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Abstract

In this paper we study the scalar geometries occurring in the dimen-
sional reduction of minimal five-dimensional supergravity to three Eu-
clidean dimensions, and find that these depend on whether one first re-
duces over space or over time. In both cases the scalar manifold of the
reduced theory is described as an eight-dimensional Lie group L (the Iwa-
sawa subgroup of G2(2)) with a left-invariant para-quaternionic-Kähler
structure. We show that depending on whether one reduces first over
space or over time, the group L is mapped to two different open L-orbits
on the pseudo-Riemannian symmetric space G2(2)/(SL(2) ·SL(2)). These
two orbits are inequivalent in the sense that they are distinguished by the
existence of integrable L-invariant complex or para-complex structures.
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1 Introduction

The dimensional reduction of gravity, supergravity and string theory over time

reveals symmetries that are otherwise hidden, is relevant for gravitational in-

stantons, and allows one to generate stationary solutions by subsequent dimen-
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sional lifting [1, 2, 3, 4]. In the simplest examples the scalar manifolds of theories

obtained by dimensional reduction on tori of Lorentzian signature are locally

symmetric Riemannian spaces with split signature. Particular cases studied in

the literature are the symmetric spaces occurring when gravity coupled to mat-

ter is reduced from four to three dimensions [2]; reductions of D-dimensional

gravity, of bosonic and heterotic string theory, and of eleven-dimensional su-

pergravity on Lorentzian tori [5]; and reductions of extended four-dimensional

supergravities with symmetric target spaces over a time-like circle [6].

Global aspects of time-like reductions have been less studied, but some

complications have been observed in toroidal compactifications of string theory

which include a time-like direction [3]. While in space-like reductions leading to

Riemannian symmetric target spaces M = G/K of non-compact type one can

rely on the Iwasawa decompositionG = KL, to provide a global parametrization

ofM using the simply transitive action of the solvable Iwasawa subgroup L ⊂ G,

such a global parametrization is no longer possible for the pseudo-Riemannian

symmetric spaces G/H appearing in time-like reductions. However examples

show that it might still be possible to find a decomposition of the form HL

for an open subset of U ⊂ G, leading to a local parametrization of the space

G/H . In this case the Iwasawa subgroup L still acts with an open orbit. In [7]

it was shown that duality transformations relating BPS to non-BPS solutions

correspond to ‘singular’ elements of G, i.e. elements outside an open dense set

U ⊂ G decomposed as U = HL. In [8] it was shown that solutions with regu-

lar event horizons correspond to complete geodesics which are contained within

a ‘solv-patch’, i.e. an open orbit of the Iwasawa subgroup, whereas geodesics

which are not fully contained in a single solv-patch lift to singular space-time

geometries.

In this paper we investigate further consequences of the non-transitive ac-

tion of the Iwasawa subgroup. If the Iwasawa subgroup acts with more than

one open orbit, then there is no a priori reason why any two open orbits should

be equivalent. And if open orbits are not equivalent, it becomes necessary

to decide which orbit corresponds to a given dimensional reduction. More

3



specifically, we will now explain why this becomes an issue when reducing

five-dimensional supergravity coupled to vector multiplets to three Euclidean

dimensions. Recall that the dimensional reduction of four-dimensional N = 2

vector multiplets to three Lorentzian dimensions leads to a scalar geometry

which is quaternionic-Kähler [9]. The resulting map between (projective) spe-

cial Kähler manifolds and quaternionic-Kähler manifolds is known as the c-

map. This result extends Alekseevsky’s construction [10] of symmetric and

non-symmetric quaternionic-Kähler manifolds with a simply transitive solvable

group of isometries from certain Kähler manifolds, see also [11, 12, 13]. One of

the simplest examples described by Alekseevsky is the symmetric quaternionic-

Kähler manifold G2(2)/SO(4) presented as a solvable group with left-invariant

quaternionic-Kähler structure. This manifold comprises the universal sector of

five-dimensional supergravity reduced to three dimensions. The Alekseevsky

spaces come equipped with an integrable complex structure compatible with

the quaternionic structure. More recently it was shown in [14] that this is even

true for all c-map spaces.

If N = 2 vector multiplets are dimensionally reduced with respect to time,

the target space geometry is expected to be para-quaternionic-Kähler instead

of quaternionic-Kähler, as explained in [15]. Recall that a pseudo-Riemannian

manifold (M, g) of dimension 4n > 4 is called para-quaternionic-Kähler if its

holonomy group is a subgroup of Sp(R2) · Sp(R2n) ⊂ SO(2n, 2n) [16]. Ge-

ometrically this means that the manifold (M, g) admits a parallel subbundle

Q ⊂ End(TM) which is point-wise spanned by three anti-commuting skew-

symmetric endomorphisms I, J,K = IJ such that I2 = J2 = −K2 = Id.

In a forthcoming paper [17] we prove that both the dimensional reduction

of N = 2 supergravity with vector multiplets over time and the dimensional

reduction of Euclidean N = 2 supergravity with vector multiplets over space re-

sults in scalar target spaces that are para-quaternionic-Kähler. Moreover, while

in the first case the para-quaternionic structure contains an integrable complex

structure, it contains an integrable para-complex structure in the second case.

This indicates that when starting in five dimensions and reducing over time
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and one space-like dimension, the result will depend on the order in which the

reductions are taken. Since this is an unexpected result, we will in this paper

investigate the simplest case, the dimensional reduction of pure five-dimensional

supergravity, in detail. We emphasize that, while our work is motivated by [17],

this paper is completely self-contained.

The dimensional reduction of pure five-dimensional supergravity with re-

spect to time and one space-like dimension leads to a scalar target space which

is locally isometric to the symmetric space

G2(2)/SO0(2, 2) ≃ G2(2)/(SL(2) · SL(2)), (1.1)

[18, 19, 20], which is para-quaternionic-Kähler. The classification of symmetric

para-quaternionic-Kähler manifolds of non-zero scalar curvature follows from

the fact that the isometry group of such a space is simple, see Theorem 5

of [16], together with Berger’s classification of pseudo-Riemannian symmetric

spaces of semi-simple groups [21, 22]. The resulting list can be found in [23, 24]

and contains the space (1.1). This space represents the universal sector of

the reduction of five-dimensional supergravity coupled to matter. In general,

the spaces obtained by such reductions will neither be symmetric, nor even

homogeneous. The dimensional reduction of five-dimensional supergravity with

an arbitrary number of vector multiplets to three Euclidean dimensions will be

investigated in a future publication [25].

The space (1.1) has been studied in the literature in the context of gener-

ating stationary solutions in four and five dimensions, in particular stationary

four-dimensional black holes [19, 4] and black string solutions of five-dimensional

supergravity [26, 27]. In [26] it was verified that one obtains locally isometric

locally symmetric spaces irrespective of whether the reduction is carried out first

over space or first over time. It was shown in [4] that these two reductions are

related to the purely space-like reduction by analytic continuation, see further

comments in Section 2. In this paper we will make precise the relation between

the corresponding scalar manifolds and open orbits of the Iwasawa subgroup L of

G2(2) on G2(2)/(SL(2)·SL(2)). We will show that while the scalar manifolds are
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locally isometric they are not related by an automorphism of L, and are geomet-

rically distinguished by the integrability properties of the left-invariant almost

complex and para-complex structures within the para-quaternionic structure.

Let us next give a more detailed summary of the results obtained in this

paper. We perform the dimensional reduction of pure five-dimensional super-

gravity to three Euclidean dimensions and find that the resulting scalar geom-

etry is naturally described as a solvable Lie group L(ǫ1,ǫ2) endowed with a left-

invariant pseudo-Riemannian metric g(ǫ1,ǫ2) of split signature. The parameters

ǫ1, ǫ2 ∈ {1,−1} indicate whether the reduction is over a space-like (ǫ = −1) or
over a time-like (ǫ = 1) direction in the subsequent reduction steps. For compar-

ison we will also review the case of a purely space-like reduction (ǫ1 = ǫ2 = −1).
We find that all three groups L(ǫ1,ǫ2) are isomorphic to the solvable Iwasawa

subgroup of G2(2), which we will denote by L. In contrast to this, we prove

that the metrics g(1,−1) and g(−1,1) are not related by an automorphism of the

group L. However, we show that both pseudo-Riemannian manifolds (L, g(1,−1))

and (L, g(−1,1)) can be mapped by a φ-equivariant (respectively, φ′-equivariant)

isometric covering to open orbits

M = φ(L) · o, M ′ = φ′(L) · o ⊂ S = G/H = G2(2)/(SL(2) · SL(2)),

respectively, where φ, φ′ : L→ G2(2) are embeddings of L into G2(2) and o = eH

is the canonical base point of the pseudo-Riemannian symmetric space (S =

G/H, gS). This proves that the pseudo-Riemannian manifolds (L, g(1,−1)) and

(L, g(−1,1)) are locally symmetric and locally isometric to each other.

The symmetric space (S, gS) carries a canonical compatibleG-invariant para-

quaternionic structure Q, which we will explicitly describe in Section 3.2. This

provides a direct proof that (S, gS , Q) is a para-quaternionic-Kähler manifold, as

well as the open orbitsM,M ′ ⊂ S. Pulling back the para-quaternionic structure

Q by the local isometries φ : (L, g(1,−1)) → M , φ′ : (L, g(−1,1)) → M ′ we

obtain left-invariant para-quaternionic-Kähler structures (g(1,−1), Q(1,−1)) and

(g(−1,1), Q(−1,1)) on L. We show that Q(1,−1) contains a left-invariant integrable

para-complex structure J1 = J
(1,−1)
1 , whereas Q(−1,1) contains a left-invariant
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integrable complex structure J1 = J
(−1,1)
1 . The structure J1 is included in a

standard basis (J1, J2, J3) of Q(ǫ1,ǫ2), which we specify explicitly on the Lie

algebra l of L.

The left-invariant structure J1 is not the only left-invariant complex (ǫ1 =

−1) or para-complex (ǫ1 = 1) structure on L which is integrable and skew-

symmetric. We explicitly describe a second such structure J̃1, commuting with

J1, which does not belong to the (para-)quaternionic structure.

Finally we calculate the Levi-Civita connection and curvature tensor of the

metrics g(ǫ1,ǫ2), in terms of a basis of left-invariant vector fields on L. Using

these formulae we give a second proof of the fact that the metrics g(ǫ1,ǫ2) are

locally symmetric and para-quaternionic-Kähler by checking that the covariant

derivative of the curvature tensor vanishes, and that Q(ǫ1,ǫ2) is parallel.

2 Dimensional reduction of pure five-dimensional

supergravity

In this section we perform the dimensional reduction of pure five-dimensional

supergravity to three dimensions. The reductions over two space-like dimen-

sions and over one space-like and one time-like dimension will be considered in

parallel. In the latter case the time-like reduction can be either taken as the

first or the second step. We will be interested in comparing both options to one

another.

We start with the action for five-dimensional supergravity, coupled to an ar-

bitrary number n
(5)
V of vector multiplets. In the conventions of [28], the bosonic

part of the action takes the following form:

S5 =

∫
d5x

[
√
ĝ

(
R̂

2
− 3

4
aij∂µ̂h

i∂µ̂hj − 1

4
aijF

i
µ̂ν̂F

j|µ̂ν̂
)

+
1

6
√
6
cijkε

µ̂ν̂ρ̂σ̂λ̂Fi
µ̂ν̂F

j
ρ̂σ̂A

k
λ̂

]
. (2.1)

Here µ̂, ν̂, . . . are five-dimensional Lorentz indices and i = 0, 1, . . . , n
(5)
V labels

the five-dimensional gauge fields. The scalars hi are understood to satisfy the
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constraint

V = cijkh
ihjhk = 1 ,

where V is a prepotential which encodes all the couplings. While we will analyse

the dimensional reduction of five-dimensional supergravity with vector multi-

plets in a separate paper [25], in this article we will only consider the case of

pure supergravity, where V = (h0)3 = 1. Then the bosonic action (2.1) reduces

to the one of Einstein-Maxwell theory supplemented by a Chern-Simons term:

S =

∫
d5x

[
√
ĝ

(
R̂

2
− 1

4
Fµ̂ν̂F

µ̂ν̂

)
+

1

6
√
6
εµ̂ν̂ρ̂σ̂λ̂Fµ̂ν̂Fρ̂σ̂Aλ̂

]
. (2.2)

We perform the dimensional reduction over 2 directions by taking the metric

ansatz M5 = S1 × S1 ×M3 with

ds2(5) = −ǫ1e2σ
(
dx0 +A0

)2 − ǫ2e
2φ−σ

(
dx4 +B

)2
+ e−2φ−σds2(3), (2.3)

where ǫ1,2 take the values −1 for reduction over a space-like direction and +1

for a time-like reduction1. We also introduce the variable ǫ := −ǫ1ǫ2 = (−1)t,
where t is the number of time-like directions in the three-dimensional theory.

Note that we can take either x0 or x4 to be time-like. There are two Kaluza-

Klein vectors: the four-dimensional vector A0 arising from the first reduction

step and the three-dimensional vector B arising from the second. It will be

convenient to refer to the three different reductions as SS-type (space-like/space-

like, ǫ1 = ǫ2 = −1), ST-type (space-like/time-like, ǫ1 = −1, ǫ2 = 1) and TS-type

(time-like/space-like, ǫ1 = 1, ǫ2 = −1).
After reduction, we obtain the following three-dimensional Lagrangian:

L3 =
R

2
+

3

4y2
ǫ1(∂x)

2 − 3

4y2
(∂y)2 − 1

4φ2
(∂φ)2 +

1

4φ2
ǫ1

(
∂φ̃+ pI

←→
∂ sI

)2

+
y3

12φ
ǫ(∂p0)2 +

y

4φ
ǫ2
(
∂p1 − x∂p0

)2

+
3

y3φ
ǫ2

(
∂s0 + x∂s1 −

1

6
x3∂p0 +

1

2
x2∂p1

)2

+
1

yφ
ǫ

(
∂s1 −

1

2
x2∂p0 + x∂p1

)2

. (2.4)

1Note that other papers studying reduction with respect to time, including [26, 29], use
the opposite sign convention.
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Here R is the three-dimensional Ricci scalar which does not give rise to local

dynamics. The dynamical fields are the eight scalar fields x, y, φ, φ̃, p0, p1, s0, s1,

which have the following five-dimensional origin: the scalars x and y arise by

dimensional reduction from five to four dimensions, and encode the degrees of

freedom corresponding to the Kaluza-Klein scalar σ and the component A0 of

the five-dimensional vector field A. Explicitly, we have

y = 6
1

3 eσh0, x = 2 · 6− 1

6A0.

Following the procedure of [28] we have absorbed the Kaluza Klein scalar σ

into h0 to obtain scalars fitting into four-dimensional vector multiplets. In this

formulation x and y are independent dynamical scalar fields, whereas σ is a

dependent field which can be expressed in terms of y via eσ = 6−1/3y.

The scalars φ and φ̃ arise from reducing the space-time metric from four

to three dimensions. The field φ appearing in (2.4) is related to the Kaluza-

Klein scalar in our ansatz (2.3) via e2φ → φ, while φ̃ arises from dualizing the

Kaluza-Klein vector. In particular,

Hmn =
1

φ2
ǫmnp

(
∂pφ̃+ p0

←→
∂ ps0 + p1

←→
∂ ps1

)
,

where Hmn = 2∂[mBn] is the field strength associated with the second Kaluza-

Klein vector.

After reduction from five to four dimensions, we have two vector fields,

namely the reduction of the five-dimensional vector field and the Kaluza-Klein

vector A0. Upon reduction to three dimensions, each gives rise to 2 scalars: p0

and p1 correspond to the four-dimensional components of the two vector fields,

A0
4 = −

√
2p0, A4 =

6
1

6

√
2

(
p1 − xp0

)
,

while s0 and s1 are obtained by dualizing the vector fields after reduction to

three dimensions:

F
0
mn = 2

√
2B[m∂n]p

0 − ǫ
6
√
2

φy3
ǫmnp

(
∂ps0 + x∂ps1 +

1

2
x2∂pp1 − 1

6
x3∂pp0

)
,
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Fmn =
6

1

6

√
2

{
−2B[m(∂n]p

1 − x∂n]p
0)

+
2ǫ2
φy

ǫmnp

(
∂ps1 + x∂pp1 − 1

2
x2∂pp0

)
+
√
2A0

[m∂n]x

}
.

The scalar manifolds obtained by SS-, ST- and TS-reduction are denotedM (SS),

M (ST ) and M (TS) respectively, and the corresponding metrics are denoted

g(SS) = g(−1,−1), g(ST ) = g(−1,1) and g(TS) = g(1,−1), respectively.

It is known that in the reduction over two space-like directions the eight

scalars parametrize the symmetric space G2(2)/SO(4), which is quaternionic-

Kähler. Here G2(2) denotes the non-compact real form of the exceptional Lie

group of type G2. It is also known that the reduction over one space-like and one

time-like dimension gives rise to a space which is locally isometric to the pseudo-

Riemannian symmetric space G2(2)/(SL(2) ·SL(2)), which is para-quaternionic-

Kähler, as expected for three-dimensional Euclidean hypermultiplets [15]. From

(2.4) it is not manifest that reduction over time followed by reduction over space

(ǫ1 = 1, ǫ2 = −1) results in the same manifold as when reducing in the opposite

order (ǫ1 = −1, ǫ2 = 1). It is however clear that both reductions are related

to the purely space-like reduction ǫ1 = ǫ2 = −1, and hence to one another,

by analytic continuation, since G2(2)/SO(4) and G2(2)/(SL(2) · SL(2)) are real

forms of the same complex-Riemannian symmetric space GC2 /SO(4,C). The

analytic continuations between the SS-reduction and the TS-reduction and ST-

reduction for the more general case including an arbitrary number of vector

multiplets were given explicitly in [4]. Restricting to pure supergravity, and us-

ing our conventions, the continuation from the SS-reduction to the TS-reduction

takes the form

(y, x, φ, φ̃, p0, p1, s0, s1) 7→ (y, ix, φ, iφ̃,−ip0, p1,−s0, is1) , (2.5)

whilst the continuation from the SS-reduction to the ST-reduction takes the

form

(y, x, φ, φ̃, p0, p1, s0, s1) 7→ (y, x, φ,−φ̃, ip0, ip1, is0, is1) . (2.6)

It is straightforward to check that these substitutions change the relative signs

of terms in (2.4) in precisely the same way as making the corresponding changes
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of the parameters ǫ1 and ǫ2. The authors of [4] also specify a map relating the

ST- and TS-reductions in their formulae (3.16)–(3.20). A different approach

was taken in [26], where the parametrization of the scalar fields induced by di-

mensional reduction was related to a standard parametrization of the symmetric

space G2(2)/(SL(2) · SL(2)). We will use a different parametrization which al-

lows us to make the (para-)quaternionic structure manifest, and to show that the

two reductions carry additional geometrical structures which are not preserved

by the local isometry relating them.

To proceed, we introduce the following basis for the 1-forms on the scalar

manifold:

η2 =
1

φ

(
dφ̃+ pIdsI − sIdp

I
)
, ξ2 =

dφ

φ
,

α =

√
3

y
dx, β =

√
3

y
dy,

η0 =

√
y3

3φ
dp0, η1 =

√
y

φ

(
dp1 − xdp0

)
, (2.7)

ξ0 = 2

√
3

y3φ

(
ds0 + xds1 +

1

2
x2dp1 − 1

6
x3dp0

)
,

ξ1 =
2√
yφ

(
ds1 + xdp1 − 1

2
x2dp0

)
.

These forms are also denoted

(θa) = (η2, ξ2, α, β, η
0, η1, ξ0, ξ1) . (2.8)

The metric g on the target manifold associated with the Lagrangian (2.4)

then takes the form

4g = −ǫ1η2⊗η2+ξ2⊗ξ2−ǫ1α⊗α+β⊗β−ǫη0⊗η0−ǫ2η1⊗η1−ǫ2ξ0⊗ξ0−ǫξ1⊗ξ1.
(2.9)

Note that under the analytic continuations (2.5) and (2.6) the one-forms (2.8)

transform as

(η2, ξ2, α, β, η
0, η1, ξ0, ξ1) 7→ (iη2, ξ2, iα, β,−iη0, η1,−ξ0, iξ1),

(η2, ξ2, α, β, η
0, η1, ξ0, ξ1) 7→ (−η2, ξ2, α, β, iη0, iη1, iξ0, iξ1),
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which flips the relative signs in (2.9) in the same way as making the correspond-

ing changes in the parameters ǫ1 and ǫ2.

The one-forms θa have the following exterior derivatives:

dη2 = −ξ0 ∧ η0 − ξ1 ∧ η1 − ξ2 ∧ η2,

dξ2 = 0,

dα =
1√
3
α ∧ β,

dβ = 0,

dη0 =

√
3

2
β ∧ η0 − 1

2
ξ2 ∧ η0, (2.10)

dη1 =
1

2
√
3
β ∧ η1 − 1

2
ξ2 ∧ η1 − α ∧ η0,

dξ0 = −
√
3

2
β ∧ ξ0 −

1

2
ξ2 ∧ ξ0 + α ∧ ξ1,

dξ1 = − 1

2
√
3
β ∧ ξ1 −

1

2
ξ2 ∧ ξ1 +

2√
3
α ∧ η1.

This shows that they form a Lie algebra and that g can be considered as a

left-invariant pseudo-Riemannian metric on the corresponding simply connected

Lie group, which is parametrized by (x, y, φ, φ̃, p0, p1, s0, s1). The structure con-

stants of this Lie algebra can be read off from the relation dθc = −ccabθa ∧ θb.

The relations for the dual vector fields Ta, where 〈θa, Tb〉 = δab , which we identify

with the Lie algebra generators, are [Ta, Tb] = ccabTc.

Denoting the basis dual to (θa) by

(Ta) = (V2, U
2, A,B, V0, V1, U

0, U1), (2.11)

12



we obtain:

[B,A] =
1√
3
A,

[
U2, V2

]
= V2,

[
V0, U

0
]

= −V2,
[
V1, U

1
]
= −V2,

[
U2, VI

]
=

1

2
VI for I = 0, 1,

[
U2, U I

]
=

1

2
U I for I = 0, 1,

[B, V0] = −
√
3

2
V0, [B, V1] = −

1

2
√
3
V1,

[
B,U0

]
=

√
3

2
U0,

[
B,U1

]
=

1

2
√
3
U1,

[A, V0] = V1,
[
A,U1

]
= −U0, [A, V1] = −

2√
3
U1. (2.12)

This Lie algebra is easily seen to be a solvable Lie algebra. As we will see below,

it is an Iwasawa subalgebra of the Lie algebra of G2(2). Thus the three dimen-

sional reductions provide us with scalar manifolds which can all be identified

with the group manifold L of an Iwasawa subgroup of G2(2). For each of the

three reductions this manifold is equipped with a different left-invariant metric.

The signature is, using the ordering (2.8),

sign(g) = (−ǫ1,+,−ǫ1,+,−ǫ,−ǫ2,−ǫ2,−ǫ) . (2.13)

Thus for an SS reduction the metric is positive definite, while for ST and TS

reductions we obtain split (i.e. neutral) signature metrics, but with a different

distribution of (+)-signs and (−)-signs. Note that while scalar products are

classified up to isomorphism by their signatures, this does not imply the exis-

tence of an isometry which simultaneously preserves the Lie algebra structure.

This will be important in the following.

3 The group G2(2), its Iwasawa subgroup, and

the symmetric space S = G2(2)/(SL(2) · SL(2))
3.1 The noncompact group of type G2

Let us denote byG = G2(2) the simply connected noncompact form of the simple

Lie group of type G2. Its Lie algebra g can be described as follows, see [30], Ch.
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5, Section 1.2. It contains sl(V ) as a subalgebra, where V = R
3, such that under

the adjoint representation of sl(V ) on g we have the following decomposition

g = V + sl(V ) + V ∗,

as a direct sum of irreducible sl(V )-submodules. The remaining Lie brackets

are given by

[x, y] = −2x× y,

[ξ, η] = 2ξ × η,

[x, ξ] = 3x⊗ ξ − ξ(x)Id ∈ sl(V ) ⊂ gl(V ) ∼= V ⊗ V ∗,

for all x, y ∈ V , ξ, η ∈ V ∗. The cross products are defined by

x× y = det(x, y, ·) ∈ V ∗, ξ × η = det−1(ξ, η, ·) ∈ V ∗∗ = V,

where det−1 ∈ ∧3V is the inverse of det ∈ ∧3V ∗. Let us denote by a the Cartan

subalgebra of g which consists of all diagonal matrices in sl(V ). We shall denote

by (ei) = (e1, e2, e3) the standard basis of V , by (ei) its dual basis and by eji

the endomorphism ei ⊗ ej of V . With this notation,

a = {
∑

lie
i
i|
∑

li = 0}.

3.2 The symmetric para-quaternionic-Kähler manifold

S = G2(2)/(SL2 · SL2)

Proposition 1 The Lie algebra g admits the following Z2-grading

g = gev + godd, (3.1)

where

gev = a+ span{e3, e3, e21, e12} ∼= sl2 ⊕ sl2,

godd = span{e1, e2, e1, e2, e31, e32, e13, e23}.

The corresponding symmetric space S = G/Gev admits a G-invariant para-

quaternionic-Kähler structure (g,Q), unique up to scale. The metric g is induced

by a multiple of the Killing form.

14



Proof: It is straightforward to check that (3.1) is a Z2-grading of the Lie algebra

g. This shows that S is a symmetric space. Furthermore,

(h = [e21, e
1
2] = e11 − e22, e = e21, f = e12),

is an sl2-triple (h, e, f), as well as

([e3, e
3] = −e11 − e22 + 2e33, e3, e

3).

They generate two complementary ideals sl
(a)
2
∼= sl2, a = 1, 2, in gev. One can

further check that the isotropy representation of S is a tensor product R2 ⊗R
4

of irreducible representations of the two SL2-factors. The total irreducibility of

the isotropy representation implies that the metric induced by the Killing form

is the only G-invariant pseudo-Riemannian metric g on S, up to scale. The

isotropy representation of sl
(1)
2 ⊂ gev on the first factor defines a G-invariant

almost para-quaternionic structure Q on S, which consists of skew-symmetric

endomorphisms. It is the only G-invariant almost para-quaternionic structure

on S, since the Gev-invariant decomposition ToS ∼= R
2 ⊗ R

4 is unique, where

o = eGev stands for the canonical base point of S = G/Gev. Moreover, Q is

invariant under parallel transport because the isotropy group coincides with the

holonomy group of the simply connected pseudo-Riemannian symmetric space

S, as a consequence of the Ambrose-Singer theorem. So (S, g,Q) is a para-

quaternionic-Kähler manifold.

3.3 The solvable Iwasawa subgroup L ⊂ G

Let us define

n := span{e1, e2, e3, e21, e31, e32} ⊂ g.

We claim that n ⊂ g is a maximal unipotent2 subalgebra normalized by the

Cartan subalgebra a ⊂ g. In fact, n is precisely the sum of the positive root

2A subalgebra of a linear Lie algebra is called unipotent if it operates on the given vector
space by upper triangular matrices with vanishing diagonal elements. Note that a nilpotent
Lie algebra is not automatically unipotent if the Lie algebra is represented by matrices. For
the adjoint representation it is true that nilpotent Lie algebras are realized as unipotent linear
Lie algebras, but this is not necessarily true for other representations. Since the representation
we use is not the adjoint representation of n, but the restriction of the adjoint representation
of g to n, the distinction between nilpotent and unipotent subalgebras is relevant.
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spaces of a with respect to the Weyl chamber containing the element 3e11− e22−
2e33 ∈ a. As a consequence, we obtain:

Proposition 2 The solvable Lie algebra

l = a+ n ⊂ g

is a maximal triangular subalgebra of g.

Any maximal triangular subalgebra of g will be called an Iwasawa subalgebra,

since it is the solvable Lie algebra appearing in the Iwasawa decomposition of

g. Any two Iwasawa subalgebras of g are conjugated.

The Iwasawa decomposition implies that the Lie subgroup L ⊂ G with the

Lie algebra l ⊂ g acts simply transitively on the quaternionic-Kähler symmetric

space G/SO4. Therefore, the quaternionic-Kähler structure can be described as

a left-invariant structure on L. This was done in [10]. Correcting some misprints

and changing slightly the notation, the Lie algebra of the simply transitive group

described by Alekseevsky is spanned by a basis

(G0, H0, G1, H1, P̃−, P̃+, Q̃−, Q̃+),

with the following nontrivial brackets:

[H0, G0] = G0, [H1, G1] =
1√
3
G1,

[H0, Ũ ] =
1

2
Ũ , for all Ũ ∈ ũ := span{P̃−, P̃+, Q̃−, Q̃+},

[H1, P̃−] =

√
3

2
P̃−, [H1, P̃+] =

1

2
√
3
P̃+, [H1, Q̃−] =−

√
3

2
Q̃−, [H1, Q̃+] =−

1

2
√
3
Q̃+,

[G1, P̃+] = −P̃−, [G1, Q̃−] = Q̃+, [G1, Q̃+] =
2√
3
P̃+,

[Q̃−, P̃−] = [Q̃+, P̃+] = G0.

Proposition 3 The Lie algebra l admits a basis

(G0, H0, G1, H1, P̃−, P̃+, Q̃−, Q̃+) with the above commutators.
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Proof: It suffices to define

G0 := −3e31, H0 :=
1

2
(e11 − e33), G1 :=

1√
3
e2, H1 :=

1

2
√
3
(e11 − 2e22 + e33)

P̃− :=
√
3e21, P̃+ := e1, Q̃− :=

√
3e32, Q̃+ := e3.

To compare with the results obtained by dimensional reduction it is more

convenient to work with the following basis:

(V1, . . . ,V8) = (G0, H0, G1, H1, Q̃−, Q̃+,−P̃−,−P̃+, ),

i.e.

V1 = −3e31, V2 =
1

2
(e11 − e33), V3 =

1√
3
e2, V4 =

1

2
√
3
(e11 − 2e22 + e33),

V5 =
√
3e32, V6 = e3, V7 := −

√
3e21, V8 := −e1, (3.2)

which has precisely the same nontrivial brackets (2.12) as the basis Ta of the

Lie algebra obtained from dimensional reduction.

4 Realization of the scalar manifolds of the re-

duced theories as open orbits in the symmet-

ric space S

Our goal is to realize the scalar manifolds M (TS) and M (ST ) of the reduced

theories as open orbits M1 = L′ · o and M2 = L′′ · o of Iwasawa subgroups

L′, L′′ ⊂ G on the symmetric space S = G/Gev . Notice that the standard

Iwasawa subgroup L ⊂ G acts transitively on the Riemannian symmetric space

G/SO4, but that the orbit L·o of the canonical base point o ∈ G/(SL(2)·SL(2))
under this group is not even open. Our strategy is to look for a conjugate

subgroup L′ = Ca(L) = aLa−1, a ∈ G, such that the orbit M1 = L′ · o is open,

and then to try to show that M1 is isometrically covered, up to a positive scale

factor, by at least one of the two scalar manifolds M (TS) or M (ST ).

In the following subsection we construct an Iwasawa subgroup L′ = Ca(L) ⊂
G for which the orbit L′ · o ⊂ S is open. Composing the isomorphism Ca :
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L → L′ defined by conjugation by a ∈ G with the covering L′ → M1 given

by the orbit map x 7→ x · o we obtain a Ca-equivariant covering φ1 : L →
M1 and a left-invariant metric g1 = φ∗

1gS on L, which we can compare to

the metrics g(TS) = g(1,−1) and g(ST ) = g(−1,1). Recall that the solvable Lie

algebra obtained from dimensional reduction comes equipped with the basis T :=

(T1, . . . , T8), whereas the standard Iwasawa Lie subalgebra l ⊂ g is equipped

with the basis V := (V1, . . . ,V8). Since these bases have the same structure

constants, we can identify the two Lie algebras. In Proposition 5 we compute

the Gram matrix G1 of g1 with respect to the basis V. Contrary to the metrics

g(TS) and g(ST ), for which the basis T is orthonormal (up to an overall factor),

we find that G1 is not even diagonal. Notice that nevertheless the left-invariant

metrics g1 and g(TS) or g(ST ) on L could be equivalent, that is related by an

automorphism of L, up to a positive scale factor. In Subsection 4.2 we determine

the group Aut(L) of all automorphisms of L. As a result we find in particular

that for the connected component of the identity Aut0(L) = Inn(L) ∼= L. In

Subsection 4.3 we prove that the metrics g1 and g(TS) are equivalent and, more

precisely, related by a unique inner automorphism of L, and multiplication by a

factor of 2. Similarly in Subsection 4.4 we construct a second Iwasawa subgroup

L′′ ⊂ G such that M2 = L′′ · o is open and a covering φ2 : L → M2 which is

equivariant with respect to an isomorphism L→ L′′. Finally, the left-invariant

metric g2 = φ∗
2gS is shown to be related to the metric g(ST ) by a unique inner

automorphism of L, and multiplication by a factor of 2. We also show that,

surprisingly, the metrics g1 and g2 are not related by any automorphism. We

will see in Section 5 that the metric Lie groups (L, g1) and (L, g2) have different

geometric properties.

4.1 Iwasawa subgroups of G with an open orbit on S

Given a subgroup U ⊂ G we can consider the orbit U · o ⊂ S = G/Gev of the

canonical base point o ∈ S. The orbit is open if and only if gev + Lie(U) = g.

For an Iwasawa subalgebra l′ = Adal ⊂ g, a ∈ G, this is the case if and only if

gev ∩ l′ = 0. In that case, the orbit map L′ →M = L′ · o ⊂ S is a covering and
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we obtain a left-invariant locally symmetric para-quaternionic-Kähler structure

on L′ ∼= L induced from the symmetric para-quaternionic-Kähler structure on

S. Notice that the orbit L · o (the case a = e) is not open, since gev ∩ l 6= 0.

Proposition 4 The element a = exp ξ, where ξ = e1 + e13 ∈ g, defines an

Iwasawa subalgebra l′ = Adal ⊂ g transversal to gev.

Proof: We first compute X ′ := AdaX = eadξX for every element X ∈ l. For

H =
∑

lie
i
i ∈ a ⊂ l,

adξH = −[H, ξ] = −(−l1e1 + (−l1 + l3)e
1
3) = l1e

1 + (l1 − l3)e
1
3, ad

2
ξH = 0,

implies

H ′ = H + l1e
1 + (l1 − l3)e

1
3. (4.1)

Next,

adξe1 = −2e11 + e22 + e33 + e3,

ad2ξe1 = −2[e1, e11] + [e1, e3]− 2[e13, e
1
1] + [e13, e

3
3]

= −2e1 − 3e13 − 2e13 − e13 = −2(e1 + 3e13),

ad3ξe1 = 0,

implies

e′1 = e1 − 2e11 + e22 + e33 + e3 − e1 − 3e13. (4.2)

adξe
2 = 2e3, ad

2
ξe

2 = −6e13, ad3ξe2 = 0 =⇒

e2
′
= e2 + 2e3 − 3e13. (4.3)

adξe
3 = −2e2 − e1, ad2ξe

3 = 6e12, ad
3
ξe

3 = 0 =⇒

e3
′
= e3 − 2e2 − e1 + 3e12. (4.4)

adξe
2
1 = e2 + e23, ad

2
ξe

2
1 = 2e3, ad

3
ξe

2
1 = −6e13, ad4ξe21 = 0 =⇒

e21
′
= e21 + e2 + e23 + e3 − e13. (4.5)

adξe
3
1 = e3 + e33 − e11, ad

2
ξe

3
1 = −2(e2 + e1 + e13), ad

3
ξe

3
1 = 6e12, ad

4
ξe

3
1 = 0 =⇒

e31
′
= e31 + e3 + e33 − e11 − e2 − e1 − e13 + e12. (4.6)
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adξe
3
2 = −e12, ad2ξe31 = 0 =⇒

e32
′
= e32 − e12. (4.7)

Next we check the transversality of l′. Let us denote by π : g → godd the

projection along gev and by ϕ : l→ godd the map X 7→ π(X ′). From (4.1)-(4.7)

we can read off ϕ:

ϕ(H) = l1e
1 + (l1 − l3)e

1
3, for all H =

∑
lie

i
i ∈ a,

ϕ(e1) = e1 − e1 − 3e13, ϕ(e
2) = e2 − 3e13, ϕ(e

3) = −2e2 − e1,

ϕ(e21) = e2 + e23 − e13, ϕ(e
3
1) = e31 − e2 − e1 − e13, ϕ(e

3
2) = e32, (4.8)

which shows that ϕ : l→ godd is an isomorphism of vector spaces. This implies

that l′ is transversal to gev.

Next we compute the left-invariant metric g1 on L ∼= L′ which corresponds

to the locally symmetric para-quaternionic-Kähler manifold M1 = L′ · o ⊂ S.

Let us denote by B the Killing form of g and by 〈·, ·〉B the scalar product on

godd obtained by restricting 1
8B.

Lemma 1 The nontrivial scalar products between elements of the basis

(e1, e2, e
1, e2, e31, e

3
2, e

1
3, e

2
3) of godd are precisely:

〈e1, e1〉B = 〈e2, e2〉B = 3, 〈e32, e23〉B = 〈e31, e13〉B = 1.

The scalar product 〈·, ·〉1 on l which defines the metric g1 is precisely the

pull back of 〈·, ·〉B by the isomorphism ϕ = π ◦Ada : l→ godd.

Proposition 5 The matrix representing the scalar product 〈·, ·〉1 = ϕ∗〈·, ·〉B
in the basis V is:

G1 =




−18 −3 6
√
3 0 0 0 −12

√
3 −18

−3 0 0 0 0 0 0 − 3
2

6
√
3 0 0 0 0 −2

√
3 0 0

0 0 0 0 0 0 0 −
√
3
2

0 0 0 0 0 0 −3 0

0 0 −2
√
3 0 0 0 6

√
3 3

−12
√
3 0 0 0 −3 6

√
3 0 0

−18 − 3
2 0 −

√
3
2 0 3 0 −6




. (4.9)
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Proof: This follows from (4.8) with the help of Lemma 1

To compare the above left-invariant metric g1 with the metrics obtained

from dimensional reduction we need to study the automorphism group of the

solvable Lie group L. Since L is simply connected, we have Aut(L) ∼= Aut(l).

4.2 Automorphisms of the solvable algebra

In this subsection we determine the automorphism group of the solvable Lie

algebra l. For the proof we will use the following dual characterization of auto-

morphisms.

Proposition 6 Given a Lie algebra l, an invertible linear map Λ : l→ l is an

automorphism if and only if

dΛ∗θ = Λ∗dθ, (4.10)

for all θ ∈ l∗.

Recall that given a basis (Ta) of a Lie algebra l with structure constants ccab,

that is [Ta, Tb] = ccabTc, the differential is given in terms of the dual basis (θa)

as follows

dθa = −cabcθb ∧ θc .

In other words, Λ is an automorphism if and only if the dual map Ω = Λ∗

satisfies

dΩ(θa) = −cabcΩ(θb) ∧Ω(θc), (4.11)

for all a = 1, . . . , dim(l).

For the Iwasawa Lie algebra l we can use the basis (Ta) = (Va) defined in

(2.11). The differentials of the dual basis (θa) are given by (2.10), if we put

(η2, ξ2, α, β, η
0, η1, ξ0, ξ1) = (θ1, . . . , θ8).

We now show the following:

Theorem 1 The group of automorphisms of the solvable Lie algebra l is given

by Aut(l) = (Z2 × Z2) ⋉ Inn(l), where Inn(l) ∼= L denotes the group of inner
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automorphisms of l, and the generators of the cyclic factors of the group

Z2 × Z2 ⊂ Aut(l) act by the diagonal matrices

diag(−1, 1,−1, 1, 1,−1,−1, 1) and diag(1, 1, 1, 1,−1,−1,−1,−1),

on the Lie algebra l with respect to the basis (2.11). An explicit parametrization

of the group Aut(l) by

{(a, b, c, d, e, f, g, h) ∈ R8|be 6= 0} ∼= R∗ ×R∗ ×R6,

is given by the matrix (4.12), which represents the action of the group element

with parameters (a, b, c, d, e, f, g, h) in the given basis of l.

Proof: We work with the 1-forms (2.8), which have exterior derivatives (2.10).

We first note that the six non-zero differentials which appear on the right-

hand side of (2.10) are linearly independent. Hence, the space of closed one-

forms Z1(l) is spanned by {ξ2, β}.
In order to determine all automorphisms Λ of l we consider Ω = Λ∗ and

define coefficients Ωa
b by Ω(θa) = Ωa

bθ
b, such that M = (Ma

b)a,b = (Ωb
a)a,b

is the matrix representing Ω with respect to the basis (θa), and, hence, is the

transpose of the matrix representing Λ with respect to the basis (Ta). We then

simply work through each of the basis 1-forms (θa) and determine the coefficients

Ωa
b such that (4.11) is satisfied. It turns out to be easiest to do this in the order

ξ2, β, α, η
0, η1, ξ1, ξ0, η

2.

Since any automorphism preserves Z1(l) = span{ξ2, β} we see that

Ω(ξ2) = Ω2
2ξ2 +Ω2

4β , Ω(β) = Ω4
2ξ2 +Ω4

4β.

We now turn to the 1-form α. The automorphism Ω must satisfy

dΩ(α) =
1√
3
Ω(α) ∧ Ω(β).

Since we have already determined that Ω(β) should be a linear combina-

tion of {ξ2, β}, we deduce that Ω(α) should only contain terms whose exterior

derivative has a ξ2 or β in every term. Hence, we require

Ω(α) = Ω3
2ξ2 +Ω3

3α+Ω3
4β +Ω3

5η
0.
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We next use the automorphism condition to find algebraic relations between

the components of Ω3
a and Ω4

a. In particular, we have

Ω3
2Ω

4
4 = Ω3

4Ω
4
2 , Ω3

3(Ω
4
4 − 1) = 0 , Ω3

3Ω
4
2 = 0 ,

Ω3
5

(
Ω4

2 −
√
3

2

)
= 0 , Ω3

5

(
Ω4

4 +
3

2

)
= 0 .

From this we see that we can’t have both Ω3
3 and Ω3

5 being non-zero. We

consider the case Ω3
3 := b 6= 0,Ω3

5 = 0, which restricts

Ω4
2 = 0, Ω4

4 = 1, Ω3
2 = 0.

It turns out that the other possible choice Ω3
3 = 0,Ω3

5 6= 0 does not give rise

to an invertible linear map Ω. The corresponding analysis is omitted.

By successively analysing all algebraic relations, we find the most general

automorphism of l, which depends on eight real parameters

Ω1
2 := a, Ω3

3 := b, Ω3
4 := c, Ω5

2 := d, Ω5
5 := e, Ω6

2 := f, Ω7
2 := g, Ω8

2 := h,
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and is given by its action on the basis of 1-forms (θa) as

Ω(ξ2) = ξ2,

Ω(β) = β,

Ω(α) = bα+ cβ,

Ω(η0) = dξ2 −
√
3dβ + eη0,

Ω(η1) = fξ2 + 2bdα+

(
2cd− 1√

3
f

)
β −
√
3ceη0

+ beη1,

Ω(ξ1) = hξ2 −
4√
3
bfα+

(
1√
3
h− 4√

3
cf

)
β −
√
3c2eη0

+ 2bceη1 + b2eξ1,

Ω(ξ0) = gξ2 − 2bhα+
(√

3g − 2ch
)
β − c3eη0

+
√
3bc2eη1 + b3eξ0 +

√
3b2ceξ1,

Ω(η2) = b3e2η2 + aξ2 −
(
4bdh+

4√
3
bf2

)
α

+

(
2
√
3dg − 4cdh+

2√
3
fh− 4√

3
cf2

)
β

+
(
2
√
3ceh− 2

√
3c2ef − 2c3de − 2eg

)
η0

+
(
2
√
3bc2de + 4bcef − 2beh

)
η1

+ 2b3deξ0 +
(
2
√
3b2cde+ 2b2ef

)
ξ1.

This eight-parameter family describes all automorphisms of the Lie algebra l.

We can now read off the matrix M representing Ω = Λ∗ with respect to the

basis (θa).

M =




b3e2 0 0 0 0 0 0 0

a 1 0 0 d f g h

m3,1 0 b 0 0 2 bd −2 bh −4/3
√
3bf

m4,1 0 c 1 −
√
3d m4,5

√
3g − 2 ch 1/3

√
3 (h− 4 cf)

m5,1 0 0 0 e −
√
3ce −c3e −

√
3c2e

m6,1 0 0 0 0 be
√
3bc2e 2 bce

2 b3de 0 0 0 0 0 b3e 0

m8,1 0 0 0 0 0
√
3b2ce b2e




,

(4.12)
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where

m3,1 = −4 b
(
dh+ 1/3

√
3f2
)
, m4,1 = 2

√
3dg−4 cdh+2/3

√
3fh−4/3

√
3cf2,

m4,5 = 2 cd− 1/3
√
3f , m5,1 = 2

√
3ceh− 2

√
3c2ef − 2 c3de− 2 eg,

m6,1 = 2 b
(√

3c2de+ 2 cef − eh
)

, m8,1 = 2 b2
(√

3cde+ ef
)
.

Note that the matrix M satisfies the equation Λ(Ta) = Ma
bTb.

Since det(M) = b10e6 is not allowed to be zero, we conclude that b 6= 0

and e 6= 0, which decomposes the eight-parameter family into four connected

components. Notice that the matrices M such that a = c = d = f = g = h = 0

and b, e ∈ {±1} form a subgroup of Aut(l) isomorphic to Z2×Z2. Its action on

l is diagonal as indicated in the theorem, and can be read off from (4.12).

4.3 Identifying the open orbit corresponding to Time-

Space reduction

Under automorphisms, the Gram matrix G1 given by (4.9) transforms according

to

G1 7→MG1M
T ,

where M is the matrix (4.12) representing the dual of a general automorphism

of the Iwasawa algebra l′. We now impose that the transformed Gram matrix

is diagonal up to scale. The related calculations can be easily performed using

Maple. By imposing successively the vanishing of off-diagonal entries of the

transformed Gram matrix, one obtains constraints on the eight parameters of

the automorphism. The parameters have to take the values

d = − 1√
3
, f = −1

2
, h = g = 0, a = −1

6
, c = −1

2
, b = ±1

2
, e = ± 2√

3
.

This shows that there is a unique inner automorphism (b, e > 0) which diag-

onalizes the Gram matrix, and as well a unique such automorphism in each

component of Aut(l). The diagonalized Gram matrix is in all cases

G
diag
1 =

1

2
diag(−1, 1,−1, 1,−1, 1, 1− 1) . (4.13)
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This agrees, up to an overall (positive) factor, with the metric (2.9), (2.13) of

the scalar manifold M (TS) obtained by TS reduction (ǫ1 = 1, ǫ2 = −1). We

have therefore shown:

Proposition 7 The left-invariant metric g(TS) = g(1,−1) on L obtained by

dimensional reduction of five-dimensional minimal pure supergravity is related

by a unique inner automorphism combined with a re-scaling by a factor of 1
2 to

the left-invariant metric g1 on L obtained from the open orbit M1 = L′ · o ⊂
S = G/Gev, where L′ = Ca(L), a = exp(e1 + e13) ∈ G, is the Iwasawa subgroup

constructed in Subsection 4.1.

4.4 Identifying the open orbit corresponding to Space-

Time reduction

Next, we look for another a ∈ G such that the Iwasawa subalgebra l′′ = Ada(l) ⊂
g, is transversal to gev, and hence gives rise to a second open orbit M2 =

L′′ · o ⊂ S, where L′′ = exp(l′′). The aim is to match M2 with M (ST ), up to a

covering, using again an inner automorphism of L to relate the corresponding

left-invariant metrics g2 = ϕ∗
2gS and g(ST ) on L. Here ϕ2 : L → M2 is the

covering x 7→ Ca(x) · o. This procedure involves choosing ξ ∈ g such that

a = exp(ξ) has the desired properties. Investigating candidates for ξ is tedious

but manageable using Maple. Otherwise we follow the same steps as for l′.

We use the following basis of g:

b1 = e11−e22, b2 = e22−e33, b3 = e21, b4 = e31, b5 = e32, b6 = e12, b7 = e13,

b8 = e23 , b9 = e1 , b10 = e2 , b11 = e3 , b12 = e1 , b13 = e2 , b14 = e3.

Note that l = span{b1, b2, b3, b4, b5, b9, b13, b14}, with the relation to the basis

(Vb) given by (3.2). We take ξ = e23 + e1 and compute X ′ = AdaX , where

a = exp ξ, for all basis elements X = bm of l:

b′1 = b1 − b8 + b12 , b′2 = b2 + 2b8 , b′3 = b3 − b7 + b11 + b13 ,

b′4 = −b3 + b4 + b6 + b7 − b10 − b11 − b13 + b14 ,
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b′5 = −b2 + b5 − b8 , b′9 = −2b1 − b2 + b9 − b12 ,

b′13 = −3b7 + 2b11 + b13 , b′14 = 3b6 + 3b7 − 2b10 − 2b11 − b13 + b14 .

As before we denote by ϕ the composition π ◦Ada where π : g→ godd is the

projection along gev. Using the above formulae we apply ϕ to the basis elements

Vb and express the result in the basis (f1, . . . , f8) := (b9, b10, b12, b13, b4, b5, b7, b8)

of godd. For example

ϕ(V1) = −3ϕ(b4) = −3b4 − 3b7 + 3b10 + 3b13 .

The result is summarized by the matrix A, which is the transpose of the matrix

representing ϕ : l → godd with respect to the bases (Vb) and (fb), that is

ϕ(Vb) = Abcfc:

A =




0 3 0 3 −3 0 −3 0

0 0 1
2 0 0 0 0 1

2

0 0 0 1√
3

0 0 −
√
3 0

0 0 1
2
√
3

0 0 0 0 −
√
3
2

0 0 0 0 0
√
3 0 −

√
3

0 −2 0 −1 0 0 3 0

0 0 0 −
√
3 0 0

√
3 0

−1 0 1 0 0 0 0 0




.

One checks that det(A) = −12 6= 0, and therefore the vectors ϕ(Vb) are linearly

independent, and l′′ = span{Vb} ≃ godd is transversal. The Gram matrix G2 of

the scalar product 〈·, ·〉2 = ϕ∗〈·, ·〉B on l with respect to the basis (Vb) is given

by

G2 = AGAT ,

where G is the Gram matrix of the scalar product 〈·, ·〉B on godd with respect to

27



the basis (fb), as computed in Lemma 1. The resulting matrix is

G2 =




72 0 6
√
3 0 0 −36 −12

√
3 0

0 0 0 0
√
3
2 0 0 − 3

2

6
√
3 0 0 0 0 −2

√
3 0 0

0 0 0 0 − 3
2 0 0 −

√
3
2

0
√
3
2 0 − 3

2 −6 0 0 0

−36 0 −2
√
3 0 0 12 6

√
3 0

−12
√
3 0 0 0 0 6

√
3 0 0

0 − 3
2 0 −

√
3
2 0 0 0 −6




.

(4.14)

Now we apply a general automorphism of l with matrix M as in (4.12) and im-

pose thatMG2M
T is diagonal up to scale. This leads to the following constraints

on the parameters of M:

f = 0, d =
1

12

√
3, h = −1

4
, g = 0, a = 0, c = 0, b = ±1, e = ± 1

2
√
3
.

Thus there is again a unique inner automorphism diagonalizing the Gram ma-

trix, and precisely one such automorphism in each component of Aut(l). The

diagonalized Gram matrix is in all cases

G
diag
2 =

1

2
diag(1, 1, 1, 1,−1,−1,−1,−1) , (4.15)

which agrees, up to an overall (positive) scale factor with the metric g(ST ) (2.9),

(2.13) of the scalar manifoldM (ST ) obtained by ST reduction, (ǫ1 = −1, ǫ2 = 1).

Thus we have shown:

Proposition 8 The left-invariant metric g(ST ) = g(−1,1) on L obtained by

dimensional reduction of five-dimensional minimal pure supergravity is related

by a unique inner automorphism combined with a re-scaling by a factor of 1
2 to

the left-invariant metric g2 on L obtained from the open orbit M2 = L′′ · o ⊂
S = G/Gev, where L′′ = Ca(L), a = exp(e23 + e1) ∈ G, is the Iwasawa subgroup

constructed above.

We also have:
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Proposition 9 The left-invariant metrics g(TS) and g(ST ) (equivalently g1

and g2) on L are not related by any automorphism of L.

Proof: This can be proven by showing that an automorphism cannot transform

the diagonal Gram matrix G
diag
1 (4.13) of g(TS) to the diagonal Gram matrix

G
diag
2 (4.15) of g(ST ). If such an automorphism existed, then there would exist

a matrix M of the form (4.12) such that MG
diag
1 MT = G

diag
2 . Analysing the

conditions imposed on the parameters, one finds a = d = f = g = h = 0, which

in turn implies (amongst other things) that Ω(η2) = b3e2η2. Hence we see that

we need b6e4 = −1 which is impossible.

Alternatively, this follows from the uniqueness of the diagonalization of the

Gram matrices G1 and G2 by automorphisms, which was observed above.

In the next section we will investigate the geometry of the manifolds (L, g1)

and (L, g2) more closely.

5 Geometric structures on the Iwasawa sub-

group of G2(2)

We now explore the geometrical structures carried by the Lie algebra l of the

Iwasawa subgroup L, equipped with the three metrics related to dimensional

reductions of minimal pure five-dimensional supergravity, and find explicit ex-

pressions for the (para-)quaternionic structures, the Levi-Civita connection and

the curvature.

Recall that the Lie algebra l is equipped with the basis (Va) defined in

(3.2) and the left-invariant metrics g1, g2 with the Gram matrices G1, G2 given

in (4.9) and (4.14). As observed above there exists in both cases a unique

inner automorphism of l transforming the above Gram matrices into diago-

nal forms given by (4.13), (4.15). Let us denote in both cases by (Ta) =

(V2, U
2, A,B, V0, V1, U

0, U1) the, up to scale, orthonormal basis which corre-

sponds to the basis (Va) under this unique inner automorphism. For conve-

nience, in this section we work with rescaled metrics on L and corresponding

scalar products on l, for which (Ta) is an orthonormal basis. For completeness
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we also consider the case of SS reduction which corresponds to a positive def-

inite metric on L. Thus the Gram matrices with respect to the basis (Ta) for

the three cases are:

Gdiag = (−ǫ1, 1,−ǫ1, 1,−ǫ,−ǫ2,−ǫ2,−ǫ) . (5.1)

The corresponding metric on L is denoted ḡ = ḡ(ǫ1,ǫ2) and the associated scalar

product on l by 〈·, ·〉 = 〈·, ·〉ǫ1,ǫ2 .
Summarizing we are given the Lie algebra l with the basis

(Ta) = (V2, U
2, A,B, V0, V1, U

0, U1), (5.2)

with structure constants (2.12) and a pseudo-Euclidean scalar product 〈·, ·〉
defined by the Gram matrix (5.1) with respect to the basis (Ta). We now

state the main results which will be proved in this section.

We first define the following skew-symmetric endomorphisms.

J1 = ǫ2U
2 ∧ V2 −B ∧ A+ ǫ

√
3

2
U1 ∧ U0 − ǫ2

1

2
U1 ∧ V1

+ǫ2
1

2
U0 ∧ V0 + ǫ

√
3

2
V1 ∧ V0 , (5.3)

J2 = ǫ2

√
3

2
U1 ∧ V2 + ǫ

1

2
V0 ∧ V2 −

1

2
U0 ∧ U2 − ǫ1

√
3

2
V1 ∧ U2

−1

2
U1 ∧ A− ǫ1

√
3

2
V0 ∧A−

√
3

2
U0 ∧B + ǫ1

1

2
V1 ∧B , (5.4)

J3 = ǫ2
1

2
U0 ∧ V2 − ǫ

√
3

2
V1 ∧ V2 − ǫ1

√
3

2
U1 ∧ U2 +

1

2
V0 ∧ U2

−
√
3

2
U0 ∧A+ ǫ1

1

2
V1 ∧A− ǫ1

1

2
U1 ∧B −

√
3

2
V0 ∧B , (5.5)

J̃1 = −ǫ2U2 ∧ V2 −B ∧ A+ ǫ

√
3

2
U1 ∧ U0 − ǫ2

1

2
U1 ∧ V1

+ǫ2
1

2
U0 ∧ V0 + ǫ

√
3

2
V1 ∧ V0 . (5.6)

Here we use the following standard identification of bi-vectors with skew-

symmetric endomorphisms:

(u ∧ v)(w) = u〈v, w〉 − 〈u,w〉v , u, v, w,∈ l . (5.7)
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Proposition 10 The endomorphisms Jα of l are pairwise anti-commuting

and satisfy the following relations3:

(J1)
2 = ǫ1Id , (J2)

2 = ǫ2Id , (J3)
2 = ǫ3Id := ǫId , J3 = J1J2 .

Proof: This follows by direct calculation.

Notice that the endomorphisms Jα define left-invariant skew-symmetric al-

most ǫα-complex4 structures on the Lie group L, which will be denoted by the

same symbols. We put Q := span{Jα|α = 1, 2, 3}.

Theorem 2 (L, ḡ, Q) is an ǫ-quaternionic-Kähler manifold with left-invariant

ǫ-quaternionic structure Q, and J1, J̃1 are integrable left-invariant skew-symme-

tric ǫ1-complex structures on (L, ḡ).

Proof: The integrability of the structures J1, J̃1 is proven by computation of

the Nijenhuis tensor5

NJ(X,Y ) = −J2[X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ] = 0 , (5.8)

for J = J1 and J = J̃1 using the formulae (2.12), (5.3) and (5.6). One also

finds that NJ2
, NJ3

do not vanish. To prove the ǫ-quaternionic-Kähler property

we need to check that Q is parallel. The explicit expression for the Levi-Civita

connection is given in formula (5.9) in Subsection 5.1. Using this formula, it is

checked in Proposition 12. that Q is parallel.

The curvature tensor of the ǫ-quaternionic-Kähler manifold (L, ḡ, Q) is given

in formula (5.12) in Subsection 5.2. Based on the formulae for the Levi-Civita

connection and its curvature we have verified by explicit calculation that the

curvature tensor is parallel. This provides a second, independent proof of the

fact, established in Section 4, that the manifold (L, ḡ) is locally symmetric.

3Recall that ǫ = −ǫ1ǫ2.
4By the terminology “ǫ-complex”, “ǫ-quaternionic”, etc. we mean “complex”, “quater-

nionic”, etc. if ǫ = −1 and “para-complex”, “para-quaternionic”, etc. if ǫ = 1.
5 Notice that by the Newlander-Nirenberg theorem and the Frobenius theorem, respec-

tively, the vanishing of the Nijenhuis tensor NJ of an almost ǫ-complex structure J on a
smooth manifold M implies that J defines on M the structure of a complex, respectively
para-complex, manifold.
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For ǫ1 = ǫ2 = −1 Theorem 2 recovers Alekseevsky’s description [10] of the

symmetric quaternionic-Kähler manifold of non-compact type G2(2)/SO4 as a

solvable Lie group L endowed with a left-invariant quaternionic-Kähler struc-

ture. For completeness we include in Subsection 5.3 a discussion relating our

approach with Alekseevsky’s description in terms of representations of Kählerian

Lie algebras.

5.1 Computation of the Levi Civita connection

To compute the Levi-Civita connection of a pseudo-Riemannian metric g, we

use the Koszul formula

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

+g([X,Y ], Z)− g(X, [Y, Z])− g(Y, [X,Z]),

where X,Y, Z are vector fields6. For a left-invariant metric on a Lie group L the

vector fieldsX,Y, Z can be taken to be left-invariant and therefore correspond to

vectors in the Lie algebra l, in which case the first three terms on the right hand

side vanish. The computation of the Levi-Civita connection is thus reduced to

computing commutators and scalar products of vectors in l. Notice that the

covariant derivative ∇X acts on l as an endomorphism, which satisfies

T (X,Y ) = ∇XY −∇Y X − [X,Y ] = 0 , ∀X,Y ∈ l ,

and which is skew as a consequence of the metric compatibility of the Levi-Civita

connection. Therefore we can express ∇X as a wedge product of generators,

using the convention (5.7).

Using the commutators (2.12) in the solvable Lie algebra l together with

the fact that the generators Ta form an orthonormal basis (5.2) with the Gram

matrix (5.1) it is straightforward to obtain the following result.

6When taking X, Y,Z to be coordinate vector fields (and hence to commute), the last three
terms on the right hand side vanish and one recovers the usual formula for the Levi-Civita
connection in terms of Christoffel symbols.
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Proposition 11 The Levi-Civita connection ∇ of (L, ḡ) is given by:

∇V2
= U2 ∧ V2 +

1

2
U0 ∧ V0 +

1

2
U1 ∧ V1, (5.9)

∇U2 = 0,

∇A =
1√
3
B ∧ A+

1

2
ǫV0 ∧ V1 +

1

2
ǫU0 ∧ U1 +

1√
3
ǫ2U

1 ∧ V1,

∇B = 0,

∇V0
= −1

2
V0 ∧ U2 − 1

2
ǫ2U

0 ∧ V2 +

√
3

2
V0 ∧B +

1

2
ǫ1V1 ∧ A,

∇V1
= −1

2
V1 ∧ U2 − 1

2
ǫU1 ∧ V2 +

1

2
√
3
V1 ∧B

−1

2
V0 ∧ A− 1√

3
ǫ1U

1 ∧ A,

∇U0 = −1

2
U0 ∧ U2 +

1

2
ǫV0 ∧ V2 −

√
3

2
U0 ∧B +

1

2
U1 ∧ A,

∇U1 = −1

2
U1 ∧ U2 +

1

2
ǫ2V1 ∧ V2 −

1

2
√
3
U1 ∧B

−1

2
ǫ1U

0 ∧ A+
1√
3
V1 ∧ A.

For illustration, the first line of the above formula is equivalent to:

∇V2
V2 = −ǫ1U2 , ∇V2

U2 = −V2 , ∇V2
A = 0 , ∇V2

B = 0 .

∇V2
V0 = −1

2
ǫU0 , ∇V2

U0 =
1

2
ǫ2V0 , ∇V2

V1 = −1

2
ǫ2U

1 , ∇V2
U1 =

1

2
ǫV1 .

The covariant derivatives of the structures Jα can now be computed by

taking commutators between the corresponding skew endomorphisms ∇X and

Jα for all X ∈ l. We note the following useful formula:

[X∧Y, Z∧W ] = (X∧W )〈Y, Z〉+(Y ∧Z)〈X,W 〉−(X∧Z)〈Y,W 〉−(Y ∧W )〈X,Z〉 .

Using Proposition 11 and the explicit expressions for the structures Jα given in

(5.3)–(5.5), we obtain:

Proposition 12

[∇X , J1] = α̂(X)J2 + β̂(X)J3,

[∇X , J2] = ǫα̂(X)J1 + γ̂(X)J3, (5.10)

[∇X , J3] = ǫ2β̂(X)J1 + ǫ1γ̂(X)J2,
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where α̂, β̂, γ̂ ∈ l∗ are one-forms, which are related to the dual basis (2.7) of the

basis (Ta) of l by

α̂ = −1

2
η0 −

√
3

2
ξ1, β̂ = −ǫ1

√
3

2
η1 − 1

2
ξ0, γ̂ = ǫ2

1

2
η2 −

√
3

2
α. (5.11)

This shows that the ǫ-quaternionic structure Q is parallel.

5.2 Curvature

Given the Levi-Civita connection it is straightforward to compute the curvature

by the defining formula

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] ,

where X,Y are vector fields. In our setting we take X,Y to be left-invariant

vector fields on the Lie group L and identify them with elements of l. Then

R(X,Y ) is considered as a skew-symmetric endomorphism of l.

Proposition 13 The curvature endomorphisms of (L, ḡ) are given by:

R(U2, V2) = −∇V2
, R(U2, B) = R(U2, A) = 0,

R(U2, V0) = −
1

2
∇V0

, R(U2, V1) = −
1

2
∇V1

, R(U2, U0) = −1

2
∇U0 ,

R(U2, U1) = −1

2
∇U1 ,

R(V2, B) = R(V2, A) = 0, R(V2, V0) =
1

2
ǫ∇U0 ,

R(V2, V1) =
1

2
ǫ2∇U1 , R(V2, U

0) = −1

2
ǫ2∇V0

, R(V2, U
1) = −1

2
ǫ∇V1

,

R(B,A) = − 1√
3
∇A, R(B, V0) =

√
3

2
∇V0

, R(B, V1) =
1

2
√
3
∇V1

,

R(B,U0) = −
√
3

2
∇U0 , R(B,U1) = − 1

2
√
3
∇U1 ,

R(A, V0) = −
1

2
∇V1

, R(A, V1) =
1

2
ǫ1∇V0

+
1√
3
∇U1 ,

R(A,U0) = −1

2
ǫ1∇U1 , R(A,U1) =

1

2
∇U0 − 1√

3
ǫ1∇V1

,

R(V0, V1) = −
1

2
ǫ∇A, R(V0, U

0) =
1

2
∇V2

, R(V0, U
1) = 0,

R(V1, U
0) = 0, R(V1, U

1) =
1

2
∇V2

+
1√
3
ǫ2∇A, R(U0, U1) = −1

2
ǫ∇A.

(5.12)
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From a tedious but straightforward calculation we deduce:

Corollary 1 The pseudo-Riemannian manifold (L, ḡ) is locally symmetric:

∇R = 0.

5.3 Relation with Q-representations of Kählerian Lie al-

gebras in the Riemannian case

In this section we explain the relation between our construction and Alek-

seevsky’s classification of left-invariant quaternionic-Kähler structures on solv-

able Lie groups using the so-called Q-representations of Kählerian Lie algebras

[10]. In the Riemannian case of our construction, ǫ1 = ǫ2 = −1, we can make

the following unitary basis transformation of the Lie algebra:

G0 := V2 , H0 := U2 , G1 := A , H1 := B ,

G̃0 := −
√
3

2
U1 − 1

2
V0 , G̃1 := −1

2
U1 +

√
3

2
V0 ,

H̃0 := −1

2
U0 +

√
3

2
V1 , H̃1 := −

√
3

2
U0 − 1

2
V1 .

In this new orthonormal basis, the complex structures take the following simple

form:

J1 = −H0 ∧G0 −H1 ∧G1 + H̃0 ∧ G̃0 + H̃1 ∧ G̃1,

J2 = G̃0 ∧G0 + H̃0 ∧H0 + G̃1 ∧G1 + H̃1 ∧H1,

J3 = −G̃0 ∧H0 + H̃0 ∧G0 − G̃1 ∧H1 + H̃1 ∧G1,

J̃1 = H0 ∧G0 −H1 ∧G1 + H̃0 ∧ G̃0 + H̃1 ∧ G̃1. (5.13)

In Alekseevsky’s construction, when applied to the special case of (L, ḡ) ∼=
G2(2)/SO4, one starts with the sum of two elementary Kählerian Lie algebras

u = f0 ⊕ f1,

where

f0 = span{G0, H0} , [H0, G0] = G0 ,
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f1 = span{G1, H1} , [H1, G1] =
1√
3
G1 .

The corresponding Lie group U acts simply transitively on the product of two

complex hyperbolic lines with curvatures −1 and − 1
3 , respectively. The latter is

the projective special Kähler manifold obtained by applying the local r-map to a

zero-dimensional manifold. The symmetric space corresponding to the complex

hyperbolic line is SU(1, 1)/U(1) ≃ SL(2,R)/SO(2).

One then chooses a certain representation T : u→ gl(ũ) and extends the Lie

algebra u to a solvable Lie algebra l = u⊕ ũ, with [ũ, ũ] ⊂ u. The representation

space ũ is related to u by an isomorphism of vector spaces u→ ũ, X 7→ X̃ . The

above basis is consistent with this isomorphism, i.e. G0 is mapped to G̃0, etc.

The first complex structure J1 on l is then determined by the condition that the

restriction J1|u is the natural complex structure on the Kählerian Lie algebra

u, together with the property that J1X̃ = −J̃1X for all X ∈ u. The second

complex structure is defined by J2X = X̃ and J2X̃ = −X for all X ∈ u. The

representation T is chosen as a Q-representation, which means that it satisfies

certain conditions which ensure that (J1, J2, J3 = J1J2) is a quaternionic-Kähler

structure on the solvable Lie algebra l.

One possible alternative approach to our work on para-quaternionic-Kähler

structures would have been to adapt Alekseevsky’s method using bases anal-

ogous to the basis (G0, G1, H0, H1, G̃0, G̃1, H̃0, H̃1). However, the basis would

have needed to be adapted to the different scalar products, so that we would

have needed to work with three different bases, depending on the values of ǫ1

and ǫ2. The advantage of the basis T is that it can be used in all three cases.

Moreover, this basis is natural from the point of view of dimensional reduction

in supergravity.

5.4 Conjugate Iwasawa subgroups vs disjoint open L-orbits

For completeness we will explain the relation between, on the one hand, the open

orbits M ′ = L′ · o of the canonical base point o ∈ S = G/H under subgroups

L′ = Ca(L) = aLa−1 ⊂ G (a ∈ G) conjugate to the standard Iwasawa subgroup
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L ⊂ G and, on the other hand, the L-orbits L · o′ of different points o′ ∈ S.

Notice that the orbits M ′ = L′ · o and L · o′, o′ = a−1o, are related by

M ′ = La(L · o′) ,

where La : S → S is the diffeomorphism given by the G-action on S.

Proposition 14 Let M ′ = L′ · o ,M ′′ = L′′ · o ⊂ S be the two open orbits

constructed in Sections 4.3 and 4.4. Then the corresponding open L-orbits L ·o′

and L · o′′ are disjoint.

Proof: Let us denote by a′, a′′ ∈ G elements such that L′ = Ca′(L), L′′ =

Ca′′(L), o′ = (a′)−1 · o and o′′ = (a′′)−1 · o. Recall that the open orbits M ′

and M ′′ give rise to left-invariant metrics g′ = (φ′)∗gS and g′′ = (φ′′)∗gS on L,

where φ′ : L→M ′ , φ′(x) = Ca′(x)·o, and φ′′ : L→M ′′ , φ′′(x) = Ca′′(x)·o, for
all x ∈ L. If L · o′ and L · o′′ are not disjoint, then they coincide, and o′′ ∈ L · o′.
This means that there exists a ∈ L such that o′′ = ao′. Now we show that this

implies that the left-invariant metrics g′ and g′′ on L are related by

g′′ = C∗
a−1g′ . (5.14)

This follows from the equation

φ′′ = Lb ◦ φ′ ◦ Ca−1 , b = a′′a(a′)−1 , (5.15)

which we will prove below. In fact, using the G-invariance of gS, (5.15) implies

that

g′′ = (φ′′)∗gS = (C∗
a−1 ◦ (φ′)∗)(L∗

bgS) = (C∗
a−1 ◦ (φ′)∗)(gS) = C∗

a−1g′ .

Now we prove (5.15). We compute for x ∈ L:

φ′(x) = Ca′(x) · o = (a′x) · o′ , (5.16)

φ′′(x) = Ca′′(x) · o = (a′′x) · o′′ = (a′′xa) · o′ = (a′′aCa−1(x)) · o′

= (a′′a(a′)−1a′Ca−1(x)) · o′ (5.16)
= bφ′(Ca−1(x)) . (5.17)

This proves (5.15) and (5.14), under the assumption that the orbits L · o′ and
L · o′′ are not disjoint. On the other hand, we know from Proposition 9 that g′
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and g′′ are not related by an inner automorphism of L. Therefore the orbits are

necessarily disjoint.

Corollary 2 The Iwasawa subgroup L ⊂ G = G2(2) acts with at least two

open orbits on S = G2(2)/(SL(2) · SL(2)).
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