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Abstract 

Introduction and Aims 

Healthcare interventions are usually associated with a risk of harmful events 

that must be balanced against the potential favorable outcomes. However 

reliable evidence on harms for interventions is often inadequate, and hampered 

by the many challenges that stem from the reporting, analysis and 

interpretation of harms data in clinical trials. This thesis addresses some of these 

issues.  

Methods 

Reporting of harms data is assessed in a systematic review of reviews and a case 

study investigating the additional value of harms data reported in clinical study 

reports (CSRs). A framework for searching and identifying relevant sources of 

harms data is outlined, and then explored further in a survey assessing current 

practices in clinical trial units (CTUs). Signal detection methods are introduced, 

and evaluated using simulated data to assess their performance when detecting 

safety signals in CTU databases.  

Results 

The systematic review highlights that the reporting of harms in RCTs is 

inconsistent, and often inadequate. In the case study, CSRs presented data on 

harms, including SAEs which are not reported or mentioned in publications, they 

also provide more detail about the design, conduct and analysis of the trial 

which facilitate the assessment of risk of bias in evidence synthesis. A wide 
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range of sources for harms data have been identified, each with distinct 

strengths and limitations discussed. Selection of appropriate sources depends on 

the research question, and whether a hypothesis generating or hypothesis 

testing approach should be taken. Relevant sources have been identified for 

each approach, with examples of their exploitation in CTUs evaluated in the 

survey. The simulation study has shown that some of the current available signal 

detection methods are not able to control the false discovery rate well, and are 

only able to detect few safety signals for small or sparse data.  

Conclusions 

The work carried out within this thesis provides some recommendations to 

address the reporting, conduct, and analysis of harms in clinical trials. Wider 

adoption of recommendations made by the CONSORT-harms guideline will 

enhance the quality of reporting and improve subsequent evidence synthesis. 

Recent initiatives to promote open access to clinical trials data including CSRs is 

a major step towards supporting better data transparency. It is important to 

identify and consider different sources that are most likely to yield robust data 

on harms of interest, rather than relying on studies that cannot reliably detect 

harm. The survey identified published literature and systematic reviews as the 

most common source being used in the trial safety monitoring within CTUs. 

Signal detection methods are potentially unsuitable for use in CTUs. Further 

tools and guidelines for enhanced signal detection are needed in clinical trials. 
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Definitions 

There exist various definitions used in literature to describe harms in clinical 

trials. In this thesis I will adhere to the conventional and widely accepted 

definitions proposed by the Uppsala Monitoring Centre (UMC) and the World 

Health Organization (WHO), though various other related terms commonly used 

through this thesis are defined as well. 

A “drug” or “medicine” is a pharmaceutical product, used in or on the human 

body for the prevention diagnosis or treatment of disease, or for the 

modification of physiological function.  

A “health care intervention” or “intervention” is any type of treatment, 

preventive care, or test that a person could take or undergo to improve health 

or to help with a particular problem. Health care interventions include drugs 

(either prescription drugs or drugs that can be bought without a prescription), 

foods, supplements (such as vitamins), vaccinations, screening tests (to rule out 

a certain disease), exercises (to improve fitness), hospital treatment, and certain 

kinds of care (such as physical therapy). 

An “adverse (drug) reaction” is a response to a medicine which is noxious and 

unintended, and which occurs at doses normally used in humans for the 

prophylaxis, diagnosis or therapy of disease, or for the modification of 

physiological function. (Normal dose clause distinguishes adverse reactions from 

poisoning and this clause was later refined by Meyboom, 2000 [1], to caution on 

patients experiencing an adverse reaction at normal dose but may indeed be a 

case of high/toxic dose because of impaired renal/hepatic excretion or other 

reasons). It is common for the term “adverse effect” to be used as synonyms for 

adverse reaction. Adverse effect is seen from the point of view of the drug 

whereas an adverse reaction from the point of view of the patient. Another 

commonly used definition for an ADR was put forward by Edwards and Aronson 

[2], who define an ADR as - an appreciably harmful or unpleasant reaction, 
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resulting from an intervention related to the use of a medicinal product, which 

predicts hazard from future administration and warrants prevention or specific 

treatment, or alteration of the dosage regimen or withdrawal of the product. 

The Medicines and Healthcare products Regulatory Agency (MHRA) has a 

broader definition of an ADR - as an unwanted or harmful reaction experienced 

following the administration of a drug or combination of drugs, which is 

suspected to be related to the drug. Unlike the WHO definition, the MHRA 

definition does not exclude overdose or drug misuse.  

“Harm(s)” is often the totality of possible adverse consequences of an 

intervention or therapy; they are the direct opposite of benefits. 

“Safety” refers to the substantive evidence of an absence of harm. The term is 

often misused when there is simply absence of evidence of harm. 

A “side effect” is any unintended effect of a pharmaceutical product occurring at 

doses normally used in man, which is related to the pharmacological properties 

of the drug.  

An “adverse event” or “experience” is defined as any untoward medical 

occurrence that may present during treatment with a medicine but which does 

not necessarily have a causal relationship with the treatment.  

A “signal” or “safety signal” is reported information on a possible causal 

relationship between an adverse event and a drug, of which the relationship is 

unknown or incompletely documented previously [2]. 

“Serious (not synonymous with ‘severe‘ which is used to describe the intensity 

of a specific outcome) AEs/reactions” can be defined as those that:  

- are life threatening or fatal  

- cause or prolong hospital admission  

- cause persistent incapacity or disability  

- concern misuse or dependence.  

A “suspected unexpected serious adverse reaction” (SUSAR) is an adverse 

reaction that is both unexpected and also meets the definition of a SAE/R. 

“Complication” is a term widely used to describe adverse events following 

surgical and other invasive interventions. ‘Adverse event’ and ‘adverse effect’ 
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can be considered synonyms. 
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Chapter 1: Introduction 
 

In clinical trials harmful effects are generally associated with drug interventions, 

and so for the majority of this thesis we will focus on drug trials. We start by 

introducing the drug lifecycle. 

1.1 The Drug Lifecycle 

Medications are the most frequently employed therapeutic intervention for 

disease and have led to substantial improvements in morbidity, mortality, and 

quality of life of patients around the world [3]. However, medications for all 

their virtues, can also cause harm, and there is growing recognition that our 

knowledge of a drug’s potential for harms is incomplete at the time of licensing. 

This is well-illustrated by the staggering numbers recently reported by Strom in 

2006 [4], that suggest that 51% of drug undergo labeling changes due to major 

safety issues discovered after marketing.  

To understand why drugs that initially pass the federal bar for safety and 

efficacy, and receive the green-light for widespread use, are later discovered to 

cause harm – we must look at the drug lifecycle [5].  

1.1.1 Phases of a Clinical Trial 

For safety reasons, before a drug is tested on any humans, preclinical studies are 

carried out on animals in order to learn more about any toxic effects the drug 

may have. Once researchers are satisfied with the safety/toxicity of a drug in 

animals, human clinical trials can start.  
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Clinical trials are usually split into the four phases, with Phases I to III the 

development of the drug and Phase IV the post-approval stage, as shown in 

Figure 1 and explained below: 

Figure 1: Phases of clinical development  
(Adapted from the World Health Organization (WHO) [6]). 

 

 

A small number, 20-50 (usually young and healthy) volunteers are 

given the drug to see whether they can tolerate it. 

 

The drug is then tested on approximately 150-350 patients with the 

disease to determine its safety and identify the likely dose(s) that are 

effective (‘phase IIa’). A larger (‘phase IIb’) trial often follows to 

identify the efficacy of the drug and to determine how well the drug 

works at the prescribed dose(s).  

 

 

PHASE 

PHASE 

I 

II 
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Trials assess the safety and efficacy of the drug in approximately 250-

4000 patients. They may include a comparison group of patients who 

take a similar drug that is already available. This phase is sometimes 

called the “pre-marketing phase” because it actually measures 

consumer response to the drug. 

 

Trials are carried out after the drug is in general use to find out more 

about the side-effects and safety of the drug, what the long term 

harms and benefits are and how well the drug works when it is used 

more widely. Phase IV is also known as “post-marketing surveillance” 

and includes the safety surveillance of the drug after licensing.  

To prevent or reduce harm to patients and thus improve public health, 

mechanisms for evaluating and monitoring the safety of drugs in clinical use are 

vital. In practice this means having in place a well-organized pharmacovigilance 

(PV) programme that takes place continuously throughout the life cycle of a new 

drug.  

1.1.2 Pharmacovigilance and Risk Management 

The World Health Organization (WHO) defines PV as the science and activities 

relating to the detection, evaluation, understanding, and prevention of adverse 

reactions to medicines or any other drug-related problems [6]. The major aims 

of PV are: 

 Early detection of thus far unknown adverse reactions and interactions 

PHASE 

PHASE 

III 

IV 
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 Detection of increases in frequency of (known) adverse reactions 

 Identification of risk factors and possible mechanisms underlying adverse 

reactions 

 Estimation of quantitative aspects of benefit/risk analysis and 

dissemination of information needed to improve drug prescribing and 

regulation. 

In clinical trials serious adverse events (SAEs) or suspected unexpected serious 

adverse reactions (SUSARs) are of particular interest in the pre-licensing PV 

assessment because these are often drug induced. However, systematic safety 

monitoring in PV systems is also needed to identify previously recognized and 

unrecognized harms, and to evaluate the safety of medicinal products during 

clinical trials and in the post-marketing period. 

Risk management is the discipline within PV that is responsible for signal 

detection and the monitoring of the risk-benefit profile of drugs. Risk 

management has now added focus on safety and risk assessment after a drug 

has received regulatory approval, when it is placed on the market and 

prescribed to large populations. Other key activities within the area of Risk 

management are that of the compilation of Risk Management Plans (RMPs) and 

aggregate reports such as the periodic Safety update reports (PSURs) and the 

development safety update report (DSUR), which we discuss later in this 

chapter.  
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1.1.3 Pharmacovigilance in the Regulation of Drugs  

After Phase 3 clinical trials, regulators have to decide whether to license the 

drug. Before licensing, drug companies must submit a RMP to the regulator at 

the time of application for marketing authorization. The RMP includes 

information on: the drug’s safety profile, how risks will be prevented or 

minimized in patients, plans for further studies to gain more knowledge about 

the safety of the drug and the risk factors for developing side effects. 

Drugs with side effects can be licensed but the beneficial effects must outweigh 

the risks of harms [7]. The decision takes into account the following: 

 The type of illness being treated 

 The improvement offered by the drug  

 The intensity of side effects 

 The likelihood of serious side effects  

 The possibility of predicting who is most likely to experience serious side 

effects. 

When treating life-threatening illnesses, more severe side effects are acceptable 

if the drug could cure or significantly prolong life. For example, chemotherapy 

can kill cancer cells and lead to recovery, so the risk of severe side effects is 

accepted. A drug may also still be licensed if a very small number of people 

respond badly during a trial. To advise prescribers about the possible side-

effects of the drug, reported events and their incidence are described in the 

drug label or the patient information leaflet (PIL) [2]. PILs are a patient friendly-

version of the “summaries of product characteristics (SmPCs)”. The SmPCs 



6 
 

provide more detailed information to healthcare professionals on how often the 

side effect may happen, how severe it might be, how long it might last for and 

what action should be taken. The SmPC is updated throughout the life-cycle of 

the drug as new data emerge, and they can be accessed in the electronic 

Medicines Compendium (eMC).  

Regulators can review a license if new information comes to light after the drug 

is in general use, and make further recommendations to improve the benefit-

risk ratio of the drug. To support these decisions and recommendations about 

the drug’s safety, existing and often new evidence from “clinical research” is 

needed. 

1.1.4 Sources of Evidence on Harms 

Prior to starting any clinical research, an investigator must determine the 

appropriate study design to answer the question at hand. Selecting the correct 

study type also depends on ethical considerations, disease of interest, and the 

resources available. A well-designed study will clearly identify an exposure and 

an outcome in an objective, quantifiable manner to answer a defined 

hypothesis. Understanding the various indications for different study designs is 

important not only for devising one’s own study but also for critically reviewing 

the literature. Therefore it is important firstly to outline some of the frequently 

encountered study designs used in clinical research and discuss their respective 

strengths and limitations to making assessments about harms. We begin by 

discussing randomised controlled trials (RCTs), then observational studies and 
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the impact of systematic reviews, but will also extend to the use of data in post-

marketing surveillance. 

1.2 Randomised Controlled Trials (RCTs) 

In an RCT, study subjects are randomly assigned to one of two groups; treatment 

arm, which receives the intervention, or the control arm, which receives a 

placebo or no treatment. Both study arms are subsequently followed in an 

identical manner and analyzed for differences in outcomes. The intrinsic design 

of an RCT allows investigators to assess causality of a treatment, rather than 

simply a correlation. RCTs generally have stringent selection criteria to ensure 

that subjects are comparable in most respects, thereby reducing confounding 

and isolating the effect of the intervention.  

1.2.1 Issues to consider when designing RCTs with harm endpoints 

Properly designed and executed RCTs are considered the “gold standard” for 

evaluating efficacy because they minimize potential bias. However, relying solely 

on published RCTs to evaluate harms can be problematic.  

Most RCTs lack pre-specified hypotheses for harms; they are usually designed to 

evaluate beneficial effects as their primary objective, with assessment of harms 

being the secondary objective [8]. As a result, the quality and quantity of harms 

reporting in clinical trials is frequently inadequate [9, 10]. Furthermore, RCTs 

often lack large enough sample sizes [11] or are sometimes limited in duration 

to adequately assess uncommon or long-term (delayed) harms [7]. They are also 

explanatory, rather than pragmatic in design, i.e., they assess benefits and 
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harms in ideal, homogenous populations and settings [12]. Patients who are 

more susceptible to AEs are often underrepresented in such “efficacy” trials. 

Publication and selective outcome(s) bias in RCTs can lead to distorted 

conclusions about harms when data are unpublished, partially reported, 

downplayed, or omitted [13, 14].  

Despite these limitations RCTs are the gold standard for demonstrating efficacy, 

the basis for most regulatory approvals, and claims made on behalf of drugs and 

other interventions. For this reason, harms data in RCTs must be addressed in 

detail when they are available. 

1.2.2 Including unpublished harms from RCTs   

In addition to evaluating results of published RCTs, results of completed or 

terminated but unpublished RCTs, as well as unpublished results should be 

included. There are a number of potential advantages for accessing unreported 

outcomes which can help in evaluating the risks for publication or outcome 

reporting bias [15], and to evaluate discrepancies in conclusions based on 

unpublished harms data against those based on published harms in RCTs [16].  

However unpublished data from trials can be difficult to locate systematically. 

Recent efforts have been made by researchers for further disclosure of clinical 

trial results, by obtaining data and certain documentation from regulatory 

agencies and drug companies. These researchers were able to unveil more 

comprehensive data and information about a clinical trial, mainly through 

accessing clinical study reports (CSRs). The CSR has now made it possible to 

obtain further existing harms information that may not have been detailed in 



9 
 

the trial publication, or was unpublished in the first place. The value of the CSR 

was demonstrated in a recent study [17] assessing the benefits and harms of 

reboxetine against placebo or selective serotonin reuptake inhibitors in acute 

treatment of depression. The unpublished data from the manufacturer and in 

the CSRs suggests that Reboxetine is ineffective and potentially harmful and that 

the published evidence in journals is affected by publication bias.  

Registry reports have also been used in the past to obtain further information 

and results of clinical trials. Since the release of the 2007 Food and Drug 

Administration (FDA) reform bill trial sponsors are now responsible for reporting 

results to the clinical trial results database (ClinicalTrials.gov) [18] which can be 

accessed by the public. Other similar schemes and databases have been set up 

by the World Health Organization (WHO) and certain drug companies.  

1.2.3 Reporting of harms in clinical trials 

When reporting harms in clinical trials it is important to discuss not only 

expedited and the different forms of mandatory reporting to health authorities, 

but also reporting guidance for published literature. 

1.2.3.1 Expedited and mandatory reporting 

To ensure that all new and clinically important harms are not overlooked or 

reported too late, health authorities in the United States, the European Union 

(EU), Japan, and elsewhere require that safety information be reported on both 

an expedited (within 7 or 15 calendar days) and period (quarterly, biannual, 

annual, etc.) basis. Serious adverse reactions, unexpected reactions and those 

reactions with a relationship to treatment must be reported to authorities 
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expeditiously. Health authorities also require mandatory periodic submission of 

safety information during clinical development and when a drug is marketed 

[19]. These responsibilities of safety reporting are clearly laid out within a range 

of key regulations and documents, including the EU clinical trials directive [20], 

the medicines for human use (clinical trials) regulations 2004 [21] and the 

International Conference on Harmonization - Good Clinical Practice (ICH-GCP) E6 

[22].  

There are also the different types of mandated reports that are required by 

health authorities that also contain further safety information:  

 “Individual case safety reports (ICSRs)” which are required for SAEs and 

SUSARs in RCTs, and they usually provide a narrative summary of the 

event.  

 “Investigator’s brochure (IB)” contains a summary of available nonclinical 

and clinical study information for efficacy and safety findings from 

complete clinical trials, and is routinely updated. 

 “Clinical study report (CSR)” which provide detailed summaries of 

potentially unpublished information on harms of a clinical trial. 

 “Periodic safety update reports (PSURs)” which primarily summarizes 

safety findings of a marketed drug. The purpose is to determine if any 

new regulatory concerns have emerged, and if the benefit-risk profile of 

the drug has changed. 
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1.2.3.2 Reporting harms in published literature  

In addition to expedited reporting and the different forms of mandatory safety 

reporting, it is also important for harms to be reported in the published 

literature. However prior analyses of published RCTs suggest suboptimal 

reporting of harms-related data [9, 10, 23, 24]. Prompted by such evidence, the 

consolidated standards of reporting in trials (CONSORT) members convened in 

May 2003 to generate an extension of the CONSORT recommendations 

regarding the appropriate reporting of harms. The panel generated a 10 

recommendation checklist [8], with accompanying explanation and examples of 

appropriate reporting in RCTs. The reporting standards since the release of the 

extension have not been assessed, but will be later in this thesis. 

1.2.4 Collecting harms data from patients 

When collecting and recording harms from patients in clinical trials, a range of 

approaches can be taken; from asking the patients standard questions, keeping 

diary cards, developing questionnaires or checklists and recording events in case 

report forms (CRFs) [25]. 

The use of standard questions should be the usual method in all clinical trials, 

and should be unambiguous and asked in the same way for each patient as 

defined in the study protocol. Diary cards generally collect harms experienced by 

the patients in an unrestricted fashion on a daily basis, the questionnaire or 

checklist collects harms in a structured fashion, so that valid statistical 

comparisons can be made between treatment arms. The collection of harms 

through questionnaires is usually performed either with a quality of life 
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questionnaire, or a questionnaire designed specifically for trials with specific 

drugs.  

The process of dealing with large amounts of data collected at investigator sites 

during clinical trials, including AEs reports, has been largely paper based. Data 

are usually recorded on paper (or electronically) in CRFs, and then reviewed and 

verified at investigator sites, by a study monitor or a clinical research associate 

from the sponsor company or a clinical research organization. CRFs record 

information on the AE: description, category, start/end date, outcome, severity 

grade, seriousness, expectedness and action taken as demonstrated in the 

sample CRF in Figure 2. SAEs and SUSARs are usually sent in advance of the 

complete CRFs and entered into a separate harms database.   

Figure 2: Sample case report form for adverse events, taken from the clinical 
trials unit from the University of Liverpool. 
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1.2.5 Coding harms data 

Data reported and collected will later be transformed by a medical coder 

employed by the trial sponsor. Coding is a process whereby harms data are 

categorized in a standard way so the data can be pooled or combined for 

analysis. Coders often use a medical dictionary, which is a predefined list of 

possible AEs organized in a hierarchy, to code the narrative description of an AE. 

In the past companies have historically used many different dictionaries to code 

and categorize harms, such as the World Health Organization’s (WHO’s) Adverse 

Reaction Terminology (WHO-ART) [26], Coding Symbols for Thesaurus of 

Adverse Reaction Terms (COSTART) [27], or the International Classification of 

Diseases (ICD 9 and ICD 10) [28]. In 1994, the pharmaceutical industry, together 

with regulatory agencies, developed a standard dictionary named the Medical 

Dictionary for Regulatory Activities (MedDRA) [29]. 

MedDRA is split into a five level hierarchy (Figure 3), with lowest level terms 

(LLTs) at the bottom, followed by preferred terms (PTs), and with system organ 

class (SOC) at the top. Events are initially coded with LLTs which consist of 

thousands of synonyms and alternative spelling of PTs. In the earlier phases of a 

drugs lifecycle, MedDRA can be used, for example, for recording AEs and 

baseline medical histories in clinical trials, in the analysis and tabulations of data 

from these, and in expedited submission of SAEs to regulatory agencies. It can 

also be used in constructing standard product information; such as SmPCs or 

product labeling. After licensing, MedDRA is used in PV for continuing evaluation 

of drug safety. 
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MedDRA continues to grow and develop more coded items. The benefit of more 

coded items means that the coding of AEs could intuitively lead to less inter-

observer variation, because there will be more exact matches to the reported 

AE. Conversely, it might also lead to increased variation because it becomes 

difficult to code nonspecific terms. When there is great uncertainty on how AEs 

are coded and a lack of proper training, it can often lead to misclassification. It 

was shown in a recent review [30] assessing the inter-observer variation and 

other challenges of coding AEs, that the increase in MedDRA categories has 

potentially made detecting AEs harder, and therefore compromised the safety 

assessment of interventions. Comprehensive inter-observer studies are needed 

to overcome the issue of coding AEs. 

Figure 3: The Hierarchy of MedDRA coding system with an example. 
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1.3 Observational Comparative studies 

Observational comparative studies draw inferences about the possible effect of 

a treatment on subjects, where the assignment of subjects into a treatment 

group against the control group is outside the control of the investigator. 

To assess harms adequately observational studies are almost always necessary. 

The exception is when there are sufficient data from RCTs to reliably estimate 

harms. Even though observational studies are more susceptible to bias than 

well-conducted RCTs, for some comparisons there may be few or no long-term, 

large, head-to-head, or effectiveness RCTs [31]. Observational studies may also 

provide the best (or only) evidence for evaluating harms in minority or 

vulnerable populations (such as pregnant women, children or elderly patients) 

who are underrepresented in clinical trials. 

1.3.1 Cohort and Case-control studies 

The term observational studies is commonly used to refer to cohort, case 

control, and cross sectional studies [32], but can refer to a broad range of study 

designs, including spontaneous case reports, uncontrolled series of patients 

receiving interventions, and others. All can yield useful information as long as 

their specific limitations are understood. The choice of study designs also 

depends on whether investigators are seeking to determine what harms might 

be associated with a treatment (hypothesis generating) or whether certain 

harms are more likely (hypothesis testing). Well-designed and reported case-

control and population-based cohort studies are well suited for testing 

hypotheses on whether one intervention is associated with greater risk for an AE 
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than is another, and for quantifying the risk [32, 33]. They also make stronger 

precautions against bias than other observational designs.  

1.4 Impact of systematic reviews 

Clear and complete reporting of harms data from RCTs and observational studies 

is also important for inclusion in systematic reviews. By including data from both 

types of studies this can influence the quality or amount of evidence regarding 

harms. 

1.4.1 Combining data from RCTs and Observational studies 

In a recent study [34] to assess the level of agreement and disagreement in 

estimates of harm derived from meta-analysis of RCTs as compared to meta-

analysis of observational studies for 19 studies, the empirical evidence indicated 

that there was no difference on average in the risk estimate of adverse effects 

between RCTs and observational studies. The study recommends that 

systematic reviews of harms should not be restricted to specific study types, and 

instead it may be preferable for systematic reviewers of adverse effects to 

evaluate a broad range of studies that can help build a complete picture of any 

potential harm and improve the generalizability of the review.  

However, in another report comparing evidence on harms in RCTs and non-

randomized studies, the findings show that large observational studies usually 

report smaller absolute risk of harm than RCTs [35]. There was no clear tendency 

for RCTs or observational studies to report larger relative risks. In more than half 

of the comparisons, estimates of relative or absolute risk varied more than 
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twofold. Discrepancies between RCTs and observational studies may occur 

because of differences in populations, settings, or interventions; differences in 

study design, including criteria used to identify harms; differential effects of 

biases, or some combination of these factors, as summarized in Table 1 [36]. 

Table 1: The Key strengths and limitations to consider when synthesizing harms 
data from RCTs and observational studies. 

 

Study design Key strengths Limitations 

Randomized 
controlled 

trials (RCTs) 

Randomization reduces 
possibility of confounding 
and bias 
 
Certain harms can be 
prospectively specified 
for detailed monitoring 
 
Intervention is typically 
well defined 

Limited power to detect significant 
differences between groups for 
adverse effects, and often lacks 
precision 
 
Recruitment criteria may lead to 
exclusion of patients who are at risk 
of harms (i.e., children, elderly and 
pregnant women) 

 
Potential for biases from industry 
when trailing new drugs, and 
therefore side-effects can be 
ignored 

Meta-
analysis of 
controlled 

observational 
studies 

Pooled analysis has 
greater power to detect 
significant differences, 
even with rare events 
 
Summarizes complete 
data set and can evaluate 
consistency of findings 
among studies 

 
Study population allows 
research into events 
reported in elderly and 
pregnant women 

Reliant on quality of primary data 
 
Missing or unreported data on AEs is 
a major problem, as are the 
statistical techniques of pooling 
sparse data 
 
Potentially very small amount of 
data available on new interventions 
 
Susceptible to selective outcome 
reporting of primary studies 
 
Heterogeneity within pooled 
analysis 
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1.4.2 Limitations of systematic reviews 

There are several other issues especially relevant to discuss when systematically 

synthesizing evidence on harms. This includes, combining studies only when 

they are similar enough to warrant combining particularly when evaluating rare 

and uncommon events, exploring potential sources of heterogeneity in meta-

analysis, and adequately considering outcome reporting bias and tools for 

assessing risk of bias. 

1.4.2.1 Rare events 

Evaluating comparative risks of uncommon or rare events in systematic reviews 

can be particularly challenging. A frequent problem in RCTs and systematic 

reviews is interpreting a non-significant probability value as indicating non-

significant difference in risk for a rare AE, particularly when the confidence 

intervals (CIs) are wide and encompass the possibility of clinically important 

risks. 

For example, in one trial [37] investigating patients with meningitis, “treatment 

with dexamethasone did not result in an increased risk of AEs” compared with 

placebo for treatment of hyperglycemia, herpes zoster, or fungal infection 

because the p-values were greater than 0.20. However, the 95% CIs for relative 

risk estimates of these three AEs showed clinically significant increase risks. In 

such as case, researchers should acknowledge the lack of statistical power to 

assess risks adequately and should interpret the CIs.  
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1.4.2.2 Meta-Analysis 

The exact choice of statistical methods to evaluate harms data in a systematic 

review will depend upon the individual context. Meta-analysis is the preferred 

method to synthesize evidence in a comprehensive, transparent, and 

reproducible manner. Though, the rarity of some serious harm outcomes, the 

relatively small size of some trials, and the restricted patient populations may 

limit the detection and full evolution of the harms of drugs in individual trials. 

The assessment of statistical heterogeneity is appropriate but of lesser concern 

when dealing with rare but serious AEs where the primary focus is detecting the 

harm. Commonly employed tests for statistical heterogeneity include; Cochran’s 

test which is considered relatively underpowered; the Peto odds ratio (OR) 

method with 95% CI which may provide the best CI coverage, and is more 

powerful and relatively less bias than random effects analysis when dealing with 

low event rates; and the fixed effect Mantel-Haenszel test and odds ratio which 

can be used to reduce confounding, and can adequately deal with zero events 

within the analysis [36]. 

1.4.2.3 Outcome Reporting Bias 

Furthermore, the credibility of findings from individual trials and from 

summaries of trials examining a similar research question (that is, systematic 

reviews and meta-analyses) has been undermined by numerous reporting biases 

in the published medical literature. Reporting biases are often difficult to detect, 

but have the potential to discredit earnest efforts towards evidence-based 

decision making [13, 14, 38].  
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One of the major biases often involved when performing systematic reviews is 

outcome reporting bias (ORB), which refers to the selective reporting of some 

results but not others in trial publications. ORB acts in addition to, and in the 

same direction as “publication bias” of entire studies to produce inflated 

estimates of treatment effect. The suppression of non-significant findings could 

lead to the use of harmful interventions.  

In a recent study [14] to determine the extent and nature of selective non-

reporting of harm outcomes in a cohort study, including 92 systematic reviews 

of RCTs and non-RCTs, found significantly high evidence of ORB as a result of 

partially missing reported harms. The study proposes a classification system 

considering selective outcome reporting that should be appraised outside of the 

Cochrane risk of bias tool, which is currently being updated. The 

recommendations from this study are for improvements of reporting harms in 

both primary studies and systematic reviews. 

To overcome ORB, reviewers should also attempt to identify further data from 

multiple sources including CSRs and clinical trial results registries like the 

clinicaltrials.gov, as key harms information may be missing from the published 

trial report.  

1.4.2.4 Assessing risk of bias 

The development of instruments for assessing risk of bias specifically in studies 

of harms is still in an early stage of development. General tools for assessing 

methodological quality can be used but with caution, because they may apply 

only to the primary focus of the study – usually the beneficial effects of the 
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intervention. For example, for current risk of bias tools like the McMaster 

Quality Assessment Scale of Harms (also known as McHarm), are designed to 

detect inflated treatment differences (type I error, i.e., finding of a harm that is 

not truly present) [39]. The McHarm tool was developed from quality rating of 

15 items generated by a Delphi census review of the literature on harms and 

from previous quality assessment instruments. The subsequent list of the 15 

quality criteria was tested for reliability and face, construct, and criterion 

validity. The McHarm tool is intended for use in conjunction with standardized 

quality-assessment tools for design-specific internal validity issues. 

However due to poor monitoring, lack of clear case definitions and missing data 

mean that genuine adverse reactions may go undetected or be misclassified. It is 

therefore believed that systematic reviews of harm should explicitly assess the 

risk of bias toward the null (e.g., with more attention on harms with lower 

estimates of risk, like with rare or unexpected events) to prevent a false sense of 

security (type II error), whereby a drug is erroneously declared safe or not 

significantly different from the placebo or comparator [40].   

The Cochrane handbook for systematic reviews of interventions [41] also 

highlights some areas of special concern: methods for monitoring and detecting 

harms, conflicting interests, selective outcome reporting (section 1.4.2.3) and 

blinding. Furthermore, the Cochrane risk of bias tool for non-randomised studies 

of interventions (ACROBAT-NRSI) was recently developed allowing for 

assessments of harms or benefits of an intervention. 1.4.3 Guidance to 

conducting systematic reviews of harms 
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Studies in the past have also identified other major challenges when developing 

systematic reviews of harms. This includes a poor quality of information on 

harms reported in original studies [9, 10, 23, 42], difficulties in identifying 

relevant studies on harms when using standard systematic search techniques 

[43, 44], and the lack of a specific guideline to perform a systematic review of 

harms.  

To overcome some of these challenges a number of efforts have been made by 

collaborative groups and researchers by developing a logical framework and 

reporting guidelines to guide systematic reviewers.  

1.4.3.1 The Cochrane Adverse Effects Methods Group 

In 1993 the Cochrane collaboration [45] was formed to organize medical 

research information in a systematic way to facilitate the choices that health 

professionals, patients, policy makers and others face in health interventions 

according to the principles of evidence-based medicine. The group conducts 

systematic reviews of RCTs which it publishes in the Cochrane library. A few 

reviews have also studied the results of non-randomised, observational studies.  

The Cochrane Adverse Effects Methods Group (AEMG) was formally registered 

with the Cochrane Collaboration on the 14th June 2007 [46]. The AEMG aims to 

develop the methods for producing high quality systematic reviews and to 

advise the Cochrane Collaboration on how the validity and precision of 

systematic reviews can be improved. A recent publication from the group has 

provided technical advice for a structured approach to conducting systematic 

reviews of harms [47], where reviewers are also given general guidance on the 



23 
 

assessment of study bias, data collection, analysis, presentation and 

interpretation of harms in a systematic review. This work will be discussed in 

more detail in later chapters. The group has also developed and proposed search 

strategies with appropriate search filters to help identify information on harms 

[43]. These search strategies aim to help balance the sensitivity (the ability to 

identify as many relevant articles as possible) with precision (the ability to 

exclude as many irrelevant articles as possible) when searching bibliographic 

databases. The AEMG also contribute chapter 14 (Adverse effects) to the 

Cochrane handbook for systematic reviews of interventions [41]. 

1.4.3.2 PRISMA Harms Guideline 

Additional to the work carried out by the Cochrane AEMGs, in 2009 the 

Preferred Reporting Items for systematic Reviews and Meta-Analysis (PRISMA) 

statement [48] was developed as a revision of the Quality of Reporting of Meta-

Analysis (QUOROM) statement [49]. The PRISMA statement was developed to 

guide researchers when conducting systematic reviews and performing meta-

analysis in systematic reviews. The statement thus far has mainly focused on 

efficacy and not on harms. However, in a recent study [50] the quality of 

reporting in systematic reviews of harms were assessed using their own set of 

proposed items. The aims of this study were to provide valuable research in the 

first step of the development for the PRISMA harms extension.  

1.5 Post-marketing surveillance 

Monitoring the safety of a drug after it has been released on the market is also 

important. Data on harms after marketing mainly include spontaneous reports 
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and electronic health databases designed specifically for PV. These data can be 

used in pharmacoepidemiological studies to further research the risks of an 

adverse effect. A comprehensive PV program also includes evaluation of other 

relevant clinical findings (e.g., laboratory tests results, vital signs, cardiac or 

other specialized testing) that we do not address.  

1.5.1 Spontaneous reporting 

Spontaneous reports refer to unsolicited reports of clinical observations 

originating outside of a formal clinical study that are submitted to drug 

manufacturers or regulatory agencies. Some of the events will represent true 

adverse effects of treatment; many will be symptoms of disease being treated, 

or coincidental events that are unrelated to the diseases or treatment [51]. The 

most important reports are either new (i.e., not included in the drug label or 

SmPCs), rare, serious events associated with the drug’s use, or recognized AEs 

occurring at a higher than anticipated rate.   

Spontaneous reporting systems which collect reports centrally, can “signal” 

emerging problems and thereby have the potential for uncovering previously 

unknown adverse reactions. Since these reports are submitted by health care 

professionals, a great deal of time is spent analyzing individual reports and any 

patterns underlying these reports [52]. The limitations of spontaneous reports 

include substantial and unquantifiable underreporting (thus, such systems do 

not produce accurate estimates of incidence for a given AE) as well as lack of 

verification of important medical details. 
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Adverse events may be spontaneously reported at disproportionately high rates 

at various times in the drug’s marketing life cycle. As a result of this, 

sophisticated statistical approaches to formalize the “signal generation” aspect 

of spontaneous reports, aimed at determining when a particular type of AE is 

reported disproportionately relative to other AEs associated with a given drug, 

have been developed. Such systems, often using Bayesian statistical methods, 

are used and evaluated by safety reviewers employed by regulatory authorities 

and drug companies. These methods may be useful as automated searching 

tools, especially as the number of spontaneous reports increases. However a 

clinical evaluation is usually required to determine the true causal effect. 

1.5.2 Electronic health databases 

Electronic health databases contain patient medical records and prospectively 

recorded information on medical events such as prescriptions, previous history, 

diagnosis, and test results. One widely used medical practice database for 

pharmacoepidemiological research is the Clinical Practice Research Data-Link 

(CPRD) in the UK. This database is a unique resource because it includes very 

detailed medical information, symptoms, and signs in a well-defined, 

representative, and stable population, and it is also validated (i.e., information 

on diagnosis and on prescriptions has been found to agree with that recorded on 

paper charts or provided by physicians).  

However, there also exist some obvious limitations with the use of electronic 

health databases. The most widely used terminology for coding AEs has proved 

ill-suited to identifying the adverse effects of drugs, with differing coding 
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dictionaries used than the standard MedDRA dictionary which is predominantly 

used in most spontaneous reporting systems. In addition, evaluation of some 

accepted statistical methods (i.e., longitudinal Bayesian signal detection 

algorithms and other disproportionality analysis methods) have revealed 

systematic bias, finding statistically significant associations between drugs and 

events where no relationship was thought to exist. Other statistical methods 

also appeared unreliable [53].  

In term of studies including electronic health records, self-controlled methods 

performed better than case controls and new user cohorts, even though the 

later two methods are widely used in other observational studies. The databases 

are also limited with respect to exposures to recently marketed drugs, and may 

be therefore better suited to studying older, well-established drugs or drug 

classes. Another issue is the duration of patient follow-up, which tends to be 

only a few years. Meaningful secondary care data is often not provided [54].  

1.6 Thesis outline 

This chapter has summarized some of the current issues and challenges involved 

when assessing harms in clinical trials. The thesis will cover reporting related 

issues by evaluating the progress of reporting guidelines in a systematic review, 

and the potential for exploiting further unpublished harms information 

contained within CSRs, which was explored in a case study. Additionally a survey 

was conducted to explore the current practice in clinical trial units across the UK, 

to understand how harms data is managed, used and analyzed. Finally, we 

investigate the use of signal detection methods for analyzing harms data from 
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clinical trials. Different scenarios of data were simulated to explore the potential 

for improved detection of safety signals, and to provide guidance in their use. 

Further descriptions of each of the chapters are discussed below. 

The work in Chapter 2 has been published in the British Medical Journal (BMJ) 

Open [55], and I am first author. A systematic review of reviews was performed 

to evaluate the reporting of harms in RCTs when using the CONSORT-harms 

extension as a benchmark. The harms extension which was developed in 2004 

includes 10 recommendations to complement in the preparation of RCT reports. 

Since the release of the extension there has been no indication of the current 

standards for reporting harms in RCTs, therefore this review will be the first to 

access this since its installment. 

The work in Chapter 3 is currently under review for publication, and I am first 

author. The review in chapter 2 was restricted to assessing the reporting of 

harms in only publications of RCTs, therefore in this chapter we explore the 

value of using CSRs to exploit further information on harms. A case study of 

orlistat trials was conducted to assess whether, published results of harm 

outcomes in journal publications is consistent, with the underlying trial data 

within the unpublished data contained within CSRs. This was shown in an 

extensive meta-analysis of all harms data. This research highlights the value of 

CSRs and the potential for improved data transparency of clinical trial results.   

Following on from chapter 3, the potential value of external sources of data 

beyond a RCT is explored in chapter 4 to maximize the information available 

when designing and analyzing trials. This involves a critical review of the 
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different PV systems in post-marketing safety surveillance including passive 

systems (spontaneous reporting systems), prescription-event monitoring, and 

electronic health databases which are used predominantly for hypothesis 

testing/strengthening in pharmacoepidemiological studies. These different data 

sources are to be investigated further in chapter 5, to discuss their potential 

value when used in clinical trial units (CTUs). 

Chapter 5 investigates the current practices in CTUs by carrying out a survey 

across UK clinical research collaboration (CRC) registered CTUs. The aim of this 

survey is to understand how CTUs could improve upon the use of their existing 

harms data, to explore the value for using harms from external sources as 

discussed in chapter 4, and to understand the potential for using statistical signal 

detection methodologies to analyze harms data that may be available within 

CTUs, and within the wider CTU network. The results from this survey will be 

used to inform  the simulation study in chapter 7. 

After examining current practices in CTUs to determine the methodologies used 

to analyze harms data, chapter 6 will explore some of the more commonly used 

signal detection algorithms (SDAs) for analyzing spontaneous reported data and 

clinical trial data. Three SDAs based on disproportionality analysis are introduced 

in detail, performance related issues are evaluated and the potential for 

refinements also discussed. These SDAs will be explored further in chapter 7. 

Chapter 7 starts with a literature review of past studies to assess their aims for 

investigating the use of SDAs, and determine what refinements were made if 

any. Then the performance of the three SDAs introduced in chapter 6, are 
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compared using simulated data. This includes evaluations of their performance 

for controlling for false discoveries, and the ability to maintain suitable levels of 

sensitivity by exploring the use of different thresholds. Furthermore, we 

determine their characteristics when detecting rare signals, and explore their 

potential for use in harms databases similar to CTUs. 

Chapter 8 uses the work of chapters 2 to 7 to try to overcome some of the 

challenges that stem from the reporting, conduct, analysis and interpretation of 

harms in clinical trials. Recommendations for reporting in RCTs are split into 

discussions of reporting guidelines (chapter 2) and the potential improvements 

for better transparency by exploiting harms data in CSRs (chapter 3). The current 

practices when managing and analyzing harms in CTUs has been evaluated in the 

survey (chapter 5). Finally the simulation study (chapter 7) provides 

recommendations and guidance to using SDAs to analyze harms data in a 

number of different scenarios. Chapter 8 concludes with a section discussing 

potential further research.  
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Chapter 2: Reporting of Harms in 
RCTs – Systematic Review 

 

In this chapter the quality of reporting harms data is explored in detail by 

conducting a systematic review of previous reviews. This work has been 

published in the British Medical Journal (BMJ) open [55] and the Cochrane 

AEMG has added the paper to their list of relevant publications for reporting in 

RCTs [46]. The paper has recently been cited in a number of other relevant 

published articles discussing outcome reporting bias issues associated with 

harms, and the endorsement of reporting guidelines for completeness of 

reporting [14, 56]. 

2.1 Introduction to the CONSORT Statement 

Considering the importance of RCTs in the present world of evidence based 

practice, it is essential that the quality of trial findings in medical journals should 

be standardised in terms of the reporting rationale, methods, results and 

context of those results. To address these issues, two groups the standard of 

reporting trials (SORT) and Asilomar working group on recommendations for 

reporting of clinical trials in biomedical literature merged their proposal into one 

single, coherent evidence-based recommendation called the ‘Consolidated 

Standards of Reporting Trials’ (CONSORT) statement which was first published in 

1996 [57]. The CONSORT statement provides the evidence based minimum set 

of recommendations for reporting RCTs, which is intended to facilitate the 

complete and transparent reporting of RCTs and aid their critical appraisal and 
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interpretation. Since 1996 the CONSORT statement has been updated twice, 

including the recent update in 2010 [58].  

Since the publication of the CONSORT statement several healthcare journals 

have endorsed its use, leading to improvements in quality of reporting of RCTs. 

Recent systematic reviews [59, 60] comparing CONSORT-adopting and non-

adopting journals resulted in a significant improvement in adherence to all items 

within CONSORT adopting journals. Due to the success of the standard CONSORT 

statement and other recognized additional complexities of particular trial 

designs and issues, additional extensions to the CONSORT statement, have been 

developed. For example for RCTs with specific designs (e.g., cluster randomized 

trials, non-inferiority and equivalence trials, pragmatic trials), data (e.g., harms, 

abstracts), and interventions (e.g., herbals, non-pharmacologic treatments, 

acupuncture).  

As well as reporting guidelines for trial authors, networks also exist to help 

promote the good reporting of health research studies of RCTs. The EQUATOR 

(Enhancing the Quality and Transparency Of health Research) network has been 

established as a global hub to improve medical research and reliability of 

literature by promoting accurate reporting. The EQUATOR network provides 

training and guidance to peer reviewers and researchers when using the 

CONSORT guideline and extensions.  
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2.2 Methods 

2.2.1 The CONSORT-Harms Extension 

The standard CONSORT statement [61] is primarily aimed at reporting the 

intended, usually beneficial effects of intervention(s) with only one item (item 

19) devoted to unintended AEs in the original 2001 checklist. This limitation, 

along with the accumulating evidence that reporting in RCTs was of poor quality 

with an imbalanced ratio of benefit-harms reporting [9, 10, 44], resulted in a 

CONSORT statement extension developed in 2004 to improve harms reporting 

(CONSORT-harms). The CONSORT-harms extension aims to help address 

perceived shortcomings in measurement, analysis, and reporting of harms data 

[8]. The extension consists of a ten criteria checklist to address the quality of 

harms reporting in all sections of an RCT journal article (title, abstract, 

introduction, methods, results and discussion) (Table 2). The subsequent update 

of the standard CONSORT statement, published in 2010 [62], now specifically 

refers to the additional CONSORT-harms extension but it is still unclear whether 

authors and journals routinely adopt the use of this extension [23, 60, 63]. 

2.2.2 Systematic Review 

The aim of this study is to systematically review the evidence from previously 

conducted empirical studies that have assessed the adequacy of harms reporting 

in RCTs using the CONSORT-harms extension as a benchmark. 

In this systematic review published and unpublished research were included, 

namely studies that evaluated the quality of harms reporting in RCTs against the 

CONSORT-harms recommendations [8]. No restriction was placed on the clinical 
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area or type of intervention studied. Excluded studies were those that assessed 

harms reporting using assessment criteria other than CONSORT-harms, and 

studies that assessed harms reporting using study designs for which the 

CONSORT guideline was not intended (e.g. observational studies). 

Table 2: The 10 CONSORT-harms recommendations [8]. 

 

The search strategy was developed with support from an information specialist 

with experience in systematic review search methodologies, and particularly 

Recommendation Description 

1 
If the study collected data on harms and benefits, the title 

and abstract should so state. 

2 
If the trial addresses both harms and benefits, the 

introduction should so state. 

3 

List addressed adverse events with definitions for each 
(with attention, when relevant, to grading, expected vs. 

unexpected events, reference to standardized and 
validated definitions, and description of new definitions). 

4 

Clarify how harms-related information was collected 
(mode of data collection, timing, attribution methods, 

intensity of ascertainment, and harms-related monitoring 
and stopping rules, if pertinent). 

5 

Describe plans for presenting and analyzing information 
on harms (including coding, handling of recurrent events, 

specification of timing issues, handling of continuous 
measures and any statistical analyses). 

6 
Describe for each arm the participant withdrawals that 
are due to harms and the experience with the allocated 

treatment. 

7 Provide the denominators for analyses on harms. 

8 

Present the absolute risk of each adverse 
event (specifying type, grade, and seriousness per arm), 
and present appropriate metrics for recurrent events, 

continuous variables and scale variables, whenever 
pertinent. 

9 
Describe any subgroup analyses and exploratory analyses 

for harms. 

10 
Provide a balanced discussion of benefits and harms with 
emphasis on study limitations, generalizability, and other 

sources of information on harms. 
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identifying studies focusing on harms reporting. The search strategy which is 

provided in Appendix A was then implemented in the following databases:  

 Cochrane methodology register 

 Database of abstracts of reviews of effects (DARE) 

 Ovid MEDLINE 

 Scopus 

 ISI Web of Knowledge.  

Conference abstracts were searched for in the web of knowledge Conference 

Proceedings Citation Indexes (CPCI-S or CPCI-SSH) and the Zetoc database [64]. 

An unpublished Masters dissertation involving one of the co-investigators was 

also obtained. Date filters were not used during the search criteria, although our 

interest lies only within studies published after 2004 (i.e. after the release of the 

harms extension), with the cut-off date June 2012. 

The titles and abstracts of reports were identified by the search of the databases 

then screened with the full articles obtained for all potentially eligible studies. 

The screening which was done by one author was conducted through the 

referencing software EndNote (Version X5). Each full article was assessed 

independently by two investigators to determine eligibility. A copy of the full 

article was then obtained for all non-excluded reports, and each full article was 

assessed by two independent investigators to determine if it met the inclusion 

criteria. Any additional material about the study included as supplementary 

material on the journal website was also obtained. 
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2.2.3 Quality assessment and risk of bias 

Two investigators independently assessed the methodological quality of each 

study using the Cochrane Risk of Bias (RoB) tool [65] as a guideline. The 

Cochrane collaboration’s recommended tool for assessing risk of bias in RCTs is 

neither a scale nor a checklist. Instead, it is a domain-based evaluation, in which 

critical assessments are made separately for different domains. It was developed 

between 2005 and 2007 by a working group of methodologists, editors and 

review authors. It is a two part tool, addressing seven specific areas; sequence 

generation, allocation concealment, blinding of participants and personnel, 

blinding of outcome assessment, incomplete outcome data, selective outcome 

reporting and ‘other issues’. 

The purposes for the risk of bias in this study, was to assess reviews and not 

individual RCTs, so we adapted a risk of bias tool from the standard Cochrane 

tool and formulated our own criteria which are explained below. 

Each study was graded as low risk, high risk or unclear as indicated below: 

1. Were the trials included in the study a representative sample, e.g. 

unselected journals, and reasonable time scale?  

Low risk of bias: Studies included trials from a primary search of 

all the available literature. 

High risk of bias: Studies were highly selective of the trials 

included, e.g. high impact journals or specialized journals only. 

Unclear risk of bias: Not stated how studies were selected. 
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2. During the data extraction of CONSORT-harms criteria, were reviewers 

blinded to study authors, institution, journal name and sponsors? 

Low risk of bias: Reviewers were blinded. 

High risk of bias: Reviewers were not blinded. 

Unclear risk of bias: Not stated. 

3. Is there evidence of selective outcome reporting in the study (i.e. were 

all CONSORT-harms recommendations considered and if not were 

suitable reasons provided)? 

Low risk of bias: Studies that considered all CONSORT-harms 

criteria or reasons for excluding specific criteria were transparent 

and justified. 

High risk of bias: Studies did not consider all CONSORT-harms 

criteria. 

Unclear risk of bias: Unclear whether all CONSORT-harms criteria 

were considered. 

4. Did more than one reviewer assess the CONSORT-harms criteria for each 

primary RCT, with a description of how agreement was achieved? 

Low risk of bias: Data extraction was completed independently by 

two people or reasonable attempts were made to maximize data 

extraction reliability. 

High risk of bias: Data extraction not completed independently by 

two people. 

Unclear risk of bias: Not stated. 
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Lead authors were contacted when any of the criteria were deemed unclear, or 

not reported in the journal article. 

2.2.4 Data Extraction 

The data extraction was completed by two independent investigators and any 

discrepancies were resolved through discussion with a third investigator. The 

data extraction included: 

 Study characteristics: Inclusion criteria including clinical area, types of 

interventions, databases or journals searched within the study and any 

search date restrictions. 

 Sample size (defined by the number of RCT reports assessed for reporting 

quality).  

 Reporting quality: inclusion of any of the ten recommendations from the 

2004 CONSORT-harms checklist (Table 2). 

2.2.5 Analysis methods 

For each study, the percentage of included RCTs that satisfied each CONSORT-

harms recommendation is presented with 95% confidence intervals (CIs). Some 

studies had presented data for individual items described within each of the ten 

criteria rather than overall data. For example the recommendation was split into 

sub-items of assessment; these are presented as such in tables with a caption to 

provide further explanation. Forest plots were used to graphically depict the 

levels of adherence to the CONSORT harms recommendations, this was 

demonstrated as the proportion of studies within each review that satisfied each 

criteria. So that readers can easily discern the extent of compliance and 
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heterogeneity between studies with the I-squared statistic (Appendix A: Figures 

20). We refrained from statistically combining results from the different studies 

due to the differences in their study characteristics. The R software (version 

3.0.2) was used to perform any meta-analysis. 

In accordance with the Cochrane Handbook, I2 statistics were interpreted as (0% 

to 40%, might not be important; 30% to 60%, may represent moderate 

heterogeneity; 50% to 90% may represent substantial heterogeneity; 75% to 

100%, considerable heterogeneity) [41]. 

2.3 Results 

The search strategy identified 5083 potentially eligible study cohorts (including 

one unpublished dissertation), which were then screened at title and abstract 

level in Endnote (Figure 4).  

There were 36 duplicates removed and 4996 citations excluded at this stage. Full 

papers were reviewed for the remaining 51 citations and seven articles, with one 

being a dissertation obtained by departmental communication that met the 

inclusion criteria and were included in the study. 15 were excluded since they 

did not use the CONSORT harms guideline, 10 used another CONSORT extension, 

9 used the standard CONSORT, 7 were editorials or comments relating to 

CONSORT, and three were letters to authors. We identified seven studies 

assessing the quality of reporting across almost 800 RCTs which were included in 

this study. 
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Five studies (Bagul [66], Breau [67], Turner [68], Shukralla [69] and Capili [70]) 

contained trials focusing on specific clinical areas with two studies (Pitrou [71] 

and Haidich [72]) covering multiple clinical areas (Table 3). Four studies [66, 69, 

71, 72] included trials using drug interventions, one study [70] comparing 

acupuncture and another alternative complementary medicines [68], the 

interventions were unclear in one study [67]. MEDLINE was used by four studies 

[69-72] to identify the relevant literature, three studies [66, 68, 69] used the 

Cochrane database of RCTs and three studies [67-69] searched specialised 

journal databases. The date restrictions used in the search strategy of each 

Figure 4: Flow diagram of study identification and selection 
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study ranged from a one year period up to a nine year span. The studies were 

published after 2008, four years after the release of the harms extension with 

three studies [67, 69, 72] including trials that had been published before the 

publication of CONSORT-harms, with a pre and post-CONSORT harms 

assessment. Five studies [66-69, 71] excluded trials published in a non-English 

language.
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2.3.1 Risk of bias 

Lead authors were contacted by email with any queries relating to the quality of 

their study, or CONSORT criteria; however two authors Breau [67] and Capili [70] 

failed to respond. The risk of bias for the seven included studies, assessed across 

four domains, is summarized in Table 4.  

Table 4: Risk of bias assessment. 

Risk of bias criteria 
Bagul 
(2012) 

[66] 

Breau 
(2011) 

[67] 

Capili 
(2009) 

[70] 

Haidich 
(2009) 

[72] 

Pitrou 
(2009) 

[71] 

Shukralla 
(2011) 

[69] 

Turner 
(2011) 

[68] 

Representativeness 
of sample of trials 
(Low if trials were searched 
across unselected journals 

and across a reasonable time 
period). 

High High Low High High Low Low 

Blinding of 
reviewers during 
CONSORT-harms 
data extraction 

(Low if reviewers blinded to 
study authors, institution, 

journal name and sponsors). 

High Low Unclear High High High Low 

Selective outcome 
reporting 

(Low if all CONSORT-harms 
criteria assessed). 

Low
a 

Low
a 

High
c 

Low Low
d 

Low
a 

Low
a,b 

Reliability of data 
extraction 

(Low if more than one 
reviewer assessed the 

CONSORT harms criteria for 
each review that was 

undertaken, with a 
description of how 

agreement was achieved). 

High Low Low Low Low Low Low 

 
a 

Recommendation nine was not included in these studies as subgroup analysis was either not reported in 
any of the included studies or considered to be irrelevant for the therapeutic area being investigated. 
b
 Authors response: “Recommendation 8 has been captured elsewhere in data extraction, to report this 

item would be to duplicate information presented”. 
“Recommendation 10 was considered too vague to assess with any objectivity so we decided to leave 
this item, especially given that some of our primary outcomes were already reasonably subjective”. 
c
 Recommendations 1, 2, 7, 8, 9 and 10 were not assessed, and reasons were not detailed. We classified 

this as high risk because recommendations 7 (number of patients analyzed) and 8 (Results for each 
adverse event) were not assessed. 
d
 Recommendations 2, 9 and 10 were not assessed, and reasons were not detailed. However, this study is 

classified as low risk because the missing items relate to introduction (recommendation 2) and discussion 
(recommendation 10). 
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Six studies [66, 67, 69-72] were classified as high risk of bias for at least one 

domain with one of these studies [66, 71] classified as high risk for three 

domains. Four studies [66, 67, 71, 72] did not include trials from a 

representative sample as the search had targeted specific journals rather than a 

full systematic database search. Blinding of assessors was only implemented in 

two studies [67, 68] with one study [70] unclear. Most studies used all the 

CONSORT harms criteria with the exception of the subgroup analysis item. One 

study [68] discarded the use of recommendation eight (Results for each AE), 

since it was captured elsewhere within the data extraction, and 

recommendation ten (balanced discussion), which was considered too vague to 

assess with any objectivity. Reporting of the assessment within three studies 

[67, 70, 71] was unclear and authors were contacted. The authors did not 

respond for two studies [67, 70] and in another study [71] a response was 

received but some details remained unclear. Six studies [67-72] had used two 

independent data extractors while one study [66] had not and was classified as 

high risk of bias for this domain. 

2.3.2 CONSORT-Harms recommendations 

The results extracted for the CONSORT-harms criteria (Table 5) demonstrate 

variability in the level of adherence to items. Heterogeneity is highlighted by the 

individual forest plots (Appendix A, Figures 20) where inflated I2 - squared values 

of over 85% are represented for all recommendations, denoting considerable 

heterogeneity. 
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Table 5: CONSORT harms criteria reported across included studies. 

 Bagul 
(2012) 

[66]  

Breau 
(2011) 

[67] 

Capili 
(2009) 

[70] 

Haidich 
(2009) 

[72]  

Pitrou 
(2009) 

[71]  

Shukralla 
(2011) [69] 

Turner 
(2011) 

[68] 

Total number of 
trials included in 

the study 
41 152 10 102 133 152 205 

CONSORT 
Recommendation 

% of trials (95% CI) that adhered to each recommendation 

(1) Title & 
Abstract 

20 
(9, 35) 

12 
(6, 20) 
1i) 12  
(6, 20) 
1ii) 64 

(53, 74) 

NR 
76 

(67, 84) 
71 

(63, 79) 
88 

(81, 92) 
21 

(16, 27) 

(2) Introduction 
34 

(20, 51) 
54 

(43, 65) 
NR 

48 
(38, 58) 

NR 
74 

(67, 81) 
4 

(2, 8) 

(3) Definition of 
adverse events 

0 
(0, 9) 

15 
(8, 24) 

10 
(0, 45) 

59 
(49, 69) 

16 
(10, 23) 

3a) 36 
(29, 45) 
3b) 32 

(25, 40) 
3c) 47 

(39, 55) 
3d) 16 

(11, 23) 
3e) 22 

(15, 29) 

6 
(3, 11) 

(4) Collection of 
harms data 

10 
(3, 23) 

4i) 22  
(14, 32) 

4ii) 6  
(2, 13) 
4iii) 0  
(0, 4) 

20 
(3, 56) 

81 
(74, 89) 

89 
(82, 94) 

4a) 57 
(49, 65) 
4b) 76 

(69, 83) 
4c) 33 

(26, 42) 

17 
(12, 22) 

(5) Analysis of 
harms 

0 
(0, 9) 

76 
(66, 84) 

20 
(3, 56) 

44 
(34, 54) 

12 
(7, 19) 

5a) 36 
(28, 44) 

5b) 7 
(4, 13) 

6 
(3, 10) 

(6) Withdrawals 
51 

(35, 67) 
35 

(25, 45) 
70 

(35, 93) 
59 

(50, 69) 
53 

(44, 61) 

6a) 71 
(63, 78) 
6b) 72 

(65, 79) 

30 
(24, 37) 

(7) Number of 
patients analysed 

17 
(7, 32) 

35 
(25, 45) 

NR 
74 

(64, 82) 
84 

(77, 90) 

7a) 78 
(72, 85) 
7b) 40 

(32, 48) 

18 
(13, 24) 

(8) Results for 
each adverse 
event 

39 
(24, 56) 

8i) 0 
(0, 4) 
8ii) 28 
(19,38) 

NR 
89 

(82, 95) 
73 

(65, 80) 

8a) 35 
(28, 44) 
8b) 68 

(60, 76) 
8c) 47 

(39, 56) 
8d) 19 

(14, 27) 

- 
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(9) Subgroup 
Analysis 

- - NR 
53 

(43, 63) 
NR - - 

(10) Balanced 
discussion 

5 
(1, 17) 

10i) 61 
(50, 71) 
10ii) 14 
(7, 23) 

10iii) 44 
(33, 55) 

 

NR 
83 

(76, 91) 
NR 

10a) 68 
(60, 76) 
10b) 61 
(54, 70) 
10c) 41  
(34, 50) 

- 

 

 

NR   Not reported in manuscript, and no response from authors when contacted. 

- Author detailed reasons for not reporting the recommendation. 

1) (i) Harm, safety or similar term used in title; (ii) Harm addressed in abstract. 
4) (i) When harm information was collected; (ii) Methods to attribute harm to 
intervention; (iii) Stopping rules.  
8) (i) Effect sizes for harms; (ii) Stratified serious and minor harms. 
10) (i) Interpret harm outcome; (ii) discuss generalizability; (iii) discuss current 
evidence. 
3) (a) Definition of AE; (b) All or selected sample; (c) Treatment Emergent AE; (d) 

Validated instrument; (e) Validated dictionary. 

4) (a) Mode of AE collection; (b) Timing of AE; (c) Details of attribution.  

5) (a) Details of presentation and analysis; (b) Handling of recurrent AE. 

6) (a) Early or late withdrawals; (b) Serious AEs or death.  

7) (a) Provide denominators for AEs; (b) Provide definitions used for analysis set. 

8) (a) Same analysis set used for efficacy and safety; (b) Results presented separately; 

(c) Severity and grading of AEs; (d) Provide both number of AEs and number of 

patients with AEs. 

10) (a) Discusses prior AE data; (b) Discussion is balanced; (c) Discusses limitations. 

 

Of the six studies that assess inclusion of harms in the title and abstract of their 

included RCTs, three [69, 71, 72] reported compliance in over 70% of RCTs, but 

three [66-68] reported compliance in less than 30% of RCTs. The introduction 

section of the included RCTs reflect an imbalance in the reporting benefit-harms, 

with one study [68] reporting that less than 5% of RCTs had mentioned harms in 

the introduction, and one study [69] reporting more than 70% of its included 

RCTs has satisfied this criteria.  
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The definition of adverse events in reports is unsatisfactory in most studies [66-

69, 71] indicating that fewer than 20% of RCTs satisfy these criteria adequately. 

The collection of harms-related information is described by more than 80% of 

RCTs in two studies [71, 72], but this high level is not consistent across the other 

five studies with one study [66] suggesting that as few as 10% of RCTs had 

provided an adequate description. The analysis and coding of adverse events is 

poorly described, with less than 50% of RCTs satisfying this criteria across six 

studies [67-72] with one of these studies [66] indicating that none of the RCTs 

had provided an adequate description. The reporting of participant withdrawals 

due to harms was inconsistent within two studies [67, 68] suggesting infrequent 

reporting with less than 40% of RCTs mentioning withdrawals, and three studies 

[66, 71, 72] suggest occasional reporting with 50-60% of RCTs mentioning 

withdrawals, and two studies [69, 70] suggesting that reporting of withdrawals 

was quite common with approximately 70% of RCTs mentioning withdrawals. 

When providing the denominators within trial reports, the results were also 

varied across studies, with three [69, 71, 72] all identifying more than 70% of 

trials that satisfied this criterion, but two studies [66, 68] identifying less than 

20% adherence. The risk and severity grading of adverse events is detailed in 

more than 70% of trials across two studies [71, 72], but the reporting is 

inadequate in three studies [66, 67, 69]. An assessment of reporting of harms 

within subgroup analysis was only carried out within study [72]. 

Four studies [66, 67, 69, 72] assessed their included RCTs for a balanced report 

on the benefits and harms within their discussion: one study [66] identified a 
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very low percentage (<10%), two studies [67, 69] identified a moderate 

percentage (approximately 60%), and one study [72] identified a high 

percentage (over 80%) of trials that met this criterion. 

2.4 Discussion 

This is the first study to systematically review empirical studies assessing the 

quality of reporting according to the CONSORT harms guideline [8]. Data were 

extracted from seven studies that had each assessed the quality of reporting 

across almost 800 RCTs from a range of clinical specialties. Eight years have now 

passed since the release of the harms extension, allowing adequate time for the 

guideline implementation. But, this study highlights that the reporting of harms 

in RCTs is inconsistent, and at times very poor. Heterogeneity is easily discerned 

between studies for each recommendation with inflated I2 - squared values of 

over 85%. Further adherence to the CONSORT harms is needed. 

The standard CONSORT statement for reporting RCTs is well established in 

health research with increasing evidence to support the use of the guideline [23, 

60]. Currently the standard CONSORT is endorsed by over 50% of the core 

medical journals in the abridged index Medicus on PubMed [73]. In a review [74] 

of 116 health research journals, 41 provided online instructions to authors. 

Almost half (19/41 (46%)) mentioned the standard CONSORT guideline but none 

referred to the CONSORT extension for harms. 

Previous studies [9, 10] prior to the CONSORT-harms statement have highlighted 

the problems associated with the lack in quality when reporting harms across 
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various different interventions. For example a systematic survey [10] was 

conducted in 2001 to determine if reporting of ADRs in a wide selection of RCTs 

was in accordance with the Standards Of Reporting Trials (SORT) group 

recommendations. Trial reports within this survey failed to provide details of 

how ADRs were defined or recorded: “48/160 (30%) did not give clear definitions 

to the adverse event experienced”. This survey found further evidence of poor 

reporting with “44/86 (51%) of trials didn’t give details on how severity was 

defined, or if used which severity grading system was used”.  

In the same year, a survey [9] of safety reporting including 192 randomized drug 

trials for seven medical areas, found the quality and quantity of safety reporting 

to vary across medical areas, study design, and settings. Reporting was found to 

be largely inadequate: “Only 39% of trials provided adequate reporting of clinical 

adverse effects and 11% of those adverse effects had partially adequate 

reporting”. Furthermore reporting of discontinuations were found inadequate: 

“The numbers of discontinuations due to toxicity per study arm were mentioned 

in 75% of trial reports, but specific reasons for these discontinuations were given 

only 46% of the time”.    

The focus in this study was to assess the reporting according to the CONSORT 

harms criteria only. The included studies contained trials reported prior to the 

publication of the CONSORT harms guideline. However, any changes in reporting 

over time were not assessed in this study. Nevertheless, our results support 

those from previous studies [9, 10] that used various guidelines published before 

the release of the CONSORT harms extension. This study should be regarded as a 
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reflection of reporting standards in general rather than an assessment of 

adherence to the CONSORT harms extension. 

This study was strengthened by its assessment of quality of the included studies 

across four key domains. With the guidance of the Cochrane review [65] a RoB 

tool was designed to perform a generaliseable assessment of the included 

studies. In this assessment only the one study [68] determined to be low risk of 

bias across all four of the assessment criteria. No restriction was placed on the 

inclusion criteria of the identified studies, meaning that the time span and 

clinical area were varied. Whilst this is a-strength in terms of generaliseability of 

results, it may also be considered as a level of heterogeneity that cannot be 

explored due to the limited number of studies. 

Although the CONSORT harms extension provides researchers and journals with 

a strict guideline to follow when reporting harms, there is supporting evidence 

that the uptake of adopting such guidelines appears to be slow [23]. It also 

seems that more than just the publication of the CONSORT guideline is required 

to assist editors and investigators in proper conduct and reporting of harms 

related issues in RCTs. The standard CONSORT has seen improvements over time 

with great emphasis and persistence by CONSORT members and researchers. 

Evidence is accumulating with large systematic reviews highlighting these 

improvements. The CONSORT extension for harms and further developments 

will help in the detection of adverse reactions in health care. 

Complete and accurate reporting is essential to guide decisions on advances in 

medical interventions. The responsibility to ensure greater balance between 
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reporting of both benefits and harms lies with authors of research and journals 

publishing that research. It is recognized that journals have limited space for the 

reporting of all outcomes which can lead to selective outcomes reporting [75, 

76]. Nevertheless, researchers should make full use of on-line facilities to publish 

supplementary material to ensure that all important available information on 

the potential harmful effects of drugs is available in the public domain. 

Further dissemination strategies should be used to ensure that trial journal 

editors and trial investigators are aware of the importance of adequate 

reporting of harms related data in RCTs. As it stands, it is unclear as to whether 

the problem of the poor reporting of harms data in trial publications is a result 

of the lack of awareness of the CONSORT for harms statement, or journals and 

peer reviewers not implementing this guideline. The most effective strategy 

would follow that of the CONSORT statement with the extension for harms 

comprehensively incorporated in journal requirements along with clear 

instructions to peer reviewers for guidelines of acceptance.  

In this review it was clear from the studies included that different approaches 

have been taken when assessing adherence to the CONSORT-harms checklist. 

Therefore we recommended that systematic reviewers follow the guidance 

provided in this study to help support future studies that wish to use the 

CONSORT-harms to access the quality of harms reporting within RCTs. Our risk 

of bias assessment tool should be used to ensure that the study has been 

conducted to the highest quality by following the four criteria, but also this 

criteria could be extend to support reviewers with the search criteria when 



52 
 

locating the literature. We list some useful key-words which were used in our 

search strategy in Appendix A, but further guidance on the use of different 

bibliographic databases and search techniques (i.e., free-text and/or combined 

with medical subject headings (MeSH)) is needed. We also recommend that the 

assessment of harms reporting over time is discussed. Reviewers could perform 

regression modeling with the time of publication included in the model to look 

for any improvements in reporting over time. 

Since the reporting of harms in published journals of RCTs was found to be poor 

and inadequate in this study, chapter 3 will investigate other avenues to fully 

exploit the use of existing harms data. 
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Chapter 3: Reporting of Harms in 
Clinical Study Reports – Case Study  
 

In chapter 2 the reporting of harms in RCTs was assessed by systematic review, 

the results from this review suggest that journal publications of RCTs poorly 

reported harms according to the CONSORT-harms. In this chapter we provide a 

further extensive evaluation of reporting harms in RCTs, by comparing the 

results from a meta-analysis based on data extracted from journal publications 

against the corresponding meta-analysis based on data extracted from the 

unpublished clinical study report (CSR). The chapter begins by providing a 

detailed background of CSRs with supporting evidence of their use and impact in 

the research, and then the results from a case study are presented in section 

3.2. This case study is currently under review for publication. 

3.1 Introduction 

There are two driving concerns that continue to grow when relying on published 

medical research to reflect the truth [77]. Firstly, trials often remain unpublished 

years after completion and the results are therefore invisible to the public. 

Secondly, trials often display a distorted representation, where publications 

present a bias or misleading description of the design, conduct, or results of a 

trial [15, 38].  

In recent years major initiatives have been developed to prevent or at least try 

to overcome these growing concerns with the registration of clinical trials as a 

precondition for publication in the international committee of medical journal 
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editors (ICMJE) [78], and mandatory trial registration and reporting of methods 

and results in the WHO’s international clinical trials registry platform (ICTRP) 

[79] from 2005 onwards. However, the application of these measures have been 

insufficient; since they do not apply to clinical trials completed before 2005. 

3.1.1 Understanding the Evidence Iceberg 

Various types of formats exist for reporting clinical trials of interventions. 

Journal publications and registry reports currently represent the main publically 

available information source for obtaining summaries of clinical trial data for the 

purposes of clinical and health policy decision making [80]. However, results in 

the past have found reporting in journal publications to be inadequate and 

inconsistent [23], and although clinical trial registries have been responsible for 

making major strides in improving the transparency of trial data, a recent study 

suggested that the results from trial registries often remain invisible [81]. Trial 

protocols can also provide detail on the intended methods of conducting, 

analyzing and reporting in the trial. 

In contrast to these three formats, there also exists a realm of unpublished and 

often invisible source for accessing further information and data on clinical trials, 

including: Individual participant data (IPD), unpublished data, case report forms 

(CRFs) and Investigators brochure (IB) as detailed in Table 6. These sources in 

the past have been found valuable to inform on evidence base decisions on the 

efficacy and safety of clinical trials, however accessing them can often be 

difficult. 
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Table 6: Sources of unpublished and often invisible clinical trials data. 

 

3.1.2 Clinical Study Report 

The Clinical Study Report (CSR) is another format for reporting clinical trials. The 

CSR is a structured document which summarizes the analysis methods and 

results of a clinical trial submitted for marketing authorization of an 

investigational medicinal product in the European Union, Japan, or the United 

States [82]. CSRs are an “integrated” full report which can be up to a thousand 

pages in length, and include extensive detailed information on the efficacy and 

harms of interventions. Information in these documents relating to harms, are 

Source Description 

Individual 
participant data 

(IPD) 

Data for each participant in a trial. This contrasts with 
aggregate or summary data, which is produced by 
combining data from multiple participants. Individual 
participant data allows for the replication of all analysis in 
the study reports and exploration of further analysis. 

Unpublished data 

Data of any type (measurements, analysis, narratives, or 
judgments) from a trial that have not been published, 
irrespective of whether the trial is published. Since trial 
reports in peer reviews scientific journals typically provide 
highly compressed summaries of trial data, large amounts of 
unpublished data will remain for these trials. 

Case reports 
forms (CRFs) 

The original paper or electronic forms on which individual 
participant’s data (demographic, efficacy, safety, etc) are 
recorded during the clinical trial, and the data they contain 
are statistically analyzed only after they have been entered 
into an electronic database of individual patient data. Forms 
can vary in length, from a few pages to hundreds of pages, 
and each trial can have multiple forms - for example, for 
different visits or for the different tests or procedures the 
participant undergoes. 

Investigators 
brochure (IB) 

A document written by a sponsor and intended for clinical 
investigators interested in becoming involved in a study. It 
summarizes the current body of evidence about an 
intervention under investigation, typically based on 
preclinical and human studies. The document is periodically 
updated in light of new information. 



56 
 

usually separated individually by AE and SAE terms in summary tables and 

listings. 

In the past researchers have made major efforts to gain access to CSRs, with the 

intention to inform regulatory decision-making [83]. The information contained 

within CSRs has proved vital when evaluating both the efficacy [84] and safety 

[85] of clinical interventions. Evidence from journal publications has previously 

been questioned, and even overturned by findings from unpublished 

information reported in the CSR [86].  

3.1.3 Open Access to Clinical Trials Data 

On December 2009 Roche was the first global health-care company to release 

CSRs after growing concerns over their product Tamiflu [84]. Their policy now 

allows researcher’s access to CSRs and summary reports that have been used for 

regulatory purposes since 1st January 1999. In 2010 the European medicine 

agency (EMA) [87] became the first major regulatory agency to agree to an open 

access policy to confidential documents, including CSRs. However, in 2013 the 

EMA was forced to take a backwards step, when the general court of the 

European Union (EU) ordered them to limit the access to their reports due to 

legal cases from two drug companies [88]. The EMA has since published their 

final policy on access to documents and CSRs in October 2014 [89], meaning that 

researchers will now be able to re-assess data sets and obtain CSRs. The FDA has 

also set up a similar policy, although there access to such material appears much 

more rigorous (Figure 5). Also in 2013, the pharmaceutical company 

GlaxoSmithKline (GSK) [90] announced their plans to make their CSRs publically 
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available through their Clinical Trials Register, and also open access to requested 

patient level data from GSK clinical trials which are made available through an 

online request system. 

 

 

3.2 A Case study 

The aim of this case study is to carry out an exploratory review to determine the 

quality and completeness of reporting harms data within a sample of CSRs, and 

to compare meta-analysis of harms data from these CSRs against the meta-

Figure 5: Types of clinical trial data typically held within and transferred between three 
realms: trial sponsor, regulatory and public  

(Permission obtained from Doshi, BMJ Open 2013). 
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analysis based on data extracted from corresponding journal articles. Roche 

sponsored orlistat trials were selected for this case study. 

3.2.1 Roche’s Policy on Data Sharing 

The Roche Data Sharing Policy is a global policy for both Roche and Genentech 

on the sharing of clinical trials data. The policy provides the opportunity to 

request and receive global CSRs and other summary reports. In addition, 

researchers can obtain access to analyzable patient-level data from clinical trials 

upon request.  

A Roche CSRs typically follows a set structure consisting of five modules of 

information: 

 Module I: The ‘core report’ which includes; background and rationale, 

objectives, materials and methods, efficacy results, safety results, 

discussion, conclusion and appendices. 

 Module II: ‘Study documents’ including; Protocol and amendment 

history, blank CRF, subject information sheet and consent form, 

glossaries of original and preferred terms, randomization list, reporting 

analysis plan, certificates of analysis, list of investigators and list of ethics 

committee.  

 Module III: ‘Listings of demographic and efficacy data’. 

 Module IV: ‘Listing of safety data’. 

 Module V: ‘Statistical report and appendices’ - Statistical analysis and 

efficacy results. 
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3.2.2 Orlistat in obesity research 

Orlistat (Trade name: Xenical) which is marketed by Roche in most countries is 

used in the treatment of obesity, as a selective inhibitor of gastric and pancreatic 

lipase [91]. Mild but unpleasant Gastrointestinal (GI) side effects are commonly 

reported with orlistat use. A systematic review [92] including 16 randomized 

placebo controlled trials of orlistat which estimated the risk of discontinuations 

due to AEs, reported an increase of 3% (95% CI 1-4%) in risk with the use of 

orlistat. The most common AEs leading to withdrawal were GI (40%); only eight 

(50%) trials specified the number of AEs due to GI problems. Another study [93] 

including 29 trials of orlistat indicated an increase in risk for events; diarrhoea, 

flatulence, abdominal pain and dyspepsia in orlistat treated patients compared 

with placebo. No SAEs were reported in these reviews. There is concern that 

there may also be an associated increased risk of serious hepatic events as 

indicated in a case series study using primary care data from the Clinical Practice 

Research Datalink (CPRD) [94]. 

3.3 Methods 

We planned to identify independent trials each of which were reported within 

two different trial summary reports: CSRs and publically available journal 

publications. The aim was to compare each trial’s summary reports and 

determine whether there were inconsistencies in quality and quantity of 

reporting of harms. CSRs were released by Roche (Genentech; South San 

Francisco, CA) and any analysis was carried out using R version 3.0.2. 
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3.3.1 Systematic search 

A search was implemented in the Cochrane Central register (final search 6 July 

2013) and Ovid MEDLINE (final search 2 July 2013) to obtain all relevant 

published RCTs comparing orlistat against placebo for the treatment of obesity. 

The search terms used are displayed in Appendix B, Table 28. Each full article 

was assessed independently by one investigator to determine eligibility. We 

included published RCTs investigating the use of orlistat. No restriction was 

placed on the clinical area. Excluded studies were observational studies and 

those that did not specify orlistat as their primary intervention.  

3.3.2 Data collection and extraction 

Roche were contacted and asked to provide the corresponding CSRs for each of 

the trial publications identified. This involved listing all relevant published 

literature with authors, trial ID and journal title with any additional information 

about research sponsors, grants etc. Roche were responsible for the 

‘preparation’ and ‘redaction’ of the CSRs, which involved deleting or blanking 

out any patient confidential information.   

For each matching document pair (CSR and journal publication) the following 

data were extracted: 

 Content and characteristics of both document types: whether a clear 

primary objective of safety was defined, word count of information 

relating to harms in both the journal publication (including any online 

supplementary material) and in the CSR documents of text only (word 

count performed using the software AnyCount version 7.0 [95]). Missing 
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pages relating to safety due to redactions were noted in the results, we 

managed to obtain these upon further requests. 

 Name of each reported adverse event (AE) and serious adverse event 

(SAE) term recorded for both placebo and orlistat, with the number of 

patients in safety population, as defined in the respective document. The 

AE coding system used was also detailed. 

 Reporting structure of harms (CONSORT-harms [8] used as a benchmark). 

One investigator extracted the data (AH), and a second investigator (CTS) 

checked the data extraction for two of the included trials (Chanoine [96] (Trial 

ID: NM16189), Halpern [97] (M37013)).  

3.3.3 AEs and SAEs 

For a particular trial, all harms (AEs and SAEs) reported in either journal 

publication or CSR were extracted and compared across the two document 

types. The total number of reported MedDRA preferred terms, were compared. 

If a MedDRA preferred term was reported in both the CSR and journal 

publication the numerical data were compared and any discrepancies noted.  

For each MedDRA preferred term (AE and SAE) the data extracted from CSRs 

were pooled across trials using fixed effect meta-analysis. A corresponding 

meta-analysis was performed using the data extracted from journal publications. 

The pooled Risk Difference (RD) with 95% confidence interval [98], and the I2 

statistic were compared between CSR and journal publication based analyses 

[99]. We stress that these meta-analysis results are based on a subset of the 
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eligible trials of orlistat and are presented for the purpose of a methodological 

comparison rather than definitive clinical results.   

3.3.4 Structured reporting of harms 

Using the CONSORT-harms extension [8] as a benchmark for reporting harms 

data from a RCT, documents were assessed across fifteen adapted criteria (Table 

7) that focus on the methods and results.  

Each trial was classified as follows for each individual criteria: 

 BOTH -         both documents report the criteria. 

 CSR    -         only reported criteria in clinical study report. 

 Pub    -         only reported criteria in trial publication. 

 NR      -        criteria not reported in either document. 

The total number of criteria satisfied in each CSR and journal publication for a 

particular trial was calculated and expressed as a percentage of the 15 criteria. 
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Table 7: Fifteen criteria (adapted from the CONSORT-harms extension) assessed 
to evaluate the completeness of reporting methods and results of harms. 

 
Criteria Description of criteria 

Description of complete reporting for 
criteria 

M
e

th
o

d
s 

1 
List addressed adverse 
events with definitions. 

Listed AEs with definitions (with attention, 
when relevant, to grading).  

2 Mode for collecting data. 

Full description of questionnaires, 

interviews, or tests used to collect 

information on harms. Detailed information 

on questions asked. 

3 
Timing and time frame 

of surveillance. 

Description of time frame of surveillance for 

AEs, with stopping period detailed.  

4 Attribution methods. 
Person responsible for making attribution 

disclosed and whether blinding was used. 

5 
Intensity of 

ascertainment. 

Specify clearly how withdrawals are handled 

in the analyses. 

6 
Harms related 

monitoring. 

Plans for monitoring and rules for stopping 

for benefits and harms separately. 

7 Coding of AEs. 
Reference to any coding system used and 

person responsible for the coding. 

8 
Handling of recurrent 

events. 

Specify how recurrent events are handled, 

detailed as separate events or as one. 

9 Timing issues. Timing of events if recurrent explained. 

10 

Plans to perform any 

statistical analyses and 

inferences. 

Described how pre-specified statistical 

analyses are separated from post hoc 

analyses, and any common problems 

addresses. 

R
e

su
lt

s 

11 
Withdrawals and 
discontinuations. 

Reasons for discontinuations and separated 
by arm. Flow diagrams used to display 
withdrawals. 

12 
Denominators for 

analyses on harms. 

Analyses and definitions used and clearly 

stated (i.e. Intention To Treat (ITT)), and all 

denominators for safety population are 

clearly detailed. 

13 Specifying AE type. 
Results presented separately by System 

Organ Classification type. 

14 Grading or scaling used. 
Each AE type should offer appropriate 

metrics of absolute risk. 

15 Seriousness per arm. Reported separately for each type of event. 
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When both document types reported on any particular individual criteria (i.e. 

BOTH), the reported information was compared and classified as follows:  

CSR (+)       -   The CSR provides more information than the journal  

                         publication. 

(E.g. full data was provided and/or is reported in text of the 

CSR but not in the journal publication). 

             Similar (O) -   Both document types provide equal and similar  

                                     information. 

CSR (-)        -   The journal publication provides more information than the  

                        CSR. 

3.4 Results 

Thirty-one journal publications related to 31 RCTs of orlistat were identified 

from the search (Figure 6). We requested access to full CSRs from Roche 

corresponding to each of these trials. The CSRs could not be provided for 26 of 

these trials: 17 trials were not Roche-sponsored, and CSRs were therefore not 

held by Roche and 9 trials pre-dated Roche’s policy extension, which only allows 

access to trials dating back to the 1st January 1999. 
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CSRs were obtained and matched with the corresponding journal publication for 

five trials (Chanoine [96] (Trial ID: NM16189), Halpern [97] (M37013), Hanefeld 

[100] (M37002), Kelley [101] (M37047) and Torgerson [102] (BM15421)). 

Module I of the CSR was provided for all trials. Module II was not provided for 

one trial (BM15421) and module V was not provided for one trial (NM16189). 

We contacted Roche to provide reasons for any missing sections, and they 

informed us that these sections contained confidential information and had to 

Figure 6: Flow diagram for obtaining trial reports. 
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be removed. Modules III and IV were not provided for any of the trial CSRs since 

they contained individual patient data listings. 

Table 8 shows the content and characteristics for each trial document pair. 

Safety was not the primary objective for any of the five trial journal publications, 

but was defined as a secondary objective in three journal publications [96, 97, 

102], and not specified in two journal publications [100, 101]. Two trials [97, 

100] were published in the Journal of Diabetes, Obesity and Metabolism, two 

trials [101, 102] in the Journal of Diabetes Care, and one trial [96] in the Journal 

of the American Medical Association (JAMA). 

The mean word count across the five trial journal publications was 7265 

(Standard deviation (sd) 1894) with an average of 10% of words (mean (sd) 757 

(287)) dedicated to safety. The CSRs had a mean (sd) of 163411 (96872) words 

across all trials, with approximately 3% (mean (sd) 4663 (1446)) related to 

safety. The mean difference between the CSR and journal publication was 3906 

(95% CI (1756, 6056)) words.  
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Table 8: Content and characteristics of trial documents. 

Trial ID NM16189 M37013 M37002 M37047 BM15421 

Safety 
primary 

objective 
of trial? 

No† No† No¥ No¥ No† 

Author, 
journal of 

publication 
and year 

Chanoine 
JAMA 
(2005) 

Halpern 
Diabetes, 

Obesity and 
Metabolism 

(2003) 

Hanefeld 
Diabetes, 

Obesity and 
Metabolism 

(2002) 

Kelley 
Diabetes 

Care 
(2002) 

Torgerson 
Diabetes 

Care 
(2004) 

CSR 
Research 
report no. 
(date of 

CSR) 

1011426 
(2003) 

1002688 
(2000) 

1003882 
(2001) 

1002743 
(2001) 

1008213 
(2002) 

Volume of both trial documents 

Trial 
document 

Pub CSR Pub CSR Pub CSR Pub CSR Pub CSR 

Total 
number of 
words in 

document 

10568 146801 6371 45464 6382 140166 7090 170347 5915 314277 

Total 
number of 

words 
relating to 
safety (% 
of total) 

1147 
(10.9) 

4883 
(3.3) 

908 
(14.3) 

2664 
(5.9) 

638 
(10) 

4964 
(3.5) 

707 
(10) 

4150 
(2.4) 

387 
(6.5) 

6653 
(2.1) 

CSR 
Moduleᶲ 
supplied 
by Roche 

 

I      

II     * 

III * * * * * 

IV * * * * * 

V *     

 

CSR; Clinical Study Report, Pub; Journal publication; † Safety secondary objective; ¥ 

Objective to assess improvements in glycaemic control, and cardiovascular disease 

risk; ᶲModules explained in section 3.2.2.  
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3.4.1 Comparison of reported adverse event and serious adverse event 

data 

MedDRA version 2.3 had been used to code AEs and SAEs in all five trials. 

3.4.1.1 Adverse Events 

The total number of MedDRA preferred terms for adverse events varied across 

trials (Figure 7).  

Figure 7: The total number of MedDRA preferred term (Adverse Events) 
reported in CSRs and Journal publications across all five trials. 

 

Journal publications did not always report the complete list of identified 

MedDRA preferred terms that appeared in the CSR (Table 9). One trial M37013 

[97] showed very good consistency between the CSR and journal publication 

with 18 MedDRA preferred terms for AEs in total, 18 (100%) of which were listed 

in the CSR and 17 (94%) within the journal publication. One trial NM16189 [96] 

reported 35 MedDRA preferred terms across the CSR and publication combined, 

with only 23 (66%) of these listed in the journal publication.  

NM16189 M37013 M37002 M37047 BM15421
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There was very poor consistency for three trials (M37002 [100]; M37047 [101]; 

BM15421 [102]) with 5% or fewer of the total MedDRA preferred terms being 

reported in the journal publication (M37002: 1 (5%); M37047: 1 (4%); BM15421: 

0 (0%)). 

When a MedDRA preferred term was listed in both the CSR and journal 

publication, there was complete agreement in the numerical results (Table 9) 

except for one case in trial M37013 [97]. Where there were 3 additional patients 

with abdominal pain on orlistat identified within the journal publication.  

3.4.1.2 Meta-analysis for AEs 

In total 61 individual MedDRA preferred terms for AEs were reported in either 

the CSR or journal publication across the five trials (Table 10). 30 (49%) of these 

terms were reported in the CSR and corresponding journal publication for at 

least one trial allowing a comparison of pooled results. In all 30 meta-analysis 

(MA) comparisons there was agreement in the direction of effect of pooled 

results. However, in 6 (20%) MA comparisons the magnitude of effect differed 

(the 95% CI for the pooled risk difference (RD) did not overlap between the CSR 

and journal publication results). In particular for the MedDRA preferred terms of 

‘increased defecation’, ‘oily spotting’, ‘oily evacuation’, and ‘faecal incontinence’ 

the pooled RD from journal publications was greater than CSRs (highlighted in 

red) whereas for ‘soft stools’ and ‘faecal urgency’ the pooled RD from CSRs was 

greater than from journal publications (highlighted in blue).  
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For the 31 MedDRA preferred terms that had only been reported in a CSR, 23 

(74%) analyses suggested an increased risk of an adverse event on orlistat, 2 

(6%) of which were statistically significant (faeces discolouration and dry skin). 

For 4 (13%) MedDRA preferred terms there was no difference between orlistat 

and placebo and for a further 4 (13%) MedDRA preferred terms there was a 

suggestion of an increased risk of an event with placebo, 1 (3%) of which was 

statistically significant (haemorrhoids). The one MedDRA preferred term 

hypoglycaemia was reported only in the journal publication for trial M37047 

[101].       

3.4.1.3 Serious Adverse Events 

The total number of MedDRA preferred terms for SAEs varied across trials 

(Figure 8). One trial NM16189 [96] showed good consistency between the CSR 

and journal publication with 19 MedDRA preferred terms for SAEs in total, 18 

(95%) of which were listed in the CSR and 14 (74%) within the journal 

publication. There was very poor consistency for four trials (M37013 [97], 

M37002 [100], M37047 [101], BM15421 [102]) with 11% or fewer of the total 

MedDRA preferred terms being reported in the journal publication (M37013: 1 

(11%); M37002: 0 (0%); M37047: 0 (0%); BM15421: 0 (0%)).  

In trial NM16189 [96] there were 19 SAEs terms reported across the CSR and 

journal publication. 13 of these were reported in both documents, either with 

full numerical agreement (12 SAE terms), or with disagreement in numerical 

results (1 depression SAE on orlistat reported in the CSR and 2 depression SAEs 

reported in the journal publication) (See Appendix B, Table 29). Five SAE terms 
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were only reported within the CSR (demyelination (1) and bronchospasm 

aggravated (1) on placebo, and convulsions (1), suicidal ideation (1) and liquid 

stools (1) on orlistat). Encephalomyelitis SAE was reported for placebo within 

the publication but not the CSR. 

Figure 8: The total number of serious adverse events reported in CSRs and 
Journal publications across all five trials. 

 

Trial M37013 [97] reports 9 SAEs with only “diarrhoea and dehydration” on 

orlistat reported in both documents. The remaining 8 SAEs were only reported in 

the CSR; death (1), diabetes mellitus (1), hysterectomy and perineoplasty (1), 

mitral lesion (1) on placebo and cholaeistiny due to chronic cholelithiasis (1), 

nephrectomy due to previous renal carcinoma (1), nephrectomy and lithotripsy 

due to previous nephrolithiasis (1), ovary carcinoma and ascites (1) on orlistat. 

The three remaining trials (M37002 [100], M37047 (21) and BM15421 [102]) 

report a high number of SAEs (40, 53 and 255) within the CSR that have not been 

reported in the corresponding journal publication.  
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3.4.1.2 Meta-analysis of SAEs 

In total 326 MedDRA preferred terms for SAEs were reported in either the CSR 

or journal publication across the five trials (Appendix B, Tables 30, 31 and 32). 14 

(4%) of these terms were reported in the CSR and corresponding journal 

publication for at least one trial allowing a comparison of the pooled results. 

However, in 1 (7%) MA comparison the magnitude of effect differed (the 95% CI 

for the pooled risk difference (RD) did not overlap between the CSR and journal 

publication results). In particular for the MedDRA preferred term ‘depression’ 

the pooled RD from the journal publication was greater than the CSR (Table 30). 

For the 311 (95%) MedDRA preferred terms that had only been reported in a 

CSR, 16 (5%) analyses suggested an increased risk of a SAE on orlistat, 2 (13%) of 

which were statistically significant (carotid artery stenosis, varicose veins) (Table 

31). The MedDRA preferred term ‘encephalomyelitis’ which was only reported in 

the journal publication, was non-significant (Table 32).  

3.4.2 Structured Reporting 

The quality of reporting harms related information, as assessed against the 15 

criteria adapted from the CONSORT-harms checklist, are displayed in Table 11.  
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Table 11: Comparison of 15 harms criteria (CONSORT-harms used as a 
benchmark). 

  Trial ID 

Criteria Description of item NM16189 M37013 M37002 M37047 BM15421 
M

e
th

o
d

s 
C

ri
te

ri
a 

1 
List addressed adverse 
events with 
definitions. 

CSR CSR CSR CSR CSR 

2 
Mode of collecting 
harms data. 

BOTH O BOTH O BOTH O CSR BOTH + 

3 
Timing and time frame 
of surveillance for 
adverse events. 

BOTH O Pub CSR NR BOTH + 

4 Attribution methods. CSR NR CSR NR NR 

5 
Intensity of 
ascertainment. 

CSR BOTH O CSR CSR CSR 

6 
Harms related 
monitoring. 

CSR BOTH O CSR CSR CSR 

7 Coding of AEs. CSR CSR BOTH + CSR CSR 

8 
Handling of recurrent 
events. 

NR CSR NR CSR NR 

9 Timing issues. CSR CSR CSR NR CSR 

10 
Plans to perform any 
statistical analyses 
and inferences. 

CSR BOTH + BOTH + BOTH + BOTH + 

Total items satisfied for methods 
criteria in CSR (% of total 10 
items assessed) 

9 (90) 8 (80) 9 (90) 7 (70) 8 (80) 

Total items satisfied for methods 
criteria in publication (% of total 
10 items assessed) 

2 (20) 5 (50) 3 (30) 1 (10) 3 (30) 

R
e

su
lt

s 
cr

it
e

ri
a

 

11 
Withdrawals and 
discontinuations. 

BOTH + BOTH + BOTH + BOTH + CSR 

12 
Denominators for 
analyses on harms. 

BOTH O BOTH O BOTH + CSR BOTH O 

13 Specifying AE type. BOTH + BOTH + BOTH + BOTH + BOTH + 

14 
Grading or scaling 
used. 

NR BOTH + BOTH + BOTH + BOTH + 

15 Seriousness per arm. BOTH + BOTH + BOTH + BOTH + BOTH + 

Total items satisfied for results 
criteria in CSR (% of total 5 items 
assessed) 

4 (80) 5 (100) 5 (100) 5 (100) 5 (100) 

Total items satisfied for results 
criteria in publication (% of total 
5 items assessed) 

4 (80) 5 (100) 5 (100) 4 (80) 4 (80) 

Total items satisfied in CSR (% of total 
15 items assessed) 

13 (87) 13 (87) 14 (93) 12 (80) 13 (87) 

Total items satisfied in publication (% 
of total 15 items assessed) 

6 (40) 10 (67) 8 (53) 5 (33) 7 (47) 

BOTH = ‘reported in CSR and the corresponding journal publication’; CSR = ‘only reported within the CSR’; 

Pub = ‘only reported in journal publication’; NR = ‘neither reported in the CSR or journals publication’.  

Completeness of data where agreement (BOTH) is made coded as:  + ‘More complete in CSR’; O ‘Similar 

quality for both documents’; - ‘less complete in the CSR’.  
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The CSRs satisfied 70-90% of the methods related criteria across the 5 trials 

compared to the journal publications that satisfied between 10-50%. CSRs 

consistently provided much greater detail regarding planned analyses than the 

journal publication and on only one occasion did the journal publication provide 

greater detail than the CSR (trial M37013 [97]; item 3: timing and time frame of 

surveillance for AEs). Both CSRs and journal publications satisfied 80-100% of 

criteria within their results sections, but greater detail was generally provided in 

the CSR. This included full summary tables of AEs and SAEs data, including 

withdrawals due to harm, severity grading and denominators for the numbers 

included in the safety population.       

3.5 Discussion 

Our analysis showed differences in the completeness and quality of reporting 

harms related information between journal publications and CSRs. A substantial 

amount of information on patient-relevant harm outcomes, including SAEs, 

required for unbiased trial evaluation was missing from the publicly available 

journal article. Including the extra data reported in CSRs altered the magnitude 

of pooled risk difference estimates in a few cases. Furthermore, there were 

several MedDRA preferred terms which had never been reported in the 

corresponding journal publications for this subset of trials. Therefore, restricting 

evidence synthesis to journal publications would effectively miss these potential 

harms. 

Our meta-analyses were based on a subset of the eligible trials of orlistat and 

are presented for the purpose of methodological comparison rather than 
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definitive clinical results. However the results from journal publications in this 

study are similar to findings from past studies [92, 93] assessing the safety of 

orlistat in a more detailed meta-analysis (restricted only to journal publications) 

including more trials. The most commonly reported AEs related to 

gastrointestinal effects, with increased risks of flatulence, abdominal pain and 

dyspepsia in orlistat treated patients compared with placebo.          

Where there was agreement for reporting on certain harms criteria related to 

methods and results, information in the publication lacked detail and 

completeness compared with the CSR. Journal publications are often impeded 

by word count restrictions, which results in inadequate reporting of harms data. 

This is still noticeable even after the release of the CONSORT-harms extension 

[8], as the findings from our recent review [55] suggest. In contrast CSRs have no 

such word restrictions imposed and theoretically all relevant information should 

be included. Our study shows that the content of safety information available in 

the CSR is superior. 

A recent study [80] which compared the information gained from CSRs as 

compared with publically available sources (journal publications and registry 

reports), reported that CSRs provided considerably more information on harm 

outcomes. Over 86% of all harm outcomes (AEs and SAEs) were available from 

the CSRs, compared to only 26% from the journal publications. Combining harms 

data from registry reports and journal publications increased the proportion of 

outcomes to 43%. Furthermore, withdrawals due to AEs were detailed 

completely in 91% of CSRs, with only 51% of journal publications providing 
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complete information. In another study [16] inadequate safety reporting was 

shown in the Medtronic manufactured product, recombinant human bone 

morphogenetic protein 2 (rhBMP-2) used in spinal fusion surgery. Harms data 

were found to be missing from the publications, with considerably more data 

found in confidential reports, including the corresponding trial CSRs.  

Further evidence of inadequate reporting of benefits and harms were found in a 

more recent study investigating the product duloxetine in patients with major 

depressive disorder [103]. The CSRs were found to contain extensive data on 

major harms that were unavailable in journal publications and in trial registry 

reports. The study also reports inconsistencies between protocols and CSRs and 

within CSRs. The value of this missing data could have a major impact on the 

safety of the product in a systematic review of adverse effects based solely on 

publically available data from journal publications. 

In our study we performed meta-analysis on all reported harms data which 

allowed us to obtain results that would have been available from restricting 

analyses to journal publications as might be done in a traditional evidence 

synthesis, and compare those against results incorporating all the available 

evidence from CSRs for the 5 included trials. To our knowledge such a 

methodological comparison has not been published previously. However, the 

meta-analysis results do not provide comprehensive unbiased clinical results as 

they are based only on a subset of the 5 orlistat trials. Therefore a broader 

selection of trials would be necessary to address the standards of harm reports 

in general. The 26 remaining trials were excluded from this methodological 
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comparison because they were not sponsored by Roche or pre-dated Roche’s 

policy act, and therefore CSRs could not be provided.  

Of the five CSRs obtained from Roche we did not receive a full CSR for any trial. 

Some of the reports failed to include any information from modules II, III, IV and 

V, and some CSRs had missing pages with information of AEs removed. 

Therefore results in this study were based only on the information available, 

though we were able to analyze all reported harms data in this methodological 

comparison. We contacted Roche to provide reasons for these missing pages 

and they explaining that confidential patient listings were detailed, and 

therefore had to be redacted. Additionally Modules III and IV within the Roche 

CSRs also contained confidential patient data and were therefore redacted. 

Orlistat was granted approval by the European Medicines Agency (EMA) on 21 

January 2009, however due to the legal proceedings and the limited access over 

the last year we were unable to obtain further reports via the EMA.  

We did not undertake detailed clinical assessments of the causality and 

relatedness of the AEs and SAEs that had not been reported in journal 

publications. The CSR does state that most events were either unrelated or 

remotely related and so it could be that the journal publication authors decided 

not to report all events, or were limited due to restricted journal space. The 

assessment of relatedness needs to be carried out. In addition, none of the 

journal publications mentioned that they had only reported a subset of possible 

harms data, and none had described a rationale for this decision. The CSRs also 

indicate that only commonly observed AEs (defined as those events with 
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incidence rate in orlistat group of ≥ 5%) were summarized, meaning that there 

are potentially more AEs unreported even in the CSR. Clear definition of SAEs 

was not provided, particularly for those missing from the journal publication. We 

also did not study the effect of grade and attributions might have on the 

omission and inconsistency of reporting. Sensitivity analysis considering each of 

these key points should be performed.  

Furthermore the MAs were conducted without any adjustments for multiplicity, 

meaning that the results could be misleading when discussing statistically 

significant differences between orlistat and placebo. The risk difference was 

used as a measure of inconsistency between document types, however the RD 

can often be biased and misleading when detecting rare events [104]. Therefore 

other statistical measures should be considered. Nevertheless, this 

methodological comparison showed statistically significant differences for 

certain AEs and SAEs only reported in the CSRs; their also appears to be a 

systematic trend with suppressed results from journal publications as being 

more detrimental to orlistat. However some have shown suppressed trends in 

the opposite direction which should be investigated in further work. CSRs are 

only developed by commercial companies when submitting applications for 

marketing approval and so this investigation is focused on the completeness of 

reporting of harms in journal publications of commercial trials. Similar issues 

could be apparent in non-commercial trials but this could not be explored here.  

Our findings suggest that CSRs produce more complete and robust information 

on harms data collected in clinical trials compared to publically available journal 
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publications. However, inconsistencies of harms reporting in this case study 

were not sufficient enough to raise any serious concerns about the use of 

orlistat, and therefore including unpublished data from the CSRs did not alter 

the magnitude of the results in the meta-analysis. Signals of potential harm for a 

product have been raised in systematic reviews [16] of published literature 

when the numbers of events are suspected to be too small or even missing, 

giving rise to considerable uncertainty and inconclusive findings. CSRs should be 

considered in similar cases whenever there is uncertainty about the efficacy and 

safety of a product. 

Given some of the major pitfalls involved when accessing CSRs, this will likely 

dissuade systematic reviewers to even consider their potential inclusion in 

evidence synthesis of harms. Perhaps a more viable solution appears to be that 

journals should require more thorough reporting of harms via online 

supplements (e.g., CSRs, de-identified case report forms (CRFs), study protocols 

and complete tables of AE related information). Also reviewing CSRs can be 

difficult, as they are extremely lengthy documents and therefore represent a 

considerable challenge to researchers. Therefore there is a need to develop 

tools and methodological approaches that will reduce the workload and still 

allow researchers to use them in an accurate and efficient manner.  

Alternatively, where CSRs may not be available upon requests, trial registry 

reports can sometimes provide additional information from journal publications. 

However, as highlighted in two recent studies [80, 103] access to these reports is 

not an adequate alternative to access to CSRs. In addition to CSRs, reviewers 
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may also consider the complete case report forms (CRFs) to support a synthesis 

of harms [105]. Though like CSRs, CRFs are usually restrictive and are held by 

sponsors or regulatory agencies.  

The debate around disclosure and clinical trial data release will undoubtedly 

continue with various stakeholders including funders, academics, industry, 

publishers and regulators supporting the move towards greater transparency. 

The new EU clinical trial regulation [106] published on 27th May 2014 supports 

this claim under section (67). The guideline states that trial data should be 

publically accessible and presented in an easily searchable format, with related 

data and documents (including trial protocol and CSR) linked together by the EU 

trial number. The BMJ also stated that it will no longer publish trials of drugs or 

devices where the authors do not commit to making the relevant anonymised 

patient level data available, this is due to be extended to all submitted clinical 

trials from the 1st of July. The EMA have now adopted the new policy making 

clinical trials data more accessible [89]. Roche should also be commended for 

voluntarily submitting their data and allowing further access to their CSRs. Our 

research provides further empirical evidence supporting the potential value of 

the CSR.    

Further efforts are also needed to improve trial reporting in journal publications, 

including training for authors and peer reviewers. The EQUATOR network 

(Enhancing the QUAlity and Transparency Of health Research) aims to promote 

the use of reporting guidelines and good research reporting practices which 

should act as the first step to help improve reporting [107]. We also recommend 
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that authors should make it clear in the journal publication when reporting a 

subset of harms, and justify why they are doing this, and where the full 

information can be obtained.  
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Chapter 4: Sources for Identifying 
Information about Harms 
 

Chapter 2 has highlighted inadequacies of reporting harms in RCTs and chapter 3 

explored the use of CSRs as an alternative approach to obtaining additional 

detailed information about existing harms data. But, as discussed, CSRs will only 

provide harms data for a subset of possible trials and there are of course many 

other sources of harms data that could be exploited. This could be of particular 

value for the purpose of evidence synthesis and for designing new RCTs where 

there may be limited, or inadequate, information available from traditional 

journal publications. For example, we may wish to summarise existing evidence 

to inform a sample size calculation if the primary outcome of a new RCT is based 

on harms. We may wish to summarise the existing information about harmful 

effects of treatments to help guide the safety monitoring of a new RCT, or we 

may wish to update the existing evidence with harms data collected in a new 

RCT.  

In this chapter, work previously discussed by Loke et al. [108] and the Cochrane 

AEMG [41, 47] for guidance on selecting and retrieving information about harms 

to include in evidence synthesis will be outlined in section 4.1, and then an in-

depth overview of available data sources that provide information about harms 

will be discussed in section 4.2.  
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4.1 Why is a structured approach  needed? 

Systematic reviews often rely on searches of electronic databases of published 

articles. Identifying and selecting relevant harms of treatment and quantifying 

the risk associated with them, however, often require a broader range and more 

comprehensive assessment of different data sources. In addition, the types of 

studies included in a systematic review may influence the quality or amount of 

evidence regarding harms. 

4.1.1 Importance of the research question  

The Cochrane AEMG recently proposed a framework for a structured approach 

to conducting systematic reviews of harms [41, 47]. The starting point of the 

evaluation and subsequent synthesis of harms data in this framework are guided 

entirely by the research question, which can be “broad” or “narrow” in scope. 

For example, a review with a broad scope might ask “what harms are associated 

with antidiabetic drugs commonly prescribed to treat patients diagnosed with 

type 2 diabetes?” Or, a more narrowly focused review might examine the risk of 

heart failure in patients with type 2 diabetes who take antidiabetic drugs. The 

advantages and disadvantages of addressing broad and narrow questions are 

discussed in Table 12.  

4.1.2 A Framework based on the Research Question 

As outlined in Loke [108] the scope of the research question i.e., broad or 

narrow, will determine whether a ‘hypothesis generating’ or ‘hypothesis testing 

or strengthening’ approach is needed to select and identify harms data. Mann 
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[109] has also proposed a similar approach when conducting studies in 

pharmacoepidemiology research, which we also incorporate into this approach. 

Table 12: Advantages and Disadvantages of selecting a broad versus narrow 
research question for a systematic review of harms. 

Scope of question Advantages Disadvantages 

Broad  

Example: What common 

harms might a patient 

diagnosed with type 2 

diabetes experience 

when taking antidiabetic 

drugs? 

Wider coverage and can 
evaluate new harms that 
we may not have 
previously been aware 
of. Can also be used 
preliminary to a narrow 
approach, to identify 
specific harms of interest 
to investigate further. 

Danger of being 

swamped by vast 

quantities of 

heterogeneous data and 

of inappropriate pooling. 

Can be resource 

intensive and may yield a 

diverse amount of 

information from which 

it is difficult to draw any 

meaningful conclusions. 

Narrow, usually 

evaluating only a 

selected harm outcome 

in detail.  

 

Example: Does the 

antidiabetic drug 

Rosiglitazone increase 

the risk of heart disease 

or heart failure in 

patients diagnosed with 

type 2 diabetes? 

Easiest approach, 

especially with regard to 

data collection. 

Hypothesis-testing 

design allows reviews to 

focus on important 

harms and reach 

conclusions about 

treatment decision. 

Conclusions are limited 

to specific harms, and do 

not provide complete 

picture of the overall 

safety profile. Only 

appropriate for harms 

known in advance. 

 

4.1.2.1 Hypothesis Generating 

In hypothesis generating the researcher will investigate a broad overview of 

safety problems associated with a particular intervention. The first step would 

be to check summary products characteristics (SmPCs), drug analysis prints 

(DAPs) and published case reports. RCTs and observational studies can then be 



95 
 

used to help identify harms in published literature. Regardless of the data source 

used, a generated hypothesis often relates to an association which is considered 

important to investigate further, meaning that there could be a possible causal 

relationship between an adverse reaction and a drug. 

4.1.2.2 Hypothesis Testing or Strengthening 

Hypothesis-testing studies aim to prove whether any suspicions that may have 

been raised in the hypothesis generation stages are justified [109]. That is to 

determine whether a specific harm is likely to have been caused by the drug, or 

whether bias or confounding is likely. This will typically involve calculating the 

magnitude of risk (relative risk or odds ratio) and degree of uncertainty (95% 

confidence interval). The selection of the most appropriate study designs (RCT or 

observational study) in hypothesis testing studies can vary depending on the 

characteristics of the specific adverse effect. If time and resources are limited, 

the simplest approach is to check all relevant RCTs first, and if no reliable 

estimates are available, then it is sensible to proceed with observational studies. 

 Alternatively a more comprehensive but research intensive approach is to 

compare findings from both study designs and consider whether appropriate to 

combine together [14, 110]. For example in one study [111], data from both 

observational studies and RCTs were combined to present a single estimate of 

mortality associated with chronic usage of non-steroidal anti-inflammatory 

drugs (NSAIDs). For some reviews it may only be appropriate to quantitatively 

combine results from one or some study designs (e.g., RCTs and cohort studies) 
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and synthesise data from other types of studies (e.g., case series and case 

reports) using a narrative approach. 

Hypothesis strengthening studies aim to determine whether the occurrence of 

an AE has any relationship with dose, duration of treatment, and characteristics 

of the patients [112]. This may involve assembling a cohort of published cases 

and/or spontaneous reports; however retrieving observational studies that have 

formally estimated the risk of harms is the best approach. 

Before proceeding in the synthesizing of data, it is important to discuss the 

complexities surrounding the three key areas of review methodology that 

include: the study designs that are most likely to yield robust data on harms, a 

search strategy for locating and identifying the studies, and considering the 

diverse range of data sources available when researching the characteristics of 

the adverse effect fully.  

4.1.3 What types of studies to include? 

The types of studies included in a systematic review may influence the quality or 

amount of evidence regarding harms. Type II errors (wrongly concluding that 

there was no significant difference in harms between drug and placebo, and the 

drug is erroneously judged as safe) in reviews of harms are of most concern, as 

opposed to type I error which is of main focus in efficacy studies to prevent 

ineffective drugs being prescribed to patients. Type II errors can stem from 

under-reporting [113], inadequate sample sizes to measure uncommon or rare 

events [11], limited follow-up duration [7], difficulties in defining unexpected 

outcomes, exclusion of patients with risk factors for AEs, and lumping AEs into 
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many subcategories [30]. It is therefore important for reviewers to identify 

specific study designs that are most likely to yield robust harms data, rather than 

rely on studies that cannot detect harm, and may lead to a type II error. 

Reliable detection and reporting in studies varies with predictability of the 

adverse effect. Uncommon events, with striking or distinct clinical features are 

likely to be captured through spontaneous reporting, case reports or case series, 

either within clinical trials or PV systems. Although spontaneous reports may 

provide a signal, more detailed information on the magnitude of associated risk 

of rare events is better sourced from case-control designs. For a quantitative 

analysis of relative risk the background incidence of the harm outcome, onset 

(timing) of the AE relative to the drug exposure, and anticipated magnitude of 

increase in risk with the drug should all be considered carefully [108]. 

4.1.4 Search strategy 

To identify the relevant studies a search strategy should be developed around 

the research question considering the population involved, intervention being 

used and the outcome. In general there are two main approaches that have 

been discussed previously [44, 114] by either searching electronic databases 

using indexed terms (i.e., Medical subject headings (MeSH)) or by using free-text 

terms used by authors in title and abstract. Each should be combined to 

maximize the sensitivity for finding relevant literature.  

4.1.5 Data sources 

There are a wide range of sources that can be used for exploiting further 

information and data on harms, including: medicines information sheets (SmPCs 
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and PILs), pharmaceutical companies, regulatory agencies, academia projects, 

bibliographic databases, online registries and PV systems. However each has its 

own distinct limitations that should also be considered carefully, as discussed in 

Table 13. Data from PV systems and their potential use in observational studies 

will be discussed in more detail throughout this chapter.  

Other review methodology issues that we do not discuss here, like assessment 

of bias, collecting data, analyzing and presentation and interpreting results have 

been outlined previously [47]. 
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4.2 Pharmacovigilance systems 

It was not until the disaster caused by thalidomide in 1961 that the first 

systematic international effects were initiated to address drug safety issues. At 

that time many thousands of congenitally deformed infants were born as the 

result of exposure in utero to an unsafe medicine promoted for use by pregnant 

mothers [115]. After the thalidomide disaster, PV systems were developed in 

member states for the collection of individual case histories of adverse drug 

reactions (ADRs).  

These systems use spontaneous reporting or other pharmacoepidemiological 

methods to systematically analyse AEs associated with the use of drugs, identify 

signals or emerging problems, and communicate how to minimize or prevent 

harm. These systems have provided evidence in the past that can be used to 

institute regulatory action to protect public health and avoid further disasters 

[116]. However, these processes are not always perfect as recently experienced 

with a case involving the type 2 diabetes drug rosiglitazone with associated risk 

of myocardial infarction adverse effects. A meta-analysis of 42 trials of 

rosiglitazone was published in May 2007, showing an increased risk of 

myocardial infarction and death from cardiovascular causes [117]. However, the 

spontaneous reporting systems (FDA and EudraVigilance) were found too 

insensitive to detect increased risks in common events like myocardial infarction 

in diabetics. This case highlights the need for reviewers to examine different 

sources of evidence on harms.  
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The two main types of systems for surveillance are either passive or active in 

nature (Table 13). Each will now be discussed individually.   

4.2.1 Passive systems 

Passive surveillance means that no active measures are taken to look for adverse 

reactions other than the encouragement of health professionals and others to 

report safety concerns. Reporting is entirely dependent on the initiative and 

motivation of the potential reporters [118]. This is the most common form of PV, 

and is often referred to as “spontaneous” or “voluntary” reporting. Currently 

safety signals are mainly detected from spontaneously reported data, or the 

publication of case reports in the literature. Spontaneous reporting of clinical 

concerns by empirical observation of drugs has led to the detection of previously 

unsuspected side effects [119]. 

4.2.1.1 Yellow Card Scheme - A Spontaneous Reporting System in UK 

At present, most PV efforts are mainly spearheaded and coordinated by national 

PV centres, such as the MHRA in the UK. National centres play a major role in 

regulating matters pertaining to drug safety and efficacy, increasing public 

awareness and development of clinical practice and public health policy. 

The thalidomide disaster in 1961 highlighted the necessity for the licensing and 

safety monitoring of drugs used in humans [120]. This signified the birth of the – 

‘Yellow Card Scheme’ as it later became known, because the reply-paid cards 

used by doctors and dentists to report adverse effects were printed on yellow 

paper [121]. Reporting increased following the inclusion of a yellow page in GP 

prescriptions pads reminding GPs to report effects, and again in 1986 following 
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the inclusion of the yellow card in the British National Formulary (BNF) [122]. In 

January 1976, the Black Triangle (▼) Scheme was introduced to highlight certain 

medicines (predominantly newly licensed), for which intensive monitoring was 

required. Any suspected side effects involving black triangle drugs must be 

reported. 

Yellow Card reports which were originally held within the Adverse Drug 

Reactions Online Information Tracking (ADROIT) database have now been 

transferred to the ‘Sentinel database’. The sentinel database carries out certain 

operations after receiving a yellow card form, which usually includes the signal 

detection, signal prioritization and evaluation, risk/benefit evaluation and 

regulatory action and communication stages as shown in Figure 9. The signal 

detection, prioritization and evaluation stages will be discussed later in this 

thesis. 

 

Information collected by the yellow card is vital and will help in establishing a 

suspected ADR and any causal relationship with a drug, as well as allowing 

Figure 9: Yellow card scheme operations (adapted from MHRA website) 
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contact tracing to the reporter for clarification or enquiries on further required 

details if needed. 

Data collected by the yellow card includes:  

 Suspect drug - route of administration, daily dose and dates of 

administration  

 Suspect reaction - include diagnosis if relevant, whether the reaction was 

serious and the reason why, any treatment given for the reaction and its 

outcome  

 Patient sex, age at time of reaction, patient‘s weight and local 

identification number  

 Reporter details  

 All drugs currently being taken by the patient and drug history for the 

last three months prior to reaction 

 Any information on drug re-challenge  

 Relevant medical history including allergies  

 Any other information that the reporter considers relevant.  

4.2.1.2 World Health Organisation - Programme on International Drug 

Monitoring 

It was recognised more than 40 years ago that maintaining an international 

database of ADR case reports, and creating a network of institutions and 

scientists concerned with drug safety issues provided an enormous benefit. The 

World Health Organisation (WHO) Programme on International Drug Monitoring 

was born on such a belief in 1968 and is based at the WHO Collaborating Centre 
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for International Drug Monitoring, the ‘Uppsala Monitoring Centre (UMC)’, in 

Sweden [123]. 

Each participating country has a national centre which communicates directly 

with the UMC and is responsible for collecting spontaneous reports of ADR 

suspicions. The UMC transforms the case reports into specific WHO format 

before it is entered into the ‘VigiBase’ (WHO Adverse Drug Report database) 

[124]. As of April 2015, the database reportedly contains over 10 million case 

reports with more than 120 countries having joined the programme, with 29 

countries being considered as ‘associate members‘. When warranted, signals are 

written up and published in medical journals to be reviewed and to initiate 

necessary actions. The role of the system is to concentrate on the rare (with 

incidence < 1:1000) but clinically significant reactions. 

4.2.1.3 EudraVigilance 

A similar scheme to the WHO international drug monitoring program, is the 

‘European union drug regulating authorities pharmacovigilance (EudraVigilance)‘ 

system [125]. EudraVigilance is a central database management system, created 

on December 2001, and maintained by the EMA. Spontaneous ADR reports 

received from the EEA health regulatory agencies and pharmaceutical 

companies are stored in the EudraVigilance post-authorization module, and 

from May 2004 the EudraVigilance also receives SUSAR reports from clinical 

trials which are stored separately as part of the EudraVigilance clinical trial 

module. SUSARs submitted to the MHRA for EU licensed drugs, are also 

transferred to the EudraVigilance clinical trials module. 
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The aim of EudraVigilance is to create a common EU reporting procedure for 

adverse reactions and side-effects for drugs marketed in the EU, and to support 

the public by making safety information available for scientific assessment. 

However, at the moment only health regulatory authorities from the EU and 

pharmaceutical companies have access to this database, although steps are 

being undertaken to allow public access and academics to certain elements 

within the database. 

Reports can be submitted via the EudraVigilance Gateway which is an electronic 

regulatory submission environment. The Gateway allows drug companies, 

applicants and sponsors of clinical trials and health regulatory authorities to 

report through a common reporting point, and allows for standardization of data 

and elimination of data transcription errors. Medicinal product data is owned by 

the sender organisation that entered the information into EudraVigilance. They 

can add, remove or alter any information added at any time by accessing the 

Gateway. Registered national health authorities can view all information on 

EudraVigilance, but other organisations can only view and make changes to data 

entered by the organisation itself (Figure 10). 

4.2.1.4 Strengths and Weaknesses of Passive systems 

Passive systems have clear strengths, with a system that covers all drugs and the 

whole patient population, including subtypes such as elderly. They are regarded 

as non-interventional with respect to prescribing habits, and thus include the 

reporting of events that cannot be readily studied for ethical reasons, such as 

overdoses or inappropriate co-medication. Passive systems are able to monitor 
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all drugs in use, and remain the only system that is able to monitor drugs which 

are not widely used. Additionally they are able to detect a wide spectrum of 

ADRs (including severe or rare), interactions and other problems (e.g. 

pharmaceutical defects). They are also effective, rapid, continuous, and 

comparatively inexpensive.  

 

 

 

 

 
 

 

 

 

 

 

 

 

There also exist a number of inherent weaknesses when using passive systems. 

Often there is only limited information on reports and secondary case evaluation 

is not always possible. Not all events that occur will be recognised as drug 

Figure 10: Eudravigilance data collection process (adapted from 
EudraVigilance website) 
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induced by a healthcare professional, and even those that are suspected will not 

necessarily be reported to the relevant authority. The “under reporting” effect 

leads to decreased sensitivity of the system, which may also be vulnerable to 

selective reporting, e.g. reporting rates for established centres are frequently 

less than 10% for serious reactions. Linking data between systems is not 

encouraged, since duplicate reports may appear from multiple systems. The 

number of reports received may depend on numerous factors; the inherent 

acute toxicity of the drug, the usage of the drug, how long the drug has been on 

the market, the year of its introduction and whether there has been any 

publicity about the drug. The control information is not collected as part of 

passive systems (i.e. drug use is not known, and thus one has no direct 

information on incidences or denominators), hypothesis testing studies are 

usually needed to confirm safety signals, and would therefore cause a delay in 

the issuance of an appropriate warning. The data can also be expensive to 

access.    

4.2.2 Active systems 

Active (or proactive) safety surveillance means that active measures are taken to 

detect adverse reactions [126]. This is managed by active follow-up after 

treatment and the events may be detected by asking patients directly or 

screening patient records. This surveillance is best done prospectively. The most 

comprehensive method is cohort event monitoring (CEM), commonly referred to 

as prescription-event monitoring (PEM) and is currently carried out in the UK 

and New Zealand. Other methods of active monitoring can include the use of 
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registers, record link-age and screening of laboratory results in medical 

laboratories which will be discussed later in the chapter.   

4.2.2.1 Modified-Prescription-Event Monitoring 

Recognising the importance of monitoring drug use in ‘real life‘ and the 

theoretical basis for establishing a system to monitor events regardless of 

relatedness to drug exposure, led Professor W.H.W. Inman to establish the 

system of PEM at the Drug Safety Research Unit (DSRU) in Southampton in 1981 

[127]. The DSRU is an independent registered medical charity but is extensively 

supported by donations from the pharmaceutical industry whose work is 

principally concerned with PV associated with newly marketed drugs. DSRU 

operates outside the MHRA or any government office. 

PEM is a non-interventional observational cohort form of PV, and generates 

signals which through pharmacoepidemiology can be investigated to determine 

relevant concerns regarding drug safety. It is a hypothesis generating technique 

with a large database of 900,000 patients, and currently has computerised 

clinical data on over 100 newly marketed medicines with an average cohort size 

of over 10,000 patients. From 2011 onwards the DSUR no longer conducts 

standard PEM studies. In parallel with scientific developments in 

pharmacoepidemiology and regulatory requirements in PV, the technique has 

evolved in becoming a more targeted safety study known as Modified PEM (M-

PEM) [128].  

M-PEM relies upon the collection of NHS prescribing information from individual 

prescriptions once they have been issued to a patient and dispensed by a 
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pharmacist (Figure 11). The prescriptions are dispatched by the pharmacist to 

NHS prescription services for reimbursements. The NHS will then send a copy of 

the relevant prescriptions from relevant GPs in UK to the DSRU. DSRU then 

collect details of the prescriptions for the drugs it is monitoring, and records 

information on the first 20,000 - 30,000 patients prescribed a new drug. 

 

After a suitable interval of 3-12 months, the doctors who prescribed the drug 

being monitored are sent green form questionnaires on which they are asked to 

record events reported by the patient subsequent to the prescription. Although 

the aim is to acquire information on medical events for all the prescriptions, no 

more than 4 forms are sent to each doctor in any 1 month. A medical event is 

Figure 11: Database structure (adapted and modified from Drug Safety 
Research Unit Website). 
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defined as any new illness, change in an existing illness or reason for medical 

consultation (e.g. in relation to pregnancy), regardless of whether it was thought 

to be related to treatment. All reported events are followed up to determine the 

outcome and the cause of all deaths are established. Events are then 

investigated for causal relationship and the incidence density (number of 

reports/number of patient-months of exposure x 1000) of a particular 

event/adverse effect is calculated. Signals are generated by an event having 

unusually high incidence density. 

4.2.2.2 Strengths and Weaknesses of M-PEM  

M-PEM has clear strengths, including the existence of a large database with the 

data containing over 900,000 patients (including the whole of England). It also 

enables large cohorts to be assembled over time and usually experiences a high 

return rate of the forms with on average more than 55%. The M-PEM system is 

the only form of post-marketing surveillance which prompts all doctors using 

new drugs to report the events which follow their use in the UK. It represents 

the ‘real world’ use of newly marketed medicines with no patients excluded, and 

asks about events and not ADRs, which could prevent GPs from returning the 

forms due to doubts. Therefore there is a possibility to detect side-effects which 

no doctor(s) has suspected. Numerator and denominators are provided in M-

PEM which is collected within a known time frame.  

M-PEM also poses some obvious weaknesses. It is only for new drugs intended 

for long term widespread use within the primary care system, and does not 

extend into hospital monitoring. Therefore the use of monitored drugs initiated 
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or stopped in hospitals will not be detected, and the process involved when 

choosing which drug to monitor is not clear. The delayed onset makes it difficult 

to detect harms, with some never being detected. Population selection bias may 

exist in M-PEM, by excluding certain populations such as children and elderly. 

This may occur when drugs chosen to be studied may not be used by all 

populations, or doctors may choose to return green forms only for the sub-

population consisting of the majority of prescriptions, i.e. returning forms only 

for adult prescriptions and ignoring the few prescriptions for children. 

Limitations on the number of green forms for each doctor may also create 

selection bias and conceal bias from doctors which fail to return the forms. 

Finally, M-PEM is relatively costly and requires a huge amount of resources.  

4.2.3 Health Databases 

Health databases or health record-linkage databases in active surveillance are 

used for drug safety observational studies, primarily cohort or case-control. 

Record linkage is the systematic combining of records of individuals in a 

population stored separately, and has made significant contribution to PV by 

linking drug exposure to outcome data. The primary aim of observational studies 

using this type of data is hypothesis testing or strengthening, of a known or 

suspected side effect [129]. 

4.2.3.1 Clinical Practice Research DataLink 

The General Practice Research Database (GPRD) was established in June 1987 as 

the VAMP Research Databank. Participating GPs received practice computers, 

and the VAMP medical text-based practice management system in return for 
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undertaking data quality training and submitting anonymised patient data for 

research purposes [130]. In November 1993, Reuter’s health information 

acquired VAMP Ltd and one year later Reuters donated the database to the 

department of health where the database was renamed GPRD. In 1995, Reuters 

launched Vision, a Windows-based practice management software application 

used by GPs in the GPRD scheme. In 1999, the Medicines Control Agency - MCA 

(which became part of the newly created MHRA in April 2003) took over 

management of the GPRD, and initiated a redevelopment programme to enable 

broader research usage of the database. The database has since been renamed 

the Clinical Practice Research DataLink (CPRD) as of 2012 [131]. 

The CPRD is the world‘s largest computerised database of anonymised 

longitudinal medical records from both primary and secondary care settings. 

Data as of the year 2009 consist of over 20 million active patients from 

approximately 600 primary care practices throughout the UK (approximately 6% 

of UK population) providing 46 million patient years of high quality validated 

data. CPRD is operated on a self-financing not for-profit basis and data are 

licensed exclusively for medical and health research purposes. It is used to 

support medical and public health research in the following areas: Clinical 

research planning; Drug utilization; Studies of treatment patterns; Clinical 

epidemiology; Drug safety; Health outcomes; Pharmacoeconomics or Health 

service planning [132].  

The participating practices supply CPRD with a wide range of information 

covering all aspects of patient care, including: 
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 Demographics, including age and sex, practice location.  

 Medical symptoms, signs and diagnoses, including comments and co-

morbidity, medical history.  

 Therapy (medicines, vaccines, devices) – includes co-prescription, dosage 

details, off-label prescription, medical procedures, repeat prescriptions.  

 Treatment outcomes.  

 Events leading to withdrawal of a drug or treatment – includes ADRs 

(certainty and severity assessments). 

 Immunisation details including status, stage, and type, route of 

administration, reason and batch number.  

 Referrals to hospitals or specialists. 

 Laboratory tests, pathology results.  

 Lifestyle factors (height, weight, BMI, smoking and alcohol consumption).  

 Patient registration, practice and consultation details. 

4.2.3.2 The Health Improvement Network 

The Health Improvement Network (THIN) database represents a collaboration 

between two companies; In Practice Systems Ltd (INPS) who were responsible 

for the development of the vision software used by GPs in the UK to manage 

patient data, and Cegedim Strategic Data Medical Research UK (CSD MR UK) 

who then provided access to the data for use in medical research [133].  

Since THIN data collection began in 2003, over 500 vision practices have joined 

the scheme. The database is used worldwide by researchers for medical studies 

in drug safety, epidemiology and health outcomes. The staff responsible in the 
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development of the CPRD has spent over 20 years facilitating the database, and 

therefore the data provided is formatted very similarly to CPRD data.  

4.2.3.3 Medicine Monitoring Unit 

The Medicine Monitoring Unit (MEMO) is a University of Dundee based research 

collaboration that undertakes research into the safe, effective and cost effective 

use of medicines and devices as well as helping to improve the understanding of 

disease, all using anonymised healthcare data [134]. MEMO was originally set up 

to undertake hypothesis testing PV studies using three original datasets: 

dispensed prescribing, hospitalization and death certification. These datasets 

remain the backbone of MEMO research. Currently, MEMO is enhanced by 

access to other datasets such as laboratory information and primary care data. 

MEMO only covers the Tayside NHS population (approximately 400,000) based 

register. Case note validation is possible and undertaken where coding validity 

or additional information is required. MEMO also works in conjunction with the 

information services division (ISD) to record link dispensed prescribing to 

hospitalizations. 

4.2.3.4 Strengths and Weaknesses of Healthcare databases 

Health databases possess a number of clear strengths. Clinical data is available 

at individual patient level both in primary and secondary care settings, currently 

these systems are the largest and most comprehensive source of data of its kind 

worldwide. The sample population is large enough for PV targeting rare diseases 

and special populations (e.g. pediatric and the elderly); with a considerable 

statistical power for cohort and case-control studies, including long-term cohort 
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studies. The clinical data contained within are regularly updated and validated, 

and available as recorded by the GP, with event mapping to MedDRA 

terminology and prescription data mapped to the British national formulary 

(BNF) classification system. 

One of the main drawbacks of health databases is the susceptibility for 

incomplete information inputted by participating practices. If the quality of data 

provided is low, data from the practice will not be accepted. The data collected 

in health databases can also have limited record linkage capability. The high cost 

of accessing the data, which ranges from £7,000 to £60,000 to cover a single 

research study, can be too excessive for most research groups particularly public 

sector, although limited grants for access are sometimes available [135, 136]. 

4.3 Observational studies in practice 

Observational studies have become increasingly accepted for use in PV. They 

offer a ‘real world’ surveillance of drug use and its complications. Observational 

studies can usually be divided into three main studies in regards to PV: 

‘pharmacoepidemiologic studies’, ‘registries’ and ‘surveys’. 

4.3.1 Pharmacoepidemiologic studies 

Pharmacoepidemiologic studies encompass various study designs including 

cohort (retrospective or prospective), case-control, observational studies and 

others [109]. They may use a wide variety of data sources including prospective 

‘real world’ data (e.g., hospitalized data, clinical trial data and health databases), 

and are designed to test a pre-specified hypothesis. Outcomes include 

estimation of relative risk associated with a drug, and may even provide 
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estimates of risk (incidence rate) for cohort studies. Although observational 

studies in general are not placed highly in the hierarchy of evidence due to bias 

and their reduced ability to address confounding factors, they remain the only 

practical choice to study uncommon or delayed adverse effects. Observational 

studies are also gaining acceptance for use in hypothesis testing especially when 

more than one study is used to test the same hypothesis, therefore 

strengthening the result outcomes. 

4.3.2 Registries 

A registry according to the US FDA is - an organized system for the collection, 

storage, retrieval, analysis and dissemination of information on individual 

persons exposed to a specific medical intervention, who have either a particular 

disease, a condition that predisposes to the occurrence of a health related event 

or prior exposure to substances or circumstances known or suspected to cause 

adverse health effects. The creation and analysis of registries is particularly 

useful for examining outcome information not available in large automated 

databases from multiple sources. The collection of spontaneous case reports 

either reported or published detailing specific adverse effects are among the 

common application of registries and is commonly used to complement signal 

detection by national PV centers. 

4.3.3 Surveys 

Surveys such as questionnaire studies are being increasingly used as a tool in PV. 

Surveys are frequently used to gather and assess information on various issues 

such as:  
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1.  Evaluating a safety signal  

2. Evaluating knowledge about adverse reactions, AEs and various other 

knowledge and attitudes of/towards PV among health practitioners and the 

public [137, 138].  

3. Assess the use of products/drugs in regards to safety, efficacy, quality and 

adherence to guidelines.  

4. Gathering information or data regarding a specific area of interest.  

Surveys are subject to a number of biases and confounding factors, with low 

participation being their main weakness. Various methods are used to 

encourage participation including payment or providing certain benefits for 

respondents; however this practice in itself may lead to bias and could be 

ethically challenging. Surveys are best validated or piloted before 

implementation to give credence and an idea of what to expect, as well as to 

identify any shortcomings that may need to be addressed. A well planned and 

piloted survey will often yield high-quality results. 

4.4 Discussion 

In this chapter we have summarized a structured framework approach proposed 

by the Cochrane AEMG [47], for conducting systematic reviews that include 

harms. In this framework, the starting point for structuring the review is 

determined entirely by the scope of research question: a broad overview of 

safety problems associated with the drug (‘hypothesis generating’), or to 

evaluate the magnitude of risk and clarify the characteristics of the adverse 

effect (‘hypothesis testing/strengthening’). Each of these approaches requires 
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careful consideration to determine which study designs and data sources to 

include in the systematic review.      

Systematic reviews of RCTs to assess harms are usually most common. However 

RCTs are usually insufficiently powered, or too brief, to detect rare but serious 

adverse effects or modest but important increases in the risk of common disease 

outcomes that can have a major population impact in absolute terms. Most RCTs 

also tend to exclude the elderly, patients with co-morbidity or pregnancy, and 

this reduces the generalizability of these data. Therefore, at the time of product 

launch, there are often limited harms data of any new drug, in both the short- 

and longer-term which is directly applicable to that of the target population. 

Drugs in use therefore need to remain under constant surveillance (Post-

marketing) and studied by observation in PV systems to identify safety signals 

and thus serve to generate hypothesis. PV systems however possess many 

strengths and weaknesses as summarized in Table 14. 

Spontaneous reporting is the principle PV system in use worldwide with proven 

effectiveness and a good track record resulting in the avoidance of many 

potential disasters and the identification of new or previously unknown drug 

related adverse effects. They encompass the main advantages including a wide 

population, relatively low costs and resource utilization, and well established 

methodology. However spontaneous reporting systems depend on voluntary 

reporting of health care professionals, hence the reporting rate or under-

reporting rate becomes the limiting factor. 
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Table 14: Key strengths and limitations for each PV system. 

Type Passive systems Active systems  Heath databases 

Key 
Strengths 

Proven with good 
track record 
 
Wide population 
coverage 
 
National PV 
reporting 
mechanism for most 
countries. 
 
Relatively easy to 
implement 
 
Low resource 
utilization and cost 
 
Covers all 
population, drugs 
and health settings 

Does not depend 
upon voluntary 
reporting-able to 
capture high 
incidence of harms 
 
Able to shorten lag 
time from 
marketing of drug 
to detection of new 
ADR 
 
Provide a 
numerator and 
denominator 
 
Proven with good 
track record 

Contains huge amounts of 
health data with wide 
population coverage-
considerable statistical 
power 
 
Does not depend on 
voluntary reporting – able 
to capture high incidence 
of ADRs 
 
Data are frequently update 
and validated 
 
Maybe able to follow 
through to secondary care 
if data linkage is available 
 
Low resource and cost 
requirement once setup 

Limitations 

Depends on 
voluntary reporting 
 
Reporting rate is 
very low even in 
developed countries 
 
Does not provide a 
denominator 
 
Long lag time 
between marketing 
of drug to detection 
of new ADR 

High resource and 
cost requirement 
 
Implementation 
limited to selected 
drugs only  
 
Population 
selection bias and 
conceal bias of 
doctors reporting 
may occur 
 
Validation 
mechanism is 
unclear/difficult 
 

Utilization is relatively new 
and not proven 
 
Implementation is not 
possible if national large 
health databases is not 
available  
 
Incomplete information 
input by data managers 
 
Does not cover 
population/drugs/setting 
where information is not 
collected 
 
High cost to access data 

 

To help overcome the limitations of spontaneous reporting, active systems have 

been introduced. Among the main active system in the UK is the M-PEM, which 

requires participation by healthcare professionals, although participation is 

encouraged by providing payments to reporters. Therein lies the main weakness 
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of M-PEM, the high cost and resource required for implementation. Monitoring 

a single drug using M-PEM requires tens of thousands of green forms to be sent 

out to GPs, and the cost can therefore be considerable. Therefore, M-PEM has 

to carefully select drugs which it intends to monitor or investigate, thus limiting 

its usefulness as a fully-fledged PV system.  

The advent of large anonymized health databases brings forth other possible 

systems. The arrival of more comprehensive patient health databases containing 

individual demographic data, health records, prescription records and even 

laboratory results and other associated health information have increased the 

usefulness of these data sets for PV purposes. The use of health databases is not 

only confined to just hypothesis generation, but also hypothesis testing. With 

promise of huge population coverage, complete prescribing and health event 

records from UK primary care practices and hospitals, quick access to 

information, the elimination of voluntary reporting by health professionals and 

low cost. It is easy to see why many are excited and hopeful for the use of health 

databases for PV, with examples in the past of studies using data from the 

CPRD/GPRD to inform regulatory decisions [139]. In many cases, such studies 

have provided reassurance about the safety of medicines, though studies are 

also used to triage safety signals identified through spontaneous reporting 

schemes by providing ready background incidence rates of diseases and drug 

exposure (denominator) data. Health databases are still in its infancy with many 

deficiencies including validation of data, linkage between databases, cost of 

public accessing the data, and the privacy of data which needs to be ironed out. 
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In the past decade, development in the field of PV has progressed tremendously 

with many governments highlighting it as a priority area. There is recognition 

that early identification of unknown serious adverse reactions for all drugs is 

impossible, adverse reactions cause high morbidity and mortality, represent a 

burden to the national cost of healthcare and continuous monitoring for adverse 

effects for all drugs is essential. A recent study [140] was conducted to 

determine the nature of evidence used to support the withdrawal of marketing 

authorization of drug products for safety reasons throughout the EU between 

2002 and 2011. The study reports that the level of evidence used to support 

drug withdrawal has improved during the past 10 years, with an increased use of 

case-control studies, cohort studies, RCTs and meta-analysis. The research 

demonstrates that such studies have contributed to decision-making in almost 

two-thirds of cases. Previously, only one-third of decisions used evidence from 

observational studies or clinical trials [141]. 

There is also recognition of the many limitations of current PV monitoring 

systems that must be improved. Among the main issues for current PV systems 

are; 1) Increase coverage of population (including special populations such as 

children and the elderly) and drugs monitored, 2) Reduced cost and resource 

requirements, 3) Increased participation from health professionals, 4) Reduction 

in the lag time between drug launch, detection of adverse effects and the issue 

of appropriate warnings or appropriate regulatory actions, and 5) overlap 

between databases. In Europe, the Eudravigilance system consists of one 

common electronic reporting point within the EU that is advanced. This 
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harmonized system is compliant with ICH E2 standards. The advantage of this 

system is the ease of use and fast reporting (pre and post-authorization) 

mechanisms both from reporters, but also between health authorities. 

Unfortunately, despite significant globalization of pharmaceutical companies 

and many of the same drugs being available in the main territories, harms data 

including SUSARs are not shared routinely between territories. Further efforts 

are needed to improve access to such systems like the Eudravigilance. 

Pharmacovigilance will not function without a good monitoring system or 

available data sources, and will lose its effectiveness with long lag times and will 

not be feasible if the cost and resources required are too high. Consequently, in 

spite of more than 50 years of PV, efforts are still currently in place to improve 

upon existing systems and to develop new systems. Weaknesses in PV systems 

are being addressed with encouragement from national monitoring bodies. 

Developments to address a deficiency in a PV system frequently generate 

further new issues. Creating the perfect PV system may not be possible, 

however new systems must continue to be developed and improvements upon 

the current ones in place to reduce the recognized limitations and deficiencies 

when detecting harms in the future. 
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Chapter 5: A Survey of current 
practices in Clinical Trial Units  

 

In chapter 4 we identified spontaneous reporting systems, M-PEM and health 

databases as potential resources for accessing existing harms data. However, 

although these sources could provide valuable additional information from new 

RCTs and systematic reviews, the limitations that were discussed will most likely 

prevent their use in practice and limit their utility. Though, little is known about 

their use in practice and so this chapter describes a survey to investigate 

whether and how UK clinical trial units (CTUs) conduct harms related safety 

monitoring and to understand the value of the different resources available for 

exploiting harms external to the trial. In addition, the results in section 5.4.1.2 

will be used to inform on the design of the simulation study in proceeding 

chapters.  

5.1 Introduction 

In recent years pharmacovigilance in the public sector has become an essential 

part of clinical trial conduct, especially across EU member states following the 

implementation of the EU Clinical Trials Directive [20] and its transposition into 

UK law by The Medicines for Human Use (Clinical Trials) Regulations 2004 [21]. 

The responsibilities for PV have also been laid out previously within the ICH-GCP 

E6 [22]. The resulting outcome of these documents now means that sponsors 

and clinical investigators of any clinical trial have a responsibility to adhere to 

these regulations and report any safety concerns where necessary. These 
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responsibilities can often only be fulfilled by creating a robust reporting system 

backed up with clear oversight of the processes involved.  

The reporting system will support the preparation and submission of annual 

safety reports in the form of a development safety update report to regulatory 

authorities or research ethics committees (RECs), and facilitate direct reporting 

of SUSARs to the regulatory agencies [142, 143]. Oversight of the reporting 

processes involved are usually translated into standard operating procedures 

(SOPs) to break down each of the component parts individually and provide a 

road map of the procedures that should be followed [119].  

Assessments of any harms during the trial can be evaluated as detailed in the 

SOP, usually by referring to the trial protocol, safety reference documents 

(SmPCs and IBs) or trial specific procedure for unblinding if required by the data 

monitoring committee [144]. Then, if significant ethical or safety concerns arise, 

or there is unequivocal statistical evidence of benefit prior to the completion of 

the study, decisions for discontinuation of the study can be made [145]. 

However, these decisions are rarely straightforward, and there is often a 

different threshold for stopping a trial in the case of potential harm than in the 

case of benefit [146]. More comprehensive evaluations of harms are often 

needed, which may require exploiting other sources for harms as discussed in 

chapter 4. 
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5.2 A Survey of Clinical Trial Units 

A national survey was carried out to gain further insights into some of the 

practices involved within UK clinical research collaboration (UKCRC) registered 

CTUs [147]. The specific aims of the survey were to:  

1. Investigate the advantages of using existing harms data that are data-

based centrally within the CTUs.  

2. Investigate the potential use of existing harms data across CTUs, and 

identify relevant sources external to the trial (as explored in chapter 4) 

which could be used to inform trial conduct.  

3. Explore the methods being used to mine harms data collected centrally 

across trials so that safety signals can be detected more efficiently. 

5.2.1 UKCRC registered CTUs 

The UKCRC registered CTUs are specialist units which have been set up with a 

specific remit to design, conduct, analyse and publish clinical trials and other 

well-designed studies. They also have the capability to provide specialist expert 

statistical and other methodological advice and coordination to undertake 

successful clinical trials. In addition, most CTUs will have expertise in the 

coordination of trials involving investigational medicinal products (IMPs) which 

must be conducted in compliance with the UK Regulations governing the 

conduct of clinical trials resulting from the EU Directive for Clinical Trials [20].  

The UKCRC consists of a network of 45 registered CTUs which have provided 

evidence to an international panel of experts of their capability to centrally 

coordinate multi-centre clinical trials (i.e. having overall responsibility for the 
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design, development, recruitment, reporting, data management, publicity and 

analysis of a portfolio of trials), and of robust systems to ensure conduct and 

delivery of clinical trials to the highest quality standards. Oversight and 

management of pharmacovigilance is of high importance for the CTUs also.   

5.3 Methods 

The survey questionnaire was developed and transcribed to the online data 

capture tool SurveyMonkey for completion during the period July 2014 to 

September 2014. A copy of the survey is provided in Appendix C. Pilot testing of 

the survey was performed and the survey was revised where necessary. 

5.3.1 Population and Sampling 

The survey was announced via email inviting CTU directors, co-directors and/or 

experience trial statisticians to participate. At least two members from each CTU 

were chosen, and members of whom we already had contacts for were included. 

A link included in the email provided individual access to the survey, so each 

participant could respond only once and reminders could be sent. The link also 

allowed the participants to forward the email on to other CTU members, where 

deemed necessary. A final reminder was sent out by email with an electronic 

copy attachment of the survey. The survey was stopped on the 29th September 

2014 after approximately three months of the survey being active. 

5.3.2 Structure of the questions 

The survey consisted of 11 short questions (Appendix C) covering the three aims 

of interest as detailed in section 5.2. The survey was anticipated to take no 

longer than 5-10 minutes to complete. Question types included multiple choices, 
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free text and comments. ‘Other (specify)’ responses were offered to capture a 

full range of possible answers.  

The first aim was to investigate how existing harms (including AEs and SAEs) are 

data-based within the UKCRC CTUs; options included, by ‘single trials’ 

individually, or by ‘multiple trials’ stored centrally. Harms from multiple trials 

can either be data-based by a range of diseases, conditions or treatments, or 

alternatively by a ‘diverse’ range of diseases, conditions or treatments. Of 

particular interest, was to determine some of the inherent advantages and 

disadvantages for using a central database to store harms. For those CTUs data-

basing harms individually by singular trials, participants were asked to give 

opinions on the potential for developing a central system in the future.  

Secondly we aim to identify some of the commonly used external data sources 

for exploiting further harms data, and discuss the potential value of their use. An 

array of potential data sources discussed in chapter 4 were listed as options; 

e.g., use of own central database, published reports and systematic reviews, 

health databases (CPRD/GPRD [131], THIN [133] MEMO [134]), and yellow card 

data from the MHRA [121]. However participants were encouraged to detail on 

other sources of data used.  

Finally, for CTUs who data-base harms in a central reporting system questions 

were asked about statistical methodologies that were being used to analyze and 

detect safety signals. For the purposes of this survey and ongoing chapters in 

this thesis, participants were encouraged to provide as much insight as possible 

on their methodologies used, to analyze centrally stored harms data. 
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5.3.3 Data Analysis  

Owing to the nature of the study and data collected, descriptive statistics were 

used to analyze quantitative responses including number(s), frequencies, 

percentages, with some results displayed via graphical representations where 

appropriate. Research Ethics Committee (Internal Review Board) approval was 

not required for this survey, as it did not relate to personal medical information, 

did not involve patients or healthcare professionals (other than in their roles 

held within the CTU) and participation was entirely voluntary. 

5.4 Results 

The survey was active over the period 15th July 2014 to 29th September 2014, 

and was distributed five times. The mailing list was refreshed on 28th August 

2014 adding in new contacts for CTUs that were non-responsive.  

A response was received from 22 (49%) UKCRC registered CTUs. Five (23%) of 

the survey responses were from the directors of the CTU, and remaining 

responses were from senior trial statisticians. The survey responders had at least 

five years experience working in clinical trial research, and some had up to 30 

years. Multiple responses were obtained from two different members of two 

CTUs; these results were combined together as one response. 

5.4.1 Collecting harms data in CTUs? 

Of the 22 responding CTUs, 16 (73%) currently collect harms data in separate 

individual trial specific databases. Six (27%) CTUs currently collected and stored 

harms data using a central database including data from multiple trials including 

a diverse range of diseases, conditions, or treatments.  
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5.4.1.1 Functionality of the central database 

Figure 12 displays how existing harms data is used in the six CTUs with central 

databases.  

Figure 12: The operations in central databases within the CTU. 

 

On-site trial monitoring appeared to be the most common purpose of use, as 

indicated by all CTUs with a central harms database. Three (50%) CTUs 

performed signal detection, and one (17%) used the database for the planning of 

new trials. 

Table 15, details the responses from four CTUs, discussing the potential 

advantages for having a central database. In response 1 the CTU covers a diverse 

range of trials for different conditions including cancer, cardiovascular disease, 

stroke, obesity and diabetes. In responses 2 and 3 the CTUs predominantly 

conduct phase II and III cancer research, and in response 4 the CTU conducts 

surgical trials.  
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5.4.1.2 Size of Central Database 

One central database contained 12 trials (for SAEs only) with over 100 individual 

SAEs terms. Two central databases contained 20 trials with a few hundred AEs 

terms in one and the other failed to provide an estimate. A further two CTUs 

contained 40 and 42 trials with one reporting approximately 200 AEs terms, and 

the other with 33 SAEs terms (AEs were not contained in the database) 

respectively. The remaining CTU contained 34 trials with approximately 140 AEs. 

The results from this section will be used to inform on the parameters in a 

simulation study later in this thesis (section 7.3). 

Table 15: Advantages and disadvantages of central harms databases as quoted 
from four different CTUs. 

Response Advantages Disadvantages 

1 

“Same generic data collection 
methods and expertise centrally 

in process and review for 
internal reporting and forward 

reporting”. 
“Easy reporting for DSURS and 

PSURS”. 

None 

2 

“Better cover for trials, better 
tracking of events including rare 

AEs”. “Coverage of whole 
patient population”. 

None 

3 

“Easy to compare workload for 
PV for incoming SAEs”. “Are 
considerably effective and 
inexpensive to maintain”. 

“Difficult to archive specific trial 
SAEs”. 

4 

“Adverse events stored in the 
same way for all trials”. 

“Potential to determine drug-
drug interactions and/or drug 

related syndromes easier”. 

None 
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5.4.1.3 Requirement for a Central Database? 

Finally sixteen CTUs gave opinions on whether they would ever consider 

implementing a central database to store harms data from multiple trials. Two 

(13%) CTUs could see no benefit of a central database, three (19%) said they 

have further plans to develop and implement such a system, and 11 (69%) were 

not aware of the possibility of considering a central database.  

Further comments were provided by nine CTUs. Four of these comments came 

from respondents who were ‘not aware of considering a central database’: 

 “Most of the trials in our unit conducted are non-CTIMP, and AEs are 

unlikely and less of a concern than in trials of CTIMPs”. 

 “We store SAEs on a central database which is split into trial specific 

sections. However we only use these separately and not for combined 

analysis”. 

 “The collection of AEs and SAEs is standardised and collected in a 

consistent manner across all trials”. 

 “Never considered this, as far as I'm aware. But we are a general trials 

unit: our portfolio is approximately 15 trials in 12 different conditions, 

and the interventions are mostly low risk (e.g., behavioral interventions)”. 

One responder who indicated that they have considered a central database but 

could see no benefit, commented with the following: “AEs were too unwieldy 

and difficult to archive”. The remaining four comments were uninformative and 

therefore not listed.  
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5.4.2 External Sources for existing Harms 

In this section we present the results from the survey discussing the advantages 

of using external sources of harms during the trial’s safety monitoring. Figure 13 

provides a breakdown of the sources currently in use, as detailed by 18 (82%) 

CTUs. The four (18%) remaining responding CTUs failed to provide a response.  

Figure 13: Sources for external harms data used in the safety monitoring of 
trials. 

 

The majority of CTUs (16/18 (89%) responding CTUs) use published trial reports 

and studies including systematic reviews as their main external source of data 

about existing harms. Three (17%) use their own CTU central database, and two 

(11%) have used ‘yellow card data’ from the MHRA. Observational data from 

health databases was used by two (11%), including data from the CPRD/GPRD 

and THIN. The information services division (ISD) based in Scotland, the health 

and social care information centre (HSCIC), MHRA safety updates/drug alerts, 
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and downloads for summary products characteristics (SmPCs) from the 

electronic medicines compendium (eMC) include other sources of data used. 

Detailed comments were provided by 10 CTUs, discussing the value and 

potential limitations of using these external sources as listed in Table 16. Most of 

these CTUs had used published trials and systematic reviews; though others had 

used THIN data (1), MHRA yellow card data (1) and an array of other relevant 

data (1).  

Table 16: The responses on value of using existing harms from external sources. 

Response Comments as quoted from responders Source of data used 

1 
“The use of using routinely collected data to validate 

SAEs has been invaluable and will continue to be a 
valuable resource in clinical trials”. 

Central AE database and 
published trials/systematic 

reviews 

2 
“Trials do not operate in a vacuum, nor should they. 

It is important to take note of signals elsewhere, 
since most trials are too small to detect harm”. 

Published trials/systematic 
reviews 

3 
“It is required to assess ongoing safety e.g., see FDA 

guidance”. 

Array of relevant data not 
limited external sources 

listed 

4 “The use of external data to inform stopping rules”. 
Published trials/systematic 

reviews and THIN data 

5 

“I used a cohort study to help inform a decision on 
an IDSMC for an external CTIMP trial; whilst 
acknowledging limitations. We have SOPs on 

adverse event reporting but they do not mention 
use of external data sources, and I'm unaware in the 

small number of CTIMP trials we support use 
external data sources to inform safety monitoring. 
This would be something agreed between the trial 

team and DMC so the unit may not be privy to such 
arrangements”. 

Published trials/systematic 
reviews 

6 
“Ensure information is current and , receive updates 

of safety information”. 
Published trials/systematic 

reviews 

7 
“Published results of similar agents are often 
presented to data monitoring committees as 

supporting information”. 

Published trials/systematic 
reviews 

8 “Helpful for preparation of the DSUR”. 
Published trials/systematic 

reviews 

9 “Review these data for IDSMCs”. 
Published trials/systematic 
reviews and MHRA yellow 

card data 

10 

“To date, we have based our safety reports solely on 
emerging literature. I can see the value of cross-

linking safety data, but given the general nature of 
our trials it's less applicable to us”. 

Published trials/systematic 
reviews 
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5.4.3 Methods to Detect Safety Signals 

When analyzing harms data, the reporting odds ratio (ROR) statistical signal 

detection algorithm is used by one CTU which collected their data from multiple 

trials in a central database. A number of the other CTUs did have considerations 

towards the use of statistical signal detection methods, as outlined below: 

 “Our studies are largely late phase; also the deployment of signal 

detection methods can involve a number of issues particularly with 

multiple-testing”.  

 “We use more orthodox alpha spending approaches (sequential methods) 

based upon safety and benefits”. 

 “In terms of monitoring safety, it depends on the trial specific data 

monitoring committee (DMC). If the DMC request that formalized tests be 

used to compare e.g., SAEs between treatment arms, then this will be 

incorporated into a safety report (the frequency of which is also trial 

dependent). However, multiple testing needs to be considered here”. 

The use of statistical signal detection methods in clinical trials will be explored 

later in this thesis. 

5.5 Discussion 

The data from this comprehensive survey highlights that few UKCRC CTUs 

currently data-base their existing harms from multiple trials centrally, and is 

more common for harms to be stored separately by specific trials. Many of the 

CTUs indicated that they were not aware of considering the need for a central 
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database, though some have considered the implementation of one in the 

future. Those with a central database contained harms data from cancer trials or 

surgical trials; however one did contain trials across a diverse range of 

conditions. The databases were used predominantly for monitoring ongoing 

trials, although there was indication that they can be useful for a number of 

other purposes like signal detection and planning of new trials. They also enable 

a better coverage of trials and tracking of AEs, and comparing workloads for PV 

of incoming SAEs is made easier, since all events are stored in the same way for 

all trials. 

Our results also highlight the value for using existing harms obtained externally 

from the trial. Published trials and systematic reviews were most commonly 

used, though a number of CTUs have also conducted research using 

observational data from health databases, like the CPRD/GPRD and THIN. Other 

freely accessible data sources like the ISD, HSCIC and eMC SmPCs updates were 

often used. One participant suggested that it is not a compulsory requirement as 

stated in the SOP to use such data, although many respondents emphasize the 

value of external harms as being an important part in the decision making for 

DMCs. It was unclear whether signal detection methods could be used in central 

databases within CTUs, and multiple testing appeared to be a common concern. 

Further research is needed to explore the potential of these methods. 

A recent study [142] of one UKCRC registered CTU has discussed some of their 

own challenges experienced when implementing a central PV database. They 

encountered a number of complexities which included the re-training of staff 
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members to manage and maintain the database, and there was a requirement 

for new processes to be translated into SOPs once they have been agreed by all 

stakeholders involved. Despite these limitations, the central database provided a 

number of improvements to the data management of the trials, with accurate 

generations of line listings which were used for the production of reports 

required for the sponsor or management oversight, and easier reviewing for 

DMC or submission of annual safety reports to regulatory authorities or RECs.  

Due to the general lack of information available on the current safety monitoring 

practices involved in UKCRC registered CTUs, this national survey therefore aims 

to provide some valuable insight into the management, use and analysis of 

existing harms data. A moderate response rate of 49% was achieved over a short 

period of time. The responses were from directors and statisticians with many 

years experience working within clinical trial research. Some responses from 

CTUs consisted of a number of members working within multi-disciplinary 

teams, which enabled a wider diverse range of opinions from specialist across 

the CTU. 

The voluntary nature of the survey meant that some questions within the survey 

provided few or no comments, with many participants opting not to elaborate in 

further detail. This was particularity the case for the open-ended questions 

determining the advantages or disadvantages for a central database, the 

opinions of using the database and the values of using external harms. For 

example, it was clear that some CTUs did use pharmacoepidemiology and 

systematic review data, though it was unclear why and how the data was used. 
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This was a limitation in the way in which the question may have been worded, 

and perhaps an alternative format for this question may have requested that 

responder’s detail why they used the data via a multiple choice’s option. This 

would also encourage further expansions. Alternatively a more appropriate way 

to determine more accurate information on the use of these data would be to 

follow-up with interviews. 

We restricted the survey to an active period of approximately three months, 

meaning that we were not able to obtain responses from the 23 remaining CTUs. 

Therefore there is huge potential for obtaining much more valuable information 

that would add to the outcome of this survey. Also as part of our strategy for 

distributing the surveys we did not include the option of mailing hard copies by 

post, although we did send an attachment copy to the participants directly.    

The survey has shown that most CTUs currently data-base existing harms from 

trials individually, and very few have considered the need to implement a 

centralized system to monitor harms. For some CTUs they may only collect few 

AEs reports in a systematic and detailed fashion which is qualitatively different 

from spontaneous reporting. Hence this may limit the full value and demand for 

a central PV database. The use of existing harms from external sources is 

common amongst researchers working in CTUs. These data sources often 

provide more valuable insight of the adverse effect, and contribute to facilitating 

the DMCs for the ongoing review of trials and preparation of safety documents 

required for regulators like the DSUR.  
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To support the trial safety monitoring of EU medicines studied in clinical trials 

prior to authorisation, the EudraVigilance Clinical Trials Module (EVCTM) [148] 

from 2004 began collecting SUSAR reports. Work sharing with the EVCTM can be 

implemented through their Gateway system, for regular safety monitoring of 

ongoing clinical trials or when making evaluations of DSURs through aggregate 

reports. However access to the EVCTM by healthcare professionals, research 

organizations and the general public is currently restricted, meaning that SUSARs 

reports cannot be accessed or shared amongst UKCRC CTUs. Though, regulators 

and sponsors have full access to this data. 

Restricted access to this kind of data could be a major impediment for CTUs, 

who already have limited resources. Therefore, it may be more effective for the 

CTUs to consider developing their own specific centralized database for 

collecting AE reports across the wider CTU network. This would allow for easier 

work sharing capabilities amongst the CTUs so that they can learn from each 

other, but also support during the trial when reviewing (with published 

literature) and triaging SAEs to help identify any SUSARs. In addition, such a 

system could supply advice before the trial with protocol design and study 

specific reporting requirements.  

However, cost consideration is always a high priority in the public sector, and 

therefore training staff for oversight and management of the system will play a 

major role. Also the active time for translating the processes into SOPs, which 

would have to be consistent across all CTUs, is another limiting factor for 

developing a central PV database. Collecting AE data across CTUs involving a 
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diverse range of different trials and diseases will often result in increased 

heterogeneity. Some trials will report very few AEs, but others like cancer trials 

will likely report high numbers of AEs. Therefore developing a central system 

based on a specific disease area might be more advantageous to CTUs.    

Finally, our results indicated that only one CTU with a central database was in 

use of a disproportionality signal detection method. However the potential 

advantages for using these methods across the wider CTU network is unclear. 

For example if harms data were stored centrally across CTUs or by specific 

clinical areas (i.e., Cancer trials) hence, resulting in a larger volume of data, then 

these methods would be of use to researchers. Further research is needed to 

fully explore the potential of these tools when analysing harms data in clinical 

trial settings, which will be discussed in the next chapter. 
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Chapter 6: Tools for Enhanced 
Signal Detection Analysis 

 

In chapter 5 a survey was carried out to explore the current practices of safety 

monitoring in CTUs. One of the aims of the survey was to understand what 

methods of analysis could potentially be used to detect safety signals within and 

across CTU databases. Therefore in this chapter the focus will be to review the 

current methods used to systematically explore safety data in PV systems, but 

also extending to databases of a smaller scale similar to CTUs. Some of these 

methods will then be used in chapter 7.  

6.1 Introduction 

The detection and evaluation of signals is crucial for understanding the safety of 

medicines and for preventing harm in patients. Not only is it necessary to detect 

new signals, but the principles and practice of PV apply to the surveillance of a 

wide range of medicinal products [25].  

The concept of a drug “safety signal” has been the cornerstone of PV activities 

for about forty years. However, as more medicines are authorized for marketing 

each year, and as increasing numbers of persons are taking medicines, this has 

resulted in an increase in the number of AEs reported to manufacturers and to 

regulators [123]. Manual reviewing of paper-based reports which provided the 

foundation of early productive PV systems is simply no longer practical. Modern 

PV systems, which receive several hundred thousand reports each year, and 

which have databases containing several million AE reports, are now required to 
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detect, prioritise, and evaluate safety signals in an efficient and proactive 

manner. This often requires a systematic approach that couples statistical and 

analytic methods with sound clinical judgment.  

To date in the field of PV, these systematic approaches have been applied most 

widely to post-marketing approved signal management using passive 

surveillance systems of spontaneous ADR reports. Though some attempts have 

been made to extend from the current methods used on data from 

interventional clinical trials, to developing certain statistical techniques in 

databases holding clinical trials data [149].   

6.2 A Signal Management Framework 

Most companies with a central PV system define a signal management 

framework as the set of activities performed to determine whether there are 

new risks associated with an active substance or a medicinal product, or 

whether known risks have changed [150].  

A typical signal management framework consists of a flow of sequential steps of 

signal detection, prioritization, and evaluation (Figure 14) as well as its linkage to 

risk management activities. PV and drug safety departments at drug companies 

may be organized differently, but many follow their adaptations of this 

framework explicitly or implicitly. This chapter will discuss each of these steps 

individually; however the primary focus will be on signal detection. 

 



142 
 

Figure 14: A typical signal management framework, adapted from the 
CIOMS working group VIII 

 

 

6.2.1 Primary sources of safety evidence 

The sources of data for identifying new safety signals can be diverse, but are 

often detected from monitoring ‘individual case safety reports (ICSRs)’. The ICSR 

is a health level seven standard (i.e., a set of international standards for transfer 

of clinical data between software applications used by various healthcare 

providers) for the capture of the information required to support the reporting 

of an AE, product problems or consumer complaints of the product. 
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Accumulation of ICSRs can occur from multiple places during the post-approval 

phase according to the International conference on harmonization (ICH) E2D 

guideline 2003, as detailed in Table 17 [151]. 

Table 17: Sources for the accumulation of ICSRs during the post-approval phase. 

 

6.3 Signal Detection 

In recent years, statistical methods for systematically sifting through large 

amounts of reported AE data have been developed, mainly due to an increase in 

the volume of spontaneous reports. These tools and methods have collectively 

been termed “signal detection algorithms (SDAs)”. When considering the 

introduction of these new analytical approaches, an organization should place 

them, along with other existing traditional PV approaches and statistical tests, in 

an integrated framework of a signal detection program. 

6.3.1 Traditional Signal Detection Methods 

Traditional PV methods for identifying new signals and exploring safety issues to 

generate hypotheses generally include [152]: 

Sources of ICSR Description of sources 

I. Unsolicited sources 
Spontaneous reporting; literature; 

internet; other sources. 

II. Solicited Sources 

Any organized collection of data 
(outcomes research, clinical trials, 

registries, surveys, billing databases 
etc). 

III. Contractual agreements 
Inter-company exchange of safety 

data. 

IV. Regulatory authority 

Any ICSR originating from the 
regulatory authority submitted to a 

company, e.g. Suspected Unexpected 
Serious Adverse Reactions (SUSARs). 
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 A ‘review of individual cases’ or ‘case series’ in a PV database or in published 

medical or scientific literature, as detailed in section 6.3.1.1. 

 ‘Aggregate analysis of case reports’ using absolute case counts, simple 

reporting rates or exposure-adjusted reporting rates, as detailed in section 

6.3.1.2. 

These approaches are particularly important in the assessment of designated 

medical events (DMEs) [29] or rare events for which clinical evaluation of an 

individual tends to carry a larger weight, and for which there may be an 

especially high premium on sensitivity over specificity.  

6.3.1.1 Case and Case Series Review 

The “index case” or “striking case” method is probably the most commonly used 

technique in traditional PV [153]. Trained product safety specialists detect 

signals while routinely reviewing submitted information, often during the initial 

intake assessment of ICSRs (clinical trials, spontaneous AE reports, or cases 

published in the literature). The identification of even one well-documented 

ICSR with an unusual “striking” feature can sometimes be interpreted as a signal, 

even though in practice, in most situations, strong suspicions about possible 

drug-event associations are usually based on a series of cases with similar 

reported features (clustering). Admittedly, such manual reviews are subjective 

and benefit from a thorough familiarity of the reviewer with the product 

pharmacology and the condition(s) for which it is indicated.      
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6.3.1.2 Aggregate analysis and Period reports 

Aggregate reporting involves the compilation of safety data for a drug over a 

prolonged period of time (months or years), as opposed to single-case reporting 

which, by definition, involves only individual AE reports. The advantage of 

aggregate reporting is that it provides a broader view of the safety profile of a 

drug. Worldwide the most important aggregate report is the ‘Periodic Safety 

Update Report (PSUR)’ [154]. This is a document that is submitted to drug 

regulatory agencies in Europe, the US and Japan (ICH countries). In these 

documents marketing authorisation holders are expected to provide succinct 

summary information together with a critical evaluation of the risk-benefit 

balance of the product in light of new or changing information. In the EU there is 

also a link between the periodic reporting and the EU Risk management plans 

introduced at the end of 2005. 

6.3.2 Quantitative Signal Detection Methods 

In comparison to the traditional signal detection methods, SDAs are currently 

and routinely used by PV experts for quantitative signal detection. SDAs can 

often be considered an activity related to “knowledge discovery in databases”, 

i.e., the process of extracting information form a large database [155]. The 

purposes of quantitative signal detection are many-fold and may vary depending 

on the local habit of PV experts. For instance, they can be used as an aid to the 

traditional case-by-case assessment as a screening tool to periodically generate 

a list of signals required for more in depth investigations (i.e., to prioritize 

signals) or, on an ad-hoc basis to detect complex data dependencies, which are 
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difficult to manually detect (e.g., drug-drug interactions or drug-related 

syndromes) [156].  

There are two main types of SDAs; those based on “disproportionality analysis 

(DPA)” and those based on “multivariate modeling techniques” such as logistic 

regression (LR). The use of these statistical SDAs differs from their conventional 

use in that there is no prior hypothesis or null hypothesis of any specific drug-

event association, and power calculations are not performed. The application of 

SDAs and particularly the concept of DPA methods will be discussed in detail in 

section 6.3.3, whilst multivariate modeling techniques and Bayesian hierarchical 

modeling methods for use in clinical trials are discussed in later sections.  

6.3.2.1 When is the Database Large Enough? 

Before considering the use of SDAs, the question of interest that often arises is, 

‘when can a safety database be classified as “large enough”?’ This phenomenon 

can be thought of as function of the product and/or event incidence in the 

population, although to date there is a lack of explicit guidance on the specific 

population size. The Council for international organizations of medical sciences 

(CIOMs) working groups [150] and academic members in the past [157] have 

produced the recommendations detailed in Table 18, for the implications of PV 

signal detection based on population size; with real examples of ADRs detected 

with the specific approach and method used. 
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Table 18: Proposed population size for sampling in signal detection. 

 
*
Frequency of ADR as defined by CIOMs: very common (≥ 1/10 (≥10%)); common (≥1/100 and 

<1/10 (≥1% and <10%)); uncommon (≥1/1000 and <1/100 (≥0.1% and <1%)); Rare (≥1/10,000 

and <1/1000 (≥0.01% and <0.1%)); very rare (<1/10,000 (<0.01%)). 

 

6.3.3 Disproportionality Analysis 

There are many statistical methods to examine disproportionality, each with 

advantages and disadvantages. However, all methods have the main aim of 

demonstrating a difference between observed and expected reporting of events 

[52]. The DPA methods for signal detection as currently applied are purely 

statistical methods which do not include any recognition or adjustments for 

pharmacological, biological, clinical or demographic determinants of ADRs. 

DPA is based on 2 x 2 contingency tables (Table 19), showing figures for ADRs (i) 

with the drug (j) taken, ADRs without the drug, and ADRs in the whole database 

with and without the drug: 

Event 
incidence in 

product 
takers* 

Background 
incidence of 

event* 

Example of 
event due to 

taking product 

Ease of proving 
an association 

(method) 

Approach 
used 

Common Rare 
Phocomelia due 
to Thalidomide 

Easy (clinical 
observation) 

ICSR or 
Periodic 
Review 

Rare Rare 
Reye’s 

syndrome and 
Aspirin 

Less easy 
(clinical 

observation) 

ICSR or 
Periodic 
Review 

Common Common 
Cough and ACE 

inhibitors 

Difficult (large 
observational 

trials/data) 
SDA 

Uncommon 
Common to 

Rare 

Breast 
carcinoma and 

Hormone 
Replacement 

Therapies 

Very difficult 
(large clinical 

trials) 
SDA 

Rare Common None Known 
Virtually 

impossible 
Virtually 

impossible 
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Table 19: Two by two contingency table used in disproportionality analysis. 

 Drug of interest (j) Other Drugs  

ADR of interest (i) 𝒏𝒊𝒋 𝒏𝒊𝒋̅ 𝒏𝒊. 

Other ADRs 𝒏𝒊�̅� 𝒏𝒊�̅�̅ 𝒏𝒊.̅ 

 𝒏.𝒋 𝒏.𝒋̅ 𝒏 

 

 𝒏𝒊𝒋 : Number of reports involving ADRi for the drugj. 

 𝒏𝒊.: Marginal count involving ADRi 

 𝒏.𝒋: Marginal count involving Drugj 

 𝒏  : Total number of reports in database. 

 

DPA can generally be divided into the two categories of frequentist and 

Bayesian, both relying on the aforementioned 2 x 2 contingency table. The most 

popular frequentist method is the Proportional Reporting Ratio (PRR) [158], 

whilst the Bayesian Confidence Propagation Neural Network (BCPNN) [159] and 

the Gamma-Poisson Shrinker (GPS) [160] are the most prominent and widely 

used techniques within a Bayesian framework. In most of the AE reporting 

databases, there is no valid exposure information or information for the total 

number of subjects taking a particular drug, therefore, DPA methods are all 

developed for investigating the relative reporting rate instead of relative risk. 

The PRR method is computationally straight forward and the relative reporting 

rate estimated from this method is easy to interpret. The BCPNN and GPS 

methods require more complex computations along with the elicitation of prior 

hyper-parameters using expert opinions or estimation from the data in an 

empirical Bayesian setup. 

6.3.3.1 Proportional Reporting Ratio (PRR) 

The Proportional Reporting Ratio (PRR) is given by Evans et al. [158] as: 
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𝑃𝑅𝑅 =
𝑛𝑖𝑗/𝑛𝑖.

𝑛𝑖̅𝑗/𝑛𝑖̅.
 

 

This measure is actually the relative reporting rate of drug j for ADR i versus 

other ADRs. The standard error of ln(PRR), and lower and upper bound of the 

95% two-sided confidence interval are usually obtained via an approximation of 

the normal distribution as: 

𝑆𝐸 (ln  𝑃𝑅𝑅) =  √(
1

𝑛𝑖𝑗
−

1

𝑛𝑖.
+

1

𝑛𝑖̅𝑗
−

1

𝑛𝑖̅.
) 

 

95% 𝐶𝐼 = 𝑒ln(𝑃𝑅𝑅)±1.96 𝑆𝐸 (ln 𝑃𝑅𝑅) 

 

The PRR is calculated for every drug-ADR combination. Each PRR can be either a 

true signal or a falsely discovered signal (false-positive), which is determined 

based on the lower bound of the 95% CI being above a threshold value of 1 

[161]. When the PRR is calculated, the results tend to become unstable when 

the number of events (nij) is small, resulting in large estimates with wide 

confidence intervals [162]. This will often lead to many false-positive signals for 

very rare events. To uncover these false-positive signals, for instance, the 

biological plausibility has to be examined and/or confirmatory studies to re-

assess the found signals using additional data sources have to be conducted. 

Though other statistical methods usually applied in cross-classification tables can 

also be exploited to resolve this issue [161], such as the χ2 - test with one degree 

of freedom (with or without Yates’s correction). 
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The instability of the PRR when applied to low drug-event counts, led to the 

development of the more advanced “Bayesian shrinkage” techniques. The two 

methods mainly used today are the BCPNN, which is applied by the Uppsala 

monitoring committee to analyze the WHO database, and the GPS which is 

applied to the adverse events reporting system of the FDA.  

6.3.3.2 Bayesian Confidence Prorogation Neural Network (BCPNN) 

The Bayesian approach proposed by Bate et al. [159] is used to evaluate 

apparent dependencies in a dataset. The measure of disproportionality used in 

the BCPNN model, is referred to as the “Information Component (IC)” [156]. 

Assume that the number of reports 𝑛𝑖𝑗, and the marginal totals 𝑛𝑖.and 𝑛.𝑗 follow 

independent binomial models with Beta priors as follows: 

     𝑛𝑖𝑗|𝑝𝑖𝑗~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝𝑖𝑗);   with 

𝑝𝑖𝑗~𝐵𝑒𝑡𝑎(𝛼𝑖𝑗, 𝛽𝑖𝑗), 𝛼𝑖𝑗 = 1, 

𝛽𝑖𝑗 =  
1

𝐸(𝑝𝑖.|𝑛𝑖.)𝐸(𝑝.𝑗|𝑛.𝑗)
− 1, 

      𝑛𝑖.|𝑝𝑖.~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝𝑖.);   with 

𝑝𝑖.~𝐵𝑒𝑡𝑎(𝛼𝑖., 𝛽𝑖.), 𝛼𝑖. = 1, 𝛽𝑖. = 1, 

      𝑛.𝑗|𝑝.𝑗~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝.𝑗);   with 

𝑝.𝑗~𝐵𝑒𝑡𝑎(𝛼.𝑗, 𝛽.𝑗), 𝛼.𝑗 = 1, 𝛽.𝑗 = 1, 

where 𝑝𝑖𝑗, 𝑝𝑖., and 𝑝.𝑗 denote the probability of the occurrence of the number of 

reports 𝑛𝑖𝑗 , and marginal counts 𝑛𝑖.  and  𝑛.𝑗 . The priors for the marginal 
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probabilities (𝑝𝑖.and 𝑝.𝑗 ) are actually uniform [0, 1] (non-informative). The 

parameter 𝛽𝑖𝑗  is determined using the relation that 𝐸(𝑝𝑖𝑗) = 𝐸(𝑝𝑖.|𝑑𝑎𝑡𝑎) ×

 𝐸(𝑝.𝑗|𝑑𝑎𝑡𝑎); that is, the prior mean of 𝑝𝑖𝑗 is equal to its posterior mean under 

independence, which is a product of the posterior means of the marginal 

probabilities 𝑝𝑖.and 𝑝.𝑗. Thus, 𝛽𝑖𝑗 is data dependent.   

Bate et al. [159] defined the IC as: 

 

𝐼𝐶𝑖𝑗  = log2 (
𝑝𝑖𝑗

𝑝𝑖. ×  𝑝.𝑗
) 

 

Using delta method, and the fact that the posterior distributions of 𝑝𝑖𝑗, 𝑝𝑖.and 𝑝.𝑗 

are independent Beta distributions with updated parameters, the posterior 

mean and variance of the 𝐼𝐶𝑖𝑗 are given by [51]. 

𝐸(𝐼𝐶𝑖𝑗) =  log2

(𝑛𝑖𝑗 + 1)(𝑛 + 2)2

(𝑛 + 2)2 + (1 + 𝑛𝑖.)(1 + 𝑛.𝑗)(𝑛)
, 

 

𝑉𝑎𝑟(𝐼𝐶𝑖𝑗) =  
1

(log 2)2
[

𝑛 − 𝑛𝑖𝑗 + 𝛾 − 1

(𝑛𝑖𝑗 + 1)(1 + 𝑛 + 𝛾)
+

𝑛 − 𝑛𝑖. + 1

(𝑛𝑖. + 1)(𝑛.𝑗 + 3)
+

𝑛 − 𝑛.𝑗 + 1

(𝑛.𝑗 + 1)(𝑛 + 3)
] 

 

where 

𝛾 = (
𝑛 + 2

𝑛𝑖.+1
) (

𝑛 + 2

𝑛.𝑗+1
). 

Assuming normal approximation for the distribution of 𝐼𝐶𝑖𝑗, the 95% CI for IC is 

given as [51] 
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𝐸(𝐼𝐶𝑖𝑗) ± 1.96 × √𝑉𝑎𝑟(𝐼𝐶𝑖𝑗). 

A signal is defined if the lower bound of the 95% CI is greater than 0. 

An updated version of the BCPNN has been presented by in Norén et al. [163], 

where the prior distribution is based on the joint Dirichlet distribution for the 

model parameters instead of independent beta distributions. Then an estimate 

for the 95% CI of the IC is achieved by Monte-Carlo simulations, which helps for 

better computational stability. 

6.3.3.3 Gamma Poisson Shrinker 

As an alternative, DuMouchel proposed the so-called Gamma-Poisson Shrinker 

(GPS) algorithm [160]. Here, the occurrence of the target drug-event 

combination is considered as a rare event, such that the observed drug-event 

combination count 𝑛𝑖𝑗 may be assumed as a realization of a Poisson-distribution 

random variable.  

𝑛𝑖𝑗~𝑃𝑜(𝜆𝑖𝑗𝐸𝑖𝑗) 

Where 𝐸𝑖𝑗 =  
𝑛𝑖.  𝑛.𝑗

𝑛
  is the expected number of reports, and 𝜆𝑖𝑗 ’s are the 

parameters denoting the relative reporting rates. The 𝜆𝑖𝑗’s are assumed to share 

a common prior distribution, which is a mixture of two gamma distributions 

given by 

𝜆𝑖𝑗 ~ѡ̂ 𝐺𝑎(�̂�1, �̂�1) +  (1 −  ѡ̂)𝐺𝑎(�̂�2, �̂�2)  
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of which the five hyper-parameters are determined by maximizing the marginal 

likelihood of the 𝑛𝑖𝑗 ’s. The posterior distribution of 𝜆𝑖𝑗  is also distributed 

according to a mixture of two gamma distributions: 

𝜆𝑖𝑗
∗ ~ѡ𝑖𝑗  𝐺𝑎(�̂�1 + 𝑛𝑖𝑗 , �̂�1 + 𝐸𝑖𝑗) +  (1 −  ѡ𝑖𝑗)𝐺𝑎(�̂�2 + 𝑛𝑖𝑗 , �̂�2 + 𝐸𝑖𝑗) 

Initially, the association measure of interest proposed by DuMouchel [160] was 

based on the posterior expectation of the logarithm of the risk ratio 𝜆𝑖𝑗 . 

However now signal detection is based on the fifth percentile of the posterior 

distribution of 𝜆𝑖𝑗 , denoted as GPS05, and a signal is generated if GPS05 is greater 

than 2 [164]. This Bayesian estimator gives more conservative risk estimates 

when event counts are small; risk estimates are considerably smaller and the CIs 

narrower, hence the denomination “shrinkage estimate”. While this shrinkage 

might obfuscate a real signal by reducing it to a non-conspicuous level, it helps 

to eliminate false-positive signals, which otherwise would have to be 

adjudicated subsequently. 

6.3.3.4 Threshold criteria 

Currently, none of these signal detection methods (PRR, IC and GPS) is 

considered a reference method, and one or another of them is used routinely by 

monitoring agencies for national or transnational PV databases. The PRR is used 

for screening the MHRA sentinel and Eudravigilance databases [158, 165]. The 

GPS is used by the FDA for the US adverse-event reporting system [164], and the 

IC is used by the UMC for the WHO database [155]. When systematically 

screening the safety data within these PV databases, specific thresholds on the 

criteria have been proposed by the regulatory agencies, as detailed in Table 20.  
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Table 20: Defined criteria used in disproportionality analysis for the major 
stakeholders. 

 

These thresholds are still in use to date, however the EMA good PV guideline 

states that the threshold criteria for detecting signals can be adjusted [166]. It is 

also suggested that this may vary depending on the “severity” of the AE and 

“size of the dataset”. For example in one study [167] using the multi-item 

gamma Poisson shrinker (MGPS) with threshold MGPS05 > 2 in the FDA database, 

it was suggested that serious events such as hyperkalaemia, pancreatitis, and 

rhabdomyolysis were often undetected. Therefore it is recommended that a 

Signal 
detection 
algorithm 

(SDA) 

Stakeholder 
in use of 

SDA 

Criterion for 
signalising 

Threshold 
on 

Criterion 
Advantages Limitations 

Proportional 
Reporting 

Ratio (PRR) 

MHRA 
Sentinel and 

EMA 
Eudravigilan

ce 

PRR02.5  (Lower 
5th percentile 
of the relative 
risk reporting 

ratio 
distribution) 

PRR02.5 >1 

Easily 
applicable, 

easily 
interpretable, 

more 
sensitive as 

compared to 
Bayesian 
method 

Cannot be 
calculated for 
all drug-event 
combinations. 

Lower 
specificity 

Information 
Component 

(IC) 

World 
Health 

Organisation 
(WHO) - 
Uppsala 

monitoring 
centre. 

IC02.5 (2.5% 
quantile of 
posterior 

distribution of 
IC) 

IC02.5 > 0 

Always 
Applicable, 

more specific 
as compared 
to frequentist 
method, can 
be used for 

pattern 
recognition in 

higher 
dimension 

Relatively 
non- 

transparent 
for people 

non-familiar 
with Bayesian 

statistics. 
Lower 

sensitivity 

Gamma 
Poisson 
Shrinker 

(GPS) 

Food and 
Drug 

Administrati
on (FDA) 
Adverse 

Event 
Reporting 

System 
(AERS) 

EB05 which 
we will refer 

to as the 
GPS05 (lower 
5th percentile 
of posterior 
observed-to-

expected 
distribution) 

GPS05 > 2 
 

Always 
applicable 

More specific 
as 

compared to 
frequentist 

method 

Relatively 
non- 

transparent 
for people 

non-familiar 
with Bayesian 

statistics. 
Lower 

sensitivity 



155 
 

much stricter signaling threshold (e.g., MGPS > 1) is required. Though this study 

is limited, and would require further exploration of other threshold values. The 

use of other threshold values (i.e., 1.5, 2, 4, 8) for the EB05 with the GPS method 

were explored in one study [164], and differences in sensitivity and specificity of 

signal elicitation through time when the various signal thresholds are used was 

investigated. This study also determined that lower threshold values improve 

the detection of more severe AEs, however the authors did not consider 

implications of false discoveries (type I error) when adjusting the threshold 

value. 

Most published evaluations of these techniques are mainly limited to large 

regulatory databases, but their performance characteristics may differ in smaller 

safety databases of drug developers. In a recent study [168] the database size 

and power to detect safety signals were compared across the three safety 

databases (GlaxoSmithKline, FDA and WHO) where a random subset of drugs 

was selected. In this study it was shown that the power to detect was highest in 

the database with most AE reports. In general a database with the most drug-

specific data will achieve the highest power. Larger database systems will also 

enhance the potential of early safety signal detection. However this study was 

limited to only investigating regulatory and large pharmaceutical company 

databases, therefore further investigations are need in smaller company 

databases.    

At present, there exists no specific guidance for using different threshold criteria 

when considering the severity of the AE and the database size. It has been noted 
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in previously published literature that smaller based drug companies may adjust 

the threshold value to improve the sensitivity when detecting signals [169], 

although this will likely affect the specificity and hence increase the number of 

false signals detected. This was not considered in the conclusions of this study, 

and hence requires further investigation. 

6.3.3.5 Performance characteristics 

Recently, the application of PV signal detection through DPA has been subject to 

debate and criticism [170]. Some benefits and strengths of using SDAs are 

undisputed. They are generally quick and inexpensive methodologies routinely 

performed by regulators and researchers for drug safety evaluation [171]. A 

major disadvantage of signal detection and the methods of DPA is that they 

detect too many signals for drug-event combinations that are falsely discovered. 

There have also been various investigations [172-174] examining the 

characteristics of these methods and the appropriate criteria for each method, 

but to date no clear guidelines or gold standards have been established. 

Although both drug companies and regulatory agencies require information on 

AEs in the same manner, their circumstances and objectives are different. The 

AE databases that are used by pharmaceutical companies generally consist of 

fewer drugs and have fewer reported events than the spontaneous reporting 

systems used by regulatory agencies [119]. Pharmaceutical company databases 

tend to compile data from related drugs into the ‘all other drugs’ category 

(“𝑛𝑖̅�̅� ” in Table 19), which can conceal significant drug-event relationships due to 

the high frequency of events associated with other drugs. 
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Pharmaceutical companies have various means, such as pharmacological 

examination or scrutiny of clinical data, for examining whether a signal is an ADR 

or not. Therefore, the balance between sensitivity and specificity requirements 

may differ between pharmaceutical companies and regulatory agencies. For 

example the SDA used by a pharmaceutical company may be required to 

maintain specificity at an acceptable level (e.g. ≥ 95%) while providing the 

greatest possible sensitivity. Due to the sensitivity issues associated with the 

current thresholds for the SDAs, these methods are considered to be 

inappropriate for use by pharmaceutical companies and smaller organizations 

like CTUs without suitable modification. Therefore an ‘adjustment to the 

threshold value’ may be required to make them suitable for the characteristics 

of the AE reporting databases to enable them to provide the performance 

required.   

6.3.3.6 Caveats 

Different groups of healthcare professionals might report suspected ADRs: 

nurses, pharmacists, dentists, hospital doctors and outpatient doctors [175]. 

Additionally consumers may wish to report. The reporter type may 

systematically affect the type of data collected. The method may therefore need 

to be adapted depending on the reporter, as the proportion of serious reactions 

reported may well vary between reporting groups. 

For all the SDAs a comparison is made to the generalizability of the database. 

However if two drugs cause the same adverse reaction at the same incidence 

but one drug also causes many other adverse reactions, then despite the ‘𝑛𝑖𝑗’ 
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value being the same for both drugs, the ‘𝑛𝑖̅𝑗’ value will be  much higher for the 

drug that causes lots of other adverse reactions. Thus, for the drug with a 

uniquely reported ADR, will result in a higher measure of disproportionality than 

the drug reported with many different ADRs, despite the true incidence of the 

adverse reaction being the same for both drugs [156]. 

The terminology used for coding ADRs can have a large impact on the signal 

detection system. If a drug causes an adverse reaction, but no specific adverse 

reaction term exists in the dictionary used for coding that ADR report, then the 

signal may be missed [176]. The structure of hierarchical terminologies used for 

AE classification makes their potential for signal detection on a group level 

unclear, when several different yet similar AE terms might be used to code a 

specific pharmacological effect. Thus often resulting in misclassification and the 

potential lumping of AEs into inappropriate subgroups as highlighted in past 

research [30]. 

6.3.3.7 Refinements to Signal Detection – What could be done? 

SDAs have accepted limitations but there is a growing appreciation that such 

approaches are needed to make the most of large repositories of reported AE 

data. Therefore there are a number of important considerations for potential 

refinements when using SDAs. 

The acceptable rate of ‘false positives (type I errors)’ and ‘false negatives (type II 

errors)’, will depend on the specific function of the signal detection system. 

Whether to highlight with high risk signals very early, or whether to be later but 

more confident is the key question. Repeated false alarms for signals lead to 
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constant clinical evaluation and work needed. Eventually the alarm will be 

disregarded and a true signal might be ignored. However having a limited 

number of false positives is preferable to missing genuine safety signals. Hence 

there is a general need for more powerful methods using the ‘False Discovery 

Rate (FDR)’ as a measure of error. FDR is now regularly used for multiple testing 

in the genomic analysis field; however PV signal detection also involves multiple 

testing between drug and ADR combinations in large volumes. Therefore the 

DPAs methods were recently revisited in a multiple testing framework and are 

now able to obtain an estimate of the FDR. These methods will be discussed in 

more detail in chapter 7.  

Research has been applied to the use of trend analysis in signal detection in the 

past. There are limitations in doing this work since the irregularity of reporting 

for some systems, and the onset date of the adverse reaction is often missing 

from reports. Trends are important, and their investigation leads to new insights 

about the methodology as well as interesting PV information [163]. For example 

the WHO recently examined the association between Captopril and the ADR 

term coughing to determine whether the recent changes to IC analysis would 

delay or expedite the highlighting of this signal. The association was highlighted 

earlier by observing the change over time in number of cases reported using IC 

analysis. Moreover, the choice of baseline (i.e. for estimating the expected), 

level of terminology (i.e. for coding AEs), method used, and stratification 

variables do affect which combinations are highlighted. It is as important to see 

what is not highlighted (and to what degree), as is to see what is highlighted. 



160 
 

6.3.3.8 Real-world value of Signal Detection Algorithms 

Adverse drug effects are manifold and heterogeneous. Many situations may 

hamper the signal detection (i.e., the detection of early warning signs) of 

adverse effects and new signals often differ from previous experiences. Signals 

have qualitative and quantitative aspects. Different categories of adverse effects 

need different methods and resources for detection. Current PV is 

predominantly based on spontaneous reporting which is mainly helpful in 

detecting type B effects (those effects that are often allergic or idiosyncratic 

reactions, characteristically occurring in only a minority of patients and usually 

unrelated to dosage and that are serious, unexpected and unpredictable) and 

unusual type A effects (those effects that are related to the pharmacological 

effects of the drug and are dosage-related), though other sources of signal 

detection may also include PEM and large automated data resources on 

morbidity and drug use (including record linkage). Type C effects (those effects 

related to an increased frequency of 'spontaneous' disease) are difficult to 

study, however, and continue to pose a pharmacoepidemiological challenge on 

resources [177]. 

The appropriate frequency (i.e., numbers needed) of data review for signal 

detection is determined by, among other factors, the risk inherent in the 

product and may be specified in the PSUR and/or Risk Management Plan (RMP) 

(if applicable). Some common determinants of frequency of data review to 

consider are: Number of AEs/ADRs received per year, potential public health 

impact of AE (e.g., patient exposure data), maturity of the product (e.g., number 

of years on the market) and the safety profile of the product and whether there 
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are events that are being actively monitored [178]. However one of the main 

limitations of spontaneous reporting systems is their inability to provide the 

denominator (i.e., the number of patients actually consuming the drug of 

interest), which has a major impact when determining the numbers needed to 

use signal detection methods.  

In past literature it has been suggested that SDAs may be unreliable when the 

number of reports for a drug-event association is less than 3 [179], which shows 

their general inadequacy and fallacy when detecting uncommon and rare 

events. It has been also suggested that spontaneous reporting systems may not 

be suitable when detecting adverse effects with frequency (>1/10), and 

therefore clinical trials are preferable [180]. 

6.3.3.9 Signal Detection Algorithms use in Electronic Health Databases 

SDAs are now also being used on longitudinal electronic health databases for 

post-marketing surveillance. A recent study [53] has critically reviewed the use 

of these methods in observational electronic health care claims and 

administrative data settings. This study highlighted some of the potential pitfalls, 

indicating that some of the methods are susceptible to systematic bias like the 

longitudinal GPS method, whilst other frequentist methods (PRR and ROR) 

appear unreliable [181]. When electronic health database studies detect no drug 

risk, there are often no robust and accepted standards to judge a causal effect or 

whether the study was incapable of detecting it. There is a requirement for 

improved reliability of risk assessments based on these databases, and the 

current limitations need to be fully understood [182]. 
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6.3.4 Multivariate Techniques 

Although cumulative experience with DPA methods described in section 6.3.3 

has shown to be a promising adjunct in safety analysis, the reduction of drug-

event combinations in two dimensions may result in the loss of crucial clinical 

information. Two-dimensional DPA approaches do not support the discovery 

and/or analysis of more complex or higher-dimensional drug safety phenomena 

that involve more than just one drug and one event. The importance and 

difficulty associated with the detection of these more complex drug safety 

phenomena have been noted in several prominent PV reports [174, 177], 

suggesting that more elaborate methods, henceforth collectively referred to as 

“multivariate methods”, are required.   

The multivariate logistic regression modeling based SDAs recently introduced in 

2013, now adjust for confounding factors by co-medication (given the lack of 

other confounding information in the database). Confounding by co-medication 

can theoretically be addressed by using all drugs in a database as regression 

predictors for an event. Further efforts have been made in an attempt to 

address the concealed effects caused by confounding. However one study 

suggests that significant concealment is rare in large spontaneous databases, 

and that it mostly affects rare events [183]. These methods can also be difficult 

to implement, and their running process can be time consuming.  

6.3.5 Bayesian Hierarchical Modeling in Clinical Trials 

In the past detecting signals from clinical trials data has primarily been 

performed using traditional frequentist tests (e.g., fishers exact test, chi-squared 
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tests etc), which do not account for multiple testing. As an alternative Berry & 

Berry (2004) [184] proposed the Bayesian thee-level hierarchical mixture model 

(BHMM) for the analysis of AEs as a way of coping with multiple testing. This 

approach allows for explicitly modeling AEs with the existing MedDRA coding 

structure, so that strength can be borrowed within and across system organ 

classes (SOCs).  

The idea is that there is a distribution of AEs inside each SOC group, then if we 

regard the AEs as being randomly picked from that distribution (exchangeability 

assumption), then we could use the distribution in each SOC group as a prior for 

each AE in that group. For example, the three-stage model assumes there are B 

body systems. Within body system b there are kb types of AEs labeled Abj, where 

b = 1,…., B and j = 1,…., kb. Stage 1 priors have a normal prior distribution, Stage 

2 we assign a prior distribution to a set of hyperparameters. In this stage the 

distribution varies from one body system to the next. Finally in the third level of 

the model the parameters of these distributions are assigned prior distributions 

to the hyperparameters of a beta distribution. The calculations of this model are 

carried out using Markov Chain Monte Carlo (MCMC) methods to simulate from 

the posterior distributions.     

However, there have been questions in fitting the BHMM using ordinary logistic 

regression, suggesting that it may not be possible due to the sparsely reported 

nature of many AEs which will likely cause estimation to fail [185]. Therefore 

further research is needed into these Bayesian hierarchical methods and there is 

still a need for software development.  
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6.4 Signal Prioritization  

Signal prioritization is a first critical step after the signal detection stage. 

Evaluating all signals generated (i.e. single or aggregated reports) in detail has 

major resource implications as many will turn out not to be real (“false alarm”) 

or alternatively may require action. This is not to say that the signal can be 

dismissed without some kind of evaluation. The prioritization process implies 

that all signals will be reviewed but some more expeditiously than others. In this 

respect, there is general agreement that unexpected serious signals occurring 

during the first years post-marketing should be looked at as a priority in order to 

establish as rapidly as possible the safety of the drug under evaluation. 

Given the number of signals produced, smaller companies may not need to 

prioritize signals for a particular product, choosing instead to assess all detected 

signals. However, for most companies a process for prioritization of these signals 

is required. Prioritizing allows action to be taken more expeditiously for higher 

priority signals than for other signals. For small to medium sized companies, 

assessing all signals in detail is resource intensive because of the high number of 

false positive signals. Larger companies may consider adopting an approach 

similar to the MHRA ‘Impact Analysis’ for signal prioritization, where the impact 

of a signal is summarized through two scores [186]: 

1. Quality of evidence (strength of evidence for causality, e.g. Bradford-Hill 

Criteria [187]). 

2. Public health impact of the signal. 
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The MHRA impact analysis produces a four-level categorisation dependent on 

the strength of evidence for casual effect, potential public health implications, 

public perceptions and agency obligations. This then leads to a proposal for 

further action from high priority signals which need further assessment to the 

lowest priority signals which require no immediate action (e.g. may either be 

closed or require further monitoring only). For small and medium companies a 

more informal approach using the factors above can be used [150] as long as 

this is justified and documented. The company may consider prioritising using 

one or more of the “always serious” lists below: 

 “Always Serious” ADRs and designated medical events. 

 Other Examples: 

- The Council for international Organizations of Medical Sciences 

(CIOMS) working group V [150]. 

- EMA Important Medical Events List [188]. 

Additionally, expectedness can often be used as part of the prioritisation 

process. 

6.5 Signal Evaluation 

After a signal is prioritised, other sources of data should be systematically 

assessed to determine whether sufficient evidence of “causality” exists, and 

what further action, if any, may be required. The sources of evidence can include 

[112]: 

 The ICSR(s) that triggered the signal. 
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 Other ICSRs with similar event terms identified (e.g. by using 

Standardized MedDRA Queries (SMQs)). 

 Scientific literature and/or systematic reviews 

 Clinical trial and pre-clinical data (i.e.,  SmPCs and IBs) 

 Epidemiological data. 

The use of SMQs is recommended in order to retrieve and review similar cases 

of interest when potential signals are identified within a database. In practice 

many signals can be accessed on the strength of the ICSRs that triggered the 

signal in the first place. Depending on the case load (number/volume of cases), 

the data may be stratified according to age, gender, ethnicity, concomitant 

medication or disease. This may identify populations at highest risk for the event 

and also reduces confounding. A judgment about whether a signal is validated 

depends on the number and quality of case reports, the nature of the reaction, 

type of drug and the population exposure. 

The evaluation stage of a signal is often a resource intensive and time consuming 

process. For example, in one study [189] investigating the use of the high-

strength pancreatin supplement Nutrizyme for patients with cystic fibrosis, there 

were reported causes of sub-acute intestinal obstruction due to a fibrotic 

stricture of the ascending colon in a child with cystic fibrosis. Though, more 

recent similar cases suggest that this new pathology is linked to the use of 

enteric-coated high strength pancreatin microspheres, which resulted in a drug 

safety update in 1998 from the UK’s committee on safety of medicines advising 

on the dosage of the treatment. 
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Once a signal has been evaluated there are three possible options following the 

decision making stage:  

 Close signal: The signal was refuted based on the available evidence and 

no further action is required. The decision and rationale for closing a 

signal should be documented. However, if further evidence becomes 

available the signal can be re-assessed. 

 Continue monitoring: In some circumstances a decision cannot be made 

until the evidence supporting the signal is strengthened. Except for 

situations of extreme risk, these signals are monitored until sufficient 

evidence becomes available to either confirm or refute the signal. The 

decision and rationale to justify monitoring a signal should be 

documented. 

 Take further action: After a signal is validated further action is required. 

The decision and rationale to take further action for a signal should be 

documented. The actions may include the following; notify the Qualified 

Person for PV (QPPV), enhance monitoring or follow-up techniques, 

consult internal or external experts, targeted clinical investigations, 

comparative observational studies, active surveillance schemes and 

clinical trials. 

6.6 Discussion 

The development, testing and deployment of SDAs represent a quantum jump in 

PV. Although there is currently no scientific or regulatory basis to claim that 
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SDAs are a required element of good PV practice, they are an intuitively 

appealing solution to the operational challenges of screening steadily enlarging 

safety databases [109]. Higher-order phenomena, such as complex drug-drug 

interactions or drug-induced syndromes, may be especially difficult to identify 

through manual review of AE line listings, and it is this type of phenomena which 

might be most amenable to detection through the use of SDAs. 

Retrospective applications indicate that SDAs can highlight some medically 

significant associations in a timely manner, often in advance of the published 

literature and traditional methods. As a result SDAs have been incorporated into 

routine signal management frameworks for most major national and 

transnational drug safety monitoring centers, including the MHRA (PRR), the 

WHO (BCPNN) and the FDA (GPS) [52]. However, SDAs and DPA methods may 

fail to highlight legitimate associations for various reasons; they often have an 

unclear opportunity cost associated with false alarms (false discoveries); and 

have yet to prospectively detect new drug hazards.    

There are formidable challenges to validating SDAs beyond those already 

mentioned, such as the choice of appropriate reference AEs (true positive and 

false negative signals) for assessing SDA performances in the absence of perfect 

gold standards for adjudicating causality [174]. However findings of a 

disproportionality ratio for a drug should lead to a new reinvestigation of data 

from experimental pharmacology and RCTs. It should also stimulate specific 

case-control or cohort analysis to strengthen the generated hypothesis.  
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Accordingly, signal detection should be considered as one of many potentially 

performance-enhanced options in the toolkit for detecting safety signals that 

need to be assessed by each institution on an individual basis. They should only 

be considered potential supplements to, and not substitutes for, a 

comprehensive signal detection programme based on multiple approaches and 

data sets. In this chapter we have clearly underlined some of performance 

related issues with the SDAs when analyzing harms data and suggestions for 

improvements have been made. In chapter 7 we will explore the use of SDAs 

further to investigate their ability to detect signals in clinical trial databases of a 

smaller scale.  
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Chapter 7: Signal Detection 
Algorithms for Analyzing Harms 
data - Simulation Study 

 

Part of the objective in chapter 5 was to explore current practice and future 

potential for use of SDAs to mine harms data. However the results have shown 

that there appears to be uncertainty of their application in CTU databases. 

Chapter 6 provided an extensive overview of SDAs, discussing in detail their 

characteristics and potential for refinement in the future. 

In this chapter a literature review of recent studies that have assessed the use of 

SDAs is presented (Section 7.2). The performance of the three SDAs introduced 

in chapter 6 is then explored in detail in a simulation study (Section 7.3) to 

explore their properties under different conditions. The aim of the concluding 

part of this chapter is to explore whether these methods might be suitable for 

detecting signals in harms databases which are likely to be on a smaller scale 

than post-marketing surveillance systems, such as those which CTUs may have 

access to.   

7.1 Introduction 

For identifying safety signals of AEs from reported reactions, SDAs are 

increasingly being used to supplement the traditional expert review of the 

reports and to analyze the large volume of accumulated data more rapidly. 

Disproportionality analysis represents the main type of SDAs, where their 

methodologies use frequency analysis of 2 x 2 contingency tables (Table 19) to 
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quantify the degree to which a drug-event combination co-occurs 

disproportionately, as compared with what would be expected if there were no 

association [177].  

In general SDAs are designed to compute surrogate measures of statistical 

association between drug-event pairs reported in a database [52]. These 

measures are often interpreted as signal scores, with large values representing 

true adverse drug reactions (ADRs). A signal score threshold is often used to 

highlight signals worthy of further review [173]. These threshold values can be 

adjusted to reduce false signals but at the expense of reduced power; in other 

words, the risk of missing a true signal will be potentially increased. Therefore, it 

is essential to identify statistical methods that can control false findings at an 

acceptable level without compromising on the power [167].  

7.2 Literature Review 

Although the value of SDAs has been widely recognized [109], their performance 

characteristics are not well understood [162]. This is due to the lack of 

evaluation guidelines and absence of established gold standards [158], and to a 

certain extent, acknowledged shortcomings in the studies that have been 

conducted so far. 

The EMA have recently published their guideline on good pharmacovigilance 

practices [188], which states that the “size of the data set should be taken into 

account when considering the use of SDAs”. However from this it is unclear as to 

when they should and should not be used in relation to the database size. The 

guideline also states that the “selection of the threshold criteria for the detection 
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of signals should also be taken into account”, although there is no explicit gold 

standard regarding the use of different thresholds for different scenarios. 

To explore performance in more detail a literature review was firstly undertaken 

to summarise characteristics of other studies that have assessed SDAs. Studies 

with their primary objective(s) to explore the performance of alternative SDAs 

were included, and other studies were excluded. For example most studies have 

simply used one of the SDAs to generate a list of signals for further evaluation, 

and have not drawn any conclusions about the performance characteristics of 

the SDA. These studies were excluded. For the included studies information was 

collected on the journal of publication, purpose of research, methods used, data 

source and size of dataset (number of drugs and events reported), performance 

metrics, limitations and conclusions of the study.  

The following strategy was used in MEDLINE which was searched from 2000 to 

10th March 2014: 

1. Signal detection.ti. 

2. Data mining.ti. 

3. Disproportionality analysis.ti. 

4. 1 or 2 or 3 

5. Limit 4 to yr = “2000 - 2014” 

Sixty nine studies were identified in MEDLINE. Full articles were screened, and 

six studies met the inclusion criteria and assessed the performance of SDAs as 

their primary objective. These six studies are now described in Table 21. 
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Roux [172] assessed the performance of ten signal detection methods on 

simulated data including 150 drugs and 100 AEs. These methods were 

investigated using only the standard thresholds and their performances were 

evaluated by constructing the receiver operator characteristic (ROC) curves. The 

empirical bayes arithmetic mean (EBAM) and information component (IC) 

methods provided the best results, as was determined from the ROC curves. 

However, these methods were more difficult to implement than the chi-squared 

and sequential probability ratio test (SPRT). Since this study was conducted over 

9 years ago some of the methods have now been updated and are no longer in 

use. 

Alvarez [165] evaluated whether statistical signal detection in the Eudravigilance 

database can lead to earlier detection of drug safety problems when using the 

proportional reporting ratio (PRR) method. 267 medicinal products were 

included in the study as reported between September 2003 and March 2007. 

The focus was mainly on sensitivity rather than on the trade-off between 

sensitivity and specificity for the PRR method. The study concluded that 

statistical signal detection can provide early detection and warning of safety 

problems, although not all safety issues are always detected.  

Harpaz [173] reviewed all current SDAs, both DPAs methods and multivariate 

modeling methods. However this study is restricted by only investigating the use 

of these methods in the FDA adverse event reporting system and the WHO 

Uppsala monitoring centre. They discuss a range of different approaches that 

can be used in signal detection, but also highlight that further work is needed to 
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develop gold standards when using these different methods. Similarly, Almenoff 

[174] has reviewed the statistical concepts behind all DPA methods, and their 

application in PV across a diverse range of data sources. In this study there was 

no discussion regarding the use of different threshold values when evaluating 

the performance of the methods. The study also suggests that additional tools 

are need for identifying and characterizing rare and serious events. 

Ahmed [191] explored two DPA methods (GPS and BCPNN) in a multiple 

hypothesis testing framework for comparing multiple drug-event comparisons. 

These methods now make it possible to derive, with a non-mixture modeling 

approach, Bayesian estimators of the false discovery rate (FDR). The FDR 

constraint determines how many false signals are generated, and can be useful 

when analyzing signals, as will be discussed later in this chapter. These methods 

were assessed on simulated data based on 634 drugs and 756 AEs, and data 

collected from the French national PV database including 672 drugs and 820 AEs. 

The methods produced identical performances according to the operating 

characteristics sensitivity and specificity, however the GPS method performed 

better by providing the lowest FDR. These methods based in a multiple 

hypotheses testing framework require further research to explore their full 

potential, additionally they need to be compared against other SDAs. 

Finally, Lehman [169] evaluated the GPS method performance when detecting 

safety signals in relation to traditional PV methods. The sensitivity, specificity, 

positive predictive and negative predictive values were used as the metrics of 

performance. The study has assessed the performance of the GPS using only the 
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standard threshold, and the analysis was restricted to a pharmaceutical 

company database with data collected from 1993 to 2004 for four products only. 

There were a total of 4389 product-event pairs reported for these four products 

over the time period. The study concludes that the GPS method demonstrates 

sufficient sensitivity and specificity to be considered for use in addition to 

conventional detection methods. 

7.2.1 Improving Signal Detection in the Future 

Disproportionality analysis is based solely on aggregate numbers of reports and 

naively disregards report quality and content. However, these latter features are 

the very fundament of the ensuing clinical assessment. The following variables 

may provide strong predictors of emerging drug safety issues: the number of 

informative reports, recent reports, and reports with free-text descriptions; 

disproportional reporting; and geographic spread. Simultaneously accounting for 

these aspects of strength of evidence can significantly improve the accuracy of 

automated screening of individual case reports with disproportionality analysis 

alone [192]. 

Combinatorial signal detection has been pursued in few studies up until recently, 

employing a rather limited number of methods and data sources but illustrating 

well-promising outcomes. However, the large-scale realization of this approach 

requires systematic frameworks to address the challenges of the concurrent 

analysis setting. In a recent study [193] a semantically-enriched framework was 

designed to address some of these issues, and particularly highlight contribution 

in: 
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1. Annotating data sources and analysis methods with quality attributes to 

facilitate their selection given the analysis scope 

2. Consistently defining study parameters such as health outcomes and 

drugs of interest, and providing guidance for study setup 

3. Expressing analysis outcomes in a common format enabling data sharing 

and systematic comparisons 

4. Assessing/supporting the novelty of the aggregated outcomes through 

access to reference knowledge sources related to drug safety. 

This framework brings forth a new perspective on large-scale, knowledge-

intensive signal detection, and aspires to increase the efficiency, automation, 

support and collaboration for PV stakeholders. 

7.3 Simulation study 

The evidence from the literature review has shown that there is a current lack of 

gold standard available when verifying the threshold criteria for SDAs. There also 

appears to be no guidance available when using the methods in databases of 

limited size, and their ability to characterize and identify rare events has not 

been fully explored. More recently the methods were extended in a multiple 

hypothesis testing framework which now allows the performance of the 

methods to be assessed in relation to the FDR. However these methods require 

further testing to understand their full potential. 

To explore the use of SDAs to investigate each of these key component areas in 

more detail, a simulation study is required.  
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7.3.1 Simulation study objectives 

The objectives of the simulation study are described below:   

1. To investigate the use of SDAs in an AE reporting system considering 

different threshold values. 

2. To investigate the use of SDAs for identifying and characterizing rare 

events, by considering different scenarios affecting the incidence and risk 

of signals.  

3. To investigate the use of SDAs in smaller scale systems, by simulating 

scenarios to mirror the type of harms data that might be collected in CTU 

databases.    

7.4 Methods 

7.4.1 Signal Detection Algorithms (SDAs) under investigation 

The SDAs examined in this simulation study were the PRR, IC and GPS. These 

methods were chosen as they are currently under use by national and 

international regulatory agencies (MHRA, EMA, WHO and FDA) and are the most 

commonly used methods. The standard threshold criteria for these three SDAs 

used were the PRR (PRR02.5) > 1 [158], IC (IC02.5) > 0  [163] and the GPS (GPS05) > 

2  [160], and are explained in chapter 6, Table 20. These thresholds are not a 

gold standard but are commonly used by the regulatory agencies due to their 

reasonable sensitivity-specificity trade-off performances on their AE databases. 

However, they may not be suitable in smaller scale databases and for detecting 

rare events since they are regarded as being too specific, and therefore have low 

sensitivity performances.  
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7.4.2 Simulation model – Data Generation 

The model for simulating the data was proposed by Roux [172], which 

introduces a procedure for simulating an AE reporting system, where the 

reporting process is viewed as a Poisson-distribution. In this model for any given 

ADR during a given period, the number of reports (𝜌𝑖𝑗) is assumed to follow a 

Poisson distribution defined as: 

𝜌𝑖𝑗~ 𝑃𝑜 (𝑇𝑗  ∙ 𝑅𝑅𝑖𝑗 ∙ 𝐼𝑖 ∙ 𝑝𝑟𝑖𝑗) 

 

Where the parameter 𝑇𝑗 is the drug exposure frequency (i.e. the number of 

patients exposed to drug (j) during a given period), 𝑅𝑅𝑖𝑗 is the risk ratio related 

to the ADR, 𝐼𝑖 is the background incidence of the AE (i), and 𝑝𝑟𝑖𝑗 is the reporting 

probability of the ADR combination.  

7.4.2.1 Model parameter selection 

A number of different data sources were used to inform the choice of 

parameters within the model used to simulate the data.  

The EMA’s ‘Pharmacoepidemiological Research on Outcomes of Therapeutics by 

a European Consortium (PROTECT)’ project [194] ADR database [195] was used 

to obtain information on the frequency of AEs. The database accumulates 

suspected reports of AEs as reported in the European summary product 

characteristics (SmPCs) for all EU licensed products, and then compiles the data 

into a central ADR repository which can be accessed by the public. The data lock 

point for collection of these reports is 31st December 2013. However this 

database does not contain information on drug exposures, therefore 
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prescribing-level data from the health and social care information centre (HSCIC) 

[196] was used to approximate the exposure frequencies of the UK marketed 

drugs. Since the prescription data is split annually and can only be accessed in 

one database by each year individually, the data collection period was restricted 

from 1st January 2013 to 31st December 2013. This time frame was also used to 

collect data from the PROTECT ADR database for consistency. 

7.4.3 Metrics for comparing the performance of different SDAs 

The SDA threshold is often used to highlight safety signals of interest. The 

threshold can be adjusted to reduce false signals, or to improve the sensitivity 

performance (power) when detecting true signals. However since there is a lack 

of gold standard for determining which thresholds to use for these SDAs, in this 

study we aim to try and identify thresholds that provide a balanced trade-off 

between the FDR and sensitivity performances. 

To investigate this trade-off we firstly explore the use of the commonly used 

thresholds (i.e., PRR02.5 > 1, IC02.5 > 0 and GPS05> 2) and then explore the use of 

different threshold values to achieve higher sensitivity performances. This will 

be explained in the following sections, along with the FDR, sensitivity and 

specificity estimations.     

7.4.3.1 False Discovery Rate (FDR) 

In 1995, Benjamini and Hochberg (BH) [197] introduced the concept of FDR, as a 

statistical method used to correct for multiple comparisons. In a list of findings, 

FDR procedures are designed to control the expected proportion of incorrectly 

rejected null hypotheses (“false discoveries”).  
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The FDR has attracted growing interest over the years, mainly in the genomic 

data-analysis field, because it is particularly adapted to screening studies 

involving large numbers comparisons of genomic expressions. There are 

similarities between the genomic data analysis and PV signal detection analysis 

fields, where many drug-AE comparisons are analysed in order to determine 

true signals. As a result the SDAs (PRR, IC and GPS) were recently revised in a 

multiple-hypothesis testing framework, where they are now formulated as the 

statistical choice of a tested hypothesis. These methodological developments 

have resulted in new decision rules based on P values for the frequentist PRR 

method [198], and on the posterior probability of the null hypothesis for the 

Bayesian methods (IC and GPS) [191]. In particular the PRR methods consist of 

the popular approach in assuming a mixture model for the marginal distribution 

of the p-values and the Bayesian methods (IC and GPS) involve a mixture model 

describing the distribution of the testing statistic with one of the components 

corresponding to the null hypothesis. 

For these new decision rules it is now possible to obtain, for any detection 

threshold, an estimation of the FDR. This criterion, which may be defined in the 

PV signal detection field as the expectation of the proportion of false discoveries 

(FDP) among a generate list of signals, can easily be estimated by obtaining the 

FDP from each simulated dataset then averaging the FDP over all simulated 

datasets to obtain the FDR [191, 198]: 

𝐹𝐷𝑅 = 𝐸𝑥𝑝(𝐹𝐷𝑃) =  
1

𝑆
∑ 𝐹𝐷𝑃

𝑆

1

 



183 
 

where S is the total number of simulated datasets. 

The advantages of these new SDAs based in a multiple hypothesis setting enable 

us to determine the measure of error within any generate list of signals, which 

could save the time spent during the analysis and clinical evaluation stages.  

7.4.3.2 Sensitivity-Specificity Trade-Off  

To measure and compare performance of the different SDAs the sensitivity and 

specificity for each simulated dataset are calculated using the notation in Table 

22. The advantage of using simulated data is that we know the true status of the 

signal, which means that the sensitivity and specificity are exact in each dataset. 

This is opposed to using a real dataset, where the true status of a signal is 

normally unknown. 

Table 22: Description of sensitivity and specificity calculations, for each 
simulated dataset. 

 

For each dataset the sensitivity is calculated as; 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐴

𝐴 + 𝐶
 

with mean sensitivity across all datasets calculated as 

𝑀𝑒𝑎𝑛 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 
1

𝑠
∑ (

𝐴

𝐴+𝐶
)𝑠

1  

 
 Truth  

 Signal (1) No signal (0) Totals 

Signal 
detected 

Yes A B A + B 

No C D C + D 

 Totals A + C B + D  
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And the specificity for each dataset and mean specificity across all datasets is 

calculated as; 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐷

𝐵 + 𝐷
 

 

𝑀𝑒𝑎𝑛 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
1

𝑠
∑ (

𝐷

𝐵 + 𝐷
)

𝑠

1

 

There is also a trade-off relationship between sensitivity and specificity. 

Changing the SDA threshold value causes the sensitivity and specificity to change 

in tandem. Therefore the threshold value at a specific sensitivity was 

determined by changing the probability threshold in small increments (0.025, 

0.05, 0.1, 0.2,…, 0.9, 0.95, 0.975), and the receiver operator characteristic (ROC) 

curves constructed, for all events combined, by plotting sensitivity along the 

vertical axis and ‘1-specificity’ along the horizontal axis, as implemented by Roux 

[172]. The area under the ROC curve (AUC) and 95% CI was also calculated as a 

performance metric, and marked on the ROC curves. 

The performance when maximising the sensitivity was also analysed, by 

determining the thresholds required to achieve mean sensitivity levels of 0.50, 

0.60, 0.70, 0.80 and 0.90 with each of the SDAs. It was decided that sensitivity 

levels of above 50% are more acceptable, this has also been recommended by 

the observational medical outcomes partnership (OMOP) [199]. Therefore the 

specificity in this case can be compromised to improve the sensitivity when 



185 
 

detecting true signals. The average number of generated signals (the average 

number of false signals can be determined by multiplying this by the FDR), 

specificity, FDR and positive predictive value (PPV) were also evaluated at these 

levels of sensitivity. 

7.4.4 Software Package for Signal Detection Analysis 

Simulated datasets were generated in SAS version 9.3 [200] (Appendix D 

provides the SAS code for the simulation model), and the PhViD [201] package 

for PV in R (Version 3.1.1) was used to perform the signal detection analysis.  

To use the PhViD package, simulated data must firstly be organised into a data 

frame consisting of the following three columns; 1st label of drugs, 2nd label of 

AEs and 3rd number of spontaneous reports (nij) of the corresponding couple 

ADR (Figure 15). Then reports generated are transformed to the elements of a 

2x2 contingency table, where it is then possible to calculate the marginal counts 

(𝑛𝑖�̅�  and 𝑛𝑖̅𝑗) which are required for the calculations.  

The next stage involves calling the SDA with the appropriate syntax, this is done 

using the statistic argument set to the decision criterion (e.g., lower 5th 

percentile or 2.5% quantile), and then choosing a threshold upon the decision 

criterion requested for analysing the ADR couples, as explained in Table 20. 

Finally a list of generated signals is produced where the metrics of performance 

(average number of signals, FDR, sensitivity, specificity and PPV) can be 

computed.  
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Figure 15: Screenshot of simulated data with the corresponding 2x2 contingency 
table for Drug 1 and ADR 1. 

 

 n  : Total number of reports in database. 

 nADR : Marginal count involving ADRi 

 nDrug : Marginal count involving Drugj 

 

7.5 Simulation study 1 - To investigate the use of SDAs in a AE 

reporting system considering different threshold values 

The objective in simulation study 1 is to firstly explore the use of the standard 

thresholds (PRR02.5> 1, IC02.5> 0 and GPS05> 2) and then the use of different 

threshold values to achieve sensitivity performances above 50%, when also 

considering a trade-off with the FDR. The thresholds will be displayed in the 

results section, and recommended thresholds will be detailed in the conclusion. 

7.5.1 Simulation procedure 

A total of 1000 datasets were simulated. The datasets were representative of 

similar AE reporting databases including 60 UK marketed drugs and 150 AEs. This 
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was also based on the databases being of a manageable size to simulate. The 60 

drugs were randomly chosen from the full set of 416 drugs held within the 

PROTECT database (Appendix D, Table 33) to provide information about the type 

of ADRs reported to the database.  

For these 60 drugs, there were on average 150 (Range: 10, 1742) MedDRA 

preferred term coded ADRs reported per drug in the PROTECT database. An 

assumption was made that each drug had the possibility to report any of these 

150 ADRs (i.e., a maximum 9,000 drug-ADR combinations were possible in each 

simulated dataset). The drug exposure frequencies (𝑇𝑗) of the 60 drugs were 

approximated using data from the HSCIC, where for each of the UK marketed 

drugs the annual prescriptions were obtained. Then each drug was assigned to 

one of the four exposure levels in the simulations; 300,000 prescriptions for 5 

drugs, 150,000 prescriptions for 10 drugs, 75,000 prescriptions for 15 drugs and 

20,000 prescriptions for 30 drugs. However, 13 of the 60 randomly chosen drugs 

were not centrally marketed in the UK and therefore prescription data could not 

be obtained. These drug exposure frequencies were randomly assigned an 

exposure rate between the current ranges then placed into one of the four 

exposure levels as described above.  

The data were generated under the condition that 15% of the drug-ADR 

combinations were ‘true signals’, albeit with varying signal strength levels by 

imposing a range of 𝑅𝑅𝑖𝑗  of 2, 3, 5 or 10 each with equal probability across the 

15% of drug-ADR combinations. Since no particular constraint is imposed for the 

definition of the background incidence 𝐼𝑖  [172] and the actual number of 
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reported cases were not listed in the PROTECT database; half of the ADRs were 

assigned background incidence (𝐼𝑖) 1/250, and the other half 1/500 to provide a 

split distribution of common and less commonly reported events. The reporting 

probability (𝑝𝑟𝑖𝑗) is assumed to be at most equal to 0.1, as was described in one 

study [202] which determined the probability of reporting AEs in a national 

spontaneous reporting databases. The reporting probabilities (𝑝𝑟𝑖𝑗) for the 150 

ADRs, were evenly distributed and fixed at 0.1, 0.08, 0.06, 0.04, and 0.02. 

7.5.2 Simulation study 1 results 

One thousand datasets each with 60 drugs and 150 ADRs were generated. The 

average number of spontaneous reports (n) over 1000 datasets was 16,733 

(standard deviation (SD) = 106). The average number of drug-ADR combinations 

per dataset was 8,893 (SD = 68) with an average 1261 (SD = 2.9) true signals per 

dataset.  

7.5.2.1 At the Standard thresholds 

Table 23 shows that the standard thresholds currently used by the SDAs under 

investigation (i.e. PRR02.5 > 1; IC02.5 > 0; GPS05 > 2) can lead to large differences in 

the numbers of signals generated (including the number that correspond to true 

signals), FDRs, sensitivities and PPVs.  

 

 

 



189 
 

Table 23: Comparison of the three signal detection algorithms for all ADRs, using 
the standard thresholds that are currently used in practice 

Average 
number of 
ADRs (SD) 

8,893 (68) 

 
Average 

number of 
true 

associations 
for ADRs 

(SD) 

1261 (2.9) 

Signal 
detection 
algorithm 

and 
detection 
threshold 

Average 
number 

of signals 
generated 

(mean 
(SD))

ƚ 

Corresponding 
average 

number of the 
true signals 

detected 
(mean (SD))

∆
 

FDR 
(mean 
(SD))

Π
 

Sensitivity 
(mean 
(SD))¥ 

Specificity 
(mean 
(SD))¥ 

PPV 
(mean 
(SD))Γ 

PRR02.5 > 1 752 (6.8) 646 (6.7) 
0.1409 
(0.017) 

0.512 
(0.014) 

0.969 
(0.006) 

0.859 
(0.017) 

IC02.5 > 0 602 (2.5) 573 (2.3) 
0.0479 
(0.014) 

0.454 
(0.012) 

0.995 
(0.002) 

0.952 
(0.014) 

GPS05 > 2 405 (0.2) 405 (0.1) 
0.0003 
(0.012) 

0.321 
(0.011) 

1.000 
(0.0001) 

1.000 
(0.012) 

ƚ The average number of signals generated is calculated by the sum of the number of 

generated signals (true/false) in each dataset divided by the total number of datasets.  
∆The average number of true signals detected is calculated by multiplying the PPV by 

the average number of generated signals. 
Π False discovery rates (FDRs) are calculated as described in section 7.4.3.1, where the 

proportion of false discoveries (FDPs) is obtained from each dataset then Exp (FDPs) is 

the FDR.  
¥The mean sensitivity and mean specificity are calculated as described in section 

7.4.3.2. 
Γ The mean positive predictive value (PPV) is simply the complement of the FDR, which 

is different to the usual calculation of PPV as presented in clinical diagnostic studies. 

 

 

 

The PRR02.5 method generated the most signals, with a mean of 752 (SD=6.8) of 

which 646 (51%) of these relate to true signals. The Bayesian methods (IC02.5 and 

GPS05) generated fewer signals with 602 (SD=2.5) for the IC02.5, of which 573 

(45%) of these relate to true signals and 405 (SD=0.2) for the GPS05 with 405 

(100%) relating to true signals. In particular for the GPS05, the standard threshold 
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on the criteria currently in use appears to be highly conservative in comparison 

with the other methods; producing a very high mean specificity (approximately 

100%), favouring a very low proportion of false discoveries 0.0003. However this 

comes at the expense of a poor mean sensitivity of 32%, which would not be 

acceptable in smaller company databases. Therefore researchers are 

encouraged to lower the value of the threshold to improve the sensitivity 

performance, which will be explored in the next part of this study. Since the 

results also show low SD values, this indicates that the simulation model is 

consistent. 

7.5.2.2 Exploring the effect at different thresholds  

The threshold value at a specific sensitivity was determined by changing the 

probability threshold in small increments (0.025, 0.05, 0.1, 0.2,…, 0.9, 0.95, 

0.975), then the ROC curves were constructed. The ROC curves (Figure 16) 

displayed a pattern of containment (no intersection), which emphasizes that 

there exist no levels of sensitivity, or specificity for which two methods 

interchangeably dominate each other. This is especially true for the relationship 

between the Bayesian approaches (IC02.5 and GPS05) and the PRR02.5 method, and 

implies that the Bayesian approaches are better across all levels of sensitivity 

and specificity in this simulation study. This improved performance by the 

Bayesian approaches (IC02.5 and GPS05) was also indicated by the higher AUC 

estimates than the PRR02.5, though the GPS05 achieved the best performance 

with the AUC = 0.79 (95% CI: 0.74, 0.83) (Figure 16). 
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Finally the performance metrics at the desired sensitivity levels 0.50, 0.60, 0.70, 

0.80 and 0.90 are presented in Table 24.  

The thresholds and mean specificity, FDR and PPV were also recorded at this 

sensitivity value. The following include some examples: 

 At the sensitivity level of 0.5, the PRR02.5, IC02.5 and GPS05 will result in 

743, 602, 405 generated signals on average, specificities of 0.97, 0.99 and 

1 and FDRs 0.13, 0.05 and 0. The thresholds required to obtain these 

performance characteristics, are 1.15, -0.60 and 1.50 respectively, and 

the PPVs were above 86%. 

Figure 16: Receiver operating characteristic (ROC) 
curves for each method in simulation study 1. 
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Table 24: Performance metrics for the three SDAs to achieve the sensitivities 
with the corresponding threshold in simulation study 1. 

PRR02.5 IC02.5 GPS05 

Thre Sen* Sig Spe FDR PPV Thre Sen* Sig Spe FDR PPV Thre Sen* Sig Spe FDR PPV 

1 0.51 752 0.97 0.14 0.86 0 0.45 602 1.00 0.05 0.95 2 0.32 405 1.00 0.00 1.00 

1.15 0.50 743 0.97 0.13 0.87 -0.60 0.50 602 0.99 0.05 0.95 1.50 0.50 405 1.00 0.00 1.00 

0.95 0.60 1104 0.90 0.32 0.68 -0.81 0.60 750 0.97 0.14 0.86 1.30 0.60 641 0.98 0.10 0.90 

0.75 0.70 1286 0.78 0.41 0.59 -1.03 0.70 843 0.88 0.23 0.77 1.10 0.70 809 0.90 0.19 0.81 

0.55 0.80 1483 0.62 0.49 0.51 -1.18 0.80 1022 0.76 0.32 0.68 0.90 0.80 985 0.79 0.28 0.72 

0.35 0.90 1688 0.31 0.58 0.42 -1.30 0.90 1206 0.50 0.39 0.61 0.70 0.90 1093 0.54 0.34 0.66 

Thre - Threshold required to achieve the corresponding sensitivity; Sen - mean 

sensitivity; Sig - average number of signals generated (false signals can be obtained by 

multiplying this by the FDR); Spe - mean specificity; FDR - false discovery rate; PPV - 

mean positive predictive value. 

Gray shaded area represents the performance metrics when using the standard 

threshold criteria i.e., PRR02.5 > 1, IC02.5 > 0 and GPS05 > 2. 

*since there were 1000 datasets the thresholds required to achieve the sensitivity 

value are not exact, and therefore were based on achieving the sensitivity value to 2 

decimal places. 

 

 

 By increasing the sensitivity level to 0.7, we observed an increase in the 

number of signals generated 1286, 843 and 809, a drop in the 

specificities to 0.78, 0.88 and 0.90 and increase in FDR to 0.41, 0.23 and 

0.19 for the PRR02.5, IC02.5 and GPS05 respectively. There were 527, 194 

and 154 false signals for the PRR02.5, IC02.5 and GPS05. This sensitivity level 

of 0.7 was achieved by lowering the thresholds further; this also resulted 

in decreased PPVs by approximately 20% for each method.  

 When observing the sensitivity at a level of 0.90; 1688, 1206 and 1093 

signals were generated, and the specificities were approximately half-
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fold compared to when the sensitivity level was 0.50. The FDRs were all 

above 0.33 resulting in approximately 979, 470 and 372 false signals for 

PRR02.5, IC02.5 and GPS05 respectively. The PPVs ranged from 0.42 for the 

PRR02.5, to 0.66 for the GPS05 which were the lowest across all levels of 

sensitivity. 

7.5.3 Conclusion 

Our results from this simulation study, suggest that the standard thresholds in 

use for the three SDAs result in large differences in terms of the performance 

metrics when analyzing AEs within a reporting system consisting of 60 drugs and 

150 AEs. The Bayesian methods (IC02.5 and GPS05) outperformed the PRR02.5 by 

displaying a lower value of FDR; in particular the GPS05 was the lowest. However, 

the standard threshold used for the GPS05 is considered too conservative as was 

indicated by the poor sensitivity performance of 32%.  

When exploring the use of different thresholds for the SDAs, the Bayesian 

methods (IC02.5 and GPS05) were found to be superior to the PRR02.5, and 

generally provided greater specificity when sensitivity was varied at values 

greater than 50%. The GPS05 method provided the best performance with the 

highest degree of accuracy when signaling true ADRs, as measured by the AUC. 

However, there was essentially very little difference in the sensitivity-specificity 

trade-off performance between the two Bayesian methods IC02.5 and GPS05, 

though when considering the trade-off results with the FDR also, the GPS05 

proved most optimal if sensitivity is required to be above 50%.  
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Overall the results in simulation study 1 suggest that the GPS05 method controls 

the FDR well and also provides the better trade-off between sensitivity-

specificity, although it is recommended that the threshold is adjusted to improve 

the sensitivity performance. For example we recommended that the GPS05 > 

1.30 is used, which produced a sensitivity of 60% and provides a relatively small 

FDR of 10%. 

7.6 Simulation study 2 - Detection of Rare Events 

The purpose of this simulation study was to investigate the performance of the 

SDAs when detecting rare signals which are associated with low numbers of AE 

reports. There are two parts to this investigation to be carried out as explained 

below in the simulation procedure.  

7.6.1 Simulation procedure  

Firstly, a total of 1000 datasets were simulated with fixed parameters. The 

design was similar to simulation study 1 representing the type of data collected 

in an AE reporting database including 60 drugs and 150 AEs. Although the 

difference being, that all events were considered to have a background 

incidence rate 𝐼𝑖 = 1/500 to consider the AEs as being less commonly reported. 

The 𝑅𝑅𝑖𝑗 were imposed to take the values between: 1.2 to 5, again with equal 

probability. The result of changing these parameters meant that the true signals 

would have fewer reports on average, and were therefore potentially more 

difficult to detect. The performance characteristics of the standard thresholds 

and the use of different thresholds were explored similarly to simulation study 1. 
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Secondly, 24 individual scenarios, each with 1000 datasets, were simulated by 

fixing the 𝐼𝑖 and 𝑅𝑅𝑖𝑗 parameters. 𝐼𝑖 was set to 1/250, 1/500 or 1/1000, the 

addition of the 𝐼𝑖= 1/1000 was to consider rare cases of events as is classified by 

the WHO [6], and the 𝑅𝑅𝑖𝑗 was set to 1.2, 1.5, 2, 3, 4, 5, 7.5 or 10 respectively. 

The sensitivity and FDR were compared graphically. In this part of the 

investigation only the standard threshold criteria for the SDAs were explored 

(i.e. PRR02.5 > 1, IC02.5 > 0 and GPS05 > 2). 

7.6.2 Simulation study 2 results 

In simulation study 2, the average number of spontaneous reports (n) over the 

1000 datasets was 12,767 (SD = 85). The average number of drug-ADR 

combinations per dataset was 3,686 (SD = 57) with 545 (SD = 3.6) true signals 

per dataset, which was less than half that displayed in simulation study 1.  

7.6.2.1 At the Standard thresholds 

Table 25 shows that the standard thresholds when detecting rare signals, also 

leads to large differences across the performance metrics. Again the PRR02.5 

method generated the most signals, with a total 282 on average. The Bayesian 

methods (IC02.5 and GPS05) generated fewer signals 213 and 150, and favoured a 

lower proportion of false discoveries 0.0012 and 0.0002, this was lower than 

displayed in simulation study 1. However, the mean sensitivity performances 

across all methods were below 47%, with the GPS05 performing worst with mean 

sensitivity of only 28%. These estimates of the mean sensitivity were also worse 

than displayed in simulation study 1 across all the methods, and represents the 

impediment when detecting rare signals. Therefore in the next section we will 
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investigate adjustments on the threshold value to try to improve the sensitivity 

performance. 

Table 25: Comparison of the three signal detection algorithms for detecting Rare 
ADRs, using the standard thresholds that are currently used in practice. 

Average 

number of 

ADRs (SD) 

3,686 (57) 

In these simulations Ii = 1/500 and RRij was imposed to take 

values between 1.2 to 5* 

Average 

number of 

true 

associations 

for ADRs 

(SD) 

545 (3.6) 

Signal 

detection 

algorithm 

and 

detection 

threshold 

Average 

number 

of signals 

generated 

(mean 

(SD))
ƚ 

Corresponding 
average 

number of the 
true signals 

detected 
(mean (SD))

∆
 

FDR 
(mean 

(SD))
Π
 

Sensitivity 
(mean 

(SD))¥ 

Specificity 
(mean 

(SD))¥
 

PPV 
(mean 

(SD))
Γ 

PRR02.5 > 1 282 (6.4) 255 (6.5) 
0.0940 

(0.016) 

0.468 

(0.023) 

0.946 

(0.008) 

0.906 

(0.016) 

IC02.5 > 0 213 (3.6) 212 (3.6) 
0.0012 

(0.014) 

0.389 

(0.021) 

0.991 

(0.003) 

1.000 

(0.014) 

GPS05 > 2 150 (0.6) 150 (0.5) 
0.0002 

(0.006) 

0.275 

(0.012) 

0.998 

(0.0002) 

1.000 

(0.006) 

*Please see footnote from Table 23 for description of symbols. 

 

7.6.2.2 Exploring the effect at different thresholds  

Similarly to simulation study 1, the ROC curves for the SDAs imply that the 

Bayesian approaches are better across all levels of sensitivity and specificity 

when detecting rare signals. The GPS05 achieved the best performance with the 

AUC = 0.74 (95% CI: 0.69, 0.79) (Figure 17). However, these AUCs estimates were 

noticeably lower than the AUC estimates obtained in simulation study 1 (Figure 
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16), which was expected since detecting signals with fewer numbers of reports 

(rare signals) is potentially more difficult.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, as was investigated in simulation study 1, the performance metrics 

at sensitivity levels of 0.50, 0.60, 0.70, 0.80 and 0.90 were assessed, and are 

presented in Table 26.  

The mean specificity, FDR and PPV were also recorded at this sensitivity. Below 

are some examples: 

 At the sensitivity level of approximately 0.5, the PRR02.5, IC02.5 and GPS05 

will result in a higher number of signals generated with 341, 329 and 291 

and lower specificity values with 0.92, 0.97 and 0.98. The FDRs increased 

Figure 17: Receiver operating characteristic (ROC) 
curves for each method when detecting rare signals in 

simulation study 2. 
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from those displayed when using the standard threshold to 0.11, 0.02 

and 0, which was also less than the FDRs displayed in simulation study 1. 

The number of false signals included was 38 and 7 for the PRR02.5 and 

IC02.5, and 0 for the GPS05. The thresholds required at this sensitivity level 

were 0.96, -0.63 and 1.24 respectively. 

Table 26: Performance metrics for the three SDAs to achieve the sensitivities 
with the corresponding threshold when detecting rare signals in simulation 

study 2. 

PRR02.5 IC02.5 GPS05 

Thre Sen* Sig Spe FDR PPV Thr Sen* Sig Spe FDR PPV Thre Sen* Sig Spe FDR PPV 

1 0.47 282 0.95 0.09 0.91 0 0.39 213 0.99 0.00 1.00 2 0.28 150 1.00 0.00 1.00 

0.96 0.50 341 0.92 0.11 0.89 -0.63 0.50 329 0.97 0.02 0.98 1.24 0.50 291 0.98 0.00 1.00 

0.89 0.60 514 0.82 0.24 0.76 -0.86 0.60 396 0.90 0.09 0.91 1.15 0.60 338 0.92 0.07 0.93 

0.68 0.70 683 0.69 0.38 0.62 -1.09 0.70 422 0.79 0.18 0.82 1.00 0.70 419 0.81 0.14 0.86 

0.51 0.80 804 0.48 0.46 0.54 -1.24 0.80 471 0.61 0.29 0.71 0.84 0.80 486 0.61 0.23 0.77 

0.36 0.90 1114 0.21 0.54 0.46 -1.32 0.90 547 0.32 0.35 0.65 0.62 0.90 532 0.32 0.27 0.33 

*Please see footnote from Table 24 for description of column names. 

 

 The specificities for achieving a sensitivity level of approximately 0.7 

were decreased to 0.69, 0.79 and 0.81 respectively, and the FDRs 

increased further to 0.38, 0.18 and 0.14, resulting in considerably higher 

numbers of false signals 260, 76 and 59. The thresholds were adjusted to 

a lower value, and as a result the PPVs decreased. 

 Overall for the different levels of sensitivity, the specificity and PPV 

decreased when detecting rare signals compared to simulation study 1. 

However, there was a minor improvement in the FDR performance 

across the levels of sensitivity. 
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7.6.2.3 Simulated scenarios to explore performance of SDAs for 

detecting signals of rare events  

The results from the 24 simulated scenarios are presented in Figure 18 and see 

appendix D, Table 34 for full numerical results. 

*The points of the curve represent the 𝑹𝑹𝒊𝒋 values investigated in the simulated scenarios. Values in-

between are just extrapolations. 

 

 

When 𝐼𝑖 = 1/250 and the 𝑅𝑅𝑖𝑗 increases, the sensitivity also increases from 0.289 

when 𝑅𝑅𝑖𝑗 is 1.2, to 0.998 when 𝑅𝑅𝑖𝑗 is 10 for the PRR02.5 method; 0.197 to 

Figure 18: Simulation scenario results when detecting rare events. 
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0.998 for the IC02.5, and 0.080 to 0.985 for the GPS05. The FDR is highest when 

the 𝑅𝑅𝑖𝑗 is 1.2, and was lowest when 𝑅𝑅𝑖𝑗 set at 10. This was the case across all 

methods. The FDR is particularly high for the PRR02.5 when compared with the 

Bayesian methods; the GPS05 however outperforms the IC02.5 by small margins 

across all 𝑅𝑅𝑖𝑗 values. For example when 𝑅𝑅𝑖𝑗 is set to 1.2, the FDR for the 

PRR02.5 is 0.528, 0.229 for the IC02.5 and 0.081 for the GPS05. At a 𝑅𝑅𝑖𝑗 of 10, the 

FDR for the PRR02.5 is 0.092, 0.0009 for the IC02.5 and 0.0003 for the GPS05. 

For 𝐼𝑖 = 1/500, a similar pattern is observed, although the estimated values for 

sensitivity were lower. Moreover there was an observed improvement in the 

FDR as compared to when 𝐼𝑖 = 1/250. Again, the PRR02.5 provided the best 

performance of sensitivity between 0.27 and 1.0 but at the expense of increased 

FDRs between 0.08 and 0.51. The GPS05 method produced the lowest FDR which 

was less than 0.07 across all scenarios. 

Finally, with 𝐼𝑖  = 1/1000 the sensitivity decreased slightly across all three 

methods, though the pattern of increasing sensitivity as the 𝑅𝑅𝑖𝑗 increased was 

similar. The FDRs were lowest across all scenarios for this incidence rate; again 

the PRR02.5 method produced the highest FDR, and the GPS05 achieved the 

lowest FDR.  

7.6.3 Conclusion 

The first part of this simulation study shows the performance of methods for 

detecting rare signals with 𝑅𝑅𝑖𝑗  ≤ 5 and a 𝐼𝑖  = 1/500. As was the case in 

simulation study 1, the IC02.5 and GPS05 were superior to the PRR02.5, providing 

greater specificity at levels of sensitivity greater than 50%. Again the GPS05 
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method provided the best performance with the highest degree of accuracy. 

However, in general rare signals were detected with less accuracy as indicated 

with the lower AUC than shown in simulation study 1. The Bayesian methods 

(IC02.5 and GPS05) also outperformed the PRR02.5 by displaying the lowest FDR at 

all levels of sensitivity above 50%, with the GPS05 producing the lowest FDR. 

The methods were evaluated more extensively by assessing their performance 

on 24 simulated scenarios using the standard threshold criteria. For signals with 

high numbers of reports with 𝑅𝑅𝑖𝑗 above 5, the IC02.5 and GPS05 provide the best 

FDR performance, and the sensitivity was similar across all methods, above 80%. 

For signals with a low number of reports with 𝑅𝑅𝑖𝑗 below 4, the GPS05 had the 

lowest FDR, although the GPS05 also produced the lowest sensitivity. The 

sensitivity performance was similar with the PRR02.5 and IC02.5 methods. 

Therefore considering the trade-off between the FDR and sensitivity 

performance, the IC02.5 proved to be the method of best choice. However, the 

GPS05 with its standard threshold criteria (i.e., GPS05 > 2) is regarded as 

conservative, and hence changing the threshold would improve the sensitivity 

performance. For example using the GPS05 > 1 will result in an improved 

sensitivity of 70% and FDR of 14% when detecting rare signals, as shown in 

section 7.6.2.2. 
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7.7 Simulation study 3 - Exploring performance within small 

databases reflective of Clinical Trial Unit Databases 

 

The aim in this simulation study is to investigate the performance of SDAs in 

smaller scale systems, by simulating different scenarios to mirror the type of 

harms data that might be collected in CTU databases.  

7.7.1 Simulation procedure 

As part of the survey in chapter 5 information was collected on the number of 

drugs trialed, and events reported in CTUs with central databases (section 

5.4.1.2). The results from six CTUs with a central database are provided in Table 

27. The majority of these CTUs involved cancer trials where signal detection 

methods would more likely have been useful. Therefore, the simulated scenarios 

are not necessarily reflective of the wider network of CTUs. 

Table 27: The specific sizes of harms databases from five clinical trial units. 

Number of Drugs j Number of Events i (AEs or SAEs) 

12 100 SAEs 

20 200 AEs 

20 Not reported 

40 200 AEs 

40 33 SAEs 

34 140 AEs 

 

Using the results from Table 27, five scenarios of different sized clinical trial 

database were chosen. The range of sizes explored were: (1) 60 drugs and 150 

events, to reflect a large database as explored previously (2) 40 drugs and 120 

events, (3) 30 drugs and 100 events, (4) 20 drugs and 80 events, and (5) 10 drugs 

with 50 events. For simulating the clinical trial databases the same model was 
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used as in simulation study 1 and 2; although with each of these five scenarios 𝐼𝑖 

= 1/250, 1/500 or 1/1000 was explored separately, resulting in the total of 15 

simulated scenarios, with 1000 simulated datasets in each scenario. The SDAs 

were assessed again by comparing sensitivity and FDR, and all SDAs were 

assessed using the standard threshold criteria only (i.e. PRR02.5 > 1, IC02.5 > 0 and 

GPS05 > 2). 

7.7.2 Simulation study 3 results 

The simulation results including sensitivity and FDR for the different scenarios 

when considering the database size are presented in Figure 19 and see appendix 

D, Table 35 for full numerical results. 

When 𝐼𝑖 = 1/250 the sensitivity decreased as the database reduced in size (See 

appendix D, Table 35). The PRR02.5 method proved the best method with the 

sensitivity ranging from 0.51 to 0.17 for scenarios (1) - (5) respectively. The 

PRR02.5 displayed the highest FDRs of above 0.14 across all scenarios. The GPS05 

method produced the lowest FDR across all scenarios, with FDRs below 0.05. 

When 𝐼𝑖  = 1/500, the trends were similar, although the sensitivity was further 

decreased for each method, and the FDRs are generally better for all methods. 

When 𝐼𝑖 = 1/1000, the same pattern is displayed with decreased sensitivity and 

improved FDRs. 

7.7.3 Conclusion 

When reducing the database size of that similar to CTU databases, it was shown 

that the sensitivity of all methods reduced considerably. For example, for 

databases containing only 20 drugs (scenario (4)), the sensitivity was 



204 
 

approximately below 20% for all methods and across all levels of 𝐼𝑖. The FDR 

across all the scenarios was increased for the PRR02.5 compared with the 

Bayesian methods (IC02.5 and GPS05) which both produced similar FDRs. As was 

suggested in simulation study 2 the IC02.5 would be the best method to consider, 

though the GPS05 with a different threshold criteria would outperform the IC02.5.  

 

*The points of the curve represent each scenario for the database size i.e., with 

specific number of drugs and events as explained in section 7.1.1. Values in-between 

are just extrapolations. 

Figure 19: Simulated scenario results to assess the FDR and sensitivity 
performances at different incidences. 
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Considering these poor performances with regard to sensitivity for databases of 

reduced size, a different threshold should be used. The results from the 

sensitivity-specificity trade-offs in simulation studies 1 and 2 with sensitivity 

values above 50%, should be considered in practice. However it is still important 

to balance the sensitivity with the FDR, to optimize the performance when 

detecting true signals as much as possible.  

7.8 Discussion 

These simulation studies have provided a systematic assessment of the 

performance of commonly used SDAs. 

In simulation study 1 for each of the SDAs, different thresholds were explored to 

assess the balance between FDR and sensitivity when detecting signals in an AE 

reporting system containing 60 drugs and 150 AEs. The results from this study 

have shown that the PRR02.5 was not able to control the FDR, and for achieving 

values of sensitivity above 50% lower threshold values were required than the 

standard thresholds currently in use. The GPS05 performed better than the IC02.5 

and PRR02.5 methods, as displayed in the ROC curves and by the AUC values. For 

AE reporting systems of similar size, it is recommended that a lower threshold of 

the GPS05 is used, e.g., GPS05 > 1.30 to improve the sensitivity performance to 

approximately 60%, but also control the FDR to 10%. 

Similarly in simulation study 2, the use of different thresholds on the SDAs was 

explored to assess the balance between FDR and sensitivity when detecting rare 

signals. The results again suggested that the PRR02.5 produce the highest FDRs, 

and that the GPS05 was the better SDA for achieving high values of sensitivity 
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above 50% whilst also controlling the FDR, which was achieved by lowering the 

threshold. These performances however were worse than displayed in 

simulation study 1. The methods were also assessed at the standard threshold 

criteria in 24 different simulated scenarios considering variation on the 𝐼𝑖 and 

𝑅𝑅𝑖𝑗 parameters. The results showed that the PRR02.5 provides the highest 

sensitivity as the 𝑅𝑅𝑖𝑗 increases; however the PRR02.5 also provided the highest 

FDRs of the three methods when detecting rare signals. On the other hand the 

IC02.5 and GPS05 control the FDR much better, although their sensitivity 

performance was relatively poor, particularly the GPS05. It is therefore 

recommended that a threshold of GPS05 > 1 could be used to improve the 

sensitivity performance to approximately 70% and control the FDR to a level of 

14%. 

Finally in simulation study 3, the SDAs were assessed in five scenarios 

considering different database sizes, to mirror current CTU systems. The results 

from this study have shown that the sensitivity decreases as the size of the 

database decreases, and the SDAs with their standard threshold criteria are only 

able to detect few signals for small or sparse data similar to harms data 

contained in CTUs. Specifically it has been shown that when the database 

contains fewer than 20 trials and 80 different AEs, that SDAs become unreliable 

signal generating tools, with poor sensitivity below 10% at times. Therefore 

traditional signal detection methods (i.e., cases and cases series reviews) should 

be used on databases of a smaller scale, as discussed in chapter 6.    
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Most of the safety signal detection methods were developed in the last two 

decades, and there have been some attempts to compare the performance of 

some of these methods as highlighted in the literature review. For example, a 

recent study [165] assessed the performance of the PRR using real spontaneous 

reported data from the Eudravigilance database; another study [169] assessed 

the performance of the GPS on a pharmaceutical company AE database. 

However, it is very challenging to assess the performance of the methods in 

terms of sensitivity and FDR using real databases when the status of true signals 

is unknown. In an earlier study [172], 10 methods published before 2000 were 

compared by simulating the incidence reporting process based on Poisson 

distribution. However the FDR was not estimated in this study as the methods 

had not been developed in a multiple hypothesis testing framework, and they 

did not investigate the use of different threshold values.    

The simulation model used in this study has considered real prescription data 

from the HSCIC, and ADR reports were obtained from the EMA PROTECT 

database to formulate accurate and reliable parameters during the data 

generation process. However, the simulated data only represents fictional drug 

classes and outcome types, and therefore no clinical interpretations should be 

drawn from the data. 

It was not possible to examine the onset of signals relative to the time point at 

which an ADR is confirmed. Therefore a comparative assessment between SDAs 

compared with more traditional methods could not be made. Due to the 

constraint on time for simulating the data, the use of different thresholds could 
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not be investigated in the simulated scenarios in simulation study 2 and 

simulation study 3. This could have enhanced the performance, and improved 

the sensitivity when detecting rare events and signals in CTUs; and needs to be 

carried out in future work. Furthermore the assessments of the SDAs on the five 

different scenarios representing different database sizes in CTUs were restricted 

to the number of drugs and events in each scenario. However, as suggested in 

Table 27 there may be a high number of drugs with very few AEs (or the 

opposite) which might produce different results, this would need to be explored 

in future work for consistency also.    

More recent signal detection methods have been developed including 

multivariate modeling techniques [192] and the likelihood ratio test [203] which 

now enable adjustments for potential confounding factors. Confounding has 

been investigated primarily in the context of poly-pharmacy, wherein a true 

association of an AE with one drug may bias its estimated association with 

another drug when the two drugs tend to be prescribed and reported together 

[183, 204, 205]. These methods need to be researched further to understand 

their full potential in the context of signal detection analysis. 

For clinical trials data, more traditional statistical tests such as Pearson’s chi-

square test, Fisher’s exact test, and the chi-squared test for rates comparison 

are often used for flagging safety signals. These methods, however, do not 

control for multiplicity. Multiple testing is highly important when making 

assessments about AEs, as stated in the ICH E9 good clinical practice guideline 

[206]: “when hypothesis tests are used to evaluate safety data, statistical 
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adjustments for multiplicity to quantify the type I error are appropriate”. In 2004, 

Mehrotra and Heyse [207] developed a procedure to control FDR based on 

Benjamini and Hochbergs (BH) procedure [197] considering the hierarchical 

structure of MedDRA coding, namely, AE preferred terms (PTs) are grouped into 

body systems, referred to as system organ classes (SOCs). This procedure adjusts 

FDR at both SOC level and PT level, and hence, it is often referred to as the 

double FDR. Following Mehrotra and Heyse, Berry and Berry [184] introduced 

the Bayesian hierarchical mixture model (BHMM) to detect safety signals 

(Section 6.3.4), which has the same assumption as the double FDR (DFDR) 

method. It is assumed that the probability that a drug has caused a type of AE is 

greater if its rate is elevated for multiple AE PTs within the same SOC, than if the 

AE PTs with elevated rates belonged to different SOCs. Most recently, Mehrotra 

and Adewale [208] developed a newer DFDR adjustment approach and 

demonstrated that it has better performance in terms of FDR and sensitivity. 

This method needs to be researched further in clinical trials, and there is a 

demand for software developments to encourage its use. 

This study has shown that the two Bayesian (IC02.5 and GPS05) methods, 

particularly the GPS05 when using a lower threshold than the standard threshold 

criteria performs well when considering the sensitivity and the FDR. As shown in 

chapter 5, SDAs do not appear to be used currently in CTUs, and this simulation 

study suggests that the SDA methods that have been explored could be 

particularly unreliable on small datasets. However, the EMAs guideline on good 

pharmacovigilance practices (risk management) states that “signal detection is 
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an important element in identifying new risks for all products, and should be 

used as part of a pharmacovigilance tool-kit”.  

It is also important to remember that spontaneously reported data comes with a 

number of inherent limitations, and therefore the danger of over-interpreting 

SDA outcomes has been well highlighted in the past [209]. Further efforts are 

therefore needed to improve access to other sources of data from clinical trials 

and observational data so that adverse effects can be evaluated in a more 

comprehensive and unbiased manner. The Eudravigilance clinical trials module 

(EVCTM) from 2004 is designed to receive reports on SUSARs that occur in 

clinical trials, and data can sometimes be accessed by sponsors of clinical trials 

to inform on the DSURs or for use of traditional signal detection methods like 

aggregate analysis. Other ongoing initiatives like the exploring and 

understanding-adverse drug reactions (EU-ADR) [210] project, the innovation in 

medical evidence development and surveillance [211] program and the pilot 

project Mini-Sentinel [212] sponsored by the FDA have developed electronic 

systems which have been setup with the aim to promote the use of 

observational data to complement existing methods of safety surveillance. 

However, public sector access to some of these systems is not possible, and data 

requests can often be very costly. 

Finally it is important to remember that SDAs serve as screening tools to identify 

possible safety signals for further investigation. Safety scientists need to further 

evaluate the identified possible signals using medical rationale and additional 
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information such as biological plausibility, outcome of the event, severity and 

seriousness of the event, and other concomitant medications used.  
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Chapter 8: Conclusions and further 
work 
 

This thesis details research into some of the challenges that stem from the 

reporting, conduct, analysis and interpretation of harms in clinical research.  

8.1 Overview 

The systematic review in chapter 2 has shown that the current standards of 

reporting harms in RCTs, after the release of the CONSORT-harms still remains 

poor and inadequate [55]. Readers of RCT publications should be able to balance 

the trade-offs between the benefits and harms of interventions [213], however 

this review highlighted inconsistencies and at times inadequate reporting for all 

10 CONSORT-harms recommendations across seven systematic reviews, which 

included RCTs of a diverse range of clinical areas and conditions. The review 

highlights the need for wider adoption of the CONSORT-harms extension by 

journals. This research was published as a review in the British medical journal 

(BMJ) open, and was added to the list of important publications by the Cochrane 

adverse effect methods group (AEMG). 

The debate around open access to clinical trials data continues, with ongoing 

developments for better data transparency of clinical trial results. The value of 

unpublished data and results held within CSRs has proven highly influential in 

the past, when evaluating both the safety and efficacy of marketed drugs [17, 

83]. The case study in chapter 3 which includes a representative sample of five 

published RCTs for the obesity drug olistat, has shown that the CSRs provide 
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more harms data, and were generally more transparent in their findings than 

the journal publications. They also detailed more about the design, conduct, and 

analysis of the trial which help facilitate the assessment of risk of bias in an 

evidence synthesis. This study is currently under review for publication. 

The unpredictable and diverse nature of harms substantially increases the 

complexity of the study designs and data sources used in a systematic review. 

When searching and identifying relevant data sources it is important to consider 

a structured approach, so that harms can be evaluated in a comprehensive, 

unbiased manner (Chapter 4). Due to past disasters in drug safety like the 

thalidomide tragedy, PV has resulted in the development of systems that collect 

individual case histories of ADRs to improve the safety profile of medicines 

[109]. These systems can support a more comprehensive resource for harms 

data held within health databases, which are now frequently being used in 

hypothesis-strengthening observational studies to assess the risks of harms 

[140]. 

At present there is a lack of empirical evidence discussing the methods and 

procedures used in the trial safety monitoring within UK clinical trial units (CTUs) 

[142]. Therefore it was important to investigate this further by conducting a 

national survey to communicate with the CTUs. The survey (chapter 5) has 

shown that very few CTUs database harms centrally, and it was identified that a 

diverse range of data sources external to the trial are being used during the trial 

monitoring. This included not only published literature but also observational 

data sources like health databases and spontaneous reports. These data were 
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used when monitoring ongoing trials, preparing safety documents like the 

develop safety update report and to support expedited reporting to the trial 

sponsor, regulatory authorities and research ethics committee. 

Over the past forty years SRSs have often been at the forefront for detecting 

delayed, uncommon and rare harms [52, 140]. Since 2004 it is a mandatory 

requirement now for SUSARs from clinical trials to be submitted to the 

Eudravigilance clinical trial module, which can also be used for drug safety 

surveillance purposes. Due to the accumulating number of spontaneous and 

SUSAR reports, data standards now make it possible to use signal detection 

algorithms (SDAs) to systematically explore safety data and generate hypotheses 

(chapter 6). Unlike traditional signal detection, SDAs can detect drug-drug 

interactions or drug-related syndromes which otherwise may not be detected. 

However, the use of SDAs in clinical trial settings has not been investigated in 

detail; therefore a simulation study was needed to explore this and other 

performance characteristics. 

The simulation study in chapter 7 has explored the use of SDAs, and suggests 

that some are more suitable to use than others. The study investigated the 

performance of three SDAs across different simulation studies with aims to 

assess the performance in an AE reporting database of fixed size (60 drugs and 

150 AEs), an AE reporting database including rare signals and harms databases 

similar to those in CTUs. Of the three SDAs the Bayesian gamma Poisson shrinker 

(GPS05) method produced the lowest number of false signals across all scenarios, 

as measured with the false discovery rate (FDR). The GPS05 was also found to be 
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very conservative in its approach, which is why an investigation was carried out 

to explore the use of different thresholds. This was mainly to try and maximize 

the sensitivity performance of detecting true signals, but also control the FDR. 

When maximizing the sensitivity above 50%, the GPS05 outperformed the other 

SDAs with lower FDR values. However it was suggested that these SDAs are 

unsuitable and potentially unstable when used on CTU databases of smaller size. 

Mainly due to their poor performance on the sensitivity, this was shown to be 

below 20% at times. 

8.2 Limitations 

The systematic review (chapter 2) did not assess changes in reporting over time, 

to observe for any improvements since the release of the CONSORT-harms 

extension in 2004. Since some of the included studies contained trials reported 

prior to the publication of the CONSORT-harms guideline (Pre-CONSORT), it may 

have been beneficial to provide a Pre vs. Post-CONSORT in a meta-analysis 

comparison to observe for levels of improvement after the release of the 

guideline. In fact this has been assessed for the standard CONSORT guideline 

[59], and they generally found vast improvements for each item, but some were 

still found to be lagging. Due to the limited number of studies published that 

have systematically reviewed the standards for reporting harms in RCTs using 

the CONSORT-harms as a benchmark, we were only able to obtained seven 

studies which were of varying clinical areas and conditions. This made it difficult 

to assess the heterogeneity across studies, and to determine which 

recommendations preformed the worst.  
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In the case study (chapter 3) we were able to obtain access to CSRs from Roche; 

however we requested access to 31 CSRs and only received 5. So the analysis is 

based only on a subset of representative trials, and therefore should not be 

considered as clinical evidence. Since orlistat is also centrally licensed by the 

EMA requests were made for access to the CSRs, particularly for those trials that 

pre-dated Roche’s policy act. Though the ongoing legal proceedings from 2013 

onwards, meant that the EMA were unable to provide any CSRs. However their 

policy has now been re-instated, and therefore it may now be possible to obtain 

more CSRs from them [89]. Furthermore, no clinical assessments of causality or 

relatedness for missing AEs and SAEs in the journal publications were made, 

though the protocol did mention that only related events were to be reported in 

the publication, but this was not accessed in detail.  

The survey provided valuable insight into some of the current practices involved 

in UKCRC registered CTUs (chapter 5). However 51% of the CTUs did not respond 

to the survey, this may have been affected by the limited collection time period 

which was restricted to approximately three months. In addition, many of the 

open-ended questions in the survey where the participants were asked to 

elaborate and provide further comments often lacked quality and quantity. For 

example when using an external harms data source like CPRD data, very few 

CTUs provided extensive detail on how and why they used the data. We were 

unable to follow-up on any outstanding queries, to try and determine more 

detailed responses from the participants. Therefore the results only represent a 

subset of the responses.  
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The design and parameters used in the simulation model in chapter 7 was 

dependent upon summary data obtained from the SmPCs, prescriptions data 

from the HSCIC and data obtained from the survey in chapter 5. A real data set 

would have improved this simulation study, and enabled a more expansive 

detailed assessment when detecting real life safety signals. Moreover, we were 

unable to research other signal detection methods like the multivariate logistic-

regression modeling technique [192], which allow adjustments for potential 

confounding factors during the analysis of drug-event relationships; and the 

Bayesian hierarchical mixture modeling method for detecting signals from 

clinical trials data. 

8.3 Integration with current research 

Over the past 15 years there has been an accumulation of research 

demonstrating the existence of poor and inadequate reporting for harms in RCTs 

[9, 10, 24, 214]. As a result of these findings in 2004 the CONSORT group 

developed their harms extension, to help improve upon the standards of 

reporting harms in RCTs. Our review was the first to empirically assess the 

standards of harms reporting using the CONSORT-harms as a benchmark. The 

review supports findings from previous studies that the reporting of harms is still 

inconsistent and inadequate, and that greater emphasis should be in place for 

wider adoption and full adherence of reporting guidelines to help improve these 

standards. 

More recently researchers have discovered potentially new and more 

comprehensive sources for information on clinical trials results, including CSRs. 
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The information contained within CSRs has proved vital for evaluating both the 

efficacy [84] and safety [85] of clinical interventions, with some of the evidence 

from journal publications questioned, and even overturned by findings from 

unpublished information reported in the CSR [86]. The case study has carried out 

an extensive assessment of the harms reporting in CSRs against the journal 

publication for a sample of orlistat trials. This study supports previous findings 

about CSRs, that they should be considered in any evidence synthesis of clinical 

trial results, and that researchers should not just rely on the findings from 

journal publications and systematic reviews of RCTs when assessing harms. 

The value of signal detection methodologies has been widely recognized over 

the past decade. Although past studies [165, 167, 173, 174] have reported that 

the performance characteristics of SDAs are not well understood, and that there 

exists a lack of guidelines and gold standards when using them. The aim of the 

simulation study was to investigate the performance of SDAs in three different 

simulation studies that have not been researched previously in detail. In 

particular, the performances of the SDAs when applied to simulated data 

designed to mirror CTU harms databases, was investigated. The parameters and 

design of the simulation model were informed from data collected from the 

survey. 

8.4 Recommendations for Researchers 

Full adoption of the CONSORT-harms by journal editors is imperative to improve 

the standards for reporting harms [55]. Peer reviewers should also be properly 

instructed on how to assess RCTs with adherence to the reporting guidelines 
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accordingly. The Equator network [107] is an international initiative that seeks to 

improve the reliability and value of published health research literature, by 

promoting transparent and accurate reporting and wider use of robust reporting 

guidelines like the CONSORT-harms extension. The Cochrane AEMG [46] have 

also developed systematic review methods to address the issues of imbalanced 

reporting between harms and benefits in RCTs [47], which should be addressed 

when conducting reviews of harms. Also the PRISMA harms statement is 

currently under development. This statement aims to develop a checklist of 

items to guide researchers when conducting systematic reviews and performing 

meta-analysis on harms.  

Open access to clinical trial results and data will undoubtedly continue to 

improve, with the various stakeholders including funders, academics, industry, 

publishers and regulators all supporting the move towards greater transparency. 

It is also important for the continued registration of clinical trials even if the 

outcome of the trial is unpublished. In the past it has been suggested that 

approximately 50% of trials results are unpublished and therefore hidden, access 

to the data from abandoned trials is equally as important as published trials 

[215].  

Harms data is archived and collected individually by trials within CTUs across the 

UK, although some have implemented central systems. The survey suggests that 

CTUs with a central reporting system experience certain benefits including; a 

better coverage of trials and tracking of AEs as they are stored in the same way 

and easier to compare workloads for future PV and useful for reporting in 
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development safety update reports and periodic safety update reports [142]. 

There are also obvious needs to improve access to existing harms data from 

CTUs in a more coherent and systematic approach, to allow for larger-scale drug 

safety monitoring. As discussed, it is now a requirement for any SUSAR to be 

reported to the MHRA and the EMA EudraVigilance clinical trials module, and 

these reports can be accessed through the EudraViglance gateway, but access by 

research organizations in public sector is still very limited. Therefore it is 

important to improve access at affordable costs to systems like the 

EudraVigilance so that CTUs can learn from each other to move forward.  

For identifying safety signals of AEs from reported reactions, SDAs are 

increasingly being used to supplement the traditional expert review of reports 

and to analyze the large volume of accumulated data more rapidly. Though 

there is a lack of gold standards for applying SDAs in practice, and they should 

only be used as hypothesis generating tools and not hypothesis testing purposes 

[216]. The current SDAs (PRR, IC and GPS) have in the past reported many 

performance related issues, from their failure to control the number of false 

discoveries, the uncertainty of appropriate thresholds that should be used in 

practice and their performance on small and/or sparse datasets [174]. The 

recent development of the methods based in a multiple hypothesis testing 

framework now enable SDAs to control the number of false discoveries by 

providing an estimate of the FDR at any threshold. In the simulation study we 

provided an extensive evaluation when using different thresholds to compare 

the sensitivity performance and FDR. It was recommended that the GPS05 
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method should be used with a lower threshold to maximize the sensitivity 

performance above 50%, and also provide an optimal FDR. However these SDAs 

did not appear to be suitable when applied to the simulated scenarios designed 

to mirror CTU databases, as indicated by the poor sensitivity performance. 

Therefore it is recommended that traditional PV methods like case and case 

series reviews are used in smaller databases for a higher demand on sensitivity 

for improved detection of safety signals. 

8.5 Further work 

The systematic review found that the reporting of harms was poor and 

inadequate even after the release of the CONSORT harms extension. Although 

this was only assessed using a small cohort of seven published reviews at the 

time, it is recommended that the review is updated in the future. There also 

needs to be some guidance provided to reviewers conducting similar studies 

using the CONSORT-harms checklist. The risk of bias amendment in this study 

provides some important recommendations when conducting similar reviews, 

but other considerations may include guidance on using appropriate search 

criteria for locating the trial reports and how reporting over time could be 

assessed.  

Regression modeling with time of publication included in the model could be 

used to determine any improvements of reporting over time in reviews. This 

could be encouraged by asking reviewers to separate RCT reports by year of 

publication, which would then allow for regression analysis to be carried out. 

Alternatively, reporting over time could be assessed by taking the median time 
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points for collecting the trial reports from each study, then in ascending time 

order show the proportions of reporting in the forest plots.  

We recommend that this review is updated in the future, where a more detailed 

assessment can be undertaken of the impact of the CONSORT harms statement 

over time. A similar approach was undertaken to assess the uptake of the 

standard CONSORT statement [60, 217], and this study found that certain items 

were still lagging post-CONSORT. This is likely to be similar with the CONSORT-

harms items.  

In the past, CSRs have provided more accurate harms information on the design, 

conduct and analysis in a clinical trial. For example a recent study [218] to 

investigate and describe the potential benefits and harms of Tamiflu by 

reviewing all CSRs of RCTs, the study found significant evidence of increased 

risks of nausea, vomiting, headaches and renal and psychiatric syndromes. It is 

anticipated that this data will be compared with the journal publication in a 

separate study in the future by the same authors. There is also the potential for 

more information on harms being unveiled by exploring the use other formats of 

clinical trial results [105]. The information from case report forms (CRFs) could 

also be useful in an evidence synthesis of harms along with the information 

obtained within the CSR. The CSRs for the orlistat case study in this thesis 

removed all CRFs, due to the patient confidential information contained within. 

A sample of the CRF was provided, and it is easy to see from this the potential 

value of the additional harms data that could be obtained on each patient 

individually. A sensitivity analysis considering each of the key points: 
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relatedness, causality, severity grading and attribution should also be performed 

in the meta-analysis. Also multiple testing between events and other statistical 

methods should be considered when handling rare events. 

Accessing CSRs can be difficult as found in our case study and has also been 

exemplified in past studies. However it has been shown, the extent of missing 

information (whether efficacy or harms) from journal publications, does support 

the use of CSRs in evidence synthesis. Though, reviewing CSRs can be difficult, as 

they are extremely lengthy documents and therefore represent a considerable 

challenge to researchers. Alternative to CSRs, registry reports can often be 

accessed instantly through a clinical trial results database with the trial ID, and 

they have occasionally found additional information on harms. However, recent 

studies suggest that registry reports have also been found to be unreliable [81] 

with missing information [80]. There is a need to develop tools and 

methodological approaches that will reduce the workload and still allow 

researchers to use CSRs in an accurate and efficient manner.  

Many unknowns still remain about the current safety monitoring practices 

involved in CTUs, and possibly how improvements could be made. There are still 

a number of outstanding questions left unanswered from the survey that may 

help to determine some valuable opinions towards making future progress. For 

example, it is important to understand the choices made for collecting and 

storing harms data, and to determine the potential advantages for developing a 

central database which was not fully understood from the survey. However this 

appears to be more of a complex issue, as was also highlighted in a UKCRC CTU 
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which recently developed a central PV system [142]. This CTU encountered a 

number of issues, particularly with the costs involved for training staff to 

manage the system, and the time spent transcribing the PV processes involved 

into SOPs. It also appears evident that a central system may only be beneficial 

for CTUs investigating certain diseases (e.g., cancer or surgical), where there is a 

greater volume of harms data. 

It was clear from the survey that CTUs do use existing harms data from external 

sources during the trial safety monitoring, although to determine more about 

the exact methods and processes used, further in-depth discussions would be 

needed. Nevertheless, published trials and systematic reviews were amongst the 

most common external harms data source being used; mainly to support data 

monitoring committees, the preparation of development safety update reports, 

and to improve expedited reporting to sponsors and research ethic committees. 

But these responses still lacked detail. Further work would be to conduct 

interviews with the responding CTU members to understand their reasons for 

using the data in first place and what implications the data may have had in the 

long run. For example, was the data used to improve the design of a trial (e.g., 

recruitment, sample size, etc), or was it used to improve the trial safety 

monitoring and conduct.   

The SDAs in the simulation study were assessed on simulated data sets; these 

assessments should also be carried out on a real dataset, preferably in similar 

real-world environments like in CTUs. This kind of assessment would also allow 

evaluations into the impact on resources used to evaluate detected signals and 
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the numbers required to screen the databases. In the simulation study we 

compared estimates for the false discovery rate (FDR) across these methods, 

although currently there is a lack of guidance for determining an optimal FDR. 

However as noted this may be affected by the time and resources needed when 

evaluating a signal, but also may vary in CTUs due to the limited resources 

available. This would need to be explored in future work.  

Multivariate logistic regression modeling methods are now being explored by 

the FDA [173]. Now with the introduction of confounding with these methods, 

this potentially has improved the sensitivity-specificity performance in signal 

detection [192]. Although another study reports that these methods can also be 

restrictive in the detection of rare signals [183]. Therefore the potential of these 

methods is still unclear. Bayesian hierarchical mixture modeling techniques have 

also been researched for use in clinical trials [184], though the proposed idea of 

grouping and lumping AEs into one group then allocating it a prior distribution 

has been questioned in the past [185]. However this method introduces the 

potential of drug safety analysis using a Bayesian approach which is less tied to 

type I errors unlike the disproportionality analysis methods, and shows the 

potential promise these approaches may have in this area in the future and may 

even replace the use of standard meta-analysis techniques currently under use.  

Finally there is an overwhelming requirement to determine accurate guidelines 

and gold standards when using SDAs, which currently is lacking in many of the 

good pharmacovigilance clinical practice guidelines, including the EMA and ICH.  
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Appendix A – Search strategy and 
Forest plots from Chapter 2 

Search strategy: 

Ovid MEDLINE: 

1. harm* 

2. Safe* 

3. CONSORT 

4. Consolidation of standards reporting trials 

5. (#3 OR #4) 

6. (#1 OR #3 OR #4) 

7. (#2 OR #5) 

8. Toxic* 

9. Adverse events 

10. Adverse effects 

11. Adverse 

12. (#9  OR #10 OR #11) 

13. (#5 OR #12) 

14. Randomised 

15. Randomized 

16. RCTs 

17. Randomised controlled trials 

18. Randomized controlled trials 

19. (#14 OR #15 OR #16 OR #17 OR #18) 

20. Clinical trials 

21. Side effect 

22. Risk* 

23. Complication* 

24. Treatment next emergent 

25. Post marketing next surveillance 

26. drug next surveillance 

27. (#5 OR #12 OR #19)  

28. (#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 

OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR 

#21 OR #22 OR #23 OR #24 OR #25 OR #26)  

29. consort or consolidat$ standard$ 

30. *randomized controlled trials/ 

31. *clinical trials/ 
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*truncates the word e.g. harm* (harm, harms or harmful). 

 

ISI Web of Knowledge: 

1. harm* 

2. Safety 

3. CONSORT 

4. Consolidation of standards reporting trials 

5. Adverse events 

6. Adverse effects 

7. (#1 OR #2 OR #3 OR #4 OR #5 OR #6) 

8. ((consort OR ’consolidat*’) AND (checklist* OR quality)) 

Scopus: 

1. harm* 

2. Safety 

3. CONSORT 

4. Consolidation of standards reporting trials 

5. Adverse events 

6. Adverse effects 

7. (#1 OR #2 OR #3 OR #4 OR #5 OR #6) 

Cochrane Library: 

1. CONSORT 

2. Consolidation of standards reporting trials 

3. harms 

4. Safety 

5. Adverse events 

6. RCTs 

7. Randomised controlled trials 

8. (#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7) 
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Figures 20: Forest plots for the CONSORT harms recommendations 

Recommendation 1: Title & Abstract 

 

 

 

 

 

 

Recommendation not assessed in Capili study. 

 

Recommendation 2: Introduction 

 

 

 

 

 

Studies Capili and Pitrou did not report recommendation 

 

 

Recommendation 3: Definition of Adverse events 

 

 

 

 

 

 

Shukralla reports recommendation as multiple items. 
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Recommendation 4: Collection of harms data 

 

 

 

 

 

 

Breau & Shukralla report recommendation with multiple items 

 

Recommendation 5: Analysis of harms 

 

 

 

 

 

 

Shukralla reports the recommendation with multiple items 

 

 

Recommendation 6: Withdrawals 

 

 

 

 

 

 

Shukralla reports the recommendation with multiple items 
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Recommendation 7: Number of patients analyzed 

 

Shukralla reports the recommendation with multiple items, and Capili did not report the 

recommendation. 

 

Recommendation 8: Results for each adverse event 

 

 

 

 

Breau and Shukralla report with multiple items. Turner chose not to assess this 

recommendation and Capili did not report.  

 

 

Recommendation 9: Subgroup analysis 

 

Bagul, Breau, Turner and Shukralla chose not to assess this recommendation. Capili and 

Pitrou did not report. 
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Recommendation 10: Balanced discussion 

 

Breau and Shukralla report with multiple items. Turner chose not to assess. Capili and 

Pitrou did not report. 
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Appendix B – Search Strategy and 
Further Results from Chapter 3 
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Appendix C – Copy of Survey 
Questionnaire from Chapter 5 

 

A short survey of current practice: data-basing adverse events in UKCRC 

registered CTUs. 

This is a very short survey and comprises of only nine questions and should take 

no longer than 5 minutes to complete. The aim is to identify the current practice 

in registered CTUs when data-basing AEs, and understand the use of those 

databases. These questions will inform my PhD simulation work and the results 

of the survey will be shared with the UKCRC Registered CTU Network at a 

Statistics Operational Group network meeting. 

 

1. How are adverse events (AEs) data-based in your CTU?  

 

o Within a database specific to a single trial (Go to Question 6) 

o Within a database holding multiple trials related by 

disease/condition/treatment (Go to Question 2) 

o Within a database holding multiple trials of  a diverse range of 

disease/condition/treatment (Go to Question 2) 

o Other, please 

specify.…………………….………………………………………………………………….... 

…………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………

………………………………….. 

 

 

2. Please describe how the database is used within the CTU? 

 

o Held by sponsor or other, with no use by the CTU 

o Monitoring for ongoing trials 

o Signal detection 

o Planning for new trials  

o Other, please 

specify……………………………………………………………………………………………. 
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…………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………

…………………………………… 

 

 

3. Approximately how many trials have contributed to the database?  

 

......................................................................................................................

................ 

 

 

4. Approximately how many AEs are contained in the database? 

 

 

......................................................................................................................

............ 

 

 

5. If the CTU does use a central database (including for the purposes of 

reconciliation), based on your experience please briefly describe:  

 

 

a. what the advantage for using this database are? 

 

…………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………

…………………………………………………….. 

 

 

b. what the disadvantages for using this database are? 

…………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………

……………………………………………………… 
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6. Have you considered using a central database containing AEs across 

multiple trials? 

 

o Yes, could see no benefit 

o Yes, future plans to do this 

o No, not aware of considering this 

 

Comments:…………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………

……………………………………………………… 

 

 

 

 

7. During safety monitoring what external data to the trial, have you used? 

 

o Central AE database 

o Published trial reports and studies including systematic reviews. 

o Clinical Practice Research Data-link (CPRD)/ General Practice 

Research Database (GPRD). 

o The Health Improvement Network (THIN) 

o Medical and Healthcare products Regulatory Agency (MHRA) 

yellow card data. 

o Medicines Monitoring Unit (MEMO) 

o Other please 

specify……………………………………………………………………………………… 

……………………………………………………………………………………………………

……………………………………………………………………………………………………

…………………………………… 
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Comments on the value of approaches indicated: 

………………………………………………………………… 

..................................................................................................................................

..................................................................................................................................

.................................... 

 

 

8. Which of the following methods of signal detection have you used? 

o None 

o Gamma Poisson Shrinker (GPS) 

o Bayesian Confidence Propagation Neural Network (BCPNN) 

o Proportional Reporting Ratio (PRR) 

o Reporting Odds Ratio (ROR) 

o Other please 

specify………………………………………………………………………………………. 

..........................................................................................................

..........................................................................................................

..................................... 

 

 

 

 

9. Would you be interested in exploring this topic further in a future UKCRC 

statistics operational group network meeting? [Y/N] 

 

 

10. Would you be willing to present/talk? [Y/N] 

 

 

Name of trials unit: 

Person completing survey: 

Role within the trials unit:  

Years’ experience in clinical research:  

Email address: 
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Appendix D – Further Results from 
Chapter 7 

SAS Code for simulation model: 
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