
Scalable Distributed Collaborative Tracking and Mapping with Micro
Aerial Vehicles

Richard Williams, Boris Konev and Frans Coenen1

Abstract— This paper describes work on a distributed frame-
work for collaborative multi-robot localisation and mapping
with large teams of Micro Aerial Vehicles (MAVs). We demon-
strate the benefits of running both image capture and frame-
to-frame tracking on the same device while offloading the
more computationally intensive aspects of map creation and
optimization to an off-board computer. We show no impact
on the accuracy of pose estimates of this distributed approach
and indeed demonstrate a robustness to delay that improves
localisation performance. The bandwidth requirements of our
system are much lower than similar systems which enables us
to accommodate larger teams of MAVs. In the results section we
demonstrate the performance of our system in both simulated
and real-world environments.

I. INTRODUCTION

A. Motivation

Aerial robotics is a very exciting research field with many
applications including exploration, aerial transportation, con-
struction and surveillance. Multi-rotors, particularly quad-
copters, have become popular due to their stability and
manoeuvrability, making it easier to navigate in complex en-
vironments. Their omni-directional flying capabilities allow
for simplified approaches to coordinated path-finding, obsta-
cle avoidance, and other group movements, which makes
multi-rotors an ideal platform for multi-robot and multi-
agent research. However current localisation solutions for
MAVs leave much to be desired; GPS information is only
available outdoors and sub-metre accuracy is only obtainable
with greater (> $1000) cost and the addition of a ground-
station at a known location. Additionally size and battery
limitations impose restrictions on the other possible types of
sensors (such as RGB-D cameras or Laser Range Finders).
Laser range finders, for example, while accurate, consume
a lot of power and lasers with enough range (10+ metres)
for reliable operations can be prohibitively expensive. A low
cost alternative to the above is the use of a single on-board
camera which provides a very lightweight, low cost (both in
terms of energy and monetary) sensor solution. Much recent
work has addressed the issue of autonomous operation of
MAVs using single cameras [1]–[4]. However many solutions
target large platforms (> 1 Kilogram) with the computational
power to handle complete vision solutions on-board. In this
paper we target swarms of 6-8 low-cost MAVs operating
in a single area, under extreme limitations in terms of both
computational power and network bandwidth. Using larger

1R. Williams, B. Konev and F. Coenen are with the Department of
Computer Science, University of Liverpool, Ashton Building Ashton Street,
Liverpool L69 3BX, United Kingdom {R.M.Williams1, Konev,
Coenen}@liv.ac.uk

teams of MAVs to perform tasks, such as exploration or
target tracking, can yield greater performance in terms of
both efficiency and robustness. Indeed given the short battery
life typical to most small MAVs (10-20 minutes) being able
to achieve tasks quickly is a requirement. In this paper we
present a distributed framework for collaborate multi-robot
localisation and mapping for large (6-8 MAVs) teams of
low-cost robots. We demonstrate the performance of our
system in terms of localisation accuracy and bandwidth
requirements. We also demonstrate an extreme robustness
to communication delay, making the proposed system ideal
for use with unreliable wireless networks.

B. Related Work

The multi-robot SLAM problem has been previously ex-
plored for ground-based robots with range sensors (such as
laser range-finders, stereo vision) [5], [6]. There is much less
work on the use of monocular vision as the only extrospec-
tive sensor, or involving agents capable of omni-directional
(6DOF) motion such as flying robots or hand-held devices
(e.g. mobile phones). Foster et al. [7] introduce a centralised
system in which each agent tracks their local position using
a Visual Odometry (VO) algorithm and sends image features
from selected keyframes to a centralised mapping server
running on a separate computer. In this system each agent
effectively operates using their local position until a map
overlap between two agents is detected. Once the maps have
been merged each agent can use the shared global map
to localise themselves. Foster et al. report real-time perfor-
mance with up to 3 MAVs. Schmidt [8] built on MonoSLAM
[9] (an Extended Kalman Filter (EKF) based Visual SLAM
system), to allow multiple ground-based robots to map their
environment. They made use of marker-based robot-to-robot
observations to localise a robot within the global coordinate
frame. They note the limitations of the EKF-based approach
and in particular the quadratic complexity of the Kalman
filter hindering real-time performance. Riazuelo et al. [10] is
the closest to the proposed approach in terms of components
and architecture. Specifically they also build on PTAM and
use a distributed architecture, however they focus on multiple
map merging using a RGB-D camera-based solution. In
our work we focus more on cooperative navigation where
robots start from the same location (a common assumption
in most practical deployments). We assume all robots localise
themselves within the global map before proceeding which
allows them to perform cooperative tasks like exploration
and robot-to-robot collision avoidance immediately without
waiting for a map merge to occur. Additionally our work

focuses on using RGB cameras only (in fact we only use
grey-scale images) which are more lightweight and consume
less bandwidth than the RGB-D cameras. This allows our
system to operate on low computational power ARM and
ATOM-based MAV clients. Our own previous work [11]
features a highly centralised approach with both tracking
and mapping for several MAVs (3) running on a single
ground-station computer and only image and sensor capture
running on-board the MAVs. We show the extreme sensitivity
of this approach to wireless network interference and the
limitations in terms of scalability (a maximum of 4 MAVs
in simulation).

C. Contributions and Outline

Our goal is to enable cooperative multi-robot navigation
tasks using light (≈ 500 grams) MAVs with very low
on-board computing resources. We would like our system
to support as many MAVs as possible, operating simul-
taneously within the same area. These requirements lend
themselves to a distributed system where computationally
intensive tasks are run off-board on a more powerful ground-
station computer. Tethering flying vehicles would be too
cumbersome therefore communication with the MAVs must
be via a wireless link. A distributed system operating in real-
time over a wireless link places constraints on a system as
the wireless link quickly becomes the primary bottleneck.
Therefore the interprocess communications of the proposed
system must use as little bandwidth as possible in order to
enable a larger number of MAVs to operate simultaneously.

To achieve this we present the Distributed, Collaborative
Tracking and Mapping system (DCTAM). The DCTAM sys-
tem is based on the Parallel Tracking and Mapping (PTAM)
system developed by Klien and Murray [12]. While Klien
and Murray separate the tasks of real-time motion estimation
and map creation/refinement into separate threads running
on the same computer for tracking a hand-held camera
we split these components into a distributed system where
the tracking component operates on-board several MAVs in
parallel and the map creation/refinement component runs on
a more powerful ground-station computer.

An overview of the system is shown in Figure 1. In
our system the MAVs handle both image acquisition and
frame-to-frame tracking; having tracking and image capture
running on the same device is key to the performance of
our system for full discussion see Section V. The MAVs are
all connected to the ground-station computer via a wireless
link. The ground-station computer runs the Mapper which
handles map creation and optimization. Each component
within the system is very modular and therefore is very
flexible in terms of hardware and software. Additionally
while our target platform is aerial vehicles the architecture
will support ground-based robots or hand-held devices (e.g
tablets or mobile phones).

Tracker
(on-board)

Tracker
(on-board)

Tracker
(on-board)

Tracker
(on-board)

Mapper
(ground station)

images images images images

KeyFrames ⇨ ⇦ KeyFrames

⇦ Map Updates
⇦ Bundle Updates

Map Updates ⇨
Bundle Updates ⇨

Stereo Init ⇨ ⇦ Stereo Init

Fig. 1. Basic system overview.

II. SYSTEM OVERVIEW

A. The Map

A map M in our system is defined as:

M = (P,K)

where P is a sparse set of point features located in a global
coordinate frameW . Each point feature is represented by an
8×8 pixel textured region in the world. The ith point in the
map is stored as

Pi = (UW
i , dPi)

where UW = (xW , yW , zW) is the points’ 3D position. The
map also contains a set of keyframes K captured during the
mapping process. The jth keyframe in the map is stored as

Kj = (TW
j , Ij , Cj , dKj)

where TW = (xW , yW , zW ,ΦW ,ΘW ,ΨW) is the 3D cam-
era pose of the captured frame, I is a 4 level image pyramid.
C is a set of point measurements where cij = (Pi,Kj , CMj)
is a measurement of point Pi in keyframe Kj and CMj is
the camera projection derivatives for keyframe j.

A notable aspect of Klien and Murray’s approach is the
fact that the pixels making up each point Pi are not stored.
Instead the point descriptor, defined as dP = (s, y, l),
represents a pointer to the source keyframe s, the source
pyramid level y and pixel location l. Therefore it is necessary
to retain the original image pyramid I for all keyframes. The
keyframe descriptor is defined as dK = SBI(Iks), where
SBI (Small Blurry Image) is a function which generates a
sub-sampled 40x30 pixel image from the lowest level of the
image pyramid, applies a Gaussian blur (σ = 2.5 pixels) and
finally subtracts the mean image intensity. This descriptor is
used for tracking recovery (see Section II-D).

B. Tracking

As in the original PTAM [12], the tracker is responsible for
real-time camera pose estimation and selecting the keyframes
to be used for map construction. For each captured frame
the tracker creates a new keyframe by creating the image
pyramid I. We then use the AGAST [13] detector to extract

corner features for each level as it is more robust to self-
similar structures and has higher repeatability than the origi-
nal FAST detector. The tracker uses its current estimated pose
to extract a subset of the set map-points P to search for in the
current image. The tracker uses a two-stage tracking process;
it first searches for a small number of map-points (50) at the
coarsest pyramid levels and updates the pose from the coarse
matches. Then a fine grained search, which re-projects and
searches for a larger (1000-5000) set of points, is executed
and a final pose estimate is calculated from all the matches
found. In the original library [12] a new keyframe is only
passed on to the mapper if tracking quality is high (quality is
based on the ratio of expected points to points actually found)
and sufficient distance from any previous keyframes has been
reached. In order to compensate for the potential latency
between a new keyframe request and the response from
the Mapper in DCTAM the tracker cannot request another
new keyframe until a sufficient time tnewkf has elapsed.
The parameter tnewkf can be set manually or, in cases
where network performance fluctuates, dynamically using the
actual round trip time recorded from periodic ping request
to the ground-station. When a new keyframe is transmitted
to the mapper we generate a new keyframe request: V =
(I[0], TW , C). Where I[0] is the lowest level of the image
pyramid (i.e the original image), TW is the current camera
pose and C the set of point measurements. To reduce the size
of the message the image I[0] is compressed using lossless
Portable Network Graphics (PNG) compression. This keeps
the bandwidth requirements low while ensuring the mapper
does not receive an image with compression artefacts. This
is essential to ensure the mapper and tracker find the same
features in the image.

C. Mapping

The Mapping process runs on the ground-station and is
responsible for building the initial map using a stereo ini-
tialization process and then further extending the map using
the keyframes provided by the trackers. When the mapper
receives a new keyframe request V from a tracker it recon-
structs the full keyframe structure Kj = (TW

j , Ij , Cj , dKj)
from V . This is a repetition of some steps performed by
the tracker but this is done to reduce the bandwidth require-
ments. New map-points are added by triangulating points
in neighbouring keyframes and the poses refined by local
bundle adjustment as in the original library [12]. The bundle
adjustment procedure aims to reduce the re-projection error
i.e. expected position vs measured position for all map-points
in keyframes using the set of measurements C. It has the ef-
fect of generating a new position for the affected map-points
which we define as U ′W

i for map-point Pi and a new pose
for each affected keyframe, defined as T ′W

i for keyframe
Ki. As in the original PTAM we use a local local bundle
adjustment procedure which operates on the new keyframe
and it’s 4 closest (linear distance) neighbours. As this local
bundle adjustment converges quickly we only generate a new
map update once it has finished. A map update is defined
as (P ′,K′), where P ′ is the set of newly generated map-

points and K′ are the keyframes from which the points were
generated. Note, it is only necessary to broadcast the source
keyframe when multiple trackers are running as the tracker
that sent the keyframe request already has this keyframe.
In this case we again employ PNG compression to reduce
the bandwidth requirements of the map update. The mapper
augments each keyframe and map-point definition with the
addition of a unique identifier idPi and idKj . This is a
globally unique identifier for each keyframe and map-point
generated by the mapper. In addition to the local bundle
adjustment, the mapper also runs a global bundle adjustment
which refines the positions of all keyframes and map-points.
Instead of generating a new map update, once the global
bundle adjustment converges, we generate a bundle update
defined as (BP0, . . . , BPn, BK0, . . . , BKm) where BPi =
(idPi, U

′W
i) and BKj = (idKj , T

′W
i). Again this is done to

further reduce the bandwidth requirements of our system.

D. Stereo Initialization and Tracking Failure Recovery

In the beginning there are no existing points from which to
triangulate from, there the map initialization process requires
a pair of keyframes with a sufficient baseline between them
to triangulate the first set of map-points. The stereo initializa-
tion request in our system is defined as (V0, V1, G) where V0
and V1 are the first two keyframes requests and G is the set of
2D point correspondences between the two keyframes (this
is generated by the tracker during stereo initialization). The
mapper uses the five-point stereo algorithm and RANSAC
to compute the essential matrix and triangulate the first
set of map-points. In the original PTAM library [12] this
process was done manually using key presses making it
difficult to replicate on a MAV. For our purposes we chose to
automate the initialization process using our existing position
controller and EKF framework (see Section III). There are
many alternatives to generating the stereo pair required for
map initialization such as using fiducial markers [4], multiple
model filtering [10] or use of a stored map. We choose to
make use of the additional sensors typical found on MAVs
for our approach as it has additional benefits in terms of
tracking performance and robustness.

The tracker can become lost due to lack of sufficient
features in the environment or sufficiently rapid movements.
The tracker uses the Small Blurry Image (SBI) re-localization
method [14]. When tracking is lost the descriptor dK from
the current keyframe is compared to all keyframes using the
sum-squared-difference. The keyframe with the lowest image
difference is selected and the current position is set using the
stored pose of the selected keyframe.

III. ADDITIONAL COMPONENTS

In conducting experiments to evaluate the proposed system
we made use of some additional components previously
presented in [11]. These are considered in this section.

A. Extended Kalman Filter (EKF)

While not explicitly required we make use of an EKF to
fuse pose estimates from our system with data provided by

Fig. 2. Results of the bandwidth experiment showing the bandwidth
requirements for a single drone when operating alone (top) and as part
of a team (bottom).

typical MAV sensors i.e. Inertial Measurement Units (which
provide attitude and acceleration data), Sonar/Barometric
Pressure (which provide altitude information) and Visual
Odometry (for horizontal velocity estimates). This provides
us with a complete (albeit noisy and prone to drift) local pose
estimate for the MAV. This helps improve the performance
of the system as, even when tracking fails, the MAV can
continue using its own sensor data and may even be able
to recover. Additionally, it allows us to automate the stereo
initialization process. Using the state estimates from the EKF
and the position controller (see next section) it is possible to
capture the two keyframes required for the initialization with
a reasonable certainty of the relative translation between the
two frames. Unless otherwise stated all pose estimates in this
paper come from the Tracker directly and not the EKF.

B. Optimal Reciprocal Collision Avoidance (ORCA) Position
Controller

As our experiments involved several MAVs moving within
the same area and we assume the MAVs are the only dynamic
obstacle we needed a MAV-MAV collision avoidance solu-
tion. We developed a position controller based around the
work of Van den Berg et al. [15]. The ORCA approach uses
an efficient linear program to calculate the nearest collision
free velocity to the MAVs current goal. The system relies
on knowing the current position and velocity of each MAV,
which is broadcast by each Tracker. This allows us to move
the MAVs around with a reasonable assurance they will not
collide with each other.

IV. IMPLEMENTATION DETAILS

Our framework has been implemented in C++ and in-
tegrated into the Robot Operating System (ROS) [16]. To
further reduce bandwidth requirements we use the multi-
master package multimaster fkie1 to ensure only the DCTAM

1http://wiki.ros.org/multimaster_fkie

messages are transmitted over the wireless link between
ground-station and MAVs.

V. RESULTS

We created a simulated environment of 20 metres by 20
metres with sufficient texture on the floor to ensure there
were always enough features for DCTAM to track. All
simulated experiments were performed using a simple model
of our quad-copter platform with a single downward-facing
camera. We use the the 3D simulation environment Gazebo
and the MAV plug-ins of Meyer et al. [17] to simulate the
MAVs on-board sensors (IMU, Sonar, Barometric Pressure)
and our own plug-in to simulate Visual Odometry, using
typical values for sensor noise and drift. All simulated
experiments were run on a desktop computer with a 3.4 Ghz
Intel i7 processor and 16 GB of RAM (this also served as
ground-station computer in the later hardware experiments).

We show in Figure 2 the bandwidth requirements of a
single MAV exploring our simulated area; the final map for
this experiment was 52 keyframes and 7240 map-points. We
show that even with a very large map the required bandwidth
remains very low for our system. Significantly lower than
streaming video directly (56 MB/s) to the ground-station
as in [11] and even lower than the 1 MB/s required by
[10] who use the same library as our system but who send
the full colour image captured by the camera. We instead
send only a compressed grey-scale image (we use lossless
PNG compression with a very low compression rate to limit
computation time) and are able to achieve a requirement of
only 9 Kb/s for a single MAV and 42 Kb/s for a single
MAV operating as part of a team. As stated previously, the
additional bandwidth is required when sending keyframes to
the other trackers in the team. A common artefact of wireless
networks is high latency which can have a negative impact
on a distributed system like ours. We conducted experiments
where we introduced artificial random delays to determine
its effect on our system.

Fig. 3. Results of the delay experiment showing a delay of 600 ms (top)
and 1000 ms (bottom).

http://wiki.ros.org/multimaster_fkie

Fig. 4. Experiment showing a team of 8 MAVs flying a predefined path
mapping a flat area. The diagram shows the estimated path (red lines),
ground truth path (green lines), map-points (orange points) and keyframe
poses both estimated (blue arrows) and ground truth (black arrows).

Fig. 5. 2D position plot of the results shown in Figure 4, ground truth
paths are shown as dashed green lines.

Fig. 6. Evolution of RMS error for each MAV in Figure 4.

Figure 3 shows the results of two delay experiments we
conducted, here a single MAV is flown at a constant speed in
a single direction. We compare our system to our previous
approach [11] where the video feed is streamed from the
MAV to the ground-station. As the MAV is flying into a
previously unmapped area both systems must capture new
keyframes and add new points to the map. As the results
show our system performs well even with a maximum delay
of 1000 milliseconds. Delay of this kind can be compen-
sated for using an EKF [2]; however, as the second delay
experiment shows, tracking quickly fails with a large enough
delay which cannot be compensated for. We extended the
experiment to test the limits of our system and found that
even with an extreme maximum delay of 30 seconds our

system continues to operate. This is only possible if the MAV
is moving sufficiently slowly that newly added map-points
reach the tracker before it needs them to maintain stable
tracking. It is fairly trivial to keep track of updates from the
map maker and adjust the behaviour of the MAV’s controller
based on the current state of the system. If a tracker is waiting
for new map-points from the mapmaker we can continuously
reduce the MAVs speed in order to ensure it does not leave
the mapped area before the new map-points arrive.

With the reductions in bandwidth and processing require-
ments (from the distributed architecture) comes the ability
to handle larger teams of MAVs. Figure 4 shows a screen
shot of an experiment conducted with a team of 8 MAVs.
We ran the system with maximum random delay of 1000
milliseconds to simulate a poor wireless network; typical
values in our networks are from 250-500 milliseconds. Each
MAV flies a pre-defined route mapping as they go; the total
distance travelled was 139.4 metres with a final RMS error
of 0.1 metres. Figure 6 shows the RMS error for each MAV
plotted over time. The initial error is large as each MAV
assumes its starting at 3D position (0,0,0). As each MAV
localises itself within the map there is a significant jump
as each MAV gets its first global pose estimate and then a
steady convergence as more estimates are integrated into the
EKF. Note that in the initial outward movement each MAV
is tracking map-points generated from its own keyframes but
as each MAV moves across to complete the octagon shape
they move into areas already mapped by other MAVs. For
this experiment the simulator was unable to generate camera
images at the normal 30 FPS (Frames Per Second) instead
only 5 FPS was obtainable, we were therefore forced to limit
the speed of each MAV to 0.2 m/s (metres per second). For
a camera with a standard 30 FPS update rate we are able
to achieve speeds up to 7 m/s before tracking performance
becomes unreliable. Of interest is the fact that past 7 m/s it
is not the delay in processing introduced by the distributed
architecture of DCTAM that impacts performance. Instead
other factors such as the FPS of the camera or the rapid
pitching of the MAV caused by the transition to forward
flight have more impact. We intend to conduct a more in-
depth study of capabilities of our framework eliminating
these factors by using a higher FPS camera mounted on a
stabilized gimbal.

A. Hardware Experiments

For the hardware experiments we use a ODROID U3, an
ARM-based single board computer with a 1.7 Ghz Quad-
core processor and 2 GB of RAM and an Intel ATOM-
based netbook with a 1.6 Ghz dual-core processor and 1
GB of RAM. Both configurations are widely used a number
of popular MAV platforms such as the AscTec Pelican and
PixhawkFor the cameras we use low-cost Sony PlayStation3
Eye cameras, capturing images at 30 Hz. We use the same
Core i7 desktop as the ground-station and connect to both
remote machines via wireless links with an average delay
of 150 milliseconds. For these experiments both platforms
were moved by hand rather than mounted on real robot.

Fig. 7. Results showing tracking performance plotted against map size for
both hardware platforms. The ATOM (top) and ODROID (bottom).

Fig. 8. Results of the repeated experiment on real hardware, the final RMS
error was 0.06 metres.

Figure 7 shows the tracking times plotted against map size
for both remote machines. The ODROID shows slightly
better performance with an average tracking time of 0.01
milliseconds than the ATOM with an average of 0.06 mil-
liseconds. Note the very short spikes in runtime coinciding
with the arrival of a map update (resulting in an increase in
map size). Both platforms show good performance and the
trackers demonstrate constant-time performance regardless
of map size. This is as a result of running the costly bundle
adjustment procedure on the ground-station.

It may be argued that, in the experiment shown in Figure
4, artificial random delay does not approximate real world
network conditions. In order to verify our approach under
more realistic conditions we repeated the experiment on
real hardware. A set of 8 netbook computers served as our
proxy-MAVs, each playing back recorded images from the
previous simulated experiment to on-board trackers. Each
tracker was connected via our lab’s wireless network to the
mapper running on the same ground-station computer. Figure
8 shows the results of the experiment, the final RMS error
for the experiment improved to 0.06 metres, highlighting the
benefit of the distributed processing approach of DCTAM.

VI. CONCLUSION

In this paper we have presented a distributed system for
collaborative monocular SLAM with multiple MAVs. We
successfully demonstrate the system’s robustness to the delay
typically experienced with typical wireless networks. We
also demonstrate the system is able to handle large teams
of MAVs without degrading its performance. Future work
will involve deploying the system with a team of physical
MAVs based on the Pixhawk platform we are currently
developing. Additional details including source code can
be found at the following web-page: http://cgi.csc.
liv.ac.uk/˜rmw/DCTAM.html

REFERENCES

[1] S. Weiss, D. Scaramuzza, and R. Siegwart, “Monocular-slam–based
navigation for autonomous micro helicopters in gps-denied environ-
ments,” Journal of Field Robotics, vol. 28, no. 6, pp. 854–874, 2011.

[2] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a
low-cost quadrocopter,” IMU, vol. 320, p. 240, 2012.

[3] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and M. Hebert, “Learning monocular reactive uav
control in cluttered natural environments,” in International Conference
on Robotics and Automation (ICRA). IEEE, 2013, pp. 1765–1772.

[4] A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof, “Dense
reconstruction on-the-fly,” in Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 1450–1457.

[5] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic ap-
proach to collaborative multi-robot localization,” Autonomous robots,
vol. 8, no. 3, pp. 325–344, 2000.

[6] L. Carlone, M. K. Ng, J. Du, B. Bona, and M. Indri, “Rao-
blackwellized particle filters multi robot slam with unknown initial
correspondences and limited communication,” in International Con-
ference on Robotics and Automation (ICRA). IEEE, 2010, pp. 243–
249.

[7] C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza, “Collaborative
monocular slam with multiple micro aerial vehicles,” in International
Conference on Intelligent Robots and Systems (IROS), IEEE/RSJ.
IEEE, 2013, pp. 3962–3970.

[8] A. Schmidt, “Multi-robot, ekf-based visual slam system,” in Computer
Vision and Graphics. Springer, 2014, pp. 562–569.

[9] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 29, no. 6, pp. 1052–1067, 2007.

[10] L. Riazuelo, J. Civera, and J. Montiel, “C 2 tam: A cloud framework
for cooperative tracking and mapping,” Robotics and Autonomous
Systems, vol. 62, no. 4, pp. 401–413, 2014.

[11] R. Williams, B. Konev, and F. Coenen, “Multi-agent environment
exploration with ar. drones,” in Advances in Autonomous Robotics
Systems. Springer, 2014, pp. 60–71.

[12] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in International Symposium on Mixed and Augmented
Reality ISMAR 2007. IEEE, 2007, pp. 225–234.

[13] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger,
“Adaptive and generic corner detection based on the accelerated
segment test,” in Computer Vision–ECCV. Springer, 2010, pp. 183–
196.

[14] G. Klein and D. Murray, “Improving the agility of keyframe-based
slam,” in Computer Vision–ECCV 2008. Springer, 2008, pp. 802–
815.

[15] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics research. Springer, 2011,
pp. 3–19.

[16] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, 2009.

[17] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von Stryk,
“Comprehensive simulation of quadrotor uavs using ros and gazebo,”
in Simulation, Modeling, and Programming for Autonomous Robots.
Springer, 2012, pp. 400–411.

http://cgi.csc.liv.ac.uk/~rmw/DCTAM.html
http://cgi.csc.liv.ac.uk/~rmw/DCTAM.html

	INTRODUCTION
	Motivation
	Related Work
	Contributions and Outline

	SYSTEM OVERVIEW
	The Map
	Tracking
	Mapping
	Stereo Initialization and Tracking Failure Recovery

	ADDITIONAL COMPONENTS
	Extended Kalman Filter (EKF)
	Optimal Reciprocal Collision Avoidance (ORCA) Position Controller

	IMPLEMENTATION DETAILS
	RESULTS
	Hardware Experiments

	CONCLUSION
	References

