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Abstract

This thesis discusses how properties of complex network theory can be used to study

financial time series, in particular time series for stocks on the DAX 30.

First, we make a comparison between three correlation-based networks: minimum

spanning trees; assets graphs and planar maximally filtered graphs. A series of each

of these network types is created for the same dataset of time series’ of DAX 30

stocks and we consider what information each network can provide about the rela-

tionship between the stock prices from the underlying time series. We also analyse

two specific time periods in further detail – a period of crisis and a period of recovery

for the German economy.

Next, we look at the structure and representations of planar maximally filtered

graphs and in particular we consider the vertices that form the 3-cliques and 4-

cliques [Tumminello et al. (2005)] state ‘...normalizing quantities are ns − 3 for

4-cliques and 3ns − 8 for 3-cliques. Although we lack a formal proof, our investiga-

tions suggest that these numbers are the maximal number of 4-cliques and 3-cliques,

respectively, that can be observed in a PMFG of ns elements.’ Within this thesis we

provide a proof for these quantities and a different construction algorithm.

Finally, rather than correlation-based networks, we discuss two relatively new types

of networks: visibility graphs and the geometrically simpler horizontal visibility

graphs. We review the field’s that these networks have already been applied to and

consider if this is an appropriate method to apply to financial time series – specif-

ically stock prices. We also consider using horizontal visibility graphs as a method

for distinguishing between random and chaotic series within stock price time series.
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1 Introduction

In recent years there has been increasing interest in how we can model complex

systems using network theory. These can include information, technological and

biological systems [Newman (2003)], social networks [Toivonen et al. (2006)] and

financial markets ([Allen & Gale (2000)] and [Bonanno et al. (2004)]). In particular,

a network based approach of studying complex systems has become very popular in

econophysics [Stanley & Mantegna (1999)], an interdisciplinary research field that

studies economic and financial phenomena. Networks can be used to model the inter-

actions between banks and other financial institutions. Interbank markets have been

covered extensively in the literature, for example [Boss et al. (2004)] constructed

networks to model the Austrian banking system which consists of many sectors and

tiers. [Soramäki et al. (2007)] described the topology of the interbank payment

system in the USA. [Iori et al. (2008)] used network topology to analyse the Italian

overnight money market and the lending/borrowing that occurred between foreign

banks and Italian banks of various sizes. [Li et al. (2010)] used data from Japan

to construct a directed network model and also provided a summary of the banking

systems in several other countries. As well as looking at the structure of financial

systems, the literature has covered robustness and contagion in financial networks.

[Allen & Gale (2000)] and [Leither (2005)] both modelled contagion in the banking

networks. [Becher et al. (2008)] used data from CHAPS Traffic Survey 2003 to illus-

trate the broad network topology of the interbank payments in the UK. [Galbiati &

Soramäki (2012)] modelled clearing systems as networks whose function is to trans-

form exposures and studied how their topology affects the resulting exposures and

margin requirements.
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One area with significant recent developments is that of correlation based networks.

These networks can be used to reduce complexity of financial dependencies and to

understand and forecast the dynamics in financial markets. One of the important

and fundamental problems in this approach is to filter the most relevant information

from financial networks. As a result traditional algorithms from network theory have

been adapted and some new methods have been introduced. In 1999, a method for

finding a hierarchical arrangement for a portfolio of stocks by extracting the Mini-

mum Spanning Tree (MST) from the complete network of correlations of daily closing

price returns for US stocks was introduced by [Mantegna (1999)]. This method has

been expanded using coordination numbers by [Vandewalle et al. (2001)] and also

applied to other markets such as global stock exchange indices by [Bonanno et al.

(2000)] and currency markets by [Mizuno et al. (2006)]. More recently [Brookfield

et al. (2013)] examined the properties of the MST as applied to the book-to-market

ratio and market returns. This technique was studied and further developed by [On-

nela et al. (2002)] who considered the effect of a stock market crash on the MST,

or asset tree, using the 1987 stock market crash as evidence. They concluded that

there was strong shrinkage of the asset tree during the crash, with the normalised

tree lengths decreasing and remaining low for the duration of the crash. [Onnela et

al. (2003)] extended their study with the introduction of the Asset Graph (AG) – a

network structure similar to the MST where a network with n vertices has n−1 edges;

however the algorithm for the AG selects the largest n− 1 correlations regardless of

the resulting structure, i.e. unlike the MST, the AG does not have to be a connected

network. Similar to this work [Tse et al. (2010)] created Threshold Networks (TN),

by taking the cross correlations of stock prices, price returns and trading volumes

and connecting vertices based on a ‘winner-take-all’ method, so that an edge existed

2



between two stocks if the cross correlation was larger than a particular threshold

value. This method was also used by [Qiu et al. (2010)] to study the dynamical

behaviour of American and Chinese stock markets.

The MST and AG are methods for reducing the complete network to a basic mini-

mum structure that contains only the most relevant information and, in the case of

the MST, the general hierarchical structure. One of the more recent developments

was an algorithm proposed by [Tumminello et al. (2005)] where the complete network

can be filtered at a chosen level, by varying the genus of the resulting filtered graph.

So if a graph is embedded into a surface of genus g, as g increases the resulting graph

becomes more complex and so reveals more information about the clusters formed,

while keeping the same hierarchical tree as the corresponding MST. The simplest

form of this graph is the Planar Maximally Filtered Graph (PMFG), on a surface

with g = 0. The PMFG has proven to be an important tool for filtering the most

relevant information from a network, particularly in correlation based networks that

model the correlation between stock prices. For example [Pozzi et al. (2013)] con-

sidered the level of risk and the returns on portfolios selected using filtered graphs,

including PMFG. [Eryigit & Eryigit (2009)] used PMFGs (along with MSTs and

clustering methods) to analyse the daily and weekly return correlations among in-

dices from stock exchange markets of 59 countries. In general, the PMFG can tell us

about the clusters that form within the dataset, regardless of the network nature, as

a result of the underlying topological properties of the network. [Song et al. (2012)]

introduced a technique to extract the cluster structure and detect the hierarchical

organisation within a complex dataset. This method has been developed using the

topological structure of the PMFG such as the separating 3-cliques which separate a

3



graph into two disconnected parts. For the PMFG we consider the vertices that form

the 3- and 4-cliques (as the maximum number of elements that can form a clique is

4). [Tumminello et al. (2005)] state ‘...normalizing quantities are ns−3 for 4-cliques

and 3ns−8 for 3-cliques. Although we lack a formal proof, our investigations suggest

that these numbers are the maximal number of 4-cliques and 3-cliques, respectively,

that can be observed in a PMFG of ns elements.’ One way that we use the cliques

to analyse networks is to consider the ratio between the number of cliques that have

formed to the maximum number of cliques that could form. For this, [Tumminello

et al. (2005)] used the normalizing quantities that have been mentioned above, an

approach that has also been used by [Eryigit & Eryigit (2009)], [Aste et al. (2005a)]

and [Tumminello et al. (2007)] and used when defining the connection strength of a

sector by [Coronnello et al. (2005)]. Within Chapter 4 of this thesis we provide a

proof for these quantities and a different construction algorithm.

Each of the different methods discussed here filter various amounts of information

from the complete correlation network. This can either be at a set level due to the

nature of the construction algorithm (for example the MST is a severe form of data

reduction leaving only the minimum number of edges for a connected network) or

a level chosen during construction (for example the threshold value chosen in TNs

or the genus of the surface in Filtered Graphs). Within Chapter 3 of this thesis

a comparison is made between MSTs, AGs, PMFGs by creating each of these net-

works for the same dataset of time series’. A complete network is constructed from

the data showing the pairwise correlations between stock price returns for companies

on the German stock market (DAX 30). A series of MSTs, AGs and PMFGs are

created and we consider what information each network can provide us with about

4



the relationship between the stock prices from the underlying time series. We also

analyse two specific time periods in further detail – a period of crisis and a period

of recovery for the German economy. Our aim is to test whether or not there is

a difference between the networks created from the two datasets and, if so, what

information we can extract about the stocks during these time periods.

These networks determine the similarity between the different time series and we use

the structural properties of the networks to show how this relationship can change

over time. Another way of analysing these time series’ is to consider how the individ-

ual data series’ themselves change over a period of time, making use of the temporal

ordering. The idea here is to map time series to networks so that the network inherits

properties from the underlying time series. In their 2006 paper, Zhang and Small

discussed a method for creating complex networks from pseudoperiodic time series,

where each repeated cycle is a single vertex in a network [Zhang & Small (2006)].

An edge would connect two of these vertices if their underlying cycles are similar

in shape and form (measured quantitatively using phase space distance or a linear

correlation coefficient). [Xu et al. (2008)] embedded time series’ to an appropriate

phase space. For the edges they used a threshold for the minimum distance and

also a maximum degree for the vertices. [Lacasa et al. (2008)] expanded upon this

idea and introduced the Visibility Algorithm, a method which can be applied to

different time series, not only pseudoperiodic as with [Zhang & Small (2006)]. This

algorithm was further developed by [Luque et al. (2009)] to form the Horizontal Vis-

ibility Algorithm – a subgraph of the original Visibility Graph (VG) and as such a

geometrically simpler algorithm and more analytically tractable. The authors anal-

yse the networks created by these algorithms in terms of their structural properties
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such as degree distribution, average path length and clustering coefficient, and as

stated above, these can reflect certain properties of the time series. For example, if

we create a visibility graph for a periodic time series then the network will inherit

the regularity of the time series and as such will be a regular network. By similar

reasoning the algorithm also creates an exponential random network from a random

times series and a scale-free network from a fractal time series [Lacasa et al. (2008)].

The literature in this area mainly covers theoretical results. For example [Luque et

al. (2009)] showed that a Horizontal Visibility Graph (HVG) generated from a bi-

infinite random time series will have a degree distribution of P (k) = (1
3
)(2

3
)k−2. This

means that the horizontal visibility algorithm can be used as a method to determine

if a time series is random or chaotic. [Nuñez et al. (2012)] discussed in more details

how the HVG can be used as a method of noise filtering, recognising that periodicity

detection algorithms can be grouped into two categories: time domain (autocorre-

lation based) and frequency domain (spectral). The authors proposed HVG as a

third category: graph theoretical. [Gutin et al. (2011)] used combinatoric properties

of the networks and proved that HVGs will always be an outerplanar graph and

always have a Hamilton path. The authors show that the algorithm can be used as

a linear time recognition algorithm. The visibility graph can be used to estimate the

Hurst exponent. The Hurst exponent provides a measure for whether a dataset is a

pure white noise random process or if there is an underlying trend to the dataset.

Brownian walks can be generated from a defined Hurst exponent and if it is between

0.5 and 1 then the random process will be a long memory process and the dataset

is referred to as fractional Brownian Motion. [Lacasa et al. (2009)] covered this in

more details. Further details can also be found in [Xie & Zhou (2011)]. These algo-
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rithms have been applied to time series from various fields such as physics datasets

and financial time series. Modelling energy dissipation rates in turbulence using

VGs, [Liu et al. (2009)] looked at the statistical properties and found the degree

distribution to be power-law, P (k) ∼ k−α where α = −3. [Yu et al. (2012)] applied

the horizontal visibility algorithm to daily time series of the solar x-ray brightness

from 1986 - 2007 and found that multifractality exists in both the daily time series

and the corresponding HVGs. In [Yang et al. (2009)] VGs were constructed from

six exchange rate series (US dollars to Australian dollars, Canadian dollars, euro,

GB pound, Japanese Yen and NZ dollar.) The authors considered the original time

series, as well as shuffled and detrended data, and found that the series converted

to a scale-free and hierarchically structured network, also the original and detrended

time series were multifractal. The hierarchies for the Yen and euro came across

weaker compared to the others. In Chapter 5 of this thesis we present the formal

construction algorithm for VG and HVGs. We discuss the properties of the graphs

created from the time series and proven results from the literature. Finally, we con-

sider whether the family of visibility algorithms is an appropriate method to apply

to financial time series.

The remaining of this thesis is structured as follows. Chapter 2 contains prelimi-

nary details on network theory as well as the German economy and DAX 30 index.

Chapter 3 provides a comparison between correlation based networks: MSTs (Sub-

section 3.2.1), AGs (Subsection 3.2.2) and PMFGs (Subsection 3.2.3). Maximally

Filtered Graphs are discussed in further detail in Chapter 4, with the various repre-

sentations, including standard spherical triangulation form, analysed in Section 4.2

and the main results, including the proof of the maximum 3- and 4-cliques and a

7



different construction algorithm, given in Section 4.3. Visibility and Horizontal Visi-

blity Graphs are discussed in Chapter 5 (the construction algorithm for both graphs

given in Section 5.1 and their properties and applications in Sections 5.2 and 5.3

respectively). Finally Chapter 6 concludes.
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2 Financial Network Theory

In this chapter we introduce some of the key terminology from Network Theory that

is used throughout this thesis. We also discuss the euro area, in particular details

of the German economy for 2001 – 2014 as this time period covers the dataset used

in later chapters. Our discussions include the introduction of the euro, Germany’s

imports and exports and the German stock market, the DAX 30.

2.1 Preliminaries

A network, also referred to in literature as a graph, is a set of vertices (or nodes) con-

nected by edges. Denote the graph G(V,E) where V is the set of vertices belonging

to G and E is the set of edges belonging to G. Denote the number of vertices |V | = n

and the number of edges |E| = m. A loop is an edge whose end vertices coincide and

a multiple edge is formed when two or more edges join the same vertices. If a network

does not contain any loops or multiple edges then it is called a simple network. A

subgraph H, of a graph G(V,E), is a graph whose vertices are a subset of the vertex

set V and whose edges are a subset of the edge set E. A subset of vertices C ∈ V is

called a clique if the subgraph G(C) is a complete graph (a simple graph with every

pair of distinct vertices connected by a distinct edge) and is denoted Cj where |C| = j.

Various terms are used to describe the structure of the network. A component is a

subset of the vertices of a network such that there exists at least one path (a contin-

uous walk along the edges) between each pair of vertices within the subset. If there

is a path from every vertex in the network to every other vertex then the network is

called connected. Without a path the network is called non-connected and consists

of separate components. A tree is a connected, undirected network that contains no

9



closed loops. A network can be directed or undirected depending on whether or not

the edges show the direction of the flow between the vertices. If the flow between

vertices can only be one way then the edge is called a directed edge (or alternatively

an arc) and thus it follows that a network consisting of directed edges is simply called

a directed network (or a digraph). An undirected edge has a two-way flow between

vertices. Note that an undirected network can be transformed into a directed one

by representing the undirected edges between the vertices as two directed edges. As

well as the direction of the edges we also consider the values assigned to the edges.

A weighted network is one in which the edges between the vertices have weights as-

signed to them. Depending on the subject of the network these weights can have

different meanings. For example, it could show a cost of ‘using’ an edge or the total

flow allowed to travel through the edge. In financial models it could be the values

or volume traded. If no value is assigned then there is assumed to be unlimited flow

throughout the network and the network itself is described as an unweighted network.

The edges can be scaled to reflect these weights either by edge length or thickness.

Once a network has been formed there are several metrics which can be computed

and the results used for comparing and making observations of the networks (or com-

ponents of a network), such as how the network changes over a period of time. Over

recent years, network theory research has progressed from considering the properties

relating to individual vertices or edges to instead analysing the statistical properties

of the network as a whole. For example centrality measures would be vertex proper-

ties as they consider which is the most central (or important) vertex in the network,

whereas connectivity looks at the whole network and how dense/sparse it is. Some of

these metrics are calculated for each vertex but are then averaged over the network
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(for example degree and mean degree).

The number of edges adjacent to a vertex is known as the degree of the vertex. For

a vertex, v, we use the notation deg(v) to show the degree, or alternatively ki. In

any network, the sum of the degrees of all the vertices is equal to twice the number

of all edges, i.e. for a network G(V,E), with n vertices vi (where i = 1, ..., n):

n∑
i=1

deg(vi) = 2|E|. (1)

The mean degree for a network is calculated as:

1

n

n∑
i=1

ki =
2|E|
|V |

. (2)

A vertex can be classed as either an odd or even vertex depending on whether the

degree of the vertex is odd or even. In a directed network the number of edges

coming into a vertex is called the indegree and the number of edges leaving a vertex

is called the outdegree. The following equation holds for all directed networks:

∑
v∈V

indeg(v) =
∑
v∈V

outdeg(v) = |E|. (3)

In a directed network a vertex with indegree = 0 is called the source (and can be

seen as the origin) whilst a vertex with outdegree = 0 is called the sink. If a vertex,

v, has indegree(v) = outdegree(v) then it is called a balanced vertex and similarly a

network with all its vertices balanced is called a balanced network.
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When considering large scale networks an important property to consider is the

degree distribution. Let P (k) be the percentage of vertices with degree k in the

network. The degree distribution is the distribution of P (k) over all k, i.e. the prob-

ability that a vertex has degree k. When constructing a random network, vertices are

added at random meaning that there tends to be an average degree. This results in

the degree of most of the vertices within the network distributed around this average

with few vertices having a much higher or lower degree. However, real life networks

have been shown to have a much more skewed distribution with most vertices hav-

ing only a few edges and a (proportionally) small number of vertices being highly

connected with a large degree value. This leads to a power-law distribution where

P (k) ∼ k−γ. A network that demonstrates a power-law degree distribution is known

as a scale-free network.

Other metrics measure the connectivity and the transitivity of the network. The

connectivity is the number of edges that actually exist between the vertices of the

network compared to the number of edges that are possible. Alternatively, the con-

nectivity can be seen as an unconditional probability (p) that two vertices share an

edge. In a directed network the connectivity (p) = |E|
(|V |(|V |−1)) and for an undirected

network the connectivity (p) = 2|E|
(|V |(|V |−1)) . The closer that this value is to 1, the more

dense the network is. The local clustering coefficient of a vertex v is the probability

that the vertices adjacent to v are also connected i.e. the ratio of the number of ac-

tual edges there are between the adjacent vertices to the number of potential edges

there are between them. The global clustering coefficient, C, of a network measures

the connectivity of the network by considering the number of closed triplets as a

fraction of the total triplets within the network (three vertices joined by two edges
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form an open triplet and three vertices joined by three edges form a closed triplet).

C = Number of closed triplets
Number of total triplets

, where C = 1 implies perfect transitivity.

Further details on network theory can be found in [Albert & Barabási (2002)] and

[Newman (2010)].

2.2 German Economy

In Chapter 3 we analyse the DAX 30 blue chip stocks for the time period 2001 - 2014

(see Appendix A for a list of all stock symbols and the sectors to which they belong

and Section 2.3 for further details on DAX 30). The dataset, created from Thomson

Reuters Datastreama, consists of the closing prices, adjusted for dividends and splits,

of the 30 stocks traded on the Frankfurt Stock Exchange, that form the DAX 30,

for the time period between 2001 and 2014. This is a significant time period for the

German economy as the euro area (a monetary union, originally between eleven EU

members) was established on 1st January 1999 and Germany officially accepted the

euro as its legal tender on 31st December 2001.

The GDP (Gross Domestic Product) can be used as a good indicator when consid-

ering the economic growth of a country. We define a recession as two consecutive

periods of negative growth and there have been several periods of recession for the

euro areab (see Figure 1). Since its establishment in 1999 the euro area has had

several periods of financial crisis; however these have not always been reflected by

the German economy.

aThomson Reuters Datastream 5.0 (thomsonreuters.com).
bData source: ECB statistical Data Warehouse http://www.ecb.europa.eu/stats/keyind/

html/sdds.en.html.
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Figure 1: The time series shows the quarter-on-quarter volume growth of GDP and expen-
diture components for Germany (shown in blue) and the euro area (shown in red).

After the introduction of the euro certain countries within Europe (e.g. France and

Germany) suffered a decline in their GDP between 2001 and 2004. After a period

of recovery and economic growth, Europe was affected by the 2007 – 2009 financial

crisis led by the U.S. subprime mortgage crisis. The GDP of Germany decreased by

0.2% in the 2nd quarter of 2008 and then a further 0.4% in the 3rd quarter (bigger

than the economists’ predicted value of 0.2%). This meant that the German econ-

omy was officially in recession as of 13th November 2008. There have been several

reasons proposed for this recession, stemming from the mortgage crisis, including

high inflation, a strong euro and tight monetary policies in place. Then on 15th

November 2012 the euro area officially entered recession for the second time in four
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years, despite continuing growth in the largest economies of the area – Germany and

France. The latter period is often referred to as the European sovereign-debt crisis

(or the euro zone crisis). It is important to note that a financial crisis in the euro area

will affect countries at different times and the rate of recovery will vary depending

on the state of the country’s economy prior to the crisis.

Germany is one of the most highly developed nations in the world and the German

economy is the 5th largest national economy by GDP (at PPP exchange ratesc). As

such it is the largest economy within the euro area and plays a dominant role not only

in the European Union but also within world economics (Germany’s share of world

trade (exports and imports) for 2014 was 7.2%d). It has invested in the emerging

markets within Asia and also been influential in the expansion of the EU to include

countries in Central and Eastern Europe. Its most important trading partners, based

on their percentage share of overall exports, are France, USA, UK, Netherlands and

in recent years PR of China (in 2014 the share of Germany’s overall exports to these

countries were 9.0%, 8.5%, 7.4%, 6.5% and 6.6% respectivelyd..)

The German economy is predominantly based on exports, with exports accounting

for 45.7% of its GDP in 2014 (Germany was the 3rd largest importer and exporter in

the world in 2014; see Table 1 for exports/imports as a percentage of GDP for other

years). They focus on industrially produced goods and services (in 2013 machinery

accounted for 18.3% of exports, motor vehicles and parts 16.6% and chemical goods

11.6%d). This means that the status of the exports market can be a significant

factor for growth within the German economy. The euro is a weaker currency than

cwww.cia.gov/library/publications/the-world-factbook/geos/gm.html.
dData and statistics taken from Germany’s Federal Ministry for Economic Affairs and Energy.
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the Deutschmark and this can be positive for the German economy as it means

that German exports are cheaper to overseas consumers. However, as the value of

the euro increased through 2002 the German economy once again fell into recession

(see Figure 1) with a possible factor being the undesirable exchange rate between

the euro and major currencies affecting the export markets with the increased price

of goods produced in Germany. The financial crisis 2007 - 2009 also had an effect

on the export markets when a lack of orders and sales resulted in a severe fall in

German exports from 2008 Q4 (in 2008 Germany was the 3rd largest exporter in the

world). However, a weak euro can have a positive effect on the export market and

thus on the German economy – a record high of 2.2% GDP growth was reported for

the 2nd quarter of 2010 (Figure 1). As we can see from Figure 1 the quarter-on-

quarter volume growth of GDP for 2012 Q1, Q2 and Q3 were 0.3%, 0.1% and 0.1%

respectively, meaning that Germany avoided a further recession at this time, unlike

other countries within the euro area (e.g. Greece, Spain and Cyprus).There were two

consecutive periods of decrease for Germany in 2012 Q4 and 2013 Q1 (both quarters

a decrease of 0.4%) however by 2013 Q2 there was an increase of 0.8% meaning that

Germany had recovered from the recession, again unlike countries such as Greece and

Cyprus (both countries suffered from a negative quarter-on-quarter volume growth

of GDP until 2013 Q4 and 2014 Q4 respectively.)e

eECB statistics. Year-on-Year volume growth of GDP and expenditure components: 2.4 Exports
(Q-on-Q).
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Exports Imports
Year Total Goods Services Total Goods Services
2000 30.9 26.6 4.3 30.6 23.6 7.0
2001 31.9 27.5 4.4 30.1 22.9 7.3
2002 32.6 27.7 4.9 28.2 21.3 6.9
2003 32.6 28.0 4.7 29.0 22.1 6.9
2004 35.5 30.3 5.2 30.4 23.5 6.9
2005 37.8 32.2 5.6 32.7 25.4 7.4
2006 41.2 35.2 6.0 35.9 28.5 7.5
2007 43.1 36.9 6.1 36.4 28.9 7.5
2008 43.5 37.1 6.4 37.5 29.9 7.7
2009 37.8 31.4 6.5 32.9 25.6 7.3
2010 42.3 35.6 6.6 37.1 29.4 7.7
2011 44.8 38.2 6.6 40.0 32.1 7.9
2012 45.9 39.1 6.9 40.0 31.9 8.2
2013 45.6 38.5 7.1 39.8 31.1 8.7
2014 45.7 38.6 7.1 39.1 30.6 8.5

Table 1: The table shows Germany’s exports and imports as a percentage of Gross Domestic
Product (GDP). The data is taken from ‘German Foreign Trade in 2014’, a report by
Germany’s Federal Ministry for Economic Affairs and Energy.

2.3 The DAX Index

This is the benchmark index for the German equity market, representing around 80%

of the market capitalisation listed in Germany. Along with some general prerequi-

sites which must be fulfilled for a company to be listed on the DAX (equities listed

in the Prime Standard, continuously traded on Xetra with a widely held stock of at

least 10% and a head office (or largest sales volume) in Germany) there are two main

criteria that must be met based on turnover and market capitalization. Based on

these two main criteria, the DAX members are reviewed annually in September for

regular entry/exit and in March, June, September and December for fast entry/exit.

The rules for these adjustments are outlined below, in order.f

Fast Exit (45/45) A company is removed from the DAX if it is no longer one of

fwww.dax-indices.com/EN/MediaLibrary/Document/Guide_Equity_Indices.pdf.
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the 45 largest companies according to two quantitative criteria: exchange turnover

and market capitalisation, provided that an advancing company ranks 35 or above

in both criteria.

Fast Entry (25/25) A company is recorded in the DAX if it is within the 25 largest

companies according to both of the two quantitative criteria.

Regular Exit (40/40) A company is removed from the DAX if it is no longer one

of the 40 largest companies according to the two criteria. (A non-index value but

ranked at least 35 in two criteria.)

Regular Entry (30/30) A company is recorded in the DAX if it is within the 30

largest companies according to the two quantitative criteria unless there is an index

value which is no longer in the 35 largest companies according to at least one criterion.
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3 A Comparison of Correlation Based Networks

In this chapter we consider three methods for filtering pertinent information from

a series of complex networks modelling the correlations between stock price returns

of the DAX 30 blue chip stocks for the time period 2001 - 2014. The dataset, cre-

ated from Thomson Reuters Datastreamg, consists of the closing prices, adjusted for

dividends and splits, of the 30 stocks that form the DAX 30 for the time period

between 2001 and 2014. This is a significant time period for the German economy as

discussed in the previous section. Using the Thomson Reuters Datastream database

and also the FNA platformh we create the visualisations of the correlation-based

networks. These methods reduce the complete 30× 30 correlation coefficient matrix

to a simpler network structure consisting only of the most relevant edges. The cho-

sen network structures include the Minimum Spanning Tree (MST), Asset Graph

(AG) and the Planar Maximally Filtered Graph (PMFG). The resulting networks

and the extracted information are analysed and compared, looking at the clusters,

cliques and connectivity. We also consider two specific time periods: a period of

crisis (October 2008 - December 2008) and also a period of recovery (May 2010 -

August 2010) where we discuss the possible underlying economic reasoning for some

aspects of the network structures produced.

This chapter is organised as follows. The dataset is presented in Section 3.1. The

network structures are discussed in Section 3.2: MSTs (Subsection 3.2.1), AGs (Sub-

section 3.2.2) and PMFGs (Subsection 3.2.3). The Dax 30 is analysed in Section 3.3

(a period of crisis in 3.3.1 and a period of recovery in 3.3.3). Finally a summary is

gThomson Reuters Datastream 5.0 (thomsonreuters.com).
hFinancial Network Analytics - http://www.fna.fi.
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given in Section 3.4.

3.1 Data

We begin by taking the daily adjusted closing prices of the 30 stocks that form the

DAX 30 for the time period between January 2001 and December 2014. The mem-

bers of the DAX 30 can change as it is reviewed quarterly (see Section 2.3 for further

details) and so we take the current 30 members for each time period considered.

Denoting the adjusted closing price of stock i on day t as Pi(t), we calculate the

daily logarithmic returns of the stock prices Yi, as:

Yi(t) = lnPi(t)− lnPi(t− δt). (4)

[Bonanno et al. (2004)] and [Tumminello et al. (2007)] considered the affect that

varying the time horizon, δt, has on the hierarchical organisation of stocks. For our

work we use one trading day, setting δt = 1. To look at the affiliation between the

price returns of stocks i and j we calculate the pair-wise correlation coefficient using

Pearson product-moment correlation for all trading days in the time period:

ρij =
〈YiYj〉 − 〈Yi〉〈Yj〉√

(〈Y 2
i 〉 − 〈Yi〉2)(〈Y 2

j 〉 − 〈Yj〉2)
(5)

where 〈· 〉 is an average over the time period (see [Stanley & Mantegna (1999)],

Chapter 12 for further details). We use a moving window technique when calculat-

ing the correlation coefficient matrices – so the data is separated into annual sets

and then we consider a time period of 23 observations (based on an average number
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of trading days per month) with an interval of 10 days chosen for simplicity. Note

that the final window for each annual set will not necessarily contain 23 observations

but will end with the last observation for that specific year. This technique gives

us a smoother transition of the networks - although can be a compromise with the

chance of error. For n stocks, this results in an n× n matrix with all entries within

the interval [-1, 1]. These end values correspond to total anti-correlation between

stocks i and j and complete linear correlation between stocks i and j respectively.

ρij = 0 represents no correlation between stocks i and j.

As discussed, the DAX 30 is reviewed quarterly so members can be removed or added

to the DAX 30 during certain time windows we consider. For consistency we remove

the stocks that are not present throughout the entire time window resulting in some

having 28 or 29 stocks rather than 30. For example, 22nd September 2003 saw the

regular exit of MLP and the entry of Continental (CON). When modelling the 2003

data we have a time window ranging from 10th September - 10th October 2003 which

had 29 stocks as MLP and CON were both omitted. This is done automatically with

FNA. In the following sections we consider various correlation based networks that

have been presented in the literature as a way of filtering the most relevant data

from the complete networks.

3.2 Network Structures

3.2.1 Minimum Spanning Tree (MST)

The first structure that we consider is the Minimum Spanning Tree (MST). As dis-

cussed in the Introduction, the MST was used by [Mantegna (1999)] to show the

hierarchical arrangement of a portfolio of stocks. The MST extracts the most rel-
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evant connections from the correlation matrix and directly gives the subdominant

ultrametric hierarchical arrangement of stocks. The stocks are clustered in a way

that is entirely based on their correlations and Mantegna noted how this seems to

be related to their economic sector.

Let G(V,E) be a connected, undirected graph, where V is the set of vertices and

E is the set of edges. A spanning tree S(V,E ′) of the graph G is a subgraph that

is a tree connecting all vertices of G, so if the number of vertices |V | = n then the

number of edges |E ′| = n − 1. For a graph G(V,E) with positively weighted edges

we can select the MST – a spanning tree where the sum of the edge weights is less

than or equal to that of all other spanning trees. The MST is unique if all of the

edge weights are distinct. Various algorithms have been proposed to construct a

MST such as [Kruskal (1956)] and [Prim (1957)]. We have applied the Kruskal’s

algorithm as this method is most common in the literature. To be able to construct

a correaltion-based MST we need to define the distance between the vertices and the

main method used in the literature is to construct the network using the Euclidean

metric.

The distance between the stocks is defined so that the three axioms of a metric

space are satisfied:

1. Positive Definiteness: For all p, q, r ∈ S we have d(p, q) ≥ 0 and (p, q) =

0⇔ p = q;

2. Symmetry: d(p, q) = d(q, p);

3. Triangular Inequality: d(p, r) ≤ d(p, q) + d(q, r),
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where S is a set and d is a metric on S.

We cannot construct a MST directly from the correlation coefficient matrix as using

the correlations as distances would not satisfy these metric axioms – in particular,

they do not satisfy the positive definiteness axiom as the correlations range from -1

to 1. Also a stock correlated with itself would give a correlation of 1 and not 0 as

required by the first axiom. Furthermore, it is possible to have a high correlation

between two stocks but for each of these stocks to have a low correlation with a third

stock, which would thus not satisfy the third axiom. To transform the correlation

matrix into a distance matrix, a metric function that incorporates the correlation

coefficient and satisfies all axioms is needed. We have used a distance function used

by [Mantegna (1999)] based on work by [Gower (1966)]:

d(i, j) =
√

2(1− ρij), (6)

where d(i, j) is the distance between stock i and stock j and ρij is the Pearson

product-moment correlation coefficient (Eqn. 5) between stock i and stock j. With

this distance function we create networks where the shorter the edge length between

the vertices (i.e. stocks) the higher the correlation between them (see Appendix B

for further details).

The 30× 30 correlation coefficient matrix, C, is converted to a distance matrix, D,

using the distance function shown in (Eqn. 6). The n(n−1)/2 = 435 distances from

the upper triangular section of D are then placed in ascending order, so that we can

apply Kruskal’s algorithm.

The following shows the beginning steps of the construction of a MST for DAX 30
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data, with a time window from 5th February 2001 - 7th March 2001. The first nine

of these ordered distances are shown in Table 2, along with the corresponding vertices:

Distance Vertices
0.515 SIE-IFX
0.591 EPC-IFX
0.625 SIE-EPC
0.643 DRB-DBK
0.755 EPC-DBK
0.781 SIE-DBK
0.782 EPC-DRB
0.794 SIE-DRB
0.807 DTE-DBK

Table 2: The first nine ordered distances for the MST construction from 5th February 2001
- 7th March 2001.

The first two vertices are added to the network (Siemens (SIE) and Infineon Tech-

nologies (IFX)) with an edge of length 0.515 connecting them. Next, the vertex

Epcos (EPC) is added to the network, connected to IFX with an edge of length

0.591. The third edge SIE-EPC is omitted from the network as it would form a

cycle between the three vertices. This process continues with SIE-DBK, EPC-DRB

and SIE-DRB also being omitted and three more vertices (Dresdner Bank (DRB),

Deutsche Bank (DBK), Deutsche Telekom (DTE)) being added from these first nine

edges. The first section of the MST is shown in Figure 2. The complete MST for

5th February 2001 - 7th March 2001 is shown in Figure 3.
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Figure 2: The first six vertices (labelled using the stock’s ticker symbol) and five edges
of the MST extracted from data showing the correlation between the daily returns of the
closing prices for the 30 members of the DAX 30 from 5th February 2001 - 7th March 2001.

Figure 3: The complete MST extracted from data showing the correlation between the
daily returns of the closing prices for the 30 members of the DAX 30 from 5th February
2001 - 7th March 2001. The vertices are labelled using the stock’s ticker symbol and have
been coloured to highlight the clusters so they can be compared to the AG for the same
time period (see Figure 5).
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The advantage of constructing this network compared to other methods (AG, PMFG)

is that, when calculated in this way, the MST directly determines the subdominant

ultrametric distance matrix. The axioms for an ultrametric space are similar to that

of a metric space:

1. For all p, q,∈ S we have u(p, q) = 0↔ p = q;

2. u(p, q) = u(q, p);

3. u(p, r) ≤ max[u(p, q), u(q, r)],

where S is an ultrametric space and u is an associated distance function.

The subdominant ultrametric is a unique ultrametric space that satisfies these ax-

ioms and also u(p, q) ≤ d(p, q). The subdominant ultrametric distance matrix, D<,

can be calculated where the entry d<(i, j) shows the maximum value of any Eu-

clidean distance from all edges in the shortest path connecting i and j in the MST.

This means that a stock i with two different Euclidean distances between itself and

two other stocks, say j and k, can have the same ultrametric distance between it-

self and stocks j and k. These stocks with the same ultrametric distance can then

be clustered together, leading to another method for data reduction – hierarchical

clustering. This can be shown using a hierarchical clustering structure (known as

a hierarchical tree or dendrogram) which can also be obtained using methods such

as Single Linkage Cluster Analysis (SLCA) and Average Linkage Cluster Analysis

(ALCA) (see [Gower & Ross (1969)] for further details). The SLCA converts the

original correlation matrix C into the subdominant ultrametric distance matrix D<

by reducing C, using an algorithm that selects the maximum correlations. The

ALCA reduces the correlation matrix in a similar way; however the resulting matrix

and dendrogram vary slightly to that produced by the SLCA as the algorithm uses
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average ultrametric distances between vertices.

To illustrate the ultrametric distance between the stocks let us consider the sub-

dominant ultrametric distance matrix, D<, for the first six vertices added to the

MST from 5th February 2001 - 7th March 2001, as shown in Figure 2 and Table 2.

Notice that there is an edge connecting vertices SIE-IFX, IFX-EPC and EPC-DBK

with lengths 0.515, 0.591 and 0.755 respectively. Although there is no edge directly

connecting vertices SIE-DBK there is a unique path connecting the two vertices

(T (V,E) is a tree⇔ there is exactly one path between any 2 vertices u, v ∈ V ). The

Euclidean distance between these vertices would be the total sum of the lengths of

each edge in this path (i.e. 0.515 + 0.591 + 0.755 = 1.861). The ultrametric distance

would be the max length of all edges in the unique path between the vertices (i.e.

Max[0.515, 0.591, 0.755] = 0.755).

Figure 4: The hierarchical tree extracted from Table 2. The vertices are shown along the
x-axis labelled by their ticker symbol. The ultrametric distance is shown on the y-axis.
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SIE IFX EPC DBK DRB DTE
SIE 0 0.515 0.591 0.755 0.755 0.807
IFX 0.515 0 0.591 0.755 0.755 0.807
EPC 0.591 0.591 0 0.755 0.755 0.807
DBK 0.755 0.755 0.755 0 0.643 0.807
DRB 0.755 0.755 0.755 0.643 0 0.807
DTE 0.807 0.807 0.807 0.807 0.807 0

Table 3: The table shows the ultrametric distances between the first six vertices added
to the MST extracted from data showing the correlation between the daily returns of the
closing prices for the 30 members of the DAX 30 from 5th February 2001 - 7th March 2001,
with the stocks labelled using their ticker symbols.

As stated above, stocks with the same ultrametric distances to other stocks can be

clustered together. For example, SIE and IFX would form a cluster closely linked

with EPC. DRB and DBK would form a second cluster. This can be shown using a

hierarchical tree; Figure 4 shows a hierarchical tree for the first six stocks.

[Schaeffer (2007)] defined graph clustering as the task of grouping vertices of a graph

into clusters taking into consideration the edge structure of the graph so that there

are many edges within each cluster but relatively few between the clusters. As the

MST does not contain cycles we consider clusters as the groups of vertices with high

weighted edges between them. Possible reasons for the formation of these clusters

are discussed in Subsection 3.2.2. The MST is probably the most severe form of data

reduction. To satisfy the construction algorithm for the MST we may have to omit

higher correlations in place of lower correlations so as to keep the resulting graph

acyclic. This can be misleading, implying relationships exist between some stocks

when they do not.
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3.2.2 Asset Graph (AG)

The Asset Graph (AG) was introduced by [Onnela et al. (2003)] as a network simi-

lar to the MST but as one that includes all of the strongest correlations. The time

dependent graph Gt(V t, Et) is constructed from either the n(n− 1)/2 entries of the

upper or lower triangular section of the distance matrix, Dt. Note that the distance

matrix is calculated using the distance function in Eqn. (6). The n(n−1)/2 distances

are placed in ascending order. As with the MST, the AG has n − 1 edges however

now the set of edges chosen are the n − 1 smallest distances from the ordered list.

With this selection the set of edges Et are the n−1 strongest correlations (as shorter

distances correspond to stronger positive correlations) and are chosen regardless of

whether or not they form cycles within the network. A similar approach to the AG

is to create threshold networks. [Tse et al. (2010)] constructed a threshold network

from closing price data on US stocks, using a winner-take-all approach. This method

reduces the complete network to a less complex one by including an edge between

two stock prices if their cross correlation is larger than a set threshold value. The

complexity of the resulting network can be determined by varying this threshold

value.

The AG is useful as it again gives us an idea of the clusters formed by the stocks. The

graphs created tend to consist of some clique components with the remaining vertices

forming either one or two edges with other vertices or being completely unconnected.

As both the AG and the MST contain n−1 edges we can make comparisons between

the two networks, with the AG being useful in identifying any misleading selections

made by the MST construction algorithm.
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We return to the earlier worked example and look at the data from 5th February

2001 - 7th March 2001. Using the construction algorithm outlined above we create

an AG with the 30 members of the DAX 30 during this time period. From Figure

5 we can see that six stocks have formed a 6-clique (SIE, DBK, DRB, DTE, EPC

and IFX) and there are also three 3-cliques. Only 16 of the 30 vertices have been

included in the AG.

Figure 5: The complete AG extracted from data showing the correlation between the daily
returns of the closing prices for the 30 members of the DAX 30 from 5th February 2001 -
7th March 2001. The vertices are labelled using the stock’s ticker symbol and have been
coloured to highlight the clusters so they can be compared to the MST for the same time
period (see Figure 3). Note that the lengths of the edges are not to scale.

From the MST and AG we get a clear indication of the clusters that form between

the stocks. These can be stocks from within the same economic sector, for exam-

ple if we take the set of stocks Bayer (BAYN), BASF (BAS) and Linde (LIN), all

within the chemical sector, and look at the 25 MSTs for 2007 we see that at least

two of these stocks are connected in 80% of the networks and actually all three are

connected in 32% of the networks. In addition we notice that ThyssenKrupp (TKA)

is often connected to this set of stocks, sometimes forming the link between two of

the connected stocks from the set and the third stock. TKA is in the industrial
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sector; LIN produces industrial gases and so is classed as being in the industrial

gases subsector. Thus the four stocks would form a cluster based on their sectors

and subsectors. With the AGs from the same time period we see that it is BAYN

that is the central vertex in this group – with a connection between BAYN and BAS

in 48% of the networks (an average correlation of 0.7107). As well as producing

industrial gases, one of the largest sectors of LIN is Linde Gas Therapeutics (pro-

duction of medical gases). So LIN can also be seen to form a cluster with Fresenius

(FRE), Fresenius Medical Care (FME) and Henkel (HEN3) (all of which belong to

the pharmaceutical and health care sector). A similar example can be seen with the

set of stocks BMW, Daimler (DAI) and Volkswagen (VOW3), all within the auto-

mobile sector, and the networks for 2004 data. The MSTs show that at least two

of these stocks are connected in 80% of the networks and all three are connected in

40% of the networks. The AGs for 2004 also show the strong correlations between

these stocks, but they also identify that there are strong correlations between two

insurance companies, Allianz (ALV) and Munich Re (MUV2), and BMW and DAI.

This was something not shown with the MSTs.

Another example is between the two stocks that belong to the utilities sector, E.On

(EOAN) and RWE. The 25 MSTs and AGs for 2009 show that the two stocks are

connected in 72% of the MSTs and in 64% of the AGs. We can see many clusters of

this form are present within the networks and we can identify them using the MST

and AG. There are, however, other reasons that these clusters may form that may

not be immediately clear. Companies from different sectors can form partnerships

or be involved in mergers and acquisitions. For example, in January 2003 Siemens

acquired majority control in Sinius GmbH, a technology service set up by Deutsche
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Bank. In the 25 MSTs and AGs for 2003 SIE and DBK are connected in 56% of

the MSTs and 72% of the AGs (an increase from the previous 2 years). Although

we have not considered any social influences, e.g. companies having the same board

members, the impact this can have on the networks has been discussed in [Halinen

& Tornroos (1998)].

The disadvantage to this method is that we do not get a complete image due to the

disconnected vertices. Also, as with the MST, it favours strong, positive correlations.

To show this disadvantage we highlight from our data the correlations for VOW3 from

26th August 2008 - 18th December 2008. After several years of acquiring VOW3

shares, Porsche owned 42.6% of VOW3 shares outright and had derivative contracts

for a further 31.5% by October 2008 (with 20% of VOW3 shares being Government

owned) when they revealed plans to increase this stake to 75% during 2009. There

was a rapid increase in the price of VOW3 shares, which was encouraged by Porsche

buying options to purchase more shares. On 29th October 2008 Porsche announced

they would settle up to 5% of VOW3 options, resulting in a fall in the price of VOW3

shares. During this time period the returns of VOW3 showed some unusual patterns

and as a result the correlation matrices showed a negative correlation between the

returns for VOW3 and most other stocks (in some cases with all other stocks e.g.

the correlation matrix for 23rd September - 23rd October 2008). Due to the nature

of the construction algorithms these returns were not highlighted by the MST or the

AG.
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3.2.3 Planar Maximally Filtered Graph (PMFG)

The final network that we discuss in this section is the filtered graph proposed by

[Tumminello et al. (2005)] with particular focus on the planar filtered graph (PMFG

– created when the graph is embedded into a surface with genus set equal to 0).

The networks discussed so far are a severe form of data reduction, containing the

minimum number of edges. The proposed filtered graphs allow us to choose how

much information we filter from the complete network, so by increasing the genus

of the surface we are able to construct a more complex network containing more

edges. The PMFG is constructed in a similar way to the MST. For a graph G(V,E)

with |V | = n and |E| = m all edges, e1, e2, . . . , em, from the upper triangular section

of C are placed in descending order e(1), e(2), . . . , e(m). Select the first edge e(1) and

construct a graph with e(1) and the two vertices that it connects. Continue select-

ing the ordered edges and add them to the network structure only if the resulting

network can be drawn on a planar surface without edges crossing. There are some

tests for planarity based on Kuratowski’s theorem [Kuratowski (1930)] that a graph

G is planar if and only if it contains neither K5 nor K3,3 as a topological minor.

(For more detail on these and others see [Hopcroft & Tarjan (1974)]). The algorithm

ends when all vertices v1, v2, . . . , vn are connected, using 3(n − 2) edges (this is the

maximum number of edges in a PMFG – for further details please see Subsection

4.1.2; Eqn. (8)).

The advantage of the PMFG is that it will always contain the corresponding MST

and so shows some of the clusters between stocks, but also provides additional infor-

mation. Unlike the MST, the PMFG does not have a unique path between each of

the vertices. This means that we cannot identify the hierarchical clustering between
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stocks using the subdominant ultrametric distances in the direct way that we can

with the MST. However, as the construction algorithm allows the inclusion of cycles

the PMFG contains cliques, as with the AG, so we can extract further information

from the network by analysing these cliques.

Looking specifically at the PMFG we consider 3- and 4-cliques, as the maximum

number of elements that can form a clique is four. By considering the topology of

the PMFG we can see that the basic structure (or motif) of the PMFG is a series of

3-cliques. Consider a sphere, a surface with g = 0. The PMFG separates the sphere

into a sequence of triangular faces, with each vertex of the network belonging to a

3-clique. We can say that the PMFG is the triangulation of a sphere as the network

consists entirely of 3-cliques (triangulation of a surface is a partition of that surface

by triangles into facets). With our dataset of 30 stocks, we have a total of
(
30
3

)
= 4060

possible combinations of 3-cliques from each complete graph. By constructing the

maximally filtered graph we considerably reduce the connectivity of the network

leaving the most relevant cliques. (The possible structures of 3-cliques are discussed

further in Section 4.2). We analyse the 4-cliques by showing the sectors that the

four stocks belong to as well as the average correlation coefficient inside the clique,

the range between the highest and lowest correlation coefficient in the clique and

the standard deviation. Note that [Tumminello et al. (2005)] states the maximum

number of 4-cliques formed by a PMFG is n−3 and we also prove this in Section 4.3.

Let us consider some of the examples highlighted in the previous subsections. We

have noted from the 2007 MSTs and AGs that BAS, BAYN and LIN often formed

a cluster and they all belong to the chemical sector. For the PMFGs for 2007 the
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three stocks are connected in 60% of the networks and actually form a 3-clique in

44% of the networks. We also considered the cluster of stocks in the automobile

sector for the 2004 data. These clusters are also shown in the PMFGs, with the

three stocks being connected in 72% of the networks and a 3-clique forming in 44%

of the networks. Finally, the two stocks in the utilities sector, RWE and EOAN, were

connected in a high proportion of the MSTs and AGs for 2009 and this was also the

case with the PMFGs with a connection in 84% of the PMFGs for 2009.

Cliques also allow us to identify the most connected stocks so that they can not

only be clustered but also separated into two sets: core and periphery. This can

be done using the AG as, due to the construction algorithm, we often have clique

components and unconnected vertices. However, the benefit of the PMFG is that,

as it is a connected network, we have a better understanding of the relationships

between the stocks that are not identified as being within the core.

Unlike the MST and AG, the PMFG does not necessarily favour the strong, pos-

itive stocks. We highlighted VOW3 as an example of a stock that was not fairly

represented in the 2008 networks due to its negative correlation. For the PMFG

in 2008 we see that VOW3 is mainly connected to three other stocks (84% of the

networks) and these are mostly other stocks from the automobile sector (BMW,

CON and DAI). At most it is connected to 6 other stocks (this included BMW and

DAI). It forms 3-cliques and in some networks a 4-clique, although this 4-clique has

a lower average correlation compared to the others from the same PMFG due to the

negatively correlated VOW3.
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3.3 Analysis of DAX 30

So far we have made comparisons between each of the network structures and dis-

cussed their construction and the possible information we can extract. The filtered

networks extract clusters of stocks from the complete networks which have high

correlations between their return prices. These clusters often form between stocks

that belong to the same economic sector and subsector with cross-sector clusters ap-

pearing less frequently. There may be some economic reasons for these cross-sector

clusters; however they could also be due to errors with the multiple simultaneous

estimates made when creating the correlation matrices, such as type I errors (i.e.

false positives – identifying a correlation when one does not exist). To this end, we

have included the Bonferroni correction parameter when constructing the networks

with FNA. For the Bonferroni correction, the familywise error rate (the probability

of making one or more type I errors among all hypotheses when performing multiple

tests) is set to the chosen level of α (here α = 0.05) and each individual test is per-

formed at significance level α∗ = α
M whereM is the total number of tests performed.

This method identifies edges in the network structures where the correlation may be

classified as being statistically significant or insignificant.

We now discuss two specific time periods in more detail, discussing possible economic

reasons for some of their features.

3.3.1 Period of Crisis

The first time period assessed is 7th October 2008 - 31st December 2008 and includes

two important events; in October 2008 the German government, market regulators

and other financial institutions agreed a e50 billion rescue plan (originally e35 bil-
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lion, a later deal with an additional e15 billion was agreed on 5th October 2008) to

prevent the collapse of Hypo Real Estate, the second largest commercial property

lender. This was a sign of the economic problems in Germany – the GDP had de-

clined 0.2% in the 2nd quarter of 2008 and a further 0.4% in the 3rd quarter of 2008

meaning as of 13th November 2008 the German economy was officially in a state of

recession (see Figure 1).

(For the MSTs and AGs for this section please refer to Appendix C). The diam-

eter of the MST increases as we move through the time period – this implies that

the distances between the vertices is increasing and so the correlations are decreas-

ing. There are some clusters that form – the two stocks from the utilities sector

(RWE and EOAN) are strongly connected across the first four MSTs. Stocks in

the FIRE (Finance, Insurance and Real Estate) sector (particularly the three banks

Commerzbank (CBK), DBK and Deutsche Postbank (DPB)) are also strongly con-

nected, in four of the five MSTs. However, in the final MST many of the edges that

connect stocks from the FIRE sector to the tree are classified as insignificant – in-

cluding CBK, DBK, DPB and MUV2. For the remaining MSTs the edges shown to

be insignificant were rather predictable – mainly the edges connecting VOW3, HRE,

CON and IFX to the networks for the period of crisis. The correlations that the test

has found to be insignificant in the MST are the lower correlations that may have

only been chosen to satisfy the construction algorithm. Some of the clusters identi-

fied in the complete data set are not present in the MSTs – such as the automobile

and the chemical cluster.

We have seven stocks that are not included in any of the AGs for this time period.
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VOW3 has been previously discussed. CON and Hypo Real Estate (HRE) were both

excluded from the DAX 30 on the basis of the fast-exit rule in December 2008 and

similarly DPB and IFX were excluded in Q1 of 2009. The final two stocks that were

not included are FME and Metro (MEO). We can see from the complete dataset that

for some years FME does not cluster with any other stock and is included in very few

AGs between 2002 and 2004 (actually it is not included in any AG for 2003). This

could be because the company is fairly unique, being the only healthcare company

included in DAX 30 at this point. Let us consider the correlations of the stocks that

were included in the AGs. Across the series there is a decrease in correlations – the

highest correlated pair falling from 0.9607 for the first AG to 0.8409. Although this

is not a significantly large decrease if we consider that for the first AG the lowest

correlated pair (the 29th and therefore last edge to be included) was 0.8631 we can

see that there has been a decrease in the correlation throughout the complete graph.

This supports what is shown by the increase in the diameter of the MSTs.

From the PMFG we can consider the changes observed in the 4-clique analysis (av-

erage correlation within the clique, the range and the standard deviations). We

also take into account the number of 4-cliques that were observed compared to the

maximum total number of 4-cliques that were possible within the graph and the

economic sectors that the stocks of each clique belong to. We can see from Table

4 that each PMFG had the maximum number of 4-cliques possible for the number

of vertices included. At least one 4-clique formed in each PMFG containing VOW3.

The average correlation within this clique was lower than the other averages (due to

VOW3 being negatively correlated to all other stocks during this time period). For

now we will omit the clique containing VOW3 from the following discussion as this
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was identified as a special case and explained above (Subsection 3.2.2).

PMFG Analysis
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7 Oct - 6 Nov 2008 30 27 27 10 14 3 0
21 Oct - 20 Nov 2008 30 27 27 10 15 2 0
4 Nov - 4 Dec 2008 30 27 27 11 13 3 0

18 Nov - 18 Dec 2008 30 27 27 12 12 3 0
2 Dec - 31 Dec 2008 28 25 25 9 14 2 0

Table 4: The table shows the number of stocks for each time period, within the overall crisis
period, the number of 4-cliques that formed, the maximum number of 4-cliques possible
for that time period and how many of the cliques were made up of stocks from 4 different
economic sectors, 3 different sectors, 2 different sectors or all from the same economic
sector.

Overall we can see a decrease in the average correlation within the 4-cliques – the

highest and lowest averages for 7th October - 6th November were 0.9044 and 0.7821

respectively, whereas for 2nd December - 31st December the highest was 0.7967 and

the lowest 0.4168. When considering the economic sectors that the stocks of the

4-cliques belong to we can see from Table 4 that there are many cliques where all

four stocks are from a different sector. To further analyse the 4-cliques we compute

a quantity 〈y〉, as shown by [Tumminello et al. (2005)], to calculate the spread of

the correlation among the stocks belonging to each clique (where ρij ≥ 0). 〈y〉 is

the mean value of the disparity measure y(i) =
∑

j 6=i[
ρij
si

]2 over the clique (where i, j

are elements of the clique and Si is the strength of element i). For a clique with

all correlations shared evenly between the stocks within the clique 〈y〉 = 1
3
. For the

cliques contained in the PMFGs for this first time period, most have the expected

value 〈y〉 ≈ 0.333. Within each of the PMFGs for 21st October - 20th November,
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4th November - 4th December and 18th November - 18th December there are three

cliques that have 〈y〉 slightly higher than 0.34 (ranging from 0.341 to 0.365). Each

of these cliques continued one of the seven stocks mentioned above that were omit-

ted from all AGs for this overall time period. For the final PMFG for this time

series (2nd December - 31st December) the value for 〈y〉 was greater than 0.34 for 11

cliques. The highest value was 0.474 for a 4-clique formed with DTE, FME, MEO

and VOW3. This PMFG is the only one for this time period where VOW3 has

non-negative correlations; however they are very small in comparison to the others

which would explain the higher mean disparity value.

If we consider the edges that have been classified as insignificant within the PMFG

we can see that, as with the MST, it is mainly the edges connecting the vertices

VOW3, HRE and IFX for the first networks in the series. However, as each vertex

in the PMFG has a degree of at least 3 there were more edges that were classified

as insignificant compared with the MST. The final PMFG in the series, representing

data from 2nd December - 31st December 2008, actually has a larger number of edges

classified as insignificant – with vertices from a range of sectors having all the edges

connecting it to the remaining network being insignificant.

3.3.2 Case Study – Hypo Real Estate Holdings AG

Hypo Real Estate Holding AG is a German holding company consisting of numerous

real estate financing banks, formed in 2003 as part of a reorganisation plan of HVB

Bank group. Figure 6 shows the adjusted closing price for HRE shares for the

time period between 10th September 2007 and 10th September 2009. HRE had

long periods of successful operation and was a member of the DAX 30 from 19th
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Figure 6: Times series of the daily closing price, adjusted for dividends and splits between
1st September 2007 and 1st September 2009. The red markers indicate the individual days.

December 2005 - 21st December 2008. However, on 15th September 2008 Lehman

Brothers (the 4th largest investment bank in US) filed for bankruptcy due to financial

problems stemming from the US subprime mortgage crisis. The bankruptcy had an

affect on international financial markets and was a contributing factor (combined

with its acquisition of Depfa Bank in October 2007) to the liquidity shortage facing

HRE by the end of September 2008.i In an attempt to prevent the collapse of HRE

a e35 billion Government State aid plan was announced on 29th September 2008

to provide much needed liquidity. This is highlighted by the severe dip in Figure 6

where the closing price falls from e13.96 on 26th September 2008 down to e3.8 on

29th September 2008. Plans for further State aid were announced on 6th October

2008 and February 2009. We can see some rises and falls around these time periods

in both graphs. HRE, however, was replaced as a DAX 30 member by Salzgitter AG

(SZG) on 22nd December 2008.

iThe Rescue and Restructuring of Hypo Real Estate. Buder et al. (2011).
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3.3.3 Period of Recovery

The second time period between 7th May and 3rd August 2010 is considered a time

of economic success for Germany. With the country officially out of recession in

August 2009, there was a significant growth in the country’s exports and with that

a 3.6% growth to their economy in 2010. The 2nd quarter of 2010 showed a record

high in the GDP growth rate (2.2%) (see Figure 1).

(For the MSTs and AGs for this section please refer to Appendix D). For the AGs

created for this time period the only stock that is not included is Merck (MRK).

FME and FRE are only included in one AG where they form a separate compo-

nent with only one edge between each vertex. These are the only three stocks in the

pharmaceutical and healthcare supersector and, although we cannot comment on the

performance of the companies based solely on the networks, we can say that their

price returns do not appear to follow the same patterns as the other stocks. There

are some companies and selected services that are known to be more resilient during

periods of financial crisis and this includes those in the pharmaceuticals and health-

care (Merck reported a record after-tax profit in 2007 and became a member of DAX

30. In 2008 they reported a 7.1% increase in total revenue and in particular an 11%

increase in revenue for their pharmaceutical business sector. There was some con-

tinued growth through 2009 and by 2010 both Merck and Fresenius Medical shares

were considerable outperforming the DAXj). MEO is also only included in one AG

and for the two time periods this is the only stock in the multiline retail subsector.

The range from the largest to smallest correlation in the AGs increases across the

time period and the correlations are generally not as high as in the previous time

jFor further details on each company please refer to the annual reports published for each
company.
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period.

The MSTs again show that the edges classified as being insignificant are fairly pre-

dictable – mainly the edges connecting FRE, FME and MRK to the networks for

the period of recovery. The MSTs show some clear clusters based on the economic

sectors that the stocks belong to, particularly the automobile, chemical and FIRE

sector.
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7 May - 8 Jun 2010 30 24 27 7 15 2 0
21 May - 22 Jun 2010 29 23 26 7 12 4 0

4 Jun - 6 Jul 2010 29 16 26 7 7 2 0
18 Jun - 20 Jul 2010 29 26 26 12 13 1 0
2 Jul - 3 Aug 2010 30 27 27 7 17 3 0

Table 5: The table shows the number of stocks for each time period, within the overall
recovery period, the number of 4-cliques that formed, the maximum number of 4-cliques
possible for that time period and how many of the cliques were made up of stocks from
4 different economic sectors, 3 different sectors, 2 different sectors or all from the same
economic sector.

From Table 5 it can be seen that, unlike the first time period, the maximum pos-

sible number of 4-cliques did not form in the PMFG. The most significant example

of this is during the time between 4th June - 6th July 2010 when only 16 from the

possible 27 cliques formed. This is interesting as the AG actually included more of

the 30 stocks compared to the AGs constructed for the first time period. A possible

reason for this could be that only stocks from certain sectors were performing well

– stocks in the FIRE sector and companies that produce goods for exports. Overall
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the average correlations for the 4-cliques were generally lower for the second time

period when compared to those of the first. If we compare the values calculated

for 〈y〉 to the values calculated in the first time period we see that there are even

fewer cliques that have 〈y〉 greater than 0.333, with the highest value being 0.355.

There are 13 cliques for the whole time series that have 〈y〉 higher than 0.34, and

of these all but five contain one or more of MEO, FME, FRE or MRK which have

been omitted from, or shown in only one, AG for this time period.

[Tumminello et al. (2005)] used a similar 4-clique analysis to investigate 100 US

stocks from January 1995 to December 1998. The total number of 4-cliques formed

was 97, and of these 31 had all four stocks in the same economic sector and 22 had

three in the same economic sector. Our 4-clique analysis actually showed that it was

more likely for a 4-clique to form with each stock in a different sector or at most two

stocks to be in the same sector. Possible reasons for this difference could be that

the time periods considered here were not ‘average days’, as they were a period of

crisis and of recovery, and also that the length of the time period’s were shorter. The

German DAX 30 is also considerably smaller than the 100 US stocks considered by

[Tumminello et al. (2005)].

Looking at the edges that have been classified as insignificant within the PMFG we

see a similar pattern to the PMFGs for the period of crisis. The first networks in

the series show that the edges that connect the vertices FME, FRE and MRK to the

remaining network are insignificant (the same vertices identified within the MST).

For the remaining PMFGs a larger number of edges are shown to be insignificant,

and some vertices, such as MEO and MRK, have all of their edges classified as in-
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significant. This could show that they are not highly correlated with other stocks

with the network and have only been included to satisfy the construction algorithm.

This supports what was shown with the AGs for the period of recovery.

Some of the correlations may be driven by another factor, such as markets moving

up or down in general. To control for this we apply Principal Component Analysis

(PCA). PCA identifies patterns in data and expresses data in a way to highlight

these similarities so we can control the effect of common factors such as the market

return. As PCA needs a complete dataset some vertices were omitted if they were

not present throughout the whole time period i.e. for the period of crisis Beiersdorf

(BEI), CON, HRE, SZG and TUI were omitted from the networks and for the period

of recovery Heidelberg Cement (HEI) and SZG were omitted. When performing PCA

with all components we found that there was very little difference between the result-

ing networks and the original networks. However, following [Laloux et al. (1999)],

for a second analysis we removed the first and largest component as this most likely

represented the variance due to the market return and also removed components

greater than component 6 as less than 1.5% of the variance was explained by these

components. These networks were slightly different to our original networks but this

could be due to the missing vertices. They still supported the findings from our

analysis.

3.4 Summary

In summary, in this chapter we have shown three possible methods for filtering in-

formation from a complete network of the correlations of the daily adjusted closing
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prices for DAX 30 stocks. The minimum spanning tree reduces the complete net-

work to the minimum connected structure and can be used to show the hierarchical

clustering of the stocks. The clusters that form are likely to be between stocks in the

same economic sector. The asset graph separates the complete network into compo-

nents – generally complete cliques and unconnected vertices. The planar maximally

filtered graph combines these two methods by showing some hierarchical clustering,

as it will contain the corresponding MST and also highlight the most connected

stocks, as with the AG.

We have considered two time periods in detail – a period of crisis and of recov-

ery. Overall we can see that during the period of crisis the correlations decreased

throughout the time period and they were generally lower than during the time of

recovery. The AGs for the period of recovery had less unconnected stocks than the

period of crisis, although the stocks not included in the AGs for the first time period

seemed to show some companies that would be omitted from the DAX 30 during,

or soon after, the crisis time period. There were fewer clusters for the first time

period compared to the second time period – which contained clusters of stocks from

the same economic sectors. We note from the 4-clique analysis that the cliques that

formed in both time periods contained stocks from three or four different sectors,

rather than from one sector as in the literature and from our full time period.
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4 Maximally Filtered Graphs

In this chapter, we consider maximally filtered graphs in more detail and consider

the construction and possible representations of planar graphs.

As discussed in Chapter 3 one of the key properties of the AG, threshold networks

and PMFG is that cliques can form between the vertices in the network which can

highlight relationships. [Huang et al. (2009)] creates threshold networks to analyse

the Chinese stock market using a correlation threshold value −1 ≤ θ ≤ 1 where θ

is the correlation coefficient between two stocks. They study the relationship be-

tween the maximum clique, maximum independent set (a subset I ⊆ V such that

the subgraph G(I) has no edges) and the threshold value θ. [Huang et al. (2009)]

state that ‘the financial interpretation of the clique in the stock correlation network

is that it defines the set of stocks whose price fluctuations exhibit a similar behaviour.’

We have already shown that the PMFG is an important tool for filtering the most

relevant information from a network, particularly in correlation based networks that

model the correlation between stock prices. [Aste et al. (2005b)] discuss the bene-

fits of studying networks in terms of their surface embeddings. We have previously

discussed how the basic structure of the PMFG is a series of 3-cliques. For a set of

vertices there are various representations that this underlying series of 3-cliques can

form (see Section 4.2). A set of three 3-cliques joined by the shared edges of a fourth

3-clique will form a 4-clique between a group of four vertices. [Aste et al. (2005b)]

discusses that there must be strong relations between the properties of these 4-cliques

and the ones of the system from which the cliques have been generated. [Tumminello

et al. (2005)] state ‘...normalizing quantities are ns − 3 for 4-cliques and 3ns − 8
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for 3-cliques. Although we lack a formal proof, our investigations suggest that these

numbers are the maximal number of 4-cliques and 3-cliques, respectively, that can be

observed in a PMFG of ns elements.’ As well as looking at the average correlations

within the cliques and whether the cliques are from one sector or cross-sector we also

consider the ratio between the number of cliques that have formed to the maximum

number of cliques that could form. For this, [Tumminello et al. (2005)] used the

normalizing quantities that have been mentioned above. This chapter provides the

formal proof that 3n − 8 and n − 4 are indeed the maximum numbers of 3-cliques

and 4-cliques possible in a PMFG and also an alternative construction algorithm.

4.1 Relational Definitions and Notations

Here we introduce some key terminology that is needed for the proof. Let G be a

planar graph, i.e. a graph that can be embedded in the plane in such a way that the

edges of G will only intersect at the end points (the vertices of G). The planar graph

divides the plane into faces, with each face bound by a simple cycle of G. The num-

ber of edges in this boundary is the degree of the face. The planar representations

of G are all possible isomorphic embeddings of G in the plane.

A triangulation of a closed surface is a simple graph, one that does not contain self-

or multiple-edges, which is embedded into the surface so that each face is a triangle

and that two faces meet along at most one edge. A planar graph is maximal if it is

triangulated because if a face has more than three edges we can add a diagonal edge.

A PMFG is a triangulation of a sphere. Within this thesis we shall denote Pn as a

maximal planar graph with n vertices.
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A chord is an edge connecting two vertices of a cycle, which is not included in the

cycle itself. For a graph Pn, a cycle of length k (k ≥ 3) is called a k-cycle, denoted

Ck. A cycle C is a pure chord-cycle if the interior of C contains no vertices and all

of the interior faces of C are triangles. If each of the cycles of four or more vertices

within a graph has a chord then the graph is called a chordal graph. A wheel graph,

denoted Wn, is a graph with n ≥ 4 formed by connecting a single vertex to all other

vertices of an (n− 1)-cycle.

4.1.1 Diagonal Flips

Consider two triangular faces which share a common edge and form a quadrilateral,

(see Figure 7). [Negami (1994)] defines a diagonal flip of an edge as replacing the

existing common edge with a new edge between the other two vertices. A diagonal

flip is only possible if the resulting quadrilateral does not contain any multiple edges.

Figure 7: A quadrilateral ABCD is formed by the two adjoining triangles ABC and ACD
which share a common edge (A,C). If we perform a diagonal flip the edge (A,C) is replaced
by the edge (B,D).
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4.1.2 Surface Triangles and Separating 3-Cycles

As a result of Kuratowski’s Theorem [Kuratowski (1930)], we know that the PMFG

allows cliques up to a maximum size of four vertices (the maximum number consid-

ered in this thesis). The 3-cliques can take the form of triangles on the surface (a

pure chord-cycle of length 3 that forms a face of the PMFG) or a separating 3-cycle

(a 3-cycle where both the interior and exterior of C3 contain one or more vertices).

Figure 8 shows this in more detail.

Figure 8: This PMFG with 6 vertices highlights the two possible 3-cliques. Vertices A,C,D
form a 3-clique and they outline a triangle on the surface. Vertices A,B,E also form a 3-
clique however they do not outline a surface triangle but rather the edges enclose 3 surface
triangles which share common edges. A,B,E forms a separating 3-cycle.

The faces bounded by a cycle of edges are called finite faces whereas the unbounded

face (ABC in Figure 8) is called the infinite face. As the PMFG is a triangulation

of the sphere this unbounded infinite face will also form a triangle.

In Section 4.3.2 we will study the maximum number of 3-cliques possible in a PMFG,

however we begin by studying the maximum number of triangles on the plane (i.e.
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the maximum number of faces). To do this we use the Handshaking Lemma and

Euler’s formula (see Appendix E). For the remaining of this section let G(V,E) be

a simple, undirected, finite planar graph.

Proposition 1. Let G be a PMFG with n vertices, e edges and f faces. Then have

e = 3n− 6 and f = 2n− 4.

Proof. Since G is planar and deg(vi) ≥ 2,

f∑
i=1

deg(fi) = 2e.

Since G is a triangulation, deg(fi) = 3⇒ 3f = 2e.

We can substitute into Euler’s formula and obtain the following,

n− 3

2
f + f = 2

f = 2n− 4 (7)

and similarly,

n− e+
2

3
e = 2

e = 3n− 6. (8)

So for a PMFG we see that the maximum number of these surface triangles is 2n−4.
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4.2 Representations of Each Maximal Planar Graph

In this section the various representations of planar graphs are presented, which are

used to achieve the main results shown in Section 4.3.

Using the relationship between the number of edges and the sum of the vertex de-

gree we can calculate the maximum sum of all vertex degrees for a PMFG with n

vertices. By considering all combinations of the possible degrees of each vertex we

can see what embeddings would be possible and, from these, which would be planar

graphs. The following worked example shows this more clearly.

Example 1. Take G(V,E) where |V | = 8 then we know e = 3n − 6 = 18 and so∑8
i=1 deg(vi) = 2e = 36.

Then each vertex can have a degree value from the set {3, 4, 5, 6, 7} due to the

restrictions that each vertex can be joined to all other vertices at most once (the

PMFG does not allow for multiple edges) and the degree of each vertex must be at

least 3. From this set there are 27 possible combinations that would give the total

degree sum of 36 and from these combinations 13 would produce a planar graph.

Graphs that have the same combination of vertex degrees and are isomorphic to

each other are known as planar representations and they will have the same number

of 3-cliques (denoted C3) and 4-cliques (denoted C4), (see Figure 9). It is possible

however to have graph structures with the same combination of vertex degrees that

are not isomorphic, (see Figure 10).
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Figure 9: PMFGs with n = 8 and deg[vA, vB, vC , ..., vH ]=[7, 5, 5, 5, 4, 4, 3, 3]. These
graphs are isomorphic and have C3 = 16 and C4 = 5.

Figure 10: Both graphs have deg[vA, vB, vC , ..., vH ]=[6, 6, 5, 5, 4, 4, 3, 3] however they are
not isomorphic and so are not planar representations of a single graph. Furthermore, they
have different numbers of C3 and C4 with the graph shown in Panel (a) having C3 = 16,
C4 = 5 and the graph shown in Panel (b) having C3 = 14, C4 = 2.

4.2.1 Standard Spherical Triangulation Form

We now consider how these different embeddings relate to each other using the idea

of diagonal flips, as introduced by [Negami (1994)].

In 1936 Wagner proved that any two triangulations of the sphere can be transformed

into each other by a finite series of diagonal flips (see also [Bose & Verdonschot

(2012)]). Although this does not hold for surfaces in general it has been shown to

be true for triangulations of the torus, projective plane and Klein bottle. [Negami
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(1994)] generalised the result from [Wagner (1936)],

Theorem 1 (Negami, 1994). For any closed surface F 2, there exists a positive

integer N such that two triangulations G and G′ of F 2 are equivalent to each other

under diagonal flips if |V (G)| = |V (G′)| ≥ N .

In the case of the PMFG, the triangulation of the sphere, N = 4.

Lemma 1. Any maximal graph with n vertices, n ≥ 4, can be transformed to the

standard spherical triangulation (or normal form), (see Figure 11), using a series of

diagonal flips.

(For proof please refer to [Ore (1967)], Chapter 1).

From n ≥ 4, the degrees of each vertex in the standard spherical triangulation are

as follows:

deg[v1, v2, v3, v4, ..., vi, ..., vn−1, vn] = [n− 1, n− 1, 4, 4, ..., 4, ..., 3, 3].

Figure 11: A maximal graph with n vertices in the standard spherical triangulation.
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4.3 Main Results

4.3.1 Generating Maximal Planar Graphs

In 1891 Eberhard proposed a system in which a combination of a set of three opera-

tions could generate all possible maximally (filtered) planar graphs. We begin with

the complete graph K4 and then choose a generating operation, ϕ1, ϕ2, ϕ3, from the

operation set, Φ. Each generating operation adds a new vertex to the graph. This

system is denoted as 〈K4; Φ = {ϕ1, ϕ2, ϕ3}〉.

For ϕ1, ϕ2, ϕ3 begin by deleting all of the chords of a pure chord-cycle Ck with length

k = (3, 4, 5), respectively. Then add a new vertex inside C, which is connected to

all vertices of C so that a wheel subgraph is created. Figure 12 shows how a pure

chord-cycle transforms under each Eberhard operation.
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Figure 12: Panel (a) - The first Eberhard operation, ϕ1, Panel (b) - The second Eberhard
operation, ϕ2, Panel (c) - The third Eberhard operation, ϕ3. (Presented in [Eberhard
(1891)]).
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Example 2. For P6 two of the five possible representations are planar:

Figure 13: Panel (a) Standard spherical triangulation form, with C3 = 10, C4 = 3 and
Panel (b) the alternative form, with C3 = 8, C4 = 0.

Figure 14: The transformation of K4 to P5 using Eberhard operation ϕ1.

Both of the graphs shown in Figure 13 can be generated using a series of Eberhard’s

operations, starting with K4.

We first generate P5 from the complete graph K4. There is only one representation

of P5 that is planar (shown in Figure 14). Then we can generate P6 from P5, by using

any of the three operations from Φ. In P5 there are five pure chord-cycles of length

3 which are as follows: (A, B, E), (B, D, E), (B, C, D), (A, C, D) and (A, D, E). For
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ϕ1 we add a vertex to the interior of one of the above pure chord-cycles which we

join to the three edges of the cycle to create a wheel subgraph and a representation

of P6. Note that all C3 in P5 will generate P6 in the standard spherical triangulation

form, (see Figure 15).

Figure 15: The transformation of P5 to P6 using Eberhard operation ϕ1.

In P5 there are four pure chord-cycles of length 4, all with one chord edge, which

are as follows: (A, C, B, D), (A, B, D, E), (A, C, D, E) and (B, C, E, D). For ϕ2

we select one of these pure chord-cycles and start by deleting the chord edge. Then

we add a vertex to the interior which we join to the four edges of the cycle to create

a wheel subgraph and a representation of P6. Using ϕ2 can generate P6 in both

standard spherical triangulation form and the alternative form, depending on which

pure chord-cycle is chosen, (see Figure 16).
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Figure 16: The transformation of P5 to P6 using Eberhard operation ϕ2.

The final option is to use ϕ3 and the one pure chord-cycle of length 5 (A, C, B, D,

E). This has two chord edges (A,D) and (C,D) which will be removed before adding

a new vertex to the interior. This is then joined to each of the five vertices in the

cycle to produce P6 in standard spherical triangulation form, see Figure 17.

Figure 17: The transformation of P5 to P6 using Eberhard operation ϕ3.
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4.3.2 Maximum Number of 3- and 4- Cliques

Using the Eberhard operations to generate maximal planar graphs we can find the

maximum number of 3-cliques that will be added during each iteration of the con-

struction algorithm and so consequently the maximum number of 3-cliques that is

possible in Pn.

Now the maximum number of 3-cliques is shown using Theorem 2.

Theorem 2. Let Pn be a maximal planar graph with n vertices, n ≥ 3. Then the

maximum number of 3-cliques, Cmax
3 , that are possible is Cmax

3 (Pn) = 3n− 8.

Proof. With each Eberhard operation there is a new vertex added and also a certain

number of 3-cliques – ϕ1 adds three new 3-cliques whereas ϕ2 and ϕ3 both add two

new 3-cliques. Therefore the maximum number of 3-cliques that can be added is

three and so we can say that:

Cmax
3 (Pn) ≤ C3(K4) + 3(n− 4), (9)

where (n− 4) is the number of Eberhard operations required to construct Pn. As we

know that the number of 3-cliques in K4 is always 4 we can simplify (9) and obtain

Cmax
3 (Pn) ≤ 4 + 3n− 12 = 3n− 8.

So the maximum number of 3-cliques possible in Pn, C
max
3 = 3n− 8.

We can apply a similar argument to obtain the maximum number of 4-cliques in

Pn.

Theorem 3. Let Pn be a maximal planar graph with n vertices, n ≥ 3. Then the

maximum number of 4-cliques, Cmax
4 , that are possible is Cmax

4 = n− 3.

60



Proof. With each Eberhard operation there is a new vertex added, however only ϕ1

adds one new 4-clique, neither ϕ2 and ϕ3 add any new 4-cliques.

Therefore the maximum number of 4-cliques that can be added is one and so we can

say that:

Cmax
4 (Pn) ≤ C4(K4) + (n− 4), (10)

where (n− 4) is the number of Eberhard operations required to construct Pn. As we

know that the number of 4-cliques in K4 is always 1 we can simplify (10) and obtain

Cmax
4 (Pn) ≤ 1 + n− 4 = n− 3.

So the maximum number of 4-cliques possible in Pn, C
max
4 = n− 3.

4.3.3 3- and 4-Cliques in the Standard Spherical Triangulation Form

As discussed in Section 4.2 there can be various representations of a graph and the

number of 3-cliques that form between the vertices will depend on the structure of

the graph. The minimum number of 3-cliques that will form in a PMFG with n

vertices = 2n − 4 as it will be equal to the number of surface triangles, including

the vertices that form the infinite face (as shown in Proposition 1). From Eqn. (9)

we now have an expression for the maximum number of 3-cliques that can form

in a PMFG. We now show that the standard spherical triangulation form always

contains the maximum number of 3-cliques. When a maximal planar graph is in

standard spherical triangulation form we have two types of 3-cliques – firstly those

formed by surface triangles and secondly those that enclose 3 surface triangles which

share common edges (as shown in Figure 8) which form between a vertex and the

two vertices with degree n− 1. We call these two forms of triangles surface triangles

and enclosing triangles respectively.
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Theorem 4. For a maximal graph with n vertices in the standard spherical trian-

gulation form the number of C3 = 3n− 8 and the number of C4 = n− 3.

Proof. Number of C3 in the standard spherical triangulation form = (number of

surface triangles) + (number of enclosing triangles) - (unbounded face)

= (2n − 4) + (n − 3) − 1 = 3n − 8. Note that the number of enclosing triangles is

equal to what we have shown to be the maximum number of C4.

4.4 Summary

In this chapter, we have analysed the structure and properties of maximally filtered

graphs, with particular focus on Planar Maximally Filtered Graphs (PMFGs). These

graphs are an important tool in filtering information from complex networks and

by studying the basic structure of these graphs we can gain some insight into the

underlying system which has generated the network.

As a result of Kuratowski’s Theorem we know that the PMFG allows cliques up to

a maximum of four vertices and so the basic structure of a PMFG, which we have

considered in this chapter, is a series of 3- and 4-cliques. We have discussed the pos-

sible formation of 3-cliques: triangles on a surface and separating 3-cycles as well as

possible representations of each maximal planar graph. To do this, we calculated the

maximum sum of all vertex degrees for a PMFG with n vertices and considered the

combinations of the possible degrees of each vertex so that we could see the possible

embeddings.

We used the generating operations proposed by Eberhard to construct these maxi-

mal planar graphs and have proven that the maximum number of 3-cliques that can

exist in a maximal planar graph with n vertices is 3n− 8 and the maximum number
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of 4-cliques that can exist is n− 3, where the number of vertices n ≥ 4. This is true

for when a maximal planar graph is constructed using the PMFG algorithm.

Finally, we have shown how any maximal planar graph can be transformed to a stan-

dard spherical triangulation form retaining the original number of vertices and edges

and that this structure will always contain the maximum number of 3- and 4- cliques.
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5 Visibility and Horizontal Visibility Graphs

In this chapter, we consider ways of mapping between the time series and complex

networks so that we may use analysis techniques well established within Network

Theory ([Newman (2010)] and [Easley & Kleinberg (2010)]) as a useful tool for

characterising time series. The networks created inherit properties from the time

series so by studying the networks we reveal nontrivial information about the time

series itself.

[Zhang & Small (2006)] discussed a method for creating complex networks from

pseudoperiodic time series, where each repeated cycle is a single vertex in a network.

An edge would connect two of these vertices if the phase space distance between the

cycles, corresponding to the vertices is less than a chosen value D. Alternatively, a

linear correlation coefficient ρ between two cycles could be used, where two cycles

with a larger temporal correlation would be close in phase space. [Lacasa et al.

(2008)] expanded upon this idea and introduced the Visibility Algorithm, a method

which can be applied to different time series, not only pseudoperiodic. The algorithm

creates a Visibility Graph (VG) by assigning a vertex to every datum point in the

time series, keeping the same temporal order. Vertices are joined with an edge if

‘visibility’ exists between the vertices. This algorithm was further developed by

[Luque et al. (2009)] to form the Horizontal Visibility Algorithm – a subgraph of the

original Visibility Graph (VG) and as such a geometrically simpler algorithm and

more analytically tractable.

5.1 Construction Methods and Results

Within this section we present the formal construction algorithms and also a graph-

ical example for clarity.
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5.1.1 Original Algorithm

The visibility algorithm is a fast and simple computational method that converts a

time series into a Visibility Graph, which inherits some properties of the series in its

structure [Lacasa et al. (2008)].

Formal Construction. Let {xa}a=1,...,N be a time series of N data. Two arbitrary

data values (ta, xa), (tb, xb) will have visibility (and consequently their corresponding

vertices will be connected in the associated graph) if any other data (tc, xc) which

lies between them, that is for any ta < tc < tb, satisfies:

xc < xb + (xa − xb)
(
tb−tc
tb−ta

)
.

Consider a representation of a time series as a bar chart, where each datum is rep-

resented by a bar and the height of this bar takes its value from the times series

(keeping the same chromatic order). Two datum points are ‘visible’ if a straight

line can be drawn between the bars without intersecting any other bar. Their cor-

responding vertices in the associated visibility graph, where every point in the time

series is represented with a vertex, are then connected with an edge. Visibility of two

vertices is dependent on the height of the bars (or data) and the distance between

them. The example shown in Figure 18 gives further details. A bar chart is created

for the sample time series (0.698, 0.269, 0.597, 0.178, 0.422, 0.881, 0.030) and two

bars are connected if the data are visible e.g. datum point (3, 0.597) and datum

point (6, 0.881) are connected as all data points between them ((4, 0.178) and (5,

0.422)) satisfy the above criteria. The corresponding vertices in VG are connected

with an edge.
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Figure 18: An example of a VG constructed from the time series: 0.698, 0.269, 0.597,
0.178, 0.422, 0.881, 0.030. A bar chart is created, the visible data are connected and the
corresponding VG is shown underneath.

5.1.2 Adapted Algorithm

A modification to the above algorithm leads to the Horizontal Visibility Graph, a sub-

graph of the visibility graph with a geometrically simpler visibility criterion [Luque

et al. (2009)].

Formal Construction. Let {xa}a=1,...,N be a time series of N data. Each datum of

the series is assigned a vertex in the horizontal visibility graph (HVG). Two vertices

a and b, representing data xa and xb, are connected if the following geometrical

criterion is fulfilled:

xa, xb > xc for all n such that a < c < b.

So again consider a representation of a time series as a bar chart, where each datum
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is represented by a bar and the height of this bar takes its value from the times series.

If a horizontal line can be drawn between two bars of this chart, without intercepting

another bar, then the two data represented are connected. An associated HVG, where

every point in the time series is represented with a vertex, has two vertices that are

connected if visibility exists between the corresponding data. The example shown in

Figure 19 gives further details.

 

Figure 19: An example of a HVG constructed from the time series: 0.698, 0.269, 0.597,
0.178, 0.422, 0.881, 0.030. A bar chart is created, the visible data are connected using
horizontal lines and the corresponding HVG is shown underneath.

5.2 Properties and Proven Results for HVGs

Both visibility and horizontally visibility graphs will always be connected (each ver-

tex is always connected to at least its nearest neighbours) and invariant under affine

transformations of the series data (if the series is rescaled horizontally (time) or ver-

67



tically (values) it will not change the resulting VG or HVG. The same applies for

translation of data). Due to the nature of the construction algorithm, any graphs

produced will be undirected. There has been some work on directed HVGs in [La-

casa et al. (2012)] where the degree of the vertex i is separated into an indegree

(edges linking vertex i with other past vertices) and outgoing (edges linking vertex i

with other future vertices). As the algorithm absorbs transformation, two time series

that differ only by the affine transformations will have the same adjacency matrix

and so the same visibility graph. As a result some information from the time series

is lost when it is converted to the network structure, hence the algorithm being a

form of data reduction. See [Luque et al. (2009)] for further details, including how a

weighted adjacency matrix is used so that the weights determine the height difference

and the resulting graphs differ.

These networks can reflect certain properties of the time series. For example, if we

create a visibility graph for a periodic time series then the network will inherit the

regularity of the time series and as such will be a regular network (with repeated

motifs). The degree distribution is formed by a finite number of peaks related to the

series period. By similar reasoning the algorithm also creates an exponential random

network from a stochastic times series. Large values refer to rare events and the time

distribution of these events is exponential, therefore we expect the tail of the degree

distribution to be exponential. And finally scale-free network form from a fractal

time series. Examples of these are shown in [Lacasa et al. (2008)].

This is a relatively new area of research but some results for the visibility and

horizontal visibility graphs have been proven in the literature.
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Theorem 5 (Mean Degree of Periodic Series). The mean degree of a HVG

associated to an infinite periodic series of period T (with no repeated values within a

period) is:

k̄(T ) = 4
(
1− 1

2T

)
.

(Please refer to [Nuñez et al. (2012)] for proof).

Theorem 6 (Degree Distribution). For a bi-infinite sequence of independent,

identically distributed random variables extracted from a continuous probability den-

sity, the degree distribution of its associated HVG is:

P (k) = 1
3

(
2
3

)k−2
for k = 2, 3, 4.

(Please refer to [Luque et al. (2009)] for proof).

As a consequence of Theorem 5 and 6, it has been shown that all HVGs have a

mean degree 2 ≤ k̄ ≤ 4 where a constant series would give the lowerbound of 2 and

an aperiodic series would give the upperbound 4.

Theorem 7 (Mean Degree of Random Series). From the previous results we

can see that:

k̄ =
∑
kP (k) =

∞∑
k=2

k
3

(
2
3

)k−2
= 4.

As well as the mean degree, there have been results proven for the clustering coef-

ficient distribution for random time series.
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Theorem 8 (Local Clustering Coefficient Distribution). For a HVG associated

to a random series, a vertex with degree k has the clustering coefficient:

C(k) = 2
k

and the clustering coefficient distribution:

P (C) = 1
3

(
2
3

) 2
C
−2
.

(Please refer to [Luque et al. (2009)] for proof).

5.3 Applications of HVGs

Reviewing the literature on the family of visibility algorithms, most papers have

covered theoretical results for the algorithms and graphs but there have been some

applications, as discussed in the Introduction. To follow our work in Chapter 3,

the remainder of this chapter focuses on using the HVG to model time series from

financial markets, in particular stock price time series.

5.3.1 Using HVG to model stock price time series

We apply the HVG algorithm to a dataset of time series’ of daily closing stock prices,

adjusted for dividends and splits, of 18 DAX 30 stocks taken from 01/01/1973 -

16/03/2015, so n=11011 days (the data is taken from the earliest records on Thomson

Reuters Datastreama). The list of stocks and their ticker symbols are shown in

Table 6. From these time series’ we construct a HVG that will contain some useful

information about the underlying phenomena which is, in this paper, the stock price

fluctuations.
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Table 6: 18 chosen DAX 30 stocks and their ticker symbols.

Ticker Stock Ticker Stock

ALV Allianz HEI HeidelbergCement
BAS BASF LHA Deutsche Lufthansa

BAYN Bayer LIN Linde
BEI Beiersdorf MAN MAN

BMW BMW MUV2 Munich Re
CBK Commerzbank RWE RWE
CON Continental SDF K+S
DBK Deutsche Bank SIE Siemens

EOAN E.On TKA ThyssenKrupp

However, before we can model the time series with these graphs we must check that

the HV algorithm is appropriate for this task. First we ask whether two graphs

that are obtained from two series that differ only in sampling time have the same

structural properties? We consider the mean degree and clustering coefficient when

analysing the structural properties of a network.

We started by looking at samples of data that were not consecutive days but rather

took samples of increasingly fine granularity. For each time series we separated the

data into four series consisting of data taken every 4th day, with each series having a

different start date (n = 2753 or 2752) and also into two series consisting of data from

every other day: ‘even’ days (n=5505 days) and ‘odd’ days (n=5506) from the time

period 01/01/1973 - 16/03/2015. We then constructed a HVG for each of the six

time periods for each stock and calculated the metrics above. From these HVGs the

mean degrees were all between 3.1948 - 3.8594, and the clustering coefficient 0.2644

- 0.3770. These calculations were also repeated for the HVG representing each of

the full datasets (n=11011 days) and the mean degrees were all between 3.4903 and

3.7851 and the clustering coefficient 0.3175 - 0.3644 (please refer to Appendix F for

the full table).
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So this validates the hypothesis that the HVG approach to the considered stock

price series’ has some ‘physical’ sense and if we take coarse and fine resolutions of

the same time series, then their HVGs have similar structural properties.

Next, we considered smaller samples of the time series over consecutive days. To do

this we looked at the companies from the DAX 30 index (listed in Table 6) for two

time periods: the first from the beginning of 2008 through the end of 2009 and the

second from the beginning of 2010 through the end of 2011 as these include the dates

detailed in Section 3.3 – a period of crisis (7th October 2008 - 31st December 2008)

and a period of recovery (7th May 2010 - 3rd August 2010). As before the HVG

was constructed for each time period and the mean degree and clustering coefficient

calculated; the results for each metric are shown in Tables 7 and 8.

Stock Crisis Recovery Stock Crisis Recovery
ALV 3.7667 3.7965 HEI 3.7094 3.8081
BAS 3.6711 3.6967 LHA 3.8738 3.7198

BAYN 3.6979 3.8964 LIN 3.7285 3.7198
BEI 3.8317 3.8733 MAN 3.5985 3.6891

BMW 3.7820 3.6430 MUV2 3.8662 3.7927
CBK 3.6673 3.7236 RWE 3.8050 3.6891
CON 3.7476 3.7159 SDF 3.5641 3.7620
DBK 3.6902 3.7812 SIE 3.7323 3.7198

EOAN 3.6902 3.7735 TKA 3.7361 3.7620
Table 7: The mean degree of the HVG for the 18 stocks (labelled using their ticker symbols
for a period of crisis (2008 - 2009) and a periods of recovery (2010 - 2011)).
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Stock Crisis Recovery Stock Crisis Recovery
ALV 0.3899 0.3954 HEI 0.3772 0.3843
BAS 0.3966 0.3914 LHA 0.3886 0.3919

BAYN 0.3833 0.3802 LIN 0.3864 0.3917
BEI 0.3748 0.3744 MAN 0.3987 0.3919

BMW 0.3900 0.4003 MUV2 0.3970 0.3990
CBK 0.3993 0.3963 RWE 0.3868 0.3913
CON 0.3826 0.3957 SDF 0.3909 0.4003
DBK 0.3967 0.3955 SIE 0.3890 0.3885

EOAN 0.3838 0.3941 TKA 0.3932 0.3954
Table 8: The clustering coefficient of the HVG for the 18 stocks (labelled using their ticker
symbols for a period of crisis (2008 - 2009) and a periods of recovery (2010 - 2011)).

From these tables we can see the characteristics of the index and how the HVGs

of companies with similar characteristics have similar structural properties, at least

mean degree and clustering coefficient. There was little difference between the results

for the two different time periods, however the HVGs highlight the randomness of

the DAX 30 market. From Theorem 7 we know that a time series generated from a

random series will have a mean degree equal to the upperbound i.e. 4. We can see

from Table 7 that all mean degrees were between 3.5 and 3.9. This led us to consider

the degree distribution of the stocks in more detail.

5.3.2 Stocks: Random or Chaotic?

As discussed in the previous section, [Luque et al. (2009)] presented a theorem for

the degree distribution of a random time series:

For a bi-infinite sequence of independent, identically distributed random variables

extracted from a continuous probability density, the degree distribution of its asso-

ciated HVG is:

P (k) = 1
3

(
2
3

)k−2
for k = 2, 3, 4.
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The authors proposed that this theorem can be used to distinguish between random

series and chaotic series and used examples to demonstrate this, including a chaotic

series with noise pollution and a high dimensional chaotic series. For each of the

HVGs representing the full data set (n=11011 days) of 18 DAX 30 time series we have

calculated the degree distribution and plotted each of them against the theoretical

result given above on a semi-log plot. If the stock price follows the theoretical line

then the stock prices are random; if d(k) has a smaller variance then then the stock

prices move in a chaotic manner; otherwise they are stochastic. Figure 20 shows the

resulting plot.
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Figure 20: Graph showing the degree distribution for each stock from the full set of
n=11011 days along with the theoretical probability given by P (k) = (13)(23)k−2 as shown
by [Luque et al. (2009)].

From Figure 20 we can see that, despite the noise within the tail of the distribution,

the degree distribution plots for the stock prices falls below the theoretical line of
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P (k) meaning that the stock prices are correlated stochastic.

5.4 Summary

In this chapter we have introduced the family of visibility algorithms, namely the

visibility graph algorithm and the horizontal visibility graph algorithm. We have

discussed the construction algorithms for each graph and their properties such as

always connected and invariant under affine transformations. We then reviewed the

proven results from the literature and some applications. These theorems covered

the mean degree for the HVG associated to random and periodic series, and also the

distributions of the degree and clustering coefficients.

The main aim of this chapter was to show that the horizontal visibility graph al-

gorithm is a suitable method to map stock price time series to networks. We have

shown that whether we take coarse or fine samples from the time series or smaller

samples of consecutive days the HVG will capture some physical sense of the under-

lying time series. HVGs were constructed for two time series, based on the periods

of crisis and recovery presented in Chapter 3, and the mean degree and clustering

coefficient calculated. Although the results did not highlight a distinction between

the time series in a way that the networks from Chapter 3 did, they highlighted the

correlated randomness of the stocks. This was confirmed using the degree distribu-

tion and a proven result from [Luque et al. (2009)] that for a bi-inifinte sequence

of i.i.d random variables extracted from a continuous probability density, the degree

distribution of its associated HVG is P (k) = 1
3

(
2
3

)k−2
for k = 2, 3, 4.
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6 Conclusion

Network theory has been used to model a variety of complex systems from research

fields including biology, sociology and physics. An important area where network

theory has been applied is the study of financial systems and more specifically

econophysics, an interdisciplinary research field studying economics and financial

phenomena. There are several reasons for studying algorithms converting time series

into networks. The first is philosophical – we link two different representations of

complexity: temporal (time series) and spatial (networks). The second reason is

statistical – the algorithm that converts a time series into a network can be viewed

as a data reduction algorithm (continuous information is compressed into discrete).

Finally, the third reason is methodological – we bridge two different fields, Time

Series Analysis and Network Theory.

Within the third chapter of this thesis our aim was to bring together some of the

current work within the literature by creating various network models of the same

dataset. By doing so we could make a comparison of the current methods available,

gain a better understanding of how this field has developed and consider the ad-

vantages of the various methods. The dataset we used consisted of adjusted closing

stock price returns for companies who are members of the DAX 30 from 2001 - 2014.

This time period covered many economically significant dates including the start of

recessions and Government State aid plan’s. We created the same series of com-

plete networks and used the methods introduced in the literature to filter the most

relevant information from the complete networks using Minimum Spanning Trees

(MSTs), Asset Graphs (AGs) and Planar Maximally Filtered Graphs (PMFGs). We

then analysed the networks created considering the clusters and cliques created by
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the vertices (i.e. stocks), the edge lengths and also changes to the networks over

time. The MST reduces the complete network to the minimum connected structure

and can be used to show the hierarchical clustering of the stocks. The clusters that

form are often between stocks in the same economic sector. The AG separates the

complete network into components – generally complete cliques and unconnected

vertices. As with the clusters in MSTs, the cliques that formed tend to be from the

same economic sector. The PMFG combines these two methods by showing some

hierarchical clustering, as it will contain the corresponding MST and also highlight

the most connected stocks, as with the AG.

We have considered two time periods in detail – a period of crisis and of recov-

ery. Overall we can see that during the period of crisis the correlations decreased

throughout the time period and they were generally lower than during the time of

recovery. The AGs for the period of recovery had less unconnected stocks than the

period of crisis, although the stocks not included in the AGs for the first time period

seemed to show some companies that would be omitted from the DAX 30 during,

or soon after, the crisis time period. There were fewer clusters for the first time

period compared to the second time period – which contained clusters of stocks from

the same economic sectors. We note from the 4-clique analysis that the cliques that

formed in both time periods contained stocks from three or four different sectors,

rather than from one sector as in the literature and from our full time period.

We then focused on maximal planar graphs in Chapter 4 and have discussed pos-

sible embeddings of n-vertex triangulations, considering the various representations

that are possible and from these which would be planar and which would be isomor-
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phic representations. Within this thesis we considered cliques of 3 and 4 vertices

(the maximum size within a PMFG) and discussed the types of the 3-cliques that

could form (i.e. surface triangles and separating 3-cycles). We used the generating

operations proposed by Eberhard to present a different construction algorithm for

maximal planar graphs and have proven that the maximum number of 3-cliques that

can exist in a maximal planar graph with n vertices is 3n − 8 and the maximum

number of 4-cliques that can exist is n−3, where the number of vertices n ≥ 4. This

is true for when a maximal planar graph is constructed using the PMFG algorithm

presented in the literature. We have shown how any maximal planar graph can be

transformed to a standard spherical triangulation form retaining the original num-

ber of vertices and edges and that this structure will always contain the maximum

number of 3- and 4- cliques.

Throughout the research process we were presented with possible area’s of error. For

example with the comparison between networks, errors can occur when creating the

correlation matrices and calculating multiple simultaneous estimates. We addressed

this problem by including the Bonferroni correction parameter when constructing

the networks with FNA. We also applied Principal Component Analysis (PCA) to

control for any factors that could be affecting all correlations i.e. the general market

movements.

Finally, in Chapter 5 we have studied the family of visibility algorithms, namely

the visibility graph algorithm and the horizontal visibility graph algorithm. This is

a relatively new area of research and our aim was to investigate whether the visi-

bility algorithm would be a suitable method for mapping financial time series, such
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as stock prices, to a HVG. We have discussed the construction algorithms for each

graph, the proven results from the literature and some applications. We validated

the hypothesis that when the HVG approach is applied to a stock price time series’,

the resulting graph has some physical sense and if we take times series of increasingly

fine granularity, then their HVGs have similar structural properties.

We then considered smaller samples of consecutive days and constructed HVGs for

two datasets of stock price time series for 18 stocks belonging to the DAX 30, for

a time period that covered the periods of crisis and recovery presented in Chapter

3, calculating the mean degree and clustering coefficient of the graphs. Unlike the

networks from our earlier work, there was no clear distinction between the graphs

and the metrics calculated for the two time periods. A possible reason for this is that

the algorithm captures the trends within the time series dataset as a whole, identi-

fying changes in the individual time series (i.e. stock prices) rather than comparing

the individual time series’. It would be interesting to investigate other measures,

however these may need to be adapted for use with HVGs i.e. connectivity would

not be the same as with standard networks since a property of HVGs is that each

vertex is always connected to its neighbour.

There were also limitations with the datasets, in particular we questioned whether

the datasets used when generating visibility and horizontal visibility graphs were

of an adequate length. To this end, we will be considering high frequency data in

our future research. We would again investigate the two time periods (crisis and

recovery) and propose that there would be more variation in the calculations of the

metrics, showing some differences between the two time periods.
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The HVGs constructed for the two time periods did highlight the correlated ran-

domness of the stocks. This was confirmed using the degree distribution and a proven

result from [Luque et al. (2009)] that for a bi-inifinte sequence of i.i.d random vari-

ables extracted from a continuous probability density, the degree distribution of its

associated HVG is P (k) = 1
3

(
2
3

)k−2
for k = 2, 3, 4. We would like to continue with

this direction and consider the clustering coefficient distribution, applying the proven

result from [Luque et al. (2009)] that for a HVG associated to a random time series,

P (C) = 1
3
(2
3
)

2
C
−2. It has been shown that the mean degree for a HVG k ∈ [2, 4], can

a similar interval been proven for the clustering coefficient? Finally, we will use this

method to consider the hidden periodicity in the stocks. We would make use of a

result from [Nuñez et al. (2012)] who have proposed the HVG as an algorithm for

detecting periodicity in time series. Current algorithms can be classified in two cat-

egories: time domain and frequency domain. Nuñez et al. propose a third category,

graph theoretical methods, making use of HVGs.

Overall within this thesis we have investigated how the properties of complex net-

work theory can be used to explain and better understand financial markets and

used to study the economy as a whole. In particular we have concentrated on time

series of stock prices for companies belonging to the DAX 30. In the future we would

also extend our analysis to include other markets and compare the results with our

results from the DAX 30 dataset. This could include larger markets such as FTSE

100 but also emerging markets.
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Appendix A

Table 9: List of all stock symbols and the supersector, sector and subsector that the
company belongs to. The details of the various sectors can be found in Guide to the Equity
Indices of Deutsche Börse. Version 6.6, November 2008 (http://www.Deutscheboerse.com).

Ticker Company Supersector Sector Subsector

AAA Altana Basic Materials Chemicals Chemicals,

Specialty

ADS Adidas Consumer Consumer Clothing

Goods and Footwear

ALV Allianz FIRE Insurance Insurance

BAS BASF Basic Materials Chemicals Chemicals,

Specialty

BAYN Bayer Basic Materials Chemicals Chemicals,

Specialty

BEI Beiersdorf Consumer Consumer Personal

Goods Products

BMW BMW Consumer Automobile Automobile

Goods Manufacturers

CBK Commerzbank FIRE Banks Credit Banks

CON Continental Consumer Automobile Auto Parts and

Goods Equipment

DAI Daimler Consumer Automobile Automobile

Goods Manufacturers

DB1 Deutsche Börse FIRE Financial Securities

Services Brokers

Continued on next page
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Table 9 – Continued from previous page

Ticker Company Supersector Sector Subsector

DBK Deutsche Bank FIRE Banks Credit Banks

DGS Degussa Huls Basic Materials Chemicals Chemicals,

Specialty

DPB Deutsche FIRE Banks Credit Banks

Postbank

DPW Deutsche Post Industrials Transportation

and Logistics

Logistics

DRB Dresdner Bank FIRE Banks Credit Banks

DTE Deutsche

Telekom

Telecomms. Telecomms. Fixed-Line

Telecomms.

EOAN E.On Utilities Utilities Multi-Utilities

EPC Epcos Information Technology Electronic

Technology Components

and Hardware

FME Fresenius Pharma and Pharma and Healthcare

Medical Care Healthcare Healthcare

FRE Fresenius Pharma and Pharma and Healthcare

Care Healthcare Healthcare

HEI Heidelberg Industrials Construction Building

Cement Materials

HEN3 Henkel Consumer Consumer Personal

Goods Products

Continued on next page
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Table 9 – Continued from previous page

Ticker Company Supersector Sector Subsector

HNR1 Hannover Re FIRE Insurance Re-Insurance

HRE Hypo Real FIRE Financial Real Estate

Estate Services

HVB HypoVereinsbank FIRE Banks Credit Banks

IFX Infineon Information Technology Semiconductors

Technologies Technology

KAR KarstadtQuelle Consumer Retail Retail, Multiline

Services

LHA Deutsche Industrials Transportation Airlines

Lufthansa and Logistics

LIN Linde Basic Materials Chemicals Industrial Gases

LXS Lanxess Basic Materials Chemicals Chemicals,

Commodity

MAN MAN Industrials Industrial Industrial,

Diversified

MEO Metro Consumer Retail Retail, Multiline

Services

MLP MLP FIRE Financial Diversified

Services Financial

MRK Merck Pharma and Pharma and Pharmaceuticals

Healthcare Healthcare

MUV2 Munich Re FIRE Insurance Re-Insurance

Continued on next page
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Table 9 – Continued from previous page

Ticker Company Supersector Sector Subsector

RWE RWE Utilities Utilities Multi-Utilities

SAP SAP Information

Technology

Software Software

SCG Schering Pharma and Pharma and Pharmaceuticals

Healthcare Healthcare

SDF K + S Basic Materials Chemicals Chemicals,

Commodity

SIE Siemens Industrials Industrial Industrial,

Diversified

SZG Salzgitter AG Basic Materials Basic Resources Steel and Other

Metals

TKA ThyssenKrupp Industrials Industrial Industrial,

Diversified

TUI TUI Industrials Transportation

and Logistics

Transportation

Services

VOW3 Volkswagen

Group

Consumer

Goods

Automobile Automobile

Manufacturers
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Appendix B

From Eqn. (6), Section 3.2, we have Yi = ln price difference of a stock i. We

normalise this value as follows:

Ỹi ≡
Yi − 〈Yi〉√
〈Y 2

i 〉 − 〈Yi〉2
. (11)

For a time period of n days, we have an n-length time series of the daily price

differences. Consider this time series as an n-dimensional vector, Ỹi, consisting of

components Yik. The Euclidean distance between two vectors Ỹi and Ỹj can be

calculated as:

d2ij = ||Ỹi − Ỹj||2 =
n∑
k=1

(
Ỹik − Ỹik

)2
=

n∑
k=1

Ỹik
2

+
n∑
k=1

Ỹjk
2
− 2

n∑
k−1

ỸikỸjk

= n+ n− 2
n∑
k−1

ỸikỸjk

= 2

(
n−

n∑
k−1

ỸikỸjk

)
.

(12)

We now consider the last expression in this equation and show that this summation

is equivalent to nρij :

n∑
k−1

ỸikỸjk =
n∑
k−1

(
Yik − 〈Yi〉√
〈Y 2

i 〉 − 〈Yi〉2

) Yjk − 〈Yj〉√
〈Y 2

j 〉 − 〈Yj〉2


=

n∑
k−1

(YikYjk − Yik〈Yj〉 − Yjk〈Yi〉+ 〈Yi〉〈Yj〉)√
(〈Y 2

i 〉 − 〈Yi〉2)(〈Y 2
j 〉 − 〈Yj〉2)

.

(13)
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We consider the numerator (N) and denominator (D) of equation (13) separately as

follows:

N =
n∑
k−1

YikYjk −
n∑
k−1

Yik〈Yj〉 −
n∑
k−1

Yjk〈Yi〉+ n〈Yi〉〈Yj〉

=
n∑
k−1

YikYjk −
n∑
k−1

Yik

n∑
k−1

Yjk
n
−

n∑
k−1

Yjk

n∑
k−1

Yik
n

+ n〈Yi〉〈Yj〉

= n

n∑
k−1

YikYjk
n
−

(
n

n∑
k−1

Yik
n

)
n∑
k−1

Yjk
n
−

(
n

n∑
k−1

Yjk
n

)
n∑
k−1

Yik
n

+ n〈Yi〉〈Yj〉

= n〈YiYj〉 − n〈Yi〉〈Yj〉 − n〈Yj〉〈Yi〉+ n〈Yi〉〈Yj〉

= n(〈YiYj〉 − 〈Si〉〈Sj〉)

D =

√√√√(〈Y 2
i 〉 − 〈Yi〉2

)(
〈Y 2

j 〉 − 〈Yj〉2
)

=

√√√√(∑n
k−1 Y

2
ik

n
− 〈Yi〉2

)(∑n
k−1 Y

2
jk

n
− 〈Yj〉2

)

=

√√√√( n∑
k−1

Y 2
i

n
− n〈Yi〉2

n

)(
n∑
k−1

Y 2
j

n
− n〈Yj〉2

n

)

=

√√√√ n∑
k−1

(
Y 2
i − 〈Yi〉2

n

)
n∑
k−1

(
Y 2
j − 〈Yj〉2

n

)

=
√
〈Y 2

i − 〈Yi〉2〉〈Y 2
j − 〈Yj〉2〉

∴
N

D
=

n(〈YiYj〉 − 〈Yi〉〈Yj〉)√
〈Y 2

i − 〈Yi〉2〉〈Y 2
j − 〈Yj〉2〉

= nρij.
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So we can conclude that:

n∑
k−1

ỸikỸjk = nρij

and substituting this back into Eqn. (12) we can show that:

d2ij = 2

(
n−

n∑
k−1

ỸikỸjk

)
= 2(n− nρij)

= 2n(1− ρij)

∴ dij =
√

2n(1− ρij).

As we are interested in relative distances the absolute values of the distances is not

a concern and so for large values we can remove n from the above equation. This

leaves us with:

dij =
√

2(1− ρij).
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Appendix C

The following are the MST figures for the period of crisis from 7th October 2008 - 31st

December 2008. The vertices represent the various DAX 30 companies, labelled using

their stock ticker symbol (please see Appendix A). The edge length is determined by

the corr-distance so that shorter edges correspond to higher positive correlations and

the edges highlighted in orange are those identified as insignificant by the Bonferroni

correction. Following these figures are the tables to show the correlations of the AGs,

again for the period of crisis, listed by the order of their addition and the vertices

that the edge connects and then the graphically representations of the AGs. Note

that the AGs here show the correlations and not the distances so that they can be

compared with the correlations in the 4-clique analysis. The final figures are the

PMFGs for this time period, again the orange edges highlight those identified as

insignificant by the Bonferroni correction.

Figure 21: The minimum spanning tree for 7th October - 6th November 2008.
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Figure 22: The minimum spanning tree for 21st October - 20th November 2008.

Figure 23: The minimum spanning tree for 4th November - 4th December 2008.
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Figure 24: The minimum spanning tree for 18th November - 18th December 2008.

Figure 25: The minimum spanning tree for 2nd December - 31st December 2008.
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Edges Correlation Vertex Vertex Edges Correlation Vertex Vertex
1 0.9607 RWE EOAN 16 0.8848 RWE BAS
2 0.9426 SIE BAS 17 0.8847 SIE RWE
3 0.9314 SIE DAI 18 0.8838 LHA DBK
4 0.9167 SAP DAI 19 0.8777 LIN BAS
5 0.9129 DAI ALV 20 0.8742 EOAN DTE
6 0.9023 RWE DTE 21 0.8733 SAP RWE
7 0.9023 BMW ALV 22 0.8729 SAP MUV2
8 0.8960 DBK BMW 23 0.8689 RWE MRK
9 0.8952 SIE ALV 24 0.8653 SIE EOAN
10 0.8949 RWE DAI 25 0.8653 TKA BMW
11 0.8926 BAYN BAS 26 0.8644 TKA DBK
12 0.8893 EOAN DAI 27 0.8644 TKA MAN
13 0.8861 SIE SAP 28 0.8637 SIE LIN
14 0.8851 DAI BMW 29 0.8631 DAI BAS
15 0.8848 SIE MAN

Table 10: The edges that form the asset graph for 7th October - 6th November 2008.
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Edges Correlation Vertex Vertex Edges Correlation Vertex Vertex
1 0.9358 RWE EOAN 16 0.8521 SIE BAS
2 0.9262 DBK CBK 17 0.8505 MAN DBK
3 0.8841 SIE DAI 18 0.8498 EOAN ALV
4 0.8748 SAP RWE 19 0.8498 RWE LIN
5 0.8714 MAN BAS 20 0.8487 LHA DBK
6 0.8670 MAN DAI 21 0.8431 LIN HEN3
7 0.8638 SAP DB1 22 0.8400 TKA DBK
8 0.8632 SIE MAN 23 0.8393 RWE DAI
9 0.8629 SAP DAI 24 0.8387 LIN BAS
10 0.8629 SAP LIN 25 0.8385 RWE DTE
11 0.8624 DAI ALV 26 0.8382 SAP EOAN
12 0.8598 LIN EOAN 27 0.8379 SAP ALV
13 0.8596 EOAN DAI 28 0.8360 RWE ALV
14 0.8534 SAP HEN3 29 0.8289 EOAN DTE
15 0.8529 LHA CBK

Table 11: The edges that form the asset graph for 21st October - 20th November 2008.

Edges Correlation Vertex Vertex Edges Correlation Vertex Vertex
1 0.9458 DBK CBK 16 0.8903 SIE BAYN
2 0.9326 RWE EOAN 17 0.8894 EOAN ALV
3 0.9230 DBK ALV 18 0.8892 SDF MAN
4 0.9194 MAN DAI 19 0.8861 MAN DPW
5 0.9154 SIE DAI 20 0.8847 MAN CBK
6 0.9077 TKA MAN 21 0.8847 DAI BAYN
7 0.9046 MAN DBK 22 0.8843 HEN3 DAI
8 0.9026 SIE MAN 23 0.8816 DAI ADS
9 0.8981 BAYN ADS 24 0.8766 TKA CBK
10 0.8977 TKA DAI 25 0.8766 SAP RWE
11 0.8972 MAN BAS 26 0.8758 LHA ADS
12 0.8961 EOAN DBK 27 0.8744 DAI BAS
13 0.8949 DBK DAI 28 0.8741 EOAN DAI
14 0.8939 CBK ALV 29 0.8734 SIE ADS
15 0.8903 TKA SIE

Table 12: The edges that form the asset graph for 4th November - 4th December 2008.
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Edges Correlation Vertex Vertex Edges Correlation Vertex Vertex
1 0.9099 DBK ALV 16 0.8536 HEN3 DAI
2 0.9078 TKA LHA 17 0.8535 LHA DAI
3 0.9032 TKA DAI 18 0.8511 MAN DPW
4 0.9003 RWE EOAN 19 0.8494 SIE HEN3
5 0.8891 DPW DAI 20 0.8475 SIE LHA
6 0.8880 TKA DPW 21 0.8475 SIE DPW
7 0.8874 SIE DAI 22 0.8452 SIE BAYN
8 0.8752 TKA HEN3 23 0.8437 SIE MAN
9 0.8750 TKA MAN 24 0.8422 DAI BAS
10 0.8746 DBK CBK 25 0.8411 TKA SIE
11 0.8734 MAN DAI 26 0.8398 LHA DPW
12 0.8714 BMW BAS 27 0.8162 EOAN DAI
13 0.8635 DAI BAYN 28 0.8146 MAN LHA
14 0.8625 MRK DBK 29 0.8131 CBK ALV
15 0.8567 HEN3 DPW

Table 13: The edges that form the asset graph for 18th November - 18th December 2008.

Edges Correlation Vertex Vertex Edges Correlation Vertex Vertex
1 0.8409 TKA DPW 15 0.7654 BAS ALV
2 0.8230 TKA HEN3 16 0.7596 TKA SIE
3 0.8207 TKA BMW 17 0.7596 BMW BAS
4 0.8053 DPW DAI 18 0.7576 SIE HEN3
5 0.8039 DPW BAYN 19 0.7555 LIN DPW
6 0.8030 DAI BMW 20 0.7507 LHA DPW
7 0.8015 TKA LHA 21 0.7351 HEN3 DAI
8 0.7991 TKA LIN 22 0.7339 MAN DAI
9 0.7981 SIE DPW 23 0.7311 SAP DBK
10 0.7933 TKA MAN 24 0.7275 SDF RWE
11 0.7909 TKA BAS 25 0.7259 DAI BAS
12 0.7890 SIE DAI 26 0.7258 TKA BAYN
13 0.7868 TKA DAI 27 0.7183 LHA ALV
14 0.7801 DAI BAYN

Table 14: The edges that form the asset graph for 2nd December - 31st December 2008.
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Figure 26: The asset graph for 7th October - 6th November 2008.

Figure 27: The asset graph for 21st October - 20th November 2008.
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Figure 28: The asset graph for 4th November - 4th December 2008.
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Figure 29: The asset graph for 18th November - 18th December 2008.

Figure 30: The asset graph for 2nd December - 31st December 2008.
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Figure 31: The planar maximally filtered graph for 7th October - 6th November 2008.

Figure 32: The planar maximally filtered graph for 21st October - 20th November 2008.
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Figure 33: The planar maximally filtered graph for 4th November - 4th December 2008.

Figure 34: The planar maximally filtered graph for 18th November - 18th December 2008.
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Figure 35: The planar maximally filtered graph for 2nd December - 31st December 2008.
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Appendix D

The following are the MST figures for the period of recovery from 7th May 2010 - 3rd

August 2010. The vertices represent the various DAX 30 companies, labelled using

their stock ticker symbol (please see Appendix A). The edge length is determined by

the corr-distance so that shorter edges correspond to higher positive correlations and

the edges highlighted in orange are those identified as insignificant by the Bonferroni

correction. Following these figures are the tables to show the correlations of the

AGs, again for the period of recovery, listed by the order of their addition and the

vertices that the edge connects and then the graphically representations of the AGs.

Note that the AGs here show the correlations and not the distances so that they

can be compared with the correlations in the 4-clique analysis. The final figures are

the PMFGs for this time period, again the orange edges highlight those identified as

insignificant by the Bonferroni correction.

Figure 36: The minimum spanning tree for 7th May - 8th June 2010.
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Figure 37: The minimum spanning tree for 21st May - 22nd June 2010.

Figure 38: The minimum spanning tree for 4th June - 6th July 2010.
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Figure 39: The minimum spanning tree for 18th June - 20th July 2010.

Figure 40: The minimum spanning tree for 2nd July - 3rd August 2010.
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Edges Correlation Vertex Vertex Edges Correlation Vertex Vertex
1 0.9280 VOW3 DPW 16 0.8702 VOW3 SIE
2 0.9119 MUV2 ALV 17 0.8701 SIE MAN
3 0.9119 LIN ADS 18 0.8697 DBK ALV
4 0.9092 SIE DAI 19 0.8681 RWE MUV2
5 0.9055 SIE MUV2 20 0.8681 LIN DPW
6 0.8967 RWE EOAN 21 0.8678 IFX DPW
7 0.8929 SIE BAYN 22 0.8674 VOW3 IFX
8 0.8910 RWE DTE 23 0.8671 DPW ADS
9 0.8905 LIN DAI 24 0.8657 BAYN ADS
10 0.8875 DAI BAS 25 0.8651 VOW3 MAN
11 0.8860 VOW3 DAI 26 0.8638 SDF BAYN
12 0.8841 LIN BAS 27 0.8637 TKA SZG
13 0.8801 MAN BAYN 28 0.8631 SIE DPW
14 0.8783 MUV2 BAYN 29 0.8622 SIE ADS
15 0.8707 SIE ALV

Table 15: The edges that form the asset graph for 7th May - 8th June 2010.

Edges Correlation Vertex Vertex Edges Correlation Vertex Vertex
1 0.8833 MUV2 ALV 15 0.8027 TKA SIE
2 0.8667 SIE BAS 16 0.7994 TKA IFX
3 0.8641 BAYN BAS 17 0.7985 MAN HEN3
4 0.8634 IFX DPW 18 0.7920 DBK BAS
5 0.8539 DAI BMW 19 0.7852 LHA DPW
6 0.8520 TKA DPW 20 0.7814 EOAN ALV
7 0.8450 MUV2 DBK 21 0.7807 LHA DBK
8 0.8274 DBK ALV 22 0.7804 IFX BAS
9 0.8165 LHA IFX 23 0.7801 BAS ALV
10 0.8147 TKA BAS 24 0.7755 LHA BAYN
11 0.8126 MUV2 BAYN 25 0.7728 SDF BAYN
12 0.8120 MUV2 BAS 26 0.7676 DAI ADS
13 0.8047 DPW CBK 27 0.7662 VOW3 DAI
14 0.8027 IFX CBK 28 0.7595 DPW BAS

Table 16: The edges that form the asset graph for 21st May - 22nd June 2010.
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Edges Correlation Vertex Vertex Edges Correlation Vertex Vertex
1 0.9099 RWE EOAN 15 0.7843 HEN3 DAI
2 0.8878 MUV2 ALV 16 0.7807 SAP IFX
3 0.8537 DBK ALV 17 0.7799 LHA DBK
4 0.8371 TKA MEO 18 0.7771 TKA DB1
5 0.8258 TKA DPW 19 0.7768 SDF IFX
6 0.8176 MEO IFX 20 0.7766 SIE BAS
7 0.8107 MUV2 DPW 21 0.7757 VOW3 IFX
8 0.8084 DTE BEI 22 0.7756 IFX DPW
9 0.7988 VOW3 BMW 23 0.7704 IFX BAS
10 0.7968 LIN BAS 24 0.7703 SAP BEI
11 0.7940 LHA IFX 25 0.7697 DBK BAYN
12 0.7897 BAYN BAS 26 0.7684 TKA MAN
13 0.7890 DPW ALV 27 0.7668 EOAN DPW
14 0.7883 IFX DBK 28 0.7649 DB1 CBK

Table 17: The edges that form the asset graph for 4th June - 6th July 2010.
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Edges Correlation Vertex Vertex Edges Correlation Vertex Vertex
1 0.8839 DAI BMW 15 0.7749 MUV2 IFX
2 0.8834 MAN DAI 16 0.7675 TKA IFX
3 0.8667 IFX BAS 17 0.7663 DBK ALV
4 0.8522 MUV2 ALV 18 0.7657 CBK ALV
5 0.8012 SIE DBK 19 0.7656 BAS ALV
6 0.7976 TKA DB1 20 0.7652 IFX EOAN
7 0.7932 LHA IFX 21 0.7629 RWE DB1
8 0.7879 LIN BAS 22 0.7609 IFX DPW
9 0.7870 IFX ALV 23 0.7589 DPW DB1
10 0.7868 DB1 ALV 24 0.7507 IFX DB1
11 0.7851 MAN DPW 25 0.7504 VOW3 MAN
12 0.7830 LHA BAS 26 0.7496 BAYN BAS
13 0.7820 MAN IFX 27 0.7490 SIE ALV
14 0.7766 DB1 CBK 28 0.7472 SAP BAYN

Table 18: The edges that form the asset graph for 18th June - 20th July 2010.

Edges Correlation Vertex Vertex Edges Correlation Vertex Vertex
1 0.9396 RWE EOAN 16 0.7225 EOAN DBK
2 0.8462 FRE FME 17 0.7156 BAS ADS
3 0.8417 MUV2 ALV 18 0.7154 BEI BAS
4 0.8134 DAI BMW 19 0.7103 RWE IFX
5 0.7954 TKA HEI 20 0.7099 DTE BAYN
6 0.7736 BAS ALV 21 0.7098 RWE MUV2
7 0.7591 DBK CBK 22 0.7087 MUV2 BAS
8 0.7568 VOW3 MAN 23 0.7087 EOAN ALV
9 0.7553 RWE DBK 24 0.7074 SDF BAS
10 0.7504 CBK ALV 25 0.7057 BAYN BAS
11 0.7478 RWE ALV 26 0.7039 IFX DB1
12 0.7467 SIE BAS 27 0.7034 IFX ALV
13 0.7406 DPW CBK 28 0.6978 SIE ALV
14 0.7308 LIN BAS 29 0.6967 EOAN CBK
15 0.7308 MUV2 IFX

Table 19: The edges that form the asset graph for 2nd July - 3rd August 2010.
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Figure 41: The asset graph for 7th May - 8th June 2010.

Figure 42: The asset graph for 21st May - 22nd June 2010.
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Figure 43: The asset graph for 4th June - 6th July 2010.
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Figure 44: The asset graph for 18th June - 20th July 2010.

Figure 45: The asset graph for 2nd July - 3rd August 2010.
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Figure 46: The planar maximally filtered graph for 7th May - 8th June 2010.

Figure 47: The planar maximally filtered graph for 21st May - 22nd June 2010.
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Figure 48: The planar maximally filtered graph for 4th June - 6th July 2010.

Figure 49: The planar maximally filtered graph for 18th June - 20th July 2010.
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Figure 50: The planar maximally filtered graph for 2nd July - 3rd August 2010.
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Appendix E

Handshaking Lemma

Theorem 9 (Handshaking Lemma). Every finite, undirected graph has an even

number of vertices of odd degree i.e.

Let G(V,E) be a simple, non-directed finite graph. Then:

∑
v∈V

deg(v) = 2|E|.

Proof. Each edge is incident to exactly two vertices.

The degree of each vertex = number of edges to which it is incident.

∴ when we sum up the degrees of all vertices, we are counting all of the edges of the

graph twice.

Euler’s Formula

Theorem 10. Let G(V,E) be a finite, connected planar graph (drawn in its planar

representation) with |V | = n, |E| = e and f faces (including the unbounded face).

Then:

n - e + f = 2

Proof. Mathematical induction. If e = 0 then n = 1 and f = 1, so it is obvious the

formula is as required.

Assume true for all G(V,E) with |E| < e, where e ≥ 1. Suppose G(V,E) has e edges.

There are two options:

• G(V,E) is a tree. Then n = e+ 1 and f = 1 ∴ (e+ 1)− e+ 1 = 2 so formula

is as required.
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• G(V,E) is not a tree. Let m be an edge from a cycle ⊂ G and consider the

graph formed by removing edge m, graph G−m. The connected, planar graph

has n vertices, e − 1 edges and f − 1 faces ∴ by the induction hypothesis

n− (e− 1) + (f − 1) = 2 =⇒ n− e+ f = 2.
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Appendix F

Table 20: Mean degree (Mean Deg.) and Clustering Coefficient (Cluster.) for the HVG
created for each stock for four time periods taking data on every 4th day with n=2753 or
n=2752 for Set 4 (Set 1 beginning 01/01/1973, Set 2 beginning 02/01/1973, Set 3 beginning
03/01/1973 and Set 4 beginning 04/01/1973) and also the set of ‘even’ days (n=5505 days)
and ‘odd’ days (n=5506) for the time period 01/01/1973 - 16/03/2015.

Ticker Set n Mean Deg. Cluster.

ALV Full Set 11011 3.6767 0.3515

Set 1 2753 3.4844 0.3195

Set 2 2753 3.638 0.3497

Set 3 2753 3.7472 0.3687

Set 4 2752 3.8296 0.3743

Even Days 5505 3.7624 0.3639

Odd Days 5506 3.7588 0.3643

BAS Full Set 11011 3.7555 0.3578

Set 1 2753 3.7072 0.3472

Set 2 2753 3.722 0.3561

Set 3 2753 3.7468 0.3604

Set 4 2752 3.768 0.3695

Even Days 5505 3.8158 0.3714

Odd Days 5506 3.8111 0.3709

BAYN Full Set 11011 3.7635 0.3586

Set 1 2753 3.684 0.3466

Set 2 2753 3.724 0.3579

Set 3 2753 3.7964 0.3644

Set 4 2752 3.8164 0.3693

Continued on next page

121



Table 20 – Continued from previous page

Ticker Set n Mean Deg. Cluster.

BAYN Even Days 5505 3.8223 0.3701

Odd Days 5506 3.8198 0.3698

BEI Full Set 11011 3.4903 0.3175

Set 1 2753 3.1948 0.2644

Set 2 2753 3.4512 0.3088

Set 3 2753 3.6252 0.3336

Set 4 2752 3.76 0.3525

Even Days 5505 3.6338 0.3411

Odd Days 5506 3.6211 0.3376

BMW Full Set 11011 3.7125 0.3549

Set 1 2753 3.604 0.3361

Set 2 2753 3.6468 0.3518

Set 3 2753 3.7376 0.3599

Set 4 2752 3.794 0.3700

Even Days 5505 3.7791 0.3661

Odd Days 5506 3.7915 0.3682

CBK Full Set 11011 3.7317 0.3549

Set 1 2753 3.6776 0.3447

Set 2 2753 3.712 0.3499

Set 3 2753 3.7352 0.3527

Set 4 2752 3.76 0.3662

Even Days 5505 3.8027 0.3674

Continued on next page
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Table 20 – Continued from previous page

Ticker Set n Mean Deg. Cluster.

CBK Odd Days 5506 3.814 0.3661

CON Full Set 11011 3.6967 0.3496

Set 1 2753 3.6324 0.3359

Set 2 2753 3.6592 0.3462

Set 3 2753 3.672 0.3496

Set 4 2752 3.7188 0.3642

Even Days 5505 3.7762 0.3604

Odd Days 5506 3.7715 0.3614

DBK Full Set 11011 3.7851 0.3644

Set 1 2753 3.7136 0.3520

Set 2 2753 3.7564 0.3609

Set 3 2753 3.8004 0.3686

Set 4 2752 3.8208 0.3762

Even Days 5505 3.8325 0.3730

Odd Days 5506 3.8482 0.3751

EOAN Full Set 11011 3.7186 0.3565

Set 1 2753 3.6528 0.3394

Set 2 2753 3.6876 0.3535

Set 3 2753 3.734 0.3621

Set 4 2752 3.7648 0.3710

Even Days 5505 3.7795 0.3688

Odd Days 5506 3.773 0.3715

Continued on next page
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Table 20 – Continued from previous page

Ticker Set n Mean Deg. Cluster.

HEI Full Set 11011 3.5288 0.3190

Set 1 2753 3.2832 0.2729

Set 2 2753 3.3612 0.2887

Set 3 2753 3.5684 0.3300

Set 4 2752 3.7608 0.3582

Even Days 5505 3.6621 0.3374

Odd Days 5506 3.6756 0.3383

LHA Full Set 11011 3.6418 0.3368

Set 1 2753 3.466 0.3052

Set 2 2753 3.5688 0.3274

Set 3 2753 3.6904 0.3454

Set 4 2752 3.7792 0.3619

Even Days 5505 3.7475 0.3518

Odd Days 5506 3.7348 0.3527

LIN Full Set 11011 3.6676 0.3428

Set 1 2753 3.5436 0.3228

Set 2 2753 3.6248 0.3348

Set 3 2753 3.7004 0.3462

Set 4 2752 3.7684 0.3610

Even Days 5505 3.7544 0.3617

Odd Days 5506 3.7497 0.3619

Continued on next page
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Table 20 – Continued from previous page

Ticker Set n Mean Deg. Cluster.

MAN Full Set 11011 3.6999 0.3488

Set 1 2753 3.5728 0.3267

Set 2 2753 3.662 0.3446

Set 3 2753 3.7112 0.3607

Set 4 2752 3.7908 0.3669

Even Days 5505 3.7718 0.3593

Odd Days 5506 3.7792 0.3641

MUV2 Full Set 11011 3.5372 0.3321

Set 1 2753 3.2528 0.2793

Set 2 2753 3.4288 0.3191

Set 3 2753 3.6228 0.3518

Set 4 2752 3.8164 0.3687

Even Days 5505 3.6603 0.3497

Odd Days 5506 3.6669 0.3527

RWE Full Set 11011 3.6711 0.3484

Set 1 2753 3.5512 0.3257

Set 2 2753 3.6464 0.3427

Set 3 2753 3.718 0.3556

Set 4 2752 3.7576 0.3666

Even Days 5505 3.7504 0.3637

Odd Days 5506 3.7544 0.3622

Continued on next page
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Table 20 – Continued from previous page

Ticker Set n Mean Deg. Cluster.

SDF Full Set 11011 3.5979 0.3346

Set 1 2753 3.4884 0.3150

Set 2 2753 3.5684 0.3198

Set 3 2753 3.5752 0.3316

Set 4 2752 3.6656 0.3593

Even Days 5505 3.6923 0.3507

Odd Days 5506 3.6971 0.3523

SIE Full Set 11011 3.7822 0.3632

Set 1 2753 3.6976 0.3545

Set 2 2753 3.7316 0.3588

Set 3 2753 3.7884 0.3686

Set 4 2752 3.838 0.3716

Even Days 5505 3.8594 0.3744

Odd Days 5506 3.858 0.3770

TKA Full Set 11011 3.7305 0.3529

Set 1 2753 3.6112 0.3380

Set 2 2753 3.6808 0.3496

Set 3 2753 3.748 0.3565

Set 4 2752 3.8148 0.3678

Even Days 5505 3.806 0.3659

Odd Days 5506 3.8057 0.3657
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Appendix G

Here we present the FNA and Matlab codes used within the thesis.

FNA code for series of Minimum Spanning Trees. Creates a series of MSTs for DAX

30 data for a one year time period from 1st January - 31st December. There are 23

observations with a 10 day overlap:

1 r e s e tdb

2 b u i l d b y c o r r e l a t i o n −t ab l e < f i l e name . csv> −f i l t e r t r e e : gower

: t rue −s i g n i f i c a n c e 0 . 0 5 : bon f e r r on i −window 23:10

3 c o r r d i s t a n c e −p c o r r e l a t i o n −method gower −savep d i s t anc e

4 r a d i a l t r e e l a y o u t −p d i s t ance

5 v i z −v l a b e l v e r t e x i d −v f o n t s i z e : : : 1 5 −v s i z e : : : 5 −awidth

: : : 3 −a c o l o r s i g n i f i c a n t −arrow : f a l s e

FNA code for series of Planar Maximally Filtered Graphs. Creates a series PMFGs

for DAX 30 data for a one year time period from 1st January - 31st December. There

are 23 observations with a 10 day overlap:

1 r e s e tdb

2 b u i l d b y c o r r e l a t i o n −t ab l e DAX30 2008 . csv −f i l t e r pmfg : gower :

t rue −s i g n i f i c a n c e 0 . 0 5 : bon f e r r on i −window 23:10

3 v i z −v l a b e l v e r t e x i d −v f o n t s i z e : : : 1 5 −v s i z e : : : 5 −awidth

: : : 3 −a c o l o r s i g n i f i c a n t −arrow : f a l s e

Matlab code for constructing a Horizontal Visibility Graph from an Excel file con-

taining two columns: the ’Time’ column and ’Price’ column. We acknowldege and

thank Ashley Brereton for his work on this code.

1 clear a l l
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2 clc ; format compact ; format long e ;

3

4 b u f f e r =12;

5 Time = x l s r e ad (< f i l e name . x lsx ’> , ’ Sheet1 ’ , ’C2 :C ’ ) ;

6 Pr i ce=x l s r e ad (< f i l e name . x lsx ’> , ’ Sheet1 ’ , ’C2 :C ’ ) ;

7

8 l e n g t h o f t i m e=length ( Pr i ce ) ;

9 s e l f m a r k e r=zeros ( l eng th o f t ime , 4 ) ;

10

11 for i =1: l e n g t h o f t i m e

12

13 \%l o o k to the r i g h t

14

15 p l a c e s t o r i g h t=find ( Pr i ce ( i +1:end)>=Pr ice ( i ) , 1 , ’ f i r s t ’ ) ;

16

17 \% l o o k to l e f t

18

19 p l a c e s t o l e f t=i−find ( Pr i ce ( 1 : i −1)>=Pr ice ( i ) , 1 , ’ l a s t ’ ) ;

20 i f isempty ( p l a c e s t o l e f t )

21 p l a c e s t o l e f t =0;

22 end

23 i f isempty ( p l a c e s t o r i g h t )

24 p l a c e s t o r i g h t =0;

25 end

26
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27 s e l f m a r k e r ( i , 1 )=i−p l a c e s t o l e f t ;

28 s e l f m a r k e r ( i , 2 )=p l a c e s t o r i g h t+i ;

29 s e l f m a r k e r ( i , 3 )=i −1;

30 s e l f m a r k e r ( i , 4 )=i +1;

31

32 i f s e l f m a r k e r ( i , 4 )> l e n g t h o f t i m e

33 s e l f m a r k e r ( i , 4 ) =0;

34 end

35

36 i f s e l f m a r k e r ( i , 3 )==0

37 s e l f m a r k e r ( i , 3 ) =0;

38 end

39

40 i f ( s e l f m a r k e r ( i , 2 )− i )==0

41 s e l f m a r k e r ( i , 2 ) =0;

42 end

43

44 i f ( s e l f m a r k e r ( i , 1 )− i )==0

45 s e l f m a r k e r ( i , 1 ) =0;

46 end

47

48 end

49

50 r r i g h t=zeros ( l eng th o f t ime , b u f f e r ) ;

51
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52 r l e f t=zeros ( l eng th o f t ime , b u f f e r ) ;

53

54 for i =1: l e n g t h o f t i m e

55

56 i f i<l e ng th o f t ime −1

57 [ r 1 r i g h t , ˜ ] = find ( s e l f m a r k e r ( i +2:end , : )==i ) ;

58 r 1 r i g h t=r 1 r i g h t+i +1;

59 i f isempty ( r 1 r i g h t )

60 else

61 r r i g h t ( i , 1 : length ( r 1 r i g h t ) )=r 1 r i g h t ;

62 end

63 end

64

65 i f i>2

66 [ r 1 l e f t , ˜ ] = find ( s e l f m a r k e r ( 1 : i −2 , : )==i ) ;

67

68 i f isempty ( r 1 l e f t )

69 else

70 r l e f t ( i , 1 : length ( r 1 l e f t ) )=r 1 l e f t ;

71 end

72

73 end

74

75 end

76
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77

78 f u l l n e t w o r k 1 = [ r l e f t s e l f m a r k e r r r i g h t ] ;

79

80 for i =1: l e n g t h o f t i m e

81

82 connect ions ( i )=length ( find ( unique ( f u l l n e t w o r k 1 ( i , : ) ) ) ) ;

83 end

84

85 f u l l n e t w o r k=zeros ( l eng th o f t ime ,max( connect ions ) ) ;

86

87 for i =1: l e n g t h o f t i m e

88 dummy1=unique ( f u l l n e t w o r k 1 ( i , : ) ) ;

89 dummy=dummy1(dummy1>0) ;

90 f u l l n e t w o r k ( i , 1 : length (dummy) )=dummy;

91 end

92

93 c l e a r v a r s −except f u l l n e t w o r k connec t i ons l e n g t h o f t i m e <

f i l e > p r i c e Time

94

95 p=plot (Time , connect ions ) ;

96 set (p , ’ LineWidth ’ , 3 )

97 set (p , ’ Color ’ , ’ r ’ )

98 xlabel ( ’Time ’ )

99 ylabel ( ’ Connections ’ )
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The following code is used to transform the HVG codes generated by Matlab into

a format that can be uploaded to FNA.

1 N=l e n g t h o f t i m e ∗x \% x = \#columns in ’ f u l l n e t w o r k ’

2 c=Time

3

4 cc=c ( : , ones ( 1 0 , 1 ) )

5 f rom id=cc ( : )

6

7 FNA=zeros (N, 2)

8 FNA(: ,1 )= from id

9 FNA(: ,2 )= f u l l n e t w o r k ( : )

10

11 A = FNA(: ,2)==0

12 FNA(A, : ) = [ ]
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