave excitation on Figure
7.14 and torsional wave excitation are shown omf@g.15. In general there is closest
agreement between FEM (uniform and random mateaiad) ASEA rather than with
SEA. However, Figure 7.15 (d) shows that FEM (umifamaterial) values are much
higher (>150dB) compared to FEM (random materiat) that FEM (random material)
is close to ASEA. Therefore, for the same reasamengin section 7.3.1 for T123-
junction with the BL model, it can be concludedttiize wave theory derivation is

correct.
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Figure 7.14 Vibration transmission on T123-juncti@T model - Source subsystem:
Bl). —o—, FEM with uniform materiak—-— , FEM with randomaterial;

SEA (Euler-Bernoulli group velocity); , ASEA (Eul&ernoulli group velocity).
Results from FEM are shown with 95% confidencerirdks.
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Figure 7.15 Vibration transmission on T123-juncti@T model - Source subsystem:
T1). —o—, FEM with uniform materiak—— , FEM with randomaterial;

SEA (Euler-Bernoulli group velocity); , ASEA (Eul&ernoulli group velocity).
Results from FEM are shown with 95% confidencerirdks.
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7.3.2.2 T124-junction

For the T124-junction, consideration is given te tAssumption in the derivation

(section 2.6.3) thatgit1, TT1712, 11 @nd Iri74 @re zero.

The results from the T124-junction are shown wistpd B bending wave excitation on
Figure 7.16 and torsional wave excitation on Figude/. The conclusion is the same as
for T123-junction, that ASEA shows closer agreenteah SEA with FEM and that the

zero transmission coefficients are correct in tlawevtheory derivation.
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Figure 7.16 Vibration transmission onT124-juncti@il model - Source subsystem:
Bl). —o—, FEM with uniform materiak—-— , FEM with randomaterial;

SEA (Euler-Bernoulli group velocity); , ASEA (Eul&ernoulli group velocity).
Results from FEM are shown with 95% confidencerirdks.
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Figure 7.17 Vibration transmission onT124-juncti@il model - Source subsystem:
T1). —o—, FEM with uniform materiak—— , FEM with randomaterial;

SEA (Euler-Bernoulli group velocity); , ASEA (Eul&ernoulli group velocity).
Results from FEM are shown with 95% confidencerirdks.
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7.3.2.3 X-junction

For the X-junction, consideration is given to tres@mption in the derivation (section

2.6.1) thatrgit1, Teits, Ir1s1,IT183, [T1T2 @nd IriT4 Are zero.

The results from the X-junction are shown with Typdending wave excitation on
Figure 7.18 and torsional wave excitation on FigiuE9. The agreement indicates that
the conclusions and analysis for T123-junction algplies to the X-junction.
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Figure 7.18 Vibration transmission on X-junctionT(Bhodel - Source subsystem: B1).
—o—, FEM with uniform materiak—— , FEM with random me#&d; _, SEA
(Euler-Bernoulli group velocity); , ASEA (Euler-Beoulli group velocity).

Results from FEM are shown with 95% confidenceriraks.
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Figure 7.19 Vibration transmission on X-junctionT(Bhodel - Source subsystem: T1).

—o—, FEM with uniform materiak—— , FEM with random meg; __ |, SEA

(Euler-Bernoulli group velocity); , ASEA (Euler-Bmoulli group velocity).

Results from FEM are shown with 95% confidencerirdks.
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7.4 Investigation into perfect and imperfectly periodic frameworks of

beams

The five-bay truss shown in Figure 7.20 is investgl in this section considering the B
model, BL model and BT model. The beam lengthdtams 1, 4, 7, 10, 13 and 16 are

1.0 m and the others are 1.3 m. The materiakiséime as described in section 2.3.

To assess the application of ASEA to a truss beaerevthe individual beams have low

propagation losses, the B model is assessed Wothex internal loss factor.

FEM simulations (Euler-Bernoulli elements) on tlass beam are carried out with
random material (i.e. an imperfect periodic stroeftand with uniform material (i.e. a
perfect periodic structure). These are both contpari¢gh SEA and ASEA predictions
that use Euler-Bernoulli beam group velocity. Daestructural symmetry results are
only shown for beams 2, 4,5, 7, 8, 10, 11, 131%4,

3

10

11

12

13

14

16

Figure 7.20 Five-bay truss.
7.4.1 Bending wave transmission (B model) for the five-batruss beam
7.4.1.1 High internal losses (ILF=0.06)

Figure 7.21 the results for the B model of the fibag/ truss with excitation of Type A

bending waves on beam 1 where all beams have aoflQR6.

Figure 7.21 (a) shows close agreement between F&EA and ASEA for the
subsystem B2 that is adjacent to the source (tbes @ccurred with the isolated L- and

T-junctions).

For Figure 7.21 (b) to (j) below 800 Hz ASEA givewier energy level differences than
SEA which indicates the existence of tunneling na@i$ms. In general, FEM (random
material) shows closer agreement with ASEA than F@kiform material). This is

likely to be due to the fact that ASEA is not inded for perfectly periodic structures
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where phase effects might be important, but (liIEABIt is suited to predicting the

ensemble average response for similar subsystems.

Above 800 Hz ASEA results for the five-bay trus®whsignificantly higher energy
level differences than SEA in subsystems that atedirectly connected to the source
subsystem (see Figure 7.21 (b) to (j)). This indisehigh propagation losses. Above
800 Hz, Figure 7.21 (b) and (c) show close agre¢rbetween FEM and ASEA.
However, Figure 7.21 (d) to (j) above 800 Hz shtwattFEM (uniform and random
material properties) no longer agrees with ASEASB®A) when there are three or more
structural junctions between the source and reagivieam. This lack of agreement
increases as the beam becomes increasingly distantthe source subsystem. This
implies that high propagation losses no longer n@ubeams that are at least three
structural junctions away from the source beamschapter 6 this was not seen with
bending excitation for the BL and BT models of theze-bay truss. However referring
back to section 6.7.2 for longitudinal excitation e three-bay truss, FEM was also
significantly lower than ASEA and SEA on the bedrattwas furthest from the source
subsystem (i.e. subsystem L10).

This problem is unlikely to be an error due to nuo# accuracy in the Abaqus FEM
model because in section 7.3 energy level diffegsneere predicted that were >150dB.
The fact that energy level differences from FEM amech lower than both SEA and
ASEA might imply that the response of the distarisystems is due to global modes
rather than local modes. In sections 7.4.2 and3 e BL and BT models will be

investigated to see whether the same phenomenainsocc
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Figure 7.21 Vibration transmission on the five-liayss beam of B model, ILF=0.06.
—o—, FEM with uniform materiak—— , FEM with random me#&d; _, SEA
(Euler-Bernoulli group velocity); , ASEA (Euler-Beoulli group velocity).

Results from FEM are shown with 95% confidenceriraks.
7.4.1.2 Low internal losses (ILF=0.01)

In Figure 7.22 the results are shown for the B rhotlthe five-bay truss with excitation
of Type A bending waves on beam 1 where all beaams lan ILF of 0.01.

Figure 7.22 (a) shows close agreement between FEM, and ASEA for subsystem
B2 that is adjacent to the source. In contrasetdien 7.4.1.1 where the beams had an
ILF of 0.06 and propagation losses were significdyve 800Hz, Figure 7.22 (b) to ())
show no evidence of propagation losses but evidehdanneling appears across the
entire frequency range. In general, for beams #nmatnot directly connected to the
source subsystem, FEM (random material) shows rclageeement with ASEA than

FEM (uniform material); FEM (uniform material) agps to have increased indirect
208



coupling (i.e. tunneling) due to the fact thatk®bms have exactly the same length and

material properties.
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Figure 7.22 Vibration transmission on five bay sra$ B model with reduced damping,
ILF=0.01. —— , FEM with uniform materiak—-— , FEM withandom material,
_, SEA (Euler-Bernoulli group velocity); , ASEA (EartBernoulli group

velocity). Results from FEM are shown with 95% a¢dahce intervals.

7.4.2 Bending and longitudinal wave transmission (BL modg for the five-bay

truss beam (ILF=0.06)

In this section, Type A bending waves or longitadiwaves are excited on the source

subsystem of the five-bay truss.

Considering the isolated beam with pinned-pinnedunblary (Figure 2.4) the
fundamental longitudinal mode frequency is in theHz one-third octave band, and the
fundamental Type A bending mode is in the 25 Hzdb&o the energy level differences

for BL model of the truss are shown from 10 Hz @KHz for bending waves on the
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source and receiving subsystem and from 1 kHz t&t20 for longitudinal waves on

either the source or receiving subsystem.

Figure 7.23 shows the results for the BL modelhef five-bay truss with excitation of
Type A bending waves on beam 1. Figure 7.24 shewslts for the BL model of the
five-bay truss with excitation of Type A bendingwea on beam 1.

In Figure 7.23 (b) to (j) below 8k Hz ASEA givesner energy level differences than
SEA which indicates the existence of tunneling naat$ms. In general, FEM (random

material and uniform material) shows close agree¢mih ASEA.

In Figure 7.23 (b) to (j) above 8k Hz ASEA for thee-bay truss shows significantly
higher energy level differences than SEA in sulmystthat are not directly connected
to the source subsystem. This indicates high prajpaglosses and these are adequately
predicted by ASEA above 8 kHz (see Figure 7.23(@®)and (d) show close agreement
between FEM and ASEA). However, Figure 7.23 (e)jtcabove 8 kHz shows that
FEM (uniform and random material properties) nogenagrees with ASEA (or SEA).
This implies that high propagation losses no loragmur on subsystems that are at least

three structural junctions away from the sourcesgstem.

The same general trends can be seen when (a) gemdires are excited on the source
subsystem and the receiving subsystem representgtudinal wave energy — see
Figure 7.23 (k) to (u), and (b) when longitudinahwes are excited on the source

subsystem — see Figure 7.24.

Compared with B model of the five-bay truss, ASE®&S closer agreement with FEM
(uniform or random material) over a wider frequemagge from 10 Hz to 8 kHz (e.g.
Figure 7.23 (j)). It can therefore be concluded tha generation of longitudinal waves
at the junctions increases the indirect couplingwe8 kHz. This indicates that ASEA
can give good estimates when there is tunnelingchntgive poor estimates when the

propagation losses become very high.
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Figure 7.23 Type A bending wave transmission on fihe-bay truss (BL model -
Source subsystem: BD—~— , FEM with uniform materak—, FEM with random

material; , SEA (Euler-Bernoulli group velocity); ASEA (Euler-Bernoulli

group velocity). Results from FEM are shown wit®®bonfidence intervals.
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Figure 7.24 Longitudinal wave transmission on tive-bay truss (BL model - Source
subsystem: L1)—o— , FEM with uniform materiako— , FEMith random

material; , SEA (Euler-Bernoulli group velocity); ASEA (Euler-Bernoulli

group velocity). Results from FEM are shown witl®Bonfidence intervals.

7.4.3 Bending and torsional wave transmission (BT modeljor the five-bay truss
beam (ILF=0.06)

In this section, Type B bending waves or torsiomale is excited on the source

subsystem of the five-bay truss.

Considering the isolated beam with pinned-pinnedunblary (Figure 2.9) the

fundamental torsional mode frequency is in the 4 kide-third octave band, and the
fundamental Type B bending mode is in the 20 Halb&o the energy level differences
for BT model of the truss are shown from 10 Hz @ok#z for bending waves on the
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source and receiving subsystem and from 400 HzOt&H2z for torsional waves on

either the source or receiving subsystem.

Figure 7.25 shows the results for the BT modehef five-bay truss with excitation of
Type B bending waves on beam 1. Figure 7.26 shbesdsults for the BT model of

the five-bay truss with excitation of torsional veavon beam 1.

For the BT model Figure 7.25 (a), (k) and (I) andufe 7.26 (a), (b) and (l) show the
energy level difference between source subsysteingrB'1 and receiving subsystems
B1, T1, B2, or T2. These results show close agreeimetween FEM, SEA and ASEA
for these physically connected subsystems.

For Figure 7.25 (b), (m) and (n) and Figure 7.26 (fo) and (n), FEM, SEA and ASEA
show close agreement with each other below 5 kHzabave=5 kHz the difference

between SEA and ASEA indicates that there are pighagation losses.

For Figure 7.25 (c)-(j), and (0)-(u) and Figure&/ @)-(k) and (0)-(u) the difference
between SEA and ASEA indicates the presence oflingimechanisms below4 kHz

and high propagation losses aboevke kHz. The general trend is the same as that in
sections 7.4.1and 7.4.2 i.e. ASEA gives good estismavhen there is tunneling but for
receiving beams that are at least three strucpumnations away from the source beams
the ASEA estimate for high propagation losses dnes correspond with FEM

predictions.
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Figure 7.25 Type B bending wave transmission onfihe-bay truss (BT model -
Source subsystem: Bh.-—~— , FEM with uniform materak—, FEM with random

material;

, SEA (Euler-Bernoulli group velocity); ASEA (Euler-Bernoulli

group velocity). Results from FEM are shown wit®®bonfidence intervals.
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Figure 7.26 Torsional wave transmission on the-bag truss (BT model - Source
subsystem: T1)—o— , FEM with uniform materiako— , FEMth random

material; , SEA (Euler-Bernoulli group velocity); ASEA (Euler-Bernoulli

group velocity). Results from FEM are shown wit®®b6onfidence intervals.
7.5 Summary

The investigation into the effect of junction anoubdary conditions on an L-junction
showed that (a) in-plane motion due to bending wanation below the fundamental
longitudinal mode varies significantly dependingtba boundary conditions hence it is
not appropriate to calculate longitudinal wave ggelevels from FEM below the

fundamental longitudinal mode and (b) below thedfamental longitudinal mode there

is negligible difference between the B and BL medel

The investigation into the transmission coefficeerdf zero in the wave theory

derivations for BL and BT models of T- and X-jummcts from Chapter 2 showed that
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when the energy level difference between subsystemdj corresponded to a non-zero
transmission coefficient betweeérandj (e.g.Egi/Es, when 7z15,20) then FEM results
assuming uniform and random material propertiesegavminally the same result and
there was closest agreement between FEM, SEA arieAASBthough in some cases
ASEA showed closer agreement than SEA. When theggrevel difference between
subsystems andj directly corresponded to a transmission coefficafrzero between
andj, it was found that ASEA was closest to FEM (randwoaterial) rather than FEM
(uniform material). The reason for this is that FEWhiform material) represents an
extreme example because the co-linear beams argciaen length, cross-section and
material properties and therefore the bending wareshese beams not only have a
phase difference oft between them when they leave the junction but #isg form

standing waves (modes) on these beams which reggdhis condition at the junction.

With the five-bay truss beam it was found that AS&mws close agreement with FEM
when there is tunneling. When ASEA predicts higlopaigation losses at high
frequencies, ASEA and FEM show close agreementeoaiving beams that are less
than three structural junctions away from the seuseam. However FEM does not
agree with ASEA at high frequencies when ASEA mtdhigh propagation losses on

receiving beams that are at least three strugtumations away from the source beam.
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8. Conclusions

This thesis has investigated the prediction ofatibn transmission using FEM, SEA
and ASEA on frameworks of beams that support nleltipave types due to wave
conversion at the junctions. To assess the valafitthese models at high frequencies
where Timoshenko beam theory is valid for bendiray@vmotion, an assessment has
been made into whether coupling loss factors carcddeulated using Timoshenko
(rather than Euler-Bernoulli) group velocity and weatransmission coefficients
predicted using Euler-Bernoulli theory. Compariseith measurements on Perspex
beams and FEM using Euler-Bernoulli and Timosheglkonents have been carried out
to gain insight into the validity of this approaatmen there are low mode counts, low
modal overlap, multiple wave types, different bewgivave theories, propagation losses

and indirect coupling.

In Chapter 2, the bending wave group velocity wasved for Timoshenko theory
considering both rotatory inertia and shear defdiona This made it possible to assess
a proposal made in this thesis to incorporate Tiranko theory into SEA and ASEA
by changing over from Euler-Bernoulli to Timosherdwmup velocity when calculating
the coupling loss factors whilst using the transiois coefficients derived assuming
Euler-Bernoulli beams. These transmission coefitsievere determined for B, BL and
BT models for L-, T- and X-junctions of semi-infiaibeams assuming a rigid, massless
junction and where only the co-linear beams on iAd X-junctions have identical
material properties and cross-sectional dimensibhis. provided a consistent set of full
derivations that were not previously availableha literature.

Chapter 3 described how SEA and ASEA were impleeterib predict vibration
transmission across frameworks of beams. Implertientaf ASEA for frameworks of
beams with multiple wave types satisfied the faish of the thesis and to the author’s
knowledge this is the first time this has been done

Chapter 4 described the finite element models. Wations of mesh errors for beams
supporting bending, longitudinal or torsional wametion showed that the element size

was sufficient for Type A and Type B bending wawdeen the element size is)kg, /10
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Chapter 5 described the experimental work. Thisitheequired analysis up to 20 kHz;
hence it was necessary to quantify the materigbgntees of Perspex over this wide
frequency range. This indicated that a frequendgjrendent Young’s modulus could
be used but that the internal loss factor was #aqy-dependent. Laser vibrometry was
used to measure out-of-plane velocity on the cauptsams in order to avoid errors due

to mass loading at high frequencies.

Chapter 6 compared measurements, FEM, SEA and ABE#n isolated L-junction of
beams, a rectangular beam frame and a three-bay heam. The rectangular beam
framework was designed with relatively long beamsirttroduce high propagation
losses. The three-bay truss beam was designed reldtively short beams so that

tunneling mechanisms were more important than prgpagation losses.

The second aim of the thesis was to identify tleallonode requirements in terms of
mode counts and modal overlap factors such that &kghkor ASEA give reasonable

estimates of the dynamic response on frameworkegais that support multiple wave
types. In general it was found that there are lditgetuations in the energy level

differences when (a) there is only one local madeach frequency band in either the
source or the receiving beam and (b) there arenr@éiate frequency bands with no
local modes on the source and receiving beams. Wbasecutive frequency bands
have at least one local mode on the source orviagebeams the fluctuations are
significantly reduced. When each beam supportsat ltwo local modes for each wave
type in the frequency band of interest and the roderlap factor is at least 0.1, FEM

and measurement data tend to have average valuel fehm smooth curves such as
those predicted with SEA and ASEA.

The third aim was to investigate whether SEA andEASnodels could incorporate
both Euler-Bernoulli and Timoshenko theory by chiaggver from Euler-Bernoulli to
Timoshenko group velocity when calculating the dmgploss factors, and to identify a
suitable crossover frequency. It was found thatrwhienoshenko and Euler-Bernoulli
group velocities differed by=26%, measurements using bending wave excitation
showed closest agreement with FEM using Euler-Bdlin@lements when longitudinal
waves were generated at the junction, but closgseeaent with FEM using
Timoshenko elements when torsional waves were gé&rgerat the junction. It would

have been expected to be Timoshenko elements Indastes; for this reason clearer
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conclusions were sought through comparison of FEHA and ASEA. The results
showed that when the difference between Timosheskad Euler-Bernoulli group
velocities was>26% there were significant differences between Fildels using
Euler-Bernoulli and Timoshenko elements. For rdogivsubsystems that were not
directly coupled to the source subsystem, FEM u&uakgr-Bernoulli and Timoshenko
elements showed closest agreement with ASEA (rathan SEA) using Euler-
Bernoulli and Timoshenko group velocities respesiiv One reason for this is that
wave conversion and propagation losses become mnguertant for more distant
subsystems; hence there were clear differencesebatwSEA and ASEA. The
agreement between FEM and ASEA indicates that & reasonable assumption that
phase effects can be ignored in the ray tracingcagmh used with ASEA. This is
particularly noteworthy for the three-bay truss evhessentially forms a finite perfectly
periodic construction for which phase effects waiae likely to have been important.
ASEA results for the L-junctions and the rectangulaam frame demonstrated that

unlike SEA it was able to incorporate high propagatosses.

Chapter 7 built on the validation of FEM, SEA an8EA by using parametric studies
with these models. Varying the junction and bougdesnditions on an L-junction
showed that in-plane motion due to bending waveianobelow the fundamental
longitudinal mode varied significantly dependingtbe boundary conditions hence it is
not appropriate to calculate longitudinal wave ggelevels from FEM below the
fundamental longitudinal mode. This also showedt thalow the fundamental

longitudinal mode there is negligible differenceévibeen the B and BL models.

With the five-bay truss beam it was found that AS&Emws close agreement with FEM
when there is significant indirect coupling. WhelSBBA predicts high propagation
losses at high frequencies, ASEA and FEM show cdageement on receiving beams
that are less than three structural junctions afr@y the source beam. The findings
from chapters 6 and 7 on the rectangular beam frémeethree-bay truss and the five-
bay truss addressed the fourth aim of the thediesé@ results showed that ASEA
generally provides more accurate predictions thBA 8y accounting for propagation
losses and/or tunnelling (i.e. indirect couplingpwever, there are indications from the
five-bay truss beams that ASEA may no longer bai@te in predicting the response
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on beams that are at least three structural jumtiaway from the source beam,

particularly when ASEA predicts high propagatiosdes on the receiving beam.
8.1 Future work

Heron [2] only validated ASEA on a series of ccelin rods which resulted in high
propagation losses. Results in Chapter 7 indictéaelaof agreement between FEM and
ASEA where there are high propagation losses on filebay truss beam. To
investigate whether there is a problem with Abamqmudelling propagation losses it

would be worthwhile creating a series of beams eoted at L-junctions.

In chapter 7 it was seen that high propagatioreloss the high-frequency range on the
five-bay truss beam were not predicted by ASEA;ceeibh would be worth pursuing an

alternative prediction model, possibly based otglonodes.
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Appendix 1. Derivation of the wave motion equatiorof
Timoshenko beam

The two differential equations about force and meinen a Timoshenko beam element

are
GA 0¢ 0%0 0°0
— (—=-8)+El — | =0 Al
K 0X )t 3 P ot? (A1)
2 2
GA 0°¢& 06 Pad 0°¢ _ _ (A2)

K (ax ax P ot
To solve the general wave motion, we have to elteirthe variabl€. From equation

A2 one can obtain

00 _0°¢ _pr 0% (A3)

ox o0xX* G ot

920 9% pk 0%
=0 _PK A4
x> 0x° G at0x (Ad)

%6 _ 3% pka‘ (A5)

oxot® ox%0t* G ot*

Inserting (A4) into (A1) gives the following equarti

GA d¢ 0%¢ PK 0°%¢ 0°6
—(==-6)+El I =0 A6
« ax O E e e araX P e (A0)
Calculate the differential to of this equation, we have
A 0°¢ 08 0°¢ pk 0°¢ 0°%
——-—)+El =0 A7
k0 OX ox' Gatzaz) P 0 to x (A7)

Applying (A3) and (A5) to (A7) yields the generalulr order differential wave motion

equation of Timoshenko beam

645 0%& Ex, 0% WP ’lk 0°€¢
El — A—- I(1+ =0 A8
tP - ol G )a 26t2 G ot (A8)
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