NUMERICAL ANALOGUES OF THE KODAIRA DIMENSION
AND THE ABUNDANCE CONJECTURE

THOMAS ECKL

ABsTracT. We add further notions to Lehmann’s list of numerical analogues
to the Kodaira dimension of pseudo-effective divisors on smooth complex pro-
jective varieties, and show new relations between them. Then we use these
notions and relations to prove that the Abundance Conjecture, as formulated
in the context of the Minimal Model Program, and the Generalized Abun-
dance Conjecture using these numerical analogues to the Kodaira dimension,
are equivalent for non-uniruled complex projective varieties.

0. INTRODUCTION

During the last decade a plethora of numerical analogues to the Kodaira dimension
for pseudoeffective divisors on (smooth) complex projective varieties was intro-
duced, by Nakayama [Nak04], Demailly, Boucksom, Paun and Peternell [BDPP13],
Siu [Siull] and Lehmann [Leh13]. Lehmann furthermore clarified lots of relations
between these numerical dimensions, adding some new notions, ordering them by
the way how they are constructed and showing that most of them are equal. In
this note we slightly extend his list and prove some more relations. We use these
notions and results to show that the Abundance Conjecture as formulated in the
context of the Minimal Model Program (see e.g. [Mat02, Conj.3-3-4]) is equivalent
to a Generalised Abundance Conjecture introduced in [BDPP13]. On the way, we
prove the birational equivalence of most of these notions of numerical dimension.
In more details, we will discuss the following notions of numerical dimension, or-
dered according to their construction method as suggested by Lehmann, and post-
poning some technical definitions to section

Definition 0.1. Let X be a smooth complex projective variety and D a pseudoef-
fective R-divisor on X. Then we define the following numerical dimensions using

e positive product conditions:

(1) vkan(D) = max {k € N|{[D]*)kan # 0}, where [D] denotes the (1,1)-
cohomology class of the integration current associated to D;

(2) Valg(D) := max {k € N|(D*)., # 0};

(3) thes(D) := max {dim W|(DdimW)X‘W > O} where W C X ranges over
subvarieties not contained in the diminished base locus B_ (D) (defined
mn ;

e volume conditions:

(4) vwoi(D) :=max {k € N|[3C > 0: C - t"* < vol(D + tA) for all t >0},

where A is a sufficiently ample Z-divisor on X ;
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(5) Yolres(D) = max {dim Wlime o volx|w (D + €A) > O}, where
W C X ranges over subvarieties not contained in B_(D) and A is
a sufficiently ample Z-divisor on X ;

(6) Vyolzar 1= max {dimW| inf s volgy (Py(¢° D) g7) > 0}, where W € X
ranges over subvarieties not contained in B_(D), the morphism
o : ()?,W) — (X, W) ranges over all smooth W -birational models of
(X, W) and P,(¢*D) is the positive part of the Zariski decomposition
of *D (all defined in ;

e perturbed growth conditions:

(7) Ko(D) := max{k € N|limsup,,_,.. m *h’(X,Ox(A + |mD])) > 0},

where A is a sufficiently ample Z-divisor;

8) Kpum(D) := sup,sq 4 limsup log h?(X,0x (|mD] +kA)) , where A is
k>1 m— o0 logm

an ample Z-divisor;
e Seshadri-type conditions:
(9) ky(D) := min{dim W|D ¥ W}, where D = W means that D domi-
nates W (defined in[1.9);
(10) Ky,Len(D) := min{dim W|Ve > 0: ¢}, D — eEw not pseudoeflective},
where ow : X — X is any birational morphism of smooth varieties
such that O (Ew) = ¢ ' Iy - O%.
For attributions of these definitions see also section [l
These notions of numerical dimensions are related in the following way:

Theorem 0.2. Let X be a smooth complex projective variety and D a pseudoeffec-
tive R-divisor on X. Then:

VVO](D) Hnum(D) e K:num(D)
I VI Al
Valg(D) = Vrcs(D) = VVol,rcs(D) = VVol,Zar(D) S KO‘(D) S HV(D) § Valg(D)
Al VI
VKéh(D) KJV,Leh(D)

In section and we will prove the inequalities vug(D) < wvkan(D),
K’V(D) < Valg(D)a VVol,Zar(D) < Hnum(D)a K/num(D) < K‘V(D) and
Ku,Leh(D) < K, (D), and we locate the proofs of the other inequalities in the works
of Lehmann [Leh13| and Nakayama [Nak04]. Our proofs of vvol zar(D) < Knum (D)
and Knum(D) < k,(D) also rely on Lehmann’s ideas. But for the proof of
ku(D) < vaig(D) we need a new ingredient: the derivative of the restricted vol-
ume, generalizing Thm.A in [BEJ09] (see Thm [3.1).

The theorem shows that most of the notions in Def. are equal. Therefore the
following definition is justified:

Definition 0.3. Let X be a smooth complex projective variety and D a pseudoef-
fective R-divisor on X. Then the numerical dimension vx (D) of D is defined as
one of the equal numbers

Valg(D) = l/rcs(D) = VVol,rcs(D) = VVOI,Zar(D) = HO’(D) = K/U(D) = Hnum(D)~
In section |4 we show that the numerical dimension of a pseudoeffective divisor
behaves well under birational morphisms:

Proposition 0.4 (= Proposition . Let f : X — X be a birational morphism
between smooth complex projective varieties, let D be a pseudoeffective divisor on
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X and D a pseudoeffective divisor on X such that D — f*D is an f-exceptional
divisor. Then:

vx (D) = vg(D).

In a celebrated theorem Boucksom, Demailly, Paun and Peternell show that the
canonical divisor Kx of a non-uniruled smooth complex variety X is pseudoeffective
[BDPP13|, Cor.0.3]. Consequently, the numerical dimension of the canonical divisor
can be used to state the Abundance Conjecture:

Conjecture 0.5 (Abundance Conjecture). Let X be a non-uniruled smooth com-
plex projective variety. Then:

v(X) :=vx(Kx) = r(X).

Here k(X) = kx (K x) denotes the Kodaira dimension of the canonical divisor K x,
defined e.g. as

kx(Kx) := limsup log h¥(X, Ox (mKx)) .
m— oo IOg m

Note that Boucksom, Demailly, Paun and Peternell refer in their Generalized Abun-
dance Conjecture [BDPP13| Conj.3.8] to vksn(Kx) which is only conjecturally
equal to v(X), as discussed in

In the context of the Minimal Model Program the Abundance Conjecture is for-
mulated under the assumption that minimal models of smooth complex projective
varieties exist (see Section [] for definitions):

Conjecture 0.6 (Abundance Conjecture, MMP version [Mat02, Conj.3-3-4]). Let
S be a minimal model of a non-uniruled smooth projective complex variety X. Then
|mKg| is base point free for sufficiently divisible and large m € N (that is, Kg is
semi-ample).

We use the birational invariance of the numerical dimension to show in section Ml
that the two Abundance Conjectures as stated above are equivalent:

Theorem 0.7 (= Theorem {4.5)). Let S be a minimal model of a non-uniruled
smooth projective complex variety X. Then

vx(Kx) = kx(Kx) <= Kg is semi — ample.

Note that this equivalence is asserted in passing on several occasions (see e.g.
[GL13], [DHP13]). However, the author still thinks that it is worth presenting the
argument in detail, emphasizing in particular that not all the possible definitions
of numerical dimension are easily shown to be birationally invariant.

1. NOTIONS OF NUMERICAT DIMENSION

In the following X is always a smooth n-dimensional complex projective variety
and D a pseudoeffective R-divisor on X.

1.1. vksn(D). This notion is defined in [BDPP13, Def.3.6]. The moving intersec-
tion product ([D]¥)ksn of the (1, 1)-cohomology class of the integration current [D]
is constructed in [BDPP13] Thm.3.5] following [Bou02]: For suitably chosen bira-
tional morphisms i, : X,, — X of smooth complex varieties, real numbers §,, | 0,
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closed semi-positive forms 3; ,, representing big and nef classes in N'(X,,), effec-
tive pi,-exceptional Q-divisors E; ,, on X, and any ample class w on X such that
[Ei.m] + Bi.m represents the (1,1)-class (im)" ([D] + d,,w) we can set

(D )xcan o= T (sim), (B A A B

where the limits are taken in Hkk(X) Note that other choices of i, 6, Bim, Eim
satisfying the properties above will yield "smaller" (k,k)-classes «, that is,
{[D)*)kan — «a is represented by a positive current.

1.2. vag(D). This notion appears first in [Lehl3| where it is neverthe-
less attributed to [BDPP13]. 1In fact, Lehmann uses the algebraic ana-
logue of the moving intersection product ([D]*)ksn as defined in [BEJ09):
To calculate ([D]¥)., Boucksom, Favre and Jonsson replace the (k,k)-
cohomology class [B1.m A ... A Brm] € H**(X,,) by the intersection k-cycle class
[Bim]+ [Be.m] € N¥(X,,) and take the limit in N*(X). The connection to
{[D]¥)ksn is discussed in

Note that the moving intersection product is continuous and homogeneous on the
cone spanned by the classes of big divisors (|[BEFJ09, Prop.2.9]). Furthermore it
coincides with the usual intersection number if the numerical classes are represented
by nef divisors [BFJ09, Prop.2.12].

1.3. t4es(D). This notion is defined in [Leh13]. The diminished or restricted base
locus of an R-divisor
B.(D):= | B(D+4)
A ample

appears in [ELM™T06l Def.1.12] and [Nak04] Def.IT1.2.6&p.168]. Here,
B(D + A) := () Bs(|m(D + A)))

m>1

is the stable base locus of D + A. Later on, we also need the augmented base locus

Bi(B):= () B(B-A4)
A ample
of a big R-divisor B (see [ELMT06, Def.1.2]).
The restricted moving intersection (D*)yy is constructed in [BEJ09] for divisors

W and generalized to arbitrary subvarieties W ¢ B_ (D) of dimension at least k in
[Leh13, Def.2.6] (then D is called a W -pseudoeffective divisor): Similar to [1.2]

(D¥)xiw = 1 (), (Bum] - [Bem] - W),

where the B; ,,, are suitably chosen big and nef divisors on the smooth variety X,,
such that ., : X,, — X is a birational morphism whose center does not contain
W (a so-called W-birational model of X), the Q-divisors (D + §,,A) — B; ,, are
effective and p,,-exceptional for a fixed ample divisor A on X and real numbers
Om 4 0, and W is the strict p,,-transform of W. On the cone spanned by classes
of big divisors B such that W ¢ B, (B) (then B is called a W-big divisor), the
restricted product is continuous and homogeneous (see [BEJ09, Prop.2.9&Prop.4.6]
resp. [Leh13, Prop.4.7]). This implies furthermore that

<Dk>X\W = %ifg((D + B(é))k>x|w7
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for arbitrary W-big divisors B(®) converging to 0 when § | 0.

Note also that by setting W := X the moving intersection cycle class (D*),, can
be obtained as a special case of the restricted moving intersection product. Finally,
in the calculation of <D’“>X‘W one can choose By, = -+ = By, (see the proof of
[BEJ09, Lem.2.6]).

1.4. vy (D). This notion is defined in [Leh13|]. Note that the volume of the big
R-divisor D 4 tA can be defined as

vol(D + tA) := limsup WX, Ox (Im(D + tA)]))

n
m— o0 m

because this definition coincides with the one in [Laz04, §2.2.C] as the continuous
extension of the volume function on Q-divisors to the big cone.
Fujita’s theorem [BEJ09, Thm.3.1] states that vol(D + tA) = (D + tA)™)ale-

1.5. Vyolres(D). This notion is introduced in [Leh13] and uses the restricted volume
investigated in [ELM™09| (see also [Leh13l Def.2.12] for the definition):

, WO(X|W, Ox (Lm(D + €A)]))
R T

where HO(X|W, Ox (|m(D + €A)])) is defined as
Im(H(X, Ox ([m(D + eA)])) — H(W, Ow (Im(D + €A))))).
By the Generalised Fujita Theorem [ELM™09, Prop.2.11&Thm.2.13|,
(D + €)M ™ W)y = volxw (D + €A).

Consequently, the restricted volume is continuous and homogeneous on the cone
spanned by the classes of W-big divisors B.

1.6. vvol,zar(D). Again this notion is introduced in [Leh13|]. Note that morphisms
¢ (X, W) — (X, W) are W-birational if the irreducible subvariety W C X is not

contained in the center of the birational map ¢, and W is the strict ¢-transform of
W. The divisorial Zariski decomposition or o-decomposition

¢*D = P,(¢*D) + N,(¢*D)

into a positive part P, and a negative part N, is constructed by Nakayama [Nak04],
IT1.1] and [Bou0O4]. Lehmann characterized the negative part N,(¢*D) as the di-
visorial part of the diminished base locus B_(D) [Leh13| Prop.3.3(3)], whereas
Nakayama [Nak04, Lem.ITI.1.14(1)] showed that the numerical class of P,(¢*D)
lies in the closure of the movable cone Mov(X) spanned by fixed-part free divisors.
For later purposes we need more details of Nakayama’s construction of the
o-decomposition:

Definition 1.1. Let X be a smooth projective complex variety, B a big R-divsor
and I' a prime divisor on X. We set

or(B) := inf{multrA|A = B, A > 0}.
If D is a pseudoeffective R-divisor and A an ample divisor on X we set

or(D) = leiflol or(D + €A)
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and define
Ny(D):=> or(D)T.

r
The well-definedness of or(D) is shown in [Nak04, I1.1.5].

1.7. k(D). This notion is defined in [Nak04, Def.V.2.5].
1.8. Kaig(D). This notion is defined in [Siuli].

1.9. k,(D). This notion is defined in [Nak04, Def.V.2.20], requiring the notion of
numerical dominance:

Definition 1.2 ([Nak04, Def.V.2.12&V.2.16]). Let D be an R-divisor on a smooth
projective variety X and W C X an wrreducible subvariety. We say that D dom-
inates W numerically and write D = W if there emists a birational morphism
¢: X — X and an ample divisor A on X such that ¢~ Iy - O = O5(Ew) is the
locally free sheaf of an effective divisor Eyw on X', and for every real number b > 0
there exist real numbers x > b,y > b such that

x-¢0*D—y-Ew+ A
is pseudoeffective.

Note that the condition above is satisfied for any birational morphism ¢ : Y — X
with ¥~ 1Ty - Oy = Oy (Fw ) for an effective divisor Fyr and ample divisor B once
it is satisfied for ¢ and A.

1.10. Ky,Len(D). This notion is introduced in [Leh13] using [Leh13l Def.5.1]. See
the discussion of the inequality #,,Len (D) < £, (D) in[2.9/for why the two invariants
may be different.

2. INEQUALITIES BETWEEN NOTIONS OF NUMERICAT, DIMENSION

2.1. vae(D) < vkan(D). The inequality holds because k-cycles are numerically
equivalent if the corresponding integration currents are cohomologically equiv-
alent. Equality will hold if the converse is also true. However, a class map
NE(X)r — Hg’k(X ) only exists conjecturally. In particular, its existence is a
consequence (but not equivalent) to the Hodge Conjecture. For more details see
[Ful84), 19.1, 19.3].

2.2. Vag(D) < vvoi(D). This inequality is proven in [Leh13, Thm.6.2.(1)=(7)].
2.3. Vag(D) < 14es(D). This inequality is proven in [Leh13, Thm.6.2.(1)=(2)].
2.4. es(D) < ol res(D). This inequality is proven in [Leh13, Thm.6.2.(2)=(3)].

2.5. ol res(D) < Wol,zar(D). This inequality is proven in [Lehl13,
Thm.6.2.(3)=(4)].

2.6. Yol zar(D) < Ko (D). This inequality is proven in [Leh13] Thm.6.2.(4)<(5)].

2.7. ko(D) < Ky (D). This inequality is proven in [Nak04, Prop.V.2.22(1)].
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2.8. Wol,zar(D) < Knum (D). For a sufficiently ample divisor A Lehmann shows
in [Leh13l Thm.6.2.(4)<(5)| that there exists a constant C' > 0 so that for every
suffciently large m

C'mVvel.zar(D) < hO(X, Ox(|mD] + A)).

Taking the logarithm, dividing by logm and letting m tend to co shows the desired
inequality.

2.9. Ky Len(D) < Ky (D). Let W C X be an irreducible subvariety, ¢ : X >3 Xa
birational morphism of smooth varieties such that O ¢ (Ew) = ¢ 'Zy - O and A

an ample divisor on X. If ¢*D — eEy is pseudoeffective for an € > 0 then

b+l
%d)*D b+ DEw + A

is also pseudoeffective, for any b > 0, hence D = W. Consequently,
fiu,Leh(D) é K/V(D)'

Note that the argument for equality in the proof of [Leh13] Prop.5.3| does not work
because projections of finite-dimensional vector spaces are not closed maps. In
particular equality could fail if ¢* D sits on a non-polyhedral part of the boundary
of the big cone Big(X), as illustrated in the following diagram of a cut through the
big cone by the affine plane in NS(X)g passing through Eyw, ¢*D and Ey — W11A7
for arbitrary b > 0:

Bw — 75 A

9" D 7 (¢"D — eBw)

< (¢"D — ¢EBw + 55 A)

In this situation, ¢*D — eFy is not pseudoeffective for all ¢ > 0, but
o*D —eEw + FE1A is pseudoeffective for all sufficiently small ¢ > 0. Consequently,
%qﬁ*D — (b+ 1)Ew + A is pseudoeffective, hence D = W.

Note also that Nakayama’s proof of x,(D) < k,(D) does not work if we replace
ky(D) with Ky, 1en(D): The definition of k,(D) only allows to find sections of
Ox(lmD]| + A), with the ample divisor A on X added.

2.10. Kpum(D) < k(D). We adapt [Lehl13l Thm.6.7(7)] and its proof to
Nakayama’s definition of x,(D): Let A be a sufficiently ample divisor on X, and
let W C X be a subvariety such that dim W = k,(D) and D # W. In particular,
for a resolution ¢ : X — X of W and an ample divisor H on the smooth projective
variety X, there exists b > 0 such that z¢*D — yFEy + H is not pseudoeffective for
any choice of z,y > b.

Choose g € N large enough so that ¢gH — ¢* A is pseudoeffective, and consider any
sufficiently large m € N. Then the R-divisor m¢*D — q[b+ 1]Ew + ¢H and hence

m¢*D — q[b+ 1|Ew + ¢H — (¢H — ¢*A) = ¢*(mD + A) — q[b+ 1| Ew
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is not pseudoeffective. Therefore ¢*(|mD| + A) — q[b+ 1] Ew is not effective, and
we obtain
W(X,05(¢"(ImD] + A) — q[b+ 11 Ew)) = 0.
Consequently, h°(X, Ox(|mD]| + A) ®I§I£b+ﬂ) = 0. Set ¢’ = ¢q[b+ 1] and write
Wy for the subscheme defined by the ideal sheaf I{f;,. Then there is an injection
HO(X,0x(|mD| + A)) = H*(Wy,Ow,,(|mD] + A)).

Since [mD| + A < m|D+ A] the rate of growth for the right hand side is bounded
by a multiple of m3™Wo' = (D) In particular, there exists a constant C' > 0
such that

RO(X,Ox(|mD| + A)) < C - m™D),
Taking the logarithm, dividing by log m and letting m tend to co shows the desired
inequality.

3. PROOF OF k, (D) < vug(D)

To show this inequality we cannot just adapt the proof of [Lehl3, Thm.6.2(6) <
(1)] to Nakayama’s definition of x, (D) but need a new ingredient: the derivative
of the restricted volume function. The following statement generalizes Thm.A in
[BEJ09.

Theorem 3.1. Let X be a n-dimensional smooth projective complex variety and
V. =HiN...N Hy_ a k-dimensional complete intersection variety cut out by
very general very ample linearly equivalent divisors H;. If o is a V-big and v an
arbitrary divisor class then
% volx |y (a+ty) =k - (ak_1>X|V <.
[t=0

To prove this theorem and the inequality we first need further facts on the restricted
moving intersection product and volume.

Lemma 3.2. Let X be a smooth projective complex variety, V C X a subvariety
and D a V -pseudoeffective divisor on X. Furthermore, let ' C X be a very general
element of a free family of subvarieties, that is, a general element of the family

intersects any given algebraic subset of X in the expected codimension. Then for
kE<dimVNF:

<Dk>X\V P = <Dk>X|VﬂF-
Proof. This is a generalisation of [Lehl3, Lem.4.18(2)]: Consider a countable set

of smooth V-birational models ¢, : (X, Vin) — (X, V) on which the restricted
product can be calculated, as

<Dk>X\V = n}gnoo (¢m)* ([Bl,m] T [Bk,m])

for big and nef divisors B;,, on )N(m. Choose F' sufficiently general so that it
does not contain any of the ¢,,-exceptional centers and intersects V generically

transversally. Then the strict transform VN F of V N F on )?m will be a cycle

representing the class [¢}, F] - [V;,]. Thus we can identify the classes
(@m). (Bunl - [Bem] - Vin) - F = (9m), (Broml -+ (Bl - [03,F] - Vin) =

= (6m). (IBim][Bum] - [V O FI)
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and that implies the claimed equality. ([

Lemma 3.3. Let X be a smooth projective complex variety, V C X a subvariety of
dimension d and D a V-pseudoeffective divisor on X. If k < d and A is an ample
divisor on X then

<Dk>X‘V 75 0<— <Dk>X|V . Ad_k > 0.

Proof. Intersection theory (as presented for example in [Ful84]) implies that the
group N*(X) of numerical classes of k-cycles on X is generated by Segre classes,
that are classes represented by push forwards of complete intersections on Px (E)
of the correct dimension and with respect to the tautological line bundle Op (g)(1)
associated to the vector bundle F on X. The idea is that Segre classes generate
Chern classes of vector bundles which in turn generate all numerical classes of
cycles, via resolutions of structure sheaves of subschemes.

Now a Segre class o such that (Dk>X|V -0 # 0 is represented by a subscheme
Y C X, say of codimension d — k. As every subscheme Y is a component of a
complete intersection A; N...N Az, of hyperplane sections A; € |lA| for some
I>0.IfAiN...NA4_r =Y UY’ we have

178 (DFY - AT = (DY Y+ (D) - Y
<Dk>X|v Y = <Dk>x|v 0 >0

since the intersection of a restricted product with an effective cycle of the correct
dimension is non-negative, by construction.
The opposite direction is obvious. O

Y

Proposition 3.4. Let X be an n-dimensional smooth projective complex variety,
V=HnN..NH,_ CX ak-dimensional complete intersection subvariety cut out
by very general free big and nef divisors H; linearly equivalent to H and A, B V -big
and nef R-divisors. Then:

volx|v(A—B) > A" . H" ™% — . AF1. . gk,

Proof. This is a generalisation of [Laz04, Thm.2.2.15]. By continuity of the usual
intersection product it is enough to choose an ample divisor H' and prove the
inequality for A+eH', B+eH’, that is for ample R-divisors A, B. Since the restricted
volume is continuous and homogeneous on the cone spanned by the classes of ample
divisors, we can even assume that A, B are very ample divisors.

Let us fix m > 0 and choose m general divisors By,..., By, € |B|. Then we have a
commutative diagram

0 ——> HO(X,0x(mA - £7%) B;)) ——> H(X,0x(mA)) ————> @, H*(B;, Op, (mA))

| | |

0 — HO(X|V,0x(mA — S, B;)) — H(X|V, Ox (mA)) — @i, H*(B;|V N B;, Op, (mA))

| | |

00— HO(V,Oy(mA - =7 B;)) ———> HO(V, 0y (mA)) —— @2, H'(V N B;, Oynp, (mA))
where in the upper row the vertical arrows correspond to surjective maps whereas
in the lower row the vertical arrows correspond to inclusions. Consequently,

RY(X|V,Ox(m(A — B))) > h°(X|V, Ox(mA)) — i hO(B;|V N By, Op,(mA)).

i=1
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Dividing by mk—f and going to the limit m — oo we obtain

m

k
volx|y(A—B) > volxy(4)— Z EVOIB-Wr‘]Bi (A)

i=1

m
— Ak E —
= ) x|V — )Bi|VAB,
7 m
i=

-k
— Ak . Hn—k: o v Ak—l . Hn—k
(A%)x ; AT,
— Ak'ankr_k'Akfl'B'ankr
using the Generalised Fujita Theorem (see , Lemma and the ampleness resp.
freeness of A, H and the B;. O

In the following, D <y D, means that the difference Dy — D7 of the two R-divisors
D1, Dy on X is effective and the support of Dy — Dy does not contain the subvariey
VcX.

Proposition 3.5. Let X be an n-dimensional smooth projective complex variety,
V=HN...NHy,_; C X a k-dimensional complete intersection subvariety cut out
by very gemeral free big and nef divisors H; linearly equivalent to H and B a big
and nef R-divisor such that B <y H. If v is an arbitrary divisor class such that
H + ~y is still nef then

volyjy(B+ty) > B* -H" ¥+ k-t - B*"'.q . H" % —c.#?
for every 0 <t <1 and some constant ¢ > 0 only depending on H™.
Proof. This is a generalisation of [BEJ09, Cor.3.4]. As in [BEJ09, Cor.2.4] we can
use the assumption that H 4 v is nef to conclude that for 0 < ¢ < 1 and some
constant ¢/ > 0 only depending on H™,
(B+t’}/)k _H’rL—k Z Bk 'Hn_k-i-k't'Bk_l "Y'Hn_k —C/'t27

by replacing v with (H + 7v) — H and using that H + v < 2H. If we also write
B+t as the difference of the two nef classes C := B+t(y+ H) and D :=tH then
we have furthermore

(B 4 t’}/) . g k (C D) Hn—k S Ck .Hn—k k- Ck—l .D. Hn—k + C// . t2
where ¢ once again only depends on H": Indeed, ¢" is controlled by C? - H" ™%,
0<i<k-—2,and we have C' < 3H. Thus we have

Ck-Hn_k—k'Ck_l DHn—k :Bk-Hn_k—i-k‘-t'Bk_l ")/-Hn_k—(C/—FCH)tQ.
The result follows by applying Prop. to B+ty=C—D. O

Proof of Thm.[3.1] Let H be a very general divisor linearly equivalent to the H;,
and assume that o <y H and H + ~ is nef. If this is not the case replace «,y by
multiples sa, sy with s > 0 sufficiently small. The claim for «,~ still follows, by
homogeneity of restricted volumes and moving intersection numbers.

Let 8 be a nef divisor class on a V-birational model ¢ : (X, V) — (X, V) such that
B <y ¢"a, hence also § <y ¢*H. Since V is cut out by the big and nef divisors
o H Prop. 3.5 shows

volx v (a-tty) > volg i (B+t¢™y) = % (6" H)" 4kt ¢ y-(¢" H)"F —c-t”
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for every 0 < ¢t < 1 and some constant ¢ > 0 only depending on H". Taking the
supremum over all nef classes 3 <g ¢*a yields

volx |y (a4 ty) > volxjy (o) + k-t - (ak_1>x‘v sy —c-t?,
using Lem. 3.2 and the Generalised Fujita Theorem. This holds for every 0 < ¢ <1,
and in fact also for every —1 <t < 0, by replacing v with —~.
Exchanging the roles of a + ty < 2H and a = (a + t7y) + t - (—7y) we obtain
volx v (a) = volyjy(a+ty) =kt (o +t71)* M xpy v = - £2

for a constant ¢’ possibly larger than ¢ but still only depending on H™. Combining
the two inequalities shows that

d _
—  volxy(a+ty) =k (& xp v
dt |t=0

as desired, since ((a + t7)¥ 1) x|y, converges to (1) y v if t — 0. O
To prove k, (D) < vag(D) we finally need to connect divisorial Zariski decomposi-
tion and algebraic moving intersection product. For the K&hler intersection product
this was done in [BDPP13, Thm.3.5].

Proposition 3.6. Let X be a smooth projective complex variety and D a pseudo-
effective R-divisor. Then the negative part of the divisorial Zariski decomposition
D = P,(D) + Ny(D) can be calculated as

No(D) =D - <[D]>a1g~
Proof. For an ample divisor A,
lim(D + €A — D+eAT) =D — D)
im(D +eA =} or(D + eA)T) > or(D)

by Def. [I.1] and
161%1([13 + €A]>a1g = <[D]>a1g

by the definition of the moving intersection product in Hence we only have to
show the claimed equality for big R-divisors.
By [Nak04| II1.1.17(3)], for big R-divisors B it is enough to show that

B~ ([Bllug = lim_—|[mB][ss.

To this purpose let 7, : X,, — X be a log resolution of |[mB]||. Then 7}, B
decomposes into
* 1 * * *
TrmB = E (|Wm(LmBJ)|ﬁX + |7Tm(LmBJ)|free) + 7T77LATYL7

where A, := B— L |mB] is an effective R-divisor. By construction of ([B])a (see

this implies
1 *
B~ (B < 7o (i ((mB) ) + A

and hence B — ([B])alg < limy, 00 —|[mB]|gx since Ay, — 0 if m — 0.

Vice versa, choose an ample divisor A on X and consider small enough € > 0 such
that B — €A is still big. As above, for all such ¢ we can find birational morphisms
e+ Xe — X between smooth projective varieties such that

7 (B —€A) = D, + B,
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where D, is an effective Q-divisor and B, a nef R-divisor, and

leiﬁ)lm*(De) = B — ([B)alg-

Next, we use that for these € there exist ample R-divisors A. on X, such that
mr A — A, is an effective Q-divisor supported on m.-exceptional divisors. Then

7B =D, + Be +emf A= D. + B + €A,

for an effective Q-divisor D’ such that me.(D.) = me.(D.). Since the difference
(14 €¢)mfB — D. — (B, + €A.) is big there exist effective R-divisors A,, . = en}B
such that

m(1+ e)m: B ~mD. +m(B. + €Ac) + mA, .,
for sufficiently large m. Since B, + €A, is ample this implies
1

[m(1+€)]

for sufficiently large m. This implies limy, o0 = ||m7? B]|ax < D. + Ay e, hence
im0 | [MB]|ax < 7ex (DL) because wf (|mB]) < |mn}B]. Consequently,

1
L (1 + 17 Bl < —|lm(1 + ) Blax < D, + A

Jim %\LmBHﬁx < B — ([Bl)uie.

m—ro0

O

Proof of k,(D) < vag(D). First assume that v,,(D) = 0. By definition this
means that the positive product (D), = 0, hence P,(D) =0 and D = N, (D) by
Prop. Consequently, x, (D) = 0 by [Nak04] V.2.22(2)].

So from now on we assume 1 < k := v,4(D) < k,(D) < n := dim X and derive
a contradiction: Let W be a k-dimensional intersection of very general very ample
divisors. Set ¢ : Y — X to be the blow up of X along W, with exceptional divisor
E. Fix a very ample divisor H on Y. By [Nak04, V.2.21] k£ < k., (D) implies that
D > W, that is, for each sufficiently small ¢ > 0 there exists a 7 > 0 such that
¢*D — 7E + eH is pseudoeffective and =T — oo when € — 0.

Fix ¢ > 0. Choose birational models t; : (Y;, E;) — (Y, E) on which both the
restricted product ((¢*D + eH)*)y 5 and the product ((¢*D + eH)"™')y can be
computed. Choose big and nef divisors

Ai <p, (67D + eH)

on Y; such that the limit of the push forwards iy, (A¥ - E;) calculates the first
product.

As in the proof of [Leh13l Prop.5.5] we can conclude that P,(¢*D +eH) — 7E and
hence ¢f P,(¢*D + ¢H) — m¢F E are also pseudoeffective. Since by [Nak04] II1.5.16|

V; No(¢"D + eH) > No (Y] Py (¢"D + eH))

we also have that P,(¢f(¢*D + e€H)) — T¢fE is pseudoeffective.  [Lehl3]
Prop.3.5&3.7] tell us that for a suitable effective divisor G on Y we can further
assume that the big and nef divisors A; from above satisfy

[ %k 1 *
Ai <p, Po(¥i(¢"D +€H)) <p Ai + ?/’iG-
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In particular, A; + {9;G — 7 E; is pseudoeffective. Therefore,
1 -
0 < (Ai+-9'G—7E;)-AFgrH" 1 =
i

= AfftoyrHTR 4 %w;‘G AR HY TR By ARy H TR
By definition,
0 < AT I HY R < (67D + )My - B
and
0 < AY -Gy H"* 1 <((¢"D + eH)*)y - G- H" "1,
So taking the limit over all models Y; we obtain
(3.1) 0<((¢"D+eH)" )y - H"F1 — 7((¢*D + eH)*)y p - H"F 71

IV =HnNn..NH,x,-1 CYisa (k+ 1)-dimensional complete intersection
subvariety cut out by n —k—1 very general very ample divisors H; € |H|, Thm.
and Lem. imply that

d . .

@Dt O )y = (e 1) (@D eH) )y H =

= (k+1) - ((¢*D+eH)*)y - H" K.

Furthermore, by definition lim.|o((¢* D+€H)*)y = ((¢*D)*)y, and the assumption
Vaig (D) = k implies ((¢*D)*)y - H* % > 0 by Lem. Whereas {(¢p* D)k +1)y = 0.
Consequently, there exists ¢ > 0 such that ((¢*D+eH)**1)y - H"~*=1 < c.e. Then
(3.2) implies that

L @D+ eH)" )y - H" R ¢ ¢
= <(¢*D + GH)k>Y|E . ankfl — <(¢*D + EH)k>Y|E . Hn*kfl .
The denominator of the right-hand side fraction tends to ((¢*D)*)y g - H"7F~1 if
e — 0. By choosing sufficiently general elements Hy,...,H,__1 € |H| we may

assume that ¢ restricted to EN Hy...N Hy,_p_1 is a finite morphism onto W. If
Aq,..., A, denote the very ample divisors on X cutting out W there exists C' > 0
such that

{(¢* D))y - H" (" D))y ipnmy...nm, o = C - (DF)xw =

= CADMx - Ar Auy
where the first and the last equality follow from Lem. [3.2] and the middle equality
from [Leh13, Prop.4.20]. By assumption and Lem. [3.3] this last product is positive,
contradicting the unboundedness of ~ for ¢ — 0. O

4. BIRATIONAL INVARIANCE AND ABUNDANCE CONJECTURE

To prove that the Abundance Conjecture [0.5]is equivalent to the MMP-version of
the Abundance Conjecture [0.6] we need the birational invariance of the numerical
dimension of the canonical bundle:

Proposition 4.1. Let X be a smooth projective complex variety and D a pseudoef-
fective divisor on X. Let f 1Y — X be a birational morphism of smooth projective
varieties and E an f-exceptional effective R-divisor on'Y . Then:
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Proof. Let Ey, ..., Ey be the prime components of £ = Zle z; E;, x; > 0.
Assume first that D is big. Let A be an effective R-divisor = f*D + E on Y.

Claim. multg, A > multg, (F) =z, foralli =1,... k.

Proof of Claim. If multg, A < multg,(E) for a j € {1,...,k} we subtract a
multiple of E; from A and E to obtain A’ > 0, E/ > 0 such that A’ = f*D + E’
and 0 = multg, A’ < multg, £’. Pushing forward A" we have f,A’ = D. Hence for
real numbers y; such that y; =0,

k k
f*D=ffA = A/"‘ZyiEi = f*D+ZyiEi + E'.

i=1 i=1
Thus, Zle yiE; + E’ is a non-trivial linear combination of the E; numerically
equivalent to 0. But this is impossible as numerical classes of f-exceptional prime
divisors are always linearly independent: On X, sufficiently general complete inter-
section curves C' avoid all centers f(E;) but one, hence the strict transform C C Y
intersects the corresponding prime divisor on Y but none else. O

The claim implies that og,(f*D + E) > multg, (F). Taking the limit this also
holds when D is only pseudoeffective. Hence E < N,(f*D + E), this implies
N,(f*D + E) — E = N,(f*D), and

Po(f*D+E)=(f"D+E) = N,(f*D+E) = f*"D— No(f*D) = P,(f"D).

The same holds when ¢ : Y — Y is a further birational morphism between smooth
projective varieties:

FPo(¢*(f*D + E)) = Fs(¢" "D + ¢"E) = Fs (6" [ D).
Using that the numerical dimension can be defined by 1ol zar (see[l.6/and Def.
this implies vy (f*D+E) = vy (f*D). Defining the numerical dimension via positive
intersection products as v, shows that vy (f*D) = vx(D), together with the

projection formula and the fact that f* defines a homomorphism on the intersection
rings. (]

Remark 4.2. The proof above also shows that vy (f*D) = vy (f*D + E) for a
pseudoeffective Q-divisor D on X and an effective f-exceptional divisor £ on Y
even when X is not smooth but only Q-factorial.

Corollary 4.3. Let X be a non-uniruled smooth projective complex variety and
f:Y — X a birational morphism between smooth projective varieties. Then:

Vx(Kx) = I/y(Ky).

Proof. By [BDPP13| Cor.0.3] the canonical divisors K x and Ky are pseudoeffective
on the non-uniruled varieties X and Y. Hence it is possible to calculate their
numerical dimension. Since the pullback of canonical forms through a birational
morphism is again a canonical form, there exists an effective f-exceptional divisor
E such that Ky = f*Kx + E. The corollary follows from Prop. 1] a

A minimal model of a non-uniruled smooth projective complex variety X is a normal

variety S such that there exists a sequence of divisorial contractions and flips
X=Xo-»X1-»- -2 X,=5

and Kg is nef (see e.g. [Mat02, Def.3-3-1] and passim for further definitions). In

particular, S is Q-factorial and has only terminal singularities, that is, every Weil
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divisor on S'is a Q-Cartier divisor and if f:Y — S is a birational morphism from
a smooth projective variety Y then in the ramification formula

Ky = ["Ks + Z%‘Ei,

the coeflicients a; of all the f-exceptional prime divisors F; are > 0.

Note that on a minimal model S it is possible to construct intersection products of
(Q-)Cartier divisors and to define the numerical triviality of the resulting (rational)
cycles (see [Ful84, 19.1]). Hence it makes sense to set the numerical dimension of a
nef (Q-)Cartier divisor D on S equal to

vs(D) := max{k : D* # 0}.

If S is smooth this numerical dimension coincides with the one defined in Def.
by construction of positive intersection products (see [1.2)).
The following result of Kawamata [Kaw85| sits at the core of the proof that the
two versions of the Abundance Conjecture are equivalent:

Theorem 4.4 (Kawamata). On a minimal model S, ks(Kg) = vg(Kg) if and only
if Kg is semi-ample.

Theorem 4.5. Let S be a minimal model of a non-uniruled smooth projective
complex variety X. Then

Vx(Kx) = Hx(Kx) < KS is semi — ample.

Proof. By Kawamata’s Theorem we only need to prove that kx(Kx) = rks(Kg)
and vx (Kx) = vg(Kg).
The first equality follows from using a common resolution

Y
7N
X-—-—--- )

of X and S such that Ky = f*Kg + Fs = ¢*Kx + Ex where Eg
and Ex are f- resp. ¢-exceptional effective divisors. Since the sections in
HO(Y, Oy (mKy)) = H°(Y, Oy (m¢*Kx + mEx)) can be interpreted both as ra-
tional functions on X and Y, we have H°(Y,Oy(mKy)) C HY(X,0x(mKx)),
and since Fx is effective the inverse inclusion also holds. Similarly on S, and the
equality follows.

For vx(Kx) = vs(Kg) we use Cor. and Rem. to deduce the chain of
equalities

vx(Kx) =vy(Ky) = vy (f"Ks + Es) = vy (f*Ks) = v(Ks)

where the last equality follows from the projection formula and the fact that f*
defines a homomorphism on the intersection rings. O
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