

STATISTICAL DATA AND REPORTING GUIDELINES: IMPORTANT TO GET YOUR PAPER PUBLISHED

Graeme L. Hickey University of Liverpool & EJCTS / ICVTS

graeme.hickey@liverpool.ac.uk

CONFLICT OF INTEREST

None to declare

GUIDELINES

European Journal of Cardio-Thoracic Surgery 48 (2015) 180–193 doi:10.1093/ejcts/ezv168 Advance Access publication 12 May 2015

GUIDELINE

Cite this article as: Hickey GL, Dunning J, Seifert B, Sodeck G, Carr MJ, Burger HU et al. Statistical and data reporting guidelines for the European Journal of Cardio-Thoracic Surgery and the Interactive CardioVascular and Thoracic Surgery. Eur J Cardiothorac Surg 2015;48:180–93.

Statistical and data reporting guidelines for the European Journal of Cardio-Thoracic Surgery and the Interactive CardioVascular and Thoracic Surgery

Graeme L. Hickey^{a,b,c,*}, Joel Dunning^d, Burkhardt Seifert^e, Gottfried Sodeck^f, Matthew J. Carr^g, Hans Ulrich Burger^h and Friedhelm Beyersdorfⁱ on behalf of the *EJCTS* and *ICVTS* Editorial Committees

^a Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, The Farr Institute@HeRC, Liverpool, UK

^c Academic Surgery Unit, University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester, Manchester, UK

^d Department of Cardiothoracic Surgery, James Cook University Hospital, Middlesbrough, UK

- e Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
- f Department of Emergency Medicine, Medical University Vienna, Vienna, Austria
- ⁸ University of Manchester, Institute of Brain, Behaviour and Mental Health, Manchester, UK
- ^h Hoffmann-La Roche AG, Basel, Switzerland
- Department of Cardiovascular Surgery, Freiburg University Heart Center, Freiburg, Germany

* Corresponding author. Department of Epidemiology and Population Health, University of Liverpool, Institute of Infection and Global Health, The Farr Institute@HeRC, Waterhouse Building (Block F), 1-5 Brownlow Street, Liverpool L69 3GL, UK. Tel:+44-151-7958306; e-mail: graemeleehickey@gmail.com (G. Hickey).

Received 27 March 2015; accepted 2 April 2015

^b National Institute for Cardiovascular Outcomes Research (NICOR), University College London, London, UK

SUMMARY

Existing recommended guidelines [1] for data reporting were published in 1988!

- Currently 5 statistical consultants on the editorial board
- Guidelines developed based on experience of all consultants to make clear expectations to those submitting research, and highlight common errors

^[1] Guidelines for data reporting and nomenclature for The Annals of Thoracic Surgery. Ann Thorac Surg 1988;46:260–1.

STATISTICAL REVIEW PROCESS

Areas considered:

- I. Was there a clear study design and the objectives well formulated?
- 2. Were the statistical analysis methods clearly described?
- 3. Were the statistical methods appropriate for the study/data?
- 4. Were the data appropriately summarized?
- 5. Were the statistical results adequately reported and inferences justified?

I. EXISTING REPORTING GUIDELINES

TRANSPARENT REPORTING of SYSTEMATIC REVIEWS and META-ANALYSES

EJCTS Guidelines supplement existing reporting statements—not replace them!

I. STUDY DESIGN: CORE REQUIREMENTS

- Objective / hypothesis and type of study
- Data acquisition methods (incl. post-discharge follow-up)
- Inclusion and exclusion criteria
- Sample size rationale calculations should be reproducible
- Randomization and blinding (if relevant)
- Potential sources of bias \rightarrow statistical adjustment methods used

I. STUDY DESIGN: DEFINITIONS

• Explicitly define outcomes, e.g.

- '(Peri-)operative mortality' in-hospital or 30-day?
- Time origin for time-to-event variables surgery, randomisation, discharge, etc.?
- All-cause or cause-specific mortality?
- Use accepted definitions where available
 - E.g. valve [1] & TAVI [2]
- Avoid ambiguous or undefined study variables
 - E.g. 'normal' vs. 'abnormal' white cell count

 ^[1] Akins CW, et al. Guidelines for reporting mortality and morbidity after cardiac valve interventions. Eur J Cardiothorac Surg 2008;33: 523–8.
[2] Kappetein AP, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document (VARC-2). Eur J Cardiothorac Surg 2012;42:S45–60.

2. DESCRIPTION OF STATISTICAL ANALYSIS

- A description of statistical methods used, and when they were used
- Additional information request for advanced statistical methods
- Handling of missing data
- Phrasing and terminology, e.g. incidence vs. prevalence or multivariate vs. multivariable

2. DESCRIPTION OF STATISTICAL ANALYSIS: REGRESSION MODELS

- Inclusion of adjustment covariates
 - Univariable screening
 - Stepwise regression methods (details of algorithm required)
 - Covariates forced into model
 - All covariates included
 - Consideration to over-fitting and stability?
- Functional form of continuous covariates (e.g. transformations, dichotomization)

2. DESCRIPTION OF STATISTICAL ANALYSIS: PROPENSITY SCORE MATCHING

Limited guidance, but recommendations in literature [1] include:

- Evaluate balance between baseline variables using standardised difference, not just hypothesis tests
- Provide details of matching algorithms used (incl. caliper details, match ratio, with/without replacement) not just software!
- Lack of balance requires further iterations of propensity score model building (e.g. interaction terms) – don't stop at first attempt!
- Describe statistical methodology used to estimate treatment effects in the matched data

^[1] Austin, P. C. (2007). Propensity-score matching in the cardiovascular surgery literature from 2004 to 2006: a systematic review and suggestions for improvement. The Journal of Thoracic and Cardiovascular Surgery, 134(5), 1128–35.

3. APPROPRIATE METHODS

- Regression models should have assumptions checked, and if necessary be assessed using suitable diagnostics and goodness-of-fit tests
 - E.g. Proportional hazards assumption for Cox regression models
- Correct statistical model / methodology for data
 - E.g. using logistic regression when a Cox model should have been used
 - E.g. independent samples test for paired data
- Multivariable models should have an adequate event-per-variable ratio
 - E.g. fitting a logistic regression model with 7 covariates to data with 20 events and 1000 subjects using maximum likelihood would be inappropriate

3. PRESENTING DATA GRAPHICALLY

Anscombe's quartet *

- Same number of points
- Same Pearson sample correlation coefficient
- Same linear regression line fit
- Same marginal means and standard deviations

Present appropriate plots of your data when possible

^{*} Anscombe FJ. Graphs in statistical analysis. Am Stat 1973;27:17-21.

4. DATA REPORTING

- Include summary table of patient/surgical characteristics, stratified by treatment groups if a comparison study
- Location statistics (e.g. mean, median) should always be reported with appropriate measure of variability (e.g. median, IQR)
- Always report what summary statistics are reported
 - "average age was 65 years (41-79) years" is it mean and range, median and (1st, 3rd) quartiles?

4. DATA REPORTING: AVOIDABLE ISSUES

Table 1. Patient and operative characteristics data by CPB technique with statistical

comparison.

	Overall		On-pump		Off-pump				- Columns labeled
Total number	<i>n</i> =3	402	<i>n</i> =1173		n=2229				
Logistic EuroSCORE (%)	2.4 ± 2.5 61.7 ± 10.6		2.4 ± 2.8 61.1 ± 10.3		2.3 ± 2.3 61.9 ± 10.7		-8.1	0.965 0.026	Appropriate and consistent precision
Age (years)									
BMI (kg/m ²)	28.5 ± 4.6		28.7 ± 4.7		28.4 ± 4.5		6.1	0.090	— Units included
	N	%	N	%	N	%			
Female	880	25.9%	325	27.7%	555	24.9%	6.4	0.083	Number of subjects add up correctly
Preoperative AF	69	2.0%	28	2.4%	41	1.8%	2 .8	0.242	
Urgent	733	21.5%	271	23.1%	462	20.7%	5.7	0.119	
NYHA III/IV	645	19.0%	225	19.2%	420	18.8%	0.9	0.846	
History of neurological dysfunction	53	1.6%	25	2.1%	28	1.3%	6.8	0.070	Percentages correctly rounded

4. DATA REPORTING: CHARTS

- Statistical figures are for summarizing complex data
- Readers will be drawn to them, so make them intuitive, sensible and clear

5. RESULTS

- *P*-values alone \neq results \rightarrow effect sizes and confidence intervals
- <u>Full</u> regression models should be reported not just significant terms
- Details of any deviations from the planned study
- P-values and statistics reported to appropriate precision

5. RESULTS: PRESENTING PLOTS

5. DISCUSSION & CONCLUSIONS

- Association \neq causation
- *P*-values \neq probability null hypothesis is true
- Absence of evidence ≠ evidence of absence, e.g. P=0.60 only tells us there is insufficient evidence for an effect, which might be due to:
 - No effect being present
 - Large variability
 - Insufficient information in the data due to small sample size
- Statistical significance \neq clinical significance
- Study weaknesses should go beyond commenting on the sample size and observational data

CONCLUSIONS

- EJCTS & ICVTS Statistical and Data Reporting Guidelines inform authors on what statistical reviewers are looking for
- A well analyzed study allows reviewers to focus on what is important—the science!
- It is advised that a biostatistician be involved in the analysis
- Correct and well-reported (and correct) statistical analysis essential to getting your paper published!

ACKNOWLEDGEMENTS

Editorial Board Friedhelm Beyersdorf (Editor-in-Chief) Joel Dunning (Associate Editor) Judy Gaillard (Managing Editor) Franziska Lueder (Editorial Manager)

Assistant Editors (Statistical Consultants) Burkhardt Seifert Gottfried Sodeck Matthew J. Carr Hans Ulrich Burger Graeme L. Hickey

+ all other editorial members