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Abstract 

Many engineering structures are built from frameworks of beams, particularly 

lightweight structures. For the purpose of noise control from airborne and structure-

borne sources, it is useful to be able to predict vibration transmission across these 

frameworks. This thesis investigates the potential use of Advanced Statistical Energy 

Analysis (ASEA) to predict structure-borne sound transmission when the beams support 

multiple wave types due to wave conversion at the junction. In contrast to Statistical 

Energy Analysis (SEA), ASEA is able to account for high propagation losses and 

indirect coupling through the use of ray tracing. 

SEA and ASEA were validated through comparison with measurements and numerical 

experiments with Finite Element Methods (FEM). When each beam supports at least 

two local modes for each wave type in the frequency band of interest and the modal 

overlap factor is at least 0.1, FEM and measurement data tend to have average values 

which form smooth curves such as those predicted by SEA and ASEA. It was shown 

that SEA and ASEA models could incorporate Euler-Bernoulli and Timoshenko theory 

by changing over from Euler-Bernoulli to Timoshenko group velocity when calculating 

the coupling loss factors. However, comparisons with measurements were not 

conclusive although there were indications that a suitable crossover frequency could be 

when Timoshenko and Euler-Bernoulli group velocities differ by at least 26%. 

Agreement between FEM and ASEA indicates that it is appropriate to ignore phase 

effects in the ray tracing approach used with ASEA. This was particularly noteworthy 

for the three-bay and five-bay truss beams as these were perfectly periodic for which 

phase effects could be important. Results for an L-junction, a rectangular beam frame 

and a five-bay truss with relatively long beams and relatively high internal loss factors 

demonstrated that ASEA was able to incorporate high propagation losses. This was not 

possible with SEA. For a three-bay truss beam with relatively short beams ASEA 

showed close agreement with FEM and measurements confirming that there was 

significant indirect coupling rather than high propagation losses. There are indications 

from the five-bay truss beams that ASEA may no longer be accurate in predicting the 

response on beams that are at least three structural junctions away from the source 

beam, particularly when ASEA predicts high propagation losses on the receiving beam. 
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1. Introduction 

1.1 Background 

Many engineering structures are constructed from frameworks of beams for which 

prediction models are needed to determine vibration transmission across these 

frameworks for noise control purposes. Such models are relevant to machinery that is 

directly connected to the beams as well as to lightweight structures where frameworks 

of beam support thin plates which form separating and/or flanking walls/floors that 

provide sound insulation.  

For coupled beams that form a two-dimensional junction, four possible incident waves 

can be considered: Type A bending waves (defined here as having displacement in the 

same plane as the junction), Type B bending waves (defined here as having 

displacement perpendicular to the plane of the junction), longitudinal waves and 

torsional waves. For beams that are perpendicular to each other at the junction, 

excitation of Type A bending waves generates longitudinal waves at the junction, and 

excitation of Type B bending waves generates torsional waves at the junction. This 

thesis considers the following models: Bending waves only (B model), Bending and 

Longitudinal model (BL model) and Bending and Torsional wave model (BT model). 

For prediction models of sound and structure-borne sound in the audio frequency range 

there are often sufficiently large numbers of modes that statistical approaches can be 

used, such as Statistical Energy Analysis (SEA) [1]. However for frameworks of beams 

the number of modes in one-third octave or octave bands is not as high as with plates 

and acoustic cavities. In addition, most frameworks of beams have a repeating pattern 

such that they form a periodic structure and SEA is not suited to prediction on perfectly 

periodic structures. Advanced SEA (ASEA) [2 ] has been shown to be able to 

incorporate features of structure-borne sound propagation such as indirect coupling and 

high propagation losses. In addition, ASEA has also been used to model bending wave 

transmission across a periodic ribbed plate [3 ]. Therefore this thesis investigates 

whether ASEA could be used to model frameworks of beams with multiple wave types. 
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1.2 Literature review 

The choice of prediction model for vibration transmission across coupled beams partly 

depends on the wavelength in relation to the beam length and whether the framework of 

beams is periodic with a repeating unit cell. 

1.2.1 Isolated junctions of beams 

Much of the literature looks at isolated planar junctions formed by two, three or four 

beams connected at a single junction. For such junctions, the following wave models 

can be given: bending wave only (pinned junctions), longitudinal wave only model 

(collinear beam systems with longitudinal wave excitation), torsional wave only model 

(collinear beam systems with torsional wave excitation), bending and longitudinal wave 

model and bending and torsional wave model. The majority of studies have focused on 

the bending and longitudinal coupling model and the out-of-plane bending and torsional 

wave model on collinear discontinuity, non-collinear corner junction, L-junction, T-

junction, X-junction and H-junction. 

Assuming only bending (Euler-Bernoulli theory) and longitudinal waves on semi-

infinite beams, Cremer [4] and Cremer et al [5] derived transmission coefficients from 

wave theory for an L-junction of beams (although with an incident longitudinal wave it 

was assumed that both beams had the same material properties). For T- and X-junctions, 

Cremer, Heckl and Ungar [5] stated the bending wave transmission coefficients around 

the corner and across the straight section of the junction, but not the transmission 

coefficients involving longitudinal wave motion. Cremer, Heckl and Petersson [6] gave 

a general derivation for an X-junction where all beams could have different material 

properties and different cross-sections. This approach was adapted to derive results for a 

T-junction. For these T- and X-junctions, asymptotic expressions were only given for 

bending wave transmission coefficients (i.e. not those involving longitudinal wave 

motion) and the graphed transmission coefficients gave no indication that some values 

can be frequency-dependent.  

Lyapunov [ 7 ] studied the flexural wave transmission on an articulated joint that 

connected beams and plates with a blocking mass. Wave theory was developed and 
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compared with measurements which indicated a high degree of vibration isolation was 

possible. 

Wang and Kinsman [8] used Timoshenko beam theory to study the dynamic response of 

a portal frame to show the free vibration and forced response. 

Rosenhouse et al [9] used the wave theory and experimental work to study bending and 

longitudinal wave transmission on T-junction with a welded joint, screw-fastened joint 

and a joint with a rubber layer. For these types of junction there was close agreement 

between the theoretical and experimental mode shapes. 

Under nearfield bending wave excitation, Mace [ 10 ] derived the reflection and 

transmission matrices for beam discontinuities and showed that in some cases it is 

necessary to consider the effect of nearfields. 

Moor [11] extended previous studies on L-, T- and X-junctions to an isolated beam 

junction with arbitrary orientations. Analytical derivations in terms of impedance were 

carried out to calculate the reflection of and transmission coefficients of incident in-

plane bending, longitudinal, out-of-plane bending and torsional wave excitation. All 

beams were assumed to be identical to simplify the derivations, but no experimental 

validation was carried out. 

Horner and White derived transmission coefficients for three beams coupled together at 

a single junction [12] and for two non-collinear beams [13] both with variable angles 

between them. The equations quoted in the former paper that give transmission 

coefficients for bending wave excitation appear to be in error because when they are 

implemented, the sum of the transmission coefficients does not equal unit. Horner and 

White assumed the junction was a rigid mass whereas Leung and Pinnington [14,15] 

derived transmission coefficients for L-junctions with spring-dashpots incorporated in 

the junction. 

Richard et al [16] studied the coupling of bending and longitudinal waves on a T-

junction. Measurements showed good agreement with finite element method, indicating 

that power of bending and longitudinal waves can be separated when both exist in one 

beam.  
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Ouisse and Guyader [17] also studied the BL model of non-collinear beam junction with 

arbitrary angle using wave theory. This provided an explanation for hypersensitivity of 

vibration transmission when beams are connected at certain angles.  

Jee-Hun Song and Suk-Yoon Hong [18] studied a BL model for a non-collinear beam 

junction with a spring and dashpot at the beam junction. This aimed to build a non-

conservative modelling technique to predict vibration transmission in the mid- and high-

frequency ranges. 

Mei [19,20,21,22,23] applied Timoshenko beam theory to the study of bending and 

longitudinal wave coupling on a T-shaped, H-shaped and L-shaped beam junctions. For 

the L-junction and a portal beam frame, controllers that were dynamically identical to 

stiffness of spring attachments were introduced at the joint to control the bending, 

longitudinal and torsional motion. These studies highlighted the importance of using 

Timoshenko beam theory at high frequencies.  

As well as wave theory, other forms of analysis have been considered for isolated beam 

junctions including Fourier technique, asymptotic modal analysis and the receptance 

method.  

Lee and Kolsky [24] employed the Fourier technique to solve the longitudinal and 

bending pulse transmission between two non-collinear rods with arbitrary connection 

angle but assuming the same materials and cross-section. Timoshenko beam theory was 

adopted to describe the bending motion, and good agreements between measurements 

and analytical calculations were achieved. Atkins and Hunter [25 ] studied the L-

junctions with right angle analytically and experimentally for comparison with Lee and 

Kolsky’s work. Yong and Atkins [26,27] also used the Fourier technique to predict 

bending and longitudinal wave transmission on two non-collinear rods and a T-junction 

of rods. Timoshenko beam theory was used and was shown to be able to accurately 

describe the bending wave motion. Similar research can be found by Thomas [28]. 

Farage and Pan [29] adopted the receptance method in the study of power flow in planar 

coupled beam structures. A BL model was used for a non-collinear beam junction and 

X-junction and validated against a finite element model. Using the receptance approach, 
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Besharaa and Keane [ 30 ] also numerically studied the L-junction with the joint 

modelled by three sets of springs and dashpots. 

The above literature concerned the BL model. For the BT model assuming only bending 

waves (Euler-Bernoulli theory) and torsional waves on semi-infinite beams, Heckl [31] 

derived the transmission coefficients from wave theory for frameworks of beams 

formed from T- and X-junctions, and Sablik [32] derived those for an L-junction. In 

both cases the junction that connects the beams is assumed to be massless with a rigid 

cross-section that does not support wave motion. Chi [33] used the modal theory 

(asymptotic modal analysis) on a BT model of X-junction. The results were compared 

with SEA predictions. As mentioned before, by using impedance in the derivation Moor 

[11] also calculated the out-of-plane bending and torsional wave transmission 

coefficients on L-, T and X-junctions but assuming all beams identical. The power 

evaluation equations for different kinds of wave types on beams were also given in 

terms of impedance. Tso and Norwood [34] produced a general derivation to calculate 

transmission coefficients for a three-dimensional junction of beams with arbitrary cross-

section.  

In terms of experimental validation of wave models, Kurtze et al [35], Hinsch [36] and 

Rosenhouse et al [37] validated the bending and longitudinal wave model from Cremer 

[5]. Extending the experimental validation to the bending and torsional wave model, 

Gibbs and Tattersall [38] showed agreement between measured and predicted level 

differences for an L-junction of square cross-section beams. In these experimental 

studies the bending wavelength was at least six times the beam thickness at the highest 

frequency under consideration; hence it was appropriate to consider only Euler-

Bernoulli theory. Doyle and Kamle [39,40] captured time signals for bending waves 

incident on beam junctions. This indicated that Euler-Bernoulli theory was adequate but 

that Timoshenko theory was likely to be necessary at high frequencies. Troshin and 

Sanderson [41,42] examined energy flow on a T-junction of rectangular beams with two 

experimental methods: structural intensity technique based on finite-difference 

approximation and mobility energy flow technique. Feng, Liu and Nilsson [43] studied 

the effect of the overlap of joint on the vibration transmission loss based on 

measurements on a two collinear beam systems. Gautier et al [44,45] provided a 

measurement method in which the measured structural response is used to calculated the 
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far field scattering matrix. Thus the reflection and transmission coefficients of the 

bending and longitudinal wave motions were obtained on a collinear beam junction 

(beams with discontinuity).  Muggleton and Mace [46] also measured beams with a 

discontinuity as well as a right-angled pipe. Bending and longitudinal wave 

transmission coefficients were calculated from measured data through an averaging 

procedure and compared with theoretical estimates. It was concluded that this 

measurement method using an averaging approach has more advantages although bias 

errors exist between the measured transmission coefficients and predicted which was 

attributed to the theoretical model. 

1.2.2 Large frameworks of beams  

Beam frames that comprise several isolated beam junctions have been studied by many 

researchers, particularly periodic beam structures which exhibit the periodic properties 

of pass and stop bands [e.g. 47,48,49,50,51]. 

Heckl [31] derived the bending and torsional transmission coefficients on the isolated T 

and X-junctions which formed a one dimensional beam with periodic discontinuity and 

a two-dimensional periodic beam grillage. The attenuation of bending waves on the 

grillage structure was solved using wave theory. Xiao [51] analysed the periodic truss 

beam using periodic structure theory and FEM. It is shown that the periodic truss has an 

attenuation zone when only in-plane displacement was considered.  

Phani et al [52] examined the band gaps and spatial filtering phenomenon on four 

specific planer beam frames: hexagonal honeycomb, the kagomé lattice, triangular 

honeycomb and a square honeycomb. 

Uhrig [53] gave a detailed derivation of the transfer matrix, and Yun and Mak [54] 

studied a periodic dual-beam structure with transverse connections using Transfer 

Matrix Method (TMM). A coupling transfer matrix was used to describe the 

relationship between the velocities and the forces of the coupled bending and 

longitudinal waves at the two sides of the connecting beams. Using the dynamic 

continuity conditions at joints and Bloch wave theory, propagation constants of flexural 

and longitudinal waves were calculated. Experimental validation showed close 

agreement with TMM by measuring the mobility at the junction [55]. 
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Langley [56] applied the direct-dynamic stiffness method to a six-collinear beam frame 

and a beam grillage. It was pointed out that this method treats each beam in the frame as 

a single element regardless of the frequency and spatial distribution of excitations 

because the mean power flow is calculated. 

Shanker and Keane [57] presented a general method to evaluate the power flow in beam 

frames of rigid joint. This method was based on the receptance theory, and the global 

response was predicted by summation of individual uncoupled beams from Green 

functions.  

Sablik et al [ 58 ] studied a three-dimensional framework of beams with bending, 

longitudinal and torsional waves using transmission coefficients incorporated in SEA. 

Structural resonance was introduced in the SEA analysis which provided large 

fluctuations in the response. Comparison with measurements indicated that these 

fluctuations did not always occur. 

1.2.3 Statistical Energy Analysis 

Statistical Energy Analysis (SEA) is intended for the prediction of vibration 

transmission between weakly coupled subsystems where the response is multi-modal in 

the frequency band of interest [59]. Fahy and Mohammed [60] showed that coupling 

loss factors determined from bending wave theory provided suitable estimates when the 

larger of the modal overlap factors for two coupled beams was at least unit, although the 

effect of low mode counts was not investigated for beams. Compared to plates, the local 

modes of beams are relatively widely spaced which means that mode counts are often 

low when using constant percentage bandwidths; hence when considering bending 

modes in one-third octave bands there may only be one mode in each band over a wide 

frequency range [61]. If the modal overlap is sufficiently high, then Davies and Wahab 

[62] have shown that reasonable predictions can be achieved with SEA even when the 

bending mode count is only one or two on each beam. Craik and Galbrun [63] have 

shown that fluctuations in the coupling between bending waves on two beams can be 

estimated based upon the mobility of the receiving beam subsystem; however, this is 

only feasible for one wave type. Bending mode counts in constant percentage 

bandwidths increase with increasing frequency; however, they only start to become 

greater than unit at a frequency where modes begin to occur that correspond to 
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longitudinal and/or torsional wave motion. So just as the bending mode count becomes 

multi-modal, longitudinal and/or torsional modes occur with mode counts that are unit. 

SEA is well-suited to the analysis of structure-borne sound where there is wave 

conversion at junctions between subsystems; hence this thesis assesses the application 

of SEA to frameworks of beams which support more than one wave type. 

1.2.4 Advanced Statistical Energy Analysis 

Statistical Energy Analysis (SEA) has been shown to be successful in solving many 

vibro-acoustic problems in engineering [64]. However, there are instances where errors 

occur with some types of structural assembly [65,66,67]. You et al [68] compared 

random energy flow analysis with SEA to investigate structural vibration power flow in 

planar beam frameworks. The energy levels on subsystems that are distant from the 

excited subsystem showed that large differences exist between the two methods 

indicating that SEA was less reliable. For coupled structural subsystems, the assumption 

in SEA is that there is no coupling between physically disconnected subsystems. 

However, in some situations there can be significant indirect coupling, i.e. tunnelling 

mechanisms [67,69]. To incorporate indirect coupling within a statistical framework of 

analysis, Heron [2] developed Advanced Statistical Energy Analysis (ASEA) which 

combines SEA and ray tracing (ignoring phase effects) to track the power transmitted 

between coupled subsystems. This approach was validated with excitation of 

longitudinal waves at one end of an in-line array of six rods. ASEA agreed well with the 

exact result which was in contrast to SEA which overestimated the vibration response 

for subsystems that were physically disconnected from the source subsystem. However, 

this example primarily confirmed the ability of ASEA to account for propagation losses 

rather than indirect coupling between non-adjacent rods. Yin and Hopkins [3] used 

ASEA to predict bending wave transmission across two coupled plates where one plate 

was a periodic ribbed plate. ASEA was used at high frequencies where each bay 

supported local modes and could be modelled as a separate subsystem. This showed that 

indirect coupling between bays at high-frequencies was sufficiently dominant that SEA 

underestimated the response by ≈40dB on the furthest bay whereas ASEA gave close 

agreement with measurements and FEM models. The reason for this was that ASEA 

accounted for spatial filtering due to transmission across each rib that led to non-diffuse 

vibration fields on the most distant bays. Wilson and Hopkins [70] extended the 
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application of ASEA to large structures built from many coupled plates by introducing a 

beam tracing method to increase the computational efficiency. This allowed modelling 

of large periodic box-like structures for which spatial filtering of bending waves 

becomes apparent in the low- and mid-frequency ranges after only a few structural 

junctions. This showed that the inclusion of indirect coupling in ASEA was able to 

provide significantly better estimates than SEA when plates had at least one or two 

bending modes in each one-third octave band (modal overlap was relatively high due to 

significant coupling losses). Therefore, this thesis considers the application of ASEA to 

beams across a wide frequency range. In the high-frequency range the Timoshenko 

bending theory is applicable and propagation losses are expected to become 

increasingly important due to lower group speeds than that in the case of the Euler-

Bernoulli theory. Heron [2] considered the possibility that ASEA could be extended to 

multiple wave types, but no results were reported. This extension to multiple wave types 

is considered in this thesis. 

1.2.5 Discussion 

Many researchers have focused on isolated junctions of beams but relatively little work 

has been carried out using these models to predict vibration transmission on larger 

frameworks of beams in engineering structures many of which have repeating patterns. 

In addition, the wave theory derivations are scattered across the literature, with different 

assumptions about which beams have identical material properties and cross-section. 

Many structures such as framed-walls or floors have a framework of beams that can be 

described by L-, T- and X- junctions (i.e. right-angled junctions) where the collinear 

beams usually have identical material properties and cross-section. Hence, this thesis 

provides a consistent set of derivations for these types of junctions for B, BL and BT 

models. 

The literature review in this chapter indicates that a few researchers have carried out 

analysis up to sufficiently high frequencies and commented that Timoshenko beam 

theory [26,27] is required. However, the literature does not consider how Timoshenko 

theory can be incorporated in SEA and ASEA. In this thesis prediction and 

experimental work will be carried out over the audio frequency range (20 Hz-20 kHz) in 

order to assess the differences between Euler-Bernoulli and Timoshenko theory. 
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The literature on SEA indicates that relatively few studies have considered its use with 

large frameworks of beams. Hence there are few validations on systems of coupled 

beams, which consider the following combination of factors: low mode counts, low 

modal overlap, multiple wave types, different bending wave theories, propagation losses 

and indirect coupling as well as increasing uncertainty in measurements at high 

frequencies. ASEA has not previously been used to model realistic engineering 

frameworks of beams and has only considered one wave type hence this thesis 

investigates whether ASEA could be used to model frameworks of beams with multiple 

wave types. 

In the literature, validations of analytical models for vibration transmission on coupled 

beams have been carried out using Finite Element Method (FEM) [ 71 , 72 ] and 

experimental work. Both these approaches will be used in this thesis. 

1.3 Thesis aims 

This thesis investigates the prediction of vibration transmission using FEM, SEA and 

ASEA for frameworks of beams with multiple wave types up to high frequencies where 

Timoshenko beam theory is valid. The frameworks under consideration are comprised 

of beams that are connected at right-angles to each other. 

The four main aims and original aspects of this thesis are: 

1. To implement ASEA for frameworks of beams with multiple wave types. 

2. To identify the local mode requirements in terms of mode counts and modal overlap 

factors such that SEA and/or ASEA give reasonable estimates of the dynamic 

response on frameworks of beams that support multiple wave types. 

3. To investigate whether SEA and ASEA models can incorporate both Euler-

Bernoulli and Timoshenko theory by changing over from Euler-Bernoulli to 

Timoshenko group velocity when calculating the coupling loss factors, and to 

identify a suitable crossover frequency. 

4. To investigate whether ASEA can provide more accurate predictions than SEA by 

accounting for propagation losses and/or indirect coupling (i.e. tunnelling). 
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1.4 Thesis layout 

Chapter 2 describes the different wave types and contains the wave theory derivations 

used to determine the transmission coefficients between L-, T- and X-junctions for three 

different models (B, BL and BT models). 

Chapter 3 describes Statistical Energy Analysis (SEA) and Advanced Statistical Energy 

Analysis (ASEA) that are used to predict vibration transmission on coupled frameworks 

of beams. 

Chapter 4 describes Finite Element Methods used to model the frameworks of coupled 

beams. 

Chapter 5 describes the experimental work used to measure material properties of 

Perspex (Young’s modulus and internal loss factors) and vibration level differences on 

coupled Perspex beams. 

Chapter 6 compares measurements, FEM, SEA and ASEA for two models (BL and BT 

models) of an L-junction, a rectangular beam frame and a three-bay truss beam. This 

chapter considers both Euler-Bernoulli and Timoshenko theory for FEM, SEA and 

ASEA models in order to assess (a) the validity of FEM elements and (b) the proposal 

to implement thick beam theory in SEA and ASEA by accounting for the change in 

group velocity. 

Chapter 7 describes the results from parametric studies using numerical experiments 

with FEM, SEA and ASEA to investigate: 

1. The effect of different junction and boundary conditions with an L-junction. 

2. The effect of uncertainty in the material properties on the validity of zero 

transmission coefficients predicted using wave theory for T- and X-junctions. 

3. The effect of uncertainty in the material properties with periodic frameworks of 

beams using a five-bay truss beam as an example. 

 

 



12 
 

2. Wave theory for junctions of beams 

2.1 Introduction 

In this chapter, descriptions are given of wave equations on beams and solutions of the 

transmission coefficients for bending, longitudinal and torsional wave excitations on 

various right-angled, rigid beam junctions which form frame structures. This is in 

preparation for the calculation of transmission coefficients for combinations of semi-

infinite beams. This is to give confidence into the calculation of the coupling loss 

factors required for the network of beam structures described in chapter 3. 

The combination of semi-infinite beams with right angels can be divided into L-, T- and 

X-junctions. Transmission coefficients for the B model are calculated in one direction 

and the consistency relationship is used to determine values in the opposite direction. 

However, this is not possible with the BL and BT models; hence the transmission 

coefficients are calculated in both directions. Therefore the T-junction is considered as a 

T123- junction and a T124-junction in which beam 1 is always chosen as the source 

beam. In all four beam junctions, namely L-, T123-, T124- and X- junctions, two 

different wave types are individually considered as incident waves with BL or BT 

model.  

2.2 Wave types 

2.2.1 Longitudinal waves 

For an infinite solid, pure longitudinal waves can occur, but for finite structures such as 

beams it is a ‘quasi-longitudinal wave’ although for brevity it is often referred to as a 

longitudinal wave. For quasi-longitudinal waves in beams, the wave motion equation 

can be found in [5, 6] 

 
2 2

L L L L
2 2

( , ) ( , )F v F v
E

x t
ρ∂ ∂=

∂ ∂
  (2-1) 

where E is the Young’s modulus, FL is axial force and vL is axial velocity. The 

corresponding propagating wave speed is 
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dx

 

Figure 2.1 Force relation in a beam element for longitudinal wave motion. 

From Figure 2.1 one can readily write the force equation according Newton’ Law 

 L L
L L d (d )

F v
F F x A x

x t
ρ∂ ∂ − + = ∂ ∂ 

  (2-3) 

Thus one can solve axial force LF  as follows 

 L
L d

v
F A x

t
ρ ∂= −

∂∫   (2-4) 

This equation can be used for derivation of axial force when velocity expression is 

assumed. One can also write another equation about axial force by introducing the force 

impedance L LZ A G Acρ ρ= =  on a semi-infinite beam [73] 

 L L LF Z v=   (2-5) 

This gives the power transmitted by the axial force in the x direction as [11] 

 
L L L L L L

2 2

L L L L

1 1
Re( ) Re( )

2 2
1 1

Re( )
2 2

P F v Z v v

Z v Ac vρ

∗ ∗= ⋅ = ⋅

= =
  (2-6) 

where * indicates the complex conjugate . 
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2.2.2 Torsional waves 

Beams can also support torsional wave motion where all points of the same cross-

section experience circumferential displacements about the beam axis. The relationship 

between the torsional moment MT on each cross-section and the rotation Tθ  is [5,61] 

 T
TM T

x

θ∂=
∂

  (2-7) 

where T is the torsional stiffness.  

TM T
T d

M
M x

x

∂+
∂

Tω

dx

 

Figure 2.2 Moment relation in a beam element for torsional wave motion. 

By calculating the torque equilibrium relation on a small piece of the beam element in 

Figure 2.2, one has  

 T T
T T d d

M
M M x x

x t

ω∂ ∂ − + = Θ ∂ ∂ 
  (2-8) 

The angular velocity Tω is given by 

 T T tω θ= ∂ ∂   (2-9) 

and the mass moment of inertia per unit length is defined as 

 JρΘ =   (2-10) 

Solving equation (2-8) gives 

 T
T dM x

t

ω∂= −Θ
∂∫   (2-11) 
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By combining the two equations (2-7) and (2-8) one can obtain the equation for 

torsional wave motion [6] 

 
( ) ( )2 2

T T T T
2 2

, ,M M
T

x t

ω ω∂ ∂
= Θ

∂ ∂
  (2-12) 

The torsional wave speed is then given by 

 T

T T
c

Jρ
= =

Θ
  (2-13) 

For beam with circular cross-section, the torsional stiffness T is the product of shear 

modulus G and the polar moment of inertia J. So the torsional wave velocity for circular 

cross-section is  

 T

T G
c

Jρ ρ
= =   (2-14) 

For a rectangular beam cross-section b × h (assuming b ≥ h), the polar moment of 

inertia is  

 
3 3

12

bh b h
J

+=   (2-15) 

and the torsional stiffness can be calculated using [74,61] 

 
3

5

192
1 tanh

3 2

Gbh h b
T

b h

π
π

  = −   
  

  (2-16) 

On a semi-infinite beam the moment impedance is [73] 

 T
T T

T

M
Z c

θ
= = Θ   (2-17) 

Thus the power transmitted by torsional wave can be calculated as [11] 
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ω ω
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  (2-18) 

2.2.3 Bending waves 

2.2.3.1 Euler –Bernoulli theory 

Analysis of bending wave considers flexural motion along the y direction and rotational 

motion about z axis. Generally only pure bending wave is considered in thin beams 

which have cross-sectional dimensions that are much smaller than the wavelength. Thin 

beam theory is often referred to as Euler-Bernoulli theory. As the wavelength decreases 

with frequency, there exists a limiting frequency for thin beam theory. The thin beam 

limit is defined as the frequency at which the bending wavelength equals six times the 

cross-sectional dimension undergoing lateral displacement [5]. 

Take a beam element into consideration shown in Figure 2.3. The rotational inertia of 

the cross-section for thin beam is ignored when writing the moment equilibrium relation 

equation. The shear force on the cross-section of thin beam will only make contribution 

to the lateral displacement ξ. Hence the deflection angle only includes the slope angle 

caused by the moment. Therefore the angle of rotation (or slope) Bθ  can be 

approximately expressed as 

 B x

ξθ ∂=
∂

  (2-19) 

Differentiation with respect of time produces the relation between angular velocity Bω  

and the lateral velocity Bv  giving 

 
2

B B
B

v

t x t x

θ ξω ∂ ∂∂= = =
∂ ∂ ∂ ∂

  (2-20) 

From the basic geometric analysis, the bending moment can be related to the radius of 

the neutral surface  
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2

22
B

3/2 22
0

1

1

M x
EI R x

x

ξ
ξ

ξ

∂
∂∂− = = ≈
∂ ∂ +   ∂  

  (2-21) 

where I  is the moment of inertia of cross-section about z axis. The product of EI is 

bending stiffness B and the bending moment is usually given as 

 
2

B 2
M EI

x

ξ∂= −
∂

  (2-22) 

The negative algebraic sign indicates that the direction of the moment is opposite to that 

which can produce positive curvature.  

BF

B
B d

F
F x

x

∂+
∂

Bv

dx
BM B

B d
M

M x
x

∂+
∂

 

Figure 2.3 Force and moment relation in a beam element for bending wave motion. 

By ignoring the moment of inertia, one can write the moment equilibrium of an element 

on the right side in Figure 2.3 as 

 B
B B Bd d 0

M
M M x F x

x

∂ − + − = ∂ 
  (2-23) 

Then the shear force is given by 

 
3

B
B 3

M
F EI

x x

ξ∂ ∂= − =
∂ ∂

  (2-24) 

Differentiating with respect to time for equations (2-22) and(2-24), one can solve the 

moment and shear force in terms of the velocity 
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2

B
B 2

d
v

M EI t
x

∂= −
∂∫

  (2-25) 

 
3

B
B 3

d
v

F EI t
x

∂=
∂∫

  (2-26) 

The velocity can be described in the form ( )B B
i tv v x eω= , which allows the moment and 

force to be written as 

 
( )2

B
B 2

v xEI
M

i xω
∂

= −
∂

  (2-27) 

 
( )3

B
B 3

v xEI
F

i xω
∂

=
∂

  (2-28) 

According to the Newton’s law, the force relation of an element in the y direction is  

 B B
B B d

F v
F F x A

x t
ρ∂ ∂ − + = ∂ ∂ 

  (2-29) 

where A is the cross-section area. 

Then the one-dimensional form of bending wave equation is [5, 6] 

 ( ) ( )
4 2

B B B B B B B B4 2
, , , , , ,EI v M F A v M F

x t
ω ρ ω∂ ∂− =

∂ ∂
  (2-30) 

This fourth-order differential equation has four roots corresponding to propagating 

waves and near-fields in the positive and the negative direction. The bending 

wavenumber is  

 
2

4
A

k
EI

ρ ω=   (2-31) 

The phase velocity of bending wave is defined by the ratio of angular velocity to 

wavenumber 



19 
 

 
2

4
B

EI
c

k A

ω ω
ρ

= =   (2-32) 

In contrast to longitudinal and torsional waves, the phase velocity for bending wave is 

frequency dependant; hence, bending waves are described as dispersive. For this reason 

it is necessary to calculate the group velocity at which the bending energy travels since 

the group velocity is not the same as phase velocity. From equation (2-31) one can solve 

 g B

d
2 2

d
c c

k k

ω ω= = =   (2-33) 

When evaluating the power carried by bending waves, one has to take the both flexural 

wave motion and rotational motion into account [81]. From Fahy [73] the force 

impedance on semi-infinite beam is  

 ( )
3

B B
B B

B

1

1 2

F EIk i
Z Ac

v i
ρ

ω
+= = =

−
  (2-34) 

and the moment impedance on semi-infinite beam is 

 ( )
B B B

M 2
B B

1

1 2

M EIk Aci
Z

i k

ρ
ω ω

−= = =
+

  (2-35) 

Thus the bending wave power on a beam can be expressed as 

 
( ) ( ) ( ) ( )B B B B B B B B M B B

2 2

B B M B

1 1 1 1
Re Re Re Re

2 2 2 2
1 1

Re( ) Re( )
2 2

P F v M Z v v Z

Z v Z

ω ω ω

ω

∗ ∗ ∗ ∗= ⋅ + ⋅ = ⋅ + ⋅

= +
 (2-36) 

Considering the relationships (2-20),  (2-34) and (2-35) the bending wave power is 

calculated as 

 
2 2 22

B B B M B B B

1 1
Re( ) Re( )

2 2 BP Z v Z k v Ac vρ= + =   (2-37) 
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2.2.3.2 Timoshenko theory 

In contrast to Euler-Bernoulli theory, both rotatory inertia and shear deformation are 

considered in Timoshenko theory [75]. The angle of rotation consists of two parts: the 

angle for pure transverse bending θ and the angle γ for shear force deformation. The 

total angle of rotation (or slope) is 

 
d

dx

ξ θ γ= +   (2-38) 

The shear force is given by 

 F Kγ= −   (2-39) 

where K is the shear stiffness. For homogeneous beam cross-section, the shear stiffness 

obeys 

 
GA

K
κ

=   (2-40) 

The parameter κ is called the ‘shear stress distribution parameter’ which is related to the 

shape of the beam cross-section [5]. For a rectangular cross-section, it is 1.2, and for 

circular section it is 1.18. In some literature [e.g. 76,77] the shear coefficient κ′ is used 

in Timoshenko beam theory, which is related to the shear stress distribution parameter 

by 

 
1κ
κ

′ =   (2-41) 

The table below is taken from [77] and gives the calculation of shear coefficient in 

terms of Poisson’s ratio µ for different cross-sections. 
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Table 2.1 Shear coefficients 

Cross-section Shear coefficient κ′  

Circular 
( )6 1

7 6

µ
µ

+
+

 

Hollow circular 

inner outerm r r=  
( )( )

( )( ) ( )

22

22 2

6 1 1

7 6 1 20 12

m

m m

µ

µ µ

+ +

+ + + +
 

Rectangular 
( )10 1

12 11

µ
µ

+
+

 

Thin-walled round tube 
( )2 1

4 3

µ
µ

+
+

 

Thin-walled square tube 
( )20 1

48 39

µ
µ

+
+

 

Substituting (2-38) and (2-40) into (2-39) gives 

 
d

d

GA GA
F

x

ξγ θ
κ κ

 = − = − − 
 

  (2-42) 

As with the Euler-Bernoulli theory, the bending moment is given by 

 
d

d
M EI

x

θ=   (2-43) 

Equilibrium of rotational motion gives the following equation of motion 

 
2

2
d d d

M
F x M M x I x

x t

θρ∂ ∂ + − + = − ∂ ∂ 
  (2-44) 

and the differential equation for force in the y direction is 

 
2

2
d d

F
F F x A x

x t

ξρ∂ ∂ − + = ∂ ∂ 
  (2-45) 

Inserting (2-42) and (2-43) into (2-44) and (2-45) generates the following equations 



22 
 

 
2 2

2 2
0

GA
EI I

x x t

ξ θ θθ ρ
κ

∂ ∂ ∂ − + − = ∂ ∂ ∂ 
  (2-46) 

 
2 2

2 2
0

GA
A

x x t

ξ θ ξρ
κ
 ∂ ∂ ∂− − = ∂ ∂ ∂ 

  (2-47) 

By eliminating the parameter θ one can obtain the following fourth-order differential 

equation for bending wave motion on a Timoshenko beam 

 
4 2 4 2 4

4 2 2 2 4
1 0

E I
EI A I

x t G x t G t

ξ ξ κ ξ ρ κ ξρ ρ∂ ∂ ∂ ∂ + − + + = ∂ ∂ ∂ ∂ ∂ 
  (2-48) 

The detailed derivation is given in Appendix 1. In comparison with Euler-Bernoulli 

theory, one can find that three additional terms are introduced. Timoshenko [75] shows 

that only the term with the coefficient ρI appears when only the moment of inertia of the 

cross-section is taken into account. Note that the fourth item with coefficient ��
��

�
  is 

always larger than the third term because E is greater than G, and κ is always larger 

than unit for homogeneous structures [5]. Hence it can be concluded that shear 

deformation is more significant than the moment of inertia of cross-section for a thick 

beam. From Cremer et al [5], the last term in equation (2-48) is negligible since it 

represents the higher-order correction which results from the combined effects of 

moment of inertia and shear deformation. 

To solve this equation, we assume the following general solution by separating 

variables 

 ( , ) ( )i tx t e xωξ φ=   (2-49) 

Inserting this equation into (2-48) yields  

 
4 2

4 2

d ( ) d ( )
( ) 0

d d 4

x x b
a x

x x

φ φ φ+ + =   (2-50) 

where 

 
2

r

a
M

ρω=   (2-51) 
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 ( )
2 2

2 2
co

4
b

EG

ρ ω κ ω ω= −   (2-52) 

which are defined by the reduced modulus, Mr, [78] and the second spectrum cut-off 

frequency, fco  [79] as follows 

 
1 1

rM E G

κ= +   (2-53) 

 co co2
GA

f
I

ω π
ρ κ

= =   (2-54) 

For beams with idealised boundary conditions, Stephen et al [80,79] propose that 

Timoshenko theory should only be used below the second spectrum cut-off frequency. 

The characteristic equation corresponding to the fourth-order differential equation 

(2-50) is  

 4 2 0
4

b
k ak+ + =   (2-55) 

 This equation has four solutions of the wavenumber k 

 

2 2

1 2

2 2

3 4

2 2

2 2

a a b a a b
k k

a a b a a b
k k

− − − − − −= − =

− + − − + −= − =

  (2-56) 

and the general solution for the Timoshenko wave equation (2-48) can be written as 

 ( )31 2 4
1 2 3 4

k xk x k x k xi te a e a e a e a eωξ = + + +   (2-57) 

where a1, a2, a3 and a4 are to be determined by the initial conditions. As a is positive, 

a2-b can also be shown to be positive as follows 
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( )
22 2 2

2 2 2
co

r

2 2 2
2 4 2 2

co

2 2
2 4 2 2

co

4

4 4

4
0

a b
M EG

E G

EG EG EG

E G

EG EG

ρω ρ ω κ ω ω

κ ρ κ ρ κρ ω ω ω

κ ρ κρ ω ω ω

 
− = − − 

 

 + = − +  
   

− = + ≥ 
 

  (2-58) 

The two variables k1 and k2 are purely imaginary and correspond to positive and 

negative traveling waves. When ω ≤ ωco, then b is negative. This results in a positive 

value for −� + √�
 − � . Thus k3 and k4 are real values which represent nearfield 

waves. However, the two variables k3 and k4 will be purely imaginary when ω ≥ ωco. In 

this case the evanescent near field waves become propagating waves. The parameter ωco 

is also called second spectrum cut-off frequency in Timoshenko beam theory.  

The bending phase velocity of the propagating wave can be calculated using 

 B
1

c
ik

ω=   (2-59) 

To determine the group velocity for Timoshenko theory, differentiating equation (2-55) 

with respect to k gives 

 3 2d d 1 d d
4 2 0

d d 4 d d

a b
k k ak

k k

ω ω
ω ω

+ + + =   (2-60) 

hence for the propagating bending wave (k1) in the positive x-direction, the group 

velocity is 

 
3
1 1

g
21
1

4 2d
d 1 dd
d 4 d

k ak
c

a bk k

ω

ω ω

+= = −
+

  (2-61) 

and inserting a and b gives 

 
3 2
1 1

g 2 3 2 2 2
1 co

2 ( )

2 ( )

EGk E G k
c

E G k

ρ κ ω
ρ κω ρ κ ω ρ κω ω

+ += −
+ + −

  (2-62) 
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As the wavenumber, k1, is complex, the imaginary part of the group velocity is used in 

the calculation of the coupling loss factors. 

2.2.3.3 Thin beam limit 

As noted earlier, Euler-Bernoulli theory applies when the wavelength is much larger 

than the cross-sectional dimensions. A crossover frequency from the Euler-Bernoulli to 

Timoshenko theory can be defined by the percentage difference between the phase 

velocity for Euler-Bernoulli theory and that of the Timoshenko theory. Assuming the 

solution of the equation (2-48) has a sinusoidal form with unit amplitude 

 B( , ) ik x i tx t e eωξ −=   (2-63) 

Inserting this solution into equation (2-48) and ignoring the last term as justified by 

Cremer et al [5] produce 

 
4 2

2 2

B B

2
1 0

EI I E

A c A G

ω κ πω ω
ρ λ

    − − + =    
    

  (2-64) 

which can be rewritten as 

 
( )

1

4
2B

2
BB thin

1 4 1
c E I

c G A

κπ
λ

−
  = + +  

  
  (2-65) 

where cB(thin) is the phase velocity of Euler-Bernoulli theory defined in equation (2-32). 

For circular cross-section with diameter d,  

 
2

2
B B

1

16

I d

Aλ λ
 

=  
 

  (2-66) 

and for rectangular cross-section, 

 
2

2
B B

1

12

I h

Aλ λ
 

=  
 

  (2-67) 
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In both cases this term approaches zero where the wavelength is much larger than the 

dimensions of beam cross-section. Thus, using the second-order Taylor expansion on 

the right side, equation (2-65) can be rewritten as 

 
( )

2B
2

BB thin

1 1
c E I

c G A

κπ
λ

 ≈ − + 
 

  (2-68) 

Consider a beam with rectangular cross-section (κ=1.2), and the Poisson ratio µ=0.3, 

equation (2-68) becomes 

 
( )

2

B

BB thin

1 3.39
c h

c λ
 

= −  
 

  (2-69) 

Thus, the difference would be less than 10% only when the wavelength satisfies 

 B 5.8hλ ≥   (2-70) 

Following the approach by Hopkins [61], the percentage difference between phase 

velocities is defined as 

 ( )

( )

BB thin

B thin

%

100

c c X

c

−
=   (2-71) 

Combining equations (2-71) and (2-68) gives 

 2
2

B

%
1

100

X E I

G A

κπ
λ

 = + 
 

  (2-72) 

From the relationship between wavelength and wavenumber, one can calculate that 

 
2

2
B

B

2 2 EI

k f A

π πλ
ρ

 
= = 
 

  (2-73) 

By inserting equation (2-73) into equation (2-72) one can get the thin beam bending 

limit, fB(thin), for an X% difference between thin beam and thick beam phase velocity 
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1

B(thin)

% 2
1

100

X EA E
f

I G

κ
π ρ

−
 = + 
 

  (2-74) 

or in terms of the longitudinal phase velocity in beams  

 
1

L
B(thin)

2%
1

100

cX A E
f

I G

κ
π

−
 = + 
 

  (2-75) 

Note the thin beam bending limit can also be applied for plates and Cremer et al [5] 

based the thin plate limit on X=10%.  

2.2.4 Modal density and modal overlap 

When studying coupled beams the exact boundary conditions are not always known 

exactly, but idealised boundary conditions can be used to give analytical calculations of 

the natural frequencies for the isolated beams (i.e. for local modes which are relevant to 

modelling with SEA and ASEA). Thus the local modes for isolated beams with 

different boundary conditions are given in Table 2.2 [73]. 

Table 2.2 Natural frequencies for beams. 

Wave type Boundary condition Natural frequency (Hz) 

Longitudinal 

Clamped-clamped,  
Free-free L2

n
c

L
, n=1, 2, 3, … 

Clamped-free L

2 1

4

n
c

L

−
, n=1, 2, 3, … 

Torsional 

Clamped-clamped,  
Free-free T2

n
c

L
, n=1, 2, 3, … 

Clamped-free T

2 1

4

n
c

L

−
, n=1, 2, 3, … 

Bending 

Clamped-clamped,  
Free-free 

2
2 1

8

EI n

A L

π
ρ

+ 
 
 

, n=1, 2, 3, … 

Clamped-free 
2

2 1

8

EI n

A L

π
ρ

− 
 
 

, n=1, 2, 3, … 

Clamped-pinned,  
Free-pinned 

2
4 1

32

EI n

A L

π
ρ

+ 
 
 

, n=1, 2, 3, … 

Pinned-pinned 
2

2

EI n

A L

π
ρ

 
 
 

, n=1, 2, 3, … 
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With group velocities for different wave types in the former sections, one can calculate 

the statistical modal density, n(f), using 

 
g

2
( )

L
n f

c
=   (2-76) 

The modal overlap factor, M, is defined to indicate the degree of overlap in the modal 

response. 

 ( )3dBf
M f n f

f
η∆= =

∆
  (2-77) 

where 3dBf∆  is the half power bandwidth, f∆  is the average frequency-spacing between 

adjacent mode frequencies, and η  is the loss factor.  

2.3 Properties of beams used for parametric studies and calculation 

examples for wave theory transmission coefficients 

Along with the derivations on basic beam junctions, the material properties and 

dimensions for these models are given in Table 2.3. 

Table 2.3 Material properties and dimensions of beams used for parametric studies and 

calculation examples for wave theory transmission coefficients. 

Material Density 
(kg/m3) 

Young’s 
modulus 

(Pa) 

Cross-section 
(m) 

Poisson’s 
ratio  

Length of 
beam 1 and 2 

(m) 

Internal 
loss factor 

Perspex 1250 6.9×109 0.02x0.01 0.3 1.3,  1.0 0.06 

Low mode counts tend to occur in beam systems, particularly for longitudinal wave 

motion in the low-frequency range. Figure 2.4, Figure 2.5, Figure 2.6, Figure 2.7, 

Figure 2.8 and Figure 2.9 show the local mode counts for Type A bending, longitudinal, 

Type B bending and torsional modes for the two isolated beams (lengths, 1.3m and 1.0 

m) for one-third octave bands over the frequency range from 10 Hz to 20 kHz.  

These mode counts are calculated assuming three boundary conditions. These are 

pinned-pinned, pinned-free, and free-free. The results apply directly to the isolated 

beams with these idealised boundary conditions and are indicative of the mode counts 

for the coupled beams in the junctions and frameworks.  
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The first longitudinal mode occurs in the 1000 Hz one-third octave band for the pinned-

pinned and free-free 1.3 m beam, and in the 500 Hz one-third octave band for the 

pinned-free 1.3 m beam. The first torsional mode occurs in the 400 Hz one-third octave 

band for the pinned-pinned and free-free 1.3 m beam, while it is in the 200 Hz one-third 

octave band for the free-pinned 1.3 m beam. 
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Figure 2.4 Mode counts in one-third octave bands for pinned-pinned beam: (a) Type A 

bending wave, (b) longitudinal wave. 
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Figure 2.5 Mode counts in one-third octave bands for free-pinned beam: (a) Type A 

bending wave, (b) longitudinal wave. 
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Figure 2.6 Mode counts in one-third octave bands for free-free beam: (a) Type A 

bending wave, (b) longitudinal wave. 
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Figure 2.7 Mode counts in one-third octave bands for pinned-pinned beam: (a) Type B 

bending wave, (b) torsional wave. 
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Figure 2.8 Mode counts in one-third octave bands for free-pinned beam: (a) Type B 

bending wave, (b) torsional wave. 
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Figure 2.9 Mode counts in one-third octave bands for free-free beam: (a) Type B 

bending wave, (b) torsional wave. 

2.4 Bending only model (B model) 

For a bending only model, Craik [81] solved the reflection and transmission coefficients 

in detail for plates that form X-junction, T-junction, and L-junction from the wave fields 

of displacements. These results can be readily converted into a bending only model for 

beam junctions as long as the incident wave angle is zero. This section derives the 
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transmission coefficients based on the wave fields of velocity for consistency with the 

BL and BT models derived later in this chapter. 

For B model, a rigid massless junction beam is used to transmit bending moments with 

zero displacement (pinned) at the beam junction itself. The derivation is initially shown 

for an X-junction, as this can subsequently be used to derive transmission coefficients 

for the T- and L-junctions. 

2.4.1 X-junction 

The coordinate system for an X-junction is shown in Figure 2.10 showing the bending 

moments and the velocities for each beam. It is assumed that beams 1 and 3 are 

identical, as are beams 2 and 4. 
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B4v

B1M

B4M

B2M
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B1ω

B2ω

B3ω
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Figure 2.10 X-junction: B model, Type A bending wave excitation on beam 1. 

Consider an incident bending wave (Type A) with unit amplitude travelling in the 

positive x-direction towards the junction on beam 1, the velocity of the incident wave is 

 B1
B1+

ik x i tv e eω−=   (2-78) 

The bending wave field of beam 1 can be described as the sum of incident wave, 

reflected wave and nearfield. That is 
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 ( )B1 B1 B1
B1 B1B1 N1

ik x ik x k x i tv e r e r e eω−= + +   (2-79) 

In beam 2, 3 and 4, the bending velocities can be written as the sum of the transmitted 

bending wave and nearfield: 

 ( )B2 B2
B2 B1B2 N2

ik y k y i tv t e t e eω− −= +   (2-80) 

 ( )B3 B3
B3 B1B3 N3

ik x k x i tv t e t e eω− −= +   (2-81) 

 ( )B4 B4
B4 B1B4 N4

ik y k y i tv t e t e eω= − +   (2-82) 

where subscripts B and N represent bending waves and nearfields respectively, r 

indicates the complex amplitude of the reflected wave, t indicates the complex 

amplitude of the transmitted wave. 

For the bending only model, the beam junction is assumed to be free to rotate and can 

only transmit moments (i.e. a pinned boundary condition) where 

 B1 B1B1 N11 0v r r= + + =   (2-83) 

 B2 B1B2 N2 0v t t= + =   (2-84) 

 B3 B1B3 N3 0v t t= + =   (2-85) 

 B4 B1B4 N4 0v t t= − − =   (2-86) 

Continuity of angular velocity at the junction requires that 

 B1 B2v v

x y

∂ ∂=
∂ ∂

  (2-87) 

 B3B1 vv

x x

∂∂ =
∂ ∂

  (2-88) 

 B1 B4v v

x y

∂ ∂=
∂ ∂

  (2-89) 

Inserting the velocities into the last three equations gives 
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 B1 B1 B1B1 B1 N1 B2 B1B2 B2 N2ik ik r k r ik t k t− + + = − −   (2-90) 

 B1 B1 B1B1 B1 N1 B3 B1B3 B3 N3ik ik r k r ik t k t− + + = − −   (2-91) 

 B1 B1 B1B1 B1 N1 B4 B1B4 B4 N4ik ik r k r ik t k t− + + = − −   (2-92) 

The moment equilibrium condition requires that the sum of all the moments acting on 

the junction equals zero, hence 

 B1 B2 B3 B4 0M M M M− − + =   (2-93) 

By using equation(2-25), the moments due to bending motions are calculated as 

 
( ) ( )

( )

2
2 2 2B1 1

B1 1 B1 B1 B1B1 B1 N12

2
1 B1

B1B1 N1

d

1

i t

i t

v B
M B t ik ik r k r e

x i

B k
r r e

i

ω

ω

ω

ω

∂ −  = − = − + +
 ∂

−= − − +

∫
  (2-94) 

 
( ) ( )

( )

2
2 2B2 2

B2 2 B2 B1B2 B2 N22

2
2 B2

B1B2 N2

d i t

i t

v B
M B t ik t k t e

y i

B k
t t e

i

ω

ω

ω

ω

∂ −  = − = − + −
 ∂

−= − +

∫
  (2-95) 

 
( ) ( )

( )

2
2 2B3 3

B3 3 B3 B1B3 B3 N32

2
3 B3

B1B3 N3

d i t

i t

v B
M B t ik t k t e

x i

B k
t t e

i

ω

ω

ω

ω

∂ −  = − = − + −
 ∂

−= − +

∫
  (2-96) 

 
( ) ( )

( )

2
2 2B4 4

B4 4 B4 B1B4 B4 N42

2
4 B4

B1B4 N4

d i t

i t

v B
M B t ik t k t e

y i

B k
t t e

i

ω

ω

ω

ω

∂ −  = − = − + −
 ∂

−= − +

∫
  (2-97) 

Then the equation (2-93) becomes 

 
2 2 2 2 2
B1 1 B1 1 B1B1 B1 1 N1 B2 2 B1B2 B2 2 N2

2 2 2 2
B3 3 B1B3 B3 3 N3 B4 4 B1B4 B4 4 N4 0

k B k B r k B r k B t k B t

k B t k B t k B t k B t

+ − − +

− + − + =
  (2-98)                                                          
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From equations (2-83), (2-84), (2-85) and (2-86) one can get the four parameters rN1, 

tN2, tN2 and tN4 in terms of rB1B1, tB1B2, tB1B3 and tB1B4. Combining equations (2-90), 

(2-91), (2-92) and (2-98), and eliminating rN1, tN2, tN3 and tN4 gives the following 

equations of rB1B1, tB1B2, tB1B3 and tB1B4, which can be solved to give the amplitude of the 

transmitted waves. 

 

B1 B1 B2 B2 B1B1 B1 B1

B1 B1 B3 B3 B1B2 B1 B1

B1 B1 B4 B4 B1B3 B1 B1
2 2 2 2 2
B1 1 B2 2 B3 3 B4 4 B1B4 B1 1

0 0

0 0

0 0

k ik k ik r k ik

k ik k ik t k ik

k ik k ik t k ik

k B k B k B k B t k B

− + − + +     
     − + − + +     =
     − + − + +
     − − − −    

  (2-99) 

It is assumed that beams 1 and 3 are identical, as are beams 2 and 4, such that B1 B3k k= , 

B2 B4k k= . Two parameters χ and ψ can now be defined as 

 
2

B2 2 B2
2

B1 1 B1

,
k B k

k B k
χ ψ= =   (2-100) 

Solving the matrix equation (2-99) gives 

 
( )

( ) ( )B1B1

1

1

i i
r

i

ψ χ
χ ψ

− −
=

+ +
  (2-101) 

 
( )B1B2 B1B4

1

2

i
t t

χ ψ
−= =
+

  (2-102) 

 
( )( )B1B3 1

t
i

χ
χ ψ

=
+ +

  (2-103) 

Using the bending wave power defined in equation(2-36), the transmission efficiencies 

for each beam are  

 
( )

( )

2 2 2
21 B1 B1-

B1B1 B1B12 2

1 B1 B1+

2

4

m c v
r

m c v

χ ψ χ
τ

χ ψ
′ + +

= = =
′ +

  (2-104) 
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( )

2
22 B2 B2+

B1B2 B1B4 B1B22 2 2

1 B1 B1+

0.5

2

m c v
t

m c v

χψτ τ χψ
χ ψ χ ψ

ψ χ

′
= = = = =

′ +  
+ 

 

 (2-105) 

 
( )

2 2
21 B1 B3+

B1B3 B1B32 2 2

1 B1 B1+

0.5

2
1

m c v
t

m c v

χτ
χ ψ ψ

χ

′
= = = =

′ +  + 
 

  (2-106) 

The subscript positive sign refers to incident waves and transmitted propagating waves, 

while the negative sign corresponds to reflected bending waves. For conservation of 

energy it can be checked that the total transmission coefficient equals unit, 

 B1B1 B1B2 B1B3 B1B4 1τ τ τ τ+ + + =   (2-107) 

If the material properties and dimensions of beam 1 are the same as beam 2, then 

χ=ψ=1, and τB1B2 reaches its maximum value where τB1B1=0.625, and τB1B2= τB1B3= 

τB1B4=0.125. 

2.4.2 T-junction                      

B3v
B1v

B2v

B1ω

B2ω

B3ω
B1M B3M

B2M

 

Figure 2.11 T123-junction: B model, Type A bending wave excitation on beam 1. 

The T-junction can be seen as a variant of an X-junction without beam 3 (T124-

junction) or without beam 4 (T123-junction). The wave fields on each beam of T-

junction are the same as that of X-junction. For the T123-junction showed in Figure 

2.11, the boundary conditions are the same as X-junction except equations (2-86) and 

(2-89). The matrix equation (2-99) is reduced to 
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B1 B1 B2 B2 B1B1 B1 B1

B1 B1 B3 B3 B1B2 B1 B1
2 2 2 2
B1 1 B2 2 B3 3 B1B3 B1 1

0

0

k ik k ik r k ik

k ik k ik t k ik

k B k B k B t k B

− + − + +     
     − + − + = +     
     − − −     

  (2-108) 

The solution is given by 

 
( )

( )B1B1

1

2

i
r

i

ψ χ
χ ψ

+ −
=

+
  (2-109) 

 
( )B1B2

1

2

i
t

χ ψ
−=
+

  (2-110) 

 
( )( )B1B3

2

1 2
t

j

χ
χ ψ

=
+ +

  (2-111) 

from which the transmission efficiencies are calculated as 

 
( )

( )

2 2 2
21 B1 B1-

B1B1 B1B12 2

1 B1 B1+ 2

m c v
r

m c v

χ ψ χ
τ

χ ψ
′ + +

= = =
′ +

  (2-112) 

 
( )

2
22 B2 B2+

B1B2 B1B22 2 2

1 B1 B1+

2 1

2 2
2

m c v
t

m c v

χψτ χψ
χ ψ χ ψ

ψ χ

′
= = = =

′ +  
+ 

 

  (2-113) 

 
( )

2 2
21 B1 B3+

B1B3 B1B32 2 2

1 B1 B1+

2 0.5

2
1

2

m c v
t

m c v

χτ
χ ψ ψ

χ

′
= = = =

′ +  + 
 

  (2-114) 

For conservation of energy it is checked that the sum of all transmission coefficients on 

the T123-junction equals unit. 
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Figure 2.12 T124-junction: Bending only model, Type A bending wave excitation on 

beam 1. 

Figure 2.12 considers bending wave excitation (Type A) of beam 1 on the T124-

junction. Similarly, one can get the following reduced matrix equation to calculate rB1B1, 

tB1B2 and tB1B4: 

 
B1 B1 B2 B2 B1B1 B1 B1

B1 B1 B4 B4 B1B2 B1 B1
2 2 2 2
B1 1 B2 2 B4 4 B1B4 B1 1

0

0

k ik k ik r k ik

k ik k ik t k ik

k B k B k B t k B

− + − + +     
     − + − + = +     
     − − −     

  (2-115) 

Solving this matrix equation gives 

 B1B1

2

2

j
r

χ ψ
χ ψ

+= −
+

  (2-116) 

 B1B2 B1B4

1

2

j
t t

χ ψ
−= =
+

  (2-117) 

and the transmission efficiencies of the T124 junction are  

 
( )

( )

2 22
21 B1 B1-

B1B1 B1B12 2

1 B1 B1+

2

2

m c v
r

m c v

χ ψ
τ

χ ψ
′ +

= = =
′ +

  (2-118) 
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( )

2
22 B2 B2+

B1B2 B1B4 B1B22 2 2

1 B1 B1+

2 1

2 2
2

m c v
t

m c v

χψτ τ χψ
χ ψ χ ψ

ψ χ

′
= = = = =

′ +  
+ 

 

 (2-119) 

As before, conservation of energy can be checked to ensure thatB1B1 B1B2 B1B4 1τ τ τ+ + = . 

2.4.3 L-junction 

The L-junction under consideration is shown in Figure 2.13. 
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B1M

B2M
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Figure 2.13 L-junction: Bending only model, Type A bending wave excitation on beam 

1. 

The continuity of rotational velocity is the same as equation (2-87) and the moment 

equilibrium condition is MB1-MB2=0, therefore the matrix equation for L-junction is 

 B1 B1 B2 B2 B1B1 B1 B1
2 2 2
B1 1 B2 2 B1B2 B1 1

k ik k ik r k ik

k B k B t k B

− + − + +     
=     − −     

  (2-120) 

Solving this equation gives  

 B1B1

i
r

χ ψ
χ ψ

+= −
+

  (2-121) 

 B1B2

1 i
t

χ ψ
−=
+

  (2-122) 

The transmission efficiencies are 
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( )

2 2 2
21 B1 B1-

B1B1 B1B12 2

1 B1 B1+

m c v
r

m c v

χ ψτ
χ ψ

′ += = =
′ +

  (2-123) 

 
( )

2
22 B2 B2+

B1B2 B1B22 2 2

1 B1 B1+

2 2m c v
t

m c v

χψτ χψ
χ ψ χ ψ

ψ χ

′
= = = =

′ +  
+ 

 

  (2-124) 

Conversation of energy requires that1 1 1 2 1B B B Bτ τ+ = . Table 2.4 shows the transmission 

coefficients for X-, T- and L- junctions with bending only models when all beams are 

identical. 

Table 2.4 Transmission coefficients of bending only model for χ=ψ=1. 

 
B1B1τ  B1B2τ  B1B3τ  B1B4τ  

X-junction 5/8 1/8 1/8 1/8 

T123-junction 5/9 2/9 2/9  

T124-junction 5/9 2/9  2/9 

L-junction 1/2 1/2   

 

2.5 Bending and longitudinal wave model (BL model) 

For the bending and longitudinal wave model (BL model) it is not possible to treat the 

T-junction and L-junction as a special case of X-junction. Due to the structural 

symmetry in the X-junction and T-junction, not all beams transmit two wave types. The 

consistency relationship is no longer useful with multiple wave types; hence in this 

section (and in section 2.6), different beam junctions are considered separately with 

respect to the incident wave type and structural symmetry. 

In this section, bending and longitudinal wave models are derived for the X-junction, T-

junction and L-junction. An incident bending or longitudinal wave is applied on the 

source beam 1 and the beam junction is unpinned to allow generation of longitudinal 

waves at the junction.  
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2.5.1 X-junction 

2.5.1.1 Bending wave excitation 

Figure 2.14 shows the X-junction under consideration. Beams 1 and 3 and beams 2 and 

4 are identical in X-junction. 
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Figure 2.14 X-junction: BL model, Type A bending wave excitation on beam 1. 

Assume that an incident bending wave (Type A) with unit amplitude travels on beam 1 

of an X-junction in the positive x-direction. The bending wave field on beam 1 is 

composed of three parts, namely the incident wave, reflected wave, and nearfield. Both 

bending and longitudinal waves are transmitted onto beams 2 and 4. Due to structural 

symmetry, the bending waves on beams 2 and 4 have the same magnitude but propagate 

in opposite directions. Hence there will be zero displacement in the x-direction at the 

junction. Also, the magnitude of longitudinal wave motions on beams 2 and 4 are the 

same, but the phases differ. The wave fields on each beam are described by 

 ( )B1 B1 B1
B1 B1B1 N1

ik x ik x k x i tv e r e r e eω−= + +   (2-125) 

 ( )B2 B2
B2 B1B2 N2

ik y k y i tv t e t e eω− −= +   (2-126) 
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 ( )B1 B1
B3 B1B3 N3

ik x k x i tv t e t e eω− −= +   (2-127) 

 ( )B2 B2
B4 B1B2 N2

ik y k y i tv t e t e eω= − +   (2-128) 

 L1 L3 0v v= =   (2-129) 

 L2
L2 B1L2

ik y i tv t e eω−=   (2-130) 

 L2
L4 B1L2

ik y i tv t e eω= −   (2-131) 

where r indicates the complex amplitude of the reflected wave and t indicates the 

complex amplitude of the transmitted wave with subscripts B, L, and N indicating 

bending waves, longitudinal waves and nearfield waves, respectively.  

In addition to the two parameters χ and ψ defined in (2-100), two more frequency-

dependant parameters are defined here 

 2 B2 1 B1
1 2

1 L1 2 L2

,
m c m c

m c m c
β β

′ ′
= =

′ ′
  (2-132) 

where 1m′ and 2m′ are the mass per unit lengths. 

Continuity of the angular velocity at the junction requires that 

 B3B1 B2 B1,
vv v v

x y x x

∂∂ ∂ ∂= =
∂ ∂ ∂ ∂

  (2-133) 

which yields 

 B1B1 N1 B1B2 N2ir r i t t iχ χ+ + + =   (2-134) 

 B1B1 N1 B1B3 N3ir r it t i+ + + =   (2-135) 

Continuity of the velocity in the y-direction at the junction requires that 

 B1 L2 B1 B3,v v v v= =   (2-136) 

 Thus one gets the following two equations 
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 B1B1 N1 B1L2 1r r t+ − = −   (2-137) 

 B1B1 N1 B1B3 N3 1r r t t+ − − = −   (2-138) 

In the x-direction the displacement is zero, such that 

 B2 L10( )v v= =   (2-139) 

hence, 

 B1B2 N2 0t t+ =   (2-140) 

At the junction (x,y)=(0,0), zero displacement in the x-direction does not mean that the 

force in the x-direction is also zero. Due to symmetry, the bending motion on beams 2 

and 4 are symmetric about the x-axis, whilst the shear force due to bending in beams 2 

and 4 are balanced in the x-direction, FB2-FB4=0. Also, in the y-direction, FL2=FL4, and 

force equilibrium requires that 

 B1 L2 B32 0F F F− − =   (2-141) 

According to equation(2-4), the axial force due to the longitudinal wave in beam 2 can 

be written as 

 L2
L2 2 2 B1L2 2 L2 B1L2

L2

1
d i t i tv

F m y i m t e m c t e
t ik

ω ωω∂′ ′ ′= − = − =
∂ −∫   (2-142) 

The shear force due to the bending wave is calculated according to equation (2-26)  

 
( ) ( ) ( )

( ) ( )

3
3 3 3B1 1

B1 1 B1 B1 B1B1 B1 N13

3
1 B1

B1B1 N1 1 B1 B1B1 N1

d

1 1

i t

i t i t

v B
F B t ik ik r k r e

x i

B k
r ir e m c r ir e

ω

ω ω

ω

ω

∂  = = − + +
 ∂

′= − − = − −

∫
  (2-143) 

 
( ) ( )

( ) ( )

3
3 3B3 1

B3 1 B1 B1B3 B1 N33

3
1 B1

B1B3 N3 1 B1 B1B3 N3

d i t

i t i t

v B
F B t ik t k t e

x i

B k
t it e m c t it e

ω

ω ω

ω

ω

∂  = = − + −
 ∂

′= + = +

∫
  (2-144) 

Inserting (2-142), (2-143) and (2-144) into (2-141), one gets 
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 2 B1B1 2 N1 2 B1B3 2 N3 B1L2 22r i r t i t tβ β β β β+ + + + =   (2-145) 

At the junction, MB2=-MB4, and moment equilibrium gives 

 B1 B2 B32 0M M M− − =   (2-146) 

Based on (2-25), the moments due to bending motions are 

 
( ) ( )

( )

2
2 2 2B1 1

B1 1 B1 B1 B1B1 B1 N12

2
1 B1

B1B1 N1

d

1

i t

i t

v B
M B t ik ik r k r e

x i

B k
r r e

i

ω

ω

ω

ω

∂ −  = − = − + +
 ∂

−= − − +

∫
  (2-147) 

 
( ) ( )

( )

2
2 2B2 2

B2 2 B2 B1B2 B2 N22

2
2 B2

B1B2 N2

d i t

i t

v B
M B t ik t k t e

y i

B k
t t e

i

ω

ω

ω

ω

∂ −  = − = − + −
 ∂

−= − +

∫
  (2-148) 

 
( ) ( )

( )

2
2 2B1 1

B3 1 B1 B1B3 B1 N32

2
1 B1

B1B3 N3

d i t

i t

v B
M B t ik t k t e

x i

B k
t t e

i

ω

ω

ω

ω

∂ −  = − = − + −
 ∂

−= − +

∫
  (2-149) 

Inserting these results into (2-146) gives  

 B1B1 N1 B1B2 N2 B1B3 N32 2 1r r t t t tψ ψ− + + − + − =   (2-150) 

Combining (2-134), (2-135), (2-137), (2-138), (2-140), (2-145) and (2-150) gives a 

matrix with seven unknowns  

 

B1B1

N1

B1B2

N2

B1B3

N32 2 2 2 2

B1L2

1 0 0 0

1 0 0 1 0

1 1 0 0 0 0 1 1

1 1 0 0 1 1 0 1

0 0 1 1 0 0 0 0

0 0 2

1 1 2 2 1 1 0 1

ri i i

ri i i

t

t

t

ti i

t

χ χ

β β β β β
ψ ψ

    
    
    
    − −
    =− − −    
    
    
    
    − − − −    

  (2-151) 

The transmission coefficients can now be derived from (2-6) and (2-36) 
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2

21 B1 B1-
B1B1 B1B12

1 B1 B1+

m c v
r

m c v
τ

′
= =

′
  (2-152) 

 
2

22 B2 B2+
B1B2 B1B4 B1B22

1 B1 B1+

m c v
t

m c v
τ τ χψ

′
= = =

′
  (2-153) 

 
2

21 B1 B3+
B1B3 B1B32

1 B1 B1+

m c v
t

m c v
τ

′
= =

′
  (2-154) 

 B1L1 B1L3 0τ τ= =   (2-155) 

 

2

2 L2 L2+ 2

B1L2 B1L4 B1L22
21 B1 B1+

1
12

2

m c v
t

m c v
τ τ

β

′
= = =

′
  (2-156) 

Example transmission coefficients are plotted in Figure 2.15 using the material 

properties and dimensions in Table 2.3. This confirms that the sum of the transmission 

coefficients is unit hence there is conservation of energy. Note that 1 2B Bτ and 1 4B Bτ are 

constant whereas other transmission coefficients are frequency-dependant (unless they 

are zero at all frequencies). 
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Figure 2.15 Transmission coefficients for X-junction: BL model, incident bending wave 

on beam 1. 
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2.5.1.2 Longitudinal wave excitation 

B2v

B4v

B4F
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B2ω

B4ωL1v L3v
L3F
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Figure 2.16 X-junction: BL model, longitudinal wave excitation on beam 1. 

Consider an incident longitudinal wave travelling in the positive x-direction towards the 

X-junction on beam 1. This will generate bending waves (Type A) on beams 2 and 4, 

and a longitudinal wave on beam 3. Due to structural symmetry, the bending motions on 

beam 2 and 4 have the same amplitude but travel to opposite directions, which will lead 

to balanced moments in the z-direction and zero rotational displacement at the junction. 

Hence no bending wave is reflected to beam 1 or transmitted to beam 3. The wave fields 

for each beam are 

 ( )L1 L1
L1 L1L1

ik x ik x i tv e r e eω−= +   (2-157) 

 L2 L4 0v v= =   (2-158) 

 L1
L3 L1L3

ik x i tv t e eω−=   (2-159) 

 B1 B3 0v v= =   (2-160) 

 ( )B2 B2
B2 L1B2 N2

ik y k y i tv t e t e eω− −= +   (2-161) 
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 ( )B2 B2
B4 L1B2 N2

ik y k y i tv t e t e eω= +   (2-162) 

As discussed, the rotational displacement at the junction is zero. This can be translated 

as  

 B2 0
v

y

∂ =
∂

  (2-163) 

Then one can solve the following expression 

 L1B2 N2 0it t+ =   (2-164) 

Continuity of velocity in the x-direction at the junction requires that 

 L1 B2 L1 L3,v v v v= =   (2-165) 

which gives the following two equations to be solved 

 L1L1 L1B2 N2 1r t t− + + =   (2-166) 

 L1L1 L1L3 1r t− + =   (2-167) 

In the x-direction, FB2=-FB4, and force equilibrium requires that 

 L1 B2 L32 0F F F− − =   (2-168) 

The forces can be calculated using (2-4) and (2-28),  

 

( )

L1
L1 1 1 L1L1

L1 L1

1 L1 L1L1

1 1
d

1

i t

i t

v
F m x i m r e

t ik ik

m c r e

ω

ω

ω
 ∂′ ′= − = − + ∂ − 

′= −

∫   (2-169) 

 
( ) ( )

( ) ( )

3
3 3B2 2

B2 2 B2 L1B2 B2 N23

3
2 B2

L1B2 N2 2 B2 L1B2 N2

d i t

i t i t

v B
F B t ik t k t e

y i

B k
t it e m c t it e

ω

ω ω

ω

ω

∂  = = − + −
 ∂

′= + = +

∫
  (2-170) 

 L3
L3 1 1 L1L3 1 L1 L1L3

L1

1
d i t i tv

F m x i m t e m c t e
t ik

ω ωω∂′ ′ ′= − = − =
∂ −∫   (2-171) 
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Substituting these forces into equation (2-168) produces 

 L1L1 L1L3 1 L1B2 1 N22 2 1r t t i tβ β+ + + =   (2-172) 

Combining (2-164), (2-166), (2-167) and (2-172), one can solve the four unknown 

parameters L1L1r , L1L3t , L1B2t and N2t  from the matrix equation set 

 

L1L1

L1L3

L1B2

N21 1

0 0 1 0

1 0 1 1 1

1 1 0 0 1

1 1 2 2 1

ri

t

t

tiβ β

    
    −     =
    −
    

    

  (2-173) 

Solution of equation (2-173) allows the reflection and transmission coefficients to be 

calculated using 

 

2

1 L1 L1- 2

L1L1 L1L1
2

1 L1 L1+

1
2
1
2

m c v
r

m c v
τ

′
= =

′
  (2-174) 

 L1L2 L1L4 0τ τ= =   (2-175) 

 

2

1 L1 L3+ 2

L1L3 L1L3
2

1 L1 L1+

1
2
1
2

m c v
t

m c v
τ

′
= =

′
  (2-176) 

 L1B1 L1B3 0τ τ= =   (2-177) 

 
2

22 B2 B2+
L1B2 L1B4 1 L1B2

2

1 L1 L1+

2
1
2

m c v
t

m c v
τ τ β

′
= = =

′
  (2-178) 

Example transmission coefficients are shown in Figure 2.17 using the material 

properties and dimensions in Table 2.3. 
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Figure 2.17 Transmission coefficients for X-junction: BL model, incident longitudinal 

wave on beam 1. 

2.5.2 T123-junction 

For the T-junction, Figure 2.18 shows the two cases that are considered for excitation 

on the cantilever beam of the T124-junction and one of the other beams for the T123-

junction. It is assumed that the material properties and the cross-sectional dimensions 

are identical for beams 1 and 3 and beams 2 and 4. 

 

Figure 2.18 T-junction: (a) T123-junction; (b) T124-jucntion. 

2.5.2.1 Bending wave excitation 

Figure 2.19 shows the T123-junction under consideration for which the coordinates of 

the junction line are (x,y)=(0,0).  
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Figure 2.19 T123-junction: BL model, Type A bending wave excitation on beam 1. 

Consider an incident bending wave (Type A) travelling in the positive x-direction 

towards the junction on beam 1. Both bending and longitudinal waves will be 

transmitted to beam 2. Due to symmetry, longitudinal waves in beams 1 and 3 have the 

same magnitude but travel in opposite directions. The incident wave is assumed to have 

unit amplitude and the wave fields are given by 

 ( )B1 B1 B1
B1 B1B1 N1

ik x ik x k x i tv e r e r e eω−= + +   (2-179) 

 ( )B2 B2
B2 B1B2 N2

ik y k y i tv t e t e eω− −= +   (2-180) 

 ( )B1 B1
B3 B1B3 N3

ik x k x i tv t e t e eω− −= +   (2-181) 

 L1
L1 B1L1

ik x i tv r e eω=   (2-182) 

 L2
L2 B1L2

ik y i tv t e eω−=   (2-183) 

 L1
L3 B1L1

ik x i tv r e eω−= −   (2-184) 

There are eight unknowns to be solved; hence eight equations need to be established. 

Continuity of velocity in both x and y directions at the junction requires that  

 B1 L2 B3 L1 B2,v v v v v= = = −   (2-185) 

which gives three equations 
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 B1B1 N1 B1L2 1r r t+ − = −   (2-186) 

 B1B1 N1 B1B3 N3 1r r t t+ − − = −   (2-187) 

 B1L1 B1B2 N2 0r t t+ + =   (2-188) 

Continuity of angular velocity at the joint requires that 

 B3B1 B2 B1,
vv v v

x y x x

∂∂ ∂ ∂= =
∂ ∂ ∂ ∂

  (2-189) 

from which  

 B1B1 N1 B1B2 N2ir r i t t iχ χ+ + + =   (2-190) 

 B1B1 N1 B1B3 N3ir r it t i+ + + =   (2-191) 

Force equilibrium relationships in the x- and y-directions are given by 

 L1 B2 L3 0F F F+ + =   (2-192) 

 B1 L2 B3 0F F F− − =   (2-193) 

Based on equations (2-4) and (2-28) the last two equations yield the following two 

expressions 

 B1L1 1 B1B2 1 N22 0ir i t tβ β− + =   (2-194) 

 2 B1B1 2 N1 2 B1B3 2 N3 B1L2 2i r r i t t it iβ β β β β− + − + − = −   (2-195) 

Moment equilibrium for bending motion on the three beams is described by 

 B1 B2 B3 0M M M− − =   (2-196) 

from which one can solve the following equation according to (2-25) 

 B1B1 N1 B1B2 N2 B1B3 N3 1r r t t t tψ ψ− − + − + = −   (2-197) 

Thus, the eight boundary conditions give the matrix equation as 
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B1B1

N1

B1B2

N2

B1B3

N31 1

B1L12 2 2 2 2

B1L2

1 1 0 0 0 0 0 1 1

1 1 0 0 1 1 0 0 1

0 0 1 1 0 0 1 0 0

1 0 0 0 0

1 0 0 1 0 0

0 0 0 0 2 0 0

0 0 0

1 1 1 1 0 0 1

r

r

t

ti i i

ti i i

ti i

ri i i i

t

χ χ

β β
β β β β β

ψ ψ

− −    
   − − −   
   
   
   =
   
   

−    
   − − − −
   

− − − −      













  (2-198) 

Solution of equation (2-198) allows the reflection and transmission coefficients to be 

calculated using 

 
2

21 B1 B1-
B1B1 B1B12

1 B1 B1+

m c v
r

m c v
τ

′
= =

′
  (2-199) 

 
2

22 B2 B2+
B1B2 B1B22

1 B1 B1+

m c v
t

m c v
τ χψ

′
= =

′
  (2-200) 

 
2

21 B1 B3+
B1B3 B1B32

1 B1 B1+

m c v
t

m c v
τ

′
= =

′
  (2-201) 

 

2

1 L1 L1- 2

B1L1 B1L3 B1L12
21 B1 B1+

1
2

2

m c v
r

m c v

χψτ τ
β

′
= = =

′
  (2-202) 

 

2

1 L2 L2+ 2

B1L2 B1L22
21 B1 B1+

1
12

2

m c v
t

m c v
τ

β

′
= =

′
  (2-203) 

Example transmission coefficients are shown in Figure 2.20 using the material 

properties and dimensions in Section Table 2.3. This indicates the importance of wave 

conversion as B1L2τ  increases with increasing frequency although B1L1τ and B1L3τ  are 

nearly zero.  
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Figure 2.20 Transmission coefficients for T123-junction: BL model, incident bending 

wave (Type A) on beam 1. 

2.5.2.2 Longitudinal wave excitation 
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Figure 2.21 T123-junction: BL model, longitudinal wave excitation on beam 1. 

Now consider an incident longitudinal wave travelling in the positive x-direction 

towards the junction on beam 1. This will lead to bending waves (Type A) on beams 1, 

2 and 3, a longitudinal wave reflected onto beam 1, and a longitudinal wave transmitted 

to beam 3. Due to structural symmetry, Type A bending waves on beams 1 and 3 have 

the same magnitudes but travel in opposite directions with a phase difference of π 

between them. This causes zero displacement in the y-direction at the junction. Thus, in 
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beam 2 there is only bending wave motion. The incident wave is assumed to have unit 

amplitude; hence the wave fields can be described as follows 

 ( )L1 L1
L1 L1L1

ik x ik x i tv e r e eω−= +   (2-204) 

 L2 0v =   (2-205) 

 L1
L3 L1L3

ik x i tv t e eω−=   (2-206) 

 ( )B1 B1
B1 L1B1 N1

ik x k x i tv t e t e eω= +   (2-207) 

 ( )B2 B2
B2 L1B2 N2

ik y k y i tv t e t e eω− −= +   (2-208) 

 ( )B1 B1
B3 L1B1 N3

ik x k x i tv t e t e eω− −= − +   (2-209) 

Continuity of angular velocity at the junction requires that  

 B3B1 B2 vv v

x y x

∂∂ ∂  = = − ∂ ∂ ∂ 
  (2-210) 

which produces 

 L1B1 N1 L1B2 N2 0it t i t tχ χ+ + + =   (2-211) 

Continuity of translational velocity at the junction in x- and y-directions requires that 

 L1 B2 L3 B1 B3, 0v v v v v= = = − =   (2-212) 

which gives 

 L1B2 N2 L1L1 1t t r+ − =   (2-213) 

 L1L1 L1L3 1r t− + =   (2-214) 

 L1B1 N1 0t t+ =   (2-215) 

In the y-direction, FB1-FB3=0, and in the x-direction, equilibrium of forces requires that 
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 L1 B2 L3 0F F F− − =   (2-216) 

Equations (2-4) and (2-28) gives 

 1 L1B2 1 N2 L1L1 L1L3 1t i t r tβ β+ + + =   (2-217) 

At the junction, MB1=MB3, and moment equilibrium gives 

 B1 B22 0M M− =   (2-218) 

According to (2-27), one can derive that 

 L1B1 N1 L1B2 N22 2 0t t t tψ ψ− − + =   (2-219) 

The six boundary conditions generate the following matrix equation, 

 

L1B1

1

L1B2

N2

L1L11 1

L1L3

1 0 0 0

0 0 1 1 1 0 1

0 0 0 0 1 1 1

1 1 0 0 0 0 0

0 0 1 1 1

2 2 0 0 0

N

ti i

t

t

t

ri

t

χ χ

β β
ψ ψ

    
    −     
    −

=    
    
    
    

− −      

  (2-220) 

Solution of (2-220) allows the reflection and transmission coefficients to be calculated 

using 

 
2

21 B1 B1- 1
L1B1 L1B3 L1B1

2

1 L1 L1+

2
1
2

m c v
t

m c v

βτ τ
χψ

′
= = =

′
  (2-221) 

 
2

22 B2 B2+
L1B2 1 L1B2

2

1 L1 L1+

2
1
2

m c v
t

m c v
τ β

′
= =

′
  (2-222) 

 

2

1 L1 L1- 2

L1L1 L1L1
2

1 L1 L1+

1
2
1
2

m c v
r

m c v
τ

′
= =

′
  (2-223) 
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 L1L2 0τ =   (2-224) 

 

2

1 L1 L3+ 2

L1L3 L1L3
2

1 L1 L1+

1
2
1
2

m c v
t

m c v
τ

′
= =

′
  (2-225) 

Example transmission coefficients are shown in Figure 2.22 using the material 

properties and dimensions in Table 2.3. Apart from1 2L Bτ and 1 3L Lτ , the transmission 

coefficients are zero or nearly zero.  

12.5 20 31.5 50 80 125 200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

T
ra

n
sm

is
si

o
n

 c
o

e
ff

ic
ie

n
t

 

 

L1B1(=L1B3)
L1B2
L1L1
L1L2
L1L3
Sum

 

Figure 2.22 Transmission coefficients for T123-junction: BL model, incident 

longitudinal wave on beam 1. 

2.5.3 T124-junction 

2.5.3.1 Bending wave excitation 

Figure 2.23 shows the T124-junction under consideration for which the coordinates of 

the junction line are (x,y)=(0,0).  
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Figure 2.23 T124-junction: BL model, Type A bending wave excitation on beam 1.  

Consider an incident bending wave (Type A) travelling in the positive x-direction 

towards the junction on beam 1. Both bending and longitudinal waves will be 

transmitted onto beams 2 and 4. Due to symmetry, Type A bending waves on beams 2 

and 4 have the same magnitude but travel in opposite directions. Hence there will be 

zero displacement in the x-direction at the junction. Similarly, the phases are different 

but magnitudes are the same for longitudinal waves on beams 2 and 4. The wave fields 

of T124-junction for bending wave excitation are described by 

 ( )B1 B1 B1
B1 B1B1 N1

ik x ik x k x i tv e r e r e eω−= + +   (2-226) 

 ( )B2 B2
B2 B1B2 N2

ik y k y i tv t e t e eω− −= +   (2-227) 

 ( )B2 B2
B4 B1B2 N2

ik y k y i tv t e t e eω= − +   (2-228) 

 L1 0v =   (2-229) 

 L2
L2 B1L2

ik y i tv t e eω−=   (2-230) 
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 L2
L4 B1L2

ik y i tv t e eω= −   (2-231) 

Totally there are five unknown variables to be solved, which will need the following 

five boundary condition equations.  

For continuity of angular velocity at the junction, 

 B1 B2v v

x y

∂ ∂=
∂ ∂

  (2-232) 

Continuity of velocity in x- and y-directions at the junction gives  

 B1 L2 B2 B4, 0v v v v= = − =   (2-233) 

In the x-direction, FB2-FB4=0, and in the y-direction, FL2=FL4, and force equilibrium 

requires that 

 B1 L22 0F F− =   (2-234) 

At the junction, MB2=-MB4, and moment equilibrium gives 

 B1 B22 0M M− =   (2-235) 

Solve these boundary condition equations as previous part; one can get the following 

matrix equation 

 

B1B1

1

B1B2

N22 2 2

B1L2

1 0

1 1 0 0 1 1

0 0 1 1 0 0

0 0 2

1 1 2 2 0 1

N

ri i i

r

t

ti

t

χ χ

β β β
ψ ψ

    
    − −    
    =
    
    
    − − −    

  (2-236) 

Solution of (2-236) allows the reflection and transmission coefficients to be calculated 

using 

 
2

21 B1 B1-
B1B1 B1B12

1 B1 B1+

m c v
r

m c v
τ

′
= =

′
  (2-237) 
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2

22 B2 B2+
B1B2 B1B4 B1B22

1 B1 B1+

m c v
t

m c v
τ τ χψ

′
= = =

′
  (2-238) 

 B1L1 0τ =   (2-239) 

 

2

1 L2 L2+ 2

B1L2 B1L22
21 B1 B1+

1
12

2

m c v
t

m c v
τ

β

′
= =

′
  (2-240) 

Example results for the perspex beam junction described in Table 2.3 are shown in 

Figure 2.24. With increasing frequency B1L2τ increases from zero to 0.2 although B1B2τ

remains similar. 
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Figure 2.24 Transmission coefficients for T124-junction: BL model, incident bending 

wave (Type A) on beam 1. 
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2.5.3.2 Longitudinal wave excitation 
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Figure 2.25 T124-junction: BL model, longitudinal wave excitation on beam 1. 

Consider an incident longitudinal wave travelling in the positive x-direction towards the 

junction on beam 1. This will generate Type A bending waves on beams 2 and 4, and a 

longitudinal wave reflected on beam 1. At the junction, the rotational displacement is 

zero due to balanced bending moments from beams 2 and 4. The incident wave is 

assumed to have unit amplitude; hence the wave fields can be described as follows: 

 ( )L1 L1
L1 L1L1

ik x ik x i tv e r e eω−= +   (2-241) 

 L2 L4 0v v= =   (2-242) 

 B1 0v =   (2-243) 

 ( )B2 B2
B2 L1B2 N2

ik y k y i tv t e t e eω− −= +   (2-244) 

 ( )B2 B2
B4 L1B2 N2

ik y k y i tv t e t e eω= +   (2-245) 
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There are three unknowns; hence three boundary conditions are required. Continuity of 

velocity in the x-direction requires that 

 L1 B2v v=   (2-246) 

At the junction, the velocity is zero in the y-direction. In addition, the angular velocity is 

zero where 

 B2 0
v

y

∂ =
∂

  (2-247) 

In the x-direction, FB2=FB4, and force equilibrium requires that 

 L1 B22 0F F− =   (2-248) 

For the bending moment, MB2-MB4=0; hence these three equations give the following 

matrix equation 

 
L1L1

L1B2

1 1 N2

1 1 1 1

0 1 0

1 2 2 1

r

i t

i tβ β

−     
     =     
          

  (2-249) 

Solution of (2-249) allows the reflection and transmission coefficients to be calculated 

using 

 

2

1 L1 L1- 2

L1L1 L1L1
2

1 L1 L1+

1
2
1
2

m c v
r

m c v
τ

′
= =

′
  (2-250) 

 L1L2 L1L4 0τ τ= =   (2-251) 

 L1B1 0τ =   (2-252) 

 
2

22 B2 B2+
L1B2 L1B4 1 L1B2

2

1 L1 L1+

2
1
2

m c v
t

m c v
τ τ β

′
= = =

′
  (2-253) 
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Example transmission coefficients are shown in Figure 2.26 using the material 

properties and dimensions in Table 2.3. 
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Figure 2.26 Transmission coefficients for T124-junction: BL model, incident 

longitudinal wave on beam 1. 

2.5.4 L-junction 

2.5.4.1 Bending wave excitation 

Figure 2.27 shows the L-junction under consideration for which beams 1 and 2 have a 

different cross-section and material properties. The L-junction is an asymmetric 

structure; hence Type A bending waves and longitudinal waves are reflected or 

transmitted in all beams. The coordinates of the junction line are (x,y)=(0,0). 
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Figure 2.27 L-junction: BL model, Type A bending wave excitation on beam 1.  

Consider an incident bending wave (Type A) with unit amplitude travelling in the 

positive x-direction towards the junction on beam 1. The wave fields on each beam can 

be described as follows: 

 B1 B1 B1
B1 B1B1 N1( )ik x ik x k x i tv e r e r e eω−= + +   (2-254) 

 2 B2
B2 B1B2 N2( )Bik y k y i tv t e t e eω− −= +   (2-255) 

 L1
L1 B1L1

ik x i tv r e eω=   (2-256) 

 L 2
L2 B1L2

ik y i tv t e eω−=   (2-257) 

Continuity of angular velocity at the junction requires that  

 B1 B2v v

x y

∂ ∂=
∂ ∂

  (2-258) 

Continuity of velocity at the junction in x and y directions gives 

 B1 L2 L1 B2,v v v v= = −   (2-259) 

As indicated in Figure 2.27, the relationships between shear and longitudinal forces are 

 B1 L2 L1 B2,F F F F= = −   (2-260) 

The moment equilibrium relationship is 
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 1 2 0M M− =   (2-261) 

The six equations result in the following matrix to be solved for the reflection and 

transmission coefficients 

 

B1B1

N1

B1B2

N22 2 2

B1L11 1

B1L2

1 0 0

1 1 0 0 0 1 1

0 0 1 1 1 0 0

0 0 0 1

0 0 1 0 0

1 1 0 0 1

ri i i

r

t

ti

ri

t

χ χ

β β β
β β
ψ ψ

    
    − −    
    

=    
    
    −
    

− −      

  (2-262) 

Solution of this matrix gives the same result as quoted in Cremer et al [5]. The 

transmission coefficients can be then calculated as follows 

 
2

21 B1 B1-
B1B1 B1B12

1 B1 B1+

m c v
r

m c v
τ

′
= =

′
  (2-263) 

 
2

22 B2 B2+
B1B2 B1B22

1 B1 B1+

m c v
t

m c v
τ χψ

′
= =

′
  (2-264) 

 

2

1 L1 L1- 2

B1L1 B1L12
21 B1 B1+

1
2

2

m c v
r

m c v

χψτ
β

′
= =

′
  (2-265) 

 

2

1 L2 L2+ 2

B1L2 B1L22
21 B1 B1+

1
12

2

m c v
t

m c v
τ

β

′
= =

′
  (2-266) 

Example transmission coefficients are shown in Figure 2.28 using the material 

properties and dimensions in Table 2.3. 
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Figure 2.28 Transmission coefficients for L-junction: BL model, incident bending wave 

(Type A) on beam 1. 

2.5.4.2 Longitudinal wave excitation 

Consider an incident longitudinal wave with unit amplitude travelling in the positive x-

direction towards the junction on beam 1 for which the wave fields on each beam are 

described as follows: 

 L1 L1
L1 L1L1( )ik x ik x i tv e r e eω−= +   (2-267) 

 L2
L2 L1L2

ik y i tv t e eω−=   (2-268) 

 B1 B1k
B1 L1B1 N1( )ik x x i tv r e r e eω= +   (2-269) 

 B2 B2
B2 L1B2 N2( )ik y k y i t

jv t e t e eω− −= +   (2-270) 

The boundary conditions are the same as that for bending wave excitation on the L-

junction in part 2.5.4.1. This gives the following matrix equation from which the six 

variables 1 1L Br , jr , 1 2L Bt , 2 jt , 1 1L Lr  and 1 2L Lt can be determined. 
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L1B1

N1

L1B2

N22 2

L1L11 1

L1L2

1 0 0 0

1 1 0 0 0 1 0

0 0 1 1 1 0 1

0 0 0 1 0

0 0 1 0 1

1 1 0 0 0

ri i

r

t

ti

ri

t

χ χ

β β
β β
ψ ψ

    
    −     
    −

=    
    
    − −
    

− −      

  (2-271) 

Note that the coefficients in the left matrix are the same as (2-262); it is only the right 

side of the matrix equation that is different. The transmission coefficients are calculated 

using the following equations 

 
2

21 B1 B1- 1
L1B1 L1B1

2

1 L1 L1+

2
1
2

m c v
t

m c v

βτ
χψ

′
= =

′
  (2-272) 

 
2

22 B2 B2+
L1B2 1 L1B2

2

1 L1 L1+

2
1
2

m c v
t

m c v
τ β

′
= =

′
  (2-273) 

 

2

1 L1 L1- 2

L1L1 L1L1
2

1 L1 L1+

1
2
1
2

m c v
r

m c v
τ

′
= =

′
  (2-274) 

 

2

2 L2 L2+ 21
L1L2 L1L2

2
2

1 L1 L1+

1
2
1
2

m c v
t

m c v

βτ
χψβ

′
= =

′
  (2-275) 

Note that these are general solutions for which the material properties and dimensions 

of beams 1 and 2 are different whereas in Cremer et al [5] the results are given for the 

identical beams of L-junction.  

Example transmission coefficients are shown in Figure 2.29 using the material 

properties and dimensions in Table 2.3. 
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Figure 2.29 Transmission coefficients for L-junction: BL model, incident longitudinal 

wave on beam 1. 

2.6 Bending and torsional wave model (BT model) 

In the bending only model and the bending and longitudinal model, incident bending 

waves (Type A) have motion in the same plane as the junction such that only bending 

and longitudinal waves are generated at the junction. In this section, Type B bending 

wave motion is normal to the plane of the junction which results in the generation of 

torsional waves instead of longitudinal waves. Bending and torsional wave models (BT 

models) are derived for X-, T- and L-junctions which all have rigid unpinned junction 

and semi-infinite beams.  

2.6.1 X-junction 

2.6.1.1 Bending wave excitation 

Figure 2.30 shows the X-junction under consideration for which the coordinates of the 

junction line are (x,y)=(0,0). Beams 1 and 3 and beams 2 and 4 are identical in X-

junction. 
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Figure 2.30 X-junction: BT model, Type B bending wave excitation on beam 1.  

Consider an incident bending wave (Type B) with unit amplitude travelling on beam 1 

in the positive x-direction towards the junction. The transmitted bending wave on beams 

2 and 4 have opposite moments at the junction in the x-direction, hence there is no 

torsional wave motion on beams 1 and 3. 

 ( )B1 1 B1
B1 B1B1 N1

Bik x ik x k x i tv e r e r e eω−= + +   (2-276) 

 ( )B2 B2
B2 B1B2 N2

ik y k y i tv t e t e eω− −= +   (2-277) 

 ( )B1 B1
B3 B1B3 N3

ik x k x i tv t e t e eω− −= +   (2-278) 

 ( )B2 B2
B4 B1B2 N2

ik y k y i tv t e t e eω= +   (2-279) 

 T1 T3 0ω ω= =   (2-280) 

 T2 T2
T2 0 B1T2 B1 B1T2

ik y ik yi t i tt e e ik t e eω ωω ω − −= = −   (2-281) 

 T2 T2
T4 0 B1T2 B1 B1T2

ik y ik yi t i tt e e ik t e eω ωω ω= = −   (2-282) 
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where subscripts B, T and N indicate bending waves, torsional waves and nearfields 

respectively, and ω0=-ikB1 is the complex amplitude of the angular velocity due to the 

incident bending wave. The bending wave numbers correspond to bending wave motion 

that is out-of-plane of the junction. 

The following parameters are defined for the BT model, 

 T2 T1
1 2

1 B1 2 B2

,
Z Z

B k B k

ω ωµ µ= =   (2-283) 

 
3

B2 2 B2
3

B1 1 B1

,
k B k

k B k
χ β= =   (2-284) 

where ZT1 is the impedance for torsional wave motion. Note that the calculation of χ is 

different from that in the BL model since the bending wave motion is along a different 

dimension of the beam cross-section. 

Continuity of bending velocity at the junction in the z-direction requires that 

 B1 B2 B1 B3,v v v v= =   (2-285) 

Therefore 

 B1B1 N1 B1B2 N2 1r r t t+ − − = −   (2-286) 

 B1B1 N1 B1B3 N3 1r r t t+ − − = −   (2-287) 

Continuity of rotational velocity in the y-direction requires that 

 B3B1
T2 T2,

vv

x x
ω ω∂∂ = =

∂ ∂
  (2-288) 

In the x-direction, rotational velocity at the junction is zero. Hence 

 B2 0
v

y

∂ =
∂

  (2-289) 

Thus one obtains the following three equations, 
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 B1B1 N1 B1T2 1r ir t− + =   (2-290) 

 B1B3 N3 B1T2t it t− =   (2-291) 

 B1B2 N2 0it t+ =   (2-292) 

The bending moments from beams 1 and 3 must be balanced by the moments from 

torsional wave motion on beams 2 and 4, hence MT2=-MT4. The moment equilibrium 

relation is expressed as 

 B1 T2 B32 0M M M− − =   (2-293) 

From (2-25) and (2-11) one has 

 
( ) ( )

( )

2
2 2 2B1 1

B1 1 B1 B1 B1B1 B1 N12

2
1 B1

B1B1 N1

d

1

i t

i t

v B
M B t ik ik r k r e

x i

B k
r r e

i

ω

ω

ω

ω

∂ −  = − = − + +
 ∂

−= − − +

∫
  (2-294) 

 
( ) ( )

( )

2
2 2B1 1

B3 1 B1 B1B3 B1 N32

2
1 B1

B1B3 N3

d i t

i t

v B
M B t ik t k t e

x i

B k
t t e

i

ω

ω

ω

ω

∂ −  = − = − + −
 ∂

−= − +

∫
  (2-295) 

 
T2 B1 B1T2

T2 2 2
T2

T2 B1 B1T2

d
i t

i t

ik t e
M y i

t ik

iZ k t e

ω

ω

ω ω∂ −= −Θ = − Θ
∂ −

= −

∫   (2-296) 

Thus equation (2-293) becomes 

 B1B1 N1 B1B3 N3 1 B1T22 1r r t t tµ− + + − + =   (2-297) 

For the shear forces due to bending motion in the z-direction, 

 B1 B2 B32 0F F F− − =   (2-298) 

From equation (2-28) the shear forces are 
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( ) ( ) ( )

3
3 3 3B1 1

B1 1 B1 B1 B1B1 B1 N13

3
1 B1

B1B1 N1

d

(1 )

i t

i t

v B
F B t ik ik r k r e

x i

B k
r ir e

ω

ω

ω

ω

∂  = = − + +
 ∂

= − −

∫
  (2-299) 

 
( ) ( )

( )

3
3 3B2 2

B2 2 B2 B1B2 B2 N23

3
2 B2

B1B2 N2

d i t

i t

v B
F B t ik t k t e

y i

B k
t it e

ω

ω

ω

ω

∂  = = − + −
 ∂

= +

∫
  (2-300) 

 
( ) ( )

( )

3
3 3B3 1

B3 1 B1 B1B3 B1 N33

3
1 B1

B1B3 N3

d i t

i t

v B
F B t ik t k t e

x i

B k
t it e

ω

ω

ω

ω

∂  = = − + −
 ∂

= +

∫
  (2-301) 

Then (2-298) can be reduced to  

 B1B1 N1 B1B2 N2 B1B3 N32 2 1r ir t i t t itβ β+ + + + + =   (2-302) 

These boundary condition equations result in the following matrix, 

 

B1B1

N1

B1B2

N2

B1B3

N31

B1T2

1 1 1 1 0 0 0 1

1 1 0 0 1 1 0 1

1 0 0 0 0 1 1

0 0 0 0 1 1 0

0 0 1 0 0 0 0

1 1 0 0 1 1 2 1

1 2 2 1 0 1

r

r

ti

ti

ti

t

ti i i

µ
β β

− − −    
    − − −    
    −
    =− −     
    
    

− −     
    

    

  (2-303) 

Solution of (2-303) allows the reflection and transmission coefficients to be calculated 

using 

 
2

21 B1 B1-
B1B1 B1B12

1 B1 B1+

m c v
r

m c v
τ

′
= =

′
  (2-304) 

 
2

22 B2 B2+
B1B2 B1B4 B1B22

1 B1 B1+

m c v
t

m c v
τ τ β

′
= = =

′
  (2-305) 
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2

21 B1 B3+
B1B3 B1B32

1 B1 B1+

m c v
t

m c v
τ

′
= =

′
  (2-306) 

 B1T1 B1T3 0τ τ= =   (2-307) 

 

2 2
2 T2 T2+ 2 T2 B1 2 21

B1T2 B1T4 B1T2 B1T22
1 B11 B1 B1+

1 1
2 2

2

c c k
t t

m cm c v

ω µτ τ
Θ Θ

= = = =
′′

  (2-308) 

Example transmission coefficients are plotted in Figure 2.31 using the material 

properties and dimensions in Table 2.3. 
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Figure 2.31 Transmission coefficients for X-junction: BT model, incident bending wave 

(Type B) on beam 1. 

2.6.1.2 Torsional wave excitation 

Figure 2.32 shows an incident torsional wave with unit amplitude travelling in the 

positive x-direction towards the junction on beam 1. 



74 
 

B2v

B2ω

B4v

B4ω

B4M

B4F

B2F

B2M

T1ωT1M
T3ω T3M

 

Figure 2.32 X-junction: BT model, torsional wave excitation on beam 1.  

Due to structural symmetry, the transmitted bending waves (Type B) on beams 2 and 4 

have the same magnitude but travel in opposite directions. Hence the shear forces from 

bending motion on beams 2 and 4 are balanced and bending displacement is zero in the 

z-direction at the junction. The wave fields are described by 

 T1 T1
T1 T1T1( )ik x ik x i te r e eωω −= +   (2-309) 

 T2 T4 0ω ω= =   (2-310) 

 T1
T3 T1T3

ik x i tt e eωω −=   (2-311) 

 B1 B3 0v v= =   (2-312) 

 ( )B2 B2
B2 T1B2 N2

B2

ik y k y i ti
v t e t e e

k
ω− −−= +   (2-313) 

 ( )B2 B2
B4 T1B2 N2

B2

ik y k y i ti
v t e t e e

k
ω= +   (2-314) 

The following boundary conditions at the junction consist of continuity of angular 

velocity in x-direction, bending velocity equal to zero in the z-direction and equilibrium 

relation of moments in x-direction: 
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 B2
T1 T3 T1,

v

y
ω ω ω ∂= =

∂
  (2-315) 

 B2 0v =   (2-316) 

 T1 B2 T32 0M M M− − =   (2-317) 

In (2-317), the moments due to torsional wave motion and bending wave motion are 

calculated as follows based on (2-11) and (2-27) 

 ( )T1 T1T1
T1 1 1 T1 T1T1

T1 T1

1
d 1i t i tr

M x i e Z r e
t ik ik

ω ωω ω
 ∂= −Θ = − Θ + = − ∂ − 

∫   (2-318) 

 T3 T1T3
T3 1 1 T1 T1T3

T1

d
i t

i tt e
M x i Z t e

t ik

ω
ωω ω∂= −Θ = − Θ =

∂ −∫   (2-319) 

 
( ) ( )

( )

2
2 2B2 2

B2 2 B2 T1B2 B2 N22
B2

2 B2
T1B2 N2

d i t

i t

v B i
M B t ik t k t e

y i k

B k
t t e

ω

ω

ω

ω

∂ − −  = − = − + −
 ∂

= − +

∫
  (2-320) 

The above boundary conditions result in the following matrix equation 

 

T1B2

N2

T1T1

T1T32 2 2

0 0 1 1 1

1 0 1 0

1 1 0 0 0

2 2

t

ti

r

tµ µ µ

− −     
    −     =
    
    − − − −    

  (2-321) 

Solving (2-321) gives the following reflection and transmission coefficients: 

 

2

1 T1 T1- 2

T1T1 T1T1
2

1 T1 T1+

1
2
1
2

c
r

c

ω
τ

ω

Θ
= =

Θ
  (2-322) 

 T1T2 T1T4 0τ τ= =   (2-323) 
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2

1 T1 T3+ 2

T1T3 T1T3
2

1 T1 T1+

1
2
1
2

c
t

c

ω
τ

ω

Θ
= =

Θ
  (2-324) 

 T1B1 T1B3 0τ τ= =   (2-325) 

 

2 B2
2 2

2 22 B2 B2+ B2
T1B2 T1B4 T1B2 T1B2

2
2

1 T1 T1+ 1 T1

2
1 1
2 2

m c
m c v k

t t
c c

τ τ
µω

′
′

= = = =
Θ Θ

  (2-326) 

The energy conservation principle can be expressed as 

 T1T1 T1B2 T1T32 1τ τ τ+ + =   (2-327) 

Example transmission coefficients are plotted in Figure 2.33 using the material 

properties and dimensions in Table 2.3. A large proportion of the torsional wave power 

that is incident on the junction is reflected and the transmission coefficients are 

relatively small. 

 

Figure 2.33 Transmission coefficients for X-junction: BT model, incident torsional 

wave on beam 1. 
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2.6.2 T123-junction 

2.6.2.1 Bending wave excitation 

Figure 2.34 shows the T123-junction under consideration for which the coordinates of 

the junction line are (x,y)=(0,0). It is assumed that the material properties and the cross-

sectional dimensions are identical for beams 1 and 3. 
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Figure 2.34 T123-junction: BT model, Type B bending wave excitation on beam 1.  

An incident bending wave (Type B) with unit amplitude travels in the positive x-

direction towards the junction on beam 1 and the wave fields can be described as: 

 ( )B1 B1 B1
B1 B1B1 N1

ik x ik x k x i tv e r e r e eω−= + +   (2-328) 

 ( )B2 B2
B2 B1B2 N2

ik y k y i tv t e t e eω− −= +   (2-329) 

 ( )B1 B1
B3 B1B3 N3

ik x k x i tv t e t e eω− −= +   (2-330) 

The torsional waves in beams 1 and 3 have the same magnitude but travel in opposite 

directions; hence the torsional wave fields for all beams can be written as  

 T1 T1
T1 0 B1T1 B1 B1T1

ik x ik xi t i tt e e ik t e eω ωω ω= = −   (2-331) 

 T2 T2
T2 0 B1T2 B1 B1T2

ik y ik yi t i tt e e ik t e eω ωω ω − −= = −   (2-332) 

 T1 T1
T3 0 B1T1 B1 B1T1

ik x ik xi t i tt e e ik t e eω ωω ω − −= = −   (2-333) 
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Continuity of bending velocities in the z-direction at the junction requires 

 B1 B2 B1 B3,v v v v= =   (2-334) 

This produces 

 B1B1 N1 B1B2 N2 1r r t t+ − − = −   (2-335) 

 B1B1 N1 B1B3 N3 1r r t t+ − − = −   (2-336) 

The rotational velocity of bending motion in beams 1 and 3 must equal the angular 

velocity of torsional wave motion on beam 2. Also, the angular velocity of torsional 

wave motions in beams 1 and 3 must equal the rotational velocity of bending wave 

motion on beam 2. Therefore continuity of angular velocity at the junction requires that 

 B3B1
T2 T2,

vv

x x
ω ω∂∂ = =

∂ ∂
  (2-337) 

 B2
T1

v

y
ω ∂=

∂
  (2-338) 

This results in three equations 

 B1B1 N1 B1T2 1r ir t− + =   (2-339) 

 B1B3 N3 B1B2 0t it t− − =   (2-340) 

 B1B2 N2 B1T1 0i t t itχ χ+ − =   (2-341) 

The shear force equilibrium relationship in the z-direction is given by 

 B1 B2 B3 0F F F− − =   (2-342) 

The calculations of these forces are exactly the same as (2-299), (2-300) and(2-301). 

Then (2-342) becomes 

 B1B1 N1 B1B2 N2 B1B3 N3 1r ir t i t t itβ β+ + + + + =   (2-343) 
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At the junction, MT1=-MT3 and the moment equilibrium relationships in the x- and y-

directions are  

 T1 B2 T3 T1 B22 0M M M M M− − = − =   (2-344) 

 B1 B3 T2 0M M M− − =   (2-345) 

According to (2-11) and (2-25), MT1and MB2 are calculated as 

 T1 B1 B1T1
T1 1 1 T1 B1 B1T1

T1

d
i t

i tik t e
M x i iZ k t e

t ik

ω
ωω ω∂ −= −Θ = − Θ =

∂∫   (2-346) 

 
( ) ( )

( )

2
2 2B2 2

B2 2 B2 B1B2 B2 N22

2
2 B2

B1B2 N2

d i t

i t

v B
M B t ik t k t e

y i

B k
t t e

i

ω

ω

ω

ω

∂ −  = − = − + −
 ∂

−= − +

∫
  (2-347) 

Thus (2-344) becomes 

 B1B2 N2 2 B1T12 0t t tχ χ µ− + =   (2-348) 

The calculations for MB1, MB3 and MT2 are the same as (2-294), (2-295) and (2-296). So, 

equation (2-345) becomes 

 B1B1 1 B1B3 N3 1 B1T2 1Nr r t t tµ− + + − + =   (2-349) 

Combining the eight boundary condition equations gives the following matrix equation 

 

B1B1

N1

B1B2

N2

B1B3

N3

2 B1T1

1 B1T2

1 1 1 1 0 0 0 0 1

1 1 0 0 1 1 0 0 1

1 0 0 0 0 0 1 1

0 0 0 0 1 0 1 0

0 0 0 0 0 0

1 1 0 0 1

0 0 0 0 2 0 0

1 1 0 0 1 1 0 1

r

r

i t

i t

i i t

i i i t

t

t

χ χ
β β
χ χ µ

µ

− − −     
     − − −     
     −
     − −     =
     −
     
     
    −
    
− −         





  (2-350) 

Solving (2-350) allows the following reflection and transmission coefficients to be 

calculated: 
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2

21 B1 B1-
B1B1 B1B12

1 B1 B1+

m c v
r

m c v
τ

′
= =

′
  (2-351) 

 
2

22 B2 B2+
B1B2 B1B22

1 B1 B1+

m c v
t

m c v
τ β

′
= =

′
  (2-352) 

 
2

21 B1 B3+
B1B3 B1B32

1 B1 B1+

m c v
t

m c v
τ

′
= =

′
  (2-353) 

 

2 2
1 T1 T1- 1 T1 B1 2 22

B1T1 B1T3 B1T1 B1T12 2
1 B11 B1 B1+

1 1
2 2

2

c c k
t t

m cm c v

ω µ βτ τ
χ

Θ Θ
= = = =

′′
  (2-354) 

 

2 2
2 T2 T2+ 2 T2 B1 2 21

B1T2 B1T2 B1T22
1 B11 B1 B1+

1 1
2 2

2

c c k
t t

m cm c v

ω µτ
Θ Θ

= = =
′′

  (2-355) 

Example transmission coefficients are plotted in Figure 2.35 using the material 

properties and dimensions in Table 2.3. 
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Figure 2.35 Transmission coefficients for T123-junction: BT model, incident bending 

wave (Type B) on beam 1. 

2.6.2.2 Torsional wave excitation 
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Figure 2.36 T123-junction: BT model, torsional wave excitation on beam 1.  

Consider an incident torsional wave travelling in the positive x-direction towards the 

junction on beam 1 which generates bending waves (Type B) on beams 1, 2 and 3. 

Bending waves transmitted to beams 1 and 3 have the same magnitudes but travel in 

opposite directions. This causes balanced bending moments and zero rotation due to 

bending waves on beams 1 and 3 at the junction. This means that there is no torsional 

wave transmitted to beam 2. This incident wave is assumed to have unit amplitude; 

hence the wave fields can be described as follows: 
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 ( )T1 T1
T1 T1T1

ik x ik x i te r e eωω −= +   (2-356) 

 T2 0ω =   (2-357) 

 T1
T3 T1T3

ik x i tt e eωω −=   (2-358) 

 ( )B1 B1
B1 T1B1 N1

B1

ik x k x i ti
v t e t e e

k
ω−= +   (2-359) 

 ( )B2 B2
B2 T1B2 N2

B2

ik y k y i ti
v t e t e e

k
ω− −−= +   (2-360) 

 ( )B1 B1
B3 T1B1 N1

B1

ik x k x i ti
v t e t e e

k
ω− −−= +   (2-361) 

Continuity of bending velocity and rotational velocity at the junction requires that 

 B1 B2 B3 B2(or )v v v v= =   (2-362) 

 B1
T2 0

v

x
ω∂ = =

∂
  (2-363) 

 B2 B2
T1 T3,

v v

y y
ω ω∂ ∂= =

∂ ∂
  (2-364) 

This gives 

 T1B1 N1 T1B2 N2 0t t t tχ χ+ − − =   (2-365) 

 T1B1 N1 0it t+ =   (2-366) 

 T1B2 N2 T1T1 1t it r− + − =   (2-367) 

 T1B2 N2 T1T3 0t it t− + − =   (2-368) 

Equilibrium of shear forces in the z-direction requires that 

 B1 B2 B3 B1 B22 0F F F F F− − = − =   (2-369) 
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According to (2-28), one can calculate that  

 

( )

( )

3
3 3B1 1

B1 1 B1 T1B1 B1 N13
B1

3
1 B1

T1B1 N1
B1

d i t

i t

v B i
F B t ik t k t e

x i k

B k
it t e

k

ω

ω

ω

ω

∂ −  = = +
 ∂

= −

∫
  (2-370) 

 

( ) ( )

( )

3
3 3B2 2

B2 2 B2 T1B2 B2 N23
B2

3
2 B2

T1B2 N2
B2

d i t

i t

v B i
F B t ik t k t e

y i k

B k
it t e

k

ω

ω

ω

ω

∂ −  = = − + −
 ∂

= − +

∫
  (2-371) 

Then (2-369) is reduced to 

 T1B1 N1 T1B2 N22 2 0i t t i t tχ χ β β− + − =   (2-372) 

Bending moments in the y-direction are balanced by bending motion on beams 1 and 3. 

The equilibrium relationship for moments in the x-direction can be expressed as 

 T1 B2 T3 0M M M− − =   (2-373) 

Since the wave fields of ωT1, ωT3 and νB2 are the same as that in section 2.6.1.2, the 

calculations of MT1, MB2 and MT3 are also the same as shown in (2-318), (2-319) and 

(2-320). From (2-373) one can get 

 T1B2 N2 2 T1T1 2 T1T3 2t t r tµ µ µ− + + + =   (2-374) 

Combining the six boundary condition equations gives the matrix equation as 

 

T1B1

N1

T1B2

N2

T1T1

T1T32 2 2

1 1 0 0 0

1 0 0 0 0 0

0 0 1 1 0 1

0 0 1 0 1 0

2 2 0 0 0

0 0 1 1

t

ti

ti

ti

ri i

t

χ χ

χ χ β β
µ µ µ

− −     
    
    
    − −

=    − −     
    − −
    

−        

  (2-375) 

Transmission coefficients for torsional wave excitation on the T123-junction are 

calculated using 
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2

1 T1 T1- 2

T1T1 T1T1
2

1 T1 T1+

1
2
1
2

c
r

c

ω
τ

ω

Θ
= =

Θ
  (2-376) 

 T1T2 0τ =   (2-377) 

 

2

1 T1 T3+ 2

T1T3 T1T3
2

1 T1 T1+

1
2
1
2

c
t

c

ω
τ

ω

Θ
= =

Θ
  (2-378) 

 

1 B1
2 2 2

2 21 B1 B1+ B1
T1B1 T1B3 T1B1 T1B1

2
2

1 T1 T1+ 1 T1

2
1 1
2 2

m c
m c v k

t t
c c

χτ τ
µ βω

′
′

= = = =
Θ Θ

  (2-379) 

 

2 B2
2 2

2 22 B2 B2+ B2
T1B2 T1B2 T1B2

2
2

1 T1 T1+ 1 T1

2
1 1
2 2

m c
m c v k

t t
c c

τ
µω

′
′

= = =
Θ Θ

  (2-380) 

Example transmission coefficients are plotted in Figure 2.37 using the material 

properties and dimensions in Table 2.3. 
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Figure 2.37 Transmission coefficients for T123-junction: BT model, incident torsional 

wave on beam 1. 

2.6.3 T124-junction 

2.6.3.1 Bending wave excitation 

Figure 2.38 shows the T124-junction under consideration for which the coordinates of 

the junction line are (x,y)=(0,0). It is assumed that the material properties and the cross-

sectional dimensions are identical for beams 2 and 4. 
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Figure 2.38 T124-junction: BT model, Type B bending wave excitation on beam 1. 

Consider an incident bending wave (Type B) travelling in the positive x-direction 

towards the junction on beam 1. The transmitted bending waves (Type B) on beams 2 

and 4 have opposite moments at the junction in the x-direction; hence there is no 

torsional wave motion on beam 1. The incident wave is assumed to have unit amplitude; 

hence the wave fields can be described as follows 

 ( )B1 B1 B1
B1 B1B1 N1

ik x ik x k x i tv e r e r e eω−= + +   (2-381) 

 ( )B2 B2
B2 B1B2 N2

ik y k y i tv t e t e eω− −= +   (2-382) 

 ( )B2 B2
B4 B1B2 N2

ik y k y i tv t e t e eω= +   (2-383) 

 T1 0ω =   (2-384) 

 T2 T2
T2 0 B1T2 B1 B1T2

ik y ik yi t i tt e e ik t e eω ωω ω − −= = −   (2-385) 

 T2 T2
T4 0 B1T2 B1 B1T2

ik y ik yi t i tt e e ik t e eω ωω ω= = −   (2-386) 
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At the junction continuity of bending velocity in the z-direction and rotational velocity 

in the y-direction requires that  

 B1 B2v v=   (2-387) 

 B1
T2

v

x
ω∂ =

∂
  (2-388) 

Rotational velocity in the x-direction is zero, 

 B2
T10

v

y
ω∂ = =

∂
  (2-389) 

Shear force and moment equilibrium requires that 

 B1 B22F F=   (2-390) 

 B1 T22M M=   (2-391) 

The calculations of these forces and moments are exactly the same as in (2-293) and 

(2-298). The above five boundary condition equations define the matrix equation as 

 

B1B1

N1

B1B2

N21

B1T2

1 1 1 1 0 1

1 0 0

0 0 1 0 0

1 1 0 0 2 1

1 2 2 0

r

ri i i

ti

t

ti i i

µ
β β

− −     
    
    
    =
    −     
    − −    

  (2-392) 

Solution of (2-392) allows the reflection and transmission coefficients to be calculated 

using 

 
2

21 B1 B1-
B1B1 B1B12

1 B1 B1+

m c v
r

m c v
τ

′
= =

′
  (2-393) 

 
2

22 B2 B2+
B1B2 B1B4 B1B22

1 B1 B1+

m c v
t

m c v
τ τ β

′
= = =

′
  (2-394) 

 B1T1 0τ =   (2-395) 
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2 2
2 T2 T2+ 2 T2 B1 2 21

B1T2 B1T4 B1T2 B1T22
1 B11 B1 B1+

1 1
2 2

2

c c k
t t

m cm c v

ω µτ τ
Θ Θ

= = = =
′′

  (2-396) 

Example transmission coefficients are plotted in Figure 2.39 using the material 

properties and dimensions in Table 2.3. 
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Figure 2.39 Transmission coefficients for T124-junction: BT model, incident bending 

wave (Type B) on beam 1. 
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2.6.3.2 Torsional wave excitation 
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Figure 2.40 T124-junction: BT model, torsional wave excitation on beam 1.  

Now consider an incident torsional wave travelling in the positive x-direction towards 

the junction on beam 1. Bending waves (Type B) are transmitted to beams 2 and 4. Due 

to structural symmetry, the shear forces from bending motion on beams 2 and 4 are 

balanced and bending displacement is zero in the z-direction at the junction. The 

incident wave is assumed to have unit amplitude; hence the wave fields can be 

described as follows: 

 ( )T1 T1
T1 T1T1

ik x ik x i te r e eωω −= +   (2-397) 

 T2 T4 0ω ω= =   (2-398) 

 B1 0v =   (2-399) 

 ( )B2 B2
B2 T1B2 N2

B2

ik y k y i ti
v t e t e e

k
ω− −−= +   (2-400) 

 ( )B2 B2
B4 T1B2 N2

B2

ik y k y i ti
v t e t e e

k
ω= +   (2-401) 
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At the junction, continuity of angular velocity in the x-direction and bending velocity in 

z direction requires that 

 B2
T1

v

y
ω ∂=

∂
  (2-402) 

 B2 B10v v= =   (2-403) 

At the junction, MB2=MB4, and the moment equilibrium relationship in the x-direction 

gives 

 T1 B2 B4 T1 B22 0M M M M M− + = − =   (2-404) 

The calculations of the moments due to torsional motion and bending motion are the 

same as equations (2-318) and(2-320). The three boundary conditions give the 

following matrix equation  

 
T1B2

N2

2 T1T1 2

1 1 1

1 1 0 0

2 2

i t

t

rµ µ

− −     
     =     
     −     

  (2-405) 

Solving (2-405) allows the following reflection and transmission coefficients to be 

calculated: 

 

2

1 T1 T1- 2

T1T1 T1T1
2

1 T1 T1+

1
2
1
2

c
r

c

ω
τ

ω

Θ
= =

Θ
  (2-406) 

 T1T2 T1T4 0τ τ= =   (2-407) 

 T1B1 0τ =   (2-408) 

 

2 B2
2 2

2 22 B2 B2+ B2
T1B2 T1B4 T1B2 T1B2

2
2

1 T1 T1+ 1 T1

2
1 1
2 2

m c
m c v k

t t
c c

τ τ
µω

′
′

= = = =
Θ Θ

  (2-409) 

The numerical calculation with the perspex T124-junction demonstrates that  
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 T1T1 T1B2 T1B4 1τ τ τ+ + =   (2-410) 

Example transmission coefficients are plotted in Figure 2.41 using the material 

properties and dimensions in Table 2.3. 
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Figure 2.41 Transmission coefficients for T124-junction: BT model, incident torsional 

wave on beam 1. 

2.6.4 L-junction 

2.6.4.1 Bending wave excitation 
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Figure 2.42 L-junction: BT model, Type B bending wave excitation on beam 1. 
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For the L-junction, both wave types exist under bending or torsional vibration load. In 

the first case, we assume a bending wave on beam 1. The directions of velocity are 

shown in Figure 2.42. 

The wave fields for each beam are described as 

 B1 B1 B1
B1 B1B1 N1( )ik x ik x k x i tv e r e r e eω−= + +   (2-411) 

 B2 B2
B2 B1B2 N2( )ik y k y i tv t e t e eω− −= +   (2-412) 

 T1 T1
T1 0 B1T1 B1 B1T1

ik x ik xi t i tt e e ik t e eω ωω ω= = −   (2-413) 

 T2 T2
T2 0 B1T2 B1 B1T2

ik y ik yi t i tt e e ik t e eω ωω ω − −= = −   (2-414) 

As stated by Sablik [32], the parameter kB1 in equation (2-414) could also be replaced 

by kB2. This would not affect the results because tB1T2 is always a frequency-dependant 

parameter. However, to continue using the calculations based on similar assumptions to 

previous parts, the parameter kB1 is used here.  

The continuity of bending velocity and rotational velocity at the junction requires that 

 B2 B1
B1 B2 T1 T2, ,

v v
v v

y x
ω ω∂ ∂= = =

∂ ∂
  (2-415) 

In the z-direction, the shear forces due to bending motions in beam 1 and 2 are balanced 

to each other. 

 B1 B2F F=   (2-416) 

At the joint, the bending moment in one beam should equal the moment of torsional 

wave motion in another beam. This boundary condition can be described as 

 B1 T2 T1 B2,M M M M= =   (2-417) 

As the assumed wave fields are the same, the shear forces in equation (2-416) are the 

same as that in equation (2-298), whilst the moments in equation (2-417) are exactly the 

same as that in equation (2-293) and (2-344). 
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Thus, the six boundary conditions form the following matrix equation 

 

B1B1

N1

B1B2

N2

1 B1T1

2 B1T2

1 1 1 1 0 0 1

1 0 0 0 1 1

0 0 1 0 0

1 0 0 1

1 1 0 0 0 1

0 0 0 0

r

i r

i t

i i t

t

t

χ χ
β β

µ
χ χ µ

− − −     
     −     
     − −

=     
     
     −
     

− −        

  (2-418) 

By solving the matrix equation, one can calculate the transmission coefficients for 

bending wave excitation on L-junction using the following expressions 

 
2

21 B1 B1-
B1B1 B1B12

1 B1 B1+

m c v
r

m c v
τ

′
= =

′
  (2-419) 

 
2

22 B2 B2+
B1B2 B1B22

1 B1 B1+

m c v
t

m c v
τ β

′
= =

′
  (2-420) 

 

2 2
1 T1 T1- 1 T1 B1 2 22

B1T1 B1T1 B1T12 2
1 B11 B1 B1+

1 1
2 2

2

c c k
t t

m cm c v

ω µ βτ
χ

Θ Θ
= = =

′′
  (2-421) 

 

2 2
2 T2 T2+ 2 T2 B1 2 21

B1T2 B1T2 B1T22
1 B11 B1 B1+

1 1
2 2

2

c c k
t t

m cm c v

ω µτ
Θ Θ

= = =
′′

  (2-422) 

Example transmission coefficients are plotted in Figure 2.43 using the material 

properties and dimensions in Table 2.3. 
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Figure 2.43 Transmission coefficients for L-junction: BT model, incident bending wave 

(Type B) on beam 1. 

2.6.4.2 Torsional wave excitation 

In this case, a torsional wave is excited on beam 2 whereas in the X- and T- junctions no 

torsional waves were generated under bending wave excitation. This incident wave is 

assumed to have unit amplitude; hence the wave fields can be described as follows: 

 ( )T1 T1
T1 T1T1

ik x ik x i te r e eωω −= +   (2-423) 

 T2
T2 T1T2

ik y i tt e eωω −=   (2-424) 

 ( )B1 B1
B1 T1B1 N1

B1

ik x k x i ti
v t e t e e

k
ω= +   (2-425) 

 ( )B2 B2
2 T1B2 N2

B1

ik y k y i t
B

i
v t e t e e

k
ω− −= +   (2-426) 

The boundary conditions are the same as that of bending wave excitation on L-junction 

in section 2.6.4.1. The only difference is due to the different inertial conditions. The 

shear forces from two bending motions are calculated as 
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( ) ( )

( )

3
3 3B1 1

B1 1 B1 T1B1 B1 N13
B1

3
1 B1

T1B1 N1
B1

d i t

i t

v B i
F B t ik t k t e

x i k

B k
it t e

k

ω

ω

ω

ω

∂  = = +
 ∂

= − +

∫
  (2-427) 

 

( ) ( )

( )

3
3 3B2 2

B2 2 B2 T1B2 B2 N23
B1

3
2 B2

T1B2 N2
B1

d i t

i t

v B i
F B t ik t k t e

y i k

B k
it t e

k

ω

ω

ω

ω

∂  = = − + −
 ∂

= −

∫
  (2-428) 

The moments of bending motions and torsional motions in each beam are calculated as 

 ( )T1 T1T1
T1 1 1 T1 T1T1

T1 T1

1
d 1i t i tr

M x i e Z r e
t ik ik

ω ωω ω
 ∂= −Θ = − Θ + = − ∂ − 

∫   (2-429) 

 T2 T1T2
T2 2 2 T2 T1T2

T2

d i t i tt
M y i e Z t e

t ik
ω ωω ω∂= −Θ = − Θ =

∂ −∫   (2-430) 

 

( ) ( )

( )

2
2 2B1 1

B1 1 B1 T1B1 B1 N12
B1

2
1 B1

T1B1 N1
B1

d i t

i t

v B i
M B t ik t k t e

x i k

B k
t t e

k

ω

ω

ω

ω

∂ −  = − = +
 ∂

−= − +

∫
  (2-431) 

 

( ) ( )

( )

2
2 2B2 2

B2 2 B2 T1B2 B2 N22
B1

2
2 B2

T1B2 N2
B1

d i t

i t

v B i
M B t ik t k t e

y i k

B k
t t e

k

ω

ω

ω

ω

∂ −  = − = − + −
 ∂

−= − +

∫
  (2-432) 

Applying these calculations in (2-416) and (2-417), and combining the boundary 

condition (2-415) one can obtain the matrix equation 

 

T1T1

T1T2

T1B1

N11

T1B22 2

N2

0 0 1 1 1 1 0

1 0 0 0 1

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0

0 0 1 0

r

ti

ti

t

t

ti i

χ χ

µ
µ χ χ µ

β β

− −     
    − −    
    −

=    −     
    −
    

− −      

  (2-433) 
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By solving the parameters1 1T Tr , 1 2T Tt , 1 1T Bt  and 1 2T Bt , one can calculate the power 

transmission for an incident torsional wave  

 

2

1 T1 T1- 2

T1T1 T1T1
2

1 T1 T1+

1
2
1
2

c
r

c

ω
τ

ω

Θ
= =

Θ
  (2-434) 

 

2
22 T2 T2+ 21

T1T2 T1T1
2

2
1 T1 T1+

1
2
1
2

c
r

c

ω µ χτ
µ βω

Θ
= =

Θ
  (2-435) 

 

1 B1
2 2 2

2 21 B1 B1+ B1
T1B1 T1B1 T1B1

2
2

1 T1 T1+ 1 T1

2
1 1
2 2

m c
m c v k

t t
c c

χτ
µ βω

′
′

= = =
Θ Θ

  (2-436) 

 

2 B2
2 2 2

2 22 B2 B2+ B1
T1B2 T1B2 T1B2

2
2

1 T1 T1+ 1 T1

2
1 1
2 2

m c
m c v k

t t
c c

χτ
µω

′
′

= = =
Θ Θ

  (2-437) 

Example transmission coefficients are plotted in Figure 2.44 using the material 

properties and dimensions in Table 2.3. 
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Figure 2.44 Transmission coefficients for L-junction: BT model, incident torsional 

wave on beam 1. 

2.7 Comparison of transmission loss for bending waves on isolated 

beam junctions for the B and BL models 

In this section, the transmission loss from an incident Type A bending wave to a 

transmitted Type A bending wave is compared for the B and BL models. This gives 

insight into the effect of longitudinal wave generation on bending wave transmission. 

Note that comparison with the BT model is not possible because this only considers 

Type B bending waves. 

The transmission loss R on the isolated beam junctions is calculated using [5] 

 
1

10logR
τ
 =  
 

  (2-438) 

Figure 2.45 (a), Figure 2.45 (b), Figure 2.46 and Figure 2.47 allow comparison of 

transmission losses from the B and BL models for the L-junction, T124-junction, T123-

junction and X-junction, respectively. The material properties and dimensions are given 

in Table 2.3. 
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For the B model the transmission loss is independent of frequency, whereas the 

transmission loss for the BL and BT models are frequency-dependent except with B1B2 

for the BL model. 

For the L-junction (Figure 2.45 (a)) the difference between B and BL models is less 

than 2 dB below 5 kHz, but this increases to 3.6 dB at 20 kHz. 

For T123- and T124-junctions, transmission around the corner (B1B2) is exactly the 

same in the BL and BT models and the largest difference between B and BL (or B and 

BT) models is only 1.2 dB at 20 kHz.  

For the X-junction, the frequency-independent transmission loss around the corner 

(B1B2) in B model is the same as that in BL model.  

Figure 2.46 (b) and Figure 2.47 (b) show that transmission across the straight section 

(B1B3) in BL model initially increases with frequency but decreases in the high 

frequency range. However the largest difference between B and BL model for two cases 

is less than 2 dB. 
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Figure 2.45 Comparison of transmission losses between B and BL model: (a) L-

junction: (b) T124-junction. 
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Figure 2.46 Comparison of transmission losses between B and BL model for the T123-

junction. 
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Figure 2.47 Comparison of transmission losses between B and BL model for the X-

junction. 
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2.8 Summary 

In this chapter, the theory describing bending, longitudinal and torsional waves on 

beams was introduced. For bending waves, the group velocity has been derived for 

Timoshenko theory considering both rotatory inertia and shear deformation. This makes 

it possible to introduce a new proposal in this thesis to incorporate Timoshenko theory 

in SEA and ASEA by changing over from Euler-Bernoulli to Timoshenko group 

velocity when calculating the coupling loss factors. 

Full wave theory derivations are given for B, BL and BT models for L-, T- and X-

junctions of semi-infinite beams assuming a rigid, massless junction and where only the 

co-linear beams on T- and X-junctions have identical material properties and cross-

sectional dimensions.  

Under this assumption, this work has originally derived these models which include: 

(1) the bending only models on all beam junctions;  

(2) the BL model of L-junction with longitudinal wave excitation; 

(3) the BL model of T123- and T124- junctions; 

(4) the updated BL model of X-junction; 

(5) the BT model of T124-junction.  

This provides a consistent set of derivations that are not available in the literatures. 
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3. Statistical energy analysis and advanced statistical energy 

analysis 

3.1 Introduction 

This section describes Statistical Energy Analysis (SEA) and Advanced Statistical 

Energy Analysis (ASEA) that are used to predict vibration transmission on coupled 

frameworks of beams.  

3.2 Statistical energy analysis 

3.2.1 Introduction 

This section describes the framework of analysis, Statistical Energy Analysis (SEA) [1]. 

Application of this method requires prediction of the loss factors and then, from the 

power balance equations, prediction of the acoustic performance of the system to 

determine the energy in each subsystem. 

3.2.2 Loss factors 

In SEA, three loss factors are defined: internal loss factor ( iiη ), coupling loss factor (ijη ) 

and total loss factor (iη ). 

The internal loss factor (ILF) describes the inherent material damping. When the beam 

deforms while undergoing wave motion, the internal losses convert vibrational energy 

into heat. Compared with other parameters which describe material properties, such as 

density or Young’s modulus, ILFs are not easy to predict. It depends on the type of 

wave motion, frequency, temperature, amplitude of vibration, and manufacturing 

process. However, uncertainty in the internal loss factor can often be tolerated when the 

sum of coupling loss factors is much greater than the internal loss factor. 

The coupling loss factor (CLF) describes the energy losses from one subsystem (e.g. 

beam) via connections (e.g. mechanical connections, radiation coupling) to other 

subsystems. The power flow,ijW  from subsystem i to j is given by 
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 ij i ijW Eωη=   (3-1)                                                          

In any system there will be power flow in both directions giving the net power flow,ijW

as 

 ij i ij j jiW E Eωη ωη= −   (3-2) 

In general, the coupling from subsystem i to j will not be the same as coupling from j to 

i though they are related. The consistency relationship for subsystems i and j is 

 i ij j jin nη η=   (3-3) 

This equation relates the modal density, n, with the CLF in each direction. It is valid for 

coupling between all types of subsystem and can be used to calculate any CLF.  For any 

type of wave on a subsystem, i, that is incident upon the junction connecting subsystems 

i and j, the transmission coefficient is 

 
, ,

ij ij i
ij

in i in i

W E

W W

ωη
τ = =   (3-4) 

where the incident power is ,in iW , and transmitted power is ijW . The coupling loss factor 

is therefore given by 

 ,ij in i
ij

i

W

E

τ
η

ω
=   (3-5) 

where the transmission coefficients for beam junctions have been calculated in Chapter 

2. The power that is incident upon a boundary is determined by the mean free path 

which quantifies the number of times that vibration energy is reflected from the 

boundaries of a beam every second. For a beam i that is connected at both ends to other 

beams or plates, the mean free path is simply the length of the beam, and half the power 

will be incident on each end giving the relationship between CLF and ijτ  as 

 ,

4
g i ij

ij
i

c

fL

τ
η

π
=   (3-6) 
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Based on (3-6), in this thesis it is proposed to introduce both the Euler-Bernoulli and the 

Timoshenko theory into the SEA and ASEA formulation by using the appropriate group 

velocity as derived in section 2.2.3. 

The total loss factor (TLF) for subsystem i is the sum of the internal loss factor for 

subsystem i plus all the coupling loss factors from subsystem i to other subsystems, 

 
1

( )
J

i ii ij
j

i jη η η
=

= + ≠∑   (3-7) 

From (3-7) we can calculate the total loss factor. If accurate prediction is not possible, 

another simple method is to measure the reverberation time which is related to TLF by 

[81] 

 
6ln10

2i fT
η

π
=   (3-8) 

3.2.3 Matrix SEA 

The power balance equations for each subsystem form a matrix solution for N 

subsystems [61] 

 

,11 21 31 1 1

,212 2 32 2 2

,213 23 3 3 3

,1 2 3

inN

inN

inN

in NN N N N N

WE

WE

WE

WE

ωη η η η
ωη η η η
ωη η η η

ωη η η η

− − −     
    − − −     
    − − − =
    
    
    − − −     

⋯

⋯

⋯

⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯

  (3-9)                                             

The matrix elements [i, j] where i≠j are the coupling loss factors, and the diagonal 

elements are the total loss factor. This equation can be simplified into the form 

 [ ][ ] inW
Eη

ω
 =   

  (3-10) 

where [ ]η the square matrix of loss factors is, [ ]E  is the column matrix for energy of 

subsystems, and inW

ω
 
  

 is the column matrix for power inputs divided by angular 
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frequency. Since the loss factors can be calculated from transmission coefficient, and 

the input power can be predicted or measured, the subsystem energies are determined by 

 [ ] [ ] 1 inW
E η

ω
−  =   

  (3-11) 

For homogeneous beams, the energy associated with each bending and longitudinal 

wave is given by the product of mass of the beam and spatial average mean-square 

velocity associated with that wave motion, 

 2

,t s
E m v=   (3-12) 

And for torsional wave it is 

 2

,t s
E M ω=   (3-13) 

Typically, we are interested in the vibration level difference, Dij, between source 

subsystem i and receiver subsystem j,  

 
2

2
10lg( ) 10 lg( ) 10 lg( )i i i

ij
j j j

E v m
D

E v m
= = +   (3-14) 

3.3 Advanced statistical energy analysis 

3.3.1 Introduction 

This section describes Advanced Statistical Energy Analysis (ASEA) as introduced by 

Heron [2]. 

For coupled structural subsystems, the assumption in SEA is that there is no coupling 

between physically disconnected subsystems. However, in some situations there can be 

significant indirect coupling, i.e. tunnelling mechanisms [67,69]. To incorporate indirect 

coupling within a statistical framework of analysis, Heron [2] developed Advanced 

Statistical Energy Analysis (ASEA) which combines SEA and ray tracing (ignoring 

phase effects) to track the power transmitted between coupled subsystems. This 

approach was validated with excitation of longitudinal waves at one end of an in-line 

array of six rods. ASEA agreed well with the exact result which was in contrast to SEA 
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which overestimated the vibration response for subsystems that were physically 

disconnected from the source subsystem. However, this example primarily confirmed 

the ability of ASEA to account for propagation losses rather than indirect coupling 

between non-adjacent rods. Heron [2] considered the possibility that ASEA could be 

extended to multiple wave types, but no results were reported. This extension to 

multiple wave types is considered in this thesis along with ASEA’s ability to account 

for indirect coupling (tunnelling) as well as propagation losses. 

3.3.2 Derivation 

Returning to the SEA matrix, the general SEA power balance matrix equation for N 

subsystems can be rewritten as 

1 11 1 1k 2 21 1
1 1 11

2 2 2
1 12 2 22 2 2k 2

2

1 1 k

/

/

/

N

N N
k

N

N N
k

N
N N N

N N NN N N
k N

n n n n
E n P

E n P
n n n n

E n P
n n n

η η η η

η η η η
ω

η η η

≠

≠

≠

 + − −     
     
     − + −     =     
     
         − +
  

∑

∑

∑

⋯

⋯
⋮ ⋮

⋮ ⋱ ⋮ ⋮ ⋮

⋯⋯

  (3-15) 

where in is the modal density for subsystem i, iiη is the internal loss factor for subsystem 

i, and ijη is the coupling loss factor from subsystem i to subsystem j ( i j≠ ). With 

knowledge of the loss factors and power input, the subsystem energies can be 

calculated. Usually not all subsystems are physically connected to every other 

subsystem, so some coupling loss factors are zero in the loss factor matrix. In addition 

there is no indirect coupling between disconnected subsystems. In contrast, all 

subsystems in ASEA can transfer energy to each other whether they are directly 

connected or not. Indirect coupling between physically disconnected subsystems is also 

referred to as a ‘tunnelling mechanism’.  

Following the ASEA derivation by Heron [2], equation (3-15) can also be rewritten as 

follows 

 + =AE ME P   (3-16) 
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where E  is a column vector of  modal energies as 

 [ ]T

1 1 2 2/ / /N NE n E n E n= ⋯E   (3-17) 

P is a column vector of input power,M  is a diagonal matrix of modal overlap factors, 

and A  is a coupling matrix where 

 

1 11

2 22

0 0

0 0

0 0 N NN

n

n

n

η
η

ω

η

 
 
 =
 
 
 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯⋯

M   (3-18) 

 

1 1k 2 21 1
1

1 12 2 2k 2
2

1 1 k

N

N N
k

N

N N
k

N

N N N
k N

n n n

n n n

n n

η η η

η η η
ω

η η

≠

≠

≠

 − − 
 
 − − =  
 
 
 −
  

∑

∑

∑

⋯

⋯

⋮ ⋱ ⋮

⋯⋯

A   (3-19) 

Note that each column of A sums to zero as required for power balance. A  is a 

symmetric matrix due to the consistency relationship.  

If we split the total modal energy E  in equation (3-16) into two parts, available modal 

energy,e , and unavailable modal energy,d . Available energy is the stored modal 

energy considered in SEA whereas unavailable modal energy describes subsystem 

energy which is unavailable for further transmission which accounts for propagation 

losses as a wave travels across a subsystem. ASEA theory is then defined using the 

following two matrix equations [2] 

+ =Ae Me P

         (3-20) 

+ =Be Md Q

            (3-21) 
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For N subsystems, A and B are N ×N matrices in which the element (j,i)A  represents 

the available power per unit modal energy transferred from subsystem i to available 

power per unit modal energy in subsystem j and element (j,i)B  represents the available 

power per unit modal energy transferred from subsystem i to unavailable power per unit 

modal energy in subsystem j. 

Once theA , B , P and Q are known, the subsystem response can be calculated from 

e + d . From equations (3-20) and (3-21) the total modal energy is given by  

 1+ = ( )− +e d M Q R   (3-22) 

where 1= ( - )−+R M B)(M A P . For rain-on-the-roof excitation (forces with unit 

magnitude and random phase over the entire source subsystem, see section 4.2), Q  is 

zero because all the input power is available for transmission. Thus equation (3-22) can 

be simplified to  

 1 1+ = ( )( )− −− +e d M M B M A P   (3-23) 

Summing equations (3-20) and (3-21) gives 

 ( ) ( )+ + + = +A B e M e d P Q   (3-24) 

Compared to equation (3-16), we can find that in the process of splitting the total modal 

energyE , the coefficient matrix +A B must also meet the requirement of summing to 

zero for each column. 

3.3.3 ASEA for a system of coupled beams 

For a system of N coupled beam subsystems, consider a subsystem i with total available 

energy iE . Modal energyie  is given by i i ie E n= , where in is the modal density. For a 

beam, the modal density is ,2i i g in L c= , where iL  and ,g ic  are the length and group 

velocity of subsystem i. Thus the modal energy can be rewritten as 

 g,

2
i i

i

E c

L
=e   (3-25) 
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Assuming equipartition of energy travelling in both directions along the beam, the 

power iP  travelling in one direction along subsystem i can be calculated by 

 
2i

i

E
P

t
=   (3-26) 

where t  is the time for wave traveling from one end of the beam to the other, 

 mfp

g, g,

i

i i

d L
t

c c
= =   (3-27) 

Substituting (3-27) into (3-26) and combining with (3-25) gives the available power per 

unit modal energy ,a iP which is the initial available power ready for transfer at each end 

of beam subsystem i. That is 

 , 1i
a i

i

P
P

e
= =   (3-28) 

With knowledge of the initial power per unit modal energy ,a iP that is incident at the end 

of subsystem i, we can calculate matrices A andB by tracking the initial power across 

subsystems using the following steps: 

Step 1:  All elements of the N × N matrices A andB  are set to zero at the beginning of 

the calculation. Further power transfer from available to unavailable or available power 

per unit modal energy is recorded and accumulated in matrices A andB . 

Step 2: The initial available power per unit modal energy ,a iP  is added to element (i, i) 

of matrix A as the initial available power per unit modal energy incident at a particular 

end of the subsystem i. Note that it is not critical which subsystem is chosen as 

subsystem i because every subsystem will eventually be considered and the power is 

always normalized to modal energy. 

Step 3: Multiplying the initial power per unit modal energy ,a iP  by the appropriate 

transmission coefficient gives the incident power to the receiving subsystem j which is 

coupled to subsystem i at one end, where 
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 , ,s j ij a iP Pτ=   (3-29) 

and the power per unit modal energy that is reflected back to subsystem i is given by 

 , ,s i ii a iP r P=   (3-30) 

where iir  is the reflection coefficient. All subsystems which are coupled to subsystem i 

form different paths for power flow. These transmitted and reflected powers now 

become the ‘starting available power’ in subsystem j and i. 

Step 4: Calculate the power loss. When the starting power per unit modal energy ,s jP  

propagates along subsystem j, this available power per unit modal energy will have an 

exponential decay with distance jL caused by the internal damping, as described by the 

internal loss factor jjη . Thus the remaining power striking the far end of subsystem j is 

 , , g,exp( )e j s j jj j jP P L cωη= −   (3-31) 

The power per unit modal energy lost in subsystem j due to internal losses is  

 , , ,l j s j e jP P P= −   (3-32) 

This lost power should be subtracted from element (j,i)B  because it is transferred from 

available power per unit modal energy originated in subsystem i to unavailable power 

per unit modal energy in subsystem j, and is no longer available for further 

transmission. 

Step 5:  Calculated the new ‘starting available power’ for each subsystem. If subsystem 

k is coupled with subsystem j, the new ‘starting available power’ for subsystem j and k 

are  

 , , , ,,s k jk e j s j jj e jP P P r Pτ ′= =   (3-33) 

where jkτ and jjr are the transmission and reflection efficiencies. The reflected power 

per unit modal energy ,s jP′  may or may not be tracked any further.  If it is not to be 
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tracked, it must be considered as residual power which must be subtracted from the 

element (j,i)B . 

 Step 6: Track the new ‘starting available power’ and repeat steps 4 and 5. The matrices 

A and B are updated through the process with the elements in column i being 

recalculated. This whole process can stop at any stage leaving the remaining power in 

each subsystem. This remain power,r jP in subsystem j should be subtracted from the 

element (j, i) of matrixA . Note that it is only the column i in the matrices A andB that 

require updating because all the power originates from subsystem i. Checks should be 

carried out to sum each column of +A B as these must equal to zero at every stage. 

The number of subsystems across which the initial power is tracked is called the ASEA 

level number. This also equals the number of times that the power is tracked in the 

source subsystem. When the level number is zero there is no transfer from available 

power to unavailable power and the result is equivalent to SEA. Use of ASEA therefore 

requires an indication that convergence has been achieved. For six in-line coupled rods, 

Heron [2] proposed a rule of convergence that the level number should be at least equal 

to the number of subsystems minus two. For ASEA on systems of coupled plates where 

each plate was coupled to at least four other plates, Wilson and Hopkins [70] used a 

level number equal to the number of subsystems plus four to give ≤0.1dB difference 

between ASEA level N and level N-1. For the coupled beam systems in this paper, a 

level number equal to the number of subsystems plus two has been used to give 

≤0.02dB difference between ASEA level N and level N-1. 

An example of ASEA levels is shown in Figure 3.1 for an in-line array of beams with 

three subsystems i, j and k. 



111 
 

,a iP

,s jP,s iP

,s kP,s jP′,s iP′

 

Figure 3.1 Example of ASEA level numbers up to ASEA3. 

Step 7: Repeat steps 2 to 6 for all other beam junctions in subsystem i.  

Step 8: Repeat steps 2 to 7 for all the other subsystems. 

Step 9: The final results of matrices A andB are calculated from the summation of all 

matrices ,i kA and ,i kB produced in steps 6, 7 and 8. 

 
1

1
1 1 1

i NJ JJ

k ik Nk
k k k= = =

+ + + +∑ ∑ ∑⋯ ⋯A = A A A   (3-34) 

 
1

1
1 1 1

i NJ JJ

k ik Nk
k k k= = =

+ + + +∑ ∑ ∑⋯ ⋯B = B B B   (3-35) 

where iJ is the number of junctions in subsystem i and the N is the number of total 

subsystems. Note that ,i kA and ,i kB correspond to the coupling between subsystem i with 

another subsystem through junction k. 

Step 10: Solve equation (3-23) using matrices A andB . 

It is worth noting that without steps 4 and 5 the algorithm processes the power in 

exactly the same way as SEA, which is defined as ASEA0.  

3.3.4 Example: Heron’s six in-line rods 

ASEA produces different results depending on the number of power transfer across 

subsystems. Thus ASEA can be thought as a series of approximations, ASEA0 (SEA), 

ASEA1, ASEA2, ASEA3 etc, which converge with increasing ASEA level number. 
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When the ASEA level number becomes larger, the elements of matrix A tend towards 

zero and the ASEA calculation essentially just becomes ray tracing.  

As an example of ASEA, a simple structure is taken from Heron [2] that consists of six 

different rods arranged in a line. The six rods are of lengths 23, 28, 25, 24, 29 and 21 m 

and their mass per unit lengths are 1, 10, 3, 7, 8 and 2 kg/m, respectively. The 

longitudinal wave velocity is 5000 m/s, and the internal loss factor is 0.02. The driving 

point impedance for longitudinal excitation is determined using 

 L LZ Acρ=   (3-36) 

Longitudinal wave transmission coefficient from subsystem 1 to 2 on a discontinuity of 

beam is given by [5] 

 L1L2 2

1 2

2 1

4

L L

L L

Z Z

Z Z

τ =
 

+ 
 

  (3-37) 

This structure is driven at the end of the first rod with a unit force. The velocity level 

differences for beams 2, 3, 4, 5 and 6 are calculated up to 10 kHz with a frequency 

bandwidth of 50 Hz. 

 

Figure 3.2 In-line array of six rods. 

Figure 3.3 shows that with increasing frequency above 2 kHz, ASEA0 (or SEA) over-

predicts the response on the receiving rod compared to ASEA; at 10 kHz, this over-

prediction is ≈70 dB discrepancies for the most distance rod 6. Heron [2] noted that 

ASEA results converge such that the ASEA level number should be at least the number 

of subsystems minus two. Note that the convergence of ASEA is not monotonic with 

increasing ASEA level number because on rod 6, ASEA2 gives a better result than 

ASEA3.  
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Figure 3.3 Velocity level difference:  , ASEA0(SEA); , ASEA1; , 

ASEA2; , ASEA3; , ASEA4; ,ASEA6. 
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3.4 Summary 

This chapter gives detailed descriptions of how SEA and ASEA have been implemented 

to predict vibration transmission across frameworks of beams.  

Heron only validated the ability of ASEA to model a single wave type propagating 

along an in-line array of six very long beams (forming an unrealistic engineering 

structure). This structure had high propagation losses and did not show any significant 

tunnelling. In this thesis ASEA will be used to assess its ability to account for indirect 

coupling (tunnelling) as well as propagation losses with multiple wave types on more 

realistic engineering structures. To ensure convergence all ASEA calculations are 

carried out to an ASEA level number equal to the total number of subsystems plus two. 
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4. Finite element methods 

This section describes the finite element method (FEM) used to model the beam 

junctions. In FEM, the structure under analysis is discretized into a mesh of elements 

that are connected at nodal points; the mass is lumped at the nodes in each element. 

With the n degrees of freedom of all nodes in the mesh as the unknown parameters, the 

general equation of motion for linear systems under steady-state excitation by sinusoidal 

point forces is [71] 

 
2

2t t

∂ ∂+ + =
∂ ∂
ξ ξ

M C K ξ F   (4-1) 

where ξ is the vector of displacement of the nodes, F is the vector of applied force,  M  

is mass matrix,  C is the damping matrix, and K is the stiffness matrix. Assuming the 

damping is proportional to the mass and stiffness matrix, that is 

 a b= +C M K   (4-2) 

where a and b are constant. Then the equation (4-1) can be decoupled as 

 
2

p p
p p p p p2t t

∂ ∂
+ + =

∂ ∂
ξ ξ

M C K ξ F   (4-3) 

by using the following transformation 

 T
p =ξ Φ ξ   (4-4) 

 T
p =F Φ F   (4-5) 

 ( )T
1 pp pndiag M M= =Φ MΦ M⋯   (4-6) 

 ( )T
1 pp pndiag K K= =Φ KΦ K⋯   (4-7) 

 ( )T
1 pp pndiag C C= =Φ CΦ C⋯   (4-8) 
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where Φ is the matrix of eigenvectors about M  and K . M p, Cp and K p are 

orthogonalized diagonal matrix. 

The damping in FEM is applied using the critical damping or constant damping ratio,

,cdr iζ  for i th order mode. It’s defined as  

 ( )cdr, 1, 2,
2

pi
i

i pi

C
i n

M
ζ = =

ω
⋯   (4-9) 

The relation between critical damping and internal loss factor is [61,82] 

 cdr, 2i

ηζ =   (4-10) 

4.1 Element type 

For beam elements in ABAQUS, there are several different kinds of finite element 

types, including ‘Euler-Bernoulli’-Type Beam and ‘Timoshenko’-Type Beams with 

solid, thin-walled closed and thin-walled open cross-sections. Euler-Bernoulli beam 

elements in bending ignore the rotary inertia of the beam cross-section hence these 

elements don’t allow transverse shear deformation. Plane sections that are initially 

normal to the beam axis will remain plane and normal the beam axis. In 

Abaqus/Standard, the Euler-Bernoulli beam elements include B23, B23H, B33, and 

B33H, which can be used only to model slender beam:  the beam cross-section 

dimensions are much smaller than the typical distances along its axis. Timoshenko 

beam elements (B21, B22, B31, B310S, B32, B32OS, PIPE21, PIPE22, PIPE31, 

PIPE32, and their ‘hybrid’ equivalents) allow transverse shear deformation and can be 

used for both thick beams and slender beams. The element types are described in the 

Abaqus Analysis User’s Manual [83]. 

4.2 Excitation 

Rain-on-the-roof excitation is applied using forces with unit magnitude and random 

phase over all N nodes on the source subsystem. The reason to choose rain-on-the-roof 

excitation for SEA is that it provides statistically independent input forces. However, 

when rain-on-the-roof is applied in a numerical method like FEM, each set of random 
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numbers will give a different response. For this reason, each model is solved with 10 

different sets of rain-on-the-roof in order to give a mean value with 95% confidence 

intervals [70]. 

Rain-on-the-roof tends to be used to excite bending waves [70], however, in this thesis 

it is also used to excite longitudinal and torsional waves. 

4.3 Junction 

For the FEM models that are compared with the B model, the displacement in the three 

coordinate directions is pinned but for the BL and BT models no constraints are applied 

to the junction nodes. 

4.4 Element size and mesh error 

The element size is chosen by considering the accuracy required and is usually 

described with bending wave length in the structure; a suitable size is usually smaller 

than B 6λ  [61]. 

To check and assess the adequacy of the element size, the mesh error is assessed 

through the comparison of injected power and the power contained in the whole 

structure [84].  

The injected power at a single frequency is calculated from all the random forces on N 

nodes and the relevant nodal velocities  

 { }
1

1
Re

2

N

inW ∗=∑ F vi   (4-11) 

The complex velocity can be written in terms of displacement as 

 i= ωv ξ   (4-12) 

The input power from ROTR forces is then given by 

 ( )
1

Im( )Re( ) Re( ) Im( )
2

N

in n
n

W
=

ω= −∑ F ξ F ξ   (4-13) 
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The total energy for bending waves within the structure is stored in the P nodes  

 
22 2

1

1

2

P

n n
n

E m m
=

= = ω ∑v ξ   (4-14) 

Note that equations (4-13) and (4-14) can be applied both for bending and longitudinal 

wave motion. However in this thesis it is also necessary to assess the input power of 

torsional moment of force which is given by 

 
{ } { }

{ }
1 1

1

1 1
Re Re ( )

2 2

Im( )Re( ) Re( ) Im( )
2

P P

in n n
n n

P

n
n

W iω

ω

∗ ∗

= =

=

= ⋅ = ⋅

= −

∑ ∑

∑

M ω M θ

M θ M θ

  (4-15) 

where M and θ are the input moment of force and responded torsional displacement on 

each node, respectively. The total rotational energy on a beam with P nodes can be 

calculated using 

 

2 2

1 1

22

1

1 1
( ) ( )

2 2

1

2

P P

n n n n
n nA A

P

n n
n

E L dA r L dA i r

JL

ρ ρ ω

ω ρ

= =

=

   
= =   

   

=

∑ ∑∫ ∫

∑

ω θ

θ

  (4-16) 

where Ln is the element size, and J is the polar moment of inertia of the cross-section. 

The power leaving the structure can be calculated from the total wave energy 

 out ωηW E=   (4-17) 

The element size can then be assessed by the percentage error, meshe  between input 

power on source subsystem and output power on all subsystems 

 in out
mesh

in

100%
W W

e
W

−
= ×   (4-18) 

Since FEM is an asymptotic method, smaller element size means more accurate 

modelling. Mesh error, meshe  can be used as an indicator to assess the mesh of FEM 
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model. Note that the output power is calculated as the sum of that from all subsystems 

of the structure, while the input power is from the source subsystems. 

An example is considered for an L-junction with pinned ends with material properties 

given in Table 2.3. Rain-on-the-roof excitation of Type A bending waves are applied for 

B model, and for BL model Rain-on-the-roof excitation of Type A bending waves and 

longitudinal waves are applied. For BT model Rain-on-the-roof excitation of Type B 

bending waves and torsional waves are applied. The element type is B33, and the 

element size is 0.005 m. A comparison of input power and output power alongside the 

mesh error based on the B, BL and BT models are shown in Figure 4.1, Figure 4.2 and 

Figure 4.3.  
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Figure 4.1 B model of L-junction: (a) comparison of incident power and output power 

under Type A bending wave excitation, (b) mesh error under Type A bending wave 

excitation. 
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Figure 4.2 BL model of L-junction: (a) comparison of incident power and output power 

under Type A bending wave excitation, (b) mesh error under Type A bending wave 
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excitation, (c) comparison of incident power and output power under longitudinal wave 

excitation, (d) mesh error under longitudinal wave excitation. 
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Figure 4.3 BT model of L-junction: (a) comparison of incident power and output power 

under Type B bending wave excitation, (b) mesh error under Type B bending wave 

excitation, (c) comparison of incident power and output power under torsional wave 

excitation, (d) mesh error under torsional wave excitation. 

At 20 kHz the wave length Bλ of Type A bending and Type B bending are 0.046 m and 

0.065 m, respectively. Thus, the element size of Type A and Type B bending should be 

≤ B 10λ (about 0.005 m).  

Referring back to 2.3 for pinned-pinned isolated beam, the fundamental mode of Type 

A bending, longitudinal, Type B bending and torsional waves are 10 Hz, 1 kHz, 12.5 Hz 

and 400 Hz, respectively. In general, above the fundamental mode the mesh error is 

always below 20% (e.g. the mesh error above 400 Hz for torsional excitation) except for 
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a few frequencies with the Type B bending excitation. This indicates the choice of 

element size is reasonable. In chapters 6 and 7, the element size is also chosen to be 

0.005. 

4.5 Comparison of driving-point mobility from FEM with an 

analytical model 

A comparison is now made of the driving point mobility from Abaqus and the analytical 

result. 

 

Figure 4.4 Simple supported beam. 

The driving point mobility for a finite beam (Euler-Bernoulli theory) with idealised 

boundary conditions can be calculated using the natural frequencies and modes shapes. 

For force excitation at ix and transverse velocity response atjx , the mobility is given by 

Fahy [60] 

 
( )2 2

1

( ) ( )

1
n i n j

ij
n n

ψ x ψ xv
Y i

F SL i

∞

=

= = ω
 ρ ω + η − ω 

∑   (4-19) 

where ( )n xψ is the nth natural mode function, and nω is the natural radial frequency. 

For a pinned-pinned boundary condition,( ) 2 sinn nbx k x=ψ , nbk n L= π  and n=1,2,3 

etc. 

The Perspex beam is 1 m x 0.02 m x 0.01 m with material properties described in 

section 2.3 FEM shows close agreement with the analytical result in Figure 4.5 which 

validates that the element type B33 and the element size are appropriate.  
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Figure 4.5 Driving-point mobility at the mid-point of a pinned-pinned beam. 

4.6 In-plane vibration due to bending wave motion 

Bending waves on a beam not only cause out-of-plane vibration but they also cause in-

plane vibration. In this thesis it is necessary to calculate energy levels from FEM data 

that represent bending wave energy as well as longitudinal wave energy. Therefore this 

section investigates the in-plane vibration hat occurs due to bending wave motion. 

4.6.1 Bending and in-plane motion on isolated beam 

An isolated 1.0 m beam with pinned-pinned boundaries, free-pinned boundaries, and 

free-free boundaries is investigated to investigate in-plane motion under lateral single 

force excitation of bending wave motion. Figure 4.7 (a) shows that in-plane vibration is 

negligible compared to bending wave vibration for all boundary conditions. 

 

Figure 4.6 Point excitation on the one third of isolated beam with pinned-pinned, free-

pinned, and free-free boundary conditions. 
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Figure 4.7 Bending and in-plane energy on isolated beam. 

4.6.2 BL model: Coupling between bending and longitudinal waves on an L-

junction with different boundary conditions 

To assess the generation of longitudinal wave motion and its coupling with bending 

motion, the driving-point mobility at a point one-third of the way along beam 1 (1.3m) 

in the L-junction is determined when it has pinned ends (Figure 4.8 (a) ) and free ends 

(Figure 4.8 (b)). The mobility is calculated using FEM and compared with the analytical 

result for a pinned-free beam and a free-free beam. The driving-point mobility is 

determined with a transverse force to excite bending wave motion, denoted YB, and with 

an axial force to excite longitudinal wave motion, denoted YL. 

 

Figure 4.8 L-junction with (a) pinned ends and (b) free ends. 

Figure 4.9 compares the driving-point mobilities on beam 1 that forms the L-junction 

with pinned ends with beam 1 as an isolated beam. The peaks in the driving-point 

mobility YB for beam 1 in the L-junction differ from those when beam 1 is isolated. The 

reason for this is that the former correspond to global bending modes of the L-junction 

and the latter correspond to local bending modes of the beam where the end that forms 

the junction has a free boundary. For this reason the mode frequencies are different.  
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On the isolated beam there are no local longitudinal modes below 400 Hz and YL 

calculated using FEM has lower values than that on the isolated pinned-free beam. On 

beam 1 in the L-junction there are low peaks that occur in YL that is predicted using 

FEM below 400 Hz. These correspond to the peaks in YB from FEM that occur at the 

global bending mode frequencies of the L-junction. This is due to the axial force 

exciting longitudinal waves on beam 1 that are converted back into bending waves on 

beam 1. Although bending wave motion has an in-plane velocity component that 

appears in YL, the latter is sufficiently low that it will not have a significant effect on 

estimates of the longitudinal wave energy. Above 400 Hz where there are longitudinal 

modes, values of YL calculated using FEM and the analytical model show close 

agreement at the modal peaks. 

The driving-point mobilities for the L-junction where the beams have free ends are 

shown in Figure 4.10. Below 800 Hz there are no longitudinal modes but YL calculated 

using FEM for the L-junction has significantly higher values than the analytical values 

for the free-free beam with peaks corresponding to the global bending modes. 

Compared to YL calculated using FEM in Figure 4.9, the high peaks in Figure 4.10 

indicate that free ends for the beams that form the L-junction produce significantly 

higher in-plane vibration due to bending wave motion than pinned ends. The peaks in YL 

calculated using FEM are typically 10-30 dB below the peaks in YB calculated using 

FEM. This has implications when calculating in-plane energy from FEM models 

because it is only appropriate to use FEM to calculate longitudinal wave energy at and 

above the fundamental longitudinal mode of each beam. For this reason the graphs of 

energy level differences calculated using FEM are only shown at frequencies above the 

fundamental longitudinal mode of each beam in Chapters 6 and 7. 
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Figure 4.9 Driving-point mobility at a point that is one-third of the length along beam 1 

in L-junction with pinned ends and when it is an isolated beam (pinned-free). 
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Figure 4.10 Driving-point mobility at a point that is one-third of the length along beam 

1 in L-junction with free ends and when it is an isolated beam (free-free). 

4.7 Summary 

This chapter describes the approach used for the finite element models with a 

commercial code, Abaqus 6.12. Details are given on (a) the type of beam element used 

to model Euler-Bernoulli and Timoshenko theory, (b) rain-on-the-roof excitation, (c) the 

calculation and assessment of mesh errors when the beams support bending, 

longitudinal or torsional wave motion. 
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The calculation of mesh errors for beams supporting bending, longitudinal or torsional 

wave motion show that the element size is sufficient for Type A and Type B bending 

waves when the element size is < B 10λ . 

In this thesis FEM is used to calculate in-plane wave energy for longitudinal wave 

motion in the presence of bending wave motion. This is potentially problematic because 

bending waves also give rise to in-plane vibration. Investigations were therefore carried 

out check whether the in-plane motion this could be problematic when using FEM to 

validate BL models using SEA and ASEA in chapters 6 and 7. Two assessments were 

carried out: (a) investigating bending wave excitation on isolated beams with different 

boundary conditions and (b) investigating driving-point mobility on L-junctions of BL 

model with pinned ends and free ends. These confirmed that bending waves cause 

longitudinal motion below the fundamental longitudinal mode but that in-plane motion 

tends to be negligible compared to the bending wave motion. Hence it is important that 

FEM is only used to calculate longitudinal wave energy at and above the fundamental 

longitudinal mode of each beam. Therefore in the validation of FEM, SEA, ASEA 

against measurements in Chapter 6 any energy level differences involving longitudinal 

wave energy are only shown at frequencies above the fundamental longitudinal mode. 

In Chapter 7 (section 7.2), numerical experiments are used to investigate the effect of 

junction and boundary conditions with the L-junction and some examples of energy 

level differences involving longitudinal wave energy are shown below the fundamental 

longitudinal mode. One reason for this is that in purely experimental studies on complex 

beams it might be difficult to estimate the fundamental longitudinal mode; therefore it is 

of interest to see whether rain-on-the-roof excitation of longitudinal waves causes a 

wave field below the fundamental longitudinal mode which has similarities to a modal 

or diffuse longitudinal wave field. 
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5. Experimental work 

This chapter describes the experimental work used to measure material properties of 

Perspex (Young’s modulus and internal loss factors) and vibration level differences on 

coupled Perspex beams. Perspex was chosen for the beam because (a) it can be cut 

accurately, (b) it has smooth surfaces, (c) it can be joined to form a rigid junction using 

cyanoacrylate adhesive, and (d) it has higher internal losses than most metals. However, 

to test the prediction models in this thesis it is necessary to cover frequencies up to 20 

kHz and it was not known whether properties such as the Young’s modulus and internal 

loss factor varied over this frequency range. Hence it was critical that these properties 

were measured. 

5.1 Measurement of Perspex properties 

For the prediction models it is necessary to know dimensions, density, elastic modulus, 

Poisson’s ratio and internal damping. 

The measured density for the Perspex was 1184 kg/m3.  

Poisson’s ratio was assumed to be 0.3 as indicated in [61]. 

The Young’s modulus was determined from measurements according to ISO/PAS 

16940 [85]. This requires measurement of the input impedance at the centre point of a 

short beam sample. This input impedance is the transfer function between the injected 

force and the velocity at the same point. The peaks in the impedance curve correspond 

to resonance frequencies, if of the beam sample. Then the Young’s modulus can be 

calculated using the following equation [61].  
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=   (5-1) 

where m′  is the mass per unit length, I is the moment of inertia of the beam cross-

section, L  is the length of the beam, and the parameter λi is a constant corresponding to 

the i th resonance frequency (λ1=1.8750, λ2=4.69410, λ3=7.85476, λ4=10.99554).  
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The internal loss factor can also be calculated using this impedance measurement. 

According to ISO/PAS 16940 [85], it can be calculated from the resonance frequency 

and the half-power bandwidth (3 dB down points) 3 ,dB if∆  using 

 
3 ,

int,
dB i

i
i

f

f
η

∆
=   (5-2) 

Figure 5.1 shows the experimental setup of impedance test in this work in which the 

force transducer (B&K Type 8200) gives the force signal, while the laser vibrometer 

(Polytec PDV100) measures the velocity. The laser vibrometer is used instead of an 

accelerometer to avoid mass loading to the beam sample. The force transducer is 

screwed into the beam sample and connected to the shaker by bolt with two nuts, so that 

the beam sample could be excited at frequencies up to 20 kHz. Analysis was carried out 

using FFT analyser on B&K Pulse using excitation with white noise. 

B&K Pulse I/O Box

Analyzer 3560

B&K 2706 

Power amplifier

Polytec PDV100

Laser vibrometer

PC with B&K LAB Shop

B&K 2690 

conditioning amplifier

B&K 8200

Force transducer

B&K Shaker

Beam sample

Laser beam

 

Figure 5.1 Experimental setup for measuring impedance of beam sample 

Figure 5.2 shows an example of the measured impedance on a 0.5 m beam with first 

four resonance modes below 2000 Hz. 
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Figure 5.2 Driving-point impedance at the centre point of the 0.5 m beam sample. 

To obtain modal responses up to 20 kHz, five Perspex beam samples are measured with 

lengths, 0.15 m, 0.17 m, 0.2 m and 0.5 m. All the samples have a cross-section, 0.02 

m×0.01 m (as used for the junctions). The beam samples with a length of 0.15 m are 

used to give two different sets of modal frequencies by measuring across the different 

directions of the cross-section. The results for each beam sample are listed in Table 5.1.  

Table 5.1 Perspex properties. 

Beam length (m) 
Mode Frequency 

(Hz) 
Young's modulus 

(GPa) 
Internal loss factor (-) 

0.15 
(Bending Type A) 

1 589.4 4.99 0.0467 
2 3567 4.65 0.0332 
3 9260 4.00 0.0328 
4 20380 5.04 0.0224 

0.15  
(Bending Type B) 

1 1173.8 4.94 0.0398 
2 6280.3 3.60 0.0310 
3 18563 4.02 0.0350 

0.17 

1 465 5.12 0.0489 
2 2855.9 4.92 0.0354 
3 7486 4.31 0.0329 
4 13454 3.63 0.0346 

0.2 

1 336.5 5.14 0.0594 
2 2098.1 5.08 0.0364 
3 5627 4.66 0.0333 
4 10335 4.10 0.0308 

0.5 

1 51 4.61 0.0686 
2 331 4.94 0.0529 
3 929.8 4.97 0.0417 
4 1808.5 4.90 0.0379 
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Young’s modulus shows no significant variation with increasing frequency, σ/µ≈0.11; 

hence the mean value is used to describe Perspex at all frequencies up to 20 kHz. The 

mean value of the Young’s modulus is 4.59×109 Pa with a standard deviation of 

0.51×109 
Pa. 

The measured ILFs are plotted against frequency in Figure 5.3. This indicates that the 

internal loss factor varies with frequency. Below 3000 Hz the ILF increases with 

decreasing frequency. However the ILF is relatively constant between 3000 and 20000 

Hz and has a mean value of 0.0330 with a standard deviation of 0.0015. Note that that 

this value is lower than the value of 0.06 that is sometimes quoted in the literature [e.g. 

3]; hence it appears that the generic name ‘Perspex’ is insufficient to describe the 

properties of all the different varieties. For a viscoelastic material the damping and 

stiffness are dependent upon frequency and temperature. Three states, the rubbery 

region, the transition region and the glassy region can be used to describe the material 

behaviour [73,86,87] over a broad frequency range. The ILF is a maximum in the 

transition region, and then decreases into the glassy region. In this work, all the 

experiments are conducted at room temperature around 20°C and the ILF mainly 

depends on the frequency.  
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Figure 5.3 Measured internal loss factors. 

For the prediction models it is convenient to have estimates of the ILFs for each one-

third octave band, hence a linear polynomial fit to the measured ILFs is used to 

determine values at the one-third octave band centre frequencies. The polynomial fitted 
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ILFs shown in Figure 5.4 will be used in the comparison of analytical models and 

experiments. These internal loss factors (along with Poisson’s ratio and Young’s 

modulus) are summarized in Table 5.2. 

 

Figure 5.4 Internal loss factors for each third-octave band. 

Table 5.2 Measured material properties of Perspex. 

Material Density (kg/m3) Young’s modulus 
(Pa) 

Poisson’s ratio 

Perspex 1183.74 4.59×109 0.3 
Frequency (Hz) Internal loss factor (-) Frequency (Hz) Internal loss factor (-) 

10 0.0558 500 0.0519 
12.5 0.0557 630 0.0508 
16 0.0557 800 0.0495 
20 0.0557 1000 0.0479 
25 0.0556 1250 0.0459 

31.5 0.0556 1600 0.0431 
40 0.0555 2000 0.0399 
50 0.0554 2500 0.0359 
63 0.0553 3150 0.0324 
80 0.0552 4000 0.0324 
100 0.0550 5000 0.0324 
125 0.0548 6300 0.0324 
160 0.0546 8000 0.0324 
200 0.0542 10000 0.0324 
250 0.0538 12500 0.0324 
315 0.0533 16000 0.0324 
400 0.0527 20000 0.0324 
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5.2 Vibration measurement on coupled beams 

5.2.1 Spatial average 

The vibration transmission on frameworks of beams is evaluated by the energy level 

difference given by equation(3-14). In the FEM models it is possible to use rain-on-the-

roof excitation but this is not feasible for laboratory measurements, hence the energy 

level difference is determined using point excitation for a number of different excitation 

positions by averaging the results. This approach can be used to approximate 

statistically independent excitation such as rain-on-the-roof [88]. 

For each excitation position on the source beam, the spatial average mean-square 

velocity is needed for the source and receiving beams for which the energy level 

difference specific to the excitation position is calculated using 
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where s is the sth excitation position, M and N are the numbers of measuring points on 

source and receiving beams respectively, im  and jm are the mass of subsystems i and j.  

The energy level difference, DE,ij, between the source and receiving subsystems is then 

calculated by taking the mean value of all energy level differences for all excitation 

positions using 
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D D
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The standard deviation dBs  of all T shaker positions can then be calculated by 
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According to [61] the spatial variation can be described with an estimate of 95% 

confidence interval calculated using the standard statistical formula 
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 95% 0.975
dBs

CI t
T

=   (5-6) 

where 0.975t  is the value of student t-distribution for T-1 degrees of freedom and a 

probability of 0.975. 

5.2.2 Experimental setup 

The velocity levels on the beams are measured by the Polytec PDV100 laser 

vibrometer. A broadband excitation signal is applied over the frequency range from 10 

Hz to 20000 Hz. A graphic equalizer (Ultragraph) is used to adjust the amplifications in 

each one-third octave band so that a relatively flat spectrum is obtained on the source 

beam. The experimental setup is shown in Figure 5.5. 

 

Figure 5.5 Experiment setup for vibration measurements on beam junctions. 

Before the measurements, several beams with cross-section 0.02 m×0.01 m were cut 

from the same Perspex plate. These beams are connected using cyanoacrylate adhesive 

to form different beam junctions and a truss beam.  

Each beam frame is suspended using elastic bands from several vertical supports. A 

spirit level is used to make sure that the beam frame lies in the horizontal plane. To 

ensure a well-focused laser spot on the transparent perspex beam, the positions to be 

measured on the beam are marked with dark blue pen. The laser vibrometer is placed on 

a platform for which the height can be adjusted. 
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Figure 5.6 Experimental setup for measurement of Type A bending wave motion on L-

junction (relevant to BL model). 

As shown in Figure 5.6, Figure 5.9 and Figure 5.11 the source beam and the shaker are 

connected in the horizontal plane by a bolt which is screwed into the shaker. In this way 

the bending displacement occurs in the horizontal plane so that the BL model can be 

measured. If the source beam is excited in the vertical direction shown in Figure 5.7, 

out-of-plane bending wave motions and torsional wave motions can be generated in the 

beams. To measure the BT model, the laser vibrometer is placed on a tripod to measure 

the velocity on the upper surface of the beams shown in Figure 5.8, Figure 5.10 and 

Figure 5.12. 

Background vibration was measured to ensure that the signal level is at least 10 dB 

above background at all points on all beams. The time average of each measuring points 

was carried out for 30 seconds. 
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Figure 5.7 Bolt connection between shaker and beam. 

 

Figure 5.8 Experimental setup for measurement of Type B bending wave motion on L-

junction (relevant to BT model). 



137 
 

 

Figure 5.9 Experimental setup for measurement of Type A bending wave motion on 

rectangular beam frame (relevant to BL model). 

 

Figure 5.10 Experimental setup for measurement of Type B bending wave motion on 

rectangular beam frame (relevant to BT model). 
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Figure 5.11 Experimental setup for measurement of Type A bending wave motion on 

three-bay truss beam (relevant to BL model). 

 

Figure 5.12 Experimental setup for measurement of Type B bending wave motion on 

three-bay truss beam (relevant to BT model). 
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5.3 Beam constructions 

Measurements were carried out on an L-junction, a square beam frame and a three-bay 

truss beam frame, each with excitation of Type A and B bending waves.  

An L-junction was formed from a 1.3 m length (beam 1) and a 1.0 m length beam 

(beam 2) with a cross section of 0.02 m x 0.01 m. Beam lengths 1.3 m and 1.0 m were 

measured from the centre line of the joint. The rectangular beam frame was formed by 

joining together two L-junctions.  

Ten excitation positions and six measurement positions were used for the L-junctions 

and the rectangular beam framework as indicated on Figure 5.13 (a) and (b). On the L-

junction and the rectangular beam framework the measurement positions were chosen to 

be away from the nearest excitation position by at least 0.04 m and 0.05 m, respectively. 

The three-bay truss beam was made from beams that were 0.40 m and 0.45 m in length 

with a cross-section of 0.02 m x 0.01 m. These beams are approximately half the length 

of the beams used in the rectangular beam framework in order to (a) reduce propagation 

losses, (b) increase the likelihood of indirect coupling and (c) allow measurable velocity 

levels on the furthest beam.  

The three-bay truss beam is modelled as ten coupled beams in SEA and ASEA, but to 

minimise the number of glued joints it was built from six beams as indicated in Figure 

5.13 (c). Four excitation positions and four measurement positions were used on each 

beam as shown in Figure 5.13 (c). Out-of-plane velocities were measured on all beams 

except beams 2, 5 and 8 which were not essential due to the structural symmetry. 
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Figure 5.13 Sketch of the excitation and measurement positions on (a) L-junction, (b) 

rectangular beam frame, (c) three-bay truss beam frame. 
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5.4 Summary 

In this chapter, measurements of the Perspex beam properties such as density, Young’s 

modulus and internal loss factor are reported.  

The Young’s modulus and internal loss factor are determined using an impedance 

method. Based on five beam samples of which the resonance frequencies are distributed 

from 10 Hz to 20 kHz, the calculated internal loss factors show dependent on frequency. 

Thus the interpolated internal loss factors from the linear polynomial fitted values are 

given for each one-third octave band.  

Measurements of vibration level differences were carried out on an L-junction, 

rectangular beam and three-bay truss. A laser vibrometer was used to measure out-of-

plane velocity on the coupled beams in order to avoid errors due to mass loading at high 

frequencies. The experimental setup used for vibration measurements on coupled beams 

(BL and BT models) was described which will be used for the validation of the FEM, 

SEA and ASEA models in Chapter 6. 
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6. Comparison of measurements with FEM, SEA and ASEA 

6.1 Introduction 

This chapter compares the experimental results with predictions using FEM, SEA and 

ASEA. It begins with a summary of the dynamic properties of the beams in terms of the 

phase and group velocities, mode count and modal overlap factors in section 6.2. In 

later sections, comparisons of measurements, FEM, SEA and ASEA are carried out for 

BL and BT models of an L-junction, a rectangular beam frame and a three-bay truss 

beam. 

In this chapter the modelling using FEM assumes that there is no uncertainty in the 

material properties of dimensions of beams that form the L-junction, rectangular beam 

frame and three-bay truss beam. This means that the three-bay truss beam represents a 

perfectly periodic structure. 

This chapter considers both Euler-Bernoulli and Timoshenko theory for FEM, SEA and 

ASEA models in order to assess (a) the validity of FEM elements and (b) the proposal 

to implement thick beam theory in SEA and ASEA by accounting for the change in 

group velocity. 

The material properties and geometric dimensions of the beams for measurements and 

analysis in this chapter are given in Table 5.2 and section 5.3. 

6.2 Dynamic properties of the beams 

6.2.1 Group and phase velocities 

The analysis up to 20 kHz would be below the second spectrum cut-off frequency but 

which is sufficiently high to assess whether changing the group velocity in the coupling 

loss factor is sufficient for the SEA and ASEA models. For Type A bending waves (i.e. 

across the 10mm dimension), fco=61441 Hz, and fB(thin)=10537 Hz and for Type B 

bending waves (i.e. across the 20 mm thickness), fco=30720 Hz and fB(thin)=5268 Hz.  
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Figure 6.1 Group and phase velocities for (a) Type A bending waves and (b) Type B 

bending waves. Percentage difference in the group and phase velocities from Euler-

Bernoulli and Timoshenko theories relative to Euler-Bernoulli theory for (c) Type A 

bending waves and (d) Type B bending waves. 

Figure 6.1 (a) and (b) allows comparison of the group and phase velocities calculated 

with Euler-Bernoulli and Timoshenko beam theory. With increasing frequency, the 

effects of rotatory inertia and shear deformation become important. This leads to the 

phase and group velocities for Timoshenko theory being lower than with Euler-

Bernoulli theory and tending towards a plateau rather than continually increasing with 

frequency. Figure 6.1 (c) and (d) shows that the percentage differences between 

Timoshenko and Euler-Bernoulli theory become larger for group velocity than phase 

velocity. Hence although the thin beam limit is based on a 10% difference in phase 

velocity, the corresponding percentage difference in group velocity is a factor of ≈2.5 

times higher. It is the latter which is relevant to the calculation of the coupling loss 
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factor and will be assessed through comparison on measurements, FEM, SEA and 

ASEA. 

6.2.2 Mode count and modal overlap 

The local modes counts for 1.3 m and 1.0 m perspex beam in measurements are shown 

in Figure 6.2 assuming both ends of the beam are clamped for bending modes, 

longitudinal and torsional modes. This idealised boundary condition provides a 

reasonable estimate for the rectangular beam frame but conservative estimates for the L-

junctions where each beam has one free boundary.  

Below 315 Hz there is no more than one bending mode in each one-third octave band 

for Type A and Type B bending modes and no longitudinal or torsional modes. Of 

relevance to the BT model is that (a) between 315 Hz and 4 kHz there are no more than 

two torsional modes in each band and between one and three Type B bending modes 

and (b) between 5 kHz and 20 kHz there are between two and five Type B bending 

modes and between three and thirteen torsional modes in each band. Of relevance to the 

BL model is that (a) between 800 Hz and 4 kHz there is no more than one longitudinal 

mode in each band and between one and three Type A bending modes and (b) between 

4 kHz and 20 kHz there are between two and seven Type A bending modes and between 

one and six longitudinal modes in each band. Hence it is only above 4 kHz that all wave 

types have at least two modes in each band and it is at this frequency that the transition 

from Euler-Bernoulli to Timoshenko theory is expected to be significant. 
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Figure 6.2 Mode counts for 1.3 m and 1.0 m beams. (a) Type A bending waves (b) Type 

B bending waves (c) Longitudinal waves (d) Torsional waves. 

The modal overlap factors in Figure 6.3 are shown using lower and upper values that 

are determined from the two different beam lengths (1.0 m and 1.3 m) in the isolated L-

junction and the rectangular beam frame. These are calculated using the statistical 

modal density, n(f), instead of the mode count to give smoother curves. For bending and 

longitudinal waves the modal overlap factor does not begin to approach unit until 20 

kHz although for torsional waves it reaches unit above 10 kHz. 
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Figure 6.3 Modal overlap factors for 1.3 m and 1.0 m beams with (a) BL model and (b) 

BT model. 

Local mode counts of the isolated beams (length 0.45 m and 0.4 m) are shown in Figure 

6.4 and are calculated by assuming clamped boundaries at each end. The implication of 

using shorter beams than the former group of beams is that the lowest mode occurs in 

the 125 Hz octave band. In this chapter it is concluded that when consecutive frequency 

bands have at least one local mode on the source or receiving beams the modal 

fluctuations can be significantly reduced, and this facilitates comparison with SEA and 

ASEA. Hence using octave bands for the three-bay truss will satisfy this requirement. 
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Figure 6.4 Mode counts for 0.45 m and 0.4 m beams. (a) Type A bending waves (b) 

Type B bending waves (c) Longitudinal waves (d) Torsional waves. 

The modal overlap factors for the 0.45 m and 0.40 m beams are shown in Figure 6.5. 

These have been calculated using the statistical modal density in order to give smooth 

curves, and use the total loss factors that are determined from the two different lengths 

(0.45 m and 0.40 m) and two different cases in the three-bay truss. For Type A bending, 

Type B bending, longitudinal and torsional motions the modal overlap factors are all 

smaller than unit within the considered octave bands from 125 Hz to 16 kHz. 
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Figure 6.5 Modal overlap factors for 0.45m and 0.40 m beams with (a) BL model and 

(b) BT model. 

6.3 BL model on L junction 

Figure 6.6 shows results for the BL model of the L-junction with excitation of Type A 

bending waves on beam 1. For EB1/EB2 the comparison of seven nominally identical L-

junctions in Figure 6.6 (a) confirms that the bonding of the junctions and the test 

procedure is repeatable with 1.8 dB over the entire frequency range.  
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Figure 6.6 L-junction - BL model with bending wave excitation on subsystem B1: (a) 

comparison of measured data on seven nominally identical L-junctions; (b) comparison 

of measurements, FEM, SEA and ASEA; (c) and (d) comparison of FEM, SEA and 

ASEA. , Measurement; , FEM (Euler-Bernoulli elements); , FEM 

(Timoshenko elements); , SEA (Euler-Bernoulli group velocity); , SEA 

(Timoshenko group velocity); , ASEA (Euler-Bernoulli group velocity); , 

ASEA (Timoshenko group velocity). Results from measurements and FEM are shown 

with 95% confidence intervals. 

Figure 6.6 (b) compares measured and predicted EB1/EB2. Below 315Hz there are only 

bending modes and there are large modal fluctuations in the energy level difference. 

This is attributed to the fact that (a) each one-third octave band typically contains only 

one local bending mode which is attributed to either the source or the receiving beam 

and (b) modal overlap factors that are typically <0.2 (see Figure 6.3). Hence whilst there 

is reasonable agreement (≤ 6.5 dB) between measurements and FEM (nominally 

identical results for Euler-Bernoulli and Timoshenko elements), SEA and ASEA could 
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only give a reasonable estimate of the response if the frequency bands were much wider 

than one-third octave bands. Between 315 Hz and 2 kHz the mean values from the FEM 

models using Euler-Bernoulli and Timoshenko elements are within 1dB of each other. 

In this frequency range, measurements show reasonable agreement (≤ 2.7 dB) with 

FEM, SEA and ASEA models. Between 2 kHz and 12.5 kHz, the mean values from the 

FEM models using Euler-Bernoulli and Timoshenko elements become larger than 1dB 

but the 95% confidence intervals tend to overlap. At and above the 12.5 kHz band, the 

difference between Timoshenko and Euler-Bernoulli group velocities is ≥26%; 

meanwhile, the FEM models using Euler-Bernoulli and Timoshenko elements differ by 

3.9 dB to 7.2 dB and the confidence intervals no longer overlap. Between 12.5 kHz and 

20 kHz the two FEM models differ by 2.1dB to 7.2dB, the two SEA models by 1.1dB to 

1.6dB and the two ASEA models by 1.2dB to 1.8dB; hence only FEM indicates 

significant differences. Between 12.5 kHz and 20 kHz, FEM using Euler-Bernoulli 

elements shows closest agreement with SEA and ASEA using Euler-Bernoulli group 

velocity, and FEM using Timoshenko elements shows closest agreement with SEA and 

ASEA using Timoshenko group velocity. However, the mean values for measurements 

show closer agreement with FEM, SEA and ASEA using Euler-Bernoulli elements, 

rather than Timoshenko elements which would have been expected. This can be 

attributed to the fact that the 95% confidence limits for the measurements are ≈2dB. 

With <2dB difference between the predicted values for Euler-Bernoulli and 

Timoshenko theories it is not possible to draw strong conclusions on the validity of 

Timoshenko theory from the measured data on this L-junction.  

Figure 6.6 (c) and (d) allow an assessment of the conversion from bending waves on the 

source subsystem to longitudinal waves on a receiving subsystem. Between 10 Hz and 

630 Hz there is in-plane motion but this is due to bending wave motion because there 

are no local longitudinal modes in this frequency range. Hence results are only shown 

from 800 Hz to 20 kHz. Above 2.5 kHz there is at least one longitudinal mode in 

consecutive frequency bands and the fluctuations are significantly reduced in 

comparison to those between 800 Hz and 2.5 kHz. Between 4 kHz and 20 kHz there are 

(a) at least two bending and two longitudinal modes in each band and (b) the modal 

overlap factors increase from 0.4 to 1 for bending modes, and from 0.1 to 0.9 for 

longitudinal modes. Compared to lower frequencies the FEM curves in this frequency 

range are smooth which facilitates comparison with SEA and ASEA. For EB1/EL1 on 
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Figure 6.6 (c), the 95% confidence intervals for FEM using Euler-Bernoulli elements 

overlap the SEA and ASEA predictions using Euler-Bernoulli group velocity. However, 

the average values for FEM using Timoshenko elements show much closer agreement 

with ASEA using Timoshenko group velocity. For EB1/EL2 on Figure 6.6 (d) the 

confidence intervals from FEM using Euler-Bernoulli and Timoshenko elements tend to 

overlap each other up to 16 kHz. These confidence intervals also overlap SEA and 

ASEA predictions using Euler-Bernoulli or Timoshenko group velocities; hence as with 

the bending energy level differences it is not possible to conclude which group velocity 

is more appropriate on this L-junction. 

Figure 6.7 allows an assessment of conversion from longitudinal to bending waves with 

longitudinal waves excited on the source subsystem of the L-junction. In contrast to 

Figure 6.6 with bending wave excitation, the 95% confidence intervals for FEM data 

with Euler-Bernoulli and Timoshenko elements overlap; hence there is no significant 

difference between them. For EL1/EL2 on Figure 6.7 (c), the fluctuations are significantly 

reduced above 2.5 kHz where both beams have at least one longitudinal mode in 

consecutive frequency bands.  
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Figure 6.7 L-junction - BL model with longitudinal wave excitation on subsystem L1: 

comparison of FEM, SEA and ASEA. , FEM (Euler-Bernoulli elements); , 

FEM (Timoshenko elements); , SEA (Euler-Bernoulli group velocity); , 

SEA (Timoshenko group velocity); , ASEA (Euler-Bernoulli group velocity); 

, ASEA (Timoshenko group velocity). Results from FEM are shown with 95% 

confidence intervals. 

6.4 BL model on rectangular beam frame 

Figure 6.8 shows results for the BL model of the rectangular beam frame with excitation 

of Type A bending waves on beam 1. 
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Figure 6.8 Rectangular beam frame - BL model with bending wave excitation on 

subsystem B1: (a), (b) and (c) comparison of measurements, FEM, SEA and ASEA; (d), 

(e) and (f) comparison of FEM, SEA and ASEA. , Measurement; , FEM 

(Euler-Bernoulli elements); , FEM (Timoshenko elements); , SEA (Euler-

Bernoulli group velocity); , SEA (Timoshenko group velocity); , ASEA 
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(Euler-Bernoulli group velocity); , ASEA (Timoshenko group velocity). Results 

from measurements and FEM are shown with 95% confidence intervals. 

As with the L-junction, the main difference between the Euler-Bernoulli and 

Timoshenko models occurs above 2 kHz for which the two FEM models differ by up to 

7 dB whereas the two SEA models only differ by up to 1.6 dB and the two ASEA 

models by up to 1.7 dB. On Figure 6.8 (a) and (b), measurements above 2 kHz show 

closest agreement with FEM, SEA and ASEA using Euler-Bernoulli theory for 

transmission to beams 2 and 3 (both of which are directly connected to beam 1). 

However, for transmission to beam 4 (which is not physically connected to the source 

beam) the results in Figure 6.8 (c) indicate that FEM with either Euler-Bernoulli or 

Timoshenko elements agree closely with measurements. For transmission to beams 2 

and 3, SEA and ASEA models are within 0.2 dB of each other. For transmission to 

beam 4, ASEA is ≈0.9 dB lower than SEA. Up to 10 kHz, ASEA is lower than SEA 

which indicates the presence of tunnelling mechanisms, but this indirect transmission 

appears to be underestimated because the level differences from measured and FEM 

data are lower than ASEA. Above 10 kHz, ASEA indicates that there is no tunnelling 

but there are significant propagation losses. These become more pronounced when 

using Timoshenko instead of Euler-Bernoulli theory due to the lower group speed 

which increases the power lost as the wave propagates across each beam. 

Figure 6.8 (d), (e) and (f) assesses the conversion from bending waves on the source 

subsystem to longitudinal waves on a receiving subsystem. For EB1/EL1 on Figure 6.8 

(d), FEM using Euler-Bernoulli elements shows closest agreement with SEA using 

Euler-Bernoulli group velocity and FEM using Timoshenko elements shows closest 

agreement with ASEA using Timoshenko group velocity. For EB1/EL2 on Figure 6.8 (e) 

the confidence intervals from FEM using Euler-Bernoulli and Timoshenko elements 

overlap up to 20 kHz and both show closest agreement with SEA or ASEA using Euler-

Bernoulli group velocity. Above 2 kHz for EB1/EL4 on Figure 6.8 (f) there is clear 

evidence that FEM with Euler-Bernoulli elements shows closest agreement with ASEA 

using Euler-Bernoulli group velocity, and FEM with Timoshenko elements shows 

closest agreement with ASEA using Timoshenko group velocity. At 20 kHz the 

difference between Euler-Bernoulli and Timoshenko models is ≈7dB for both FEM and 

ASEA. The fact that ASEA shows close agreement with FEM using Timoshenko 
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elements and that the energy level differences with ASEA are higher than SEA confirms 

the presence of significant propagation losses because this mechanism is included in 

ASEA, but not in SEA. It also confirms the assumption in ASEA that phase effects can 

be ignored. 

6.5 BT model on L junction 

Figure 6.9 shows results for the BT model of the L-junction with excitation of Type B 

bending waves on beam 1. 
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Figure 6.9 L-junction - BT model with bending wave excitation on subsystem B1: (a) 

comparison of measurements, FEM, SEA and ASEA; (b), (c) and (d) comparison of 

FEM, SEA and ASEA. , Measurement; , FEM (Euler-Bernoulli elements); 

, FEM (Timoshenko elements); , SEA (Euler-Bernoulli group velocity); 

, SEA (Timoshenko group velocity); , ASEA (Euler-Bernoulli group 
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velocity); , ASEA (Timoshenko group velocity). Results from FEM are shown 

with 95% confidence intervals. 

For EB1/EB2, Figure 6.9 (a) shows that below 315 Hz there are large fluctuations which 

are due to (a) only one local bending mode (no torsional modes) in either the source or 

the receiving beam in each frequency band and (b) modal overlap factors that are 

typically <0.2 (see Figure 6.3). These fluctuations reduce significantly as soon as 

consecutive frequency bands contain at least one local bending mode. As with the BL 

model there is reasonable agreement between measurements and FEM (Euler-Bernoulli 

and Timoshenko elements). Above 315 Hz there are both bending and torsional modes 

but there are large fluctuations in the first few bands which reduce significantly as soon 

as consecutive frequency bands contain at least one local torsional mode. Between 315 

Hz and 5 kHz, the confidence limits of both measurements and FEM (Euler-Bernoulli 

and Timoshenko elements) tend to overlap both the SEA and ASEA predictions. At and 

above the 6.3 kHz band, the difference between Timoshenko and Euler-Bernoulli group 

velocities is ≥26%. For 6.3 kHz to 20 kHz it is found that the two FEM models differ by 

1 dB to 3.5 dB, the two SEA models by 1dB to 2.6 dB and the two ASEA models by 1.2 

dB to 2.9 dB. Up to 20 kHz there is overlap between the 95% confidence intervals from 

measurements and both FEM models such that both Euler-Bernoulli and Timoshenko 

elements can be considered as appropriate.  

Figure 6.9 (b) and (c) allow an assessment of the conversion from bending waves on the 

source subsystem to torsional waves on a receiving subsystem. There are no local 

torsional modes between 10Hz and 250 Hz; however there is in-plane motion due to the 

bending wave motion. For this reason, results for EB1/ET1 and EB1/ET2 are only shown 

from 315 Hz to 20 kHz. Between 6.3kHz and 20 kHz there are (a) at least two bending 

and two torsional modes in each band and (b) the modal overlap factors increase from 

0.4 to 0.7 for bending modes, and from 0.5 to 1.4 for torsional modes. In this frequency 

range the FEM results are relatively smooth. Above 6.3 kHz for EB1/ET1 on Figure 6.9 

(b) and EB1/ET2 on Figure 6.9 (c), FEM using Euler-Bernoulli elements shows closest 

agreement with SEA or ASEA using Euler-Bernoulli group velocity, and FEM using 

Timoshenko elements shows closest agreement with SEA or ASEA using Timoshenko 

group velocity.  
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Figure 6.10 L-junction - BT model with torsional wave excitation on subsystem T1: 

comparison of FEM, SEA and ASEA. , FEM (Euler-Bernoulli elements); , 

FEM (Timoshenko elements); , SEA (Euler-Bernoulli group velocity); , 

SEA (Timoshenko group velocity); , ASEA (Euler-Bernoulli group velocity); 

, ASEA (Timoshenko group velocity). Results from measurements are shown 

with 95% confidence intervals. 

Figure 6.10 allows an assessment of conversion from torsional to bending waves with 

torsional waves excited on the source subsystem of the L-junction. As with longitudinal 

wave excitation, FEM results with Euler-Bernoulli or Timoshenko elements are similar 

with overlapping 95% confidence intervals. For ET1/ET2, the mean FEM data follow 

ASEA rather than SEA above 3.15 kHz. 
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6.6 BT model on rectangular beam frame 

Figure 6.11 shows the results for the BT model of the rectangular beam frame with 

excitation of Type B bending waves on beam 1. 
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Figure 6.11 Rectangular beam frame - BT model with bending wave excitation on 

subsystem B1: (a), (b) and (c) comparison of measurements, FEM, SEA and ASEA; (d), 

(e) and (f) comparison of FEM, SEA and ASEA. , Measurement; , FEM 
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(Euler-Bernoulli elements); , FEM (Timoshenko elements); , SEA (Euler-

Bernoulli group velocity); , SEA (Timoshenko group velocity); , ASEA 

(Euler-Bernoulli group velocity); , ASEA (Timoshenko group velocity). Results 

from measurements and FEM are shown with 95% confidence intervals. 

On Figure 6.11(a), (b) and (c) the confidence intervals for measurements and FEM 

(Euler-Bernoulli or Timoshenko elements) tend to overlap below 315 Hz. For EB1/EB2 

and EB1/EB3 between 315 Hz and 5 kHz, FEM using Euler-Bernoulli and Timoshenko 

elements are nominally identical, and the difference compared with measurements is 

between 0.1 dB and 2.9 dB. For EB1/EB4 between 315 Hz and 2 kHz, FEM using Euler-

Bernoulli and Timoshenko elements are similar, and the difference compared with 

measurements is between 0.2 dB and 2.2 dB. However, for EB1/EB4 above 2 kHz it is 

clear that there is closest agreement with FEM using Timoshenko elements; this is 

evident near the peak in the energy level difference at 4 kHz. In general, the 

measurements above 2 kHz follow the trends indicated by FEM using Timoshenko 

elements. Below 2 kHz, comparison of FEM with SEA and ASEA indicates that for 

EB1/EB2, EB1/EB3 and EB1/EB4, SEA and ASEA tend to overestimate the energy level 

difference. Above 2 kHz, FEM using Euler-Bernoulli elements follows the general 

trends of SEA or ASEA using Euler-Bernoulli group velocity. In comparison, FEM 

using Timoshenko elements shows close agreement with SEA or ASEA using 

Timoshenko group velocity. For EB1/EB4 above 6.3 kHz, FEM using Timoshenko 

elements closely follows ASEA using Timoshenko group velocity. This agreement, and 

the fact that ASEA has significantly higher energy level differences than SEA, indicates 

that ASEA correctly incorporates these high propagation losses. 

Figure 6.11 (d), (e) and (f) allow an assessment of the conversion from bending waves 

on the source subsystem to torsional waves on a receiving subsystem. Above 2 kHz 

there are at least two bending and two torsional modes in each frequency band (modal 

overlap factor is at least 0.2 for both bending and two torsional waves) and the FEM 

curves become relatively smooth. For EB1/ET2 and EB1/ET4 between 2 kHz and 20 kHz, 

FEM using Euler-Bernoulli elements follows the general trends of SEA or ASEA using 

Euler-Bernoulli group velocity, and FEM using Timoshenko elements closely follows 

ASEA using Timoshenko group velocity. Again, this confirms the assumption in ASEA 

that phase effects can be ignored. Referring back section 0, the transmission coefficients 
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from bending waves on one beam to torsional waves on the other beam are highest 

above 6.3 kHz. Hence the combination of high propagation losses with Timoshenko 

group velocity and wave conversion at each junction results in high energy level 

differences (e.g. 34 dB for EB1/EB4 at 20 kHz predicted using ASEA and FEM using 

Timoshenko elements). 

6.7 BL model on the truss 

6.7.1 Bending wave excitation 

Figure 6.12 shows the results for the BL model of the three-bay truss with excitation of 

Type A bending waves on beam 1. 
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Figure 6.12 BL model of bending wave transmission on the truss beam frame  (Source 

subsystem: B1): (a), (b), (c), (d), (e) and (f) comparison of FEM, SEA and ASEA 

predictions with measurements; (g), (h), (i), (j), (k), (l) and (m) comparison of FEM, 

SEA and ASEA predictions. , Measurement; , FEM (Euler-Bernoulli 

elements); , FEM (Timoshenko elements); , SEA (Euler-Bernoulli group 

velocity); , SEA (Timoshenko group velocity); , ASEA (Euler-Bernoulli 

group velocity); , ASEA (Timoshenko group velocity). Results from 

measurements and FEM are shown with 95% confidence intervals. 

Figure 6.12 (a) to (f) compares measured and predicted energy level differences for the 

BL model where bending waves are excited on the source subsystem and the receiving 

subsystem represents bending wave energy. For octave bands from 125 Hz to 1 kHz 

there are only bending modes and each band typically contains at least one local 

bending mode for the source and receiving beams. In general there is close agreement 

(<3 dB) between the average values from measurements, FEM (Euler-Bernoulli and 

Timoshenko elements) and ASEA (Euler-Bernoulli and Timoshenko group velocity). 
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For EB1/EB3 (i.e. adjacent coupled beams) SEA and ASEA are nominally identical; 

however, as the source and receiving subsystems become more distant from each other, 

ASEA gives significantly lower energy level differences than SEA. This indicates the 

importance of indirect coupling when there is only bending wave motion. 

Between 2 kHz and 16 kHz there are both bending and longitudinal modes. 

Measurements show closer agreement with FEM using Euler-Bernoulli elements than 

Timoshenko elements for EB1/EB3, EB1/EB6, and EB1/EB9. However, for EB1/EB4, EB1/EB7, 

and EB1/EB10, measurements and FEM using Euler-Bernoulli or Timoshenko elements 

are similar. In general, FEM using Euler-Bernoulli elements shows closest agreement 

with ASEA using Euler-Bernoulli group velocity, and FEM using Timoshenko elements 

shows closest agreement with ASEA using Timoshenko group velocity. This is clearer 

for EB1/EB6 and EB1/EB9 than for EB1/EB4, EB1/EB7, and EB1/EB10. With increasing 

frequency, the generation of longitudinal waves typically increases the indirect coupling 

and ASEA gives significantly lower energy level differences than SEA as the beams 

become more distant from the source. However, the largest differences between SEA 

and ASEA do not always occur in the highest frequency band; for example, the largest 

difference for EB1/EB9 is ≈3 dB in the 8 kHz band which reduces to ≈2 dB at 16 kHz. In 

general, measurements and FEM show closer agreement with ASEA rather than SEA 

due to the existence of indirect coupling. 

Figure 6.12 (g) to (m) allow comparison of predicted energy level differences for the 

BL model where bending waves are excited on the source subsystem and the receiving 

subsystem represents longitudinal wave energy. These results show similarly close 

agreement between FEM and ASEA that were identified above when both the source 

and receiving subsystems contain bending wave energy. The main finding is that ASEA 

provides a better estimate of vibration transmission than SEA. 

6.7.2 Longitudinal wave excitation 

Figure 6.13 shows the results for the BL model of the three-bay truss with excitation of 

longitudinal waves on beam 1. 
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Figure 6.13 BL model of longitudinal wave transmission on the truss beam frame 

(Source subsystem: L1): comparison of FEM, SEA and ASEA predictions. , FEM 

(Euler-Bernoulli elements); , FEM (Timoshenko elements); , SEA (Euler-

Bernoulli group velocity); , SEA (Timoshenko group velocity); , ASEA 

(Euler-Bernoulli group velocity); , ASEA (Timoshenko group velocity). Results 

from FEM are shown with 95% confidence intervals. 

Figure 6.13 (a) to (g) allow comparison of predicted energy level differences for the BL 

model where longitudinal waves are excited on the source subsystem and the receiving 

subsystem represents bending wave energy. In general, EL1/EB1, EL1/EB4, EL1/EB7 and 

EL1/EB10 show closer agreement between FEM and ASEA than EL1/EB3, EL1/EB6 and 

EL1/EB9. The largest difference between FEM and ASEA occurs with EL1/EB9 and is ≈5 

dB. This is unlikely to be attributed to low mode counts for longitudinal modes because 

this difference is almost constant between 2 kHz and 16 kHz over which the mode count 

increases from one to five modes on each beam. 

Figure 6.13 (h) to (m) allow comparison of predicted energy level differences for the 

BL model where longitudinal waves are excited on the source subsystem and the 

receiving subsystem represents longitudinal wave energy. Referring back to Figure 2.22 

for the T123-junction it is seen that the transmission coefficient τL1L3 > 0.7 above 2 

kHz; hence there will be strong coupling of longitudinal wave energy between 

subsystems L3 and L6, and L6 and L9. However, there is reasonable agreement between 

FEM and ASEA for both Euler-Bernoulli and Timoshenko theory for EL1/EL3,  EL1/EL6 

and EL1/EL9. In contrast, for EL1/EL4,  EL1/EL7 and EL1/EL10 there are significant 

differences between FEM and ASEA and these differences become larger as the 
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receiving subsystem is more distant from the source subsystem, on average the 

differences are 3 dB, 5 dB and 10 dB respectively. This indicates that incorporating 

high coupling loss factors (due to high transmission coefficients) does not cause any 

obvious problems with strong coupling. 

6.8 BT model on the truss 

6.8.1 Bending wave excitation 

Figure 6.14 shows the results for the BT model of the three-bay truss with excitation of 

Type B bending waves on beam 1. 
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Figure 6.14 BT model of bending wave transmission on the truss beam frame  (Source 

subsystem: B1): (a), (b), (c), (d), (e) and (f) comparison of FEM, SEA and ASEA 

predictions with measurements; (g), (h), (i), (j), (k), (l) and (m) comparison of FEM, 

SEA and ASEA predictions. , Measurement; , FEM (Euler-Bernoulli 

elements); , FEM (Timoshenko elements); , SEA (Euler-Bernoulli group 

velocity); , SEA (Timoshenko group velocity); , ASEA (Euler-Bernoulli 

group velocity); , ASEA (Timoshenko group velocity). Results from 

measurements and FEM are shown with 95% confidence intervals. 

Figure 6.14 (a) to (f) allow comparison of measured and predicted energy level 

differences for bending wave excitation where both source and receiving subsystems 

contain bending wave energy. The two octave bands from 250 Hz to 500 Hz have only 

bending modes and each band typically contains at least one local bending mode for the 

source and receiving beams. For EB1/EB3, EB1/EB4, EB1/EB6, and EB1/EB7 there is close 

agreement (<3.5 dB) between measurements, FEM, SEA and ASEA (Euler-Bernoulli 

and Timoshenko theory are nominally identical). However, for the more distant 
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subsystems 9 and 10, SEA overestimates the energy level difference by ≈3.8 dB and 

there is closer agreement between measurements, FEM and ASEA (≤3.4dB with 

confidence interval overlapped each other).  

For octave bands from 1 kHz to 16 kHz there are both bending and torsional modes. 

Measured data tends to show closest agreement (<3.6 dB) with FEM and ASEA using 

Timoshenko rather than Euler-Bernoulli theory. This is particularly evident at and 

above the 8 kHz band where the difference between Timoshenko and Euler-Bernoulli 

group velocities is ≥26%. Hence there is evidence to support using this crossover point 

to change from using Euler-Bernoulli to Timoshenko group velocity in ASEA.  

However, one unexplained feature occurs with the furthest beam (Figure 6.14 (f)); FEM 

using Euler-Bernoulli elements and ASEA using Euler-Bernoulli group velocity does 

not show close agreement as it did with the furthest beam in the rectangular beam frame 

in section 6.6. 

Figure 6.14 (g) to (m) allow comparison of predicted energy level differences for the 

BT model where bending waves are excited on the source subsystem and the receiving 

subsystem represents torsional wave energy. In general, FEM using Euler-Bernoulli 

elements shows closer agreement with ASEA using Euler-Bernoulli group velocity, and 

FEM using Timoshenko elements shows closer agreement with ASEA using 

Timoshenko group velocity. 

6.8.2 Torsional wave excitation 

Figure 6.15 shows the results for the BT model of the three-bay truss with excitation of 

torsional waves on beam 1. 
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Figure 6.15 BT model of torsional wave transmission on the truss beam frame (Source 

subsystem: T1): comparison of FEM, SEA and ASEA predictions. , FEM (Euler-

Bernoulli elements); , FEM (Timoshenko elements); , SEA (Euler-

Bernoulli group velocity); , SEA (Timoshenko group velocity); , ASEA 

(Euler-Bernoulli group velocity); , ASEA (Timoshenko group velocity). Results 

from FEM are shown with 95% confidence intervals. 

Figure 6.15 (a) to (g) allow comparison of predicted energy level differences for the BT 

model where torsional waves are excited on the source subsystem and the receiving 

subsystem represents bending wave energy. In general, and particularly at and above 8 

kHz, the FEM (Euler-Bernoulli and Timoshenko elements) curves fall in-between the 

SEA and ASEA predictions. 

Figure 6.15 (h) to (m) allow comparison of predicted energy level differences for the 

BL model where torsional waves are excited on the source subsystem and the receiving 

subsystem represents torsional wave energy. In contrast to Figure 6.15 (a) to (g), it is 

only at and above 8 kHz that FEM (Euler-Bernoulli and Timoshenko elements) curves 

fall in-between the SEA and ASEA predictions. Below 8 kHz, FEM is higher than SEA 

and ASEA for ET1/ET3, ET1/ET6 and ET1/ET9, but FEM is lower than SEA and ASEA for 

ET1/ET4, ET1/ET7 and ET1/ET10. 

6.9 Summary 

SEA and ASEA have been used to predict vibration transmission across beam 

frameworks that are formed by solid, rectangular cross-section beams which support 

multiple wave types. To assess the validity of these models at high frequencies where 
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Timoshenko beam theory is valid for bending wave motion, an assessment has been 

made into whether coupling loss factors can be calculated using wave transmission 

coefficients predicted using Euler-Bernoulli theory but using Timoshenko group 

velocity to calculate the coupling loss factors.  

Comparison with measurements on Perspex beams and FEM using Euler-Bernoulli and 

Timoshenko elements have been carried out to gain insight into the validity of this 

approach when there are low mode counts, low modal overlap, multiple wave types, 

different bending wave theories, propagation losses and indirect coupling. An isolated 

L-junction of beams, a rectangular beam frame and a three-bay truss beam have been 

investigated for bending wave excitation leading to either bending and longitudinal 

wave motion, or bending and torsional wave motion on all beams. The rectangular beam 

framework has relatively long beams which give rise to high propagation losses. The 

three-bay truss beam is formed from relatively short beams and tunneling mechanisms 

were more important than propagation losses.  

In general, there are large fluctuations in the energy level differences when (a) there is 

only one local mode in each frequency band in either the source or the receiving beam 

and (b) there are intermediate frequency bands with no local modes on the source and 

receiving beams. When consecutive frequency bands have at least one local mode on 

the source or receiving beams the fluctuations are significantly reduced. When each 

beam supports at least two local modes for each wave type in the frequency band of 

interest and the modal overlap factor is at least 0.1, FEM and measurement data tend to 

have average values which form smooth curves such as those predicted with SEA and 

ASEA. 

When Timoshenko and Euler-Bernoulli group velocities differ by ≥26%, measurements 

using bending wave excitation showed closest agreement with FEM using Euler-

Bernoulli elements when longitudinal waves were generated at the junction, but closest 

agreement with FEM using Timoshenko elements when torsional waves were generated 

at the junction. It would have been expected to be Timoshenko elements in both cases; 

for this reason clearer conclusions were sought through comparison of FEM, SEA and 

ASEA. The results showed that when the difference between Timoshenko and Euler-

Bernoulli group velocities was ≥26% there were significant differences between FEM 
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models using Euler-Bernoulli and Timoshenko elements. For receiving subsystems that 

were not directly coupled to the source subsystem, FEM using Euler-Bernoulli and 

Timoshenko elements showed closest agreement with ASEA (rather than SEA) using 

Euler-Bernoulli and Timoshenko group velocities respectively. One reason for this is 

that wave conversion and propagation losses become more important for more distant 

subsystems; hence there were clear differences between SEA and ASEA. The 

agreement between FEM and ASEA indicates that it is a reasonable assumption that 

phase effects can be ignored in the ray tracing approach used with ASEA. ASEA results 

for the L-junctions and the rectangular beam frame demonstrated that unlike SEA it was 

able to incorporate high propagation losses. 

The rectangular beam framework has high propagation losses at high frequencies 

whereas the response of the three-bay truss beam has indirect coupling. Comparison of 

measurements and FEM has not led to a conclusive decision on the validity of Euler-

Bernoulli or Timoshenko theory at high frequencies. However when the difference 

between Timoshenko and Euler-Bernoulli group velocities was ≥26% there are 

significant differences between FEM models using Euler-Bernoulli and Timoshenko 

elements. For these FEM models there are closest agreement with ASEA (rather than 

SEA) using Euler-Bernoulli and Timoshenko group velocities respectively. This 

validates the approach proposed in this chapter to incorporate Timoshenko theory into 

SEA or ASEA purely by changing the group velocity used to calculate the coupling loss 

factors. 

Analysis of the three-bay truss beam shows that ASEA can be used to predict vibration 

transmission across a finite periodic framework of beams where all beams supports 

local modes, even when the beams are identical in terms of material properties and 

dimensions. For periodic structures the existence of phase effects might be expected to 

invalidate the use of ASEA. However, close agreement between FEM and ASEA 

indicates that it is a reasonable assumption that phase effects can be ignored in the ray 

tracing approach used with ASEA. In Chapter 7 numerical experiments will be carried 

out to investigate a truss beam with high propagation losses and the effect of uncertainty 

in the material properties. 
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7. Parametric studies using FEM, SEA and ASEA 

7.1 Introduction 

This chapter uses parametric studies using numerical experiments with FEM, SEA and 

ASEA to investigate the following: 

(1) The effect of different junction and boundary conditions with an L-junction. 

 

For the experimental validation in Chapter 6 it was not considered feasible to have a 

pinned junction; hence only the BL and BT models were considered. However, with 

numerical simulations it is possible to investigate a pinned junction in order to 

assess the validity of the wave theory transmission coefficients for a bending only 

model. In addition, the experimental validation on an L-junction was only carried 

out with free boundary conditions but with numerical experiments it is now possible 

to compare free and pinned boundary conditions with the B and BL models. 

 

(2) The effect of uncertainty in the material properties on the validity of zero 

transmission coefficients predicted using wave theory for T- and X-junctions. 

 

This investigation is carried out because in Chapter 6 it was seen that there were 

some beams on the three-bay truss that were either perpendicular or parallel to the 

source beam that showed better agreement than those in the other orientation. One 

possible reason for this is that the zero transmission coefficients that were predicted 

using wave theory do not apply when there is uncertainty in the material properties. 

Hence this investigation looks at isolated T- and X-junctions for which zero 

transmission coefficients occur because with L-junctions all the transmission 

coefficients have a finite value. It is considered important to include this in the 

thesis because the existing literature [5,6] is either unclear on this issue, or makes no 

clear statements about it. 

 

(3) The effect of uncertainty in the material properties with periodic frameworks of 

beams using a five-bay truss beam as an example. 
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This investigation is carried out because in Chapter 6 it was seen that on the three-

bay truss some beams that were either perpendicular or parallel to the source beam 

showed better agreement than those in the other orientation. In engineering, physical 

realisations of perfect periodic structures are unusual; hence it is necessary to 

investigate the effect of variation in the beam properties. For practical purposes it 

was not possible to measure a truss-beam with more than three bays because there 

would not have been sufficient signal to noise ratio on beams after the third bay. 

This also meant that it was not feasible to measure a truss beam with longer beams 

which would have increased the importance of propagation losses. For these reasons, 

numerical experiments on a five-bay truss are considered where the beams are the 

same length as used in the isolated L- and T-junctions, and an assessment is made of 

the effect of uncertainty in the material properties. 

This chapter only considers Euler-Bernoulli theory as it is only FEM, SEA and ASEA 

models that are being compared.  

The material properties, dimensions and mode counts for the beams are given in section 

2.3. 

7.2 Investigation into the effect of junction and boundary conditions 

with the L-junction 

In section 4.6.2 it was shown using an L-junction that in-plane vibration occurs due to 

bending wave motion. However, the in-plane vibration was sufficiently low that it was 

still possible to quantify the longitudinal wave energy above the fundamental 

longitudinal mode. Section 7.2.1 shows the effect of pinning the junction so that only 

Type A bending waves are generated (B model) which is compared with the BL model. 

Section 7.2.2 complements section 4.6.2 by showing the vibration level differences for 

the BL model with different boundary conditions. 

In this section, energy level differences involving longitudinal wave energy are shown 

below the fundamental longitudinal mode to  
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7.2.1 Comparison of B and BL models 

 

Figure 7.1 Sketch of isolated L-junction with (a) B model and (b) BL model 

This section compares the results of isolated beam junctions with B model and BL 

model. Take the L-junction shown in Figure 7.1 as example. The natural mode counts of 

the isolated beams 1.3 m and 1.0 m with free-free boundary condition are given in 

Figure 2.5. The fundamental longitudinal mode on the single free-pinned beam occurs 

in the 500 Hz one-third octave band. 

Figure 7.2 and Figure 7.3 show the energy level differences calculated from the ratio of 

source subsystem energy to receiving subsystem energy. On all figures, SEA/ASEA 

predictions with Euler-Bernoulli beam group velocity are compared against the results 

from the FEM model using Euler-Bernoulli beam element.  

Figure 7.2 (a) allows comparison of EB1/EB2 for the B and BL models. Between 10 Hz 

and 500 Hz the bending mode count is sufficiently low (approximately one mode per 

band) that there are large fluctuations in the FEM data; however, both SEA and ASEA 

give a good estimate of the mean value over this low-frequency range. Above 500 Hz 

there are at least one bending mode in each one third octave band; good agreements 

exist between FEM, SEA and ASEA in either the B or BL models. Above 500 Hz, the 

energy level difference for the BL model is larger than that with the B model because 

less power is transmitted to bending subsystem B2 when longitudinal waves are 

generated at the junction. Note that for this directly connected receiver subsystem there 

is no advantage in using ASEA instead of SEA because indirect coupling is negligible 

and the propagation losses are small. 

Figure 7.2 (b) shows EB1/EL1 and Figure 7.2 (c) shows EB1/EL2 with excitation of 

bending modes in beam 1 and receiving subsystems which consider the longitudinal 

mode energy. There are no local longitudinal modes (free-free) below 500 Hz. For this 
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reason there are large differences between FEM and SEA/ASEA below 500 Hz in 

Figure 7.2 (b) and Figure 7.2 (c). This confirms that it is not appropriate to calculate 

longitudinal wave energy levels from FEM below the fundamental longitudinal mode. 

Between 500 Hz and 2.5 kHz SEA and ASEA still give a reasonable estimate of the 

mean value from FEM although there are only a few longitudinal modes in this 

frequency range. 

In Figure 7.2 (b) there is closer agreement between FEM and ASEA than with SEA 

above 1.25 kHz. However, in Figure 7.2 (c) there is no significant difference between 

SEA and ASEA. 

Figure 7.3 (a) shows EL1/EB1, Figure 7.3 (b) shows EL1/EB2 and Figure 7.3 (c) shows 

EL1/EL2 with excitation of longitudinal modes in beam 1 and receiving subsystems 

which consider either bending or longitudinal energy. Above the fundamental 

longitudinal mode, FEM shows agreements both with ASEA and SEA. 

In conclusion, only small improvements are gained by using ASEA on a small system 

such as an L-junction at high-frequencies. This example has highlighted the problems in 

validating the BL model below the fundamental longitudinal mode. Above the 

frequency at which successive one-third octave bands have at least one local mode on 

each beam subsystem, there is good agreement between FEM and statistical models 

based on SEA or ASEA. 
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Figure 7.2 Vibration transmission on L-junction (BL model - Source subsystem: B1).  

, FEM with B model; , FEM with BL model; , SEA with B model; 

, SEA with BL model;  , ASEA with B model;  , ASEA with BL 

model. Results from FEM are shown with 95% confidence intervals. 
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Figure 7.3 Vibration transmission on L-junction (BL model - Source subsystem: L1).  

, FEM with BL model; , SEA with BL model;  , ASEA with BL 

model. Results from FEM are shown with 95% confidence intervals. 

7.2.2 Comparison of pinned and free boundary conditions with the BL model 

In the section 7.2.1 it is concluded that good agreements between the FEM simulation 

and SEA/ASEA prediction would only occur above the band where the first 

longitudinal fundamental mode frequency exist, although the in-plane motion can be 

induced below the fundamental mode frequency due to bending motion. Referring back 

to the results in section 4.6.2, one might ask how the induced in-plane motion affects 

the out-of-plane response of beam structures when bending and longitudinal wave 

couple to each other. So in this section FEM is used to compare L-junctions with pinned 

and free ends alongside SEA and ASEA predictions. 
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From Figure 2.5 and Figure 2.6 it is shown that the fundamental longitudinal mode 

frequency occurs in the 500 Hz one-third octave band for the free-pinned beam and the 

1k Hz band for the free-free beam.  

 

Figure 7.4 Sketch of isolated L-junction of BL model with (a) pinned ends and (b) free 

ends 

Figure 7.5 (a), (b) and (c) shows the energy level difference with Type A bending 

excitation on beam 1, and Figure 7.6 (a), (b) and (c) shows the energy level difference 

with longitudinal excitation on beam 1.  

In Figure 7.5 (a), from 10 Hz to 500 Hz the two FEM curves fluctuate around the SEA 

and ASEA curves but they have different peaks and troughs because the global modes 

are different due to the different boundary conditions. For receiving subsystems L1 and 

L2, Figure 7.6 (b) and (c)), FEM simulation with free ends gives much higher vibration 

levels than that with pinned ends below the fundamental longitudinal mode at 1000 Hz. 

This is due to greater in-plane motion that is generated with free ends as seen in the 

comparison of impedances on Figure 4.9 and Figure 4.10. Similarly, with longitudinal 

wave excitation on beam 1 shown in Figure 7.6, FEM simulation with free ends still 

provides higher vibration level than that of pinned ends below the fundamental 

longitudinal mode frequency. The main concern is that below the fundamental 

longitudinal mode, FEM sometimes shows closer agreement with SEA and ASEA for 

beams with free ends than with pinned ends. In an experimental study (rather than 

numerical studies as in this chapter) the fundamental longitudinal mode frequency for 

complex beams might not be known or measurable and this might lead to an incorrect 

conclusion when compared against SEA or ASEA. 

The induced in-plane motion due to bending wave motion below the fundamental 

longitudinal mode frequency affects the FEM estimate of longitudinal wave energy; 
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hence it is not appropriate to use this estimate below the fundamental longitudinal mode. 

In purely experimental studies on complex beams it might be difficult to estimate the 

fundamental longitudinal mode; hence care always needs to be taken if measuring in-

plane motion and attributing it to longitudinal wave energy. 

It is concluded that FEM, SEA and ASEA show good agreement as long as there is at 

least one local mode in both the source and receiving subsystems. 

12.5 20 31.5 50 80 125 200 315 500 8001.25k 2k 3.15k 5k 8k 12.5k20k
-10

-5

0

5

10

15

20

25

One-third octave band frequency (Hz)

1
0

lg
( E

B
1/

E
B

2)
 (

d
B

)

12.5 20 31.5 50 80 125 200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k20k
0

10

20

30

40

50

60

70

80

One-third octave band frequency (Hz)

1
0

lg
( E

B
1/

E
L

1
) 

(d
B

)

 

12.5 20 31.5 50 80 125 200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k20k
0

10

20

30

40

50

60

70

80

One-third octave band frequency (Hz)

1
0

lg
( E

B
1/

E
L

2
) 

(d
B

)

 

Figure 7.5 Vibration transmission on L-junction with different boundary condition (BL 

model - Source subsystem: B1). , FEM with BL model of free end; , FEM 

with BL model of pinned end; , SEA with BL model;  , ASEA with BL 

model. Results from FEM are shown with 95% confidence intervals. 
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Figure 7.6 Vibration transmission on L-junction with different boundary condition (BL 

model - Source subsystem: L1). , FEM with BL model of free end; , FEM 

with BL model of pinned end; , SEA with BL model;  , ASEA with BL 

model. Results from FEM are shown with 95% confidence intervals. 

7.3 Investigation into zero transmission coefficients predicted with 

wave theory 

7.3.1 BL model for T- and X-junctions 

Transmission coefficients are zero between certain subsystems in the derivations of BL 

and BT models for T- and X- junctions as they are symmetric structures. Hence in the 

FEM simulation these perfectly symmetrical structures have an extremely low level 

response. To verify the existence of zero transmission coefficients, uncertainties in the 

Young’s modulus are introduced, so that the structures are no longer perfectly 

symmetrical in terms of their material properties (although they remain symmetrical in 
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terms of their dimensions). In this section two different FEM models are considered: 

one model (“uniform material”) using the same Young’s modulus value for all beams 

and another model (“random material”) where uncertainty is introduced using the 

Monte Carlo technique to generate an ensemble of ten junctions with different Young’s 

modulus. These values are generated randomly from a normal distribution N(µ, σ) which 

is a reasonable assumption for material properties. The mean Young’s modulus 

corresponds to the value in Table 2.3 and the standard deviation is calculated assuming 

µ/σ=0.3. In general, when µ/σ<0.3 it is possible to avoid bias due to extreme values in 

the distribution [89].  

T- and X-junctions are considered as indicated in Figure 7.7. Pinned boundary 

conditions are used for the ends of the beams because from sections 4.6.2 and 7.2.2 it 

was shown that in-plane vibration due to bending waves is lower with pinned ends 

compared to free ends. For T123-junction, beams 1 and 3 are the same length. For 

T124-junction, beams 2 and 4 are the same length. For X-junction, beams 1 and 3 are 

the same length, and beams 2 and 4 are the same length. 

 

Figure 7.7 Beam junctions with pinned ends: (a) T123-junction, (b) T124-junction, (c) 

X-junction. 

Referring back to section 2.3 the first longitudinal mode on the free-pinned beam occurs 

in the 500 Hz one-third octave band for 1.3 m and the 630 Hz one-third octave band for 

1.0 m. So in this section the results with longitudinal motion in either source subsystem 

or receiving subsystem are only shown from 500 Hz to 20 kHz, while energy level 

differences for Type A bending waves are shown from 10 Hz to 20 kHz. 
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7.3.1.1 T123-junction 

For the T123-junction, consideration is given to the assumption in the derivation that 

τL1L2 is zero.  

The energy level differences with Type A bending wave excitation are shown on Figure 

7.8 for which there is good agreement between FEM (uniform material), SEA and 

ASEA indicating that the wave theory transmission coefficients are correct.  

The energy level differences for longitudinal wave excitation are shown on Figure 7.9 

and this allows greater insight into whether it is correct that τL1L2 is zero. For EL1/EL2 in 

Figure 7.9 (d), FEM with uniform material has an energy level difference >150dB from 

10 Hz to 20 kHz. This indicates that τL1L2 being zero is likely to be the correct 

assumption for transmission between L1 and L2 in the wave theory derivation (section 

2.5.2.2). However, in Figure 7.9 (d) FEM (random material) is similar to ASEA and 

significantly lower (≈100dB) than FEM (uniform material) although the energy level 

difference is still relatively high at ≈43 dB. In section 2.5.2.2 the derivation for semi-

infinite beams assumes structural symmetry such that Type A bending waves on beams 

1 and 3 will have the same magnitude but travel in opposite directions with a phase 

difference of π between them causing zero displacement in the y-direction at the 

junction. Therefore beam 2 has bending wave motion but no longitudinal wave motion. 

The result corresponding to FEM (uniform material) represents an extreme example 

because beams 1 and 3 are identical in length, cross-section and material properties and 

therefore the bending waves that are transmitted onto beams 1 and 3 not only have a 

phase difference of π between them when they leave the junction but also form standing 

waves (modes) on these beams which reinforces this condition at the junction. 

With FEM (random material), the energy level difference is lower because the T123-

junction is not perfectly symmetrical when uncertainty is introduced into the material 

properties of all the beams. Hence, strictly speaking, the assumption in the wave theory 

derivation that beam 2 has no longitudinal wave motion is no longer true. In addition, 

beams 1 and 3 are no longer identical and therefore the modal displacement on beams 1 

and 3 is no longer identical. However, it could be claimed that the ensemble average 

value of the Young’s modulus (i.e. the mean value) is the same for beams 1 and 3, and 

therefore it is appropriate to use the wave theory derivation in section 2.5.2.2. Another 
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reason that FEM (random material) shows good agreement with ASEA is because there 

are a number of other transmission paths that result in longitudinal wave motion on 

beam 2; the most direct paths are L1-B1-L2, and L1-B3-L2 but there are many other 

longer paths which are possible.  

The above finding is important because for real structures there will always be some 

uncertainty in the material properties and dimensions such that there will be 

longitudinal wave motion on beam 2. However, the energy level on beam 2 is ≈50 dB 

below the source subsystem and for most practical noise control problems it will not be 

critical to estimate the longitudinal wave energy on beam 2. It is therefore noteworthy 

that EL1/EB1, EL1/EB2, EL1/EB3, EL1/EL3 show negligible difference between FEM 

(uniform material) and FEM (random material) and confirm that the wave theory 

derivation is appropriate. 

This investigation also gives an opportunity to assess whether there is a problem with 

strong coupling when longitudinal waves are excited on L1 as the source subsystem and 

the receiving subsystem is L3. 

Transmission coefficient τL1L3 > 0.7 above 2 kHz. For this reason one might consider 

that strong coupling exists between L1 and L3 which could be problematic for SEA but 

not ASEA.  

ASEA involves ray tracing and therefore ignores phase effects but there is no sign that 

this adversely affects the prediction, as can be seen by the good agreement between 

FEM and ASEA. 

 



188 
 

12.5 20 31.5 50 80 125 200 315 500 8001.25k 2k 3.15k 5k 8k 12.5k20k
-15

-10

-5

0

5

10

15

20

25

One-third octave band frequency (Hz)

1
0

lg
( E

B
1/

E
B

2)
 (

d
B

)

12.5 20 31.5 50 80 125 200 315 500 8001.25k 2k 3.15k 5k 8k 12.5k20k
-15

-10

-5

0

5

10

15

20

25

One-third octave band frequency (Hz)

1
0

lg
( E

B
1/

E
B

3)
 (

d
B

)

 

500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
10

15

20

25

30

35

40

One-third octave band frequency (Hz)

1
0

lg
( E

B
1/

E
L

1
) 

(d
B

)

500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
0

5

10

15

20

25

30

One-third octave band frequency (Hz)

1
0

lg
( E

B
1/

E
L

2
) 

(d
B

)

 

500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
10

15

20

25

30

35

40

One-third octave band frequency (Hz)

1
0

lg
( E

B
1/

E
L

3
) 

(d
B

)

 

Figure 7.8 Vibration transmission on T123-junction (BL model - Source subsystem: 

B1). , FEM with uniform material; , FEM with random material; , 

SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 
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Figure 7.9 Vibration transmission on T123-junction (BL model - Source subsystem: 

L1). , FEM with uniform material; , FEM with random material; , 

SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 
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7.3.1.2 T124-junction 

For the T124-junction, consideration is given to the assumption in the derivation 

(section 2.5.3) that τB1L1, τL1L2 , τL1B1 and τL1L4 are zero.  

The results from the T124-junction are shown with Type A bending wave excitation on 

Figure 7.10 and longitudinal wave excitation on Figure 7.11. The energy level 

differences shown in Figure 7.10 (c) and Figure 7.11 (a), (d) and (e) indicate that FEM 

(uniform material) values are much higher (>150dB) than FEM (random material) and 

that FEM (random material) is close to ASEA. Hence the conclusions and analysis for 

T123-junction also apply to T124-junction. 
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Figure 7.10 Vibration transmission on T124-junction (BL model - Source subsystem: 

B1). , FEM with uniform material; , FEM with random material; , 

SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 
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Figure 7.11 Vibration transmission on T124-junction (BL model - Source subsystem: 

L1). , FEM with uniform material; , FEM with random material; , 

SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 

 



193 
 

7.3.1.3 X-junction 

For the X-junction, consideration is given to the assumption in the derivation (section 

2.5.1) that τB1L1, τB1L3, τL1B1 ,τL1B3, τL1L2 and τL1L4 are zero.  

The results from the X-junction are shown with Type A bending wave excitation on 

Figure 7.12 and longitudinal wave excitation on Figure 7.13. 

The energy level differences shown in Figure 7.12 (d), (f) and Figure 7.13 (a), (c), (e), 

and (g) are much higher (>150 dB) than FEM (uniform material). However FEM 

(random material) is close to ASEA. Hence the conclusions and analysis for T123-

junction also apply to the X-junction. 
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Figure 7.12 Vibration transmission on X-junction (BL model - Source subsystem: B1).  

, FEM with uniform material; , FEM with random material; , SEA 

(Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 
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Figure 7.13 Vibration transmission on X-junction (BL model - Source subsystem: L1). 

, FEM with uniform material; , FEM with random material; , SEA 

(Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 
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7.3.2 BT model for T- and X-junctions 

Referring back to section 2.3 on the free-pinned beam, the first torsional mode is in the 

200 Hz one-third octave band, and the first Type B bending mode is in the 20 Hz one-

third octave band for 1.3 m. Hence in this section the results with torsional motion in 

either the source subsystem or receiving subsystem are only shown from 200 Hz to 20 

kHz, while energy level differences of Type B bending motions to Type B bending 

motions are shown from 20 Hz to 20 kHz. 

7.3.2.1 T123-junction 

For the T123-junction, consideration is given to the assumption in the derivation 

(section 2.6.2) that τT1T2 is zero.  

The results from the T123-junction with Type B bending wave excitation on Figure 

7.14 and torsional wave excitation are shown on Figure 7.15. In general there is closest 

agreement between FEM (uniform and random material) and ASEA rather than with 

SEA. However, Figure 7.15 (d) shows that FEM (uniform material) values are much 

higher (>150dB) compared to FEM (random material) and that FEM (random material) 

is close to ASEA. Therefore, for the same reasons given in section 7.3.1 for T123-

junction with the BL model, it can be concluded that the wave theory derivation is 

correct. 
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Figure 7.14 Vibration transmission on T123-junction (BT model - Source subsystem: 

B1). , FEM with uniform material; , FEM with random material; , 

SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 
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Figure 7.15 Vibration transmission on T123-junction (BT model - Source subsystem: 

T1). , FEM with uniform material; , FEM with random material; , 

SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 
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7.3.2.2 T124-junction 

For the T124-junction, consideration is given to the assumption in the derivation 

(section 2.6.3) that τB1T1, τT1T2 , τT1B1 and τT1T4 are zero.  

The results from the T124-junction are shown with Type B bending wave excitation on 

Figure 7.16 and torsional wave excitation on Figure 7.17. The conclusion is the same as 

for T123-junction, that ASEA shows closer agreement than SEA with FEM and that the 

zero transmission coefficients are correct in the wave theory derivation. 
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Figure 7.16 Vibration transmission onT124-junction (BT model - Source subsystem: 

B1). , FEM with uniform material; , FEM with random material; , 

SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 



201 
 

200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
0

50

100

150

200

250

One-third octave band frequency (Hz)

1
0

lg
( E

T
1/

E
B

1)
 (

d
B

)

200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
0

5

10

15

20

25

30

One-third octave band frequency (Hz)

1
0

lg
( E

T
1/

E
B

2)
 (

d
B

)

 

200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
0

5

10

15

20

25

30

One-third octave band frequency (Hz)

1
0

lg
( E

T
1/

E
B

4)
 (

d
B

)

200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
0

50

100

150

200

250

One-third octave band frequency (Hz)

1
0

lg
( E

T
1/

E
T

2)
 (

d
B

)

 

200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
0

50

100

150

200

250

One-third octave band frequency (Hz)

1
0

lg
( E

T
1/

E
T

4)
 (

d
B

)

 

Figure 7.17 Vibration transmission onT124-junction (BT model - Source subsystem: 

T1). , FEM with uniform material; , FEM with random material; , 

SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 
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7.3.2.3 X-junction 

For the X-junction, consideration is given to the assumption in the derivation (section 

2.6.1) that τB1T1, τB1T3, τT1B1 ,τT1B3, τT1T2 and τT1T4 are zero.  

The results from the X-junction are shown with Type B bending wave excitation on 

Figure 7.18 and torsional wave excitation on Figure 7.19. The agreement indicates that 

the conclusions and analysis for T123-junction also applies to the X-junction. 
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Figure 7.18 Vibration transmission on X-junction (BT model - Source subsystem: B1). 

, FEM with uniform material; , FEM with random material; , SEA 

(Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 

200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
0

50

100

150

200

250

One-third octave band frequency (Hz)

1
0

lg
( E

T
1/

E
B

1)
 (

d
B

)

200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
5

10

15

20

25

30

35

One-third octave band frequency (Hz)

1
0

lg
( E

T
1/

E
B

2)
 (

d
B

)

(a) (b)

 



204 
 

200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
0

50

100

150

200

250

One-third octave band frequency (Hz)

1
0

lg
( E

T
1/

E
B

3)
 (

d
B

)

200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
5

10

15

20

25

30

35

One-third octave band frequency (Hz)

1
0

lg
( E

T
1/

E
B

4)
 (

d
B

)

(c) (d)

 

200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
0

50

100

150

200

250

One-third octave band frequency (Hz)

1
0

lg
( E

T
1/

E
T

2)
 (

d
B

)

200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
10

15

20

25

30

35

40

One-third octave band frequency (Hz)

1
0

lg
( E

T
1/

E
T

3)
 (

d
B

)

(e) (f)

 

200 315 500 800 1.25k 2k 3.15k 5k 8k 12.5k 20k
0

50

100

150

200

250

One-third octave band frequency (Hz)

1
0

lg
( E

T
1/

E
T

4)
 (

d
B

)

 

Figure 7.19 Vibration transmission on X-junction (BT model - Source subsystem: T1). 

, FEM with uniform material; , FEM with random material; , SEA 

(Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 
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7.4 Investigation into perfect and imperfectly periodic frameworks of 

beams 

The five-bay truss shown in Figure 7.20 is investigated in this section considering the B 

model, BL model and BT model. The beam lengths for beams 1, 4, 7, 10, 13 and 16 are 

1.0 m and the others are 1.3 m.  The material is the same as described in section 2.3.  

To assess the application of ASEA to a truss beam where the individual beams have low 

propagation losses, the B model is assessed with a lower internal loss factor.  

FEM simulations (Euler-Bernoulli elements) on the truss beam are carried out with 

random material (i.e. an imperfect periodic structure) and with uniform material (i.e. a 

perfect periodic structure). These are both compared with SEA and ASEA predictions 

that use Euler-Bernoulli beam group velocity. Due to structural symmetry results are 

only shown for beams 2, 4, 5, 7, 8, 10, 11, 13, 14, 16. 

 

Figure 7.20 Five-bay truss. 

7.4.1 Bending wave transmission (B model) for the five-bay truss beam 

7.4.1.1 High internal losses (ILF=0.06) 

Figure 7.21 the results for the B model of the five-bay truss with excitation of Type A 

bending waves on beam 1 where all beams have an ILF of 0.06.  

Figure 7.21 (a) shows close agreement between FEM, SEA and ASEA for the 

subsystem B2 that is adjacent to the source (this also occurred with the isolated L- and 

T-junctions). 

For Figure 7.21 (b) to (j) below 800 Hz ASEA gives lower energy level differences than 

SEA which indicates the existence of tunneling mechanisms. In general, FEM (random 

material) shows closer agreement with ASEA than FEM (uniform material). This is 

likely to be due to the fact that ASEA is not intended for perfectly periodic structures 
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where phase effects might be important, but (like SEA) it is suited to predicting the 

ensemble average response for similar subsystems. 

Above 800 Hz ASEA results for the five-bay truss show significantly higher energy 

level differences than SEA in subsystems that are not directly connected to the source 

subsystem (see Figure 7.21 (b) to (j)). This indicates high propagation losses. Above 

800 Hz, Figure 7.21 (b) and (c) show close agreement between FEM and ASEA. 

However, Figure 7.21 (d) to (j) above 800 Hz show that FEM (uniform and random 

material properties) no longer agrees with ASEA (or SEA) when there are three or more 

structural junctions between the source and receiving beam. This lack of agreement 

increases as the beam becomes increasingly distant from the source subsystem. This 

implies that high propagation losses no longer occur on beams that are at least three 

structural junctions away from the source beams. In chapter 6 this was not seen with 

bending excitation for the BL and BT models of the three-bay truss. However referring 

back to section 6.7.2 for longitudinal excitation on the three-bay truss, FEM was also 

significantly lower than ASEA and SEA on the beam that was furthest from the source 

subsystem (i.e. subsystem L10). 

This problem is unlikely to be an error due to numerical accuracy in the Abaqus FEM 

model because in section 7.3 energy level differences were predicted that were >150dB. 

The fact that energy level differences from FEM are much lower than both SEA and 

ASEA might imply that the response of the distant subsystems is due to global modes 

rather than local modes. In sections 7.4.2 and 7.4.3 the BL and BT models will be 

investigated to see whether the same phenomenon occurs. 
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Figure 7.21 Vibration transmission on the five-bay truss beam of B model, ILF=0.06. 

, FEM with uniform material; , FEM with random material; , SEA 

(Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group velocity). 

Results from FEM are shown with 95% confidence intervals. 

7.4.1.2 Low internal losses (ILF=0.01) 

In Figure 7.22 the results are shown for the B model of the five-bay truss with excitation 

of Type A bending waves on beam 1 where all beams have an ILF of 0.01.  

Figure 7.22 (a) shows close agreement between FEM, SEA and ASEA for subsystem 

B2 that is adjacent to the source. In contrast to section 7.4.1.1 where the beams had an 

ILF of 0.06 and propagation losses were significant above 800Hz, Figure 7.22 (b) to (j) 

show no evidence of propagation losses but evidence of tunneling appears across the 

entire frequency range. In general, for beams that are not directly connected to the 

source subsystem, FEM (random material) shows closer agreement with ASEA than 

FEM (uniform material); FEM (uniform material) appears to have increased indirect 
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coupling (i.e. tunneling) due to the fact that all beams have exactly the same length and 

material properties. 
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Figure 7.22 Vibration transmission on five bay truss of B model with reduced damping, 

ILF=0.01. , FEM with uniform material; , FEM with random material; 

, SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli group 

velocity). Results from FEM are shown with 95% confidence intervals. 

7.4.2 Bending and longitudinal wave transmission (BL model) for the five-bay 

truss beam (ILF=0.06) 

In this section, Type A bending waves or longitudinal waves are excited on the source 

subsystem of the five-bay truss.  

Considering the isolated beam with pinned-pinned boundary (Figure 2.4) the 

fundamental longitudinal mode frequency is in the 1 kHz one-third octave band, and the 

fundamental Type A bending mode is in the 25 Hz band. So the energy level differences 

for BL model of the truss are shown from 10 Hz to 20 kHz for bending waves on the 
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source and receiving subsystem and from 1 kHz to 20 kHz for longitudinal waves on 

either the source or receiving subsystem. 

Figure 7.23 shows the results for the BL model of the five-bay truss with excitation of 

Type A bending waves on beam 1. Figure 7.24 shows results for the BL model of the 

five-bay truss with excitation of Type A bending waves on beam 1. 

In Figure 7.23 (b) to (j) below 8k Hz ASEA gives lower energy level differences than 

SEA which indicates the existence of tunneling mechanisms. In general, FEM (random 

material and uniform material) shows close agreement with ASEA.  

In Figure 7.23 (b) to (j) above 8k Hz ASEA for the five-bay truss shows significantly 

higher energy level differences than SEA in subsystems that are not directly connected 

to the source subsystem. This indicates high propagation losses and these are adequately 

predicted by ASEA above 8 kHz (see Figure 7.23 (b), (c) and (d) show close agreement 

between FEM and ASEA). However, Figure 7.23 (e) to (j) above 8 kHz shows that 

FEM (uniform and random material properties) no longer agrees with ASEA (or SEA). 

This implies that high propagation losses no longer occur on subsystems that are at least 

three structural junctions away from the source subsystem.  

The same general trends can be seen when (a) bending waves are excited on the source 

subsystem and the receiving subsystem represents longitudinal wave energy – see 

Figure 7.23 (k) to (u), and (b) when longitudinal waves are excited on the source 

subsystem – see Figure 7.24. 

Compared with B model of the five-bay truss, ASEA shows closer agreement with FEM 

(uniform or random material) over a wider frequency range from 10 Hz to 8 kHz (e.g. 

Figure 7.23 (j)). It can therefore be concluded that the generation of longitudinal waves 

at the junctions increases the indirect coupling below 8 kHz. This indicates that ASEA 

can give good estimates when there is tunneling but can give poor estimates when the 

propagation losses become very high. 
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Figure 7.23 Type A bending wave transmission on the five-bay truss (BL model - 

Source subsystem: B1). , FEM with uniform material; , FEM with random 

material; , SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli 

group velocity). Results from FEM are shown with 95% confidence intervals. 
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Figure 7.24 Longitudinal wave transmission on the five-bay truss (BL model - Source 

subsystem: L1). , FEM with uniform material; , FEM with random 

material; , SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli 

group velocity). Results from FEM are shown with 95% confidence intervals. 

7.4.3 Bending and torsional wave transmission (BT model) for the five-bay truss 

beam (ILF=0.06) 

In this section, Type B bending waves or torsional wave is excited on the source 

subsystem of the five-bay truss.  

Considering the isolated beam with pinned-pinned boundary (Figure 2.9) the 

fundamental torsional mode frequency is in the 4 kHz one-third octave band, and the 

fundamental Type B bending mode is in the 20 Hz band. So the energy level differences 

for BT model of the truss are shown from 10 Hz to 20 kHz for bending waves on the 
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source and receiving subsystem and from 400 Hz to 20 kHz for torsional waves on 

either the source or receiving subsystem. 

Figure 7.25 shows the results for the BT model of the five-bay truss with excitation of 

Type B bending waves on beam 1. Figure 7.26 shows the results for the BT model of 

the five-bay truss with excitation of torsional waves on beam 1. 

For the BT model Figure 7.25 (a), (k) and (l) and Figure 7.26 (a), (b) and (l) show the 

energy level difference between source subsystems B1 or T1 and receiving subsystems 

B1, T1, B2, or T2. These results show close agreement between FEM, SEA and ASEA 

for these physically connected subsystems. 

For Figure 7.25 (b), (m) and (n) and Figure 7.26 (c), (m) and (n), FEM, SEA and ASEA 

show close agreement with each other below 5 kHz but above ≈5 kHz the difference 

between SEA and ASEA indicates that there are high propagation losses. 

For Figure 7.25 (c)-(j), and (o)-(u) and Figure 7.26 (d)-(k) and (o)-(u) the difference 

between SEA and ASEA indicates the presence of tunneling mechanisms below ≈4 kHz 

and high propagation losses above ≈4 kHz. The general trend is the same as that in 

sections 7.4.1and 7.4.2 i.e. ASEA gives good estimates when there is tunneling but for 

receiving beams that are at least three structural junctions away from the source beams 

the ASEA estimate for high propagation losses does not correspond with FEM 

predictions. 
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Figure 7.25 Type B bending wave transmission on the five-bay truss (BT model - 

Source subsystem: B1). , FEM with uniform material; , FEM with random 

material; , SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli 

group velocity). Results from FEM are shown with 95% confidence intervals. 
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Figure 7.26 Torsional wave transmission on the five-bay truss (BT model - Source 

subsystem: T1). , FEM with uniform material; , FEM with random 

material; , SEA (Euler-Bernoulli group velocity); , ASEA (Euler-Bernoulli 

group velocity). Results from FEM are shown with 95% confidence intervals. 

7.5 Summary 

The investigation into the effect of junction and boundary conditions on an L-junction 

showed that (a) in-plane motion due to bending wave motion below the fundamental 

longitudinal mode varies significantly depending on the boundary conditions hence it is 

not appropriate to calculate longitudinal wave energy levels from FEM below the 

fundamental longitudinal mode and (b) below the fundamental longitudinal mode there 

is negligible difference between the B and BL models. 

The investigation into the transmission coefficients of zero in the wave theory 

derivations for BL and BT models of T- and X-junctions from Chapter 2 showed that 
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when the energy level difference between subsystems i and j corresponded to a non-zero 

transmission coefficient between i and j (e.g. EB1/EB2 when τB1B2≠0) then FEM results 

assuming uniform and random material properties gave nominally the same result and 

there was closest agreement between FEM, SEA and ASEA although in some cases 

ASEA showed closer agreement than SEA. When the energy level difference between 

subsystems i and j directly corresponded to a transmission coefficient of zero between i 

and j, it was found that ASEA was closest to FEM (random material) rather than FEM 

(uniform material). The reason for this is that FEM (uniform material) represents an 

extreme example because the co-linear beams are identical in length, cross-section and 

material properties and therefore the bending waves on these beams not only have a 

phase difference of π between them when they leave the junction but they also form 

standing waves (modes) on these beams which reinforces this condition at the junction. 

With the five-bay truss beam it was found that ASEA shows close agreement with FEM 

when there is tunneling. When ASEA predicts high propagation losses at high 

frequencies, ASEA and FEM show close agreement on receiving beams that are less 

than three structural junctions away from the source beam. However FEM does not 

agree with ASEA at high frequencies when ASEA predicts high propagation losses on 

receiving beams that are at least three structural junctions away from the source beam. 
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8. Conclusions 

This thesis has investigated the prediction of vibration transmission using FEM, SEA 

and ASEA on frameworks of beams that support multiple wave types due to wave 

conversion at the junctions. To assess the validity of these models at high frequencies 

where Timoshenko beam theory is valid for bending wave motion, an assessment has 

been made into whether coupling loss factors can be calculated using Timoshenko 

(rather than Euler-Bernoulli) group velocity and wave transmission coefficients 

predicted using Euler-Bernoulli theory. Comparison with measurements on Perspex 

beams and FEM using Euler-Bernoulli and Timoshenko elements have been carried out 

to gain insight into the validity of this approach when there are low mode counts, low 

modal overlap, multiple wave types, different bending wave theories, propagation losses 

and indirect coupling.  

In Chapter 2, the bending wave group velocity was derived for Timoshenko theory 

considering both rotatory inertia and shear deformation. This made it possible to assess 

a proposal made in this thesis to incorporate Timoshenko theory into SEA and ASEA 

by changing over from Euler-Bernoulli to Timoshenko group velocity when calculating 

the coupling loss factors whilst using the transmission coefficients derived assuming 

Euler-Bernoulli beams. These transmission coefficients were determined for B, BL and 

BT models for L-, T- and X-junctions of semi-infinite beams assuming a rigid, massless 

junction and where only the co-linear beams on T- and X-junctions have identical 

material properties and cross-sectional dimensions. This provided a consistent set of full 

derivations that were not previously available in the literature. 

Chapter 3 described how SEA and ASEA were implemented to predict vibration 

transmission across frameworks of beams. Implementation of ASEA for frameworks of 

beams with multiple wave types satisfied the first aim of the thesis and to the author’s 

knowledge this is the first time this has been done. 

Chapter 4 described the finite element models. Calculations of mesh errors for beams 

supporting bending, longitudinal or torsional wave motion showed that the element size 

was sufficient for Type A and Type B bending waves when the element size is < B 10λ

.  
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Chapter 5 described the experimental work. This thesis required analysis up to 20 kHz; 

hence it was necessary to quantify the material properties of Perspex over this wide 

frequency range. This indicated that a frequency-independent Young’s modulus could 

be used but that the internal loss factor was frequency-dependent. Laser vibrometry was 

used to measure out-of-plane velocity on the coupled beams in order to avoid errors due 

to mass loading at high frequencies. 

Chapter 6 compared measurements, FEM, SEA and ASEA on an isolated L-junction of 

beams, a rectangular beam frame and a three-bay truss beam. The rectangular beam 

framework was designed with relatively long beams to introduce high propagation 

losses. The three-bay truss beam was designed with relatively short beams so that 

tunneling mechanisms were more important than high propagation losses.  

The second aim of the thesis was to identify the local mode requirements in terms of 

mode counts and modal overlap factors such that SEA and/or ASEA give reasonable 

estimates of the dynamic response on frameworks of beams that support multiple wave 

types. In general it was found that there are large fluctuations in the energy level 

differences when (a) there is only one local mode in each frequency band in either the 

source or the receiving beam and (b) there are intermediate frequency bands with no 

local modes on the source and receiving beams. When consecutive frequency bands 

have at least one local mode on the source or receiving beams the fluctuations are 

significantly reduced. When each beam supports at least two local modes for each wave 

type in the frequency band of interest and the modal overlap factor is at least 0.1, FEM 

and measurement data tend to have average values which form smooth curves such as 

those predicted with SEA and ASEA. 

The third aim was to investigate whether SEA and ASEA models could incorporate 

both Euler-Bernoulli and Timoshenko theory by changing over from Euler-Bernoulli to 

Timoshenko group velocity when calculating the coupling loss factors, and to identify a 

suitable crossover frequency. It was found that when Timoshenko and Euler-Bernoulli 

group velocities differed by ≥26%, measurements using bending wave excitation 

showed closest agreement with FEM using Euler-Bernoulli elements when longitudinal 

waves were generated at the junction, but closest agreement with FEM using 

Timoshenko elements when torsional waves were generated at the junction. It would 

have been expected to be Timoshenko elements in both cases; for this reason clearer 
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conclusions were sought through comparison of FEM, SEA and ASEA. The results 

showed that when the difference between Timoshenko and Euler-Bernoulli group 

velocities was ≥26% there were significant differences between FEM models using 

Euler-Bernoulli and Timoshenko elements. For receiving subsystems that were not 

directly coupled to the source subsystem, FEM using Euler-Bernoulli and Timoshenko 

elements showed closest agreement with ASEA (rather than SEA) using Euler-

Bernoulli and Timoshenko group velocities respectively. One reason for this is that 

wave conversion and propagation losses become more important for more distant 

subsystems; hence there were clear differences between SEA and ASEA. The 

agreement between FEM and ASEA indicates that it is a reasonable assumption that 

phase effects can be ignored in the ray tracing approach used with ASEA. This is 

particularly noteworthy for the three-bay truss which essentially forms a finite perfectly 

periodic construction for which phase effects were more likely to have been important. 

ASEA results for the L-junctions and the rectangular beam frame demonstrated that 

unlike SEA it was able to incorporate high propagation losses.  

Chapter 7 built on the validation of FEM, SEA and ASEA by using parametric studies 

with these models. Varying the junction and boundary conditions on an L-junction 

showed that in-plane motion due to bending wave motion below the fundamental 

longitudinal mode varied significantly depending on the boundary conditions hence it is 

not appropriate to calculate longitudinal wave energy levels from FEM below the 

fundamental longitudinal mode. This also showed that below the fundamental 

longitudinal mode there is negligible difference between the B and BL models. 

With the five-bay truss beam it was found that ASEA shows close agreement with FEM 

when there is significant indirect coupling. When ASEA predicts high propagation 

losses at high frequencies, ASEA and FEM show close agreement on receiving beams 

that are less than three structural junctions away from the source beam. The findings 

from chapters 6 and 7 on the rectangular beam frame, the three-bay truss and the five-

bay truss addressed the fourth aim of the thesis. These results showed that ASEA 

generally provides more accurate predictions than SEA by accounting for propagation 

losses and/or tunnelling (i.e. indirect coupling). However, there are indications from the 

five-bay truss beams that ASEA may no longer be accurate in predicting the response 
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on beams that are at least three structural junctions away from the source beam, 

particularly when ASEA predicts high propagation losses on the receiving beam. 

8.1 Future work 

Heron [2] only validated ASEA on a series of co-linear rods which resulted in high 

propagation losses. Results in Chapter 7 indicate a lack of agreement between FEM and 

ASEA where there are high propagation losses on the five-bay truss beam. To 

investigate whether there is a problem with Abaqus modelling propagation losses it 

would be worthwhile creating a series of beams connected at L-junctions. 

In chapter 7 it was seen that high propagation losses in the high-frequency range on the 

five-bay truss beam were not predicted by ASEA; hence it would be worth pursuing an 

alternative prediction model, possibly based on global modes. 
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Appendix 1. Derivation of the wave motion equation of 

Timoshenko beam 

The two differential equations about force and moment on a Timoshenko beam element 

are 

 
2 2

2 2
( ) 0

GA
EI I

x x t

ξ θ θθ ρ
κ

∂ ∂ ∂− + − =
∂ ∂ ∂

  (A1) 

 
2 2

2 2
( ) 0

GA
A

x x t

ξ θ ξρ
κ

∂ ∂ ∂− − =
∂ ∂ ∂

  (A2) 

To solve the general wave motion, we have to eliminate the variableθ . From equation 

A2 one can obtain 
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2 2x x G t

θ ξ ρκ ξ∂ ∂ ∂= −
∂ ∂ ∂

  (A3) 

 
2 3 3

2 3 2x x G t x

θ ξ ρκ ξ∂ ∂ ∂= −
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  (A4) 

 
3 4 4
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Inserting (A4) into (A1) gives the following equation 
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Calculate the differential to x of this equation, we have 
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κ
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  (A7) 

Applying (A3) and (A5) to (A7) yields the general four order differential wave motion 

equation of Timoshenko beam 
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