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Abstract

Although image intensities are non-negative quantities, imposing positivity is not always con-

sidered in restoration models due to a lack of simple and robust methods of imposing the con-

straint. This paper proposes a suitable exponential type transform and applies it to the commonly-

used total variation model to achieve implicitly constrained solution (positivity at its lower bound

and a prescribed intensity value at the upper bound). Further to establish convergence, a convex

model is proposed through a relaxation of the transformed functional. Numerical algorithms are

presented to solve the resulting non-linear partial differential equations. Test results show that

the proposed method is competitive when compared with existing methods in simple cases and

more superior in other cases.

Key words. Total variation, image deblurring, alternating direction method of multipliers, box
constraint, transforms.
AMS subject classifications. 68U10, 65J22, 65K10, 65T50, 90C25.

1 Introduction

Image processing techniques, such as image reconstruction which includes removing image noise

from a given image (denoising) [29], reconstructing an image from a given blurred image (deblurring)

[18], reconstructing the missing or damaged portion of an image (inpainting) [9], emphasizing the

boundaries of an image by different filters or segmenting an image into subregions (segmentation) [17],

have been widely used in many areas. Despite significant developments in photographic techniques
and technology, blur is still a major cause for image quality degradation in clinical settings. This
is due to many factors such as motion of the camera or more commonly in the case of retinal
images the target scene, defocusing of the lens system, imperfections in the electronic, photographic,
transmission medium, or obstructions. In this paper, we are concerned with variational models for
restoration of such blurred and noisy images.

An observed blurred image can be written as a convolution of the true image with a blur function,

known as the Point Spread Function (PSF) or kernel K [25]. There are three main deconvolution

problems: 1) blind deconvolution, which includes the cases when both the kernel and the image are

unknown [25, 26]; 2) semi-blind restoration, in which the kernel is assumed to belong to a class of

parametric functions; or 3) non-blind deconvolution where only the image is unknown [18]. All three

types are important not only in many scientific applications such as astronomical imaging, medical
imaging, and remote sensing, but also for consumer photography.
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Deconvolution in the case of known blur, has been investigated widely in the last few decades

giving rise to a variety of solutions [2, 3, 15, 22, 27, 24, 31, 30, 33]. In non-blind deconvolution, the

point spread function is assumed known even though this information is not available in most of the
real applications. In many cases, we know that our restored image must have strictly non-negative
intensities, but the solution by traditional methods may yield results which are not necessarily posi-
tive. This has implications for most images with significant amounts of dark space, i.e. images with
many pixel intensity values close to or equal to zero, as well as for blind deconvolution where the
representation of certain blur functions has a significant amount of zero or near-zero values.

In this paper, we present a model for non-blind deconvolution which not only ensures a strictly
positive result but also limits the upper boundary of the image intensity values, keeping them within

a prescribed range. Related work in this area can be found as early as [7] and more work has been

carried out in recent years which attempts to find strictly positive solutions for several applications,

particularly astronomical imaging. Vogel and Bardsley [4] gave a method for large-scale minimization

problems with non-negativity constraints using a cost functional including the statistics of the noise
in the image data. A reduced Newton method was introduced such that Newton steps are only taken
in the inactive variables, meaning those which are non-zero. A sparse matrix preconditioner was also
introduced to improve convergence of Conjugate Gradient which is used to compute approximate

reduced Newton steps. Benvenuto et al. [6] attempted to increase the efficiency of the projected

Langweber method and iterative image space reconstruction algorithm, both of which demonstrate
the property of semi-convergence. The results of the algorithms improve at the earlier iterations and
then begin to worsen. The algorithms are also quite slow. The aim of Benvenuto et al. was primarily

to improve the speed and convergence of these algorithms. The works of [12, 13] proposed other ideas

based on nonnegative projections for deblurring. More recently, Chan et al. [15] gave a method for

constrained image deblurring which is related to [4] but uses efficient alternate direction methods to

drive the restored image closer to a projection of itself onto the ideal range. Since such projections

(typically scaling or truncation) may cause a decrease in quality if simply applied at the end, the

authors of [15] improve results by successively forcing the intensity values of the image to lie within

a range which tends towards the ideal.

The rest of the paper is organised as follows. Section 2 reviews the total variation (TV) based

variational models for denoising and deblurring. Section 3 presents our proposed transform and,
consequently, its resulting model and algorithms. Section 4 discusses some refinement issues followed
by Section 5 of numerical results and Section 6 of conclusions.

2 The TV based deblurring models

Noise and blur can be commonly found in digital images due to factors such as imperfections of the

capturing equipment and scattering through nonhomogeneous medium. Following the work of [29],

we consider the linear deblurring problem with additive noise

z = k ∗ u+ η (1)

where z is the (known) observed image and η is the unknown noise function. There are two related

models that one may consider.

Given knowledge of the blurring kernel k, the TV regularised model [29, 16, 4, 34] reconstructs u

from solving

min
u

∫

Ω
(k ∗ u− z)2dΩ+ α1‖u‖βTV , ‖u‖βTV =

∫

Ω
|∇u|βdΩ, (2)
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where α1 > 0 and ‖u‖βTV =
∫
Ω |∇u|βdΩ =

∫
Ω

√
u2x + u2y + β dΩ, where β is a small non-negative

constant, is a smooth approximation of the total variation. The model has been widely studied.

Recently, algorithms for optimal selection of the parameter α1 have also been proposed in [21, 37, 20].

Then to restore the kernel k from a known image u, a related model to (2) may be proposed

min
u

∫

Ω
(u ∗ k − z)2dΩ+ α2‖k‖βTV , s. t. k ≥ 0,

∫

Ω
k(s, t)dsdt = 1, (3)

where α2 > 0 and we have used the equality u∗k = k ∗u. Our main concern in this paper is equation

(2).

Here we remark that for (2), from our experience, the positivity method from [34] appears to

be reliable. However, for model (3), the method of projecting solutions to satisfy the constraints

k ≥ 0,
∫
Ω k(s, t)dsdt = 1 seems less robust. Therefore, it is of importance to seek alternative and

effective methods.

3 A transform based method for implicitly constrained reconstruc-

tion

In this section, we present a new transform method for imposing positivity for solving models (2)-(3).

Our method will transform our constrained model to a non-constrained one. Therefore the positivity

constraint is automatically satisfied. Below we use model (2) as the example.

Our motivation comes from a simple idea. If we wish for u ≥ 0, we set u = exp(ψ) and reformulate

our model in the new variable ψ. Then for any ψ, we can ensure u ≥ 0. However, this seemingly
great idea does not work because the inverse transform ψ = lnu does not allow u = 0. A remedial

solution is to define the modified transform u = exp(ψ) − ǫ so ψ = log(u + ǫ); however to ensure

u ≥ 0, we require ψ ≥ log(ǫ) which implies that ψ must be constrained i.e. the underlying transform

is not suitable. We would therefore aim to choose ǫ to be a very small positive number so that any
final projection, if necessary, would have minimal effect on the result.

In order to impose a constraint on both the upper and lower bounds of u, we have found that a
suitable exponential type transform is the following

u = H̃ǫ(ψ) =
w + 2b

1 + e−
ψ

ǫ

− b

which resembles a smooth approximation to the Heaviside function given by

H(ψ) =

{
0, if ψ < 0
1, if ψ ≥ 0,

where ǫ, b, w > 0, and 0 ≈ −b ≤ H̃ǫ(ψ) ≤ w+ b ≈ w defines the intensity range for any ψ. Practically

one may take, for (3), b = 0.1, w = 255 to accommodate the commonly used range u ∈ [0, 255] and,

for (27), b = 0.01, w = 1 to allow k ∈ [0, 1]. Note the inverse transform ψ = − ǫ
2 log

w−u
u+b allows u = 0.

To allow generality, our proposed transform will be of the form

T (ψ) =
a1 + 2a4

1 + a2e
−2ψ

a3

− a4 (4)
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where a = (a1, a2, a3, a4) and all aj’s are positive. Note 0 ≈ −a4 ≤ u = T (ψ) ≤ a1 + a4 ≈ a1 for any

ψ. As illustrated in Fig.1, the generality allows us to adjust the maximal and minimal values of the
range using a1 and a4, the spread of usable range of ψ using a3 and the point of u at which ψ will
be equal to zero using a2. We can, if we wish, use this to restrict all values of ψ to positive but this
is not necessary.
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Figure 1: Graph of Heaviside Transform u = T (ψ)

Once the transform is specified, we now consider how to use it to reconstruct ψ first and hence

the image u. The model (2) as studied in [34] can be transformed from

min
u
f(u) =

1

2

∥∥∥
∫
k(x− x′, y − y′)u(x′, y′)dΩ − z(x, y)

∥∥∥
2

2
+ αL(u)

(with u ≥ 0) to the new problem for ψ

min
ψ
f(ψ) =

1

2

∥∥∥
∫
k(x− x′, y − y′)T (ψ(x′, y′))dΩ − z(x, y)

∥∥∥
2

2
+ αL(T (ψ)) (5)

where L denotes the TV regulariser for (2) and the H1 for (9). The new and transformed model (5)

has no constraint on ψ and yet can ensure (3) to have a positive solution u. However, since both

terms in (5) are non-linear in ψ, it remains to address the numerical solution methods.

In what follows, we shall propose to treat term 1 in (5) by linearising T (ψ) (due to the challenge

associated with a non-local operator k) and term 2 by lagged diffusion ideas (as for solving the

denoising [34]).

Linearisation of T (ψ). The Taylor expansion of T (ψ) about ψ = 0 is given by

T (ψ) = A+Bψ +O
(
ψ2
)
, A =

a1 + 2a4
1 + a2

− a4, B =
2a2(a1 + 2a4)

(1 + a2)2a3
.

Thus we can decompose T (ψ) by separating its linear term in the form

u = T (ψ) = A+Bψ + ¯̄v(ψ̃), ¯̄v(ψ̃) = v̄(ψ̃)−A, v̄(ψ̃) = T (ψ̃)−Bψ̃.

Iterative minimisation. Using the above decomposition, our solution strategy is as follows:

1: u(0) ← z and ψ(0) ← T−1(u(0))

2: for Iterate on ℓ do
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3: Solve for ψ(ℓ+1), given ψ(ℓ), from

ψ(ℓ+1) ← min ‖k ∗ ψ(ℓ+1)B − z̄(ψ(ℓ))‖22 + α‖Bψ(ℓ+1)) + v̄(ψ(ℓ))‖βTV (∗)

4: where z̄(ψ(ℓ)) = z − k ∗ v̄(ψ(ℓ)).

5: end for

We now discuss how to solve the above equation (*) i.e.

min
ψ

{
f(ψ) =

1

2
||Bk ∗ ψ − z̄||2L2(Ω) + α

∫

Ω
|∇ (Bψ + v̄) |βdΩ

}
. (6)

Consider each term in turn. First let f1 =
1
2 ||Bk ∗ψ− z̄||2L2(Ω) so minψ f1 is given when ∂f1/∂ψ = 0.

Here

∂f1
∂ψ

=
∂

∂ψ

1

2
||Bk ∗ ψ − z̄||2L2(Ω) =

1

2

∂

∂ψ
(Bk ∗ ψ − z̄)2

=

(
∂

∂ψ
(Bk ∗ ψ)

)
(Bk ∗ ψ − z̄) = (Bk)T (Bk ∗ ψ − z̄).

Second let f2 =
∫
Ω∇(Bψ + v̄)dΩ and minψ f2 is given when

∂

∂ǫ
(f2(ψ+ ǫφ))|ǫ→0 = 0 for an arbitrary

function φ. We have

∂

∂ǫ
f2(ψ + ǫφ)

∣∣∣∣
ǫ→0

=
∂

∂ǫ

∫

Ω
|∇(B(ψ + ǫφ) + v̄)|βdΩ

∣∣∣∣
ǫ→0

=

∫

Ω

∂

∂ǫ
|∇(B(ψ + ǫφ) + v̄)|βdΩ

∣∣∣∣
ǫ→0

=

∫

Ω

∇(B(ψ + ǫφ) + v̄)

|∇(B(ψ + ǫφ) + v̄)|β
· ∇BφdΩ

∣∣∣∣∣
ǫ→0

=

∫

Ω

∇(Bψ + v̄)

|∇(Bψ + v̄)|β
· ∇BφdΩ

= −
∫

Ω
∇ ·
(
∇(Bψ + v̄)

|∇(Bψ + v̄)|β

)
BφdΩ+

∫

Γ

∇(Bψ + v̄)

|∇(Bψ + v̄)|β
· Bφ~ndΓ.

We have therefore that minψ {f = f1 + f2} is solved by

(Bk)T (Bk ∗ ψ − z̄) + α∇ ·
(
∇(Bψ + v̄)

|∇(Bψ + v̄)|β

)
B = 0 (7)

where z̄ = z̄(ψ) = z − k ∗ v̄(ψ) and v̄ = v̄(ψ) = T (ψ)−Bψ.
Overall Algorithm. Assume u has a Dirichlet boundary condition. Then the discretised the

Point Spread Function (PSF) k leads to a Block Toeplitz matrix with Toeplitz Blocks (BTTB) [22, 34].

In order to define the transform, we calculate the parameters a1, . . . , a4 according to the Appendix.

We calculate the initial estimate of ψ(0) given the initial estimate of u(0) as follows:

u = T (ψ) =
a1 + 2a4

1 + a2e
− 2ψ

a3

− a4, ψ = T−1(u) = −a3
2

ln

(
a1 − u+ a4
a2(u+ a4)

)
.

We then solve the Euler Lagrange equation (7) and finally transform the image back, obtaining our

restored image u with positive entries. This is shown in Algorithm 1.
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Algorithm 1 A Transform based algorithm for positivity

1: function Trans(z, k, α, β,a, tol,maxit)

2: u(0) ← z
3: Calculate a = {a1, a2, a3, a4}
4: ψ(0) ← −(a3/2) log

((
a1 + a4 − u(0)

)
/
(
a2(u

(0) + a4)
))

5: for ℓ← 1 to maxit do
6: Solve equation for ψ(ℓ+1) given ψ(ℓ), i.e.

ψ(ℓ+1) ← SOLVE (Bk)T ∗
(
k ∗ ψ(ℓ+1) − z(ψ(ℓ))

)
− α∇ · ∇

(
Bψ(ℓ+1) − v(ℓ)

)
∣∣∣∇
(
Bψ̂(ℓ+1) − v(ℓ)

)∣∣∣
β

= 0

7: where z(ψ(ℓ)) = z − k ∗ v(ψ(ℓ)) and ψ̂ denotes a lagging from ψ.
8: end for
9: On exit, u(ℓ+1) ← (a1 + 2a4)/(1 + a2 exp(−2ψ/a3)).

10: end function

4 Refinements and other solution strategies

4.1 Alternative Linearisation

In order to improve the speed of obtaining a solution, we carry out the Total Variation norm lineari-
sation alongside the updating of the linearisation of the transform, thereby solving

(Bk)T ∗
(
k ∗ ψ(ℓ+1) − z̄(ψℓ)

)
− α∇ · ∇

(
Bψ(ℓ+1) − v̄(ψℓ)

)
∣∣∇
(
Bψ(ℓ) − v̄(ψℓ)

)∣∣
β

= 0. (8)

In this way, we hope to get speed-up due to the saving of iterations on ψ̂. Experimental results
are shown in Figure 8 and error values and CPU times for this method and the previous transform
method are given in Table 6. It can be noted that, the reduction in CPU time is significant.

4.2 Alternative Regularisation

While the total variation semi-norm which we have used in our model gives good results for images
which have sharp changes in intensity and hence jumps in the pixel intensity value, improved results
may be found by considering alternative regularisation to treat smooth images. In this section, we
consider a simple form of alternative regularisation using the L2 norm of the gradient of the image.

More robust regularizations are based on high order regularisers; see [10, 8, 28, 19].

In the traditional case, using a least squares fitting term and L2 as a regularisation term, we will
obtain a linear partial differential equation to solve. We give this minimizing functional as

f(u) =
1

2
||k ∗ u− z||2L2(Ω) +

α

2

∫
|∇u|2dΩ. (9)

The well-known Euler-Lagrange equation for the image u is therefore given by

kT ∗ (k ∗ u− z)− α∆u = 0. (10)
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Now referring to the above section, we substitute u = Bψ + v̄
(
ψ̃
)
to (9)

f(u) =
1

2
||k ∗ (Bψ + v̄

(
ψ̃
)
)− z||2L2(Ω) − α

∫
|∇(Bψ + v̄

(
ψ̃
)
)|2dΩ (11)

=
1

2
||Bk ∗ ψ − z̄(ψ̃)||2L2(Ω) − α

∫
|∇(Bψ + v̄

(
ψ̃
)
)|2dΩ (12)

where z̄(ψ) = z − k ∗ v̄
(
ψ̃
)
and v̄

(
ψ̃
)
= T

(
ψ̃
)
−Bψ̃. The linearised Euler-Lagrange equation is

kT ∗
(
Bk ∗ ψ − z̄

(
ψ̃
))
− α∆

(
Bψ + v̄

(
ψ̃
))

= 0. (13)

4.3 Initialisation of u and k

Since there exist many efficient algorithms for solving models (2) and (3) without the positivity

constraints, one idea of acquiring good initialisations for u and k is through applying such algorithms
first.

In fact, the simplistic L2 method given by minimising (9) leads to solving the linear partial

differential equation (10) which can be done efficiently. We may therefore use the solution of it as

the initial estimate u and then our transform model will offer a positive solution.

As we shall see from the next section, for model (3) with the unknown kernel k, the Vogel’s

method [34] is no longer effective but we may use its result as an initial guess for our transform

model; see Table 7 and Figure 9.

4.4 An Acceleration Algorithm for the Model

While our model performs well, it can often be rather slow to execute, particularly in cases of Gaussian

blur. We address this issue using an alternating direction method (ADM) [15, 24, 36, 35]. We aim

to separate our model into one of deblurring and one of denoising, each of which can be executed

reasonable quickly. Starting with the unconstrained non-negative functional given by equation (5)

we use the ADM to create the augmented Lagrangian functional

f(u, ψ, λ) =
1

2
||k ∗ u− z||2L2(Ω) + αL(Ta(ψ)) +

γ

2
||u− Ta(ψ)||2L2(Ω)+ < λ, u− Ta(ψ) > (14)

where L represents either total variation (where we expect jumps in intensity) or L2 (where we expect

smooth edges) i.e.

L(u) =

∫

Ω
|∇u|βdΩ, or L(u) =

∫

Ω
|∇u|2dΩ. (15)

Our aim is now to minimise f with respect to u, ψ and λ. Then we can give the Euler Lagrange
equation for u:

kT ∗ (k ∗ u− z) + γ (u− Ta(ψ)) + λ = 0 (16)

and, rearranging, we have

(
kT ∗ k + γδ

)
∗ u = kT ∗ z + γTa(ψ)− λ (17)

7



where δ denotes the delta function and we can solve this using Fourier transforms. For additional

support, we might add a term for u, given by χL1(u) where χ > 0 and L1 is a regularisation term.

This model can be achieved by setting χ = 0.
For the second equation, we minimise with respect to ψ as follows. We must deal with the

nonlinearity of the transform. We do this by considering the Taylor expansion given by

Ta(ψ) = A+Bψ +O(ψ2)

and approximate the transform with Ta(ψ) = Bψ + R(ψ) where R, the residual, is given by R =

Ta(ψ) − Bψ. In practice, we will use this to form a fixed-point lagging technique by substituting

Ta(ψ, ψ̃) = Bψ +R(ψ̃), lagging ψ̃ and updating until ||ψ − ψ̃|| is sufficiently small.

−Bλ− γB
(
u− (Bψ + R̃)

)
+ αL(ψ̃)ψ = 0 (18)

where, for total variation,

L(ψ̃)ψ =
4Ẽ1(a1 + 2a4)(Ẽ1 − 1)|∇ψ|β

(1 + Ẽ1)3a
2
3

−∇ ·
(

2(a1 + 2a4)Ẽ1

(1 + Ẽ1)2a3|∇ψ̃|β
∇ψ
)
.

Overall Algorithm

In order to solve our model, we begin with the initial estimate (typically the received image) and

calculate the initial estimate of ψ using the chosen parameters. We then proceed to solve for u and
ψ, updating λ. Our algorithm is given below in Algorithm 2.

Algorithm 2 An Accelerated Transform based algorithm for positivity

1: function ATrans(z, k, α, β, γ, λ(1) ,a, tol,maxit)

2: u(0) ← z
3: Calculate a = {a1, a2, a3, a4}
4: ψ(0) ← −(a3/2) log

((
a1 + a4 − u(0)

)
/
(
a2(u

(0) + a4)
))

5: for ℓ1 ← 1 to maxit do
6: for ℓ2 ← 1 to maxit do
7: Solve equation for u(ℓ2+1) given u(ℓ2), i.e.

u(ℓ2+1) ← SOLVE kT (ku(ℓ2+1) − z) + γ(u(ℓ2+1) − (Bψ + R̃)) + χL1(
˜u(ℓ2))u(ℓ2+1) = −λ(ℓ1)

8: end for
9: for ℓ3 ← 1 to maxit do

10: Solve equation for ψ(ℓ3+1) given ψ(ℓ3), i.e.

ψ(ℓ3+1) ← SOLVE − γB
(
u(ℓ2+1) − (Bψ(ℓ3+1) + R̃)

)
+ αL( ˜ψ(ℓ3))ψ(ℓ3+1) = Bλ(ℓ1)

11: end for
12: Update λ(ℓ1+1) ← λ(ℓ1) + γ

(
u(ℓ2+1) − Ta

(
ψ(ℓ3+1)

))
.

13: end for
14: On exit, u(ℓ1+1) ← (a1 + 2a4)/(1 + a2 exp(−2ψ(ℓ3+1)/a3)).
15: end function

4.5 A Reformulated Convex Model

We now wish to prove convergence of Algorithm 2. However, due to the lack of convexity of the

model (14), this is not trivial. We therefore propose below a relaxation of this model so that the
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new model is convex by the addition of a suitable term. We can then show convergence from the

established approaches (see [23, 34, 5]). Tests in Section 5 will demonstrate that such a relaxation

does not have a considerable impact on the solution or the quality of the restoration.
We aim to find an appropriate convex relaxation of this model by considering the fitting and

regularisation terms separately since the sum of two convex functions is also convex. We attempt to
obtain convexity of the fitting terms with the addition of a fitting term involving the function ψ of
the form

µ

∫

Ω
(ψ − ζ)2 dΩ

where ζ is a function not depending on ψ and µ is a non-negative real constant which must be

sufficiently large to make the model (14) convex. In fact we see that, for this model, µ may be quite

small so that assuming close proximity of the arguments this term should have only a small impact
on the results. ζ should be a function which is approximately equal to ψ but not depend on u so

that convexity with respect to u is unaffected. We take ζ = T−1
a

(z∗) where

z∗ = argmin
u

{∫

Ω
(k ∗ u− z)2 dΩ+ α

∫

Ω
|∇u|2 dΩ

}
.

Actually any other similar model that can be solved efficiently will also suffice.
The regularisation term requires a similar consideration for convexity, leading to

f(u, ψ;λ) =
1

2
||k ∗ u− z||2L2(Ω) +

γ

2
||Ta(ψ) − u||2L2(Ω)+ < λ, Ta(ψ)− u >

+µ||ψ − ζ||2L2(Ω) + α

∫

Ω

∣∣∣∇
(
Ta(ψ) + θ||ψ − ζ||2L2(Ω)

)∣∣∣
β
dΩ. (19)

It turns out that µ and θ must satisfy

µ ≥ 8 (a1 + 2a4)

27a23
(2γ(a4 + Lu) + Lλ) , θ ≥ −2(a1 + 2a4)(3

√
3− 5)

(
3−
√
3
)3
a23

. (20)

To give an example of the values for the parameters, if we assume that our image is contained in the

range [0, 1], Lu = Lλ = 0, and a = {1, 1, 0.44, 0.01} for u = Ta(ψ), then µ ≥ 0.04γ and θ ≥ −1.
In order to minimise the functional, we first calculate ζ and proceed with alternate minimisation.

We present our overall algorithm below in Algorithm 3. For brevity, we do not present the Euler-
Lagrange equation for ψ but it can be calculated in a similar manner to those above.

We would now like to show that the functional defined above is convex.

Theorem 4.1 Let Ω ⊂ R
n be a non-empty convex subset of R

n and f : Ω → R ∪ {+∞} be the

function defined by (19–20). Then f is convex with respect to the argument ψ for ψ defined on Ω.

Proof. It is sufficient to show that the functional (19) is a sum of two convex functions.

(i) The first part is given by

F (u, ψ) =

∫

Ω
γ(Ta(ψ)− u)2 + λ(Ta(ψ)− u) + µ(ψ − ζ)2 dΩ. (21)

where µ must satisfy the above constraint and the second is given by the regularisation term.
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Algorithm 3 A deblurring algorithm based on convex formulation

1: function CTrans(k, z, λ(1);αs, γ, α, µ, θ)
2: Solve the well known equation for ζ from

z∗ = min
u

{
fs(u) = ||k ∗ u− z||2L2(Ω) + αs||∇u||2L2(Ω)

}

3: Calculate a = {a1, a2, a3, a4}
4: u(0) ← z
5: ψ(0) ← T−1

a
(z)

6: ζ ← Ta(P(z
∗))

7: for ℓ← 1 to maxit do
8: Solve equation for u(ℓ+1) given u(ℓ), i.e.

u(ℓ+1) ← SOLVE
(
(k†k + γδ) ∗ u(ℓ+1) = k†z + λ(ℓ) + γTa

(
ψ(ℓ)

))

9: Solve equation for ψ(ℓ+1) given ψ(ℓ), i.e.

ψℓ+1 ← min
ψ

{
f
(
u(ℓ+1), ψ;λ(ℓ)

)}

10: Update λℓ+1 = λℓ + γ
(
u(ℓ+1) − Ta

(
ψ(ℓ+1)

))

11: end for
12: On exit, u← Ta

(
ψ(ℓ+1)

)
.

13: end function

To show that (21) is convex, we require the second order derivative given by

∂2F (u, ψ)

∂ψ2
= 2µ− 2J(ψ) [−2γ(Ta(ψ) + a4)a2E − (2γ(Ta(ψ)− u) + λ) (a2E − 1)] (22)

to be non-negative, where J(ψ) = 2(Ta(ψ)+a4)a2E
(1+a2E)2a2

3

and E = E(ψ) := exp(−2ψ/a3).
It is not difficult to show that the term to the right of J(ψ) is contained in the bound (−∞, 2γ(a4+

Lu)+Lλ) where Lu and Lλ are the lower bounds of u and λ respectively. For the function J , we can

find that there is only one maximum by calculating the first derivative and finding the limits of the
function as follows. We calculate the zero-point of the derivative

∂J

∂ψ
=

12(a1 + 2a4)a
2
2E

2

(1 + a2E)4a33
− 4(a1 + 2a4)a2E

(1 + a2E)3a33
= 0 ⇔ ψ =

a3
2

ln(2a2)

at which the function J is non-negative and strictly positive assuming that at least one of a1 and a4
are non-zero, since a1, . . . , a4 are non-negative constants.

Taking limits now and noting that limψ→−∞E =∞ and limψ→∞E = 0, we find that the function

J tends to 0 at ±∞ with a non-negative turning point given at ψ = a3 ln(2a2)/2 which must be the

maximum.

lim
ψ→−∞

2
(
a1+2a4
1+a2E

)
a2E

(1 + a2E)2 a23
= lim

ψ→−∞

2 (a1 + 2a4) a2(
1
E
+ 3a2 + 3a22E + a32E

2
)
a23

= 0 (23)

lim
ψ→∞

2
(
a1+2a4
1+a2E

)
a2E

(1 + a2E)2 a23
= 0. (24)

10



Since the function tends to zero at both limits and has a single extremity, which is greater than or
equal to zero, we can conclude that this is the maximum value and that the minimum is equal to
zero, i.e.

J(ψ) ∈
(
0, J

(a3
2

ln(2a2)
)
=

8 (a1 + 2a4)

27a23

]
.

Substituting these bounds and inequalities, including µ from (20), into (22), it is clear that the

convexity condition ∂2F (u, ψ)/∂ψ2 ≥ 0 is satisfied.

(ii) For the (second part) total variation term, we begin by showing that if the function ω is

convex then its total variation is also convex. It will then remain to show that the function (26) is

convex given the restriction on the value θ. Recall the definition of a total variation via duality [14]

G(ψ) = G(ω(ψ)) = sup

{
−
∫

Ω
ω(ψ)divφdx : φ ∈ C∞

c

(
Ω;RN

)
, |φ(x)| ≤ 1∀x ∈ Ω

}

and, when ω = ω(ψ) is differentiable, −
∫
Ω ω(ψ)divφdx =

∫
Ω φ · ∇ω(ψ) dx. Letting Lφ : ψ 7→

−
∫
Ω ω(ψ)divφdx, we would like to show that if ω is convex then G(ψ) is also convex. That is

∀ ψ1, ψ2 and t ∈ [0, 1], we have G(tψ1 + (1 − t)ψ2) ≤ tG(ψ1) + (1 − t)G(ψ2). Assuming that ω(ψ)

is convex with respect to ψ then we have the relation

ω(tψ1 + (1− t)ψ2) ≤ tω(ψ1) + (1− t)ω(ψ2)

and
Lφ(tψ1 + (1− t)ψ2) ≤ tLφ(ψ1) + (1− t)Lφ(ψ2) ≤ tG(ψ1) + (1− t)G(ψ2) (25)

Since G is the supremum of the functions Lφ, i.e.

sup
φ

Lφ(tψ1 + (1− t)ψ2) = G(tψ1 + (1− t)ψ2),

we have by (25) that G(tψ1 + (1− t)ψ2) ≤ tG(ψ1) + (1− t)G(ψ2). That is, if the transform ω(ψ) is

convex for ψ then the total variation is convex for ψ. It remains to show that the function

ω(ψ) = Ta(ψ) + θ||ψ − ζ||2L2(Ω), (26)

where ζ is as described above, is convex. Proceeding as in (i), we calculate the second derivative

∂2ω

∂ψ2
= 2θ − 2J1(ψ), J1(ψ) :=

2(a1 + 2a4)a2E(1− a2E)

(1 + a2E)3a23
.

We would like to find the upper bound of this function. We consider the limits

lim
ψ→−∞

J1(ψ) = lim
ψ→−∞

(
2(a1 + 2a4)a2E(1 − a2E)

(1 + a2E)3a23

)
= 0,

lim
ψ→∞

J1(ψ) = lim
ψ→∞

(
2(a1 + 2a4)a2E(1 − a2E)

(1 + a2E)3a23

)
= 0,

which are equal to zero. We now find the extrema

∂J1
∂ψ

= −8(a1 + 2a4)a2E
a22E

2 − 4a2E + 1

a33(1 + a2E)4
= 0 ⇔ ψ =

−a3
2

2±
√
3

a2

11



at which J1 is given by

J1

(
−a3
2

2±
√
3

a2

)
= −2(a1 + 2a4)(2 ±

√
3)
(
1±
√
3
)

(
3±
√
3
)3
a23

.

It is easy to observe that a positive value is obtained at ψ = −a3(2−
√
3)/2a2 and a negative value

is obtained at ψ = −a3(2+
√
3)/2a2. We can therefore conclude that the values of J1 lie in the range

[
−2(a1 + 2a4)(3

√
3 + 5)

(
3 +
√
3
)3
a23

,
2(a1 + 2a4)(3

√
3− 5)

(
3−
√
3
)3
a23

]
,

so that ∂2ω(ψ)/∂ψ2 = 2θ − 2J1(ψ) ≥ 0, if θ is from (20), as required.

5 Experimental results

Our experimental tests are hoped to show the effectiveness of image restoration by our Algorithm 1 in

comparison with Vogel’s positivity method [4, 34], the projection method [15] and other methods that

do not impose positivity constraints. We also compare with unconstrained (and partly constrained)

models which have the constraint applied at the end by truncation or scaling. Specifically, in tables
and figures, we denote the compared methods by these abbreviations:

• ROF: the well-known model (2) without positivity constraint.

• ROFThr: the well-known model (2) with positivity and upper limit constraints applied at the

end by truncation.

• ROFSca: the well-known model (2) with positivity and upper limit constraints applied at the

end by scaling.

• Vogel: the non-negatively constrained restoration model by [4].

• VogelThr : the non-negatively constrained restoration model by [4] with upper limit constraint

applied at the end by truncation.

• VogelSca: the non-negatively constrained restoration model by [4] with upper limit constraint

applied at the end by scaling.

• Proj: the constrained projection model by [15].

• New1: Algorithm 1 for model (5).

• New1L2: Algorithm 1 to solve the minimization of (9).

• New2: Algorithm 2 for model (14) i.e. an accelerated version of New1.

• MixL2TV: Algorithm 1 to solve (13) followed by Algorithm 1 to solve (7) using the solution of

(13) as the initial estimate.

• MixVogTV: Algorithm 1 to solve (7) using the solution given by Vogel as the initial estimate.
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• New3: Algorithm 3 for the reformulated model (19) i.e. the convex version of New2.

We use “Received” to mean the received image z.

Seven sets of experimental results using 3 test images: the box-triangle image (Im1), the satellite

image (Im2) and the retina image (Im3) are selected; see Figure 2. For the transform u = T (ψ), we

choose a1 = 1, 1.08, 255 and a4 = 10−2, 10−2, 0.5 respectively for the 3 test images (note a2, a3 are set

as in Appendix). For the blurring model (1), we have considered small and large levels of motion blur

(a) Im1 - Box-Triangle Image (b) Im2 - Satellite Image (c) Im3 - Retina Image

Figure 2: Test case images.

(Bl1 and Bl2 respectively) and small and large levels of Gaussian blur (Bl3 and Bl4 respectively);

see Figure 3.

(a) Bl1 Shape (b) Bl1 Mesh (c) Bl1 Mesh
Close-up

(d) Bl2 Shape (e) Bl2 Mesh

(f) Bl3 Shape (g) Bl3 Mesh (h) Bl3 Mesh
Close-up

(i) Bl4 Shape (j) Bl4 Mesh

Figure 3: PSFs used for test cases. Images (a)-(c) show Bl1 - small motion blur, images (d)-(e) show
Bl2 - large motion blur, images (f)-(h) show Bl3 - small Gaussian blur, and images (i)-(j) show Bl4
- large Gaussian blur.

There are several common measures for testing the quality of the restored image, including the
following. We let utrue denote the true image, u the restored image, z the received image and let m
and n be the number of pixels horizontally and vertically respectively. Then we have:

• Mean Squared Error (MSE) is given by MSE = 1
mn

∑
x,y (utrue(x, y)− u(x, y))2 and Root

Mean Squared Error (RMSE) is given by RMSE =
√
MSE.

• Signal-to-Noise Ratio (SNR) in dB is given by SNR = 10 log10

( ∑
x,y |utrue(x,y)|

2

∑
x,y |utrue(x,y)−u(x,y)|

2

)

• Peak Signal-to-Noise Ratio (PSNR) is given by PSNR = 20 log10

(
maxx,y |utrue(x,y)|

RMSE

)
.
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Note that the RMSE is given by the L2 norm of the difference between the true image and the

restored image divided by the total number of pixels, i.e. RMSE = (1/mn)||utrue − u||L2(Ω). Given

astronomical images and images with significant amounts of black space, it is typically more common
to use the L1 norm. We expect that these may provide more accurately descriptive measures of our
data and the impact of the model in terms of non-negativity. We therefore propose the measures

• L1 Error given by

Er1 = ||utrue − u||L1(Ω) =
1

mn

∑

x,y

|utrue(x, y)− u(x, y)|.

• A version of PSNR using the L1 norm of the difference between the true image and the restored
image is given by

Er2 = 20 log10

(
maxx,y |utrue(x, y)|

Er1

)
.

Model (1) with Gaussian blur. Result set 1 uses Im1 corrupted by Gaussian blur to demon-

strate the effectiveness of the model in keeping the intensity values of the image constrained. We see

in Figure 4 and Table 1 that [4] keeps the image positive but allows some points to take intensity

values which are outside of the expected range, while [15] and the new models successfully keep the

intensity values positive and within the expected range at all points.

Model (1) with Motion blur. Result set 2 consists of Im2 and Im3 corrupted by small motion

or small Gaussian blur. We see in Figure 5 and Tables 2–3 that for images corrupted by small levels
of blur the results are competitive between the models. Error values are improved but visual quality
is similar.

Model (1) with Heavy blurs. Result set 3 consists of Im2 corrupted by larger levels of blur

(Bl2 and Bl4). We see in Figure 6 and Table 4 that that results are improved visually and in the

error values for the new model in the case of Bl2. For Bl4, the Transform Model appears to be a
closer approximation but the error values are similar.

Model (1) with Blur and a varying level of noise. Result set 4 consists of Im2 corrupted

by Bl3 and varying amounts of noise (1% and 50%). We see in Figure 7 and Table 5 that visually

the Transform model offers some improvement in quality while the error values are similar.

Model (1) by Algorithm 1 with alternative linerisation (8). Result set 5 shows in Figure 8

and Table 6 the results using the linearised Transform model. We can see that for the same quality
of the restored image, the CPU time is improved.

Algorithm 1 combined with Vogel’s model. Result set 6 shows in Figure 9 and Table 7
examples using the received image as the initial estimate and the results of Vogel’s model as the
initial estimate. We can see that this technique is useful for restoring the PSF given the image.
In the case of the motion blur example, the CPU time is significantly improved and in the case of
Gaussian blur, the error value is improved. In all cases, the visual quality is adequate.

Model (2) with Blurs. Now we consider the solution of model (3) for k. Result set 7 consists

of motion and Gaussian blur PSFs which are regarded as being blurred by Im2. The task here is to
recover the PSF given the true image. As the initial estimate, rather than taking the received data

z as the initial estimate (since it is not expected to be a good approximation of the true kernel) we

make an estimate of the kernel based on observation of the received data. We see in Figure 10 that
in both cases, each of the models are able to obtain good approximations of the kernel, however ROF
is unable to retain non-negativity in both cases and Vogel, while successfully ensuring positivity of
the approximated kernel, struggles to get correct smaller values as well as larger values whereas the
transform model is able keep the values close to zero as well as ensuring positivity of the result.
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Finally, to simultaneously restore both u and k in the so-called blind deconvolution problem, the

TV based model by [18] is the following

min
u

∫

Ω
(u ∗ k − z)2dΩ+ α1‖u‖βTV + α2‖k‖βTV , s. t. k ≥ 0,

∫

Ω
k(s, t)dsdt = 1, (27)

where α1, α2 > 0. Related studies can be found in [1, 11, 36, 32, 38]. In other experiments, we have

tried double transforms which appear to improve the robustness. This model will be investigated
further in the future.

Method cpu rmse Er1 Er2 snr psnr isnr

Received n/a 0.0771 39.35 16.27 15.79 22.26 n/a

ROF 32.2 0.0589 27.39 19.41 18.33 24.60 2.33

ROFThr 32.2 0.0528 26.40 19.73 19.15 25.54 3.28

ROFSca 32.2 0.1573 55.28 13.31 8.35 16.07 -6.20

Vogel 37.8 0.0320 17.24 23.43 23.61 29.89 7.63

VogelThr 37.8 0.0303 17.24 23.43 24.02 30.36 8.10

VogelSca 37.8 0.0765 25.04 20.19 14.75 22.33 0.07

Proj 33.5 0.0378 18.78 22.69 22.12 28.46 6.20

New1 59.7 0.0149 6.86 31.43 30.28 36.55 14.29

New2 26.3 0.0236 11.31 27.10 26.25 32.53 10.26

New3 15.8 0.0241 4.45 35.20 26.02 32.35 10.09

Table 1: Result Set 1 - Error values for Im1 corrupted by Gaussian blur with no Noise. We can
see that the error values are improved when using the Transform models and CPU time is improved
by using New2–New3. As designed, the results of New2–New3 are very similar, showing that the
additional term does not have a considerable effect on results.

6 Conclusion and Future Work

We have presented models to reconstruct images and PSFs and demonstrated that they can ensure
positivity through introducing a transform and also keep the intensities of the restored data within
the appropriate range. We have also demonstrated that the model offers competitive results in
the case of small levels of blur and noise but much improved results in the case of corruption by
larger levels of blur and noise. This model is particularly effective in giving a close approximation

of the kernel (in the case where the image is known) which is of great importance in the case of

blind deblurring. The transform idea is applicable potential to a class of other variational models.
Since non-negativity is a significant criterion for blind deblurring models, we hope to consider such
applications in the near future.

Appendix – Selection of Parameters in T (ψ)

The parameter a1 is easily chosen, assuming knowledge of the bits-per-sample (bps) value of the true

image and the blurred image. This will typically be between 1 and 255 for images of bps 1 to 8
respectively, but can be quite low for the kernel. For example, a fairly compact-radius out-of-focus

blur may have a kernel value upper limit of 10−2. While a larger value of a1 should still give a good
approximation, it is essential that a1 be at least as large as the maximum image intensity value or
kernel value and advisable that it be close to this. The parameter a4 should be chosen in proportion

to a1. Typically, a4 = a1/255 is a sensible value.
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(a) True Image (b) Blur Kernel (c) Blurred Image

(d) ROF Restored (e) ROF Negative (f) ROF > ζ

(g) Vogel Restored (h) Vogel Negative (i) Vogel > ζ

(j) New1 Restored (k) New1 Negative (l) New1 > ζ

Figure 4: Result Set 1: Restoring Im1 corrupted by Bl3 with no noise. From top to bottom, we
have: 1) the true image, kernel, and corrupted data; 2) the result using the ROF method; 3) the
result using Vogel’s method; 4) the result using the Transform method. From left to right, we have
(on rows 2-4): 1) the restored image; 2) the negative values of the restored image in white; 3) the
points where the intensity values are greater than the expected upper limit in white. Note that the
Transform method and Vogel’s method can both ensure positivity but the transform method can
control the upper bound of the intensity range.
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(a) Blurred Image (b) ROF Restored (c) Vogel Restored (d) New1 Restored

(e) Blurred Image (f) ROF Restored (g) Vogel Restored (h) New1 Restored

Figure 5: Result Set 2 - restoring images Im2 and Im3 corrupted by small motion blur Bl1 or small
Gaussian blur Bl3. In some cases the results from the Transform model appear sharper than other
models and more small detail is visible.

(a) Blurred Image (b) ROF Restored (c) Vogel Restored (d) New1 Restored

(e) Blurred Image (f) ROF Restored (g) Vogel Restored (h) New1L2 Restored

Figure 6: Result Set 3 - Restoring Im2 corrupted by Bl2 (top line) and by Bl4 (bottom line). We
can see a significant improvement in the result from the Transform method in the case of corruption
by Bl2, and the results are competitive in the case of Bl4.
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Error values for Im2 corrupted by Bl1

Method CPU Time rmse Er1 Er2 snr psnr isnr

Received n/a 0.0478 11.18 27.19 14.47 26.41 n/a

ROF 40.6 0.0211 6.31 32.17 21.93 33.51 7.10

ROFThr 40.6 0.0183 5.05 34.09 23.15 34.74 8.33

ROFSca 40.6 0.0932 25.81 19.93 9.76 20.62 -5.79

Vogel 31.9 0.0107 3.08 38.39 27.79 39.39 12.98

VogelThr 31.9 0.0107 3.08 38.39 27.79 39.39 12.98

VogelSca 31.9 0.0478 3.12 38.27 27.85 39.38 12.98

Proj 16.2 0.0054 1.37 45.40 33.76 45.33 18.92

New1 38.7 0.0036 0.96 48.54 37.31 48.88 22.47

New2 12.8 0.0051 1.36 45.51 34.24 45.81 19.40

New3 12.6 0.0033 1.16 46.89 38.27 49.75 23.34

Error values for Im3 corrupted by Bl1

Method CPU Time rmse Er1 Er2 snr psnr isnr

Received n/a 0.0362 19.19 22.50 21.39 28.82 n/a

ROF 34.7 0.0178 9.09 29.00 27.62 34.97 6.16

ROFThr 34.7 0.0164 8.52 29.55 28.33 35.69 6.88

ROFSca 34.7 0.0557 27.47 19.39 17.70 25.08 -3.74

Vogel 25.2 0.0084 3.95 36.24 34.14 41.51 12.70

VogelThr 25.2 0.0084 3.95 36.24 34.14 41.52 12.70

VogelSca 25.2 0.0113 4.54 35.02 31.39 38.90 10.09

Proj 17.5 0.0056 1.86 42.79 37.62 44.97 16.16

New1 66.0 0.0020 0.94 48.67 46.57 54.03 25.21

New2 12.9 0.0044 1.30 45.86 39.69 47.04 18.23

New3 15.0 0.0027 0.80 50.07 44.03 51.34 22.52

Table 2: Result Set 2 - Error values for images Im2 and Im3 corrupted by Bl1. It can be noticed
that error values are improved using the Transform models. While CPU time is higher than that
of competing models, New2–New3 can reduce CPU time while retaining similar or improved PSNR.
As designed, the results of New2–New3 are very similar, showing that the additional term does not
have a considerable effect on results.

18



Error values for Im2 corrupted by Bl3

Method CPU Time rmse Er1 Er2 snr psnr isnr

Received n/a 0.0562 12.72 26.08 12.96 25.01 n/a

ROF 36.4 0.0263 7.01 31.25 19.99 31.59 6.59

ROFThr 36.4 0.0249 6.51 31.89 20.46 32.07 7.06

ROFSca 36.4 0.1221 33.49 17.67 7.52 18.27 -6.74

Vogel 32.2 0.0233 6.38 32.07 21.01 32.65 7.64

VogelThr 32.2 0.0233 6.38 32.07 21.01 32.65 7.64

VogelSca 32.2 0.0236 6.31 32.16 21.07 32.55 7.54

Proj 17.4 0.0203 5.52 33.33 22.27 33.87 8.86

New1 45.8 0.0142 4.18 35.73 25.39 36.97 11.96

New2 13.0 0.0172 5.05 34.10 23.70 35.28 10.27

New3 16.2 0.0156 4.70 34.73 24.58 36.13 11.12

Error values for Im3 corrupted by Bl3

Method CPU Time rmse Er1 Er2 snr psnr isnr

Received n/a 0.0422 24.01 20.56 20.04 27.49 n/a

ROF 35.2 0.0236 14.79 24.76 25.17 32.54 5.05

ROFThr 35.2 0.0226 14.35 25.03 25.56 32.93 5.44

ROFSca 35.2 0.0855 42.65 15.57 14.18 21.36 -6.12

Vogel 23.8 0.0169 9.77 28.37 28.06 35.44 7.95

VogelThr 23.8 0.0169 9.77 28.37 28.08 35.45 7.96

VogelSca 23.8 0.0240 10.98 27.36 24.68 32.39 4.90

Proj 25.1 0.0177 11.44 26.99 27.68 35.05 7.56

New1 87.4 0.0127 7.84 30.27 30.53 37.89 10.40

New2 13.1 0.0171 11.04 27.31 27.99 35.35 7.87

New3 16.3 0.0147 9.10 28.99 29.35 36.66 9.17

Table 3: Result Set 2 - Error values for images Im2 and Im3 corrupted by Bl3. It can be noticed
that error values are improved using the Transform model. While CPU time is higher than that of
competing models, New2–New3 can reduce CPU time without a significant reduction in PSNR. As
designed, the results of New2–New3 are very similar, showing that the additional term does not have
a considerable effect on results.
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Error values for Im2 corrupted by Bl2

Method CPU Time rmse Er1 Er2 snr psnr isnr

Received n/a 0.22 63.17 12.80 -2.13 13.66 n/a

ROF 2.01 0.13 33.77 18.24 6.08 18.31 4.65

Vogel 16.02 0.11 26.55 20.33 7.30 19.71 6.05

New1 47.64 0.06 14.87 25.36 14.03 25.41 11.75

New1L2 30.18 0.07 18.68 23.38 11.77 23.33 9.67

MixL2TV 13.65 0.10 24.32 21.09 9.03 20.87 7.21

Error values for Im2 corrupted by Bl4

Method CPU Time rmse Er1 Er2 snr psnr isnr

Received n/a 0.0909 21.40 21.56 8.04 20.83 n/a

ROF 54.8 0.0596 14.98 24.66 12.72 24.49 3.66

Vogel 37.9 0.0565 13.00 25.88 13.11 24.96 4.13

New1 31.3 0.0489 11.72 26.78 14.45 26.22 5.39

Table 4: Result Set 3 - Error values for Im2 corrupted by Bl2 and Bl4. There is a noticeable
improvement in the case of and while the results for Bl4 are competitive, the transform is slightly
improved over competing models.

(a) Blurred Image (b) ROF Restored (c) Vogel Restored (d) New1 Restored

(e) Blurred Image (f) ROF Restored (g) Vogel Restored (h) New1 Restored

Figure 7: Result Set 4 - Restoring Im2 corrupted by Bl3 and 1% noise (top row) and 50% noise
(bottom row). We can see that visually the Transform method appears to give improved results for
weaker and stronger levels of noise.

(a) Im2 (b) Im3 (c) Bl1 (d) Bl3

Figure 8: Result Set 5: Restored images and PSFs using the Linearised Transform method. The
received data from which Im2 and Im3 were restored was corrupted by Bl1, and the received data
from which Bl1 and Bl3 were restored was corrupted by Im2. We can see that the linearisation does
not affect the visual quality significantly.
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Error values for Im2 corrupted by Bl3 and 1% noise.

Method CPU Time rmse Er1 Er2 snr psnr isnr

Received n/a 0.0479 11.34 27.07 14.49 26.40 n/a

ROF 42.1 0.0304 7.85 30.26 18.82 30.35 3.95

Vogel 12.1 0.0237 6.41 32.03 20.80 32.52 6.12

New2 4.9 0.0196 5.73 33.01 22.61 34.15 4.85

Error values for Im2 corrupted by Bl3 and 50% noise.

Method CPU Time rmse Er1 Er2 snr psnr isnr

Received n/a 0.0639 60.71 13.14 -13.24 12.59 n/a

ROF 15.00 0.0783 19.58 22.97 11.50 22.77 10.19

Vogel 5.64 0.0980 22.91 21.61 9.72 20.86 8.27

New1 55.76 0.0718 17.12 24.14 12.20 23.52 10.94

Table 5: Result Set 4 - Error values for Im2 corrupted by Bl2 and varying amounts of noise. We can
see that the Transform model can offer improved results, particularly for larger levels of noise.

Transform Model (New1) Linearised New1

Image psnr CPU Time psnr CPU Time

Im2 30.32 60.07 30.54 34.10

Im3 35.62 83.05 35.51 35.09

Bl1 38.63 72.25 38.24 51.00

Bl3 39.56 82.77 37.59 47.84

Table 6: Result Set 5: Error values and CPU time for restoring images Im2 and Im3 as well as
PSFs BL1 and BL3 using the Transform method and the Linearised Transform method. We can see
that the quality of the restored image is not significantly different for each case but the CPU time is
improved using the Linearised Transform method.

(a) Im2 (b) Im3 (c) Bl1 (d) Bl3

Figure 9: Result Set 6: Restored images and PSFs using the Linearised Transform method with the
result of Vogel’s method as the initial estimate.

New1 MixVogTV

Image psnr CPU Time psnr CPU Time

Im2 30.54 34.10 30.61 39.79

Im3 35.51 35.09 35.71 46.83

Bl1 38.24 51.00 38.80 27.59

Bl3 37.59 47.84 42.53 51.14

Table 7: Result Set 6: Error values and CPU times for restoring images Im2 and Im3 and PSFs
Bl1 and Bl3 using the Linearised Transform method with the received data z as the initial estimate
(New1) and the result from Vogel’s method as the initial estimate (MixVogTV). The CPU time is
rarely lower when using the closer initial estimate but the image quality is improved in all cases.
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(a) Blurred Data (b) ROF Restored (c) Vogel Restored (d) New1 Restored
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(h) Blurred Data (i) ROF Restored (j) Vogel Restored (k) New1 Restored
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Figure 10: Result Set 7 - Restoring Bl1 (1st and 2nd rows) and Bl2 (3rd and 4th rows) corrupted by
Im1 restored using TV restoration (ROF), Vogel’s model (Vogel) and the transform model (New1).
In the cross-section images, the blue line is the restored image, the red dashed line is the lower bound
of the true blur function and the green dashed line is the upper bound of the true blur function. Of
the three approximations, as demonstrated in the cross-section images on the 2nd and 4th rows, the
TV model gives many negative values in the approximation both kernels, and Vogel’s model has no
negative values but struggles to get a close approximation while the transform model does a good
job.
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We attempt to select the remaining parameters a2 and a3 in order to control the upper and lower
bounds of ψ as well as the value of ψ when u is equal to zero. In order to control the bounds, we
define a length Σ = σ4−σ3 where σ3 and σ4 represent two intensity values of ψ. We would then like

for τ4 − τ3 = T (σ4)− T (σ3) = Σ. From ψ(τ) = T−1(τ) = −a3
2 ln

(
a1−τ+a4
a2(τ+a4)

)
, we have

Σ = σ4 − σ3 = ψ(τ4)− ψ(τ3) (28)

=
a3
2

ln

(
(a1 − τ3 + a4)(τ4 + a4)

(τ3 + a4)(a1 − τ4 + a4)

)
. (29)

So, assuming we fix Σ, τ3, τ4, a1 and a4, we have

a3 =
2Σ

ln
(
(a1−τ3+a4)(τ4+a4)
(τ3+a4)(a1−τ4+a4)

)

For our model, we fix the width Σ = τ4 − τ3 (see Figure 11) and let τ4 = a1 − τ3. Then, from 29,

we have

a3 =
2(τ4 − τ3)

ln
(
(a1−τ3+a4)(τ4+a4)
(τ3+a4)(a1−τ4+a4)

) =
a1 − 2τ3

ln
(
(a1−τ3+a4)
(τ3+a4)

) .

The only remaining parameter which a3 is dependent on and which has not already been decided is

τ3. We find that τ3 = a1/4 is adequate for the transform.

σ 3 σ   4

τ   3

τ   4

υ

ψ
σ 3 σ   4

τ   3

τ   4

υ

ψ

Σ

Σ

Figure 11: Graph of Heaviside Transform u = T (ψ)

We may use the parameter a2 to control the value of ψ at u = T (ψ) = 0. We consider two cases:

the first given by T (ψ) = a1/2 and the second given by T (ψ) = τ1 at ψ = 0 where τ1 is the lower

bound of ψ. The first option will make the graph pass through zero at the midpoint of the intensity
values and the second will make all values of ψ naturally positive since the lower bound of ψ will be

equal to zero. Letting u = T (ψ)

u =
a1 + 2a4

1 + a2e
−2ψ

a3

− a4.

Rearranging, we have

a2 =
a1 + a4 − u
e

−2ψ

a3 (u+ a4)
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and so for the first case, we have

a2 =
a1 + a4 − a1/2
a1/2 + a4

=
a1/2 + a4
a1/2 + a4

= 1,

and for the second case, we have

a2 =
a1 + a4 − τ1
τ1 + a4

.

In application, either of these will be sufficient to recover the image with similar results. In the
case of the kernel, better results are obtained with a2 = 1. It is there advised therefore that a2 = 1
is the appropriate value for this parameter.

In summary, once a1 and a4 are defined, the other quantities in the transform T (ψ) = a1+2a4

1+a2e
−2ψ
a3

−

a4 can be determined automatically assuming that τ3 = a1/4 and a2 = 1 are acceptable.
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