
Computer-Aided Proof of Erdős Discrepancy
Properties

Boris Konev and Alexei Lisitsa

Liverpool University

Abstract
In 1930s Paul Erdős conjectured that for any positive integer C in any infi-

nite±1 sequence (xn) there exists a subsequence xd, x2d, x3d, . . . , xkd, for some
positive integers k and d, such that |

∑k
i=1 xi·d |> C. The conjecture has been

referred to as one of the major open problems in combinatorial number theory and
discrepancy theory. For the particular case of C = 1 a human proof of the con-
jecture exists; for C = 2 a bespoke computer program had generated sequences of
length 1124 of discrepancy 2, but the status of the conjecture remained open even
for such a small bound. We show that by encoding the problem into Boolean satis-
fiability and applying the state of the art SAT solvers, one can obtain a discrepancy
2 sequence of length 1160 and a proof of the Erdős discrepancy conjecture for
C = 2, claiming that no discrepancy 2 sequence of length 1161, or more, exists.
In the similar way, we obtain a precise bound of 127 645 on the maximal lengths
of both multiplicative and completely multiplicative sequences of discrepancy 3.
We also demonstrate that unrestricted discrepancy 3 sequences can be longer than
130 000.

1 Introduction
The high mental activity of mathematical inquiry has been the battleground for ar-
tificial intelligence, and speaking more broadly for computer science, from their very
dawn. The rigorous and structured nature of mathematical reasoning, the work on foun-
dations of mathematics and on formalisation of mathematical proof, the invention of
digital computers and the development of automated reasoning enabled mechanisation
of proof search and proof checking. As a result, over the last 80 years we have wit-
nessed the realisation of the dream of Leibniz and Babbage through the development of
computer tools which can be used to make progress in mathematics itself by assisting
humans in proving new statements and in formal verification of existing mathematical
knowledge.

Yet, mathematically significant open questions whose status has been settled by a
computer, that is, interesting mathematical problems for which no human solution or
even solution sketch existed prior to the computer being applied, can be counted virtu-
ally on the fingers of one hand. Notably the success in these flagship cases was due to a

1

combination of a significant computational effort with a non-trivial human effort either
in the form of customising and fine-tuning proof assistants and their strategies [1] or in
the form of developing specialised software programs [2, 3] that perform computations
underpinning the proof.

Mathematicians generally have little or no issues when computers are used to dis-
cover a readable proof in a large space of possibilities. For example, even though it took
the computer several weeks to find a solution to the Robbins problem [1], the proof it-
self consists of a dozen of steps, which can be inspected. On the other hand, when the
answer is obtained by a complicated software system going through myriads of special
cases—humans have doubts [4], and the degree of trust in computer mathematics often
depends on the computer technology used.

Famously, it took four years to accept for publication the paper on the computer
proof of Kepler’s conjecture and still reviewers were not completely satisfied as they
could not verify the entire computer program that was used to find the answer [5]. The
paper on a computer proof of the non-existence of a finite projective plane of order
10 explicitly analyses the probability of a computational error [6]. The original Appel
and Haken proof [2] of the Four Colour Theorem involved a deep theoretical argument
followed by the vast computational case analysis carried out by a program written in
the assembly language. The possibility of unaccounted errors in the software sparked
a discussion whether such an answer can be accepted [7], which led to further progress
and clarification by Robertson et al [8], who considerably simplified the theoretical
part and used computer programs written in a high-level programming language. The
culmination of the effort on verification and clarification of the Four Colour Theorem
has been achieved in the recent work on computer-checked proof by Gonthier using the
Coq proof assistant [9].

The Four Colour Theorem story reflects the general trends in computer mathemat-
ics to formalise computer-generated proofs in a formal inference system and verify
them by a trusted computer program. The availability of a well-defined independently
verifiable proof makes computer mathematics more palatable for mathematicians, even
if the proof itself is still too large for any human ever to inspect [5, 9, 10, 11].

In this article we attack a discrepancy theory question, which stood open for more
than 80 years, by reduction to Boolean satisfiability. We then apply a general pur-
pose solver in a fully automated unguided manner. To find a solution, the solver goes
through a very large number of possibilities; however, unlike a simple computer-aided
enumeration of cases for proof by exhaustion, it also produces a certificate assuring that
the computer did not make a mistake going through these possibilities. The certificate
can be reliably and independently verified. Coupled with the fact that the computer
program generating the input to the solver is short and clear, the certificate constitutes
a rigorous formal proof of the statement.

Discrepancy theory is a branch of mathematics dealing with irregularities of dis-
tributions of points in some space in combinatorial, measure-theoretic and geometric
settings [12, 13, 14, 15]. The paradigmatic combinatorial discrepancy theory problem
can be described in terms of a hypergraph H = (U, S), that is, a set U and a family of
its subsets S ⊆ 2U . Consider a colouring c : U → {+1,−1} of the elements of U in
blue (+1) and red (−1) colours. Then one may ask whether there exists a colouring of

2

the elements of U such that colours are distributed uniformly in every element of S or a
discrepancy of colours is always inevitable. Formally, the discrepancy (deviation from
a uniform distribution) of a hypergraph H is defined as minc(maxs∈S |

∑
e∈s c(e)|).

Discrepancy theory has found applications in computational complexity [13], com-
plexity of communication [16] and differential privacy [17]. Although other forms of
combinatorial discrepancy, for example, hereditary and multicolour discrepancies have
been defined, the classical two-coloured discrepancy defined above remains a focus of
research both from the mathematical and algorithmic viewpoints [18].

One of the oldest problems of combinatorial discrepancy theory is the discrepancy
of hypergraphs over sets of natural numbers with the subsets (hyperedges) forming
arithmetical progressions over these sets [19]. Roth’s theorem [20], one of the main
results in the area, states that for the hypergraph formed by the arithmetic progressions
in {1, . . . , n}, that is Hn = (Un, Sn), where Un = {1, 2, . . . , n} and elements of Sn
being of the form (d · i+ c) for arbitrary d, c, the discrepancy grows at least as 1

20n
1/4.

While proving this result, Roth introduced a pioneering proof technique that played a
key role in the development of discrepancy theory and other areas [21].

Surprisingly, for the more restricted case of homogeneous arithmetic progressions
of the form (d · i), the question of the discrepancy bounds has been open for more than
eighty years. In 1930s Erdős conjectured [22] that discrepancy is unbounded. Inde-
pendently the same conjecture has been made by Čudakov [23]. Proving or disproving
this conjecture has become one of the major open problems in combinatorial number
theory and discrepancy theory. It is often referred to as the Erdős discrepancy problem
(EDP) [12, 15, 24].

The expected value of the discrepancy of random ±1 sequences of length n grows
as n1/2+o(1) and the explicit constructions of a sequence with slowly growing discrep-
ancy at the rate of log3 n have been demonstrated [25, 26]. By considering cases, one
can see that any ±1 sequence containing 12 or more elements has discrepancy at least
2; that is, Erdős’s conjecture holds for the particular case C = 1 (also implied by a
stronger result of Mathias [27]). Until February 2014 the status of the conjecture re-
mained unknown for all other values of C. Although widely believed not to be the
case, there was still a possibility that an infinite sequence of discrepancy 2 existed.

The EDP has attracted renewed interest in 2009-2010 as it became a topic of the
fifth Polymath project [28] a widely publicised endeavour in collective mathematics
initiated by Gowers [29]. As part of this activity an attempt has been made to attack
the problem using computers (see the discussion in [28]). A purposely written com-
puter program had successfully found±1 sequences of length 1124 and discrepancy 2;
however, no further progress has been made leading to a claim “given how long a finite
sequence can be, it seems unlikely that we could answer this question just by a clever
search of all possibilities on a computer” [28].

The status of the Erdős discrepancy conjecture for C = 2 has been settled by the
authors of this article [30, 31] by encoding the problem as a propositional satisfiability
problem and using state of the art SAT solvers to prove that the longest ±1 sequence
of discrepancy 2 contains 1160 elements. A 13 900 long ±1 sequence of discrepancy
3 was also constructed.

This article is a revised and extended version of [31]. We use a different smaller

3

SAT encoding of the Erdős discrepancy problem, which is based on the sequential
counter encoding of the at-most cardinality constraints1. The impact of the new en-
coding is twofold. Firstly, it allows us to significantly reduce the size of the machine-
generated proof of the fact that any sequence longer than 1160 has discrepancy at least
3. Secondly, by combining the new encoding with additional restrictions that the se-
quence is multiplicative, or completely multiplicative2, we improve significantly the
lower bound on the length of sequences of discrepancy 3. We prove the surprising
result that 127 645, the length of the longest completely multiplicative sequence of
discrepancy 3, is also the maximal length of a multiplicative sequence of discrepancy
3, which is not the case for C = 1 and C = 2. The article also contains detailed
argumentation, examples and complete proofs.

The article is organised as follows. In Section 2 we introduce the main terms and
definition. In Section 3 we describe the new SAT encoding of the Erdős discrepancy
problem. Results and conclusions are discussed in Sections 4 and 5 respectively.

2 Preliminaries
We divide this section into two parts: main definitions for the Erdős discrepancy prob-
lem and some background and definitions for SAT solving. Since number 1 is used
both as an element of ±1 sequences and as the logical value true, to avoid confusion,
in what follows we write 1 to refer to the logical value true and +1 to refer to elements
of ±1 sequences. We also use the following naming convention: we write x1, . . . xn
for ±1 sequences, p1, . . . , pn for sequences of propositions, and a1, . . . , an for 0/1
sequences.

2.1 Discrepancy of ±1 Sequences
A ±1 sequence of length n is a function {1, . . . , n} → {−1,+1}. An infinite ±1
sequence is a function N+ → {1,−1}, where N+ is the set of positive natural numbers.
We write x1, . . . , xn to denote a finite ±1 sequence of length n, and (xn) to denote an
infinite sequence. We refer to the i-th element of a sequence x, that is the value of x(i),
as xi. A (finite or infinite) ±1 sequence x is completely multiplicative [33] if

xm·n = xm · xn, for all m,n ∈ N+. (1)

The sequence is multiplicative if (1) is only required for coprime m and n.
It is easy to see that a sequence x is completely multiplicative if, and only if, x1 =

+1 and for the canonical representation m =
∏k
i=1 pi

αi , where p1 < p2 < · · · < pk
are primes and αi ∈ N+, we have xm =

∏k
i=1(xpi)

αi . This observation leads to a
more computationally friendly definition of completely multiplicative sequences: x is
completely multiplicative if, and only if,

x1 = +1 and for every composite m we have xm = xi · xj , for some
i ≤ j, non-trivial divisors of m. (2)

1We are grateful to Donald E. Knuth for pointing us in that direction.
2After this article had been submitted, it came to our notice that for completely multiplicative sequences

this result has independently been obtained by Le Bras, Gomes and Selman [32].

4

The EDP can be naturally described in terms of ±1 sequences (and this is how
Erdős himself introduced it [22]). Then Erdős’s conjecture can be formulated as fol-
lows.
Conjecture (Erdős, 1930s). For any C > 0 and any infinite ±1 sequence (xn) there
exists its subsequence xd, x2d, x3d, . . . , xkd, for some positive integers k and d, such
that |

∑k
i=1 xi·d | > C.

Notice that the general definition of discrepancy given in the introduction can be
specialised in terms of partial sums of subsequences of a±1 sequence. To simplify no-
tation, we introduce an auxiliary notion of C-boundedness. We say that a±1 sequence
x1, . . . , xl is C-bounded, for some C > 0 if |

∑j
i=1 xi| ≤ C, for all j : 0 < j ≤ l.

Notice that every ±1 sequence whose length does not exceed C is always C-bounded.
Then the discrepancy of a finite ±1 sequence x1, . . . , xn of length n is a minimal

C such that for every d : 1 ≤ d ≤ b n
C+1c the subsequence xd, x2d . . . , xbn/dc·d is

C-bounded. For an infinite sequence (xn) its discrepancy is the supremum of discrep-
ancies of all its initial finite fragments.

The Erdős discrepancy conjecture is equivalent to its variant where “infinite ±1
sequence” is replaced by “infinite completely multiplicative ±1 sequence” [22]. This
observation, in particular, explains an interest to multiplicativity properties in this con-
text.

Example 1. The finite sequence x1, . . . x5 = −1,−1,−1,+1,+1 has discrepancy 3
as for d = 1 and j = 3 we have |

∑j
i=1 xi·d| = |

∑3
i=1 xi| = | − 3| = 3, and it can be

readily checked that all other sequences in the definition of discrepancy are 3-bounded.
The finite sequence y1, . . . y6 = −1,+1,−1,+1,−1,+1 also has discrepancy 3, a

value achieved by setting d = 2 and j = 3 in the definition above.
The infinite sequence (xn) = (−1n) has an unbounded discrepancy as its initial

finite segment x1, . . . , xm, for m ≥ 2, contains a subsequence whose all members
are +1, namely x2, x4, . . . xl, where l = 2bm2 c. Thus, the discrepancy of the initial
segment x1, . . . , xm grows as bm2 c. In fact, any infinite periodic ±1 sequence (xn)
has an unbounded discrepancy. Indeed if xn+p = xn, for all values of n, then xp =
x2p = x3p = . . . , so |xp + x2p + · · · + xjp| = j, for any j > 0 and thus there is
no C such that every sequence xp, x2p, . . . , xjp is C-bounded for all j > 0. A similar
argument applies to eventually periodic sequences, so no eventually periodic sequence
has a bounded discrepancy.

It is easy to see why any ±1 sequence containing 12 elements has discrepancy at
least 2.

Example 2. For the proof by contradiction, suppose that the discrepancy of some ±1
sequence x1, . . . , x12 is 1. Assume that x1 is +1. We write

(+1, _, _, _, _, _, _, _, _, _, _, _)

to track progress in this example, that is, we put specific values +1 or−1 into positions
i : 1 ≤ i ≤ 12, to indicate decisions on xi which have been taken so far, and mark
positions of xi, for which no decision has been made by an underscore.

5

Notice that x2 must be −1 for otherwise x1 + x2 = 2. So, we progress to

(+1,−1, _, _, _, _, _, _, _, _, _, _).

Then the 4th element of the sequence must be +1 for otherwise for d = 2 the sum
xd + x2d = x2 + x4 = −2. So we progress to

(+1,−1, _,+1, _, _, _, _, _, _, _, _).

Then the 3rd element of the sequence must be −1 for otherwise x1 + · · ·+ x4 = 2 and
so we come to

(+1,−1,−1,+1, _, _, _, _, _, _, _, _).

Repeating the reasoning above for x3 and x6 followed by x5, for x4 and x8 followed
by x7, for x5 and x10 followed by x9 and finally for x6 and x12 followed by x11 we
progress to

(+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1). (3)

But then for d = 3 we have xd + x2d + x3d + x4d = x3 + x6 + x9 + x12 = −2. So
we derive a contradiction. It can be checked in a similar way that the other possibility
of x1 being −1 also leads to a contradiction.

The first eleven elements of the sequence (3) form a discrepancy 1 sequence. It
is multiplicative but not completely multiplicative as x9 is −1. Reasoning similar to
the one above shows that there exists a unique longest completely multiplicative ±1
sequence of discrepancy 1 which has nine elements:

(+1,−1,−1,+1,−1,+1,+1,−1,+1).

2.2 Propositional Satisfiability Problem
We assume standard definitions for propositional logic (see, for example, [34]). Propo-
sitional formulae are defined over Boolean constants true and false, denoted by 1 and 0,
respectively, and the set of Boolean variables (or propositions) PV as follows: Boolean
constants 0 and 1 as well as the elements of PV are formulae; if Φ and Ψ are formulae
then so are Φ ∧ Ψ (conjunction), Φ ∨ Ψ (disjunction), Φ → Ψ (implication), Φ ↔ Ψ
(equivalence) and ¬Φ (negation). We typically use letters p, q and s to denote propo-
sitions and capital Greek letters Φ and Ψ to denote propositional formulae. Whenever
necessary, subscripts and superscripts are used. We use vars(Φ) to denote the set of all
propositions occurring in the formula Φ.

Every propositional formula can be reduced to conjunctive normal form. Proposi-
tions and negations of propositions are called literals. When the negation is applied
to a literal, double negations are implicitly removed, that is, if l is ¬p then ¬l is p. A
disjunction of literals is called a clause. A clause containing exactly one literal is called
a unit clause. A conjunction of clauses is called a propositional formula in conjunctive
normal form, a CNF formula for short. A clause can be represented by the set of its
literals and the empty clause correspond to 0 (false); a CNF formula can be represented
by the set its clauses. The two representations are used interchangeably. We typically

6

use meaningful terms typeset in sans serif font, for example edp or cmult, to highlight
the fact that a propositional formula is a CNF formula of interest.

For a propositional formula Φ, we write Φ(p1, . . . , pn) to indicate that
{p1, . . . , pn} ⊆ vars(Φ). Propositions p1, . . . , pn are designated as ‘input’ proposi-
tions in this case, and the intended meaning is that formula Φ encodes some property
of p1, . . . , pn. Then the expression Φ(q1, . . . , qn) denotes the result of simultaneous
replacement of every occurrence of pi in Φ with qi, for 1 ≤ i ≤ n.

The semantics of propositional formulae is given by interpretations (also termed
assignments). An interpretation I is a mapping PV → {0, 1} extended to literals,
clauses, CNF formulae and propositional formulae in general in the usual way. For
an assignment I and a formula Φ we say that I satisfies Φ (or I is a model of Φ) if
I(Φ) = 1. A formula Φ is satisfiable if there exists an assignment that satisfies it, and
unsatisfiable otherwise.

Despite the NP-completeness of the satisfiability problem, the tremendous progress
in recent years in the development of SAT solvers—computer programs capable to find
a satisfying assignment for a given propositional formula—made it possible to solve
many interesting hard problems by first expressing them as a propositional formula
and then using a SAT solver for obtaining a solution [35]. In addition to returning
a satisfying assignment if the input formula is satisfiable, some SAT solvers are also
capable to return a proof (or certificate) of unsatisfiability.

Reverse Unit Propagation (RUP) proofs constitute a compact representation of the
resolution refutation of the given formula [36] in the following sense. Unit propagation
is a CNF formula transformation technique, which simplifies the formula by fixing the
values of propositions occurring to its unit clauses to satisfy these clauses. That is, if
the unit clause (p) occurs in the CNF formula then all occurrences of p are replaced
by 1 and if the unit clause (¬p) occurs in the CNF formula, all occurrences of p are
replaced by 0. Then the CNF formula is simplified in the obvious way. A clause
C = (l1, . . . lm) is a RUP inference from the input CNF formula Ψ if adding the unit
clauses (¬l1), . . . , (¬lm) to Ψ makes the whole formula refutable by unit propagation.
A RUP unsatisfiability certificate is the sequence of clauses C1, . . . Cm such that for
every 1 ≤ i ≤ m the clause Ci is a RUP inference from Ψ ∪ {C1, . . . , Ci−1} and
Cm is the empty clause. Every unsatisfiable CNF formula has a RUP unsatisfiability
certificate [36].

Delete Reverse Unit Propagation (DRUP) proofs extend RUP proofs by including
extra information about the proof search process, namely clauses that have been dis-
carded by the solver. Eliminating this extra information from a DRUP proof converts
it to a valid RUP proof. DRUP proofs are somewhat longer but they are significantly
faster to verify than RUP proofs [37].

3 SAT Encoding of the discrepancy problem
In this section we present our SAT encoding of the EDP. We start with characterisingC-
boundedness of a sequence with the help of cardinality constraints. We then represent
these constraints as a propositional formula in Section 3.2. In Section 3.3 we present
an optimised clausal form for this encoding. In Section 3.4 we discuss a SAT encoding

7

of multiplicativity. Finally, in Section 3.5 we put all the parts together.

3.1 C-Boundedness Expressed as Cardinality Constraints
In the context of propositional satisfiability, cardinality constraints [38] are expres-
sions that impose restrictions on propositional interpretations by specifying numerical
bounds on the number of propositions, from a fixed set of propositions, that can be
assigned value 1. The at-most r constraint over the set of propositions {p1, . . . , pn},
written as p1 + · · · + pn ≤ r, holds for an interpretation I if, and only if, at most r
propositions among p1, . . . , pn are true under I . Its counterpart, the at-least r con-
straint, written as p1 + · · · + pn ≥ r, holds for an interpretation I if, and only if, at
least r propositions among p1, . . . , pn are true under I . A constraint is satisfiable if
there exists an assignment in which the constraint holds. Cardinality constraints can be
encoded by propositional formulae so that every interpretation satisfying the formula
satisfies the cardinality constraint and vice versa; a number of such encodings can be
found in the literature [38].

As every ±1 sequence whose length does not exceed C is always C-bounded, in
what follows we only consider cases of l > C. As a first step towards a SAT encod-
ing of C-boundedness, we switch our consideration from finite ±1 sequences of the
form x1, . . . , xl to their ‘characteristic’ representation by 0/1 sequences of the form
a1, . . . , al so that xi = 2ai − 1 (in other words, +1 corresponds to 1 and −1 cor-
responds to 0). We extend the definition of C-boundedness to 0/1 sequences in the
obvious way: a 0/1 sequence a1, a2, . . . , al is C-bounded if, and only if, the ±1 se-
quence 2a1 − 1, 2a2 − 1, . . . , 2al − 1 is C-bounded.

Notice that |
∑j
i=1 xi| from the definition of C-boundedness above can be charac-

terised as the absolute value of the difference of the number of occurrences of +1 in
x1, . . . , xj and the number of occurrences of −1 in x1, . . . , xj . Under our correspon-
dence, the number of occurrences of +1 in x1, . . . , xj is the number of occurrences of
1 in a1, . . . , aj is

∑j
i=1 ai. As the total number of elements in x1, . . . xj is j, the num-

ber of occurrences of −1 in x1, . . . , xj is the number of occurrences of 0 in a1, . . . , aj
is (j −

∑j
i=1 ai). Then

∣∣∣ j∑
i=1

xi

∣∣∣ =
∣∣∣ j∑
i=1

ai −
(
j −

j∑
i=1

ai
)∣∣∣ =

∣∣∣2 j∑
i=1

ai − j
∣∣∣.

Thus a1, . . . , al is C-bounded if, and only if,

−C ≤ 2

j∑
i=1

ai − j ≤ C, for all j : C < j ≤ l,

which is equivalent to the two following systems of inequalities,

j∑
i=1

ai ≤
⌊
C + j

2

⌋
, for all j : C < j ≤ l (4)

8

and
j∑
i=1

ai ≥
⌈
−C + j

2

⌉
, for all j : C < j ≤ l. (5)

If we interpret now the numerical values 0 and 1 as Boolean constants true and false,
respectively, the 0/1 sequence a1, . . . , al corresponds to the evaluation of a sequence
of Boolean propositions p1, . . . , pl under some interpretation I , and C-boundedness of
a sequence can be expressed as cardinality constraints in a natural way.

Theorem 3. A ±1 sequence x1, . . . , xl, for some C > 0 and l > C, is C-bounded if,
and only if, the union of the at-most cardinality constraints

p1 + · · ·+ pj ≤
⌊
C + j

2

⌋
, for all j : C < j ≤ l, (6)

and the at-least cardinality constraints

p1 + · · ·+ pj ≥
⌈
−C + j

2

⌉
, for all j : C < j ≤ l. (7)

is satisfiable.

Proof. The proof consists of a trivial observation that, by definition of cardinality con-
straints, the at-most constraints (6) capture condition (4) while the at-least constraints
(7) capture condition (5).

Theorem 3 immediately yields a reduction of the question of the existence of a
C-bounded sequence to a propositional satisfiability problem using any SAT repre-
sentation of cardinality constraints [38]. However, if used in a “black-box” manner,
constraints (6) and (7) are to be considered independently of each other for every
j : C < j ≤ l leading to a proliferation of their SAT encodings. Instead we use the
SAT encoding of cardinality constraints based on sequential counter circuits, which
allows us to express C-boundedness of a sequence with a single propositional formula.

3.2 Sequential Counter-Based SAT Encoding of C-boundedness
A SAT encoding of cardinality constraints based on sequential counter circuits has been
suggested by Sinz [39]. This encoding introduces auxiliary propositions skj to repre-
sent unary counters storing the partial sums of prefixes of p1, . . . , pl so that whenever∑j
i=1 pi ≥ k, for some j ≤ l, we have skj = 1.
We slightly modify the encoding in [39] as follows. Let Φ(p1, . . . , pl) be the con-

junction of

skj ↔ (skj−1 ∨ (sk−1j−1 ∧ pj)), for all 1 ≤ k ≤ l, 1 ≤ j ≤ l; (8)

(¬skj), for all 0 ≤ j < k ≤ l; (9)

(skj), for k = 0 and all 0 ≤ j ≤ l. (10)

9

Recall that we write Φ(p1, . . . , pl) to highlight the fact that p1, . . . , pl are des-
ignated ‘input’ propositions; the set of all propositions of Φ(p1, . . . , pl) is
vars(Φ(p1, . . . , pl)) = {p1, . . . , pl} ∪

⋃l
k=1

⋃l
j=1{skj }.

The proof of the fact that in every model I of Φ(p1, . . . , pl) we have I(skj) = 1 if,
and only if,

∑j
i=1 I(pi) ≥ k can be extracted from [39]. It is based on the observation

that the sum of the first j elements of the 0/1 sequence I(p1), . . . , I(pl) exceeds k if,
and only if, either already the sum of the first j − 1 elements exceeds k, or the sum of
the first j − 1 elements is k and the j-th element of the sequence is 1. Formulae (9)
and (10) specify the border cases that the sum of the first j elements of any sequence
cannot exceed j and that the sum of every initial subsequence is at least 0.

Notice that rather than include formulae (9) and (10) explicitly in the encoding, one
can directly modify (8) by replacing all occurrences of skj , for 0 ≤ j < k ≤ l, with
0 (the truth value false) and all occurrences of skj , for k = 0 and all 0 ≤ j ≤ l, with
1 (the truth value true). Then, for example, for k = j = 1 formula (8) simplifies to
s11 ↔ p1. We write (9) and (10) explicitly for the exposition purposes.

We give the formal proof of the following proposition in A for completeness of the
presentation.

Proposition 4. Let Φ(p1, . . . , pl) be as defined above. Then

(i) For any assignment I : vars(Φ(p1, . . . , pl)) → {0, 1} such that I satisfies
Φ(p1, . . . , pl), any 1 ≤ j ≤ l and 1 ≤ k ≤ l we have

I(skj) = 1 if, and only if,
j∑
i=1

I(pi) ≥ k.

(ii) For any 0/1-sequence (a1, . . . , al) ∈ {0, 1}l there exists an assignment I :
vars(Φ(p1, . . . , pl))→ {0, 1} such that I satisfies Φ(p1, . . . , pl) and I(pi) = ai,
for all 1 ≤ i ≤ l.

It follows from Proposition 4 that the formula (Φ(p1, . . . , pl)∧¬sr+1
l) encodes the

at-most r cardinality constraint p1+· · ·+pl ≤ r, while the formula (Φ(p1, . . . , pl)∧srl)
encodes the at-least r cardinality constraint p1 + · · ·+ pl ≥ r. Notice that the original
encoding in [39] only captures the at-most constraint and uses the polarity-based op-
timisation based on Tseitin’s [40] renaming techniques yielding O(nr) clauses, which
require O(nr) auxiliary propositions.

We now use Proposition 4 to encode C-boundedness of sequences. Let proposi-
tional formula ΨC(p1, . . . , pl) be the conjunction of Φ(p1, . . . , pl), with

(¬sr+1
j), for all j : C < j ≤ l and r =

⌊
C + j

2

⌋
, (11)

and

(srj), for all j : C < j ≤ l and r =

⌈
−C + j

2

⌉
. (12)

Notice that, as in the case of Φ(p1, . . . , pl), we write (11) and (12) explicitly for the
ease of explanation. Then we have the following.

10

Theorem 5. For any C > 0, any l > C and any assignment I : {p1, . . . , pl} → {0, 1}
the following holds: there exists an extension of I to I ′ : vars(ΨC(p1, . . . , pl)) →
{0, 1} that is a model of ΨC(p1, . . . , pl) if, and only if, the sequence I(p1), . . . , I(pl)
is C-bounded.

Proof. Assume that for some assignment I : {p1, . . . , pl} → {0, 1} the sequence
I(p1), . . . , I(pl) is C-bounded. By item (ii) of Proposition 4, I can be extended to an
assignment I ′ : vars(Φ(p1, . . . , pl) → {0, 1} such that I ′ satisfies Φ(p1, . . . , pl) and
I ′(pi) = I(pi), for all 1 ≤ i ≤ l. As I ′ is an extension of I the sequence a1, . . . , al,
where ai = I ′(p1) for i = 1, . . . , l, also is C-bounded, so conditions (4) and (5)
hold true. By item (i) of Proposition 4, I ′(sr+1

j) = 0, for all j : C < j ≤ l and

r =
⌊
C+j
2

⌋
, and I ′(srj) = 1, for all j : C < j ≤ l and r =

⌈
−C+j

2

⌉
. Thus, I ′ satisfies

ΨC(p1, . . . , pl).
Conversely, consider an assignment I : {p1, . . . , pl} → {0, 1} and assume that

its extension to I ′ : vars(ΨC(p1, . . . , pl)) → {0, 1} is a model of ΨC(p1, . . . , pl).
Since I ′ satisfies ΨC(p1, . . . , pl), we have I ′(sr+1

j) = 0, for all j : C < j ≤ l and

r =
⌊
C+j
2

⌋
, and I ′(srj) = 1, for all j : C < j ≤ l and r =

⌈
−C+j

2

⌉
. As Φ(p1, . . . , pl)

is a conjunct of ΨC(p1, . . . , pl), by Proposition 4 item (i),
∑j
i=1 I

′(pi) ≤ bC+j
2 c,

for all j : C < j ≤ l, and
∑j
i=1 I

′(pi) ≥ b−C+j
2 c, for all j : C < j ≤ l, so

I ′(p1), . . . , I ′(pl) is C-bounded.

3.3 Clausal form
Straightforward clausification of the formula ΨC(p1, . . . , pl) yields O(l2) clauses;
however, unit propagation of (9), (10), (11) and (12) into (8) reduces significantly the
size of the resulting CNF.

Example 6. We illustrate the effect of unit propagation on ΨC(p1, . . . , pl) in Fig-
ure 1 by presenting graphically values of skj for {k, j} ⊆ {0, . . . , l} for the case of
C = 2 and a relatively large l = 12. Notice that in every interpretation I satisfying
ΨC(p1, . . . , pl), the unit clauses (9), (10), (11) and (12) are true so the truth values of
auxiliary propositions skj occurring in these clauses are fixed in any such interpreta-
tion. The dark gray areas in Figure 1 correspond to skj whose values are being fixed
by (9) and (10), while the boldface zeros and ones on the light gray background are
due to (11) and (12). It is not hard to see that once these values are fixed, due to
(8) all light gray cells above the unshaded region should contain 1 and all light gray
cells below the unshaded region should contain 0. Thus, it is only the values of skj in
the unshaded region that are not uniquely determined in any interpretation satisfying
Ψ3(p1, . . . , p12). In our example there are only 18 indeterminate values of skj out of
13× 13 = 169 combinations of j, k.

The same reasoning as in the example above applies to other values of C and l.

11

j
k 0

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

10

1

11

1

12

11

0

0

1

2

3

4

5

6

7

8

9

10

11

12

0

0 0

0 0

0 0

0 0

0

1 1

1 1

1 1

1 1

1 1

skjskj−1

sk−1j−1

Figure 1: Auxiliary propositions skj in ΨC(p1, . . . , pl) for C = 2 and l = 12.

Proposition 7. Let C > 0 and l > C. Then

(skj), for 1 ≤ k ≤ l and 2k − 1 + C ≤ j ≤ l (13)

and
(¬skj), for 1 ≤ k ≤ l and 0 ≤ j ≤ max{2k − C − 1, l} (14)

are logical consequences of ΨC(p1, . . . , pl).

Proof. Suppose, to the contrary, that for some C > 0, some l > C, some I satisfying
ΨC(p1, . . . , pl), some k : 1 ≤ k ≤ l and some j : 2k − 1 + C ≤ j ≤ l we have
I(skj) = 0. Then by Proposition 4,

∑j
i=1 I(pi) < k. Since j ≥ 2k − 1 + C and

I(p1), . . . I(pl) is a 0/1 sequence,

j∑
i=1

I(pi) ≥
2k−1+C∑
i=1

I(pi).

Thus,
2k−1+C∑
i=1

I(pi) < k.

12

On the other hand, as I satisfies ΨC(p1, . . . , pl), the sequence I(p1), . . . , I(pl) is C-
bounded and, as 2k − 1 + C > C, by (5)

2k−1+C∑
i=1

I(pi) ≥
⌈
−C + 2k − 1 + C

2

⌉
=

⌈
2k − 1

2

⌉
= k.

So we derive a contradiction.
The proof of (14) is similar with the use of (5).

As (8) is logically equivalent to the set of clauses

(¬skj ∨ skj−1 ∨ sk−1j−1) (15)

(¬skj ∨ skj−1 ∨ pj) (16)

(¬skj−1 ∨ skj) (17)

(¬sk−1j−1 ∨ ¬pj ∨ s
k
j), (18)

where 1 ≤ k ≤ l, 1 ≤ j ≤ l, it can be seen that the formula ΨC(p1, . . . , pl) is logically
equivalent to the set of clauses S consisting of (15)–(18), (9), (10), (13) and (14). Let
CBoundC(p1, . . . , pl) be the result of applying unit propagation to S in an exhaustive
manner. One can see that the set CBoundC(p1, . . . , pl) contains less than C · l auxiliary
propositions and less than 4C · l clauses.

Example 8. To save space, we limit our consideration to the top-left 5 × 5 region in
Figure 1 and present CBound2(p1, . . . , p5), a clausal representation of the statement
that the sequence p1, . . . , p5 is 2-bounded. We also demonstrate how clauses (9), (10),
(13) and (14) unit propagate into clauses (15)–(18).

Notice that for k = 1 every instance of clause (15) contains literal s0j−1, the only
literal of the unit clause (10). Thus, every instance of clause (15) for k = 1 is redun-
dant.

For k = 2 and j = 1, clause (15) contains ¬s21, the only literal of the unit clause
(9), so for k = 2 and j = 1, the instance of clause (15) is also redundant.

For k = 2 and j = 2, an instance of the unit clause (9), namely ¬s21, unit propa-
gates into (15) resulting in a 2-CNF clause (¬s22 ∨ s11).

For k = 2 and j = 3, (15) instantiates to (¬s23 ∨ s22 ∨ s12).
Finally, for k = 2 and for 4 ≤ j ≤ 5, clause (15) contains s1j−1, the only literal of

the unit clause (13). Thus, for k = 2 and 4 ≤ j ≤ 5 the instances of clause (15) are
redundant.

By a further consideration of cases, one can see that the set of all non-redundant
simplified instance of clause (15), for 1 ≤ k ≤ 5 and 1 ≤ j ≤ 5, consists of

(¬s22 ∨ s11) (¬s34 ∨ s23)

(¬s23 ∨ s22 ∨ s12) (¬s35 ∨ s34 ∨ s24).
(19)

Similarly, instances of clause (16), for 1 ≤ k ≤ 5 and 1 ≤ j ≤ 5 are simplified

13

with the help of unit clause (9), (10), (13) and (14) to

(¬s11 ∨ p1) (¬s22 ∨ p2) (¬s34 ∨ p4)

(¬s12 ∨ s11 ∨ p2) (¬s23 ∨ s22 ∨ p3) (¬s35 ∨ s34 ∨ p5).

(s12 ∨ p3) (¬s24 ∨ s23 ∨ p4)

(s23 ∨ p5)

(20)

The set of all non-redundant simplified instances of clause (17) consists of

(¬s11 ∨ s12) (¬s22 ∨ s23) (¬s34 ∨ s35)

(¬s23 ∨ s24)
(21)

and set of all non-redundant simplified instances of clause (18) consists of

(¬p1 ∨ s11) (¬s11 ∨ ¬p2 ∨ s22) (¬s22 ∨ ¬p3) (¬s34 ∨ ¬p5).

(¬p2 ∨ s12) (¬s12 ∨ ¬p3 ∨ s23) (¬s23 ∨ ¬p4 ∨ s34)

(¬p4 ∨ s24) (¬s24 ∨ ¬p5 ∨ s35)

(22)

Thus, the set CBound2(p1, . . . , p5) consists of 26 clauses grouped in (19)–(22) above.

3.4 SAT Encoding of Multiplicativity
Multiplicativity and complete multiplicativity of ±1 sequences can be encoded in SAT
in a rather straightforward way. Assuming that a Boolean sequence p1, . . . pn encodes
a ±1 sequence x1, . . . , xn so that the logical value 1 encodes the numerical value +1
and the logical value 0 encodes the numerical value −1, a SAT encoding of the fact
that xj·k = xj · xk is captured by the following clauses, which enumerate all four
combinations of values of xj and xk:

prodj,k = {(¬pj ∨ ¬pk ∨ pj·k), (pj ∨ pk ∨ pj·k),
(¬pj ∨ pk ∨ ¬pj·k), (pj ∨ ¬pk ∨ ¬pj·k)} (23)

Then multiplicativity of x1, . . . xn is captured by instances of (23) for all coprime pairs
i < j; and, by (2), complete multiplicativity of the sequence x1, . . . , xn is captured by
instances of (23) for j and k such that every product j · k is generated only once.

For complete multiplicativity further optimisation is possible due to the fact that
in any such sequence xj2 = +1 for any j ∈ N+. It can be seen that the complete
multiplicativity condition can be expressed by the union of the sets of clauses cmulti
defined below for every i : 1 ≤ i ≤ n.

cmulti =

∅ if i is prime

{(pi)} if i = j2, for some j ≥ 1

prodj,k if none of the cases above applies
and j < k are some non-trivial divisors of i.

14

3.5 Putting It All Together
We now have all the ingredients we need to define the CNF formulae used in our
experiments. First we define the CNF encoding of finite sequences of length n having
discrepancy bounded by C. It is defined as the conjunction of formulae expressing C-
boundedness of its relevant subsequences (recall that every ±1 sequence whose length
does not exceed C is always C-bounded).

edp(C, n) =

b n
C+1 c∧
d=1

CBoundC(pd, p2d, . . . , pbn/dc·d). (24)

We assume here that for the different values of d sets CBoundC(pd, x2d, . . . , pbn/dc·d)
share the same input propositions p1, . . . , pn but use different auxiliary propositions
skj . Then the following theorem is a direct consequence of Theorem 5.

Theorem 9. For any assignment I : {p1, . . . , pn} → {0, 1} the following holds: there
exists an extension of I to I ′ : vars(edp(C, n)) → {0, 1} that is a model of edp(C, n)
if, and only if, I(p1), . . . , I(pn) encodes a ±1 sequence x1, . . . , xn of length n and
discrepancy at most C.

In our experiments we use two optimisations, which we present in the form of
propositions. Both reduce significantly the size of the unsatisfiability certificate and
have some noticeable effect on the running time. The first optimisation allows one
to remove the ‘don’t care’ propositions, which do not affect the satisfiability of the
problem. The second optimisation breaks the symmetry in the problem.

Proposition 10. Suppose that a ±1 sequence a1, . . . , an is C-bounded and either n is
odd andC is even or n is even andC is odd. Then for an arbitrary value b ∈ {+1,−1}
the sequence a1, . . . , an, b is C-bounded.

Proof. It suffices to notice that |
∑j
i=1 ai| is odd if, and only if, j is odd. Thus, under

the conditions of the proposition, |
∑j
i=1 ai| ≤ C−1, and the sequence can be extended

arbitrarily.

Symmetry breaking [41] is a well-known technique to reduce search in combina-
torial problems. In the context of propositional satisfiability, a solution symmetry [42]
can be defined as a bijection on the set of assignments of truth values to a set of solu-
tion variables [43, 44]. As the discrepancy of a±1 sequence x1, . . . , xn is bounded by
C if, and only if, the discrepancy of −x1, . . . ,−xn is bounded by C, the permutation
l 7→ ¬l, where l is a literal, is a solution symmetry for the SAT encoding of the EDP.
This symmetry induces an equivalence relation on the set of all assignments. Notice
that either all assignments in an equivalence class generated by this symmetry equiv-
alence relation satisfies the formula, or the class contains no satisfying assignment. A
symmetry breaking predicate [41] is a propositional formula, which is true on at least
one assignment in every equivalence class generated by the symmetry equivalence re-
lation. Conjoining the symmetry breaking predicate with the formula ensures that the
SAT solver finds few representative assignment for every equivalence class. It should
be clear that pl is an equivalence breaking predicate for the encoding of the EDP for
every l : 1 ≤ 1 ≤ n. We summarise this argument as a proposition.

15

Proposition 11 (Symmetry breaking). For every n > 0 and C > 0, the formula
edp(C, n) is satisfiable if, and only if, the formula edp(C, n) ∧ (pl) is satisfiable, for
some arbitrary but fixed value of l, 1 ≤ l ≤ n.

Proposition 11 introduces a rather simple form of symmetry breaking. It is an
interesting problem to identify some other forms of symmetry in the encoding of the
EDP, for example, symmetry within solutions [45, 46] and investigate their effect on
the performance of SAT solvers.

From the propositional satisfiability point of view, the study of multiplicative and
completely multiplicative sequences of bounded discrepancy can be seen an example
of streamlining [47] or tunnelling [48]. Notice however, that multiplicative and com-
pletely multiplicative sequences of bounded discrepancy are interesting in their own
right and, as mentioned in Section 2.1, the question whether the discrepancy of unre-
stricted ±1 sequences is unbounded is equivalent to the question whether the discrep-
ancy of completely multiplicative ±1 sequences is unbounded.

We define two sets of clauses

edpm(C, n) = edp(C, n) ∪
⋃

1<j<k≤n
j,k are coprime

j·k≤n

prodj,k

and

edpcm(C, n) = edp(C, n) ∪
n⋃
i=1

cmulti.

The following statement is a direct consequence of Theorem 9.

Theorem 12. For any assignment I : {p1, . . . , pn} → {0, 1} the following holds:
there exists an extension of I to I ′ : vars(edpm(C, n)) → {0, 1} (or an extension of I
to I ′ : vars(edpcm(C, n))→ {0, 1}), which is a model of edpm(C, n) (or edpcm(C, n),
respectively) if, and only if, I(p1), . . . , I(pn) encodes a multiplicative (or completely
multiplicative, respectively) ±1 sequence x1, . . . , xn of length n and discrepancy at
most C.

The completely multiplicative case can be further optimised based on the following
observation.

Proposition 13. The discrepancy of a completely multiplicative ±1 sequence
x1, . . . , xn is bounded by C, for some C > 0, if, and only if, x1, . . . , xn is C-bounded.

Proof. The necessary condition is trivial by definition of discrepancy. For the suffi-
cient condition we show that for any C-bounded sequence x1, . . . , xn and any d > 1
the subsequence xd, x2d, . . . , xbn/dc·d is C-bounded. Let 1 ≤ j ≤ bn/dc. Then
|
∑j
i=1 xi·d| = |

∑j
i=1(xi · xd)| = |xd ·

∑j
i=1 xi| = |

∑j
i=1 xi| ≤ C.

Finally notice that the fact that x1, . . . , xn is multiplicative does not imply that
−x1, . . . ,−xn is, so symmetry breaking described in Proposition 11 is not applicable
for multiplicative and completely multiplicative sequences.

16

4 Results
Experimental setting In our experiments we use Treengeling, a parallel cube-
and-conquer flavour of the Lingeling SAT solver [49] version aqw, the winner of the
application SAT-UNSAT category of the SAT’13 competition [50], and the Glucose
solver [51] version 3.0, the winner of the application certified UNSAT category of the
SAT’13 competition [50]. All experiments were conducted on PCs equipped with an
Intel Core i5-2500K CPU running at 3.30GHz and 16GB of RAM. Both solvers are
used in a black-box manner with default parameters with the only exception of the
activity heuristics [52], which contributes to the selection of variables for branching,
being tuned to reduce the size of the unsatisfiability certificate for the case of C = 2
described below.

In our first series of experiments we investigate the discrepancy of unrestricted ±1
sequences. We encode3 the existence of a ±1 discrepancy C sequence of length n into
SAT as described in Section 3. We deploy both optimisations described in Proposi-
tion 10 and Proposition 11. We choose as l, for which we fix xl to be +1, a colossally
abundant number [53], which has many divisors and thus contribute to many homo-
geneous sequences. Specifically for C = 2, the choice of l = 120 is more beneficial
for satisfiable instances; however, l = 60 results in a better reduction of the size of the
unsatisfiability proof described below. For consistency of presentation, we use l = 60
in all our experiments for C = 2.

We establish that the maximal length of a ±1 sequence of discrepancy 2 is 1160.
The CNF formula edp(2, 1160) contains 11824 propositions and 41 884 clauses. It
takes the Treengeling system about 430 seconds to find a satisfying assignment on
our hardware configuration. One of the sequences of length 1160 of discrepancy 2 can
be found in B. When applied to the CNF formula edp(2, 1161), which contains 11847
propositions and 41 970 clauses, Treengeling reports unsatisfiability. In order to
corroborate this statement, we also use Glucose. It takes the solver about 800 sec-
onds to generate a DRUP certificate of unsatisfiability. The correctness of the gener-
ated unsatisfiability certificate has been independently verified with the drup-trim
tool [37].

The size of the certificate is about 1.88 GB. An experimental exploration of the
effect of different solver options on the size of the certificate revealed that setting the
var-decay option of Glucose, which controls the solver activity heuristic, to 0.995
reduces the unsatisfiability certificate roughly by 12.5% to 1.67 GB. Interestingly, de-
viating from the default options in other unsatisfiability cases reported below had a
detrimental effect on the solver performance and, therefore, the default values were
used in all other experiments.

The time needed to verify the certificate is comparable with the time needed to
generate it. The RUP unsatisfiability certificate, that is the DRUP certificate with all
information on the deleted clauses stripped, is 850.2MB; it takes the drup-trim
tool about five and a half hours to verify it. Combined with Theorem 9, these two
experiments yield a computer proof of the following statement.

3The problem generator and results can be found at http://www.csc.liv.ac.uk/~konev/
edp/

17

http://www.csc.liv.ac.uk/~konev/edp/
http://www.csc.liv.ac.uk/~konev/edp/

Theorem 14. The length of a maximal ±1 sequence of discrepancy 2 is 1160.

Thus we prove that the Erdős discrepancy conjecture holds true for C = 2.
When applied to edp(3, n) for increasing values of n our method could only pro-

duce sequences of discrepancy 3 of length in the region of 14 000, even though solvers
were allowed to run for weeks. Since both multiplicativity and complete multiplica-
tivity restrictions reduce severely the search space, in hope for better performance,
we perform the second series of experiments to investigate the discrepancy bound for
multiplicative and completely multiplicative sequences. Notice that the optimisation
described in Proposition 11 is not applicable in this case as the fact that x1, . . . , xn is
multiplicative does not imply that −x1, . . . ,−xn is.

We saw in Example 2 that multiplicative sequences of discrepancy 1 are longer than
completely multiplicative sequences. The longest completely multiplicative sequence
of discrepancy 2 is known to contain 246 elements [54]; tests with edpm show that the
longest multiplicative sequence of discrepancy 2 has 344 elements. Thus it wouldn’t be
unreasonable to expect that the longest multiplicative discrepancy 3 sequence is longer
than the longest completely multiplicative one, but is probably harder to find. It turns
out that this expectation is wrong on both accounts.

We establish that the length of a maximal±1 completely multiplicative discrepancy
3 sequence coincides with the length of a maximal ±1 multiplicative discrepancy 3
sequence and is equal to 127 645. It takes Treengeling about one hour and fifty
minutes to find a satisfying assignment to edpcm(3, 127 645), which contains 3 484 084
propositions and 13 759 785 clauses, and about one hour and thirty five minutes to find a
satisfying assignment to edpm(3, 127 645), which also contains 3 484 084 propositions
but 14 813 052 clauses.

It takes the Glucose solver just under eight hours to generate an approxi-
mately 1.28 GB DRUP proof of unsatisfiability for edpcm(3, 127 646), which contains
3 484 084 propositions and 13 759 809 clauses, and about nine and a half hours to gen-
erate an approximately 1.56 GB DRUP proof of unsatisfiability for edpm(3, 127 646),
which again contains the same number of propositions but 14 813 076 clauses.

The optimisation of Proposition 13 leads to a reduction in the problem size for the
completely multiplicative case (446 753 propositions and 1 738 125 clauses for length
127 645 and 446 759 propositions and 1 738 149 clauses for length 127 646) and a sig-
nificant reduction both in the Treengeling running time (about 20 and 30 minutes,
respectively) and in the size of the DRUP certificate, which is about 0.84Gb.

So we get a computer-aided proof of another sharp bound on the sizes of maximal
sequences of bounded discrepancy.

Theorem 15. The length of a maximal multiplicative ±1 sequence of discrepancy 3
equals the length of a maximal completely multiplicative ±1 sequence of discrepancy
3 and is 127 645.

Unrestricted sequences of discrepancy 3 can still be longer than 127 646: by re-
quiring that only first 127 600 elements of a sequence are completely multiplicative,
we generate a 130,000 long EDP3 sequence in about one hour and fifty minutes thus
establishing a slightly better lower bound on the length of ±1 sequences of discrep-

18

Discrepancy Completely Multiplicative Unconstrained
bound multiplicative

C = 1 9 11 11
C = 2 246 344 1160
C = 3 127 645 127 645 >130 000

Table 1: Maximal length of ±1 sequences of bounded discrepancy

ancy 3 than the one from Theorem 15. The solvers struggle to expand it much further.
Notice that the optimisation of Proposition 13 is not applicable here.

We summarise known facts about discrepancy of unrestricted, multiplicative and
completely multiplicative sequences in Table 1. We highlight in boldface cases where
the lengths of maximal sequences of different kinds are equal.

5 Conclusions
We have demonstrated that SAT-based methods can be used to tackle the longstanding
mathematical questions related to discrepancy of ±1 sequences. To the best of our
knowledge, this is the first use of automatically generated unsatisfiability certificates as
formal proofs of non-trivial mathematical statements. As a result, we able to identify
the exact boundary between satisfiability and unsatisfiability for the encoding of the
EDP for C = 2, thus identifying the longest sequences of discrepancy 2. We have
established the surprising fact that the lengths of the longest multiplicative and com-
pletely multiplicative sequences of discrepancy 3 coincide. The latter result helps to
establish a novel lower bound on the length of the longest discrepancy 3 sequence.

The general question of the existence of a finite bound on the length of ±1 se-
quences of discrepancy 3 (that is, the Erdős conjecture for C = 3) remains open.
Considering the tenfold gap between the sizes of unrestricted discrepancy 3 sequences
that solvers can find and maximal (completely) multiplicative discrepancy 3 sequences
it would seem that without fresh ideas the conjecture is unlikely to be settled by a
brute-force analysis, even helped by the modern SAT solver technology.

There is a noticeable asymmetry in our findings. The fact that a sequence of length
1160 has discrepancy 2 can be relatively easily checked manually. It is harder but
not impossible to verify the correctness of the discrepancy bound for 127 645-long se-
quences. On the other hand, even though improvements to our method shortened the
Wikipedia-size 13 GB proof reported in [30] more than tenfold, passing the psycho-
logical barrier of 1 GB, it still probably is one of the longest proofs of a non-trivial
mathematical result. It is equally improbable that a mathematician would verify by
hand ten billion or half a billion of automatically generated proof lines. Having said
that, the reduction of proof size will be useful for any future analysis in an attempt to
identify patterns and lemmas and produce a compact proof more amenable for human
comprehension.

Until such a human-comprehensible proof is found, the epistemic status of our re-
sults remains rather peculiar: we know that a proof exists, we even have it, we can

19

handle it, check it by a third-party tool, analyse it, transform it, but we cannot under-
stand it. To what extent this proof can be recognised as a proof is then a subject of
foundational debate on the future of computer mathematics and goes beyond the scope
of this article.

Acknowledgements
The authors would like to thank Armin Biere, Marijn Heule, Pascal Fontaine, Donald
E. Knuth, Laurent Simon and Laurent Théry for helpful discussions, comments and
ideas.

References
[1] W. McCune, Solution of the Robbins problem, J. Autom. Reasoning 19 (3) (1997)

263–276. doi:10.1023/A:1005843212881.

[2] K. Appel, W. Haken, Every map is four colourable, Bulletin of the American
Mathematical Society 82 (1976) 711–712.

[3] T. C. Hales, A proof of the Kepler conjecture, Annals of Mathematics 162 (3)
(2005) 1065–1185. doi:10.4007/annals.2005.162.1065.

[4] A. Bundy, Automated theorem provers: a practical tool for the working math-
ematician?, Ann. Math. Artif. Intell. 61 (1) (2011) 3–14. doi:10.1007/
s10472-011-9248-8.

[5] J. Avigad, J. Harrison, Formally verified mathematics, Commun. ACM 57 (4)
(2014) 66–75. doi:10.1145/2591012.

[6] C. W. H. Lam, L. Thiel, S. Swiercz, The nonexistence of finite projective planes
of order 10, Canadian Journal of Mathematics 41 (6) (1989) 1117–1123. doi:
10.4153/CJM-1989-049-4.

[7] T. Tymoczko, The four-color problem and its philosophical significance, The
Journal of Philosophy 6 (2) (1979) 57–83.

[8] N. Robertson, D. Sanders, P. Seymour, R. Thomas, The four-colour theorem,
Journal of Combinatorial Theory, Series B 70 (1) (1997) 2–44.

[9] G. Gonthier, Formal proof—the four-color theorem, Notices Amer. Math. Soc.
55 (11) (2008) 1382–1393.

[10] T. C. Hales, J. Harrison, S. McLaughlin, T. Nipkow, S. Obua, R. Zumkeller, A re-
vision of the proof of the Kepler conjecture, Discrete & Computational Geometry
44 (1) (2010) 1–34. doi:10.1007/978-1-4614-1129-1_9.

20

http://dx.doi.org/10.1023/A:1005843212881
http://dx.doi.org/10.4007/annals.2005.162.1065
http://dx.doi.org/10.1007/s10472-011-9248-8
http://dx.doi.org/10.1007/s10472-011-9248-8
http://dx.doi.org/10.1145/2591012
http://dx.doi.org/10.4153/CJM-1989-049-4
http://dx.doi.org/10.4153/CJM-1989-049-4
http://dx.doi.org/10.1007/978-1-4614-1129-1_9

[11] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. L. Roux,
A. Mahboubi, R. O’Connor, S. O. Biha, I. Pasca, L. Rideau, A. Solovyev, E. Tassi,
L. Théry, A machine-checked proof of the odd order theorem, in: Proceedings
of the 4th International Conference on Interactive Theorem Proving, Vol. 7998
of Lecture Notes in Computer Science, 2013, pp. 163–179. doi:10.1007/
978-3-642-39634-2_14.

[12] J. Beck, W. W. L. Chen, Irregularities of Distribution, Cambridge University
Press, Cambridge, 1987.

[13] B. Chazelle, The Discrepancy Method: Randomness and Complexity, Cambridge
University Press, New York, 2000.

[14] J. Matoušek, Geometric Discrepancy: An Illustrated Guide, Vol. 18 of Algorithms
and combinatorics, Springer, 1999.

[15] J. Beck, V. T. Sós, Discrepancy theory, in: R. L. Graham, M. Grötschel, L. Lovász
(Eds.), Handbook of combinatorics, Vol. 2, Elsivier, Amsterdam, 1995, pp. 1405–
1446.

[16] N. Alon, Transmitting in the n-dimensional cube, Discrete Applied Mathematics
37-38 (1992) 9–11. doi:10.1016/0166-218X(92)90121-P.

[17] S. Muthukrishnan, A. Nikolov, Optimal private halfspace counting via discrep-
ancy, in: Proceedings of the 44th Symposium on Theory of Computing, STOC
’12, ACM, New York, NY, USA, 2012, pp. 1285–1292. doi:10.1145/
2213977.2214090.

[18] W. Chen, A. Srivastav, G. Travaglini, A Panorama of Discrepancy Theory, Vol.
2107 of Lecture Notes in Mathematics, Springer International Publishing, 2014.

[19] J. Matoušek, J. Spencer, Discrepancy in arithmetic progressions, Journal of
the American Mathematical Society 9 (1) (1996) 195–204. doi:10.1090/
S0894-0347-96-00175-0.

[20] K. F. Roth, Remark concerning integer sequence, Acta Arithmetica 9 (1964) 257–
260.

[21] D. Bilyk, Roth’s orthogonal function method in discrepancy theory and some
new connections, in: W. Chen, A. Srivastav, G. Travaglini (Eds.), A Panorama of
Discrepancy Theory, Vol. 2107 of Lecture Notes in Mathematics, Springer, 2014,
pp. 71–158.

[22] P. Erdős, Some unsolved problems, The Michigan Mathematical Journal 4 (3)
(1957) 291–300.

[23] N. Čudakov, Theory of the characters of number semigroups, Journal of Indian
Mathematical Society 20 (1956) 11–15.

[24] A. Nikolov, K. Talwar, On the hereditary discrepancy of homogeneous arithmetic
progressions, CoRR abs/1309.6034v1.

21

http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1016/0166-218X(92)90121-P
http://dx.doi.org/10.1145/2213977.2214090
http://dx.doi.org/10.1145/2213977.2214090
http://dx.doi.org/10.1090/S0894-0347-96-00175-0
http://dx.doi.org/10.1090/S0894-0347-96-00175-0

[25] T. Gowers, Erdős and arithmetic progres-
soins, in: Erdős Centennial conference, 2013,
http://www.renyi.hu/conferences/erdos100/program.html.
Last accessed April, 10 2014.

[26] P. Borwein, S. K. K. Choi, M. Coons, Completely multiplicative functions taking
values in {1,−1}, Transactions of the American Mathematical Society 362 (12)
(2010) 6279–6291. doi:10.1090/S0002-9947-2010-05235-3.

[27] A. R. D. Mathias, On a conjecture of Erdős and Čudakov, in: B. Bollobás,
A. Thomason (Eds.), Combinatorics, geometry and probability: Proceedings of
the conference dedicated to Paul Erdős on the occasion of his 80th birthday, Cam-
bridge University Press, 1993.

[28] D. Polymath, Erdős discrepancy problem: Polymath wiki,
http://michaelnielsen.org/polymath1/index.php?title=
The_Erdős_discrepancy_problem. Last accessed April, 10 2014
(2010).

[29] T. Gowers, Is massively collaborative mathematics possible?,
http://gowers.wordpress.com/2009/01/27/is-massively-
collaborative-mathematics-possible/. Last accessed April, 10
2014 (2009).

[30] B. Konev, A. Lisitsa, A SAT attack on the Erdős discrepancy conjecture, CoRR
abs/1402.2184.

[31] B. Konev, A. Lisitsa, A SAT attack on the Erdős discrepancy conjecture, in: Pro-
ceedings of the 17th International Conference on Theory and Applications of Sat-
isfiability Testing, SAT 2014, 2014, to appear.

[32] R. Le Bras, C. P. Gomes, B. Selman, On the Erdős discrepancy problem, in: Pro-
ceeding of the 20th International Conference on Principles and Practice of Con-
straint Programming, CP 2014, Vol. 8656 of Lecture Notes in Computer Science,
Springer, 2014, pp. 440–448.

[33] T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in
Mathematics, Springer, New York, NY, USA, 1976.

[34] W. Rautenberg, A Concise Introduction to Mathematical Logic, 3rd Edition,
Springer, New York, 2010.

[35] A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiabil-
ity, Vol. 185 of Fronteers in Artificial Intelligence and Applications, IOS Press,
Amsterdam, 2009.

[36] E. I. Goldberg, Y. Novikov, Verification of proofs of unsatisfiability for CNF for-
mulas, in: Proceedings of Design, Automation and Test in Europe Conference
and Exposition (DATE 2003), 3-7 March 2003, Munich, Germany, 2003, pp.
10886–10891.

22

http://dx.doi.org/10.1090/S0002-9947-2010-05235-3

[37] M. Heule, W. A. H. Jr., N. Wetzler, Trimming while checking clausal proofs,
in: Proceedings of Formal Methods in Computer-Aided Design, FMCAD 2013,
IEEE, 2013, pp. 181–188.

[38] O. Roussel, V. M. Manquinho, Pseudo-boolean and cardinality constraints, in:
A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiabil-
ity, Vol. 185 of Fronteers in Artificial Intelligence and Applications, IOS Press,
Amsterdam, 2009, pp. 695–733.

[39] C. Sinz, Towards an optimal CNF encoding of boolean cardinality constraints, in:
Principles and Practice of Constraint Programming - CP 2005, 11th International
Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings, Vol. 3709
of Lecture Notes in Computer Science, Springer, 2005, pp. 827–831. doi:10.
1007/11564751_73.

[40] G. S. Tseitin, On the complexity of derivation in propositional calculus, in: A. O.
Slisenko (Ed.), Studies in Constructive Mathematics and Mathematical Logic,
Part 2, Consultants Bureau, New York, 1970, pp. 115–125.

[41] J. M. Crawford, M. L. Ginsberg, E. M. Luks, A. Roy, Symmetry-breaking pred-
icates for search problems, in: Proceedings of the Fifth International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’96), Mor-
gan Kaufmann, 1996, pp. 148–159.

[42] D. A. Cohen, P. Jeavons, C. Jefferson, K. E. Petrie, B. M. Smith, Symmetry
definitions for constraint satisfaction problems, Constraints 11 (2-3) (2006) 115–
137.

[43] R. Backofen, S. Will, Excluding symmetries in constraint-based search, in: Pro-
ceedings of the 5th International conference on Principles and Practice of Con-
straint Programming, CP’99, Vol. 1713 of Lecture Notes in Computer Science,
Springer, 1999, pp. 73–87.

[44] I. P. Gent, K. E. Petrie, J.-F. Puget, Symmetry in constraint programming, in:
F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming,
Elsivier, 2006, pp. 329–376.

[45] M. Heule, T. Walsh, Symmetry in solutions, in: Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010, AAAI Press, 2010.

[46] C. Hartman, M. Heule, K. Kwekkeboom, A. Noels, Symmetry in gardens of eden,
Electr. J. Comb. 20 (3) (2013) P16.

[47] C. P. Gomes, M. Sellmann, Streamlined constraint reasoning, in: Proceedings of
the 10th International Conference on Principles and Practice of Constraint Pro-
gramming, CP 2004, Vol. 3258 of Lecture Notes in Computer Science, Springer,
2004, pp. 274–289.

23

http://dx.doi.org/10.1007/11564751_73
http://dx.doi.org/10.1007/11564751_73

[48] M. Kouril, J. V. Franco, Resolution tunnels for improved SAT solver performance,
in: Proceedings of the 8th International Conference on Theory and Applications
of Satisfiability Testing, SAT 2005, Vol. 3569 of Lecture Notes in Computer Sci-
ence, Springer, 2005, pp. 143–157.

[49] A. Biere, Lingeling, Plingeling and Treengeling entering the SAT Competi-
tion 2013, in: Proceedings of SAT Competition 2013, University of Helsinki,
Helsinki, 2013, pp. 51–52.

[50] A. Balint, A. Belov, M. J. H. Heule, M. Järvisalo (Eds.), Proceedings of SAT
competition 2013, University of Helsinki, 2013.

[51] G. Audemard, L. Simon, Glucose 2.3 in the SAT 2013 Competition, in: Pro-
ceedings of SAT Competition 2013, University of Helsinki, Helsinki, 2013, pp.
42–43.

[52] N. Eén, N. Sörensson, An extensible sat-solver, in: E. Giunchiglia, A. Tacchella
(Eds.), Proceedings of the 6th International Conference on Theory and Applica-
tions of Satisfiability Testing, SAT 2003, Vol. 2919 of Lecture Notes in Computer
Science, Springer, 2003, pp. 502–518.

[53] L. Alaoglu, P. Erdős, On highly composite and similar numbers, Transactions of
the American Mathematical Society 56 (3) (1944) 448–469.

[54] D. Polymath, Human proof that completely multiplicative sequences have dis-
crepancy greater than 2, http://michaelnielsen.org/polymath1/
index.php?title=Human_proof_that_completely_
multiplicative_sequences_have_discrepancy_at_least_2.
Last accessed April, 10 2014 (2011).

24

A Proof of Proposition 4
In this section we give proofs of the technical result used in the main text. We re-state
the proposition for the reader’s convenience.

PROPOSITION 4. Let Φ(p1, . . . , pn) be as defined above. Then

(i) For any assignment I : vars(Φ(p1, . . . , pn)) → {0, 1} such that I satisfies
Φ(p1, . . . , pn), any 1 ≤ j ≤ n and 1 ≤ k ≤ n we have

I(skj) = 1 if, and only if,
j∑
i=1

I(pi) ≥ k.

(ii) For any 0/1-sequence (a1, . . . , an) ∈ {0, 1}n there exists an assignment I :
vars(Φ(p1, . . . , pn)) → {0, 1} such that I(pi) = ai, for 1 ≤ i ≤ n; I satisfies
Φ(p1, . . . , pn); and for any r ≤ n and j ≤ n if

∑j
i=1 ai ≤ r then I(skj) = 0,

for r < k ≤ n.

Proof. (i) The proof proceeds by induction on the lexicographical partial order≺ on
pairs of non-negative integers: (j, k) ≺ (j′, k′) iff j < j′∨((j = j′)∧(k < k′)).
Fix some n ≥ 1.

Consider cases:

• Suppose that j = k = 1. Then formula (8), one of the conjuncts of
Φn(p1, . . . , pn), instantiates to s11 ↔ (s10 ∨ (s00 ∧ p1). Therefore, for an
assignment I such that I satisfies Φn(p1, . . . , pn) we have I(s11 ↔ (s10 ∨
(s00∧p1)) = 1. Furthermore, for the satisfying assignment we have I(s10) =
0 and I(s00) = 1. It follows then that I(s11) = I(p1), which is equivalent to
the statement of the proposition for the case k = j = 1.

• Suppose that j = 1 and k > 1. For a satisfying assignment I we have
I(sk1) = 0 (as (9) is a conjunct of Φn(p1, . . . , pn)). On the other hand for
k > 1 we have

∑1
i=1 I(pi) < k. Thus the statement of the proposition

holds true in this case.

• Suppose that j > 1, k ≥ 1. For a satisfying assignment I we have I(skj) =

1 if and only if I(skj−1) = 1 or I(sk−1j−1 ∧ pj) = 1 (by satisfaction of
(8)). By induction hypothesis the later is equivalent to

∑j−1
i=1 I(pi) ≥ k

or
∑j−1
i=1 I(pi) ≥ k − 1 and I(pj) = 1, which in turn is equivalent to∑j

i=1 I(pi) ≥ k.

(ii) First notice that any assignment Ip : {p1, . . . , pn) → {0, 1} can be extended
in a unique way to the assignment I : vars(Φ(p1, . . . , pn)) → {0, 1}. Indeed,
satisfaction of (9) and (10) defines uniquely the values of satisfying assignment I
on skj for the cases 0 ≤ j < k ≤ n and k = 0; 0 ≤ j ≤ n, respectively. Further,
using satisfaction condition for (8) the values of I on the remaining variables
skj with 1 ≤ k ≤ n, 1 ≤ j ≤ n are defined uniquely by induction on ≺. The

25

remaining condition, that is for any r ≤ n and j ≤ n if
∑j
i=1 ai ≤ r then

I(skj) = 0, for r < k ≤ n, now follows from item (i) above.

26

B A sequence of length 1160 and discrepancy 2
We give a graphical representation of one of the sequences of length 1160 obtained
from the satisfying assignment computed with the Treengeling solver. Here +
stands for +1 and − for −1, respectively.
- + + - + - - + + - + + - + - - + - - + + - + - - + - - +
+ - + - - + + - + + - + - + + - - + + - + - - - + - + + -
+ - - + - - + + + + - - + - - + + - + - - + + - + + - - -
- + + - + + - + - + + - - + + - + - + - - - + + - + - - +
+ - + + - + - - + + - + - - + - - - + - + + - + - - + + -
+ + - + - - + - - + + - + + - + - - + + - + - - + + + - +
- + - - - - + + + - + - - + - - + + + - - - + + - + + - +
- - + - - + + + - - + - + - + - - + - + + + - + + - + - -
+ - - + + - + - - + + - + + - + - - + - - + + - - + + + -
- - + + + - + - - - + + - + - - + + - - + - + - - + - + +
+ - + - - + + - + + - + - - + + - + - - + - - + + - + - -
+ + - - + - + + - + - + - - + - + - + + - + - - + + - + -
- + - - + + - + - + - + + - + - + - + + - - - + - + - - +
+ + + - - + - - - + + - + - + + - + - - + + - + - - + - -
+ + - + - - + + + + - - + - - - + - + + + + - - + - - + +
- + + - + - - + + - + - - + - - + + - + - - + + - + + - +
- - + + - + - - + - - + + - + + - + - - - - + + + - + - -
+ + - - + + + - - - + - + + - + - - + - + + - - - + - + +
- + + - + - - + - - + + - - + + + + - + - - + - - + - - +
+ + + - - + - - + + + - - - + + - + + - + - - + + - - + -
+ - - + - - + + - + + - + - - + - - + - + + + - + + - + -
- + - - + + - - + - + + - + + - + - - + - - + - - + + - +
+ - + - - + + + - - - + + - + - - + + - + + - - - + + + -
- - + + - + + - - - - + + + - - + - + + - + - - + - - + +
- + - - + + - + + - + - + + - - + + - - + + - - - - + + +
- + + - - + + - - - - + + - + + + - - + + - - - + + + - -
- - + - + - + + - + + - + + - + - + - - - - + + + - - + +
- + - - + + - + + - + - - + - - + - - + + - + - - + + - +
+ - + - - + + - - + - + - - + - + - + - + + + + - - - + -
+ - + + - - + - - + - + - + - + + - + - + + + - - + - + -
- + - - + - + + + - - + - + + + - - - + + - + - - + - - +
+ - + + - - + + - - - + + - + - + + - - + + - + - - - + -
+ + - + - - + - + + - - + + - + - - + + - + - - + - + + +
- + - - + + - - + - + - + + + - - + - + - - + + - + + - +
- - + - - + - + + - - - + - + + - + - + + - - + + - + - -
+ + + - + - - - - + + - - + - + + - + - + + - - + + - + -
- + + - + - + + - - + + - + - - - + - + + - + - - + + + -
- - - + - + - + + - - + + - + - - + + - + + - + + - + - -
+ - - + - - + + + + - - - + + - - - + - + - + + - + - + +
+ - - + - + + - - + - + - - + - + - + + - - - + + + - + +

27

28

	Introduction
	Preliminaries
	Discrepancy of 1 Sequences
	Propositional Satisfiability Problem

	SAT Encoding of the discrepancy problem
	C-Boundedness Expressed as Cardinality Constraints
	Sequential Counter-Based SAT Encoding of C-boundedness
	Clausal form
	SAT Encoding of Multiplicativity
	Putting It All Together

	Results
	Conclusions
	Proof of Proposition 4
	A sequence of length 1160 and discrepancy 2

