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Abstract 

Ovine Herpesvirus-2 (OvHV-2) is a gamma-herpesvirus that belongs to genus 

macavirus, is endemic in sheep worldwide. The virus infects sheep subclinically but 

when it is transmitted to cattle; it induces malignant catarrhal fever (MCF), a 

frequently fatal lymphoproliferative disease. The pathogenesis and site of OvHV-2 is 

unknown in both species. In this study, we tried to: first detect the virus presence 

and measure its DNA loads; secondly, localise the precise cellular location of the 

virus in the tissues of sheep and domestic cattle. For the first purpose, we optimised 

and validated a sensitive quantitative polymerase chain reaction (qPCR) technique 

using Taqman® probe system that can detect and measure the virus’s DNA as low as 

one viral DNA copy in a qPCR reaction. Secondly, we applied RNA in situ 

hybridisation (RNA-ISH) technique to detect viral transcripts (Ov2.5 a latent gene 

and ORF65 a lytic gene), and in addition we used immunohistology to stain the viral 

Ov8 antigen (glycoprotein) by specific polyclonal antibodies. For these purposes we 

have used a variety of organs and tissues, namely: respiratory tract, tongue, muzzle, 

lymphoid and reproductive organs as well as nasal swabs and peripheral blood 

leukocytes from randomly selected sheep (n=28), cows without MCF (n=50) and 

cattle with MCF (n=12). The results in sheep have shown that 88 % of them harbour 

viral DNA in most of their organs at very low amounts.The viral mRNA and antigen 

were also detected in a wide range of organs including epithelial cells of respiratory 

tract, tongue and muzzle, macrophages and lymphocytes (B cells) in bronchial 

associated lymphoid associated lymphocytes (BALT), lymph nodes in spleen as well 

as vascular endothelial cells of many of these tissues. Interestingly in cattle without 

MCF, results were very similar as in sheep i.e.; viral DNA was found in a large 

population of cattle (67 %); and viral transcripts and antigen detected in a large 

proportion of tested organs, similar as seen in sheep. In the MCF-affected cattle, 

similar types of cells were found infected as in cattle without MCF, but with 

significantly higher viral loads (more than three logs). This study shows for the first 

time OvHV-2 location and cell types they infect in sheep, and in cattle that do not 

show any evidence of MCF. The new question is what triggers inducing of MCF in 

the subclinically infected healthy cattle?. That can be addressed by further 

investigations. 
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1.1 The order Herpesvirales 

Herpesviruses belong to the main order Herpesvirales that comprises a large 

number of viruses and three main families; Alloherpesviridae, Herpesviridae and 

Malacoherpesviridae (Davison, 2010; Davison et al., 2009) (Figure1-1). The family 

Alloherpesviridae includes the viruses of fishes and frogs. The family Herpesviridae, 

which has recently been incorporated into the order, includes the viruses of 

mammals, birds and reptiles. The family Malacoherpesviridae includes the viruses of 

Oyster bivalves. In this thesis, the family Herpesviridae is the focus of interest and is 

discussed in more detail. 

 

 

 

 

 

 

 

Figure 1-1. Taxonomy of Herpesviridae within the order Herpesvirales, and their natural hosts. 
Adopted from (King et al., 2012) and (http://ictvonline.org/virusTaxonomy.asp). 

 

1.1.2 The family Herpesviridae 

This family includes the viruses of mammals, birds and reptiles; the family members 

were updated according to International Committee on Taxonomy of Viruses 9th 

report in 2011 and are shown in Table 1-1. 

1.1.2.1 Biological Properties of Herpesviridae 

Herpesviridae have a distinct morphology, they have an icosahedral symmetrical 

capsid of 100-110 nm in diameter that includes 162 capsomers; this is surrounded 

by an amorphous proteintious layer called the tegument that is further surrounded 
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by a lipid bilayer envelope containing the viral glycoprotein spikes (Figure 1-2). 

Altogether, form a virion of 120-300 nm in diameter. The genome is a linear double 

stranded DNA, one segment of 125-295 kb with 32-75% CG  (King et al., 2012; 

Pellett & Roizman, 2013). This genome is in a liquid crystalline array that occupies 

the nucleocapsid (King et al., 2012). 

Herpesviridae members share four main characteristics. First, they have a 

wide range of enzymes for nucleic acid metabolism; DNA and protein synthesis, that 

vary between different members. Secondly, virus gene transcription, synthesis of 

DNA and nucleocapsid assembly takes place in the nucleus of the host cell. Thirdly, 

they have a virus production infection phase that is usually characterised by lysis of 

the infected host cell (Pellett & Roizman, 2013). Finally, all known Herpesviruses are 

able to establish a long term latent host infection to maintain the viral genomic DNA 

for a future production cycle (Pellett & Roizman, 2013), to do this the virus DNA is 

maintained within the host cell as episomal DNA (Decker et al., 1996).  

Herpesviridae are well distributed in nature in a way that most animals have 

at least one herpesvirus and some viruses have more than one definitive host. To 

date more than 200 herpesviruses have been identified, nine of which are human 

viruses (Pellett & Roizman, 2013). Viruses of veterinary importance are found in 

mammals, birds and fish. 

 

                                      

Figure 1-2. Schematic diagram of an herpesvirus. Illustrating the multilayer organisation of a human 
herpesviruses virion. Taken from (Arvin et al., 2007). 
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1.1.2.2 Herpesviridae classifications 

Herpesviridae family can be classified either according to their genome sequence 

arrangement or according to their phylogenetic relationships.  Based on the former, 

they can be allocated to six main groups (A - F) on the basis of the tandem repeats 

as illustrated with genome structure diagrammes in Figure 1-3. The advantage of 

these inverted repeats within the genome is not known (Pellet and Rizmon, 2013), 

but the different termini repeats serve in viral DNA cleavage and packaging in to the 

capsid (Deiss et al., 1986).  

Phylogenetically, Herpesviridae can be further divided in to three main 

subfamilies and one unassigned subfamily (Pellett & Roizman, 2013). The main 

subfamilies are Alphaherpesvirinae, Betaherpesvirinae and Gammaherpesvirinae. 

These were early classified according to their biological features before 

identification of their DNA sequences (Davison et al., 2009; Roizman et al., 1981), 

which was then supported when polymerase chain reaction (PCR) amplified 

sequences were analysed (Davison et al., 2005). The most recent taxonomy of 

herpesviruses can be found in latest releases of international committee on viral 

taxonomy (http://www.ictvonline.org/virusTaxonomy.asp) and it updates 

continually. Herpesviruses are evolutionarily well adapted to their hosts and thus 

are host specific and able to stay in their host latently for their lifespan (Davison, 

2002). 

  

http://www.ictvonline.org/virusTaxonomy.asp
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Herpesvirus 2 
(EHV2) 

B  

 

 

Frequent terminal repeats at both termini of the genome 

Murid 
Herpesvirus 4 

C  

 

 

Several terminal repeats at each termini plus other additional 
repeats( R1, R2, R3 and R4) within the core 

Human 
Herpesvirus 4 
(EBV) 

D  

 

 
The genome has terminal repeats next to a short unique sequence 
(US), then invert repeat (IR) within the genome followed by a long 
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Human 
Herpesvirus 3 
(VZV) 

E  

 

 
The genome has  frequent several short repeats (A) followed by a 
larger sequence (B), next to a long unique sequence. On the other 
terminus a copy of  (A) is followed by a larger sequence (C) then a 
short unique sequence followed by inverts of B and C. 

Human 
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F  

 

No terminal repeats have been identified 

Tupaiid 
herpesvirus 1 
(TSHV) 

 
Figure 1-3. Grouping of Herpesviridae according to repeated sequences at termini of the genome. 
Adopted after (Pellet and Rizmon, 2013). 
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Nowadays there are more than 90 viruses and this number seems to 

increase further with the discovery of new species. In terms of medical and 

veterinary importance, Herpesviridae has at least nine human viruses and 28 viruses 

of veterinary importance. The three main subfamilies have weak phylogenetic 

relationship (Figure 1-4). 

 

 

          

 

Figure 1-4. Phylogenetic relationship between genera of Herpesviridae. Adopted from (Davison, et 
al., 2013).  

Herpesviridae 
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Table 1-1. Species of the family Herpesviridae. Assembled after (Davison et al., 
2009; King et al., 2012) and updates from International Committee on Taxonomy of 
Viruses (ICTV) Version 2, June, 2014 (http://ictvonline.org/virusTaxonomy.asp). 
 

Herpesviridae Species Acronym Common name(s) 

Subfamily Alphaherpesvirinae 

Genus 
Iltovirus 

Gallid herpesvirus 1 GaHV-1 Infectious laryngeotracheitis virus 

Psittacid herpesvirus 1 PsHV-1 Pacheco’s disease virus 

Genus 
Mardivirus 
  
  
  

Anatid herpesvirus 1   

Columbid herpesvirus 1 CoHV-1 Columbid herpesvirus 1 

Gallid herpesvirus 2 GaHV-2 Marek’s disease virus type 1 

Gallid herpesvirus 3 GaHV-3 Marek’s disease virus type 2 

Meleagrid herpesvirus 1 MeHV-1 Turkey herpesvirus 

 Genus 
Scutavirus 

Chelonid herpesvirus 5 ChHV-5 Chelonid fibropapilloma-associated 
herpesvirus 

Genus 
Simplexvirus 
  
  
  
  
  
  
  
  
  
  

Ateline herpesvirus 1 AtHV-1 Spider monkey herpesvirus 

Bovine herpesvirus 2 BoHV-2 Bovine mammillitis virus 

Cercopithecine 
herpesvirus 2 

CeHV-2 Simian agent 8 (SA8)) 

Human herpesvirus 1 HHV-1 Herpes simplex virus 1 

Human herpesvirus 2 HHV-2 Herpes simplex virus 2 

Leporid herpesvirus 4 LeHV-4  

Macacine herpesvirus 1 McHV-1 Cercopithecine herpesvirus 1 
B-virus, herpesvirus simiae 

Macropodid herpevirus 1 MaHV-1 Parma wallaby herpesvirus 

Macropodid herpsvirus 2 MaHV-2 Dorcopsis wallaby herpesvirus 

Papiine herpesvirus 2 PaHV-2 Cercopithecine herpesvirus 16 

Saimiriine herpesvirus 1 SaHV-1 Herpesvirus tamarinus 
(Marmoset herpesvirus) 

Genus 
Unassigned 

Chelonid herpesvirus 6 ChHV-6 Lung-eye-trachea disease-associated 
virus 

Genus 
Varicello-virus 
  

Bovine herpesvirus 1 BoHV-1 Infectious bovine rhinotracheitis virus 

Bovine herpesvirus 5 BoHV-5 Bovine encephalitis herpesvirus 

Bubaline herpesvirus 1 BuHV-1 Water buffalo herpesvirus 

Canid herpesvirus 1 CaHV-1 Canine herpesvirus 

Caprine herpesvirus 1 CpHV-1 Goat herpesvirus 

Cercopithecine 
herpesvirus 9 

CeHV-9 Simian varicella virus, Liverpool vervet 
herpesvirus, Patas monkey herpesvirus 

Cervid herpesvirus 1 CvHV-1 Red deer herpesvirus 

Cervid  herpesvirus 2 CvHV-2 Reindeer herpesvirus 

Equid  herpesvirus 1 EHV-1 Equine abortion virus 

Equid  herpesvirus 3 EHV-3 Equine coital exanthema virus 

Equid herpesvirus 4 EHV-4 Equine rhinopneumonitis virus 

Equid herpesvirus 8 EHV-8 Asinine herpesvirus 3 

Equid herpesvirus 9 EHV-9 Zebra herpesvirus Gazelle herpesvirus 

Felid herpesvirus 1 FeHV-1 Feline rhinotracheitis virus 

Human herpesvirus 3 HHV-3 Varicella-zoster virus 

Phocid herpesvirus 1 PhoHV-1 Harbour seal herpesvirus 

Suid herpesvirus 1 SuHV-1 Pseudorabies virus 

http://ictvonline.org/virusTaxonomy.asp
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Subfamily Betaherpesvirinae 

Genus 
Cytomegalo-
virus 
  
  
  
  
  
  
  

Aotine herpesvirus 1 AoHV-1 Herpesvirus aotus type 1 
Owl monkey cytomegalovirus 

Cebine herpesvirus 1 CeHV-1  

Cercopithecine 
herpesvirus 5 

CeHV-5 African green monkey cytomegalovirus 
Simian cytomegalovirus 

Human herpesvirus 5 HHV-5 Human cytomegalovirus 

Macacine herpesvirus 3 McHV-3 Cercopithecine herpesvirus 8 
Rhesus monkey cytomegalovirus 

Panine herpesvirus 2 PnHV-2 Pongine herpesvirus 4 

Papiine herpesvirus 3 PaHV-3 Baboon cytomegalovirus 

Saimiriine herpesvirus 4 SaHV-4  

Genus 
Muromegalo-
virus 

Murid  herpesvirus 1 MuHV-1 Mouse cytomegalovirus 

Murid herpesvirus 2 MuHV-2 Rat cytomegalovirus, Maastricht strain 

Murid herpesvirus 8 MuHV-8 Rat cytomegalovirus, England strain 

Genus 
Proboscivirus 

Elephantid herpesvirus 1 ElHV-1 Elephant endotheliotropic herpesvirus 

Human  herpesvirus 6A HHV-6A Human herpesvirus 6, variant B 

Human  herpesvirus 6B HHV-6B Human herpesvirus 6, variant A 

Genus 
Roseolovirus 

Human herpesvirus 7 HHV-7  

Genus 
Unassigned 
  

Caviid herpesvirus 2 CavHV-2 Guinea pig cytomegalovirus 

Suid herpesvirus 2 SuHV-2 Pig cytomegalovirus 

Tupaiid herpesvirus 1 TuHV-1 Tree shrew herpesvirus 

Subfamily Gammaherpesvirinae 

Genus 
Lymphocryp-
tovirus 
  
  
  
  
  
  
  

Callitrichine herpesvirus 
3 

CalHV-3 Marmoset lymphocryptovirus 

Cercopithecine 
herpesvirus 14 

CeHV-14 African green monkey EBV-like virus 

Gorilline herpesvirus 1 GoHV-1 Pongine herpesvirus 3 
Gorilla herpesvirus 

Human herpesvirus 4 HHV-4 Epstein–Barr virus (EBV) 

Macacine herpesvirus 4 McHV-4 Cercopithecine herpesvirus 1 
Rhesus EBV-like herpesvirus 

Panine herpesvirus 1 PnHV-1 Pongine herpesvirus 1 
(Herpesvirus pan) 

Papiine herpesvirus 1 PaHV-1 Cercopithecine herpesvirus 12 

Pongine herpesvirus 2 PoHV-2 Orangutan herpesvirus 

Genus 
Macavirus 
  
  
  
  
  
  
  
  

Alcelaphine herpesvirus 
1 

AlHV-1 Malignant catarrhal fever virus 

Alcelaphine herpesvirus 
2 

AlHV-2 Hartebeest malignant catarrhal fever 
virus 

Bovine herpesvirus 6 BoHV-6 Bovine lymphotropic herpesvirus 

Caprine herpesvirus 2 CpHV-2  

Hippotragine 
herpesvirus 1 

HiHV-1 Roan antelope herpesvirus 

Ovine herpesvirus 2 OvHV-2 Sheep-associated malignant catarrhal 
fever virus 

Suid herpesvirus 3 SuHV-3 Porcine lymphotropic herpesvirus 1 

Suid herpesvirus 4 SuHV-4 Porcine lymphotropic herpesvirus 2 

Suid herpesvirus 5 
 

SuHV-5 Porcine lymphotropic herpesvirus 3 
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Genus 
Percavirus 
  

Equid herpesvirus 2 EHV-2 Equine herpesvirus 2 

Equid herpesvirus 5 EHV- Equine herpesvirus 5 

Mustelid herpesvirus 1 MusHV-1 Badger herpesvirus 

Genus 
Rhadinovirus 

Ateline herpesvirus 2 AtHV-2 Herpesvirus ateles strain 810 

Ateline herpesvirus 3 AtHV-3 Herpesvirus ateles strain 73 

Bovine herpesvirus 4 BoHV-4 Movar virus 

Cricetid herpesvirus 2   

Human herpesvirus 8 HHV-8 Kaposi’s sarcoma-associated 
herpesvirus 

Macacine herpesvirus 5 McHV-5 Cercopithecine herpesvirus 17 
Rhesus rhadinovirus 

Murid herpesvirus 4 MuHV-4 Murine gammaherpesvirus 68 (MHV-68) 

Murid herpesvirus 7 MuHV-7 Wood mouse herpesvirus 

Saimiriine herpesvirus 2 SaHV-2 Herpesvirus saimiri 

Genus 
Unassigned 
  
  

Equid herpesvirus 7 EHV-7 Asinine herpesvirus 2 

Phocid herpesvirus 2 PhoHV-2  

Saguinine herpesvirus 1 SgHV-1 Callitrichine herpesvirus 1 
Herpesvirus saguinus 

Subfamily 
Unassigned 

Iguanid herpesvirus 2 IgHV-2 Iguana herpesvirus 

Ovine herpesvirus 1 OvHV-1 Sheep pulmonary adenomatosis-
associated herpesvirus 

 

1.1.2.2.1 Alphaherpesvirinae 

Alphaherpesviruses are known for their wide and variable host range, from 

mammals, birds to reptiles, rapid spread, quick reproductive cycle of about 17 hours 

(Rajcani & Durmanova, 2001). They have efficient lysis of the infected cells such as 

fibroblasts in culture and epithelial cells in hosts (King et al., 2012), and maintaining 

latency in sensory nerve ganglia (Pellett & Roizman, 2013). This subfamily is well 

presented by herpes simplex virus 1 (HSV-1) that cause oral blisters in human. 

Those of veterinary medicine importance such as bovine herpesvirus 2 (BoHV-2) 

that causes lumpy skin disease, bovine herpesvirus 1 (BoHV-1) that cause infectious 

bovine rhinotracheitis in cattle, gallid herpesvirus 2 that cause Marek’s disease in 

poultry, and many other viruses. Species of Alphaherpesvirinae listed in Table 1-1. 

 

1.1.2.2.2 Betaherpesvirinae 

Betaherpesviruses have a narrower host range than alphaherpesviruses, slower 

replication cycle in cell culture that can be two to seven days long and virus remain 

cell associated. Distinguishing features of betaherpesviruses are that they can 

produce cytomegaly (cell enlargement) in infected cells and the ability of latent 
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infection in secretory glands, lymphoid cells and kidney (Pellett & Roizman, 2013). 

Infection with this subfamily tends to be subclinical in immune competent hosts 

(King et al., 2012). Diseases caused by this subfamily members such as Human 

cytomegalovirus (HHV-5), suid herpesvirus 2 (porcine cytomegalovirus virus) that 

causes rhinitis in swine. All species of Betaherpesvirinae are listed in Table 1-1. 

1.1.2.2.3 Gammaherpesvirinae 

Gammaherpesviruses are the most host-restricted viruses among Herpesviridae and 

viruses are usually associated within a family or order of a natural host. Most 

members can replicate in lymphoblastoid cells, either B or T lymphocytes, and other 

members can replicate in certain epithelial cella and cause cell lysis (Pellett & 

Roizman, 2013; Roizmann et al., 1992). A feature of Gammaherpesvirinae is that 

they infect hosts often without evoking clinical signs.  The subfamily have four main 

genera. Lymphocryptovirus is currently only found in primates, examples are human 

herpesvirus 4 (HHV-4) that is also known as Epstein–Barr virus (EBV), which was first 

found in a lymphoblastoid cell line from a B-cell lymphoma in 1964 (Epstein et al., 

1964). Rhadinovirus is found in a wider range of mammals such as human 

herpesvirus 8 (Kaposi’s sarcoma associated herpesvirus - KSHV) that was first found 

in a Kaposi’s sarcoma in an AIDS patient (Chang et al., 1994). Percavirus such as 

equid herpesvirus 2 (EHV-2) establishes latency in B-cells in respiratory tract in 

horses is transmitted via respiratory tract, is associated with upper respiratory tract 

diseases (Brault et al., 2011). Macavirus members are of veterinary importance; and 

contain of malignant catarrhal fever viruses (MCFVs), which are reviewed in more 

detail in the section 1-4. Important gammaherpesviruses are listed in Table 1-1. 

1.1.3 Infection with herpesviruses 

Literature describing the detailed life cycle of herpesviruses is reviewed in many 

virology textbooks. Herpesvirus infection is only briefly reviewed here. A complete 

infection cycle of herpesviruses include attachment to the cell surface, fusion and 

entry into cytoplasm and then injection of viral capsid to cell nucleus, lytic (or 

latent) infection, virus components assembly and then new virion egress out of the 

cell. The lifespan of herpesviruses is simplified in (Figure 1-5). 
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1.1.3.1 Virus attachment and entry 

Viruses should first attach and react with the cell membrane in order to enter the 

cell. For the attachment, herpesviruses are known for having their specific 

glycoproteins and receptor binding glycoproteins (Campadelli-Fiume et al., 2000). 

Extracellular virions glycoproteins interact and fuse with different cell membrane 

surface protein receptors such as herparan sulphate (Shukla & Spear, 2001) or 

nectins (Krummenacher et al., 2004). These receptors determine the virus’s tropism 

to different cells. Herpesvirus enter the cell by two different pathways, either by 

endocytosis as with most cases (Murphy et al., 1999; Zilliox et al., 2007) or by fusion 

with the plasma membrane as in case of primary neurons (Pellett & Roizman, 2013). 

With varicella zoster virus (VZV), entry pathway depends on the type of cell 

infected, entry in epithelium is by endocytosis, but in fibroblast is by membrane 

fusion. (Compton et al., 1992; Ryckman et al., 2006). Herpesviruses have three 

different glycoproteins (gB, gH and gL), and a receptor binding glycoprotein (gD) 

that determines fusion pathways (Gillet et al., 2006; Wu et al., 2005). In EBV, 

another glycoproteins (gP42) has been discovered that plays role in virus cell 

tropism and pathogenies (Borza & Hutt-Fletcher, 2002).  

Following fusion with the cell surface, next step is entry of the virus in to the 

cell.  During the fusion, the virus loses its envelope; the tegument components will 

be exposed and liberated. In case of endosome, the virus undergoes uncoating by 

viral cellular enzymes. In uncoating, the virus loses its tegument then the capsid will 

translocate into the nucleus via microtubules (Döhner et al., 2005; Smith & Enquist, 

2002). Then the virus initiates the replication mechanism by altering cellular 

machinery, either by using host cell to synthesize viral components such as by VP16 

in HSV-1, or by host shut off such as by SOX in KSHV, or by immediate early genes 

activation (Kalejta, 2008; Mettenleiter et al., 2006). The virus enters the nucleus 

through the nuclear pores and eventually it either induces a lytic (productive) 

infection or it stays latently with expression of certain genes until further activation 

(Estes et al., 2007). Herpesviruses usually can switch between the two infections by 

different biological determinants or viral genes for example the immediate-early (IE) 

BZLF1 trans activator gene in EBV (Countryman & Miller, 1985). 
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1.1.3.2 Lytic infection, virus assembly and egress 

The purpose of lytic infection is for virus replication to produce new virions that can 

spread and infect new cells. In lytic infection, there are regulated viral genes 

expression and genome replication, virion assembly, egress, and transmission. Early 

in this cycle, sequential sets of genes are transcribed including α (immediate early  

[IE]) that are involved in initiation of virus DNA replication, β (early [E])  genes that 

act to DNA replication and control cellular activities such as RNA polymerase II 

(Estes et al., 2007). In later stages, the transcription program switches to γ (late) 

genes expressing γ proteins. Most of α and β proteins are enzymes and most of γ 

proteins are structural ones for virus maturation and generally herpesviruses 

encode for over 70 proteins (Dubovi, 2011). Virus proteins also alter cellular 

functions; in KSHV, E protein such as viral IL-6 that induces B cell proliferation in a 

similar way of human IL-6, or Kaposin (an α gene) that has been identified to cause 

host cell transformation (Kliche et al., 2001; Muralidhar et al., 1998). The newly 

replicated viral DNA is integrated into immature capsids and tegument proteins in 

the nucleus (Mettenleiter & Minson, 2006). The virus also gets its primary envelope 

in the nucleus, nuclear membranes play role in virus capsid nuclear egress (Peng et 

al., 2010). The virus gain its secondary membrane when buds through Golgi 

apparatus derived vesicles (Mettenleiter et al., 2006). Eventually, mature virion fuse 

with the cell membrane and buds to the extracellular spaces (Mettenleiter, 2006).  

1.1.3.3 Herpesvirus latency 

A distinct feature of herpesviruses is their latent or dormant infection, and those 

herpesviruses studied so far can establish latency in specific cell types. In this cycle, 

the viral DNA is harboured in a covalently closed circular form and only limited 

genes stay transcribed (Pellett & Roizman, 2013). This can possibly be due to 

increase in density and stability of viral nucleosomes (Nevels et al., 2011; Paulus et 

al., 2010). Herpesviruses establish latency in different mechanisms with varying 

degrees of ORFs expression. In certain viruses, unique ORFs are expressed such as 

EBNA1 (Epstein-Barr nuclear antigen) (Sivachandran et al., 2012) in EBV, or LANA 

(latency associated nuclear antigen) in KSHV (Hu et al., 2002). These genes products 

act to maintain latency by blocking virus  genes BRLF1 or ORF50 respectively, which 
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help in viral episomes latent replication to tether its copies to host chromosomes 

during mitosis in dividing cells (Hu et al., 2002). They also help ubiquitin-dependant 

degradation for immune evasion (Cotter & Robertson, 1999; Garber et al., 2002; 

Leight & Sugden, 2000). In addition, LANA interferes with the cellular pathways that 

inhibit tumour inductions and cell transformation (Dittmer et al., 1998; Verma et al., 

2007; Zhong et al., 1996). 
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Figure 1-5. Schematic diagram of herpesviruses infection and biological cycles. Adopted after (Pellett 
& Roizman, 2013). 
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1.2 Examples gammaherpesviruses 

1.2.1 Epstein-Barr virus 

One of the best studied gammaherpesviruses is Epstein–Barr virus (EBV) or human 

herpesvirus 4 (HHV-4), that belongs to the Lymphocryptovirus genus (Davison et al., 

2009). The virus particles was first noticed by electron microscopy in a malignant 

Burkitt’s lymphoma (BL) in 1964 (Epstein et al., 1964), which is a B cell neoplasm  

that occur unusual locations such as mandible, nasopharynx, orbit, kidney, adrenal 

glands and ovaries. The virus was the candidate causative agent and many research 

groups having extensively studied it since. EBV is worldwide spread in human and as 

high as 90% of population are being exposed to and produce antibodies to the 

virus’s lytic and latent proteins (Longnecker et al., 2013). Virus transmission is by 

oral rout at teenage period, then individuals stay as carriers for their lifespan. The 

virus causes infectious mononucleosis (IM) which is also known as kissing disease 

(Henle et al., 1968). The disease has 4 - 6 weeks incubation period, commonly 

characterized by fever, pharyngitis and lymphadenopathy, and more serious 

complications especially in AIDS patients. EBV is also associated with other diseases 

such as nasopharyngeal carcinomas (Wolf et al., 1973), post-transplant 

lymphoproliferative disease (Tanner & Alfieri, 2001), Hodgkin lymphoma (Lange et 

al., 1978), oral hairy leukoplakia which mainly occur in AIDS patients  (Greenspan et 

al., 1984), oral dysplasia and squamous cell carcinomas (Jiang et al., 2012), and also 

nasopharyngeal, gastric and other lymphomas in non-immunocompromised 

individuals (Longnecker et al., 2013). Recently, EBV is reported to be also associated 

with T-cell lymphoproliferative disorder in adolescents and young adults with 

clinical signs of fever, mass in neck, hepatosplenomegaly, and pathologically 

patients reveal haemophagocytic lymphohistiocytosis (a haematological disorder) 

(Wang et al., 2014). 

 EBV genome comprises of 172 kb with 60% G:C ratio and has reiterated 

terminal and internal repeats (Figure 1-3). These repeats stay the same as the 

parental genome during latent replication, a feature can be used in tracking latently 

infected cells to see if they originate from a clonal virus expansion (Raab-Traub & 

Flynn, 1986). Latency of EBV in infected cells is a complex process and involves 

different virus and cellular factors. EBV has a homologue of cellular IL-10 encoded 
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by BCRF1 (Moore et al., 1990), and two homologues of bcl-2 encoded by genes 

BHRF1 and BALF1 that play role in mechanism of cell immortalisation by inhibiting 

apoptosis (Bellows et al., 2002). Other proteins are expressed in latently infected B 

cell include LMP1 that activates cellular NF-KB and JAK/STAT pathways to inhibit 

apoptosis. With these mechanisms the virus may facilitate B cell or other 

lymphomas (Stricker & Kumar, 2010). The EBV DNA is highly methylated during 

latency in infected B cells (Falk & Ernberg, 1993), this contributes in inhibiting lytic 

genes expression. Treating with substances that reduce DNA methylation such as 5-

aza-cytidine in latently infected human lymphoid cell lines result in reactivation of 

the virus by removing the suppression on lytic genes (Ben-Sasson & Klein, 1981).  

With EBV, infection initially occurs in those B cells within the oral epithelium, 

which happens by binding of viral envelope gp350 and gp220 with cellular CD21 

(Fingeroth et al., 1984; Shannon-Lowe et al., 2006). CD21 binding leads to either 

lytic infection and virus spread, or establishment of latent infection. To ensure 

maintaining latent infection longest possible, EBV infected B cells have to be 

activated in a similar way to the physiological conditions, i.e.: to producing specific 

immunoglobulin and become memory B cell to avoid apoptosis (Longnecker et al., 

2013). It is also  thought that the virus induces neoplasm in BL by translocations in 

c-MYC gene to promote initiation a cell cycle and activating the anti-apoptotic 

pathways (Longnecker et al., 2013). 

1.2.2 Bovine herpesvirus 6 

Bovine herpesvirus 6 (BoHV-6), previously was known as bovine lymphotropic 

herpesvirus (BLHV). It was first isolated from leukocytes of a cattle lymphosarcoma 

in the USA (Van der Maaten & Boothe, 1972). The isolate was able to induce 

syncytia formation in bovine embryonic spleen cell cultures. Later, the virus was 

first sequenced from product of the pan-herpesvirus PCR for DNA isolated from 

peripheral blood mononuclear cells (PBMCs) and from B-lymphoma cells. Then 

when the predicted amino acid sequence was aligned with other known 

herpesviruses, it showed similarities as 70% to (OvHV2), 69% to (AlHV1), 65% to 

(BoHV4) and 42% to (BoHV1). From this phylogenetic analysis, the virus was 

considered as a new gammaherpesvirus and named as BLHV (Rovnak et al., 1998), 
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which was later classified within Macavirus genus (Carstens & Ball, 2009). BoHV-6 

also has been detected in cattle in Canada (Gagnon et al., 2010) and Europe (Cobb 

et al., 2006; Garigliany et al., 2013). The genome of BoHV-6 is similar in structure 

(such as L-DNA coding and repetitive H-DNA sequences) to other Macavirus. The 

virus has 77 predicted genes and the genes blocks arrangements are similar to 

those in gammaherpesviruses (Jia et al., 2014). Similar to AlHV-1 and OvHV-2, 

BoHV-6 has Bov4.5 (homologue to EBV BALF1) and Bov9 genes, coding for 

homologues of bcl-2 (Bellows et al., 2002; Jia et al., 2014). In addition, the virus has 

a sequence partially similar to exons of OvHV-2 and cellular IL-10. Interestingly, 

BoHV-6 encodes for Bov2.b2 similar to the cellular ornithine decarboxylase (ODC) 

that catalyse polyamines biosynthesis which affects cellular functions such as 

proliferation (Jia et al., 2014).  

BoHV-6 seems to be ubiquitous in cattle since the viral DNA was detected in 

samples of PBMCs from more than 70% of adult health cattle and from 30% of 

calves (Kubiś et al., 2013). A link between the virus and a pathological condition is 

not supported, however the virus is highly prevalent in dairy cattle, and also was 

isolated from vaginal exudates of a cow with post-partum metritis irresponsive to 

antibiotics (Banks et al., 2008). In addition, in an abortion case study of 26 cattle, 

BoHV-6 DNA polymerase (DPOL) sequence was found in placenta and foetal tissues. 

Beside this, infectious bovine rhinotracheitis virus (an alphaherpesvirus) was found 

in foetuses (Gagnon et al., 2010). In another case study, a cow with depression, 

anorexia, weight loss and purulent metritis irresponsive to antibiotics, severe 

emaciation, chronic peritonitis and multiple abscesses in the uterine wall, was 

tested positive for BoHV-6, suggesting a pathological role of the virus (Garigliany et 

al., 2013). Recently, BoHV-6 was also isolated from buffalo with lymphoproliferative 

diseases, which was tested negative for bovine leukaemia virus (BLV) (de Oliveira et 

al., 2014). To know relation between herpesviruses in cattle, a PCR survey of dairy 

cattle farms has shown a variable BoHV-6 prevalence, in different herds as 52% to 

78.7% for BoHV-6 and 2% to 51% for BHV-4 (Collins et al., 2000). Also when SA-MCF 

cases were tested, those two viruses were found, which are normally not associated 

with MCF (Collins et al., 2000). Despite presence of BoHV-6 in cattle, not much is 
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known about virus’s infection impact, biological effects and association with bovine 

conditions including MCF. 

1.3 Malignant catarrhal fever 

Malignant catarrhal fever (MCF) is also known as malignant head catarrh, malignant 

catarrh, wildebeest disease and snotziekte or snotting sickness (Maxie, 2007). MCF 

is a usually fatal disease of many ungulate species of the families Bovidae and 

Cervidae, mainly affecting cattle, bison, deer, and occasionally swine. The disease 

occurs as a consequence of infection by one of the MCF herpesviruses (Buxton et 

al., 1984; Løken et al., 1998; Plowright, 1990). MCF-causing viruses are present in 

nature and are harboured by those animals known as reservoir hosts. In the latter, 

the viruses are well adapted to the host by co evolution and exist in a balance 

without harming the host. When these viruses are transmitted to those animals 

known as susceptible hosts to which the virus is poorly adapted to, they induce the 

clinical disease known as MCF (Plowright, 1990). MCF was early described in 

domestic cattle that were associated with domestic sheep in Europe in 1700s 

(Ackermann, 2005; Werner & Hugh, 2008).  

1.3.1 Importance of MCF 

The importance of MCF varies according to the causative virus, the type of animals 

that become infected, and the circumstances under which different animals are 

kept. In Africa, AlHV-1 causes MCF outbreaks and significant economic loss, the 

incidence rate is estimated to be between 5-10 % in domestic cattle (Bedelian et al., 

2007; Cleaveland et al., 2001; Plowright et al., 1975). This ratio can vary according 

to the size of the wildebeest population and the time of year when the wildebeest 

are giving birth (Rossiter et al., 1983). Cattle are affected by sheep associated MCF 

(SA-MCF) in all parts of the world and this is the most prevalent form of MCF as the 

disease occurs wherever sheep are found. European cattle are relatively resistant to 

the disease; however, outbreaks with a considerable mortality in domestic cattle 

herds can occur (Collery & Foley, 1996; Otter et al., 2002; Pierson et al., 1973; 

Schultheiss et al., 2000; Taneichi et al., 1986; Twomey et al., 2002). Other cattle 

species like American bison, buffalo and Bali cattle are more susceptible to MCF and 
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are recommended to be kept well separated from sheep (Pierson et al., 1979; 

Taneichi et al., 1986). In bison, severe outbreaks have been reported (O'Toole et al., 

2002) and that SA-MCF even acquired from locations distant from where lambs 

were farmed (Li et al., 2008b). In one outbreak 8000 bisons were died which caused 

an approximately one million US dollar loss (Li et al., 2006). Buffalos are a highly 

susceptible, in which MCF is considered an emerging disease. It is recently 

discovered that buffalo can be affected by more than one type of MCFV and cases 

have been reported in different parts of the world, such as South Africa (Pfitzer et 

al., 2013; 2015) and Switzerland (Dettwiler et al., 2011; Stahel et al., 2013). 

SA-MCF has also been reported in free ranging deer (Neimanis et al., 2009; 

Schultheiss et al., 2007; Vikøren et al., 2006). MCF is a problem of commercially 

farmed deer in New Zealand (Mackintosh, 1993), outbreaks can affect up to 50% of 

the herd (Reid et al., 1979). MCF with CpHV-2 as the causative virus has recently 

been reported in free ranging and farmed deer in Europe and Asia (Chen et al., 

2007; Vikøren et al., 2006). In white tailed deer, a number of outbreaks caused by 

white-tailed deer MCF virus (WTD-MCFV) have been reported (Kleiboeker et al., 

2002; Li et al., 2000a), but symptoms were less severe than those seen with other 

MCFVs. 

MCF has been frequently been reported in petting zoos or zoologic parks 

where sheep were kept together with susceptible ruminants (Li et al., 1999b). In 

Pigs MCF was first reported in Scandinavian countries (Løken et al., 1998), later in 

countries of Europe (Albini et al., 2003a; Syrjälä et al., 2006) and North America 

(Alcaraz et al., 2009). It is thought that the real incidence of MCF is higher than what 

is known, as many cases are not reported or misdiagnosed (Li et al., 2014). 

1.4 Malignant catarrhal fever viruses and their transmission  

MCF is caused by several gammaherpesviruses of the genus Macavirus; six of which 

are pathogenic and cause disease under natural conditions (Li et al., 2005a), as 

listed in Table 1-2. The disease is mainly caused by either alcelaphine herpesvirus 1 

(AlHV-1) which is harboured by wildebeest (Connochaetes species) as the natural 

host, or ovine herpesvirus 2 (OvHV-2) for which sheep (Ovis aries) are the natural 

host. Wildebeest associated MCF (WA-MCF) is only prevalent in Africa where the 
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natural hosts live and spread the virus that causes outbreaks (Plowright, 1960). 

While the SA-MCF occurs worldwide and is the major form of the disease. In the 

following sections other MCF viruses of minor relevance are discussed first, then 

AlHV-1, and then the most relevant virus in this study, the OvHV-2, is discussed in 

more detail. 

 

Table 1-2. List of important naturally occurring MCF viruses, and susceptible hosts in 
which MCF has been reported. Adopted after (O'Toole & Li, 2014). 
 

 
MCFV 

 
Reservoir Host Susceptible Host 

Economic 
Importance 

Ovine herpesvirus 2 
(OvHV-2) 

Sheep 
Cattle, bison, deer, pig, 

giraffe 

 
Moderate 

 

Alcelaphine herpesvirus 1 
(AlHV-1) 

Wildebeest Cattle, deer 
Moderate 

 

Caprine herpesvirus 2 
(CpHV-2) 

Goat Sika deer, white-tailed deer 
Minimal 

 

White-tailed deer- MCFV 
(Caprine herpesvirus 3) 

Goat 
White-tailed deer 

red brocket  deer, reindeer 
Minimal 

Ibex –MFCV Ibex 
Bongo, anoa, pronghorn 

 
Minimal 

Alcelaphine herpesvirus 2 
(AlHV-2) 

Hartebeest, tpoi 
 

Barbary red deer, bison 
 

Minimal 

 

1.4.1 Caprine herpesvirus 2 and other MCFVs  

Goats are another source of MCF since they carry a MCF virus (Li et al., 2001b). The 

virus can spread between goats when housed together, it is highly similar to OvHV-2 

and AlHV-1 and has been named  as caprine herpesvirus 2 (CpHV-2) (Chmielewicz et 

al., 2001). Goat associated MCF (GA-MCF) is naturally occurring in cervid species 

such as white-tailed deer, sika deer, roe deer and moose (Chen et al., 2007; 

Crawford et al., 2002; Keel et al., 2003; Li et al., 2003b; Vikøren et al., 2006). GA-

MCF symptoms are different from that induced by OvHV-2 or AlHV-1, as the disease 

tends to be more chronic and dominated by skin conditions such as dermatitis and 
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alopecia. Although, the histopathological examination reveals a systemic 

lymphoproliferative vasculitis also in these cases (Crawford et al., 2002). 

MCF affecting white-tailed deer (WTD-MCF) was first described in 2000 (Li et 

al., 2000a) when PCR testing of a deer with MCF was negative for OvHV-2 or AlHV-1 

specific primers. Degenerative primers for a conserved DNA region (herpesvirus 

polymerase gene) were used and yielded a PCR product which was then sequenced 

and found to be identical to OvHV-2 by 82% and to AlHV-1 by 71% (Kleiboeker et al., 

2002; Li et al., 2000a). From this finding, the virus was recognised as a distinct new 

pathogenic MCFV (Li et al., 2000a). The disease occurs during periods of stress 

around late fall, but the transmission route of the virus is not yet known because 

the reservoir host is unknown. However, species such as sheep or goat are 

suspected (Kleiboeker et al., 2002; Li et al., 2000a; O'Toole & Li, 2008). In a recent 

study, it was proposed that goats are a possible source of WTD-MCF because deer 

developed MCF after exposure to goats (Li et al., 2013a). Deer affected with WTD-

MCF show the classical symptoms of MCF like that in cattle, but without corneal 

involvement (Li et al., 2000a). 

Hippotragine herpesvirus 1 (HipHV-1) was first recovered from cell cultures 

of samples from a roan antelope in Africa. It is not reported to induce MCF 

naturally. The virus DNA was shown to be more closely related to AlHV-1 than to 

OvHV-2, based on the hybridisation intensity (Reid & Bridgen, 1991), and when 

inoculated into rabbits it induced classical MCF lesions (Reid & Bridgen, 1991; 

Schock & Reid, 1996). 

Muskox (Ovibos moschatus), Nubian ibex (Capra nubiana) and gemsbok 

(South African oryx, Oryx gazella) herpesviruses are grouped with MCFVs based on 

the sequence of their herpesviral DNA polymerase (DPOL) gene which is similar to 

that of other MCFVs. So far, there is no evidence that these viruses cause disease (Li 

et al., 2003a). Muskox-MCFV was recently identified outside America, in Norway, in 

free ranging muskox, the study suspect that calves are infected in an early age 

(Vikøren et al., 2013). 
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1.4.2 Alcelaphine herpesvirus 1 

The AlHV-1 causes the wildebeest associated MCF (WA-MCF) in cattle in Africa. It is 

carried by African wildebeest (Connochaetes taurinus) (Plowright, 1960). WA-MCF is 

mainly a problem in east and south Africa where wildebeest are found (Bedelian et 

al., 2007; Cleaveland, 2001), and in zoological parks (Meteyer et al., 1989; Whitaker 

et al., 2007). Calves are infected at as early as three months of age and they shed 

the virus through their nasal and ocular secretions as cell free virus (Mushi et al., 

1980; Mushi et al., 1981), and by the age of four months all calves are infected 

(Barnard et al., 1989). After six months of age, animals tend to shed less virus 

except when under stress, like during parturition (Barnard et al., 1989; Rweyemamu 

et al., 1974). The virus was first recovered from a splenic cell culture of a wildebeest 

foetus (Plowright, 1965), which showed that AlHV-1 can also be transmitted 

vertically. In cattle the disease has been shown to occur after exposure to blue or 

black wildebeest (Daubney & Hudson, 1936; Mettam, 1923). A study showed that 

pasturelands where wildebeest gave birth and left foetal afterbirth, were highly 

contaminated from ocular-nasal discharges of the mother, but not from foetal 

membranes. The virus is inactivated by sunlight within one hour, so it was 

recommended that cattle could graze such pastures after a few hours to minimise 

the risk of MCF  (Rossiter et al., 1983). Under natural conditions, AlHV-1 is not 

horizontally transmitted from MCF affected animals to naïve animals, because 

diseased animals do not produce cell free virus (Mushi & Rurangirwa, 1981). 

Vertical transmission appears possible, by transmission of the virus from pregnant 

MCF affected dams to calves (Plowright et al., 1972). 

1.4.3 Ovine herpesvirus 2 

Historically, sheep were always thought to be another source of MCF, but attempts 

to isolate the causative agent were elusive (Selman et al., 1974). Based on cross-

hybridisation of a DNA clone of AlVH-1 with another DNA from a lymphoblastoid 

cell line derived from a cattle with SA-MCF, it was postulated that the new agent is 

closely related (Bridgen & Reid, 1991). The virus later designated as OvHV-2 

(Roizmann et al., 1992). Based on those postulated sequences in clones, primers 

were designed and PCR was established to amplify OvHV-2 DNA in clinical MCF 
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cases and in peripheral blood leukocytes of sheep (Baxter et al., 1993). Now, OvHV-

2 is believed to be the most important cause of MCF in cattle worldwide, espeially 

where sheep and other MCF-susceptible species are kept close to each other. SA-

MCF is reported in almost all parts of the world, in Europe (Benazzi et al., 2004; 

Collery & Foley, 1996; Decaro et al., 2003; Frölich et al., 1998; Løken et al., 1998; 

Mateusen et al., 2009; Pardon et al., 2009), north and south America (Alcaraz et al., 

2009; Bratanich et al., 2012; Cunha et al., 2012), Canada (Neimanis et al., 2009; 

Zarnke et al., 2002), Africa (Bremer, 2010; Gelaye et al., 2013; Iman M. Bastawecy 

and Abd El-Samee, 2012), the Middle East (Brenner et al., 2002; Kirbas et al., 2013; 

Yazici et al., 2006) and Asia (Taneichi et al., 1986; Vinod Kumar et al., 2014; Wani et 

al., 2004; Wani et al., 2006; Wiyono et al., 1994). 

1.4.3.1 OvHV-2 in sheep 

All sheep breeds are thought to become infected with OvHV-2 (Baxter et al., 

1997; Li et al., 1995). OvHV-2 is believed to be transferred horizontally by close 

contact,  aerosols from respiratory secretions (Li et al., 2004) or via the sexual route 

(Hüssy et al., 2002). In most lambs over three months and under one year of age 

(especially 5.5 - 7.5 months), viral DNA can be found in peripheral blood leukocytes 

and in nasal secretions (Ackermann, 2005; Li et al., 1998). The OvHV-2 DNA have a 

much higher concentrations in nasal secretions than in peripheral blood leukocytes 

in the same animal, and the  load starts to decline before one year of age (Li et al., 

2001a). At the age of 6-9 months, viral shedding occurs as multiple episodes with a 

dramatic rise in shedding in a 24-36 hour period which may represent a single viral 

replication cycle, but in older sheep shedding is less frequent (Li et al., 2001a; Li et 

al., 2004). Sheep remain infected for their lifespan (Li et al., 2001a) and are liable to 

infection at any age (Li et al., 2000b). In sheep, different organs and body secretions 

have been tested positive by PCR for OvHV-2 detection (Hüssy et al., 2002). Sites of 

excretion and organs harbouring OvHV-2 are illustrated in figure 1-5. In a study 

using laser microdissection technique to identify the host cells positive for OvHV-2, 

respiratory epithelial cells were found to carry high virus copy numbers (Kim & Oh, 

2003). 
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 In more recent studies, it has been shown that when naive sheep are 

experimentally infected with OvHV-2 via nebulisation, the initial site targeted by the 

virus is the lung. Infection was not established by intravenous or intraperitoneal 

injection; this is possibly because cells that support initial virus replication are not 

available in the two later locations (Li et al., 2008a). Furthermore, by using 

immnofluorescence techniques, it was found that mainly type II pneumocytes 

supportes the initial lytic replication in either experimentally or naturally infected 

sheep during episodes of virus shedding (Taus et al., 2010). Newborn lambs do not 

show significant OvHV-2 DNA levels and are not considered as an important source 

of infection (Li et al., 1998). However, detection of OvHV-2 antibodies in SPF lambs 

suggests the possibility of vertical virus transmission (Rossiter, 1981a). Supporting 

this, when pregnant ewes were experimentally infected, the foetuses developed 

MCF-like lesions (Buxton et al., 1985). Virus shedding by adult sheep is different 

from AlHV-1 shedding by wildebeest,  i.e. is not  associated with stress or lambing,  

and is rather stable (Li et al., 2001a). Infected sheep at any age remain 

asymptomatic, but when are aerosolised with large amounts of OvHV-2 (3 x 109 

virus copies), they show slight MCF-like signs, such as fever and nasal discharges 

and also develope lesions typical for MCF in the respiratory and alimentary tract (Li 

et al., 2005b). the necropsy findings revealed multifocal erosions and ulcers in the 

mucosa of the cheeks, tongue, pharynx and oesophagus. Histologically, moderate 

superficial lymphohistiocytic rhinitis, degeneration of keratinocytes in the oral 

mucosa and multifocal histiocytic broncho-interstitial pneumonia with lymphocytic 

vasculitis were observed. Some infected sheep in the experiment recovered 

clinically within two weeks after the onset of clinical signs (Li et al., 2005b). 

OvHV-2 can be also found in species other than sheep. Pigs can harbour 

OvHV-2. The semen of boars was tested positive for OvHV-2 DNA by PCR and the 

virus was shown to be transmitted sexually to sows (Costa et al., 2010). Also goats 

have tested positive for OvHV-2 (Løken et al., 2009). 
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A. Portals of OvHV-2 excretion 

 

                          

 

B. Tissues positive for OvHV-2 DNA by PCR in sheep 

 
 
Figure 1- 6. Portals of OvHV-2 excretion and tissues harbouring viral DNA in sheep. 

A. Excretion of OvHV-2 by sheep from different sites, those written in red are positive for viral 

episodic shedding, those written in blue have been PCR-negative for the virus. Adopted 

from (Ackermann, 2005). 

B. Organs that tested positive for OvHV-2 DNA by PCR. Adopted after (Hüssy et al., 2002; 

Hüssy et al., 2001). 
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1.4.3.2 Genome and biology of OvHV-2 

OvHV-2 has never been isolated, which has limited its study to a great extent. There 

is no permissive cell culture system to support the propagation of the virus. The 

only way to culture OvHV-2 was by culturing lymphoblastoid cell lines derived from 

cattle, rabbit and deer affected with MCF (Reid et al., 1989; Reid et al., 1983; 

Schuller et al., 1990). OvHV-2 and other MCFVs have DNA sequence similarity in 

conserved regions (Li et al., 2005a). The increasing availability of herpesvirus 

sequences and the use of PCR, made the phylogenetic analysis and assessment of 

the relation between Macavirus or other herpesviruses much easier (McGeoch et 

al., 2006). The full genome of OvHV-2 was sequenced from a lymphoblastoid cell 

line generated from a MCF affected cow, this was fundamental to understanding 

the virus (Hart et al., 2007).  

The unique portion of the genome consists of 130,930 bp with 52% G:C 

ratio, that is bounded by GC-rich terminal repeats. The genome was found to have 

73 open reading frames (ORFs) most of which (62) show similarity with other 

gammaherpesviruses. Nine ORFs show similarity with AlHV-1 only. The composition 

of the conserved regions was similar to those of other gammaherpesviruses (Hart et 

al., 2007). Four genes are completely unique to OvHV-2, namely Ov2.5, Ov3.5, 

Ov4.5 and Ov8.5 (Russell et al., 2009). The Ov2.5 encodes for an interleukin-10 (IL-

10) homologue. This viral spliced gene that retains the exon structures (five) similar 

to the cellular gene, but intron sizes are significantly reduced (Hart et al., 2007; 

Russell et al., 2009). The viral IL-10 protein functions like ovine IL-10, stimulating 

proliferation of mast cells and inhibiting macrophage inflammatory chemokine 

production (Jayawardane et al., 2008). The Ov3.5 is predicted to encode a protein 

of 163 amino acid with a signal peptide (Hart et al., 2007). The Ov4.5 encodes a 

protein of 212 amino acid, which is predicted to function as vBcl-2 (viral B cell 

Lymphoma-2) homologue of the EBV BALF1 anti-apoptosis protein that regulates 

cell death. The Ov8.5 codes for a 390 amino acid proline-rich protein of unknown 

function (Hart et al., 2007; Russell et al., 2009). It has been shown that the OvHV-2 

genome in domestic sheep (Ovis aries) collected during virus shedding episodes 

differs from that in MCF affected cattle (Bos bovis). The amino acid similarity 

between three ORFs (ORF17, a predicted maturation protein or a capsid protein; 
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Ov3, a semaphorin; and Ov10 a putative nuclear protein) of the two viruses were 

between 94-100% while the similarity between ORF73s was 83% (Taus et al., 2007). 

The ORF73s were highly variable, except for 32 N-terminus and 136 C-terminus 

amino acids where they were highly conserved (Taus et al., 2007) between different 

isolates. Further sequencing studies have indicated that the variability in ORF73 

could be a useful tool for informing epidemiological studies (Russell et al., 2009). In 

sheep, the viral DNA is in a circular form in polymorphonuclear leukocytes (PMNC) 

indicating latent infection with ORF73 transcription (Thonur et al., 2006). In the 

same study, a mixture of circular and linear DNA was seen in cell lines derived from 

rabbits with MCF indicating latent and productive infection at the same time. 
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Figure 1-7. Organization of the OvHV-2 (isolate BJ1035) genome. Showing the direction of 
transcription, splice sites are shown as lines above connecting exons. Potential polyadenylation 
signals (AATAAA or ATTAAA) pointed by arrows. Major repetitive elements are shown as shaded 
rectangles, direct repeats as hashed blocks and inverted repeats as solid bars. Those highlighted in 
dark grey indicate unique OvHV-2 genes and the light grey indicates highly variable regions. Taken 
after (Hart et al., 2007). 
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1.5 Clinical signs of MCF 

MCF is usually a sporadic disease. The incubation period is not known, but with 

natural infections, it can be from a few weeks to as long as seven months. In 

experimental infections, the incubation period is shorter and was observed to be 

between 9-77 days (O'Toole et al., 2007; Werner & Hugh, 2008). This variation 

could depend on the initial viral dose (Gailbreath et al., 2010). MCF is frequently 

fatal, however, cases of animals that recovered from the disease have been 

recorded (O'Toole et al., 1997; Penny, 1998). The clinical course is usually acute but 

can occasionally be chronic (Reid et al., 1984). The morbidity and mortality of the 

disease varies greatly depending on the affected species, deer can die within two 

days and bison within three days, while cattle can have chronic course and even can 

recover from disease (O'Toole et al., 1997; O'Toole et al., 2002; Vanselow, 1980). 

The induction of clinical signs depend on the species and the initial virus dose that 

infect the animal (reviwed in (Li et al., 2014)) as shown in Table 1-3.  

In cattle, MCF has four overlapping clinical forms, a peracute, head and eye, 

alimentary, and a mild form; the head and eye form is the most common (Blood & 

Radostits, 1989). There are no significant clinical differences in MCF caused by 

OvHV-2 or AlHV-1 (Brown et al., 2007). The disease starts with depression and high 

fever of 40 – 42 ᵒC, tachycardia of 100-120 beats per minute, anorexia and agalactia 

(Blood & Radostits, 1989; Kahn & Line, 2010; Suhaila, 2011). The head and eye form 

is characterised by bilateral ocular and nasal discharges that are initially serous then 

become mucopurulent. Ocular signs range from corneal oedema to profuse 

lacrimation and conjunctivitis (Sharpe et al., 1987; Zemljič et al., 2012). 

Subsequently, necrosis, erosion, ulceration and crusting of the muzzle is seen 

(Selman et al., 1974). Respiratory signs include dyspnoea, open-mouthed breathing, 

and coughing as disease progresses (Blood & Radostits, 1989). Upon clinical 

examination, enlargement of superficial lymph nodes and muscle tremor can be 

noticed (Ababneh et al., 2012; Kirbas et al., 2013). Alimentary signs vary from 

profuse diarrhoea to scanty, hard faeces or sometimes not passing faeces (O'Toole 

& Li, 2008; Selman et al., 1974). As the disease progresses, neurological symptoms 

are observed, such as photophobia, behavioural changes, incoordination, inability 

to walk and eventually paralysis (Blood & Radostits, 1989). In some cases, 
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cutaneous lesions develope such as crusting and exudation on skin of neck, 

shoulder, axillae, back, udder, vulva and scrotum, and sometimes patchy excessive 

sweating (Selman et al., 1974). In rare cases, MCF is only associated with cutaneous 

lesions or with fever and anorexia (David et al., 2005; Holliman et al., 1994; Penny, 

1998). Haematological tests shows severe leukopaenia characterised by a marked 

lymphopaenia but a relative neutrophilia (Brenner et al., 2002; Reid et al., 1984). 

In bison and deer, clinical signs are slightly different from those in domestic 

cattle. They show severe depression, weight loss, haematuria, and bloody 

diarrhoea, but corneal opacity is less apparent (Li et al., 2014; O'Toole et al., 2002). 

 

 

Table 1-3. Susceptibilities of different species to OvHV-2 infection and induction of 
MCF. Table adopted from (Li et al., 2014) for OvHV-2 dose-response studies. 
 

Species 
OvHV-2 DNA copies intranasal inoculum 

102 103 104 105 106 107 108 109 

Sheep Neg Pos Pos Pos Pos Pos Pos MCF 

Cattle    Neg Pos Pos MCF  

Pig   Neg Neg MCF    

Rabbit   Neg MCF     

Bison  Neg MCF      

Abbreviations: Neg: no infection; Pos: subclinical infection; MCF: induction of MCF. 

 

1.5.1 Gross pathological findings in MCF 

MCF is multisystemic and affects many organs, gross lesions can vary greatly 

depending on the duration of disease and the affected species rather than the 

infecting virus (Li et al., 2014). Cattle that die with the peracute form are 

dehydrated and emaciated, often with less obvious corneal opacity, and necropsy 

findings may include extensive inflammation of the mucosal linings (Maxie, 2007). 

However, in many acute cases there is multifocal petechial haemorrhage and heavy 

congestion of the alimentary tract, mucopurulent exudate covering the trachea; 

oedema, multifocal haemorrhage in the urinary bladder and bloody urine (Pardon 
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et al., 2009; Werner & Hugh, 2008). Patchy petechial haemorrhage, erosions and 

ulcers on the buccal mucosa and tongue as in some instances the necrotic lingual 

epithelium is detached and can be removed; in addition, abomasum and intestine 

may be covered with purulent exudate (Sharpe et al., 1987; Suhaila, 2011). 

Mucopurulent exudate may cover the nasal turbinate, larynx and the mucosa of 

trachea (Costa et al., 2009a). The brain is congested and exhibits multiple petichiae 

on the cerebral cortex (Vanselow, 1980). Mild to moderate enlargement of lymph 

nodes with congestion and haemorrhage can be seen. Certain species such as deer 

may have more severe enteritis (Reid et al., 1984). Buffalo with MCF may exhibit 

haemorrhages epicardium and pericardium (Hoffmann et al., 1984). 

1.5.2 Histopathological findings in MCF 

In MCF, there is lymphoid hyperplasia and basically two characteristic pathological 

changes: first, necrotising vasculitis with mononuclear cell infiltration and necrosis 

of the tunica media in medium calibre arteries and veins; and secondly, epithelial 

necrosis; these lesions involve  most organs (Brown et al., 2007; Liggitt & DeMartini, 

1980a; b; Selman et al., 1974; Vanselow, 1980). In vascular lesions, the infiltrating 

mononuclear cells are predominantly lymphoid cells (small and large T-cells), 

macrophages, plasma cells, neutrophils and a few B-cells (Ellis et al., 1992; Selman 

et al., 1974). A severe lymphocytic arteritis (and to a lesser extent phlebitis) that is 

characterised by swollen vacuolated endothelium and necrosis of the tunica media 

(represented by an eosinophilic coagulum of necrotic debris) is the main feature of 

MCF in cattle (Brown et al., 2007). Epithelial lesions are represented by necrosis 

associated with lymphoid cell infiltration. The necrosis extends to the deeper 

mucosa and there is no or very few epithelial cell regeneration. These lesions occur 

in many epithelial tissues including those of the oral cavity, the eyes, the 

alimentary, respiratory and urinary tract, skin and in the choroid plexus (Liggitt & 

DeMartini, 1980b). 

The eyes develop an erosive keratoconjunctivitis with corneal oedema, 

anterior uveitis particularly in ciliary body and processes and iris, and retinitis. 

Lymphocytic vasculitis is seen in vessels of uvea, ciliary, scleral and retinal vessels. 

Lymphocytic ciliary neuritis and optic meningitis are less common (Whiteley et al., 
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1985). Skin lesions include hydropic degeneration and microvesicle formation in the 

epidermis that leads to erosion with exudate covering the epidermis. The 

underlying dermis exhibits oedema and lymphoid inflammation. In the alimentary 

tract, lesions vary in their severity. Besides a mononuclear infiltration, necrosis of 

the glandular epithelium and acantholysis that leads to collapsing of the epithelium 

is seen (Liggitt & DeMartini, 1980b). Hyperaemia, focal erosions and ulcerations 

that may extend to the submucosa are seen, often associated with fibrin and blood 

exudate on the surface (Brown et al., 2007). In the respiratory tract, lesions vary 

from a mild congestion and serous exudation to severe degeneration in the upper 

respiratory mucosa (Brown et al., 2007). In the lungs, there are peribronchial and 

perivascular lymphocytic cuffs, alveolar septal congestion with oedema, and 

interstitial lymphocytic pneumonia are seen (Vanselow, 1980). In the kidneys, 

interstitial, periglomerular and perivascular lymphoid infiltration, focal 

haemorrhages and infarcts, as a consequence of thrombi and degenerated 

arterioles, are seen. In the liver, there are vasculitis; periportal hepatocyte necrosis 

and accumulation of lymphocyte dominated mononuclear cells around portal 

vessels and bile ducts (Sharpe et al., 1987). In lymph nodes, there is focal necrosis 

and haemorrhage, cortical lymphoid hyperplasia and central follicular depletion, 

Similarly in the spleen, changes can range from moderate lymphoid depletion to 

hyperplasia in the periarteriolar sheaths (Brown et al., 2007).  

A unique feature of MCF are the brain lesions, which are characteristically 

nonsuppurative meningitis, necrotising arteritis and lymphocytic adventitial 

infiltration (Brown et al., 2007; Sharpe et al., 1987). Despite those pathological 

changes, virus particles or inclusion bodies have never been found in MCF lesions 

(O'Toole et al., 1995; Selman et al., 1978).  

1.5.3 Experimental MCF 

Since there is no permissive cell culture system to support OvHV-2, researchers 

have used experimental animals to induce MCF under experimental conditions to 

study the pathogenesis of the disease. Naturally susceptible species such as cattle 

and bison have been used in experimental studies (Gailbreath et al., 2010; Taus et 

al., 2006). WA-MCF was induced experimentally by inoculating blood from 
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wildebeest or MCF affected cattle to naive cattle (Mettam, 1923). The first 

experimental SA-MCF was induced by intraperitoneal inoculation of a cell 

suspension from deer with MCF to a rabbit (Buxton & Reid, 1980). Rabbits show 

classical MCF lesions and therefore are a valuable model to study MCF pathogenesis 

as they were shown to exhibit similar pathogenic and infection features as bison 

(Buxton et al., 1984; Cunha et al., 2013). Deer were used in experimental contact 

transmission of OvHV-2 when housed close to sheep (Imai et al., 2001). Pigs are 

naturally sporadically affected by SA-MCF and found to be a useful and 

comparatively low cost animal model for experimental MCF studies (Li et al., 2012). 

Hamsters are also used as small animal models for WA-MCF and SA-MCF (Reid et 

al., 1986). In a recent experiment, bison have been infected with AlHV-2 and two of 

six animals developed lesions consistent with MCF (Taus et al., 2014). 

1.5.4 Pathogenesis of MCF 

The pathogenesis of MCF is not fully understood. However, the pathological 

changes including lymphoproliferation, vascular and epithelial lesions are well 

described (Maxie, 2007). The pathogenesis of OvHV-2-induced MCF in laboratory 

rabbits has been well studied (Buxton et al., 1984). This study showed that even 

cyclosporine-A-mediated suppression of T cells did not inhibit development of the 

lesions. This suggests that not only the lymphoproliferation is responsible for the 

vascular and epithelial destruction, but that the virus itself plays a role. 

Furthermore, another study in rabbits extended understanding of the pathogenic 

mechanisms of the disease and differences between SA- and WA-MCF (Anderson et 

al., 2007), as OvHV-2 was shown to cause more tissue necrosis and less lymphoid 

hyperplasia of predominantly CD8+ and few CD4+ and naive T cells, but no B-cells.  

Also in cattle MCF it was shown that predominantly cytotoxic CD8+ T cells are 

involved in lymphoid hyperplasia associated with vasculitis (Ellis et al., 1992; 

Nakajima et al., 1994; Nakajima et al., 1992; Simon et al., 2003). In rabbits with 

experimental MCF, CD4+ T cells were significantly depleted in lymph nodes, and 

numerous CD43+ (a T cell molecule important for adhesion to endothelial cells) and 

proliferating PCNA+ (Proliferating cell nuclear antigen) subepithelial lymphocytes 

were found in the esophagus, trachea and lacrimal gland (Schock & Reid, 1996). This 
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study suggested viral infection and in situ multiplication of lymphocytes or possibly 

antigen-presenting cells, and changes in lymphocyte function by altering a T cell 

activator, such as interleukin-2 (IL-2) (Schock & Reid, 1996). To further understand 

MCF, cell cultures of proliferating lymphocytes from lymph nodes have been 

established to study their features in vitro. These cells were shown to have a 

morphology of large granular lymphocytes (LGLs), have non-MHCII (major 

histocompatibility class 2) restricted cytotoxic activity and have features of 

activated natural killer (NK) cells (such as expressing CD4 or CD8, but always CD2, 

and not transcribing IL-1ß or  IL-2) that respond to cytokines from other virus 

infected lymphocytes and start reacting against host’s own cells (Burrells & Reid, 

1991; Cook & Splitter, 1988; Swa et al., 2001). Furthermore, a study have shown 

that the predominant CD8+ lymphocytes infiltrating in vascular lesions in bison with 

SA-MCF are cytotoxic CD8+/perforin+/WC1− γδ T cells of the innate immune system, 

not CD8+ αβ T cells (Nelson et al., 2010). 

Despite the detailed pathological observations, very little is known about the 

virus in tissues. Although in rabbits with experimental MCF, OvHV-2 DNA was 

detected in lymph nodes by in situ hybridisation (Bridgen et al., 1992). Later, viral 

DNA was found in CD8+ T lymphocytes associated with vasculitis in brain of cattle 

and bison with MCF by in situ PCR and immunohistochemistry (Simon et al., 2003). 

Monocytes and macrophages were also detected in the lesions, but neither CD4+ T 

cells nor B cells. In another study, OvHV-2 structural proteins (ORF43 capsid and 

ORF63 tegument) were localised in the epithelial and M-cells (microfold cells) in the 

appendix of rabbits with experimentally induced MCF (Meier-Trummer et al., 2009). 

This showed that M-cells and large intestinal epithelium are essential for viral 

replication and/or pathogenesis. This relates to a previous study because there was 

marked necrosis in lymphoid follicles of the appendix (Anderson et al., 2007). These 

findings indicate that subepithelial lymphocytes are activated when exposed to 

cytokines from infected epithelial cells and start killing their host cells. 

In an experiment to study AlHV-1-induced MCF in rabbits model, it was 

shown that the virus is associated with latent Infection in proliferating CD8+ T, this 

was considered as a new model of pathogenesis (Dewals et al., 2008). Here, rabbits 

were inoculated with AlHV-1 and treated with 5-Bromo-29-Deoxyuridine (BrdU), 
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then findings were summarized as: first, CD8+ T cell proliferation was detectable as 

early as two weeks after inoculation. Secondly, the viral loads in PBMC was 

undetectable during the incubation period, but increased sharply few days before 

death. At this stage, more than 10% of CD8+ cells had viral genome. Thirdly, RT-PCR 

analyses of mononuclear cells isolated from the spleen and the popliteal lymph 

node revealed no expression of ORF25 and ORF9, low or no expression of ORF50, 

and high or no expression of ORF73.  

On the other hand, MHC-IIa allele polymorphism is probably associated with 

resistance or susceptibility to OvHV-2-induced MCF in bison (Traul et al., 2007). 

Resistant bison show seroconversion with subclinical infection, but with very high 

viral doses, the resistant immune system status will be overwhelmed, like sheep 

when inoculated with a very high viral dose (Li et al., 2005b). Concerning the virus’s 

own role in pathogenicity, in an experimental OvHV-2 induced MCF in rabbits it was 

shown that severity of lesions is positively associated with the abundance of virus 

ORF25 which is a lytic transcript (Cunha et al., 2013; Li et al., 2011). While in WA-

MCF in cattle, AlHV-1 ORF73 latent transcripts were detected in CD8+ T cells 

(Palmeira et al., 2013). This suggests that different MCFV may have different 

pathogenic mechanisms.  

The phenotype of lymphocytes in MCF and the little evidence about a direct 

viral damage to vascular and epithelial cells suggests that MCF is a consequence of 

immune dysregulation. The main question, i.e. which role the virus itself plays in the 

pathogenesis and tissue damage. 

1.5.5 AlHV-1 and OvHV-2 infected cell lines 

Since no permissive cell culture is available for OvHV-2 propagation, a useful way to 

study both the virus and behaviour of those cells is to culture OvHV-2 infected 

lymphoblastoid cell lines from MCF affected animals. The viral mechanisms that 

induce LGLs are unknown. Lymphocytes were derived from tissues (lymph node, 

thymus, spleen and cornea) of animals with SA-MCF, such as rabbits (Reid et al., 

1983) or cattle (Reid et al., 1989). Some of these cell lines have been maintained 

indefinitely with feeder monolayers and/or IL-2. Moreover, some became 

independent of these factors after prolonged culture. As mentioned in the previous 
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section, these cells have the phenotype and cytotoxic activity  of natural killer cells 

(Cook & Splitter, 1988; Reid et al., 1989). OvHV-2 infected cell lines are responsive 

to Concavalin A, express TNF-α, INF-γ, IL-4 and IL-10, but are negative for IL-1β and 

IL-2 (Schock et al., 1998; Swa et al., 2001). AlHV-1 was readily detecible by DNA-ISH 

(Reid et al., 1983) or by RNA-ISH (Cook & Splitter, 1988). OvHV-2 is maintained as 

circular DNA in bovine T cell lines, suggesting a predominant latent infection. In 

rabbit T cell lines,  OvHV-2 have a linear genome with productive cycle gene 

expression of ORF75 (virion tegument protein) (Rosbottom et al., 2002). In addition, 

viral capsids were seen for first time by TEM in infected rabbits T cells (Rosbottom 

et al., 2002). 

 

1.5.6 Ovine herpesvirus 2 microRNAs 

MicroRNAs (miRNA) are a class of short (18-30 nt) non coding RNA molecules that 

regulate posttranslational gene expression (Olsen & Ambros, 1999). According to 

http://mirbase.org/index.shtml database, miRNAs exist in many organisms including 

viruses. In viruses, many miRNAs have been found and most of them are in double 

stranded DNA viruses, especially herpesviruses, that control viral and cellular gene 

expression (Plaisance-Bonstaff & Renne, 2011).  EBV was the first virus in which viral 

encoded miRNA was found in the nucleus of various Hodgkin’s and Burkitt’s 

lymphoma cell lines (Pfeffer et al., 2004). It was also shown that OvHV-2 encodes 

for at least eight miRNAs (Levy et al., 2012). These miRNAs were identified from an 

immortalised lymphoblastoid cell line from a cow with MCF by parallel sequencing 

and northern hybridization. These miRNAs were encoded in two areas of the OvHV-

2 genome that have no predicted protein coding and have no sequence similarity 

with other herpesvirus or cellular miRNAs. The role of OvHV-2 miRNAs in viral 

pathogenesis or latency was not clear. Further studies investigated the role of those 

miRNAs in virus biology and showed that ORF20 (cell cycle inhibition), ORF50 

(reactivation) and ORF73 (latency maintenance) genes contains predicted targets 

for OvHV2-miR-2, miR-5 and miR-8 on those genes respectively (Riaz et al., 2014). 

Relevant miRNAs have suppression effects on ORF50 and ORF20 but no effects on 

ORF73. Thus, the study hypothesized that miRNA-induced inhibition of viral genes 

functions to ensure that changes in OvHV-2 mRNA levels do not result in 

http://mirbase.org/index.shtml
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reactivation when conditions are unfavourable for viral replication. In addition in a 

more recent study, by using RT-PCR, an additional 27 OvHV-2- miRNAs were 

identified (Nightingale et al., 2014). In all OvHV-2 miRNAs, 30 was shown to be 

encoded in an approximately nine kb region that contains no predicted ORFs. There 

may be additional OvHV-2 miRNAs and until now the exact function of miRNAs is 

not fully understood in its pathogenesis. 

 

1.5.7 Diagnostics of MCF 

1.5.7.1 Clinical signs and histopathology 

Formerly, the diagnosis of MCF was based on clinical signs, gross and microscopic 

pathological findings (Selman et al., 1974). Also, the history of any recent mixing 

with the reservoir hosts supported the diagnosis, however, this is not always 

conclusive as in some disease cases the reservoir host contact is not apparent 

(Werner & Hugh, 2008). In animals with suspected MCF symptoms and lesions, a 

post mortem examination should be performed, tissue samples for 

histopathological examination to observe vasculitis and epithelial necrosis in organs 

and especially in the brain (Li et al., 2014). However, because of the variable 

features of the different MCF forms and he similarity with some other viral diseases, 

a more confirmative laboratory diagnosis such as PCR is important (Holliman, 2005). 

 

1.5.7.2 Serology 

A number of immunological and serological tests have been developed to detect 

antibodies against viruses in MCF cases, such as immunoblotting (Herring et al., 

1989), enzyme-linked immunosorbent assay (ELISA) (Fraser et al., 2006), 

competitive-inhibition (CI)-ELISA (Li et al., 2001c; Li et al., 1994; Li et al., 1995; 

Powers et al., 2005), indirect immunofluorescence and immunoperoxidase assay 

(Rossiter, 1981b), and complement fixation test (Sentsui et al., 1996). Virus  

neutralisation was performed for AlHV-1 (Plowright, 1967). This assay works well 

with virus in natural hosts of the alcelaphine group in the wild or zoos, but works 

less well in clinical cases (Manual, 2013). Serological assays using antibodies can be 

non-specific because of antigenic cross-reactivity between herpesviruses, such as 

BoHV-1 and 4 (Dubuisson et al., 1989). CI-ELISA is a sensitive test to detect 
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antibodies to a conserved complex glycoprotein 15A epitope of MCFVs (Li et al., 

1994). This technique was improved later as an indirect CI-ELISA and is a 

recommended simple serological method to detect antibodies against OvHV-2, 

AlHV-1, AlHV-2, CpHV-2 and WTD-MCF (Li et al., 2001c). 

 1.5.7.3 Polymerase chain reaction 

PCR has significantly improved the diagnostic options for MCF and allows specific 

identification of different MCFVs and even phylogenetic and epidemiologic studies 

(Russell et al., 2014; Russell et al., 2009). Several validated PCR protocols have been 

developed to amplify specific sequences of AlHV-1 and OvHV-2 or other MCFVs 

(Baxter et al., 1993; Katz et al., 1991; Li et al., 1995; Murphy et al., 1994; Wiyono et 

al., 1994). A real-time PCRs have been developed to detect and quantify the MFCVs 

DNA loads (Hüssy et al., 2001; Traul et al., 2005). In studies using PCR and 

serological tests, it was shown that PCR was more sensitive than CI-ELISA (Li et al., 

1995). A multiplex PCR was developed to detect different MCFVs in clinical samples 

(Cunha et al., 2009). In this protocol, a single set of primers plus different probes for 

MCFVs were used to detect OvHV-2, AlHV-1, CpHV-2, WTD-MCF and MCF-ibex. This 

assay is a good tool to test for most common MCFV in one reaction mix. 

  

1.5.7.4 Differential diagnosis 

There are other diseases that have similar clinical signs or gross lesions to MCF, 

especially those of head and eye or the alimentary form of MCF. Diseases that need 

to be considered as possible differential diagnoses when MCF is suspected include 

bovine viral diarrhoea-mucosal disease, bluetongue, epizootic haemorrhagic 

disease, infectious bovine rhinotracheitis, theileriosis, vesicular stomatitis and foot 

and mouth disease (Holliman, 2005; Kahn & Line, 2010). Oral lesions need to be 

distinguished from cases resulting from the uptake of corrosive substances, 

poisonous plants or mycotoxins (Werner & Hugh, 2008). The cutaneous lesions in 

MCF resemble those of skin hypersensitivity reactions, photosensitisation or 

generalised streptotrichosis in cattle (David et al., 2005). 
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1.5.7.5 Treatment and control 

Once an animal has MCF, there is no available treatment.  However, in one farm 

where cattle showed distinct clinical signs of MCF, such as fever, ocular and oral 

lesions; and in a second farm, cattle only exhibited cutaneous lesions; affected 

animals were treated with systemic corticosteroids (dexamethasone), antibiotics 

(procaine penicillin) and eye drops (atropine, betamethasone and  neomycin) (Milne 

& Reid, 1990; Penny, 1998). On the other hand, spontaneous recovery of cattle 

from MCF (confirmed by serology and PCR) has also been reported (O'Toole et al., 

1997; Penny, 1998). 

 Control of MCF may not be simple due to the large number of reservoir and 

susceptible hosts. Avoiding mixing or housing of reservoir animals with clinically 

susceptible animals helps to reduce the incidence of MCF (Werner & Hugh, 2008).  

However, this is not always achievable in places like zoos. In this case, the 

introducing of SPF animals may be a solution (Li et al., 1999a). Also before mixing, 

MCFVs carrier species should be kept in quarantine and undergo molecular tests 

(Werner & Hugh, 2008). Vaccination is another control measure is discussed next.  

 
1.6 Vaccine prospective 

Currently there is no available licenced vaccine against MCF. Especially an effective 

vaccine is very necessary to limit the WA-MCF in cattle in Africa and OvHV-2 in the 

American bison industry and also in zoological parks with exotic animals (Li et al., 

2014). Both reservoir and susceptible hosts can produce antibodies against OvHV-2,  

as shown by indirect immunofluorescence and these antibodies can cross-react with 

L and E antigens of AlHV-1, meaning there are antigenic relationships between the 

two viruses (Rossiter, 1981a; 1983). In a study, wildebeest sera were used for 

immunoblotting against AlHV-1 structural antigens (Herring et al., 1989). Rabbit and 

cattle were experimentally inoculated with AlHV-1, they produced antibodies, but 

the antibodies were not protective against MCF (Rossiter et al., 1977). Antibodies in 

hyperimmune sera from diseased cattle and rabbits, shown to react with two early 

antigens in AlHV-1 WC11 infected cell culture (Rossiter et al., 1978). Cattle were 

challenged by inoculation of different strains of AlHV-1, some produced several 

months immunity, but the experiment did not give rise to a practical vaccine 
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development, as immunity was not protective for other strains (Mirangi, 1991). In 

addition to this, cattle were used to study immunity in the oro-nasal-pharyngeal 

region against AlHV-1 MCF. For this purpose, attenuated C500 strain was injected 

intramuscularly, then the cattle were challenged with virulent C500. Nine of ten 

animals which had high levels of virus neutralising antibodies were protected (Haig 

et al., 2008). To determine the duration of the protective immunity, an attenuated 

AlHV-1 vaccine was administered in a licensed adjuvant and was found to protect 

cattle from fatal intranasal challenge with virulent  AlHV-1  for three to six months, 

but not for longer times (Russell et al., 2012). The protected vaccinated cattle had 

higher initial anti-viral antibody titers in their plasma and nasal secretions before 

the inoculation, and these levels stayed stable afterwards. In comparison, in 

vaccinated cattle that succumbed to disease, antibodies levels has risen when they 

exhibit clinical signs. These results show that neutralising antibody in the mucosa is 

a crucial barrier to blocks infections of nasal entry (Russell et al., 2012). 

 In the case of OvHV-2, due to lack of cell-free virus, immunological and 

vaccine experiments are limited to study in vitro virus antigens. Recently an in vivo 

system in sheep and rabbits was evaluated to see if antibodies can block virus entry 

following intranasal challenge (Li et al., 2013b). Two inocula were prepared; one 

was treated (at 37 °C for one hour) with anti-OvHV-2 sheep sera, and the other was 

treated with negative sheep sera as a control. All Sheep became infected, but the 

positive serum reduced viral infectivity by 1000 folds based on detecting OvHV-2 

DNA and seroconversion when compared to the control group. Rabbits that 

received immune sera were protected, but the control group developed MCF. This 

result shows the importance of antibody in blocking OvHV-2 entry (Li et al., 2013b).  

Another approach to produce a possible vaccine against MCF is by using 

recombinant viral vaccine technology. This is either by entire or partial virus 

genome cloning in a bacterial artificial chromosome (BAC) that could allow 

propagation of OvHV-2. This has been done for AlHV-1 as the viral genome has been 

cloned and the clones produced virions in permissive cells. When these virion 

inoculated to susceptible hosts, they induced MCF which was clinically and 

pathologically indistinguishable when compared to AlHV-1 induced MCF (Dewals et 

al., 2006). 
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1.7 Aims of this study 

SA-MCF is a worldwide disease in many ruminant species, including domestic cattle, 

bison, deer and other exotic animals. OvHV-2, the most frequent causative agent of 

MCF, cannot be propagated in vitro. OvHV-2 infection in sheep has not been studied 

in a great detail and there are fundamental questions to be answered. The virus is 

latent in blood, although there is controversy about which subset, T or B cells, and 

recent evidences suggest that alveolar epithelial cells can support viral reapplication 

and shedding. A critical question in the understanding of the pathogenesis, spread 

and control of OvHV-2 is where the virus normally resides, in which cell types, and 

to what extent, local or systemic. The aim of this project therefore was to 

investigate the precise cellular location of OvHV-2 in tissues derived from sheep at 

different ages and to clarify whether the virus was latent or productive. Also, very 

little is known about whether healthy cattle can carry OvHV-2, and if so, in which 

tissues. To answer these questions we used molecular biology and 

immunohistological techniques. 

Answers to these questions will help in understanding the infection biology 

of OvHV-2 in its reservoir host (sheep), and the susceptible host (which is cows in 

this study) and this may help in the control of the disease. 
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2.1 Animals and samples 

2.1.1 Animals 

Three groups of animals were used in this study: sheep (n=28), as the reservoir host 

of OvHV-2, cattle (cows) without clinical or pathological evidence of MCF (n=50), as 

a susceptible species, and cattle with MCF (n=12). Animals were of a wide range of 

age, as from foetuses to aged adults, with no discrimination to sex. Sheep and cattle 

without MCF were randomly collected; either they were normal cows from an 

abattoir in North England, or cows that were submitted for a diagnostic post 

mortem examination to the Institute of Veterinary Pathology, Vetsuisse Faculty, 

University of Zurich, Switzerland. The MCF materials were either provided by AHVLA 

in the UK as tissue blocks, or as formain-fixed paraffin-embeded (FFPE) tissue 

sections from same the institute in Switzerland. 

2.1.2 Sample collection and processing 

In sheep and cattle without MCF, specimens were taken from a variety of organs, 

including lung, tongue, muzzle, spleen, mediastinal, mandibular and mesenteric 

lymph nodes, and blood. In bovine MCF, samples were collected from lungs, muzzle, 

tongue, lymph nodes, gastrointestinal tract, brain including rete mirabile, spleen 

and kidney. In animals at the abattoir, tissue samples were collected within about 1 

h after slaughtering. In all tissue specimens, one piece of approximately 0.5 x 0.5 x 

0.5 cm was kept in RNAlater® as a preservative (Sigma-Aldrich, Poole, UK) in a 1.5 ml 

plastic ependorf tubes, kept at 4 °C for 24 h (or frozen at -8 °C for 3 days in Zurich 

samples), then transferred to cryotubes and stored at -80 °C for future nucleic acid 

extraction. A larger piece of the same tissue was either fixed in 4% 

paraformaldehyde (PFA) pH 7.4 in 1 x PBS (used from a 5x stock of 42 g NaCl, 9.26 g 

Na2HPO4.2H2O, 2.15 g KH2PO4 dissolved in 1 L dH2O) for 24 h (abattoir samples) or 

fixed in 10% buffered formalin (post mortem samples) for 24 - 48 h. Tissue 

specimens were trimmed and routinely paraffin wax embedded by the technical 

staff of the Histology Laboratories, Veterinary Laboratory Services, School of 

Veterinary Science, University of Liverpool, or the Histology Laboratories, Institute 

of Veterinary Pathology, Vetsuisse Faculty, University of Zurich.  
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Samples in RNAlater from Zurich were sent to Liverpool frozen and then 

stored further at -80 °C. All cattle MCF cases were retrospective. In Zurich cases, 

paraffin blocks from formalin fixed tissue specimens were available from the archive 

(Table 3 in the Appendix). The UK cases were supplied by the AHVLA. From these, 

frozen tissue samples (at -20 °C) were provided and moved to -80 °C once they 

arrived at the department Infection Biology laboratories in University of Liverpool.  

2.1.3 Histological examination 

For routine histological examination, 3-5 µm tissue sections were prepared by the 

respective histology laboratories, and mounted on glass slides (Colormedia, 

Shrewsbury, UK) for routine haematoxylin and eosin staining and on PolyFrostTM 

(Poly Lysine adhesive coated White frosted Clipped Microslides; Solmedia 

Laboratory Supplies, UK) for immunohistology (IH) and RNA-ISH. 

2.2 Polymerase chain reaction for detection and quantification of OvHV-2 DNA 

To determine the amounts of OvHV-2 DNA in tissues of animals, a highly sensitive 

qPCR technique had to be established. List of primers that were used in the PCR are 

shown in Table 2-1. We tried to detect one virus genome copy per reaction. For this 

purpose, plasmid standards were used for quantification and two PCR setup were 

tried; a nested PCR trial, consisting of a first round conventional PCR and second 

round qPCR; and an optimised one-step qPCR. The second setup then was adopted 

in this study to test all samples. 

2.2.1 Establishment of standards for viral DNA quantification 

Partial sequence of the gene 12S subunit ribosomal RNA (12S hereafter) of sheep 

and cattle (Gatesy et al., 1997) contained in a plasmid vector (p12SrRNA) was 

supplied by Professor Monika Engels (Table 2.1). To make large scale preparations, 

the 12S construct (in pCR2.0 TOPO, Invitrogen, Paisley, UK), was transformed into 

chemically competent E.coli and plasmids were obtained in higher quantities (see 

2.3.1.5). The OvHV-2 gene conatined in a plasmid (pOvHV2T63), was prepared by 

cloning the PCR product, generated from amplifications using first round primers (of 
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ORF63 gene), into vector (pCR2.0 TOPO, Invitrogen) (see 2.3.1.4). After elution in 

H2O, plasmids concentrations were measured by UV spectrophotometry 

absorbency at 260 and 280 nm (QuBit® machine, Invitrogen) and the copy numbers 

then were calculated according to the following formula: 

[Number of copies/µl = (amount x [6.022x1023]) / (length x 650)] 

While (amount) is the measured concentration of plasmids in nanograms of DNA 

per 1 µl; (6.022x1023) is Avogadro's number; (length) is the base pairs calculation of 

the entire plasmid including the DNA insert of interest; (650) is average weight of 

one base pair (bp) in Daltons. 

Tenfold serial dilution of plasmids were prepared in 100 ng/µl non-

mammalian carrier DNA (salmon sperm DNA, Sigma), dilutions were from  1 - 106 

copies for the OvHVT63 plasmid, and 103 - 108 copies for the 12S plasmid. Then the 

plasmids were tested with the qPCR to check reaction sensitivity. 

 

Table 2-1. The qPCR specific primers and probes. 

Gene Primer Oligoprimer Sequence  5’      3’ Tm  Product 

Size(bp) 

OvHV-2 

ORF63 

(Tegument) 

OvHVT63 F 
first round  

GGTTTGACTGCAGAGCCTC  59 °C 260 

OvHVT63R 
first round  

GTGCGTGGAGACAAACTCC  59 °C 

OvHV-2 

ORF63 

(Tegument) 

 

OvHV63 
Probe 

FAM - GAGAACAAGCGCTCCCTACTGA - TAMRA - 106 

OvHV63 F CGTCAAGCATCTTCATCTCCAG - 

OvHV63 R AGTGACTCAGACGATACAGCACGCGACA - 

12S rRNA 12S F GCGGTGCTTTATAYCCTTCTAGAG 55 °C 76 

12S R TTAGCAAGRATTGGTGAGGTTTAT                         52 °C 

12S Probe VIC - AGCCTGTTCTATAAYCGAT - MGBNFQ            - 

The qPCR specific primers and probes were suggested by Pro. Monika Engels, Institute of Virology, 
Zurich University and also kindly provided 12S rRNA construct.; FAM: 5’ modification (6-Fluorescein 
amidite) maximum intensity 517 nm; TAMRA: 3’ modification quencher; VIC: 5’ modification: 
commercial fluorescent dye, maximum intensity 555 nm; MGBNFQ: 5’ modification (minor grove 
binder nucleotide fluorescent) quenche); Y: (Pyrimidine) C or T; R: (purine) A or G. 
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2.2.2 Nested PCR 

First round conventional PCR was performed starting with 200 ng extracted 

genomic DNA from samples and serial dilutions of both standards. The PCR reaction 

was performed in a 40 µl mix in a thin-walled 200 µl PCR tube. The reaction mix was 

prepared in a clean hood (Captair® Biohood, Erlab) treated by UV exposure for 20 

min prior and after use. The reaction mix contained target DNA, 4 µl 10x PCR buffer 

(20 mM Tris-HCl, 50 mM KCl, pH8.4; Invitrogen), 2 µl of 50 mM MgCl2, 2 µl of 2.5 

µM each dATP, dTTP, dCTP and dGTP (Invitrogen), 1.5 µl of 10 pM each primers 

(Eurofins, UK), 2 units of DNA polymerase (platinum Taq DNA polymerase, 

Invitrogen) with appropriate primers (OvHVT63 primer for virus) and appropriate 

annealing temperatures (Tm °C) for 30 amplification cycles. The thermocycler used 

was a Thermo Hybaid MBS (Thermo Electron Corporation) machine. 

Second round of the PCR was performed in a real-time PCR machine 

(Opticon Monitor 2, BioRad, UK) for quantification with TaqMan® system. A portion 

of 5 µl of first round PCR product was added to a 20 µl reaction mix. The mix  

contained, 12.5 µl TaqMan® universal PCR master mix (ABiosystem, life 

technologies, Paisley, UK), that composed of Gold® ultra-pure AmpliTaq 

DNA polymerase, Uracil‐N glycosylase (UNG), dNTPs with dUTP, ROX™ passive 

Reference dye and buffer, 0.15 µl of each of 12S primers (100 pm stock) and 0.4 µl 

12 S probe (of 10 pm stock); or  0.3 µl of OvHV63F and 0.8 µl OvHV63R primers [of 

20 pm stock] and 0.2 µl OvHV63 probe [of 10 pm stock]). The total volume was 

finished to 25 µl with ddH2O. 

The qPCR cycling parameters were according to the 7900 HT emulation 

protocol and were composed of an initial 20 min incubation at 50 °C (to activate the 

UNG to cleave any carryover PCR products from previous qPCRs), an additional 

incubation for 10 min at 95 °C for DNA denaturing and UNG inactivation, then 40 

amplification cycles of 15 sec at 95 °C and 60 sec at 60 °C. Results were analysed 

using with software system of the Opticon Monitor 3.1.32 (MJ Geneworks 

Incorporation, Bio-Rad laboratories) and the data analysed with Microsoft word 

excel. 
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2.2.3 Optimised one-step quantitative PCR 

A more optimised one step (only second round of previous PCR) qPCR was 

established for OvHV-2 quantification as following: 100 ng of native DNA sample in 

12.5 µl dH2O was added to the reaction of 25 µl, containing, 12.5 µl TaqMan® 

universal PCR master mix and 2 µl of OvHV-2 primers (0.6 µl OvHV63F and 1 µl 

OvHVT63R [stocks of 20 pm] plus 0.4 µl probe [of 10 pm stock]). Reagents for the 

12S were not changed (see 2.2.2). The qPCR cycling temperatures were same as 

previous second round, but the amplification rounds was increased to 45 cycles.  

2.3 RNA in situ hybridisation 

2.3.1 Preparation of riboprobes 

2.3.1.1 Tissue grinding and DNA extraction 

Mesenteric lymph node from an MCF-affected cow was used for generating 

riboprobes. The Qiagen® DNeasy blood and tissue DNA extraction kit (Qiagen, 

Manchester, UK) was used according to the manufacturer’s manual. Initially, 25-35 

mg of tissue was dissected to smaller fragments and placed in a 2 ml plastic tube 

with ceramic beads (Peqlab, VWR collection) containing 180 µl ATL buffer (Qiagen) 

and 20 µl proteinase K (Qiagen). Tissues processed in a bead beater machine for 10 

seconds for optimal tissue grinding, the formed foam was reduced by adding 0.5 µl 

of an antifoaming DX reagent (Qiagen). Tubes were then incubated at 56 °C 

overnight in a waterbath for optimal tissue digestion. The following day, 200 µl AL 

buffer (Qiagen) was added, mixed by vortex, and further incubated at 56 °C for 10 

min. Then, 200 µl of molecular grade absolute ethanol (Sigma) was added and 

mixed. The mixture was transferred into a spin column tube (Qiagen) and 

centrifuged at 6000 x g for 1 min and the flow through were discarded. Then 500 µl 

AW1 buffer (Qiagen) was added, spun at 6000 x g for 1 min, flow through discarded, 

another 500 µl AW2 buffer (Qiagen) was added, centrifuged at 20000 x g for 3 min 

and the flow through was discarded. The column then was placed in a new 1.5 ml 

Eppendorf tube and eluted with 200 µl dH2O for 1 min incubation then 6000 x g 

spinning for 1 min. The spin column was discarded and the flow through is stored in 

-20 °C. Before storing, elutes DNA were measured by UV spectrophotometry 
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absorbency at 260 and 280 nm (QuBit® machine, Invitrogen) using DNA assay kit 

(Quant-iT™ dsDNA BR Assay Kit, Invitrogen). 

2.3.1.2. Conventional PCR  

With specific primers for the two genes in Table 2-2, a PCR reaction was performed 

using same parameters as in (2.2.2, first round PCR) with appropriate primers and 

annealing temperatures (Table 2-2). Thermal conditions were as following: an initial 

denaturation at 94 °C, then 40 of 94 °C for 30 sec, annealing step of 62 °C, 64 °C or 

55 °C for 30 sec and an extension step at 72 °C for 45 sec, finished by a final 

extension at 72 °C for 5 min. 

 
 
Table 2-2. Primers used in PCR to make specific riboprobes for OvHV-2 mRNAs. 
 

Primer Gene Oligoprimer Sequence  5’      3’ 
Annealing 

temperature 

Amplicon 

size (bp) 

N2.5L Ov2.5 

cDNA 

ATGGCATTGGCCCACCAACTAC (22 nt) 62 °C 550 

N2.5R CTTGACCCCAAAGTAGCTTTCC  (22 nt) 

OvORF65F ORF65 

DNA 

TTGGTGGGTGGACTATCCACTGC  (23 nt) 64 °C 521 

OvORF65R GCAGCTGCAAGTTCAGGTCCTC  (22 nt) 

 

2.3.1.3 Agarose gel electrophoresis 

Portions of 10 µl from the PCR products were mixed 3:1 with loading buffer (50 % 

v/v glycerol, 100 mM Tris-HCl pH 7.4, 10 mM EDTA, 0.02 % w/v orange G). Then 

were electrophoresed through 0.8 % w/v agarose gels (Invitrogen) containing 

fluorescent nucleic acid gel stain 1:1000 v/v Gel Red (VWR International, 

Lutterworth, UK) in 1x TAE buffer (40 mM Tris-base, 20 mM glacial acetic acid, 1 mM 

EDTA). Gels were places horizontally in plastic tanks (BioRad), filled with 1x TAE 

buffer and ran at 110 Volts for appropriate time. Gels were then documented under 

ultraviolet light (Ultraviolet Transilluminator, BioRad), images taken and target DNA 

bands sizes compared with 1 kb or 100 bp DNA ladders (Invitrogen). 
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2.3.1.4 Plasmid cloning, transformation and bacterial culture 

The PCR products were cloned into plasmids (pCR2.0 TOPO, Invitrogen) using the 

(TOPO TA cloning kit, Invitrogen) following manufacturer’s manual. A cloning mix of 

6 µl was prepared containing 4 µl of Taq amplified fresh PCR product mixed with 1 

µl supplied salt solution (1.2 M NaCl, 0.06 M MgCl2) and 1 µl plasmid (10ng/µl 

linearized plasmid, 50 glycerol, 50 mM Tris, 1 mM DTT, 0.1% 100X triton, 100 µg/ml 

BSA, phenol red). The mixture was incubated for 5 min at RT and then kept on ice. 

A volume of 2 µl of the cloning reaction was mixed gently with chemically 

competent Escherichia coli (Mach1™ One Shot®, Invitrogen) in a vial, kept on ice for 

30 min, heat shocked for 30 sec at 42 °C in a water bath then moved immediately 

on ice for 5 min. Then 250 µl of supplied S.O.C medium (Invitrogen) was added to 

the vial of bacteria, capped tightly and incubated horizontally at 37 °C in an orbital 

shaker at 200 rpm for 1 h.  

After incubation, 30 -50 µl of the cells was spread on surface of Luria-Bretani 

(LB 1 % w/v tryptone, 0.5 % w/v yeast extract, 1 % w/v NaCl) with 50 μl/ml 

ampicillin (Sigm) prewarmed and pre-spread agar plate with X-Gal (2 mg X-gal in 50 

µl LB, Promega, USA) for white/blue colony screening. Plates were then incubated 

overnight at 37 °C. On the following day individual white colonies were picked and 

cultured in 5 ml LB broth containing 50 μl/ml ampicillin (minipreparation) then 

incubated 16 -18 h at 37 °C in universal tubes in orbital shaker at 200 rpm. 

2.3.1.5 Plasmid purification (minipreparation and maxipreparation)  

Plasmid purified from minipreparation (miniprep hereafter) of transformed E.coli 

using Qiagen plasmid purification kit (Miniprep Kit, Qiagen) following the 

manufacturer’s manual. From the 5 ml cultured bacteria, 4 ml was pelleted by 

spinning at 6000 x g for 15 min at 4 °C. Supernatant was discarded and the bacterial 

pellet was homogenised in 300 µl resuspension buffer P1 (50 mM Tris.Cl, 10 mM 

EDTA, 100 µg/ml RNAse A), then 300 µl lysis buffer P2 (200mM NaOH, 0.1 w/v SDS) 

was added, mixed by vortex and incubated for 5 min at RT. Another 300 µl of 

neutralization buffer P3 (3 M potassium acetate) was added and the mix was 
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incubated on ice for 5 min and centrifuged at 2000 x g for 10 min at 4 °C. The 

supernatant containing plasmids was pipetted into an equilibrated Qiagen tip 20 

(Qiagen) by applying 1 ml equilibration buffer QBT (750 mM NaCl, 50 mM MOPS, 

15% isopropanol v/v, 0.15% Triton X-100 v/v) and empting by gravity flow. The tip 

then was washed twice with 2 ml QC buffer (1.0 M NaCl, 50 mM MOPS, 15% 

isopropanol v/v) by passing by gravity flow. The DNA was eluted with 0.8 ml QF 

buffer (1.25 M NaCl, 50 mM Tris-Cl, 15% isopropanol v/v), which was later 

precipitated by mixing with 0.6 ml isopropanol (Sigma) and spinning at 15000 x g for 

30 min at 4 °C. The supernatant was carefully discarded and the pellet was further 

washed with 70% molecular grade ethanol (Sigma) and spun at 1000 x g for 10 min. 

The ethanol was decanted and the DNA pellet was air dried and resuspended in 

dH2O. The DNA concentrations were measured by Qubit spectrophotometry 

machine using (Invitrogen) BR DNA assay kit solutions (Invitrogen). 

 For a larger scale bacterial culture to produce larger amounts of plasmid at 

maxipreparation (maxiprep hereafter), the Qiagen plasmid maxikit (Qiagen) was 

used according to manufacturer’s manual. About 0.1 ml bacteria from previously 

produced minipreps with the right insert was cultured in 400 ml LB broth containing 

50 μl/ml ampicillin in a 2 L conical flask. The flask was placed in shaker at 200 rpm 

and incubated overnight at 37 °C.  On the following day, bacteria were centrifuged 

at 6000 x g for 15 min at 4 °C. The cell pellet was resuspended with 10 ml buffer P1 

(50 mM Tris.Cl, 10 mM EDTA, 100 µg/ml RNAse A), then the bacteria were lysed by 

adding 10 ml buffer P2 (200mM NaOH, 0.1 w/v SDS) and incubation for 5 min at RT. 

This followed by neutralizing with 10 ml buffer P3 (3 M potassium acetate) and 

incubation on ice for another 5 min. The mix was spun at 2000 x g for 10 min at 4 °C 

to reduce the air friction heat. The supernatant containing plasmids was decanted 

into Qiagen tip 500 (Qiagen) which was the pre-equilibrated by washing 10 ml 

equilibration buffer QBT (750 mM NaCl, 50 mM MOPS, 15% isopropanol v/v, 0.15% 

Triton X-100 v/v) that was allowed to drain by gravity flow. After adding plasmids, 

the tips were then washed with 2 x 30 ml QC buffer (1.0 M NaCl, 50 mM MOPS, 15% 

isopropanol v/v) and let to pass through by gravity flow. The DNA was then eluted 

with 15 ml QF buffer (1.25 M NaCl, 50 mM Tris-Cl, 15% isopropanol v/v). The eluted 
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DNA was precipitated with 10 ml isopropanol (Sigma) and pelleted by centrifugation 

at 5000 x g for 60 min at 4 °C. Pellets were further washed with 5 ml 70% molecular 

grade ethanol (Sigma), spun at 15000 x g for 10 min, air dried and resuspended in 

dH2O. The DNA concentrations was measured same way as with minipreps. 

2.3.1.6 DNA sequencing 

The pCR2.0 TOPO plasmids containing the PCR product inserts were sequenced at 

Source Bioscience (Rochdale, UK) using universal primers (M13 R and M13F) to 

sequence both sense and antisence DNA strands. Sequence data were compared to 

other available sequences on Genbank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

using BLAST (Basic Local Alignment Search Tool) programme. 

2.3.1.7 Restriction digestion for preparation of plasmid template 

To prepare DNA templates, plasmids had to be linearized using appropriate 

restriction enzymes to produce right DNA cut as shown in Table 2-3. An amount of 

10 µg of DNA was mixed with 10 µl of (20 unit/µl) restriction enzyme with 10 µl of 

its optimal buffer, 1 of 10x filtered bovine serum albumin (BSA), the mixture volume 

then finished to 100 µl with nuclease free H2O and incubated for 2 hours at 37 °C. A 

volume of 5 µl of the digested DNA and a 100 ng of uncut plasmid beside of 1Kb 

DNA ladder were electrophoresed on an agarose gel (2.3.1.3) to compare sizes and 

speed of migration (supercoiled uncut plasmids electrophoresed slower through the 

agarose gel). Digested DNA was then purified using Phenol:Chloroform:Isoamyl 

alcohol (25:24:1), Chloroform:Isoamyl alcohol (24:1) and ethanol (Sigma), 

resuspended in 50 μl RNAse-free water and stored at -20  °C. 

 

Table 2-3. List of genes, plasmids and restriction enzymes used in pre-preparation 
for probe synthesis.  

OvHV-2 
Gene 

Plasmid 
Preparing  sense probe 
(enzyme; buffer) 

Preparing anti-sense probe 
(enzyme; buffer) 

Ov2.5 * 
pCR2.0 
TOPO 

XhoI; buffer 4 
(New England Biolabs) 

BamHI, buffer 3 
(New England Biolabs) 

ORF65 
pCR2.0 
TOPO 
 

XhoI; buffer 4 
(New England Biolabs) 
 

BamHI, buffer 3 
(New England Biolabs) 

*Ov2.5 cDNA construct was provided by Professor  James Stewart. 
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2.3.1.8 in vitro transcription of DIG-labelled RNA probes 

Appropriately linearized DNA template was used for in vitro riboprobe synthesis 

using DIG RNA labelling kit (Roche, USA) to produce Dig-labelled RNA probes as per 

manufacturer’s instruction. A volume of 1 µg of purified template DNA was made 

up to 13 µl with RNAse-free dH2O in an RNAse-free reaction tube and placed on ice. 

The following reagents were then added: 2 μl 10x NTP labelling mixture, 2 μl 10x 

transcription buffer, 1 μl protector RNase inhibitor and 2 μl on any of appropriate 

RNA polymerase. To generate anti-sense probe, T7 polymerase was used and for 

the sense probe T3 polymerase was used. The mixes were incubated at 37 °C for 2 h 

to produce labelled RNA. The template DNA was then degraded by incubation with 

2 μl DNase I at 37 °C for 15 min and the reaction was stopped by adding 2 μl 0.2M 

EDTA. Carrier yeast tRNA (1 μl of 1 mg/ml) was added to the DNase digested 

probes, precipitated by ethanol and then resuspended in 50 μl RNase-free water. 

2.3.1.9 Dot Blot analysis of generated probes 

To check the quality of generated probes, they were tested by dot blot 

hybridisation. Ten-fold serial dilutions of DIG-labelled RNA probe was prepared in 

10 ng/µl baker’s yeast tRNA (Roche) and 5 µl portions were spotted on a Hybond N+ 

membrane (Amersham Biosciences, UK, Buckinghamshire) of delutions starting 

from 10-5 to 10-1.  After drying, the probes were fixed to the membrane by a UV 

cross-linker (Stratagene). The membrane was then washed in a tray with 100 ml 

washing buffer (0.1 M maleic acid, 0.15 M NaCl pH 7.5, 0.3 % v/v Tween 20) on a 

shaking platform for 2 min at RT. Then incubated with blocking solution (10 x 

blocking solution [Sigma] in 100 ml Maleic acid buffer [0.1 M maleic acid, 0.15 M 

NaCl, pH 7.5]) for 30 min n shaker. Later, the membrane was incubated with 20 ml 

labelled anti-DIG antibody solution (anti-Digoxigenin-AP FAb fragments [Roche] 

diluted 1:5000 in blocking solution) for 30 min. The membrane was then washed 

twice with washing buffer for 15 min and equilibrated in detection buffer (0.1 M 

Tris-HCl, 0.1 M NaCl, pH 9.5) for 3 min. One tablet of the color substrate (Sigma Fast 

BCIP/NBT [5-bromo-4-chloro-3-indolyl-phosphate/4-nitro blue tetrazolium 

chloride]) was dissolved in 10 ml RNAse-free water, added to the tray and the 

membrane placed in the dark, periodically observed for dot color development. 
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Approximately after 1 h the reaction was stopped by washing the membrane in TE 

buffer for 5 min. 

2.3.1.10 Slides preparation, proteolysis and acetylation 

Tissue sections were first deparaffinised by dipping twice in xylene (VWR chemicals) 

for 5 min in a glass tanks, rehydrated through twice in 100% ethanol, once in each 

96%, and 70% ethanol for 5 min and in DEPC-treated water (diethyl pyrocarbonate, 

Sigma) in a glass tank for 5 min. They were then placed in Hellendahl glass jars 

(Solmedia Lab Supplies) and washed with 1x PBS for 5 min at RT.  

 To perform proteolysis, sections were incubated in 0.2 N HCl for 30 min at 

RT, then twice in 2x sodium saline citrate (SSC, MP Biomedicals, UK) with 5mM 

EDTA for 30 min at 50°C, followed by digestion in 60 ml proteinase K solution (150 

µg Proteinase K recombinant PCR grade [Roche] with 1 ml 1 M Tris pH 8.0, 1 ml 0.1 

M CaCl2 in 60 ml of DECP-treated H2O) for 15 min at 37°C. A further fixation step 

followed, through washing in 60 ml 0.2% glycine PBS for 5 min at RT and 

subsequent 4 min washing in 4 % PFA at RT, a 2 min wash in 1x PBS and a 15 min 

wash in 60 ml of 5 mM MgCl2 in 1X PBS. 

Acetylation was performed by incubation with 0.25 % v/v acetanhydride in 

0.1 M triethanolamine pH 7.5 (VWR chemicals) for 10 min at RT, followed by three 

washes in 1x PBS twice for 1 min and once for 15 min. 

2.3.2. Hybridisation of riboprobes 

2.3.2.1 Prehybridisation, hybridisation and post-hybridisation 

Sections were prepared for hybridisation by incubating the slides in the jar for 1 h at 

52°C in 50 ml prehybridisation buffer (0.1 mg/ml salmon sperm DNA [Sigma] and 

0.25 mg/ml yeast tRNA [Roche] in a prehybridisation stock mix of 30% v/v 20X SSC, 

45% v/v 100% deionised formamide [Ambion], 10% v/v 50x Denhardt’s solution 

[Invitrogen] with 14% DEPC-treated dH20).  

For hybridisation, slides were removed from the jars, placed on metal trays 

and covered with 40-50 µl hybridisation buffer composed of 250 µg/ml tRNA, 250 

µg/ml ssDNA [salmon sperm DNA], 6.2 mg/ml dextransulfate solution, 2-4 µl 

riboprobes) added to a 700µl stock of hybridisation mix (60% v/v 100% deionised 
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formamide, 32% of [30 mM EDTA pH 8.0 and 30 mM piperazin-N,N’bis 2-

ethanesulfate-acid-PIPES, pH 7.0, Sigma], 0.9 M NaCl, 6x Denhardt’s solution, 0.01 % 

v/v Triton X-100, and 20,000 U heparin, Sigma). The hybridisation mix contained the 

DIG-labelled riboprobes at a dilution of 1:100 of each Ov2.5 or ORF65 genes. Slides 

were covered with the hydrophobic face of gel-bond film (Dako, Glostrup, 

Denmark), boundaries glued with Fix-O-Gum gel (Marabu, Tamm, Germany) and 

incubated at 52°C in a moist box overnight. 

On the following day, the gel-bond films were removed and the slides 

returned to the Hellendahl jars for post-hybridisation washes with SSC. Washes 

were twice at 42 °C for 15 min in 6x SSC with 45% v/v formamide (Analar Normapur, 

VWR chemical), followed by two washes with 2x SSC for 5 min at RT and two final 

washes with 0.2x SSC at 50 °C for 5 min. 

2.3.2.2 Detection of hybridized probes 

After washing with buffer 1 (0.1 M Tris, 0.1 M NaCl, pH 7.5) for 1 min and 30 min 

with blocking solution (53 ml buffer 1 with 1.2 ml sterile neutral sheep serum [NSS, 

Sigma] and 1.8 ml 10X Triton). Slides were removed from the jars, lined at both 

ends of the sections with speial water-repellent pen (Dako), and placed into a moist 

metal chamber. Sections were covered with 0.4 ml of antibody solution (30 µl anti-

digoxigenin antibody AP conjugate Fab fragments [Sigma], 62 µl NSS, 188 µl 10x 

Triton and 6 ml buffer I) and incubated for 2 h at 25 ᵒC. Slides were then replaced 

into the glass jars and washed twice for 15 min with buffer 1, and once for 2 min 

with freshly prepared buffer 3 (0.1 M Tris, 0.1 M NaCl and 0.05 M  MgCl2.6H20, pH 

9.5). Finally, slides were incubated in the dark for 3-8 h (depending on the speed of 

the staining reaction) in 60 ml of staining solution (three tablet of BCIP/NBT and 30 

mg levamisole [Sigma] in 60 ml buffer 3). Slides were periodically examined under 

the light microscope to check the development of the signals (dark blue colour in 

cell cytoplasm) and to stop at the appropriate time point for each individual slide. 

This was by checking positive control sections (lymph node of mouse for MHV-68 

viral tRNA probe of previously validated ISH, and lung sections from MCF affected 

cattle 12L-0200, see Table 3 in Appendix for the later). The reaction was stopped by 

moving the slides into a glass jar with buffer 4 (10 mM Tris with 1mM EDTA) in 
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which they were incubated for 10 min. Slides were then kept in distilled water until 

counterstaining or subsequent immunohistological staining (see 2.3.5). To perform 

RNA-ISH negative controls, either sense probes were used in sheep, cattle and MCF 

affected animals tissue section alongside antisense probes, or the antisense probes 

was tested on non-related species tissue sections such as canine (dog). 

Counterstaining was performed by dipping the slides in haematoxylin 

(Papanicolaou’s solution 1b Haematoxylin solution S, Merck Millipore, USA) for 10 

sec, followed by washing in running tap water for 5 min. Slides were then covered 

with glass coverslips using glycer-gel mounting medium (Dako). They were 

subsequently stored in the dark to avoid fading of the signals.  

2.4 Immunohistology 

The immunohistology (IH) was employed for the demonstration of OvHV-2 antigen 

in situ, and for the demonstration of T cells and B cells in selected lymph nodes, 

spleens and lungs of sheep and cattle, and in selected MCF lesions (see Tables 1,2 

and 3 in the Appendix). Information on the antibodies and references for their use 

in bovine tissues are provided in Table 2-4. The IH was performed by the technical 

staff of the Histology Laboratories, Veterinary Laboratory Services, School of 

Veterinary Science, University of Liverpool (CD3, Pax-5), or the Histology 

Laboratories, Institute of Veterinary Pathology, Vetsuisse Faculty, University of 

Zurich (OvHV-2 Ov8). 

 
 
Table 2-4. List of antigens and antibodies used for immunohistology. 

Antigen Antibodies Specificity Sources References 

Ov8 Rabbit anti-OvHV-2 
Ov8 

OvHV-2 
glycoprotein 

Homemade, Professor 
James Stewart 
 

Unpublished data 

CD3 Rabbit anti-human 
CD3 

Pan T-cell 
marker 

DAKO, Glostrup, 
Denmark (A045229) 
 

(Rosbottom et al., 
2008) 

Pax5 Mouse anti-human 
Pax-5 clone 24/Pax-
5 

Pan B-cell 
marker 
 

BD Transduction 
Laboratories, 
Kentucky, USA 
(610862) 

(Agostinelli et al., 
2010) 

CD20 Mouse anti-human  
clone L26 

Pan B-cell 
marker 

DAKO, Glostrup, 
Denmark  

(Kämmerer et al., 

2001) 
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 2.4.1 Immunohistological staining for CD3 (T-cells) 

The ABC technique was performed as previously described (Kipar et al., 1998). First, 

slides were dewaxed in xylene (VWR chemicals) twice for 5 min, rehydrated for 2 

min each in 100% and 96% ethanol. Then immersed in methanol with 0.5% v/v 

(Perhydrol 30% H202 P-a, Fisher scientific) for 30 min at RT to inactivate endogenous 

peroxidase. Washed in Tris-buffered saline tween pH 7.6 (TBST; 100 ml of 10x Tris 

stock, 7.2 g NaCl, 500 μl Tween 20; finished with 900 ml dH2O) for 5 min. For 

antigen retrieval, slides were incubated in 10 µM citrate buffer (0.9 % v/v 0.1 M 

citric acid, 1 % v/v 0.1M sodium acetate pH 6.0) for 25-30 min at 97 °C in screw cap 

coplin jars in a water bath. After cooling, slides were placed with cover plates in 

Sequenza racks (Thermo Shandon) and washed in TBST for 5 min, followed by 

blocking of non-specific antiserum binding by incubation in goat serum ([Sigma] 

diluted 1:10 in TBST) for 10 min at RT. Slides were then incubated with polyclonal 

rabbit anti-CD3 (1:10 in 20% swine serum in TBST) overnight (15-18 h) at 4°C, then 

washed three times for 5 min in TBST. This was followed by a 30 min incubation at 

RT with biotinylated goat anti-rabbit IgG (Vector Laboratories Ltd, Peterborough, 

UK; 1:100 in TBST) and a 5 min wash in TBST. Followed by a 30 min incubation at RT 

with avidin biotin complex (Vectastain ABC-Kit, Vector Laboratories Ltd;: 0.9 μl A + 

0.9 μl B to 100 μl TBST). Slides were then washed with TBST, removed from the 

cover plates and incubated for 10 min at RT in 0.1 M diaminobenzidine 

tetrahydrochloride (DAB) (0.1 M imidazole, 0.42 M HCl 2:3 v/v pH 7 [Fluka Chemie 

AG] with 0.01% H2O2 [Perhydrol 30% H2O2 P-a, Fisher Scientific]). This was followed 

by three washes in TBST for 5 min each and a final wash with distilled water for 5 

min. The slides were counter stained with Papanicolaou’s haematoxylin (Merck) for 

1 min, blued in running tap water for 5 min, dehydrated in graded ethanol 96% and 

100% for 1 min and 5 min respectively, cleared in xylene three times for 2 min, and 

mounted with cover slips with Distyrene Plasticizer Xylene (DPX; BDH brand, VWR 

chemicals, Lutterworth, UK). 

2.4.2 Immunohistological staining for Pax5 (B-cells) 

The peroxidase anti-peroxidase (PAP) technique was used as previously described 

(Kipar et al., 1998). Deparaffinising and blocking of endogenous peroxidise was 
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performed as described for CD3. The slides were then washed for 5 min in TBST. 

Antigen retrieval was achieved by protease treatment. The sections were washed in 

1x PBS (pH 7.2) for 5 min at 37 °C, then for 5 min in 0.05% protease (bacterial 

protease type XXIV, Sigma, UK) in pre-warmed PBS at 37 °C, followed by three 

washes for 5 min each in ice-cold TBST. The slides were then placed with 

coverplates in Sequenza racks (Thermo Shandon) and washed for 5 min with TBST. 

Followed by blocking of non-specific binding of antiserum by incubation in 10% rat 

serum (ABD Serotec, Kidlington, UK) in TBST for 10 min at RT. The slides were then 

incubated overnight (15-18 h) at 4 °C with monoclonal mouse anti-human Pax5 

(1:40 in TBST). After washing in TBST for 5 min, slides were incubated for 30 min at 

RT in rat anti-mouse IgG (1:100 in TBST, H&L, Jackson ImmunoResearch, Suffolk, 

UK), washed for 5 min wash in TBST and incubated for 30 min at RT with PAP mouse 

(1:500 in TBST; Jackson ImmunoResearch). Subsequently, the slides were treated as 

described for the immunohistological staining for CD3 (see 2.3.1). 

2.4.3 Immunohistological staining for CD20 (B-cells) 

A horseradish peroxidase staining (Envision, DAKO) was used. The staining process 

took place in a DAKO Autostainer. After routine deparaffinisation, slides were 

incubated for 1 h at RT with the primary antibody diluted 1:1,000 in DAKO 

ChemiMateTM Antibody Diluent (Dako). After washing with TBST, endogenous 

peroxidase was blocked by incubation for 10 min at RT with Dako REALTM 

peroxidase Blocking Solution (Dako). Slides were then subjected to the secondary 

antibody solution (EnVision Rabbit System HRP; Dako), followed by routine 

visualization with DAB and counterstaining with haemalaun (1:20) for 

approximately 2 sec. This staining was only applied on tissues of animals with MCF. 

2.2.4 Immunohistological staining for OvHV-2 Ov8 antigen 

The labeled streptavidin biotin (LSAB) method was followed, a biotinylated 

secondary antibody and a horseradish-streptavidin solution, was used. After routine 

deparaffinisation, antigen retrieval was performed by incubation of the slides in 

EDTA buffer pH 9.0 for 20 in at 98 °C. Endogenous peroxidase was blocked by 

incubation for 10 min at RT with Dako REALTM peroxidase Blocking Solution (Dako). 
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The staining process took place in a Dako Autostainer. The slides were incubated for 

1 h at RT with the primary antibody diluted 1:1,000 in DAKO ChemiMateTM Antibody 

Diluent (Dako), and were then subjected to the secondary antibody solution 

(biotinylated goat anti-mouse and anti-rabbit immunoglobulins; Dako REALTM Link). 

Followed by streptavidin conjugated to horseradish peroxidase (REALTM Streptavidin 

Peroxidase) which were both provided in the ready-to-use DAKO RealTM, 

Peroxidase/ARC rabbit/mouse kit for use with Dako automated immunostaining 

instruments (Dako). Slides were washed with TBST between each incubation step. 

This was followed by routine visualization with DAB and counter staining with 

haemalaun (1:20) for approximately 2 sec. 

2.4.5 Combined RNA-ISH and immunohistology  

On selected cases and tissues (see Tables 1, 2 in the Appendix), RNA-ISH for the 

demonstration of viral transcripts and immunohistology for T and B cells (CD3, PAX-

5) were combined to demonstrate in which cells OvHV-2 replicates. For this 

purpose, section underwent the full RNA-ISH protocol apart from the 

counterstaining, at which point (see in 2.3.2.2) the sections were subjected to the 

immunohistology staining (see in 2.4.1 and 2.4.2). 
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3.1 Detection of OvHV-2 in sheep 

3.1.1 Establishment of the one-step qPCR assay 

The one-step qPCR assay was optimised to a sensitivity level that can detect one 

viral copy per reaction. Absolute quantification was achieved by using a reference 

plasmid containing OvHV-2 target DNA (pOvHV2T63). Amplification of the OvHV-2 

standard plasmid produced a linear deviation curve when tested on tenfold serial 

dilution from 1 - 105 copies of pOvHVT63 per qPCR reaction (Figure 3-1 A,B). To 

normalise the reactions and to take account of individual variations in DNA content 

and amplification efficiency, a control reaction was performed using the cellular 

gene that encodes 12S ribosomal RNA using the reference plasmid containing the 

target DNA (p12SrRNA). The same procedure as for pOvHV2T63 was followed for 

the internal control plasmid, but the tenfold serial dilution were between 103 and 

109 copies per qPCR reaction (Figure3-1 C,D). 

After validation of the qPCR, the assay was applied for the testing of samples 

from the three animal groups; sheep, cows without MCF and cattle with MCF. 

Detailed information for each group is given in the following sections of this 

chapter. 
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A. pOvHV2T63 fluorescent curves.              B. pOvHV2T63 standards line. 
 

     
 
 
C. p12SrRNA fluorescent curves.            D. p12SrRNA standards line. 

 

     

 
Figure 3-1. An example of amplification of standards at 10-fold serial dilutions. 
A. Amplification fluorescent curves of the standard of plasmid pOvHV2T63. B. pOvHV-2 standard line 
equation, r2 value on the top. C. Amplification fluorescent curves of the standard of plasmid 
p12SrRNA. D. p12SrRNA standard line equation, r2 value on the top.  
Y axis represents fluorescence measurements. X axis represents the 45 cycle numbers. 
 

  

105 104   103 102 10    1  

109      108 07 106    105 104   103  
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3.1.2 Quantification of OvHV-2 DNA loads in sheep 

A total of 28 sheep were tested for the presence and amount of OvHV-2 DNA in a 

range of samples, including a variety of organs (in the majority at least lung, 

mediastinal lymph nodes and spleen), peripheral blood leukocytes (PBL) and/or 

nasopharyngeal swabs (Table 3-1; for detailed information of each individual 

animal, see Appendix, Table 1a and 1b). Of the 17 sheep of which organs were 

tested, 15 (88 %) tested positive for OvHV-2 DNA. All five 8-month-old sheep (100 

%), of which only the PBL were tested, were found to be viraemic, i.e. PCR-positive, 

with viral loads of 2-9 copies per 100 ng genomic DNA in the PBL. Of the six sheep, 

for which only nasopharyngeal swabs were examined, three (50 %) were positive, 

with 6, 14 and 297 virus copies, respectively. In tissues, viral DNA loads were highly 

variable, not only between the different tissues within an animal, but also between 

individual animals and between animals at similar ages, and in general viral loads 

were relatively low (generally <300). Young lambs (neonates to less than five weeks 

old) were negative. By the age of seven months, animals were positive, but with 

very low virus titres (usually below 10 copies in organs), overall ranging between 1 - 

215 copies in positive organs. Among those tested at eight months of age and over, 

only one sheep had high copy numbers (case no. 13L-2592C, eight-month-old), with 

4200, 3200, 3300 virus copies in lung, mediastinal lymph node and spleen, 

respectively. In animals aged over ten months, the viral loads were still variable 

among organs, but had risen to above 100 copies in the most frequently tested 

samples, such as lung, lymph node, spleen, muzzle, tongue and nasopharynx. 

Notably, in the two older sheep (3.5 and 14 years) the viral loads were very low 

again.  

Generally, among most tested organs, the most frequently positive ones 

were spleen (91 %), muzzle (85 %), followed by both lung and mediastinal lymph 

node (81 %) (Table 3-2). Overall, in all samples, the peak viral load (4200 copies) was 

found in the lungs and the relatively the lowest load was in the nasopharynx. 
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Table 3-1. Results of the OvHV-2 PCR and viral DNA loads in organs from sheep.  

Abbreviations: mo: months; we: weeks; y: years; L: lung; Ln: mediastinal lymph node; S: spleen; M: 
muzzle; Na: nasopharynx; To: tongue; Tu: Turbinate; U: uterus; Th: thymus; Pl: placenta; Tes: testis; 

Ep: epididymis; ‘’-‘’: negative; empty boxes: not examined. 
 
  

Case 
number/ age 

R
e

su
lt 

Organs 

L Ln S M To Na Tu U Th Pl Other 

S13-1453 
14 y, Mother 

+  6  -  -    2  

S13-1453 
neonate 

- -  -      - -  

S13-1353 
5 we 

- - - -  -  -  -   

S14-0017 
3 mo 

+ - - - 1   - -    

13L-2593  
7 mo 

+ 4 2    215      

13L-2595 
7 mo 

+ 2 5    2      

13L-2594 
7 mo 

+ 1 45    22      

13L-2592B 
8 mo 

+ 18 24 2         

13L-2592C 
8 mo 

+ 4200 3200 3300         

13L-2592A 
8 mo 

+ 1 -          

13L-4220 A-C 
10 mo 

+ 143 229 276 648 97       

13L-4220D,E 
10 mo 

+ 23 61 667  36       

13L-4218A-C 
11 mo 

+ 15 27 9 56  4     Tes 
23 

13L-4218 D,E 
11 mo 

+ 57 344 108 290 222       

13L-4219A-C 
11 mo 

+ 131 556 24 5 345       

13L-4219D-F 
11 mo 

+ 136 122 5 251 2      Ep 
12 

S13-1516 
3.5 year 

+ 61 2 1 - 1  - -    
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Table 3-2. Number of OvHV-2-PCR-positive samples and DNA loads in organs, PBL [2] 
and nasopharyngeal swabs in sheep. 
 

Sample 
Samples

 a
 OvHV-2 DNA copies 

Total Pos Min 
b
 Max 

c
 Med 

e
 

Lung 16 13 (81%) 1 4200 45 

Mediastinal LN 
[1]

 16 13 (81%) 2 3200 91 

Spleen 12 11 (91%) 1 3300 24 

muzzle 8 5 (63%) 1 667 160 

Tongue 7 6 (85%) 1 648 154 

Nasopharynx 5 4 (80%) 2 215 13 

Turbinate 3 0  
Uterus 2 0 

Thymus 2 0 

Placenta 1 1 2   

Testis 1 1 23   

Epididymis 1 1 12   

PBL 
[2]

 5 5 (100%) 5 9 6 

Swabs 
[3]

 6 3 (50 %) 6 297 14 

a. Samples tested, total is the number of all samples taken for that particular type of specimen. Pos: 
is number and percentage of samples tested positive. Table arranged according to the most 
frequently tested tissues. b. Minimum number of virus copies detected in the particular specimens. 
c. Maximum number of virus copies detected in the particular specimens. d. Median number of the 
virus copies. [1] LN refers to lymph node. [2] PBL: peripheral blood leukocytes. [3] nasopharyngeal 
swabs. [2 and 3] are the sole samples taken from those sheep. 
 
 
 

3.1.3 Identification of cells harbouring OvHV-2 mRNA and antigen in sheep 

The generated riboprobes (Ov2.5 and ORF65) were controlled for their functionality 

and reliability prior to use with test animal samples. For this purpose, riboprobes 

underwent dot blot analysis and yielded signal intensities according to their 

concentration. For the test controls, the antisense probes of Ov2.5 and ORF65 were 

tested on tissues of cattle with MCF as a positive control and on tissues from dog as 

a negative control. In the cow MCF case, ISH signals were detected in infected cells 

(Figure 3-24 C-E), while in dog tissues there were not any ISH signal (Figure 3-12 

E,F,). The sense probes of both genes were also tested on tissue sections of the 

same the cow with MCF, but no ISH signal was detected (Figure 3-30 A,B). 

A selection of tissues were tested by RNA-ISH and immunohistology, to 

demonstrate viral mRNA and antigen, respectively, in an attempt to identify the 

cells that harbour the virus. RNA-ISH probes were specific for the Ov2.5 and ORF65 
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genes. The former should pick up both latently and productively infected cells and 

the latter productively infected cells. The anti-viral antibody was specific for the 

OvHV-2 Ov8 glycoprotein and should label productively-infected cells. In addition, 

double staining (RNA-ISH for viral transcripts in combination with immunohistology 

to highlight B cells [Pax5-positive] and T cells [CD3-positive]) was performed on 

lung, mediastinal lymph node and spleen of selected cases to identify the 

lymphocyte subtype positive for the viral transcript. The results for each case are 

provided in detail in the Appendix, Table 1a. The presence of viral transcripts was 

represented by dark blue cytoplasmic signals (Figure 3-2). This was seen with a 

similar intensity and cell range for both antisense probes (Ov2.5 and ORF65) (Figure 

3-2 A,B).  

Of the sheep tested by qPCR, samples from a total of 19 sheep were tested 

by RNA-ISH (organs and PBL), ranging in age from neonate lamb to 14 years. The 

neonate lamb tested negative by both qPCR and RNA-ISH, but only had a faint 

reaction for Ov8 antigen in spleen possibly in stromal fibroblasts, otherwise 

negative in other organs. The five-week-old lamb was PCR-negative and only 

positive in the RNA-ISH with Ov2.5 probe in the tongue (weak signals in sporadic 

cells in epithelium) (Figure 3-5 A). All other sheep were positive by qPCR, with 

variable virus copy numbers, and by RNA-ISH, and, when tested, in more than one 

organ. An attempt was made to find a relation between qPCR, RNA-ISH and 

immunohistology results. However, in general, despite the high variability of virus 

loads, the RNA-ISH signals were rather consistent in their intensity, but sometimes 

varied in the amount of positive cells. In contrast, the number of viral antigen-

positive cells was positively correlated with the virus load. In terms of correlation 

between the RNA-ISH and viral IH, the viral IH was always positive where the RNA-

ISH testes was positive in those animals tested, except for a 14-year-old sheep (S13-

1453), where two of its organs (muzzle and nasopharynx) were only positive for 

viral antigen. In addition, the cell types positive by RNA-ISH and viral IH were similar 

and sharing certain cell types, however the viral IH, was most frequently detected in 

specific cell types. The results, cell types and correlation between the qPCR and 

RNA-ISH and viral IH are shown in Table 3-3. 
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In sheep tested, all organs were positive by all tests, except for few cases 

(foetus, five-week, three-month and the 14-year-old) were partially positive. Taken 

together, the qPCR and RNA-ISH results confirm that sheep are infected at an early 

age (at or before five weeks of age), with increasing viral loads up to approximately 

1 year; the virus is readily detectable by qPCR over seven months of age. 

 
Table 3-3. Correlation between OvHV-2 DNA loads and the presence of viral mRNA 
and antigen in sheep tested positive with either method. 
 

Case 
Age 

 
Tissue 

Results 

qPCR RNA-ISH OvHV-2 Ov8 Ag 

S13-1453.4 
neonate 

Spleen - - few stromal fibroblast 

Thymus  - - - 

Lung - - - 

Placenta 3 - - 

S13-1353.6 ,7 
5 we 

Lung - - ND 
Thymus - - ND 
Spleen - - ND 
Med. LN - - ND 
Tongue - Some papillae EpC ND 
Nares - - ND 
Turbinate - - ND 
Conchae - - ND 

S14-0017. 1, 2 
3 mo 

Lung - Perivascular LC, REC and VEC ND 

Spleen - Occasional LC , VEC, vessels 
fibroblasts  

ND 

Med. LN - Few LC, VEC, arterial SMC ND 

Uterus - - ND 

Muzzle 1 Focal area in EpC ND 

Nares - - ND 

13L-2593A, B 
7 mo 

Lung 4 LC , VEC (arteries), occasional 
REC 

ND 

Med. LN 2 numerous LC  ND 

Nasoph. 215 Some EpC in salivary gland, 
surrounding LC  

ND 

13L-2595A, B 
7 mo 

Lung 5 Some p.v LC, REC, glandular 
EpC, VEC and SMC of arteries 

ND 

Med.  LN 2 Numerous LC ND 

Nasoph. 2 Submucosal LC, arteries VEC, 
intravascular leukocyte 

ND 

13L-2594A, B 
7 mo 

Lung 45 Many p.v LC, REC, glandular 
EpC, VEC and arterial SMC 

Mph/FDC in BALT, type 
II AlvC 

Med. LN 1 Numerous LC Moderate Mph/FDC 

Nasoph. 22 Strong EpC, LC, VEC apoptotic bodies, 
occasional FDC 

13L-2592B 
8 mo 

Lung 18 Several LC in BALT, REC, VEC VEC, type I,II AlvC, PIM 

Med. LN 24 Numerous LC, TBM, VEC Mph/FDC, VEC 

Spleen 2 Numerous LC, TBM, Mph/FDC, VEC 

13L-2592C 
8 mo 

Lung 4200 some LC in BALT, Rec, AlvC ND 

Med. LN 3200 See 13L-2592B, but weaker ND 
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13L-2592A 
8 mo 

Lung 1 Numerous LC in BALT, REC, 
VEC, AlvC 

ND 

Med.  LN 1 Numerous LC, TBM, VEC 
 

ND 

13L-4220A, B, 
C 
10 mo 

Med. LN 229 Some LC in follicles ND 

Spleen 276 Very weak signal in some LC ND 

Muzzle 648 LC  and EpC ND 

Tongue 97 Few patches of EpC ND 

Lung 143 - ND 

13L-4220D, E  
10 mo 
 

Lung 23 Some LC  in BALT, occasional 
glandular EpC 

VEC, type I,II AlvC, aslo 
Mph, PIM,  leukocytes 
in BALT  

Med. LN 61 Some LC Mph, FDC in follicles, 
VEC 

Tongue 667 Weak patchy in EpC VEC, infiltrating 
leukocytes, fibrocytes 

Spleen 36 Some LC in follicles Mph, FDC, few LC and 
VEC 

13L-4218A, B, 
C 
11 mo  
 

Lung 15 Occasional LC, VEC ND 

Nasoph. 4 EpC and underlying LC ND 

Med. LN 27 Some LC in follicles ND 

Spleen 9 Some LC in follicles ND 

Muzzle 
(epidermis
) 

56 Hair follicle EpC, some 
infiltrating LC, VEC 

Dermis fibroblasts, 
Mph 

Epididymis 32 Ductal EpC, VEC, arterial SMC, 
fibroblasts 

Stromal fibroblasts 

13L-4218 D, E 
11 mo 

Lung 57 LC in BALT, AlvC II Mph, VEC, Mph/DC in 
BALT, AlvC II 

Med. LN 344 Few Mph, LC Many Mph and/or FDC 

Tongue 222 Individual EpC Fibroblasts, VEC 

Muzzle 290 hair follicle EpC, occasional 
infiltrating LC 

Strong in many in basal 
epidermal cells, some 
dermal fibroblasts 

13L-4219A, B, 
C 
11 mo 

Med. LN 556 Few Mph, LC ND 

Spleen 24 Weak some LC in follicles ND 

Tongue 345 - ND 

Muzzle 5 Weak in hair follicle EpC ND 

Lung 131 LC in follicle-like BAL, gland 
EpC, REC 

ND 

13L-4219D, E, 
F  
11 mo 

Lung 136 LC in follicle-like BAL, gland 
EpC, REC 

ND 

Med. LN 122 Some LC in follicles ND 

Muzzle 251 Hair follicle EpC, EpC ND 

Tongue 2 Weak in quamous EpC ND 

S13-1453.2,3 
 
14 y 
 

Med. LN 6 Few cells in sinuses,  follicles Mph and FDC 

Muzzle - - Mph and FDC 

Nasoph. - - Fibroblasts, few VEC 

Placentom
e 

2 Maternal placental epithelium Weak in stroma 
fibroblasts 

Abbreviations: ND: not done; qPCR: virus copy numbers; RNA-ISH: either Ov2.5 or ORF65 or both; 
IH: immunohistology for viral antigen; med.LN: mediastinal lymph node; mo: month-old; we: week-
old; y: year-old; nasoph.: nasopharynx; ‘’-‘’: negative; EpC: epithelial cells; FDC: follicular dendritic 
cells; REC: respiratory epithelial cells; VEC: vascular  ndothelia cells; AlvC: alveolar cells; LC; 
lymphocyte; p.v: perivascular; Mph: macrophages TBM: tingible body macrophages. 
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3.1.3.1 Lung 

In the lung, viral transcripts were detected in a range of cells such as type II 

pneumocytes, respiratory and glandular epithelial cells of bronchi and bronchioles, 

arterial, venous and capillary endothelial cells, a proportion of cells in the follicle-

like lymphocyte aggregates of the bronchus associated lymphoid tissues (BALT), and 

occasional macrophages (Figures 3-2 A,B; 3-3 A; 3-4 A). Combined RNA-ISH and 

immunohistology identified the Pax5+ cells (B cells) as the lymphocytes carrying the 

virus (Figure 3-3 A-D). The distribution of viral Ov8 antigen was different from that 

of viral transcripts; only occasional vascular endothelial cells were found to be 

positive, and in the BALT, only macrophages and follicular dendritic cells (FDCs) 

were found to express viral antigen. In addition, occasional possible type II 

pneumocytes and sporadic peribronchial fibroblasts and chondrocytes were 

positive (Figure 3-4 B-F). Of the 17 lungs tested by RNA-ISH, two were negative. 

These were the qPCR-negative lungs from the neonate and the five week old lamb. 

Of the 15 RNA-ISH positive lungs, one was qPCR-negative. The latter was from a 

three month-old sheep (S14-0017.1,2, see Appendix, Table 1) in which spleen, 

mediastinal lymph node and muzzle positive by ISH, but the only PCR-positive tissue 

was muzzle. In the lungs which were positive for RNA-ISH, the viral loads ranged 

between 1 and 4200 virus copies (Table 3-1). 

 One point to be mentioned is the pale yellowish to orange colour of the B 

cells in the double RNA-ISH and immunohistology staining for Pax5 in B cells (they 

normally should appear brown as with the immunohistology staining), which made 

the B cells less visible. This was because of the RNA-ISH was performed prior to the 

immunohistology; this affected the Pax-5 antigen detection in the B cells in lung 

BALT, lymph node and spleen. But this did not happen with ISH/immunohistology 

for T cells. 
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Figure 3-2. RNA-ISH Lung in an eight month-old sheep (13L-2592B) with a viral load of 18 virus 
copies. 
RNA-ISH for OV2.5 (A) and ORF65 (B). In both slides there are strong ISH signals (dark blue) are seen 
in arterial endothelial cells (short black arrows), in lymphocytes and probably macrophages (in the 
peribronchial lymphatic tissue [long black arrows]), in individual type II pneumocytes (dashed black 
arrow) and in circulating leukocytes in the vessel lumen (red arrow). Weaker signals are seen in a few 
bronchiolar respiratory epithelial cells (blue arrows). Bars= 100 (A), 50µm (B). BCIP/NBT, 
haematoxylin counterstain. 

A 

B 
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s 
 
Figure 3-3. RNA-ISH and immunohistology for T and B cells. Serial sections of lung of an eight month-
old sheep (13L-2592B); see also Figure 3-2. 
(A) RNA-ISH for Ov2.5, showing positive cells (dark blue) in the follicle-like structures (B cell zones) of 
the BALT. (B) Immunohistology for Pax5, confirming that the follicle-like structures are 
predominantly composed of B cells (brown colour) (200x). (C) Double RNA-ISH and Pax5 staining, 
confirming the co-localisation of cells with viral transcripts and B cells (brown) (200x). (D) Higher 
magnification of C, confirming that a proportion of PAX5

+
 B cells exhibit a positive RNA-ISH signal 

(red arrows), (400x). (E) Double RNA-ISH and CD3 staining, showing that CD3
+
 cells (T cells, brown 

colour) are scarce in the follicle centres, but otherwise located around the follicles (200x). (F) Higher 
magnification of E, confirming that that the CD3

+
 T cells in the follicle centre do not exhibit any ISH 

signal (400x). BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin counterstain.  
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C 

D 
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Figure 3-4. RNA-ISH and immunohistology for viral Ov8 antigen in lung of sheep. A-C is a seven 
month-old sheep (13L-2594 A) with a virus load of 45 virus copies. D is a ten-month-old sheep (13L-
4220 D) with a virus load of 23 virus copies. 
(A) RNA-ISH for Ov2.5 (dark purple), strong signals in BALT leukocytes (long arrow) and in the alveoli 
cells (short arrow), (200x). (B) IH for viral antigen (brown), the antigen is expressed in a proportion of 
leukocytes in the BALT, bar= 20 µm. (C) Higher magnification, the viral antigen is weakly expressed in 
type II alveolar cells (long arrow) and alveolar macrophages (short arrow), bar= 10 µm. (D) Higher 
magnification of alveoli, the viral antigen is seen in possible sporadic individual type II pneumocytes 
or pulmonary macrophages (arrows), and in the PIM (short arrow)  inside the capillary with positive 
endothelial cells, bar = 10 µM. BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin counterstain. 
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3.1.3.2 Tongue and muzzle 

Of six tongues, one was PCR-negative, but ISH-positive (five week-old lamb, case no. 

S13-1353), all other tongues were qPCR/ISH-positive except one case was PCR-

negative/ISH-negative (11 month-old sheep, case no. 13L-4219). The viral DNA loads 

were generally relatively high (only two cases were 1-2 virus copies, in the others 

were 22-345 virus copies). In two tested PCR/ISH-positive animals, the virus antigen 

was positive as well. In the young aged lamb (five week-old), a weak RNA-ISH signal 

was seen in the epithelium of in tongue papillae (Figure 3-5A), while it was negative 

by qPCR. In contrast, viral Ov8 antigen expression was only seen as a weak reaction 

in a few sub-epithelial vascular endothelial cells. In general, in the tongue, the RNA-

ISH signals were patchy. Viral transcripts were usually detected in epithelial cells in 

the most superficial layers in the stratum spinosum, in the papillae and occasionally 

in a few leukocytes in the submucosa (Figure 3-5 B). viral Ov8 antigen was relatively 

strongly expressed in vascular endothelial cells and in infiltrating leukocytes and 

fibrocytes/fibroblasts beneath the epithelium (Figure 3-5 C,D). 

Of the seven muzzles tested by both PCR and RNA-ISH, only one was 

negative by both (14 year-old sheep) and all the others were positive by both tests. 

Except for three animals where there were low viral loads in muzzle, it was 

relatively high in other sample (56 - 648 viral DNA copies). In animals where tongue 

was positive by qPCR, the muzzle was positive also, but not always with the RNA-

ISH. In these PCR-positive muzzles, the presence of viral transcripts was 

demonstrated by RNA-ISH. In general, the viral transcripts were detected in patchy 

areas in the squamous epithelial cells, in hair follicles and occasionally in infiltrating 

leukocytes (Figure 3-5 E). viral Ov8 antigen expression was more widespread and 

was observed in basal epithelial cells of the epidermis, a few fibroblasts and 

macrophages in the dermis and vascular endothelial cells (Figure 3-5 F). 
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Figure 3- 5. RNA-ISH and immunohistology for viral Ov8 antigen in tongue and muzzle of sheep. 
(A) RNA-ISH for Ov2.5 in tongue of a five-week-old sheep (S13-1353.7) with negative PCR result. 
There are ISH signals in few epithelial cells in the filiform papillae (arrow), bar=50µm. (B) RNA-ISH for 
Ov2.5 in tongue of a 10 month-old sheep (13L-4220 E) with a viral load of 667 virus copies. ISH 
signals in aggregates of epithelial cells in stratum spinosum (long arrow) and very weak signals in a 
few cells beneath (short arrow), bar=20µm. (C & D) IH for viral antigen in tongue in B, overall strong 
reaction in VEC (red arrow), in infiltrating leukocytes (short black arrow) and in fibrocytes/fibroblasts 
beneath the epithelium (long black arrow), also there are weak reaction in the superficial epithelial 

cells (S), bar=50µm in A, 20µm in B. (E) RNA-ISH for Ov2.5 in muzzle of a 11 month-old sheep (13L-

4218 E) with a viral load of 290 virus copies. Muzzle epidermis, showing strong ISH signals in hair 
follicle epithelial cells, bar=20µm. (F) IH for viral antigen of the muzzle dermis in E., the antigen is 
weakly expressed relatively numerous in basal fibroblasts (short arrow) and in VEC (long arrow), 
bar=20µm. BCIP/NBT (RBA-ISH), DAB (IH), haematoxylin counterstain. 
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3.1.3.3 Mediastinal lymph nodes 

Of the 15 lymph nodes tested by both qPCR and RNA-ISH, two were negative by 

both tests. These were the neonate and the five week-old lambs, one sample was 

only ISH-positive on the three month-lamb, and all the remainder were positive by 

both tests. The viral transcripts were mainly seen in B cell zones, i.e. in relatively 

numerous lymphocytes in the follicles of the cortex, sometimes in tingible body 

macrophages (TBM) and occasionally in interfollicular lymphocytes (Figures 3-6 A-F; 

3-7 A,B; 3-8 A,B). Staining of consecutive sections with the B and T cell markers and 

double RNA-ISH and IH staining confirmed that the cells carrying viral transcripts are 

B cells (Figures 3-7 A-D). The viral Ov8 antigen was detected in posible macrophages 

or FDCs in follicles, and in a few macrophages in medulla and sinus (Figure 3-8 C,D). 

Totally, of the 17 lymph nodes (the above 15 plus another two tested only by RNA-

ISH) tested by RNA-ISH, one was negative (case no. S14-0017, a three month lamb). 

This animal was also negative in the qPCR in all organs except in the muzzle.  

The intensity of the RNA-ISH signals was not always correlated with the viral 

load, as the signals in a lymph node sample with 24 virus copies (Figure 3-6 A,B) 

were very similar to those of other lymph node with only one virus copy (Figure 3-7 

A), whereas the extent of viral Ov8 antigen expression in the lymph nodes appeared 

to be rather consistent with viral loads detected by qPCR (Figure 3-8 C,D). 
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Figure 3-6. RNA-ISH and immunohistology for B or T cells. Serial sections of the mediastinal lymph 
node of an eight month-old sheep (13L-2592 B) with a viral load of 24 virus copies. 
(A) RNA-ISH for Ov2.5,  cortical lymphoid follicle, showing an ISH signal in lymphocytes in the follicles 
and occasional lymphocytes in interfollicular areas (200x). (B) Higher magnification of A, showing 
positive lymphocytes and TBM (arrow) within the follicle (400x). (C) IH for Pax5, confirming that B 
cells (brown) comprise the follicles (Italic F) (100x). (D) Higher magnification of C (400x). (E) IH for 
CD3, showing that T cells (brown) are predominantly located outside the follicles in the interfollicular 
T cell zones (TZ) (200x). (F) Higher magnification of E showing few T cells are located in the B follicles 
(400x). BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin counterstain. 
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Figure 3-7. RNA-ISH and immunohistology for T and B cells. Mediastinal lymph node of a seven-
month old sheep (13L-2592 A) with a viral load of one virus copy. 
(A) Double RNA-ISH and Pax5 staining, confirming the co-localisation of cells with viral transcripts 
and B cells (yellowish brown) (200x). (B) Higher magnification of A, confirming that a proportion of 
PAX5

+
 B cells exhibit a positive RNA-ISH signal (arrows), (400x). (C) Double RNA-ISH and CD3 staining, 

showing that CD3
+
 cells (T cells, brown colour) outside the follicle centres, but otherwise located 

around the follicles (200x). (D) Higher magnification of C, margin of the follicle (M), confirming that 
that the CD3

+
 T cells outside the follicle centre do not exhibit any ISH signal (400x). BCIP/NBT (RNA-

ISH), DAB (IH), haematoxylin counterstain. 
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Figure 3-8. RNA-ISH and immunohistology for viral Ov8 antigen. Mediastinal lymph node of a seven 
month-old sheep (13L-2594 A) with a viral load of one virus copy; see also Figure 3-7. 
(A) RNA-ISH for Ov2.5, cortical follicle, a large proportion of leukocytes in the follicle exhibit ISH 
signal, bar=20µm. (B) Higher magnification of A, confirming that both lymphocytes (long arrow) and 
TBM (short arrow) are positive, bar=10µm. (C) IH for viral antigen (brown), virus antigen are 
expressed within the follicle (F), bar=20µm. (D) Higher magnification of C, showing viral antigen 
expression in either FDCs (arrow) or macrophages (red short arrow). BCIP/NBT (RNA-ISH), DAB (IH), 
haematoxylin counterstain. 
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F 



Chapter three                                                                                                                               Results 

78 
 

3.1.3.4 Spleen 

The spleen was the most frequently PCR-positive organ for vial DNA. Of the eight 

spleens was positive by both qPCR and RNA-ISH, six were qPCR-positive with a viral 

DNA load of 24 virus copies as the median number, while seven were positive by 

RNA-ISH.  Similar to the lymph nodes, in the spleen, the viral transcripts (Ov2.5 and 

ORF65) were mainly seen in follicles, but not in the T cell zones of the white pulp. In 

secondary follicles, positive cells were mainly found in the mantle zone, but were 

only sparse in germinal centres (Figure 3-9 A,B). The morphology of positive cells 

confirmed these as predominantly lymphocytes and occasional TBMs. In addition, a 

few leukocytes in the red pulp and the vascular endothelial cells were also positive. 

In some cases, fibroblasts around vessels also showed a positive signal. When 

consecutive sections were tested for either RNA-ISH and IH for either CD3 or Pax5 

markers (Figure 3-9 A-D), and with double RNA-ISH and IH staining it was confirmed 

that the cells carrying viral transcripts are B cells. viral Ov8 antigen was found to be 

expressed in a proportion of macrophages and FDCs in the white pulp, in vascular 

endothelial cells and in lymphocytes (Figure 3-9 E,F).  
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Figure 3-9. RNA-ISH and immunohistology for B or T cells and for viral Ov8 antigen in sheep spleen. 
Serial sections of spleen of an eight months-old sheep (13L-2592 B) with a viral load of two virus 
copies (A-D). Spleen of a ten-month-old sheep (13L-4220 E) with a viral load of 32 virus copies (E&F). 
(A) RNA-ISH for ORF65, white pulp, signals are seen in a proportion of cells predominantly at mantle 
zone of the follicle and in fewer cells in the germinal centre, and also in individual cells in the red 
pulp (100x). (B) Higher magnification of A, mantle zone, showing signals in individual lymphocytes 
(arrow) and possible TBM (short arrow). (C) IH for Pax5, confirming that B cells (brown) comprise the 
follicle (100x). (D) IH for CD3, showing that T cells (brown) are predominantly located outside the 
follicle and are scarce (200x). (E) IH for viral antigen, there overall strong reaction in the white and 
red pulp, bar=50µm (F) Higher magnification of E, showing viral expression in macrophages (and 
FDC) in follicles (arrows) and in macrophages in red pulp (red arrow), in a few lymphocytes (short 
black arrow) and in VEC (short red arrows), bar=20µm. BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin 
counterstain.   
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3.1.3.5 Peripheral blood leukocytes 

Of the five PBL samples taken from sheep, two were tested by both qPCR and RNA-

ISH. Viral loads were at five and eight virus copies per two eight-month-old sheep 

(13L-4883A and 13L-4883B respectively). In both samples, viral transcripts were 

exhibited in about 40-50 % of cells and with morphology consistent with 

lymphocytes or monocytes (Figure 3-10 A). viral Ov8 antigen was not detected in 

PBLs, and also based on the immunohistological staining of consecutive sections for 

CD3 or Pax5, it was not possible to comment on the lymphocyte subtype that 

showed  positive signals, since both B and T cells were present in similar ratios 

(about 30 % B cells and 50 % T cells) (Figure 3-10 B,C). 

 

 

 
 
Figure 3-10. RNA-ISH and immunohistology for B or T cells. Pelleted peripheral blood leukocytes of a 
nine month-old sheep (13L-4883 B) with viral load of five virus copies.  
(A) RNA-ISH for Ov2.5, approximately 5-6 % of the leukocytes show ISH signals that morphologically 
appear as lymphocytes (short arrows) and monocytes (long arrows) (200x). (B) IH for Pax5, the B 
cells comprise approximately 10-20 % of WBCs (200x). (C) IH for CD3, the T cells comprise 30-40 % of 
WBCs (200x). BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin counterstain. 
  

A 

B C 
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3.1.3.6 Uterus and placenta 

The uterus was tested in two sheep, a three-month and a 3.5-year-old sheep (case 

no. S13-1516), Neither viral DNA nor viral transcripts or viral Ov8 antigen was 

detected in these samples. However second animal was tested by qPCR only, and 

had a high viral DNA titres in lung with viral load of 61 copies (see Appendix, Table 

1).  

From a gravid ewe (S13-1453.3, aged 3.5 year, see Appendix, Table 1), 

maternal placentome and foetal placenta (S13-1453.4, crown-rump-length 17.5 cm) 

were tested. The qPCR identified two virus copies in the ewe’s placentome, and the 

viral transcripts were found as weak signals in part of the maternal placental 

epithelium (Figure 3-11 A), while the viral Ov8 antigen was detected in a proportion 

of stromal fibroblasts, but not in epithelial cells (Figure 3-11 B). In the foetus, the 

placenta was PCR-positive (three virus copies), but was negative for the RNA-ISH or 

viral antigen. 

  

 

 

 
 
Figure 3-11. RNA-ISH and immunohistology for viral Ov8 antigen in the sheep placentome. A 14 year-
old ewe (S13-1453.3) with a viral load of three virus copies. 
(A) RNA-ISH for Ov2.5, there are relatively strong ISH signals in glandular epithelial cells (long arrows) 
and stromal fibroblasts (short arrow), bar= 50µm. (B) IH for viral antigen, the viral antigen is weakly 
expressed in stromal fibroblasts (arrows), bar= 20µm. BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin 
counterstain. 
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3.1.3.7 Controls 

Negative control sections served to check the specificity of the probes and reliability 

of the results obtained with the antisense probes. Testing of sense probes in lung, 

lymph node and spleen sections, did not yield any signal (Figure 3-12 A-D), however, 

sometimes ORF65 sense probe had a diffuse background staining on some sections. 

In addition, antisense probes were applied to sections of a dog lung and lymph 

node, and did not yield any signal (Figure 3-12 E,F). 
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Figure 3-12. RNA-ISH negative controls in sheep and dog. 
(A) RNA-ISH with Ov2.5 sense, lung of an 11-month-old sheep (13L-2592A), with a viral load of  one 
virus copies. There are no any definitive ISH signals. (B) RNA-ISH with Ov2.5 sense, mediastinal lymph 
node of the same sheep as A, with a viral load of one virus copies, cortical follicle (italic F), there are 
no ISH signals, (200x). (C) RNA-ISH with Ov2.5 sense, spleen (13 L-2592B) with a viral load of two 
virus copies, there are no any signal in the red or the white pulps (italic F), (100x). (D) Higher 
magnification of C, showing the follicle (italic F) with no ISH signals (200x). (E, F) RNA-ISH with Ov2.5, 
lung in a dog (13L-5017B) lung (E) and lymph node (F). Neither of the tissues exhibit any ISH signals). 
BCIP/NBT, haematoxylin counterstain. 
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3.2 Detection of OvHV-2 in cows without MCF  

3.2.1 Detection and quantification of OvHV-2 DNA loads by qPCR 

The second group of animals tested for the presence and amount of OvHV-2 were 

cattle without MCF. A total of 49 cows were examined by qPCR, ranging in age from 

a six month-old foetus to mature cattle of 12 year-old. In 40 animals (including 

seven foetuses), a variety of organs were tested (at least lung, mediastinal lymph 

node and spleen). In the remaining nine cattle, only PBLs were tested. In the 40 

cattle of which organs were tested, 26 (67 %) animals were positive for viral DNA 

(Table 3-4). Of the nine cattle where the PBL were tested, six (66 %) were positive 

and thereby found to be viraemic. 

The amount of OvHV-2 DNA varied significantly among individual animals 

and even in different tissues within the same animal (between 1 and 6500 copies 

per 100 ng genomic DNA). Among tissues, the most frequently positive ones were 

tongue (45 %), spleen (38 %), lung (36 %), and then mediastinal lymph node (30 %), 

all organs and tissues tested are listed in Table 3-5. The amount of the virus was 

also highly variable in tissues in a given animal, and in the majority of animals, viral 

loads were low, between 1 and 417 virus copies, but in two cases, a stillborn foetus 

(described below) and a one-year old animal (13L-2591), the viral loads in organs 

were relatively high, with 6500, 5800, 3900, 3600 virus copies in the submandibular 

lymph node, lung, tongue and spleen respectively. In nine animals, aged one week 

to eight month, only four were positive, and in sporadic organs and with loads 

below five virus copies, but in a seven-month-old calf (case S13-1419), all tested 

organs except the thymus were positive, with viral loads ranging from 12 to as high 

as 417 (spleen) copies. Generally, in positive cows, usually at least 2-3 organs or 

more were positive for the virus presence. In the viraemic cattle (PCR-positive 

PBLs), viral loads were between 1 and 96 copies in the PBL. However only nine 

samples were tested, blood was among the most frequently PCR-positive tissue 

compared to other tissues. The amount of positive samples and OvHV-2 DNA loads 

in different cattle tissues are listed in Table 3-5. 

  Two of the four gravid cows were PCR-positive, but their foetuses were 

negative. The third cow was negative, but its foetus was positive. The fourth cow 

and its foetus were negative. In total, seven foetuses were tested, three (42 %) of 
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which were positive for viral DNA. In two, the viral loads were very low as ranged 

between 1-4 virus copies, and they were only positive in mediastinal lymph nodes 

and spleen. While in the third positive, a stillborn foetus (case no. S13-1438), all 

tested organs, i.e. lung, mediastinal lymph node, spleen and thymus were positive 

and the lymph node exhibited the highest viral load (6300 copies); in the other 

three organs loads were 5-25 copies. Interestingly, the thymus of this animal was 

the only thymus of the 15 tested that was positive. 

 

Table 3-4. Results of the OvHV-2 qPCR and viral DNA loads in organs from cows 
without MCF. Cases ordered in ascending age order. 
 

Case number/age 

R
e

su
lts 

Organs 

L Ln S To Th Na Tu U M Other 

S13-1350/ Fo, 6 mo - - - -  -      

S13-1360/Fo, 7 mo + - 1 -  -      

S13-1355/ Mt, 5 y + - 1 -   2  56   -
[6]

 

S13-1355/ Fo, 8 mo + - 3 4  -      

S13-1483/ Mt, 5 y + 10  5 16  49  0   

S13-1483/ Fo.8 mo - - - -  -      

S13-1452/ Mt, 12 y - - - -   -  -   

S13-1452/Fo, 8 mo - - - -  -     -
[6]

 

S13-1360/Mt, 8 y + - - - 1  3 - 1  1 
[6]

 

S13-1448/ Fo, 8 mo - - - -  -      

S13-1438/Stilb.,  9m + 6 6300 25  5      

S13-1418/ 1 we - - - - - - - -    

S13-1329/ 10 d + - - - - - - 4    

S13-1377/ 5 we + - - - - - - 1    

S13-1419/ 7 we + 156 129 417 12 - 12 50    

S13-1373/ 7 we + 1 - 1 1       

S13-1434/ 8 we - - - - - - - - -   

S13-1460/ 13 we - - - - - - - -    

S13-1459/ 18 we +  3 -  -      

S13-1352/ 8 mo - - - - -  - -    

13L-2591/ 1 y + 5800  3600 3900      6500 
[1]

 

13L-2599/ 19 mo + 5 -        2 
[2]

 

13L-2596/ 20 mo + 14 8 9        

13L-2597/ 20 mo + 7  3       2 
[2]

 

13L-2598/ 20 mo + -  5       0 
[2]

 

13L-4213A,B/ 2 y + - 6 4 -     16  

13L-4213D/ 2 y + 1 - - 4       

13L-4214A,B/ 2 y - - - - -       

13L-4214 C,D/ 2 y + - 1 1 -     2  

13L-4215A,B/ 2 y + 8 9  2      3 
[3]

, 
1

[4]
 

13L-4215C,D/ 2 y + 1 - 1 -     -  

13L-4216/ 2 y - - - - -     - - 
 [4]
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13L-4216/ 2 y +   5       2 
[3]

 

13L-4217/ 2 y - - - - -       

13L-4221/ 2 y +          1 
[5]

 

13L-2600A,B/ 2.5 y + 13 - - 8       

13L-2600C,D/ 2.5 y + 3 - - 8       

S13-1515/ 3 y + - - - 6 - - - -   

S13-1425/ 4 y - - - - - - - -    

Abbreviations: mo: month-old; we: week-old; y: year-old; Fo: foetus; Mt: mother; [-]: negative; L; 
lung; LN: mediastinal lymph node; S: spleen; M: muzzle; Na: nasopharynx; Stillb: stillborn; T: tongue; 
Tu: turbinate; U: uterus; Th: thymus; [1]: submandibular lymph node;

 
[2]: bronchial lymph node; [3]: 

trachea; [4]: aorta; [5]: mammary lymph node; [6]: placenta; ‘’-‘’: negative; empty boxes: not 
examined. 

 
 
 
Table 3-5. Amount of positive samples and OvHV-2 DNA loads in tissues and PBL 
samples of cow without MCF. 
 

Sample 

Tested 
a
 OvHV-2 DNA copies 

Total Pos (%) Min 
b
 Max 

c
 Med 

d
 

Lung  36 13 (36 %) 1 3600 5 

Mediastinal LN
[1]

 33 10 (30 %) 1 5800 7.5 

Spleen 33 13 (39 %) 1 129 14 

Tongue 23 10 (43 %) 1 3900 6 

Thymus 15 1 (6 %) 2 5 4 

Nasopharynx 13 4 (30 %) 1 49 25.5 

Turbinate 9 3 (33 %) 1 50 12.5 

Uterus 6 3 (50 %) 1 56 28.5 

Muzzle 3 2 (66 %) 2 16 9 

Placenta 3 1 (33 %) 1 1 2 

Trachea 2 2 2 3 2.5 

Bronchial LN 3 1 2   

Aorta 2 1 1 

Submandibular LN 1 1 6500 

Mammary LN 1 1 1 

Cerebellum 1 1 2 

PBL  
[2]

 9 6 (66 %) 1 86 5 

a. Samples tested, total is the number of all samples taken for that particular type of specimen. Pos: 
is number and percentage of samples tested positive. Table arranged according to the most 
frequently tested tissues. b. Minimum number of virus copies detected in the particular specimens. 
c. Maximum number of virus copies detected in the particular specimens. d. Median number of the 
virus copies. [1] LN refers to lymph node. [2] PBL: peripheral blood leukocytes. 
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3.2.2 Identification of cells harbouring OvHV-2 mRNA and antigen in cows without 

MCF 

Cattle without MCF were also tested by RNA-ISH and immunohistology in tissues, to 

demonstrate viral Ov2.5 and ORF65 transcripts and Ov8 antigen, respectively, in an 

attempt to identify the cells that harbour the virus. In addition, a double staining 

(RNA-ISH for viral transcripts in combination with immunohistology to highlight B 

cells [Pax5-positive] and T cells [CD3-positive]) was performed on lung, mediastinal 

lymph node and spleen of selected cases to identify the lymphocyte subtype 

positive for viral Ov2.5 and ORF65 transcripts. The results for each case are 

provided in detail in Table 2a in the Appendix. The presence of viral transcripts was 

represented by dark blue cytoplasmic signals (Figure 3-13 A,B). Generally, the 

results obtained with both probes (Ov2.5 and ORF65) were similar with regards to 

the cellular range and signal intensity (Figure 3-16 A-D. Of the 50 cattle examined by 

either qPCR, RNA-ISH (and a selection by IH), 44 animals were tested by RNA-ISH, 41 

were tested positive with both qPCR/RNA-ISH. One foetal calf was only tested by 

RNA-ISH. 

In seven foetuses tested by both PCR/RNA-ISH, two were negative by both 

techniques, two were PCR-negative but ISH-positive (one of which additionally 

tested for viral Ov8 antigen and was positive), and the remaining three were 

positive by both tests (one of which additionally tested for viral Ov8 antigen and 

was positive) in at least one tissue (Table 3-5). Except for the stillborn foetus that 

had relatively high virus loads and exhibited viral transcripts in all organs and viral 

Ov8 antigen in the mediastinal lymph node, the positive foetuses exhibited very low 

copy numbers and were sporadically positive in the RNA-ISH. An additional foetus 

aged nine months (H04-981 G) was only tested by RNA-ISH and immunohistology 

for viral antigen, with negative results for both tests. Of the remaining 34 cattle 

(excluding those of which only PBL were tested), 31 cattle (91 %) were positive by 

RNA-ISH, 24 by qPCR and only three animals were negative in both tests. Overall, 

more tissues were RNA ISH-positive than PCR-positive. The results indicate that 

infection occurs during foetal development or at an early age (one week) as 

detected by RNA-ISH, but the virus becomes more readily detectibly by qPCR over 

one year age. Results for each animal is provided in Table 2a, b in the Appendix. 



Chapter three                                                                                                                               Results 

88 
 

An attempt was made to find a relationship between qPCR, RNA-ISH and 

immunohistology results. However, in general, despite the high variability of virus 

loads, the RNA-ISH signals were rather consistent in their intensity, but sometimes 

varied in the amount of positive cells. In contrast, the number of viral antigen-

positive cells was positively correlated with the virus load. Immunohistology for 

viral Ov8 antigen was performed in eight cattle (five adult and two foetuses), the 

relation between results of RNA-ISH and viral IH was quite variable, as in a mother 

and foetus (case no. S13-1483), these two tests were not always positive together 

(Table 3-3), even with a stillborn and 10-day-old calf the PCR/ISH/IH were not 

consistently related. While in the three animals (from seven-week, one and two-

year-old; case no. S13-1329, S13-1419, 13L-2591 respectively) all the three tests 

results were consistently related, when most viral DNA was detected in most of 

these animals’ organs. In addition, the cell types positive by RNA-ISH and viral IH 

were similar and sharing certain cell types, however the viral IH, was most 

frequently detected in specific cell types. Animal test results, positive cell types and 

correlation between the qPCR and RNA-ISH and viral IH are shown in Table 3-6.  

Although the qPCR results were very variable through all ages, the RNA-ISH 

(and viral IH) results were more consistent after seven month age and especially 

after one-year-old, most of tested organs were positive by either RNA-ISH/viral IH . 

The correlation between the qPCR and RNA-ISH is shown in Table 3-6. In terms of 

specific correlation between ISH-positive organs within individual animals, there 

was not any specific relationship, however, generally in animals the lymph node and 

spleen, the RNA-ISH and viral IH results were positively related.  

Taken together, the qPCR and RNA-ISH results confirm that a proportion of 

cattle without-MCF are infected whilst are intrauterine, and the viral DNA loads 

increased from approximately one year (except for few cases; a stillborn and seven 

month-old lamb, case no. S13-1438 and S13-141 respectively). Also the viral DNA 

loads become more readily detectable by qPCR at about 18 months of age and 

more cells have will be positive for viral transcripts. Then as the animal gets older 

(after 5 to 12 years), generally the viral DNA loads tend to decline and the number 

of ISH-positive organs will be less frequent or the animal will be negative (as in the 

12 year old cow). 
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Table 3-6. Correlation between OvHV-2 DNA loads and the presence of viral mRNA and 
antigen in cattle without MCF tested positive with either method. 

 
Case and 
age  

Organs  Results 

qPCR RNA-ISH Viral IH 

S13-1350 
Aborted 
foetus 
6 mo 

Lung - - ND 

Thymus - - ND 

Spleen - - ND 

Med.LN - - ND 

S13-1448 
Stillborn 
foetus 
8 mo 

Lung - Some capillaries VEC, REC ND 

Thymus - - ND 

Spleen - VEC of capillaries ND 

Med LN - - ND 

S13-1355 
Mother,  
5 y 

Placenta - Weak in stromal cells ND 

Uterus 56 Glandular EpC, VEC, SMC ND 

S13-1355 
Foetus 
8 mo 

Lung - Individual type II AlvC; Alv Mph ND 

Thymus - few cells (LCs?) in medulla ND 

Spleen 4 Random cells in red pulp ND 

Med LN 3 Few Mph, LC in cortex, around 
follicles 

ND 

S13-1483 
Mother 
5 y 
 

Lung 10 - Individual interstitial 
fibroblasts and Mph 

Spleen 5 - FDC, apoptotic/ 
autolytic cells 

Conchae - - - 

Tongue 16 - - 

Nasoph. 49 - - 

Uterus - Majority of EpC Stromal fibroblasts 

S13-1483 
Foetus 
8 mo 

Lung - - - 

Thymus - - - 

Spleen - - - 

Med LN - Individual cells (LC?, Mph?) Some FDC, and Mph 
outside follicles 

S13-1452 
Mother 
12 y 
 

Lung - - ND 

Spleen - - ND 

Med LN - - ND 

Uterus - - ND 

S13-1452 
Foetus  
8 mo 
 

Lung - - ND 

Thymus - - ND 

Spleen - - ND 

Med LN - - ND 

Placenta - - ND 

S13-1360 
8 y 
 

Lung - Individual cells in BALT (LC) ND 

Spleen - Numerous (LC) in mantle zones ND 

Med LN - Strong signals in LC at follicular 
periphery 

ND 

Buccal mucosa - Proportion of infiltrating LC ND 

Tongue 1  small patchy area EpC ND 

Nasoph. 3 - ND 

Uterus 1 Proportion of glandular EpC, 
patches of surface EpC 

ND 

Placenta 1 Trophoblasts, stromal cells ND 
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S13-1438 
Stillborn 
calf  
9 mo 

Lung 6 Focal bronchiolar EpC, VEC - 

Thymus 5 Few LC, Mph - 

Spleen 25 Sporadic cells in white pulp, few LC 
in follicles 

Individual Mph in red 
pulp 

Med LN 6300 Strong sporadic LC in cortex/ 
medulla, few LC in follicles,  
individual Mph in medulla 

- 

S13-1418 
1 we 

Lung - - ND 

Thymus - - ND 

Spleen - - ND 

Med LN - - ND 

Tongue - Basal EpC, papillary EpC ND 

Nasoph. - Some glandular EpC ND 

Nasal 
epithelium 

- Basal EpC, ORF65 in inflamed 
glandular ducts too 

ND 

S13-1329 
10 d 

Spleen - Occasional cells - 

Thymus - - - 

Med LN - LC in follicles, some LC in medulla Individual FDC/Mph 
in follicles 

Nasoph. - - Weak stromal 
fibroblasts 

Tongue - Strong in EpC in taste buds Weak stromal 
fibroblasts 

Lung - - - 

Nares 4 Few glandular/surface EpC Weak stromal 
fibroblasts 

S13-1377 
Calf 
5 we 
 

Lung - - ND 

Thymus - - ND 

Spleen - - ND 

Med LN - - ND 

Tongue - - ND 

Turbinate  1 Many glandular EpC, VEC, 
subepithelial fibroblasts 

ND 

Nasoph. - Several cells in a follicle-like LC 
aggregates 

ND 

S13-1419 
7 we 

Lung 156 REC (bronchioles) Few PIM 

Thymus - - - 

Spleen 417 Weak occasional cells Weak FDC/Mph in 
follicles, scattered 
Mph in red pulp 

Med LN 129 Few cells in follicles Weak FDC/Mph in 
follicles 

Tongue 12 Variable basal EpC Weak in stromal 
fibroblasts, VEC 

Nasoph. 12 Most of mucosal EpC See tongue 

Turbinate 50 Basal epidermal, hair follicle EpC See tongue 

S13-1373 
7 we 

Lung 1 Few cells in BALT, few REC ND 

Spleen 1 Few cells in follicles (Mph?) ND 

Thymus - - ND 

Med LN - Few cells in and outside of follicles 
(Mph?) 

ND 

Tongue 1 Patches of EpC in taste buds ND 

S13-1434 
calf 
8 we 

Lung - Scattered type II AlvC ND 

Thymus - - ND 

Spleen - Cells in follicles, red pulp ND 
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Med  LN - Some cells in cortex, medull ND 

Tongue - Patches (3-4 eEpC) in taste buds ND 

Uterus  - Glandular and surface EpC ND 

Nasoph. - Patches of positive EpC ND 

S13-1460 
3 mo 

Thymus - - ND 

Spleen - - ND 

Med LN - - ND 

 Lung - - ND 

Tongue - Patches of EpC in taste buds ND 

Nasoph. - - ND 

Nares - - ND 

S13-1459 
Calf 
4 mo 

Thymus - - ND 

Spleen - Sporadic cells in follicles and 
medulla  

ND 

Med LN 3 Cells in white pulp ND 

S13-1352 
Calf 
8 mo 

Tongue - Patches of basal EpC ND 

Nasoph. - Few infiltrating, few glandular EpC ND 

Lung - Proportion of REC ND 

Med LN - Many cells in cortex, paracortex, 
VEC 

ND 

Spleen - Cells in follicles and red pulp ND 

Turbinate - Surface and glandular EpC, 
chondrocytes , VEC 

ND 

13L-2591 
12 mo 

Spleen  3600 Mantle zone LC, outside the follicle, 
some in red pulp 

FDC, Mph in red 
pulp, VEC  

Submandibula 
LN 

6500 LC in outer mantle zone FDC, Mph in sinus 
and medulla, VEC  

Lung 5800 Few arteries VEC ND 

Tongue 3900 Most basal EpC, gland EpC, VEC ND 

13L-4893 
18 mo 

DRG - - ND 

Cerebellum 2 Neurons and Purkinjie cells ND 

Hippocampus - Neurons ND 

Pituitary gland - - ND 

13L-2599 
19 mo 

Lung 5 Individual leukocytes; VEC; 
individual type II AlvC, AlvC Mph; 
Few LC, Mcp in BALT 

ND 

Med LN - Occasional mantle zone LC, sinus 
Mph 

ND 

Bronchial LN 2 LC in outer mantle zone, few Mph ND 

13L-2596 
20 mo 

Spleen 9 Cannot be assessed FDC 

Lung 8 Occasional type II AlvC ND 

Med LN 14 Mantle zone LC, sinus Mph ND 

13L-2597 
20 mo 

Lung 7 REC, type II AlvC, VEC ND 

Spleen 3 - ND 

Bronchial LN 2 - ND 

13L-2598 
20 mo 

Lung 0 REC, VEC, some LC in BALT, type II 
AlvC?, arterial SMC 

ND 

Spleen 5 LC in mantle zone, in red pulp ND 

Bronchial LN - Some LC in mantle zone ND 

13L-4213 
A,B,C 
2 y 

Tongue - Patchy basal EpC, salivary gland ND 

Muzzle 16 Few Mph(?) in dermis, most 
fibrocytes, salivary gland EpC , VEC 
in some vessels  

ND 

Med LN 6 Few disseminate LC  ND 
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Spleen 4 Few LC in mantle zone , few Mph in 
the centre 

ND 

13L-4213 
D,F 
2 y 

Lung 1 - ND 

Tongue 4 - ND 

Med LN - - ND 

Spleen  - Few LC in mantle zone , few Mph in 
the centre 

ND 

13L-4214 
A,B 
2 y 

Lung - Few Mph and LC in BALT ND 

Tongue  - EpC; some LC and Mph ND 

Med LN - Few LC in periphery , few Mph in 
the centre 

ND 

Spleen  
 

- - ND 

13L-4215 
A,B 
2 y 

Lung 8 Occasional arterial VEC, AvlC Weak in some 
arterial VEC, 
occasional cells in 
interstitium, AlvC 

Med LN 9 Few LC in periphery , few Mph in 
the centre 

Weak  in  few FDC 

Tongue  2 Patches of basal EpC ND 

Trachea 3 REC, VEC, infiltrating LC,  gland EpC ND 

Aorta 1 VEC of vasa vasorum and media 
fibrocytes 

ND 

13L-4215 
C,D 
2 y 

Lung  1 Several LC in BALT ND 

Med LN  - Few LC in periphery , Mph in centre 
of follicle 

ND 

Tongue  - Weak mid/basal EpC ND 

13L-4216 
A,B,C 
2 y 

Lung - Some LC in BALT, around 
bronchiolar EpC 

ND 

Med LN  - Few LC in periphery , Mph in centre 
of follicle 

ND 

Spleen  - - ND 

Aorta - - ND 

Muzzle  - - ND 

Tongue  - - ND 

13L-4216 
D,E 
2 y 

Spleen 5 Few cells in mantle zones ND 

Trachea 2 Numerous subepithelial  LC ND 

13L-4217 
2 y 

Lung - Some LC, few arteries VEC ND 

Tongue - Few LC in follicles ND 

Med LN  - Few LC (and Mph?) in follicles ND 

Spleen - Several LC in mantle zone ND 

13L-
4221, 2 y 

Mammary LN  1 Few LC in periphery , Mph in centre 
of follicle 

ND 

13L-2600 
A,B 
2.5 y 

Lung 13 Arterial VEC and SMC, type II AlvC, 
LC in BALT 

ND 

Med LN - Few Mph in follicle centres  and LC 
outside 

ND 

Tongue  - Superficial Epc in mucosa ND 

Spleen  - Few Mph in follicles ND 

13L-2600 
C,D 
2.5 y 

Lung 3 Arterial SMC, bronchiolar EpC, 
some LC 

ND 

Tongue 8 Rare LC in subepithelial infiltrates ND 

Spleen - Few Mph in follicles ND 

S13-1425 Lung - - ND 
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4 y Med LN - - ND 

Spleen - - ND 

Tongue - Basal EpC, subepithelial fibrocytes ND 

Nasopharynx - Few infiltrating LC ND 

Turbinate - Several LC, VEC, in glandular EpC ND 

Abbreviations: ND: not done; qPCR: virus copy numbers; RNA-ISH: either Ov2.5 or ORF65 or both; 
IH: immunohistology, monoclonal antibodies for OvHV-2 Ov8 protein; mo: month-old; we: week-old; 
y: year-old; AlvC: alveolar epithelial cells; Mph: macrophages; BALT: bronchus associated lymphoid 
tissue; SMC: smooth muscle cells; LC: lymphocyte; VEC: vascular endothelial cells; FDC: follicular 
dendritic cells; Epc: Epithelial cells;  ‘’-‘’: negative; ‘’+’’: positive. 

 

3.2.2.1 Lung 

From the 28 lung samples examined by RNA-ISH, in 21 the viral transcripts were 

detected, while only 12 of those were PCR-positive. In the RNA-ISH positive lungs, 

the viral loads were greatly variable and generally low, with a median viral load of 

7.5 virus copies, except for one case (case no. 13L-2591, one year-old), where 5800 

virus copies per 100 ng genomic DNA were found. In addition, in that given animal 

all other organ (tongue, submandibular lymph node, spleen) have similar virus loads 

and were all positive for RNA-ISH and for viral Ov8 antigen (in spleen and lymph 

node). The signal intensity was variable, regardless of the amount of virus copies. 

Generally, viral transcripts were detected in a variable proportion of type II 

pneumocytes, bronchiolar respiratory epithelial cells, vascular endothelial cells, a 

proportion of lymphocytes in the BALT and occasional individual lymphocytes or 

macrophages in the interstitium (Figure 3-13 A-C, 3-14 A,B). Viral Ov8 antigen was 

detected in endothelial cells in some small arteries, in bronchiolar epithelial cells 

and in type II pneumocytes (Figure 3-13 D-F). With the combined RNA-ISH and 

immunohistology, However, B cells were not detected in the BALT (probably due to 

digestion of Pax5 antigen with the RNA-ISH processing), but a few T cells were 

detected around the bronchioles and in the alveoli that were negative for viral 

transcripts (Figure 3-14 A-D), (see Appendix, Table 2).  
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Figure 3-13. RNA-ISH and immunohistology for viral Ov8 antigen. Lung of a two year-old cow without 
MCF (13L-4215 A) with a viral DNA load of eight virus copies. 
(A) RNA-ISH for Ov2.5 (dark purple), strong signals in arteriolar endothelial cells (short arrow) and 
weaker signals in other cells between the alveoli cells (long arrow), (200x). (B) RNA-ISH for Ov2.5, 
signals in most of endothelial cells in the arteriole (long arrows) and in the circulating leukocytes in 
the vessel lumen (short arrow), (200x). (C) RNA-ISH for Ov2.5, alveoli, there are signals in individual 
pneumocytes (arrows) and a possible alveolar macrophage (short arrow), (400). (D) IH for viral 
antigen (brown), weak reaction in arteriolar endothelial cells (arrows), (200x). (E) The viral antigen is 
expressed in VEC (short arrows) and very weakly in bronchiolar epithelial cells (long arrow), (200x). 
(F) Higher magnification of alveoli, virus antigen is seen in sporadic individual type II pneumocytes 
(arrows), (400). BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin counterstain. 

A B 

C D 

E F 
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Figure 3-14. RNA-ISH and immunohistology for T and B cells. Lung of a one year-old cow without 
MCF (13L-2591 B) with a viral load of 5800 virus copies. 
(A) Double RNA-ISH and IH for Pax5 staining, there are no detectible B cells in the section, but the 
viral transcripts are seen in a large proportion of bronchiolar epithelial cells (arrow), BALT cells (red 
arrow) and arterial endothelial cells (short arrow), (100x). (B) Higher magnification of A, a couple of B 
cell with a faint colour are seen in the BALT. (C) Double RNA-ISH and IH for CD3 staining, showing 
that CD3

+
 cells (T cells, brown colour) surrounding the bronchiole (arrows), but they do not show ISH 

signal (200x). (D) Double RNA-ISH and IH for CD3, showing few T cells (brown, arrows) are 
disseminated in the alveoli, but do not show ISH signals, while the type II pneumocytes show ISH 
signals (short arrows), (400x). BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin counterstain. 
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3.2.2.2 Tongue and muzzle  

A total of 23 tongue samples from cattle were examined by both qPCR and RNA-ISH. 

Of these, eight were qPCR-positive and 17 were positive by RNA-ISH. From those 11 

were ISH-positive/PCR-negative and in two cases, (five-year, case no. S13-1483.6, 

two-year, case no. 13L-4213) tongues were PCR-positive/ISH-negative. In addition, 

when the tongue was positive for RNA-ISH it was also positive for viral Ov8 antigen. 

In the qPCR-positive tongues, the viral DNA load had a median of eight copies 

(generally 1-16 copies), except for one case it was 3900 copies (one year-old case 

no. 13L-2591). Ov2.5 transcripts were generally seen in basal epithelial cells (Figure 

3-15 A,B), while ORF65 transcripts were located in more superficial epithelial cells. 

RNA-ISH signals were patchy in the mucosal epithelium of those samples with low 

viral loads, while there were strong signals in those with a relatively high virus DNA 

loads (3900 copies) (Figure 3-15 A,B). The viral Ov8 antigen was expressed in the 

stromal fibroblasts and vascular endothelial cells (Figure 3-15 C). 

The muzzle was examined in two cases. First, a two-year-old cattle (case no. 

13L-4213) by both qPCR and RNA-ISH, and with positive results in both. The second 

with qPCR only. The viral DNA copies were 16 and 2, respectively. Viral transcripts 

were detected in epidermal epithelial cells (Figure 3-15 D), also in salivary glandular 

epithelial cells and vascular endothelial cells of some vessels, some fibrocytes, 

occasional hair follicles, and possibly in macrophages in the dermis.  
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Figure 3-15. RNA-ISH and immunohistology in tongue and muzzle in cows without MCF at different 
ages and different viral loads. 
(A) RNA-ISH for Ov2.5, tongue mucosa, of a one-year-old cow without MCF (13L-2591 B) with a virus 
load of 3900 virus copies. Very strong ISH signals in the basal epithelial cells in the stratum basale 
(long arrows) and in fewer signals in stratum granulosum, glandular epithelial cells (short arrow) and 
in VEC (arrowhead), (100x). (B) Higher magnification of A, showing the positive  epithelial cells 
(400x). (C) IH for viral antigen, tongue of a seven-week-old cattle (S13-1419.6) with a viral load of 12 
virus copies. Weak reaction in stromal fibroblasts (short arrows) and in VEC (long arrow), bar= 20µm. 
(D) ISH for Ov2.5, muzzle of a two-year-old cattle (13L-4213B) with a viral load of 16 virus copies. ISH 
signals are seen in epithelial cells in the epidermis (arrows), bar= 20µm. BCIP/NBT (RNA-ISH), DAB 
(IH), haematoxylin counterstain. 
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3.2.2.3 Lymph nodes  

A total of 32 different lymph nodes (27 mediastinal, three bronchial and one of each 

submandibular and mammary lymph nodes) from cattle were tested by qPCR 

and/or RNA-ISH. Of the 32 lymph nodes tested, 11 were positive by qPCR, while 21 

were positive by RNA-ISH. The mediastinal lymph node, which was tested most 

frequently (n=27), exhibited a median of 7.5 virus copies per 100 ng genomic DNA. 

However, some lymph nodes, such as the submandibular lymph node in a cow (case 

no. 13L-2591), had a much higher viral load of 6500 viral DNA copies. The RNA-ISH 

signal intensity and the number of positive cells were generally variable and not 

always correlated with the viral load. Also, in 10 qPCR negative lymph nodes, viral 

transcripts were detected. In cattle older than five years and foetus, the majority of 

lymph nodes were negative, but with increasing age, i.e. after seven weeks age, the 

lymph nodes were positive by RNA-ISH (and viral IH) with undetected viral DNA (the 

same for other organs). After one year age, animals lymph nodes were positive as 

well as other organs, however sometime lymph nodes were negative, but there 

were positive organs in a given animal. Viral transcripts were detected in relatively 

numerous lymphocytes within follicles, a few TBM and occasional interfollicular 

lymphocytes as well as vascular endothelial cells (Figures 3-16 A-D, 3-18 A). Double 

staining of sections for the B and T cell markers and by RNA-ISH confirmed that the 

cells carrying viral transcripts are B cells (Figure 3-17). The viral Ov8 antigen 

expression was seen in FDCs and macrophages (based on the morphology) (Figure 

3-18 B-D). In lymph nodes with higher viral loads, viral Ov8 antigen expression was 

seen in a wider range and more number of cells, including a proportion of 

lymphocytes, macrophages, vascular endothelial cells and stromal fibroblasts 

(Figure 3-18 E,F). 
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Figure 3-16. RNA-ISH for submandibular lymph node. A one year-old cow without MCF (13L-2591A) 
with a viral load of 6500 virus copies. 
(A) RNA-ISH for ORF65, cortical follicles, strong signals in cells inside and at the periphery of the 
follicle (long arrows) and in individual cells in the interfollicular zones (short arrows). (B) Higher 
magnification of the follicle centre of A, ISH signals are in lymphocytes (short arrows) and in the TBM 
(long arrow). (C) RNA-ISH for Ov2.5, ISH signal are similar as ORF65, but with less number of cells. (D) 
Higher magnification of C, ISH signals are in lymphocytes (short arrows). BCIP/NBT, haematoxylin 
counterstain. 
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Figure 3-17. Double RNA-ISH for Ov2.5 and immunohistology for Pax5 (B cells). A submandibular 
lymph node of a one year-old cow without MCF (13L-2591 B, see also Figure 3-16) with a viral load of 
6500 virus copies.  
The double staining is confirming the co-localisation of viral transcripts in the B cells (Pax5

+
, yellowish 

brown, red arrows). There are strong ISH signals in the B cells and sporadic non B cells, and possibly 
macrophages outside the follicle (black arrow), (400x). BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin 
counterstain. 



Chapter three                                                                                                                               Results 

101 
 

 
 
Figure 3-18. RNA-ISH and immunohistology for viral Ov8 antigen in cows. Lymph node of two cows 
without MCF, the first is a two year-old cow ([13L-4215A], A-D) with a viral load of eight virus copies. 
Second is a one year-old cow (13L-2591A E & F [see Figure 3-11 for ISH]) with a viral load of 6500 
virus copies. 
(A) RNA-ISH for Ov2.5, mediastinal lymph node, ISH signals are seen in cells mainly at the periphery 
of the lymphoid follicles (short arrows) and in vascular endothelial cells (VEC), (arrows). (B, C and 
D)IH for viral antigen (brown), same cattle in A, the viral antigen is expressed weakly in VEC (long 
arrow) and FDCs in the follicles (short arrows), (100x in B, 400x in C&D). (E) IH for viral antigen 
(brown), submandibular lymph node, there are extensive expression of viral antigen in through the 
section (100x). (F) Higher magnification of E, the antigen expression is seen in the cells in the follicle 
and in the interfollicular zones (arrowheads), VEC (short arrow) and in individual circulating 
leukocytes in the vessel lumen (long arrow), (200x). BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin 
counterstain. 
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3.2.2.4 Spleen  

In total, 28 spleen samples were examined. Of these, 23 were RNA-ISH-positive, 

whereas only 11 were qPCR-positive, with variable virus loads, with a median 

number of 15 virus copies. Similar to the lymph nodes, the RNA-ISH signal intensity 

was not always, but sometimes correlated with the qPCR results (Figure 3-19 A,B), 

whereas the viral Ov8 antigen expression was positively correlated with the viral 

load (Figure 3-19 C,D). Generally, when viral transcripts were detected in spleen, it 

was usually also detected in mediastinal lymph nodes. 

Viral Ov2.5 and ORF65 transcripts were mainly found in a proportion of 

lymphocytes in the follicular mantle zones and in the red pulp, in vascular 

endothelial cells and in fibroblasts around vessels and occasionally in TBM (Figure 3-

19 A,B). viral Ov8 antigen was mainly expressed in FDCs and macrophages and in 

vascular endothelial cells (Figure 3-19 C,D). Double RNA-ISH and IH staining 

confirmed that the cells carrying viral transcripts in the mantle zones are B cells, 

whereas T cells were negative in the RNA-ISH (Figure 3-20 A-D).   
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Figure 3-19. RNA-ISH and immunohistology for viral Ov8 antigen. Spleen of a one year-old cow 
without MCF (13L-2591A) with a viral load of 3600 virus copies. 
(A) RNA-ISH for ORF65, splenic white pulp, signals in a large proportion of cells at the mantle zone 
(long arrow) and in individual cells in the red pulp (100x). (B) Higher magnification of A, showing 
strong signals in lymphocytes  at the mantle zone of the follicle (long arrow), and weaker signals in 
cells inside the follicle(short arrow), (400x). (C) IH for viral antigen (brown), showing the intense 
antigen expression through the section. (D) Higher magnification of C, antigen is expressed is seen in   
individual lymphocytes (long black arrow), in a possible macrophage (red arrow), in VEC (red arrow), 
and in possible stromal fibroblasts (short arrow) (400x). BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin 
counterstain. 
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Figure 3-20. RNA-ISH and immunohistology for T and B cells. Serial sections of spleen of the one 
year-old cow without MCF (13L-2591A, see also Figure 3-19) with a viral load of 3600 virus copies. 
(A) Double RNA-ISH and Pax5 staining, confirming the co-localisation of viral transcripts at the 
mantle zone in the majority of Pax5

+
 B cells (yellowish brown), (200x). (B) Higher magnification of A, 

confirming that a proportion of PAX5
+
 B cells exhibit a positive RNA-ISH signal (arrows) at the mantle 

zone (M). (C) Double RNA-ISH and CD3 staining, showing that CD3
+
 cells (T cells, brown colour) 

outside the follicle, but otherwise mainly located around the follicles (200x). (D) Higher 
magnification of C, margin of the follicle (M), confirming that that the CD3

+
 T do not exhibit any ISH 

signal (arrows) (400x). BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin counterstain. 
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3.2.2.5 Peripheral blood leukocytes 

PBL pellets were prepared from the blood of nine clinically normal cows (collected 

at an abattoir) aged 13 months to two years. Six of these samples tested positive by 

qPCR (i.e. were viraemic) with viral DNA loads varying between 1 and 86 copies. The 

results are shown in Table 3-6, and also Appendix Table 2b. 

Two of the qPCR-positive PBL pellets were examined by RNA-ISH and 

immunohistology for viral Ov8 antigen. In both pellets, viral transcripts were 

detected in up to 10 % of leukocytes that had the morphology of lymphocytes 

and/or monocytes (Figure 3-21 A). viral Ov8 antigen was weakly expressed in 

occasional cells with the morphology of monocytes (Figure 3-21 B). To assess the 

ratio of B:T cells, pellets were stained for CD3 and Pax5. This showed ratios of 2-3 % 

and 20-30 %, for B and T cells respectively (Figure 3-21 C,D). Based on this 

immunohistological staining of consecutive sections for CD3 or Pax5, it was not 

possible to comment on the lymphocyte subtype that carried viral transcripts. 

 

 

Table 3-7. Amount of positive samples and OvHV-2 DNA loads in WBC samples of 
normal cows. 
 

Cattle Age qPCR ISH IH 

13L-4889 D 13 mo - 

ND 

 
 
 

ND 

 

13L-4889 E 13 mo - 

13L-4889 C 18 mo 5 

13L-4889 A 19 mo 86 

13L-4889 B 19 mo 1 

Cow 1 20 mo - 

Cow 2 2 y 32 

13L-4883 F 2 y 4 + - 

13L-4883 G 2 y 20 + - 

Abbreviations: ND: not done; ‘’-‘’: negative; ‘’+’’: positive. 
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Figure 3-21. RNA-ISH and immunohistology for viral Ov8 antigen and T or B cells. Pelleted peripheral 
blood leukocytes of a two year-old cow without MCF (13L-4883 G) with a viral load of 20 virus 
copies.  
(A) RNA-ISH for Ov2.5. About 5-10 % of the leukocytes have ISH signals; morphemically consistent 
with lymphocytes (red arrow) or monocytes (red arrowheads), (200x). (B) IH for the viral antigen. 
Positive reaction in occasional monocytes (200x). (C) IH for Pax5, confirming that the B cells (brown) 
comprises approximately 2-3 % of the leukocytes count (200x). (D) IH for CD3, showing that the T 
cells (brown) comprise approximately 20-30 % of the leukocytes (200x). BCIP/NBT (RNA-ISH), DAB 
(IH), haematoxylin counterstain. 
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3.2.2.6 Uterus and placenta 

In five cattle, uterus and placenta were tested by both qPCR and RNA-ISH and in 

one cattle, samples were additionally tested for viral antigen. In a 12-year mother 

(case no. S13-1452), the uterus and foetal placenta (and all other organs in both) 

were negative by both qPCR and RNA-ISH. In an eight year-old cow (case no. S13-

1360), both the uterus and placenta had one virus DNA copy and ISH-positive. In a 

five-year old cow (case no. S13-1355), both the uterus and placenta were ISH-

positive, while the viral DNA was only detected in uterus (56 virus copies per 100 ng 

genomic DNA). The mediastinal lymph node was positive by qPCR in that animal (no 

ISH data). This animals foetus was ISH-positive in its four organs and PCR-positive in 

two with 3 - 4 virus DNA copies. In another five-year old cow (case no. S13-1483), 

the uterus was PCR-negative, but positive for viral transcripts and antigen (also 

positive in its other organs), while the foetal placenta was ISH-positive and negative 

for viral Ov8 antigen (no qPCR data for placenta, all other organs were PCR/antigen-

negative, but ISH-positive). In a younger calf, aged eight weeks (case no. S13-1434), 

the uterus was PCR-negative, but ISH- positive (only with ORF65 probe, Ov2.5 was 

negative), all other organs were PCR-negative/ISH-positive. 

Generally, in uterus, the viral transcripts were found in stromal cells, 

glandular epithelium and vascular endothelial cells (Figure 3-22 A,B), while the viral 

Ov8 antigen was expressed by stromal fibroblasts but not by epithelial cells. Also in 

placenta, usually viral transcripts were exhibited in stromal cells and vascular 

endothelial cells (Figure 3-22 C,D), and in maternal placental epithelium and 

glandular epithelium. 
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Figure 3-22. RNA-ISH in uterus and placenta. A five year-old pregnant cow without MCF (S13-1355.4) 
with virus loads of 58 virus copies in the uterus and zero copies in the placenta. 
 (A) RNA-ISH for Ov2.5, myometrium, ISH signals seen in smooth muscle cells (arrow) and VEC (short 
arrow), (200x). (B) RNA-ISH for Ov2.5 in the same cow as A, endometrium, showing very strong 
signals in the glandular epithelial cell (long arrow), in VEC (arrowheads) and vascular smooth muscle 
cells (short arrows), (200x). (C) RNA-ISH for Ov2.5, maternal placentome of same cattle as C, weak 
signals in stromal cells (arrows), (200x). (D) Higher magnification of E, showing and weak signals in 
VEC (400x). BCIP/NBT, haematoxylin counterstain. 
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3.2.2.7 Controls 

Negative control sections served to check the specificity of the probes and reliability 

of the results obtained with the antisense probes. The sense probes were tested in 

lung, lymph node, tongue and spleen sections and did not yield any signal in any of 

the tissues (Figure 3-18 A-D). However, with the ORF65 sense probe, a diffuse 

background staining was seen in some sections. 

 

 
 

 
 
Figure 3-23. RNA-ISH negative controls. Sense probes in lung, mediastinal lymph node, tongue and 
spleen of a normal cow without MCF. 
(A) RNA-ISH for ORF65 sense, lung of one year old cattle (13L-2591A, see also Figure 3-14 for 
comparing ISH signals). No ISH signals are seen in the section (100x). (B) RNA-ISH for Ov2.5 sense, 
mediastinal lymph node, of the same cattle in A, follicle is outlined by a black circle for visibility. 
There are no ISH signals (100x). (C) RNA-ISH for Ov2.5 sense, tongue of a 2.5 year old cattle (13L-
2600D). No ISH signal in the epithelium (100x).  (D) RNA-ISH for Ov2.5 sense, spleen of the same 
cattle in C. The white pulps are outlined by black circles for visibility, no ISH signals are observed 
(100x). BCIP/NB, haematoxylin counterstain. 
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3.3 Assessment of OvHV-2 in animals with MCF 

The third group of animals examined were cattle, water buffaloes and a Javan 

Banteng with MCF caused by OvHV-2, confirmed by post-mortem findings, 

histopathological examination and PCR. From six cattle, material for OvHV-2 qPCR 

was available also, all other animals were only tested by RNA-ISH and, selectively, 

immunohistology for OvHV-2 Ov8 antigen. 

3.3.1 Quantification of OvHV-2 DNA loads 

Samples from six cattle and a Javan banteng with MCF, aged between 11 months 

and 3 years, were tested by qPCR and the viral loads were quantified (Table 3-7). In 

addition, the aborted foetus at eight months gestation of the MCF affected Javan 

Banteng was tested (Table 3-8). 

In the six cattle, samples from eight different organs were tested. All 

samples were positive with higher virus loads than in the other animal groups, 

ranging between 5,227 viral copies in the small intestine to 1,360,448 in the 

mesenteric lymph nodes. The average value copy number was 189,225 and the 

median was 52,539 (Table 3-8). In the aborted foetus, spleen and liver were positive 

with relatively low viral loads (1 and 2 virus copies respectively). Results obtained in 

the individual cases is provided in Table 3 in Appendix 

 

 
Table 3-8. Positive samples and OvHV-2 DNA loads in tissues of animals with MCF. 

Tissue 
samples 

a
 OvHV-2 DNA copies 

Total Pos Min 
b
 Max 

c
 Average Median 

Mediastinal LN 4 4 106,283 328,288 175,276 133,268 

Mesenteric LN 4 4 42,029 1,360,448 414,008 126,778 

Liver 1 1 12,281 

Small intestine 1 1 5,227 

Kidney 1 1 18,843 

Placenta 1 1 152,665 

Heart 1 1 16,769 

Eye 1 1 86,234 

a. Samples tested, Total: the number of all samples taken for that particular type of specimen. Pos: 
those tested positive. B: Minimum virus copies. c: Max: maximum virus copies. LN: lymph node. 
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Table 3-9. Amount positive samples and OvHV-2 DNA loads in tissues of the aborted 
foetus at eight-month gestation from a dam affected with MCF. 
 

Aborted foetus samples OvHV-2 DNA copies 

Thoracic fluid 0 

Spleen 2 

Liver 1 

Kidney 0 

 
 

3.3.2 Histological observations and identification of cells harbouring OvHV-2 RNA 

and antigen in tissues and lesions of cattle with MCF 

Tissues from 10 MCF retrospective cases were tested; in five, only tissue blocks 

were available for RNA-ISH and immunohistology and in the other five, tissues 

(partial though) were available for qPCR.  

Haematoxylin and eosin stained tissue sections of lesions from MCF affected 

bovine were microscopically examined and the disease confirmed based on the 

typical histological changes (vasculitis and epithelial necrosis) (Figures 3-14 A,B, 3-

25 A, 3-26 A, 3-27 A,C, 3-28 A). A wide range of samples from different organs were 

examined by RNA-ISH and immunohistology, to identify viral transcripts and antigen 

in infected cells. All tested animals with MCF were positive for RNA-ISH and 

immunohistology for OvHV-2 Ov8. Additionally, immunohistology was performed to 

highlight the infiltrating lymphocyte subtypes, i.e. B cells (CD20-positive, Pax5-

positive) and T cells (CD3-positive) in lesions in animals with MCF. Both Ov2.5 and 

ORF65 probes yielded almost identical signal intensity and cell ranges (Figures 3-24 

A,B). However, in a few tissues, one of the probes did not work, which was most 

likely due to the poor preservation of the tissues post mortem. Almost invariably, in 

most of the tested organs, viral transcript and antigens (in selected tissues) were 

detected in infiltrating lymphocytes, macrophages, vascular endothelial cells, 

epithelial cells, alveolar epithelial cells, fibroblasts and neurons. The detailed 

description of each MCF case result is provided in Table 3 in the Appendix. 
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3.3.2.1 Lung  

Six lung samples were examined by RNA-ISH, in all of them histological changes 

were noticed and all were ISH-positive. One lung was additionally tested by 

immunohistology for viral Ov8 antigen and was positive. Generally, histological 

changes in lung included mild to moderate hyperaemia; activated VEC associated 

with mild to moderate perivascular lymphocytes and macrophage like cells 

infiltration surrounding and partly infiltrating the vessels walls. The vasculitis was 

mainly lymphocytic-dominated arteritis; mild to moderate multifocal of (partly) 

mixed cellular infiltrates peribronchial mononuclear infiltrates. There were also mild 

to severe oedema and alveolar haemorrhages (Figure 3-243 A,B; 3-25 A).  

In the lung, there are no qPCR data to measure amount of the virus. The 

viral transcripts were strongly exhibited in a large proportion of infiltrating 

perivascular and peribronchial lymphocytes. Also in the bronchial columnar 

epithelial cells, vessels endothelium and in few circulating leukocytes in lumens of 

the vessels (Figures 3-24 C-E, 3-25 B). In addition, the viral Ov8 antigen was 

abundantly expressed through the section and was seen in the infiltrating and 

intravascular leukocytes, occasional macrophages, vascular endothelial cells, 

individual alveolar cells and chondrocytes in the bronchus (Figure 3-25 C,D). 
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Figure 3-24. Histology and RNA-ISH of lung in an 11 month-old cow with MCF (12L-0200 B). 
(A) HE, pulmonary changes showing defused hyperaemia, lymphocytes and macrophage like cells 
surrounding the artery (long arrows) and the bronchiole (short arrow), bar=20µm. (B) Higher 
magnification, showing perivascular lymphocytes (long arrow) and the activated VEC (short arrow), 
bar=20µm. (C) ISH for ORF65, strong signals in the infiltrating perivascular and peribronchiolar (Br) 
lymphocytes (arrows) and weaker signals in bronchiolar epithelial cells (100x). (D) Higher 
magnification of C, showing a proportion of infiltrating perivascular lymphocytes have ISH signals 
(400x). (E) ISH for Ov2.5, signals in similar cellular range as in ORF65 (100x). (F) Higher magnification 
of E, showing strong signals in activated VEC (arrowhead), weaker signals in columnar bronchiolar 
epithelial cells (black arrow) and in individual cells in the exudate in the bronchiolar lumen (red 
arrow), (400x). Haematoxylin and eosin (histology), BCIP/NBT (RNA-ISH), haematoxylin counterstain. 
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Figure 3-25. Histology, RNA-ISH and immunohistology for viral Ov8 antigen in lung lesions. An 18 
month-old water buffalo with MCF (S11-564.2).  
(A) HE, Mild to moderate disseminated perivascular infiltrated lymphocytes (arrows), (100x). (B) ISH 
for Ov2.5, strong signals in infiltrating lymphocytes and VEC (arrowhead), respiratory epithelial cells 
(long black arrow), perivascular lymphocytes (long red arrow) and in alveolar cells (short black 
arrow), (200x). (C) IH for viral antigen (brown), the virus antigen is extensively expressed through 
most of cell types in the lung (100x). (D) Higher magnification of D, antigen is strongly expressed in 
infiltrating lymphocytes (short red arrow), possible alveolar macrophages (long red arrow), alveolar 
cells (short black arrow), VEC (arrowhead) and weaker expression in bronchus epithelial cells (long 
arrow), (400x). Haematoxylin and eosin (histology), BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin 
counterstain  
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3.3.2.2 Muzzle and alimentary tract   

Only one muzzle was examined by RNA-ISH and was histologically characterised by 

multifocal epidermal erosions and ulcerations, mixed leukocytic subepithelial 

perivascular infiltration, increased macrophages and fibroblasts, melanin 

incontinence, and VEC activation. There are no qPCR data for muzzle, but the viral 

transcripts were exhibited in the hair follicles, different proportions of basal 

epithelial cells, epidermal gland epithelium, and in inflammatory leukocytes. In skin 

samples, the viral Ov8 antigen was expressed in basal cells in hair follicles, individual 

basal epidermis cells and in dendritic cells at the basement membrane. 

The oral lesions were mild to moderate diffuse interstitial lymphocytic and 

macrophage infiltration. Other findings observed were similar to that in muzzle, 

with more extensive erosion and ulceration (Figure 3-26 A). Tongue also had similar 

lesions as oral mucosa, and the viral transcripts were revealed in patches of 

epithelial cells and signals were more intense with the inflammation, also in 

infiltrating leukocytes, in a few fibrocytes in interstitium, but the endothelial cells 

did not show viral transcripts (Figure 3-26 B).  

In other parts of the alimentary tract such as small intestine, there was 

evidence of congestion, distortion at villi tips and focal necrosis in the villi. 

Moderate to marked diffuse mucosal and perivascular submucosal mixed cellular 

lymphocyte-dominated infiltration (Figure 3-26 C). The viral transcripts were 

revealed in the in epithelial cells of the villi and in infiltrating leukocytes (Figure 3-26 

D). The virus Ov8 antigen was expressed in a large proportion of infiltrating mucosal 

lymphocytes and plasma cells; and also in VECs (Figure 3-26 E).  

Many other parts of digestive system, respiratory system, urinary system; 

and heart were tested by the RNA-ISH and a selection of immunohistology, their full 

details are listed in Table 3 in the Appendix. 
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Figure 3-26. Histology and RNA-ISH and immunohistology for viral Ov8 antigen in alimentary tract of 
cattle with MCF. Alimentary tract of an eleven-month-old cow (12L-0200) figures A-C, and an adult 
water buffalo (S12-0124) figure D. 
(A) Oral mucosa, erosion of the mucosa with massive focal necrosis extending to submucosa, the 
lumen (L) is covered with inflammatory exudate (200x). (B) ISH for Ov2.5, tongue, strong signals in 
basal and outer epithelial cells (long arrows) and in individual cells in the lumen (short arrow), 
(200x). (C) Small intestine- duodenum, congestion, distortion of the villi tips and necrotic foci n the 
villus (long arrow), (100x). (D) IH for viral antigen, small intestine. Reaction in the majority of 
lymphocytes in mucosal infiltrates (long arrows)  and in VEC (short arrow), bar=20 µm. Haematoxylin 
and eosin (histology), BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin counterstain. 
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3.3.2.3 Lymph nodes and spleen 

All of the seven lymph nodes (mediastinal and mesenteric) from four bovine MCF 

cases examined by qPCR were positive. Only one lymph node was tested for both 

qPCR and RNA-ISH, another three lymph nodes (two retropharyngeal and one 

unknown) were tested only by RNA-ISH and were positive. The lymph nodes 

contained relatively higher average viral loads ranging between 175,276 and 

414,008 virus DN copy numbers per 100 ng genomic DNA in mediastinal and 

mesenteric lymph nodes respectively. The peak viral loads among all organs was 

detected in mesenteric lymph node (1,360,448 viral DNA copies per 100 ng genomic 

DNA). Histological changes in lymph nodes were characterised by different degrees 

of mild to moderate sized mildly depleted secondary follicles, sinus histiocytosis 

(Figure 3-27 A). Viral transcripts were revealed in the cortex mainly in lymphocytes 

at the periphery and centre of the follicles and at the T cell zones, and also in cells in 

the medulla and sinuses (Figure 3-27 B). The viral Ov8 antigen was expressed in 

lymphocytes at the margin of follicles and in the T cell zones, in sinus FDCs and 

macrophages, and vascular endothelial cells (Figure 3-27 C).  

Four spleen specimens were tested by RNA-ISH, one was additionally tested 

by immunohistology for viral antigen. The changes in the spleen were characterised 

by small to moderate sized secondary follicles, diffused lymphocytic (and few 

macrophages) infiltration, cell-poor to cell-rich red pulps (Figure3-28 A). There are 

no qPCR data for spleen, but with the RNA-ISH, viral transcripts were intensively 

revealed in the secondary follicles and in large proportion of lymphocytes in T cell 

zone. Also ISH signals were seen in vascular endothelial cells and sporadic 

leukocytes throughout the red pulp zones (Figure 3-28 B,C). The viral Ov8 antigen 

was expressed in a proportion of lymphocytes in the follicles and in the T-cell zones, 

in FDCs, in few cells in red pulp and in the vessels endothelial cells (Figure 3-28 D).
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Figure 3-27. Histology, RNA-ISH and immunohistology for viral Ov8 antigen in retropharyngeal lymph 
node lesion. From two adult water buffalos with MCF (S12-0083) figures A, B & C; and (S12-0124) 
figure D. 
(A) HE, moderate sized mildly depleted secondary follicle (SF), moderate lymphoid hyperplasia, bar= 
50µm. (B) RNA-ISH for Ov2.5, viral transcript are seen in lymphocytes at the periphery and centre 
(long arrows) of the cortical follicle, and a few in the T cell zones and medulla (arrowheads), bar= 
50µm. (C) Higher magnification of the follicle’s centre, ISH signals are seen in lymphocytes, bar= 
10µm. (D) IH for viral antigen, the antigen is expressed in FDC (medium black arrow), in a few LC in 
follicle periphery and in T cell zones (red arrows), in possible dendritic cells or possibly macrophages 
in the sinuses (long black arrows), and in VEC (short black arrow), bar= 20 µm. Haematoxylin and 
eosin (histology), BCIP/NBT (RNA-ISH), DAB (IH), haematoxylin counterstain. 
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Figure 3-28. Histology, RNA-ISH and immunohistology for viral Ov8 antigen in spleen lesion. An 11 
month-old cow (12L-0200 B) figures A & B; and an adult water buffalo with MCF (S12-0124) figures C 
& D. 
(A) Small secondary follicles and T cell zone, the red pulp is cell rich and there are necrotic foci 
(arrow), (200x). (B) RNA-ISH for Ov2.5, viral transcript is revealed in many lymphocytes at the follicle 
centre and mantle zones, and other weaker signals in individual cells interfollicular areas (200x). (C) 
IH for viral antigen, the antigen is extensively expressed in a proportion of lymphocytes in follicle (F) 
periphery (P) and in T cell Zones (T) and in cells in the red pulp (R), bar= 50µm. (D) Higher 
magnification of the follicle periphery of C, viral antigen is in lymphocytes (long arrows), in a possible 
FDC or macrophage (short arrow), and in activated VEC (arrowhead). Haematoxylin and eosin 
(histology); BCIP/NBT (RNA-ISH), DAB (IH) haematoxylin counterstain.  
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3.3.2.4 Rete mirabile and brain 

The classical histopathological change unique to MCF is usually observed in the rete 

mirabile in the brain, which is characterised by non-purulent lymphocytic vasculitis 

and perivascular infiltration. A total of seven rete mirabile were examined 

histologically and were found to have mild to severe lymphocytic dominated 

vasculitis characterised by activated vessel endothelium and fibrinoid necrosis in 

the vessel walls and also lymphocytic infiltration around the vessel wall (Figure 3-29 

A). There are no qPCR data to measure virus DNA loads in these tissues. The viral 

Ov2.5 and ORF65 transcripts and Ov8 antigen were seen in all samples and 

observed in large proportions infiltrating in lymphocytes around the vessels, in 

vascular activated endothelial cells, in lymphoblasts and arterial wall myocytes 

(Figure 3-29 B,C,E,F). In addition, the majority of infiltrated leukocytes were shown 

to be T cells (Figure 3-29 C).  

In the brain, the architecture appeared normal, but there were congestion 

and perivascular cuffing with lymphocytes and macrophages with necrosis of the 

arterial endothelium. The viral transcripts were revealed in neurons, vascular 

endothelium and infiltrating lymphocytes. 
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Figure 3-29. Histology, RNA-ISH and immunohistology for T cells marker and viral Ov8 antigen in rete 
mirabile. An 18 month-old water buffalo with MCF (S11-0654). 
 (A) Moderate transmural lymphocytic infiltration (arrow), (200x) (B) RNA-ISH for Ov2.5, extensive 
signals (dark blue) in most of cells through the section (200x). (C) Higher magnification, ISH signals 
are seen in infiltrating lymphocytes (red arrow), VEC (short black arrow), smooth muscle cells or 
probably fibroblasts (long black arrow), (400x). (D) IH for CD3, showing that the majority of 
infiltrating leukocytes are CD3

+
 T cells (brown), (200x). (E) IH for viral antigen (brown), the antigen is 

expressed in majority of cells through the section, (200x) (F) Higher magnification, virus antigen is 
expressed in infiltrating lymphocytes (medium arrows), VEC (short arrow), smooth muscle cells and 
probably fibroblasts (long arrow), (400x). Haematoxylin and eosin (histology); BCIP/NBT (RNA-ISH), 
DAB (IH), haematoxylin counterstain. 
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3.3.2.5 Controls 

Negative control sections served to check the specificity of the probes and reliability 

of the results obtained with the antisense probes. The sense probes were tested in 

lung and other tissue sections and did not yield any signal in any of the tissues 

(Figure 3-30 A & B). However, with the ORF65 sense probe, a diffuse background 

staining was seen in some sections. 

 

 

 
 
Figure 3-30. RNA-ISH negative controls for Ov2.5 sense probe in lung. An 11 month-old cow with 
MCF (12L-0200 B, see Figure 3-24 to compare antisense ISH signals). 
(A) Lung bronchus (arrow) and an adjacent vessel (short arrow), there are no definitive ISH signals 
through the section (200x). (B) Higher magnification of A (400x). BCIP/NBT, haematoxylin 
counterstain. 
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4.1 OvHV-2 infection in the reservoir host, sheep 

4.1.1 The qPCR set up for quantification of OvHV-2 

A highly sensitive qPCR optimisation and validation was necessary to assess OvHV-2 

load in animals, especially those that have low virus loads such as sheep and cow 

without MCF. When both nested PCR and one step qPCR methods were evaluated, 

the qPCR was found to be more sensitive, time saving and simpler for quantification 

of the virus DNA copy numbers. The nested PCR had a number of drawbacks such as 

it was complicated to calculate the viral copies because the first round amplification 

did not always give consistent or even amplification of the standard serial dilutions; 

thus, using standard templates from the first round PCR did not always yield an 

appropriate standard curve in the qPCR. This situation probably exists when dealing 

with herpesviruses at low viral copies. For example, another gammaherpesvirus, 

BoHV-6, has low viral loads in cattle. Here too, the qPCR was shown to be more 

sensitive than the nested PCR (Kubiś et al., 2013). 

Eventually, after a series of optimisations, the one-step qPCR was enabled to 

detect one copy of the viral target DNA per reaction mix when tested on standards 

from 1 to 1 x 105 copies. The amplification plot yielded a linear standard line (Figure 

3-1). The final viral DNA copy numbers were obtained after normalisation, using the 

mammalian housekeeping gene 12S RNA. Our TaqMan qPCR setup that amplifies 

the OvHV-2 ORF63 gene has a lower detection limit than previously published qPCR 

protocols that were used to measure the OvHV-2 DNA loads in animals. These 

protocols were used to amplify conserved MCFV DNA polymerase (DPOL) gene of a 

minimum detection limit of 50 virus copies (Cunha et al., 2009), or targeted OvHV-2 

ORF63 tegument gene with a minimum detection limit of 10 virus copies (Hüssy et 

al., 2001). This makes the protocol developed in this study a useful tool to monitor 

the OvHV-2 loads and also for diagnostic purposes for SA-MCF. 

4.1.2 Amounts of OvHV-2 in sheep  

Sheep are the known natural host of OvHV-2 and are infected without developing 

MCF under natural conditions, as reviewed in chapter one. In sheep, different 

tissues were found to harbour OvHV-2 (Hüssy et al., 2002). In our study, a number 

of randomly-selected naturally-infected sheep were tested by the qPCR, and the 
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quantification data showed high variability in OvHV-2 DNA copies in the examined 

sheep population (Table 3-2). However, virus loads were variable and generally low, 

the overall median value was 5.5 copies per 100 ng genomic DNA. This very high 

variability could be due to a number of factors: first, the samples were taken from a 

heterogeneous population of animals at different ages; each individual was infected 

at an unknown time point and could have been exposed to variable initial viral 

doses. This is in contrast to a scientific project where age and viral inoculum dose 

can be monitored. Secondly, the nature of the short episodic shedding pattern of 

OvHV-2 in sheep that especially happens between the ages of about 5 – 9 months. 

The viral loads generally subside after the age of nine months (Li et al., 2001a; Li et 

al., 2004). Sampling might not have coincided with the episodes of shedding except 

probably for few young sheep, which possibly were shedding the virus. The 

detection of viral transcripts (Ov2.5 and ORF65) and Ov8 antigen (by RNA in situ 

hybridisation [RNA-ISH] and immunohistology [IH] for viral antigen) yielded more 

consistent results than the qPCR. This is because of the larger anatomical size and 

the number of cells examined proportion of cells exhibiting viral mRNA in the 

section. Since only very small portions of tissues (approximately 1 x 2 x 1 mm) were 

used for DNA extraction and qPCR compared to the large area (generally 

approximately 1 x 2 cm) which were used for RNA-ISH or immunohistology. 

In the 28 sheep tested by qPCR, only two animals had relatively very high 

viral loads in their organs, meaning a possible viral shedding status, while all the 

others were relatively much lower, indicating a latent status infection. Evaluation of 

the results of detecting OvHV-2 DNA by qPCR in sheep according to ascending age 

(Table 3-1), indicated that from 7 - 11 month-age, the viral DNA was readily 

detectible and that animals tend to be positive for viral DNA in most if not all of 

their organs. Although not as many samples were tested, the viral quantification 

results from sheep peripheral blood leukocytes (PBLs) showed that all blood 

samples (n=5) were positive with low virus loads. This can make blood a favourable 

and easy to collect sample to test for OvHV-2 presence in sheep over the 

nasopharyngeal swabs where only three of six swabs were positive.  
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4.1.3 Localisation of OvHV-2 infected cells in sheep 

It has been previously shown that sheep can shed OvHV-2 (Li et al., 2004), but 

details about the cells that can support the virus replication are not well described. 

Because of the unavailability of an in vitro system to support OvHV-2 propagation, it 

was not known which cell types can support either lytic and latent phases of OvHV-

2. It is suggested that transmission of OvHV-2 from persistently-infected sheep to 

naive sheep is through nasal secretion that can contain high numbers of the virus (Li 

et al., 2004). Hence, respiratory airways are an important location to study the 

mechanism of OvHV-2 infection. Using fluorescence immunohistological techniques 

for capsid protein (ORF25, lytic cycle product), it was shown that respiratory 

alveolar epithelial cells are lytically infected in experimentally infected sheep early 

during infection (Taus et al., 2010). This indicated that those cells were lytically 

infected, not latently.  

           In our study approach, we have used RNA probes to latent and lytic genes 

transcripts (Ov2.5 and ORF65 respectivly) to identify cells that support either 

infection cycles of OvHV-2. A precise in vivo detection technique to test a wider 

range of tissues was needed to provide information about in situ virus localisation 

and whether the infection is lytic or latent. We developed and validated riboprobes 

for RNA-ISH to detect and localise OvHV-2 latent and lytic transcripts in the cells 

that transcribe those viral genes. In addition to the RNA-ISH, an immunohistological 

technique was applied to detect a viral glycoprotein (a lytic cycle protein, product of 

OvHV-2 Ov8 gene), using a specific polyclonal antibody. As a result, it was shown 

that a wide range of cells in which both transcripts were found at the same time, 

suggesting either a lytic or abortive lytic infection. Additionally the viral antigen was 

found in same cell types such as RNA-ISH and additionally in other cells in sheep. 

Generally, by the RNA-ISH, in respiratory and alimentary tract, lymphoid tissues, 

and reproductive organs, infected cells were detected as the following cells types: B 

lymphocytes, macrophages, mucosal and glandular epithelial cells, type II alveolar 

cells, and vascular endothelial cells (VEC). While the viral antigen, was found in 

follicular dendritic cells, macrophages, and epithelial cells, VEC and fibroblasts 

(especially in tissues where the viral loads were high in the last two cell types). This 

difference in transcription/expression by the OvHV-2 in lung and other organs 
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indicates that OvHV-2 biology is not the same in different cell types as it transcribes 

genes in certain cells and expresses Ov8 protein (and possibly other proteins) in 

specific cell types. This implies that in cells where the Ov8 protein was seen, may 

support virus replication as it is a structural protein (putative glycoprotein). On the 

other hand, according to Ov8 staining results, it was noticed that the type of 

infected cells was rather viral load dependant, i.e. in tissues with low virus load, the 

Ov8 antigen was only seen in FDC (figure 3-4 A), while with high virus loads the 

antigen was found in many cell types such as epithelial cells, VEC, fibroblasts, 

macrophages and FDC (Figure 3-5 C,D). 

 In addition to the previous data of Taus et al., 2010, besides the alveolar 

type II cells, we have identified a wider range cell types that are targeted by and 

may support OvHV-2 replication such as other epithelial airway cells, VECs and 

lymphocytes (Figure 3-2 A,B). Additionally, Ov8 antigen was expressed in scattered 

individual type II pneumocytes and peribronchial fibroblasts (Figure 3-4 B,C,D). In 

sheep, BALT are well developed (after one month of age) and have a follicle-like 

compartment containing a secondary follicle consisting of aggregates of B cells, few 

CD4+ T cells, macrophages and dendritic cells and outside of follicles are T cells 

(reviewed in (Liebler-Tenorio & Pabst, 2006)). The RNA-ISH signals (Ov2.5 and 

ORF65) were observed as a distinct pattern of clusters of positive cells within the 

BALT follicle and then we have confirmed that these clusters are predominantly B-

lymphocytes (Figure 3-3 A-F). The epithelial cell infection by OvHV-2 in sheep lung 

resemble that of other gammaherpesviruses such as the murine herpesvirus 68 

(MHV-68) in mice lungs (Stewart et al., 1998).  

In the tongue, viral transcripts were observed in superficial epithelial cells, 

salivary gland epithelial cells and VEC in the submucosa (Figure 3-5 A,B) and ov8 

antigen was found in sub-epithelial VECs and in outer epithelial cells (Figure 3-5 

C,D). Similarly, in the muzzle, viral transcripts were revealed in epidermal cells, 

glandular epithelium and hair follicles epithelial cells (Figure 3-5 E), the ov8 antigen 

was expressed in (epi)dermal basal epithelial cells (Figure 3-5 F) where those cells 

are actively proliferating, and in macrophages. Infection in tongue and muzzle 

suggests that contact transmission is another important route of OvHV-2 

transmission, especially when dams lick neonate lambs face and the tongue and 
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muzzle come in contact with the neonate. This may explain finding of the viral 

transcripts in very young lambs (the five weeks-old [Figure 3-5 A] and the three 

month-old). 

In lymphoid organs such as the lymph nodes, the viral transcripts were seen  

mainly in lymphocytes in cortical follicles, and in few interfollicular cells (Figures 3-6 

A-F), and in the spleen specifically and predominantly at the mantle zones (Figure 3-

9 A,B). In both organs, the infected lymphocytes were confirmed to be B cells 

(Figure 3-7 A-D, 3-9 A-D). The ov8 antigen was specifically found in a proportion of 

macrophages and FDCs (Figure 3-8 A,B, 3-9 E,F). Types of infected cells in these two 

organs is again similar to tropism of MHV-68 to B cells and macrophages (Sunil-

Chandra et al., 1992). Macrophages and FDCs cells may also support latent OvHV-2 

infection, as in case of MHV-68 in mice (Flano et al., 2000). How ever only two 

samples of thymus in sheep was tested, but they were negative for viral DNA, 

transcripts or antigen in sheep. 

Mantle zones are composed of mainly mature B cells located at the 

periphery of the follicle; these cells are responsible for antibody production and are 

long-lived cells. Thus the OvHV-2 possibly infects B cells to ensure its persistence as 

is the case with EBV where infected B cells are activated to produce specific 

immunoglobulin and become memory B cells thus avoiding apoptosis (Longnecker 

et al., 2013). In terms of the cell types infection, OvHV-2 may be partially similar to 

KSHV (HHV-8) which shows latent infection in B cells and endothelial cells (Blossom 

& Damania, 2013). Although, the virus may be in a latent state in B cells owing to 

the detection of the Ov2.5 (latent and lytic transcript), the ORF65 (lytic transcript) 

was also found, but the Ov8 antigen was not expressed. The lack of viral Ov8 

antigen in B cells implies that those cells may not support a replicative cycle for the 

virus but only transcribe some lytic mRNAs in a form of abortive infection.  

Finding of the Ov8 antigen in FDC and possibly in macrophages, as these 

cells are phagocytes, implies they could have phagocytized infected cellular debris 

or possibly virus particles. The ISH signals were also seen in cells that were possibly 

macrophages, but because of the harsh preparation of tissue section for RNA-ISH 

and diffusion of colour signals may not be according to the cell morphology, this 

makes it difficult to morphologically distinguish between macrophages and FDC 
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based on RNA-ISH staining. However, OvHV-2 may not replicate in macrophages, 

but it infects and partially transcribe and express its genes (Ov8 in our case), as the 

virus might have been transmitted to macrophages from infected epithelial cells , 

endothelial cells or the B cells by phagocytosis.  

Finding OvHV-2 transcripts (and DNA) in PBLs (Figure 3-10 A) extends 

another previous finding (Hüssy et al., 2002) that suggested peripheral blood 

leukocytes play a role in the systemic spread of OvHV-2 to all body tissues. 

However, the PBL subtypes were not confirmed in our study, but morphologically, 

infected cells were consistent with lymphocytes or probably monocytes. In a 

previous study it was shown by FACS (Fluorescence-activated cell sorting) that 

CD2+/CD4+ T cells and monocytes were positive for viral DNA (Meier-Trummer et al., 

2010). Nevertheless, in our study we showed that B cells were virus-positive in 

tissues, but in the PBL pellet section. A comparison of the ratio of ISH-positive cells 

to stained CD3+ or Pax-5+ lymphocytes, revealed no possible comment which cell is 

the ISH-positive lymphocyte or monocytes. 

Although viral transcripts or antigen were not found in the uterus, but the 

viral transcripts and antigen were found in the placental epithelium (Figure 3-11 A) 

and the stromal fibroblasts and in VEC, (Figure 3-11 B), giving rise to the possibility 

of intrauterine foetal infection through the placenta.  

Generally, results in sheep fit with a model of respiratory spread of OvHV-2. 

The virus first infects alveolar cells; then it is picked by pulmonary macrophages by 

phagocytosis of the infected cell. Macrophages, as APC, then traffic the virus to 

BALT where B cells become infected and then from their the virus spreads 

systemically. 

 

4.2. OvHV-2 infection in cows without MCF 

4.2.1 Detection and amounts of OvHV-2 DNA 

Domestic cattle (cows) are one of the susceptible hosts of MCF viruses worldwide, 

and the disease has been reported since the 1800s (Werner & Hugh, 2008). PCR 

screening to detect OvHV-2 infection in cattle populations has been done previously 

in a few studies. This is in contrast to naturally-infected sheep populations that 

were extensivly surveyed and OvHV-2 has been detected and the shedding patterns 
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has been analysed (Hüssy et al., 2002; Hüssy et al., 2001). In a survey, dairy cattle 

were periodically examined by PCR (and ELISA for MCFVs) for existence of OvHV-2 

DNA. The study has shown that more than half (17 of 30 [57%]) of the population 

had intermittent positive PCR results (at least in one sample over the 18 months 

study time) in nasal and ocular swabs, blood and milk, and none of those cattle had 

clinical signs of MCF (Powers et al., 2005). In our study, we have examined random 

heterogeneous populations of either clinically-normal cows (including foetuses) 

obtained from an abattoir in north England or cows submitted for a diagnostic post 

mortem examination to the Institute of Veterinary Pathology, Vetsuisse Faculty, 

University of Zurich, Switzerland. Surprisingly, we have shown that a large 

proportion of cattle harboured OvHV-2 DNA, viral transcripts (Ov2.5 and ORF65) 

and Ov8 glycoproein antigen in most of their organs. The qPCR test results showed 

that overall 26 of 39 (67%) cattle harboured viral DNA in least one organ. Later we 

have extended these results by finding viral transcripts and antigen by RNA-ISH and 

immunohistology. In addition, six of nine (66.7 %) cattle where only PBL was tested, 

were positive by qPCR. 

Positively-tested cattle showed similar OvHV-2 DNA loads as sheep which 

were highly variable, but generally lower compared to those in sheep, and less 

positive organs per individual bovine animal compared to sheep (Table 3-4). Also 

interestingly, three of seven foetuses (43 %) were positive for viral DNA by qPCR. 

The results in foetuses suggest trans-uterine (vertical) virus transmission. In the 

qPCR-positive cattle, the virus DNA copies were very low and variable between one 

and 156 copies per 100 ng genomic DNA, except for two cases which had relatively 

high viral DNA copy numbers. This implies that that majority of cattle possibly have 

subclinical viral infection, while detection of such a high viral load in the two cases 

(a stillborn calf and a one year-old cow), suggests a replicative viral infection, 

otherwise without development of MCF. The variability in viral DNA copies in cattle 

can be due to the same reasons discussed in qPCR data in sheep (see 4.1.2), which 

are: first, patchy destributio of viral-infectedcells and the those areas may not have 

been taken for qPCR, and secondly, the nature of low virus copes in these animals. 

In this study, it was unexpected to detect OvHV-2 DNA in such a high 

frequency of cattle that were not showing any evident clinical signs or lesions of 
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MCF. The PCR data does not give information about the localisation of the virus in 

cells in tissues or whether the animal is shedding virus, so we used RNA-ISH and IH 

for that purpose. 

4.2.2 Localisation of OvHV-2 infected cells in cows without MCF 

Domestic cattle are considered a susceptible host for OvHV-2 infection and they are 

thought to develop clinical signs of MCF when infected with the OvHV-2. In addition 

to the qPCR where 67 % of animals were positive, more animals (approximately 90 

%) were shown to be positive by RNA-ISH. Only four cows were negative (three 

foetuses and one mature animal) of the 42 tested cattle.  

Either Ov2.5 and ORF65 transcripts and Ov8 antigen were always invariably 

found in a certain range of cell types, including epithelial cells, VEC, lymphocytes, 

macrophages, dendritic cells, and sometimes fibroblasts and smooth muscle cells. 

This is the first time that cattle have been shown to be subclinically infected with 

OvHV-2, in a similar way to that of sheep. 

Lung is likely the primary organ for OvHV-2 entry, infection and replication 

of the virus in cattle, as suggested in other studies (Taus et al., 2006). In our study, 

in a cattle population, 36 % of the lungs were qPCR-positive and even more was 

positive by RNA-ISH. The ISH signal intensity was variable, and generally did not 

correspond with the virus DNA copies in a particular tissue. In some samples the 

lung were positive by RNA-ISH and negative by qPCR. This could be because of the 

relatively patchy viral localisation in lung tissues and the low proportion of OvHV-2-

infected cells. But with the RNA-ISH, a larger area of tissue is examined and picking 

of viral transcripts is much more likely possbile. In cattle lungs, the pattern of 

infection was similar to sheep lungs. Thus, the infected cells (Ov2.5 and ORF65 

transcripts and Ov8 antigen) were epithelial cells (alveolar type II cells, bronchiolar 

columnar epithelial cells); VEC; BALT leukocytes (lymphocytes, macrophages and 

dendritic cells); and pulmonary macrophages (Figures 3-13 A-F, 3-14 A-D). However, 

very occasional B cells were detected in the lung BALT and they were the infected 

lymphocyte type (ISH/Pax5-positive), while the stained T cells were not infected 

(CD3-positive/ISH-negative) (Figure 3-14 A-D).  
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The type OvHV-2-infected cell types in cattle lung is partially similar to what 

is found in sheep where alveolar cells were infected (Taus et al., 2010). In addition, 

the type of infected cells in cattle lung (epithelial and endothelials cell and 

macrophages) resembles that of other gammaherpesviruses such as MHV-68 in 

mice and EBV (Stewart et al., 1998; Sunil-Chandra et al., 1992; Weck et al., 1999). 

Finding infected interstitial and alveolar macrophages, indicates either  the virus is 

probably picked by these cells from virus-infected alveolar cells by phogocytosis, or 

they are infcetd by free virions. Then the virus may replicate and spread from these 

cells to neighbour cells then to B lymphocytes then to systemic lymphocytes 

through blood as we have seen PBL ISH-positive leukocytes (Figure 3-21 A). 

Ov2.5/ORF65 transcripts and Ov8 antigen were aslo found in cattle tongue 

(and muzzle) in VECs cells, mucosal leukocytes and especially in glandular epithelial 

cells and in mucosal epithelial cells (Figure 3-15 A-D). An interesting observation of 

the RNA-ISH in tongue, was that generally the Ov2.5 transcripts were in basal 

epithelial cells (Figure 3-15 A,B), while the ORF65 transcripts were in more 

superficial epithelial cells. An explanation of this is that the virus may have a lytic 

abortive infection of more superficial cells, as these cells normally slough off and 

may release the virus. While Ov2.5 RNA was generaly detected in basal cells, 

suggestive of latent infection. This finding in tongue explains the detection of the 

virus in early age calves, as the dam licks the neonate calf after parturition. 

Horizontal transmission to other cows in a farm can possibly occur by 

contamination of the grass or water trough with oral secretions of OvHV-2 infected 

cow during pasturing or drinking. 

In lymph nodes and spleen, ORF65 and Ov2.5 transcripts and OV8 antigen 

were found in lymphocytes, macrophages, dendritic cells and VECs (Figure 3-16 A-D, 

3-18 A-F, -19 A-D) in the periphery and in the centre follicle in lymph nodes, and at 

the mantle zones in spleen. In both organs, B cells were infected by the virus (Figure 

3-17, 3-20 A,B). These might be the latently infected B cells by OvHV-2, similar to 

other gammaherpesviruses such as Epstein Bar virus (Falk & Ernberg, 1993) and  

Kaposi’s sarcoma-associated herpesvirus (Chen & Lagunoff, 2005). 

Virus DNA was also found in PBL in normal cattle. This is in agreement with a 

previous study where OvHV-2 DNA found in blood samples from healthy dairy cattle 



Chapter Four                                                                                                                          Discussion 

133 
 

without MCF at different intervals during a 20 months study (Powers et al., 2005). 

Our results also showed the infected cell types, a considerable proportion of 

circulating leukocytes with the morphology of lymphocytes and monocytes (Figure 

3-21 A) transcribe viral genes (Ov2.5/ORF65), and a few sporadic cells (possible 

monocytes) were expressing viral Ov8 antigen (Figure 3-21 B). Thus, the virus infects 

a proportion of cells, but it may not efficiently replicate in all infected cells. The 

virus can possibly replicate in circulating monocytes but not in B cells according to 

the results in PBL. Comparing the ratio of ISH-positive cells to stained lymphocytes 

types (B cells 2-3 %, T cells 20-30 %) in the PBL sections (Figure 3-21 C,D), implies 

that either monocytes are the majority of cells containing viral transcripts, or there 

is a possiblity that a proportion of T cells are infected in the PBLs, unlike lymph 

nodes, spleen or lung. The proportion of PBL positive samples (66 %) makes blood a 

favourable and easy-to-collect sample for diagnostic purposes to detect OvHV-2 

subclinical infection in healthy cattle. 

As in the qPCR tests, Ov2.5/ORF65 transcripts were found in uterus and 

placenta in a range of cells including stromal cells, glandular epithelium and VECs 

(Figure 3-22 A-D). Presence of OvHV-2 (and owing to that a proportion of the 

foetuses were found to be infected) in these organs indicate possible trans-uterine 

virus transmission from uterus to placenta and then to the foetus. However, it is not 

known yet whether this infection causes any harm to the foetus or not. In humans, 

intrauterine foetal infection with herpes simplex virus (HSV), CMV and EBV are rare, 

but when happens it may cause severe diseases and different foetal malformations 

(reviewed in (Avgil & Ornoy, 2006)). 

High viral loads were detected in a stillborn foetus (case no. S13-1438), this 

was interesting as the calf was aborted because of a non-infectious, but otherwise 

unknown cause. There could be a relationship between the stillborn and the high 

OvHV-2 loads. The death also could be related to other gammaherpesviruses that 

were previously isolated from aborted calves such bovine herpesvirus 6 (BoHV-6) 

(Gagnon et al., 2010). Viral DNA was not readily detected by the qPCR in early 

gestation in foetal calves, however they  were positive by RNA-ISH. From the results 

of foetuses, it is possible that a proportion of calves are born as OvHV-2-infected, or 

they could have picked the virus soon after birth when licked by infected dams (via 
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the tongue and muzzle). These results can possibly explain why calves at a very 

young ages (five-weeks old) were reported to have MCF in other studies (Abu Elzein 

et al., 2003; Luvizotto et al., 2010). 

 

4.3 OvHV-2 in cattle with MCF 

4.3.1 Amounts of OvHV-2 DNA in SA-MCF  

Cattle with clinical MCF were examined by qPCR to assess the OvHV-2 DNA loads. It 

was noticed that there were significantly higher OvHV-2 DNA copies (generally 

about three logs higher) (Table 3-8) compared to sheep or cows without MCF. 

Generally, lymph nodes had the highest viral loads with an average of 5.9 x 105 virus 

copies, while in non-lymphoid tissues the average was 4.8 x 103. Thus the viral load 

is approximately 100 times more in lymphoid organs than in other non-lymphoid 

tissues. This result suggests that lymphocytes have the highest OvHV-2 loads, as 

they are the main component in lymph nodes. 

In contrast to the dam with MCF with a very high virus DNA copies (a Javan 

Banteng, case no. 14L-1075), very low viral load (1-2 virus copies) was found in the 

aborted foetus (case no. 14L-1075L). This qPCR result in the foetus can be 

interpreted as either contamination with maternal material or there could be an 

intrauterine virus transmission and infection.  

 4.3.2 Localisation of OvHV-2 infected cells in animals with MCF  

MCF tissue sections were histologically examined for classical MCF pathological 

changes, and available tissues were examined by qPCR for virus presence and 

measuring viral DNA loads. Tissue sections were tested by RNA-ISH for Ov2.5/ORF65 

transcripts and by immunohistology for viral Ov8 protein to observe the distribution 

and nature of infected cells in the MCF. The characteristic histological changes were 

confirmative of MCF such as lymphoid proliferation, vasculitis and epithelial 

necrosis (Liggitt & DeMartini, 1980a; b) in examined tissue sections (Figures 3-24 

A,B, 3-25 A, 3-26 A, 3-27 A, 3-28 A).  

In tissues tested from animals with MCF, the Ov2.5 and ORF65 transcripts 

and Ov8 antigen were found in a large proportion of infiltrating lymphocytes, 

macrophages, necrotic epithelial cells and in the normal and activated VECs 
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especially in arteries. For example in lungs, strong expression of both viral 

transcripts and Ov8 antigen were shown in airways epithelial cells (alveolar cells and 

bronchus epithelial cells), perivascular and peribronchiolar infiltrated lymphocytes 

and macrophages, circulating leukocytes inside the vessels lumens and VECs (Figure 

3-24 C-E, 3-25 B). In the alimentary tract, viral transcripts and antigen were found in 

necrotic epithelial cells, infiltrating lymphocytes through the submucosa (Figure 3-

26 B,D). In the lymph nodes and spleen, infected cells were mainly proliferating 

lymphocytes at the periphery and centre of follicles and in many cells in the T cell 

zones, macrophages and VECs (Figure 3-27 B,C,D; 3-28 B,C,D). 

FDC were found to be positive by immunohistology for Ov8 antigen, this is 

probably because those cells uptake the virus particles as antigen presenting cells, 

or they could be infected. MCF is characterized by non-purulent vasculitis in rete 

mirabile in brain (Brown et al., 2007). In the rete mirabile which is a blood vessel-

rich tissue, we demonstrated viral transcripts and antigen in infiltrated perivascular 

lymphocytes and in VECs, also in lymphoblasts and arterial wall myocytes (Figure 3-

29 B,C,E,F). In addition, the majority of infiltrated leukocytes in rete mirabile were T 

lymphocytes (Figure 3-29 D). These infiltrated leukocytes were confirmed to be 

CD8+ T cells in previous studies (Nelson et al., 2010; Simon et al., 2003). In addition 

to CD8+ T cells, a proportion of the infiltrating lymphocyte phenotype were shown 

to be CD43+ T cells, which proliferate in situ in non-lymphoid tissues (Schock & Reid, 

1996), these cells bind to endothelium that may contribute to the vasculitis in MCF. 

4.3.3 General discussion of OvHV-2 infection in sheep, cows without MCF and 

cattle with MCF 

Unlike other gammaherpesviruses that have a relatively a narrow host range, OvHV-

2 has a wider range of hosts and can infect and induce disease in sheep (Li et al., 

2005b), goats (Jacobsen et al., 2007), cattle (Reid et al., 1986), bison (Berezowski et 

al., 2005), deer (Audigé et al., 2001), swine (Albini et al., 2003b), and also 

experimentally in rabbits and hamsters (Buxton & Reid, 1980; Reid et al., 1986) and 

sometimes rarely in other species such as horses (Costa et al., 2009b). The 

susceptibility of all of these species is not the same, some are more liable to 
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infection such as bison and others are more resistant such as domestic European 

cattle (Li et al., 2014). 

In our study, in both sheep and cattle without MCF, OvHV-2 was shown to 

infect almost the same cell types, namely epithelial cells in mucosa and glands of 

muzzle, tongue and bronchial airways, alveolar cells and reproductive organs (in 

female), VECs in most of the organs, and in antigen presenting cells (B cells, 

macrophages and dendritic cells) in BALT, lymph nodes and spleen. However, these 

cells were not always infected in a given tissue. Detection of OvHV-2 DNA; 

ORF65/Ov2.5 transcripts; and Ov8 antigen in the absence of the clinical signs of 

MCF in such a high ratio in cattle populations, is an evidence that cattle are 

potential carriers of OvHV-2 similar to sheep. However, OvHV-2 is seemingly less 

adapted to cattle, and from detecting the very low viral loads, cattle are assumed to 

be latently lifelong infected with OvHV-2. This since it is known that once a 

gammaherpesvirus infects a host, it either induces disease (and sometimes death) 

or lifelong infection of the host (Pellett & Roizman, 2013).  

The difference in OvHV-2 infection between sheep and cattle, is that in 

sheep, generally more tissues/organs per individual animal harboured the virus and 

the viral titres were relatively higher than in cattle. However, OvHV-2 subclinical 

infection in MCF-susceptible species were also previously suspected. Antibodies to 

OvHV-2 were detected in the blood of domestic cattle, bison, elk and deer breeds 

(Benetka et al., 2009; Frölich et al., 1998; Li et al., 1996; Powers et al., 2005). 

Although, finding antibodies does not always mean a subclinical infection, as it can 

also be due to recovered disease. In our study, according to the RNA-ISH and Ov8 

antigen results, OvHV-2 infection in domestic cattle is a mix of latent and lytic 

infection, and since there is no MCF evidence, the animal is considered as 

subclinically infected, similar to sheep.  

In a recent study, a proportion of clinically normal white-tailed deer were 

tested positive (72 %) for OvHV-2 DNA in their PBL (Palmer et al., 2013), this is a 

similar ratio to that found in cattle (67 %) in our study. However, the infection 

incidence is higher than that (as high as 90 %) as shown by RNA-ISH. This is because 

that a low proportion of cells are infected (as shown by th RNA-ISH) that makes it 

difficult to find viral DNA, but the in situ hybridisation technique examines a big 
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tissue area (generally 1 cm x 1 cm) and the chance of encountering virus infected 

cells is much higher. Other studies support the idea that cattle can normally 

harbour OvHV-2. This is when the viral DNA was identified in clinically healthy cattle 

blood, lymph nodes and spleen (Kojouri et al., 2009; Yazici et al., 2006) and in 

American bison (Sausker & Dyer, 2002). In addition to OvHV-2 DNA, 15-A 

monoclonal antibody was used to detect MCFVs seroprevalence in cattle 

population, it was found that about 15% were positive (Yeşilbaǧ, 2007), meaning 

that animals were exposed to one of the MCF viruses. 

Sheep are carriers and they shed the OvHV-2 through their nasal and 

lacrimal discharges (Li et al., 1998; Li et al., 2004). However, we have not collected 

nasal swabs from cattle, but it is possibile that cattle shed cell-free virions since 

tongue and respiratory epithelium were shown to contain OvHV-2 DNA, transcripts 

and protein. To detect shedding virus by cattle, PCR survey for nasal and oral swabs 

can be done in the field. 

An interesting point should be commented on that probably contribute the 

nature of OvHV-2 shedding and may underlie the higher viral loads in sheep lung, is 

the BALT structure difference between sheep and cattle. The BALT structural 

organisation is well developed in sheep, having secondary follicles that contain 

many B cells. We showed that the majority of these B cells are infected by OvHV-2. 

Hence there are many cells harbouring the virus, consequently viral shedding is 

most likely to happen. In cattle, BALT has no such secondary follicle structure 

and/or it is less frequent in number through the lung (Anderson et al., 1986). Thus, 

in cattle lung, there are less B cells (that can play role as OvHV-2 reservoir) and 

consequently less proportion of infected cells. This can probably imply why we have 

observed cattle lung generally had lower viral loads and were less frequently 

positive compared to sheep. Additionally, it can be seen from the qPCR data in 

cattle lung that after one year-age until two year-age, the OvHV-2 DNA is more 

readily detectable. This could be related to (the increasing number of) developing 

BALT and eventually B cells. After that age (one year), the cattle BALT fully develops 

at the age of 18 months, then the number of these starts to decline (Anderson et 

al., 1986). Apart from more infected B cells, the rest of infected cell types in the 

lung of cattle were similar to sheep. 
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As mentioned, the range of infected cell types in sheep and cattle without 

MCF were very similar. Interestingly the infected cells types in clinical MCF is almost 

the same as in cattle without MCF. In this regard, in addition to the 

histopathological changes, there are two key differences between normal cattle 

(non-MCF) and cattle with MCF. First, in MCF there is significant increase (more 

than three logs) in OvHV-2 DNA copy numbers (about 189 x 103 viral DNA copies on 

average among all organs) compared to those in normal cattle. This is evidence that 

the number of viruses (i.e. own virus) acts an important role in the development of 

the clinical signs of MCF, as there is a sharp increase in viral copy numbers in MCF. 

Secondly, the difference between the infected lymphocyte subtype, B cells are 

infected in normal cattle, while in clinical MCF, the infected lymphocyte type is 

predominantly T cells (mainly CD8+) (Nelson et al., 2010; Simon et al., 2003). 

It was shown in experimental AlHV-1 induced MCF in rabbits, that the CD8+ T 

cells start to proliferate without the virus being detectible in blood by PCR, but viral 

loads sharply increase few days before death (Dewals et al., 2008). Combining this 

finding and showing that epithelial cells, VEC and B cells and macrophages (or 

dendritic cells) are infected in normal cattle (in our study), leads to a possible 

explanation for the induction of MCF. Which is that by an unknown mechanism 

(possibly by macrophages or other APCs) the virus switches from B cells to T cells. 

Then the virus latently infects T cell, transform those cells to cytotoxic T cells and 

deregulates their normal cell cycle leading to proliferation. Later, these cells attack 

the other infected epithelial and endothelial cells, causing the epithelial and 

endothelial cells necrosis in tissues. During this time the virus starts to replicate 

efficiently in these proliferating cells. A possible similar situation to that of OvHV-2 

is EBV, as EBV normally infects B cells latently, but was seen to be associated with 

T/NK cells lymphoproliferative disorders that lead to organ complications and death 

in human, (Kimura et al., 2012). 

Species susceptibility to MCF is another aspect in the pathogenesis. It is 

shown that different species have different susceptibilities to MCF when inoculated 

by doses of OvHV-2 (Taus et al., 2006; Taus et al., 2005). Sheep were observed to be 

highly resistant to MCF (Li et al., 2005b), however they can develop MCF-like 

symptoms when challenged with very high OvHV-2 doses. Cows, especially 
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European domestic cattle breeds are relatively resistant to OvHV-2-MCF. Hence, it 

seems that the immune system keeps the viral load in control to prevent the 

disease. In addition to classical fatal MCF, cattle can have non-fatal chronic, 

recovered or transient skin inflammation forms of MCF (Munday et al., 2008; 

O'Toole et al., 1997). Similarly, skin conditions caused by OvHV-2 were also 

reported in sheep (Pritchard et al., 2008). These different MCF manifestations can 

be determined by many factors including initial viral dose exposure by the animal, 

such as low viral loads found in our study. Being exposed to low OvHV-2 loads can 

be the norm in cattle. Possible only sporadic animals who are exposed to high virus 

doses succumb MCF. This may explain the sporadic nature of MCF among cattle 

herds (cows). Another possible reason of MCF induction is when the balance of viral 

copies is breached in the host’s body due to any stimuli such as being 

immunocompromised, stress or infection by other pathogens. 

The OvHV-2 is the only known agent associated with the disease in the case 

of SA-MCF. There is a far possibility that other gammaherpesviruses, especially  

those which are endemic in cattle contribute in the pathogenesis of MC. 

Gammaherpesviruses are known for encoding lymphoproliferative latent proteins 

that transform or dysregulate lymphocytes. An example of such a virus is BoHV-6 

(Collins et al., 2000). In addition to that, the caprine herpesvirus 2 (CpHV-2) DNA 

that was detected beside the OvHV-2 DNA in cervid SA-MCF cases (Vikøren et al., 

2006). It is still not known whether these viruses contribute in inducing MCF in 

naturally occurring diseases, but it is worthy that material from MCF cases to be 

tested for other bovine gammaherpesviruses (even those not known to induce 

MCF) such as CpHV-2, BHV-6, BHV-4. 

4.4 Conclusions 

In this study, the specific cells types in organs and tissues targeted by OvHV-2 in 

sheep was determined. Namely epithelial and endothelial cells of respiratory and 

alimentary tract and reproductive system, B lymphocytes and macrophages in lung, 

lymph nodes and spleen. Cattle are considered as the susceptible host for OvHV-2, 

we have shown that a large proportion of cattle infected without clinical signs of 

MCF, and are subclinically infected similar to sheep, and the same range of cell 
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types are targeted by the virus. A lower proportion of cattle are infected compared 

to sheep and generally the viral DNA loads are lower in cattle. From these findings 

and previous studies, cattle are considered as hidden carriers for OvHV-2 and they 

probably shed the virus in their oral secretions, owing to finding of viral DNA, 

transcripts and protein in their tongue, muzzle and airways epithelium. Beside 

mature cattle, we have found viral transcripts and DNA in tissues from cattle 

foetuses, indicating a possible sexual or intrauterine virus transmission. In addition, 

to observe the infected cell types in disease cases, material from MCF affected 

animals were examined and  it was found that the same type of cells are infected as 

in cattle without MCF. These observations show that cattle are a possible reservoirs 

for OvHV-2. Based on this vaccination only  in cattle may not be ideal in controlling 

of MCF, as a large number of cattle were found to be subclinically infected by the 

virus, but more study is needed to explain factors that contribute to pathogenesis of 

MCF. 
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APPENDIX. Detailed results of qPCRs, histological findings, OvHV-2 RNA-ISH and immunohistology of individual animals 

 

Table 1. List of sheep tested for OvHV-2 infection by qPCR, RNA-ISH and immunohistology. 
A. List of sheep of which organs were tested, including information on the post mortem diagnosis (necropsied cases), histological features and results of RNA-ISH and immunohistology for OHV-2. Animals are listed 

on  the order of age, from foetus onwards. 

Case number; 
Sex/age 

O
rigin

 

B
lo

ck 

Tissue qPCR 
Histological findings, results of OvHV-2 RNA-ISH and IH 

 
Relevant post mortem  

diagnoses 

S13-1453 
F, 14 y 
[Mother] 
 
 

CH 
 

2 Mediastinal LN 6 HE: Moderate cortical and medullary sinusoidal haemosiderosis 
OV2.5: Signal in very few cells in sinuses and follicles 
OVHV-2 IH: Weak reaction in some macrophages and FDC in the follicles 

Traumatic injury to front 
leg (open wound). 

Spleen ND HE: Marked diffuse hyperaemia, small follicles and T cell zones. 
OvHV-2 IH: Weak reaction in some macrophages and FDC in follicles. 

3 Muzzle 0 HE: Mild dermal perivascular and periadnexal LC (LC) infiltration 
OV2.5: Negative 

Nasopharynx 0 HE: Mild multifocal to coalescing subepithelial LC infiltration. 
OV2.5: Negative 
OvHV-2 IH: Reaction in subepithelial and interstitial fibroblasts in glands, and in occasional VEC 

Placentome 
 

2 HE: Moderate diffuse stromal oedema 
OV2.5: Weak signal in part of the maternal placental epithelium 
OvHV-2 IH: Reaction in stroma (fibroblasts) and VEC, the epithelium is negative 

S13-1453 
Foetus 
(Crown rump 
length [CRL] 
17.5 cm) 
neonate 

4 Spleen 0 HE: No formed follicles, marked diffuse hyperaemia 
OV2.5: Negative 
OvHV-2 IH: Faint reaction possibly in some stromal fibroblasts 

 

Thymus 0 HE: NHAIR; OVHV-2 IH: Negative 

Lung  0 HE: NHAIR, apart from foetal atelectasis 
OvHV-2 IH: Negative 

Placenta 3 HE: NHAIR; OVHV-2 IH: Negative 

S13-1353 
M, 5 we 
 

CH 6 Lung 0 HE: NHAIR, apart from moderate diffused hyperaemia 
OV2.5: Negative; ORF65: Negative 

Clostridial 
enterotoxaemia (Cl. 
perfringens type D) with 
catarrhal enteritis and 
“pulpy kidneys”; 
endoparasitosis 

Thymus 0 HE: NHAIR; OV2.5: Negative; ORF65: Negative 

Spleen 0 HE: Inconspicuous follicles and T cell zones 
OV2.5: Negative; ORF65: Negative 

Mediastinal LN 0 HE: NHAIR, apart from moderately depleted follicles 
OV2.5: Negative; ORF65: Negative 

7 Tongue 0 HE: NHAIR 
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OV2.5: Signals in some epithelial cells in the papillae 
ORF65: Similar to OV2.5 

Nares 0 HE: Mild multifocal subepidermal LC infiltration 
OV2.5: Negative; ORF65: Negative 

Turbinate 0 OV2.5: Negative; ORF65: negative 

Conchae 0 OV2.5: Negative; ORF65: Negative 

S14-0017 
F, 3 mo 

CH 1 Lung 0 HE: NHAIR 
OV2.5: Signals in a proportion of perivascular LC, REC and VEC 

Clostridial 
enterotoxaemia (C;. 
Perfringens type A or C) 
with catarrhal enteritis; 
severe endoparasitosis 

Spleen 0 HE: Inconspicuous follicles and T cell zones 
OV2.5: Signals in occasional LC in follicles and T cell zones and in red pulp, in VEC and fibroblasts around vessels 

Mediastinal LN 0 HE: Moderate follicular depletion; small parasite granuloma 
OV2.5: Signals in a few LC in follicles and T cell zones, in VEC and arterial SMC 

2 Uterus 0 HE: NHAIR 
OV2.5: Negative 

Muzzle 1 HE: NHAIR 
OV2.5: Focal area with signals in squamous epithelial cells 

Nares 0 HE: Mild multifocal subepithelial lymphocye infiltration and lymphatic follicle formation 
OV2.5: Negative 

13L-2593  
7 mo 

UK A Lung 4 HE: Mild multifocal perivascular and peribronchiolar LC infiltration 
OV2.5: Signals as focal reaction; in proportion of perivascular and peribronchiolar LC and VEC (arteries), in occasional REC 
and cells in alveolar wall (possibly macrophages), in one area also intravenous LC 
ORF65: Similar to OV2.5 
CD3, PAX-5 IH: T and B cells in similar proportions  

Not applicable (tissues 
collected at the 
abattoir). 

Mediastinal LN 2 HE: Moderately sized secondary follicles; acute sinus haemorrhage 
OV2.5: Relatively numerous LC in follicles (also possibly TBM), occasional LC in paracortex and medullary strands (CD3, PAX-
5) 
ORF65: Very similar to Ov2.5 

Nasopharynx 215 HE: NHAIR (with lymphatic tissue/tonsil) 
OV2.5: Signals in some epithelial cells in salivary gland, LC surrounding ducts (CD3, PAX-5 IH: T and B cells in similar 
proportions), VEC; lymphatic tissue: see the mediastinal LN 
ORF65: Similar, but also signal in glandular duct epithelial cells 

Retrophar. LN ND HE: Mild follicular depletion 
OV2.5: Relatively numerous LC in follicles (also possibly TBM), occasional LC in paracortex and medullary strands 
ORF65: Very similar to Ov2.5 

13L-2595 
7 mo 

UK B Lung 5 HE: Mild BALT formation; mild multifocal acute alveolar haemorrhage 
OV2.5: Signals in some perivascular LC  and some REC and glandular epithelial cells, VEC and SMC (arteries), and 
chondrocytes 
ORF65: Very similar to OV2.5, but less intense in epithelium and cartilage 

Not applicable (tissues 
collected at the 
abattoir). 

Mediastinal LN 2 HE: Moderately sized, mildly depleted secondary follicles 
OV2.5: Signals in relatively numerous LC in follicles (also TBM) and in occasional cells in paracortex and medullary strands 
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ORF65: Very similar to OV2.5, but more intense (higher number of cells) 

A Nasopharynx 2 HE: : Moderately sized, mildly depleted secondary follicles 
Ov2.5: Signals in submucosal lymphocytic aggregations, VEC (arteries) and in intravascular leukocytes 

Retrophar. LN ND HE: Moderate sized, mildly depleted secondary follicles 
OV2.5: See mediastinal LN 

13L-2594 
7 mo 

UK A 
 

Lung 45 HE: Mild to moderate BALT formation; mild multifocal acute alveolar haemorrhage 
OV2.5: Numerous perivascular and peribrochiolar  LC (also in follicle) (CD3, PAX-5: T and B cells in similar proportions) and 
most REC and glandular epithelial cells, occasional  VEC (arteries), chondrocytes (weak), arterial SMC, fibroblasts; also in 
some individual cells in alveolar wall 
ORF65: Very similar to OV2.5 
OVHV-2 IH: Reaction in macrophages/FDC in BALT, scattered individual type II pneumocytes, occasional chondrocytes and 
peribronchial fibroblasts. 

Not applicable (tissues 
collected at the 
abattoir). 

Mediastinal LN 1 HE: Moderately sized secondary follicles with numerous TBM 
OV2.5: Signals in relatively numerous LC in follicles (also TBM) (CD3, PAX-5), occasional LC in paracortex and medullary 
strands and occasional   LC in vessels 
ORF65: Very similar to OV2.5 
OVHV-2 IH: Moderate number of cells in follicles (macrophages/FDC) and a few macrophages in medulla 

B Nasopharynx 22 HE: Moderate mixed cellular subepithelial infiltration with several apoptotic cells (probably neutrophils and LC) 
Ov2.5: Variably intense, partially strong signal in all squamous epithelial cell layers, in LC in follicles (mainly PAX-5 positive B 
cells), proportion of LC  in subepithelial infiltrates (mainly CD3 positive T cells), in occasional salivary gland epithelial cells; 
strong signals in ductal epithelial cells and VEC 
ORF65: Similar to OV2.5, but far less intense in epithelium 
OvHV-2 IH: Epithelium is negative, but reaction in some apoptotic bodies in subepithelial infiltrates, and probably occasional 
FDC 

 Retrophar. LN ND HE: Relatively large secondary follicles with numerous mitotic cells 
OV2.5: Signals in relatively numerous LC in follicles (also TBM?) (CD3, PAX-5: indicate signals are in B cells), occasional LC in 
paracortex and medullary strands and occasional intravascular LC. 
ORF65: Similar to OV2.5 
OvHV-2 IH: Reaction in moderate number of cells in follicles (macrophages/FDC) and along sinuses, also in apoptotic cells 

13L-2592B 
8 mo 

UK B Lung 18 HE: Moderate to marked BALT formation (with secondary follicle formation) 
OV2.5: Signals in several LC in BALT follicles; occasional signal in REC, VEC and occasional individual alveolar cells and 
intravascular LC  
ORF65: Similar to OV2.5, but less intense 
OV2.5 plus PAX-5: Proportion of B cells in follicle in BALT exhibit RNA-ISH signal  
OV2.5 plus CD3: T cells without RNA-ISH signal 
OvHV-2 IH: Overall relatively strong reaction in VEC, type I and II pneumocytes, macrophages, PIM and macrophages/FDC in 
follicle-like structures in BALT (30-40%); some leukocytes infiltrating the bronchial epithelium are also positive (REC are 
negative), also reaction  in desquamated alveolar macrophages in alveolar and bronchiolar lumen 

Not applicable (tissues 
collected at the 
abattoir). 

Mediastinal LN 24 HE: Relatively large secondary follicles with numerous TBM 
OV2.5: Signals in relatively numerous LC (and TBM) in follicles  (CD3, PAX-5: indicate signals are in B cells), occasional LC in 
paracortex and medullary strands and occasional intravascular LC; VEC (arteries)  
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ORF65: Similar to OV2.5, but less intense 
OV2.5 plus PAX-5: Proportion of B cells in follicle exhibit RNA-ISH signal 
OV2.5 plus CD3: T cells without RNA-ISH signal 
OVHV-2 IH: Strong reaction in macrophages/FDC in follicles, also in DC in sinuses and in medullary cords, in proportion of 
macrophages and LC in medulla (?) and in VEC 

Spleen 2 HE: Moderately sized secondary follicles and T cell zones 
OV2.5: Signals in numerous LC (and TBM) in follicles; several LC in red pulp 
ORF65: Similar to Ov2.5 
OV2.5 plus PAX-5: proportion of B cells in follicle exhibit RNA-ISH signal 
OV2.5 plus CD3: T cells without RNA-ISH signal 
OVHV-2 IH: Strong reaction in macrophages/FDC in follicles, also in macrophages in red pulp and in VEC 

13L-2592C 
8 mo 

UK C Lung 4200 HE: Moderate to marked BALT formation (with secondary follicles)  
OV2.5: Signals in some LC in BALT follicles, but generally very weak signal in centre of section, at margin very similar to 13L-
2592B (BALT LC, REC, alveolar epithelial cells) 
ORF65: Very weak signals 

Not applicable (tissues 
collected at the 
abattoir). 

Mediastinal LN 3200 HE: Large, mildly depleted secondary follicles 
Ov2.5, ORF65: See 13L-2592B, but weaker signals 

 Spleen 3300 ND 

13L-2592A 
8 mo 

UK A Lung 1 HE: Mild BALT formation; mildly increased interstitial cellularity 
ORF65: Numerous LC in BALT, some REC and glandular epithelial cells; VEC (arteries), occasional intravascular LC, some 
individual alveolar cells; 
OV2.5 plus PAX-5: Proportion of B cells in follicle in BALT exhibit RNA-ISH signal 
OV2.5 plus CD3: T cells without RNA-ISH signal 

Not applicable (tissues 
collected at the 
abattoir). 

Mediastinal LN 0 HE: Relatively large secondary follicles with numerous TMB 
OV2.5 Signals in relatively numerous LC (and TBM) in follicles (CD3, PAX-5: indicate signals are in B cells), occasional LC in 
paracortex and medullary strands and occasional intravascular LC; VEC (arteries), the section is half destroyed. 
ORF65: Similar to Ov2.5 but less intense 
OV2.5 plus PAX-5: Proportion of cells in follicle in BALT exhibit RNA-ISH signal, but generally very weak reaction for PAX-5   
OV2.5 plus CD3: T cells without RNA-ISH signal 

 

Submand. LN ND HE: Moderately sized follicles with several TMB 
OV2.5: Signals in relatively numerous LC (and TBM) in follicles (CD3, PAX-5: indicate signals are in B cells), occasional LC in 
paracortex and medullary strands and occasional intravascular LC; VEC (arteries), the section is half destroyed. 
ORF65: Similar to Ov2.5 but less intense 
OV2.5 plus PAX-5: Proportion of B cells in follicle in BALT exhibit RNA-ISH signal, but generally very weak reaction for PAX-5   
OV2.5 plus CD3: T cells without RNA-ISH signal 

13L-4220  
10 mo 

UK A Mediastinal LN 229 HE: Moderately sized secondary follicles with several TMB  
OV2.5: Signals in a few to some LC in follicles, rare LC in cords 

Not applicable (tissues 
collected at the 
abattoir). Spleen 276 HE: Moderately sized secondary follicles with several TMB, moderately sized T cell zones  

OV2.5: Very weak signal in some LC in follicles 

B Muzzle 648 HE: mild multifocal dermal LC infiltration, focal serocellular crust formation with neutrophils; neutrophils also in underlying 
dermis 
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OV2.5: Signal in one small area (with focal inflammatory infiltrate), in a few LC  and epithelial cells 

Tongue 97 HE: NHAIR 
OV2.5: Signals in a few patches of epithelial cells (stratum spinosum) 

C Lung 143 HE: Moderate multifocal acute alveolar haemorrhage 
OV2.5: negative 

13L-4220 
10 mo 

UK D Lung 23 HE: moderate to marked BALT formation with secondary follicles  
OV2.5: some LC  in BALT, occasional glandular epithelial cells (overall weak signal) 
OVHV-2 IH: Overall strong reaction in VEC, type I and II pneumocytes, macrophages, PIM and a proportion of leukocytes in 
the BALT (30-40%); some leukocytes infiltrating the bronchial epithelium are also positive (REC are negative), also reaction  in 
desquamated  alveolar macrophages in bronchiolar lumen, and in cartilage. 

Not applicable (tissues 
collected at the 
abattoir). 

Mediastinal LN 61 HE: Moderately sized, mildly depleted secondary follicles with numerous TBM 
Very weak signal in some LC in follicles 
OV2.5: Generaly weak signals in a few to some LC in follicles 
OVHV-2 IH: Overall strong reaction, in macrophages (and FDC) in follicles and in macrophages in sinuses, also VEC 

E Tongue 667 HE: Focal mild mixed cellular (macrophages, LC, plasma cells, neutrophils) subepithelial infiltration 
OV2.5: Weak signal, patchy in aggregates of epithelial cells (stratum spinosum) and in a few cells (possibly epithelial cells and 
LC) beneath these. 
OVHV-2 IH: Overall strong reaction, in VEC and in infiltrating leukocytes and fibrocytes/fibroblasts beneath the epithelium  

Spleen 36 HE: Moderately sized secondary follicles with TBM, moderately sized T cell zones 
OV2.5: Very weak patchy signal in some LC in follicles. 
OVHV-2 IH: Overall strong reaction in macrophages (and FDC) in follicles and in macrophages in red pulp, in a few LC and in 
VEC 

13L-4218 
11 mo 
 

UK A Lung 15 HE: Mild BALT formation 
OV2.5: Occasional weak signal in LC, VEC (subpleural vessels) 
ORF65: Negative 

Not applicable (tissues 
collected at the 
abattoir). 

Nasopharynx 4 HE: Mild focal, predominantly mononuclear (LC, plasma cells, macrophages and some neutrophils) infiltration 
OV2.5: Section is overexposed. Focal patchy area of signal in all epithelial cells and in underlying LC (at edge of section) 
ORF65: Similarly overexposed, similar signals 

B Mediastinal LN 27 HE: Moderately sized secondary follicles 
OV2.5: weak signal in some LC in follicles 
ORF65: Very similar to OV2.5 

Spleen 9 HE: Moderately sized follicles and T cell zones 
OV2.5: Very weak patchy signal in some LC in follicles 
ORF65: Very similar to OV2.5 

C Muzzle 
(epidermis) 

56 
 
 
 

HE: Moderate multifocal periadnexal LC infiltration 
OV2.5: Signal mainly in hair follicle (and shaft) epithelial cells, not in epidermis, some infiltrating LC and some VEC 
ORF65: very similar to OV2.5, but more extensive signal (also in epidermis) 
OVHV-2 IH: Some fibroblasts and macrophages in the dermis; epithelial cells. neg. 

Epididymis 32 HE: NHAIR, apart from mild diffuse stromal oedema 
OV2.5: Signals in ductal epithelial cells, VEC and arterial SMC, fibroblasts  
OVHV-2 IH: Weak reaction in stromal fibroblasts 
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13L-4218  
11 mo 

UK D Lung 57 HE: Mild to moderate BALT formation with small follicles, focal interstitial fibrosis and mixed cellular alveolar infiltration 
OV2.5: Signals in a few LC in BALT 
ORF65: Signals in a few type II pneumocytes in focal area with inflammation 
OVHV-2 IH: Reaction in occasional macrophage and apoptotic cell in alveolar septa and around bronchioles, occasional VEC, 
occasional type II pneumocytes and macrophages/DC in BALT, some desquamated alveolar macrophages/type II 
pneumocytes, weak reaction in chondrocytes  

Not applicable (tissues 
collected at the 
abattoir). 

Mediastinal LN 344 HE: Large follicles with numerous TBM in particular in deeper cortex 
ORF65: Weak signals; a few large cells in follicles (probably macrophages and some LC) 
OVHV-2 IH: Moderate number of cells in follicles mainly in deeper cortex (macrophages and/or FDC) and a few macrophages 
in medulla along sinuses 

E Tongue 222 HE: Mild multifocal subepithelial perivascular LC infiltration 
OV2.5: Signals in very few individual epithelial cells 
ORF65: Negative 
OVHV-2 IH: Reaction in occasional subepithelial fibroblasts and some vessels with very weak reaction in VEC; epithelial cells 
are negative 

Spleen 108 ND 

Muzzle 
 
 

290 HE: Mild multifocal dermal and periadnexal LC infiltration; mildly to moderate pigmented basal cell layer 
OV2.5: Variably intense signal in hair follicle epithelial cells (not related to pigmentation); very occasional infiltrating LC 
ORF65: Similar to OV2.5, but weaker signal 
OVHV-2 IH: Strong reaction in relatively numerous cells in basal epidermal layer, some reaction in dermal fibroblasts 

13L-4219 
11 mo 

UK A Mediastinal LN 556 HE: Moderately sized follicles 
OV2.5: : Weak signals; a few large cells in follicles (probably macrophages and some LC) 

Not applicable (tissues 
collected at the 
abattoir).  Spleen 24 HE: Moderately sized secondary follicles and T cell zones 

OV2.5: Very weak patchy signal in some LC in follicles 

B Tongue 345 HE: Moderate subepithelial LC infiltration 
OV2.5: No definite signals 

Muzzle 5 HE: Moderate dermal/periadnexal LC and fibroblast infiltration 
OV2.5: Signal mainly in hair follicle (and shaft) epithelium, no definite signal in epidermis; generally weak signals 

C Lung 131 HE: Mild to moderate BALT formation with secondary follicle formation; mild increased interstitial cellularity; focal alveolar 
macrophage desquamation 
OV2.5: Signals in some LC in follicle-like BALT aggregates; in some glandular epithelial cells and REC, focal area with a few 
positive desquamated alveolar cells (probably macrophages); generally weak signal 

13L-4219 
11 mo 

UK D Lung 136 HE: Mild to moderate BALT formation with secondary follicle formation; mild increased interstitial cellularity; focal alveolar 
macrophage desquamation 
OV2.5: Signals in some LC in follicle-like BALT aggregates; some glandular epithelial cells (and REC), focal area with a few 
positive desquamate alveolar cells (macrophages?); generally weak signal 

Not applicable (tissues 
collected at the 
abattoir). 

Mediastinal LN 122 HE: Moderately sized secondary follicles with some TBM 
OV2.5: Weak patchy signal in some LC in follicles 

E Muzzle 251 HE: Mild multifocal dermal/periadnexal LC infiltration, small hair granuloma 
OV2.5: Signals in mucosa and skin (some hair follicle epithelial cells, some (superficial) squamous epithelial cells, but 
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generally weak signal  

Tongue 2 HE: Mild multifocal subepithelial LC infiltration 
OV2.5: Signal in (superficial) squamous epithelial cells, but generally weak signal 

F Testis 12 HE: NHAIR, active spermatogenesis 
OV2.5: Weak signal in epipidymal ductal epithelial cells and in focal areas of germinative cells 

Spleen 5 Tissue not on section 
 
 

S13-1516 
3.5 year 

CH 3 Lung 61 ND Pulmonary 
adenomatosis and 
fibrinous pneumonia 
(isolation of 
Mannheimia 
haemolytica) 

Mediastinal LN 2 ND 

Spleen 1 ND 

4 Tongue 1 ND 

Uterus 0 ND 

Muzzle 0 ND 

Turbinate 0 ND 

 
Abbreviations:  
BALT: bronchus associated lymphoid tissue; CH: animals submitted for a diagnostic post mortem examination to the Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland; F: female; 
FDC: follicular dendritic cells; HE: haematoxylin and eosin stain; IH: immunohistology; LC: lymphocyte; LN: lymph node; ND: not done; M: male; mo: month; NHAIR: no histological abnormality is recognised; PIM: 
pulmonary intravascular macrophages; REC: respiratory epithelial cells; SMC: smooth muscle cells; Retrophar.: retropharyngeal; Submand.: submandibular; TBM: tingible body macrophages; UK: healthy animals 
slaughtered in abattoir in the UK; VEC: vascular endothelial cells; we: week; y: year. 
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1B. List of sheep of which only white blood cells (WBCs) tested, including information on the histological features and results of RNA-ISH and immunohistology for OHV-2. Relevant post mortem diagnoses is not 

applicable as blood collected at the abattoir. 

Case 
number/age 

Origin Block qPCR 
Histological findings, results of OvHV-2 RNA-ISH and IH 

 

13L-4883 A 
9 mo 

UK A 6 HE: Blood cell pellet with leukocytes embedded in fibrin with a few erythrocytes 
OV2.5: Large proportion of cells with signal (30-40%), morphology consistent with LC 
ORF65:Similar to OV2.5 
PAX-5: Approximately 30% of cells positive (B cells) 
CD3: Approximately 50% of cells positive (T cells) 
OVHV-2 IH: Negative 

13L-4883 B 
9 mo 

UK B 5 Ov2.5: Large proportion of cells with signal (˃50%), morphology consistent with LC (very small pellet with only few leukocytes) 
Pax5:  B cells comprise 10-20 % of the nucleated cells. 
CD3: Approximately 50% of nucleated cells positive (T cells) 
OVHV-2 IH: Negative (very small pellet with very few leukocytes) 

13L-4883 C 
9 mo 

UK C 9 HE: Blood cell pellet with leukocytes mixed with fibrin and erythrocytes 
ISH, IH: ND 

13L-4883 D 
9 mo 

UK D 8 HE: Blood pellet of fibrin, with focal are with embedded leukocytes and erythrocytes 
ISH, IH: ND 

13L-4883 E 
9 mo 

UK E 5 HE: Blood cell pellet with leukocytes mixed with fibrin and erythrocytes  
ISH, IH: ND 

 
Abbreviations:   
HE: haematoxylin and eosin stain; IH: immunohistology; LC: lymphocyte; mo: month; y: year. 
 
 

1C. List of sheep, of which nasopharyngeal swabs were taken at an abattoir in the UK for OvHV-2 qPCR only. 

Sample 
 

Age qPCR 

Swab 1 8 month 6 

Swab 2 8 month 297 

Swab 3 8 month 0 

Swab 4 8 month 0 

Swab 5 8 month 0 

Swab 6 8 month 14 

 
Table 2. List of cattle without clinical MCF tested for OvHV-2 infection by qPCR, RNA-ISH and immunohistology. 



References 

150 
 

2A. List of cows without clinical MCF, of which organs were tested, including information on the post mortem diagnosis (necropsied cases), histological features and results of RNA-ISH and immunohistology for OHV-

2. Animals are listed on the order of age, from foetus onwards. 

Case number 
and age 

O
rigin

 

B
lo

ck 

Organs qPCR 
Histological findings, results of OvHV-2 RNA-ISH and IH 

 
Relevant post- mortem 

diagnoses 

S13-1350 
Aborted 
Foetus (crown-
rump length 
[CRL] 54 cm;  
6 mo) 

CH 
 

7 Lung 0 HE: Complete foetal atelectasis, otherwise NHAIR 
Ov2.5: Negative 

Abortion (non-
infectious, cause 
unknown) Thymus 0 HE: NHAIR, Ov2.5: Negative 

Spleen 0 HE: NHAIR, Ov2.5: Negative 

Mediastinal LN 0 HE: NHAIR, Ov2.5: Negative 

S13-1448 
Stillborn calf 
(CRL 81 cm)  
8 mo 

CH 16 Lung 0 HE: Complete foetal atelectasis , otherwise NHAIR 
Ov2.5: Signals in VEC (capillaries) and some RES 

Sillbirth (non-infectious, 
cause unknown) 

Thymus 0 HE: NHAIR; Ov2.5: negative 

Spleen 0 HE: NHAIR 
Ov2.5: Signals in VEC (capillaries) in capsule and red pulp 

Mediastinal LN 0 HE: NHAIR; Ov2.5: negative 

S13-1355 
Mother, 5 y 
 
  
 
 
 
 

CH 2 Lung 0 HE: NHAIR Chronic active ulcerative 
abomasitis with 
melaena 

Spleen 0 HE: NHAIR 

3 
 

Mediastinal LN 1 HE: NHAIR, apart from relatively small secondary follicles 

Nasopharynx 2 HE: NHAIR 

4 Placenta 0 HE: NHAIR 
Ov2.5: Weak signal in stromal cells 

Uterus 56 HE: Mild mixed cellular diffuse subepithelial infiltration 
Ov2.5: Signal in glandular epithelial cells, VEC and in smooth muscle cells of the wall 

S13-1355 
Foetus  
(CRL 72 cm) 
8 mo 

5 
 

Lung 0 HE: Complete foetal atelectasis: NHAIR;  
Ov2.5: Signals in occasional individual type II pneumocyte and alveolar macrophages 

 

Thymus 0 HE: NHAIR 
Ov2.5: Weak signals in a few cells (probably LCs) in the medulla 

Spleen 4 HE: NHAIR 
Ov2.5: Signals in a moderate number of random cells in red pulp (possibly macrophages) 

Mediastinal LN 3 HE: NHAIR 
Ov2.5: Signals in a small number of cells (macrophages and LC) mainly in cortex, also in and around the follicles 

S13-1483 
Mother, 5 y 
 

CH 6 
 

Lung 10 HE: NHAIR 
Ov2.5: Negative 
OvHV-2 IH: Individual positive cells (fibroblasts, macrophages) in interstitium  

Aspiration pneumonia 
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Spleen 5 HE: Relatively small, mildly depleted follicles, small T cell zones; numerous apoptotic cells in the red pulp, mild 
haemosiderosis 
Ov2.5: Negative 
OvHV-2 IH: FDC in follicles, numerous pos. apoptotic/autolytic cells are positive. 

Conchae 0 HE: Autolytic tissue; NHAIR 
Ov2.5: Negative;  OvHV-2 IH: Negative 

7 
 

Tongue 16 HE: NHAIR; Ov2.5: Negative; OvHV-2 IH: Negative 

Nasopharynx 49 HE: NHAIR, apart from slight subepithelial perivascular LC infiltration; mild pigmentation of basal epithelial cells. 
Ov2.5: Negative 
OvHV-2 IH: Negative, apart from reaction in basal epithelial cells (pigmentation?) 

Uterus 0 HE: NHAIR 
Ov2.5: Signals in the majority of epithelial cells  
OvHV-2 IH: Epithelial cells negative, reaction in stromal fibroblasts 

Turbinate ND HE: NHAIR; Ov2.5: Negative; OvHV-2IH: negative 

S13-1483 
Foetus, 8 mo 

8 Lung 0 HE: Complete foetal atelectasis, NHAIR;  
Ov2.5: Negative; OvHV-2 IH: Negative 

 

Thymus 0 HE: NHAIR; Ov2.5: Negative; OvHV-2 IH: Negative 

Spleen 0 HE: NHAIR 
Ov2.5: Signals in relatively numerous cells (in red pulp and in follicles (LC, macrophages?) 
OvHV-2 IH: Negative 

Mediastinal LN 0 HE: NHAIR  
Ov2.5: Signals in few individual cells (LC?, macrophages?) in and around follicles in cortex 
OvHV-2 IH: Some positive FDC and macrophages outside follicles 

Placenta ND HE: NHAIR 
Ov2.5: Distinct signal in stromal fibroblasts, VEC and epithelial cells 
OvHV-2 IH: Negative 

S13-1452 
Mother, 12 y 
 

CH 1 
 
 

Lung 0 HE: NHAIR; Ov2.5: Negative Perforation of reticulum 
due to foreign body, 
with fibrinosuppurative 
peritonitis 

Spleen 0 HE: Moderate hyperaemia, inconspicuous follicles and T cell zones 
Ov2.5: Negative 

Mediastinal LN 0 HE: NHAIR, apart from relatively small secondary follicles 
Ov2.5: Negative 

2 Uterus 0 HE: NHAIR; Ov2.5: Negative 

Nasopharynx 0 ND 
 

S13-1452 
Foetus  
(CRL 101 cm)  
8 mo 

3 Lung 0 HE: NHAIR; Ov2.5: Negative  

Thymus 0 HE: NHAIR; Ov2.5: Negative 

Spleen 0 HE: NHAIR; Ov2.5: Negative 

Mediastinal LN 0 HE: NHAIR, apart from focal extensive sinus haemorrhage 
Ov2.5: Negative 
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Placenta 0 HE: NHAIR; Ov2.5: Negative 

S13-1360 
Mother, 8 y 

CH 1 
 

Lung 0 HE: NHAIR, apart from mild diffuse alv. emphysema and slight BALT formation 
Ov2.5: Signals in individual cells in BALT (possible LC) 
ORF65: similar to Ov2.5 

Abscess in glutaeal 
muscle 

Spleen 0 HE: Moderately sized, mildly depleted secondary follicles and T cell zones, mild haemosiderosis 
Ov2.5: Very numerous cells (LC) in follicular mantle zones 
ORF65: Similar, but less intense signal and fewer cells 

2 Mediastinal LN 0 HE: Moderately sized and moderately depleted secondary follicles 
Ov2.5: Strong signal in LC in follicular mantle zone 
ORF65: Very similar to Ov2.5 

Buccal Mucosa 0 HE: NHAIR, apart from subepithelial mononuclear infiltration (LC, plasma cells) 
Ov2.5: Signal in proportion of infiltrating LC 
ORF65: Simila to Ov2.5 

Tongue 1 HE: NHAIR 
Ov2.5: Signals in small patchy area of epithelial cells 
ORF65: Similar to Ov2.5 

Nasopharynx 3 HE: NHAIR; Ov2.5: Negative; ORF65: Negative 

Turbinate 0 ND 

3 Uterus 1 HE: NHAIR;  
Ov2.5: Signal in proportion of glandular epithelial cells, patchy signals in the surface epithelium 
ORF65: similar to Ov2.5, but very weak 

Placenta 1 HE: NHAIR 
Ov2.5: Signal in trophoblasts and stromal cells 
ORF65: Similar to Ov2.5, but very weak 

S13-1360 
Foetus  
(CRL 66 cm) 7 
mo 

4 Lung 0 HE: Complete foetal atelectasis; NHAIR 
Ov2.5: Negative; ORF65: Negative 

 

Thymus 0 HE: NHAIR; Ov2.5: Negative; ORF65: Negative 

Spleen 0 HE: NHAIR; Ov2.5: Negative 
ORF65: Signals in occasional cells in early follicles 

Mediastinal LN 1 HE: NHAIR 
Ov2.5: Signals in individual cells (LC) in follicles 
ORF65: Similar as Ov2.5 

H04-981G 
Aborted foetus, 
9 mo 

UK G BM  ND HE: NHAIR; Ov2.5: Negative; ORF65: Negative; OvHV-2 IH: Negative  

Spleen ND HE: NHAIR; Ov2.5: Negative; ORF65: Negative; OvHV-2 IH: Negative 

Thymus ND HE: NHAIR; Ov2.5: Negative; ORF65: Negative; OvHV-2 IH: Negative 

LN.  ND HE: NHAIR; Ov2.5: Negative; ORF65: Negative 
OvHV-2 IH: Negative apart from very faint reaction in fibroblasts and reaction in nerve fibres 

K Heart ND HE: NHAIR; Ov2.5: Negative; ORF65: Negative; OvHV-2 IH: Negative 

Lung ND HE: NHAIR; Ov2.5: Negative; ORF65: Negative; OvHV-2 IH: Negative 

Liver ND HE: NHAIR; Ov2.5: Negative; ORF65: Negative; OvHV-2 IH: Negative 
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Muscle ND HE: NHAIR; Ov2.5: Negative; ORF65: Negative; OvHV-2 IH: Negative 

S13-1438 
Stillborn calf 
(CRL 76 cm) 
9m 

CH 1 Lung 6 HE: NHAIR; Ov2.5: Negative 
ORF65: Focal area of signals in bronchiolar epithelium and VEC 
OvHV-2 IH: Negative 

Sillbirth (non-infectious, 
cause unknown) 

Thymus 5 HE: Relatively cell poor, multifocal acute haemorrhages 
Ov2.5: Signals in few LC at the periphery of the section, in individual macrophages 
ORF65: Similar to Ov2.5, but more intense 
OvHV-2 IH: Negative 

Spleen 25 HE: NHAIR 
Ov2.5: Signals in sporadic cells in white pulp, a few LC in follicles with weak signals 
ORF65: Similar to Ov2.5and more intense 
OvHV-2 IH: Scattered individual positive macrophages in red pulp 

Mediastinal LN 6300 HE: Small and cell poor cortex and paracortex 
Ov2.5: Strong signals in sporadic LC in cortex and medulla, in a few LC in follicles, weak and occasional individual cells in 
medulla (possibly macrophages). 
ORF65: Similar to Ov2.5, but more intense 
OvHV-2 IH: Negative 

S13-1418 
M, 1 we 

CH 4 Lung 0 HE: NHAIR; Ov2.5: Negative Severe catarrhal 
enteritis (Escherichia 
coli) 

Thymus 0 HE: Numerous disseminated apoptotic cells 
Ov2.5: Negative 

Spleen 0 HE: NHAIR; Ov2.5: Negative 

Mediastinal LN 0 HE: Cell poor, depleted follicles 
Ov2.5: Negative  

5 Tongue 0 HE: Mild interstitial oedema 
Ov2.5: Basal epithelial cells and patchy in papillary epithelial cell aggregates 
ORF65: Similar to Ov2.5 

Nasopharynx 0 HE: NHAIR 
Ov2.5: Some signal in glandular epithelial cells 
ORF65: Similar to Ov2.5 

Nasal 
epithelium 

0 HE: Moderate subepithelial mononuclear infiltration 
Ov2.5: Weak signal in basal epithelial cells 
ORF65: Similar to Ov2.5, but also signals in squamous epithelium of inflamed glandular ducts 

 

S13-1329 
10 d 

CH 6 Spleen 0 HE: Depleted follicles, small T cell zones 
OV2.5: Occasional cells in follicles with weak signals 
ORF65: Similar as Ov2.5 
OvHV-2 IH: Negative 

Fibrinosuppurative and 
necrotising pneumonia, 
pleritis, peri- and 
epicarditis, suppurative 
leptomeningitis and 
necrotising encephalitis 
(Trueperella pyogenes) 

Thymus 0 HE: NHAIR; OV2.5: Negative; OvHV-2 IH: Negative 

Mediastinal LN 0 HE: Moderate follicular depletion 
OV2.5: Signals in LC in follicles and some individual LC in medulla 
OvHV-2 IH: Weak reaction in individual FDC/macrophages in follicles 
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Nasopharynx 0 HE: NHAIR; OV2.5, ORF65: Negative 
OvHV-2 IH: Weak reaction in stromal fibroblasts 

Tongue 0 HE: NHAIR 
OV2.5: Strong signal in epithelial cells in taste buds  
ORF65: Similar to Ov2.5 
OvHV-2 IH: Weak reaction in stromal fibroblasts 

7 Lung 0 HE: Poorly aerated, otherwise NHAIR 
OV2.5: Negative; ORF65: Negative; OvHV-2 IH: Negative 

Nares 4 HE: NHAIR 
OV2.5: Negative  
ORF65: Weak signals in some glandular epithelial cells and in some surface epithelial cells 
OvHV-2 IH: Weak reaction in stromal fibroblasts 

S13-1377 
F, 5 we 
 
 
 
 
 

CH 1 Lung 0 HE: Increased interstitial cellularity 
OV2.5: Negative 

Abomasal ulcus with 
perforation and 
fibrinous peritonitis, 
aspiration pneumonia 

Thymus 0 HE: Moderate to marked involution 
OV2.5: Negative 

Spleen 0 HE: Moderate follicular depletion 
OV2.5: Negative 

Mediastinal LN 0 HE: Moderate follicular depletion 
OV2.5: Negative 

2 
 

Tongue 0 HE: NHAIR; OV2.5: Negative 

Turbinate 
(Septum) 

1 HE: Mild subepithelial mixed cellular infiltration  
OV2.5: Signals in a large proportion of glandular epithelial cells, in VEC, in subepithelial fibroblasts 

Nasopharynx 0 HE: Focal subepithelial LC accumulation (follicle like) 
OV2.5: Signal in several cells in a follicle like LC aggregates 

S13-1419 
M, 7 we 

CH 6 Lung 156 HE: NHAIR; Ov2.5: Negative 
ORF65: Variably intense signal in REC (bronchioles) 
OvHV-2 IH: A few positive PIM 

Severe ulcerative 
abomasitis 

Thymus 0 HE: Numerous disseminated apoptotic cells 
Ov2.5: Negative; ORF65: Negative; OvHV-2 IH: Negative 

Spleen 417 HE: Small follicles and T cell zones 
Ov2.5: Very weak signal of occasional cells 
ORF65: Individual cells in follicles and in T cell zones 
OvHV-2 IH: Weak reaction in FDC/macrophages in follicles, scattered positive macrophages in red pulp 

Mediastinal LN 129 HE: Markedly depleted cortex and paracortex 
Ov2.5: Signals in a few individual cells in follicles 
ORF65: Similar as Ov2.5 
OvHV-2 IH: Weak reaction in FDC/macrophages in follicles 

7 Tongue 12 HE: NHAIR 
Ov2.5: Highly variable signals in basal epithelial cells  
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ORF65: Similar to Ov2.5 and stronger 
OvHV-2 IH: Weak reaction in stromal fibroblasts and VEC 

Nasopharynx 12 HE: Multifocal mononuclear subepithelial infiltration  
Ov2.5: Signal in most of mucosal epithelial cells. 
ORF65: Similar to Ov2.5 and stronger  
OvHV-2 IH: Weak reaction in stromal fibroblasts and VEC 

 Turbinate 50 HE: Focal mononuclear infiltration of glands beneath epidermis 
Ov2.5: Signal in epidermal basal cells and hair follicle epithelium. 
ORF65: Similar to Ov2.5 
OvHV-2 IH: Weak reaction in stromal fibroblasts and VEC 

S13-1373 
M, 7 we 
 

CH 5 Lung 1 HE: Mild BALT formation and leukocytostasis 
OV2.5: Signals in a few cells (LC, macrophages) in BALT and in occasional REC. 

Fibrinosuppuratibe 
pleuritis and 
pericarditis, 
suppurativebronchopne
umonia (Mannheimia 
haemolytica) 

Spleen 1 HE: Small and mildly depleted secondary follicles, small T cell zones 
OV2.5: Signals in a few cells in follicles (possibly macrophages) 

Thymus 0 HE: Mild involution, numerous disseminated apoptotic cells in the cortex 
OV2.5: Negative 

Mediastinal LN 0 HE: Moderately sized, mildly depleted secondary follicles 
OV2.5: Several cells within and outside follicles (possible macrophages) 

6 
 

Tongue 1 HE: NHAIR 
OV2.5: Signal in patches of epithelial cells in taste buds (and occasional basal epithelial cells) with variably intense signal 

Nares ND HE: NHAIR 
OV2.5: Signals in glandular epithelial cells and weak signal in many surface epithelial cells 

Nasopharynx ND HE: subepithelial lymphatic follicles 
OV2.5: Signals in LC in follicles and in overlying epithelium 

S13-1434 
F, 8 we 
 
 
 
 
 
 
 
 

CH 5 Lung 0 HE: NHAIR 
Ov2.5: Signals in scattered type II pneumocytes 
ORF65: Similar, and more intense and more positive cells 

Severe rumenal acidosis  

Thymus 0 HE: NHAIR; Ov2.5: Negative; ORF65: Negative 

Spleen 0 HE: Small follicles and T cell zone 
Ov2.5: Signals in some cells in follicles and red pulp 
ORF65: Similar 

Mediastinal LN 0 HE: Moderately cellular cortex and paracortex 
Ov2.5: Some cells in cortex with signal 
ORF65: Relatively numerous cells in medulla, similar in cortex 
 

6 Tongue 0 HE: NHAIR 
Ov2.5: Signals in a few patches of 3-4 epithelial cells in taste buds 
ORF65: Similar as Ov2.5, but more extensive 

Uterus 
 

0 HE: NHAIR 
OV2.5: Negative 
ORF65: Signals in glandular and surface epithelial cells 
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Nasopharynx 0 HE: NHAIR 
Ov2.5: Signals in patches of positive epithelial cells 
ORF65: Similar as Ov2.5, but more extensive 

Turbinate 
(Nares) 

0 HE: Mild subepithelial mixed cellular infiltration  
Ov2.5: Signals in a few infiltrating cells 
ORF65: stronger signals in infiltrating cells, glandular epithelial cells and patches of epithelial cells  

S13-1460 
F, 13 we 
 

CH 6 
 

Thymus 0 HE: Moderate  involution 
Ov2.5: Negative 

Bronchointerstitial 
pneumonia (BRSV 
infection), abomasal 
ulcera 

Spleen 0 HE: Small follicles and T cell zones 
Ov2.5: Negative 

Mediastinal LN 0 HE: Mildly depleted cortex and paracortex 
Ov2.5: Negative 

  Lung 0 HE: NHAIR; Ov2.5: Negative 

7 
 

Tongue 0 HE: NHAIR;  
Ov2.5: Signals in patches of epithelial cells in taste buds 

Nasopharynx 0 HE: NHAIR; Ov2.5: Negative 

Turbinate 
(Nares) 

0 HE: NHAIR; Ov2.5: Negative 

S13-1459 
F, 18 we 

CH 6 Thymus 0 HE: marked involution 
Ov2.5: Negative 

Severe 
bronchointerstitial 
pneumonia (BRSV 
infection), abomasal 
ulcera 

Spleen 0 HE: Inconspicuous white pulp 
Ov2.5: Signals in individual cells in follicles and medulla 

Mediastinal LN 3 HE: Marked depletion 
Ov2.5: Signals in cells in white pulp 

7 Lung ND HE: Mild BALT and desquamated epithelial changes 
Ov2.5: Negative 

Tongue ND HE: NHAIR; Ov2.5: Negative 

Nasopharynx ND HE: NHAIR; Ov2.5: Negative 

Turbinate ND HE: NHAIR; Ov2.5: Negative 

S13-1352 
F, 8 mo 
 

CH 7 Tongue 0 HE: NHAIR 
Ov2.5: Signals in patches of basal epithelial cells 

Severe emaciation, 
suppurative 
tracheobronchitis with 
intralesional fungi 
(aspergillosis) 

Nasopharynx 0 HE: Mild focal subepithelial mixed cellular infiltration 
Ov2.5: Signals in some infiltrating cells and some glandular epithelial cells 

8 
 

Lung 0 HE: NHAIR; Ov2.5: Signals in a proportion of REC 

Mediastinal LN 0 HE: inconspicuous cortex and paracortex 
Ov2.5: Signals in numerous cells in cortex and paracortex and VEC 

Spleen 0 HE: NHAIR 
Ov2.5: Signals in some cells in follicles and red pulp 

Turbinate 0 HE: NHAIR 
Ov2.5: Signals in surface and glandular epithelial cells, chondrocytes and VEC 
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13L-2591 
1 y 

UK A Spleen  3600 HE: Moderate sized secondary follicles, small T cell zones 
Ov2.5: Signals  mainly follicular mantle zone LC, outside the follicle and some in red pulp 
ORF65: Similar as Ov2.5 , but more intense signal 
OvHV2-IH: Reaction in FDC, macrophages in red pulp, VEC 
OV2.5 and CD3: Positive cells are CD3 negative 
OV2.5 and PAX-5: Positive cells are PAX5- positive 

Not applicable (tissues 
collected at the 
abattoir) 

Submandib. LN 6500 HE: Moderate sized secondary follicles  
Ov2.5: Signals in LC in outer mantle zone 
ORF65: Similar as OV2.5, but more intense signal; also some cells in medulla 
OvHV2-IH: FDC, macrophages in sinuses and medulla, and VEC 
OV2.5 and CD3: Positive cells are CD3 negative 
OV2.5 and PAX-5: Positive cells are PAX5- positive 

B Lung:  
 

5800 HE: NHAIR 
Ov2.5: Weak signals in endothelial cells within few arteries throughout the lung section 
ORF65: Negative 
OV2.5 and CD3: Positive cells are CD3 negative. 
OV2.5 and PAX-5: Positive cells are PAX5- positive at the BALT 

Tongue 
 

3900 HE: NHAIR 
Ov2.5: Strong signals in most epithelial cells particularly in the basal cells 
ORF65: Signals in one piece of the tongue there is very few signals in sporadic macrophage beside a couple of epithelial 
cells in the mucosa. In the other bit of the tongue there are moderate signal in the mucosal deep layer epithelial cells 

13L-4893 
18 mo  

UK A 
  

DRG 0 HE:NHAIR; Ov2.5: Negative Not applicable (tissues 
collected at the 
abattoir) 

Cerebellum 2 HE:NHAIR 
Ov2.5: Signal in neurons and Purkinjie cells  
ORF65: Similar as ov2.5 
OVHV-2 IH: Negative 

B Hippocampus 0 Ov2.5: Signals in neurons 
ORF65: similar to Ov2.5 

Pituitary gland 0 Ov2.5: Negative; ORF65: Negative 

13L-2599 
19 mo 

UK A 
 

Lung 5 HE: Mild to moderate BALT formation, slight interstitial fibrosis 
Ov2.5: Signals in several cells (LC and some macrophages) in BALT; individual leukocytes between bronchial epithelial 
cells; VEC; disseminated individual type II alveolar cells and possibly alveolar macrophages  
ORF65: Similar reaction in BALT, otherwise far less intense 

Not applicable (tissues 
collected at the 
abattoir) 

B Mediastinal LN 0 HE: Relatively large secondary follicles 
Ov2.5: Signals mainly in LC in outer mantle zone and possibly a few macrophages 
ORF65: Similar as Ov2.5, but less intense 

Bronchial LN 2 HE: Relatively large secondary follicles Ov2.5:signals mainly in LC in outer mantle zone and possibly a few macrophages 
ORF65: Similar as Ov2.5, but less intense 

13L-2596 
20 mo 

UK A 
 
 

Spleen 9 HE: moderate sized secondary follicles and T cell zones, mild haemosiderosis 
Ov2.5;ORF65: sections is overexposed, cannot be assessed 
OvHV2-IH: Reaction in FDC 

Not applicable (tissues 
collected at the 
abattoir) 
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 Bronchial LN ND HE: Relatively large secondary follicles with numerous apoptotic LC and TBM, and mild sinus histiocytosis 
Ov2.5;ORF65: Sections is overexposed, cannot be assessed 
OvHV2-IH: Reaction in FDC 

C Lung 8 HE: NHAIR 
Ov2.5: Signals in occasional type II pneumocytes 
ORF65: No clear signal  

Mediastinal LN 14 HE: Moderate sized secondary follicles 
Ov2.5: Signals in occasional mantle zone LC and sinus macrophages 
ORF65: Similar, but more positive cells than Ov2.5 

13L-2597 
20 mo  
 

UK A Lung 7 HE: Mild BALT formation and increased interstitial cellularity 
Ov2.5: Signals in the REC (bronchioles) and type II pneumocytes and VEC 

Not applicable (tissues 
collected at the 
abattoir) B 

 
Spleen 3 Ov2.5, ORF65: Hardly any signal  

Bronchial LN 2 Ov2.5, ORF65: Hardly any signal  

13L-2598 
20 mo 
 

UK A 
 
 

Lung 0 Ov2.5: Signal in respiratory epithelium (bronchiole), VEC, some LC in the BALT and the infiltrating between epithelial 
cells of bronchiolar, alveolar epithelial cells (possibly type II), and in arterial SMC 
ORF65: Similar as Ov2.5, but far less intense 

Not applicable (tissues 
collected at the 
abattoir) 

Spleen 5 Ov2.5: Signals in LC in follicular mantle zone, also proportion in red pulp 
ORF65: Similar, but far less intense 

B Bronchial LN 0 Ov2.5: Dirty; signals in some LC in follicular mantle zone 
ORF65: Similar as Ov2.5 

13L-4213 
2 y 
 

UK A Lung 0 HE,ISH,IH: ND Not applicable (tissues 
collected at the 
abattoir) 

B Tongue 0 HE: NHAIR, apart from slight perivascular lymphoplasma-cellular subepithelial infiltration 
Ov2.5: Patchy signal in basal epithelial cells; and in in salivary gland 

Muzzle 16 HE: NHAIR, apart from focal glandular lympho-plasmacellular infiltration 
Ov2.5: Signals in a few cells possibly macrophages in the dermis, most fibrocytes, salivary gland epithelial cells, and VEC 
in some vessels 

C Mediastinal LN 6 HE: Relatively large secondary follicles with numerous apoptotic cells 
Ov2.5: Signals in a few LC disseminated in the follicles and outside, and a few macrophages in follicles 

Spleen 4 HE: Moderate sized secondary follicles 
Ov2.5:  Signals in a few LC in follicular mantle zone and a few macrophages in the centre 

13L-4213 
2 y 
 
 

UK D Lung 1 HE: Mild BALT formation; Ov2.5: Negative Not applicable (tissues 
collected at the 
abattoir) 

Tongue 4 HE: NHAIR, apart from mild multifocal subepithelial LC accumulations 
Ov2.5: Negative 

F Mediastinal LN 0 HE: moderate sized secondary follicles with several apoptotic cells. 
Ov2.5: Negative 

Spleen  0 HE: relatively small secondary follicles 
Ov2.5: Signals in a few LC in follicular mantle zone and occasional macrophages in centre of follicles 

13L-4214 
2 y 
 

UK A Lung 0 HE: Mild BALT formation, mild alveolar emphysema 
Ov2.5: Signals in a few to several macrophages and LC in BALT 

Not applicable (tissues 
collected at the 
abattoir) Tongue  0 HE: Mild multifocal subepithelial plasma cells-dominated, partly mixed infiltration, small subepithelial lymph follicle 
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 aggregate 
Ov2.5: One edge area with positive epithelial cells; some LC and macrophages in subepithelial infiltrates 

B Mediastinal LN 0 HE: Relatively small secondary follicles 
Ov2.5: Signals in some follicles with positive LC in mantle zone and a few in centres (also possibly  macrophages) 

Spleen  0 HE: Small follicles; Ov2.5: Negative 

13L-4214 
2 y 
 

UK C Mediastinal LN  1 HE,ISH,IH: ND Not applicable (tissues 
collected at the 
abattoir) 

Spleen 1 HE,ISH,IH: ND 

D Tongue  0 HE,ISH,IH: ND 

Muzzle  2 HE,ISH,IH: ND 

E Lung 0 HE,ISH,IH: ND 

13L-4215 
2 y 
 
 

UK A Lung 8 HE: NHAIR 
Ov2.5: Signals in endothelial cells of small to medium sized arteries, very occ. pneumocytes  
ORF65: Negative 
OvHV2-IH: Very weak reaction in endothelial cells of some arteries, and occasional cells in interstitium and pneumocytes 

Not applicable (tissues 
collected at the 
abattoir) 

Mediastinal LN 9 HE: Large secondary follicles; moderate haemosiderosis 
Ov2.5: Patchy signals in some follicles with LC in mantle zones, a few cells in centre 
ORF65: Similar as Ov2.5 
OvHV2-IH: Weak reaction in a few FDC 

B Tongue  2 HE: NHAIR 
Ov2.5: Negative 
ORF65: Patchy signals in the basal epithelial cells 

Trachea 3 HE: Moderate mononuclear to mixed cellular subepithelial infiltration 
Ov2.5: Signals in REC, VEC, infiltrating LC and glandular epithelium 
ORF65: Similar, but less extensive 

Aorta 1 HE: NHAIR 
Ov2.5: Signals in endothelial cells of vasa vasorum 
ORF65: Signals in the  fibrocytes of media 

13L-4215 
2 y 
 
 

UK C Lung  1 HE: Mild BALT formation 
Ov2.5: Signals in several LC in BALT 

Not applicable (tissues 
collected at the 
abattoir) Mediastinal LN  0 HE: Moderate sized secondary follicles 

Ov2.5: Signals in a few LC in follicular mantle zones and occasional macrophages in centre 

D Tongue  0 HE: Mild multifocal mixed cellular subepithelial perivascular infiltration 
Ov2.5: Patchy, unfocused signals in (supra) basal epithelial cells 
ORF65: Relatively weak signals in mainly mid layers of the epithelium 

Spleen  1  Not on section 
 

13L-4216 
2 y 
 

UK A Lung 0 HE: Moderate BALT formation 
Ov2.5: Signals in some LC in BALT and around bronchiolar epithelium 

Not applicable (tissues 
collected at the 
abattoir) Mediastinal LN  0 HE: Moderate BALT formation 

Ov2.5: Weak signal in a few mantle zone LC and possibly macrophages in centre 
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B Spleen  0 HE: Small follicles and T cell zones; cell rich red pulp 
Ov2.5: Negative 

Aorta 0 HE: NHAIR; Ov2.5: Negative 

C Muzzle  0 HE: mild multifocal subepithelial perivascular LC infiltration 
Ov2.5: Negative 

Tongue  0 HE: NHAIR; Ov2.5: Negative 

13L-4216 
2 y 
 
 

UK D 
 

Spleen 5 HE: Relatively small follicles, cell rich red pulp 
Ov2.5: Signals in very few cells in follicular mantle zones  

Not applicable (tissues 
collected at the 
abattoir) E Trachea 2 HE: Mild to moderate diffuse subepithelial LC-dominated infiltration 

Ov2.5: Signals in numerous subepithelial  LC 
ORF65: Similar, with slightly more intense signals 

13L-4217 
2 y 

UK A Lung 0 HE: Acute focal suppurative pneumonia 
Ov2.5: Signals in some LC and a few arteries endothelial cells 

Not applicable (tissues 
collected at the 
abattoir) Tongue 0 HE: Several aggregates of large sec. follicles (small LNs) 

Ov2.5: Signals in a few LC in follicles 

B 
 
 

Mediastinal LN  0 HE: Large secondary  follicles 
Ov2.5: Signals in a few LC (and possible macrophages) in the follicles 

Spleen 0 HE: Relatively small follicles, cell rich red pulp 
Ov2.5: Signals in several LC in mantle zone 

13L-4221 
2 y 
 

UK A Mammary LN  1 HE: Relatively small secondary follicles 
Ov2.5: Signal in several mantle zone LC and macrophages in follicle centres 
ORF65: Similar to ov2.5 

Not applicable (tissues 
collected at the 
abattoir) 

13L-2600A,B 
2.5 y 
 

UK A 
 
 

Lung 13 HE: Slight BALT formation and interstitial fibrosis 
Ov2.5: Signals in arterial smooth muscle cells and endothelial cells; in type II pneumocytes, and in LC in BALT 
ORF65: Negative 

Not applicable (tissues 
collected at the 
abattoir) 

Mediastinal  LN 0 HE: Relatively large secondary follicles 
Ov2.5: Probably some macrophages in follicle centres and LC outside have signals 
ORF65: Signals in a few macrophages in follicle centres and LC outside 

B Tongue  0 HE: Focal subepithelial  and perivascular LC aggregates  
Ov2.5: Signal in superficial epithelial cells in mucosa 
ORF65: Very weak signals in epithelial cells 

Spleen  
 

0 HE: Moderate sized secondary follicles and T cell zones  
Ov2.5: Signals in a few macrophages in follicles  
ORF65: Similar as Ov2.5  
 
 

13L-2600C,D 
2.5 y 
 
 

UK C 
 
 
 

Lung 3 HE: Mild interstitial fibrosis and arterial media hypertrophy, diffuse mild alveolar emphysema 
Ov2.5: Signals in arterial SMC, bronchiolar epithelium, some LC 
ORF65: Signals in arterial endothelial cells, a few LC in the BALT 

Not applicable (tissues 
collected atthe abattoir) 

Mediastinal LN 0 HE,ISH,IH: ND 
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D Tongue 8 HE: NHAIR, apart from focal subepithelial LC aggregate 
Ov2.5: Rare signals in LC in subepithelial infiltrates 
ORF65: Patchy area with some positive epithelial cells, and some macrophages in subepithelial infiltrates 

Spleen 0 HE: Relatively small secondary follicles 
Ov2.5: Signals in a few macrophages in follicles 
ORF65: similar as Ov2.5 

S13-1515 
F, 3 y 
 

CH 2 
 

Lung 0 HE,ISH,IH: ND Vertebral fracture (S1 
and S2)  Spleen 0 HE,ISH,IH: ND 

Mediastinal LN 0 HE,ISH,IH: ND 

3 
 

Tongue 6 HE,ISH,IH: ND 

Nasopharynx 0 HE,ISH,IH: ND 

Turbinate 0 HE,ISH,IH: ND 

Uterus 0 HE,ISH,IH: ND 

S13-1425 
F, 4 y 

CH 5 Lung 
 

0 
 

HE: Mild multifocal neutrophilic infiltration and necrosis  
Ov2.5: Negative 

Severe suppurative 
bronchopneumonia 
(Trueperella pyogenes) Mediastinal LN 0 HE: No distinct follicles; Ov2.5: Negative 

Spleen 0 HE: Very small secondary follicles and T cell zones 
Ov2.5: Negative 

6 Tongue 0 HE: NHAIR 
Ov2.5: Signals in basal epithelial cells, subepithelial fibrocytes 

Nasopharynx 0 HE: Mild diffuse subepithelial infiltration (possibly LC and plasma cells) 
Ov2.5: Signals in a few infiltrating LC 

Turbinate 
  

0 HE: Mild, predominantly mononuclear subepithelial infiltration 
Ov2.5: Signals in several LC, VEC, and in glandular epithelial cells 

 
Abbreviations:  
BALT: bronchus associated lymphoid tissue; CH: animals submitted for a diagnostic post mortem examination to the Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland; CRL: crown-
rump length; F: female; FDC: follicular dendritic cells; HE: haematoxylin and eosin stain; IH: immunohistology; LC: lymphocyte; LN: lymph node; ND: not done; M: male; mo: month; NHAIR: no histological abnormality 
is recognised; PIM: pulmonary intravascular macrophages; REC: respiratory epithelial cells; SMC: smooth muscle cells; Submand.: submandibular; TBM: tingible body macrophages; UK: healthy animals slaughtered in 
abattoir in the UK; VEC: vascular endothelial cells; we: week; y: year. 
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2B. List of cows without MCF, of which white blood cells were tested, including information on the histological features and results of RNA-ISH and immunohistology for OHV-2. Relevant post mortem diagnosis is not 

applicable as blood collected at the abattoir in the UK. Animals are listed on the order of age. 

Case number/age 
 

 
Block 

 
qPCR 

 
Histological findings, results of OvHV-2 RNA-ISH and IH 
 

13L-4889 
13 mo 

D 0 Cells were destroyed during WBC isolation, no definitive signals are seen 
 

13L-4889 
18 mo 

E 0 

13L-4889 
18 mo 

C 5 

13L-4889 
19 mo 

A 86 

13L-4889 
19 mo 

B 1 

Cattle 1 
20 mo 

 0 qPCR Only, leukocytes were not pelleted 
 

Cattle 2 
2 y 

 32 

13L-4883 
2 y 

F 4 HE: Predominantly neutrophils, with fewer monocytes and LC 
Ov2.5 (section 1): Signals in up to 10% of cells, morphology of LC and (lesser) monocytes. 
PAX-5 (2): Few B cells approximately (1-2%) 
CD3 (3): Approximately 20-30% of cells 
ORF65 (4): Similar to Ov2.5 
OVHV-2 IH: Reaction in occasional monocytes with very weak reaction. 

13L-4883 
2 y 

G 20 HE: predominantly neutrophils, with fewer monocytes and LC 
Ov2.5 (section 1): signals in >10% of cells, morphology of LC and (lesser) monocytes 
PAX-5 (2): few B cells approximately (2-3%) 
CD3 (3): approximately -30% of cells 
ORF65 (4): similar, but lower no. of cells. 
OVHV-2 IH: occasional monocytes with weak reaction. 

 
Abbreviations: HE: haematoxylin and eosin stain; IH: immunohistology; LC: lymphocyte; mo: month; WBC: white blood cells; y; year.
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Table 3. List of cattle with MCF tested by qPCR, information on histological features and results of RNA-ISH and immunohistology for OHV-2. 
 

 
Case number 

Sex, age 
 

O
rigin

 

B
lo

ck 

Tissue qPCR 
Histological findings, results of OvHV-2 RNA-ISH and IH 

 

12L-0200 
cow 
11 mo 
 

UK A Muzzle 

ND 

HE: Focal extensive epidermal erosion, mixed cellular subepithelial perivascular infiltration, an increase in macrophages and fibroblasts, melanin 
incontinence, and VECs  activation. 
OV2.5: Signals in hair follicle and epithelial, in activated VEC and probably in some leukocytes 
ORF65: Occasional leukocyte (no epithelium on slide) 

Oral mucosa 
ND 

HE: Mild to moderate diffuse interstitial LC and macrophage infiltration, else similar to muzzle with more extensive erosion and ulceration 
OV2.5: There are no signals in squamous epithelial cells, but signals in cells directly beneath epidermis; salivary gland and in a few infiltrating cells 

B Lung 

ND 

HE: moderate hyperaemia, vessels with activated VEC and LC and macrophage like cells surrounding and partly infiltrating the walls; moderate 
multifocal, partly mixed cellular infiltrates, also peribronchial mononuclear infiltrates 
OV2.5: Signals in large proportion of infiltrating leukocytes; vessels: endothelial cells are negative, rare in intravascular LC 
ORF65: Generally weak signal in bronchus, glandular epithelial cells (negative with OV2.5) and in REC 

C Tongue 

ND 

HE: Multifocal erosion and LC serration, with subepithelial mononuclear infiltration, often perivascular, and with vasculitis 
OV2.5: Signals in patches of epithelial cells (more intense with inflammation, also infiltrating leukocytes; a few fibrocytes in interstitium, VECs are 
negative 
ORF65: Signals are less intense, but similar 

Rumen 

ND 

HE: Multifocal erosion and ulceration, mild but  almost diffuse mononuclear subepithelial infiltration 
OV2.5: Signals in epithelial cells patches (more intense with inflammation, also in infiltrating leukocytes, in some intravascular leukocytes, in some 
vessels also endothelial cells (close to inflammation) 
ORF65: Similar, but partly less intense 

D Spleen 
ND 

HE: Small secondary follicles and T cell zones, relatively cell rich red pulp, there are activated endothelial cells. 
OV2.5: Signals seem to be in LC only in (centre and) periphery of follicles, and a few in red pulp  
ORF65: Similar signals, but substantially fewer cells and lower intensity. 

Heart 
ND 

HE: Focal interstitial LC-dominated perivascular infiltration 
OV2.5: Signals in infiltrating leukocytes  
ORF65: Similar signals, but substantially fewer cells and lower intensity 

Abomasum 

ND 

HE: Moderate mucosal and submucosal perivascular LC-dominated infiltration 
OV2.5: Signals in infiltrating leukocytes in (sub)mucosa, in neurons in submucosal and myenteric plexus structures, some signal in basal epithelium, 
in occasional in VECs 
ORF65: Similar signals, but substantially lower number of cells and lower intensity 

E Small intestine 

ND 

HE: Moderate to marked diffuse mucosal and perivascular submucosal LC-dominated infiltration; some dilated crypts 
OV2.5: Infiltrating leukocytes in (sub)mucosa, neurons in submucosal and myenteric plexus structures, crypt epithelium; endothelial cells in some 
arteries in muscular layer  
ORF65: Similar, but far less extensive signal 

Large intestine 
ND 

HE: Moderate to marked diffuse mucosal and perivascular submucosal LC-dominated infiltration 
OV2.5: Signals in infiltrating leukocytes in (sub)mucosa , crypt epithelium, LC in gut associated lymphoid tissues (GALT) .; ORF65: Negative 

Mediastinal LN  ND HE: Mildly depleted secondary follicles 
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OV2.5: Signals in LC mainly in; periphery of follicles; numerously in medulla and some in sinuses. 
ORF65: Similar, but far less cells 

G Kidney 
ND 

HE: Moderate multifocal interstitial, partly perivascular and arterial infiltration  
OV2.5: Signals in infiltrating LC, individual or groups of tubular epithelial cells in medulla. 
ORF65: Similar, but a bit less intense 

Liver 
ND 

HE: Moderate diffuse portal LC-dominated infiltration (partly vasculitis), multifocal areas of hepatocyte necrosis and haemorrhage 
OV2.5: Signals in infiltrating LC  
ORF65: Similar to Ov2.5 

Small  
intestine ND 

HE: Mild to moderate diffuse mucosal LC-dominated infiltration 
OV2.5: Signals in infiltrating LC, in epithelial cells, in neurons in plexus structures, and in some arterial endothelial cells. 
ORF65: Signals in epithelial cells and LC, but far less cells and less intense 

 H Hippo-campus 
ND 

HE: Slight to mild multifocal perivascular LC-dominated cuffs in brain stem 
OV2.5: No definitive signal but possibly a few neurons in cortex 
ORF65: similar to Ov2.5  

J Cerebellum 

ND 

HE: Slight to mild multifocal perivascular LC-dominated cuffs, mainly in white matter and leptomeninges 
OV2.5: Negative 
ORF65: Signals in neurons in all layers in cerebellum, VEC, large neurons in brainstem, infiltrating LC and in some glial cells 
CD3: There are many T cells 
PAX-5: No B cells detected 

S11-0564 
Water buffalo 
F, 1.5 y 
 

CH 01 Lip 

ND 

HE: Focal ulceration and deep (perivascular and extending into muscle layers) LC dominated infiltration with evidence of fibroblasts (chronic 
vascular lesions) 
OV2.5: Signals in patchy basal epithelial cell accumulations, proportion of LC (and possibly  fibroblasts) in infiltrates underneath epithelial, VEC are 
negative 
ORF65: Epithelial signals are similar, but slightly more extensive than OV2.5, signals in infiltrating cells and also in fibroblasts, and in endothelial 
cells of some vessels 

Trachea 
ND 

HE: Marked hyperaemia and (peri)vascular and glandular LC infiltration 
OV2.5: Very weak signals in  infiltrating LC 
ORF65: Strong signal in infiltrating LC and in VEC  

Lung 
ND 

HE: Mild to moderate disseminated perivascular LC infiltrations 
OV2.5: Signals in a proportion of infiltrating LC 
ORF65: Signals in the most of infiltrating LC and occasional weak signal in REC 

02 Lung 

ND 

HE: Multifocal perivascular LC infiltration 
OVHV-2 IH: Reaction in infiltrating and intravascular LC, VEC, alveolar cells (probably macrophages), also individual REC and chondrocytes  
OV2.5: Weak signals in infiltrating LC 
ORF65: Section is overstrained, but signal distribution almost identical to viral antigen expression. 

03 Rete mirabile 

ND 

HE: moderate LC-dominated vasculitis 
OvHV-2 IH: reaction in endothelial cells, SMC (scattered and weak), in relatively small proportion of infiltrating LC, proportion of intravascular LC, 
neurons or probably  myelin sheath in nerves 
OV2.5: Signals in a proportion of infiltrating LC 
ORF65: Signals in a large proportion of infiltrating LC and some VEC 

S11-1232 CH 08 Rete mirabile ND HE: Severe LC-dominated vasculitis with fibrinoid endothelial cells necrosis of vessel wall 
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Water buffalo 
F, 2.5 y 
 
 

OVHV-2 IH: Reaction in a proportion of infiltrating LC, VEC, fibroblasts, arterial SMC 
OV2.5: Signal in a proportion of infiltrating LC (relatively weak signals 
ORF65: Overexposed; signals pattern almost dentical to protein expression 
CD3: Large proportion of infiltrating LC 
CD20 (B cells): Few proportion of infiltrating LC 

S11-1353 
Water buffalo 
F, 2 y 
 

CH 01 Kidney 
ND 

HE: Multifocal chronic hyperplastic arteritis and moderate interstitial LC infiltration 
OV2.5: Signals in a large proportion of infiltrating LC, in interstitium, some in arterial walls; epithelial cells of some tubules, sometimes in VEC 
ORF65: Similar, but slightly more intense 

02 Urinary bladder 
ND 

HE: Chronic follicular cystitis (large subepithelial LC aggregates), oedema, haemorrhage, and Cloistra growth 
OV2.5: Signals in a proportion of LC in infiltrates, and in occasional epithelial cells 
ORF65: Signals in majority of LC infiltrates, and in VEC 

Muscle 
ND 

HE: interstitial haemorrhage, and Clostria growth 
OV2.5: Negative 
ORF65: Individual interstitial cells have signals 

Lung 
ND 

HE: autolytic changes, alveolar haemorrhage, oedema and bacterial aggregates 
OV2.5: negative 
ORF65: negative, but possible weak signal in a few individual LC 

04 Rete mirabile 
ND 

HE: NHAIR, apart from a few LC in arterial walls and perivascular 
OV2.5: signals in endothelial cells in some vessels, a few cells (possible LC) in arterial walls 
ORF65: signals arterial SMC and endothelial cells, and in infiltrating cells in arterial walls 

Basal ganglia 
ND 

HE: NHAIR 
OV2.5: Signals in neurons 
ORF65: Similar as Ov2.5 

Spleen 

ND 

HE: LC depletion, mild haemosiderosis 
OV2.5: Signals in hardly any follicles (may be a few of the LC arranged in a loose follicle-like structure), moderate number of cells in red pulp 
(probably LC, plasma cell and macrophages), in endothelial cells of some vessels in capsule 
ORF65: Signals in the cells in follicle like structure, numerous cells in red pulp (s. OV2.5), VEC in spleen and splenic capsule 

S12-0083 
Water buffalo 
F, adult 
 

CH 08 Retrophar.  LN 
ND 

HE: Mildly depleted secondary follicles, moderate sinus histiocytosis 
OV2.5: Signals in LC in follicle centres and in medulla 
ORF65: see OV2.5 

Basal ganglia 
and rete 
mirabile 

ND 
HE: Mild multifocal (peri)vascular LC and plasma cell-dominated mixed cellular infiltrates 
OV2.5: Signals in VEC, neurons, intravascular and infiltrating LC and fibroblasts 
ORF65: see OV2.5 

09 Rete mirabile 
ND 

HE: Marked LC-dominated arteritis with fibrinoid necrosis of vessel wall, LC-dominated perivascular infiltrate 
OV2.5: Weak, small proportion of infiltrating cells 
ORF65: Section is overexposed and overdigested. Signals in arterial endothelial cells, fibroblasts, LC, and in some arterial SMC 

Large intestine 
ND 

HE: Autolytic changes, moderate LC-dominated vasculitis in muscularis 
OV2.5: Signals in a proportion of infiltrating LC in mucosa 
ORF65: Section is overexposed and overdigested. Signals in epithelial cells, VEC; LC in mucosa and submucosal infiltrates (vasculitis) 

12 Lung 
ND 

HE: mild LC-dominated arteritis; severe subacute pneumonia 
OV2.5: Signals in a substantial proportion of infiltrating LC 
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ORF65: majority of infiltrating LC, VEC, in occasional REC and glandular epithelial cells (bronchi, bronchioles) 

14 Kidney 
ND 

HE: moderate multifocal interstitial LC and plasma cell infiltration, in medulla there is mild vasculitis 
OV2.5: Signals in s proportion of infiltrating LC, rare medullary tubular epithelial cell 
ORF65: Signals in a large proportion of infiltrating LC; in medulla numerous tubules with positive epithelial cells 

S12-0124 
Water buffalo 
M, adult 
 

CH 8 Rete mirabile 

ND 

HE: Very mild LC and plasma cell associated arteritis 
OVHV-2 IH: Reaction in endothelial cells, arterial SMC, infiltrating LC, fibroblasts 
OV2.5: Signals in a few infiltrating cells and arterial SMC (weak) 
ORF65: See IH 

Pituitary gland 
ND 

HE: NHAIR 
OvHV-2: Reaction in VEC 
OV2.5: Negative 

Spleen 

ND 

HE: Moderate sized, moderate depleted follicles, mild haemosiderosis, relatively cell poor red pulp 
OVHV-2 IH: Reaction in endothelial cells, in a proportion of LC in follicle periphery and in T cell Zones, FDC, proportion of cells (probably LC) in red 
pulp and in vessels  
OV2.5: Signal in very rare LC In follicle 
ORF65: Signal in LC in follicle centre and mantle zone and outside the follicles, in endothelial cells, and some cells in red pulp 

Small intestine 
ND 

HE: Moderate diffuse mucosal LC and PC infiltration 
OVHV-2 IH: Reaction in a proportion of LC and plasma cells in mucosal infiltrates and VEC 
OV2.5,ORF65: Negative 

9 Pituitary gland 
ND 

HE: NHAIR 
OVHV-2 IH: Reaction in cells in adenohypophysis, probably basket cells; and in VEC 

10 Retrophar. LN 
ND 

HE: Moderate sized, moderate depleted follicles and T cell zones, mild sinus histiocytosis 
OVHV-2 IH: Reaction in FDC, a few LC in follicle periphery and in T cell zones, DC in sinuses (and probably a few macrophages), and in  VEC 

18-C20-4-10 
cow 
11 mo 
 
(moderate 
autolytic 
changes) 
 

UK  Kidney 
 

ND 

HE: Focal interstitial LC-dominated (perivascular) infiltration 
Ov2.5: Signal in a portion of infiltrating LC, very rare signal in tubular epithelial cells 
OVH2-IH: Selective finely granular staining in tubular epithelial cells 
ORF65: Section is overexposed and overdigested. Signals in a proportion of tubules epithelial cells, VEC, some cells in glomeruli 

Small intestine 

ND 

HE: Moderate diffuse mucosal LC infiltration; mildly depleted Peyer’s patches 
Ov2.5: Weak in some infiltrating LC, Peyer’s patches negative 
OVH2-IH: Very weak signal in some DC in Peyer’s patches 
ORF65: Section is overexposed and overdigested. Signals in epithelial cells, VEC, fibroblasts, and in infiltrating LC 

Abomasum 
 ND 

HE: Mild diffuse mucosal LC infiltration ;OVH2-IH: Negative 
Ov2.5: Signals in large proportion of parietal cells 
ORF65: Section is overexposed and overdigested. Signals in parietal cells  

 Mediastinal LN 328288 HE, ISH, IH: ND 

Mesenteric  LN 1360448 HE, ISH, IH: ND 

18-C21-4-10 
cow 
11 mo 
 

UK  Kidney 
ND 

HE: Moderate multifocal interstitial, partly perivascular and arterial infiltration  
OV2.5: Section appears overdigested. There is no signal. 
ORF6: Signals in epithelial cells of some tubule and some infiltrating LC 

Abomasum ND HE: Mild diffuse mucosal LC infiltration 
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(moderate 
autolytic 
changes) 

OV2.5: Section appears to be overdigested. Signal are in parietal cells and probably in some infiltrating LC in mucosa 
ORF65: Section is overexposed and overdigested. Signals in parietal cells and VEC 

Mediastinal LN 106283 No block was available 

Mesenteric LN 99619 No block was available 

18-C22-4-10 
cow 
2 y 
 
(marked 
autolytic 
changes) 
 

UK 1 Abomasum 

ND 

HE: Mild diffuse mucosal LC infiltration 
OvH2-IH: Reaction in a few infiltrating LC 
OV2.5: Weak signal in basal parietal cells 
ORF65: Section is overexposed and overdigested. Signals in parietal cells, VEC and SMC, LC 

Skin 

ND 

HE: Focal epidermal necrosis (early ulceration), marked perivascular LC dominated infiltration in upper dermis (with vasculitis) 
OvH2-IH: Reaction in basal cells in hair follicles, a few individual basal epidermal epithelial cells and DC along basement membrane 
OV2.5: Signals in basal cells in hair follicles 
ORF65: Section is overexposed and overdigested. Signals in epidermal, glandular and hair follicle epithelial cells, in VEC and LC 

Trachea 

ND 

HE: Focal epithelial loss (erosion/ulceration) and marked submucosal, predominantly perivascular LC infiltration (and vasculitis) 
OvH2-IH: Negative (loss of antigenicity is likely, as section was cut several weeks earlier) 
OV2.5: Signals in epithelial cells 
ORF65: Section is overexposed and overdigested. Signals in epithelial cells, VEC, LC and fibroblasts 

2 Kidney 
 

ND 

HE: Moderate multifocal interstitial, partly perivascular and arterial infiltration 
OvH2-IH: Selected finely granular staining in tubular epithelial cells 
Ov2.5: Negative 
ORF65: Section is overexposed and overdigested. strong signal in proportion of tubules (epithelial cells) and occasional cells in glomeruli 

 Mesenteric LN 

153938 

HE: Severe autolytic changes 
OvH2-IH: Cannot be assessed, as reaction of post mortem infiltrating clostridia 
OV2.5: Signals in a few LC between follicles 
ORF65: Section is overexposed and overdigested. Signals cannot be assessed 

Mediastinal  LN 111536 No block was available 

14L-1074 
Javan 
Banteng  
3 y 
 
 

UK A Eye 

86234 

HE: Multifocal LC-dominated arteritis in uvea, iris and cornea, chronic keratitis with neovascularisation, mild mixed cellular infiltration and 
keratocyte proliferation 
Ov2.5: Focal signals in few parts of the section, mainly some LC in keratitis, a few keratocyte 
ORF65: Similar as Ov2.5 

B Lip 
ND 

HE: Submucosal LC dominated perivascular infiltration and arteritis, and infiltration of glands (with glandular atrophy and focal necrosis) 
Ov2.5: Signals in some basal and glandular epithelial cells and in few LC 
ORF65: Similar, but more intense than Ov2.5  

LN (?) 
42029 

HE: Large and mildly depleted secondary follicles, cell rich T cell zones 
Ov2.5: Signals in a few LC in centre and surrounding follicles, also LC in medulla 
ORF65: Similar with weaker signals than Ov2.5 

C Small Intestine 
5227 

HE: Moderate mixed cellular mucosal infiltration; distinct Peyer’s patches 
Ov2.5: Signals in occasional LC 
ORF65: More numerous LC and part of epithelial cells have signals 

D Adrenal Gland 
ND 

HE: Marked LC-dominated arteritis around adrenal gland 
Ov2.5: Some LC in vascular infiltrates 
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ORF65: Similar as Ov2.5 

Lung 
ND 

HE: Moderate multifocal LC-dominated arteritis, mild BALT 
Ov2.5: Signals in a proportion of infiltrating LC, also occasional alveolar epithelial cell and VEC 
ORF65: Similar as Ov2.5  

Lip 
ND 

HE: Focal erosion, moderate subepithelial LC-dominated infiltration and arteritis  
Ov2.5: Signals in epithelial cells in epidermis, in mucosa and hair follicles, in numerous LC and VEC 
ORF65: Similar as Ov2.5 

E Small intestine 

ND 

HE: Moderate to marked mixed cellular mucosal infiltration, distinct Peyer’s patches 
Ov2.5: Signals in some LC in mucosa (around crypts) and some signal in crypt epithelial cells, a few LC in the follicles of the Peyer’s patches, also in 
neurons in plexus structures. 
ORF65: Similar as Ov2.5 

F Kidney 
18843 

HE: Moderate multifocal interstitial, partly perivascular and arterial infiltration (arteritis) 
Ov2.5: Signals in relatively numerous LC in infiltrates, occasional tubular epithelial cell  
ORF65: Similar, but stronger and more positive cells 

 Pharynx 
94217 

HE: Focal ulceration, marked perivascular LC-dominated infiltration, particularly in glands. Tonsil with moderate sized secondary follicles. 
Ov2.5: Partly basal, partly all epithelial cell layers, some LC in infiltrates, glandular duct epithelial, LC in follicles 
ORF65: Similar, but stronger and more positive cells in particular in association with ulceration 

Spleen  
ND 

HE: Moderate hyperaemia, small follicles and T cell zones 
Ov2.5: Signals in some LC disseminated in red pulp, and in some cells in white pulp 
ORF65: Similar, but stronger and more pos. cells 

G Heart 
16769 

HE: LC-dominated arteritis and interstitial perivascular infiltrates. 
Ov2.5: Signals in a proportion of LC in arteritis and in interstitial infiltrates, and in some VEC  
ORF65: Similar to Ov2.5, but less intense 

H Liver 
12281 

HE: disseminated mild portal LC-dominated infiltration. 
Ov2.5: Signals in very few LC in infiltrates 
ORF65: Similar to Ov2.5 

Uterus 
ND 

HE: Mixed cellular endometritis; LC-dominated arteritis and perivascular infiltrates in wall 
Ov2.5: The endometrium mainly negative, but signal in several LC in vessel associated infiltrates  
ORF65: Similar signals, but VEC are also positive. 

 placenta 152665 No block was available 

14L-1075 L 
Foetus of  
14L-1074 
9 mo 

UK  Spleen 2 HE, ISH, IH: ND 

Liver 1 HE, ISH, IH: ND 

Kidney 0 HE, ISH, IH: ND 

Thoracic fluid 0 Not applicable 

Abbreviations:  
BALT: bronchus associated lymphoid tissue; CH: animals submitted for a diagnostic post mortem examination to the Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland; F: female; 
DC: Dendritic cells; FDC: follicular dendritic cells; HE: haematoxylin and eosin stain; IH: immunohistology; LC: lymphocyte; LN: lymph node; ND: not done; M: male; mo: month; NHAIR: no histological abnormality is 
recognised; PIM: pulmonary intravascular macrophages; REC: respiratory epithelial cells; SMC: smooth muscle cells; Retrophar.: Retropharyngeal; Submand.: submandibular; TBM: tingible body macrophages; UK: 
healthy animals slaughtered in abattoir in the UK; VEC: vascular endothelial cells; we: week; y: year.
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