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Abstract

We construct non-extremal as well as extremal black string solutions in

minimal five-dimensional supergravity coupled to vector multiplets using

dimensional reduction to three Euclidean dimensions. Our method does

not assume that the scalar manifold is a symmetric space, and applies as

well to a class of non-supersymmetric theories governed by a generaliza-

tion of special real geometry. We find that five-dimensional black string

solutions correspond to geodesics in a specific totally geodesic para-Kähler

submanifold of the scalar manifold of the dimensionally reduced theory,

and identify the subset of geodesics that corresponds to regular black

string solutions in five dimensions. BPS and non-BPS extremal solu-

tions are distinguished by whether the corresponding geodesics are along

the eigendirections of the para-complex structure or not, a characteriza-

tion which carries over to non-supersymmetric theories. For non-extremal

black strings the values of the scalars at the outer and inner horizon are

not independent integration constants but determined by certain func-

tions of the charges and moduli. By lifting solutions from three to four

dimensions we obtain non-extremal versions of small black holes, and find

that while the outer horizon takes finite size, the inner horizon is still

degenerate.
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1 Introduction

Black holes provide an important testing ground for ideas of quantum gravity.

In the context of string theory and supergravity BPS solutions have been studied

extensively since the discovery of the attractor mechanism [1] and of the quanti-

tative matching between microscopic and macroscopic entropy [2, 3, 4, 5]. It was
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realized early that many macroscopic features of BPS black holes, in particular

the attractor mechanism, do not strongly depend on supersymmetry and can be

understood as a consequence of the field equations [6]. More recently the study of

non-BPS solutions has received increasing attention starting with [7, 8], and the

attractor mechanism for general extremal black holes has been formulated using

the entropy function formalism [9]. The knowledge of non-extremal solutions

is more limited and less systematic, although many examples of non-extremal

black hole and black brane solutions in higher dimensions and in compactified

solutions have been known for quite some time [10, 11, 12, 13, 14, 15]. More

recently it has been observed that, like BPS and non-BPS extremal solutions,

some non-extremal solutions can be obtained by reducing the equations of mo-

tion to first order form [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. In this paper we

will further develop a complementary approach to non-BPS and non-extremal

solutions which aims at directly solving the second order field equations using

dimensional reduction and the special geometry of supergravity theories with

eight supercharges and their time-reduced (Euclidean) versions. The special

geometry of Euclidean supergravities has been developed in [26, 27, 28, 29],

and applied to extremal five-dimensional black holes [30], non-extremal five-

dimensional black holes [31, 32] and extremal four-dimensional black holes [33].

Our formalism does not assume that the scalar target space is a symmetric

space, but aims to exploit the fact that for vector multiplets all couplings are

encoded in a single homogeneous function, which is real in five dimensions and

holomorphic in four dimensions. In five dimensions one can consider models

with a degree of homogeneity different from three, which is the degree dictated

by supersymmetry, and thus obtain a generalization of the special real geometry

of five-dimensional vector multiplets [34], which was dubbed ‘generalized spe-

cial real geometry’ in [30, 32]. The non-supersymmetric theories covered by this

formalism allow one to make manifest which features of a supergravity theory

do not depend on supersymmetry per se, but on certain features of the scalar

manifolds which supersymmetric theories share with a larger class of theories.

The specific type of solution we investigate in this paper is magnetically
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charged black string solutions, both extremal and non-extremal, for five-dimensi-

onal supergravity and non-supersymmetric theories described by generalized

special real geometry. In five dimensions magnetic charges with respect to vec-

tor fields are carried by strings, so that black strings are the ‘magnetic partners’

of black holes, which only carry electric charges. For minimal five-dimensional

supergravity coupled to vector multiplets, BPS black string solutions were con-

structed in [35]. Like their electric BPS partners they exhibit attractor be-

haviour, and the Killing spinor equations give rise to generalized stabilization

equations which allow one to express solutions in terms of harmonic functions.

Static multi-centred BPS solutions can be obtained by choosing multi-centred

harmonic functions. More recently non-BPS extremal and non-extremal black

string solutions have been found using the FGK formalism [25, 24], which, fol-

lowing the observations of [6], employs an effective potential. In this paper we

approach the same problem using the formalism described above. Our main in-

terest is to understand the systematics and general properties of solutions. One

aspect is the relation between geodesic curves and totally geodesic submani-

folds of the scalar manifold M(3) of the three-dimensional Euclidean theory,

and solutions of the original five-dimensional theory. Dimensional reduction re-

duces the problem of finding the equations of motion to the problem of finding

harmonic maps from the reduced three-dimensional space-‘time’ (in our case a

Riemannian space with positive signature) into M(3) [36, 28]. Solutions can

sometimes be constructed by identifying suitable totally geodesic submanifolds

S ⊂ M(3), and then finding harmonic maps from the reduced space-time into

them. In terms of scalar fields corresponding to local coordinates, finding totally

geodesic submanifolds is equivalent to consistently truncating the equations of

motion by setting part of the scalar fields to constant values. Since we are in-

terested in black strings in this paper, we truncate out some of the degrees of

freedom of the five-dimensional theory from the start. We then show that the

manifold obtained by dimensional reduction to three dimensions takes the form

S = N ×R ⊂ M(3),
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where N is a para-Kähler manifold that can be identified with the cotangent

bundle T ∗M of a Hessian manifold M , which encodes the couplings of the

original five-dimensional theory. While we restrict ourselves to the submanifold

S relevant for black strings in this paper, the reduction of five-dimensional

supergravity without and with vector multiplets to three Euclidean dimensions

will be studied in depth in two companion papers [37, 29].

Single-centred black string solutions correspond to geodesic curves on S,

which are space-like for non-extremal and null for extremal solutions. In the ex-

tremal case one can also find multi-centred solutions which correspond to totally

geodesic, totally isotropic submanifolds. However, not all geodesics correspond

to regular black string solutions, and the question of which geodesics do is related

to the question of how many independent integration constants a general regular

black string solution depends on. We address this question using cases where

solutions can be obtained in closed form in terms of harmonic functions. While

this is always possible for BPS solutions in supergravity, and a distinguished

class of extremal solutions in non-supersymmetric theories, dubbed ‘BPS-type

solutions’, the required decoupling of the scalar equations does not happen au-

tomatically for non-extremal and non-BPS extremal solutions. Similar to the

case of five-dimensional black holes discussed in [31], we show that explicit non-

extremal (and, as well, non-BPS extremal) solutions can be obtained whenever

the scalar metric of the reduced three-dimensional theory admits a block decom-

position and thus is compatible with a constant charge rotation matrix. The

‘best case’, with a maximal number of independent non-constant scalar fields

expressible in terms of harmonic functions, are diagonal models, which include

the ST 2 and STU models of supergravity and a class of STU -like models of

non-supersymmetric theories. For these we find explicit solutions, which for the

ST 2 models have been derived previously using the FGK formalism [24]. We

use these explicit solutions to investigate which geodesics lift to regular black

string solutions. It turns out that the necessary boundary conditions ensuring

regularity at infinity and at the horizon always reduce the number of integration

constants by a factor of 1
2 . This resembles the attractor mechanism for extremal
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solutions, which is indeed recovered in the extremal limit. As in [31], where the

same behaviour was observed for five-dimensional black holes, we refer to this

phenomenon as the ‘deformed attractor mechanism’. We add for clarification

that for non-extremal solutions the behaviour of solutions at the horizon remains

dependent on the values of the scalars at infinity, so that there is no fixed-point

behaviour in the strict sense. However, there are no independent integration

constants related to the horizon values of the scalars. Moreover, the values of

the scalars at the outer and inner horizon depend on simple functions of the

charges and moduli which we dub ‘horizon charges’.

We also investigate extremal solutions, where we observe that there exists a

distinguished class of solutions which corresponds to null geodesic curves evolv-

ing along the eigendistributions (‘eigendirections’) of the para-complex structure

of N . This type of extremal solution exists in both supersymmetric and non-

supersymmetric theories, and in supersymmetric theories these are precisely the

BPS solutions. Therefore we refer to them as ‘BPS-type solutions’. They re-

quire certain restrictions on the signs of the magnetic charges. In particular, for

models where the scalar manifold is given by inequalities of the form hI > 0,

all magnetic charges must either be positive or negative. A second, ‘non-BPS-

type’ of solution can be constructed explicitly if a charge rotation matrix with

certain properties exists in the given model. Geometrically such solutions cor-

respond to null geodesic curves which do not evolve along the eigendistributions

of the para-complex structure. In supersymmetric models these solutions are

extremal, but not BPS. In models with scalar manifolds of the form hI > 0, such

solutions carry magnetic charges which are not all positive or all negative. For a

class of models which includes the ST 2 and STU models of supergravity, as well

as STU -like solutions of non-supersymmetric theories, we show explicitly that

charge rotation matrices giving rise to all possible choices of signs exist. For

generic models our observation explains geometrically why non-BPS extremal

solutions are harder to find than BPS solutions.

The structure of this paper is as follows. In Section 2 we briefly review black

string solutions in five-dimensional Einstein-Maxwell theory. In Section 3 we
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review the special real geometry of five-dimensional vector multiplets and carry

out the reduction of the relevant part of the theory to three dimensions. We

observe that the target manifold is the product of a para-Kähler manifold with a

one-dimensional factor. A short self-contained proof of the para-Kähler property

is relegated to Appendix A. In Section 4 we solve the three-dimensional Ein-

stein equations and observe that the three-dimensional line element is universal

and coincides with the reduced line element of a five-dimensional ‘Reissner-

Nordström string’. In Section 5 we solve the scalar field equations, while in

Section 6 we discuss the resulting five-dimensional non-extremal black string

solutions. In Section 7 we obtain extremal black string solutions and compare

BPS and non-BPS-type solutions. For the ST 2 and STU models we compare

our method to the FGK formalism used in [24, 25]. In Section 9 we present

the generalization to non-supersymmetric theories and uncover the relation be-

tween the BPS condition and eigendirections of the para-complex structure of

the scalar manifold. Our conclusions are given in Section 10. Appendix A con-

tains a short proof that the submanifold N ⊂ N × R = M(3) of the scalar

manifold of the reduced theory is para-Kähler.

2 Black strings in five-dimensional Einstein-

Maxwell theory

For reference we briefly review the basic black string solution of five-dimensional

Einstein-Maxwell theory, which might be viewed as a variant of the four-dimensi-

onal Reissner-Nordström solution. This solution is a special example of a

Reissner-Nordström type black brane solution, which exist in various dimen-

sions and which are reviewed, for example, in [24]. A RN (Reissner-Nordström)

type black string solution has an isometry group which contains a static time-

like Killing vector field and space-like translational Killing vector field which

commute with one another and with the transverse rotation group SO(3):

Isom ⊃ Rt ×Ry × SO(3).
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When using adapted coordinates (t, y, ρ, θ, φ), the line element can be brought

to the form [24]

ds2(5) = H−1(ρ)
[

−W (ρ)dt2 + dy2
]

+
H2(ρ)

W (ρ)

[

dρ2 +W (ρ)ρ2dΩ2
(2)

]

, (1)

where dΩ2
(2) is the line element of the round unit 2-sphere, and where

H = 1 +
p

ρ
, W = 1− 2c

ρ
.

The two parameters p, c are non-negative: p ≥ 0, c ≥ 0. The solution has an

outer horizon at ρ = 2c and an inner horizon at ρ = 0. To explore the region

inside the inner horizon one can choose different coordinates, see for example

[24], but the coordinate system above will be convenient later. For c = 0 one

obtains the extremal limit where both horizons coincide, thus identifying c as the

non-extremality parameter. The second parameter p is related to the magnetic

charge of the black string. The non-vanishing component of the field strength

is

Fθφ ≃ ±p sin θ ,

which implies that the magnetic charge is p̃ = ±p. Observe that the mag-

netic charge can be positive or negative, whereas the parameter p must be

non-negative. For negative p the coefficients of the line element will have ad-

ditional zeroes and infinities, which correspond to naked singularities, see for

example [38]. We remark that the overall sign between the magnetic charge p̃

and the parameter p is not determined by the field equations, so that choosing

this sign is part of specifying the solution.

We finally recall that black string solutions are subject to an extremality

bound of the form

T ≥ Const|p̃| ,

where T is the ADM tension, see [38] for more details. For static BPS string

solutions in five-dimensional supergravity, this extremality bound is implied by

the BPS bound, which takes the form

T ≥ Const|Zm|,
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where Zm is the ‘magnetic central charge’ [39, 40, 35] of the string. As for black

holes, supersymmetric theories can also have extremal solutions which are not

BPS, i.e. solutions which satisfy the extremality bound but not the BPS bound.

In the following our goal is to construct non-BPS solutions, both non-

extremal and extremal, in five-dimensional supergravity with vector multiplets

and, more generally, five-dimensional Einstein-Vector-Scalar type theories where

the couplings are determined by ‘generalized special real geometry’ as defined

in [30, 31, 32]. As the solutions are in general non-BPS, we need to solve the full

field equations. This is done by dimensional reduction to three space-like dimen-

sions using the existence of two commuting Killing vector fields corresponding

to staticity and translations along the string. We then use the formalism of ‘gen-

eralized special geometry’ and exploit the fact that all couplings are encoded in

a single function, the Hesse potential.

3 Dimensional reduction

We begin with the action for minimal five-dimensional supergravity coupled to

some number, n
(5)
V , of vector multiplets [34]. In the conventions of [28], the

bosonic part of the action takes the form

S5 =

∫

d5x

[

√

ĝ

(

R̂

2
− 3

4
aij(h)∂µ̂h

i∂µ̂hj − 1

4
aij(h)F i

µ̂ν̂F j|µ̂ν̂

)

+
1

6
√
6
cijkǫ

µ̂ν̂ρ̂σ̂λ̂F i
µ̂ν̂F j

ρ̂σ̂Ak
λ̂

]

. (2)

Here µ̂, ν̂, . . . are five-dimensional Lorentz indices and i = 1, . . . , n
(5)
V + 1

labels the five-dimensional gauge fields. The scalars hi are understood to satisfy

the constraint

H(h) = cijkh
ihjhk = 1, (3)

which defines an n
(5)
V -dimensional submanifold H ⊂ M , where M is a real

manifold of dimension n
(5)
V + 1. The fields hi can be interpreted as coordinates

for M and as homogeneous coordinates for the hypersurface H.
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The symmetric, positive definite tensor field aij(h) appearing in the action

(2) is obtained by taking the second derivatives

aij =
∂2H̃

∂hi∂hj
, (4)

of the Hesse potential

H̃ = −1

d
logH. (5)

The tensor aij(h) defines a positive definite Hessian metric ds2M = aijdh
idhj

on M . One property of Hessian metrics which we use later is that the first

derivatives ∂kaij , and therefore also the Christoffel symbols of the first kind,

are totally symmetric in all three indices. We will also use that the metric

coefficients aij are homogeneous functions of degree −2 with respect to the co-

ordinates hi. Recall that a homogeneous function f(hi) of degree n satisfies the

Euler relation hi∂if = nf . The metric coefficients aij = ∂2
i,jH of a metric with

a Hesse potential H that is homogeneous of degree n are themselves homoge-

neous of degree n− 2. If one takes the Hesse potential H̃ to be proportional to

the logarithm of a homogeneous function H (of any degree), as in (5), then H̃

itself is not a homogeneous function. However, its kth derivatives (k > 1) are

homogeneous functions of degree −k and, in particular, the metric coefficients

of the corresponding Hessian metric (4) are homogeneous of degree −2.

While the vector couplings are given by restricting the tensor aij to the

hypersurface H = 1, the couplings of the physical (independent) scalars are

given by the pullback of aij toH. To make this explicit one can solve (3) in terms

of n
(5)
V independent scalars, which then provide (inhomogeneous) coordinates for

H. For us it is more convenient to work with the dependent scalars hi for reasons

that will become clear later.

We remark that the formalism we use in the following only depends on the

fact that H is a homogeneous function, and not on the more specific condition

that it is a polynomial and has degree three. These additional conditions follow

from imposing that the theory is supersymmetric. By allowing a non-polynomial

function with degree of homogeneity different from three, one obtains a more
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general class of non-supersymmetric theories of vector and scalar fields (and

possibly fermions) coupled to gravity. The formalism of generalized special

geometry developed in [30, 31, 32] allows one to solve the field equations within

this larger class in precisely the same way as in supergravity. For concreteness

we will in the following focus on supergravity. The generalization to general

homogeneous H is however completely straightforward and will be discussed in

Section 9.

We are interested here in five-dimensional string-like solutions which are

static and magnetically-charged under the gauge fieldsAi
µ̂. As such our solutions

will admit one timelike and one spacelike isometry (along the direction of the

string) and so we can use the techniques of dimensional reduction over one

timelike and one spacelike direction to generate solutions.

In particular we impose that the line element takes the form

ds2(5) = −ǫ1e
2σ
(

dx0
)2 − ǫ2e

2φ−σ
(

dx4
)2

+ e−2φ−σds2(3), (6)

where the two as yet undetermined functions σ and φ only depend on the co-

ordinates of the reduced three-dimensional space with as yet undetermined line

element ds2(3). Our parametrization has been chosen such that σ and φ are the

Kaluza-Klein scalars of the dimensional reductions from the five-dimensional

to the four-dimensional Einstein frame, and from the four-dimensional to the

three-dimensional Einstein frame, respectively. The parameters ǫ1,2 take the

values −1 for reduction over a spacelike direction and +1 for reduction over a

timelike direction1. Note that we can take either x0 or x4 to be timelike. The

seemingly asymmetric treatment of {x0, x4} stems from the fact that we first

perform a reduction (taken to be either timelike or spacelike depending on the

sign of ǫ1) over x
0 and then a reduction over x4. Our parametrization allows us

to postpone the decision as to whether we first reduce over time and then over

space, or vice versa. While it will turn out that when restricting to those fields

which are non-trivial for black string solutions this choice is not relevant, the

1Note that in the case at hand we reduce over one timelike and one spacelike direction, so
will always take ǫ2 = −ǫ1. However, we leave the general case for convenience.
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distinction becomes relevant when considering all fields. This will be discussed

in a separate publication [37].

Furthermore, restricting ourselves to magnetic solutions leads us to impose

the ansatz for the gauge fields Ai
µ̂,

Ai
µ̂dx

µ̂ = Ai
µdx

µ, (7)

where xµ with µ = 1, 2, 3 are coordinates transverse to the string. In other

words, we set Ai
0 = Ai

4 = 0.

For this class of solutions, the resulting three-dimensional Euclidean action

is

S3 =

∫

d3x
√
g

[

R

2
− ĝij(y)∂µy

i∂µyj − (∂φ)2 + e−2φ−3σĝij(y)∂µsi∂
µsj

]

, (8)

where R is the three-dimensional Ricci scalar which does not give rise to local

dynamics.

The dynamical fields are the 2n
(5)
V +3 scalar fields (yi, si, φ), which have the

following five-dimensional origin: the scalars yi encode the degrees of freedom

of the original (constrained) scalars hi and the Kaluza-Klein scalar from the

five-to-four reduction, σ, via

yi = 6
1

3 eσhi,

and are therefore unconstrained; the scalar φ arises as the Kaluza-Klein scalar

in the reduction from four to three dimensions; the axions si are obtained by

dualizing the gauge fields Ai
µ after reduction to three dimensions. Finally, using

homogeneity we can express the metric aij in terms of the rescaled fields yi.

Including a constant overall factor we obtain [28]

ĝij(y) = −3

2

(

(cy)ij
cyyy

− 3

2

(cyy)i(cyy)j
(cyyy)2

)

= −1

4
∂2
yi,yj log

(

cklmykylym
)

. (9)

We note that this metric is Hessian, and homogeneous of degree −2. For

later use, we also note the identity ĝij(y)y
iyj = 3

4 ĝij(y).

The action (8) can be simplified by a further field redefinition

wi = e−φ− 3

2
σyi, ξ = φ− 3

2
σ,
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which gives

S3 =

∫

d3x
√
g

[

R

2
− ĝij(w)∂µw

i∂µwj + ĝij(w)∂µsi∂
µsj −

1

4
(∂ξ)2

]

, (10)

where we now take (wi, ξ, si) to be the dynamical fields. These fields parametrize

a (2n
(5)
V +3)-dimensional submanifold S of the full (4n

(5)
V +8)-dimensional man-

ifold M(3) which is obtained if all five-dimensional degrees of freedom are kept

and dualized into scalars. As we will show in separate publications [37, 29],

the full manifold M(3) is a para-quaternionic Kähler manifold. Here we restrict

ourselves to investigating the geometry of the submanifold S. The manifold S

is a totally geodesic submanifold of M(3), since it is obtained by solving the

equations of motion for 2n
(5)
V +5 out of 4n

(5)
V +8 scalars by setting them to con-

stant values. The fields which are truncated out are (i) three out of five degrees

of freedom of the five-dimensional metric, see (6), or, equivalently, the scalars

corresponding to the Kaluza-Klein vectors of the two reduction steps, and (ii)

2(n
(5)
V + 1) out of 3(n

(5)
V + 1) degrees of freedom of the five-dimensional vec-

tor fields, see (7), or, equivalently, the corresponding three-dimensional scalars.

The line element of the submanifold S takes the form

ds2S = ĝij(w)dw
idwj − ĝij(w)dsidsj +

1

4
(dξ)2 .

The metric on S is the product of a one-dimensional factor parametrized

by ξ and a 2(n
(5)
V + 1)-dimensional manifold N , which can be identified with

the cotangent bundle of the manifold M of the five-dimensional theory, N ≃
T ∗M . Moreover, since ds2M = ĝij(w)dw

idwj is a Hessian metric, it follows that

ds2N = ĝij(w)dw
idwj − ĝij(w)dsidsj is a para-Kähler metric on N , as we show

in Appendix A.

We next observe that for the subsector of fields relevant for black string

solutions the parameters ǫ1 and ǫ2 do not appear explicitly in the action (10).

Thus this subsector is manifestly insensitive to whether we first reduce over time

or over space. As we will discuss in [37], [29], this is different when the full set

of fields is considered.

For later reference, we list the relations between the three-dimensional fields
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and our original five-dimensional fields. Specifically,

ds2(5) = eξ+2σ
[

−ǫ1e
−ξ(dx0)2 − ǫ2e

ξ(dx4)2
]

+ e−2(ξ+2σ)ds2(3), (11)

for the metric, and

hi = eξ+2σwi, F i
µν = − 1√

2
ǫµνρĝ

ij(w)∂ρsj , (12)

for the remaining fields.

4 Solving the three-dimensional Einstein equa-

tions

We now turn our attention to the three-dimensional equations of motion coming

from the action (10). The Einstein equations (after taking a trace and back-

substituting) read

1

2
Rµν − ĝij(w)∂µw

i∂νw
j + ĝij(w)∂µsi∂νsj −

1

4
∂µξ∂νξ = 0. (13)

We will look primarily for solutions describing a single static black string

and which therefore possess spherical symmetry in the three-dimensional trans-

verse space. We remark that one could dispense with spherical symmetry when

considering extremal solutions, thus allowing for the possibility of multi-centred

solutions. While this is not the main focus of this work, we will come back to

this point later when we discuss extremal solutions.

Any spherically symmetric line element in 3 dimensions can be brought to

the form

ds2(3) = e4A(τ)dτ2 + e2A(τ)
(

dθ2 + sin2 θdϕ2
)

, (14)

where τ is a radial coordinate [22]. Spherical symmetry of the field configuration

then imposes that the scalar fields (wi, si, ξ) are independent of the angular

coordinates (θ, ϕ).

Plugging this ansatz into (13) with m,n 6= τ we find

1− e−2AÄ = 0, (15)
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where here Ẋ denotes differentiation with respect to τ . Multiplying (15) through

by 2e2AȦ we obtain
d

dτ
(e2A − Ȧ2) = 0,

which can be integrated to find

Ȧ2 = e2A + µ, (16)

for some integration constant µ. Taking the square root and multiplying through

by −e−A gives the differential equation

d

dτ
e−A =

√

1 + µe−2A, (17)

which can be solved to find an expression for eA(τ) provided we make a choice for

the sign of µ. If we choose the integration constant to be positive, µ = c2 > 0,

we obtain the general solution

eA(τ) =
c

sinh(cτ)
, (18)

where the real constant c is chosen positive, c > 0, for concreteness. We will see

later that solutions with c = 0 are well-defined and correspond to the extremal

limit, thus identifying c as the non-extremality parameter. Since (18) is mani-

festly invariant under c → −c, we do not need to consider c < 0. In solutions

with negative values µ < 0 of the integration constant the hyperbolic function

appearing in (18) is replaced by a trigonometric function. In this case the ‘ra-

dial’ coordinate τ is periodic, and such solutions cannot lift to asymptotically

flat black string solutions. We therefore discard solutions with µ < 0.

With this, the three-dimensional part of the metric (14) becomes

ds2(3) =
c4

sinh4(cτ)
dτ2 +

c2

sinh2(cτ)
dΩ2

2. (19)

Returning now to the remaining equations (13), namely those with m = n =

τ , we obtain

c2 − ĝij(w)ẇ
iẇj + ĝij(w)ṡiṡj −

1

4
ξ̇2 = 0. (20)

This relation is often called the Hamiltonian constraint. If one imposes spherical

symmetry at the level of the action and reduces the action to one dimension,
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this equation no longer follows from the variational principle and thus has to

be imposed as an additional condition. We instead obtained it as a field equa-

tion because we imposed spherical symmetry on the three-dimensional field

equations, and not on the action itself. The Hamiltonian constraint allows the

following interpretation in terms of the scalar manifold S. A spherically sym-

metric solution corresponds to a geodesic curve C on S, parametrized by τ , with

tangent vector (ẇi, ṡi, ξ̇). The Hamiltonian constraint implies that this tangent

vector has constant scalar product µ = c2 with itself. Therefore the radial

coordinate τ is an affine curve parameter. Moreover curves with µ = c2 > 0

are space-like while curves with c = 0 are light-like (null). We will see later

that geodesics with c2 > 0 satisfying appropriate boundary conditions lift to

non-extremal black string solutions, while geodesics with c2 = 0 lift to extremal

black string solutions. As we have seen above, space-like geodesics (µ < 0) do

not lift to black string solutions.

It is useful to introduce a new radial coordinate

ρ =
cecτ

sinh(cτ)
, (21)

which no longer corresponds to an affine coordinate on the geodesic curve C on

S.

In terms of ρ the line element (19) takes the form

ds2(3) = dρ2 +Wρ2dΩ2
2, (22)

where

W := 1− 2c

ρ
= e−2cτ , (23)

is harmonic in the three-dimensional transverse space. This is exactly the same

as the three-dimensional part of the line element of the standard five-dimensional

RN-type black string (1). Thus, as for five-dimensional black holes (see for ex-

ample [31]), the geometry of this three-dimensional part is universal and remains

the same when the solution is deformed by allowing a non-trivial profile for scalar

fields.
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We also observe2 that the range 0 < τ < ∞ of the ‘affine’ radial coordinate

τ corresponds to the range ∞ > ρ > 2c of the standard radial coordinate,

which covers the region between the asymptotically flat limit τ → 0 ⇔ ρ → ∞
and the outer horizon at τ → ∞ ⇔ ρ → 2c. As in [31] one can therefore

use the coordinate ρ to continue the solution to the region between the outer

horizon at ρ = 2c and the inner horizon ρ = 0. Given that we used dimensional

reduction over time it is clear that we should only expect to obtain a solution

valid up to the outer horizon, because the Killing vector field ∂t is not time-like

but space-like for 2c > ρ > 0. Thus in this region one would have to use a

dimensional reduction with respect to two space-like directions, leading to a

different auxiliary three-dimensional theory.

5 Solving the three-dimensional scalar equa-

tions of motion

We now turn to the equations of motion for the scalar fields (wi, si, ξ), which

by assumption of spherical symmetry only depend on the radial coordinate τ .

The equations of motion for these 2n
(5)
v +3 fields are of second order. Therefore

the general solution, which is guaranteed to exist at least locally, will depend

on 2(2n
(5)
V + 3) integration constants. Geometrically, solutions correspond to

geodesic curves on S and the integration constants correspond to the initial

position and initial ‘velocity’ (tangent vector). Since the norm-squared of the

tangent vector is fixed by the non-extremality parameter c, one integration

constant is determined by c. Equivalently, we can regard c as being determined

by the integration constants of the scalar equations.

Geodesics which lift to regular black string solutions need to satisfy specific

boundary conditions. This will reduce the number of independent integration

constants. For static solutions, irrespective of whether they are BPS or non-

BPS, we expect that solutions depend on 2n
(5)
V +1 integration constants, namely

the n
(5)
V + 1 magnetic charges and the initial values of the n

(5)
V physical scalar

2Here we anticipate that the following discussion is not modified by the presence of non-
constant scalar fields. This is justified by the discussion at the end of Section 6.
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fields at infinity. Due to the attractor mechanism, the values of the scalars at

the horizon are fixed in terms of the magnetic charges, and therefore the number

of integration constants in the second order equations of motion is reduced by

a factor of 1
2 . We will show that for certain models we can construct explicit

non-extremal solutions which depend on one additional parameter, namely the

non-extremality parameter c. The interpretation of the remaining integration

constants will be discussed in Section 6, where we lift three-dimensional solutions

to five dimensions.

5.1 The equation of motion for ξ

The equation of motion for ξ is the easiest to deal with. It reads ξ̈ = 0, which

is solved by

ξ(τ) = aτ + b ,

with two arbitrary constants a, b. However, there are additional conditions

which must be satisfied if the three-dimensional solution lifts to a regular five-

dimensional black string. Transverse asymptotic flatness of (11) implies that

e2σ and eξ must independently approach unity for τ → 0 ⇔ ρ → ∞. For ξ this

implies that we must choose b = 0 and hence we have ξ = aτ 3. Next, let us

look at the near-horizon geometry τ → ∞. In this regime, the three-dimensional

metric (19) behaves as

ds2(3) ∼ (2c)4e−4cτdτ2 + (2c)2e−2cτdΩ2
2 as τ → ∞,

so in this regime the full five-dimensional metric (11) will look like

ds2(5)hor ∼ e2σ(τ)+aτ
[

−ǫ1e
−aτ (dx0)2 − ǫ2e

aτ (dx4)2
]

+(2c)2e−4σ(τ)−2(a+c)τ
[

(2c)2e−2cτdτ2 + dΩ2
2

]

. (24)

The horizon of the black string has topology S2 × R. In order to have a

finite horizon size, both the metric coefficient of the “S2-factor” and of the “R-

factor”, must be finite. Looking at the coefficient of the dΩ2
(2)-term, we see that

3The required asymptotics of σ at infinity imposes conditions on the solutions for the other
scalar fields to which we will return later.
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we must require

2σ(τ) = 2σhor − (a+ c)τ as τ → ∞,

so that the line element becomes

ds2(5)hor = e2σhor−cτ
[

−ǫ1e
−aτ (dx0)2 − ǫ2e

aτ (dx4)2
]

+(2c2)e−4σhor

[

(2c)2e−2cτdτ2 + dΩ2
2

]

. (25)

Depending on whether we take x0 or x4 as the spatial coordinate along the

string, we then need to take a = −c or a = c to have a finite coefficient for the

dx0-term or dx4-term, respectively. This condition can be written in universal

form as a = ǫ1c, where ǫ1 = −1 = −ǫ2 corresponds to space-time reduction,

while ǫ1 = 1 = −ǫ2 corresponds to time-space reduction. The solution for ξ(τ)

is

ξ(τ) = ǫ1cτ. (26)

Note that the integration constants a, b have been determined in terms of the

non-extremality parameter c by imposing boundary conditions. Thus the num-

ber of independent parameters has been reduced by 2.

5.2 The equations of motion of si

We now move on to the equation of motion for the scalars si, which were ob-

tained by dualizing the three-dimensional gauge fields:

d

dτ

(

ĝij(w)ṡj
)

= 0.

Integrating, we find

ṡi = ĝij(w)p̃
j . (27)

In terms of the corresponding five-dimensional gauge fields we have

F i
θϕ = − 1√

2
p̃i sin θ , (28)

and therefore we will refer to the parameters p̃i as the magnetic charges carried

by the string. While further integrating (27) will introduce another n
(5)
V + 1
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integration constants, the metric is invariant under constant shifts of the si, and

therefore solutions where these integration constants are chosen differently are

related by isometries. From the five-dimensional point of view such solutions

are related by gauge transformations, and therefore we will not count these

integration constants as relevant parameters.

We note that, by substituting in (27), the Hamiltonian constraint (20) be-

comes
3

4
c2 − ĝij(w)

(

ẇiẇj − p̃ip̃j
)

= 0. (29)

This will be useful in the following.

5.3 The equation of motion of the wi

Finally, the equation of motion for the scalars wi reads, after making use of

(27),
d

dτ

(

ĝij(w)ẇ
j
)

− 1

2
(∂iĝjk(w))

(

ẇjẇk + p̃j p̃k
)

= 0. (30)

Using the fact that ĝij is Hessian, this becomes

ĝij(w)ẅ
j +

1

2
∂iĝjk

(

ẇjẇk − p̃j p̃k
)

= 0. (31)

Due to the explicit dependence on ĝij(w) and its derivatives, it is difficult to

solve this equation explicitly in a model-independent way. We will proceed as in

[31] and find a class of explicit solutions, which depending on the model might

even be the general solution, and which at least always contains a solution which

recovers the standard RN black string (with arbitrary charges but constant five-

dimensional scalar fields).

To obtain this class of solutions we contract (31) with wi. Using the fact

that ĝij is homogeneous of degree −2, we find

ĝij(w)
(

wiẅj − ẇiẇj + p̃ip̃j
)

= 0. (32)

Then, using (29) and the identity ĝij(w)w
iwj = − 3

4 , we arrive at the equa-

tion

ĝij(w)w
i
(

ẅj − c2wj
)

= 0. (33)
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This equation still contains ĝij(w) but we can obtain a class of universal,

model-independent solutions by setting ẅj − c2wj = 0, which results in4:

wi(τ) = Ai cosh(cτ) +
Bi

c
sinh(cτ), (34)

where Ai, Bi are constants. It remains of course to show that the full scalar

equation of motion (31) and the Hamiltonian constraint (29) are solved.

Substituting (34) into the Hamiltonian constraint (29) gives

ĝij
(

c2AiAj −BiBj + p̃ip̃j
)

= 0 .

Similarly, using ẅj − c2wj = 0 the full scalar equation of motion (31) becomes

1

2
∂kĝij

(

c2wiwj − ẇiẇj + p̃ip̃j
)

= 0 ,

and substituting in the explicit solution (34) gives

1

2
∂kĝij

(

c2AiAj −BiBj + p̃ip̃j
)

= 0 .

Thus both remaining equations impose relations between the integration con-

stants, which have to hold for each value of τ separately, because the relations

contain ĝij(w).

At this point any further analysis depends on the form of ĝij(w). For ‘di-

agonal models’, where ĝij and ∂kĝij are diagonal in (i, j), we can solve both

the Hamiltonian constraint and the scalar equation of motion by imposing the

n
(5)
V + 1 relations

c2(Ai)2 − (Bi)2 + (p̃i)2 = 0 . (35)

Thus we are left with 2n
(5)
V + 2 independent non-trivial integration constants

for the scalar equations of motion. Apart from fixing the integration constants

for ξ the number of integration constants for (wi, si) were reduced by a factor

of 1
2 , by discarding the irrelevant initial values of si and by imposing (35).

By later investigation of the resulting five-dimensional black string solutions

we will see that (35) can be viewed as a deformed version of the black hole

4The factors have been chosen for later convenience with regard to taking the extremal
limit.
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attractor mechanism, which determines half of the integration constants of the

five-dimensional scalars in terms of the magnetic charges. The diagonal models

include the ST 2 and STU models of five-dimensional supergravity and STU -

like models in non-supersymmetric theories constructed using generalized special

real geometry.

For non-diagonal models the ansatz (34) only yields solutions with a reduced

number of integration constants. In the most generic case, where ĝij and its

derivatives (when evaluated on the solution) do not allow a simultaneous block

decomposition, the only model-independent way to make the ansatz (34) work

is to impose the stronger condition

c2AiAj −BiBj + p̃ip̃j = 0 .

The additional off-diagonal relations can still be solved by imposing

Ai

Aj
=

Bi

Bj
=

p̃i

p̃j
,

but this has the effect that the ratios wi(τ)
wj(τ) are constant, so that all scalar

fields wi(τ) are proportional to one another. From the formulae given below it

will be clear that in this case the five-dimensional metric is just the one of the

standard RN-type black string. The physical five-dimensional scalars, which

can be chosen to be parametrized by the n
(5)
V independent ratios of the fields

wi, are constant for this universal solution.

In between these extremes are models where ĝij and ∂kĝij admit a simul-

taneous decomposition into k different blocks (k = 1 is the most generic in-

decomposable case discussed in the previous paragraph). For such models we

obtain k sets of non-proportional scalars wi. Thus for k > 1 the solutions

will admit k−1 > 0 independent non-constant five-dimensional scalars, and the

five-dimensional metric will be different from the standard RN-type black string

metric.

Furthermore, the ansatz (34) might still yield non-trivial solutions for inde-

composable scalar metrics, if one can restrict the solution to a totally geodesic
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submanifold of S, on which the metric becomes block-decomposable. Examples

of this phenomenon were observed in [33].

6 Non-extremal black string solutions

We now proceed to investigate the black string solutions obtained by the ansatz

(34). To prepare for this we rewrite (34) in terms of the new radial coordinate

ρ defined in (21):

wi(ρ) =

(

Ai +
pi

ρ

)

W− 1

2 := Hi(ρ)W− 1

2 . (36)

Here we have used the definition of the function W (ρ) given in (23), and

introduced pi := Bi − cAi. At this point it is convenient also to introduce the

quantity p̄i := pi + 2cAi. We will see later on that pi and p̄i are related to the

values of the scalar fields hi(ρ) at the inner and outer horizons respectively. We

also note for later reference that in terms of the charges pi, p̄i, p̃i the Hamiltonian

constraint takes the form

ĝij(p̃
ip̃j − pip̄j) = 0 .

We now express the solution in terms of five-dimensional quantities. Using

(12) and the hypersurface constraint (3), we see that

eξ+2σ = H(w)−
1

3 = H(H)−
1

3W
1

2 ,

so, using also (26) and (23), the five-dimensional metric (11) becomes

ds2(5) = H(H)−
1

3

(

−Wdt2 + dy2
)

+H(H)
2

3

(

dρ2

W
+ ρ2dΩ2

2

)

, (37)

where {t, y} are the time-like and space-like directions corresponding to the

worldvolume of the string. We note that this form of the solution is independent

of which order (space-then-time or time-then-space) we perform the reduction.

The metric (37) is a generalization of the standard RN black string metric, where

the single harmonic function H has been replaced by the function (H(Hi))1/3,

which depends on n
(5)
V + 1 harmonic functions Hi(ρ). The standard RN-type
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string is recovered when all these harmonic functions are proportional to one

another.

The (constrained) five-dimensional scalar fields are given by

hi(ρ) = H(H)−
1

3Hi(ρ). (38)

Transverse asymptotic flatness of the metric implies that H(H) → 1 for

ρ → ∞. Therefore the constant term Ai in the harmonic function Hi specifies

the value of the scalar hi at transverse infinity, Ai = hi
∞, and

Hi(ρ) = hi
∞ +

pi

ρ
.

The condition of transverse asymptotic flatness H → 1 can be written as

H(h∞) = 1 by taking the limit. This imposes one relation between the n
(5)
V +1

integration constants hi
∞. Obviously, this condition is precisely the hypersurface

constraint and takes into account the fact that there are only n
(5)
V independent

five-dimensional scalars for which we can impose boundary values at infinity.

One convenient way to parametrize the independent five-dimensional scalars is

to use n
(5)
V independent ratios, for example φx = hx

h0 = wx

w0 [31, 32].

To interpret the integration constants pi (equivalently Bi) we consider the

limits ρ → 2c and ρ → 0, which correspond to the outer and inner horizons

respectively. We see that, in these cases, the scalars hi(ρ) satisfy

hi −−−→
ρ→2c

(

H(p̄)(2c)−3
)− 1

3
p̄i

2c
= H(p̄)−

1

3 p̄i,

and

hi −−−→
ρ→0

(

H(p)ρ−3
)− 1

3
pi

ρ
= H(p)−

1

3 pi.

Here we use pi := Bi − cAi and p̄i := pi + 2cAi.

This is the same “dressed attractor behaviour” as noted in [31] for five-

dimensional black holes and motivates calling p̄i and pi the outer and inner

“horizon charges” respectively. It remains to clarify how these “horizon charges”

are related to the physical magnetic charges p̃i. To do this recall that the

magnetic charges are (the non-trivial half of) the integration constants of the
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scalars si and appear in the five-dimensional gauge fields as

F i = − 1√
2
p̃i sin θ dθ ∧ dϕ. (39)

As observed at the end of the previous section, the Hamiltonian constraint

takes the form

ĝij(w)
(

p̃ip̃j − pip̄j
)

= 0 . (40)

For diagonal models we solve this by imposing

(p̃i)2 − pip̄i = 0 , (41)

which is (35) expressed in terms of pi and p̄i = pi + 2chi
∞. This can be used to

express the horizon charges pi (and, hence, p̄i) in terms of p̃i, hi
∞ and c:

pi = −chi
∞ ±

√

(p̃i)2 + c2(hi
∞)2.

The sign is to be chosen such that the metric is regular outside the horizon5. We

have now identified the number and interpretation of the independent integra-

tion constants for solutions (34) for diagonal models. There are 2n
(5)
V + 2 inde-

pendent integration constants, namely n
(5)
V +1 magnetic charges p̃i, the n

(5)
V +1

constants hi
∞ which are subject to one constraint and encode the asymptotic

values of the n
(5)
V five-dimensional scalars at infinity, and the non-extremality

parameter c.

A priori, one might have expected n
(5)
V further integration constants, corre-

sponding to the initial velocities of the five-dimensional scalars at infinity, or,

equivalently, their values at the outer or inner horizon. However, these val-

ues are determined by the condition which generalizes the attractor mechanism

known from extremal black holes. While we do not have proper fixed point

behaviour, i.e. the values of the scalars at the horizons are not determined ex-

clusively by the charges, but also depend on their values at infinity, it is still

true that there are no independent integration constants related to the horizon

values, but rather they are determined by other data. This suggests that the

5We will come back to questions of regularity at the end of Section 6.
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solution can be obtained from a reduction of the scalar field equations to first

order form, similar to BPS equations. As discussed in [32] for the similar case

of five-dimensional black holes, the deformed attractor mechanism guarantees

that the physical scalar fields take finite values on the horizon.

Let’s now turn our attention to some further properties of the solution.

In order to explore the geometry near the outer horizon, we introduce the

variable u2 = ρ− 2c, and look at the region u2 ≈ 0. Then (37) becomes

ds2(5) =
2c

H(p̄)
1

3

dy2 +H(p̄)
2

3 dΩ2
2 +

2H(p̄)
2

3

c

(

du2 − c

2H(p̄)
u2dt2

)

. (42)

Introducing v2 = ρ and concentrating on the region v2 ≈ 0, we find that the

metric near the inner horizon takes the form

ds2(5) =
2c

H(p)
1

3

dt2 +H(p)
2

3 dΩ2
2 + 2

H(p)
2

3

c

(

−du2 +
c

2H(p)
u2dy2

)

. (43)

In both cases, the first two factors give an R × S2, with the size of the S2

determined by the horizon charges pi, p̄i, whilst the rest of the metric takes the

form of a two-dimensional Rindler space.

From these expressions we can read off that the entropy of the inner and

outer horizons are given, respectively, by

S− = πH(p)
2

3 , S+ = πH(p̄)
2

3 ,

whilst the temperatures associated to each horizon are

T− =

√
2c

4π
H(p)−

1

2 , T+ =

√
2c

4π
H(p̄)−

1

2 ,

which vanish as expected in the extremal limit. The combination

T±S
3

4

± =

√
2c

4
π− 1

4 ,

depends only on the non-extremality parameter.

The tension of the solution is

T =
1

2
cijkh

i
∞hj

∞p̄k,
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where we are using the normalization of [24].

We conclude our discussion by pointing out that in order to obtain regular

black string solutions one might need to impose further conditions in addition

to the restrictions that guarantee asymptotic flatness and a regular solution on

the horizon. The line element is modified compared to the standard RN black

string by replacing the single harmonic function H(ρ) by (H(Hi))1/3, which is a

rational function of several harmonic functions. Therefore it may happen that,

for some choices of integration constants, (H(Hi))1/3 takes the values zero or

infinity at finite ρ > 2c, generically resulting in a naked singularity even if the

behaviour at ρ → ∞ and ρ = 2c is regular. This phenomenon was studied

for five-dimensional BPS black holes and five-dimensional domain walls in [41]

and [38]. It was observed in particular that naked singularities can occur even

though the scalar fields take finite values within the scalar manifold along the

whole solution. For M-theory compactifications on Calabi-Yau threefolds naked

singularities cannot occur for domain walls and BPS black holes as long as the

scalar fields take values within the extended Kähler cone, which is the modified

scalar manifold relevant for M-theory [38]. However, apart from this there are

no model-independent results we are aware of. For the case at hand, we should

therefore add the condition that the integration constants (hi
∞, pi) have to be

chosen such that (H(Hi))1/3 does not have zeros or infinities for ρ > 2c, and, if

we want to continue the solution to the inner horizon, for ρ > 0. The existence

of such solutions is guaranteed because the standard RN black string is always

contained in our class of solutions. Sufficiently small deformations away from

this solution will not introduce zero or infinities for (H(Hi))1/3 and therefore

give rise to regular solutions with non-constant scalar fields. However, it cannot

be excluded without model-by-model investigation that large deformations away

from the RN black string lead to singular solutions.
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7 Extremal black strings

Extremal solutions can be obtained by either taking the limit c → 0 of non-

extremal solutions, or by directly solving the equations of motion for c = 0. To

illustrate the drastic simplification occurring in this limit, observe that for c = 0

the Hamiltonian constraint simplifies to

ĝij(ẇ
iẇj − p̃ip̃j) = 0 ,

which can be solved, for any ĝij , by

ẇi = pi = ±p̃i ,

so that the solution of (30) is simply

wi = Ai + piτ = hi
∞ +

pi

ρ
= Hi(ρ) .

Since W = 1 there is only one horizon, and the horizon charges are equal to one

another and, up to an overall sign, equal to the magnetic charges: pi = p̄i = ±p̃i.

Further simplified relations include ρ = 1
τ and ξ = 0.

At the horizon, the values of the scalars are determined by the charges

pi = ±p̃i:

hi → H(p)−1/3pi , for ρ → 0 .

This is the attractor mechanism for BPS solutions.

The ADM tension carried by an extremal string is

T =
1

2
cijkh

i
∞hj

∞pk,

where pk are the parameters appearing in the solution for the scalar fields, while

the magnetic central charge is [39, 40]

Zm = hi(∞)p̃i = cijkh
i
∞hj

∞p̃k ,

where p̃k are the magnetic charges.

Solutions where pi = ±p̃i saturate the supersymmetric mass bound

T ≥ 1

2
|Zm|,
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and are therefore BPS solutions. Promoting Zm to a space-time field by setting

Zm = hip̃
i, where hi = cijkh

jhk, one finds

Zm → 1

ρ2
cijk p̃

ip̃j p̃k =
1

ρ2
H(p̃),

so that the attractor mechanism takes the form

Zmhi → pi for ρ → 0 .

In general, only pi = ±p̃i is guaranteed to give a solution of the Hamiltonian

constraint and of the field equations. But further solutions arise whenever the

scalar metric ĝij (when evaluated on the solution) admits a non-trivial ‘charge

rotation matrix.’ This observation was made in the context of first order flow

equations [42, 43], but can be applied to the second order formalism used here

as previously in [30, 33]. A charge rotation matrix is a constant matrix which

relates the horizon charges pi and the magnetic charges p̃i by

p̃i = Ri
jp

j ,

and satisfies ĝijR
i
kR

j
l = ĝkl so that the Hamiltonian constraint (and the full field

equations (30)) is solved. Such solutions are extremal, i.e. have c = 0 and a

single horizon located at ρ = 1
τ = 0, but they are not BPS because T 6= 1

2 |Zm|.
For extremal solutions the assumption of three-dimensional spherical sym-

metry is not necessary, and by relaxing it we can obtain multi-centred solutions.

First note that for extremal solutions we have ξ = 0, so that the scalar ξ can

already be truncated out at the level of the action (10). In this case the tar-

get space of the three-dimensional theory reduces to the para-Kähler manifold

N = T ∗M . We can then proceed essentially as in [30], with the minor modi-

fication that there the para-Kähler manifold was TM , the tangent bundle of a

Hessian manifold M , rather than the cotangent bundle. Imposing the “extremal

instanton ansatz”

∂µw
i = Ri

j ĝ
jk(w)∂µsk,

the equations of motion for wi reduce to

∆wi = 0,
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where ∆ is the flat three-dimensional Laplacian. Taking the solutions to be

multi-centred Harmonic functions,

wi(~x) = Hi(~x) ≡ hi
∞ +

∑

n

pin
|~x− ~xn|

,

where ~x = (xµ) = (x1, x2, x3), we obtain static multi-centred black string so-

lutions with horizons located at ~xn in transverse space. The spherically sym-

metric solutions are recovered by restricting to solutions with one centre. The

near horizon asymptotics of each centre is the same as for the corresponding

single-centred solutions. We do not give any further details but refer to the

analogous case of black holes which was analysed in detail in [30].

7.1 Example: ST 2 model

We now choose a particular Hesse potential (3) describing the one-dimensional

special real manifold h0(h1)2 = 1. Since BPS and non-BPS black string solutions

for this model have already been discussed in [24], we keep the presentation brief,

with the main purpose of comparing our formalism to the FGK formalism used

there. In order for the hypersurface h0(h1)2 = 1 to be well-defined we must

take h0 > 0. There are then two disjoint patches in which h1 can take values,

namely {h1 > 0} and {h1 < 0}. Working out the associated metric ĝij , we find

ĝij =
1

4

(

(h1)4 0
0 2h0

)

.

It turns out that there are 4 possible “R-matrices” satisfying RT ĝR = ĝ,

namely R = ±R(σ), where

R(σ) =

(

1 0
0 σ

)

,

and σ = ±1.

For this model the ADM tension T is given by

6T = (h1
∞)2p0 + 2h0

∞h1
∞p1,

where p0, p1 are the horizon charges, while the magnetic central charge Zm is

given by

3Zm = (h1
∞)2p̃0 + 2h0

∞h1
∞p̃1,

30



where p̃0, p̃1 are the magnetic charges. Let us discuss the range of values that

the parameters hi
∞, pi, p̃i can take. The magnetic charges p̃i can independently

be positive or negative. In contrast the parameters hi
∞, pi are restricted by the

fact that the scalar fields

hi ≃ Hi = hi
∞ +

pi

ρ
,

must take values inside the scalar manifold for ∞ > ρ > 0. For definiteness,

consider the connected component {h0 > 0, h1 > 0}. Then we must impose

that all four parameters are positive: h0
∞ > 0, h1

∞ > 0, p0 > 0, p1 > 0. This

implies immediately that solutions where R = ±R(1) saturate the BPS bound

T = 1
2 |Zm| while for R = ±R(−1) we have T > 1

2 |Zm|. Thus the solutions

generated by a non-trivial charge rotation matrix are non-BPS. We note that

on the component {h0 > 0, h1 > 0} of the scalar manifold BPS solutions have

magnetic charges with the same sign (i.e. both positive or both negative) while

non-BPS solutions have magnetic charges with opposite signs.

One can also consider the second connected component {h0 > 0, h1 < 0}.
On this component BPS solutions have opposite signs of the magnetic charge

while non-BPS solutions have magnetic charges with the same sign. Our results

for the ST 2 model are consistent with those of [24]. One distinct feature of our

formalism, which we view as an advantage, is that we can perform the whole

analysis using the homogeneous coordinates (h0, h1), without making a choice

for a physical scalar parametrizing the hypersurfaces. The FGK formalism used

in [24] requires such a choice, in order to minimize the effective potential, de-

scribe attractor behaviour, and to identify the different branches corresponding

to BPS and non-BPS solutions. In contrast we can obtain the same information

more easily working in homogeneous coordinates.

7.2 M-theory compactifications on Calabi-Yau threefolds

We remark that there is an important class of models where the domain of the

scalar fields can be chosen of the form {hi > 0}, namely compactifications of

M-theory on toric Calabi-Yau threefolds. In this case the scalar manifold is the
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hypersurface of the Kähler cone of the Calabi-Yau manifold obtained by fixing

the volume. For toric Calabi-Yau threefolds the Kähler cone is a ‘strongly con-

vex finite polyhedral cone’, which admits a parametrization of the above form.

We refer to [38] and references therein for details. In this parametrization, all

charges will be either positive or negative for BPS solutions, while non-BPS

solutions, if they exist, will have a mixture of positive and negative charges. In

general the metric will not have a block decomposition, so that we cannot guar-

antee the existence a non-trivial charge rotation matrix and, hence, of explicit

non-BPS solutions.

7.3 Example: STU model

As a final illustration of our method for constructing BPS and non-BPS extremal

solutions, we consider the case of the STU model, which has Hesse potential

H(h) = h0h1h2. Again, we keep the discussion brief as the extremal BPS and

non-BPS solutions to this model have been discussed before using the FGK

formalism in [25].

The equation h0h1h2 = 1 defines a two-dimensional projective special real

manifold, which consists of four disjoint patches depending on the signs of (say)

h0 and h1. The metric ĝij is

ĝij =
1

4





(h1h2)2 0 0
0 (h0h2)2 0
0 0 (h0h1)2



 .

The eight possible charge rotation matrices satisfying RT ĝR = ĝ in this case

are given by R = ±R(σ,τ), where

R(σ,τ) =





1 0 0
0 σ 0
0 0 τ



 ,

and σ and τ can each take the values ±1.

The ADM tension T and magnetic central charge Zm are given, respectively,

by

6T = h0
∞h1

∞p2 + h0
∞h2

∞p1 + h1
∞h2

∞p0,
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and

3Zm = h0
∞h1

∞p̃2 + h0
∞h2

∞p̃1 + h1
∞h2

∞p̃0.

Taking, for concreteness, the patch {h0 > 0, h1 > 0}, we find again that

solutions with R = ±R(1,1) saturate the BPS bound T = 1
2 |Zm|, whilst for the

six other choices of R we have T > 1
2 |Zm|.

We note that for any diagonal model one can always find an R-matrix which

flips the sign of any of the charges p̃i. Thus for diagonal models we cannot

only find explicit non-extremal solutions, but also explicit extremal solutions

with any choice of signs for the charges. Moreover, this does not only apply

to supergravity models, but also to non-supersymmetric models with couplings

determined by generalized special real geometry, as we will see in Section 9.

8 Small black holes

The method of dimensional oxidation employed in Section 6 to obtain black

string solutions of the original five-dimensional action (2) can also be used to

generate a class of four-dimensional black hole solutions to the spacelike reduc-

tion of (2).

In particular, we can take the three-dimensional solutions constructed in

Section 5 and lift them over a single timelike direction, thereby obtaining a

solitonic solution to a four-dimensional action. The line element we obtain is

ds2(4) = −H(H)−
1

2Wdt2 +H(H)
1

2

(

dρ2

W
+ ρ2dΩ2

2

)

, (44)

which corresponds to a black hole solution having an inner horizon at ρ = 0 and

an outer horizon at ρ = 2c. The area of the outer horizon is

A+ = 4π
√
2cH(p̄)

1

2 ,

whereas the area of the inner horizon vanishes. In the extremal limit c → 0 the

outer horizon shrinks to zero size, so we are left with what has been dubbed

a ‘small’ black hole. In the context of string theory, black hole solutions are

modified by higher derivative corrections to the effective action [5, 44], which has
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the effect that small (extremal) black holes obtain a finite horizon [45]. The non-

extremal black holes solutions obtained above are non-extremal deformations of

such small black holes. Our solutions show that while non-extremality makes

the outer horizon of small black holes finite, the inner horizon still remains

singular in the absence of higher derivative corrections.

9 Generalized special geometry

As emphasized in Section 3, the formalism we have used above in constructing

non-extremal black string solutions depends on H being a homogeneous func-

tion, but not on its degree or polynomial nature. In the previous section we

took H to be of degree three for concreteness. Let us now see what changes if

we take H to have a different degree.

To start with, the five-dimensional vector kinetic coupling aij is still given by

(4) in terms of a homogeneous functionH and is thus homogeneous of degree−2.

Moreover, the physical scalar manifold is still given by the level set {H = 1}.
However the constant factor cijk in front of the Chern-Simons term is no longer

related to the function H . In supergravity theories supersymmetry relates the

Chern-Simons term to other terms in the action and forces the coefficient to be

given by the third derivatives ofH . Gauge symmetry (up to a surface term) then

implies that the third derivatives of H must be constant, thus forcing H to be a

homogeneous degree three polynomial. If we change the degree of homogeneity

and thus give up supersymmetry, gauge symmetry still forces cijk to be constant,

but it is no longer encoded by the function H and becomes an independent set of

parameters. As far as purely magnetic black string solutions are concerned (or

purely electric black hole solutions) these parameters are however irrelevant,

because the Chern-Simons term does not contribute to purely magnetic (or

purely electric) solutions. Thus for this class of solutions the only input needed

is the function H , which we take to be homogeneous of degree n.

The dimensional reduction proceeds as before with some changes of numeri-

cal factors in some formulae. The explicit expression for ĝij(y) given in (9) will
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be modified, although it will still take the form

ĝij(y) = −1

4
∂2
ij logH(y),

with H a homogeneous function. The expression (10) for the reduced action

remains valid, and since (M, ĝij) is a Hessian manifold, the target space S of

the reduced theory is still the product of the para-Kähler manifold N ≃ T ∗M

with a one-dimensional factor parametrized by ξ. While this follows from known

results [46, 28, 30], we give a short self-contained proof in Appendix A.

We can then follow through the construction of non-extremal black string

solutions as in Sections 5 and 6 above. The main difference is in the form of the

line element (37), which becomes

ds2(5) = H(H)−
1

n

(

−Wdt2 + dy2
)

+H(H)
2

n

(

dρ2

W
+ ρ2dΩ2

2

)

. (45)

For example, one could consider the ‘STU -like’ models introduced in [30],

which have the Hesse potential

H(h) = h1 . . . hn.

In this case the line element (45) takes the form

ds2(5) =
1

(H1 . . .Hn)
1

n

(

−Wdt2 + dy2
)

+ (H1 . . .Hn)
2

n

(

dρ2

W
+ ρ2dΩ2

2

)

, (46)

where each of the Hi(ρ) are harmonic functions. The scalar fields hi(ρ) are

given by

hi(ρ) =
Hi(ρ)

(H1 . . .Hn)
1

n

. (47)

For the case where all of the Hi ∝ H are proportional to one another, we find

that the scalar fields hi(ρ) take constant values, and the line element collapses

to that of the RN black string (1).

As in the supersymmetric case, all models admit generic ‘BPS-type’ ex-

tremal solutions where pi = ±p̃i, while further explicit solutions can be found

whenever a charge rotation matrix exists. All such extremal solutions admit

non-spherical, multi-centred versions. For STU-like models the discussion given
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for ST 2 and STU model can be adapted. For these models there exist charge

rotation matrices which allow one to find explicit solutions for any choice of

signs for the charges.

Since all this is completely analogous to the case of five-dimensional black

hole solutions discussed in [30], we refrain from giving more details or working

through explicit examples, but instead discuss the relation between geodesics

in the manifold S = N ×R and five-dimensional black string solutions from a

general geometrical point of view. To start, let us remember that while non-

extremal solutions correspond to space-like geodesics in N × R, extremal so-

lutions correspond to null geodesics in N . If we do not assume the existence

of a charge rotation matrix, we can still always find explicit extremal solutions

which satisfy the same relation

∂µw
i = ±ĝij∂µsj , (48)

as BPS solutions in supersymmetric theories. We refer to such solutions as

BPS-type solutions. Using the information about the para-Kähler geometry of

the manifold N collected in Appendix A, we obtain a geometric characterisation

of BPS-type solutions, which does not make use of supersymmetry and applies

to BPS-type solutions of non-supersymmetric theories as well. Comparing (48)

to formula (50) in Appendix A it is manifest that the BPS-type solutions evolve

along the ‘eigendirections’ (eigendistributions) of the para-complex structure of

N . As explained in [30] the integral submanifolds tangent to these eigendirec-

tions are not only isotropic and totally geodesic (hence solving the equations of

motion) but even flat, which explains why the solution can be written in terms

of harmonic functions.

If the metric admits a non-trivial charge rotation matrix we can explicitly

construct further extremal solutions, which satisfy

∂µw
i = Ri

j ĝ
jk∂µsk ,

with Ri
j 6= ±δij . For supersymmetric theories such extremal solutions are non-

BPS. Geometrically, these ‘non-BPS-type’ solutions are characterized by null
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geodesics, or, for multi-centred solutions, totally geodesic, totally isotropic sub-

manifolds, where the tangent vectors do not belong to the eigendistributions

of the para-complex structure. This provides a geometrical characterization of

‘non-BPS-type’ solutions, which applies to supersymmetric and as well non-

supersymmetric theories. A non-trivial charge rotation matrix allows one to ex-

plicitly construct totally geodesic, totally isotropic submanifolds starting from

the eigendistributions of the para-complex structure. We remark that from this

point of view the existence of non-BPS (type) is less generic (or at least less

obvious) than the existence of BPS (type) solutions.

10 Conclusions

By dimensional reduction from five to three Euclidean dimensions we have

shown that non-extremal black string solutions correspond to space-like geodesi-

cs in the manifold S = N × R, where N ≃ T ∗M is a para-Kähler manifold

which can be identified with the cotangent bundle of the manifold M encoding

the couplings of the original five-dimensional theory. Extremal black string so-

lutions correspond to null geodesics in N . Our construction is not limited to

minimal supergravity coupled to abelian vector multiplets but applies as well

to Einstein-Maxwell-Scalar theories where all couplings are encoded by a single

homogeneous function.

For BPS-type extremal solutions, where the null geodesics are contained in

the eigendistributions of the para-complex structure, we can always find explicit

solutions where all five-dimensional scalar fields are independent, with horizon

values determined by the attractor mechanism in terms of the magnetic charges.

These solutions involve n
(5)
V real scalars and n

(5)
V + 1 vector fields and depend

on 2n
(5)
V +1 independent integration constants, namely the values of the scalars

at infinity and the magnetic charges. For supergravity theories we recover the

known BPS string solutions of [35].

Non-extremal solutions and a second type of extremal solutions, dubbed non-

BPS-type solutions can be found explicitly if the metric of the scalar manifold
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admits a non-trivial charge rotation matrix. The ‘best case’ is provided by di-

agonal models, where the metric is diagonal and charge rotation matrices allow

one to flip all charges independently. For this case we have found explicit non-

extremal solutions depending on 2n
(5)
V + 2 independent parameters, which can

be taken to be the values of the scalars at infinity, the magnetic charges and the

non-extremality parameter, and extremal solutions depending on 2n
(5)
V +1 inde-

pendent parameters. While the non-BPS-type extremal solutions are of course

subject to the attractor mechanism we observe a deformed attractor mechanism

at work for non-extremal solutions: while the horizon values of the scalars are

no longer determined by the magnetic charges alone, they do not become in-

dependent integration constants. Moreover, the functional dependence of the

horizon values of the scalars was cast in the form of ‘horizon charges’, both for

the inner and outer horizon.

While diagonal models constitute a special, non-generic, class of models, this

class contains interesting models, such as the ST 2 and STU models of super-

gravity and STU -like models in non-supersymmetric theories. These examples

were analysed in some detail. For non-diagonal models some non-extremal and

non-BPS-type extremal solutions can still be constructed explicitly if the metric

admits a block decomposition. One important problem left for future work is

to find explicit non-extremal and non-BPS-type extremal solutions without the

need of a charge rotation matrix compatible with the metric. Note that the

relation between non-extremal, non-BPS-type extremal and BPS-type extremal

solutions with particular types of geodesic curve in S = N×R holds irrespective

of whether we are able to find solutions explicitly. The distinguished feature of

BPS-type solutions, namely that one can always find explicit solutions in terms

of harmonic functions, corresponds to the existence of a distinguished class of to-

tally isotropic, totally geodesic submanifolds associated with the eigendirections

of the para-complex structure. This explains why non-BPS extremal solutions

are harder to find explicitly (unless the metric has special properties), despite

the fact that one might expect that one ‘just needs to flip signs of charges’.

While this is true for ‘double-extreme’ solutions with constant scalar fields, the
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scalar equations become in general more complicated because they no longer

decouple.

We finish by pointing out some directions for future research. Understanding

the precise relation between higher-dimensional solutions and geodesic curves

and, more generally, totally geodesic submanifolds of the scalar manifold of a

reduced effective theory should be helpful in analysing the spectrum of BPS

and non-BPS solutions of string theory and M-theory compactifications in the

generic case, where the scalar manifold is not a symmetric space. One part of

the problem is to characterize submanifolds of the full scalar manifold which are

relevant for a particular type of higher-dimensional solution, as we did here for

five-dimensional black strings. Another part is to investigate which additional

conditions one has to impose on a geodesic curve or totally geodesic submanifold

in order that they lift to regular higher-dimensional solutions. This determines

the number of parameters the higher-dimensional solution depends on, and has

allowed us in this paper to recover the attractor mechanism and understand in

which sense it survives in a deformed form for non-extremal solutions. We have

seen that we could also obtain the non-extremal versions of small black holes by

lifting up to four rather than five dimensions. One might then ask which other

types of regular solutions can be obtained by lifting geodesics with different

boundary conditions.

For extremal solutions we observed that it is always possible to give up

transverse spherical symmetry and to replace single-centred by multi-centred

harmonic functions. Geometrically such solutions do not correspond to null

geodesic curves but to totally isotropic totally geodesic submanifolds of S. Apart

from BPS-type solutions, where these submanifolds are contained within the

integrable eigendistributions of the para-complex structure, we can find explicit

non-BPS-type multi-centred solutions whenever a non-trivial charge rotation

matrix exists. Applying such a matrix corresponds to an overall change of

charges at all centres. However, in the context of superstring compactifications

described by effective supergravity with symmetric target spaces it is known

that there is a more intricate system of multi-centred solutions which is not
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covered by this single operation [47, 48, 49, 50, 51]. A deeper understanding

of totally geodesic submanifolds and their relation to multi-centred solutions

will be useful for extending these results to generic models with non-symmetric

target spaces.

Our work has been restricted to purely magnetic, non-rotating black strings.

More general types of black strings have been studied in detail for pure five-

dimensional supergravity in [52, 53]. Extending these results to models with

vector multiplets would be another possible extension of the work presented in

this paper.

A From Hessian manifolds to para-Kähler man-

ifolds

In this appendix we give a simple self-contained proof that the metric on the

space N ≃ T ∗M appearing in our construction is a para-Kähler metric given

that M carries a Hessian metric.

Let (M, g) be a Hessian manifold. A coordinate-free definition can be found

in [46]. For our purposes we assume that M is a domain which is covered by

a single system of affine coordinates wi, i = 1, . . . , n. We refer to such Hessian

manifolds as Hessian domains. In affine coordinates the metric takes the form

g = gij(w)dw
idwj , where gij(w) = ∂2

i,jh(w) for some function h(w), the Hesse

potential6.

Define a new manifold N = M×Rn with coordinates (wi, si). This manifold

can be interpreted as the (trivial) cotangent bundle of M : N = T ∗M . Next,

define a pseudo-Riemannian metric on N by

gN = gij(w)dw
idwj − gij(w)dsidsj ,

where gij(w) is the inverse matrix of gij(w). The metric gN obviously has sig-

nature (n, n). We claim the following statement: Under the above assumptions,

N = T ∗M is a para-Kähler manifold.

6In the main part of this paper, the metric coefficients are denoted ĝij(w).
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We refer the reader to [26] for the relevant definitions and theorems on para-

complex and para-Kähler manifolds. We introduce the frames F = (θA) =

(∂wi , ∂si) for TN and F ∗ = (θA) = (dwi, dsi) for T
∗N . The components of gN

are

gN = gABθ
AθB = gABθ

A ⊗ θB , (gAB) =

(

g 0
0 −g−1

)

.

Here we use a block-matrix notation where g = (gij(w)) and g−1 = (gij(w))

are the coefficients of the metric of M and of its inverse with respect to the

coordinate system wi. Our convention for the symmetrized tensor product is

θAθB = 1
2 (θ

A ⊗ θB + θB ⊗ θA).

We define an endomorphism field J on TN

J = gij∂wi ⊗ dsj + gij∂si ⊗ dwj = JA
B θA ⊗ θB .

This acts on the frame F as

J(∂wi) = gij∂sj , J(∂si ) = gij∂wj .

The components of J with respect to the frame F are

(JA
B ) =

(

0 g−1

g 0

)

.

It follows immediately that J2 = 1. Thus J is an almost para-complex structure

on N .

The action of J on T ∗N with respect to the dual frame F ∗ is

J∗(dwi) = gijdsj , J∗(dsi) = gijdw
j .

From these expressions it is clear that the para-complex structure J acts anti-

isometrically on the metric gN = gijdw
idwj − gijdsidsj , J

∗g = −g. Therefore

(N, g, J) is almost para-Hermitian. We define the fundamental form

ω = gN(J ·, ·) = ωABθ
A ⊗ θB =

1

2
ωABθ

A ∧ θB .

Our convention for the exterior product is θA∧θB = θA⊗θB−θB⊗θA. Evaluate

ω in the frame F ∗:

ω = dsi ⊗ dwi − dwi ⊗ dsi = −dwi ∧ dsi, (ωAB) =

(

0 −1
1 0

)

. (49)
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We note that ω is the canonical symplectic form on T ∗N . Since ω is closed,

it follows that (N, g, J) is almost para-Kähler.

It remains to show that J is integrable, which is equivalent to showing that

the two eigendistributions are involutive. Since J2 = 1, the eigenvalues of J are

±1. A basis for the corresponding eigenvectors is

X i
± :=

1√
2

(

∂wi ± gij∂sj
)

,

since

J(X i
±) =

1√
2
J(∂wi ± gij∂sj ) =

1√
2
gij∂sj ± gijg

jk∂wk

= ± 1√
2

(

∂wi ± gij∂sj
)

= ±X i
± .

The eigenvectors X i
± span the eigendistributions D± of J . We compute the Lie

brackets between the eigenvectors:

[X i
±, X

j
±] =

1

2
[∂wi ± gij∂sj , ∂wk ± gkl∂sl ] = ±1

2
∂wigkl∂sl ∓

1

2
∂wkgij∂sj = 0 ,

where we used the fact that ∂wigjk is totally symmetric for the Hessian metric

gjk. Thus eigenvectors X i
± belonging to the same eigendistribution commute,

[X i
+, X

j
+] = [X i

−, X
j
−] = 0. This implies that the eigendistributions D+ and

D− are both involutive, therefore J is integrable and (N, gN , J) is para-Kähler.

This completes the proof.

For some purposes it is useful to use a frame and co-frame with respect to

which the para-complex structure is diagonal. Such a frame might be called an

‘eigenframe’ or isotropic frame (as it is spanned by null vectors). We already

saw that F ′ = (X i
+, X

i
−) is an eigenframe. The associated co-frame is

F ′∗ =

(

1√
2

(

dwi + gijdsj
)

,
1√
2

(

dwi − gijdsj
)

)

.

With respect to these frames the components of the metric and of the para-

complex structure are

(g′AB) =

(

0 g

g 0

)

, (J ′A
B ) =

(

1 0
0 −1

)

. (50)
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These expressions make manifest that tangent vectors of the form (ẇi,±gij ṡj)

are isotropic and moreover are contained in the eigendistributions D± of the

para-complex structure. This provides a characterization of BPS in contrast to

non-BPS extremal solutions, which generalizes to non-supersymmetric theories.

We remark that it is clear that the following more general statement is

true: The cotangent bundle of a Hessian manifold carries a natural para-Kähler

structure. In other words one can drop the assumption that the Hessian manifold

is a domain covered by a single affine coordinate system. This can be shown

by adapting the results of [46], where it was proven that the tangent bundle of

a Hessian manifold carries a natural Kähler structure. Replacing complex by

para-complex structures amounts to systematically changing certain signs, see

[26, 28]. In addition one has to replace the tangent bundle by the cotangent

bundle using the natural isomorphism provided by the metric.

We further remark that a similar situation arises in the case of the super-

gravity r-map and its generalization to non-supersymmetric theories. As shown

in [30], the dimensional reduction with respect to time of (not necessarily su-

persymmetric) five-dimensional Einstein-Maxwell-Scalar theories encoded by a

homogeneous Hesse potential relates Hessian manifolds (M, g) to para-Kähler

manifolds (Ñ , gÑ ), where Ñ can be identified with the tangent bundle TM of

M . This reduction has been used to construct the ‘electric cousins’ of the black

strings found in this paper, see [30, 31, 32].
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