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Abstract 
 

Background 

Oral squamous cell carcinoma (OSCC) is the 15th most common cancer worldwide but has 

poor five year survival (50%). Late stage presentation and limitations of early diagnostic 

techniques are persistent clinical problems. Sixty percent of patients present with advanced 

stage disease and with the attendant increase in mortality, morbidity and risk of recurrent 

disease it is particularly burdensome for both patients and health economies. Early 

diagnosis and treatment of OSCC improves prognosis. There is an opportunity to diagnose 

OSCC early in patients with oral epithelial dysplasia however currently there is no way of 

accurately predicting which lesions will undergo malignant transformation.  Aberrant 

methylation of tumour suppressor genes plays a significant role in the biology of early 

cancer and is detectable in both tumour and saliva. Saliva is a non-invasive method of 

longitudinal sampling and has potential as a tumour surrogate in disease surveillance 

programmes. This study aims to compare rates of methylation of a panel of genes in OSCC 

patients and a normal cohort to establish a threshold by which we could determine future 

disease testing in a dysplastic population.  

Methods 

Saliva samples were collected from 219 individuals from three diagnostic groups: Normal 

(defined as no oral malignant or premalignant disease) n=97, OSCC n=62 and dysplasia 

n=60. For statistical analysis the dysplasia cohort was sub-divided into lesions of low and 

high risk of malignant transformation based on the histological diagnosis of the index 

lesion. DNA was extracted and bisulphite treated from 258 saliva samples before duplex 

quantitative methylation specific PCR (qMSP) assays were performed on all samples to 

detect the frequency of methylation in saliva of a panel of genes. The five target genes 

(ADAMTS9, CCNA1, CYGB, P16, TMEFF2) were selected using a candidate approach on the 

basis of tumour specificity from studies on tumour/normal matched tissue pairs.  

Clinicopathological data was correlated with the qMSP data and analysed using SPSS v.21 

statistical software to look for associations with tumour and survival characteristics. 
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Results 

Only 3/97 individuals from the control normal cohort had saliva samples with detectable 

methylation above the analytical sensitivity of the P16 assay. Methylation of the remaining 

target genes (ADAMTS9, CCNA1, CYGB, TMEFF2) was not detected in normal saliva at levels 

above the analytical sensitivity of the qMSP assays. The most significant finding in this study 

was that methylation of four of the target genes (CCNA1, CYGB, P16, TMEFF2) in saliva, 

individually and when considered as a panel, was significantly associated with OSCC and as 

such could aid discrimination between malignant disease and normal saliva samples. 

Methylation of at least one gene in the panel was discovered in 29/67 of the binned OSCC 

saliva samples but only 3/97 of normal samples (Fisher’s exact p=0.001). Furthermore 

methylation of the gene panel is associated with high risk lesions when detected in saliva of 

patients with premalignant lesions (Fisher’s exact p=0.03).  

Conclusions 

This exploratory data supports the utility of duplex qMSP as a detection method for 

methylation markers in saliva.  The detection of methylation of this gene panel in saliva is 

significantly more associated with oral malignancy and high risk premalignant lesions than 

normal and low risk disease. This implies saliva may have merit as a surrogate tissue in an 

adjunctive role to clinical assessment and biopsy.  The assays are specific but have limited 

sensitivity.  However with further work, inclusive of additional genes, this methodology may 

identify predictive biomarkers that can be introduced into a trial surveillance of 

premalignant lesions. 
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1. Introduction 

1.1 Oral Squamous Cell Carcinoma and Oral Premalignant Disease 

Oral cancer is malignancy within the oral cavity which is defined as the structures occupying 

the space between the vermillion border of the lips to the junction between the hard and 

soft palate. The most common anatomical site for a lesion to arise is oral tongue and floor 

of mouth representing approximately sixty percent of presentations worldwide (De 

Camargo Cancela, Voti et al. 2010). The floor of mouth and associated sulci are considered 

areas of increased susceptibility due to the theory that carcinogens are likely to pool in this 

area (Barnes 2005) exposing cells to longer periods of tumourigenic substances.  Squamous 

cell carcinoma represents ninety percent of oral cancer. It is an invasive epithelial neoplasm 

with varying degrees of squamous differentiation with a propensity to metastasize to 

regional lymph nodes (Barnes 2005) and is the disease of interest in this thesis.  

Oral cancer can develop de novo from ostensibly normal mucosa or from premalignant 

lesions. The most common precursor clinical lesions of oral squamous cell carcinoma 

(OSCC) are leukoplakia (white oral mucosa lesion) and erythroplakia (red oral mucosal 

lesion) (Brennan, Migliorati et al. 2007). The global prevalence of leukoplakia is estimated 

between 1.7-2.7% with an annual malignant transformation rate of 1.36% (Petti 2003). 

Leukoplakia most commonly occurs on the buccal mucosa but floor of mouth and lateral 

border of the tongue are associated with high risk lesions (Napier, Speight 2008). Other risk 

factors of statistical significance for the transformation to OSCC are female gender, non-

smokers, non-homogenous appearance, lesion size greater than 200mm3, DNA aneuploidy 

and duration of lesion (van der Waal 2010). Dysplasia is defined as architectural change 

associated with cytological atypia within the epithelial cells and presents as a spectrum of 

change (Warnakulasuriya S, Reibel J et al. 2008). However, it is histologically graded as mild, 

moderate, severe and carcinoma-in-situ (Barnes 2005). The presence and severity of 

dysplasia within leukoplakic lesions as determined by histopathological assessment is 

currently the best predictor of malignant transformation (Smith, Rattay et al. 2009) but the 

presence of dysplasia does not guarantee progression to cancer as some lesions without 

dysplasia or low grade dysplasia will transform whilst a proportion of high grade dysplasia 

will not (Reibel 2003).  
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1.1.1 Epidemiology of OSCC 

Globocan reports the global burden of lip and oral cancer as 300373 new cases and 145353 

deaths of the disease per annum in 2012 (Ferlay, Soerjomataram et al. 2012). It is the 15th 

most common cancer globally. In the UK there were 4986 new cases of lip and oral cancer 

and 1296 deaths (Ferlay, Soerjomataram et al. 2012). In the UK it more commonly affects 

men at a ratio of 20:10 and is more prevalent in deprived areas which tend to have heavier 

alcohol and smoking habits (CRUK 2014b). It presents a formidable health problem not 

least because there has been marginal improvement in survival despite advancement in 

surgical and adjunctive therapy. This is in part because late stage disease presentation is 

common with up to 60% of patients presenting with stage III/IV disease (McGurk, Chan et 

al. 2005, Rogers, Brown et al. 2009). The clinical sequelae of late stage disease and its 

treatment can also have a negative impact on quality of life which can require long term 

post-treatment clinical support for swallowing, nutrition and speech function.  

 

Cancer Research UK (CRUK) reports the incidence of OSCC has steadily increased in the UK 

(CRUK 2014b). An expanding aging population is likely to contribute to a rise in cancer in 

future years.  A population, surviving longer with chronic disease, provides a challenge for 

the current, primary therapeutic modality of surgery, as people at the limits of physiological 

reserve are unlikely to withstand the aggressive surgical or chemo-radiation therapy 

required for advanced oral cancer therefore early disease detection may be particularly 

important in this group.  Although primarily a disease of older age, with a peak incidence in 

UK males at age 60-64 years, there has recently been an observed increase of OSCC in 

subgroups of young people who have had little or no exposure to the dominant risk factors 

of tobacco and alcohol consumption (Schantz, Yu 2002, Llewellyn, Linklater et al. 2003). An 

increased incidence of non-HPV related oral tongue SCC was noted in a US population of 

young white women; of particular note they are non-smokers and non-drinkers (Patel, 

Carpenter et al. 2011). It may be that intrinsic molecular factors are responsible for the 

onset of OSCC in these patients. Promoter methylation of P16 has been associated with 

non-HPV anterior tongue lesions in female patients under 40 (O'Regan, Toner et al. 2008).   

 

The socioeconomic impact of an increasing incidence of OSCC, particularly late stage 

disease in a young population would be significant and highlights the need for risk 

stratification and early disease detection. Risk stratification becomes more challenging in 

individuals developing OSCC who are not exposed to accepted risk factors.  As knowledge of 
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the molecular profiles of these lesions becomes more advanced molecular biomarkers may 

increase the sensitivity of clinical assessment for the detection of OSCC in these atypical 

groups. 

 

1.1.2 Aetiological Factors 

There is global variation in the aetiological factors of OSCC however worldwide tobacco and 

alcohol consumption remain the dominant risk factors for OSCC. Other factors such as oral 

hygiene, diet and viruses have also been implicated in the aetiology of OSCC but these 

remain speculative rather than established factors (Warnakulasuriya 2009).  

 

1.1.2.1 Tobacco and Alcohol 
The overall risk of oral cancer among smokers is 7–10 times higher than for those who 

never smoked (Warnakulasuriya, Sutherland et al. 2005). A large case-control study from 

the U.S.A showed that tobacco and alcohol consumption in isolation increased the risk of 

oral cancer with a dose-response relationship. This risk was further increased if substances 

were consumed together (35 fold increase in those who smoke 40 + cigarettes/day and 

consume > 28 drinks/week) as they have a synergistic action (Blot, McLaughlin et al. 1988). 

Alcohol may have a locally permeabilizing effect on oral mucosa which facilitates the 

penetration of tobacco-specific and other carcinogens across oral mucosa (Du, Squier et al. 

2000, Seitz, Stickel 2007). Chemical carcinogens are thought to induce molecular changes 

which can interfere with DNA repair (Seitz, Stickel 2007) and normal function of tumour 

suppressor genes (Brennan, Boyle et al. 1995). Consumers of tobacco and alcohol are 

therefore an ‘at risk’ population for OSCC and may benefit from screening programmes to 

detect early disease. 

 

Tobacco use is the commonest pre-disposing factor for the development of leukoplakia 

(Napier, Speight 2008) and the relative risk of having a dysplastic lesion for smokers 

compared with non-smokers or ex-smokers was estimated at 7.0 (Kulasegaram, Downer et 

al. 1995). However, a recent study of patients with biopsy proven oral epithelial dysplasia 

(OED) observed that non-smokers were seven times more likely to develop malignant 

transformation than heavy smokers (Ho, Risk et al. 2012). Earlier longitudinal studies also 

support the finding that OSCC develops at higher frequencies in oral premalignant lesions 

from non-smoking patients (Silverman Jr., Gorsky et al. 1984) particularly female 
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(Schepman, Van Der Meij et al. 1998). This data suggests an aetiological mechanism other 

than tobacco carcinogens in this group of OED patients.  

 

1.1.2.2 HPV 
In recent decades Europe has witnessed an upsurge in young patients presenting with head 

and neck squamous cell carcinoma (HNSCC) not entirely attributable to the risk factors 

commonly associated with the disease (Franceschi et al. 1994). A viral role in the aetiology 

of HNSCC was put forward after correlations were noted between cancers known to have a 

Human Papilloma Virus (HPV) driven pathogenesis and oral tumours (Bjørge, Hennig et al. 

1995) 

High risk strains such as HPV 16 are thought to be contributing to the increase in HNSCC 

diagnosis but this appears to be predominantly oropharyngeal and tonsillar SCC (Schwartz, 

Daling et al. 1998, Gillison ML, Koch WM et al. 2000, Kreimer, Clifford et al. 2005). The 

aetiological role in oral cavity cancer and clinical outcomes is less certain, with great 

variation in the published rates of HPV found in OSCC lesions. The wide variation in the 

reported HPV rates is likely due to methods of detection as PCR techniques are extremely 

sensitive and vulnerable to contamination. A multi-centre case control study found HPV in 

3.9% of OSCC versus 18.3% of oropharynx and tonsil cancers (Herrero, Castellsagué et al. 

2003).  Isayeva (Isayeva, Li et al. 2012) performed a systematic review on sixty publications 

limited to PCR studies of HPV in non-oropharyngeal SCC. They found a 20.2% weighted 

prevalence (WP) of HPV (all types) in OSCC which compared to a 6.9% WP in normal 

controls suggesting HPV may contribute to oral carcinogenesis. Other reviews support 

this figure; Kreimer et al (Kreimer, Clifford et al. 2005) report a 23.3% cumulative pooled 

prevalence and Syrjanen 3.98 odds ratio of HPV (all types) in OSCC versus controls 

(Syrjänen, Lodi et al. 2011). 

 

However the current evidence only supports an association between HPV and OSCC and 

not a causal role. Importantly, unlike in oropharyngeal and tonsil SCC, there is no strong 

body of evidence that the presence of HPV predicts for improved clinical outcome in OSCC 

(Isayeva, Li et al. 2012) therefore HPV as a biomarker to risk stratify OSCC patients is 

currently contentious. 
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1.1.2.3 Oral Hygiene and Microbiotia 
Poor oral hygiene and the resultant disruption in the normal oral microbiotia have been 

mooted as a potential risk factor for OSCC. A causal link between carcinogenesis and 

infection has been established in other cancers (Parkin 2006). The evidence for infection 

and OSCC is less clear; whether it is aetiological or a bystander event has yet to be 

answered (Meurman, Bascones-Martinez 2011). Tezal et al (Tezal, Sullivan et al. 2009) 

report the presence and severity of chronic periodontitis as an independent risk factor for 

HNSCC when compared with a control population (odds ratio 4.36). Additionally the 

presence of periodontitis was more likely to be associated with poorly differentiated OSCC. 

However, the data should be interpreted with caution as the measures of periodontitis 

were also significantly associated with smoking. The significance of the association between 

periodontitis and HNSCC was weakened when corrected for current smoking habit (odds 

ratio 2.86).  A ‘modest’ increase in the association of HNSCC with periodontitis was noted in 

a separate study but it did not persist in non-smokers (Divaris, Olshan et al. 2010). Similarly 

a recent large multi-centre case control study concluded that indicators of poor oral health 

and dental care were independent risk factors for upper aerodigestive cancers but this risk 

was greatly attenuated when correcting for the confounders of smoking and alcohol 

(Ahrens, Pohlabeln et al. 2014).  

1.1.2.4 Diet 
The majority of the evidence regarding oral cancer and dietary habits is from retrospective 

case-control studies therefore attributing a direct causal role to diet is difficult. Petridou et 

al (Petridou, Zavras et al. 2002) performed a questionnaire based observational study on 

dietary intake of 106 individuals with OSCC and matched controls. The researchers report a 

statistically significant inverse relationship between riboflavin, magnesium and iron intake 

and oral carcinoma. However, the sample size is small and the data reliant on patient 

reports, which is vulnerable to information bias.  It is unclear exactly what element of 

vegetables is beneficial. Vegetables are high in antioxidants and vitamins; this has led some 

to suggest a diet deficient of carotenoids, folates, vitamins and fibre may be linked with 

upper aerodigestive carcinogenesis (Franceschi, Favero et al. 1999, Kane 2005, Rossi, 

Garavello et al. 2007). Others speculate that those individuals who indulge in high risk 

lifestyles such as heavy smoking and alcohol intake are likely to consume less fruit and 

vegetables and rather than a causal role for diet in cancer, it is merely associative (Serdula, 

Byers et al. 1996, Boffetta, Couto et al. 2010). Currently, there is only speculative evidence 

that dietary factors, other than alcohol intake is causative in OSCC. 
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1.1.3 Diagnosis and Treatment of OSCC 

The current gold standard for OSCC diagnosis is clinical examination and tissue biopsy 

followed by staging investigations. A typical presentation of OSCC is a discrete lump or ulcer 

with raised margins present for a number of weeks (Shaw, Pace-Balzan et al. 2011) which 

may be noticed by a vigilant patient but many go unnoticed. Symptomology is often lacking 

until advanced stages and is very likely a contributing factor to the persistent trend of late 

presentation disease (McGurk, Chan et al. 2005). A large retrospective study observed pain 

was only reported at initial presentation in 20% of 1412 oral cancer cases and 

predominantly in advanced disease (Cuffari, Tesseroli de Siqueira et al. 2006). A recent 

review of the literature revealed that the reasons for late presentation are complex and 

multi-factorial; health beliefs, deprivation, lack of education and alcohol consumption are 

commonly implicated (Noonan 2014). It is accepted that the incidence of OSCC is highest in 

lower socioeconomic groups (O'Hanlon, Forster et al. 1997, Thorne, Etherington et al. 1997, 

Conway, Brewster et al. 2007) and established risk factors for OSCC such as high alcohol 

and tobacco consumption are also associated with deprivation (O'Hanlon, Forster et al. 

1997) which are very likely, but not exclusively, causative factors in this group. Conway et al 

(Conway, Brewster et al. 2007) consider those subject to deprivation alone, regardless of 

lifestyle choices, represent a high risk group for OSCC.   

 

The initial risk stratification for potentially malignant oral lesions is currently reliant on 

clinical examination and history.  Clinicians have to be vigilant in high risk groups but also 

have a high index of suspicion, when presented with persistent oral lesions in high risk 

anatomical sites, in patients who are not exposed to the common risk factors. Koo et al 

(Koo, Barrowman et al. 2013) report a subgroup of non-smoking, elderly female patients 

with OSCC of the oral tongue and maxillary alveolus who had worse disease-specific 

mortality than those exposed to alcohol and tobacco. It is in these atypical groups that 

better understanding of the molecular biology of tumours may provide prognostic 

biomarkers to tailor treatment choices. Two-week referral pathways are established in the 

UK to expediate access to specialist opinion for suspicious oral lesions with an aim to 

reduce late stage presentations. An audit of 1079 two week referrals indicated 118/1079 

(10.9%) referred as possible cancer had HNSCC whereas only 21.4% of HNSCC diagnoses 

over the same time-period were identified by the two-week referral system, the majority 

diagnosed from routine referrals (McKie, Ahmad et al. 2008). These findings could reflect 

the observation that some non-specialists have limited awareness of oral cancer (Carter, 
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Ogden 2007) or that clinical discrimination between non-malignant and malignant lesions is 

difficult. This adds further support for adjunctive biomarker tests which could be used in 

the community setting. 

 

Primary surgery remains the first-line treatment in the majority of OSCC cases. In a review 

of ten years of clinical practice in a large head and neck unit; four hundred and eighty nine 

of five hundred and forty one patients (90%) had primary surgery for OSCC, 40% of these 

had adjuvant radiotherapy (Rogers, Brown et al. 2009). Neck dissection is performed 

routinely if there is nodal involvement but there is still debate about the most appropriate 

management of the clinically node negative neck (N0). Diagnostic imaging techniques are 

limited in the clinically negative neck as a minimum size of disease is required for detection 

which means micrometastases can be missed (Takes 2004). Occult metastasis has been 

found in 34% of oral tongue carcinoma cases with clinically N0 necks (Greenberg, El Naggar 

et al. 2003). Generally, neck dissection is performed in the N0 neck if there is a 20% or more 

chance the nodes harbour occult metastasis (Shaw, Pace-Balzan et al. 2011) which will 

mean some patients receive a neck dissection unnecessarily. Conversely, not treating the 

neck and adopting a watchful waiting strategy risks progression of occult metastasis to 

incurable disease (Takes, Rinaldo et al. 2008).  In recent years multiple studies have shown 

the ability of sentinel lymph node biopsy (SNLB) to accurately stage the neck when 

compared to elective neck dissection in early stage oral cavity cancer (T1/T2) with the 

exception of floor of mouth tumours. Negative predictive values between 91-100% are 

reported without a reduction in survival (Monroe, Lai 2014). The advantage of SNLB is it 

potentially has reduced morbidity. Molecular analysis of the lymph node intra-operatively 

may further improve SNLB accuracy. A recent study of HNSCC lymph nodes has shown rapid 

qPCR techniques using a panel of two markers pemphigus vulgaris antigen (PVA) and 

tumour associated signal transducer 1 (TACSTD1) genes can detect nodal spread with a 

negative predictive value of 96% (Ferris, Stefanika et al. 2012).  The molecular biology of 

the primary tumour may provide further insight into the issue of detecting cervical 

metastasis in the clinical N0 neck. Gene expression profiles within the primary HNSCC 

tumour may predict the absence or presence of lymph node metastasis (Roepman, Wessels 

et al. 2005). In a microarray study of primary OSCC tissue it was noted that increased 

expression of extracellular matrix-degrading enzymes were associated with OSCC cases 

with lymph node metastasis. In particular MMP-1 was highly expressed in these cases and 
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may be a prognostic marker of lymph node involvement (Nagata, Fujita et al. 2003). 

Expression of SERPINE1 and SMA proteins in the invading front of the primary OSCC tumour 

are associated with increased sensitivity (95% and 82% respectively) for the detection of 

extra-capsular spread (ECS) when compared to the standard clinical technique of magnetic 

resonance imaging (MRI) (56%) (Dhanda, Triantafyllou et al. 2014).  

 

1.1.4 Prognosis of OSCC 

The difference in disease specific five year survival for late stage cancer (stage 4) 57% and 

early disease (stage 1) 96% is considerable (Rogers, Brown et al. 2009).  In patients with 

nodal involvement the single most important measurable prognostic factor is the presence 

of ECS in nodal metastasis. In one study the presence of ECS doubled the incidence of local 

and regional recurrence, tripled the incidence of distant metastasis and patients with 

macroscopic ECS had only a 23% overall survival (Shaw, Lowe et al. 2010). Other tumour 

and patient characteristics that impact on recurrence and survival are involved margins, 

advanced T-stage inclusive of depth of invasion and age of patient (Hicks Jr., North Jr. et al. 

1998, Koo, Lim et al. 2006, Rogers, Brown et al. 2009 ). The sequelae of current therapeutic 

modalities for late stage disease can be functionally and aesthetically mutilating despite 

advances in reconstructive techniques.  The compact nature of the anatomy also lends itself 

to involvement of other functionally important structures which unfortunately, can render 

late stage disease inoperable.  Loco-regional recurrence for OSCC has been reported at 

rates of 21-28% (Hicks Jr., North Jr. et al. 1998, Koo Lim et al. 2006, Rogers, Brown et al. 

2009) with the majority of recurrent disease occurring within the first year of primary 

treatment (Koo, Lim et al. 2006, Kissun, Magennis et al. 2006). Second primary tumours 

(SPT) have been observed in approximately 10-20% of OSCC patients (León, Quer et al. 

1999, Lin, Patel et al. 2005, Rogers, Brown et al. 2009) with head and neck primary tumours 

being particularly susceptible to the development of second primary malignancy (Sturgis, 

Miller 1995).  

 

Currently there is no method of predicting, with certainty, which patients will experience 

secondary disease; generally this has poor survival outcomes. Ten year survival for HNSCC 

patients who developed a secondary primary tumour (22%) was half that of those without a 

secondary neoplasm (55%) (León, Quer et al. 1999). 
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In a large study of long-term survivors of HNSCC (defined as > 3 years from primary 

treatment) the cause of death from other site second primary malignancy was 23% 

(3007/13120) (Baxi, Pinheiro et al. 2014). Overall survival for recurrent OSCC is 

approximately 30% (Mücke, Wagenpfeil et al. 2009, Yanamoto, Yamada et al. 2012) with 

early stage (I and II) recurrence (as measured by recurrent tumour size) having significantly 

improved overall survival (p=0.0001) than advanced stage (III and IV) recurrence (Sun, Tang 

et al. 2009). A prospective study of salvage surgery outcomes in a mixed head and neck 

cohort (n=109) showed that median 2 year disease free survival decreased with increasing 

stage of recurrent disease: recurrence stage I: 73%, stage II: 67%, stage III: 33% and stage 

IV: 22% (Goodwin Jr. 2000). The study contained 21 oral cavity cancers and although this 

data was not stratified by anatomical site, it does highlight the importance of early 

detection and the need for close disease surveillance. Current post-treatment surveillance 

regimes involve regular attendance to out-patient appointments for clinical examination to 

detect signs of recurrent/second primary disease for a period of five years. However, 

disease surveillance by clinical examination becomes problematic in the aftermath of 

treatment because normal anatomical architecture is altered.  A subtle early malignant 

lesion may be camouflaged by surgically scarred or irradiated tissue or alternatively 

clinicians may biopsy post-treatment friable tissues unnecessarily. 

 

1.1.5 Precancerous fields and disease surveillance 

The propensity for recurrent and second primary tumours in HNSCC has been 

acknowledged since the 1950s when Slaughter et al introduced the concept of field 

cancerisation (Slaughter, Southwick et al. 1953). They reported, of the 783 oral tumour 

cases reviewed, all had histologically atypical epithelium surrounding the primary tumour 

and 11.2% of patients (88/783) had independent multiple tumours (Slaughter, Southwick et 

al. 1953); a figure which has not been improved upon today.  More recently numerous 

studies of surgical resection margins and premalignant lesions have shown that along with 

histological atypia there is also a molecular basis for the process of field cancerisation 

involving TP53 mutation and LOH at 3p,9p,17p (Brennan, Mao et al. 1995, Tabor, 

Brakenhoff et al. 2002, Tabor et al. 2002, van Houten, Tabor, Brakenhoff et al. 2004, van 

Houten, Leemans et al. 2004) which may predict for recurrence or second field tumours. An 

analysis of tissue from 28 primary HNSCC tumours and associated macroscopically normal 

mucosa biopsies was performed for the presence of LOH at chromosome loci 3p, 9p and 

17p. Thirty six percent of patients (10/28) had detectable chromosomal aberrations in at 
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least one of the markers in the mucosa surrounding the tumour with 70% (7/10) of cases 

extending beyond the surgical margins (Tabor, Brakenhoff et al. 2001).  In 25% (4/10) of the 

patients the field contained genetic losses not found in the tumour (Tabor, Brakenhoff et al. 

2001) which is some evidence for a separate precursor field. In a follow-up study of 

clinically determined second primary tumours they found 60% (6/10) of patients had similar 

chromosomal aberrations in the index tumour, second tumour and intervening mucosa 

which suggests these tumours are better defined as a second field tumour, as they share 

the same clonal origin as the primary disease (Tabor, Brakenhoff et al. 2002). The authors 

also note the field can be as large as 3-6cm (Tabor, Brakenhoff et al. 2002) which has 

implications for the suitability of these areas for surgical treatment.   

Oral precursor lesions represent a group which requires disease surveillance, as in some 

cases, these lesions are a clinical expression of field change. A recent retrospective 

longitudinal surveillance study of 91 patients with OED under specialist review showed that 

early detection of malignancy (23/91) resulted in all of the patients receiving treatment at 

stage one (clinical T1N0M0) disease. Twenty one of twenty three of the patients required 

minimal surgery with wide-local excision of the lesion. The authors report one death 

resulting in an overall survival of 96% and a disease-specific survival of 100% (Ho, Field et al. 

2013). Their findings support the need for long-term disease surveillance for OED by 

specialists which can be costly. Twenty five percent of patients underwent malignant 

transformation in this cohort.  However, 75% did not and it is the future hope that new 

techniques will develop to accurately predict lesions at risk of malignant transformation to 

allow limited resources to be focused on this subgroup of patients.  Reported follow-up 

intervals of premalignant lesions are widely variable as they are dictated by subjective 

clinical assessment and are not evidence based; some studies report surveillance periods of 

up to 18 years (Holmstrup, Vedtofte et al. 2006).  

Accurately determining which lesions will progress is an ongoing problem and many 

patients are reviewed for long periods of time without malignant transformation. 

Histopathological examination remains the most valid method of predicting malignant 

change within premalignant lesions, although it is vulnerable to subjectivity and lacks intra 

and inter-observer reproducibility due to an insufficiency of validated morphological 

criteria (Fleskens, Slootweg 2009). It is generally accepted that severe dyplasia is associated 

with increased malignant transformation (Schepman, Van Der Meij et al. 1998, Mehanna, 

Rattay et al. 2009, Warnakulasuriya, Kovacevic et al. 2011), however some studies have 
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found the grade of dysplasia does not influence this outcome (Holmstrup, Vedtofte et al. 

2006). Rosin et al (Rosin, Lam et al. 2002) noted that 22/47 lesions with mild or no dysplasia 

at previous oral cancer sites progressed to malignancy. These contradictory findings may be 

explained by the limitations of surgical biopsy. Researchers analysing 101 lesions, which 

underwent surgical biopsy by experienced oral surgeons followed by total excision of the 

lesion, observed that 35% of the initial biopsy samples under diagnosed the severity of the 

lesion including 8% of oral cancer. In 17% of lesions the biopsy over diagnosed the severity 

of the entirety of the lesion (Holmstrup, Vedtofte et al. 2007).  This study points to the 

cellular heterogeneity of the dysplastic lesion and also the limitations of current sampling 

techniques upon which the majority of treatment planning is based. 

 

 In the context of field cancerisation, uncertainty also surrounds the benefit of surgical 

excision of premalignant lesions for conferring protection against the development of 

OSCC. A published review of the literature comments on the lack of randomised controlled 

studies on this subject and identified only two single-centre retrospective studies which 

specifically addressed outcomes of treatment for OED. Both studies found no difference in 

the development of OSCC between OED patients treated with surgery and those without 

treatment (Balasundaram, Payne et al. 2014). In contradiction to this, a meta-analysis of the 

literature found that patients who did not have excision of lesions had significantly higher 

rates of malignant transformation compared to excised lesions (Mehanna, Rattay et al. 

2009). Surgery remains the mainstay of treatment as there is currently no evidence for a 

more successful chemoprevention therapy (Brennan, Migliorati et al. 2007, Sheth, Johnson 

et al. 2014). There are still large gaps in the knowledge of the natural history of OED 

(Napier, Speight 2008) but with better understanding of the molecular biology of lesions 

these gaps may be filled.  The presence of molecular markers such as LOH at 3p and/or 9p 

and  matrix metalloproteinases in particular (MMP-9) in precursor lesions have shown 

promise in cancer risk stratification with the relative risk of transformation reported at 17-

19 with the presence of these markers, but further validation in clinical studies is needed 

(Brennan, Migliorati et al. 2007, Smith, Rattay et al. 2009, Dionne, Warnakulasuriya et al. 

2015). 

1.1.6 Screening 

Screening is a process of identifying apparently healthy people who may be at increased 

risk of a disease or a condition. They can be offered information, further tests and 
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appropriate treatment to reduce their risk and or complications arising from the disease or 

condition (www.screening.nhs.uk/screening). The current UK National Screening 

Committee (NSC) criteria to which a valid screening test must adhere is an expansion and 

modernisation of the Wilson and Jungner (Wilson, Jungner 1968) principles of screening for 

disease. In brief, the condition should be important, have a recognisable early symptomatic 

stage and the natural course of the disease from latent to declared disease should be 

adequately understood. A suitable test or examination which is acceptable to the 

population should exist and the case findings should be continuous. An effective treatment 

for patients with recognised disease, facilities for diagnosis and treatment and agreed 

policy of whom to treat should be available.   The cost of case finding should be 

economically balanced in relation to expenditures on medical care as a whole (Wilson, 

Jungner 1968).  

 

 

The aim of screening is to detect oral cancer early and improve health outcomes. Visual 

inspection is the most common method of oral screening as it is not surgically invasive, 

painless and is socially acceptable (Brocklehurst, Kujan et al. 2013). Authors of a meta-

analysis selected eight clinical examination screening studies and reported high sensitivity 

and specificity for this technique at 85% (95% CI: 73-91.9%) and 96.5% (95% CI: 93-98.2%) 

(Downer, Moles et al. 2004). A more recent Cochrane review reported a widely varying 

sensitivity at 50-99% and specificity of 98% for clinical examination (Walsh, Liu et al. 2013).  

Several clinical adjuncts such as autofluorescence, chemiluscence, toluidine blue and brush 

biopsy are under investigation to enhance clinical examination and improve the screening 

process. However, none have proven to have increased sensitivity or specificity above 

clinical examination and there is lack of evidence for impact on survival and recurrence 

outcomes (Lingen, Kalmar et al. 2008, Walsh, Liu et al. 2013, Messadi 2013). 

 

Oral cancer screening studies are limited by methodological heterogeneity, inadequate 

follow-up and lack of reported population mortality (Downer, Moles et al. 2004, Downer 

MC, Moles DR et al. 2006). A recent Cochrane review to assess the effectiveness of oral 

screening methods identified only one randomised control trial (RCT) from the global 

literature. The RCT was executed in Kerala India, with 191,873 participants divided into an 

intervention and a control arm studied over 15 years. The difference in mortality rate as 

reported by the Cochrane review was 15.4/100000 person years for the intervention group 

http://www.screening.nhs.uk/screening
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and 17.1/100000 person years for the control group which did not reach statistical 

significance. In those who consumed alcohol, the mortality rate was 30/100000 person 

years in the intervention group and 39/100000 person years in the control group which was 

statistically significant RR=0.76 (CI: 0.60-0.97). Individuals diagnosed with oral cancer stage 

III or above numbered 147/279 (52.6%) in the intervention arm and 159/244 (65.2%) in the 

control arm which also reached statistical significance RR=0.81 (95% CI: 0.70-0.93). The 

sensitivity of visual inspection in detecting oral cancer was 67.4% (Brocklehurst, Kujan et al. 

2013).  This study showed evidence of cost-effectiveness, stage-shift effect and improved 

survival but this finding was limited to alcohol and tobacco users. The Cochrane group felt 

the study was limited by bias and further RCTs in different populations are required to 

establish the effectiveness of oral cancer screening by visual inspection.  

 

Currently a screening programme for oral cancer in the UK does not exist.  Following an 

external review of screening for oral cancer in 2010, a systematic population screening 

programme was not recommended but is currently under review by the UK NSC. In 

summary, the authors of the 2010 evaluation implied that oral cancer met some of the 

screening criteria, in that OSCC is an important health problem; being a debilitating disease; 

with poor prognosis and in the majority of cases is preceded by a preclinical phase manifest 

as a potentially malignant lesion. However, visual screening inspection studies have not yet 

yielded convincing evidence for improvement in survival or stage shift and there are 

currently no alternatives or adjunctive diagnostic techniques that have been evaluated as 

screening tests.  Amongst the recommendations is the development of point-of-care tests 

using biomarkers which could identify which screen-detected lesions are most likely to 

progress to malignancy (Speight, Warnakulasuriya 2010).  

 

1.2 Biomarkers  

The National Institute of Health Biomarkers Definitions Working group defined a biomarker 

as  “a characteristic that is objectively measured and evaluated as an indicator of normal 

biologic processes, pathogenic processes or a pharmacologic process response to a 

therapeutic intervention” (Atkinson, Colburn et al. 2001).  An ideal biomarker for early 

detection of cancer would be one secreted by tumour but not normal tissue therefore 

highly specific and be easily and cheaply detected in a body fluid so it can be detected non-

invasively (Pepe, Etzioni et al. 2001).  The issue of specificity is important when considering 

biomarkers for screening programmes as even a small false positive rate when multiplied 
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on a population scale will be a large financial burden and potentially cause psychological 

stress to individuals (Pepe, Etzioni et al. 2001).  

 

The improvement of morbidity and mortality is a primary aim of clinical research and as 

such are clinical endpoints (Strimbu, Tavel 2010). Biomarkers become surrogate endpoints 

when they have been proved to have well evaluated clinical relevance (Atkinson, Colburn et 

al. 2001); there must be robust scientific evidence that clinical outcome is consistently and 

accurately predicted by a biomarker (Strimbu, Tavel 2010). The process of developing a 

clinical biomarker is therefore necessarily rigorous and must undergo several phases (Pepe, 

Etzioni et al. 2001) from discovery to clinical trials before they become part of routine 

patient management. At present there are no molecular biomarkers routinely used for the 

diagnosis or prognostication of oral cancer.   

 

 

1.2.1 Diagnostic biomarkers  

In a disease that often presents late with associated poor prognosis, has identifiable high 

risk groups and limitations on detection from clinical examination, a biomarker with 

satisfactory accuracy for identifying OSCC early would be valuable.  Clinical examination is 

the mainstay of oral cancer diagnosis at present but disease can be occult and evade the 

naked eye.  The pressing need for improved diagnostics is because of the marked 

differential in survival rates between early and advanced stage cancer. There is a trend for 

late presentation which is likely multifactorial (Noonan 2014) but could be due to the fact 

that OSCC is largely an asymptomatic condition, especially in the early stages. Another 

reason could be that aggressive tumours progress rapidly.  The sensitivity of visual 

inspection for the detection of oral cancer in primary care settings can be variable (Walsh, 

Liu et al. 2013) with limitations of non-specialists to recognise cancerous oral lesions 

(Carter, Ogden 2007). To date studies of opportunistic oral screening studies based on 

visual inspection in unstratified populations have not made significant improvement in 

mortality through early detection (Brocklehurst, Kujan et al. 2013). Added to this, risk 

stratification based on age and lifestyle factors associated with OSCC may not be sufficient; 

as a subgroup of young patients are developing OSCC with little or no exposure to the 

common risk factors (Llewellyn, Linklater et al. 2003).  
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1.2.2 Prognostic biomarkers 

Prognostic biomarkers predict how the malignancy will progress and the patients’ overall 

outcome without therapy (Oldenhuis, Oosting et al. 2008). HPV in oropharyngeal SCC is an 

example of a prognostic molecular marker that successfully stratifies patients into 

predicted outcomes and informs treatment strategy (Rios Velazquez, Hoebers et al. 2014). 

Currently, OSCC prognostication is informed by the American Joint Committee on Cancer 

and the Union for International Cancer Control TNM staging criteria which is an anatomical 

classification. In a comprehensive review Takes and colleagues (Takes, Rinaldo et al. 2010) 

discuss the limitations of this system in the context of prognosis and patient management. 

A key criticism is that the TNM stages are too broad and as a result there is a wide range of 

survival and treatment response within any given stage.  They propose this is contributory 

to continued poor survival rates and morbidity as a result of over or under treatment. They 

also raise the lack of consideration for the biological nature of the tumour and highlight the 

fact that a T1N2C tumour would receive the same ‘stage’ as a T4N0 when they are  

biologically, very different.  Clinical markers of tumour biology which are known prognostic 

indicators, such as depth of invasion and nodal extracapsular spread, are notably missing 

from the staging method (Takes, Rinaldo et al. 2010).   

 

Another need for prognostic biomarkers in OSCC is frequent recurrence and second primary 

tumours (Koo, Lim et al. 2006, Rogers, Brown et al. 2009) which have poor survival. The 

main theory for this propensity is field change in which tumours develop within areas of 

histologically atypia (Slaughter, Southwick et al. 1953) and molecular aberrations (Tabor, 

Brakenhoff et al. 2002, Braakhuis, Tabor et al. 2002). Molecular biomarkers may be able to 

identify those patients at risk of second field tumours at diagnosis of the primary disease 

and filter these patients into more intense post-operative disease surveillance follow-up, 

new chemotherapy treatments or future gene therapies (Braakhuis, Tabor et al. 2003).  

1.2.3 Predictive biomarkers  

Predictive biomarkers suggest how a cancer will respond to a therapeutic intervention 

(Oldenhuis, Oosting et al. 2008). Some cases of OSCC are preceded by a visible oral lesion 

(Napier, Speight 2008) and histopathological diagnosis is used to predict the risk of 

malignant change (Warnakulasuriya S, Reibel J et al. 2008) but severity of dysplasia does 

not always predict transformation (Holmstrup, Vedtofte et al. 2006). Surgical incisional 

biopsy can under diagnose cancerous oral lesions (Holmstrup, Vedtofte et al. 2007) and the 
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literature is divided on the value of preventative surgical excision of precursor lesions in the 

context of preventing malignant change (Holmstrup, Vedtofte et al. 2006, Mehanna, Rattay 

et al. 2009, Balasundaram, Payne et al. 2014).  Alternative predictive markers are required 

to accurately assess which oral precursor lesions will respond to excision, require close 

surveillance or do not require therapy. P16 methylation and LOH at 3p and/or 9P in oral 

precursor lesions have been observed to predict for malignant change (Rosin, Cheng et al. 

2000, Rosin, Lam et al. 2002, Hall, Shaw et al. 2008, Cao, Zhou et al. 2009, Zhang, Poh et al. 

2012) and may have potential as predictive markers. Loss of heterozygosity in 3p and 9p in 

oral cancers are currently part of a phase III trial of an epidermal growth factor (EGFR) 

inhibitor, Ertinolab (www.clinicaltrials.gov/ct2/show/NCT00402779).  

 

1.3 Molecular biology of OSCC 

Oral carcinogenesis is a multistep process (Califano, Van Der Riet et al. 1996) inclusive of 

both genetic and epigenetic changes and evidenced by the myriad of associated molecular 

markers in the literature. Many dysfunctional, interrelated pathways may be involved in  

the aetiology of OSCC (Glazer, Chang et al. 2009).  

1.3.1 Copy number 

One of the hallmarks of malignancy is chromosomal aberrations detected as deletions, 

amplifications or structural re-arrangement (Silva, Ferlito et al. 2011).  Loss of genetic 

material is commonly found in oral cancer and is thought to be in chromosomal areas that 

harbour tumour suppressor genes. The study of loss of heterozygosity (LOH) was one of the 

most widely used molecular approaches to detect allelic imbalances associated with 

malignancy (Campo-Trapero, Cano-Sánchez et al. 2008) and is detected using polymorphic 

markers such as microsatellites or single nucleotide polymorphisms (Kasamatsu, Uzawa et 

al. 2011). Allelic imbalance at various loci has been observed on most autosomes in oral 

cancer studies (Kasamatsu, Uzawa et al. 2011) but most frequently on chromosomes 3, 9, 

11, 13 and 17 (Massano, Regateiro et al. 2006).  Early studies identified frequent deletions 

on chromosome 3 associated with oral premalignant lesions that underwent malignant 

transformation ( Mao, Lee et al. 1996, Partridge, Emilion et al. 1998, Rosin, Cheng et al. 

2000), early stage OSCC (Partridge, Kiguwa et al. 1994) and development of secondary oral 

carcinoma at previously treated sites (Rosin, Lam et al. 2002). These findings suggest 

chromosome 3 contains genes important in progression of oral cancer and could have a 

role in disease surveillance. Authors have noted LOH at 13q present in 67% of OSCC cases 

http://www.clinicaltrials.gov/ct2/show/NCT00402779
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which have lymph node metastasis (Uzawa, Yoshida et al. 1998)  which may also indicate a 

marker for progression of the disease. 

  

LOH at the P16 locus of 9p21 has been reported in two thirds of HNSCC (Reed, Califano et 

al. 1996) and OSCC tumours (Ohta, Uemura et al. 2009). Few tumours contained P16 

mutations (9%) as opposed to methylated P16 in 64% of the tumours (Ohta, Uemura et al. 

2009) which supports the theory of methylation as the second hit in OSCC.  Early studies for 

detection of LOH are limited in cohort size and number of markers because standard 

techniques rely on lots of good quality tumour tissue (Reed, Califano et al. 1996). However, 

the value of these early findings is not diminished as similar chromosomal aberrations have 

been found using more advanced techniques. Comparative genomic hybridisation (CGH) 

and single nucleotide polymorphism (SNP) arrays can evaluate entire genome gains and 

losses thereby identifying potential oncogenes represented by gains and tumour 

suppressor genes (TSG) by losses (Patmore, Cawkwell et al. 2005).  Three p loss and 3q 

gains are amongst the most consistent findings in OSCC in the genome wide studies of 

OSCC (Garnis, Coe et al. 2004, Sparano, Quesnelle et al. 2006, Martin, Reshmi et al. 2008) 

which implies they contain genes important in oral carcinogenesis. The genome wide 

approach provides the opportunity to discover novel candidate genes in areas of the 

genome previously un-investigated. Genes known to be involved in hereditary cancers; 

FANCD2, FANCG, BRCA1 and BRCA2 were discovered at high frequency in 21 primary OSCC 

using array CGH and may be involved in the initiation of sporadic OSCC (Sparano, Quesnelle 

et al. 2006). Recently loss at 3p.26.3 at the CHL1 locus was identified as an independent 

prognostic factor in disease specific survival of OSCC (Uchida, Oga et al. 2011).   

 

1.3.2 Whole genome mutations 

Genetic mutation in DNA repair genes is known to be a driver mechanism in hereditary 

cancers but this does not appear to be the case in sporadic cancers. A review of high 

throughput techniques performed on non-hereditary cancers found that mutation in repair 

genes was infrequent; the authors suggest that the first event in sporadic carcinogenesis 

may be mutations in oncogenes or anti-oncogenes which trigger activated growth signalling 

which then leads to mutations in tumour suppressor genes (Negrini S, Gorgoulis VG et al. 

2010). This could mean several mutations contribute to oral carcinogenesis and may display 

chronological variation according to the stage/risk profile of the disease. Whole genome 

next generation sequencing techniques accelerate the process of studying DNA and RNA 
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(Jessri, Farah et al. 2014) with the ability to identify all genetic variants (Zhang, Chiodini et 

al. 2011) and therefore may identify markers to help risk stratify patients.   

 

Two recent studies have used exome sequencing to detect mutations in HNSCC tumours. 

Some of the data confirmed existing knowledge that TP53 is the commonest mutation in 

HNSCC; being absent in HPV driven tumours whilst present in the majority (78%) of HPV 

negative tumours. Smokers have more mutations, thus providing further evidence that 

tumours that are morphologically similar are distinct diseases at the molecular level 

(Agrawal, Frederick et al. 2011) which could influence future prognostication. NOTCH 1 was 

identified as a novel tumour suppressor gene, after TP53 it was the commonest mutation 

but was present in only 15% of tumours. One of the most interesting results was that of 28 

non HPV tumours, only 18% contained mutations in true oncogenes compared to 89% of 

tumours displaying mutated true TSGs (Agrawal, Frederick et al. 2011). Stransky et al 

(Stransky, Egloff et al. 2011) also identified mutations associated with loss of function at 

NOTCH1. Similarly they found twice as many mutations in HPV negative tumours than 

positive ones. Although these high-throughput genome wide techniques are extremely 

attractive to decipher the genes involved in oral carcinogenesis  from a clinical application 

perspective,  high cost and complicated analysis currently limit the routine application of 

next generation sequencing as many studies still verify data using Sanger techniques 

(Zhang, Chiodini et al. 2011, Jessri, Farah et al. 2014) .  

 

1.3.3 Transcriptomics and Proteomics 

The appeal of protein markers is that they are the functional element of the cancer 

pathway and may provide key information how genetic aberration is translated into cellular 

overgrowth, tissue invasion, metastatic spread and information about the tumour 

microenvironment. In the literature 14-3-3 sigma and 14-3-3 zeta/delta are potential 

diagnostic protein markers in HNSCC as they are consistently upregulated and are involved 

in many signalling pathways including cell cycle regulation (Schaaij-Visser, Brakenhoff et al. 

2010). Keratin 4 and 13 are consistently downregulated in HNSCC and may be potential 

prognostic biomarkers but as yet have not been clinically validated (Schaaij-Visser, 

Brakenhoff et al. 2010). The presence of low expression levels of keratin 4 and cornulin 

proteins in surgical margin tissue from 46 HNSCC patients was associated with disease 

relapse; keratin 4 hazard ratio 3.8 (95% CI: 1.6-9.5) and cornulin hazard ratio 2.7   (95% CI: 
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1.1-6.5). In combination the markers had a hazard ratio of 8.8 (95% CI: 2-37.6) which was 

significantly associated with local disease-free survival (p<0.0005). Histopathological 

grading of the margin tissue was also performed, which did not show any association with 

disease free survival, even when considered as a binary classification (low/high risk of 

malignant transformation) and therefore was outperformed by protein markers as it had no 

prognostic relevance in this cohort of patients (Schaaij-Visser, Graveland et al. 2009). In 

support of these findings another study performed immunohistochemical analysis of 65 

OSCC surgical margins which found the frequency of a second malignant event was 90.9% 

(10/11) in patients with keratin 4 negative margins and 51.8% (28/54) in patients with 

keratin 4 positive margins (Fisher’s exact p=0.0197) (Polachini, Sobral et al. 2012). Garbis et 

al (Garbis, Lubec et al. 2005) summarise some of the limitations of proteomic analysis; 

proteins are vulnerable to environmental changes and therefore sampling protocols are 

difficult to standardise; small proteins can be difficult to detect and high abundance 

proteins frequently mask low abundant proteins which are often the target of interest.  The 

proteome is very complex, analysis can be time consuming and the bioinformatic analysis 

remains relatively involved. 

 

Studies of the transcriptome have provided insight into the mechanistic effects of genetic 

aberrations in HNSCC and aid understanding of interactive cancer pathways. Twelve 

regulatory pathways commonly dysfunctional in OSCC were identified from a meta-analysis 

of four public gene expression micro-array datasets which had all analysed greater than 

eight OSCC tissue samples and normal tissue (Liu, Niu et al. 2012). The authors categorised 

the common dysregulated pathways into three broad groups based on function: 1) Blood 

coagulation and prothrombin: Platelet amyloid precursor protein pathway 2) Cell surface 

and cell communication: Extracellular matrix ECM_receptor interaction, 

HS_matrix_metalloproteinases, cell communication, focal adhesion, intracellular 

proteasome, proteasome, proteasome complex and HS_Proteasome degradation 

3)Metabolism related pathways: Bile acid synthesis, glycolipid metabolism and arginine and 

proline metabolism pathways. In the analysis, the extracellular matrix ECM_receptor 

interaction pathway was the most dysregulated in OSCC. This pathway has an effect on 

cellular processes of adhesion, differentiation proliferation and apoptosis. Four genes 

(SPP1, COL5A2, COL4A1 and COL1A2) were identified in this pathway with significant 

dysregulation in all four of the microarray datasets. The authors validated the 
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downregulation of these genes in a small cohort of OSCC and normal samples using 

quantitative polymerase chain reaction (qPCR) (Liu, Niu et al. 2012).  In a separate study, 

SPP1 was found to be expressed at significantly higher levels in OSCC tissue (n=43) than 

normal oral mucosa (n=17) but had no relationship with tumour pathological characteristics 

or overall survival (Huang, Yu et al. 2014).  Reduced expression of COL1A2 was associated 

with promoter methylation of the gene in head and neck SCC cell lines. In addition 46/98 

(47%) primary HNSCC tissues had detectable COL1A2 promoter methylation and 

furthermore it was significantly related to disease free survival (p=0.005) (Misawa, 

Kanazawa et al. 2011) . Further exploratory or validation data for COL5A2 and COL4A1 was 

unavailable in the current HNSCC literature.  

 

1.3.4 Epigenetics 

Epigenetics is defined as inheritable changes in gene expression that are not accompanied 

by changes in DNA sequence (Jones, Baylin 2007). Three epigenetic modifications are 

described in the literature: DNA methylation, histone modifications and altered expression 

of micro-RNAs (MiRNA).  Histone modifications alter the tertiary structure of DNA which 

inhibits the binding of transcription factors. Modifications to histones include methylation, 

acetylation, ADP_ribosylation, phosphorylation, ubiquination and sumolyation of specific 

residues within histone tails and occur in each of the four histone complexes 

(H3,H4,H2A,H2B) (Gasche, Goel 2012). MiRNA are short, non-coding RNAs which function in 

post-transcription gene expression (Jansson, Lund 2012). To date DNA methylation is the 

most studied of the three epigenetic modifications in HNSCC cancer biology. DNA 

methylation occurs in cytosines that precede guanine bases known as dinucleotide CpGs. 

They are found in CpG rich regions known as CpG islands (Esteller 2008) which are 

approximately 500bp in length, characterised by a GC content > 55% with a CpG ratio 

(observed CpG)/expected CpG) of 65% (Takai, Jones 2002) and are found in gene promoter 

regions. DNA methylation represses genes expression by impeding binding of 

transcriptional factors (Cedar 1988) therefore methylation in the promoter regions of 

tumour suppressor genes prevents their expression and has a role in carcinogenesis 

(Esteller 2008). Promoter methylation of several genes has been implicated in OSCC; P16, 

CDH1, MGMT, DAPK, DBC1, P14ARF, DCKN2B, RARB, RASSF1A, MLH1, P73, DCC, FHIT, 

SERPINB (Ha, Califano 2006, Gasche, Goel 2012) which reflects the complex molecular 

nature of this disease. There is often a wide variation in reported methylation rates of these 

genes which could reflect biological variation but is also dependent on sample selection and 
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methodology (Gasche, Goel 2012) and some of these changes may represent passenger 

rather than driver events. Further functional studies would be required to establish their 

role in cancer biology.  

 

1.3.5 Potential biomarkers in OSCC 

There is a wealth of literature on potential candidate genes in HNSCC.  Authors of a recent 

review of the common aberrant genes in head and neck squamous cell carcinoma (HNSCC) 

literature designated them established or candidate based on the strength of evidence for a 

mechanistic  role in HNSCC (Leemans CR, Braakhuis BJ et al. 2011). Eight genes in total were 

considered as established cancer genes, of them four are tumour suppressor genes: P16, 

PTEN, TP53, SMAD4 and four oncogenes: PIK3CA, EGFR, MET and CCND1 (Leemans CR, 

Braakhuis BJ et al. 2011).  Amongst them TP53, P16 and EGFR are perhaps the most well 

described in the broader HNSCC literature. A lot of the early and informative studies 

applied discovery techniques to mixed cohorts of HNSCC. As OSCC is the most common 

subgroup of this disorder it is often well represented in these studies but seldom are the 

results stratified by anatomical subsite.  

 

TP53 is a well established tumour suppressor gene and is commonly mutated in all types of 

cancer (Negrini S, Gorgoulis VG et al. 2010). It is one of the most commonly mutated genes 

in HPV negative HNSCC (Agrawal, Frederick et al. 2011) and has been described in pre-

invasive HNSCC and invasive HNSCC (Somers, Merrick et al. 1992, Boyle, Mao et al. 1994, 

van Houten, Tabor et al. 2002). It interrelates with other genes in cancer pathways known 

to have roles in HNSCC carcinogenesis such as P16 and Cyclin D (Zhang, Xiong et al. 1998, 

Opitz, Suliman et al. 2001). Inactivated p53 confers expanded lifespan on oral keratinocytes 

in vitro (Opitz, Suliman et al. 2001) and in knock-out murine models (TP53+/-) the loss of 

TP53 was associated with earlier onset of tumorigenesis and a more aggressive, metastatic 

HNSCC phenotype (Ku, Nguyen et al. 2007). In terms of potential as a biomarker it may 

have a role in prognostication. The presence of TP53 mutations in tumours has been 

associated with reduced survival (Poeta, Manola et al. 2007) and in surgical margins, is 

associated with increased risk of locoregional recurrence even in those considered 

histopathologically free of tumour (Brennan, Mao et al. 1995, van Houten, Leemans et al. 

2004) . 
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The P16 gene is a cell cycle regulator located at the 9p21 locus which is known to have a 

high incidence of genetic loss (Van Der Riet, Nawroz et al. 1994). The P16 (INK4a-ARF) gene 

locus encodes two unrelated proteins which regulate the retinoblastoma and P53 tumour 

suppressor pathways respectively (Zhang, Xiong et al. 1998). P16 INK4a binds to and inhibits 

the activity of cyclin dependent kinase 4 (CDK4 and CDK6).  ARF binds to and promotes the 

degradation of the MDM2 protein which is responsible for the degradation of the P53 

tumour protein (Zhang, Xiong et al. 1998). Fifty three percent (17/32) of HNSCC tumours 

had LOH at 9p21 locus (Miracca, Kowalski et al. 1999) which supports other authors’ 

observations that it is frequently inactivated in HNSCC,  likely through chromosome loss and 

methylation (Reed, Califano et al. 1996) as mutation is relatively rare (Miracca, Kowalski et 

al. 1999, Ohta, Uemura et al. 2009). Methylation is generally considered an inactivation 

mechanism of the tumour suppressor function of P16 in HNSCC (Merlo, Herman et al. 1995, 

El-Naggar, Lai et al. 1997). P16 methylation may have a role as a predictive biomarker being 

present in precursor lesions (Kresty, Mallery et al. 2002) and is associated with, and 

predictive of malignant progression in these lesions (Hall, Shaw et al. 2008, Cao, Zhou et al. 

2009). Other authors cite promoter methylation of P16 as a potential prognostic indicator 

in HNSCC tumours based on an association with disease recurrence (Sinha, Bahadur et al. 

2009) and poor clinical prognostic indicators such as advanced stage disease and nodal 

metastasis (Sailasree, Abhilash et al. 2008, Huang, Yu et al. 2014 ). 

Epidermal growth factor receptor (EGFR) is considered an oncogene in HNSCC on the basis 

it is overexpressed in tumours (Grandis, Tweardy 1993, Hama, Yuza et al. 2009) and has 

shown ability to confer malignant traits on oral keratinocytes in vitro (Goessel, Quante et al. 

2005). It is present on chromosome 7p; a locus shown to have chromosomal gains in OSCC 

(Baldwin, Garnis et al. 2005, Martin, Reshmi et al. 2008). Using SNP array Sheu et al (Sheu, 

Hua et al. 2009) observed the most frequent amplification in OSCC patients (9/29) was at 

7p11.2. Genomic mapping identified EGFR at that locus and fluorescence in situ 

hybridisation assay confirmed upregulation of EGFR associated with those tumours. 

Functionally, EGFR is a member of the c-erb family of transmembrane proteins which are 

involved in transcriptional regulation of proteins and cytokines implicated in tumour 

invasion and angiogenesis (Rogers, Harrington et al. 2005).  It has been associated with 

recurrence and poor survival (Grandis, Melhem et al. 1998) and HNSCC patients treated 

with EGFR antibodies showed improved response to radiotherapy (Bonner, Harari et al. 

2006). Inactivation of EGFR, with the chemical inhibitor AG1748, has been shown to reduce 

the progression from precursor lesions to oral cancer in a mouse oral cancer model; 
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suggesting EGFR has a role in early carcinogenesis and secondly may provide a therapeutic 

target in oral cancer (Sheu, Hua et al. 2009). 

1.3.6 Gene panel selected for this study –a candidate gene approach 

The gene panel investigated in this study was selected using a candidate gene approach.  

Candidate gene studies focus upon a selection of genes identified in previous studies to be, 

or likely to be, related to the disease of interest (Patnala, Clements et al. 2013). The 

candidate gene approach has been defined as the study of the genetic influences on a 

complex trait by generating hypotheses about and identifying candidate genes that might 

have a role in the aetiology of the disease (Tabor, Risch et al. 2002). In contrast to a 

genome wide approach which identifies markers throughout the genome without regard to 

their function or context in a specific gene, candidate gene studies focus on genes that are 

selected because of a priori hypotheses about their aetiological role in disease (Tabor, Risch 

et al. 2002). The gene variant is commonly verified for disease association in case-control 

studies to establish its association with diagnosis and prognosis and future potential as a 

biomarker (Patnala, Clements et al. 2013). Four of the genes CCNA1, CYGB, P16 and 

TMEFF2 had previously been identified from the literature as genes of interest in 

aerodigestive carcinoma by our research group and investigated on a series of primary 

HNSCC tissue.  ADAMTS9 was identified as a novel gene in OSCC as part of a collaborative 

work with Dr Ratna Veeramachenini, involving cell lines from premalignant and malignant 

oral tumours and primary HNSCC tissue, which will be discussed in depth in the results 

section.  

Cyclin A1 (CCNA1) maps to chromosome 13q.12.3-q13 and is part of a family of genes that 

control the progression of the cell cycle through activation of cyclin dependent kinases. 

Cyclins activate cyclin dependent kinases (CDKs) in an ordered sequence which is both 

determined by events in the cell cycle and important for its progression (Yang, Morosetti et 

al. 1997). In the physiological state it appears to be expressed in significant concentrations 

in a tissue specific manner and was first discovered in testis germ cell cycles (Yang, 

Morosetti et al. 1997) and later in normal and leukaemic hameopoietic cells (Yang, 

Nakamaki et al. 1999) in which it appears to have a role in somatic G1 to S cell cycle 

progression (Ji, Agrawal et al. 2005). Cyclin A1 is a complex protein with roles in multiple 

molecular pathways including phosphorylating Histone 1, RB proteins and E2F-1 

transcription factor (Yang, Müller et al. 1999). It is also a P53 induced gene (Maxwell, Davis 

2000, Müller-Tidow, Ji et al. 2004) and through a P53 mediated pathway is associated with 

G2 cell cycle arrest, apoptosis and mitotic catastrophe in renal, ovarian and non-small cell 
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lung cancer cell lines; the mechanism is thought to be unscheduled activation of CDK1 

(Rivera, Mavila et al. 2006). Earlier studies on animal and HeLa cell lines implied a role for 

Cyclin A proteins in apoptosis via activation of the cyclin-A-dependent kinases (Meikrantz, 

Gisselbrecht et al. 1994). Furthermore murine studies revealed that dominant negative 

mutants for CDK2 had suppressed apoptosis which suggests cyclin A proteins may act as cell 

cycle dependent facilitators of apoptosis (Meikrantz, Schlegel 1996). Murine studies 

revealed CCNA1 expression is induced by gamma radiation via a p53 pathway. The cyclin 

A1-CDK-2 complex binds to Ku70 a known DNA repair protein. DNA double-strand break 

(DSB) repair was deficient in cells from cyclin A1 -/- mice (Müller-Tidow, Ji et al. 2004) 

suggesting CCNA1 may have a role in DNA repair. It would appear that the chronology of 

CCNA1 protein expression is important for its normal function. It is possible to see how 

ectopic or altered expression of the protein due to gene modification, perhaps by an 

epigenetic event, may prevent cell death or appropriate DNA double strand repair and 

result in uncontrolled cellular growth and proliferation. 

 Studies on primary HNSCC tissue have shown an inverse relationship between CCNA1 

expression and P53 mutation (Tokumaru, Yamashita et al. 2004, Farhadieh, Smee et al. 

2009). One of the first papers to publish a role for CCNA1 in HNSCC was by Tokumaru et al 

(Tokumaru, Yamashita et al. 2004) they identified CCNA1 as one of 6 genes from an original 

278 that were epigenetically silenced in a tumour specific pattern in HNSCC tissue. Using 

bisulphite-sequence analysis they determined 9/20 (45%) HNSCC tumours displayed CCNA1 

promoter methylation. This study influenced our research group’s early work on developing 

CCNA1 as a potential marker in OSCC.  However, more recently it has been discovered that 

higher methylation of CCNA1 and lower expression of CCNA1 is found in HPV positive 

HNSCC tumours (Sartor, Dolinoy et al. 2011) which are more likely to have wild type TP53 

(Agrawal, Frederick et al. 2011). OSCC is associated with TP53 mutations and may explain 

the relatively low levels of observed methylation for this gene in our study of saliva from 

OSCC patients. CCNA1 methylation has also been reported as a potential biomarker in high 

grade cervical epithelial neoplasia and cervical cancer which is another HPV mediated 

disease (Yang, Eijsink et al. 2009). 

 

 Discovery of over expression combined with enhanced S phase entry in leukaemia cell lines 

has led some to propose a tumourigenic role for CCNA1 (Ji, Agrawal et al. 2005). Over 

expression of the protein is associated with more aggressive prostate cancer (Wegiel, 
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Bjartell et al. 2005). However in clinical outcome studies over expression of CCNA1 in 

leukaemia patients was associated with a survival advantage (Nakamaki, Hamano et al. 

2003) and in laryngeal SCC with a reduction in recurrence (Weiss, Koopmann et al. 2012) 

which could suggest expression is a response rather than causative factor. There is also 

reported association between increased risk of second primary tumours and CCNA1 

methylation in primary HNSCC cases (Rettori, de Carvalho et al. 2013) which would further 

support a tumour suppressor role. It appears that the function of CCNA1, in different cell 

types and malignant disease states, is not fully characterised and that there is potential for 

a tumour suppressor or oncogenic role for CCNA1 which some authors propose could 

depend on tissue type and context. 

The Cytoglobin(CYGB)  gene is located on chromosome 17q25 and encodes an intracellular 

globin found in vertebrates which has a putative role in oxygen metabolism at the cellular 

level (Burmester, Haberkamp et al. 2004). The functional role is uncertain but in the in vitro 

setting CYGB has been shown to be upregulated in hypoxic conditions (Schmidt, Gerlach et 

al. 2004) and may afford cytoprotection from oxidative DNA damage (Hodges, Innocent et 

al. 2008). In cell line studies, hypoxic related elements (HREs) have been identified at 

positions -141, -144 and -448 on the CYGB gene which bind to HIF-1 proteins and are 

related to CYGB expression under hypoxic stress (Guo, Philipsen et al. 2007). Latterly an 

anti-fibrotic role has also been discovered for CYGB whereby it was observed to be 

upregulated in response to renal ischaemic reperfusion injury (Mimura, Nangaku et al. 

2010). The mechanism by which it contributes to carcinogenesis is not completely 

understood but appears to be complex.  In a comprehensive review of the literature 

Oleksiewicz and colleagues (Oleksiewicz, Liloglou et al. 2011) speculate that down 

regulation of CYGB may result in a higher burden of oxidative or nitrosative stress in tissues 

which contribute to DNA damage and mutations. They provide a second hypothesis that 

impaired healing leads to fibrosis induced inflammation which in turn stimulates 

proliferative signals and causes aberrant cellular overgrowth (Oleksiewicz, Liloglou et al. 

2011, Oleksiewicz, Liloglou et al. 2013).  

A functional tumour suppressor role has been observed in a study on lung and breast 

cancer cell lines which showed that loss of CYGB expression in CYGB positive lung cell lines 

resulted in colony formation. Conversely, CYGB transfection in CYGB negative lung and 

breast cancer cell lines resulted in reduced colony formation. Furthermore, cell lines with 

promoter methylation of the gene showed significantly reduced expression of CYGB 
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(Shivapurkar, Stastny et al. 2008). Promoter methylation of CYGB has also been associated 

with HNSCC, oesophageal, lung and ovarian malignancy (Shaw, Liloglou et al. 2006, 

McRonald, Liloglou et al. 2006, Xinarianos, McRonald et al. 2006, Wojnarowicz, Provencher 

et al. 2012, Oleksiewicz, Liloglou et al. 2013).  Our research group reported that promoter 

methylation of CYGB is significantly elevated in HNSCC, with 44% of tumours (35/80) having 

significantly higher levels than adjacent normal tissue (Shaw, Liloglou et al. 2006). 

Additionally, a correlation between HNSCC tumour hypoxia and CYGB mRNA expression and 

a negative correlation between CYGB expression and gene promoter methylation was 

observed; implying that the CYGB gene is regulated by both tissue hypoxia and methylation 

(Shaw, Omar et al. 2009).   

TMEFF2, transmembrane protein with EGF-like and two follistatin-like domains 2 is located 

on chromosome 2q33 (Liang, Robertson et al. 2000). The physiological role of TMEFF2 and 

its involvement in carcinogenesis remains unclear. TMEFF2 has been shown to have 

androgen dependent expression and anti-proliferative activity in prostate cancer cell lines 

(Gery, Sawyers et al. 2002). TMEFF2 induced apoptosis has also been noted in colon cancer 

cell line studies and found to induce a signal transducer and activation transcription factor 

(STAT1) which is known to stimulate other interferon inducible genes (Elahi, Zhang et al. 

2008). Further involvement with STAT pathways has been seen in infection driven H.pylori 

gastric carcinoma cell lines and tissues. H.pylori activated STAT3 which was observed to 

bind to the TMEFF2 promoter and inhibited its expression. In normal mucosa the 

expression of TMEFF2 suppressed phosphorylation of STAT3 (Sun, Tang et al. 2015). The 

combined findings of these studies may suggest TMEFF2, in a response to chemical 

mediation from the tumour microenvironment, exerts a tumour suppressor role through an 

interferon mediated pathway. TMEFF2 is epigenetically silenced in several cancers. Early 

studies observed methylation of TMEFF2 in cell lines of bladder and colon cancers (Liang, 

Robertson et al. 2000) and it is differentially methylated in tissue (Young, Biden et al. 2001, 

Sato, Shibata et al. 2002)  and blood (Lofton-Day, Model et al. 2008, Elliott, Johnson et al. 

2013) from colorectal cancer patients.  Allelic imbalance at sites on the 2q chromosome has 

been associated with HNSCC (Ransom, Barnett et al. 1998). However, epigenetic 

aberrations of TMEFF2 have rarely been reported in HNSCC.  It was found unmethylated in 

a small UK series of carcinoma expleomorphic adenomas (Schache, Hall et al. 2010).  High 

methylation rates were reported in saliva samples from a Japanese cohort of OSCC 

patients. Twenty nine of thirty four OSCC samples were methylated versus 3/34 controls as 

measured by MSP. Promising sensitivity 85.3% (95% CI: 73.4-97.2%), positive predictive 
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value of 87.5% (95% CI: 74.3-100%) and negative predictive value of 90.6% (95% CI: 80.5-

100%) data are reported as derived by a ROC analyses.  However, the sensitivity and 

predictive values have not been validated on a separate cohort of patients (Nagata, 

Hamada et al. 2012). In contrast modest informativity for TMEFF2 is reported in a recent 

surgical margins study of OSCC tissue; 13/48 tumours (26%) had detectable TMEFF2 

methylation using qMSP and a 5% methylation cut-off, but presence in margin tissue as 

part of a panel, inclusive of CYGB and P16, was not associated with tumour recurrence or 

survival outcome (Shaw, Hobkirk et al. 2013). 

P16 (cyclin dependent kinase inhibitor 2A) is a tumour suppressor gene located on 

chromosome 9p21.3 which is involved in cell cycle control (Serrano, Hannon et al. 1993, 

Rayess, Wang et al. 2012).  P16 is a cyclin dependent kinase inhibitor that regulates the 

passage from G1 to S phase in the cell cycle by binding to and inhibiting the cyclin D-cyclin 

dependent kinase 4 or 6 complex which inactivates the retinoblastoma protein and in 

normal function would initiate cell cycle arrest (Rocco, Sidransky 2001). Inactivation of P16 

by promoter methylation has as a role in carcinogenesis. Epigenetic silencing of P16 in 

HNSCC is well documented in the literature (Rocco, Sidransky 2001, Maruya, Issa et al. 

2004, Kulkarni, Saranath 2004, Kato, Hara et al. 2006, Shaw, Liloglou et al. 2006) . It is 

thought to be an early event in carcinogenesis (Rocco, Sidransky 2001) and methylated P16 

has been detected in oral epithelial dysplasia that progresses to OSCC (Hall, Shaw et al. 

2008, Cao, Zhou et al. 2009) . The specificity of P16 methylation as a tumour marker is 

under debate with some authors claiming little or no methylation in normal samples (Shaw, 

Liloglou et al. 2006, Righini, De Fraipont et al. 2007, Carvalho, Jeronimo et al. 2008) and 

others asserting it is associated with tobacco damaged tissue (Belinsky, Palmisano et al. 

2002, von Zeidler, Miracca et al. 2004). This is an issue which will be discussed in a later 

section. 

ADAMTS9 is an anti-angiogenic metalloprotease (Koo, Coe et al. 2010) which maps to 

3p14.2-3p14.3 (Clark, Kelner et al. 2000). It may have a role in tumour angiogenesis. In 

studies using oesophageal and nasopharyngeal carcinoma cell lines  Lo et al (Lo, Lung et al. 

2010) describe ADAMTS9 as having a critical role in the ‘angiogenic switch’ when a tumour 

progresses from non-angiogenic to an angiogenic phenotype which is pivotal to cancer 

progression. In keeping with this phenomenon, methylation of this gene has been 

demonstrated in locally metastatic nasopharyngeal carcinoma (Hong, Lo et al. 2008). The 

findings in both of these studies may infer a role for ADAMTS9 in the later stages of 
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carcinogenesis in these tumour types.  Dr Veeramachenini (Veeramachaneni 2010) found it 

was epigenetically silenced in both premalignant and malignant HNSCC cell lines suggesting 

an earlier role for ADAMTS9 in HNSCC carcinogenesis. It is however known that the 

methylation status of cell lines and primary tumour tissue may differ. Further support for 

ADAMTS9 having an early role in HNSCC is the finding of allelic imbalance at 3p14.12 in oral 

premalignant lesions which undergo malignant transformation (Rosin, Cheng et al. 2000, 

Tsui, Rosin, Lam et al. 2002, Rosin et al. 2008).  In view of this, ADAMTS9 was considered a 

gene of interest in our study; investigating the presence of methylation of these genes in 

saliva from patients with premalignant lesions and those with TNM stage I-IV OSCC. 

 

1.4 Body fluids as tumour surrogates 

The relative difficulty in obtaining tissue samples makes tissue surrogates an attractive 

proposition for early disease detection and disease monitoring. This is particularly true with 

bodily fluids which are in intimate contact with potential tumour sites. The feasibility of 

detecting potential methylation biomarkers in several body fluids has been explored in the 

literature. 

 

 

1.4.1 Advantages of surrogates 

Patient acceptance is pivotal for the successful development of a screening or disease 

surveillance biomarker.  From a clinical and research perspective surrogates are appealing 

because their non-invasive acquisition generally meets this criterion.  Exclusive of blood 

derivatives, surrogates are largely collected by non-invasive means, which also renders 

them suitable for repeat sampling. Tumour tissue is finite and this restricts its use for 

disease follow-up whereas saliva is unlimited, being continually produced and secreted into 

the easily accessible oral cavity.   Disease surveillance may necessitate chronological tissue 

sampling but sequential biopsy is not realistic or always representative of the extent of 

disease. Tumour surrogates may provide a solution to these limitations.  Bodily fluids have 

intimate contact with the target tumour but importantly beyond this they bathe the whole 

tissue field, which could provide a more objective perspective of malignant disease in the 

context of molecular field changes.  There is evidence across many tumour types that 

surrogate tissues share concordant molecular profiles with tumour tissue (Liloglou, Field 

2010).  It is envisaged that biomarkers detectable in surrogate tissues may eventually 
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provide accessible means of dose and response-to-therapy monitoring for cancer 

treatments.  Along with quantitative measures of the biomarker, repeat samples are likely 

to be required to accurately assess therapeutic responses.  Aside from blood products most 

other body fluids lend themselves to self collection which could lessen the cost of repeat 

sampling. Saliva DNA has proven sufficiently stable after self collection and postal return of 

samples to be used in downstream applications such as PCR (García-Closas, Egan et al. 

2001) and self-collected faecal occult blood sampling is routinely used in the UK for 

colorectal carcinoma screening. 

 

 There is increasing interest for surrogate biomarker research in malignant pathology where 

screening and disease surveillance have proven difficult or unsatisfactory and early 

detection of disease would significantly improve prognostics, quality of life or expand 

treatment options. Accessibility and inexhaustible supply of surrogate tissues such as blood, 

saliva, faeces and urine hold obvious attractions to researchers but inherent in these 

attributes is also the scope for use in clinical outpatient and community settings.  In many 

assays, the definition of a negative sample is informed by the level of the target found in 

control tissue.  The definition of ‘normal’ tissue can differ markedly across research fields 

and often includes control tissue from the same site as the tumour, albeit geographically 

remote.  However, the potential for field change calls into question the reliability of these 

assumed normal controls to provide ‘cut-offs’ to distinguish a positive cancer result from 

negative ‘background methylation’.  The level of methylation in normal tissue remains a 

relative unknown.  To date ethical limitations prevent the harvesting of like for like normal 

tissue in enough breadth and quantity to find the definitive answer. Surrogate tissue may 

provide a suitable compromise as it is relatively easily obtained from a disease free 

population.    

 

1.4.2 Disadvantages of surrogates 

The prevailing theory for the origin of body fluid DNA is exfoliated epithelium.  In oral cavity 

work on TP53 mutation supports the assertion that the detectable abnormal DNA in 

surrogate tissue is from the tumour of origin because the uniqueness of the target 

aberration makes it unlikely to be from any other source (Boyle, Mao et al. 1994). Larger 

tumours are likely to shed greater quantities of epithelia as expanding size outstrips 

nutrient supply.  Extending this principle, the concern might be that premalignant, field and 
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early stage lesions may go undetected by body fluid assays due to a relative lack of 

exfoliation. However, epigenetic biomarkers have been successfully detected in saliva from 

precursor oral lesions (Pattani, Zhang et al. 2010, Liu, Zhou et al. 2012). The origin of DNA in 

surrogate samples remains unproven and as a result sampling methods remain non-

standardised.  Even in a relatively small field such as saliva cancer diagnostics, the range of 

sampling methods, storage and processing are different enough to prevent reliable direct 

comparisons of the results.  

 

DNA extracted from surrogate tissue can lack the integrity and quantity of that derived 

from tumour.  The chemical and physical stresses it endures in its journey from source to 

excretion could cause fragmentation.   However, the ready supply of surrogate material 

would permit multiple samples and pooling of DNA.  The pre-analytical preparation of DNA 

can further compromise it. Bisulphite modification imposes a chemical assault on the 

structural integrity of DNA which can result in degradation and loss of DNA during the 

clean-up process (Munson, Clark et al. 2007).  This can present difficulties for downstream 

applications when only a small amount of target DNA is available (Liloglou, Field 2010).  A 

problem with DNA of uncertain origin is how to know exactly what process it is heralding. It 

is entirely feasible that the surrogate derived DNA marker is not from the tumour of 

interest and may counsel of a tumour elsewhere.  This is a particular concern in a non-

tissue specific surrogate such as blood. Further compounding this issue, is the non-tissue 

specific nature of certain genes for example RASSF1A found in numerous tissues which may 

be an unlikely candidate as a suitable singular screening marker for a cancer of unknown 

site (Hesson, Cooper et al. 2007).  

 

Surrogate biomarker research remains an evolving field because the epigenetic and genetic 

profile of cancer tissue is yet to be fully described, in part due to the complex molecular 

heterogeneity of tumours.  As a result of this heterogeneity, it is thought that a panel of 

markers infers a greater sensitivity than singular markers (Esteller, Corn et al. 2001) but the 

inclusion of multiple markers can negatively affect the specificity (Carvalho, Jeronimo et al. 

2008) there is currently a need to improve this balance in the surrogate literature. Perhaps 

the biggest technical challenge presented by surrogate tissues is dilution of the target 

material by thousands of other types of cell.  A difficulty with body fluids from non-sterile 

cavities, like faecal DNA derivatives, is the relatively small amount of tumour DNA.  It is 

estimated that only 0.1 -0.01% of the extracted DNA is human and only 1% of that 
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proportion is tumour cell; the rest is contributed to by bacteria (Whitney, Skoletsky et al. 

2004) additionally, bile pigments and salts may also act as PCR inhibitors. Saliva is also not a 

sterile tissue and samples may contain 7-49% bacterial DNA content (García-Closas, Egan et 

al. 2001, Iwasiow, Tayeb et al. 2011). This published broad range is likely a result of 

different storage conditions. Once the sample is properly prepared the problem of dilution 

of the target DNA by thousands of normal cells still exists and this requires a high degree of 

sensitivity from detection assays. 

 

 

1.4.3 Biomarkers in body fluids 

1.4.3.1 Faeces 
Faecal matter is easily collected and faecal occult blood testing is currently used as a 

screening tool in the UK which has limited sensitivity in part due to a reliance on the 

tumour being a bleeding phenotype (Young, Bosch 2011). Potential diagnostic molecular 

markers have been detected in faeces.  In a case control study of 94 cancers and 198 

healthy controls methylation of the vimentin gene had a sensitivity of 46% and a specificity 

of 90% for the detection of colorectal cancer (Chen, Han et al. 2005).  Another group found 

sensitivity improved to 75% when vimentin was considered as part of a methylation panel 

inclusive of MGMT and hmlH1 specificity of 87% was comparable to the single marker 

study. This panel also detected adenoma with a sensitivity of 60% and may be useful in 

detection of premalignant disease (Baek, Chang et al. 2009). A panel of genes containing 

hypermethylated vimentin and mutation of KRAS and APC was found to be more sensitive 

for the detection of colorectal cancer than faecal occult blood testing (Ahlquist, Sargent et 

al. 2008). In future testing molecular markers may increase the sensitivity of the existing 

screening tools for colorectal carcinoma. 

 

1.4.3.2 Urine 
Urine is sterile, accessible and already has a place in clinical diagnostics being used for 

hormonal assays and screening for glucosuria and proteinuria which are early indicators of 

chronic disease.  Promising molecular markers for the detection of urogenital cancers have 

now emerged in the literature.  Promoter methylation of GSTP1 is tumour specific in 

prostate cancer and has been detected in the urine of patients with biopsy confirmed 

prostate cancer with a sensitivity of 75% and specificity of 98% (Woodson, O’Reilly et al. 



 

52 

 

2008). In a case control study of 52 patients with prostate cancer and 91 age-matched 

controls the presence of at least one positive marker from a panel of four genes GSTP1, 

ARF, MGMT and P16 had a sensitivity of 87% and a specificity of 100% for the detection of 

biopsy proven prostate cancer (Hoque, Topaloglu et al. 2005). The same group also note 

that methylation of GSTP1 detected in tumours at primary surgery is a significant factor in 

the time to progression of the disease (Rosenbaum, Hoque et al. 2005) and may have a role 

as a prognostic marker.   

  

1.4.3.3 Sputum 
Sputum is primarily used in lung cancer research and methylation at the promoter of P16 

shows promise for the detection of lung cancer from sputum samples (Palmisano, Divine et 

al. 2000, Belinsky, Liechty et al. 2006, Belinsky, Grimes et al. 2007). A sensitivity of 66.7% 

for the detection of non-small-cell lung carcinoma (NSCLC) is reported using P16 

methylation detected by MSP as a marker in the sputum of 50 patients.  Chronic heavy 

smokers were used as a control group (n=100). Four percent had detectable P16 promoter 

methylation in sputum samples (Destro, Bianchi et al. 2004).  No follow-up data is provided 

for this high risk group so it is unclear if they represent undiagnosed early cancer or a high 

risk group as P16 could be a marker of field cancerisation.  More recently a large case 

control study of promoter methylation of P16, TERT, WT1 and RASSF1 in bronchial washings 

established this panel of biomarkers is more sensitive for the detection of lung cancer than 

cytological assessment which is currently part of the lung cancer diagnostic pathway in the 

UK (Nikolaidis, Raji et al. 2012). 

 

1.4.3.4 Blood  
The actual origin of free DNA in blood is unknown but there is a theory of phagocytic 

ingestion of solid tumour cells or circulating tumour cells that undergo necrosis and release 

DNA (Wong, Dennis Lo et al. 2001). Blood is non tissue specific and both serum and plasma 

have been used to detect molecular markers associated with solid tumours in various 

organs such as detection of ovarian cancer (De Caceres, Battagli et al. 2004), prostate 

cancer (Bryzgunova, Morozkin et al. 2008, Payne, Serth et al. 2009), colorectal cancer 

(Tänzer, Balluff et al. 2010) and HNSCC (Carvalho, Jeronimo et al. 2008).   In addition to 

diagnostics, methylation markers in blood have also been used as predictive biomarkers in 

chemotherapy trials for solid tumours. 
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Fiegl et al (Fiegl, Jones et al. 2008) investigated serum NEUROD 1 methylated DNA as a 

predictor of chemosensitivity in a cohort of 107 breast cancer patients using quantitative 

MSP.  High levels of NEUROD 1 methylation in oestrogen receptor negative breast cancer 

tissue is associated with a 10.8 fold increase in response following neoadjuvant 

chemotherapy (sensitivity: 80% specificity: 72%).  Oestrogen receptor negative patients 

with NEUROD 1 methylation present in pre and post treatment sera had a significantly 

worse relapse-free and overall survival compared with those who had become NEUROD 1 

free in post treatment sera p=0.01. Pre-treatment and post-treatment plasma samples 

from multistage ovarian cancer patients receiving carboplatin taxoid chemotherapy as part 

of a stage III trial were collected. One hundred and thirty eight patients with relapse 

provided a matched pre-treatment and an at relapse plasma sample. 16/138 (12%) of 

patients were positive pre-treatment and 45/138 (33 %) at relapse which represents a 

significant increase (p<0.001) in hMLH1 methylation at relapse what is more the post-

treatment acquisition of hypermethylated hMLH1 in plasma samples is associated with 

worsened survival (p=0.007) (Gifford, Paul et al. 2004).  

 

In terms of translation into clinical use, surrogate derived epigenetic biomarker research is 

still evolving.  This is in part because tissue epigenetic research continues to answer 

questions about tissue heterogeneity and normal levels of methylation. Currently in the 

HNSCC surrogate literature there are differences in sample collection, assay types and 

conditions and statistical analysis that make direct inter-study comparisons difficult and any 

definitive conclusions about specific genes difficult to draw.   

 

 

1.4.4 Saliva as a source of  biomarkers 

Saliva is a complex fluid with contribution from major and minor salivary glands, gingival 

crevicular fluid, nasal and bronchial secretions, blood and desquamated epithelial linings 

(Loo, Yan et al. 2010).  It is a rich source of electrolytes, immunoglobulins, proteins, 

enzymes, mucins and nitrogenous products with an average daily flow of up to 1.5 L 

(Humphrey, Williamson 2001). It is therefore a regularly replenished source of a myriad of 

potential disease markers which can be sampled repeatedly. Saliva has been used as a 

surrogate for OSCC across research disciplines such as genomics, proteomics, 

transcriptomics and epigenomics. It is also a source of potential biomarkers to detect 
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tumours remote from the oral cavity. Soluble C-erbB-2 protein, a prognostic marker for 

breast cancer, was detected at higher levels in saliva samples from breast cancer patients 

than healthy controls or patients with benign breast disease (Streckfus, Bigler et al. 2000).   

Messenger RNA markers (KRAS, MBD3L2, ACRV1 and DPM1) detectable in saliva 

supernatant are differentially raised between early stage resectable pancreatic cancer and 

healthy controls and may have a role in non-invasive detection of pancreatic cancer (Zhang, 

Farrell et al. 2010). 

1.4.4.1 Genomics 
 

Gene mutations 

One of the first exploratory studies of saliva as a tumour surrogate was performed on a 

small cohort of HNSCC patients to detect TP53 tumour specific mutations present in pre-

operative saliva.  Five out of seven saliva samples were positive for TP53 mutation.  The 

data suggests the DNA extracted from saliva must have been from shed tumours cells to 

display the same TP53 point mutation as the tumour (Boyle, Mao et al. 1994).  Another 

feasibility study compared the presence of TP53 mutations at exon 4 and intron 6 in pre-

treatment saliva from a cohort of 10 OSCC patients and an unmatched cohort of young 

healthy controls (n=27).   Five out of eight (63%) OSCC and 5/27 (19%) normal saliva 

samples revealed a TP53 exon 4 codon 63 mutation; a difference which reached statistical 

significance (p<0.05) (Liao, Chang et al. 2000). However, the data should be treated with 

caution as this study is limited by small numbers and an unmatched control group.  If 

genetic mutations are acquired over time with exposure to environmental risk factors then 

a young control group are unlikely to have had time to acquire genetic aberrations 

associated with OSCC. Furthermore, in terms of utility as a biomarker point mutations can 

occur anywhere along the gene and vary between tumours therefore it may be difficult and 

time consuming to detect these mutations and predict which of them are clinically relevant.  

  

Microsatellite analysis 

Authors of an early proof of principle study used microsatellite analysis to interrogate 23 

microsatellite loci to detect tumour specific genetic alterations in mouth rinse from HNSCC 

patients (n=44) and healthy controls (n=43: 20 smokers 23 non-smokers). Forty four 

percent of the matched tumour and salivary rinse pairs had concordance of at least one of 
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the 23 markers. Some of the positive markers were only positive in one tumour e.g D20585 

this variability in markers may reflect the heterogeneity of the tissue and cohort (Spafford, 

Koch et al. 2001) and highlights the need for a panel rather than singular markers for 

detection of disease.  Another group analysed 37 matched OSCC tumour and saliva samples 

for the presence of LOH.  Ten saliva samples from 5 smokers and 5 non-smoker healthy 

controls were included for comparison.    The highest incidence of LOH in both tumour and 

saliva occurred on chromosomes 9p, 3p and 17p. LOH of at least 1 of the 25 markers was 

detected in 18/37 (49%) of saliva samples and 32/37 (86%) of the matched tumours.   LOH 

was not found in any of the control saliva samples (El-Naggar, Mao et al. 2001) but again 

the sample size is very small.  If the limitations of the studies are accepted, both illustrate 

that cancer-related genetic aberrations are detectable in saliva. 

1.4.4.2 Transcriptomics and Proteomics 
It could be argued that tumorigenesis and cancer pathways are ultimately controlled by 

proteins. As proteins undergo post translational modification and degradation then cancer 

biology is potentially more complex than genetic modification alone. Proteomics may be 

more reflective of cellular behaviour and better placed to generate useful biomarkers for 

cancer.  Several studies have focused on the detection of HNSCC related protein and 

transcript markers in saliva. 

Using ELISA assays, Katukuro et al (Katakura, Kamiyama et al. 2007) compared OSCC saliva 

(n=19) against control saliva (n=20) performed for the presence of four potential cytokine 

protein markers: IL-6, IL-8, IL1Beta and Osteopontin.  All four markers were raised in the 

OSCC group but only IL-6 (86.5pg/ml) compared to zero in the control group was 

statistically significant (p<0.05).  The lack of patients with benign inflammatory disease in 

the control group may mask potential confounding variables as interleukin proteins are also 

raised in non-malignant oral inflammatory conditions (Giannopoulou, Kamma et al. 2003). 

However, this rise in fluid phase salivary interleukins correlates with another study  in 

which  raised levels of  IL-8 in the saliva and IL-6 in the sera of OSCC patients (n=19) was 

observed when compared with a matched healthy cohort (n=32) . The concentration of IL-8 

in OSCC saliva was 720pg/ml and in normal saliva 250pg/ml. There was also a difference in 

mRNA expression-1.1x108 copies of IL8 in saliva from OSCC compared to 2.6 x106 present in 

the control group (St. John, Li et al. 2004).  The lack of statistical concordance for the IL-8 

marker in saliva between these two studies may be a result of the small cohort size but may 

also reflect the large inter-individual variation of saliva proteins which is a potential 

limitation in biomarker development.  
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The presence of CD44 protein was investigated in the saliva of a large cohort of HNSCC 

(n=102) and matched controls with benign aerodigestive inflammatory conditions (n=69).  

Differential CD44 concentrations of 24.4ng/ml in HNSCC and 9.9ng/ml in benign disease are 

reported.  Dependant on the cut off value for ‘elevated’ sol CD44 sensitivity ranged from 

62-70% and specificity between 75-88% this was also dependent on HNSCC site.  In those 

patients who had low salivary sol CD44 expression the authors hypothesized that 

transcription was switched off by epigenetic alteration of the CD44 promoter.  MSP assays 

were performed on a limited cohort of saliva samples from HNSCC patients (n=11) and 

benign controls (n=10).  Nine out of eleven OSCC patients showed methylation whereas 

0/10 controls exhibited methylation of the CD44 promoter.  They did not extend this assay 

to the remaining 91 HNSCC saliva samples therefore the utility of methylation of CD44 as a 

potential marker for OSCC was not fully explored (Franzmann, Reategui et al. 2007) . 

Hu et al (Hu, Arellano et al. 2008) identified five candidate biomarkers (M2BP, MRP14, 

CD59, Calatase and profilin ) from the pooled saliva of a group of 16 OSCC patients and 16 

matched controls using mass spectrometry.  This panel of biomarkers had a 90% sensitivity 

and 83% specificity when validated on an OSCC cohort (n= 48) and matched controls 

(n=48).  They utilised mass spectrometry-LC-MS/MS and 2D gel electrophrosis (2DE) to 

generate this panel of biomarkers from 461 OSCC and 438 normal non redundant proteins.  

Overlap between the two groups was noted for 409 proteins.  The authors acknowledged 

difficulty in producing decent 2DE gel patterns because of the presence of high abundance 

proteins such as amylase and immunoglobulins in saliva.  They also found a large number of 

proteins to be differentially expressed and techniques used to deplete high abundance 

proteins can deplete other proteins. This study highlights some of the issues with the 

logistics of developing protein biomarkers. 

ELISA and immunohistochemistry techniques are already used in the clinical setting for 

proteomic analysis but tend to be used for singular or a few proteins.  Antibody arrays, 2DE 

and mass spectrometry techniques are utilised for screening large number of proteins or 

samples but in the main are limited to the research sphere because of the massive amount 

of data that can be generated by one specimen.  This requires complex bioinformatics 

software analysis, which has to be performed in specialist laboratories as do some of the 

mass-spectrometry techniques.  
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Messenger RNA (mRNA) 

As a proof of principle of salivary transcriptome oral cancer diagnostics, nine candidate 

transcripts were selected from a comparison of early stage OSCC (n=10) and healthy 

controls (n=10) and subsequently tested on a validation cohort using qPCR . Thirty two 

patients with T1 and T2 oral squamous cell carcinoma and matched normal controls (n=32) 

comprised the validation cohort.  Seven mRNAs   (IL8, ILIB, OAZ1, DUSP1, H3F3A, S100P, 

SAT ) were significantly raised in OSCC.  At least a 3.52 fold increase was observed in OSCC 

when compared with control saliva and can be considered cancer related transcripts.  A 

synchronised elevation in the concentration of four of these mRNAs; IL8, IL1B, OAZ1 and 

SAT achieve a 91% sensitivity and specificity in predicting OSCC samples (Li, St. John et al. 

2004). 

 

1.4.4.3 DNA Methylation 
Mouth and throat rinsing fluid from patients with primary nasopharyngeal carcinoma (NPC) 

(n=30) and unmatched healthy controls (n=43) was analysed for the presence of RASSF1A, 

DAPK, P16, P15 and E-Cadherin using MSP. Six normal tissue biopsies were also analysed. 

All six of the normal tissue samples were free of methylation and only 1/43 normal mouth 

rinsing fluids displayed promoter methylation in DAPK and P15 but further details of this 

individual are not given.  Methylation of P15: 80% (24/30), DAPK: 73% (22/30), RASSF1A: 

67% (20/30), E-Cadherin: 53% (16/30) and P16: 33% (10/30) were found in the NPC tumour 

tissue assays.  Twenty nine (97%) of the tumours had at least one gene methylated.  Of 

thirty NPC tumour patients, mouth rinsing fluid was positive in DAPK: 50%, E-Cadherin: 

43%, in RASSF1A: 37%, in P15: 40% and P16: 17%.  A sensitivity of 90% and specificity of 

98% is reported for the gene panel in this cohort of NPC patients (Chang, Chan et al. 

2003b).  A small normal, unmatched cohort (age 11-84 years) may have favourably affected 

the specificity results in this study.  A second study by the same group examined a single 

marker RIZ1 promoter methylation using MSP in mouth-rinsing fluid and tissue from a 

cohort of NPC patients (n=30).  They included 5-Aza-dC treatment of NPC cell lines to verify 

the re-expression of RIZ-1.  Oral rinses from healthy volunteers (n=20) were included in this 

study and 0/20 were positive for promoter methylation of RIZ1 whereas 18/30 of the mixed 

stage primary NPC tumour group were positive for RIZ1 methylation.  Of the 18 positive 

tumour samples 7/18 of the matched mouth rinses were also positive for RIZ1 methylation.  

The 12 negative tumours also had negative matching mouth rinse samples.  The expression 
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of RIZ1 was reactivated by the treatment of 5-Aza-dC in cell lines suggesting it is silenced by 

methylation (Chang, Chan et al. 2003a). 

 

1.4.5 Saliva collection methods 

In the process of developing a diagnostic tool, consideration must be paid to patient 

acceptability, ease of execution and the acquisition of appropriate information.  Bisulphite 

treatment is a requirement of some methylation assays but it has demands on the integrity 

of DNA therefore, it is a prerequisite of any methylation assay that the harvested DNA be of 

good quantity and quality.  To ensure reproducibility of results, duplicate or triplicate 

assays are performed therefore the sample DNA yield must be large enough to 

accommodate multiple runs. If saliva is to be useful as a surrogate source of DNA it is 

imperative that the collection method will satisfy these conditions. 

 

Saliva collection is well tolerated by patients, requires minimal preparation and equipment, 

does not require trained personnel and is therefore easily carried out.  Saliva also has other 

practical advantages over the collection of the common surrogate, blood.  It is likely to be 

better tolerated by needle-phobics or groups with compliance issues such as children, 

mentally impaired or very elderly. Saliva collection is likely to be less time-consuming and 

easier in those who have poor vasculature secondary to chemotherapy or intravenous drug 

use and it does not present the same risk of needle stick injury to personnel that 

venepuncture does.  Saliva may have its disadvantages, for example those patients who 

have been rendered xerostomic by radiotherapy or whose post-surgical, residual oral 

function and competence makes saliva donation a challenge.   

 

Garcia-Closas et al (García-Closas, Egan et al. 2001) compared the DNA yield and quality 

from self-collected cytobrush and  a self-collected 10ml mouthwash from two separate 

cohorts. In a cohort of female breast cancer patients the median DNA yield for mouthwash 

(n=35) measured 57.3g and cytobrush (n=40) 13.6g. In healthy males the results were 

similar mouthwash (n=25) yielded 38.7 g and the cytobrush (n=28) 13.5g of DNA. High 

molecular weight DNA (>23Kb) was reported from 93% mouthwash samples and 60% of 

cytobrushes. This study used a postal system for distribution and return of samples.  

Despite not immediately processing the sample and freezing it, high molecular weight DNA, 

which withstood PCR was obtained from greater than 93% of the mouthwash samples.  

They found no significant reduction of DNA yield following 1 year of storage at -80 o C.  This 
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is encouraging for the use of saliva derived DNA in longitudinal studies.  However, a study 

on the effect of time from collection to DNA extraction on  DNA yield from a 10ml 

mouthwash in 35 healthy people revealed DNA extracted at 10 and 30 days post collection 

showed a significantly lower yield than day one (P=0.01) (Feigelson, Rodriguez et al. 2001).  

Both studies show that saliva is suitable for self-collection and postal studies which are 

attractive features for a cost-effective screening or surveillance programme but DNA from 

mouthwash stored at room temperature degrades in days.  OrageneTM whole saliva 

collection device was compared with cytobrush, foam brush and oral rinse in 17 healthy 

volunteers.  The authors assessed DNA yield and quality using gel electrophoresis, 

spectrophotometry and PCR.  The Oragene TM kit had a significantly higher DNA yield 

(median 181.88g) when compared to the next highest of 36.56g from mouthwash 

(Rogers, Cole et al. 2007).  The swab (10.72g) and cytobrush yield (13.22 g) was 

comparable to other studies using similar techniques (García-Closas, Egan et al. 2001). 

 

 

The saliva collection methods utilised in OSCC studies at the time of our study design were 

mainly oral rinse samples (Rosas, Koch et al. 2001, Righini, De Fraipont et al. 2007, 

Carvalho, Jeronimo et al. 2008,) and the majority of published DNA yield data was from 

healthy individuals (Table 10 in results section).  Studies of DNA yield and saliva collection 

methods in OSCC patients had not been considered in the literature and the majority of 

data on the DNA yield from collection methods was based on normal individuals. 

 

1.5 The role of DNA methylation in saliva in the management of OSCC 

1.5.1 OSCC  diagnosis and prognosis 

One of the first proof of principle studies of salivary methylation markers was performed by 

Rosas and colleagues (Rosas, Koch et al. 2001). Fresh tumour tissue and matched salivary 

rinses from 30 HNSCC patients with primary disease were interrogated for a panel of 

markers using MSP for the detection of P16, MGMT and DAPK.  Thirty normal controls 

provided salivary rinses; 15 smokers and 15 non-smokers. Seventeen of thirty (57 %) of 

primary HNSCC tumours showed methylation of at least one of the three genes individually 

they were detected at rates of: P16 in 14/30 (47%), DAPK in 10/30 (33%) and MGMT in 7/30 

(23%).  Strong correlation between tumour and saliva methylation status was reported with 
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11 patients displaying the same methylation profile in both saliva and tumour. The authors 

report a higher rate of abnormal methylation from the saliva of patients with oral cavity 

cancer 8/10 compared to other sites 3/20 p<0.001.    Six of thirty tumours were positive 

when the matching saliva was negative. One individual from the control group displayed 

positive P16 and MGMT promoter methylation. This individual was from the smoking 

cohort, the significance of which is uncertain as no follow-up data is provided. This is a 

common criticism of control data but is often imposed by medical ethics.  This paper has a 

limited cohort size and it is not clear if the normal controls are matched to the cancer 

cohort. However, a strong correlation between tumour promoter methylation and saliva 

methylation supports the use of saliva as a suitable surrogate for head and neck cancer.   

Similar findings were seen in methylation markers profiled in a small study of saliva and 

tumour tissue from a mixed cohort of oral epithelial dysplasia and OSCC (Viet, Jordan et al. 

2007) using quantitative methylation specific PCR (qMSP) to detect: APC, E-Cadherin, 

MGMT, P15 and P16.  Concordance between tumour tissue and matched saliva was 

reported at; P16: 87.5%, E-Cadherin: 87.5%, P15: 62.5%, MGMT: 62.5% and APC: 12.5%.  

Considered as a panel the methylation rate is reported as 71% for detection of OSCC using 

saliva.  Higher overall rates of methylation are found in P16 and MGMT than reported by 

other authors but this could be a result of a more sensitive detection assay or that samples 

in this study are all from the oral cavity.  It must be noted that this was in a mixed cohort of 

premalignant and OSCC disease and the results are not stratified by tumour type. 

 

 A larger, longitudinal study further bolstered saliva as a tumour surrogate for HNSCC and 

suggested saliva derived methylation markers may be useful in prognostication of HNSCC. A 

panel of genes (P14, P15, P16, DAPK, RASSF1A, FHIT, MGMT, hMLH1, ECAD, APC,TIMP3, 

RAR, DCC, ATM, THSB1, CASP8) was evaluated for the detection of early head and neck 

recurrence (Righini, De Fraipont et al. 2007).  A cohort of 90 HNSCC patients provided 

tumour tissue and matched salivary rinses. Thirty healthy controls also provided a salivary 

rinse.  Sixty nine of the ninety tumours were positive for promoter methylation of at least 

one gene as detected by MSP. TIMP3 (46%), ECAD (36%), MGMT (29%), P16 (29%), DAPK 

(27%) and RASSF1A (20%) were the most frequently methylated genes in disease but not in 

control samples and were used for post-operative surveillance.  Using this panel of markers 

24/47 (51%) individuals had the same methylation profile in paired saliva and tumour 

samples (Righini, De Fraipont et al. 2007).  Post-operative samples positive for at least one 

gene predicted recurrence before clinical examination. The results are supportive of saliva 
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samples as a clinical adjunct beyond initial disease detection and this paper will be further 

explored in the discussion. It may be that saliva biomarker tests prove useful in targeted 

populations at high risk of recurrence rather than blanket screening. 

 

An Illumina GoldenGate methylation array analysis of 807 genes was performed on tumour 

tissue and pre and post-operative whole saliva samples from 13 OSCC patients.  Saliva from 

ten normal controls was included as part of the analysis.  Thirty four of the eight hundred 

and seven genes were methylated in tumour tissue and pre-operative saliva but not in post-

operative or normal saliva.  The authors report the highest sensitivity of 77% and specificity 

of 87% was generated by a panel of 6 genes: GABRB3_E42_F, IL11_P11_R, INSR_P1063, 

NOTCH3_E403_F, NTRK3_E131_F and PXN_P308_f (Viet, Schmidt 2008). This study 

demonstrates the feasibility of using array technology on saliva samples for the discovery of 

novel genes that may be missed using a candidate approach.  

 

A criticism of surrogate literature is the absence of controls which are matched for risk 

factor exposure.  There is a tendency to publish attractive results on the total absence of 

methylation in control samples but often the numbers are small or the control cohort bears 

little resemblance to the disease cohort, which makes true comparison of results difficult 

and questions the validity of the proposed markers for clinical use (Carvalho, Jeronimo et 

al. 2008). This was addressed in a study containing a large cohort of age and risk factor 

matched controls.  Using qMSP they compared the methylation profile of saliva and serum 

from a large HNSCC cohort (n=211) and a normal control group (n=527).  In a multistep 

study they developed a set of potential gene panels that can distinguish cancer cases from 

normal controls with good specificity but limited sensitivity. One of the better panels 

contains MINT 31, CCNA1, DCC, DAPK and P16 and offers a sensitivity of 34.1% and a 

specificity of 91.8%.  In comparison to the other surrogate studies presented, the sensitivity 

is poor but may be a result of using a larger mixed HNSCC cohort. As a second arm to the 

study the authors looked at sera of the same cohorts, they note that the same biomarkers 

are not predictive for HNSCC in serum as they are in saliva, suggesting the phenomenon of 

compartment specificity.   The authors suggest it may be that the genes found in blood 

derivatives may represent more aggressive, metastatic disease than the luminal fluids more 

specific to the site of the tumour (Carvalho, Jeronimo et al. 2008).  
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1.5.2 Premalignant monitoring 

There is a need to diagnose oral cancer early to improve prognosis and survival.  Earlier in 

the history of molecular biomarker research it was felt that more good quality studies are 

required on the molecular characteristics of premalignant lesions before an informative 

biomarker for OSCC can be found (Westra, Califano 2004) and this still remains the case 

today. Promising biomarkers are starting to emerge but require validation on larger 

cohorts, preferably in multi-centre trials. Hall et al (Hall, Shaw et al. 2008) studied promoter 

methylation of P16, MGMT, CyclinA1 and Cytoglobin in biopsy proven oral epithelial 

dysplasia (OED) using MEP. Longitudinal data was available for up to 3 years on 38 patients 

with OED. Fourteen of thirty eight cases underwent malignant transformation of the lesion 

to OSCC.  Eight of the fourteen cases that transformed (57%) had P16 promoter 

methylation in at least one of the oral scrape samples taken prior to development of OSCC, 

leading to the conclusion that promoter methylation of P16 has potential as a predictor for 

malignant transformation in OED. These findings are supported in a later study. In a cohort 

of mild and moderate oral epithelial dysplasia, 22/78 OED lesions transformed into OSCC.  

Forty four percent of patients with P16 methylation transformed versus 17.4% of 

unmethylated cases. P16 methylation was also associated with non malignant progression 

of dysplasia grade. In those patients who transformed, cancer free survival was shorter 

than those without P16 methylation but statistical significance was not achieved for this 

outcome (Cao, Zhou et al. 2009). Nineteen patients with homogeneous oral leukoplakia 

(group L) and 15 patients with leukoplakia and a history of OSCC (group LCP) provided 

salivary rinse for detection of methylation of P16, P14 and MGMT genes using MSP.  The 

methylation rates for the gene panel are reported as 15 /19 (79%) patients in the L group 

and 13/15 (87%) in the LCP group. P14 was infrequently methylated 4/34 cases. P16 and 

MGMT were more highly methylated 15/34 and 19/34 cases respectively but were equally 

distributed amongst both groups (López, Aguirre et al. 2003). It is not made clear if these 

groups of patients were matched for risk factors such as smoking or alcohol intake.  This 

data set shows that promoter methylation is detectable in the oral rinses of patients with 

oral leukoplakia but the small cohort, lack of normal control and follow-up data means we 

are unable to draw conclusions about whether methylation of these genes is predictive of 

malignant transformation. This data may suggest that these markers could have a role in 

early disease or field change. 

The literature evidences that methylation of P16 is associated with malignant 

transformation of OED and that it is detectable in saliva but studies on saliva are few, lack 
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longitudinal clinical follow up and include a small number of markers.  Considering the 

existing evidence it is feasible that the detection of methylation markers in saliva could 

have a role in the monitoring of premalignant lesions but further studies are required and 

should include a panel of markers to increase detection and should include clinical follow-

up data. 

 

1.6 DNA methylation detection techniques 

To date the relative detectability of methylation has ensured its prevalence over other 

epigenetic changes such as histone acetylation and miRNA in cancer research. The 

methylation pattern and DNA strand are inherently more stable than RNA and RNA 

molecules (Cottrell 2004).  This is important because samples destined for DNA extraction 

require less specialist storage and handling than perhaps those whose fate is proteomic or 

RNA based assays.  

 

Fan (Fan 2004) summarises the advantages of methylated DNA as a potential biomarker for 

detection of cancer. It has a) High informity- promoter methylation is more common than 

genetic alterations in cancer b) Simplicity- it occurs in the same well-defined region of any 

given gene whereas a wide range of mutation variations occur within a given gene among 

different cancers. c) High sensitivity- promoter methylation constitutes a ‘positive signal’ 

that can be detected in a background of normal cells where loss of heterozygosity (LOH), 

homozygous deletion and microsatellite Instability (MSI) are negative signals which present 

detection difficulties in the presence of normal cells a situation likely to be seen in 

surrogate samples. This positive signal means that the presence of hypermethylated DNA is 

a dichotomous ‘yes’ or ‘no’ result.  This is favourable when compared with many of the 

proteomic markers whereby significance relies on a difference in levels and can require 

involved bio-informatic analysis.    

 

DNA methylation is a chemical change to the DNA which occurs with the addition of a 

methyl group to the 5’ carbon of cytosines within CpGs under the influence of DNA 

methyltransferase enzymes (Jones, Gonzalgo 1997, Okano, Xie et al. 1998). Broadly there 

are three techniques to discriminate methylated from unmethylated cytosine: digestion by 

methylation sensitive/insensitive enzymes, enrichment by DNA affinity or chemical 

conversion by bisulphite modification (Laird 2010, Hsu, Weng et al. 2014).  The choice of 

analysis will depend on the need for quantitation, sensitivity and output (Cottrell 2004). 
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There are several techniques based on methylation sensitive restriction enzymes (MSRE): 

downstream gel electrophoresis and Southern blotting (De Bustros, Nelkin et al. 1988), 

restriction landmark genome scanning (RLGS)(Smiraglia, Plass 2003) and methylation 

sensitive arbitrarily primed PCR techniques (MS-AP-PCR)(Gonzalgo, Liang et al. 1997) but 

they generally require large amounts of high quality DNA and can have limited throughput 

(Laird 2010). The various affinity enrichment techniques based on methyl-DNA 

immunoprecipitation (MeDIP) and methyl-CpG binding proteins (MBD) (Nair, Coolen et al. 

2011, Hsu, Weng et al. 2014) have similar demands of the DNA and are therefore not ideal 

for use with body fluids. The main quantitative methods of detection of DNA methylation at 

specific loci are based on modification by sodium bisulphite (Shen, Waterland 2007). 

1.6.1 Bisulphite conversion applications 

Bisulphite treatment induces a cytosine to uracil base change in unmethylated DNA but the 

methlyated cytosines remain intact thereby generating a sequence change (Herman, Graff 

et al. 1996) which can be detected by various methods.   

1.6.1.1 Methylation specific PCR 
Endpoint methylation specific PCR was first described by Herman et al (Herman, Graff et al. 

1996) and is a very sensitive technique which relies on primer sets designed to bind and 

amplify only the methylated or unmethylated target DNA. The PCR products are resolved 

by gel electrophoresis; the presence and intensity of a band determines the presence of 

methylated DNA therefore it is a subjective qualitative analysis of methylated DNA.  At high 

cycle numbers it can become vulnerable to mis-priming which has been reported at 10% of 

samples (Shaw, Akufo-Tetteh et al. 2006).  The specificity of the technique is limited due to 

the risk of failure of the bisulphite conversion of unmethylated cytosines to uracil. A false 

assumption that all cytosines are methylated can result in positive bias. If the amount of 

target DNA is small as in the context of surrogate samples this could significantly bias the 

results.  However, as it is highly sensitive it was commonly used in earlier studies for 

detection of methylation in saliva (Rosas, Koch et al. 2001, Righini, De Fraipont et al. 2007). 

1.6.1.2 Pyrosequencing and Methylation Enrichment Pyrosequencing 
Pyrosequencing is a sequencing-by-synthesis method which involves enzymatically 

synthesizing the complimentary strand of the target DNA. The use of chemiluscent enzymes 

release detectable light when a base is incorporated to the strand (Ronaghi, Karamohamed 

et al. 1996). As it directly sequences the target DNA it is capable of quantitative 

measurement of methylation and is useful in assessing tumour specificity of potential 

candidate genes (Shaw, Liloglou et al. 2006, Nikolaidis, Raji et al. 2012) but can be limited in 
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body fluids as the analytical sensitivity is approximately 5% (Markopoulou, Nikolaidis et al. 

2012).  Methylation enrichment pyrosequencing (MEP) involves interrogating the MSP 

amplicon with a pyrosequencing assay to assess the completeness of bisulphite conversion 

and therefore addresses the specificity issues of MSP. MEP has been successfully used to 

detect methylation in saliva (Shaw, Akufo-Tetteh et al. 2006) and from oral scrapes (Hall, 

Shaw et al. 2008).  Although accurate, MEP is another multi-stage assay which is time and 

resource consuming. 

1.6.1.3 Quantitative methylation specific PCR 
Real-time methylation specific PCR or quantitative MSP (qMSP) is based on similar design 

principles to MSP but it incorporates the use of a fluorescent probe which improves 

sequence specificity (Liloglou, Field 2010). The sequence specific probe binds to the target 

DNA and as the methylation specific primers extend the fluorescent chemistry of the probe 

is activated and can be detected in real time (Eads, Danenberg et al. 2000).   It is an 

automated assay and the use of fluorescence renders it a highly sensitive technique 

suitable for samples with small amounts of target DNA. It has been discussed earlier that 

bisulphite treatment can degrade DNA. One approach to overcome this limitation is to 

increase the amount of DNA template.  Genome wide amplification of bisulphite treated 

DNA from plasma samples followed by pyrosequencing to interrogate a number of markers 

has been described (Vaissière, Cuenin et al. 2009). Another approach is to conserve the 

available DNA by multiplexing the qMSP reaction with several target genes tested 

simultaneously (Fackler, Malone et al. 2006) but the optimisation process can be complex 

(Liloglou, Field 2010) due to the different abundance of targets and the differential 

consumption of reagents. 

qMSP is the popular choice for the detection of methylation in body fluids. This is due to 

the sensitivity of the technique as the signal can be amplified therefore samples with low 

concentrations can be used as sources of methylated target DNA (Cottrell 2004) a common 

situation when using surrogate samples which are predominantly normal cells. It has 

proven reproducible and allows relatively high throughput processing. It is a one stage 

automated assay and can be used to quantitate methylation by relative comparison to a 

standard curve incorporated on each plate. Quantitation is an attractive and necessary 

function if methylation analysis is to be used to monitor clinical therapeutics or if 

methylation is present in the CpG promoter regions of normal tissues. The amount of 

methylation may then determine the clinical value of a marker. 
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After consideration of the literature there is a pressing need for earlier diagnosis of OSCC 

and recurrent disease to improve survival outcome. Improvement in the predictive and 

prognostic tests available for premalignant lesions at risk of transformation and post-

operative OSCC is also required and molecular analysis may provide this.  Body fluid derived 

molecules show promise for non-invasively, detecting and monitoring malignancy.  DNA is a 

stable molecule and is readily detected in saliva which seems to be the most obvious choice 

for detection of malignancy in the oral cavity.  Promoter methylation is a common event in 

cancer and is chemically stable lending itself to detection. There is evidence that it is 

detectable in saliva and is associated with OSCC and premalignant lesions at risk of 

transformation. To progress with developing a biomarker, the methylation level in DNA 

derived from healthy individuals is required. Many existing studies have used small control 

groups and have not specified a cut-off to define a positive result which this study hopes to 

address.  
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2. Research Strategy 

2.1 Aims 

The overall aim is to assess saliva as a surrogate tissue for the detection and surveillance of 

oral squamous cell carcinoma (OSCC).  

2.1 Specific aims of the study 

 

 To determine the rates of methylation of a panel of epigenetic markers in the saliva 

of a cohort of normal individuals. 

 To compare rates of methylation in known OSCC patients with the normal cohort to 

establish a threshold by which we could determine disease status in future testing. 

 To apply these thresholds in a series of patients with premalignant disease and 

assess if  there are any differences between methylation in saliva from dysplastic 

lesions considered as low and high risk of malignant transformation. 

 To assess methods of saliva collection in patients with OSCC with specific reference 

to patients who received post-operative radiotherapy with the aim of determining 

the validity of saliva collection methods for patients with xerostomia.  

2.2 Research plan 

 

Target populations 

The inclusion of a control cohort of patients was to establish the level of methylation in 

normal saliva to set a cut-off to discriminate normal from disease. At the time of this study 

design, the majority of similar studies used small control groups ranging from n=5 (Viet, 

Schmidt 2008) to n=30 (Rosas, Koch et al. 2001, Righini, De Fraipont et al. 2007). The 

reported specificity of potential candidate genes may be falsely high as a result of using 

young volunteers who have not been exposed to risk factors for the disease (Carvalho, 

Jeronimo et al. 2008). To address this limitation in the current literature our intention was 

to collect samples for the control cohort from individuals matched to the demographic and 

risk factor profile of typical OSCC patients. The control cohort is composed of normal saliva 

and oral scrape samples collected from patients with no clinical evidence of oral squamous 

cell carcinoma or pre-malignant oral lesions at the time of collection. Measures were taken 

to ensure that the demographics of the control population matched the disease population.  
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The inclusion of an OSCC cohort was to establish disease-status methylation profiles using 

saliva as a tumour surrogate. Power calculations were based on a pilot of a comparable, 

clinically acceptable, functioning screening programme into faecal occult blood for 

detecting bowel cancer which operated with a sensitivity of 60% (DOH report 2006, Pilot of 

Bowel Screening). The aim of our work was to achieve an 80% (+/- 10 %) sensitivity and 

specificity with a panel of methylation biomarkers able to discriminate normal from OSCC 

saliva samples. To achieve this, 65 patients were calculated to be required for the normal 

and OSCC group and were recruited (Table 1).  

 

In a separate part of the study, post-treatment samples were also collected to assess the 

utility of this panel for the detection of residual disease. Published data from a Liverpool 

cohort of OSCC patients reported 21% of OSCC patients developed loco-regional recurrence 

(Rogers, Brown et al. 2009) and an earlier study found that the median time to recurrence 

was 8 months with 90% of recurrences occurring within 2 years (Kissun, Magennis et al. 

2006). In view of the reported frequency of recurrence the intention was to collect pilot 

data from longitudinal post-operative saliva samples from 65 OSCC patients which would 

approximate 14 cases of recurrent disease.  

 

A dysplasia cohort was included in this study to provide preliminary data on the utility of 

this panel of genes in saliva as a marker of malignant transformation before the 

clinical/histological transformation of the lesion. At the time of this study design there was 

a lack of longitudinal studies evaluating methylation in saliva from OED patients. There are 

varying reports of OED malignant transformation rate (MTR) in the literature; 12% MTR 

with a mean time to transformation of 4.3 years was reported for histologically confirmed 

OED in a meta-analysis of the literature (Mehanna, Rattay et al. 2009). In the context of 

disease surveillance, the aim was to collect between 2 to 5 years of longitudinal samples 

from a cohort of 50 patients to provide pilot data on the utility of this panel of methylation 

markers to predict malignant transformation.  
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Table 1. Total number and type of samples collected and included in analysis. 

Sample collection methods  

The purpose of this arm of the study is to evaluate the best method of saliva collection to 

maximise DNA yield in OSCC patients. To ensure the utility of salivary biomarkers in post-

operative disease surveillance, it is important to establish which saliva collection techniques 

provide sufficient DNA in both irradiated and non-irradiated OSCC patients.  As patients at 

high risk of recurrence will usually have received post-operative radiotherapy and may be 

xerostomic as a result.  

Rationale for the chosen method of detection 

A challenge presented by the investigation of saliva rather than tumour, is the presence of 

relatively large proportions of DNA from normal oral mucosa within which the occasional 

methylated DNA has to be detected. qMSP is a high throughput, semi-quantitative 

technique. Specificity is provided by methylation specific primers that will only amplify the 

methylated DNA and the sequence specific probe will only bind to the methylated target 

sequence. Our research group had considerable experience with qMSP assays in body fluid 

samples prior to this proposed study. It had proven reliable and reproducible with a 

technical sensitivity of 0. 1% established with non-clinical samples. In view of these 

attractive features it was selected as the best method of methylation detection in saliva for 

this study. 

 

 

 

 

Number 

patients 

Dysplasia 

cohort 

Normal cohort OSCC cohort 

63 97 104 

Number 

of 

samples 

 

87 

 

Saliva 

 

97 

 

Pre-

operative 

saliva  

 

69 

 

 

Scrapes 

          

 

90 

Post-

operative 

saliva  

47 

Matched 

tumour 

tissue 

34 
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Rationale for the methylation panel 

Ideally a biomarker would display high informativity, in that it is present in most of the 

disease cases and high specificity being present in the cancer but not many of the normal 

controls. Such a discriminatory biomarker does not yet exist for HNSCC; the highest 

methylation rates for well described singular methylation markers such as P16, MGMT, 

DAPK and CDH1 are consistently observed between 30-60%  (Ha, Califano 2006, Demokan, 

Dalay 2011) however in normal tissues, methylation rates of between 0-41 % are reported 

(Viswanathan, Tsuchida et al. 2003, Maruya, Issa et al. 2004, Shaw, Liloglou et al. 2006, 

Kato, Hara et al. 2006, Righini, De Fraipont et al. 2007, Steinmann, Sandner et al. 2009). 

HNSCC tissue is molecularly and histologically heterogeneous.  This feature may limit the 

use of singular markers; some studies observed increased informativity (75-77%) when 

using a panel inclusive of P16, MGMT and DAPK (Viswanathan, Tsuchida et al. 2003, Righini, 

De Fraipont et al. 2007). A combination of multiple methylation markers increased 

sensitivity to 85% in a large cohort of HNSCC salivary samples but impacted on specificity 

(30%) (Carvalho, Jeronimo et al. 2008). In this study, we have employed a panel of five 

genes which have previously proven discriminatory between normal and tumour HNSCC 

tissue using pyrosequencing methylation assays. Five genes were chosen with the aim to 

improve sensitivity of the methodology above that achievable with one or two markers.   
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3. Materials and methods 

3.1 Collection of tissue samples 

3.1.1 Normal cohort 

Patients attending Liverpool University Dental Emergency Department (ED) were initially 

recruited over a period of 12 months. The experimental protocol was approved by 

Liverpool Paediatrics Research ethics committee (LPREC 08/H1002/42)(Appendix 1 A1.1). 

The surrogate samples in the form of saliva and oral scrapes which form the normal control 

cohort have been collected under LREC 08/H1002/42. I wrote the ethics application, 

attended the ethics meeting and was granted approval for this arm of the study in August 

2008. Patients were provided with an information leaflet (Appendix 1 A1.2) half an hour 

prior to sample collection and informed written consent (Appendix 1 A1.3) was obtained. 

Patients were assessed for suitability to enrol in the study by clinical examination and a 

questionnaire (Appendix 1 A1.4). Patients aged 16 and over, who were able to provide a 

saliva and oral scrape sample and complete the questionnaire, were entered into the study. 

Patients were excluded from the study if they had a clinically detectable premalignant or 

malignant oral lesion or they had a history of premalignant or malignant pathology in the 

aerodigestive tract.  Patients were not excluded if they had a history of malignancy remote 

from the aerodigestive tract.  A saliva sample and a paired oral scrape were obtained from 

each patient together. Each patient completed an anonymous questionnaire detailing 

relevant demographic and disease risk factor information at the time of sample collection.  

Consent was not linked to the research number allocated to the samples and data from 

that individual. An interim assessment of the demographics of the first 72 patients, which 

were collected consecutively in the ED, determined that the age range was skewed towards 

younger patients (<40 years). To address this, a further 25 older patients were also 

recruited from the prosthetics and restorative dental clinics at Liverpool University Dental 

Hospital over a subsequent eight months which makes a total of 20 months.  

 

Whole saliva was collected using a commercially available OrageneTM vial (Figure 1).  

Patients were asked to deposit 2ml of whole saliva into the vial as per manufacturer’s 

guidelines (DNA Genotek Inc 2012). Oral scrapes were obtained after the deposition of the 

saliva sample by scraping the buccal mucosa using a plastic spatula housed in a collection 

tube (Figure 2). The spatula was pressed firmly on bilateral sites of the buccal mucosa and 

cells were harvested using five strokes per side.  Cellular debris was visible on the spatula. A 
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similar technique has previously been used by our research group to obtain DNA for 

biomarker methylation assays (Hall, Shaw et al. 2008).  Samples were stored at -80oC prior 

to DNA extraction. 

 

 

 

 

 

 

 

    

3.1.2 Squamous Cell Carcinoma Cohort 

Pre-operative saliva samples (n=69) had previously been collected from patients with 

histologically confirmed HNSCC along with tumour tissue at the time of primary surgery by 

other researchers within our group.  Patients were examined and diagnosed in the 

Department of Oral and Maxillofacial Surgery in the University Hospitals Aintree NHS 

Foundation Trust, Liverpool UK and enrolled into a study of molecular biomarkers of oral 

cavity cancer. The experimental protocol has ethical approval (Sefton REC ref.no. EC 47.01 

and Liverpool (adult) LREC ref no.07/Q1501/15). Patients were selected for entry into the 

study if they could provide informed consent and had a histological diagnosis of HNSCC, 

with a primary tumour large enough to be divided for pathological diagnosis and research 

samples, therefore small T1 tumours were excluded. Patients who had provided saliva 

samples were identified from our research database. Twelve of sixty nine pre-operative 

patients provided a post-operative sample at four weeks after primary surgery prior to any 

radiotherapy or chemotherapy using the same collection method.  A further eleven patients 

provided only post-operative saliva samples as part of the collection methods study. Saliva 

samples used in this arm of the study were collected prospectively between the years 2006-

2008 and were stored at -80oC at the University of Liverpool. Whole saliva was collected 

using the OrageneTM vial as described earlier. Clinical follow-up data was accessed from 

clinical records and the departmental research database.   

  

Figure 1. OrageneTM vial used to 

collect whole saliva. 

Figure 2. Plastic spatula used to 

collect oral scrapes. 
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3.1.3 Post-operative Radiotherapy (PORT) Cohort 

Post-operative saliva samples were collected from an additional twenty four patients who 

had received surgical and post operative radiotherapy treatment for OSCC. Whole saliva 

samples were collected using OrageneTM sponges using the manufacturer’s collection 

protocol (DNA Genotek Inc 2011).  In brief, five sponge tips were placed individually in 

areas of pooled saliva in the oral cavity of each patient. Once loaded with saliva, each of the 

five tips were placed into a standard OrageneTM vial containing preservatives and stored at -

80oC. A paired mouthwash sample was collected immediately after OrageneTM sponge 

harvesting of saliva by asking patients to swill 25ml 0.9% normal saline (Sterets Normasol, 

Medlock Medical Ltd, Oldham, UK) from a sterile 50ml tube around the mouth for 30 

seconds before depositing the mouthwash back into the tube. Mouthwash samples were 

immediately stored at 4oC in clinical refrigeration for a maximum of three hours before 

being subjected to centrifugation at 1,200g in a bench top centrifuge for five minutes.  The 

supernatant was removed and the cell pellet stored at -80oC.  

 

3.1.4 Dysplasia Cohort 

Patients who had provided saliva samples as part of an ongoing clinical and molecular 

biomarker study of oral epithelial dysplasia (OED) were identified from our research 

database. Patients had been enrolled into that study if they had histological confirmed OED, 

were available for clinical follow-up and could provide informed consent (Sefton REC ref.no. 

EC 47.01). Patients with a synchronous OSCC were excluded, but those with a history of oral 

cancer were not if they had received surgical curative treatment.  Previous OSCC was not an 

exclusion factor because these patients present a high risk group and present an area of 

interest to molecular biomarker research; particularly as previous surgery and radiotherapy 

can make clinical and histopathological assessment of these lesions difficult.   Eighty seven 

saliva samples were available from 63 patients attending the tertiary oral dysplasia clinic at 

the University of Liverpool dental school. Saliva samples used in this arm of the study were 

collected between the years 2006-2011 and were stored at -80oC at the University of 

Liverpool. Whole saliva was collected using two methods. The first method required 

patients to deposit saliva directly into a plastic vial which was immediately frozen using dry 

ice and transported to the onsite -80oC freezer (13/87 samples were collected with this 

method). As of October 2007 onwards whole saliva samples were collected using the 

OrageneTM vial (74/87) as a more convenient method to collect saliva in the clinical 

environment.  
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3.2 DNA Extraction 

3.2.1 OrageneTM vial whole saliva 

DNA extraction from the OrageneTM vials was performed using the manufacturer’s protocol 

for manual purification from 0.5ml of sample (DNA Genotek Inc 2015a) with the exception 

that Oragene purifierTM
 was used instead of PT-L2P purifier. In brief, the total sample was 

incubated at 50oC for two hours in a shaking incubator to lyse cells and digest nuclear 

proteins. Twenty microlitres of OrageneTM purifier was added to 0.5ml of sample before 

precipitation with 100% ethanol. The sample was washed with 70% ethanol before final re-

suspension in 100l 1 x TE buffer. The prepared DNA was stored at -20oC until required. 

 

3.2.2 OrageneTM sponge whole saliva  

The vials containing the saliva soaked sponge tips were incubated in a 50 °C water bath for 

1 hour. As much free liquid as possible was removed from the vial with a sterile pipette, 

along with excess liquid from the sponges, and transferred to a 15ml centrifuge tube. The 

saliva sponges were placed into the barrel of a 5ml plastic syringe and this was inserted into 

the 15ml centrifuge tube. Samples were centrifuged at 22°C, at 1,200g for five minutes. This 

step was repeated in an attempt to maximise the expulsion of liquid from the sponges into 

the 15ml collection tube. The 5ml barrel containing dried sponges was removed and 

discarded. The manufacturer’s protocol for manual purification of DNA from the whole 

sample (DNA Genotek Inc 2015b) was followed for the entire liquid volume of the sample 

with the exception that 1/25th volume OrageneTM purifier was used in place of PT-L2P 

purifier. DNA was re-suspended in 200l 1 x TE buffer and stored at -20oC until required. 

3.2.3 Mouthwash 

DNA was extracted from the processed mouthwash samples according to a cell spin column 

extraction protocol (DNeasy Blood and Tissue Kit, 2006 Qiagen, Maryland, USA). Briefly, 

phosphate buffered saline was added to each cell pellet to make a final volume of 500l. 

Twenty five microlitres of proteinase K (20mg/ml) was added to an 180l aliquot of the 

original sample, 200l of buffer AL was added to the sample  prior to vortexing and 

incubating the sample at 56oC for 10 minutes. The DNA was separated from cellular debris 

using Qiagen DNeasy spin columns with elution in 200l of AE buffer (Qiagen). The 

centrifugation steps were carried out at 19oC. The prepared DNA was stored at -20oC until 

required. 
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3.2.4 Whole saliva with no preservative samples  

Whole saliva samples in sterile vials were defrosted and the volume made up to 500l with 

1x TE buffer solution. An equal volume of 2x PK buffer (Appendix 2) was added followed by 

20l of Proteinase K (20mg/ml).  The OrageneTM whole saliva 0.5ml protocol was then 

followed for each sample. The prepared DNA was stored at -20oC until required. 

 

3.2.5 Oral scrapes 

Oral scrape vials were defrosted at room temperature; the spatula used to collect the cells 

was snapped off and left in the vial. Two hundred microlitres of phosphate buffered saline 

was added to the vial followed by 25l of proteinase K (20mg/ml). Two hundred microlitres 

of buffer AL was added to the sample prior to vortexing and incubating the sample at 56oC 

for 10 minutes. A cell spin column extraction protocol (Qiagen DNeasy Blood and Tissue Kit, 

2006) was followed. Centrifugation was carried out at 19oC. The DNA was resuspended in 

100l of AE buffer and stored at -20oC. 

 

3.2.6 Tumour tissue preparation 

DNA was extracted from matched tumour and normal tissue (adjacent to tumour approx 

10mm distance from macroscopic edge of tumour (Shaw, Liloglou et al. 2006) from 24 

patients (48 samples) with histologically confirmed OSCC which were recruited as part of 

the epigenetic biomarkers of oral cavity cancer study (Sefton REC ref.no. EC 47.01).  The 

tissue had been snap frozen at collection and stored in -80oC freezer until use. The tissue 

was micro-dissected in an extraction hood using a size 15 surgical blade to provide a sample 

of tumour tissue approximately 2mm3 in size which was cut into smaller pieces prior to 

lysis.  A cell spin column extraction protocol (Qiagen DNeasy Blood and Tissue Kit, 2006) 

was followed. 100l of AE buffer preheated to 70oC and centrifugation at 8000rpm for 1 

minute was used to elute the DNA.  A second elution step was added to maximise the yield. 

The DNA was stored at -20oC prior to use.  

3.3 DNA Quantification 

3.3.1 Spectrophotometry 

Corrected UV absorbance spectrophotometry (260:280nm and 260:230nm) using  a 

NanoDrop ND1000 spectrophotometer (Thermo Scientific, Waltham, MA) was used to 
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measure the DNA yield and purity in 5l of each sample. This data was used to calculate the 

volume required to standardise each sample to 500ng of DNA for bisulphite treatment.  

3.3.2 Absolute qPCR 

In a subset of 90 saliva samples provided by 21 patients from the OSCC cohort and 24 

patients from the PORT cohort; the amount of human DNA was quantified using a human 

ribonuclease P (RNAse P) gene quantitative PCR (qPCR) assay using the standard curve 

programme of an AB7500 Fast system according to the manufacturer’s guidelines (Applied 

Biosystems, Foster City, CA). A standard curve of known DNA concentration was prepared 

from a stock of human lymphocyte DNA (500ng/l). Serial dilutions were made to include 

seven standards of 100ng/l, 50ng/l, 25ng/l, 12ng/l, 6ng/l, 3ng/l, 1.6ng/l and a ‘no 

template’ control (NTC). DNA was quantified using Picogreen (QuantIT-kit-Life 

Technologies, Paisley, UK).   All of the experimental samples and the controls were run in 

triplicate.  Premixed stock mastermix consisted of; Taqman Universal Master Mix II (Applied 

Biosystems) 10l, RNAse P probe 1l (Applied Biosystems #4403326), double distilled H2O 

7.5l and target DNA 1.5l. Reactions were heated at 95oC for 10 minutes and subject to 50 

amplification cycles of 15 seconds at 95oC and 60 seconds at 60oC. The cycle threshold (CT) 

was plotted against a log2 scale of the standard dilutions to create a linear model of their 

relationship. This linear model was used to estimate DNA concentration of the samples for 

any given CT value.  

3.4 Bisulphite treatment 

Five hundred nanograms of each DNA sample was treated with sodium bisulphite as per the 

manufacturer’s protocol using Zymo EZ-96 DNA Methylation-Gold kit (Zymo Research 

Corporation, Orange, CA, USA), eluted in 30l of M-elution buffer and stored at -80oC until 

use. 

 

3.5 Quantitative PCR Quality Control 

3.5.1 Unmethylated Technical control   

Whole genome amplified DNA was included as an absolute unmethylated DNA technical 

control for each assay.  It was made using RepliG Screening Kit (Qiagen) as follows; up to 

600ng of human lymphocyte DNA in 5l 1 xTE added to 85l of SB1. Heated to 65oC for 5 

minutes and cooled to room temperature before 85l of SB2 and 5l of polymerase was 

added. Finally the sample was then heated to 37oC overnight and stored at -20oC until use. 
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3.5.2 Methylated controls  

Human lymphocyte DNA was methylated in vitro (SssI methylase) using a standard 

protocol.  Up to 3g of human lymphocyte DNA in 25l of 1 xTE was added to 3ml of buffer 

(10x), 1l SAM and 1l of SssI methylase (2000u/ml) and incubated at 37oC for 2 hours. A 

further 1l SAM was added to saturate the reaction and left at 37oC overnight. As a final 

step the total sample was heated to 65oC for 20 minutes and stored at -20oC until use.  

 

3.5.3 Quantitative measurement of methylation in control DNA 

Pyrosequencing quantitation of the methylation levels of control DNA was undertaken so 

that serial dilutions could be modified to produce accurate methylated standards.  End 

point PCR amplification of the in vitro methylated (undiluted, diluted 1:1, ‘unmethylated’ 

lymphocyte and WGA) DNA was conducted in triplicate using TTK protein Kinase(TTK) as the 

target gene which is known to be reliable and unmethylated in lymphocyte DNA (Dr 

T.Liloglou, personal communication);  1l TTK primer mix (10l 400nmol forward primer 

and 5l of 200nmol biotinylated reverse primer), 1l of 5mM deoxynucleoside 

triphosphates(Qiagen), 2l template DNA 50ng/l, 0.1l Hot-starTaq polymerase plus 

(Qiagen), 2.5l of 10x Coraload PCR buffer (Qiagen) and 18.4l double distilled water in a 

total volume of 25 l. PCR conditions were as follows: 95oC for 5 minutes, 94oC for 30 

seconds, 57oC for 30 seconds, 72oC for 30 seconds 40 cycles, 72oC for 10 minutes and a hold 

step of 6oC. The PCR products were resolved on a 1% agarose gel using 50bp DNA ladder 

(Hyperladder 5 Bioline) to ensure there was DNA prior to pyrosequencing. PCR products 

were then sequenced according to a standard protocol using the PyroGold kit (Qiagen) and 

pyrosequencing system PSQ96MA (Qiagen). 

 

 
 

Figure 3. TTK forward and reverse PCR primer and pyrosequencing primer sequence. The 

CpGs evaluated by the pyrosequencing are shaded in blue and denoted by a Y. 

Pyrosequencing primer 

Forward primer 

      Reverse biotinylated primer 
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The average percentage methylation of the in vitro methylated lymphocyte DNA was 

calculated from the pyrosequencing data (Figure 4); this informs the ratio of methylated 

DNA required to create accurate serial dilutions of 10%, 1%, 0.5%, and 0.25%. These serial 

dilutions, together with the ‘unmethylated’ lymphocyte DNA and WGA DNA, underwent 

bisulphite treatment simultaneously. 

 

 

  

3.6 qMSP 

3.6.1 Target gene validation for duplex qMSP assays 

Previous work in our research group had identified primer-probe concentrations and 

thermal profiles for p16, TMEFF2, CYGB, CCNA1 and ADAMTS9 in duplex qPCR with beta 

actin. Validation of the qPCR conditions for the five candidate genes in the current study 

was based on this optimisation process to ensure reproducible specificity and sensitivity. In 

brief, 25l qMSP reactions each contained: 12.5l Taqman Universal Master Mix II No UNG 

(Applied Biosystems), 2.5 l primer/probe mix (concentration range 300-900nM for target 

gene primers, 150nM target gene probe, 125nM endogenous control (beta actin) primers, 

125nM beta actin probe and 2l bisulphite treated DNA from serial dilutions of methylated 

DNA (1%, 0.5%, 0.25%, ‘unmethylated’ lymphocyte, WGA).  The reactions were carried out 

on a 7500FAST StepOne real-time PCR machine (Applied Biosystems).  Assays for each gene 

used PCR conditions: 95oC 10 minutes, 95oC 15 seconds and annealing temperatures 

Figure 4. An example TTK pyrogram of the invitro methylated control DNA showing 

average methylation of 99%.  This value is used to inform the input DNA ratios for the 

standard DNA serial dilutions. The sequence to be interrogated is displayed in the top left 

corner of this diagram 
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ranging from 57-60oC for 50 cycles and an extension step of 72oC. The lengthy optimisation 

process for the five target genes involved standard protocol primer-limiting assays (Applied 

Biosystems http://www3.appliedbiosystems.com) which had previously been performed by 

Mr Brown and Dr Liloglou, other researchers in our group. In our study the endogenous 

control (beta actin) gene is more abundant than the genes of interest. The beta actin assay 

amplifies better and consumes the reagents before the other genes can amplify.  To 

prevent this, the beta actin primer concentration is sequentially limited to levels much 

lower than a standard assay e.g beta actin is 900nm in the singleplex methodology and 

125nm in the duplex methodology. The aim is to establish the primer concentration of the 

more abundant target that provides the earliest cycle threshold value for beta actin, 

without distorting the cycle threshold value of the target genes (Applied Biosystems). The 

concentration of the probe was decided by a similar trial and error process starting with 

probe concentrations that had worked well in the singleplex assay.  Once the 

concentrations of the primer/probe mix for both genes had been established, the most 

efficient annealing temperature for each gene was determined.  Reactions were set up 

using DNA of known concentration as described above and run across three different 

temperatures (57-60oC) on the 7500FAST StepOne real-time PCR machine (Applied 

Biosystems). In the perfect assay, the cycle difference between the 1:2 serial dilutions 

should equate to one cycle difference between the CT values. The thermal profile which 

gives the best cycle differentiation at the lower concentrations of the standard DNA was 

selected.  Another factor which determines the accuracy of the chemistry of the reaction is 

the signal from the biological control lymphocyte DNA and the technical control WGA.  It is 

known that background methylation is present in human lymphocyte DNA for certain genes 

therefore a technical control is included. The technical control is unmethylated and 

therefore should not produce an amplification signal. It was necessary to include the 

biological control because any assay to be used in a clinical setting must be able to 

significantly differentiate between background methylation and that associated with 

disease.  It therefore informs the ‘cut-off’ level considered a positive result for clinical 

samples. 

 

3.6.2 Establishing technical exclusion criteria 

Research samples were excluded from analysis if a) beta actin assay failed to generate an 

amplification curve so there is no DNA in the sample b) the amplification curve of the target 

http://www3.appliedbiosystems.com/
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gene was aberrant suggesting degraded DNA.  Runs were repeated if a signal was 

generated by the non-template control.  

3.6.3 Singleplex qMSP 

This qMSP Taqman methodology is based on extensive work on bronchial lavage samples 

by our research group (Nikolaidis, Raji et al. 2012).  The epigenetic biomarkers selected 

have been identified by a candidate gene approach from work already carried out on 

tumour/normal paired tissue samples by the Merseyside Head and Neck Oncology Research 

Group. These include gene promoter methylation of P16, TMEFF2, CyclinA1 (CCNA1) and 

Cytoglobin (CYGB). ADAMTS9 was selected as a novel gene for this study as part of a 

collaborative work which is described in the results chapter. 

Methylation assays of the five target genes and the beta actin control were carried out on 

all 247 saliva samples and 90 oral scrapes using the singleplex methodology. In brief, 25l 

qMSP reactions contained: 12.5l Taqman Universal Master Mix II No UNG (Applied 

Biosystems), 2.5 l primer/probe mix (300-900nM target gene primers, 250nM target gene 

probe and 2l bisulphite treated DNA (5%, 1%, 0.5%, 0.1% methylated lymphocyte or 

sample).  Primer and probe sequences were designed using Oligo 6.0 software (Molecular 

Biology Insights, USA) and are provided in Appendix 3. The PCR conditions for each gene are 

displayed in Table 2. 
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Beta actin was included to normalise for input DNA. Limited quantities of sample DNA 

dictated that duplicate runs would be performed and any equivocal results would be tested 

further in order to obtain a consensus (Nikolaidis, Raji et al. 2012). Duplicate plates for all 6 

genes were prepared at the same sitting and stored at 4oC for no more than 12 hours.  In 

Gene PCR Conditions No of cycles Dye 

P16 95oC   10 mins 
 

 
50 

 
FAM 

95oC   15 secs 

60oC   60 secs 

TMEFF2 95oC   10 mins 
 

 
50 

 
 
FAM 95oC   15 secs 

58oC   15 secs 

60oC   45secs 

CYGB 95oC   10 mins 
 

 
50 

 
 
FAM 95oC   15 secs 

 

64oC   5 secs 
 

61oC   40 secs 
 

ADAMTS9 95oC   10 mins 
 

 
50 

 
FAM 

95oC   15 secs 
 

62oC   60 secs 
 

CCNA1 95oC   10 mins  
50 

 
FAM 

95oC   15 secs 
 

62oC   60 secs 
 

ACTB 95oC   10 mins  
50 

 
VIC 95oC    15 secs 

 

58oC    15 secs 
 

60oC    45 secs 
 

Table 2. qMSP PCR cycling conditions of singleplex reactions for 5 target genes and 

beta actin (ACTB) internal reference gene. 
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order to run a total of 6 assays (5 target genes and 1 internal control gene) in duplicate, two 

AB7500 systems were used simultaneously and duplicates were run consecutively on the 

same machine. The amount of control DNA required to complete all of the assays was 

calculated and prepared (methylated and bisulphite treated) as one batch to reduce 

pipetting variation.  The Primer/Probe mixture was also made up as a 1000l master stock 

prior to preparing the plates (Table 3). 

Target Gene Forward Primer  
100nM 

Reverse Primer 
100nM 

Probe 
100nM 

Double distilled 
water 
 

                                                                     l 

P16 70 70 25 835 

TMEFF2 90 90 25 795 

CYGB 30 30 25 915 

ADAMTS9 70 70 25 835 

CCNA1 50 50 25 875 

ACTB 90 90 25 795 

 

 

In order to minimise the effect of pipetting variance when setting up assays using the same 

DNA, a ‘master premix’ was made for each plate containing 157l of Taqman mastermix 

and 19l of sample DNA per well and included reference samples of 5%, 1%, 0.5%, 0.1% 

methylated DNA, ‘unmethylated’ lymphocyte DNA and a no-template control. Of note, 

lymphocyte DNA alone was used as the ‘unmethylated’ control as WGA was not routinely 

used in the qMSP protocol at this time. From this master plate, 28l of each Taqman/DNA 

mix was placed in the corresponding well of 6 ‘primary’ plates. Twenty two microlitres of 

primer/probe mix was then added to each well of the appropriate primary plate and 

pipetted to mix the reaction.  This produced a final volume of 50l per well in the primary 

plate (Figure 5).  An exact duplicate plate containing 25l per well was then made from 

each of the six primary plates (corresponding to each of the six genes used in this study) 

and centrifuged at 13000rpm for 1 minute immediately prior to the run. 

Table 3. Primer probe dilutions used in singleplex qMSP for 5 target genes and beta actin 

gene (ACTB). 



 

83 

 

 

 

3.6.4 Duplex qMSP 

Five hundred nanograms of DNA from 258 saliva samples and DNA from 34 tumour samples 

(tumour prepared by Mr AJ Hobkirk) was bisulphite treated as previously described. The 

samples were randomised across four 96 well plates prior to qMSP. A stock of 10x probe 

mix inclusive of the requisite water for the total number of reactions was made up for each 

target gene in advance of running the reactions (Table 4-8). A mastermix containing 2500l 

Taqman Universal Master Mix II No UNG (Applied Biosystems) and 1900l probe mix was 

made up immediately prior to setting up duplicate plates for each gene. Forty four 

microlitres of this mastermix was pipetted into each well of the primary 96 well plate.  Six 

microlitres of target DNA was pipetted into each well and mixed thoroughly before 25l of 

the total mix was removed and placed in a duplicate plate.  Duplicate plates were briefly 

centrifuged prior to each plate being run immediately after preparation and simultaneously 

Figure 5.  Diagram of  the duplicate plate set-up for singleplex methodology for 5 

target genes and beta actin. 
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on separate, calibrated AB7500 qPCR machines (Applied Biosystems). The primer and probe 

sequences for each gene listed are the same as detailed in Table 1 above. Cycling conditions 

for each gene are shown in Tables 4-8 below. 

Gene Reagents Reagent final 

concentration 

(nM) 

Probe mix volume 

(l) 

Cycling conditions 

 

FAM dye NED dye Temp 

(
o
C) 

Time Cycles 

ADAMTS9 ACTB ADAMTS9 ACTB 

ADAMTS9 F Primer 700 125 126 22.5 95 10 min 

 R Primer 700 125 126 22.5 95 15 sec  

50  Probe 150 125 27 22.5 60 90 sec 

 ddH2O (l)                                                               6493.5 72 15 sec 

 Final vol (l)                                                               6840  

Table 4 

Gene Reagents Reagent final 

concentration 

(nM) 

Probe mix volume 

(l) 

Cycling conditions 

 

FAM dye NED dye Temp 

(
o
C) 

Time Cycles 

CYGB ACTB CYGB ACTB 

CYGB F Primer 500 125 90 22.5 95 10 min 

 R Primer 500 125 90 22.5 95 15 sec  

50  Probe 150 125 27 22.5 58 90 sec 

 ddH2O (l)                                                               6565.5 72 15 sec 

 Final vol (l)                                                               6840  

Table 5 
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Table 6 

Gene Reagents Reagent final 

concentration 

(nM) 

Probe mix volume 

(l) 

Cycling conditions 

 

FAM dye NED dye Temp 

(
o
C) 

Time Cycles 

P16 ACTB P16 ACTB 

P16 F Primer 700 125 126 22.5 95 10 min 

 R Primer 700 125 126 22.5 95 15 sec  

50  Probe 150 125 27 22.5 60 90 sec 

 ddH2O l)                                                               6493.5 72 15 sec 

 Final vol (l)                                                               6840  

Table 7 

Gene Reagents Reagent final 

concentration 

(nM) 

Probe mix volume 

(l) 

Cycling conditions 

 

FAM dye NED dye Temp 

(
o
C) 

Time Cycles 

TMEFF2 ACTB TMEFF2 ACTB 

TMEFF2 F Primer 900 125 162 22.5 95 10 min 

 R Primer 900 125 162 22.5 95 15 sec  

50  Probe 150 125 27 22.5 60 90 sec 

 ddH2O (l)                                                              6421.5 72 15 sec 

 Final vol (l)                                                              6840  

Table 8 

Tables 4-8: Primer/Probe concentrations and cycling conditions for duplex qMSP 

reactions of the five target genes. 

Gene Reagents Reagent final 

concentration 

(nM) 

Probe mix volume 

(l) 

Cycling conditions 

 

FAM dye NED dye Temp 

(
o
C) 

Time Cycles 

CCNA1 ACTB CCNA1 ACTB 

CCNA1 F Primer 700 125 126 22.5 95 10 min 

 R Primer 700 125 126 22.5 95 15 sec  

50  Probe 150 125 27 22.5 58 90 sec 

 ddH2O (l)                                              6493.5 72 15 sec 

 Final vol 

(l) 

                                          6840  
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3.7 Statistical analysis  

Statistical analysis was performed using SPSS (Version 21.0. Armonk, NY: IBM Corp.). 

Statistical comparisons between the methylation markers and clinicopathological data were 

made using the Chi-square and or Fisher’s exact test (2-sided). Disease free survival curves 

were prepared by the Kaplan-Meier method. Statistical difference between curves was 

established using the Mantel-Cox log rank test. P<0.05 indicated statistical significance. 
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4. Results 

4.1 Target gene panel selection  

The five target genes in this panel were selected using a candidate gene approach.  CCNA1, 

CYGB, P16 and TMEFF2 were genes of interest in our research group having shown tumour 

specific methylation in quantitative methylation studies on tumour/normal tissue from 

HNSCC patients (Shaw, Liloglou et al. 2006, Shaw, Hall et al. 2007, Shaw, Omar et al. 2009) 

and in lung cancer (Xinarianos, McRonald et al. 2006). A longitudinal study of OED lesions 

performed by our research group found P16 methylation as a potential marker for early 

malignancy; 57% of patients that underwent malignant transformation had methylated P16 

in the lesions (Hall, Shaw et al. 2008).  Preliminary unpublished pyrosequencing data from 

our research group revealed TMEFF2 as an informative marker as it was significantly 

discriminatory between paired normal and tumour tissue (Wilcoxon signed ranks test 

p=0.002). Eighteen of twenty five (72%) tumour tissue samples contained methylated 

TMEFF2 above the reference methylation index in a series of primary HNSCC samples 

(n=30) (Personal communication from Mr Mark Reid, student of the Department of 

Translational Medicine, University of Liverpool 2008). 

 

4.1.1 Selecting a novel target gene: ADAMTS9 

The selection of ADAMTS9 (ADAM Metallopeptidase with Thrombospondin type 1 motif 9) 

as part of the panel of target genes in this saliva study was borne of a collaboration with Dr. 

Ratna Veeramachaneni, Department of Genetic Medicine, University of Manchester, 

Manchester, UK.  Using SNP array analysis of dysplasia and primary cancer cell lines as part 

of her PhD thesis, Dr. Veeramachaneni selected seven genes that appeared to be 

differentially deleted as an early event in HNSCC (Veeramachaneni 2010), five of which 

were subsequently shown by pyrosequencing to be methylated in the gene promoter 

(Table 9). 

 

 

 

 

 



 

88 

 

Gene Sample type Samples with MtI
a
 

greater than five % 
methylation 

Number of  cases  
when methylation 
of Tumour > 
Normal

b
 
 

ADAMTS9 Tumour 52.2 % 7/23  
(30 %)  Normal 42.9 % 

FAT1 Tumour 39.1 % 7/23  
(30 %)  Normal 21.7 % 

PTPRD Tumour 36.4 % 2/23  
(9 %)  Normal 26.4 % 

CSMD1 Tumour 92 % 2/24 
 (8  %)  Normal 79 % 

CDH13 Tumour 50 %    4/17  
(24%)  Normal 25 % 

Table 9 Pyrosequencing data showing rates of gene promoter methylation in a Liverpool 

cohort of 24 paired fresh tumour OSCC tissue and adjacent normal tissue (from resection 

margins).  

a
The methylation index (MtI) for each sample was calculated as the mean percentage 

methylation over all CpG dinucleotides interrogated.  

 b Reference MtI is the methylation value below which 95 % of the ‘normal’ tissue sample 

data falls (Shaw, Liloglou et al. 2006). 

Column three of Table 9 shows the percentage of technical positive tumour and normal 

adjacent tissue samples for each gene. Any sample was considered a technical positive if 

the MtI was greater than 5%, as anything below this threshold could be considered 

‘biological noise’. (Shaw, Liloglou et al. 2006). It is accepted that the ‘normal’ tissue from 

resection margins is not a true normal; and that the level of methylation in ‘true normal’ 

tissue is also unknown; therefore the biological relevance of the methylation results in 

Table 9 (column four) was determined by establishing a cut-off methylation index 

(Reference Methylation Index) that is higher than 95% of the normal tissue values. This cut-

off was required to determine if the target genes were sufficiently discriminatory between 

frank tumour and adjacent ‘normal’ tissue.  

On analysis of the data, methylation of Cub and Sushi multiple domains 1 (CSMD1),  

Cadherin 13 (CDH13) and protein tyrosine phosphotase receptor type D (PTPRD) genes 

were not discriminatory enough to be considered as potential biomarkers. The results 

presented for Cadherin 13 (CDH13) were based on only 17 tumour/normal samples 

whereas the other four genes were based on 24 matched pairs.  Moreover the mean 

methylation of CDH13 in the tumour samples was low with only one sample with mean 

methylation > 10%.  
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Of the remaining three genes, ADAMST9 was selected to develop into a qMSP assay with 

which to analyse the saliva samples, because it showed the highest tumour sensitivity 

(52.2%). Additionally 30% of tumours had a mean methylation greater than the reference 

MtI and therefore ADAMTS9 was thought to be the most biologically relevant gene.  

Although 43% (9/23) of the normal samples had a recorded mean methylation >5% it must 

be noted that 4/9 of these normal samples were very close to the 5% cut-off (mean 

methylation 5.05-5.59).   

Our hypothesis that ADAMTS9 is the most biologically relevant of the genes as a marker of 

OSCC, was supported by Dr. Veeramachaneni’s earlier work which showed that ADAMTS9 

promoter methylation was absent in mortal cell lines but present in 14% of the immortal 

premalignant oral lesion cell lines and 41% of the immortal OSCC cell lines 

(Veeramachaneni 2010).  In addition, our research group has previously shown that 

methylation of FAT atypical cadherin 1 (FAT1) in 44 paired normal and tumour HNSCC, 

detected on an Illumina ‘Golden Gate’ methylation array, was observed to be low, with 

mean methylation in the tumour tissue of only 10% and 8% in paired tumour normal tissue 

samples (Jithesh, Risk et al. 2013).  

Further support for the role of ADAMTS9 in aerodigestive tumorigenesis has been 

described in Lo et al’s (Lo, Leung et al. 2007) work on oesophageal squamous cell 

carcinoma, which showed loss or down regulation of ADAMTS9 in oesophageal carcinoma 

cell lines. In that study, promoter methylation of ADAMTS9 was detected in the cell lines 

which lacked gene expression; reinstatement of gene expression followed demethylation 

drug treatment. Additionally ADAMTS9 maps to 3p14.2 (Clark, Kelner et al. 2000). The 

chromosomal region containing ADAMTS9 (3p14.2) commonly shows allelic imbalance in 

OSCC and may have a role in malignant transformation of dysplastic oral lesions (Rosin, 

Cheng et al. 2000, Rosin, Lam et al. 2002, Tsui, Rosin et al. 2008) and lung cancer (Field, 

Kiaris et al. 1995, Field, Neville et al. 1996, Nunn, Scholes et al. 1999).   
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4.2 Establishing thresholds to define a positive result 

4.2.1 Defining a positive result as greater than 0.5 % methylation for all five 

target genes for the singleplex technique 

 

The analytical sensitivity for the singleplex technique was defined by the lack of overlap 

between the positive standard picked for each assay and the biological control (lymphocyte 

DNA) as determined in the optimisation and validation process using standard curve 

analyses of serial dilutions of target DNA.  A ‘positive’ result was defined as a CT value 

equivalent to, or exceeding the analytical sensitivity for each gene. In the case of singleplex 

qPCR this was initially 0.1% however, it was noted in several of the clinical sample runs that 

the amplification signal for 0.1% was inconsistent, absent or CT<2 from the lymphocyte 

biological control. Therefore a level of 0.5% methylation was used as the cut-off threshold 

for a positive result for all 5 genes in singleplex qMSP.  

 

4.2.2 Defining a positive result as greater than 0.25% methylation for CYGB, P16 

and TMEFF2 and 0.5% methylation for ADAMTS9 and CCNA1 for the duplex 

technique 

The analytical sensitivity was defined by the lack of overlap between the positive standard 

picked for each assay and the biological (lymphocyte DNA) and technical (WGA) controls. 

This value was different for each gene and is defined below. In order to determine if a 

reaction run was successful, a non template control, a technical control (WGA) and a 

biological control (blood lymphocyte DNA) were included, alongside the DNA standards of 

known methylation (0.25-1%).   The biological control is a guide as to the amount of 

methylation that is present in white blood cells of normal, disease free individuals.   The 

cut-off value of 0.25% was established for three genes in the panel (P16, TMEFF2 and CYGB) 

and 0.5% for ADAMTS9 and CCNA1. The biological control in the ADAMTS9 and CCNA1 

assays had an amplification curve within 2 CT of the 0.25% standard (in 5/35 and 2/35 runs 

respectively) therefore the 0.5% standard was used as a cut-off for these two genes.  

4.3 DNA yield obtained from an OSCC and PORT cohort using different saliva 

collection methods  

4.3.1 Patient cohorts 

DNA yield was quantified using a human RNAse P quantitative PCR (qPCR) assay in a subset 

of patients from the OSCC cohort and the PORT cohort.  This was performed to evaluate the 
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best method of saliva collection to maximise DNA yield in OSCC patients. Other published 

studies of DNA yield and saliva collection methods have focused on patients without oral 

malignancy (Table 10). However, certain sequelae of oral malignancy such as disrupted oral 

competency and xerostomia secondary to PORT can affect the patient’s ability to produce a 

saliva sample. A total of 45 patients, representative of a typical Liverpool cohort (Rogers, 

Brown et al. 2009), participated in this study and provided 90 saliva samples collected by 

three methods. Nine of the forty five patients (all 9 were pre-operative samples) were also 

included in the qMSP biomarker detection element of the larger study. 

Patients were divided into two groups; Group one (total n=21) contained pre-operative 

(n=10) and post-operative (n=11) OSCC patients and provided paired OrageneTM and saline 

mouthwash saliva samples. Four of the 11 post-operative patients in this group had 

received PORT. Group two contained 24 post-operative OSCC patients who had all 

completed PORT prior to the saliva collection. This group provided paired OrageneTM 

sponge and saline mouthwash saliva samples. 
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Author Participants Sample Average DNA 

Yield g) 

Quantification 
method 

(Philibert, 
Zadorozhnyaya 
et al. 2008) 

Behavioural 
genetic study 

Oragene  whole saliva 92 Spectrophotometry 

(Hansen, 
Simonsen et 
al. 2007) 

Normal 
Cohort 

Oragene whole saliva 
Buccal swab 
Foam Tipped Applicator 

10.8 
64.4 
0.36 

Spectrophotometry 

(Rogers, Cole 
et al. 2007) 

Normal 
Cohort 

Oragene whole saliva 
Mouthwash (10ml) 
Cytobrush 
Buccal swab 

182 
36.5 
13 
11 

Spectrophotometry 

(Quinque, 
Kittler et al. 
2006) 

Normal 
Cohort 

Whole saliva 
Buccal swab 

11.4 
8.29 

PCR 

(Rylander-
Rudqvist, 
H kansson et 
al. 2006) 
 

Normal 
Cohort 

Oragene whole saliva (2ml) 135.9 
29.4 
19.2 

Spectrophotometry 
Picogreen 
fluorescence 
RTqPCR 

(Ng, Koh et al. 
2004) 

Normal 
Cohort 

Whole saliva 2.9-6.8 Spectrophotometry 

(Cozier, Palmer 
et al. 2004) 

Normal 
Cohort 

Mouthwash 
Buccal swab 

10.1 
3.69 

Spectrophotometry 

(García-Closas, 
Egan et al. 
2001) 
 

Breast 
Cancer 
Cohort 

Mouthwash 
 
Cytobrush 

57.3 
27.5 
13.6 
1 

Spectrophotometry 
PCR  
Spectrophotometry 
PCR  

(Bauer, 
Rezaishiraz et 
al. 2004) 

Smoking 
cessation 
trial 

Mouthwash 44.93 Spectrophotometry 

(Satia-Abouta, 
King et al. 
2002) 

Normal 
Cohort 

Mouthwash 
Cytobrush 

15.8 
12 

Spectrophotometry 

(Feigelson, 
Rodriguez et 
al. 2001) 
 

Normal 
cohort 

Mouthwash 34 Spectrophotometry 

(Heath, 
Morken et al. 
2001) 

Normal 
Cohort 

Mouthwash 18.6 PCR 

(Le Marchand, 
Lum-Jones et 
al. 2001) 

Normal 
cohort 

Mouthwash 35.1 Spectrophotometry 

(Lum, Le 
Marchand 
1998) 

Normal 
Cohort 

Mouthwash 49.7 Spectrophotometry 

(Freeman, 
Powell et al. 
1997) 

Behavioural 
genetic study 

Mouthwash 38 Spectrophotometry 

Table 10: Summary of published data of DNA yield from different saliva collection methods 
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4.3.2 DNA yield from whole saliva OrageneTM  collection method outperformed 

mouthwash collection in the OSCC cohort but not in the post-operative radiotherapy 

cohort  

All 90 samples contained human DNA, as confirmed by RNAse P qPCR assay. In group one, 

the DNA concentration from the OrageneTM whole saliva samples (range 10-929ng/l; 

median 306/l; SD 291ng/l) was significantly greater (Wilcoxon signed ranks test p=0.001) 

than that of the matched mouthwash samples (range 7-657ng/l; median 62ng/l; SD  

169ng/l) (Figure 6a).  

In group two, a lower median DNA concentration was observed than for group one and 

there was no statistical significance (Wilcoxon signed ranks test p=0.5) in DNA 

concentrations obtained using OrageneTM sponge (range 0.3-306ng/l; median 22ng/l; SD 

86 ng/l) and matched mouthwash (range 1.6-267ng/l; median 20ng/l; SD 77 ng/l) 

collection methods (Figure 6b).   Both cohorts demonstrated a wide range of DNA 

concentrations which was irrespective of the method of collection.  
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Figure 6a: DNA concentration range (ng/l) for the mixed pre-operative and post-

operative OSCC cohort  comparing OrageneTM to mouthwash saliva collection methods 

using qPCR ( * and o signify samples that are outliers).  
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Figure 6b  : DNA concentration range (ng/l) in post-radiotherapy cohort comparing 

OrageneTM sponge kits to mouthwash collection methods  using qPCR ( * and o signify 

samples that are outliers). 

 

The total DNA yield for each sample was calculated using the RNAse P qPCR concentration 

data and the total sample volume. This data mirrors the DNA concentration data, with the 

total amount of DNA in whole saliva collected using OrageneTM being significantly greater 

than mouthwash in group 1 cohort (p=0.0001 Wilcoxon signed ranks test) (Table 11). There 

was no significant difference between DNA yield from the OrageneTM sponge and 

mouthwash method in the PORT cohort (Table 12).   
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DNA Yield g OrageneTM whole saliva Mouthwash 

Range 4-372 2-184 
Median 122 17 
Mean 140 32 
SD 116 47 

Table 11 Total DNA yield (g) in paired OrageneTM whole saliva and mouthwash samples 

from the group 1 cohort (n=21) determined by RNAse P qPCR. p=0.0001 (Wilcoxon signed 

ranks test) 

 

DNA Yield g OrageneTM Sponge Mouthwash 

Range 0.1-61 0.1-75 
Median 4 5.5 
Mean 13 14 
SD 17 21 

Table 12 Total DNA yield (g) in paired OrageneTM sponge and mouthwash samples from 

the post-radiotherapy group 2 cohort (n=24) determined by RNAse P qPCR. p=0.9 

(Wilcoxon signed ranks test) 

 

4.4 Concordance of methylation results between different sources of oral 

cellular material 

4.4.1 Concordance of methylation between saliva and tumour in this series was 

limited 

The concordance between methylation in head and neck tumours and paired saliva has 

previously been reported for other gene panels (Righini, De Fraipont et al. 2007, Rosas, 

Koch et al. 2001, Carvalho, Henrique et al. 2011).  Righini et al (Righini, De Fraipont et al. 

2007) detected P16 methylation in tumour 20/60 (33%) and paired saliva 16/60 (27%) with 

ahigh concordance rate as represented by a-coefficient of 0.8. Rosas et al (Rosas, Koch et 

al. 2001) report; of 14 tumours positive for P16, 11/14 paired saliva samples were also 

positive (79% concordance). Both authors used MSP, a qualitative method vulnerable to 

false positive results (Shaw, Akufo-Tetteh et al. 2006). Using qMSP, Viet (Viet, Jordan et al. 

2007) reported an 87.5 % positive agreement in a small cohort (n=14) of matched saliva and 

oral tumours. Carvalho et al (Carvalho, Henrique et al. 2011) report methylation of at least 

1 gene from a panel of 7 genes including P16 and CCNA1 in 59 tumours. At least one gene 

was positive in 33/59 (56%) paired saliva samples.   

The frequency of methylation detected in pre-operative saliva and paired tumour samples 

for all target genes in our study is shown in Tables 13-17. The overall concordance levels, 

when all samples are included, for each gene in our study are comparable to genes used in 
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other studies (71-88%) however our data is dominated by negative agreement (i.e absence 

of methylation in both saliva and tumour)(Tables 13-17) and the relevance of these results 

is questionable. A positive saliva sample with a negative paired tumour sample was an 

infrequent event (six occurrences) and the significance of this is currently unknown but 

could be explained by the fact that saliva contains cells from the entire oral cavity and may 

contain cells from field change beyond the index tumour.  The leading hypothesis is that 

methylation detected in saliva is from cellular material shed from the tumour mass. 

Working with this assumption a more useful view of our data would be that of tumour 

positive concordance (i.e the number of positive saliva samples when the paired tumour 

was methylated). CYGB and P16 had the best tumour concordance at 70 % (7/10) and 64% 

(7/11) respectively which is in keeping with the published studies discussed above. CCNA1 

had a tumour concordance of 45% (5/11) and TMEFF2 33% (4/12) with ADAMTS9 

performing the worst with only 11% (1/9) concordance. 

The assays appear to offer good specificity but variable sensitivity. The detection of 

methylation in saliva for P16 in our data set 9/34 (26%) is comparable to that of Righini 

(Righini, De Fraipont et al. 2007) 16/60 (27%) and Viet (Viet, Jordan et al. 2007) 5/14 (35%) 

but much lower than Rosas (Rosas, Koch et al. 2001) 11/14 (79%) who reports on a smaller 

cohort using MSP. Concordance between positive results in tumour and saliva in our study 

was expected to be better and raises questions as to the suitability of saliva as a direct 

surrogate using this panel of genes, an issue which will be explored in the discussion. 

ADAMTS9 Tumour n=34 

Positive Negative 

Saliva n=34 Positive 1 0 

Negative 8 25 

Table 13 

CCNA1 Tumour n=34 

Positive Negative 

Saliva n=34 Positive 5 1 

Negative 6 22 

Table 14 

CYGB Tumour n=34 

Positive Negative 

Saliva n=34 Positive 7 1 

Negative 3 23 

Table 15 
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P16 Tumour n=34 

Positive Negative 

Saliva n=34 Positive 7 2 

Negative 4 21 

Table 16 

 

TMEFF2 Tumour n=34 

Positive Negative 

Saliva n=34 Positive 4 2 

Negative 8 20 

Table 17 

Tables 13-17: Frequency of methylation in paired tumour and pre-operative saliva 

samples for the five target genes. 

 

4.4.2 Strong correlation between qMSP data was observed in matched saliva 

and buccal samples from a normal control cohort 

 

Normal oral mucosa from disease free patients would be the ideal control to determine the 

level, if any, of methylation in normal oral tissue.    Histologically normal tissue from non-

diseased patients is difficult to obtain for practical and ethical reasons.  As a compromise 

scrapes from the buccal mucosa of individuals in the normal cohort were obtained 

alongside a saliva sample to compare any difference between the methylation status of the 

scrapes versus the saliva. Oral scrapes have previously been shown to be an adequate 

surrogate for oral biopsy tissue with a reported 80% concordance rate for the detection of 

methylation in scrape samples taken directly from the lesion in OED patients (Hall, Shaw et 

al. 2008).  It is assumed that the buccal scrapes have greater cellular density than the saliva 

samples.  The purpose of the comparison between normal scrapes and saliva here was to 

see if the two methods yielded comparable information about methylation status or if the 

scrapes were a better surrogate tissue.  

Ninety individuals from the normal cohort (n=97) provided a buccal mucosal scrape.  

Singleplex qMSP methodology was used and the data (Table 18) shows strong concordance 

between saliva and buccal scrapes for methylation status of each of the five target genes. 

However, as expected in a normal cohort both collection methods yielded predominantly 

negative results for methylation at all five target genes.  Only five individuals with paired 

samples demonstrated a positive result (Table 18) and all five resulted in discordance 

between the saliva and scrape sample.  Two individuals had a positive saliva and negative 
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scrape. Three individuals had a positive scrape and negative saliva. For 70 scrape samples 

and matched saliva only one run was available for analysis so the results are not in 

duplicate. It is also noteworthy that only 6/732 (1%) of saliva qMSP reactions failed but that 

47/660 (7%) scrape reactions did so due to inadequate amount of input DNA (failure to 

generate amplification curve in beta actin) or poor quality of input DNA (amplification curve 

consistent with degraded DNA).  Although there was a 7% failure rate in the scrapes; this 

data was retained for analysis as the sample size remains large enough to be informative. 

However, due to the factors stated above and the exhaustion of DNA from the scrape 

samples it was decided that any continued analysis would be performed on normal saliva 

alone. Mulki et al (Mulki, Shetty et al. 2013) report a significantly higher cell yield from oral 

rinses than oral scrapes in a normal cohort. Rogers et al (Rogers, Cole et al. 2007) also 

report higher DNA yield and quality from whole saliva samples compared to buccal cell 

collection methods (Table 10). The reason for the higher failure rate in scrapes in our series 

is likely to have been due to operator technique during the sample collection. 

Gene Number of 

pairs available 

for analysis
* 

Concordant Positive 
scrape 

Positive 
saliva 

Discordant 

ADAMTS9 79  78 
 (99 %) 

0 1 1 

CCNA1 79 79 
          (100 %) 

0 0 0 

CYGB 79    79  
(100 %) 

0 0 0 

P16 78 77 
(99 %) 

1 0 1 

TMEFF2 87  84  
(98 %) 

2 1 3 

*Missing data is due to technical failure of the reaction.  

Table 18. Concordance of singleplex qMSP data between the presence of methylation in 

each of the 5 target genes between scrapes and paired saliva from the normal cohort 

(n=90). Concordant = either a +ve saliva +ve scrape or –ve saliva –ve scrape. Discordant 

=+ve saliva –ve scrape or–ve saliva +ve scrape 

4.4.3 Methylation results from the singleplex and duplex qMSP techniques were 

comparable 

 

An interim analysis of the singleplex methodology results identified inconsistencies with the 

quantitative reliability of the control DNA at the lowest levels (0.1%). There was some 

discordance between 2% of the total number of samples on duplicate runs.  These 
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inconsistencies might be expected due to relatively low levels of DNA in surrogate samples 

and an analytical sensitivity of 0.1% is at the stochastic part of these assays. In the high 

throughput clinical runs, small pipetting errors can be more profound which can result in an 

increase in variability between reactions. The standards that are close to the stochastic area 

of the PCR can become unstable. Additionally, the quantitative measurement of 

methylation in the standards had not yet been introduced at this stage of the protocol. 

The singleplex methodology involved composing all of the plates simultaneously to 

standardise the component volumes of each, however this resulted in some plates being 

stored in the refrigerator for longer than others with a potential difference of several hours.  

Unpublished data from Dr. Lakis Liloglou (personal communication) revealed there was 

condition “slippage” of plates left refrigerated compared to those reactions which were run 

immediately after preparation which may have affected some of the discordant cases that 

fell very close to the analytical sensitivity of the assay.    

A ‘positive’ sample was defined as that with at least two results above the assigned cut-off. 

If there was a discrepant result, between the duplicate runs for an individual sample, the 

protocol was to repeat the reaction if enough DNA remained in the sample. During the 

course of this study, the qPCR technology evolved to allow for multiplexing target genes in 

the same reaction (Fackler, Malone et al. 2006) which allows more efficient use of the small 

amounts of DNA in saliva. A quality control step, to quantitate the amount of methylation 

in the controls, was also incorporated into the methodology. Therefore, new assays were 

designed wherein beta actin, the internal control gene, was incorporated as a duplex 

reaction in the same tube as the target gene.  In view of these factors, repeat runs were 

undertaken using duplex, rather than singleplex qMSP technology as this would satisfy the 

need for repeating samples and would maximise the use of minimal DNA.  It also allowed 

eradication of the time difference factor as plates inclusive of the internal control gene 

could be composed and run immediately.  

The duplicate runs of the duplex reactions were largely concordant, with only 13 of 1445 

(1%) reactions across the five genes having a discordant result in relation to the chosen cut-

off.  The concordance between the singleplex and duplex data was measured using the 

McNemar  2 test which tests for equality of correlated proportions and informs if the 

discord proportion between the two techniques is significant.  All 5 target genes showed a 

low rate of discordance between the singleplex and duplex data which was not statistically 

significant in four out of the five genes ( ADAMTS9: discordance 2% p=0.125; CCNA1: 



 

101 

 

discordance 1.4% p = 0.250; CYGB: discordance 0.5%  p=1; P16: discordance 3% p=0.65; 

TMEFF2: discordance 5% p=0.04 (Appendix 4 Tables A4.1-A4.5). The saliva DNA was limited. 

It was therefore decided that the singleplex data, where necessary, could be used in effect 

as a triplicate run to draw conclusions for any discrepant duplicate duplex results. This only 

applied to 13 samples.  The duplex data is a more robust data set because of the additional 

quality control steps of the technical control WGA, quantitative measurement of 

methylation in the control DNA and every sample has at least a duplicate run. The duplex 

data was therefore used for further statistical analysis against demographic and 

clinicopathological data.   

4.5 Observed patterns of methylation in saliva samples from the normal, 

dysplasia and OSCC cohorts 

4.5.1 Patient populations 

Two hundred and sixty four individuals were enrolled in this study. Prior to statistical 

analysis, six patients with oropharynx SCC were excluded as five of them were HPV positive 

and one had unknown HPV status. Three dysplasia patients were excluded as I was unable 

to confirm a histological diagnosis of OED from available pathology reports; one with 

unavailable histology, and two did not have dysplastic histology (chronic hyperplastic 

candidosis and basal keratinitic atypia ). Thirty five post-operative patients from the saliva 

collection methods study were not included in this arm of the study as they did not have 

matching pre-operative saliva samples and one pre-operative patient was excluded due to 

exhaustion of DNA in the saliva collection methods analysis. Two hundred and nineteen 

individuals were included in the methylation analysis of the target panel (Table 19).  

Statistical analysis of the demographic data using the Pearson chi-square test revealed a 

statistical difference between the normal and OSCC group and the normal and dysplasia 

group in all the demographic and risk factor data except gender (Appendix 5 Tables A5.1-

A5.12). The OSCC cohort consumed more alcohol than the dysplasia cohort. (p=0.005 

Appendix 5 Table A5.11).  
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 4.5.1.1 Clinical and pathological characteristics of the case and control cohorts 
 

The pathology characteristics of the primary tumours in the OSCC cohort were similar to a 

typical Liverpool cohort (Rogers, Brown et al. 2009). Primary tumour site was available for 

56 of 62 patients. The primary sites included in the cancer cohort were floor of mouth n=17 

(30%) , tongue n=20 (35%), HPV negative oropharynx n=4 (7%), buccal mucosa n=3 (5%), 

other n=12 (21%) (mandible, maxilla, alveolus). Pathology characteristics were available on 

55 tumours. There is a predominance of stage IV disease in this case series. 

Histopathological staging of the cases: stage I: 4 (7%), stage II: 12 (22%), stage III: 8 (14%) 

stage IV: 32 (57%). Twenty eight of fifty five (51%) patients were pN positive and of these 

17/28 (61%) had extracapsular spread (ECS).   

In the dysplasia cohort the site of the primary lesion was most commonly on the floor of 

mouth 25/60 (42%) with tongue as the next most common site 18/60 (30%), buccal mucosa 

12/60 (20%) and other 5/60 (8%) which is a similar distribution to the series published by 

Ho et al (Ho, Risk et al. 2012). 
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Demographic  OSCC 
( n=62) 

Dysplasia 
(n=60) 

Normal 
(n=97) 

Age 0-40 1    
(2%) 

4     
(7%) 

44  
(45%) 

41-60 28 
 (45%) 

31 
 (52%) 

29  
(30%) 

61+ 28 
 (45%) 

25 
 (42%) 

24 
 (25%) 

No data* 5 NA NA 

Gender Male 39  
(63%) 

34  
(57%) 

56  
(58%) 

Female 22  
(35%) 

26  
(43%) 

41  
(42%) 

No data* 1 NA NA 

Smoking status None 8    
(13%) 

14  
(23%) 

38  
(39%) 

 <= 20 pack 
year 

11  
(18%) 

17 
 (28%) 

42  
(43%) 

>= 20 pack 
year 

28  
(45%) 

29  
(48%) 

17 
 (18%) 

No data* 15 NA NA 

Alcohol None 5  
 (8%) 

19 
 (32%) 

36  
(37%) 

 <=28u week 25 
(40%) 

32 
 (53%) 

59  
(61%) 

>=28u week 16  
(26%) 

8  
 (13%) 

2    
(2%) 

No data* 16 1 NA 

 

Table 19: Demographic and risk factor data for individuals within each of the three 

separate cohorts. * Clinical data was collected retrospectively from casenotes and was 

not available for every patient 

4.5.1.2 Methylation detected in saliva from the normal cohort was a rare event 
A primary aim of this study was to establish a level of methylation of this gene panel in a 

normal population to determine a cut-off value which could be used to discriminate disease 

from normal saliva samples.  In this normal cohort (n=97) four of the five genes did not 

have promoter methylation at a level higher than the technical thresholds described above. 

Thus, any result above the threshold is considered positive for ADAMTS9, TMEFF2, CCNA1 

and CYGB.   

Three percent of this cohort (3/97) had ‘positive’ promoter methylation in P16.  Two of the 

samples had methylation greater than the 1% methylated standard and one sample greater 

than the 0.5% methylated standard as determined by the CT. All three patients were male 

and smoked in excess of 20 pack years. They were aged 48, 50 and 74 and had varied 
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alcohol intake. Despite three samples from the normal cohort having detectable 

methylation above the technical threshold of 0.25%: it was decided to accept this threshold 

for P16 for the purpose of this exploratory study.   

4.5.2 Clinicopathological parameters 

4.5.2.1  Diagnosis 
Saliva samples were initially placed into seven groups based on diagnostic classification: 

normal, mild dysplasia, moderate dysplasia, severe dysplasia, proliferative verrucous 

leukoplakia (PVL), microinvasive SCC (MISCC) and SCC.  ADAMTS9 was infrequently 

methylated being detected in only one of 218 saliva samples. The one positive result was a 

pre-operative saliva sample from an OSCC patient who also had strong pattern of 

methylation in CYGB and P16 in saliva and tumour samples.  Statistical evaluation was not 

performed for ADAMTS9 due to the likelihood of invalidity from such small numbers.  This 

gene was henceforth discarded from the panel for further analyses of clinicopathological 

data. The presence of promoter methylation in the remaining four genes was able to 

discriminate between malignant disease and other diagnoses: Fisher’s exact CCNA1: 

p=0.003; CYGB: p=0.001; P16: p<0.001; TMEFF2: p<0.001(Appendix 6 Tables: A6.1-A6.4). 

Promoter methylation, above the declared threshold in the pre-operative saliva samples 

from known OSCC patients, was most frequently detected in P16: 27% (17/62). Methylation 

rates for the other genes in the panel are shown below (Table 20).  

 

 

 

Sample 

Gene 

CCNA1 CYGB P16 TMEFF2 

Pre-operative OSCC 

Saliva (n=62) 

9/62 

(15%) 

10/62 

(16%) 

17/62 

(27%) 

10/62 

(16%) 

Pre-operative OSCC 

tumour tissue 

(n=34) 

11/34 

(32%) 

10/34 

(29%) 

11/34 

(32%) 

12/34 

(35%) 

Table 20: Methylation rates for each of the four genes in the panel in pre-operative OSCC 

saliva and tumour samples. 
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Binning the data 

It was noted that the numbers of patients within each diagnostic classification in this 

dataset were small in terms of statistical analysis. In order to strengthen the statistical tests 

of gene promoter methylation versus diagnosis, the groups were amalgamated as follows. 

The diagnoses were ‘binned’ into normal (n=97); low risk = mild and moderate dysplasia (n= 

38); high risk = severe dysplasia and PVL (n=16) (defined as increased likelihood of 

malignant transformation (Hansen, Olson et al. 1985, Woolgar, Triantafyllou 2009, Ho, Risk 

et al. 2012)  and malignancy (SCC and MISCC) n=68.  It has been shown that a panel of 

genes is more sensitive than a single marker (Righini, De Fraipont et al. 2007) therefore 

further analysis was conducted as a gene panel, but with the omission of ADAMTS9 for the 

reasons stated above. 

 A higher prevalence of promoter methylation at any marker was observed in high risk and 

malignant disease compared with the other groups (Appendix 7 Tables A7.1-A7.5).  The 

presence of methylation of the gene panel in high risk premalignant lesions (7/18) versus 

low risk lesions (4/36) was statistically significant (Fisher’s exact P=0.03). Methylation was 

present in at least one gene in 42% (36/85) of the combined high risk and malignancy 

samples and only 5% (7/133) of the normal and low risk samples (Fisher’s exact p=0.001). In 

this series there is an observed trend towards increased number of methylated genes in 

saliva samples from patients with malignancy (Table 21). 
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 Diagnostic classification Total 

Normal Low risk High risk Malignancy 

Number of 

genes 

methylated 

0 94 32 11 38 175 

1 

3  

(3%) 

4  

(11%) 

6 

(33%) 

15  

(22%) 

28 

2 

0 0 1  

(6%) 

9  

(13%) 

10 

3 

0 0 0 5  

(7%) 

5 

Total 97 36 18 67 218 

Table 21: A contingency table of the number of methylated target genes versus the 

‘binned’ diagnosis classification groups 

 

Of the three individuals in the normal cohort with positive saliva samples all had P16 

methylation and are commented on above (4.5.1.2). Of the four patients in the low risk 

group with a positive result, two are discussed in section 4.5.3.2 in the longitudinal 

dysplasia case studies.  The two remaining patients were both female, heavy smokers (>20 

packyears) and both had mild dysplasia which extended up to the biopsy margin. They were 

both lost to follow-up. The first aged 58 with a buccal mucosa lesion failed to attend after 3 

months of follow-up. The second aged 51 with a FOM lesion had 20 months of follow up 

after an initial biopsy (mild dysplasia) and the saliva sample (P16 positive) taken 

02/03/2010. She had a further biopsy 24/11/11 which showed moderate squamous 

epithelial dysplasia and chronic candidosis, but failed to attend for further follow-up. Ten of 

fifty five (18%) (5/60 patients had histology of MISCC and were removed from this analysis 

and  ‘binned’ with OSCC) had transformation of the premalignant lesion. Overall, 

methylation was not associated with transformation in this series (Fisher’s exact p=0.67).  

Three out of ten patients with transformation had methylation of at least one gene in the 

panel in a saliva sample. Eight out of forty five patients who did not transform during 
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follow-up had methylation of at least one gene in the panel. One patient was excluded as 

there was insufficient DNA in the sample.  

4.5.2.2 Confounding variables 
One of the primary outcomes of this work was to determine the frequency of methylation 

in a normal cohort, with the objective of determining if the selected candidate genes could 

be used to discriminate normal from a disease state in future clinical testing. It is important 

to investigate whether putative risk factors for methylation are associated with increased 

methylation rates in disease free individuals. If so, this would reduce the discriminatory 

value of methylation between those with and without the disease. We have therefore paid 

particular attention to the variation in methylation in the normal cohort depending on age, 

smoking history and alcohol consumption as this removes disease as a confounding 

variable.  For completeness we have also included statistical analysis on each of the disease 

groups. 

 

4.5.2.3 Methylation rates were not associated with advancing age with this target 
 gene panel  

Cancer is an age related disease being more common in those of advancing age (CRUK 

2014a). Aberrant epigenetic signalling has a role in cellular ageing (Fraga, Agrelo et al. 2007) 

and DNA methylation is known to be associated with cancer (Baylin, Ohm 2006, Esteller 

2008).  To answer the question set in our study: Can this panel of biomarkers be used to 

discriminate normal from malignant disease? It is pertinent to know if age is itself a 

confounding variable. The age categories were designated arbitrarily to distribute the 

normal cohort into young, middle aged and old. The young adult range of 16-40 years old 

approximates with other studies in the literature (Harris, Kimple et al. 2010, Patel, 

Carpenter et al. 2011).  CRUK reports that age specific incidence rates of OSCC rise around 

age 40-44 years and peak at 60-64 for males (CRUK 2014b, CRUK 2014a).  Promoter 

methylation of saliva samples from normal individuals in our study was found only in P16. 

The complete absence of methylation above the threshold in the remaining three genes, 

regardless of the age of the individual, supports the assertion that in the normal cohort 

methylation does not increase with age in these genes. 

 

There did not appear to be a statistically significant relationship between advancing age 

and the presence of methylation in individual genes or the gene panel in the three disease 
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groups (Appendix Table A8.1-A8.5). As noted earlier, there is a comparatively large number 

of individuals in the under 40 age category in the normal cohort when compared with the 

disease groups (Table 19). Oral cancer is relatively uncommon in individuals under 40 in the 

UK but does occur (CRUK 2014b). A subanalysis of age versus methylation for each of the 

diagnosis groups was performed with the under 40 group removed (Appendix Table A8.6 ) 

and there was no relationship between advancing age and methylation.  

 

4.5.2.4 No correlation was observed between methylation rates and smoking   
 history with this target gene panel  

There is ongoing debate about the role of tobacco exposure in P16 methylation.  Kulkarni et 

al (Kulkarni, Saranth 2004) reported P16 methylation in 50% (30/60 cases) of normal 

adjacent mucosa in a cohort of 60 individuals with OSCC all of whom had tobacco exposure. 

In a similar study Kato et al (Kato et al. 2006) report 27% (6/22 cases) with P16 methylation 

in normal adjacent mucosa but state there was no correlation with tobacco consumption. 

Previous work by our research group does not support smoking as a cause of P16 

methylation.  Methylation of P16 was found to be tumour specific being detected in only 

4% of clinically/histologically normal mucosa from 70 patients.  Fifty seven percent of these 

patients were heavy smokers. However, some authors quote the frequency of P16 

methylation in oral tissue of smokers without oral malignancy at approximately 10% (von 

Zeidler, Miracca et al. 2004, Ruesga, Acha-Sagredo et al. 2007).  

In this current data series there was no overall association between smoking and P16 

methylation detected in saliva samples (Chi-square p=0.51) (Figure 7). The smoking history 

of individuals in this study was arbitrarily stratified into non-smoker, 20 pack years or less 

and greater than 20 pack years with the aim of assessing if increased exposure to smoking 

has a relationship with methylation.  The distribution of P16 methylation as related to 

smoking in pack years in this series is shown in figures 8-11 below. In the normal cohort 

(Figure 8) P16 methylation is only noted in the heavy smoking group and therefore was 

statistically significant (Fisher’s exact p=0.005). This significance would be considered with 

caution as it is based on only 3/97 positive results. 
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Figure 7: Frequency (y-axis) of P16 promoter methylation in saliva samples of smokers (PY 

=pack years) and non-smokers.  

 In the disease groups (Figure 8-11) the general pattern is that methylation is not smoking 

related. In a longitudinal biomarker study of OED, which showed P16 methylation as a 

potential predictive marker for malignant transformation, there was a higher proportion of 

non-smokers in those patients whose lesions underwent malignant transformation (Hall, 

Shaw et al. 2008). Ho et al (Ho, Risk et al. 2012), in a longitudinal outcome study of OED, 

noted that non-smokers were seven times more likely to undergo malignant transformation 

when compared to heavy smokers and suggest that it is other intrinsic factors that put 

these patients at higher risk of malignancy.  The P16 methylation smoking data from our 

data series is in support of this assertion. A weak statistical difference was noted between 

P16 methylation and amount smoked in the ‘high risk’ group (Figure 10) with an 

observation that it is non-smokers with a tendency for P16 methylation.  
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Figure 8.  Normal cohort n=97 

   Fisher’s exact p=0.005 
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Figure 9.  Low risk  dysplasia  cohort n=36 

   Fisher’s exact p=0.796 

Figure 10.  High risk dysplasia cohort n=18 

   Fisher’s exact p=0.045 

Figure 11.  Malignancy n=52 

   Fisher’s exact p=0.613 Figure 8-11: Frequency of P16 methylation in saliva samples against smoking in pack years  

(PY) (horizontal axis) for each of the four diagnosis groups. n=individuals with smoking data 

available 
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Promoter methylation in the other three genes as related to smoking was not statistically 

significant across the four diagnosis groups (Appendix Table A9.1-A9.5). The combined gene 

panel showed statistical significance (Fisher’s exact p=0.005) in the relationship between 

smoking and methylation in the normal cohort entirely on the strength of the three 

individuals with positive P16 methylation.  

 

4.5.2.5 No significant association was observed between methylation rates and 
 alcohol consumption for this target gene panel 

The alcohol risk factor data was collected as three categories of intake: none, moderate (up 

to 28 units a week) or heavy (greater than 28 units a week). Twenty eight units a week is 

the upper limit of alcohol intake for an adult male as per the UK Department of Health.  

Heavy alcohol intake is associated with oral cancer (Blot, McLaughlin et al. 1988, Hindle, 

Downer et al. 2000, Bagnardi, Blangiardo et al. 2001) and it is therefore important to 

establish if it is independently associated with methylation. There was no statistical 

significance noted between alcohol and methylation in any of the individual target genes or 

the gene panel across all four diagnosis groups (Appendix Table A10.1-A10.5). As with the 

smoking data the numbers were small in some of the individual categories, notably the 

heavy drinkers in the non-malignancy diagnosis groups, therefore these statistics are 

treated with caution. 

 

4.5.2.6 No correlation was observed between methylation rates and stage of 
 OSCC disease 

A logical assumption is that a large tumour may exfoliate more cells into saliva and 

therefore be associated with increased amount of methylation.  There was no observed 

pattern of increase in methylation as tumour size increased (Table 22). Although not 

statistically significant there did appear to be an increase in the number of positive genes as 

the TNM staging became more advanced (Table 23). 
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Gene panel pT* Total 

1 2 3 4 

0 genes positive 6 15 2 10 33 

1 gene positive 1 6 1 5 13 

2 genes positive 0 4 2 1 7 

3 genes positive 0 2 0 2 4 

At least one gene 

positive 

1/7 

(14%) 

12/27 

(44%) 

 

3/5 

(60%) 

8/18 

(44%) 

NA 

Total 7 27 5 18 57 

Table 22. Tumour size versus the number of methylated target genes in the panel 
* T=according to TNM classification 

 

 

Gene panel Stage Total 

1 2 3 4 

0 genes positive 3 7 4 19 33 

1 gene positive 1 4 1 7 13 

2 genes positive 0 1 3 3 7 

3 genes positive 0 0 0 4 4 

At least one gene 

positive 

1/4 

(25%) 

5/12 

(42%) 

 

3/8 

(38%) 

14/33 

(42%) 

NA 

Total 4 12 8 33 57 

Table 23. TNM staging of OSCC versus number of genes positive in saliva samples 

 

 

Nodal status and in particular ECS are associated with disease aggression and survival 

outcomes (Rogers, Brown et al. 2009, Shaw, Lowe et al. 2010). In this saliva series CYGB was 

more commonly found in patients without ECS versus those with ECS (Table 24). There was 

weak statistical significance to this data (Fisher’s exact p=0.05). The weight of this data is 

contentious due to the very small numbers involved and much larger numbers would be 
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required to draw any conclusions about association of methylation with ECS.  There was no 

statistically significant relationship between methylation and the remaining three genes or 

the panel as a whole for either nodal status or ECS (Appendix 11 Table A11.1-A11.21). 

 

 

 ECS Total 

No Yes 

CYGB 

Neg 8 17 25 

Pos 3 0 3 

Total 11 17 28 

 Table 24. Frequency of CYGB methylation in pre-operative saliva samples in patients in 

comparison to nodal  extracapsular spread (ECS)  (Fisher’s exact p=0.05) 

 

4.5.2.7 No correlation was observed between methylation rates and survival or 
 disease recurrence 

Survival data was obtained for 53/62 patients in the OSCC cohort (Table 25).  Follow-up  

(defined as date of primary surgery to the event: recurrence/death of disease/ died of 

other cause/ alive at last appointment) ranged from 1-65months with a median of 34 

months. Sixteen of fifity three patients had follow-up less than 24 months, of these 14/16 

patients died  and 2/16 were lost to follow-up.  Eleven of fourteen  deaths from the disease 

(DOD) occurred within 24 months of the primary surgery date. The other three deaths 

occured at 25, 33 and 38 months. 
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 Fate Total 

Alive DOD
a
 DOC

b
 

Gene Panel  

Neg 20 8 2 30 

Pos 14 6 3 23 

Total 34 14 5 53 

Table 25. Methylation status of pre-operative saliva samples versus patient survival  
status a=died of disease b=died of other causes. 
 

Recurrence data was available for 54 of 62 OSCC patients (Table 26).  For the purpose of 

statistical analysis, ‘recurrence’ was defined as any further malignant event inclusive of 

local, regional and loco-regional lesions. It is accepted that this limits the ability to 

comment on whether markers predict for certain types of recurrent disease. However, it 

should be noted that the clinical data was acquired retrospectively from documentation of 

clinical notes spanning over 5 years. Time to recurrence was available for 19/22 patients 

and ranged from 3 to 35 months with a median of 7 months.   Fourteen of twenty two 

patients with recurrence died of the disease. One of the twenty two died of other causes 

and 7 were alive at the last appointment with follow-up ranging from 34-55 months. 

Survival outcome data was not available for the remaining two patients. There was no 

statistical difference or observed patterns between methylation in this gene panel and 

recurrence (Table 26). 
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 recurrence Total 

No recurrence Recurrence 

Gene panel 

Neg 19 12 31 

Pos 13 10 23 

Total 32 22 54 

Table 26. Relationship between recurrence of disease (defined as local/loco-regional) and 

the presence of methylation in the target gene panel in pre-operative saliva samples 

(Fisher’s exact p=0.724) 

 

Of 13/32 patients who did not have recurrence but did have a positive pre-operative saliva 

sample; the follow-up ranged from 11-57 months with a median of 43 months. It is noted 

that not every patient had a full 24 months of follow-up.  Only 2 of these 13 patients had 

follow-up of less than 24 months. Of the 20/32 with no recurrence and a negative saliva 

result; only 2 of these patients had follow-up of less than 24 months both died of other 

causes within two months of surgery.  

A Kaplan Meier survival analysis did not reveal a statistically significant difference (p=0.795 

Mantel Cox) in disease related survival (defined as date of primary surgery  to death from 

disease or last documented follow-up appointment)  and the presence of methylation in 

pre-operative saliva for the gene panel (Figure 12) or individual genes (Appendix 14:  F14.1-

F14.4).  
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Figure 12. Kaplan Meier curve of disease related survival as related to methylation in  

      the target gene panel in pre-operative saliva samples. 

 

4.5.3  Clinical outcome 

4.5.3.1 No prognostic patterns of methylation were observed in a small OSCC 
 cohort (n=12) of paired pre and post-operative OSCC patients 

In a small subset (n=12) of the OSCC patients, matched pre and post-operative saliva 

samples (collected  4 weeks after primary surgery) were available along with clinical follow 

up data. The age range was 33-76 years with 8 (67%) male patients.  The follow-up was 6-

49 months. As the cohort is so small, statistical analysis is not appropriate.   The results 

showed no strong patterns between methylation (either pre or post-operatively) and 

recurrence or death (Table 27). 
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Pre-op 
saliva 

Post-op 
saliva 

Number 
of 
patients 

Recurrence 
0= No 
1=Yes 

Death  
0=Alive 
1=DOD

a
 

2=DOC
b
 

P 
Stage 

Nodal 
Status 
0=-ve 
1=+ve 

ECS 
 
0=-ve 
1=+ve 

FU 
months 

PORT 
 
0= No 
1= 
Yes 

 
Negative 

 
Negative 

 
3 

0 0 2 0 0 47 0 

0 0 2 0 0 31 0 

1 1 4 1 0 13 1 

Negative Positive* 1 0 0 2 0 0 47 1 

Positive  Positive 2 1 0 2 0 0 49 1 

0 0 2 0 0 40 0 

Positive Negative 6 0 0 4 0 0 36 1 

- 0 4 0 0 43 0 

1 1 4 1 1 33 1 

1 2 4 - - 29 1 

0 0 3 0 0 48 0 

1 1 4 1 1 6 1 

Total 12 5 4  

*:positive means any of the four target genes in the panel are methylated. a=died of 

disease b=died of other causes 

Table 27. Methylation status of the matched pre and post-operative samples as related to 

disease recurrence and death. 

4.5.3.2 Methylation in saliva was not associated with malignant transformation of 
 dysplastic lesions in this limited case series 

Fourteen of the 60 patients in the dysplasia cohort donated more than one saliva sample 

during the course of their treatment. For the purpose of this study follow-up was defined as 

time elapsed from date of first saliva sample to date of last appointment and ranged from 

17-73 months with a median of 47 months. Six of fourteen lesions transformed from a 

premalignant histological diagnosis to malignancy during this follow-up. Four out of six 

patients had negative saliva samples. Of these 2/4 had a history of invasive oral cancer and 

had previously undergone curative surgical treatment.  One of the four had previous 

carcinoma-in-situ. The time from pre-transformation saliva sample to malignant change 

ranged from 16-21 months. 

Case studies of patients with methylation of target genes in saliva samples 

preceding malignant transformation of the index lesion 

Two out of six patients (presented below) had gene promoter methylation in their saliva 

samples and in both cases it was present in a pre-transformation sample. 

Patient 3447: a 72 year old male at first presentation with a lesion of moderate dysplasia on 

the ventral tongue. First sample was taken 18/11/2008 and was positive for TMEFF2 

methylation.  The patient was kept under review. At a review appointment 10/02/2009 a 
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second saliva sample was taken and remained positive for TMEFF2.  At this appointment an 

incisional biopsy of an extensive FOM lesion was taken which revealed PVL which 

progressed to proliferative verrucous carcinoma and was resected in May 2009. Patient 

remains in follow-up 21/07/2014 and is alive with subsequent incisional biopsies of the 

area confirming PVL but no suspicious clinical change. No further saliva samples were 

obtained after 10/02/2009. 

Patient 3475 a 63 year old male first presented with moderate dysplasia ventral tongue 

28/07/2008. A saliva sample was taken at this appointment and was negative for 

methylation in any of the target genes. A subsequent saliva sample was taken at review 

27/01/2009 which remained negative and patient was discharged. In 2010 the patient was 

re-referred to the dysplasia clinic with a lesion on his ventral tongue. Histology from a 

biopsy 08/04/2010 described as moderate dysplasia which settled and the patient was kept 

under review. A saliva sample at this appointment was positive for P16 methylation. No 

further saliva samples were collected. In 2012 the patient had an incisional biopsy of the 

area which revealed superficial invasive SCC. Complete excision of the lesion was 

performed November 2012 and histology of the complete lesion described mild dysplasia. 

The last documented follow-up for the patient was July 2014. 
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5.Discussion 

5.1 Introduction 

Oral cancer displays genetic and biological heterogeneity (Chung, Parker et al. 2004) which 

is not always evident at the histological level (Leemans CR, Braakhuis BJ et al. 2011). Clinical 

behaviour can be unpredictable within individual tumour types and implies a role for 

molecular profiling in diagnosis and prognostication. DNA biomarkers found in OSCC 

tumour tissue have been detected in saliva ( Rosas, Koch et al. 2001, Righini, De Fraipont et 

al. 2007, Carvalho, Jeronimo et al. 2008) and may have prognostic value (Righini, De 

Fraipont et al. 2007, Carvalho, Henrique et al. 2011).  

Saliva is an accessible body fluid that can be collected non-invasively and has improved 

patient acceptability when compared with venepuncture (Koka, Beebe et al. 2008). DNA 

extracted from saliva is stable and suitable for room temperature storage without 

significant degradation (Feigelson, Rodriguez et al. 2001, Quinque, Kittler et al. 2006) 

allowing patients to self-sample at home which has the potential to reduce disease 

monitoring costs.  Circulating DNA continues to attract attention as a source of biomarkers 

in several tumours and for a variety of purposes such as diagnostic, prognostic and 

predictive biomarkers. Saliva could potentially offer greater utility in OSCC and is even less 

invasive. 

 

5.2 DNA yield from OrageneTM whole saliva and mouthwash collection methods from 

OSCC patients in the clinical setting is adequate for qMSP applications 

In this arm of the study we aimed to compare three different methods of saliva collection in 

OSCC patients, in particular post-radiotherapy patients in whom xerostomia could 

potentially limit saliva collection. It is accepted that saliva contains adequate DNA for 

downstream applications. It was our intention to establish that adequate amounts of DNA 

can be obtained for downstream applications from saliva collected in a clinical, as opposed 

to a research setting and from the type of patients who would be the target of disease 

surveillance programmes. The ‘ideal’ conditions for sample collection are not always 

possible outside of the laboratory (Granger, Kivlighan et al. 2007) a problem compounded 

in the elderly population, where sampling is much more time-consuming, less well 

tolerated and often produces ‘invalid’ samples (Hodgson, Freedman et al. 2004).  

Human saliva contains microbial content which can contribute to over-estimation of the 

DNA yield. UV spectrophotometry does not discriminate between human and non-human 
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DNA (García-Closas, Egan et al. 2001, Rylander-Rudqvist, H kansson et al. 2006, Philibert, 

Zadorozhnyaya et al. 2008) therefore to improve accuracy of DNA yield calculations we 

used an RNAse P qPCR assay to estimate human DNA concentration. This technique allowed 

the differentiation of human from non-human DNA in contrast to spectrophotometry, 

which can be influenced by particulate matter or protein contamination. 

  

The calculated median DNA yields (Table 11 and 12) are broadly comparable with those in 

the published literature for similar techniques but notably on predominantly healthy 

participants (Table 10). We found a large range of DNA concentrations across the samples 

in all three collection methods.  A large variation in DNA concentrations has previously 

been observed with the OrageneTM method of collection (Rylander-Rudqvist, H kansson et 

al. 2006, Viltrop, Krjutškov Kaarel et al. 2010). The sampling technique could have 

contributed to this variation as it is reliant on patients depositing the same amount of saliva 

in the collection pot which is challenging to standardise in the clinical setting.  Equally It 

could represent the known individual variation of the number of oral epithelial cells in 

saliva (Dawes 2003). 

  

Overall, the DNA yields (Table 10 and 11) from the PORT cohort (group 2) (mouthwash= 

5.5g and OrageneTM sponge= 4g) are less than the OSCC cohort (group 1) 

(mouthwash=17g and OrageneTM vial =122g) but proved adequate for qPCR reactions. 

During the course of this study it was noted that the collection of saliva from patients with 

compromised oral competence in the clinical setting is logistically easier to undertake using 

sponges rather than mouthwash. The sponge method also requires less pre-storage 

processing. However, we did not collect any subjective patient opinion on their preferred 

method of collection.  

The acknowledged limitations in this collection method study is a) the restricted time of ten 

minutes between sample collections and a swill time of 30 seconds for the mouthwash 

samples b) OrageneTM vial whole saliva collection technique was not compared in the 

radiotherapy cohort.  The time restrictions were imposed by the clinical setting. Ideally an 

hour between sample collections would be preferable as a chance for saliva to replenish. 

Righini et al (Righini, De Fraipont et al. 2007) described swilling mouth wash for periods of 

up to 3 minutes however we found this was not tolerated by our patient group whose oral 
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competence was compromised by surgery.  Ideally, to confidently conclude the best 

method of collection in the PORT cohort, whole saliva collection using the OrageneTM vials 

would also have been incorporated into the study design.  It was considered unfeasible to 

test three methods of collection on the same radiotherapy cohort.  Of note 4/11 post-

operative patients in group 1 OSCC cohort (n=21: 10 pre-operative and 11 post-operative 

patients) which compared OrageneTM whole saliva collection to mouthwash had received 

PORT; the DNA yield was greater using the OrageneTM vials.  This was an unexpected 

finding, the significance of which is uncertain with such a small population.  It is possible in 

the context of reduced salivary flow that oral epithelial cells would be at greater 

concentration in saliva as they are not subject to frequent oral lavage. It was noted during 

saliva collection in group 1 that some PORT patients struggled to generate the 

recommended 2ml of saliva for the OrageneTM kits hence why whole saliva was collected 

using the sponge method in the follow-up study on the PORT group.  To determine which  

whole saliva collection method yields the most DNA in the PORT group, OrageneTM vials 

would have to be compared to the sponge technique. However, in this study we have 

answered the clinically pertinent question of which collection method could be used to 

generate sufficient DNA for qMSP as part of a disease surveillance programme in OSCC 

patients.  The population at risk from recurrence are those who have required PORT and 

they would potentially benefit most from surveillance biomarkers however they often 

cannot easily expectorate saliva nor have the oral competency to swish a volume of liquid 

in their mouth. In this study we show that the OrageneTM sponge method yields adequate 

DNA and could be used in this subgroup of patients. 

 

5.3 The rarity of methylation in the normal cohort dictated that the technical  

sensitivity of the qMSP assays defines a positive result 

A stated aim of this study was to determine the rates of methylation in saliva of a cohort of 

normal individuals with the objective of comparing a panel of epigenetic biomarkers in the 

saliva of known OSCC patients and a normal cohort using qMSP; to establish a threshold by 

which we could aid differentiation between normal and OSCC populations. The analytical 

sensitivity was defined by the lack of overlap between the positive standard picked for each 

assay and the biological (lymphocyte DNA) and technical (WGA) controls. In the case of 

ADAMTS9 and CCNA1 genes this was 0.5% for the remaining three genes: CYGB, P16 and 

TMEFF2. Thereafter a positive result was defined as any sample with CT equal to or less 

than the analytical sensitivity of each gene assay.  
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In this series there was no detectable methylation above the technical threshold for 4/5 

genes: ADAMTS9, CCNA1, CYGB, TMEFF2 in the control cohort (n=97). Therefore in these 

genes the analytical sensitivity of the gene assay could be used to define the threshold for  

disease-free samples in future research.  Three individuals in the normal cohort had 

detectable methylation above the analytical sensitivity of the P16 assay. Reports of 

detectable P16 methylation in normal oral mucosa and saliva are mixed with some authors 

claiming a presence and suggesting P16 has a role in field cancerisation and early 

malignancy (Maruya, Issa et al. 2004) and others claiming an absence or insignificant level 

in non-disease oral tissue/saliva (Shaw, Liloglou et al. 2006, Carvalho, Jeronimo et al. 2008). 

As the number of positive saliva samples in this normal cohort is so small (3/97) it is difficult 

to associate statistical relevance to them, additionally due to ethical constraints there is no 

follow-up of individuals in the normal cohort and therefore we are unable to comment on 

the prognostic relevance of positive samples in these individuals. At the time of sample 

collection a thorough intraoral examination was undertaken and no clinical lesion was 

present.  However, P16 methylation could potentially herald development of 

malignant/high risk disease in later life. In work by this and other research groups P16 

methylation, even in small amounts, has been identified in OED and predicted for oral 

cancer (Kresty, Mallery et al. 2002, Hall, Shaw et al. 2008, Cao, Zhou et al. 2009). This raises 

the ethical issue of whether these patients should have been followed up however as the 

samples were anonymised this was not possible in this study.  Ideally, there would be 

clinical follow-up on a normal cohort of over five years but this requires heavy use of 

research resources and ethical considerations as it is not a screening programme.  It is also 

likely that large numbers would be required as the risk of individuals being lost to follow-up 

is high if they are not part of a disease management programme.  As the significance of the 

three individuals with P16 methylation in saliva is unclear, more work on P16 in a normal 

cohort would be required to set a threshold with confidence. However, for the purpose of 

this exploratory study the analytical sensitivity of 0.25% was accepted as a cut-off to define 

a positive sample in the disease groups. 
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5.4 The concordance of methylation of the selected gene panel was limited in 

 matched saliva and tumour samples  

The tumour positive concordance between tumour and saliva (n=34) in this series ranged 

from 11-70%.  Two types of discordance exist: type A: positive saliva sample with negative 

tumour sample and type B: positive tumour sample with negative saliva sample. In this 

dataset, the former is unusual with only six recorded occurrences, of these three are from a 

single individual. A type A discordance may arise as a result of only a small part of the 

tumour being sampled.  Tumour tissue is heterogeneous (Woolgar, Triantafyllou 2009) and 

the sample may not be molecularly representative of the whole spectrum of epigenetic 

change. A type A discordance may be a result of a representative area of the tumour having 

been omitted during the sampling stage but the saliva contains cells shed from the entirety 

of the tumour and may thus prove to be better than biopsy sampling as a means of 

detecting transformed cells.  

 Type B discordance is a more frequent occurrence in this data set which is perhaps more 

expected, as detection of methylation from tumour in saliva is reliant on the relevant cells 

being shed into the saliva in large enough quantities to be detectable amongst large 

numbers of normal cells.  Another factor that may have contributed to the discordance in 

this dataset is the threshold by which a sample is considered positive.  In the duplex qMSP 

assays used in this study the control DNA ranged from 0.25-1% methylated DNA because 

saliva requires a very sensitive assay to detect the small amounts of methylation present.  

However, in the case of tumour tissue some authors feel that very sensitive assays pick up 

biological “background noise” from the cell dense tumours and therefore a threshold for a 

positive result is set much higher at 5% methylation (Shaw, Liloglou et al. 2006, Shaw, 

Hobkirk et al. 2013). It could be argued that this is an arbitrary figure as an actual level of 

‘normal’ methylation has not been established. The level of detection for tumours in the 

qMSP assays was set at 1% in this study and could have contributed to the rates of type B 

discordance seen here. Despite this the detection rate of methylation in tumours at a 1% 

threshold in this series is not markedly higher than that found in similar studies. The 

prevalence of P16 in our tumour series as detected by duplex qMSP is 11/34 (32%). Kulkarni 

et al (Kulkarni, Saranath 2004) report much higher detection rates of P16 methylation at 

67% in OSCC tumour tissue. Righini et al (Righini, De Fraipont et al. 2007) publish a 

detection rate of 33% and Rosas et al (Rosas, Koch et al. 2001) 47% in P16 using MSP. It is 

accepted that the detection technique used by these authors is different to our technique. 

MSP has been criticised for oversensitivity due to false positives as a result of mis-priming 
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(Shaw, Akufo-Tetteh et al. 2006) . However, Shaw and colleagues (Shaw, Liloglou et al. 

2006) also report a comparable 28% prevalence of P16 in a tumour series using a more 

accurate quantitative pyrosequencing assay. In our dataset the presence of methylation in 

saliva was discriminatory to a statistically significant level for disease versus control 

(Fisher’s exact p=0.001).  It is recognised that we did not have matched tumour tissue for all 

63 pre-operative OSCC saliva samples. Establishing the rate of tumour saliva concordance 

was not a primary aim of this study as it has already been explored in the literature (Rosas, 

Koch et al. 2001, Viet, Jordan et al. 2007, Righini, De Fraipont et al. 2007) . The tumour DNA 

available for this study had been used in other studies and was very limited. The qMSP 

assays were therefore not repeated with control DNA of higher methylation levels for the 

tumour tissue in this series. 

It is an assumption that the methylated DNA detected in saliva is from exfoliated tumour 

cells. However, the DNA detected in saliva could be from a different type of cell such as 

immune cells that have responded to maliganancy induced inflammation. The actual source 

of methylated DNA in saliva is still an unknown and therefore the direct concordance of 

saliva and tumour is perhaps of questionable use.  It is perhaps not the presence of the 

same methylated genes in saliva as tumour but the presence of methylation in saliva which 

heralds disease.  This raises the question, for the purpose of discovering saliva methylation 

biomarkers for OSCC, whether saliva from OSCC should be interrogated by genome wide 

discovery assays to generate potential genes rather than OSCC tissue. As is discussed later 

in this chapter one study (Viet, Schmidt 2008) has used a methylation array to interrogate a 

small cohort of pre-operative and post-operative OSCC saliva samples to identify potential 

salivary methylation markers. Of note it identified several markers that have not previously 

been explored in saliva and did not detect markers which have commonly been studied in 

HNSCC such as DAPK, MGMT and APC at high enough methylation levels to be significant. 

 

5.5 Saliva provided a greater quantity of good quality DNA than buccal scrapes 

The inclusion of this data was to determine if buccal scrapes provide a superior surrogate 

tissue to saliva in a normal cohort. Normal mucosal biopsy would be the ideal tissue but 

cannot be justified in large enough numbers under UK ethics policy.  Previous studies have 

shown this exact buccal scrape technique to be a satisfactory surrogate for dysplastic lesion 

tissue (Hall, Shaw et al. 2008). However, without a clinically identifiable lesion to scrape it is 
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possible that a scrape sample will omit potentially methylated cells which can be included 

in saliva samples with cellular contribution from the entire oral mucosa. 

The poorer performance of the buccal scrapes in comparison to whole saliva in terms of 

DNA yield and failed assays, in this study, may have been a result of poor operator 

technique. However other authors have also shown that whole saliva out performs buccal 

cell collection methods in terms of DNA yield (Rogers, Cole et al. 2007, Mulki, Shetty et al. 

2013). A comparison between detectable methylation of a three gene panel from oral 

scrape (27/53) samples versus saliva samples (33/53) in an HNSCC cohort (n=53) showed a 

trend toward increased detection in saliva but this was not statistically significant 

(Ovchinnikov, Cooper et al. 2012). Scrapes have the advantage of sampling a specific lesion 

but may miss other regions of the oral cavity which is why saliva may have had higher 

detection rates in this study.  Saliva has coverage of and therefore cellular material from 

the whole oral cavity and is likely to be preferable to oral scrapes for the detection of occult 

lesions. 

The methylation data is weakened by virtue of only one run having been performed in 

70/90 scrape and saliva samples and without the benefit of duplicate or triplicate runs to 

confirm results, the single run data must be treated with a degree of caution.  The 

concordance levels between buccal scrape and saliva are very high (98-100%) representing 

the extremely low rates of detectable methylation of the gene panel within the normal 

cohort.  The five positive results (3 scrapes and 2 salivas) were all discordant so the 

seemingly high levels of concordance must be treated with caution.  With this in mind our 

data does not support buccal scrapes outperforming whole saliva in terms of DNA yield nor 

assay failure. We are comfortable retaining saliva, in the absence of a detectable lesion, as 

having the greater potential as an oral surrogate tissue. 

 

5.6 Patient populations: a young normal cohort and mixed histology in the dysplasia 

cohort 

One of the aims of the study was to establish the presence of DNA methylation for this 

panel of genes in a normal cohort to set a cut-off by which to discriminate saliva samples 

from patients with disease.  A directive at the beginning of the study was to collect saliva 

from patients who were matched to the typical OSCC profile for demographic and risk 

factor data.  As noted in the demographic section the 44/97 individuals in this cohort were 

below 40 years old which is not comparable to the disease cohorts where only 1/62 patient 
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in the OSCC cohort and 5/60 in the dysplasia cohort were younger than 40 years.  This was 

unforeseen in the initial planning when the clinical environment from which the saliva 

samples should be collected was decided. After an interim analysis of the demographics of 

the normal cohort revealed a bias towards the 40 and under age group, the clinical 

environment was changed to one where older patients routinely attend. In doing this 

similar numbers of individuals in the older categories were achieved: a) 41-60 years; OSCC 

n=29, Dysplasia n=31 Normal n=29 and b) 61 years and older: OSCC n=28, Dysplasia n=25, 

Normal n=24.  Individuals under 40 years of age are less likely to accrue a smoking history 

of 20 pack years and a criticism levelled at this data might be that the absence of 

methylation in the normal cohort is due to the lack of exposure to risk factors. However, 

the methylation data of a young cohort may have value as there are reported increases of 

OSCC in younger individuals (18-45 years) without HPV or exposure to large amounts of 

alcohol and tobacco (Llewellyn, Linklater et al. 2003, Patel, Carpenter et al. 2011) which 

appear to have unique clinical profiles (Harris, Kimple et al. 2010). An understanding of the 

methylation profile of young, non-disease patients may therefore be useful for the 

development of biomarkers in groups not stratified by common risk factors. 

 

The collection of the dysplasia saliva samples was performed at a clinical visit if the clinician 

clinically deemed the lesion to be dysplastic.  Four of sixty individuals had a histological 

diagnosis of PVL but remained in the analysis as PVL is considered a high risk premalignant 

lesion and is of interest to this exploratory study on saliva as a surrogate for premalignant 

and malignant lesions.  Similarly, samples from four patients with HPV negative 

oropharyngeal squamous cell carcinoma were retained as part of the analysis. Although not 

strictly oral cancer, all four were base of tongue or soft palate and therefore could feasibly 

contribute cellular material to saliva.  As they have a non-HPV aetiology to the disease they 

could be considered both aetiologically and prognostically similar to the true OSCC group 

with nodal status being the most important prognostic factor (Rietbergen, Brakenhoff et al. 

2013), in common with OSCC .  
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5.7 Detectable methylation in saliva is associated with OSCC and high risk dysplastic 

disease 

The full clinicopathological data for each individual became available after the qMSP assays 

had been performed.  As mentioned earlier, in some cases the dysplasia saliva samples 

were collected at the time of a clinical diagnosis and in 5/60 cases the clinically dysplastic 

lesion was histologically found to be MISCC. As the total number of samples in each 

diagnosis group was, in some cases, small and the total number of ‘positive’ samples was 

modest, the results were binned to facilitate more useful statistical and clinically relevant 

analysis of the data. The normal cohort remained as such, the mild and moderate dysplasia 

were classed as low risk on the basis that these lesions are relatively less likely to transform 

into malignancy. This classification is informed by a longitudinal study within our research 

group on the malignant transformation of lesions from 91 OED patients which showed that 

mild and moderate OED had similar transformation rates and were less likely than severe 

dysplasia to transform (Ho, Risk et al. 2012). The PVL and severe dysplasia were classed as 

high risk lesions.  The MISCC and OSCC were collectively analysed as malignancy. 

Eight patients in the dysplasia cohort had a history of OSCC but there was no association 

between methylation and previous disease in this data set. A history of OSCC was not an 

exclusion factor in the OED group because these patients present a high risk group and 

present an area of interest to molecular biomarker research; particularly as previous 

surgery and radiotherapy can make clinical and histopathological assessment of these 

lesions difficult.   Rosin et al (Rosin, Lam et al. 2002) analysed 68 oral premalignant lesions 

for loss of heterozygosity from patients with previous oral cancer.  Thirty six of sixty eight 

lesions progressed to a second oral malignancy (SOM). They found a 26.3 fold increase in 

the risk of developing an SOM if 3p +/9p loss was detected in the lesion which was a better 

risk prediction than histological diagnosis. Ho et al (Ho, Field et al. 2013) analysed the 

clinical outcomes of a cohort of patients who had developed OSCC in an area of OED. They 

comment on the high risk nature of this group of patients noting that 76% of patients had a 

further event (defined as SOM, OED or recurrence) in 5 years. In their series 5/23 patients 

developed an SOM and 5/23 developed further OED. 
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5.8 Detection of DNA methylation in saliva appears to have limited sensitivity but good 

specificity in the detection of OSCC 

The potential advantages of saliva as a surrogate are clear from the work conducted in this 

study and the body of published literature; it is non-invasive therefore easy to collect with 

low risk of transmitting disease to healthcare professionals.  The ease is such that patients 

can collect their own saliva which lends itself to community based disease surveillance 

programmes.  It is a stable body fluid which yields sufficient DNA for downstream 

applications and requires minimal equipment to collect, store and process it.    

Current opinion is that the suitability of saliva as an oral cancer tumour surrogate relies on 

the ability to detect markers from a tumour origin. In this study the methylation rates of 

the panel of markers in saliva samples from the OSCC cohort were low when considered as 

singular markers: CCNA1 9/67 (13%), CYGB 10/67 (15%), P16 17/67 (25%), TMEFF2 11/67 

(16%) but other similar studies using qMSP on large normal cohorts have also reported 

similar methylation rates in saliva (Carvalho, Jeronimo et al. 2008, Rettori, De carvalho et al. 

2013). The frequency of methylation in disease saliva samples was improved when 

considered as a panel 29/67 (43%) which is expected as OSCC is a molecularly heterogenous 

disease. However, the methylation rates in saliva under-represented the frequency of 

methylation in the tumour tissue for three of the genes: tumour positive concordance for 

ADAMTS9: 11%, CCNA1: 45% TMEFF2: 33% and was comparable to other published data for 

P16: 70% and CYGB: 60%. The possible reasons for which have been discussed earlier in 

section 5.4 of this chapter.  Methylation of the gene panel in saliva appears to be specific as 

it was rarely detected (only 3/97 single marker P16) in the control cohort in this series. One 

of the strengths of this study is the relatively large control cohort n=97 as many comparable 

studies have used much smaller cohorts n= 5-30 (Rosas, Koch et al. 2001, Righini, De 

Fraipont et al. 2007, Nagata, Hamada et al. 2012, Ovchinnikov, Cooper et al. 2012) and the 

reported high levels of specificity in these studies may have been a result of using such 

small numbers.  It should be noted that sensitivity and specificity have not been extracted 

from our pilot data as this is generated from a training set of clinical samples and a separate 

validation set would be required to calculate these parameters.   

One of the strongest studies in the saliva methylation marker literature is presented by 

Carvalho and colleagues (Carvalho, Jeronimo et al. 2008) who analysed 21 genes using a 

candidate approach on salivary rinses and serum from a large cohort of mixed primary 

HNSCC patients (n=211) and matched controls (n=527) using qMSP assays. Targets that 

were methylated at high frequency in control samples were identified and eliminated by 
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comparison of primary HNSCC tissue and control salivary rinses and between HNSCC 

salivary samples and control salivary samples.  A reduced cohort was used for this stage due 

to limited DNA and ranged from 11-136 tumour tissue cases and 30-500 salivary controls 

therefore not every gene was tested on every sample. Thirteen genes (CCNA1, DAPK, DCC, 

MGMT, TIMP3, MINT31, P16, PGP9.5, AIM1, ESR, CCND2, MINT1 and CDH1) were 

differentially methylated between HNSCC and control samples and used to analyse a 

limited cohort of salivary HNSCC cases and controls.  Genes with an AUC >50 and a 

specificity >90% and sensitivity of at least 10% were selected for testing on the expanded 

cohort of case and control saliva. Of note two of the target genes in our data were included 

in their study; P16 had a low sensitivity of 4.5% but was included in the final analysis as it 

was 100% specific and CCNA1 had a sensitivity of 20% and specificity of 97%.  In keeping 

with our findings the salivary gene panels displayed high specificity but limited sensitivity 

with the best performing panel (MINT31,CCNA1,DAPK,DCC,P16) having a sensitivity of 34% 

and a specificity of 92%. Different gene combinations achieved higher specificity but 

reduced sensitivity (Carvalho, Jeronimo et al. 2008).  Another study achieved higher 

sensitivity in saliva samples using a panel of two markers. Ten genes (KIF1A, EDNRB, CD44, 

TERT, CDH4, NISCH, PAK3, VGF, MAL, FKBP4) initially identified via a candidate approach 

were evaluated for the presence of methylation in control saliva. EDNRB and KIF1A were 

selected for further analysis as they had the lowest levels of methylation in control saliva 

1/47 (2%) and 3/45 (6%).  EDNRB and KIF1A showed high tumour specificity despite 

methylation being present at low levels in greater than 80% of normal mucosal samples.  

Methylation of KIF1A was detected in 27/71 (38 %) of HNSCC saliva samples with a reported 

sensitivity of 37% and specificity of 98%. EDNRB methylation was present in 48/71 (68%) of 

the HNSCC saliva samples.  Sensitivity was improved to 77% and specificity maintained at 

93% when the genes were used in combination for the detection of HNSCC (Demokan, 

Chang et al. 2010). A large methylation array also identified EDNRB and KIF1A as genes with 

high sensitivity (68%, 77%) and specificity (100%, 92%) for the detection of OSCC using 

tissue samples but  the genes were not further evaluated in saliva samples (Guerrero-

Preston, Soudry et al. 2011). 

Sensitivity and specificity of greater than 90% for the detection of OSCC in salivary rinses 

has been reported with a panel of three genes ECAD, MGMT and TMEFF2 (Nagata, Hamada 

et al. 2012). Thirteen genes were identified by a candidate approach and analysed for 

differential methylation between OSCC and healthy saliva using MSP.  ROC analysis was 

used to determine the most diagnostically useful genes. They report a much higher 
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frequency of TMEFF2 29/34 (85%) in OSCC saliva than was found in our study 11/67 (16%) 

but similarly few in the healthy cohort 3/24 saliva samples. However, this study has a 

limited OSCC cohort n=34 and an unmatched small control group n=24.  It also calculates 

prediction efficiency, sensitivity and specificity data using a test set of samples. The 

reported sensitivity and specificity of this panel is not validated on a separate cohort of 

OSCC patients and may explain such optimistic results. Furthermore this study reports a 

gene sensitivity ranging from 24-94% for ECAD, MGMT, DAPK, P16 and TIMP3 whereas 

Carvalho and colleagues (Carvalho, Jeronimo et al. 2008) report modest sensitivity of 5-30% 

for these genes. This variance may be a result of differences in the detection techniques, 

sampling techniques or case/control mix.    

A concern raised from our data series is that detection of methylation in saliva lacks the 

requisite sensitivity for use as a clinical test because the presence of methylation in our 

study was associated with 43% (29/67) of the oral cancer group and 39% (7/18) of the high 

risk group which would potentially mean 57% of OSCC and 61% of high risk lesions would 

go undetected using this panel.  However, this is exploratory work and the assays proved 

specific and reproducible and with an expanded gene panel the sensitivity may be 

improved. The observed modest levels of methylation in saliva could be panel dependent.  

The majority of salivary methylation biomarker studies  in HNSCC have used the candidate 

approach for target gene selection (Rosas, Koch et al. 2001, Righini, De Fraipont et al. 2007, 

Carvalho, Jeronimo et al. 2008, Pattani, Zhang et al. 2010, Demokan, Chang et al. 2010, 

Nagata, Hamada et al. 2012). Similarly, the genes used in our data series were identified 

from the literature(Tokumaru, Yamashita et al. 2004, Maruya, Issa et al. 2004, Kulkarni, 

Saranath 2004, Kato, Hara et al. 2006) and previous work by our group using moderate 

numbers of tumour and adjacent normal tissue showing tumour specificity: TMEFF2: 72% 

(18/25) (personal communication Mark Reid), CYGB:  44% (35/80), CCNA1: 49% (38/78), 

P16: 28% (22/80) positive tumours (Shaw, Liloglou et al. 2006).   

In our study at least one of the panel of candidate genes (CCNA1, CYGB, P16, TMEFF2) was 

positive in 24/34 (71%) tumours which is similar to other studies (Righini, De Fraipont et al. 

2007) but is not high enough as a useful clinical biomarker. Shaw et al (Shaw, Hobkirk et al. 

2013) have recently published on the modest informativity (defined as in all or high 

percentage of cases) of three genes also used in our saliva study. In the series presented by 

Shaw 30/48 (63%) of tumours were positive for at least one gene using qMSP to detect a 

panel containing CDH1, P16, CCNA1 and TMEFF2  in HNSCC tissue (Shaw, Hobkirk et al. 
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2013). If we are assuming the positive cells in saliva are directly from tumour, until the 

problem of tissue heterogeneity of primary cancer tissue (Esteller 2007, Esteller 2008, 

Woolgar, Triantafyllou 2009) is satisfactorily resolved in epigenetic studies (Ku, Naidoo et 

al. 2011) it remains a potential barrier to progression in surrogate tissue research.  Loh et al 

(Loh, Liem et al. 2010) suggests better quality control is required for the purity of tumour 

tissue used in biomarker studies as the assessment of methylation is sensitive to cell purity. 

Using methylation array data on 98 gastric tumours Loh determined a tumour content of at 

least 70 % is required to achieve reliable sensitivity (Loh, Liem et al. 2010) thus studies that 

do not adhere to this level of quality control may identify markers of limited use at the 

discovery phase.   

Genome wide technologies are becoming more accessible and may provide the answer to 

identifying relevant tumour markers from heterogenous disease.  Two studies have used 

genome wide approaches to identify novel methylation markers for use in saliva. A high 

density promoter methylation platform which interrogates 27,578 CpG sites from 14,495 

protein coding gene promoters and 110 mRNA gene was used to identify hypermethylated 

genes on small cohorts of tissue (HNSCC n=4, leukoplakia n=4 and normal n=4). In a 

complex analysis the data was combined with publicly available methylation and gene 

expression data to identify 140 hypermethylated and downregulated genes from this 

discovery screen. Eight of one hundred and forty genes (EDNRB, HOXA9, GATA4, NID2, 

MCAM, KIF1A, DCC and CALCA) were chosen using multiple criteria which is not made 

explicit in the paper, to establish methylation levels in OSCC (n=24) and normal mucosal 

tissue (n=12)using qMSP assays.  Receiver operating characteristic (ROC) analyses were 

performed to establish those genes that were differentially methylated between these 

tissues; 4 genes were selected with an area under the curve (AUC) greater than 0.75 (KIF1A, 

HOXA9, NID2, EDNRB) and of these HOXA9 and NID2 had 100% specificity and sensitivity 

>70%. These two genes were tested in a separate cohort using HNSCC tissue (n=55) and 

non cancer tissue (n=37). Both genes had >80% sensitivity and >90% specificity individually 

and in combination greater than 90% However, when tested in saliva from OSCC (n=16) and 

non-cancer patients (n=19) the sensitivity and specificity of both genes decreased: HOXA9 

sensitivity was 75 % with a specificity of 53% and NID2 sensitivity was 87% with a specificity 

of 50%. In combination the sensitivity decreased to 50% but specificity improved to 90% 

(Guerrero-Preston, Soudry et al. 2011). The saliva data is limited by very small numbers of 

cases and controls.  A reduction in sensitivity is expected in saliva as there are a small 

number of methylated cells amongst vast numbers of normal cells.  However, the reduction 
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in specificity for the individual genes in saliva is unexpected in the context of a high 

specificity in the tissue data. This may suggest that cells other than mucosal, present in 

saliva and not tissue, are contributing a methylation signal. This may be explained by the 

observed phenomenon of compartment specific methylation whereby some markers 

exhibit significant methylation in normal control subjects but in only one compartment 

(Carvalho, Jeronimo et al. 2008). This implies that the discovery phase for potential salivary 

biomarkers using a genome wide approach should interrogate saliva samples in addition to 

tissue. 

Viet et al (Viet, Schmidt 2008) performed a proof of principle study using the Illumina 

Goldengate methylation array to interrogate 807 cancer associated genes in pre-operative 

OSCC and post-operative saliva samples with the aim of identifying highly methylated loci 

to produce a composite biomarker with diagnostic value. A limited cohort of OSCC patients 

(n=13) provided primary tumour tissue, pre-operative and post-operative whole saliva and 

ten healthy whole saliva samples provided a control on the array.  Genes that were 

methylated in both pre-operative saliva and oral cancer tissue were selected and genes 

methylated in control or post-operative saliva were excluded. Forty one gene loci from 34 

genes were identified using this method with sensitivity and specificity calculated for each 

locus. Nine gene panels of 4-10 genes were constructed and the sensitivity and specificity 

of each was calculated; this ranged from 62-77% and 83-100% respectively. The highest 

sensitivity was associated with the 6 gene panel:  GABRB3_E42_F, IL11_P11_R, INSR_P1063, 

NOTCH3_E403_F, NTRK3_E131_F and PXN_P308_F with a sensitivity of 77% and specificity 

87%. This sensitivity and specificity was not subsequently validated on a separate OSCC 

cohort so should be treated as preliminary data. However, these figures are an 

improvement on other published gene panels in saliva which achieved high specificity at 

the expense of sensitivity or vice versa using genes identified by a candidate approach in 

tumour tissue (Carvalho, Jeronimo et al. 2008) which is further support for the use of arrays 

in discovery of informative biomarkers in saliva.  Genes previously methylated in HNSCC 

were included on this array such as DAPK, MGMT, APC, P16, ESR and NOTCH3 but only the 

latter three were significantly methylated in this array. The author’s explanation is that the 

probe design on the array requires higher levels of methylation in target genes to hybridise 

to the probes and therefore selects more biologically relevant markers (Viet, Schmidt 

2008).  
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The selection of ADAMTS9 as a potential marker was generated from collaborative work 

(Veeramachaneni 2010) as discussed in section 4.1.1. Forty three % of the normal adjacent 

tissue was noted to be methylated above the 5% cut-off using quantitative pyrosequencing 

methylation assays however it was not frequently methylated in normal saliva or OSCC 

saliva as detected by qMSP.  The observed methylation in normal adjacent tissue could be 

due to the fact this tissue is not a true normal and could reflect molecular changes 

associated with field cancerisation.  Despite being present in 26% (9/34) of tumours in this 

series only 1/218 saliva samples (pre-operative sample) was positive for methylation of 

ADAMTS9 as detected by qMSP assays above the cut-off (0.5%) for this gene. This sample 

was positive for multiple genes in the panel.   Primary cancer tissue is heterogenous and it 

could be that the methylation (52%) detected in the un-microdissected tumour samples 

was from cells other than tumour tissue such as stromal, immune or vascular cells. 

Myopepithelial and stromal fibroblasts in intimate proximation to malignant tumours, 

which are likely to be included in resections, have been shown to have distinct epigenetic 

changes of their own (Hu, Yao et al. 2005).  A lack of presence in pre-operative saliva 

samples may be a result of the fact that these cells are not exfoliated in the numbers 

required to detect them in saliva.  Allelic imbalance at 3p14.2  has been associated with 

malignant transformation of premalignant lesions (Rosin, Cheng et al. 2000, Rosin, Lam et 

al. 2002, Tsui, Rosin et al. 2008) which may suggest ADAMTS9 has an earlier role in 

tumorigenesis, a possible reason why it was not detected in OSCC saliva and at relatively 

low numbers in the tumours (26%).  However, ADAMTS9 methylation was not detected in 

any of the dysplasia saliva samples in our dataset.  As such it was considered an 

uninformative marker and removed from the panel for further analysis of saliva.  

One of the difficulties of accurately comparing results from body fluid biomarker studies is 

the methodological differences, namely detection techniques and the use of mixed HNSCC 

disease cohorts. Earlier studies which have reported high rates of salivary markers such as 

P16 methylation (Rosas, Koch et al. 2001, Righini, De Fraipont et al. 2007) which are not 

supported in other studies (Carvalho, Jeronimo et al. 2008) or our data may be a result of 

using MSP which is a qualitative technique prone to false positives especially if high cycle 

numbers are used. Often these studies have not clearly stated a threshold to define a 

positive result and the presence of methylation at any level defines a positive.  We have 

maintained stringent thresholds to define a positive sample for the qMSP assays used in 

this study and this may be a reason why the detection of methylation in saliva in our 

dataset is lower than some other published works. It may be that we have achieved 
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specificity at the expense of sensitivity. However, this technique continues to improve and 

evolve and is likely to develop more sensitive assays.   

The modest levels of detected methylation in saliva compared to tumour tissue in our study 

could also be a result of the limitations of saliva as a surrogate.  It is a biological fluid with 

predominantly normal cells. There is an estimated 10,000 oral epithelial cells per ml of 

saliva with an estimated turnover of 2.7 hours (Dawes 2003) with potentially only 2-3 

exfoliated from the tumour for every 100 cells found in saliva (Boyle, Mao et al. 1994). This 

requires very sensitive methods of detection which qMSP does provide. However, ‘false-

negatives’ are a risk with this degree of dilution from normal cells.  

5.9 Common risk factors for OSCC were not identified as confounding variables for 

methylation of this target gene panel 

 

Age 

Cancer is associated with both methylation and ageing (Fraga, Agrelo et al. 2007). There is 

some evidence that methylation in normal tissues increases with age. RARB2, RASSF1A and 

GSTP1 have been shown to be hypermethylated in an age related manner in normal 

prostate tissue (Kwabi-Addo, Chung et al. 2007). The authors of a methylation array study 

performed on mixed normal tissues (n=139) also observed an age-related increase in 

methylation in certain CpG loci within CpG islands of normal tissues. ESR1, GSTP1, RARB 

and RASSF1 were amongst the genes observed to have increased methylation associated 

with aging (Christensen, Houseman et al. 2009). It is worthy of note that these changes 

were not observed in the normal head and neck tissues (n=11) included in the study.  

 It would be important, in selecting a gene panel for clinical use, that the methylation of the 

genes is not simply associated with ageing.  The skewed demographic data (44/97 in the  

normal cohort under 40) in this study limits the usefulness of a statistical comparison of 

simply age versus methylated samples.  In analysing this data for age as a cofounder, it is 

also important to acknowledge that the frequency of cancer increases with age and the age 

data has therefore been stratified according to diagnosis.  If age alone were associated with 

methylation of this panel of genes one would expect there to be significantly higher 

number of positive samples in the older individuals in the normal cohort. This is not the 

case which has been shown with only 3/97 individuals having a positive sample in the P16 

gene assay.  When stratified into the diagnostic categories of low-risk, high risk and 
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malignancy there is no statistical difference between the presence of methylation and 

increasing age for the disease groups. It is therefore reasonable to conclude that age does 

not appear to be a confounding factor for the detection of methylation for this panel of 

genes . This is supported by other authors who also did not find an age-related effect with a 

gene panel inclusive of P16 and CCNA1 (Carvalho, Jeronimo et al. 2008).  

Smoking and methylation 

There is conflicting data in the literature regarding the association between P16 

methylation and smoking. Reports of P16 methylation in up to 50% of normal adjacent 

tissue in HNSCC studies have led authors to hypothesise a smoking aetiology for this 

aberrant methylation (Kulkarni, Saranath 2004). Promoter methylation of P16 has also been 

observed in up to 10% of normal oral mucosa samples from smokers (von Zeidler, Miracca 

et al. 2004, Ruesga, Acha-Sagredo et al. 2007).  However, a study from our research group 

using a more accurate and quantitative technique (pyrosequencing methylation assays) on 

a cohort of HNSCC tumours detected methylated P16 in 1/26 (4%) (Shaw, Liloglou et al. 

2006) in normal adjacent mucosa samples.  In this cohort of patients 57% were heavy 

smokers. The reported high P16 promoter methylation rates in normal tissue are from 

studies which utilised MSP which is vulnerable to false positive results from mis-priming 

(Shaw, Akufo-Tetteh et al. 2006). A recent large study of promoter methylation in 368 head 

and neck cancer cases using qMSP observed that P16 methylation was negatively 

associated with tobacco use when subject to a multivariate analysis (Roh, Wang et al. 

2013).   In saliva samples an association with P16 methylation and smoking has also been 

observed using MSP (Ovchinnikov, Cooper et al. 2012) but a large well designed study 

analysing saliva from up to 527 controls and 211 HNSCC cases with qMSP was unable to 

establish smoking as a confounding variable for P16 methylation (Carvalho, Jeronimo et al. 

2008). In the current study there was no association between P16 promoter methylation 

detected in saliva and smoking (Chi-square p=0.51).  Three of ninety seven individuals in the 

control cohort were positive for P16 methylation all of whom were smokers but do not to 

our knowledge have malignancy which is a potential confounder. It is difficult to draw any 

firm conclusions whether smoking is a contributory factor in P16 methylation from such a 

small number of positives in a training set of samples without longitudinal follow-up, as the 

aberrant methylation could be heralding a malignancy. There was no observed association 

between smoking and methylation of any of the other target genes in this study (Appendix 

9). To answer the question of whether P16 methylation is smoking related, further 
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investigation of P16 methylation in healthy individuals with a history of large numbers of 

pack years and a non-smoking cohort would be required. 

 

5.10 Detection of methylated DNA in saliva samples was not associated with staging or 

prognosis of OSCC 

 

Stage 

In this study there was no observed association between methylation in pre-operative 

saliva and any of the staging pathology criteria.  One might expect larger tumours to shed 

more cells and as such as the pT increased then an increase in methylation.  Such a pattern 

was not observed in this dataset but could be due to the small numbers of positive 

samples. Although not statistically significant, a trend of increasing number of methylated 

genes with increase in disease stage was noted. This may be due to more pathways being 

involved as the tumour matures. It has been observed that the number of chromosomal 

aberrations increases with T2, T3 and T4 stage OSCC tumours displaying more aberrations 

than T1 tumours. Advanced stage tumours had additional deletions and gains of 

chromosomal regions not seen in earlier stage tumours (Okafuji, Ita et al. 2000). The 

numbers of patients in this study are too small to comment on particular methylation 

patterns at each stage. 

One of the limitations of this and other published work on saliva and HNSCC tumour tissue 

is the use of mixed stage tumours at the discovery phase of markers. In this study of 62 

tumours a predominance of stage 2 and 4 tumours was noted.  However, this is often 

unavoidable because not many T1 tumours get tissue banked and T3 tumours are relatively 

rare because tumours of >4cm often invade adjacent structures. In searching for genetic 

and epigenetic aberration in HNSCC disease early studies have often used small, mixed 

cohorts of HNSCC tissue at various stages of the disease for the discovery phase of markers. 

Also a lot of early studies have been limited to evaluating targeted areas of genes rather 

than the entire genome and more relevant markers may have been missed (Patmore, 

Cawkwell et al. 2005). If one of the roles of salivary biomarkers would be to detect early 

stage disease it is wasted effort investigating genes that are only methylated in advanced 

stage disease therefore better characterisation of the methylome of tumours at different 

stages of the disease is required.  Array studies have already shown that different DNA 

methylation profiles are associated with tobacco and alcohol exposure, early and advanced 
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stage disease (Marsit, Christensen et al. 2009) and tumour aggression as measured by ECS 

and recurrence (Jithesh, Risk et al. 2013). As genome wide techniques become cheaper and 

more widely available this problem could be more easily addressed.  

 Prognosis 

In the OSCC cohort studied in this thesis, the time from primary surgery to disease 

recurrence ranged from 3 months to 34 months with a median of 7 months. Seventy eight 

percent recurred within 12 months and 89% within 24 months. This recurrence data is 

comparable to an earlier Liverpool cohort (Kissun, Magennis et al. 2006) and other studies 

(Hicks Jr., North Jr. et al. 1998, Koo, Lim et al. 2006). For the purpose of statistical analysis, 

local and loco-regional recurrence, were binned together as recurrence. Authors of a 

previous study have suggested the detection of methylation in pre-operative saliva is 

associated with more aggressive disease as measured by disease recurrence and poorer 

survival (Carvalho, Henrique et al. 2011).  In our data series, 22 patients had a documented 

recurrence and 14 died of disease related causes. We were unable to establish an 

association between prognosis and methylation in pre-operative saliva; a finding which is 

supported by another similar study (Righini, De Fraipont et al. 2007).  

The post-operative data in this study was limited to 12 patients with a single sample at 4 

weeks post surgery with the aim of detecting residual disease.  There was no observed 

pattern of methylation for the studied panel of genes associated with recurrence or disease 

specific survival in our data set.  Considering the frequency of methylation of this panel of 

genes in saliva the post-operative cohort is too small with too few post-operative samples 

to identify potential methylation markers for post-operative OSCC disease surveillance. 

Samples would need to be collected over at least 24 months as most recurrences occur 

within this time frame and samples would need to be collected at regular intervals to 

demonstrate any disease relevant changes in the methylation patterns of saliva.  This was 

originally planned as part of the experimental design but was not possible within the 

confines of the clinical setting as saliva collection was not a priority at the clinic and 

achieving reliable collection at fixed intervals for individuals in the study did not occur. 

Implementing the collection of regular saliva samples over large numbers of patients over 

extended periods of time to yield relevant information can be difficult. In the two published 

studies detailing post-operative longitudinal saliva sampling it is noted that 16-30% of the 

patients are unable for follow-up sampling for various reasons (Righini, De Fraipont et al. 

2007, Rettori, De carvalho et al. 2013) which may impact on the utility of the data. 
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There are very few studies of prognostic salivary methylation markers for OSCC and the 

existing data is limited by lack of longitudinal post-operative sampling. Carvalho et al 

(Carvalho, Henrique et al. 2011) analysed pre-operative saliva samples from 61 patients 

with primary HNSCC for the presence of methylation in a panel of 7 genes  (DAPK, DCC, 

MINT31, TIMP3, P16, MGMT, CCNA1) using qMSP. After correlation with prospectively 

collected clinical data and multivariate statistical analysis they established that methylation 

of this panel of genes was an independent prognostic factor for local recurrence (Hazard 

ratio 12.2, 95% CI: 1.8-80) and overall survival (Hazard ratio 2.8, 95% CI: 1.2-6.5). Local 

disease control rate at 5 years varied from 61% in cases with pre-operative saliva 

methylation to 92% for patients without methylation detectable in saliva.  Survival at 5 

years varied from 37% with methylated pre-operative saliva to 70% in cases without 

methylation in saliva.  In this pre-operative cohort 38/61 (62%) of patients had received 

PORT and 22/61 patients experienced recurrent disease. Eighty two percent of recurrent 

disease was diagnosed before 24 months after initial treatment with a median of 15.7 

months. The authors hypothesise that aggressive tumours may have increased rates of 

cellular shedding and those tumours with higher epigenetic burdens would be more 

detectable in saliva and may be more aggressive. They also suggest clonal expansion of 

premalignant cells extends beyond the primary tumour and are shed into saliva which both 

increases detectability in saliva and also predisposes to recurrent disease (Carvalho, 

Henrique et al. 2011). However, this prognostic association was not found in a follow-up 

validation study of this panel of genes performed by the same group using a similar 

experimental design on a larger cohort (n=197). In this study population 60/197 patients 

died with 34/60 reported as disease related deaths. Thirty six of one hundred and ninety 

seven (18%) of patients had recurrent disease which is a lower frequency than the previous 

study.  Methylation of TIMP3 in pre-operative saliva had an independent association with 

local recurrence free survival (Hazard ratio 2.5, 95% CI: 1.10-5.68) but none of the other 

markers were significantly associated with survival outcomes (Sun, Zaboli et al. 2012).   

Two studies have utilised methylation detection in post-operative saliva for prognostication 

in HNSCC.  The earliest study was performed by Righini et al (Righini, De Fraipont et al. 

2007) who evaluated the prognostic significance of methylation in post-operative saliva in a 

French cohort of HNSCC patients.  Initially, they identified a panel of 6 tumour specific 

genes (TIMP3, ECAD, P16, MGMT, DAPK, RASSF1) on a pre-operative tumour (n=90) and 

saliva cohort (n=60).  Twenty two of sixty patients had post-operative saliva sampling 

performed at the first staging appointment which ranged from 8-20 months after diagnosis. 
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Saliva was obtained at 2-6 monthly intervals from this point. 6 patients had recurrent 

disease and 5/6 had methylation of the gene panel detected in saliva prior to recurrence 

detected by clinical examination and PET scanning.  The median follow-up time was 25 

months (19-31 months) which according to other published data is sufficient time for 80 % 

of recurrences to have occurred (Kissun, Magennis et al. 2006, Carvalho, Henrique et al. 

2011). The recurrence cohort is limited in numbers but the data suggests salivary 

methylation markers may have a role in prognostication in HNSCC.  The limitations of this 

study are that 85/90 tumours were verrucous carcinoma and the findings may not translate 

to squamous cell pathology. Additionally the first post-operative sample was taken at a 

median time of 14 months after treatment and 14 patients had recurred and 3 died before 

this time so were excluded from the study and there was no early post-operative saliva 

sampling to detect residual disease.  Eleven patients were excluded because there was no 

methylation detected in the tumour or pre-operative saliva.   Lack of methylation data 

earlier in the post-operative period would be useful to determine the role of methylation in 

saliva in prognostication.  

Using qMSP, Rettori et al (Rettori, De carvalho et al. 2013) identified 5 genes (CCNA1, DAPK, 

DCC, MGMT, TIMP3)  from a larger panel (24 genes) that were HNSCC tumour specific using 

pre-operative HNSCC saliva (n=146) and control saliva (n=60). Eighty of one hundred and 

forty six (55%) pre-treatment saliva samples had detectable methylation of at least one of 

these five genes. This panel was used to analyse post-treatment samples which were 

obtained at 7-15 days after treatment (n=142) and later at 6/12 (n=105) after treatment 

from HNSCC patients who had received various modalities of treatment (primary surgery 

17% cases, surgery and PORT 39%, chemoradiotherapy 24%, radiotherapy 10% and other 

10%). As would be expected the number of post treatment cases positive for methylation 

decreased in the saliva obtained immediately after treatment for all the genes except DCC. 

There was no association found between methylation in pre-treatment or post-treatment 

saliva of any of the five genes and overall survival or local-recurrence free survival. 

However, detection of TIMP3 methylation in saliva obtained at 6/12 post treatment was an 

independent prognostic factor for local disease control rate at 3 years; 82% unmethylated 

versus 52% methylated p=0.008. After multivariate analyses TIMP3 methylation remained 

an independent prognostic factor for local recurrence (Hazard ratio =2.66, 95% CI: 1.1-6.5 

p=0.025). TIMP3 methylation detected in saliva has been associated with prognosis in 

HNSCC across three studies however, each study has limited numbers and it would need to 

be validated on a separate larger cohort with more frequent post-operative sampling. 
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5.11 Lack of longitudinal data precluded comment on the usefulness of saliva for 

the surveillance of premalignant lesions 

An objective of this study was to establish if methylation of this panel of genes in the saliva 

of patients with premalignant disease predicted for malignant change.  This study 

demonstrated a significant difference (Fisher’s exact p=0.03) in the observed methylation 

frequency of the gene panel in saliva from mild and moderate dysplasia patients 4/36 (11%) 

and saliva from high risk premalignant lesions 7/18 (39%).  This may imply a role for saliva 

methylation markers in disease surveillance but longitudinal data would be required to 

confirm this.  If we are to assume that methylation has an aetiologically linked association 

to malignancy and not merely a resulting factor then we would expect to see methylation 

become present as a lesion progressed.  The two case studies presented in the results 

section 4.6.3.2 demonstrate this theory.  Of course it is as yet an unknown at what stage 

methylation would appear in relation to the progression of the disease.  The clinical 

samples were not available in large enough numbers in the entire dysplasia cohort to 

establish this pattern.  The collection of saliva was not a priority in the dysplasia clinical 

setting and samples were collected at variable intervals in each patient’s clinical journey.  

Ideally the collections would be at regular intervals over a time period from first diagnosis 

until at least the mean time period to malignant transformation of 4.3 (range 0.5-16years) 

(Mehanna, Rattay et al. 2009) had elapsed.   This would require a research infrastructure 

within the clinic to acquire sufficient data which has cost implications and is beyond the 

scope of an MD project.  It was therefore reasonable in the first instance to perform a pilot 

study on the available samples.  In our study the saliva samples were not always collected 

at the first clinical appointment which would present a limitation only if the lesion were 

excised prior to saliva collection.  In view of this the diagnostic group they are assigned to in 

this study is according to the histological diagnosis they had prior to the first saliva sample 

and not initial diagnosis.  Due to the variable nature of the saliva collection some of the 

saliva samples were obtained 16-21months before the lesion progressed with no further 

sampling. Of course the temporal relationship between onset of methylation and disease is 

yet to be answered.  This limits the interpretation of the methylation result in the context 

of malignant transformation as the saliva sample may be negative because the epigenetic 

change had not taken place at the point of collection. Authors of a review of dysplasia 

literature proposed that lack of good quality longitudinal data in large numbers was one of 

the factors hindering the progression and clinical application of biomarker research in OED 
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and was likely a combination of small numbers treated in individual centres and difficulty 

accessing complete follow-up data (Smith, Rattay et al. 2009). Meaningful data will likely be 

generated by large multi-centre studies. 

 6. Limitations of this study 
Accepting that this is a pilot study, several limitations were noted during the lifetime of the 

study.  The demographic profile of the normal control cohort was not as closely matched to 

the OSCC cohort as was anticipated in the design of the study.  This was largely a result of 

the type of clinic initially selected for recruitment of the normal cohort.   The large number 

of younger individuals (under 40 year old) and those with lesser or no smoking history in 

this cohort weakened the statistical comparison of confounding variables between it and 

the disease group.   

A second limitation was a lack of availability of serial samples on post-operative and 

dysplasia patients. There was an insufficiently robust plan for sequential saliva collections 

and it became clear that saliva collection was not a priority for clinicians in a busy clinical 

environment. However, a lack of a sufficient number of chronological samples precluded 

any useful conclusions to be drawn on the role of salivary markers in predicting recurrence 

or prognosis in disease surveillance.  In addition to this the follow-up period for the 

dysplasia cohort was insufficient in all samples to reliably detect adequate numbers of 

transforming lesions. As discussed in the literature a period of at least 5 years would be 

required and a larger number of patients would need to be recruited to the study.     

At the onset of this study a power calculation was performed for the normal and OSCC 

cohort but did not include the dysplasia cohort, this omission presents a limitation and 

would need to be addressed in future work. A further limitation of this study may be a 

result of selecting the panel of target markers via a candidate approach. Following analysis 

of the results it was felt that the chosen panel of markers was insufficiently informative. 

The candidate approach has been criticised for non-replication of results and limitations on 

identifying all possible causative genes with the ‘hypothesis-driven’ approach less likely to 

yield results than the genome wide approaches (Tabor, Risch et al. 2002). At the time of this 

study design resource limitations restricted the use of genome wide applications but this is 

something that could be considered for future studies. 
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7. Conclusion 
After consideration of the evidence produced in this study the author does not think the 

detection of this panel of biomarkers in saliva is a good enough surrogate to replace the 

gold standard of biopsy for diagnosis.  However, this is pilot data and the fact that the 

detection of methylation in saliva was able to discriminate between normal/low risk 

disease and high risk/malignant disease (Chi square p=0.001) and low risk from high risk 

premalignant lesions (Fisher’s exact p=0.03) suggests saliva is not entirely without merit as 

a surrogate tissue. With further work, inclusive of new biomarkers, it may represent a 

possible adjunct to clinical examination and biopsy for disease surveillance in well-defined 

disease cohorts.   

8.  Further studies 
Appropriately resourced research could establish if the observed lack of sensitivity in saliva 

in this pilot data is a result of the limitations of the current gene panel or inherent 

limitations of saliva as a surrogate. The long term aim would be to identify predictive 

methylation biomarkers that can be introduced into a trial surveillance of premalignant 

lesions. 

In the current study the panel of studied methylation markers appears to be specific for the 

detection of oral cancer but has limited sensitivity which was also the observation from a 

large case-control study of methylation markers in saliva from HNSCC patients (Carvalho, 

Jeronimo et al. 2008). The majority of saliva methylation marker literature is based on the 

candidate gene approach for panel selection which carries the risk of missing more relevant 

markers. A methylation array study of saliva identified a gene panel with improved 

sensitivity and specificity using saliva but this panel is unvalidated (Viet, Schmidt 2008).  

Another array study identified a panel of genes with high sensitivity and specificity in OSCC 

tumour tissue but selected only two genes to analyse in saliva; both had limited specificity 

(Guerrero-Preston, Soudry et al. 2011).  

 

In future discovery studies there is a need to focus on markers with high specificity to avoid 

additional markers degrading the specificity of the test (Carvalho, Jeronimo et al. 2008). The 

framework for this proposed project is based on a study on methylation biomarkers in 

bronchial washings for the detection of lung cancer which had a sensitivity of 82% and 

specificity of 91% (Nikolaidis, Raji et al. 2012). I propose a genome wide approach for the 
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discovery phase using next generation bisulphite sequencing to identify markers of interest 

in early stage OSCC, OED tissue from lesions known to undergo malignant transformation 

and normal tissue. Bioinformatic analysis would assist the identification of 20-30 genes with 

the highest differential methylation between the disease groups and normal tissue.  These 

markers would be validated on an independent cohort of early stage OSCC, OED and 

normal tissue using pyrosequencing methylation assays to determine those markers with 

high methylation rates in the OSCC and/or OED tissue and not in the normal tissue. This 

data would also be used to power the saliva sample study. qMSP assays would be designed 

for the chosen panel of genes. These genes would be analysed in a training set of saliva 

samples from a retrospectively collected cohort of demographic and risk factor matched 

healthy controls with 5 year follow-up data; an OED cohort with 5 year follow-up data and 

OSCC cohort with similar follow-up. This stage allows us to select the gene panel and 

remove markers with low diagnostic potential.  The selected targets will be analysed in a 

validation set of saliva samples from a different cohort of controls, OED and OSCC patients 

with known outcomes and 5 year follow-up.  Statistical analysis would identify the panel 

with adequate sensitivity and specificity for a clinical study. If satisfactory markers were 

identified these would be tested in a prospective clinical study. This would be designed to 

develop predictive biomarkers in OED as there is evidence that methylation in OED lesions 

is predictive of malignancy (Hall, Shaw et al. 2008, Cao, Zhou et al. 2009). The current 

clinical and histopathological methods of predicting the lesions that will transform have 

limitations (Warnakulasuriya S, Reibel J et al. 2008). A recent study has shown that patients 

under long-term specialist review in a tertiary referral dysplasia clinic who developed 

malignancy were all detected at stage 1 disease and had very good disease-specific survival 

as a result (Ho, Field et al. 2013). However, in that study the transformation rate was 25% 

which is relatively high compared to other published data (Mehanna, Rattay et al. 2009) but 

still means that 75% of patients may not need long-term, expensively delivered clinical 

surveillance. If a biomarker test detectable in saliva could be developed that could reliably 

predict those at risk of transformation, these patients could be stratified before they reach 

a tertiary level clinic.  It is feasible that disease monitoring could be provided in the 

community. 

In this current study we have already established that saliva collected from the proposed 

target populations using the OrageneTM vial outperforms mouthwash and yields sufficient 

DNA for use in multiple qMSP assays. The OrageneTM vial is a one stage system that allows 

storage at room temperature without significant degradation of DNA (Nunes, Oliveira et al. 
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2012) which makes it an attractive sampling method in the clinical environment.  Data from 

the preclinical phase of the gene panel selection would be used to power the prospective 

clinical study of predictive biomarkers in histologically confirmed OED patients. Longitudinal 

saliva sampling would be required to determine if the methylation markers were predictive 

of a malignant event. Based on a meta-analysis of the OED literature there is a 12% 

(Mehanna, Rattay et al. 2009) methylation transformation rate and mean time to 

transformation is 4.3 years therefore OED saliva samples would need to be acquired from 

multiple centre oral medicine/maxillofacial surgery departments  in order to generate 

enough data. This means a robust infrastructure would have to be in place to identify 

appropriate patients, standardise sample collection and storage, the acquisition of 

prospective clinical data and transport of the samples to the designated laboratory to 

perform the qMSP assays.  Furthermore there would be large amounts of data that would 

have to be catalogued and analysed. All of which have considerable resource implications 

and to feasibly complete such a study, NIHR portfolio adoption would be required. 
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Appendices 

Appendix 1 

A1.1 Ethics confirmation  

Liverpool Paediatric Research Ethics Committee 
Bishop Goss Complex 

Victoria Building 
Rose Place 

Liverpool 
L3 3AN 

 
Telephone: 0151 330 2071  

Facsimile: 0151 330 2075 

05 August 2008 
 
Dr Anne Field 
Honorary Senior Lecturer 
University of Liverpool 
School of Dental Sciences 
Liverpool University Dental Hospital 
Pembroke Place, Liverpool 
L3 5PS 
 

Dear Dr Field 

Full title of study: Cancer biomarkers in saliva: establishing a control group 

REC reference number: 08/H1002/42 

Thank you for your letter of 04 August 2008, responding to the Committee’s request for 
further information on the above research and submitting revised documentation, subject 
to the conditions specified below. 

The further information has been considered on behalf of the Committee by the Chair.  

Confirmation of ethical opinion 

On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the 
above research on the basis described in the application form, protocol and supporting 
documentation as revised. 

Ethical review of research sites 

The Committee has designated this study as exempt from site-specific assessment (SSA.  
There is no requirement for [other] Local Research Ethics Committees to be informed or for 
site-specific assessment to be carried out at each site. 

Approved documents 

The final list of documents reviewed and approved by the Committee is as follows: 
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Document    Version    Date      

Application    24 April 2008    

Application  5.6  21 April 2008    

Investigator CV    01 January 2008    

Protocol  2  20 July 2008    

Protocol  1  01 January 2008    

Covering Letter         

Letter from Sponsor    29 April 2008    

Questionnaire  1  20 July 2008    

Participant Information Sheet  2  02 June 2008    

Participant Information Sheet  1  01 January 2008    

Participant Consent Form  1  01 January 2008    

Participant Consent Form  2  20 July 2008    

Response to Request for Further Information    04 August 2008    

C.V. for Supervisor     03 September 2007    

Peer Review    30 June 2008    

 

Statement of compliance 

The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees (July 2001) and complies fully with the Standard Operating 
Procedures for Research Ethics Committees in the UK. 

After ethical review 

Now that you have completed the application process please visit the National Research 
Ethics Website > After Review  

You are invited to give your view of the service that you have received from the National 
Research Ethics Service and the application procedure.  If you wish to make your views 
known please use the feedback form available on the website. 

The attached document “After ethical review – guidance for researchers” gives detailed 
guidance on reporting requirements for studies with a favourable opinion, including: 

 Notifying substantial amendments 

 Progress and safety reports 

 Notifying the end of the study 
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The NRES website also provides guidance on these topics, which is updated in the light of 
changes in reporting requirements or procedures. 

We would also like to inform you that we consult regularly with stakeholders to improve 
our service. If you would like to join our Reference Group please email 
referencegroup@nres.npsa.nhs.uk. 

 

With the Committee’s best wishes for the success of this project 

Yours sincerely 

Mrs Jean Harkin 

Chair 

Email: adam.lewis@liverpoolpct.nhs.uk 

 

 

 

 

 

 

 

 

 

 

 

08/H1002/42 Please quote this number on all correspondence 

Enclosures: “After ethical review – guidance for researchers”  

Copy to: Mr Tony Grayson 

R andD Department 

Royal Liverpool University Hospital 

mailto:referencegroup@nres.npsa.nhs.uk
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Educational Supervisors 
Janet M Risk 

Richard J Shaw 
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Thank you for reading this information leaflet.   

You are being invited to take part in a research study that is investigating saliva 
collection as a means of screening for oral disease. 

 

Background Information and purpose 

The UK has seen a recent increase of cases of oral cancer.  It is generally accepted that 

smoking and excess drinking contribute to the cause of oral cancer, which occurs by the 

gradual build up of genetic changes in the cells that make up the lining of the mouth. It is 

known that late diagnosis can be a barrier to treatment and that early cancers are more 

likely to be cured and require less debilitating treatments.  However, to date there is no 

accepted method of reliably detecting these changes or of identifying those people at 

risk of developing them before oral cancer has occurred.   

We are researching how much genetic information we can obtain from the non-invasive 

methods of saliva and oral swab collection, with the future aim of testing these methods 

as potential screening tests for oral cancer in the population.  In order to move towards 

this goal, we need normal saliva samples to work with (i.e. saliva from people who do 

not have oral cancer).  

It is important to understand that this work is experimental and does not aim to 

predict your risks of oral cancer. 

   
Do I have to take part? 

No, it is entirely up to you to decide whether or not you wish to partake. If you do, you 
will be given this sheet to keep and a consent form to sign. 

What will happen if I take part? 
If you agree to participate, we would like you to give us a sample of your saliva, which you 

will deposit in a small plastic pot, and an oral swab (taken by the researcher) before your 

dental appointment.  When we receive the samples we will use them to obtain genetic 

material.  The genetic material from the saliva and the oral swab will be used for research.  

We will only use these samples for this purpose.  You will not be required to attend for 

any additional appointments.  We are not attempting to find a diagnosis for you, and your 

dental treatment will be no different if you agree to participate. We will also require you 

to answer a few questions about your smoking and drinking habits and your oral health. 

What are the benefits / risks? 

The study will not benefit you in any way, but may help with diagnosis and treatment of 

future patients.  If you decide to give a sample you will be provided with privacy in a room 

when producing your sample into the pot. 
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What if there is a problem? 

The collection of these samples are non invasive and unlikely to cause you harm.  If you 

wish to complain about any aspect of the way you have been approached or treated 

during the course of this study, the National Health Service complaints mechanisms will be 

available to you. 

Will my taking part in the research be kept confidential? 

All the samples and information collected from you will be completely anonymised.  The 

researchers will not be able to identify you from your sample once it has been collected.  

Your sample will have a unique code and it will be stored on a secure database but your 

name and date of birth will not be recorded or kept with the sample. 

What will happen to the samples? 

If you agree to donate samples to us, the project co-ordinators will be responsible for 

looking after them.  You must understand that if eventually this research leads to any new 

diagnostic test you will not benefit financially. 

The research we are carrying out is very new and changing all the time, so we will store 

some of the genetic material in the Royal Liverpool University Hospital tissue bank for use 

in future research projects.  We may wish to share some of the samples or some of the 

information with other researchers who are working with us.  If we do, the samples are 

anonymised and therefore it is impossible for us to share your personal information. 

 

It may be beneficial, in the future, for us to work with a medical research company to 

develop new medical tests or treatments.  We may wish to share some of the samples or 

some of the information with other researchers working for such a company.  If we do so, 

the samples are anonymised and none of your personal information is available.  Any 

additional studies will be approved by the relevant ethics committees. 

What we will do with the information about your DNA: 

We are asking you to give samples for genetic analysis only so that we can look at which 

genetic markers are present in normal saliva.  We do not know the answer to this question 

yet, so we will not be able to tell you the results of what we find.  We are not using your 

DNA sample to give you a ‘genetic test’ that will give you a diagnosis or predict your risk of 

oral disease, but we hope to use it to make such testing possible in the future. 

We will not use any DNA sample given to this project for any purpose other than research. 

What will happen to the results of the research study? 

The results will be published in scientific journals and also presented at scientific meetings 

and any results published will not relate to individuals or mention any names. Once the 

research is completed the results of the study can be found at   the website 
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www.headandneckcancer.co.uk. Individual test results will not be available as the samples 

collected will be anonymised.  

Who is organising and funding the research? 
The University of Liverpool, School of Dental Sciences. 
 
Who has reviewed the study? 
This study has been given a favourable ethical approval by Liverpool Research Ethics 
Committee. 
 
 
 
 
 
Contact Details for further information 

 
Miss April Matthews,      
Mr Richard Shaw  

School of Dental Sciences 
Tel: 0151706 5275  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.headandneckcancer.co.uk/
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A1.3 Consent Form        Date:___/___/2008____ 

 

Cancer biomarkers in saliva: establishing a control group 

PLEASE READ CAREFULLY AND INITIAL EACH SECTION 

I have read the attached information sheet on the use of samples YES/NO…………              
for the above project and have been given a copy to keep.  I  
have had the opportunity to ask questions about the project    
and understand why the research is being done and any  
foreseeable risks involved. 
 
I understand how the saliva samples and swabs will be collected  YES/NO ………… 
and that giving samples for this project is voluntary. 
    
I agree to give saliva samples for this project    YES/NO…………  

I agree to give oral swab samples for this project   YES/NO…………  

I agree that the sample and the information I give will be looked  YES/NO………….  
after and stored at the University of Liverpool and maybe used 
for future molecular projects on oral cancer with ethical    
committee approval. 
 
I understand that some of these projects may be carried out by   YES/NO………….  
researchers other than the current team, both within the University  
of Liverpool and elsewhere. 
       
I understand that some of these projects may be carried out by   YES/NO………….  
researchers working for commercial organisations. 
    
I confirm that I understand the purpose of this research study. I am YES/NO …………. 
aware that donation of samples is voluntary, and that my dental care    
will not be affected. 
............................  ……………………  ……………….. 

Patient name    Date   Signature 

……………………………  ……………………  ……………….. 

Consented by (Block Capitals)  Date   Signature 
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A1.4 Questionnaire     

Cancer biomarkers in saliva: establishing a control group 

Sample No ___________ 

Age                  ____________ years 

Gender  Male  Female 

Smoker  Yes  No 

Number cigarettes smoked per day _____________ 

Number of years you have smoked 

 

Alcohol  Yes  No 

Number of units per week         ______________ 

Reference guide: 

1 pint of lager                2-3 units 
1 small glass wine  1 unit 
1 single spirit   1 unit 
 

Have you ever been treated for oral cancer? 

Yes   No 

Have you had any other type of cancer? 

Yes   No 

If answered ‘Yes’ which type of cancer have you had? ______________ 
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Appendix 2: Commonly used reagents 
 

Reagent Chemical composition 

1 X TE 10mM Tris-HCl, 1mM EDTA pH 7.5  
 

Phosphate buffered saline  NaCl 137mM 2.7mM K2HP04 10mM KH2PO4 
2mM PH 7.4  
Sigma http://www.sigmaaldrich.com/ P4417 

2xPK buffer 100mM Tris-HCl,2mM EDTA, 1% Tween 20  
 

 

Table A2.1: Chemical composition of commonly used reagents 
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Appendix 3: Target gene panel  primer/probe sequences 
 

gttttcggtaggcggcg gcgttgtttagtcgagcgtagac gggattttcgtagcgagattttagcgatttttaaagttaa 

aagttggcggcgggcgtcgggtttcgcgcgttttttacggtcgttgtttcgcgtcgtcg tcgtagttaaggagggtagga 

ADAMTS9 

gatttttgggcgtttaggtttttgagggtttaacgggcgacggttttttagttttagttgtgcgttttcgttcgggcgaggtgggg 

ttgatcgcggtcgtttgtatacgttttttttggttcgcgttttcggtttgggagggcggattcgtttattttacgatggtttcggtttt 

CCNA1 

gtcgcgtgatcgtttatttttttcgggatttttagcgtttcggttatatttattcgagtttcgtttcgcggtgtaatttcgtcgtggtttgcg

ggtgggcgggcggtagtcgcgtcgtttttatttcgcgtagtttttattttgtcggtattggtttttatttatacggggttgggggtttgga

gcggat 

CYGB 

tagaggatttgagggatagggtcggagggggttttttcgttagtatcggaggaagaaagaggaggggttggttggttattagaggg

tggggcggatcgcgtgcgttcggcggttgcggagagggggagagtaggtagcgggcggcggggagtagt 

P16 

ACGAGTGGAGTTCGAGGAGGTAGGGTGGAGGGAGAGTTAAGGCGTTTCGTAGTTCGGTAGTCGTT

TTTCGAGTTTTGTcgttcgtatttttttggcgtttgggaagtagtaggtttttagttcgttcggggttacgtgggaagaggtagtc

gggttt 

TMEFF2 

gggagtatataggttggggaagtttgtttttgcgtggggtggtgatggaggaggtttagtaagttttttggattgtgaatttgtgtttgt 

tattgtgtgttgggtggtggttattttttttattaggttgtggtttttgtaatttttaagggaggagtaggttttattggttgagtatagttt 

ACTB 

Figure 1:  PCR primers and probes for the five target genes and beta-actin. The bases 
shaded in grey denote the forward and reverse primers as shown by the pink arrows and 
the bases shaded in yellow represent the probe sequence. The ts shaded in blue 
represent cytosines that will be converted to thymine residues by the bisulphite reaction. 
The CpGs are denoted by a red C and uppercase text denotes the first exon. ACTB is 
included for DNA input control and therefore is methylation-independent. 
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Appendix 4: Concordance between singleplex and duplex data 

     

 

 

 Singleplex ADAMTS9 Total 

Neg Pos 

Duplex 

ADAMTS9 

Neg 201 4 205 

Pos 0 1 1 

Total 201 5 206 

McNemar Test p=0.125 

Table A4.1: Contingency table of duplex and singleplex ADAMTS9 data 

 

 

 Singleplex CCNA1 Total 

Neg Pos 

Duplex 

CCNA1 

Neg 196 3 199 

Pos 0 8 8 

Total 196 11 207 

McNemar Test p=0.250 

Table A4.2: Contingency table of duplex and singleplex CCNA1 data 
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McNemar Test p=1.0 

Table A4.3: Contingency table of duplex and singleplex CYGB data 

 

 

 

 

 

 

 

McNemar Test p=0.65 

Table A4.4: Contingency table of duplex and singleplex P16 data 

 

 

 

 

 

 

 

 Singleplex CYGB Total 

Neg Pos 

Duplex 

CYGB 

Neg 192 2 194 

Pos 1 9 10 

Total 193 11 204 

 

 

 Singleplex P16 Total 

Neg Pos 

Duplex 

P16 

Neg 179 2 181 

Pos 9 15 24 

Total 188 17 205 
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 Singleplex TMEFF2 Total 

Neg Pos 

Duplex 

TMEFF2 

Neg 173 9 182 

Pos 0 11 11 

Total 173 20 193 

McNemar Test p=0.004 

Table A4.5: Contingency table of duplex and singleplex TMEFF2 data 
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Appendix 5: Demographic data    

 

 

 
Cohort Total 

Normal OSCC 

Age 

40.00 44 1 45 

60.00 29 28 57 

80.00 24 28 52 

Total 97 57 154 

Fisher’s exact (2-sided) p<0.001 

Table A5.1: Contingency table comparing age between normal and OSCC cohort. Age 40: 

equal to or < 40 years old, 60: 41-60 years old, 80: 61+years old 

 

 

 Cohorts Total 

Normal OSCC 

smoking 

.0 38 8 46 

1.0 42 11 53 

2.0 17 28 45 

Total 97 47 144 

Pearson chi Square (2-sided) p<0.001  

Table A5.2: Contingency table comparing smoking habits between normal and OSCC 

cohort. Smoking 0=non smokers 1=less than or equal to 20pack years 2=greater than 20 

packyears. 
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 Cohorts Total 

Normal OSCC 

Alcohol 

.0 36 5 41 

1.0 59 25 84 

2.0 2 16 18 

Total 97 46 143 

Fisher’s exact (2-sided) p<0.001 

Table A5.3: Contingency table comparing alcohol intake between normal and OSCC 
cohort.  
 0=No alcohol 1=equal to or less than 28u/week 3= greater than 28u/week. 

 

 

 Cohorts Total 

Normal OSCC 

Gender 

Male 56 39 95 

Female 41 22 63 

Total 97 61 158 

Pearson Chi square (2-sided)p=0.438 

Table A5.4: Contingency table comparing gender ratio between normal and OSCC cohort.  
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 Cohorts Total 

Normal Dysplasia 

Age 

40.00 44 4 48 

60.00 29 31 60 

80.00 24 25 49 

Total 97 60 157 

Fisher’s exact (2-sided) p<0.001 

Table A5.5: Contingency table comparing age distribution  between normal and dysplasia 

cohorts. Age 40: equal to or less than 40 years old, 60: 41-60 years old, 80: 61+years old. 

 

 

 

 

 Cohort Total 

Normal Dysplasia 

Smoking 

.0 38 16 54 

1.0 42 15 57 

2.0 17 29 46 

Total 97 60 157 

Pearson Chi square (2-sided) p<0.001 

Table A5.6: Contingency table comparing smoking habits  between normal and dysplasia 

cohorts. 0: None smoker 1: less than or equal to 20packyears  2: greater than 20packyears 
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 Cohort Total 

Normal Dysplasia 

Alcohol 

.0 36 19 55 

1.0 59 32 91 

2.0 2 8 10 

Total 97 59 156 

Fisher’s exact (2-sided) p=0.023 

Table A5.7: Contingency table comparing alcohol intake  between normal and dysplasia 

cohorts. 0=No alcohol 1 =equal to or less than 28u/week  2=greater than 28u/week 

 

 

 

 

 Cohort Total 

Normal Dysplasia 

Gender 

Male 56 34 90 

Female 41 26 67 

Total 97 60 157 

Pearson Chi square (2-sided) p=0.896 

Table A5.8: Contingency table comparing age gender ratio between normal and dysplasia 

cohorts.  
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 Cohort Total 

Dysplasia OSCC 

Age 

40.00 4 1 5 

60.00 31 28 59 

80.00 25 28 53 

Total 60 57 117 

Fisher’s exact (2-sided) p=0.455 

Table A5.9: Contingency table comparing age distribution between dysplasia and OSCC 

cohorts. Age 40 =equal to or less than 40 years old 60=41-60 years old  80= 61+years old. 

 

 

 Cohort Total 

Dysplasia OSCC 

Smoking 

0 16 8 24 

1 15 11 26 

2 29 28 57 

Total 60 47 107 

Pearson Chi square p=0.418 

Table A5.10: Contingency table comparing smoking habits between dysplasia and OSCC 

cohorts. 0= Non smoker  1=equal to or less than 20packyears 2= 20packyears 
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 Cohorts Total 

Dysplasia OSCC 

Alcohol 

0 19 5 24 

1 32 25 57 

2 8 16 24 

Total 59 46 105 

Fisher’s exact (2-sided) p=0.005 

Table A5.11: Contingency table comparing alcohol intake between dysplasia and OSCC 

cohorts. 0=No alcohol  1=less than or equal to 28u/week 2=greater than 28u/week 

 

   

 Cohort Total 

Dysplasia OSCC 

Gender 

Male 34 39 73 

Female 26 22 48 

Total 60 61 121 

Pearson Chi square p=0.414 

Table A5.12: Contingency table comparing gender ratio between dysplasia and OSCC 

cohorts.  
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Appendix 6: Diagnosis groups and duplex qMSP data 
 

 

 

 

 Diagnosis 

normal mild dysplasia moderate 

dysplasia 

PVL Severe dysplasia MISCC 

CCNA1 

Neg 97 15 20 5 14 5 

Pos 0 0 0 0 0 0 

Total 97 15 20 5 14 5 

 

 

 

 Diagnosis  Total 

OSCC 

CCNA1 

Neg 53 209 

Pos 9 9 

Total 62 218 

Fisher’s exact (2-sided) p=0.003 

Table A6.1: Contingency table of methylation status of CCNA1 gene versus saliva sample 

diagnosis groups  
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Diagnosis  

normal mild dysplasia moderate 

dysplasia 

PVL Severe dysplasia MISCC 

CYGB 

Neg 97 15 20 5 13 5 

Pos 0 0 0 0 1 0 

Total 97 15 20 5 14 5 

 

 

 

 
Diagnosis  Total 

OSCC 

CYGB 

Neg 52 207 

Pos 10 11 

Total 62 218 

Fisher’s Exact (2-sided) p=0.001 

Table A6.2: Contingency table of methylation status of CYGB gene versus saliva sample 

diagnosis groups  
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 Diagnosis  

normal mild dysplasia moderate 

dysplasia 

PVL Severe 

dysplasia 

MISCC 

P16 

Neg 94 13 19 4 10 5 

Pos 3 2 1 1 4 0 

Total 97 15 20 5 14 5 

 

 

   

 Diagnosis  Total 

OSCC 

P16 

Neg 45 190 

Pos 17 28 

Total 62 218 

Fisher’s Exact (2-sided) p<0.001 

Table A6.3: Contingency table of methylation status of P16 gene versus saliva sample 

diagnosis groups  
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 Diagnosis  

normal mild dysplasia moderate 

dysplasia 

PVL Severe dysplasia 

TMEFF2 

Neg 96 15 19 4 13 

Pos 0 0 1 1 1 

Total 96 15 20 5 14 

 

 

 

 Diagnosis  Total 

MISCC OSCC 

TMEFF2 

Neg 4 52 203 

Pos 1 10 14 

Total 5 62 217 

Fisher’s Exact (2-sided) p<0.001 

Table A6.4: Contingency table of methylation status of TMEFF2 gene versus saliva sample 

diagnosis groups  
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Appendix 7: Binned diagnosis and duplex qMSP data 

 

 

 

 
Binned diagnosis Total 

Normal Low risk High risk Malignancy 

CCNA1 

Neg 97 36 18 58 209 

Pos 0 0 0 9 9 

Total 97 36 18 67 218 

Fisher’s Exact (2-sided) p<0.001 

Table A7.1: Contingency table of methylation status of CCNA1 versus binned diagnosis 

groups in saliva samples 

 

   

 Binned diagnosis Total 

Normal Low risk High risk Malignancy 

CYGB 

Neg 97 36 17 57 207 

Pos 0 0 1 10 11 

Total 97 36 18 67 218 

Fisher’s Exact (2-sided) p<0.001 

Table A7.2: Contingency table of methylation status of CYGB versus binned diagnosis 

groups in saliva samples 
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 Binned diagnosis Total 

Normal Low risk High risk Malignancy 

P16 

Neg 94 33 13 50 190 

Pos 3 3 5 17 28 

Total 97 36 18 67 218 

Fisher’s Exact(2-sided) p<0.001 

Table A7.3: Contingency table of methylation status of P16 versus binned diagnosis 

groups in saliva samples 

 

 

 

 Binned diagnosis Total 

Normal Low risk High risk Malignancy 

TMEFF2 

Neg 96 35 16 56 203 

Pos 0 1 2 11 14 

Total 96 36 18 67 217 

Fisher’s Exact (2-sided)p<0.001 

Table A7.4: Contingency table of methylation status of TMEFF2 versus binned diagnosis 

groups in saliva samples 
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 Binned diagnosis Total 

Normal Low risk High risk Malignancy 

Gene Panel  

Neg 94 32 11 38 175 

Pos 3 4 7 29 43 

Total 97 36 18 67 218 

Fisher’s Exact (2-sided)p<0.001 

Table A7.5: Contingency table of methylation status of gene panel versus binned 

diagnosis groups in saliva samples 
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Appendix 8: Age and qMSP duplex data 

 

diagnosis Age groups Total 

40.00 60.00 80.00 

Normal 

CCNA1 Neg 44 29 24 97 

Total 44 29 24 97 

Low risk 

CCNA1 Neg 3 21 12 36 

Total 3 21 12 36 

High risk 

CCNA1 Neg 1 7 10 18 

Total 1 7 10 18 

Malignancy 

CCNA1 

Neg 1 27 26 54 

Pos 0 3 5 8 

Total 1 30 31 62 

Total 

CCNA1 

Neg 49 84 72 205 

Pos 0 3 5 8 

Total 49 87 77 213 

High risk: Fisher’s Exact (2-sided)  p=0.745  

Malignancy : Fisher’s Exact (2-sided)  p=0.194 

Total: Fisher’s Exact    p=0.094   

Table A8.1: Contingency table of age against CCNA1 methylation stratified by diagnostic 

classification 
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Binned diagnosis Age Total 

40.00 60.00 80.00 

Normal 

CYGB Neg 44 29 24 97 

Total 44 29 24 97 

Low risk 

CYGB Neg 3 21 12 36 

Total 3 21 12 36 

High risk 
CYGB 

Neg 1 7 9 17 

Pos 0 0 1 1 

Total 1 7 10 18 

Malignancy 

 CYGB 

Neg 1 25 27 53 

Pos 0 5 4 9 

Total 1 30 31 62 

Total 

CYGB 

Neg 49 82 72 203 

Pos 0 5 5 10 

Total 49 87 77 213 

High risk: Fisher’s Exact (2-sided)  P=1.0 

Malignancy: Fisher’s Exact (2-sided)  p=0.77 

Total: Fisher’s Exact (2-sided)   p=0.215 

Table A8.2: Contingency table of age against CYGB methylation stratified by diagnostic 

classification 
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Binned diagnosis Age Total 

40.00 60.00 80.00 

Normal 
P16 

Neg 44 27 23 94 

Pos 0 2 1 3 

Total 44 29 24 97 

Low risk 

P16 

Neg 3 19 11 33 

Pos 0 2 1 3 

Total 3 21 12 36 

High 

risk 

P16 

Neg 1 6 6 13 

Pos 0 1 4 5 

Total 1 7 10 18 

Maligna

ncy 

P16 

Neg 1 21 27 49 

Pos 0 9 4 13 

Total 1 30 31 62 

Total 

P16 

Neg 49 73 67 189 

Pos 0 14 10 24 

Total 49 87 77 213 

Normal: Fisher’s Exact(2-sided)  p=0.159 

Low risk: Fisher’s Exact(2-sided)  p=1.0 

High risk: Fisher’s Exact(2-sided)  p=0.522 

Malignancy: Fisher’s Exact(2-sided) p=0.310 

Table A8.3: Contingency table of age against P16 methylation stratified by diagnostic 

classification 
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Binned diagnosis Age Total 

40.00 60.00 80.00 

Normal 

TMEFF2 Neg 44 29 23 96 

Total 44 29 23 96 

Low risk 

TMEFF2 

Neg 3 21 11 35 

Pos 0 0 1 1 

Total 3 21 12 36 

High risk 

TMEFF2 

Neg 1 7 8 16 

Pos 0 0 2 2 

Total 1 7 10 18 

Malignancy 

TMEFF2 

Neg 1 27 25 53 

Pos 0 3 6 9 

Total 1 30 31 62 

Total 

TMEFF2 

.Neg 49 84 67 200 

Pos 0 3 9 12 

Total 49 87 76 212 

Low risk: Fisher’s Exact (2-sided)   p=0.417 

Highrisk: Fisher’s Exact (2-sided)   p=0.542 

Malignancy: Fisher’s Exact (2-sided)   p=0.549 

Total: Fisher’s Exact (2-sided)   p=0.014 

Table A8.4: Contingency table of age against TMEFF2 methylation stratified by diagnostic 

classification 
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Binned diagnosis Age Total 

40.00 60.00 80.00 

Normal 

Gene Panel  

Neg 44 27 23 94 

Pos 0 2 1 3 

Total 44 29 24 97 

Low risk 

Gene Panel  

Neg 3 19 10 32 

Pos 0 2 2 4 

Total 3 21 12 36 

High risk 

Gene Panel  

Neg 1 6 4 11 

Pos 0 1 6 7 

Total 1 7 10 18 

Malignancy 

Gene Panel  

Neg 1 17 19 37 

Pos 0 13 12 25 

Total 1 30 31 62 

Total 

Gene Panel  

Neg 49 69 56 174 

Pos 0 18 21 39 

Total 49 87 77 213 

Normal: Fisher’s Exact  p=0.159 

Low risk: Fisher’s Exact  p=0.729 

High risk: Fisher’s Exact  p=0.095 

Malignancy: Fisher’s Exact  p=0.879 

Table A8.5: Contingency table of age against gene panel methylation stratified by 

diagnostic classification 
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Binned diagnosis Age Total 

41-60 60+ 

Normal 

Gene Panel New 

Neg 27 23 50 

Pos 2 1 3 

Total 29 24 53 

Low risk 

Gene Panel  

Neg 19 10 29 

Pos 2 2 4 

Total 21 12 33 

High risk 

 Gene Panel  

Neg 6 4 10 

Pos 1 6 7 

Total 7 10 17 

Malignancy 

Gene Panel  

Neg 17 19 36 

Pos 13 12 25 

Total 30 31 61 

Total 

Gene Panel  

Neg 69 56 125 

Pos 18 21 39 

Total 87 77 164 

Normal: Fisher’s Exact (2-sided)  p=1.0 

Lowrisk:Fisher’s Exact (2-sided)  p=0.464 

High Risk:Fisher’s Exact (2-sided) p=0.134 

Malignancy: Fisher’s Exact (2-sided) p=0.797 

Total:  Pearson Chi square (2-sided) p=0.361 

Table A8.6: Contingency table of age (patients over 40) against gene panel methylation 

stratified by disease groups 
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Appendix 9: Smoking and qMSP data 

 

   

Binned diagnosis Smoking Total 

None =< 20PY =>20PY 

Normal 

CCNA1 Neg 38 42 17 97 

Total 38 42 17 97 

Low risk 

CCNA1 Neg 9 9 18 36 

Total 9 9 18 36 

High risk 

CCNA1 Neg 5 5 8 18 

Total 5 5 8 18 

Malignancy 

CCNA1 

Neg 7 11 27 45 

Pos 3 1 3 7 

Total 10 12 30 52 

Total 

CCNA1 

Neg 59 67 70 196 

Pos 3 1 3 7 

Total 62 68 73 203 

Malignancy: Fisher’s exact (2-sided) p=0.209 

Total: Fisher’s exact (2-sided)  p=0.631 

Table A9.1: Contingency table of smoking habit against methylation of CCNA1 stratified 

by diagnostic groups 
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Binned diagnosis Smoking Total 

None =<20 PY =>20PY 

Normal 

CYGB Neg 38 42 17 97 

Total 38 42 17 97 

Low risk 

CYGB Neg 9 9 18 36 

Total 9 9 18 36 

High risk 

CYGB 

Neg 5 4 8 17 

Pos 0 1 0 1 

Total 5 5 8 18 

Malignancy 

CYGB 

Neg 8 11 24 43 

Pos 2 1 6 9 

Total 10 12 30 52 

Total 

CYGB 

Neg 60 66 67 193 

Pos 2 2 6 10 

Total 62 68 73 203 

High risk: Fisher’s exact (2-sided) p=0.556 

Malignancy:  Fisher’s exact (2-sided) p=0.778 

Total: Fisher’s exact (2-sided)  p=0.332 

Table A9.2: Contingency table of smoking habit against methylation of CYGB stratified by 

diagnostic groups 
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Binned diagnosis Smoking Total 

None =<20 PY =>20PY 

None 

P16 

Neg 38 42 14 94 

Pos 0 0 3 3 

Total 38 42 17 97 

Low risk 

P16 

Neg 8 9 16 33 

Pos 1 0 2 3 

Total 9 9 18 36 

High risk 

P16 

Neg 2 3 8 13 

Pos 3 2 0 5 

Total 5 5 8 18 

Malignancy 

P16 

Neg 7 8 24 39 

Pos 3 4 6 13 

Total 10 12 30 52 

Total 

P16 

Neg 55 62 62 179 

Pos 7 6 11 24 

Total 62 68 73 203 

Normal: Fisher’s exact (2-sided)  p=0.005 

Low risk: Fisher’s exact (2-sided)  p=0.796 

High risk: Fisher’s exact (2-sided)  p=0.045 

Malignancy: Fisher’s exact (2-sided)  p=0.613 

Total: Pearson chi-square   p=0.508 

Table A9.3: Contingency table of smoking habit against methylation of P16 stratified by 

diagnostic group 
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Binned diagnosis smoking Total 

.0 1.0 2.0 

Normal 

TMEFF2 Neg 37 42 17 96 

Total 37 42 17 96 

Low risk 

TMEFF2 

Neg 8 9 18 35 

Pos 1 0 0 1 

Total 9 9 18 36 

High risk 

TMEFF2 

Neg 5 4 7 16 

Pos 0 1 1 2 

Total 5 5 8 18 

Malignancy 

TMEFF2 

Neg 7 9 28 44 

Pos 3 3 2 8 

Total 10 12 30 52 

Total 

TMEFF2 

Neg 57 64 70 191 

Pos 4 4 3 11 

Total 61 68 73 202 

Low risk: Fisher’s exact (2-sided)  p=0.5 

High risk: Fisher’s exact (2-sided)  p=1.0 

Malignancy: Fisher’s exact (2-sided)  p=0.85 

Total: Fisher’s exact (2-sided)   p=0.798 

Table A9.4: Contingency table of smoking habit against methylation of TMEFF2 stratified 

by diagnostic groups 
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Binned diagnosis Smoking Total 

None =<20PY >20PY 

Normal 

Gene Panel  

Neg 38 42 14 94 

Pos 0 0 3 3 

Total 38 42 17 97 

Low risk 

Gene Panel  

Neg 7 9 16 32 

Pos 2 0 2 4 

Total 9 9 18 36 

High risk 

Gene Panel  

Neg 2 2 7 11 

Pos 3 3 1 7 

Total 5 5 8 18 

Malignancy 

Gene Panel  

Neg 4 5 20 29 

Pos 6 7 10 23 

Total 10 12 30 52 

Total 

Gene Panel  

Neg 51 58 57 166 

Pos 11 10 16 37 

Total 62 68 73 203 

Normal: Fisher’s exact (2-sided)  p=0.005 

Low risk: Fisher’s exact (2-sided) p=0.342 

High risk: Fisher’s exact (2-sided) p=0.208 

Malignancy: Fisher’s exact (2-sided) p=0.152 

Total: Fisher’s exact (2-sided)  p=0.552 

Table A9.5: Contingency table of smoking habit against methylation of gene panel 

stratified by diagnostic groups 
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Appendix 10: Alcohol consumption and duplex qMSP data 

 

 

 

Binned diagnosis alcohol Total 

.0 1.0 2.0 

Normal 

CCNA1 Neg 36 59 2 97 

Total 36 59 2 97 

Low risk 

CCNA1 Neg 10 22 3 35 

Total 10 22 3 35 

High risk 

CCNA1 Neg 6 8 4 18 

Total 6 8 4 18 

Malignancy 

CCNA1 

Neg 5 24 15 44 

Pos 2 3 2 7 

Total 7 27 17 51 

Total 

CCNA1 

Neg 57 113 24 194 

Pos 2 3 2 7 

Total 59 116 26 201 

Malignancy: Fisher’s exact (2-sided) p=0.455 

Total: Fisher’s exact (2-sided)  p=0.383 

Table A10.1: Contingency table of alcohol consumption against CCNA1 methylation 

stratified by diagnosis groups 
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Binned diagnosis alcohol Total 

None =>28u >28u 

Normal 

CYGB Neg 36 59 2 97 

Total 36 59 2 97 

Low risk 

CYGB Neg 10 22 3 35 

Total 10 22 3 35 

High risk 

CYGB 

Neg 6 8 3 17 

Pos 0 0 1 1 

Total 6 8 4 18 

Malignancy 

CYGB 

Neg 6 23 13 42 

Pos 1 4 4 9 

Total 7 27 17 51 

Total 

CYGB 

Neg 58 112 21 191 

Pos 1 4 5 10 

Total 59 116 26 201 

High risk: Fisher’s exact (2-sided) p=0.222 

Malignancy: Fisher’s exact (2-sided) p=0.874 

Total: Fisher’s exact (2-sided)  p=0.005 

Table A10.2: Contingency table of alcohol consumption against CYGB methylation 

stratified by diagnosis groups 
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Binned diagnosis Alcohol Total 

None =<28u >28u 

Normal 

P16 

Neg 35 58 1 94 

Pos 1 1 1 3 

Total 36 59 2 97 

Low risk 

P16 

.00 10 20 3 33 

1.00 0 2 0 2 

Total 10 22 3 35 

High risk 

P16 

.00 4 6 3 13 

1.00 2 2 1 5 

Total 6 8 4 18 

Malignancy 

P16 

.00 6 20 12 38 

1.00 1 7 5 13 

Total 7 27 17 51 

Total 

P16 

.00 55 104 19 178 

1.00 4 12 7 23 

Total 59 116 26 201 

Normal: Fisher’s exact (2-sided)  p=0.061 

Low risk: Fisher’s exact (2-sided) p=0.630 

High risk: Fisher’s exact(2-sided)  P=1.0 

Malignancy: Fisher’s exact (2-sided) p=0.907 

Total: Fisher’s exact (2-sided)  p=0.033 

Table A10.3: Contingency table of alcohol consumption against P16 methylation stratified 

by diagnosis groups 
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Binned diagnosis Alcohol Total 

None =<28u >28u 

Normal 

TMEFF2 Neg 35 59 2 96 

Total 35 59 2 96 

Low risk 

TMEFF2 

Neg 10 21 3 34 

Pos 0 1 0 1 

Total 10 22 3 35 

High risk 

TMEFF2 

Neg 5 8 3 16 

Pos 1 0 1 2 

Total 6 8 4 18 

Malignancy 

TMEFF2 

Neg 5 23 15 43 

Pos 2 4 2 8 

Total 7 27 17 51 

Total 

TMEFF2 

Neg 55 111 23 189 

Pos 3 5 3 11 

Total 58 116 26 200 

Low risk: Fisher’s exact (2-sided)  p=1.0 

High risk: Fisher’s exact (2-sided)  p=0.294 

Malignancy: Fisher’s exact (2-sided)  p=0.662 

Total: Fisher’s exact (2-sided)   p=0.364 

Table A10.4: Contingency table of alcohol consumption against TMEFF2 methylation 

stratified by diagnosis groups 
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Binned diagnosis alcohol Total 

None =<28u/wk >28u 

Normal 

Gene Panel  

Neg 35 58 1 94 

Pos 1 1 1 3 

Total 36 59 2 97 

Low risk 

Gene Panel  

Neg 10 19 3 32 

Pos 0 3 0 3 

Total 10 22 3 35 

High risk 

Gene Panel  

Neg 3 6 2 11 

Pos 3 2 2 7 

Total 6 8 4 18 

Malignancy 

Gene Panel  

Neg 4 15 9 28 

Pos 3 12 8 23 

Total 7 27 17 51 

Total 

Gene Panel  

Neg 52 98 15 165 

Pos 7 18 11 36 

Total 59 116 26 201 

Normal: Fisher’s exact (2-sided)  p=0.061 

Low risk: Fisher’s exact (2-sided) p=0.647 

High risk: Fisher’s exact (2-sided) p=0.569 

Malignancy: Fisher’s exact (2-sided) p=1.0 

Total: Fisher’s exact (2-sided)  p=0.005 

Table A10.5: Contingency table of alcohol consumption against gene panel methylation 

stratified by diagnosis  



 

225 

 

Appendix 11: Pathological stage and qMSP data 

 

   

 pT Total 

1.0 2.0 3.0 4.0 

CCNA1 

Neg 6 23 4 15 48 

Pos 0 4 1 3 8 

Total 6 27 5 18 56 

Fisher’s exact (2-sided) p=0.831 

Table A11.1: Contingency table of CCNA1 methylation against tumour size 

 

 

 
pN Total 

0 1.0 2.0 

CCNA1 

Neg 24 7 17 48 

Pos 3 1 3 7 

Total 27 8 20 55 

Fisher’s exact (2-sided) p=1.0 

Table A11.2: Contingency table of CCNA1 methylation against nodal status 
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 ECS Total 

No Yes 

CCNA1 

Neg 9 15 24 

Pos 2 2 4 

Total 11 17 28 

Fisher’s exact (2-sided) p=1.0 

Table A11.3: Contingency table of CCNA1 methylation against extracapsular spread 

 

 

 

 pStage Total 

1.0 2.0 3.0 4.0 

CCNA1 

Neg 4 12 5 27 48 

Pos 0 0 2 6 8 

Total 4 12 7 33 56 

Fisher’s exact (2-sided) p=0.256 

Table A11.4: Contingency table of CCNA1 methylation against pathological stage 
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 pT Total 

1.0 2.0 3.0 4.0 

CYGB 

Neg 6 24 4 13 47 

Pos 0 3 1 5 9 

Total 6 27 5 18 56 

Fisher’s exact (2-sided) p=0.297 

Table A11.5: Contingency table of CYGB methylation against tumour size 

 

 

 

 pN Total 

.0 1.0 2.0 

CYGB 

Neg 22 7 18 47 

Pos 5 1 2 8 

Total 27 8 20 55 

Fisher’s exact (2-sided) p=0.869 

Table A11.6: Contingency table of CYGB methylation against nodal status 

 

 

 

 

 



 

228 

 

 

 

 ECS Total 

No Yes 

CYGB 

Neg 8 17 25 

Pos 3 0 3 

Total 11 17 28 

Fisher’s exact (2-sided) p=0.050 

Table A11.7: Contingency table of CYGB methylation against extracapsular spread 

 

 

 

 pStage Total 

1.0 2.0 3.0 4.0 

CYGB 

Neg 4 12 5 26 47 

Pos 0 0 2 7 9 

Total 4 12 7 33 56 

Fisher’s exact (2-sided) p=0.188 

Table A11.8: Contingency table of CYGB methylation against pathological stage 
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 pT Total 

1.0 2.0 3.0 4.0 

P16 

Neg 5 20 5 13 43 

Pos 1 7 0 5 13 

Total 6 27 5 18 56 

Fisher’s exact (2-sided) p=0.767 

Table A11.9: Contingency table of P16 methylation against tumour size 

 

 

 

 pN Total 

.0 1.0 2.0 

P16 

Neg 19 7 16 42 

Pos 8 1 4 13 

Total 27 8 20 55 

Fisher’s exact (2-sided) p=0.629 

Table A11.10: Contingency table of P16 methylation against nodal status 
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 ECS Total 

.0 1.0 

P16 

Neg 9 14 23 

Pos 2 3 5 

Total 11 17 28 

Fisher’s exact (2-sided) p=1.0 

Table A11.11: Contingency table of P16 methylation against extracapsular spread 

 

 

 

 

   

 pStage Total 

1.0 2.0 3.0 4.0 

P16 

Neg 3 8 7 25 43 

Pos 1 4 0 8 13 

Total 4 12 7 33 56 

Fisher’s exact (2-sided) p=0.409 

Table A11.12: Contingency table of P16 methylation against pathological stage 
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 pT Total 

1.0 2.0 3.0 4.0 

TMEFF2 

Neg 6 23 2 17 48 

Pos 0 4 3 1 8 

Total 6 27 5 18 56 

Fisher’s exact (2-sided) p=0.036 

Table A11.13: Contingency table of TMEFF2 methylation against tumour size 

 

 

 

 pN Total 

.0 1.0 2.0 

TMEFF2 

Neg 24 8 16 48 

Pos 3 0 4 7 

Total 27 8 20 55 

Fisher’s exact (2-sided) p=0.486 

Table A11.14: Contingency table of TMEFF2 methylation against nodal status 
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 ECS Total 

No Yes 

TMEFF2 

Neg 9 15 24 

Pos 2 2 4 

Total 11 17 28 

Fisher’s exact (2-sided) p=1.0 

Table A11.15: Contingency table of TMEFF2 methylation against extracapsular spread 

 

 

 

 pStage Total 

1.0 2.0 3.0 4.0 

TMEFF2 

Neg 4 12 4 28 48 

Pos 0 0 3 5 8 

Total 4 12 7 33 56 

Fisher’s exact (2-sided) p=0.078 

Table A11.16: Contingency table of TMEFF2 methylation against pathological stage 
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 Stage Total 

1.0 2.0 3.0 4.0 

Number genes 

positive 

.00 3 7 3 19 32 

1.00 1 4 1 7 13 

2.00 0 1 3 3 7 

3.00 0 0 0 4 4 

Total 4 12 7 33 56 

Fisher’s exact (2-sided) p=0.557 

Table A11.17: Contingency table of number of methylated genes against pathological 

stage 

 

 

 

 pT Total 

1.0 2.0 3.0 4.0 

Gene Panel  

Neg 5 15 2 10 32 

Pos 1 12 3 8 24 

Total 6 27 5 18 56 

Fisher’s exact (2-sided)p=0.551 

Table A11.18: Contingency table of gene panel methylation  against tumour size 

 

 



 

234 

 

 

 

 

 pN Total 

.0 1.0 2.0 

Gene Panel  

Neg 13 6 13 32 

Pos 14 2 7 23 

Total 27 8 20 55 

Fisher’s exact (2-sided)p=0.321 

Table A11.19: Contingency table of number of gene panel methylation against nodal 

status 

 

 

 ECS Total 

No Yes 

Gene Panel  

Neg 7 12 19 

Pos 4 5 9 

Total 11 17 28 

Fisher’s exact (2-sided)p=1.0 

Table A11.20: Contingency table of gene panel methylation against extracapsular spread 
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 pStage Total 

1.0 2.0 3.0 4.0 

Gene Panel  

Neg 3 7 3 19 32 

Pos 1 5 4 14 24 

Total 4 12 7 33 56 

Fisher’s exact p=0.80 

Table A11.21: Contingency table of gene panel methylation against pathological stage 
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Appendix 12: Survival and qMSP data 

 

 

 

 Fate Total 

Alive DOD DOC 

CCNA1 

Neg 30 11 4 45 

Pos 4 3 1 8 

Total 34 14 5 53 

Fisher’s exact (2-sided) p=0.499 

Table A12.1: Contingency table of CCNA1 methylation against fate. DOD=died of disease, 

DOC=died of other cause 

 

 

 

 Fate Total 

Alive DOD DOC 

CYGB 

Neg 28 12 4 44 

Pos 6 2 1 9 

Total 34 14 5 53 

Fisher’s exact (2-sided) p=1.0 

Table A12.2: Contingency table of CYGB methylation against fate. DOD=died of disease, 

DOC=died of other cause 
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 Fate Total 

Alive DOD DOC 

P16 

Neg 26 11 4 41 

Pos 8 3 1 12 

Total 34 14 5 53 

Fisher’s exact (2-sided) p=1.0 

Table A12.3: Contingency table of P16 methylation against fate. DOD=died of disease, 

DOC=died of other cause 

 

 

 Fate Total 

Alive DOD DOC 

TMEFF2 

Neg 29 12 4 45 

Pos 5 2 1 8 

Total 34 14 5 53 

Fisher’s exact (2-sided) p=1.0 

Table A12.4: Contingency table of TMEFF2 methylation against fate. DOD=died of disease, 

DOC=died of other cause 
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 Fate Total 

Alive DOD DOC 

Gene Panel  

Neg 20 8 2 30 

Pos 14 6 3 23 

Total 34 14 5 53 

Fisher’s exact (2-sided) p=0.763 

Table A12.5: Contingency table of gene panel methylation against fate. DOD=died of 

disease, DOC=died of other cause 

Appendix 13: Recurrence and duplex qMSP data 

 

 

 

 Recurrence Total 

No Yes 

CCNA1 

Neg 28 18 46 

Pos 4 4 8 

Total 32 22 54 

Fisher’s exact (2-sided) p=0.702 

Table A13.1: Contingency table of CCNA1 methylation against recurrence 
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 Recurrence Total 

No Yes 

CYGB 

Neg 27 18 45 

Pos 5 4 9 

Total 32 22 54 

Fisher’s exact (2-sided) p=1.0 

Table A13.2: Contingency table of CYGB methylation against recurrence 

 

 

 

 Recurrence Total 

No Yes 

P16 

Neg 24 17 41 

Pos 8 5 13 

Total 32 22 54 

Fisher’s exact (2-sided) p=1.0 

Table A13.3: Contingency table of P16 methylation against recurrence 
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 Recurrence Total 

No Yes 

TMEFF2 

.00 28 19 47 

1.00 4 3 7 

Total 32 22 54 

Fisher’s exact (2-sided) p=1.0 

Table A13.4: Contingency table of TMEFF2 methylation against recurrence 

 

 

 

  

 

 recurrence Total 

No Yes 

Gene Panel  

Neg 19 12 31 

Pos 13 10 23 

Total 32 22 54 

Pearson chi square p=0.724 

Table A13.5: Contingency table of gene panel methylation against recurrence 
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Appendix 14: Kaplan Meier survival curves and qMSP data 

 

Case Processing Summary 

CCNA1 Total N N of Events Censored 

N % 

.00 
45 11 34 75.6 % 

1.00 
8 3 5 62.5 % 

Overall 
53 14 39 73.6 % 

 

Overall Comparisons 

 Chi-Square df Sig. 

Log Rank (Mantel-Cox) .434 1 .510 

 

Table A14.1: Test of equality of survival distributions for the 

different levels of CCNA1. 
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Figure FI4.1: Kaplan Meier survival curve for CCNA1 0=unmethylated CCNA1 and 1=methylated 

CCNA1. FU=operation date to fate (death of disease) 
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Case Processing Summary 

CYGB Total N N of Events Censored 

N % 

.00 
44 12 32 72.7 % 

1.00 
9 2 7 77.8 % 

Overall 
53 14 39 73.6 % 

 

 

Overall Comparisons 

 Chi-Square df Sig. 

Log Rank (Mantel-Cox) .290 1 .591 

 

Table A14.2: Test of equality of survival distributions for 

the different levels of CYGB. 
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Figure F14.2: Kaplan Meier survival curve for CYGB. 0=unmethylated CYGB and 

1=methylated CYGB. FU=operation date to fate (death of disease)  
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Case Processing Summary 

P16 Total N N of Events Censored 

N % 

Neg 41 11 30 73.2 % 

Pos 12 3 9 75.0 % 

Overall 53 14 39 73.6 % 

 

Overall Comparisons 

 Chi-Square df Sig. 

Log Rank (Mantel-Cox) .135 1 .713 

Table A14.3: Test of equality of survival distributions for the different levels of P16 

 

Figure 14.3: Kaplan Meier survival curve for P16. 0=unmethylated P16 and 1=methylated 

P16. FU=operation date to fate (death of disease)  
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Case Processing Summary 

TMEFF2 Total N N of Events Censored 

N % 

Neg 45 12 33 73.3 % 

Pos 8 2 6 75.0 % 

Overall 53 14 39 73.6 % 

 

 

Overall Comparisons 

 Chi-Square df Sig. 

Log Rank (Mantel-Cox) .023 1 .879 

 

Table A14.4: Test of equality of survival distributions for the different levels of TMEFF2 
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Figure F14.4: Kaplan Meier survival curve for TMEFF2. 0=unmethylated TMEFF2 and 

1=methylated TMEFF2. FU=operation date to fate (death of disease)  
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 Gene Panel  Total N N of Events Censored 

N % 

Neg 30 8 22 73.3 % 

Pos 23 6 17 73.9 % 

Overall 53 14 39 73.6 % 

 

 

Overall Comparisons 

 Chi-Square df Sig. 

Log Rank (Mantel-Cox) .067 1 .795 

 

Table A14.5: Test of equality of survival distributions for 

the different levels of  Gene Panel. 
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Figure F14.5: Kaplan Meier survival curve for gene panel. 0=unmethylated gene panel and 

1=methylated gene panel. FU=operation date to fate (death of disease)  
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