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Abstract

The main purpose of this thesis is to study weakly sharp solutions of a variational

inequality and its dual problem. Based on these, we present finite convergence

algorithms for solving a variational inequality problem and its dual problem. We

also construct the connection between variational inequalities and engineering

problems.

We consider a variational inequality problem on a nonempty closed convex

subset of Rn. In order to solve this variational inequality problem, we construct

the equivalence between the solution set of a variational inequality and optimiza-

tion problems by using two gap functions, one is the primal gap function and the

other is the dual gap function. We give properties of these two gap functions. We

discuss sufficient conditions for the subdifferentiability of the primal gap function

of a variational inequality problem. Moreover, we characterize relations between

the Gâteaux differentiabilities of primal and dual gap functions. We also build

some results for the Lipschitz and locally Lipschitz properties of primal and dual

gap functions as well.

Afterwards, several sufficient conditions for the relevant mapping to be con-

stant on the solution set of a variational inequality has been obtained, including

the relations between solution sets of a variational inequality and its dual prob-

lem as well as the optimal solution sets to gap functions. Based on these, we

characterize weak sharpness of the solution set of a variational inequality by its

primal gap function g and its dual gap function G. In particular, we apply error

bounds of g, G and g +G on C.

We also construct finite convergence of algorithms for solving a variational

inequality by considering the convergence of a local projection. We carry out

these results in terms of the weak sharpness of solution sets of a variational

inequality as well as the error bounds of gap functions of a variational inequality

problem.

Keywords. variational inequality, gap functions, Gâteaux differentiability,
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locally Lipschitz property, weakly sharp solution, error bound, finite convergence

of algorithms, projection, image processing
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Notation

VIP(C,F ) the variational inequality problem
DVIP(C,F ) the dual variational inequality problem
C∗ the solution set to VIP(C,F )
C∗ the solution set to DVIP(C,F )
g(x) the primal gap function
G(x) the dual gap function
f ′(x; v) directional derivative of f at x in the direction v
∇g(x) gradient of g at x
∂g(x) the subdifferential of g at x
int C interior of C
NC(x) the normal cone to C at x
TC(x) the tangent cone to C at x
A◦ the polar set of A
dC(x) the distance from x to C
PC(x) projection of x onto C
‖v‖ Euclidean norm
domf {x ∈ Rn : f(x) < +∞}
R∞ R ∪ {±∞}
inf C greatest lower bound of C
supC least upper bound of C
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Chapter 1

Introduction

The first chapter introduces the background of variational inequalities and some

results related to their weakly sharp solutions. In particular, we summarize some

earlier work of weakly sharp results of variational inequality problems.

1.1 Background of variational inequalities

The subject of variational inequalities could be traced back to the calculus of

variations combined with the minimization of infinite-dimensional functions. The

systematic study of the subject began in the early 1960s with the influential work

of Hartman and Stampacchia [28]. They used a variational inequality 1 as an an-

alytic tool for solving partial differential equations with applications of mechan-

ics in infinite-dimensional spaces. This work was expanded by Stampacchia in

some of the earliest papers related to variational inequalities, see [53, 59, 84, 86].

Stampacchia [85] first proved the existence and uniqueness of the solutions of

variational inequalities. For the applications of variational inequalities in infinite-

dimensional spaces, the reader can refer to the book of Kinderlehrer and Stam-

pacchia [41]. For the detail of a numerical treatment of variational inequalities,

the reader can refer to an early book by Glowinski, Lions and Trémolière [23].

The finite-dimensional variational inequality problem is a generalization of

the nonlinear complementarity problem (NCP) which is a system consisting of

finitely many nonlinear inequalities in finitely many nonnegative variables to-

gether with a special equation expressing the complementary relations between

the variables and their corresponding inequalities. The systematic study of the

finite-dimensional variational inequality began in the mid-1960s and achieved its

1To find u0 ∈ < ⊆ Rn such that 〈A(u0), v − u0〉 ≥ 〈f(u0), v − u0〉 for all v ∈ <, where A(u)
is bounded and linear and f is a mapping from < into Rn.
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status as a fruitful area of research in mathematical programming. The varia-

tional inequality problem was first applied in finite-dimensional spaces by Smith

who formulated the traffic assignment problem as a finite-dimensional variational

inequality problem in [83]. Actually, Smith did not realize that his formula-

tion was exactly a variational inequality until Dafermos recognized this in [15] in

1980. Since the appearance of these papers, many models of variational inequali-

ties were used in practice, including a rich mathematical theory, some interesting

connections to numerous disciplines and a wide range of important applications

in engineering and economics. Moreover, variational inequalities provide us with

a tool for a wide variety of problems in mathematical programming, including

systems of nonlinear equations, optimization problems and fixed point theorems.

Variational inequalities are systematically used in many practical problems re-

lated to ”equilibrium”, see [35]. For detailed statement of the theory, algorithms

and applications of finite-dimensional variational inequalities, the reader can refer

to [16] and [27].

As discussed before, the finite-dimensional variational inequality was born in

the domain of mathematical programming. In the following, we give a more

detailed introduction of the evolutionary process of the field, covering some of its

major events and notable highlights based on a survey reference [16].

In the 1960s, Lemke and Howson [49] formulated an algorithm for solving a

bimatrix game as a linear complementarity problem (LCP) and Lemke [48] ex-

tended it as a general LCP. Since then much attention has been paid to the study

of this general LCP. Cottle, Pang and Stone [13] presented a comprehensive treat-

ment of the LCP in 1992, which contains an extensive bibliography of the LCP

up to 1990 and detailed historical accounts of this fundamental problem. Even

in recent years, research on the LCP still remains active and its new applications

continue to be studied.

In 1967, Scarf [82] presented the first constructive iterative method for ap-

proximating a fixed point of a continuous mapping. Because of Scarf’s work, the

entire area of fixed-point methods developed greatly as well as the computation

of economic equilibria. Moreover, his work led the appearance of the field of equi-

librium programming. The ”equilibrium programming” refers to the modeling,

analysis and computation of equilibria via the method of mathematical program-

ming. Clearly, complementarity problems and equilibrium problems have close

relations. In essence, all the equilibrium problems which can be solved by fixed-

point methods are variational inequalities. The subject of fixed-point homotopy

methods dominated much of the early research of equilibrium programming. The
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major advantage of the methods is their global convergence. Because of this

advantage, many scholars have made contributions to this subject. This work

has come to a turning point until the fixed-point method to the computation of

equilibria is replaced by a contemporary variational inequality. The reader can

refer to [96] for the detail of this approach.

In the same period, Karamardian developed an extensive existence theory for

the NCP in a series of papers. In particular, he developed the connection between

the CP and the variational inequality [39]. In the 1970s, there are a lot of fun-

damental papers on the variational inequality appearing. Although the early de-

velopments of infinite-dimensional variational inequalities and finite-dimensional

variational inequalities followed different paths, there are some attempts to bring

these two fields closely, see [12]. Hence the 1970s is marked as the beginning of the

finite-dimensional variational inequality. In this time period, a large-scale vari-

ational inequality appeared which was solved by an iterative algorithm. At the

same time, Smith [83] formulated the traffic equilibrium problem as a variational

inequality.

The above contents show the developments of the variational inequality. In

addition, we also introduce some major events which propelled this subject as a

useful discipline in mathematical programming.

In order to solve variational inequalities, there are several popular approaches.

The initial methods were known as fixed point methods which were based on

Lemke and Howson [49]. The first algorithm to approximate a fixed point of a

continuous mapping was proposed by Scarf [82]. Many applications have been

made of these methods . In particular, there are a large number of new results

for solving variational inequalities by applying the idea of fixed point and iterate

methods, see [8, 33, 73, 87, 93, 97, 98, 99].

Another traditional approach to solving variational inequalities is nonlin-

ear optimization, that is, to reformulate the variational inequality problem into

equivalent optimization problems. This approach is based on so-called gap or

merit functions for variational inequalities. Some related results are due to

[1, 2, 20, 32, 52, 63, 80, 89, 91, 95, 100]. For these approaches discussed in the

papers above, different classes of gap functions for variational inequalities were

applied which were known as primal [47]; dual [63]; regularized [1, 102]; ”differ-

ence” [80, 95] and Giannessi’s [22]. Moreover, the duality aspects for variational

inequalities also play an important role in solving variational inequalities. They

were first proposed by Mosco [71] and extended by Chen, Goh and Yang in [9].

In addition, variational inequalities can also be solved by proximal point al-
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gorithm (PPA) method. This algorithm was introduced by Martinet [64, 65]

and developed by Rockafellar [81] to a more general setting, including convex

programs and variational inequality problems. It is known that one of the clas-

sical iterate schemes of PPA for solving variational inequalities is called the ex-

act PPA. This approach has been studied and extended by many scholars, see

[3, 17, 18, 37, 43, 45, 58, 74, 75, 76, 94] and the references therein. However,

there are very few results about finite convergence of this algorithm, that is, an

exact solution of a variational inequality problem can be found in a finite number

of iterations. Rockafellar [81] was the first to prove a solution of the variational

inequality problem in a finite number of iterations. However, the assumption of

his result is quite strong since it implies that the solution set of the variational

inequality problem is a singleton. Based on this result, Luque [58] obtained the

same termination property under relaxed conditions that the solution set of the

variational inequality problem is not necessarily a singleton. Since then this al-

gorithm has been widely studied, see [4, 5, 18, 25, 40, 44, 60, 92].

Moreover, there are some other algorithms used for solving variational in-

equalities. The earliest algorithm is the extragradient method introduced by

Korpelevich [46] and extended in [36, 38, 61]. The gradient projection method

[24, 50] and the hybrid method [34, 72] can also be applied.

In this thesis, we characterize weakly sharp solutions of a variational inequality

problem by using its primal and dual gap functions. Some finite convergence

algorithms for solving variational inequalities are also included. The primal gap

functions were introduced by Auslender [2] and the concepts of the dual gap

functions were first presented by Marcotte and Dussault [62]. Any solution to

the variational inequality is a global minimum of gap functions, the reader can

refer to [21, 29, 47, 78] for the detailed information of gap functions for variational

inequalities.

The notion of a sharp, or strongly unique, minimum solution is referred to

the work of Cromme [14]. Afterwards, Burke and Ferris [7] defined this notion

for the possibility of a non-unique solution set. Burke and Deng [6] extended

and refined the results of [7] in a number of ways by weakening some of the

assumptions. Based on the inclusion proved by Burke and Ferris [7] for the weakly

sharp minima of a function, Patriksson [79] extended this inclusion as a definition

of weakly sharp solutions to a variational inequality. According to [7], S ⊆ Rn is

said to be a set of weakly sharp minima for the function f : Rn → R∪{−∞,+∞}
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relative to the set S ⊆ Rn if there exists a positive α such that

f(x) ≥ f(y) + αdS(x) for all x ∈ S and y ∈ S,

where S ⊆ S and dS(x) = min{‖s − x‖ : s ∈ S}. Therefore, the notion of

weakly sharp minima can be interpreted as a type of error bound. Such an

estimate is often used in sensitivity analysis of mathematical programming and

in convergence analysis of some algorithms. More and more error bound results

have appeared in literature since Hoffman [31] showed that a linear inequality

system had a global error bound. The existence of error bounds has been studied

for nonlinear inequality systems under some conditions. Most of the early results

of error bounds were related to a continuous or convex system in Rn, see [51, 56,

57, 88]. We can also refer to the recent independent survey paper of Pang [77]

and the references therein for a summary of the theory and applications of error

bounds.

1.2 Sharp solutions to a variational inequality

One important application of error bounds concerns about a variational inequality

problem VIP(C,F ) arising from optimization, in which one finds x∗ ∈ C such

that

〈F (x∗), x− x∗〉 ≥ 0 for all x ∈ C,

where C is a closed and convex set in Rn and F is a mapping from Rn into Rn.

The solution set C∗ of the VIP(C,F ) is said to be weakly sharp provided that

−F (x∗) ∈ int
⋂

x∈C∗
[TC(x) ∩NC∗(x)]◦ for each x∗ ∈ C∗. We say that the dual gap

functionG has an error bound on C if there exists µ > 0 such that dC∗(x) ≤ µG(x)

for all x ∈ C. Recently, Marcotte and Zhu [63] have presented the sufficiency for

the weak sharpness of the solution set of a variational inequality which was in

terms of the error bound of the dual gap function G(x) = sup{〈F (c), x− c〉 : c ∈
C} with x ∈ Rn under the condition that F is continuous and pseudomonotone+

on the compact set C. These assumptions are too strong and have been relaxed by

Zhang, Wan and Xiu [100] to the case that F is continuous and pseudomonotone

on C. Under certain conditions expressed by G instead of F , Wu and Wu [89]

have further showed that the mapping F is not necessarily continuous to get

the same result. Under conditions of the Gâteaux differentiability and locally

Lipschitz property of g on C∗, we [55] show that if F is monotone on Rn and

constant on Γ(x∗) for some x∗ ∈ C∗, then C∗ is weakly sharp if and only if
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g has an error bound on C, where g(x) = sup{〈F (x), x − c〉 : c ∈ C} and

Γ(x) = {c ∈ C : 〈F (x), x − c〉 = g(x)}. Moreover, under the condition that F

is constant on C∗ and g + G is Gâteaux differentiable and locally Lipschitz on

C∗, if g(x) ≥ G(x) for all x ∈ Rn, then the existence of the error bound of g +G

implies the weak sharpness of C∗, see [54].

Based on these results, some finite convergence of algorithms for solving a

variational inequality problem have also been investigated. Marcotte and Zhu

[63] have shown that Γ(xn) ⊆ C∗ for sufficiently large n either with the conver-

gence of the sequence {xn} or the convergence of dC∗(xn) under some condition.

Xiu and Zhang [92] have relaxed the conditions of this result. However, their

result still requires the convergence of the sequence {xn}. We [55] show that this

result still follows even if {xn} is not convergent but with some other restric-

tions. Meanwhile, Marcotte and Zhu [63] constructed that xn is a solution to the

variational inequality for every large enough n with generating the convergence

sequence {xn} under the condition that the sequence {xn} of a local projection

goes to zero and F is continuous and pseudomonotone+ on C. Later Xiu and

Zhang [92] have refined their result to the case that F is continuous and pseu-

domonotone on C. This came to a challenging result until Zhou and Wang [101]

found that, under conditions of the continuity of F and weak sharpness of C∗,

if {xn} ⊆ C is bounded and all its accumulation points belong to C∗, then the

convergence of a local projection implies that xn ∈ C∗ for sufficiently large n. We

also show this result but under different conditions. Furthermore, some authors

extended finite convergence of algorithms into Banach and Hilbert spaces, see

[32, 66, 67, 68, 69].

As described, the work in the thesis builds on the earlier work of Marcotte

and Zhu [63], Wu and Wu [89, 90, 91], Xiu and Zhang [92], Zhang, Wan and Xiu

[100] and a short paper of Zhou and Wang [101] by extending and refining their

results in a number of ways while weakening some of assumptions or obtaining

the same results by using different conditions.

1.3 Aim and scope

From existing results about VIP(C,F ), we see that the dual gap function G is

used more often than the primal gap function g. However, g is usually easier

to be calculated than G. This advantage motivates us to consider the following

questions in this thesis:
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(i) What relations between g and G can be explored and applied for discussing

their error bounds’ problems?

(ii) Do we have the following relations?

(a) g(x) has an error bound on C ⇒ the solution set C∗ of VIP(C,F ) is

weakly sharp?

(b) C∗ is weakly sharp ⇒ C∗ is weakly sharp?

(c) Either g(x) has an error bound or C∗ is weakly sharp ⇒ there exist

some finite convergence results for other algorithms for VIP(C,F )?

(iii) Since max{dC∗(x), dC∗(x)} ≤ dC∗∩C∗(x) for x ∈ C, can we consider

dC∗∩C∗(x) ≤ µ[g(x) +G(x)]

for the weak sharpness of C∗?

(iv) If F is monotone, what properties can be obtained for gap functions g and

G of VIP(C,F )?

(v) It is known that VIP(C,F ) occurs in Engineering. How can we apply the

existing results in this field?

This thesis is constructed as follows. We summarize existing results for char-

acterizing properties of the dual gap function in Chapter 3. We present similar

properties of the primal gap function under certain conditions. By considering

relations between primal and dual gap functions, their Gâteaux differentiabilities

and locally Lipschitz properties are also investigated.

The introduced definition for the weak sharpness of the solution set to the

variational inequality problem provides a convenient way of exploring relations

between the weak sharpness of the solution set to the variational inequality and its

dual problem. Based on this definition, our approach to study the weak sharpness

results is extended to apply error bounds of both primal and dual gap functions.

As done for characterizing weakly sharp solutions of variational inequalities,

some finite convergence of algorithms for solving variational inequalities are pro-

posed as well. Some of the results are shown under relaxed conditions without

continuity and pseudomonotonicity of the relevant mapping F .

7



1.4 Comments on individual chapters

The thesis is organized as follows. It consists of six chapters, followed by an

abstract and acknowledgement. The first chapter deals with the study of the

background of variational inequalities. We summarize earlier work of weakly

sharp solutions of variational inequalities. We describe the aim for our project.

Moreover, we show some contributions of the thesis.

In the second chapter, we introduce the construction of a variational inequality

problem (VIP(C,F )) and its dual problem (DVIP(C,F )). Afterwards, we show

a two-dimensional box constrained VIP(C,F ) as an example for calculating the

solution set of the VIP(C,F ) and that of its dual formulation. For readers’

convenience, we refer to several relevant concepts about C and pseudomonotone

operators which allow us to apply for the proofs later.

The third chapter is devoted to the characterization of gap functions for the

VIP(C,F ). First of all, we study the background of the construction of gap

functions for VIP(C,F ). In particular, we focus on that of primal and dual

gap functions. We characterize properties of primal and dual gap functions.

The Gâteaux differentiabilities and locally Lipschitz properties of primal and

dual gap functions are discussed. We also show the relationships between the

Gâteaux differentiabilities and locally Lipschitz properties of primal and dual

gap functions.

Afterwards, we focus our attention on the investigation of weakly sharp so-

lutions of VIP(C,F ) and its dual problem. In order to describe weakly sharp

solutions of VIP(C,F ), we introduce its definition given by Patriksson [79] which

is obtained based on the work of Burke and Ferris [7]. We study the constancy of

F on the solution set of the VIP(C,F ) since this is useful for characterizing weak

sharpness of the solution sets of VIP(C,F ) and its dual problem. In conclusion,

the relations between the weak sharpness of the solution sets of the VIP(C,F )

and that of its dual problem is constructed based on our extended definition.

Some results of weakly sharp solutions of variational inequality problems are pre-

sented in terms of error bounds of primal and dual gap functions. Moreover, we

also present some equivalent statements of the weak sharpness results.

The fifth chapter concentrates on finite convergence of algorithms for solving

variational inequalities. We mainly introduce two finite convergence of algorithms

for solving the VIP(C,F ). We show that arg min{〈F (xn), y〉|y ∈ C} is a subset

of the solution set to the VIP(C,F ) for sufficiently large n under certain con-

ditions. For this result, neither the sequence {xn} is required to be convergent
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nor the relevant mapping F is continuous or pseudomonotone on C. The other

algorithm implies that xn is a solution to the VIP(C,F ) for sufficiently large n

in terms of a new projection generating xn going to zero. Finally, these results

are considered under equivalent conditions of the weak sharpness of the solution

set of the VIP(C,F ).

In the last chapter, we summarize our work and draw conclusions and remarks

for the thesis. We also list the work needs to be done in the future for fulfilling

this project since some results are hard to test using numerical examples. We

also point out some applications of variational inequalities, especially for these

applied in Engineering, e.g., image processing.

1.5 Contributions of the thesis

In this work, we characterize the weak sharpness of C∗ by using the primal gap

function g which hasn’t been covered before. We also study Lipschitz and lo-

cally Lipschitz properties of gap functions g and G since they have seldom been

characterized. Moreover, we extend the definition for the weak sharpness of C∗

and C∗ which makes it more convenient to discuss their relations. We conclude

this work by finding some finite convergence of algorithms for solving variational

inequalities under mild conditions.

We end this chapter by mentioning that the thesis is based on the following

papers written by the author during the period of stay in the Department of

Mathematical Sciences, Xi’an Jiaotong-Liverpool University and University of

Liverpool as a graduate student:

1. Y. N. Liu and Z. L. Wu, ”Characterization of weakly sharp solutions of

a variational inequality by its primal gap function”, Optimization Letters,

2015, DOI 10.1007/s11590− 015− 0882− 7

2. Y. N. Liu and Z. L. Wu, ”Weakly sharp solutions of primal and dual varia-

tional inequality problems”, to appear in: Pacific Journal of Optimization,

2015.
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Chapter 2

Preliminaries

In this chapter, we introduce the construction of a variational inequality and a

dual variational inequality. Some definitions, notations and basic results will be

used later in the thesis are studied as well.

2.1 A variational inequality problem and its dual

variational inequality problem

Throughout the paper, C denotes a nonempty closed convex subset of Rn. For

a mapping F from Rn into Rn, the variational inequality problem (VIP(C,F )) is

to find a vector x∗ ∈ C such that

〈F (x∗), x− x∗〉 ≥ 0 for all x ∈ C. (2.1)

The dual variational inequality problem (DVIP(C,F )) is to find a vector x∗ ∈ C
such that

〈F (x), x− x∗〉 ≥ 0 for all x ∈ C, (2.2)

where the inner product 〈·, ·〉 in Rn is defined as the bi-linear form

〈y, x〉 :=
n∑
i=1

yixi for any x, y ∈ Rn.

The solution set of the (VIP(C,F )) is denoted by C∗ and that of the (DVIP(C,F ))

by C∗. Obviously,

〈F (x∗), x∗ − x∗〉 = 0 for all (x∗, x∗) ∈ C∗ × C∗.

Next we refer to a numerical example for calculating C∗ and C∗.
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Example 2.1.1. We consider a two-dimensional box-constrained variational in-

equality with C = [−1, 0] × [−2,−1] and, for x = (x1, x2) ∈ R2, F (x) =

(x1 − 1, x2 + 1).

Then the solution set C∗ is to find x∗ = (x∗1, x
∗
2) ∈ C such that

(x∗1 − 1)(x1 − x∗1) + (x∗2 + 1)(x2 − x∗2) ≥ 0 for all (x1, x2) ∈ C,

that is, to find (x∗1, x
∗
2) ∈ [−1, 0]× [−2,−1] such that

x1(x
∗
1−1)−x∗1(x∗1−1)+x2(x

∗
2+1)−x∗2(x∗2+1) ≥ 0 for all (x1, x2) ∈ [−1, 0]×[−2,−1].

It follows that (x∗1, x
∗
2) ∈ [−1, 0]× [−2,−1] can be calculated as

−x∗1(x∗1 − 1)− (x∗2 + 1)− x∗2(x∗2 + 1) ≥ 0.

So that (x∗1 − 1
2
)2 + (x∗2 + 1)2 ≤ 1

4
. Hence C∗ = {(0,−1)}.

The solution set to the DVIP(C,F ) C∗ aims to find x∗ = (x1∗, x2∗) ∈ [−1, 0]×
[−2,−1] such that

(x1 − 1)(x1 − x1∗) + (x2 + 1)(x2 − x2∗) ≥ 0 for all (x1, x2) ∈ C,

that is, (x1∗, x2∗) ∈ C is obtained by(
x1 −

x1∗ + 1

2

)2

−(x1∗ − 1)2

4
+

(
x2 +

1− x2∗
2

)2

−(x2∗ + 1)2

4
≥ 0 for all (x1, x2) ∈ C.

Therefore, (x1∗, x2∗) can be calculated as

(0− 1 + x1∗
2

)2 − (1− x1∗)2

4
− (1 + x2∗)

2

4
≥ 0.

Thus 4x1∗ − (x2∗ + 1)2 ≥ 0 and hence C∗ = {(0,−1)}.

In this thesis, C∗ and C∗ are assumed to be nonempty. Obviously C∗ ⊆ C∗ if

F is continuous on C, as can be seen by the proof below.

Proposition 2.1.2. If F is continuous on C, then C∗ ⊆ C∗.

Proof. Let x ∈ C and x∗ ∈ C∗. Suppose that {xn} is a sequence in C with

xn = x∗ +
x− x∗
n

for sufficiently large n.

Then 〈F (xn), x−x∗
n
〉 ≥ 0, that is, 〈F (xn), x − x∗〉 ≥ 0. Since F is continuous on

C and xn → x∗, then F (xn)→ F (x∗), which implies

〈F (x∗), x− x∗〉 ≥ 0.

Hence x∗ ∈ C∗ and C∗ ⊆ C∗.
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However, C∗ ⊆ C∗ does not imply the continuity of F on C which can be

implied from the example as follows.

Example 2.1.3. [91, Example 2.2(iii)] C∗ ⊆ C∗ does not imply the continuity

of F on C.

Let C = [0, 1]× [0, 1] and, for x = (x1, x2) ∈ R2,

F (x) =

{
(1, 1) if (x1, x2) = (0, 0);

(0, 0) if (x1, x2) 6= (0, 0).

Then the solution set C∗ is to find (x∗1, x
∗
2) ∈ [0, 1] × [0, 1] such that (2.1) holds.

First, (x∗1, x
∗
2) = (0, 0) satisfies (2.1). If (0, 0) 6= (x∗1, x

∗
2) ∈ C, then (x∗1, x

∗
2) satisfies

(2.1). So C = C∗.

Similarly, C∗ is to find (x1∗, x2∗) ∈ [0, 1] × [0, 1] such that (2.1) holds. We first

find x′∗ = (x′1∗, x
′
2∗) ∈ [0, 1]× [0, 1] such that

〈F (x), x− x′∗〉 ≥ 0 for x = (0, 0),

that is,

−x′1∗ − x′2∗ ≥ 0.

Therefore, x′∗ = (0, 0). Moreover, x′∗ = (0, 0) still satisfies

〈F (x), x− x′∗〉 ≥ 0 for all x ∈ C \ {(0, 0)}.

Hence C∗ = {(0, 0)}. We have C∗ = {(0, 0)} ⊆ C = C∗ but F is not continuous

at x = (0, 0).

So C∗ ⊆ C∗ does not imply that F is continuous on C.

2.2 Definitions and notations

For further discussion, we need several relevant concepts about C and some no-

tations in Rn as below.

As usual, the normal cone to C at x ∈ Rn is defined and denoted by

NC(x) :=

{
{ξ ∈ Rn : 〈ξ, c− x〉 ≤ 0 for all c ∈ C} if x ∈ C,
∅ if x 6∈ C.

It is easy to see that NC(x) is a closed and convex cone and NC(x) = {0} for x ∈
int C (interior of C). The tangent cone to C at x ∈ Rn is defined dually by

TC(x) := [NC(x)]◦, where A◦ denotes the polar set of A ⊆ Rn given by

A◦ := {v ∈ Rn : 〈v, x〉 ≤ 0 for all x ∈ A}.
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Since C is closed and convex, Clarke [10] defined the tangent cone to C at x ∈ C
as follows:

TC(x) = {v ∈ Rn : d′C(x; v) = 0},

where dC is the distance function associated with C as

dC(x) := min{‖c− x‖ : c ∈ C} = ‖x− PC(x)‖.

Here PC(x) denotes the projection of x onto C, that is, the point in C which is

closest to x with respect to the Euclidean norm ‖ · ‖:

PC(x) := arg min{‖x− y‖ : y ∈ C},

and the Euclidean norm ‖ · ‖ is captured as

‖v‖ := 〈v, v〉
1
2 for any v ∈ Rn.

According to [30, pp. 46], the closedness of C plays the role of the existence of

PC(x). And the convexity of C ensures the uniqueness of the point PC(x). What’s

more, the projection operator, that is, x→ PC(x), came to be an influential work

until Hiriart-Urruty and Lemaréchal [30] characterized it as solving a so-called

variational inequality as below.

Theorem 2.2.1. [30, Theorem 3.1.1, pp. 47] A point yx ∈ C is the projection

PC(x) if and only if

〈x− yx, y − yx〉 ≤ 0 for all y ∈ C.

Therefore, the definition above pointed out that the normal cone is related to

the problem of finding the projection of a point onto C, i.e., if z = PC(x), then

x− z ∈ NC(z).

Based on the definition of the tangent cone given by Clarke [10], he also makes

a convenient way for calculating tangents as below.

Theorem 2.2.2. [10, Theorem 2.4.5] A direction d is tangent to C at x ∈ C if

and only if for every sequence {xk} in C converging to x and a positive sequence

{tk} decreasing to 0, there is a sequence {dk} converging to d, such that xk+tkdk ∈
C for all k.

Therefore, the tangent cone TC(x) is closed and convex, see [30, Propositions

5.1.3 and 5.2.1].
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2.3 Pseudomonotone operators

The monotonicity and pseudomonotonicity of F plays an important role in char-

acterizing weakly sharp solutions of the VIP(C,F )(to be introduced in Chapter

4). In this case, we study monotone and pseudomonotone operators in the section.

Definition 2.3.1. A mapping F : Rn → Rn is said to be monotone on C ⊆ Rn

if

〈F (x)− F (y), x− y〉 ≥ 0 for all x, y ∈ C.

The mapping F is antimonotone on C ⊆ Rn if

〈F (x)− F (y), x− y〉 ≤ 0 for all x, y ∈ C.

F is strongly monotone on C with modulus µ if

〈F (x)− F (y), x− y〉 ≥ µ‖x− y‖2 for all x, y ∈ C with some µ > 0.

Next we define the pseudomonotonicity of F which is a weaker condition than

monotonicity. The mapping F is pseudomonotone at x ∈ C if for each y ∈ C we

have

〈F (x), y − x〉 ≥ 0⇒ 〈F (y), y − x〉 ≥ 0.

F is said to be pseudomonotone on C if it is pseudomonotone at each x ∈ C.

Obviously the monotonicity of F on C implies the pseudomonotonicity of F on

C. F is defined to be pseudomonotone+ on C if it is pseudomonotone at each

point in C and, for all x, y ∈ C,

〈F (y), x− y〉 ≥ 0
〈F (x), x− y〉 = 0

}
⇒ F (x) = F (y).

We say that F is pseudomonotone∗ on C if it is pseudomonotone at each point

in C and, for some k > 0 and all x, y ∈ C we have

〈F (y), x− y〉 = 0
〈F (x), x− y〉 = 0

}
⇒ F (x) = kF (y).

So F is said to be pseudomonotone+∗ on C if it is pseudomonotone∗ on C with k =

1. Therefore, the pseudomonotonicity+ of F on C implies the pseudomonotonicity+
∗

of F on C.

Based on the construction of the VIP(C,F ) and the definition of pseudomono-

tone functions, we end this section by showing an immediate result as below.
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Proposition 2.3.2. C∗ ⊆ C∗ if and only if F is pseudomonotone on C∗.

Proof. Let C∗ ⊆ C∗. For any x∗ ∈ C∗,

〈F (x∗), y − x∗〉 ≥ 0 for all y ∈ C.

By assumption for all y ∈ C we have 〈F (y), y−x∗〉 ≥ 0. Hence F is pseudomono-

tone on C∗.

Conversely, suppose that F is pseudomonotone on C∗. Let x∗ ∈ C∗. Then

for all y ∈ C we have 〈F (y), y − x∗〉 ≥ 0. This implies that x∗ ∈ C∗ and hence

C∗ ⊆ C∗.
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Chapter 3

Gap functions for variational
inequalities

3.1 Introduction

This chapter deals with the construction of gap functions for variational inequality

problems. The idea of this approach is to reformulate the variational inequalities

into constrained optimization problems by utilizing different gap functions, which

allows us to obtain the solutions of variational inequality problems by minimizing

their gap functions.

In Section 3.2, the background of gap functions for variational inequalities are

studied. We summarize the formulation of gap functions in Section 3.3. In Section

3.4, we focus on the construction of primal and dual gap functions for variational

inequalities. Based on these, we state some properties of primal and dual gap

functions for variational inequalities in Section 3.5. In particular, the Gâteaux

differentiability of these two gap functions and their locally Lipschitz properties

are discussed. In the last section, we draw the conclusion of this chapter.

3.2 Motivation and background of gap functions

for variational inequalities

In order to solve the VIP(C,F ), much work has been done to reformulate it as

an optimization problem by using different gap functions.

We recall the definition of a merit function for the VIP(C,F ) and state the

equivalence between a merit function for the VIP(C,F ) and a gap function for

the VIP(C,F ) as follows.

16



Definition 3.2.1. A function γ: Rn → R∪{−∞,+∞} is called a merit function

for the VIP(C,F ) if there exists a set Ω ⊆ Rn such that

(i) γ ≥ 0 for all x ∈ Ω, and

(ii) x∗ solves the VIP(C,F ) if and only if x∗ ∈ Ω and γ(x∗) = 0.

By Definition 3.2.1, a point in the solution set of the VIP(C,F ) can be ob-

tained by minimizing γ on Ω. Therefore, the VIP(C,F ) can be reformulated as

the following optimization problem:

minimize γ(x)

subject to x ∈ Ω.

Therefore, merit functions are the key concept for connecting the VIP(C,F )

with optimization problems. The merit function γ may be expected to have

desirable properties as below:

• γ is differentiable;

• Any stationary point of γ on Ω is also a global minimum of γ on Ω;

• γ provides a global error bound for the VIP(C,F ), that is, for any given

point x ∈ Rn, the distance from x to the solution set of the VIP(C,F ) is

bounded by the value γ(x) multiplied by some positive constant.

The above desirable properties of merit functions will be frequently used for

characterizing the solution sets of variational inequalities in the thesis later. If the

set Ω coincides with C, then a merit function is also known as a gap function for

the VIP(C,F ). So a gap function is also used as a measurement of the violation

of the VIP(C,F ) at a point x ∈ C. The reader can refer to [21] and [78] for

details of gap functions for variational inequalities.

3.3 Saddle point formulation for gap functions

Auchmuty [1] has developed gap functions for the VIP(C,F ) based on a function

L : Rn × Rn → (−∞,+∞) defined by

L(x, y) = f(x)− f(y)− 〈x− y,∇f(x)− F (x)〉, (3.1)

17



where f : Rn → (−∞,+∞] is a convex, lower semicontinuous function 1 and it

is continuously differentiable on C.

The Lagrangian L is said to have a saddle point (x∗, y∗) on C×C if it satisfies

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) for all (x, y) ∈ C × C.

Auchmuty [1, Theorem 4] has shown that the existence of the saddle point (x∗, y∗)

of the Lagrangian L implies that x∗ is a solution of the VIP(C,F ) under certain

conditions.

3.4 The primal and dual gap functions for the

VIP(C,F )

To study the important special case of Auchmuty’s merit functions [1], we assume

f ≡ 0 in (3.1). Therefore, the Lagrangian L becomes

L(x, y) := 〈F (x), x− y〉.

It is known that a solution to the VIP(C,F ) is obtained by searching a saddle

point of L, which was proved in 1960s that, under certain condition of F , a

solution to the VIP(C,F ) (x∗, y∗) can be searched such that

sup{inf{〈F (x), x− y〉 : x ∈ C} : y ∈ C} = 〈F (x∗), x∗ − y∗〉
= inf{sup{〈F (x), x− y〉 : y ∈ C} : x ∈ C}. (3.2)

The primal gap function g : Rn → R ∪ {+∞} is defined from the rightmost of

(3.2), that is,

g(x) : = sup{〈F (x), x− c〉 : c ∈ C}
= 〈F (x), x− c〉 for c ∈ Γ(x), where

Γ(x) : = {c ∈ C : 〈F (x), x− c〉 = g(x)} for x ∈ Rn.

Note that if Γ(x) 6= ∅, then

g(x) := max{〈F (x), x− c〉 : c ∈ C}.

Larsson and Patriksson [47] summarized some important properties of g which

will be used later.

1f(x0) ≤ lim inf
x→x0

f(x)

18



Theorem 3.4.1. [47, Theorem 3.1] For x ∈ C, the properties of g are summa-

rized as follows.

(i) g is a gap function.

(ii) If F ∈ C1 on C, then g is differentiable at x ∈ C if Γ(x) = {y(x)}, with

∇g(x) = F (x) + 〈∇F (x), x− y(x)〉.

(iii) g is convex on C if 〈F (x), x〉 is convex on C and each component of F is

concave on C.

(iv) (A fixed point characterization of C∗) x ∈ C∗ ⇔ x ∈ Γ(x).

Hence if the solution of the VIP(C,F ) is nonempty, then the solution set to

inf{g(x) : x ∈ C}

equals C∗.

Turning to the leftmost of (3.2), we obtain the dual gap function as below.

G(x) := inf{〈F (c), c− x〉 : c ∈ C}.

In order to coordinate with the format of the primal gap function g, we define

the dual gap function G as follows.

G(x) : = sup{〈F (c), x− c〉 : c ∈ C}
= 〈F (c), x− c〉 for c ∈ Λ(x), where

Λ(x) : = {c ∈ C : 〈F (c), x− c〉 = G(x)} for x ∈ Rn.

Similarly, if Λ(x) 6= ∅, then

G(x) := max{〈F (c), x− c〉 : c ∈ C}.

For f ≡ 0, a result of Larsson and Patriksson [47] shows that G is a gap

function for the VIP(C,F ) under certain condition.

Theorem 3.4.2. [47, Theorem 3.2] Let F : Rn → Rn be pseudomonotone on C.

Then

(i) G is a gap function.

(ii) G is convex on C.

Since G is convex, there are many scholars discussing properties of G, see

Section 3.5.

19



3.5 Properties of primal and dual gap functions

Recently, there are many papers discussing properties of the dual gap function G

since it is convex on C, see [47, 63, 91, 100]. Although G is convex, it is usually

more complicated to compute its values than g since, for a fixed point x ∈ Rn,

G(x) is the maximum of a nonlinear program usually while g(x) is that of a linear

program. To see this, we consider the following example.

Example 3.5.1. [55] Let C = {(x1, x2)| − 2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2} and, for

x = (x1, x2) ∈ R2, F (x) = (x31, x
3
2).

Then we have

G(x) = max{〈F (c), x− c〉 : c ∈ C} = max{c31x1 + c32x2 − c41 − c42 : (c1, c2) ∈ C},
g(x) = max{〈F (x), x− c〉 : c ∈ C} = max{x41 + x42 − c1x31 − c2x32 : (c1, c2) ∈ C}.

Thus for this simple example in R2, four terms of variables c = (c1, c2) in G(x)

are nonlinear and more complicated to be calculated than two linear terms of c

in g(x).

By definitions of g and G, we have easy but important results as below.

Proposition 3.5.2. [89, Proposition 2.1] For x∗ ∈ C,

(i) x∗ ∈ C∗ ⇔ g(x∗) = 0⇔ x∗ ∈ Γ(x∗);

(ii) x∗ ∈ C∗ ⇔ G(x∗) = 0⇔ x∗ ∈ Λ(x∗).

This section is organized as follows. In Section 3.5.1, we summarize existing

results of properties of the dual gap function G, i.e., several sufficient conditions

for the Gâteaux differentiability of the dual gap function G proposed by Marcotte

and Zhu [63] and Wu and Wu [91]. Motivated by Example 3.5.1, for a fixed

x ∈ Rn, g(x) is usually easier to be calculated than G. In this case, we present

some properties of g since it is also important for characterizing the solution set

of the VIP(C,F ). We also study the Gâteaux differentiability of the primal gap

function g and the dual gap function G on C∗ and C∗ and discuss their relations

under certain conditions. Moreover, like the Gâteaux differentiability of g and G,

the locally Lipschitz property of these two gap functions are also very important.

Thus, in Section 3.5.2, the locally Lipschitz property of g, G and g + G are also

presented.
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3.5.1 Gâteaux differentiability of primal and dual gap func-
tions

Let f : Rn → R ∪ {−∞,+∞}. Recall that the directional derivative of f at

x ∈ Rn along the direction d ∈ Rn is

f ′(x; d) := lim
t↘0

f(x+ td)− f(x)

t
,

which provides the limit of the right-hand side exists as t ≥ 0 approaches zero.

It is Gâteaux differentiable at x if the directional derivative f ′(x; d) exists for all

directions d ∈ Rn and it is a linear function of d, that is,

f ′(x; d) = 〈∇f(x), d〉 for all d ∈ Rn,

where ∇f(x) denotes the gradient of f at x, see [26].

In this part, we study sufficient conditions for the Gâteaux differentiabil-

ity of G on C∗ by obtaining the result ∇G(x∗) = F (x∗) for x∗ ∈ C∗. This

result was first stated by Marcotte and Zhu [63]. Similarly, we propose that un-

der some condition, the Gâteaux differentiability of g at x∗ ∈ C∗ implies that

∂g(x∗) = {∇g(x∗)} = {F (x∗)}. Based on these two results, we show that under

the condition g(x) ≥ G(x) for all x ∈ Rn, the Gâteaux differentiability of g at

x∗ ∈ C∗ implies that of G at x∗ as well, and {∇g(x∗)} = ∂g(x∗) = ∂G(x∗) =

{∇G(x∗)} = {F (x∗)}. An example for discussing the assumption g(x) ≥ G(x) for

all x ∈ Rn is also presented. Moreover, we present some equivalent statements of

the Gâteaux differentiability of G proposed by Wu and Wu [91]. Similar to their

results, we also show some equivalent statements of the Gâteaux differentiability

of g at x∗ ∈ C∗. In addition, we show that the Gâteaux differentiability of G at

x∗ ∈ C∗ implies that of g at x∗, and {∇g(x∗)} = ∂g(x∗) = ∂G(x∗) = {∇G(x∗)} =

{F (x∗)} by considering relevant relations between g and G. Finally, conditions

for ∂(g +G)(x∗) = {∇(g +G)(x∗)} = {2F (x∗)} are also stated.

We start with a result shown by Marcotte and Zhu which characterized the

Gâteaux differentiability of G at x∗ ∈ C∗ under the condition that F is continuous

and pseudomonotone+ on C and C is compact as below.

Theorem 3.5.3. [63, Theorem 3.1] Let F be continuous and pseudomonotone+

on C. Then

(i) F is constant on C∗;

(ii) for any x∗ ∈ C∗, F is constant and equal to F (x∗) on Λ(x∗);
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(iii) Λ(x∗) = C∗ for any x∗ ∈ C∗;

(iv) if C is compact, then G is continuously differentiable on C∗, and ∇G(x∗) =

F (x∗) for any x∗ ∈ C∗.

In Theorem 3.5.3, the continuity and pseudomonotonicity of F implies C∗ =

C∗ and hence C∗ is closed and convex in this case.

A useful result which will be used for characterizing the weak sharpness of

C∗ with ∇G(x∗) = F (x∗) for x∗ ∈ C∗ is presented by Theorem 3.5.3 under the

condition that F is continuous and pseudomonotone+ on C.

Zhang, Wan and Xiu [100] have extended Theorem 3.5.3 for exploring some

properties of G by applying the subdifferential of G.

Proposition 3.5.4. [100, Proposition 3.13] Assume that F is continuous and

pseudomonotone on C, and that C∗ is nonempty.

(i) If d ∈ Rn, then G′(·; d) is convex on C∗.

(ii) If x∗ ∈ C∗, then F (y∗) ∈ ∂G(x∗) for any y∗ ∈ Λ(x∗).

(iii) If G is differentiable at some point x∗ ∈ C∗, then C∗ = Λ(x∗) and ∇G(x∗) =

F (y∗) for any y∗ ∈ Λ(x∗), i.e., F is a constant vector on Λ(x∗).

(iv) If G is differentiable at some point x∗ ∈ C∗, then for any d ∈ Rn,

〈∇G(x∗), d〉 = min{G′(x; d) : x ∈ C∗}.

(v) If C∗ is bounded and G is differentiable on Ω∗ (Ω∗ denotes the set of extreme

points of C∗), then G is differentiable on C∗ and ∇G is a constant vector

on C∗.

Wu and Wu [90] have studied the subdifferential of G in order to characterize

its Gâteaux differentiability. We refer to their result in Rn as follows.

Proposition 3.5.5. [90, Proposition 4.1] For x ∈ Rn, if G(x) < +∞, then

{F (y) : y ∈ Λ(x)} ⊆ ∂G(x), particularly,

{F (y) : y ∈ C∗ ∪ {x}} ⊆ ∂G(x), for each x ∈ C∗.

Motivated by this result, we relate the subdifferential of g at x∗ ∈ C∗ with

F (x∗) and to show that ∂g(x∗) = {∇g(x∗)} = {F (x∗)} for x∗ ∈ C∗.
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Proposition 3.5.6. [55, Proposition 1] Let x∗ ∈ C∗ and let F be monotone on

Rn. Suppose that g(x) < +∞ for all x ∈ Rn and Gâteaux differentiable at x∗.

Then

∂g(x∗) = {F (x∗)}.

Proof. For all y ∈ Rn, since F is monotone, we have

g(y)− g(x∗) ≥ 〈F (y), y − x∗〉 ≥ 〈F (x∗), y − x∗〉.

Hence F (x∗) ∈ ∂g(x∗).

Let u ∈ ∂g(x∗). Then for any v ∈ Rn and t > 0, we have

g(x∗ + tv)− g(x∗) ≥ t〈u, v〉.

The Gâteaux differentiability of g at x∗ implies that 〈∇g(x∗), v〉 ≥ 〈u, v〉. This

implies that u = ∇g(x∗). So that ∂g(x∗) = {∇g(x∗)} = {F (x∗)}.

Remark 3.5.7. Recall that if a convex function f : Rn → R is Gâteaux dif-

ferentiable at x ∈ Rn, then it is subdifferentiable at x and ∂f(x) = {∇f(x)},
where ∇f(x) is the gradient of f at x. By Proposition 3.5.6, although g is not

convex, we can get the same result under certain conditions which imply the

nonemptyness of ∂g(x∗). Consequently, ∇g(x∗) = F (x∗) for each x∗ ∈ C∗. This

is similar to Theorem 3.5.3, in which ∇G(x∗) = F (x∗) under the condition that

F is continuous and pseudomonotone+ on a compact convex set C.

As mentioned in Remark 3.5.7, if G is Gâteaux differentiable at x∗ ∈ C∗, then

∂G(x∗) = {∇G(x∗)}, where ∇G(x∗) is the gradient of G at x∗. Our next propose

is to discuss relations between the Gâteaux differentiabilities of g and G. It is

noted that the inequality g(x) ≥ G(x) for all x ∈ Rn ensures the nonemptyness

of the subdifferential of g at x∗ ∈ C∗. In this case, we show that for x∗ ∈ C∗ the

Gâteaux differentiability of g at x∗ implies that of G at x∗.

Proposition 3.5.8. [54, Proposition 2.1] Let g(x) ≥ G(x) for all x ∈ Rn. Sup-

pose that g is Gâteaux differentiable at x∗ ∈ C∗. Then G is Gâteaux differentiable

at x∗,

{∇g(x∗)} = ∂g(x∗) = ∂G(x∗) = {∇G(x∗)} = {F (x∗)}.

Proof. Let x∗ ∈ C∗. Then by Proposition 3.5.2 we have 0 = g(x∗) ≥ G(x∗). Since

G is nonnegative on C, we obtain G(x∗) = 0 and hence x∗ ∈ C∗. Therefore for

all x ∈ Rn we have

g(x)− g(x∗) ≥ G(x)−G(x∗) ≥ 〈F (x∗), x− x∗〉,
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which implies that F (x∗) ∈ ∂g(x∗).

Let ξ ∈ ∂g(x∗). Then for all v ∈ Rn and t > 0,

g(x∗ + tv)− g(x∗) ≥ t〈ξ, v〉.

Since g is Gâteaux differentiable at x∗, 〈∇g(x∗), v〉 ≥ 〈ξ, v〉. This implies that

ξ = ∇g(x∗). So { F (x∗)} = ∂g(x∗) = {∇g(x∗)}.
By assumption, we have

〈F (x∗), v〉 = 〈∇g(x∗), v〉 = lim
t→0

g(x∗ + tv)− g(x∗)

t

≥ lim
t→0

G(x∗ + tv)−G(x∗)

t
≥ 〈F (x∗), v〉,

so

lim
t→0

G(x∗ + tv)−G(x∗)

t
= 〈F (x∗), v〉.

This implies that G is Gâteaux differentiable at x∗ with ∇G(x∗) = F (x∗). Hence

the proof is complete.

We note that Proposition 3.5.8 may fail if the inequality g(x) ≥ G(x) holds

only for x ∈ C not for all x ∈ Rn.

Example 3.5.9. [54, Example 2.2] Let C = [0, 1] and

F (x) =

{
x for x ∈ C;

−x for x 6∈ C.

The solution set C∗ is to find x∗ ∈ [0, 1] such that

F (x∗) · (x− x∗) ≥ 0 for all x ∈ [0, 1],

that is, x∗ · (x− x∗) ≥ 0 for all x ∈ [0, 1]. So C∗ = {x∗} = {0}.
For x ∈ R, g(x) = sup{F (x) · (x− c) : c ∈ [0, 1]}. If x ∈ C, then

g(x) = sup{x · (x− c) : c ∈ [0, 1]} = x2.

For x 6∈ C, g(x) = sup{−x · (x − c) : c ∈ [0, 1]} = sup{−x2 + cx : c ∈ [0, 1]}. In

this case, if x < 0, then g(x) = −x2. Otherwise, g(x) = −x2 + x. Therefore,

g(x) =


−x2 for x < 0;

x2 for x ∈ C;

−x2 + x for x > 1.
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Moreover, for x ∈ R we have

G(x) = sup{F (c) · (x− c) : c ∈ [0, 1]} = sup{c · (x− c) : c ∈ [0, 1]}

= sup{−(c− 1

2
x)2 +

1

4
x2 : c ∈ [0, 1]}.

It follows that

G(x) =


0 for x < 0;
1
4
x2 for 0 ≤ x ≤ 2;

x− 1 for x > 2.

It is clear that g(x) ≥ G(x) holds for each x ∈ C = [0, 1] but not for x ∈
(−∞, 0) ∪ (1,+∞). In this case, for x∗ ∈ C∗, there exists no ξ ∈ R such that

〈ξ, x− x∗〉 ≤ g(x)− g(x∗) for each x ∈ R,

which implies that ∂g(x∗) is empty. This shows that the assumption g(x) ≥
G(x) for all x ∈ C is not sufficient for ∂g(x∗) to be nonempty.

Remark 3.5.10. Proposition 3.5.8 is an extension of Proposition 3.5.6 since the

monotonicity of F on Rn is a special case of the assumption g(x) ≥ G(x) for all x ∈
Rn, which can be easily observed from the following example.

Example 3.5.11. Let C = [0, 1] and

F (x) =


−1 for x < 0;

x for x ∈ C;
1
2
x for x > 1.

By definition, g(x) = sup{F (x) · (x − c) : c ∈ [0, 1]} for x ∈ R. If x ∈ C, then

g(x) = sup{x(x− c) : c ∈ [0, 1]} = x2. For x < 0,

g(x) = sup{−1(x− c) : c ∈ [0, 1]} = −x+ 1.

If x > 1, then g(x) = sup{1
2
x(x− c) : c ∈ [0, 1]} = 1

2
x2. Therefore,

g(x) =


−x+ 1 for x < 0;

x2 for x ∈ C;
1
2
x2 for x > 1.

By the definition of G, we obtain that G is the same as in Example 3.5.9. It

is easy to see that g(x) ≥ G(x) for all x ≤ 2. For x > 2,

(g −G)(x) =
1

2
x2 − (x− 1) =

1

2
(x− 1)2 +

1

2
> 0.
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So g(x) ≥ G(x) for all x ∈ R. However, F is not monotone on R. This shows

that the assumption g(x) ≥ G(x) for all x ∈ R does not imply the monotonicity

of f on R. Conversely, if F is monotone on R, then by definition of monotone

functions in Section 2, this is sufficient for g(x) ≥ G(x) for all x ∈ R. Therefore,

it shows that Proposition 3.5.8 is an extension of Proposition 3.5.6.

Wu and Wu [91] have presented an equivalent statement of the Gâteaux dif-

ferentiability of G in a Hilbert space. We recall their result in a finite-dimensional

Hilbert space Rn as below.

Theorem 3.5.12. [91, Theorem 2.2] Let x ∈ Rn and Λ(x) be nonempty. Then

G is Gâteaux differentiable at x iff F is constant on Λ(x) and

G′(x; v) = sup{〈F (c), v〉 : c ∈ Λ(x)}

for all v ∈ Rn.

Based on this, a special case of this result is studied.

Theorem 3.5.13. [91, Theorem 2.3] For x∗ ∈ C∗ the following are equivalent:

(i) G is Gâteaux differentiable at x∗.

(ii) C∗ = Λ(x∗), F is constant on C∗, and

G′(x∗; v) = sup{〈F (c), v〉 : c ∈ C∗} = 〈F (x∗), v〉 for all v ∈ Rn.

Hence, if G is Gâteaux differentiable on C∗, then C∗ ⊆ C∗ and ∇G is constant

on C∗.

Remark 3.5.14. For x∗ ∈ C∗, Λ(x∗) is the solution set to maximize f(x) =

〈F (x), x∗−x〉 subject to x ∈ C. Also it is known that the assumption g(x) ≥ G(x)

for all x ∈ Rn implies C∗ ⊆ C∗. Therefore, by Proposition 3.5.8 and Theorem

3.5.13, the solution set C∗ can be obtained by Λ(x∗) if g is Gâteaux differentiable

at x∗. In this case, F is constant on Λ(x∗) and x∗ ∈ C∗ = Γ(x∗) ∩ Λ(x∗).

Furthermore, if each x∗ ∈ C∗ and each y∗ ∈ Γ(x∗) satisfy

{v ∈ Rn : 〈F (x∗), v〉 ≥ 0} = {v ∈ Rn : 〈F (y∗), v〉 ≥ 0},

then Λ(x∗) = C∗ = C∗ = Γ(x∗) from [89, Proposition 3.1] and hence F is constant

on Γ(x∗). So the solution set to the VIP(C,F ) and the DVIP(C,F ) can be

determined either by Λ(x∗) or by Γ(x∗).
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The above statements together with Proposition 3.5.8 and Theorem 3.5.13

imply the following two results.

Theorem 3.5.15. [91, Theorem 2.4] Let x∗ ∈ C∗. Then the following are equiv-

alent:

(i) G is Gâteaux differentiable at x∗.

(ii) C∗ is nonempty, F is constant on Λ(x∗) ∩ Γ(x∗) and satisfies

{v ∈ Rn : 〈F (x), v〉 ≥ 0} = {v ∈ Rn : 〈F (x∗), v〉 ≥ 0} for each x ∈ C∗, and

G′(x∗; v) = sup{〈F (c), v〉 : c ∈ C∗} for each v ∈ Rn.

Similarly, the Gâteaux differentiability of g at x∗ ∈ C∗ has the similar equiv-

alent result as that of G in Theorem 3.5.15.

Proposition 3.5.16. [54, Proposition 2.4] Let x∗ ∈ C∗. Suppose that g(x) ≥
G(x) for all x ∈ Rn. Then the following are equivalent:

(i) g is Gâteaux differentiable at x∗.

(ii) F is constant on Γ(x∗) ∩ Λ(x∗) and

g′(x∗; v) = sup {〈F (x), v〉 : x ∈ C∗} for all v ∈ Rn.

Proof. Since (i) ⇒ (ii) is direct from Proposition 3.5.8 and Remark 3.5.14, it

suffices to prove (ii)⇒ (i).

By assmption, we have C∗ ⊆ C∗. Therefore, C∗ ⊆ Λ(x∗) and C∗ ⊆ Γ(x∗) by

[89, Proposition 2.3]. This implies that C∗ ⊆ Λ(x∗)∩Γ(x∗) and F is constant on

C∗ from (ii). By the expression of g′(x∗; v) in (ii), g is Gâteaux differentiable at

x∗ with ∇g(x∗) = F (x∗).

Remark 3.5.17. Wu and Wu [91] have discussed some sufficient conditions for

the result

G′(x; v) = sup{〈F (c), v〉 : c ∈ Λ(x)} for x ∈ Rn.

By Theorem 3.5.13, if C∗ ⊆ C∗, then the Gâteaux differentiability of G at x∗ ∈ C∗

implies that

G′(x∗; v) = sup{〈F (c), v〉 : c ∈ C∗}

since C∗ = Λ(x∗). From Proposition 3.5.16, it shows that the Gâteaux differen-

tiability of g at x∗ ∈ C∗ implies that g′(x∗; v) = G′(x∗; v) for all v ∈ Rn under

certain conditions.
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Next we study relations between the Gâteaux differentiability of G at x∗ ∈ C∗
and that of g at x∗.

Proposition 3.5.18. [54, Proposition 2.5] Let g(x) ≤ G(x) for all x ∈ Rn.

Suppose that G is Gâteaux differentiable at x∗ ∈ C∗ and ∂g(x∗) 6= ∅. Then g is

Gâteaux differentiable at x∗,

{∇g(x∗)} = ∂g(x∗) = ∂G(x∗) = {∇G(x∗)} = {F (x∗)}

and F is constant on C∗.

Proof. Since g(x) ≤ G(x) for all x ∈ Rn, by Proposition 3.5.2, we have C∗ ⊆ C∗.

Applying Theorem 3.5.13, the Gâteaux differentiability of G at x∗ implies that

∂G(x∗) = {∇G(x∗)} = {F (x∗)} and F is constant on C∗.

Let ξ ∈ ∂g(x∗). Then for all v ∈ Rn and t > 0,

〈ξ, tv〉 ≤ g(x∗ + tv)− g(x∗) ≤ G(x∗ + tv)−G(x∗),

from which we obtain that

〈ξ, v〉 ≤ lim
t→0

g(x∗ + tv)− g(x∗)

t
≤ G′(x∗; v) = 〈F (x∗), v〉.

This implies that ξ = F (x∗). Thus g is Gâteaux differentiable at x∗ and

{∇g(x∗)} = ∂g(x∗) = ∂G(x∗) = {∇G(x∗)} = {F (x∗)}.

Remark 3.5.19. Propositions 3.5.8 and 3.5.18 state the relationships between

the Gâteaux differentiability of g and that ofG on C∗ and C∗ and present sufficient

conditions for F to be constant on C∗. It is noted that in Proposition 3.5.8, the

Gâteaux differentiability of g at x∗ ∈ C∗ also implies that F (c) = F (x∗) for all

c ∈ Λ(x∗). Therefore, Propositions 3.5.8 and 3.5.18 present sufficient conditions

for the constancy of F on C∗ as well.

Note that Proposition 3.5.8 implies that g + G is Gâteaux differentiable at

x∗ ∈ C∗ and ∇(g +G)(x∗) = 2F (x∗). The following proposition presents weaker

conditions for this result.

Proposition 3.5.20. [54, Proposition 2.7] Let g(x) ≥ G(x) for all x ∈ Rn. Sup-

pose that g +G is Gâteaux differentiable at x∗ ∈ C∗. Then

∂(g +G)(x∗) = {∇(g +G)(x∗)} = {2F (x∗)}.
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Proof. Let x∗ ∈ C∗. Then, by assumption and definition, we have

g(x∗) = G(x∗) = 0, C∗ ⊆ C∗ and g(x) ≥ G(x) ≥ 〈F (x∗), x− x∗〉 for all x ∈ Rn,

from which we obtain that

(g +G)(x)− (g +G)(x∗) ≥ 〈2F (x∗), x− x∗〉 for all x ∈ Rn.

This implies that 2F (x∗) ∈ ∂(g +G)(x∗).

Let ξ ∈ ∂(g +G)(x∗). Then for any v ∈ Rn and t > 0 we have

(g +G)(x∗ + tv)− (g +G)(x∗) ≥ t〈ξ, v〉.

If g +G is Gâteaux differentiable at x∗, then

〈∇(g +G)(x∗), v〉 = lim
t→0

(g +G)(x∗ + tv)− (g +G)(x∗)

t
≥ 〈ξ, v〉.

This implies that ξ = ∇(g +G)(x∗) since v is arbitrary. Thus

{2F (x∗)} ⊆ ∂(g +G)(x∗) ⊆ {∇(g +G)(x∗)},

which implies ∂(g +G)(x∗) = {∇(g +G)(x∗)} = {2F (x∗)}.

3.5.2 Locally Lipschitz property of g and G

Like the Gâteaux differentiability of g and G, the locally Lipschitz property of

these two gap functions are also very important for characterizing solutions of

primal and dual variational inequalities.

Definition 3.5.21. Let f be a function from Rn into Rn and let S ⊆ Rn. f is

said to be Lipschitz on S if there exists a constant K ≥ 0 such that

‖f(x)− f(y)‖ ≤ K‖x− y‖ for all x, y ∈ S.

It is Lipschitz near x0 if for some neighbourhood Vx0 of x0 there exists some

Kx0 ≥ 0 such that

‖f(x)− f(y)‖ ≤ Kx0‖x− y‖ for all x, y ∈ Vx0 .

f is said to be locally Lipschitz on U ⊆ Rn if it is Lipschitz near x0 for every

x0 ∈ U .
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In this section, we prove that the locally Lipschitz property of F on C∗ implies

that of g. We present a sufficient condition for G to be Lipschitz. In addition, we

discuss the result of Clarke [11] for sufficient conditions of the locally Lipschitz

property of convex functions in Rn. Based on this, we show relations between

the locally Lipschitz property of g and G. Finally, the sufficiency for the locally

Lipschitz property of g +G is also studied.

We begin with the following result which presents a sufficient condition for

locally Lipschitz property of g on C∗.

Lemma 3.5.22. [55, Lemma 1] Let C be compact. If F is locally Lipschitz on

C∗, then so is g.

Proof. Since F is locally Lipschitz on C∗, for any x∗ ∈ C∗ there exist δ > 0 and

L1 ≥ 0 such that

‖F (x)‖ ≤ L1 and ‖F (x)− F (y)‖ ≤ L1‖x− y‖ for all x, y ∈ B(x∗, δ).

Let c ∈ Γ(x) with x ∈ B(x∗, δ). Then

g(x)− g(y) ≤ 〈F (x), x− c〉 − 〈F (y), y − c〉
= 〈F (x), x− y〉+ 〈F (x), y − c〉 − 〈F (y), y − c〉
= 〈F (x), x− y〉+ 〈F (x)− F (y), y − c〉
≤ ‖F (x)‖‖x− y‖+ ‖F (x)− F (y)‖‖y − c‖
≤ L1‖x− y‖+ L1‖x− y‖‖y − c‖.

The compactness of C implies that there exists a constant M ≥ 0 such that

‖y − c‖ ≤M for all y ∈ B(x∗, δ) and c ∈ C.

Thus taking L = L1 + L1M , we obtain

g(x)− g(y) ≤ L‖x− y‖.

This implies that g is Lipschitz near x∗. Hence g is locally Lipschitz on C∗.

The following proposition presents one sufficient condition for the Lipschitz

property of G on Rn.

Proposition 3.5.23. [54, Proposition 3.1] Let F be bounded on C. Then G is

Lipschitz.
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Proof. Let y, z ∈ Rn. For c ∈ Λ(y), we have

G(y)−G(z) ≤ 〈F (c), y − c〉 − 〈F (c), z − c〉
= 〈F (c), y − z〉 ≤ ‖F (c)‖‖y − z‖ ≤M‖y − z‖,

where M = sup{‖F (x)‖ : x ∈ C}. This implies that G is Lipschitz.

Since G is convex, its locally Lipschitz property can immediately be obtained

by the following theorem of Clarke [11].

We first introduce two lemmas which will be used for characterizing locally

Lipschitz property of convex functions.

Lemma 3.5.24. [11, Lemma 1 in Theorem 2.34] Let f : X → R∞ be convex,

and let C be a convex set such that, for certain positive constants δ and N , we

have |f(x)| ≤ N for any x ∈ C + δB. Then f is Lipschitz on C of rank 2N/δ.

Lemma 3.5.25. [11, Lemma 2 in Theorem 2.34] Let x0 be a point such that, for

certain numbers M and ε > 0, we have f(x) < M for all x ∈ B(x0, ε). Then,

for any x ∈ int domf , there exists a neighborhood V of x and N ≥ 0 such that

|f(y)| ≤ N for all y ∈ V .

Based on these, we obtain the following theorem for presenting locally Lips-

chitz property of convex functions.

Theorem 3.5.26. [11, Theorem 2.34] Let f : X → R∞ be a convex function

which admits a nonempty open set upon which f is bounded above. Then f is

locally Lipschitz in the set int domf .

In Theorem 3.5.26, if X is assumed to be finite dimensional, i.e., Rn, then we

obtain the corollary as follows.

Corollary 3.5.27. [11, Corollary 2.35] If X is finite dimensional, then any con-

vex function f : X → R∞ is locally Lipschitz in the set int domf .

Proof. Without loss of generality, we may take X = Rn. Let x0 be any point in

int domf . By Theorem 3.5.26, it suffices to prove that f is bounded above in a

neighborhood V of x0. To see this, observe that, for some r > 0, we have

V := co{x0 ± rei}i ⊂ domf,

where the ei(i = 1, 2, ..., n) are the canonical vectors in Rn. Then, by the convexity

of f , we deduce

f(y) ≤M := max{‖f(x0+rei)‖+‖f(x0−rei)‖ : i ∈ {1, 2, · · · , n}} for any y ∈ V.

The proof is complete.
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So if G bounded above on some set S and intS is nonempty, then G is locally

Lipschitz in intS. Based on this idea, we characterize the locally Lipschitz prop-

erty of G. Moreover, we discuss relations between the locally Lipschitz property

of g and that of g+G since they are important for stating the weak sharpness of

C∗ and C∗.

Proposition 3.5.28. [54, Proposition 3.3] Let x∗ ∈ C∗. Suppose that there exists

δ > 0 such that g(x) ≥ G(x) for all x ∈ B(x∗, δ). Then the following hold:

(i) If g is bounded in a neighbourhood of x∗, then G is Lipschitz near x∗.

(ii) g +G is Lipschitz near x∗ if and only if g is Lipschitz near x∗.

Proof. (i) Since g is bounded near x∗, there exist 0 < δ1 < δ and L ≥ 0 such that

‖g(x)‖ ≤ L for all x ∈ B(x∗, δ1),

which implies that 〈F (x∗), x − x∗〉 ≤ G(x) ≤ L for all x ∈ B(x∗, δ1). Then by

Corollary 3.5.27, G is Lipschitz near x∗.

(ii) Since the sufficiency is direct from (i), it remains to show the necessity.

If g +G is Lipschitz near x∗, then there exist 0 < δ1 < δ and L ≥ 0 such that

2〈F (x∗), x− x∗〉 ≤ 2G(x) ≤ (g +G)(x) ≤ L for all x ∈ B(x∗, δ1).

So, by Corollary 3.5.27, G is Lipschitz near x∗. Hence g = (g+G)−G is Lipschitz

near x∗.

Remark 3.5.29. Under the assumption of Proposition 3.5.28, G is locally Lips-

chitz on C∗. In this case, the locally Lipschitz property of g +G is equivalent to

that of g.

3.6 Summary

In this chapter, we introduce gap functions for variational inequalities. In partic-

ular, the primal gap function g and the dual gap function G are studied. We also

characterize some properties of these two gap functions for variational inequality

problems.

The relations between the Gâteaux differentiabilities of G and g on C∗ and

C∗ are discussed (Propositions 3.5.8 and 3.5.18). In addition, it is proved that

under some condition, the Gâteaux differentiability of g + G on C∗ implies that
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∇(g+G)(x∗) = 2F (x∗) for x∗ ∈ C∗, see Proposition 3.5.20. Some equivalent state-

ments of the Gâteaux differentiability of g are also studied (Proposition 3.5.16).

Furthermore, we present the locally Lipschitz property of g on C∗ (Lemma 3.5.22)

as well as the Lipschitz property of G on Rn(Proposition 3.5.23). By applying

the results of the locally Lipschitz property of convex functions (Theorem 3.5.26

and Corollary 3.5.27) proposed by Clarke [11], we present the locally Lipschitz

property of G as well as the equivalence between the locally Lipschitz property

of g +G and g.

An interesting question for further research is to find the sufficiency for the

Gâteaux differentiability of g in terms of the relevant mapping F . We note that

some of the results are obtained under the assumption that g(x) ≥ G(x) for all

x ∈ Rn. In the future, we try to present the results by considering F and C.
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Chapter 4

Weakly sharp solutions of primal
and dual variational inequality
problems

4.1 Introduction

In this chapter, we study weakly sharp solutions of variational inequality problems

by primal and dual gap functions.

The chapter begins with recalling the concept of sharp solutions of a varia-

tional inequality [7] and that of the error bound of a function. We also propose

the constancy of F on C∗ since it is important for characterizing the weak sharp-

ness of variational inequality problems. Moreover, we present sufficient conditions

for the minimum principle sufficiency and maximum principle sufficiency proper-

ties introduced by Ferris and Mangasarian [19] and Wu and Wu [89]. Based on

these, the weak sharpness of the solution sets to VIP(C,F ) and DVIP(C,F ) are

discussed in terms of primal and dual gap functions.

4.2 Preliminaries

Let f be a mapping from Rn into R = R∪ {−∞,+∞}, f is said to have a sharp

minimum at x ∈ Rn if

f(x) ≥ f(x) + α‖x− x‖ for all x near x with some α > 0.

To the knowledge of the authors, Burke and Ferris [7] have extended the concept

of a sharp minimum solution to the case of a nonunique solution set. They have
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indicated that the solution set C to

min{f(x) : x ∈ C} (4.1)

is weakly sharp if there exists α > 0 such that

f(x) ≥ f(x) + αdC(x) for all x ∈ C and x ∈ C. (4.2)

The constant α and the set C are called the modulus and the domain of sharpness

for f over C. Clearly C is a set of global minima for f over C. Moreover, if f is

differentiable, closed and proper convex, the sets C and C are nonempty, closed

and convex, then C is said to be weakly sharp if and only if

−∇f(x) ∈ int
⋂
x∈C

[TC(x) ∩NC(x)]◦ for each x ∈ C,

see [7, Corollary 2.7]. And this conclusion reduces to

−∇f(x) ∈ intNC(x) for x ∈ C

when C is a singleton. Burke and Ferris [7] found that, under the condition of the

differentiability of f and closeness of the nonempty sets C and C, the inclusion

αB ⊆ ∇f(x) + [TC(x) ∩NC(x)]◦

holds at x ∈ C if and only if

〈∇f(x), z〉 ≥ α‖z‖ for all z ∈ TC(x) ∩NC(x),

for which the reader can refer to [7, Corollary 2.7].

Since the VIP(C,F ) lacks a natural objective function f , Patriksson has gen-

eralized the concept of the weak sharpness of a solution set to the VIP(C,F ) in

[79]. Following [79, pp. 108], a solution set of the VIP(C,F ), C∗, is said to be

weakly sharp provided that

− F (x∗) ∈ int
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦ for each x∗ ∈ C∗. (4.3)

This is equivalent to saying that for each x∗ ∈ C∗ there exists α > 0 such that

αB ⊆ F (x∗) +
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦,

where B denotes the closed unit ball in Rn. If F is constant on C∗, then this α

is unified.
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For an inequality system, an error bound is an estimate for the distance from

any point to the solution set of the inequality system. If the inequality system

is described by f(x) ≤ 0 (where f is a function defined on Rn) with the solution

set S, then the system has an error bound provided that there exists a positive

µ such that the distance function dS satisfies

dS(x) ≤ µf(x)+ := µmax{f(x), 0} for x ∈ Rn.

Based on these and under certain conditions, for the VIP(C,F ), G has an error

bound on C provided that there exists some µ > 0 such that

dC∗(x) ≤ µG(x) for all x ∈ C.

Similar to G, the primal gap function g is said to have an error bound on C if

there exists some µ > 0 such that

dC∗(x) ≤ µg(x) for all x ∈ C.

We note that the error bounds of gap functions have close relations with the weak

sharpness of solution sets of variational inequalities, see [32], [52], [63], [89] and

[91].

4.3 Constancy of F on C∗

In this section, we study the constancy of F on C∗ since it is important for char-

acterizing the weak sharpness of C∗ and C∗. In addition to this characterization,

the notion of minimum principle sufficiency property is also presented. Following

Ferris and Mangasarian [19], the VIP(C,F ) is said to have the minimum principle

sufficiency property if

Γ(x∗) = C∗ for each x∗ ∈ C∗.

Similar to the minimum principle sufficiency property, the VIP(C,F ) has the

maximum principle sufficiency property provided that

Λ(x∗) = C∗ for each x∗ ∈ C∗.

Since this is also very useful for characterizing the weak sharpness of C∗, we will

discuss the maximum principle sufficiency property later. Based on these, for

x ∈ C∗, the relation

C∗ = C∗ = Γ(x∗) = Λ(x∗)
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is also studied under certain conditions. All results obtained in this section are

true in a Hilbert space.

We begin with the following proposition which presents a sufficient condition

for F to be constant on C∗.

Proposition 4.3.1. [55, Proposition 2] F is constant on C∗ if F is pseudomonotone+

on C∗.

Proof. Suppose that F is pseudomonotone+ on C∗ and x1, x2 ∈ C∗. Then

〈F (x2), x1 − x2〉 ≥ 0 and 〈F (x1), x2 − x1〉 ≥ 0.

Since F is pseudomonotone on C∗, we have 〈F (x1), x1 − x2〉 ≥ 0 and hence

〈F (x1), x1 − x2〉 = 0. Combining this with 〈F (x2), x1 − x2〉 ≥ 0, we obtain

F (x1) = F (x2). Thus F is constant on C∗.

Remark 4.3.2. As we know, F is constant on C∗ in the following cases:

(i) F is continuous and pseudomonotone+ on C (Theorem 3.5.3).

(ii) F is continuous and pseudomonotone on C and G is Gâteaux differentiable

at x∗ ∈ C∗ (Proposition 3.5.4).

(iii) G is Gâteaux differentiable at x∗ ∈ C∗ (Theorem 3.5.13).

We deduce from Theorem 3.5.3 that (i) implies (ii). Since the continuity and

pseudomonotonicity of F implies C∗ = C∗, it is obvious that (i) or (ii) implies

that (iii) holds. Next we show that (iii) is different from the condition of the

constancy of F discussed in Proposition 4.3.1.

Example 4.3.3. [55, Examples 1 and 2] (i) The pseudomonotonicity+ of F on

C∗ does not imply the Gâteaux differentiability of G at x∗ ∈ C∗.
Let C = [−1, 0] and

F (x) =

{
0 if x < 0;

−x+ 1 if x ≥ 0.

The solution set C∗ is to find x∗ ∈ [−1, 0] such that

F (x∗)(x− x∗) ≥ 0 for all x ∈ [−1, 0]. (4.4)

Since F (x) = 0 for x ∈ [−1, 0), all of x∗ ∈ [−1, 0) are the solution of (4.4). For

x∗ = 0 we have F (x∗) = 1. According to (4.4), x∗ = 0 does not satisfy this.
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Therefore, C∗ = [−1, 0).

Similarly, C∗ aims to find x∗ ∈ [−1, 0] such that

F (x)(x− x∗) ≥ 0 for all x ∈ [−1, 0].

Let x ∈ [−1, 0] be fixed to satisfy F (x)(x− x) ≥ 0 for all x ∈ [0, 1). Then x can

be any number in [−1, 0]. Moreover, any x ∈ [−1, 0] satisfies F (0)(0 − x) ≥ 0.

Hence C∗ = [−1, 0].

We claim that F is pseudomonotone+ on [−1, 0). Clearly F is pseudomono-

tone on [−1, 0). If x∗ ∈ [−1, 0) and c ∈ [−1, 0] are fixed to satisfy

F (x∗)(c− x∗) ≥ 0 and F (c)(c− x∗) = 0,

then F (c) = F (x∗) = 0. So our claim is proved.

By definition of G we have

G(x) = max{F (c)(x− c) : c ∈ [−1, 0]} = max{G1(x), G2(x)}, where

G1(x) = max{F (c)(x− c) : c ∈ [−1, 0)} = 0 and G2(x) = F (0) · x = x.

Therefore,

G(x) =

{
0 if x < 0;

x if x ≥ 0.

Obviously G is not Gâteaux differentiable at x = 0. This can also be observed

from Theorem 3.5.12 or Theorem 3.5.13 since

Λ(0) = {c ∈ [−1, 0] : −F (c) · c = 0} = [−1, 0] 6= C∗.

This shows that the pseudomonotonicity+ of F on C∗ does not imply the Gâteaux

differentiability of G at x∗ ∈ C∗.
(ii) The Gâteaux differentiability ofG at x∗ ∈ C∗ does not imply the pseudomonotonicity+

of F on C∗.

Let C = [0, 1] and

F (x) =

{
0 if x ≤ 1

2
;

x− 1 if x > 1
2
.

Then C∗ is to find x∗ ∈ [0, 1] such that

F (x∗)(x− x∗) ≥ 0 for all x ∈ [0, 1]. (4.5)

For x∗ ∈
[
0, 1

2

]
, F (x∗) = 0. So all x∗ ∈

[
0, 1

2

]
satisfies (4.5). For x∗ ∈

(
1
2
, 1
]
,

F (x∗) = x∗ − 1. In this case, x∗ ∈
(
1
2
, 1
]

is obtained by

(x∗ − 1)(x− x∗) ≥ 0 for all x ∈ [0, 1].
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Therefore, x∗ = 1 and hence C∗ =
[
0, 1

2

]
∪ {1}.

Similarly, the solution set C∗ is to find x∗ ∈ [0, 1] such that

F (x)(x− x∗) ≥ 0 for all x ∈ [0, 1]. (4.6)

We first find x ∈ [0, 1] such that F (x)(x − x) ≥ 0 for all x ∈ [0, 1
2
]. In this case,

F (x) = 0 and all x ∈ [0, 1] satisfies (4.6). We then find x ∈ [0, 1] such that

F (x)(x−x) ≥ 0 for all x ∈ (1
2
, 1]. Since F (x) = x− 1 ≤ 0, we have x = 1. Hence

C∗ = {x∗} = {1}.
By definition of G we have G(x) = max{G1(x), G2(x)}, where

G1(x) = max{F (c)(x− c) : c ∈ [0,
1

2
]} = 0 and

G2(x) = sup{F (c)(x− c) : c ∈ (
1

2
, 1]} = sup{(c− 1)(x− c) : c ∈ (

1

2
, 1]}

= sup{−(c− x+ 1

2
)2 +

(x− 1)2

4
: c ∈ (

1

2
, 1]} =


−1

2
(x− 1

2
) if x ≤ 0;

(x−1)2
4

if 0 < x ≤ 1;

0 if x > 1.

This implies that

G(x) =


−1

2
(x− 1

2
) if x ≤ 0;

(x−1)2
4

if 0 < x ≤ 1;

0 if x > 1.

Based on these, G is Gâteaux differentiable at x∗ = 1. However, it is clear that

F is not pseudomonotone on C∗. This shows that the Gâteaux differentiability

of G at x∗ ∈ C∗ does not imply the pseudomonotonicity+ of F on C∗.

Under the condition of the Gâteaux differentiability of G at x∗ ∈ C∗, Wu and

Wu [90] have shown some additional expressions of C∗ and C∗. Next we discuss

their results in Rn.

Theorem 4.3.4. [90, Theorem 4.1] Let G be Gâteaux differentiable at some

x∗ ∈ C∗. Denote

C(x∗) : = {x ∈ C : {v ∈ Rn : 〈ξ, v〉 ≥ 0}
= {v ∈ Rn : 〈F (x∗), v〉 ≥ 0}, for some ξ ∈ ∂G(x)}.
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Then, C∗ = C0 = C1 = C2 = C3 = C4 = C5, where

C0 : = {x ∈ C : 〈ξ, y − x〉 ≥ 0, for some ξ ∈ ∂G(x) and each y ∈ C},
C1 : = {x ∈ C : 〈F (x∗), x− x∗〉 = 0, F (x∗) ∈ ∂G(x)},
C2 : = {x ∈ C(x∗) : 〈F (x∗), x− x∗〉 = 0},
C3 : = {x ∈ C : 〈ξ, x− x∗〉 = 〈F (x∗), x− x∗〉 = 0, for some ξ ∈ ∂G(x)},
C4 : = {x ∈ C : 〈ξ, x− x∗〉 = 0, for some ξ ∈ ∂G(x)},
C5 : = {x ∈ C : 〈ξ, x− x∗〉 ≤ 0, for some ξ ∈ ∂G(x)}.

Moreover, if C∗ = C∗, then

C∗ = D0 = C1 = D2 = D3 = D4 = D5 = Λ(x∗),

where D0, D2, . . . , D5 denote the above sets C0, C2, . . . , C5 with ξ replaced with

F (x).

Theorem 4.3.5. [90, Theorem 4.2] Let G be Gâteaux differentiable at x∗ ∈ C∗.
Then,

C∗ ∩ C∗ = C1 = C2 = C3,

where

C1 = {x ∈ C : 〈F (x), x− x∗〉 = 〈F (x∗), x− x∗〉 = 0, F (x) ∈ ∂G(x)},
C2 = {x ∈ C : 〈F (x), x− x∗〉 = 0, F (x) ∈ ∂G(x) ∩ ∂G(x∗)},
C3 = {x ∈ C : 〈F (x), x− x∗〉 = 0, F (x) ∈ ∂G(x)}.

Hence, if C∗ ⊆ C∗, then C∗ = C1 = C2 = C3; if C∗ ⊆ C∗, then C∗ = C1 = C2 =

C3.

In Theorem 4.3.4, Wu and Wu have characterized the relations between C∗

and Λ(x∗) for x∗ ∈ C∗. Next we show that C∗ = Λ(x∗) for x∗ ∈ C∗ under certain

condition.

Proposition 4.3.6. [55, Proposition 3] For x∗ ∈ C∗, if F is pseudomonotone+

on C, then F is constant on Λ(x∗) and C∗ = Λ(x∗).

Proof. For x∗ ∈ C∗ and c ∈ C, we have 〈F (x∗), c − x∗〉 ≥ 0. This with the

pseudomonotonicity+ of F on C yields 〈F (c), c− x∗〉 ≥ 0, that is, G(x∗) = 0. In

particular, for c ∈ Λ(x∗), we have

〈F (c), c− x∗〉 = −G(x∗) = 0 and hence F (c) = F (x∗).

Since x∗ ∈ C∗ ⊆ C∗, it follows from [89, Proposition 2.3 and Theorem 2.6]

that C∗ = Λ(x∗). The proof is complete.
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Remark 4.3.7. Under the assumption that C∗ ⊆ C∗, we deduce from Theorems

3.5.12 and 3.5.13 that the Gâteaux differentiability of G at x∗ ∈ C∗ also implies

that F is constant on Λ(x∗) and C∗ = Λ(x∗) for x∗ ∈ C∗. However, we can refer

to an example to see that the pseudomonotonicity+ of F on C does not imply

the Gâteaux differentiability of G at x∗ ∈ C∗.

Example 4.3.8. [91, Example 2.1]

Let C = [0, 1]× [0, 1] and, for x = (x1, x2) ∈ R2,

F (x) = (F1(x), F2(x)) =

{
(1, 1) if x 6= (0, 0);

(0, 0) if x = (0, 0).

By [91, Example 2.1] C∗ = {(0, 0)}. To show the pseudomonotonicity of F on

C\{(0, 0)}, let (x1, x2) be an arbitrary point in C\{(0, 0)}. For any (y1, y2) ∈ C
satisfying

(F1(x), F2(x)) · (y1 − x1, y2 − x2) ≥ 0,

that is, F1(x)(y1−x1)+F2(x)(y2−x2) = y1−x1+y2−x2 ≥ 0. So (y1, y2) 6= (0, 0).

Therefore,

(F1(y), F2(y)) · (y1 − x1, y2 − x2) = F1(y)(y1 − x1) + F2(y)(y2 − x2)
= y1 − x1 + y2 − x2 ≥ 0.

Thus F is pseudomonotone on C\{(0, 0)}. Clearly F is also pseudomonotone at

x = (0, 0). Hence F is pseudomonotone on C.

For all (x1, x2), (y1, y2) ∈ C satisfying

F1(y)(x1 − y1) + F2(y)(x2 − y2) ≥ 0 and F1(x)(x1 − y1) + F2(x)(x2 − y2) = 0,

we have F1(x) = F1(y) and F2(x) = F2(y). Thus F is also pseudomonotone+ on

C.

By the definition of G we have, for x = (x1, x2) ∈ R2,

G(x) = sup{F1(c)(x1 − c1) + F2(c)(x2 − c2) : (c1, c2) ∈ C}
= max{0, sup{x1 − c1 + x2 − c2 : (c1, c2) ∈ C\{(0, 0)}}}
= max{0, x1 + x2}.

Hence

G(x) =

{
x1 + x2 if x1 + x2 ≥ 0;

0 if x1 + x2 < 0.

This shows that G is not Gâteaux differentiable at x = (0, 0) although F is

pseudomonotone+ on C.
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Next we discuss some fundamental results stated by Wu and Wu [89] for

discussing relations between C∗, C∗, Γ(x∗) and Λ(x∗), which have already been

applied for characterizing the constancy of F on C∗ in Proposition 4.3.6.

Proposition 4.3.9. [89, Proposition 2.3] The following hold:

(i) C∗ ⊆ Γ(x∗) for each x∗ ∈ C∗.

(ii) C∗ ⊆ Λ(x∗) for each x∗ ∈ C∗.

In particular, if F is continuous on C∗, then C∗ ⊆ Γ(x∗) for each x∗ ∈ C∗; if F

is pseudomonotone on C∗, then C∗ ⊆ Λ(x∗) for each x∗ ∈ C∗.

We note that Wu and Wu [89] have stated the weak sharpness results by

presenting a novel condition:

{v ∈ Rn : 〈F (x∗), v〉 ≥ 0} = {v ∈ Rn : 〈F (y∗), v〉 ≥ 0} for x∗, y∗ ∈ C, (4.7)

that is, F (x∗) and F (y∗) have the same direction. Under this condition, 〈F (x∗), x∗−
y∗〉 = 0 is equivalent to 〈F (y∗), x∗−y∗〉 = 0. Moreover, if one these two equalities

holds, then x∗ is a solution of the VIP(C,F ) if and only if y∗ is also a solution of

this, see the proposition below.

Proposition 4.3.10. [89, Proposition 2.5] Let x∗ ∈ C and y∗ ∈ C satisfy (4.7).

(i) 〈F (x∗), x∗ − y∗〉 = 0⇔ 〈F (y∗), x∗ − y∗〉 = 0.

(ii) If either 〈F (x∗), x∗ − y∗〉 = 0 or 〈F (y∗), x∗ − y∗〉 = 0, then

x∗ ∈ C∗ ⇔ y∗ ∈ C∗.

As a result of Propositions 4.3.9 and 4.3.10, the following result is immediate.

Theorem 4.3.11. [89, Theorem 2.6] Let x∗ ∈ C and y∗ ∈ C satisfy (4.7).

(i) x∗ ∈ C∗ and y∗ ∈ Γ(x∗) iff x∗ ∈ Γ(x∗) and y∗ ∈ C∗.

(ii) x∗ ∈ C∗ and y∗ ∈ Λ(x∗) iff x∗ ∈ Λ(x∗) and y∗ ∈ C∗.

Recall that the VIP(C, F ) has the minimum principle sufficiency (MPS) prop-

erty if

Γ(x∗) = C∗ for each x∗ ∈ C∗.

Next we show a sufficient condition for this in terms of (4.7).
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Proposition 4.3.12. [89, Proposition 3.1]

(i) If (4.7) holds for x∗ ∈ C∗ and all y∗ ∈ Γ(x∗), then Γ(x∗) ⊆ C∗.

(ii) If (4.7) holds for x∗ ∈ C∗ and all y∗ ∈ Γ(x∗), then x∗ ∈ Γ(x∗) = C∗.

(iii) If (4.7) holds for x∗ ∈ C∗ ∪ C∗ and all y∗ ∈ C∗, then x∗ ∈ C∗ ⊆ Γ(x∗).

Similarly, the VIP(C, F ) has the maximum principle sufficiency property if

Λ(x∗) = C∗ for each x∗ ∈ C∗. By considering (4.7), Wu and Wu [89] have

presented a sufficient condition for this as follows.

Theorem 4.3.13. [89, Theorem 4.1] Let C∗ 6= ∅.

(i) If (4.7) holds for x∗ ∈ C∗ ∪ C∗ and all y∗ ∈ Λ(x∗), then x∗ ∈ Λ(x∗) = C∗.

(ii) If for each x∗ ∈ C∗ there exits y∗ ∈ Λ(x∗) such that (4.7) holds, then

C∗ ⊆ C∗.

(iii) If for each x∗ ∈ C∗ there exists y∗ ∈ C∗ such that (4.7) holds, then C∗ ⊆ C∗.

(iv) If (4.7) holds for each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Λ(x∗), then

C∗ = Λ(x∗) = C∗ for each x∗ ∈ C∗ ∪ C∗.

Based on the results above, we state some sufficient conditions for

C∗ = C∗ = Γ(x∗) = Λ(x∗) for x∗ ∈ C∗

under the assumption of the pseudomonotonicity of F on C.

Proposition 4.3.14. [55, Proposition 4] Let F be pseudomonotone on C and

x∗ ∈ C∗. If F is constant on Γ(x∗), then

C∗ = C∗ = Γ(x∗) = Λ(x∗).

And hence F is constant on C∗.

Proof. By assumption and Proposition 4.3.9, we have C∗ ⊆ C∗ ⊆ Γ(x∗). Since F

is constant on Γ(x∗), Proposition 4.3.12 implies that Γ(x∗) ⊆ C∗. So

C∗ = Γ(x∗) = C∗.

For c ∈ Γ(x∗), we have

〈F (x∗), x∗ − c〉 = g(x∗) = 0,

43



so 〈F (c), x∗ − c〉 = 0 = G(x∗). Therefore, c ∈ Λ(x∗), which implies that Γ(x∗) ⊆
Λ(x∗).

Now let c ∈ Λ(x∗). Then

〈F (c), x∗ − c〉 = G(x∗) = 0.

The pseudomonotonicity of F on C implies that 〈F (x∗), x∗− c〉 ≥ 0. In this case,

〈F (x∗), x∗ − c〉 = 0 = g(x∗) since x∗ ∈ C∗.

Thus c ∈ Γ(x∗) and hence Λ(x∗) ⊆ Γ(x∗). Therefore,

C∗ = C∗ = Λ(x∗) = Γ(x∗).

Remark 4.3.15. From the definition of Γ(x∗), we see that for x∗ ∈ C∗, it is

the solution to minimize f(x) = 〈F (x∗), x − x∗〉 subject to x ∈ C. Under the

conditions of Proposition 4.3.14, the solution set C∗ to the VIP(C,F ) and C∗ to

the DVIP(C,F ) can be determined by Γ(x∗).

We note that Proposition 4.3.14 is presented under the assumption that F is

pseudomonotone on C and F is constant on Γ(x∗) for x∗ ∈ C∗. We apply a simple

example to see that, for x∗ ∈ C∗, the constancy of F on Λ(x∗) is not sufficient

for C∗ = C∗ = Γ(x∗) = Λ(x∗) under the assumption of the pseudomonotonicity

of F on C.

Example 4.3.16. Let C = [0, 1] and F (x) = x. Then

g(x) = sup{x(x− c) : c ∈ [0, 1]} =

{
x2 − x if x < 0;

x2 if x ≥ 0.

The solution set C∗ is to find x∗ ∈ [0, 1] such that

x∗(x− x∗) ≥ 0 for all x ∈ [0, 1].

So C∗ = {0}. Similarly, the solution set of the DVIP(C,F ) C∗ consists of the

vectors x∗ ∈ [0, 1] such that

x(x− x∗) ≥ 0 for all x ∈ [0, 1].

Therefore, C∗ = {0}. Hence G(0) = g(0) = 0. In this case, we have

Λ(0) = {c ∈ [0, 1] : c(0− c) = G(0) = 0} = {0}

and

Γ(0) = {c ∈ [0, 1] : F (0)(0− c) = g(0) = 0} = C.
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Obviously F is pseudomonotone on [0, 1] since F is monotone on Rn. More-

over, F is constant on Λ(0) but not on Γ(0). This shows that under the assump-

tion of the pseudomonotonicity of F , the constancy of F on Λ(x∗) for x∗ ∈ C∗ is

not sufficient for C∗ = C∗ = Γ(x∗) = Λ(x∗).

As a result of Propositions 4.3.6 and 4.3.14, we show two immediate results

for the sufficiency for C∗ = C∗ = Γ(x∗) = Λ(x∗) for x∗ ∈ C∗.

Proposition 4.3.17. [55, Proposition 5] Let F be pseudomonotone+ on C. Then,

for x∗ ∈ C∗, F is constant on Γ(x∗) iff

C∗ = C∗ = Γ(x∗) = Λ(x∗).

Proposition 4.3.18. [55, Proposition 6] Let F be pseudomonotone+ on C. Then

the following are equivalent:

(i) F is constant on Γ(x∗) for each x∗ ∈ C∗.

(ii) C∗ = C∗ = Γ(x∗) = Λ(x∗) for each x∗ ∈ C∗.

(iii) C∗ = Γ(x∗) = Λ(x∗) for each x∗ ∈ C∗.

(iv) C∗ = Γ(x∗) for each x∗ ∈ C∗.

We end up this section by characterizing some other expressions of the solution

sets C∗ and C∗ as below.

Theorem 4.3.19. [90, Theorem 4.3] Let C∗ ⊆ C∗ and x∗ ∈ C∗. Then,

C∗ ⊆ {x ∈ C : 〈F (x), x− x∗〉 = 0, F (x) ∈ ∂G(x) ∩ ∂G(x∗)}
= {x ∈ C : 〈F (x), x− x∗〉 ≤ 0, F (x) ∈ ∂G(x) ∩ ∂G(x∗)}
⊆ {x ∈ C : 〈F (x), x− x∗〉 = 0, F (x) ∈ ∂G(x)}
= {x ∈ C : 〈F (x), x− x∗〉 ≤ 0, F (x) ∈ ∂G(x)} ⊆ C∗.

If either G is Gâteaux differentiable on C∗, then the above six sets coincide with

each other.

4.4 Weak sharpness of C∗ and C∗

There are some existing results for characterizing the weak sharpness of C∗ and

C∗ by using the dual gap functions G [63, 89]. In this section, we study weakly
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sharp results by utilizing the primal and dual gap functions g and G, respectively.

We note that most of the previous results were discussed by using the dual gap

function G, however, for a fixed point x ∈ Rn, g(x) is usually easier to be cal-

culated since this is a linear program. Motivated by this, we study the weak

sharpness results as follows.

We show the sufficiency for the weak sharpness of C∗ in terms of the error

bound of g in which similar proofs are used with those of [63, Theorem 4.1].

We extend the definition of the weak sharpness of C∗ introduced in Section 4.2.

Moreover, we define the weak sharpness of the solution set of the DVIP(C,F ) as

well. Based on these, we present the relations between the weak sharpness of C∗

and C∗ under certain conditions. As an application, we show the weak sharpness

of C∗ and C∗ in terms of the error bound of g + G on C. In addition, some

equivalent sufficient conditions for the weak sharpness of C∗ are also studied.

We begin with a result of Marcotte and Zhu [63] which shows that C∗ is

weakly sharp if and only if G has an error bound on C under some condition.

Theorem 4.4.1. [63, Theorem 4.1] Let F be continuous and pseudomonotone+

over the compact set C. Let the solution set C∗ of the VIP be nonempty. Then

C∗ is weakly sharp if and only if there exists a positive α such that

G(x) ≥ αdC∗(x) for all x ∈ C. (4.8)

Remark 4.4.2. The locally Lipschitz property of G on C∗ needs to be added as

a part of the condition in this theorem since this is necessary for the result

lim
dk → d
tk → 0

G(x∗ + tkdk)−G(x∗)

tk
= 〈∇G(x∗), d〉.

Wu and Wu [89] have proved the same result of Theorem 4.4.1 under the

condition that G is Gâteaux differentiable and locally Lipschitz on C∗.

Theorem 4.4.3. [89, Theorem 5.1] Let G be Gâteaux differentiable and locally

Lipschitz on C∗. Suppose that each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Λ(x∗) satisfy

(4.7) and

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0⇒ F (y∗) = F (x∗).

Then C∗ is weakly sharp iff there exists µ > 0 such that

dC∗(x) ≤ µG(x) for each x ∈ C. (4.9)
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Similar to Theorems 4.4.1 and 4.4.3, we characterize the weak sharpness of

C∗ in terms of the error bound of g on C under the condition of the Gâteaux

differentiability and locally Lipschitz property of g since this is usually easier to

be calculated.

Theorem 4.4.4. [55, Theorem 1] Let F be monotone on Rn and constant on

Γ(x∗) for some x∗ ∈ C∗. Suppose that g is Gâteaux differentiable, locally Lips-

chitz on C∗, and g(x) < +∞ for all x ∈ Rn. Then C∗ is weakly sharp if and only

if there exists a positive number α such that

αdC∗(x) ≤ g(x) for all x ∈ C. (4.10)

Proof. Under the given conditions, by Proposition 4.3.14, we have

C∗ = C∗ = Γ(x∗) = Λ(x∗).

If C∗ is weakly sharp, then for any x∗ ∈ C∗ there exists α > 0 such that

αB ⊆ F (x∗) +
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦. (4.11)

Since F is constant on Γ(x∗), α satisfies (4.11) for all x∗ ∈ C∗. It follows that

〈F (x∗), z〉 ≥ α‖z‖ for any z ∈ TC(x∗) ∩NC∗(x
∗),

as proved in [63, Theorem 4.1]. For any x ∈ C, there exists a unique x ∈ C∗ such

that ‖x− x‖ = dC∗(x), since C∗ is convex and closed. Applying the definition of

TC(x) and Theorem 2.2.1, we have

x− x ∈ TC(x) ∩NC∗(x).

Thus the point x ∈ C∗ satisfies:

〈F (x), x− x〉 ≥ α‖x− x‖ = αdC∗(x).

Since F is monotone on C, we conclude that for c ∈ Γ(x) with x ∈ C,

g(x) = 〈F (x), x− c〉 ≥ 〈F (x), x− x〉 ≥ 〈F (x), x− x〉 ≥ αdC∗(x).

Conversely, suppose that there exists α > 0 such that

αdC∗(x) ≤ g(x) for each x ∈ C.
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We claim that

αB ⊆ F (x∗) + [TC(x∗) ∩NC∗(x
∗)]◦ for each x∗ ∈ C∗. (4.12)

It is evident that (4.12) holds if TC(x∗) ∩ NC∗(x
∗) = {0} for x∗ ∈ C∗. So it

suffices to prove (4.12) to hold if TC(x∗) ∩ NC∗(x
∗) 6= {0} for x∗ ∈ C∗. Now let

0 6= v ∈ TC(x∗) ∩NC∗(x
∗). Then

〈v, v〉 > 0 and 〈v, y∗ − x∗〉 ≤ 0 for each y∗ ∈ C∗,

which implies that C∗ is separated from x∗ + v by the hyperplane

Hv = {x ∈ Rn : 〈v, x− x∗〉 = 0}.

Since v ∈ TC(x∗), by [10, Theorem 2.4.5], for each positive sequence {ti} de-

creasing to 0, there exists a sequence {vi} converging to v such that x∗ + tivi ∈
C for sufficiently large i. Thus 〈v, vi〉 > 0 holds for sufficiently large i, and hence

we suppose that x∗+tivi lies in the open set {x ∈ Rn : 〈v, x−x∗〉 > 0}. Therefore,

dC∗(x
∗ + tivi) ≥ dHv(x∗ + tivi) =

ti〈v, vi〉
‖v‖

,

and hence, by (4.10),

g(x∗ + tivi) ≥ αdC∗(x
∗ + tivi) ≥ αti

〈v, vi〉
‖v‖

.

By Proposition 3.5.2 g(x∗) = 0 for any x∗ ∈ C∗, so

g(x∗ + tivi) = g(x∗ + tivi)− g(x∗) ≥ αti
〈v, vi〉
‖v‖

.

Since g is Gâteaux differentiable and locally Lipschitz on C∗, there hold

‖g(x∗ + tiv)− g(x∗ + tivi)‖ ≤ Lti‖vi − v‖

for some L > 0 and all sufficiently large i and

〈∇g(x∗), v〉 = lim
i→∞

g(x∗ + tiv)− g(x∗)

ti

= lim
i→∞

g(x∗ + tivi)− g(x∗)

ti
≥ α‖v‖.

By Proposition 3.5.6, ∇g(x∗) = F (x∗). Thus

〈F (x∗), v〉 ≥ α‖v‖ for each v ∈ TC(x∗) ∩NC∗(x
∗).
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This implies that for each w ∈ B,

〈αw − F (x∗), v〉 = 〈αw, v〉 − 〈F (x∗), v〉 ≤ α‖v‖ − α‖v‖ = 0.

Hence αB − F (x∗) ⊆ [TC(x∗) ∩NC∗(x
∗)]◦, that is,

αB ⊆ F (x∗) + [TC(x∗) ∩NC∗(x
∗)]◦.

This shows that C∗ is weakly sharp since F is constant on C∗.

Theorem 4.4.4 presents the weak sharpness of C∗ in terms of g instead of G.

Following the definition of the weak sharpness of C∗ in (4.3) and according to

[7], since

int
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦ ⊆ int
⋂

x∈C∗∩C∗

[TC(x) ∩NC∗∪C∗(x)]◦,

we extend the definition of weak sharpness of the solution set of the VIP(C,F )

as follows.

Definition 4.4.5. [54, Definition 4.1] C∗ is said to be weakly sharp provided

that

− F (x∗) ∈ int
⋂

x∈C∗∩C∗

[TC(x) ∩NC∗∪C∗(x)]◦ for each x∗ ∈ C∗. (4.13)

This is equivalent to saying that for each x∗ ∈ C∗ there exists α > 0 such that

αB ⊆ F (x∗) +
⋂

x∈C∗∩C∗

[TC(x) ∩NC∗∪C∗(x)]◦,

where B denotes the closed unit ball in Rn.

Similarly, C∗ is said to be weakly sharp provided that

−F (x∗) ∈ int
⋂

x∈C∗∩C∗

[TC(x) ∩NC∗∪C∗(x)]◦ for each x∗ ∈ C∗.

The advantage of this extended definition is that the relationship between the

weak sharpness of C∗ and C∗ can immediately be obtained as the following propo-

sition states.

Proposition 4.4.6. [54, Proposition 4.2]

(i) Let C∗ ⊆ C∗. If C∗ is weakly sharp, then C∗ is weakly sharp as well.
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(ii) Let C∗ ⊆ C∗. If C∗ is weakly sharp, then so is C∗.

Proof. (i) Suppose that C∗ is weakly sharp. Then by Definition 4.4.5

−F (x∗) ∈ int
⋂

x∈C∗∩C∗

[TC(x) ∩NC∗∪C∗(x)]◦ for each x∗ ∈ C∗.

Since C∗ ⊆ C∗, it follows that

−F (x∗) ∈ int
⋂

x∈C∗∩C∗

[TC(x) ∩NC∗∪C∗(x)]◦ for each x∗ ∈ C∗,

Hence C∗ is weakly sharp.

(ii) The proof is similar to (i), so it is omitted.

Based on this extended definition for the weak sharpness of C∗ and C∗, we

use similar proofs of Theorem 4.4.4 to show their weak sharpness results in terms

of the error bound of g +G on C.

Theorem 4.4.7. [54, Theorem 4.3] Let F be constant on C∗. Suppose that

g(x) ≥ G(x) for all x ∈ Rn and that g + G is Gâteaux differentiable and locally

Lipschitz on C∗. If there exists α > 0 such that

αdC∗∩C∗(x) ≤ (g +G)(x) for each x ∈ C,

Then C∗ is weakly sharp. In particular, if C∗ = C∗, then the above sufficient

condition is also necessary.

Proof. By assumption, we have C∗ ⊆ C∗, so C∗ ∩ C∗ = C∗ and C∗ ∪ C∗ = C∗.

Suppose that there exists α > 0 such that

αdC∗∩C∗(x) ≤ (g +G)(x) for each x ∈ C.

Since F is constant on C∗, it suffices to show that there holds

δB ⊆ F (x) + [TC(x) ∩NC∗∪C∗(x)]◦ for each x ∈ C∗ with δ =
α

2
. (4.14)

It is obvious that (4.14) holds if TC(x) ∩NC∗∪C∗(x) = {0} for x ∈ C∗.
If 0 6= v ∈ TC(x) ∩NC∗∪C∗(x) for x ∈ C∗, then

〈v, v〉 > 0 and 〈v, y − x〉 ≤ 0 for each y ∈ C∗ ∪ C∗,

which implies that C∗ is separated from x+ v by the hyperplane

Hv = {x ∈ Rn : 〈v, x− x〉 = 0}.
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Since v ∈ TC(x), according to [10, Theorem 2.4.5], there exist a sequence {vi}
converging to v and a positive sequence {ti} decreasing to 0 such that for each

index i we have x+ tivi ∈ C. Therefore,

dC∗(x+ tivi) ≥ dHv(x+ tivi) = ti
〈v, vi〉
‖v‖

.

By assumption, we have

(g +G)(x+ tivi)− (g +G)(x) ≥ αdC∗∩C∗(x+ tivi) = αdC∗(x+ tivi).

Since g+G is Gâteaux differentiable and locally Lipschitz on C∗, by Proposition

3.5.20, we have

〈2F (x), v〉 = 〈∇(g +G)(x), v〉 = lim
i→∞

(g +G)(x+ tivi)− (g +G)(x)

ti
≥ α‖v‖.

Let w ∈ B. Then〈α
2
w − F (x), v

〉
=
α

2
〈w, v〉 − 〈F (x), v〉 ≤ α

2
‖v‖ − α

2
‖v‖ = 0.

Hence α
2
B − F (x) ⊆ [TC(x) ∩NC∗∪C∗(x)]◦.

Next if C∗ is weakly sharp and C∗ = C∗, then by Definition 4.4.5 there exists

δ > 0 such that

δB ⊆ F (x∗) +
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦ for each x∗ ∈ C∗

since F is constant on C∗. From the proof of [63, Theorem 4.1], this is equivalent

to saying that

〈F (x∗), z〉 ≥ δ‖z‖ for each z ∈ TC(x∗) ∩NC∗(x
∗) and each x∗ ∈ C∗.

Since C∗ is closed and convex and C∗ = C∗, for each x ∈ C there exists unique

c∗ ∈ C∗ such that dC∗(x) = ‖x− c∗‖. It follows that

x− c∗ ∈ TC(c∗) ∩NC∗(c
∗).

Hence the point c∗ satisfies

(g +G)(x) ≥ 2G(x) ≥ 2〈F (c∗), x− c∗〉 ≥ 2δ‖x− c∗‖ = 2δdC∗(x).

Taking α = 2δ, we have

αdC∗∩C∗(x) = αdC∗(x) ≤ (g +G)(x) for each x ∈ C.

The proof is complete.
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Remark 4.4.8. As mentioned above, Wu and Wu have characterized the weak

sharpness of C∗ in Theorem 4.4.3 under the condition that G is Gâteaux differ-

entiable and locally Lipschitz on C∗. By presenting relations between g and G in

Theorem 4.4.7, the same result was proposed in terms of the error bound of g+G

on C. Under the conditions of Theorem 4.4.7, the existence of positive µ satisfy-

ing dC∗∩C∗(x) ≤ µG(x) for all x ∈ C is also sufficient for the weak sharpness of

C∗ since G(x) ≤ g(x) for x ∈ Rn. In this case, (g+G)(x) ≤ 2g(x) for all x ∈ Rn.

So if the condition that g + G is Gâteaux differentiable and locally Lipschitz on

C∗ is replaced by a stronger one that g is Gâteaux differentiable and locally Lip-

schitz on C∗, by Propositions 3.5.8 and 3.5.28, we have an immediate result that

dC∗∩C∗(x) ≤ µg(x) for each x ∈ C with some µ > 0 is still a sufficient condition

for the weak sharpness of C∗.

Corollary 4.4.9. Let F be constant on C∗. Suppose that g(x) ≥ G(x) for all

x ∈ Rn and that g is Gâteaux differentiable and locally Lipschitz on C∗. Then C∗

is weakly sharp if there exists α > 0 such that

αdC∗∩C∗(x) ≤ g(x) for each x ∈ C.

Clearly the condition of Theorem 4.4.9 is weaker than that of Theorem 4.4.4.

In addition, similar proofs of Theorem 4.4.7 can be applied to the theorem below

for discussing sufficient conditions for the weak sharpness of C∗.

Theorem 4.4.10. [54, Theorem 4.5] Let ∂g(x∗) 6= ∅ for each x∗ ∈ C∗. Suppose

that g(x) ≤ G(x) for all x ∈ Rn and that G is Gâteaux differentiable and g + G

is locally Lipschitz on C∗. If there exists α > 0 such that

αdC∗∩C∗(x) ≤ (g +G)(x) for each x ∈ C,

Then C∗ is weakly sharp.

Proof. By assumption, we have C∗ ⊆ C∗, that is, C∗ ∩ C∗ = C∗.

Suppose that there exists α > 0 such that

αdC∗∩C∗(x) ≤ (g +G)(x) for each x ∈ C.

We claim that

δB ⊆ F (x) + [TC(x) ∩NC∗∪C∗(x)]◦ for each x ∈ C∗ with δ =
α

2
. (4.15)

Obviously, (4.15) holds if TC(x) ∩NC∗∪C∗(x) = {0} for x ∈ C∗.
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If 0 6= v ∈ TC(x) ∩NC∗∪C∗(x) for x ∈ C∗, then

〈v, v〉 > 0 and 〈v, y − x〉 ≤ 0 for all y ∈ C∗ ∪ C∗ = C∗.

Therefore, C∗ is separated from x+ v by the hyperplane

Hv = {x ∈ Rn : 〈v, x− x〉 = 0}.

Since v ∈ TC(x), there exist a sequence {vi} converging to v and a positive

sequence {ti} decreasing to 0 such that for each index i there holds x+ tivi ∈ C.

Hence we have

(g +G)(x+ tivi)− (g +G)(x) ≥ αdC∗(x+ tivi) ≥ αdHv(x+ tivi) = αti
〈v, vi〉
‖v‖

.

By Proposition 3.5.18, the Gâteaux differentiability of G on C∗ implies that g is

Gâteaux differentiable on C∗ with ∇g(x∗) = ∇G(x∗) = F(x∗) for each x∗ ∈ C∗
and F is constant on C∗, that is, we have

∇(g +G)(x∗) = 2F (x∗) for each x∗ ∈ C∗.

If g +G is locally Lipschitz on C∗, then

〈2F (x), v〉 = 〈∇(g +G)(x), v〉 = lim
i→∞

(g +G)(x+ tivi)− (g +G)(x)

ti
≥ α‖v‖.

Let u ∈ B. Then〈α
2
u− F (x), v

〉
=
α

2
〈u, v〉 − 〈F (x), v〉 ≤ α

2
‖v‖ − α

2
‖v‖ = 0.

Thus α
2
B − F (x) ⊆ [TC(x) ∩ NC∗∩C∗(x)]◦. This implies that (4.15) holds. And

hence C∗ is weakly sharp since F is constant on C∗.

Theorem 4.4.10 characterizes the weak sharpness of C∗ under the assumption

that g(x) ≤ G(x) for all x ∈ Rn. Wu and Wu [89] have stated two equivalent

statements for the weak sharpness of C∗ since for x∗ ∈ C∗ we have

TC∗(x
∗) = [NC∗(x

∗)]◦ ⊆ [TC∗(x
∗) ∩NC∗(x

∗)]◦.

Theorem 4.4.11. [89, Theorem 5.4] Let G be Gâteaux differentiable on C∗.

Suppose that each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Λ(x∗) satisfy (4.7) and

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0⇒ F (y∗) = F (x∗).

Then the following are equivalent:
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(i) −F (x∗) ∈ int
⋂
x∈C∗ TC∗(x) for each x∗ ∈ C∗.

(ii) There exists µ > 0 such that

dC∗(x) ≤ µG(x) for each x ∈ Rn.

Motivated by their results, we note that

−F (x∗) ∈ int
⋂

x∈C∗∩C∗

TC∗(x)

is also sufficient for the weak sharpness of C∗ since

int
⋂

x∈C∗∩C∗

TC∗(x) = int
⋂

x∈C∗∩C∗

[NC∗(x)]◦ ⊆ int
⋂

x∈C∗∩C∗

[TC∗(x) ∩NC∗∪C∗(x)]◦.

Then we use similar proofs of Theorem 4.4.11 to present this equivalence by

considering both the error bounds of G and g +G on Rn.

Theorem 4.4.12. [54, Theorem 4.6] Let C∗ be closed and convex and F constant

on C∗. Suppose that g(x) ≥ G(x) for all x ∈ Rn and that (g + G)(x) is Gâteaux

differentiable on C∗. Then the following are equivalent:

(i) −F (x∗) ∈ int
⋂
x∈C∗∩C∗ TC∗(x) for each x∗ ∈ C∗.

(ii) There exists α > 0 such that αdC∗∩C∗(x) ≤ G(x) for each x ∈ Rn.

(iii) There exists α > 0 such that

αdC∗∩C∗(x) ≤ (g +G)(x) for each x ∈ Rn. (4.16)

Proof. By assumption, we have 0 ≤ G(x∗) ≤ g(x∗) = 0 for all x∗ ∈ C∗, so

C∗ ⊆ C∗ and C∗ ∩ C∗ = C∗.

(i)⇒ (ii) : Let (i) hold. Then since F is assumed to be constant on C∗, there

exists α > 0 such that

αB ⊆ F (x∗) + TC∗(x
∗) = F (x∗) + [NC∗(x

∗)]◦ for each x∗ ∈ C∗.

This implies that for each x∗ ∈ C∗ and each u ∈ B we have

〈αu− F (x∗), v〉 ≤ 0 for each v ∈ NC∗(x
∗).

Let u = v
‖v‖ for v 6= 0. Then

〈F (x∗), v〉 ≥ α‖v‖ for each v ∈ NC∗(x
∗).
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Since C∗ is closed and convex, for each x ∈ Rn there exists a unique x ∈ C∗ such

that

dC∗∩C∗(x) = dC∗(x) = ‖x− x‖,

which yields that x− x ∈ NC∗(x). Therefore,

G(x) ≥ 〈F (x), x− x〉 ≥ α‖x− x‖ = αdC∗∩C∗(x).

(ii) ⇒ (iii) is immediate from the inequality G(x) ≤ g(x) for all x ∈ Rn. It

remains to prove (iii)⇒ (i).

Suppose that (4.16) holds for some α > 0. We claim that

δB ⊆ F (x∗) + TC∗(x
∗) = F (x∗) + [NC∗(x

∗)]◦ (4.17)

for each x∗ ∈ C∗ with δ = α
2
.

It is clear that (4.17) holds for x∗ ∈ C∗ if NC∗(x
∗) = {0}. It remains to prove

that (4.17) holds for x∗ ∈ C∗ with NC∗(x
∗) 6= {0}.

Let 0 6= v ∈ NC∗(x
∗). Then

〈v, v〉 > 0 and 〈v, y∗ − x∗〉 ≤ 0 for each y∗ ∈ C∗.

Thus C∗ is separated from x∗ + v by the hyperplane

Hv = {x ∈ Rn : 〈v, x− x∗〉 = 0}.

Therefore for each positive sequence {ti} decreasing to 0, x∗+ tiv lies in the open

set {x ∈ Rn : 〈v, x− x∗〉 > 0}. Hence

dC∗∩C∗(x
∗ + tiv) = dC∗(x

∗ + tiv) ≥ dHv(x∗ + tiv) = ti‖v‖.

From (4.16) we have

(g +G)(x∗ + tiv)− (g +G)(x∗) ≥ αdC∗∩C∗(x
∗ + tiv) ≥ αti‖v‖.

Since (g +G)(x) is Gâteaux differentiable on C∗, by Proposition 3.5.20,

〈2F (x∗), v〉 = lim
i→∞

(g +G)(x∗ + tiv)− (g +G)(x∗)

ti
≥ α‖v‖.

Therefore for each u ∈ B we have〈
1

2
αu− F (x∗), v

〉
=

1

2
α〈u, v〉 − 〈F (x∗), v〉 ≤ α

2
‖v‖ − α

2
‖v‖ = 0,

from which we obtain that δB−F (x∗) ⊆ TC∗(x
∗). This implies that (4.17) holds

since F is constant on C∗. The proof is complete.
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Remark 4.4.13. In Theorem 4.4.12, we present the equivalence of three sufficient

conditions for the weak sharpness of C∗. We note that the equivalence (i)⇔ (ii)

in this theorem has been proved by Wu and Wu in Theorem 4.4.11 in terms of

some restrictions of the relevant mapping F and the Gâteaux differentiability of

G. By considering the Gâteaux differentiability of g + G instead, we state that

(i)− (iii) are equivalent under the assumption that g(x) ≥ G(x) for all x ∈ Rn.

4.5 Summary and further research

In this chapter, we study weakly sharp solutions of primal and dual variational

inequality problems.

We discuss sufficient conditions for the constancy of F on C∗ in Section 4.3

(Propositions 4.3.1 and 4.3.6). We summarize some expressions of the solution

sets C∗ and C∗. In addition, the relation C∗ = C∗ = Γ(x∗) = Λ(x∗) for x∗ ∈ C∗

is also presented since this is closely related to the weak sharpness of C∗ and

C∗ (Propositions 4.3.14, 4.3.17 and 4.3.18). Based on these observations, the

weak sharpness of C∗ and C∗ are proposed in Section 4.4. We state several suffi-

cient conditions for the weak sharpness results of the VIP(C,F ) and DVIP(C,F )

(Theorems 4.4.4, 4.4.7 and 4.4.10). Moreover, several equivalent conditions for

the weak sharpness of C∗ are also studied.

An interesting question for future research is that if it is possible to show the

differences between Theorems 4.4.3, 4.4.4 and 4.4.7 by some numerical examples.
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Chapter 5

Convergence results for solving
the VIP(C,F )

5.1 Introduction

This chapter concentrates on finite convergence of algorithms for solving varia-

tional inequality problems.

As mentioned before, there are various approaches for solving variational in-

equalities. In Chapter 4, we present sufficient conditions for C∗ = C∗ = Γ(x∗) =

Λ(x∗) for x∗ ∈ C∗. In this case, the solution sets to primal and dual variational

inequality problems are determined by optimized sets related to gap functions.

The iterative methods are also widely used for solving the VIP(C,F ), i.e., the

proximal point algorithm [65, 81], the extragradient method [46], the gradient

projection method [24, 50] and the hybrid method [34, 72]. From the references

mentioned, it shows that under some conditions the sequences generated by it-

erate schemes converge to a solution of the VIP(C,F ). In this chapter, finite

termination of the sequences which are generated by projection methods for solv-

ing the VIP(C,F ) are presented.

There are many results of finite termination of projection-type methods for

solving the VIP(C,F ). One popular scheme of projection-type methods is prox-

imal point algorithm (PPA) which was introduced by Martinet [65]. This algo-

rithm has been refined and extended by Rockafellar [81] to variational inequality

problems. The classical iterate method of PPA for solving the VIP(C,F ) is exact

PPA which is described as follows. Let x0 ∈ Rn be given. For each successive

k ∈ K := {0, 1, 2, ...}, if xk 6∈ C∗, then let

xk+1 = PC [xk − αkF (xk+1)],
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where αk is determined by some stepsize rule. Both numerical experiments and

theoretical results show that the PPA has nice convergence properties. So it has

been widely studied, see [17] and the references therein. However, there are very

few results concerning finite convergence of this algorithm. It was Rockafellar who

first solved the VIP(C,F ) by applying the finite convergence of this algorithm in

[81]. He showed that the sequence {xk} generated by the exact PPA converges

globally to a solution x∗ ∈ C∗ under the condition that F is continuous and

monotone on C and {αk} is bounded below. In his work, he also investigated

that if −F (x∗) ∈ intNC(x∗), then {xk} reaches at exactly x∗ ∈ C∗ after a finite

number of iterations. However, this assumption is quite strong since it requires

that x∗ is the unique solution of the VIP(C,F ). Luque [58] extended this result

under weaker conditions that C∗ is not necessarily a singleton.

The proximal point algorithm has been drawing great attention since the ap-

pearing of the seminal work of Ferris [18]. He gave a brief description of the notion

of a proximal point which was proposed by Moreau [70] and he demonstrated that,

under a weak sharpness condition, the algorithm terminates at a solution after

a finite number of iterations. Burke and Ferris [7] further demonstrated that

the generated sequences terminate finitely at weakly sharp minima under the

condition that the sequence of projected gradients tends to zero. Since Patriks-

son [79] refined the notion of weakly sharp minima from a convex program into

variational inequality problems, Marcotte and Zhu [63] established finite conver-

gence of an algorithm for solving the VIP(C,F ) based on the work of Patriksson

[79] under the condition of the continuity and pseudomonotonicity+ of F on the

compact set C. We note that the condition of this result is quite strict and it

has been improved by Xiu and Zhang [92] to the case that F is continuous and

pseudomonotone on C. Moreover, Zhou and Wang [101] have further obtained

the same result even without the restriction of the pseudomonotonicity of F on

C. We also show this result but under different conditions. In addition, we apply

an example to explain the advantages and disadvantages of our result.

Moreover, Hu and Song [32] have applied the notion of weak sharpness of C∗

into Banach spaces to prove the finite termination of an algorithm. Motivated

by their results, Matsushita and Xu [68] proved that the notion of weakly sharp

minima is a sufficient condition for finite termination of the same algorithm.

Recently, Matsushita and Xu [69] have established the finite termination of the

algorithm for solving the VIP(C,F ) in terms of the weak sharpness of C∗ in

Hilbert spaces.
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5.2 Finite convergence of algorithms for solving

the VIP(C,F )

In this section, we are interested in sufficient conditions for finite termination of

algorithms for solving the VIP(C,F ).

We present sufficient conditions for Γ(xn) ⊆ C∗ for sufficiently large n with a

given sequence {xn} ⊆ Rn in terms of the weak sharpness of C∗. We also discuss

the same result by considering error bounds of primal and dual gap functions.

Moreover, we show that xn ∈ C∗ for sufficiently large n under certain conditions.

We start with the following result given by Marcotte and Zhu [63] which

presents a sufficient condition for a finite convergence result of an arbitrary algo-

rithm for solving the VIP(C,F ).

Theorem 5.2.1. [63, Theorem 5.1] Let F be continuous and pseudomonotone+

over the set C, and let the solution set C∗ of the VIP be weakly sharp. Also let

{xk} be a sequence in Rn. If either

(i) the sequence {dC∗(xk)} converges to zero and the mapping F is uniformly

continuous on an open set containing the sequence {xk} and the set C∗, or

(ii) the sequence {xk} converges to some x∗ ∈ C∗,

then there exists a positive integer k0 such that, for any index k ≥ k0, any solution

of the linear program

min{〈F (xk), x〉 : x ∈ C}

is a solution of the VIP.

This result is established under the assumption that F is continuous and

pseudomonotone+ on C. Wu and Wu [89] have obtained the same result under

weaker conditions as below.

Theorem 5.2.2. [89, Theorem 5.5] Let F be continuous on C∗ and let C∗ be

weakly sharp. Suppose that each x∗ ∈ C∗ and each y∗ ∈ Λ(x∗) satisfy (4.7) and

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0⇒ F (y∗) = F (x∗).

If {xk} is a sequence in Rn satisfying either

(i) dC∗(xk)→ 0 and F is uniformly continuous on C∗, or

(ii) xk converges to some x∗ ∈ C∗,
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then Γ(xk) ⊆ C∗ for sufficiently large k.

As a result of Theorems 5.2.1 and 5.2.2, Xiu and Zhang [92] significantly re-

fined their results under the condition that the convergence point of the sequence

{xk} is a weakly sharp solution of the VIP(C,F ).

Theorem 5.2.3. [92, Theorem 3.1] Assume that F is continuous and pseu-

domonotone on C. If {xk} is a sequence produced by an algorithm for solving the

VIP(C,F ), and if lim
k→∞

xk = x∞ ∈ C∗ and (4.3) holds at x∞, then Γ(xk) ⊆ C∗

for all sufficiently large k, where Γ(x) = arg min{〈F (x), y〉|y ∈ C}.

Next we construct the same result of Theorems 5.2.1, 5.2.2 and 5.2.3 but

under weaker conditions.

Theorem 5.2.4. [55, Theorem 2] Let C∗ be closed and convex. Suppose that

{xn} is a bounded sequence in Rn whose accumulation points belong to C∗. If for

each convergent subsequence {xnk
} of {xn} there holds

− F (xnk
) ∈ int

⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦ for sufficiently large k, (5.1)

then Γ(xn) ⊆ C∗ for sufficiently large n. In particular, if for each convergent

subsequence {xnk
} of {xn} there holds

− F (xnk
) ∈ int

⋂
x∈C∗

[NC(x) ∪ TC∗(x)] for sufficiently large k, (5.2)

then we have Γ(xn) ⊆ C∗ for sufficiently large n.

Proof. Suppose by contradiction that for each k ∈ N there exists cnk
∈ Γ(xnk

)

such that cnk
6∈ C∗. Since {xnk

} is bounded, we can assume, by passing to

a subsequence if necessary, that {xnk
} is a convergent subsequence with limit

x ∈ C∗. Since C∗ is closed and convex, for each k ∈ N there exists c∗nk
∈ C∗ such

that c∗nk
= PC∗(cnk

). So by definitions of tangent and normal cones we have

cnk
− c∗nk

∈ TC(c∗nk
) ∩NC∗(c

∗
nk

) for all k ∈ N.

If {xnk
} is convergent and satisfies (5.1), then there exists a positive sequence

{δk} such that

−F (xnk
) + δkB ⊆

⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦ ⊆ [TC(c∗nk
) ∩NC∗(c

∗
nk

)]◦
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for sufficiently large k. Therefore,〈
−F (xnk

) + δk
cnk
− c∗nk

‖cnk
− c∗nk

‖
, cnk
− c∗nk

〉
≤ 0

for sufficiently large k. This with the inclusion cnk
∈ Γ(xnk

) implies that

δk ≤ 〈F (xnk
),

cnk
− c∗nk

‖cnk
− c∗nk

‖
〉 ≤ 0,

which is a contradiction. Hence Γ(xn) ⊆ C∗ for sufficiently large n.

Next, if {xnk
} is convergent and satisfies (5.2), then

−F (xnk
) ∈ int

⋂
x∈C∗
{[TC(x)]◦ ∪ [NC∗(x)]◦} ⊆ int

⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦

for sufficiently large k, that is, (5.1) is satisfied. Hence we obtain the desired

result.

Remark 5.2.5. As mentioned before, the conclusion of Theorem 5.2.4 has been

established by Marcotte and Zhu for solving variational inequalities in Theorem

5.2.1 under the condition that F is continuous and pseudomonotone+ on C. Wu

and Wu have obtained the same result in Theorem 5.2.2 under different condi-

tions. Both of these theorems are presented by considering the weak sharpness of

C∗. Xiu and Zhang have presented a sufficient condition for this in terms of the

continuity and pseudomonotonicity of F on C in Theorem 5.2.3. The advantage

of their result is that F is not required to be pseudomonotone+ on C. This im-

plies that Γ(xn) ⊆ C∗ for sufficiently large n remains to be true although F is not

constant on C∗. We note that in Theorems 5.2.1, 5.2.2 and 5.2.3, the sequence

{xn} are all assumed to converge to some x∗ ∈ C∗. However, in Theorem 5.2.4,

the sequence {xn} is only required to be bounded with its accumulation points

in C∗.

Next we use an example to show that Theorem 5.2.4 makes more sense than

Theorems 5.2.1, 5.2.2 and 5.2.3 in some cases.

Example 5.2.6. Let C = [−1, 0] and

F (x) =

{
0 if x < 0;

x− 1 if x ≥ 0.

Suppose that {xn} is a sequence in R with

xn =

{
−1− 1

2k+1
for n = 2k + 1;

1
2k+2

for n = 2k + 2,
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for k ∈ {0} ∪ N.

Then the solution set C∗ is to find x∗ ∈ [−1, 0] such that

F (x∗)(x− x∗) ≥ 0 for all x ∈ [−1, 0]. (5.3)

For x∗ ∈ [−1, 0) we have F (x∗) = 0. Clearly any x∗ ∈ [−1, 0) satisfies (5.3) for all

x ∈ [−1, 0]. Moreover, x∗ = 0 also satisfies (5.3) since −x ≥ 0 for all x ∈ [−1, 0].

Hence C∗ = [−1, 0]. Obviously C∗ is closed and convex.

By definition,

Γ(x2k+2) = arg min{F (x2k+2) · y : y ∈ [−1, 0]}

= arg min

{
(

1

2k + 2
− 1) · y : y ∈ [−1, 0]

}
= {0}

and

Γ(x2k+1) = arg min{F (x2k+1) · y : y ∈ [−1, 0]}

= arg min

{
F (−1− 1

2k + 1
) · y : y ∈ [−1, 0]

}
= arg min{0 · y : y ∈ [−1, 0]} = [−1, 0].

Hence Γ(xn) ⊆ C∗ for any n ∈ N.

Alternatively, we apply Theorem 5.2.4 to verify our result while we prove that

Theorems 5.2.1, 5.2.2 or 5.2.3 are not applicable.

We first calculate
⋂
x∈C∗ [TC(x) ∩NC∗(x)]◦. For x = −1 we have

NC(−1) = {v ∈ R : v(c+ 1) ≤ 0 for all c ∈ [−1, 0]} = {v ∈ R : v ≤ 0}.

This implies that

TC(−1) = {ξ ∈ R : ξ · v ≤ 0 for all v ≤ 0} = {ξ ∈ R : ξ ≥ 0}.

Since C∗ = C, NC∗(−1) = NC(−1) = {v ∈ R : v ≤ 0}. Based on these,

TC(−1) ∩NC∗(−1) = {0} and hence [TC(−1) ∩NC∗(−1)]◦ = R.

For x ∈ (−1, 0),

NC(x) = {v ∈ R : v(c− x) ≤ 0 for all c ∈ [−1, 0]} = {0}.
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So TC(x) = R and hence [TC(x) ∩ NC∗(x)]◦ = R since NC∗(x) = NC(x) = {0}.
Similarly, if x = 0, then NC(0) = {v ∈ R : v ≥ 0}. So that

TC(0) = {ξ ∈ R|ξ ≤ 0}.

Therefore, [TC(0) ∩NC∗(0)]◦ = R. Thus we conclude that⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦ = R.

Clearly F is not continuous on [-1, 0]. Furthermore, neither the sequence {xn}
nor dC∗(xn) is convergent. Consequently, Theorems 5.2.1, 5.2.2 and 5.2.3 are not

applicable to this example. Since {xn} is bounded and its accumulation points 0

and −1 belong to C∗ = [−1, 0] and for each of the convergent subsequence {x2n}
and {x2n+1} there hold

−F (x2n) ∈ int
⋂
x∈C∗

[TC(x)∩NC∗(x)]◦ and −F (x2n+1) ∈ int
⋂
x∈C∗

[TC(x)∩NC∗(x)]◦

for any n ∈ N, by Theorem 5.2.4 we conclude that Γ(xn) ⊆ C∗ for sufficiently

large n.

If C∗ is weakly sharp and F is continuous on C∗, then, for the sequence {xn}
in Theorem 5.2.4, (5.1) is satisfied. In this case, we have the following result.

Theorem 5.2.7. [55, Theorem 3] Let {xk} be a bounded sequence in C such that

dC∗(xk) converges to zero. Suppose that F is pseudomonotone on C and constant

on Γ(x∗) for some x∗ ∈ C∗. If C∗ is weakly sharp and F is continuous on C∗,

then there exists a positive integer k0 such that for any integer k ≥ k0,

arg min{〈F (xk), x〉 : x ∈ C} ⊆ C∗.

Proof. On the given conditions, by Proposition 4.3.14, C∗ = C∗, which implies

that C∗ is convex and closed. In addition, the boundedness of {xk} and the limit

dC∗(xk)→ 0 imply that the accumulation points of {xk} belong to C∗.

Since C∗ is weakly sharp and F is continuous on C∗, (5.1) in Theorem 5.2.4

is satisfied, so the conclusion desired follows.

When C is compact, based on Lemma 3.5.22 and Theorem 4.4.4, C∗ in next

result is weakly sharp, so its conclusion is immediate from Proposition 4.3.14 and

Theorem 5.2.4.
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Corollary 5.2.8. [55, Corollary 1] Let C be compact and {xk} a sequence in C

such that dC∗(xk) converges to zero. Suppose that F is monotone on Rn, constant

on Γ(x∗) for some x∗ ∈ C∗, and locally Lipschitz on C∗ and that g is Gâteaux

differentiable on C∗. If for some α > 0 there holds αdC∗(x) ≤ g(x) for all x ∈ C,

then there exists a positive integer k0 such that for any interger k ≥ k0,

arg min{〈F (xk), x〉 : x ∈ C} ⊆ C∗.

Remark 5.2.9. Theorem 5.2.7 is motivated by Theorem 5.2.1 and both theorems

have the same conclusion but under slightly different conditions. In Theorem

5.2.7, F is pseudomonotone (instead of pseudomonotone+) on C and continuous

on C∗ (instead of on C) but it is constant on Γ(x∗). Finally Corollary 5.2.8 is

expressed in terms of g instead of G.

Next we recall an algorithm arg min{v, x〉 : x ∈ C} established by Wu and

Wu [89] for solving the VIP(C,F ) as below.

Theorem 5.2.10. [89, Theorem 3.2] Let C1 be a nonempty closed convex subset

of C and let

K1 := int
⋂
x∈C1

[TC(x) ∩NC1(x)]◦

be nonempty. Then, for each v ∈ K1, arg max{〈v, x〉 : x ∈ C} ⊆ C1. Hence, if

C1 = C∗ and −F (x∗) ∈ K1 for each x∗ ∈ C∗, then

C∗ ⊆ C∗ = Γ(x∗) for each x∗ ∈ C∗.

If F is also continuous on C∗ or

{v ∈ Rn : 〈F (x∗), v〉 ≥ 0} = {v ∈ Rn : 〈F (y∗), v〉 ≥ 0},

for each x∗ ∈ C∗ and each y∗ ∈ C∗, then

C∗ = C∗ = Γ(x∗) for each x∗ ∈ C∗.

Motivated by Theorems 4.4.10, 4.4.12, 5.2.1 and 5.2.10, we derive a finite

convergence theorem for solving the VIP(C,F ) under the condition that either

C∗ is weakly sharp or g +G has an error bound on C.

Theorem 5.2.11. [54, Theorem 4.7] Let {xk} be a sequence in C such that

dC∗(xk) converges to 0 and let F be constant on C∗ and uniformly continuous on

an open set containing {xk} and C∗. Suppose that g(x) ≥ G(x) for all x ∈ Rn

and that g +G is Gâteaux differentiable and locally Lipschitz on C∗. If
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(i) C∗ is weakly sharp, or

(ii) there exists α > 0 such that αdC∗∩C∗(x) ≤ (g +G)(x) for each x ∈ C,

then arg min{〈F (xk), x〉 : x ∈ C} ⊆ C∗ for sufficiently large k.

Proof. Let (i) hold. Then there exists α > 0 such that

−F (x∗) + αB ⊆
⋂

x∈C∗∩C∗

[TC(x) ∩NC∗∪C∗(x)]◦ for each x∗ ∈ C∗

since F is constant on C∗. Under the given conditions, we have C∗ = C∗ and

since C∗ is closed and convex, for each xk there exists a unique x∗k ∈ C∗ such that

dC∗(xk) = ‖xk − x∗k‖. Therefore the uniformly continuity of F on an open set

containing {xk} and C∗ implies that

‖F (xk)− F (x∗)‖ = ‖F (xk)− F (x∗k)‖ < α for sufficiently large k.

Thus −F (x∗) + F (x∗)− F (xk) ⊆ int
⋂
x∈C∗ [TC(x) ∩NC∗(x)]◦, that is,

−F (xk) ∈ int
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦.

By Theorem 5.2.10, arg min{〈F (xk), x〉 : x ∈ C} ⊆ C∗ for sufficiently large k.

Now suppose that (ii) holds. Then, by Theorem 4.4.7, the weak sharpness of

C∗ can be proved. Hence we get the desired result.

Remark 5.2.12. Under conditions of Theorem 5.2.11, (i), (ii) or (iii) in Theorem

4.4.12 implies that both (i) and (ii) in Theorem 5.2.11 hold. Hence under the

same conditions of Theorem 5.2.11, (i), (ii) and (iii) in Theorem 4.4.12 are all

sufficient for the finite convergence algorithm presented in Theorem 5.2.11.

Most of the above results concentrate on Γ(xn) ⊆ C∗ for sufficiently large n

under different conditions. We note that Γ(xn) does not necessarily contain xn.

Zhou and Wang [101] have shown that xn is a solution to the weak sharp minima

for (4.1) for sufficiently large n if lim
n→∞

PTC(xn)[−∇f(xn)] = 0, where f : Rn → R
is a differentiable convex function.

Theorem 5.2.13. [101, Theorem 2] Let C be a set of weak sharp minima for

(4.1). If {xn} ⊆ C, then xn ∈ C for all n sufficiently large if and only if

lim
n→∞

PTC(xn)[−∇f(xn)] = 0.

65



If the notion of the weak sharp minima is applied to the variational inequality,

then this result can also be used to solve the VIP(C,F ) as well. In the following,

we present the results proved by Marcotte and Zhu [63], Xiu and Zhang [92] and

Zhou and Wang [101], which state that xn must be a solution of the VIP(C,F )

for sufficiently large n if lim
n→∞

PTC(xn)[−F (xn)] = 0.

We start with a result established by Hiriart-Urruty and Lemaréchal [30] for

connecting a normal cone with a projection operator.

Lemma 5.2.14. [30, Proposition 5.3.3, pp. 69] Let C be convex and x ∈ C.

Then the following properties are equivalent:

(i) s ∈ NC(x);

(ii) x = PC(x+ s).

Recall that Burke and Ferris [7] stated a useful result which will be used

in the proof of a geometric characterization of sequences achieving the finite

identification of a solution to the VIP(C,F ).

Lemma 5.2.15. [7, Lemma 4.6] Let Q be any nonempty closed convex subset of

the closed convex set S ⊆ Rn. Then

Q+
⋂
x∈Q

[TS(x) ∩NQ(x)]◦ ⊆
⋃
x∈Q

[x+NS(x)]. (5.4)

Based on this, Marcotte and Zhu [63] show that xn ∈ C∗ for sufficiently large

n, where {xn} is a sequence in C.

Theorem 5.2.16. [63, Theorem 5.2] Let F be pseudomonotone+ and continuous

over the compact set C. Let the solution set C∗ of the VIP be weakly sharp. Let

{xk} be a subsequence with elements in C such that the real sequence dC∗(xk)

converges to zero. If F is uniformly continuous on an open set containing {xk}
and C∗, then there exists a positive integer k0 such that, for any index k ≥ k0, xk

is a solution of the VIP if and only if

lim
k→∞

PTC(xk)[−F (xk)] = 0.

Xiu and Zhang [92] have refined this result significantly since their theorem

does not require the pseudomonotonicity+ of F as well as the compactness of C.
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Theorem 5.2.17. [92, Theorem 3.2] Assume that F is continuous and pseu-

domonotone on C. If {xk} ⊆ C is a sequence produced by an algorithm for

solving the VIP(C,F ) such that lim
k→∞

xk = x∞ ∈ C∗ and

−F (x∞) ∈ int
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦,

then xk ∈ C∗ for all sufficiently large k if and only if

lim
k→∞

PTC(xk)[−F (xk)] = 0.

Zhou and Wang [101] have further relaxed the assumptions of the generated

sequence {xk} as follows.

Theorem 5.2.18. [101, Theorem 3] Let F be continuous on C and let the solution

set C∗ be weakly sharp. If {xk} ⊆ C is bounded and all accumulation points belong

to C∗, then xk ∈ C∗ for all k sufficiently large if and only if

lim
k→∞

PTC(xk)[−F (xk)] = 0.

Following the definition of the weak sharpness of C∗ given by Patriksson [79],

we note that xn is still a solution of the VIP(C,F ) under certain conditions if

lim
n→∞
{xn − PTC(xn)[xn − F (xn)]} = 0.

Theorem 5.2.19. Let C∗ be closed and convex and let it be weakly sharp. Suppose

that {xn} is a sequence in C such that

lim
n→∞
{xn − PTC(xn)[xn − F (xn)]} = 0. (5.5)

Then xn ∈ C∗ for sufficiently large n if either

(i) F is monotone on C and constant on C∗, or

(ii) F is continuous on C∗ and {xn} is bounded and all accumulation points

belong to C∗.

Proof. Suppose that for each k ∈ N there exists a subsequence {xnk
} ⊆ {xn}

such that xnk
6∈ C∗. Since C∗ is closed and convex, for each k ∈ N there exists

c∗nk
∈ C∗ such that c∗nk

= PC∗(xnk
). By definitions of tangent and normal cones

we have

xnk
− c∗nk

∈ TC(c∗nk
) ∩NC∗(c

∗
nk

) and c∗nk
− xnk

∈ TC(xnk
) for all k ∈ N.
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Applying Moreau decomposition in [30, Theorem 3.2.5, pp. 51],

xnk
− F (xnk

) = PTC(xnk
)[xnk

− F (xnk
)] + PNC(xnk

)[xnk
− F (xnk

)] for all k ∈ N.

Thus by (5.5) we have

lim
k→∞
{PNC(xnk

)[xnk
− F (xnk

)] + F (xnk
)} = 0. (5.6)

Let (i) hold. Then it follows from the weak sharpness of C∗ that

−F (c∗nk
) ∈ int

⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦.

Since F is constant on C∗, there exists α > 0 such that

−F (c∗nk
) + αB ⊆ [TC(c∗nk

) ∩NC∗(c
∗
nk

)]◦.

Therefore, 〈
−F (c∗nk

) + α
xnk
− c∗nk

‖xnk
− c∗nk

‖
, xnk

− c∗nk

〉
≤ 0 for all k ∈ N.

Since F is monotone on C, it follows that for all k ∈ N we have

α ≤
〈
−F (c∗nk

),
c∗nk
− xnk

‖c∗nk
− xnk

‖

〉
=

〈
F (xnk

)− F (c∗nk
),

c∗nk
− xnk

‖c∗nk
− xnk

‖

〉
+

〈
PNC(xnk

)[xnk
− F (xnk

)],
c∗nk
− xnk

‖c∗nk
− xnk

‖

〉
+

〈
−F (xnk

)− PNC(xnk
)[xnk

− F (xnk
)],

c∗nk
− xnk

‖c∗nk
− xnk

‖

〉
≤
〈
−F (xnk

)− PNC(xnk
)[xnk

− F (xnk
)],

c∗nk
− xnk

‖c∗nk
− xnk

‖

〉
≤ ‖F (xnk

) + PNC(xnk
)[xnk

− F (xnk
)]‖.

Taking the limit as k approaches ∞, it follows from (5.6) that α ≤ 0 which is a

contradiction.

Suppose that (ii) holds. Since {xnk
} is bounded, we can assume that {xnk

} is

a convergent subsequence with limit x∗ ∈ C∗. In addition, the weak sharpness of

C∗ implies that there exists α > 0 such that

−F (x∗) + αB ⊆
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦ ⊆ [TC(c∗nk
) ∩NC∗(c

∗
nk

)]◦.
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Therefore,
〈
−F (x∗) + α

xnk
−c∗nk

‖xnk
−c∗nk

‖ , xnk
− c∗nk

〉
≤ 0 and hence

α ≤
〈
−F (x∗),

c∗nk
− xnk

‖c∗nk
− xnk

‖

〉
=

〈
F (xnk

)− F (x∗),
c∗nk
− xnk

‖c∗nk
− xnk

‖

〉
+

〈
PNC(xnk

)[xnk
− F (xnk

)],
c∗nk
− xnk

‖c∗nk
− xnk

‖

〉
+

〈
−F (xnk

)− PNC(xnk
)[xnk

− F (xnk
)],

c∗nk
− xnk

‖c∗nk
− xnk

‖

〉
≤ ‖F (xnk

)− F (x∗)‖+ ‖F (xnk
) + PNC(xnk

)[xnk
− F (xnk

)]‖.

Since F is continuous on C∗ and {xnk
} converges to x∗, ‖F (xnk

)−F (x∗)‖ → 0 as

k → +∞. Combining this with (5.6) and taking the limit as k ∈ N approaches

∞, we obtain that α ≤ 0 which is a contradiction.

Hence xn ∈ C∗ for all sufficiently large n.

Under conditions of the continuity of F on C and weak sharpness of C∗, if the

sequence {xn} ⊆ C is bounded and all accumulation points belong to C∗, then

lim
n→∞

PTC(xn)[−F (xn)] = 0

implies that xn ∈ C∗ for sufficiently large n, see Theorem 5.2.18. Theorem 5.2.19

shows that xn is still a solution to VIP(C,F ) for sufficiently large n under the

assumption of the convergence of a local projection.

If C∗ is weakly sharp and the sequence {xn} in Theorem 5.2.19 satisfying

dC∗(xn)→ 0, then we have the following result under certain conditions.

Theorem 5.2.20. Let C∗ be closed, convex and weakly sharp and let {xk} be a

sequence in C such that dC∗(xk) converges to zero. Suppose that F is constant

on C∗ and uniformly continuous on an open set containing {xk} and C∗. If

lim
k→∞
{xk − PTC(xk)[xk − F (xk)]} = 0,

then there exists a positive integer k0 such that xk ∈ C∗ for all k ≥ k0.

Proof. Since C∗ is weakly sharp and F is constant on C∗, there exists α > 0 such

that

αB ⊆ F (x∗) +
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦ for all x∗ ∈ C∗.

Let O be an open set containing {xk} and C∗ such that F is uniformly continuous

on O. Then there exists 0 < δ < α
3

such that

‖F (x)− F (y)‖ < α

3
for all x, y ∈ O with ‖x− y‖ < δ.

69



In addition, since dC∗(xk) converges to zero, there exist x∗k ∈ C∗ and k1 ∈ N such

that k ≥ k1 implies ‖xk − x∗k‖ < δ. Thus

‖F (xk)− F (x∗k)‖ <
α

3
for all k ≥ k1.

By Moreau decomposition [30, Theorem 3.2.5, pp. 51], we have

xk − F (xk) = PTC(xk)[xk − F (xk)] + PNC(xk)[xk − F (xk)] for all k ∈ N.

If lim
k→∞
{xk − PTC(xk)[xk − F (xk)]} = 0, then

lim
k→∞
{PNC(xk)[xk − F (xk)] + F (xk)} = 0.

It follows that there is an integer k0 > k1 such that k ≥ k0 implies that

‖PNC(xk)[xk − F (xk)] + F (xk)‖ <
α

3
.

Hence for k ≥ k0 we have

‖xk + PNC(xk)[xk − F (xk)]− [x∗k − F (x∗k)]‖
= ‖(xk − x∗k) + [F (x∗k)− F (xk)] + F (xk) + PNC(xk)[xk − F (xk)]‖
≤ ‖xk − x∗k‖+ ‖F (x∗k)− F (xk)‖+ ‖F (xk) + PNC(xk)[xk − F (xk)]‖

<
α

3
+
α

3
+
α

3
= α,

that is,

xk + PNC(xk)[xk − F (xk)]− [x∗k − F (x∗)] ∈ αB for any x∗ ∈ C∗

due to the constancy of F on C∗. Thus we have

xk + PNC(xk)[xk − F (xk)]− [x∗k − F (x∗)] ∈ F (x∗) +
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦,

from which it follows that

xk + PNC(xk)[xk − F (xk)] ∈ C∗ +
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦.

Applying (5.4) to the sets C∗ and C, we arrive at

C∗ +
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦ ⊆
⋃
x∈C∗

[x+NC(x)].

70



Consequently,

xk + PNC(xk)[xk − F (xk)] ∈
⋃
x∈C∗

[x+NC(x)] for k ≥ k0.

Thus

PC{xk + PNC(xk)[xk − F (xk)]} ∈ PC

{ ⋃
x∈C∗

[x+NC(x)]

}
for k ≥ k0.

Applying Lemma 5.2.14, we obtain xk satisfying

xk = PC{xk + PNC(xk)[xk − F (xk)]}

∈ PC

{ ⋃
x∈C∗

[x+NC(x)]

}
⊆ ∪x∈C∗{x} = C∗ for k ≥ k0.

The proof is complete.

Remark 5.2.21. Theorems 5.2.19 and 5.2.20 present the same result as Theo-

rems 5.2.16, 5.2.17 and 5.2.18. However, we present this by using a new local

projection.

Based on Theorems 4.4.7 and 5.2.19, we obtain the next corollary which has

the same result with Theorem 5.2.19 but in terms of the error bound of g+G on

C.

Corollary 5.2.22. Let C∗ be closed and convex and let {xk} be a sequence in

C such that dC∗(xk) converges to zero. Suppose that F is constant on C∗ and

uniformly continuous on an open set containing {xk} and C∗, g(x) ≥ G(x) for

all x ∈ Rn and g + G is Gâteaux differentiable and locally Lipschitz on C∗, and

that for some α > 0 there holds αdC∗(x) ≤ (g +G)(x) for each x ∈ C. If

lim
k→∞
{xk − PTC(xk)[xk − F (xk)]} = 0,

then there exists a positive integer k0 such that xk ∈ C∗ for all k ≥ k0.

The following result will be obtained by considering some equivalent state-

ments of the weak sharpness of C∗.

Corollary 5.2.23. Let C∗ be closed and convex and let C∗ ⊆ C∗, F be continuous

on C∗ and G be Gâteaux differentiable on C∗. Suppose that {xn} is a sequence in

C such that (5.5) holds and {xn} is bounded and all accumulation points belong

to C∗. Then xn ∈ C∗ for sufficiently large n if one of the following conditions

holds:
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(i) G is locally Lipschitz on C∗ and there exists µ > 0 such that dC∗(x) ≤ µG(x)

for each x ∈ C,

(ii) G is locally Lipschitz on C∗, Γ(x∗) = C∗ and there exists α > 0 such that

αB ∩ [F (x∗) +NC(x)] = ∅ for each x∗ ∈ C∗ and each x ∈ C \ C∗,

(iii) there exists µ > 0 such that dC∗(x) ≤ µG(x) for each x ∈ Rn.

Proof. By [91, Proposition 5.1] we have C∗ = C∗.

Let (i) hold. Then, by [91, Theorem 5.4], C∗ is weakly sharp. Hence by

Theorem 5.2.19 we have xn ∈ C∗ for sufficiently large n.

Suppose that (ii) holds. Then, again by [91, Theorem 5.4], (i) follows. Hence

the conclusion is still OK.

Finally, let (iii) hold. Then, by [91, Theorem 5.5],

−F (x) ∈ int
⋂
x∈C∗

TC∗(x) = int
⋂
x∈C∗

[NC∗(x)]◦ ⊆ int
⋂
x∈C∗

[TC(x)∩NC∗(x)]◦ for each x ∈ C∗.

Therefore, C∗ is weakly sharp and by applying Theorem 5.2.19, the desired result

follows.

5.3 Summary and future work

In this chapter, we discuss two finite convergence of algorithms for solving the

VIP(C,F ). We show that Γ(xn) ⊆ C∗ for sufficiently large n under weaker

conditions than Theorems 5.2.1, 5.2.2 and 5.2.3 (Theorem 5.2.4). In particular,

we apply an example to show the advantage of our result (Example 5.2.6). In

Theorem 5.2.4, it shows that F is not necessarily continuous and pseudomonotone

on C. Moreover, even the sequence {xn} is not convergent, Γ(xn) ⊆ C∗ for

sufficiently large n still remains to be true. We also present a corollary of Theorem

5.2.4 (Corollary 5.2.8), which describes the establishment of Γ(xn) ⊆ C∗ for

sufficiently large n in terms of the error bound of g. Motivated by this corollary,

we apply the error bound of g + G for presenting this result as well (Theorem

5.2.11). The other part of this chapter is for the finite convergence of an algorithm

as xn ∈ C∗ for sufficiently large n. We first review some existing results of this

algorithm for solving the VIP(C,F ) (Theorems 5.2.16, 5.2.17 and 5.2.18). We

study this result in terms of a new projection (Theorems 5.2.19 and 5.2.20).

Finally, we show some corresponding corollaries of this result as well (Corollaries

5.2.22 and 5.2.23).
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Since the result of Theorem 5.2.19 is quite abstract, for next step, we will try

to make a numerical test for explaining the difference between the convergence

of the local projection

lim
n→∞
{xn − PTC(xn)[xn − F (xn)] = 0

and

lim
n→∞

PTC(xn)[−F (xn)] = 0.
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Chapter 6

Conclusion

6.1 Future work for applying variational inequal-

ities in image processing

Variational inequalities have a large amount of applications in various fields, from

real engineering, public policy and strategic planning issues. Kitchener, Bouzer-

doum and Phung [42] have formulated a generalized image restoration problem

as a variational inequality problem.

Consider an ordered vector g of length n = l × m which represents a noisy

blurred image:

g = Hf0 + v,

where H is the blur matrix, f0 is the original image we seek to restore, and v is

the additive noise vector. Kitchener, Bouzerdoum and Phung [42] transformed

the image restoration problem into an optimization problem as

minimize ‖Rf‖k1k1
subject to ‖Hf − g‖k2k2 ≤ ε, f ≥ 0, (6.1)

where R is the operator which represents the quantity for minimizing, ‖ · ‖k1 and

‖ · ‖k2 are two given norms, and ε is a measure of noise. For simplification, let

M(f) = ‖Rf‖k1k1 and N(f) = ‖Hf − g‖k2k2 − ε.

Then the optimization problem can be written as follows:

minimize M(f)

subject to N(f) ≤ 0, f ≥ 0. (6.2)
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M(f) and N(f) are assumed to be convex functions. Kitchener, Bouzerdoum and

Phung [42] have transformed this optimization problem as a problem for solving

a variational inequality. Let L(f , λ) be the Lagrangian function of (6.2) which is

represented as below:

L(f , λ) = M(f) + λN(f).

In sections 3.2 and 3.3, we have stated that the solution (f∗, λ∗) to (6.2), if exists,

is a saddle point, which satisfies the following inequalities:

L(f∗, λ) ≤ L(f∗, λ∗) ≤ L(f , λ∗) for any f ≥ 0 and λ ≥ 0.

Since L(f , λ∗) is convex and admits a minimum at f∗. Thus f∗ is a solution to

(6.2) if and only if there exists a λ∗ ≥ 0 such that

〈∇M(f∗) +∇N(f∗)λ∗, f − f∗〉 ≥ 0 for any f ≥ 0

N(f∗)(λ∗ − λ) ≥ 0 for any λ ≥ 0. (6.3)

Hence Equation (6.3) defines a variational inequality problem (VIP).

6.2 Conclusions and suggestions for future work

In this thesis, we study gap functions for the VIP(C,F ) and propose some prop-

erties of gap functions. We characterize weakly sharp solutions of the VIP(C,F )

and DVIP(C,F ). We state sufficient conditions for the constancy of F on C∗.

We also present the minimum principle sufficiency and maximum principle suffi-

ciency properties of the VIP(C,F ). In particular, we discuss sufficient conditions

for C∗ = C∗ = Γ(x∗) = Λ(x∗) for x∗ ∈ C∗. Based on these, we obtain the weak

sharpness of C∗ and C∗ by considering the error bounds of g, G and g+G. Finally,

we introduce a finite convergence algorithm for solving the VIP(C,F ) by consid-

ering the weak sharpness of C∗. Moreover, we apply an example for describing

the improvement of this result compared with the earlier existing results. This

finite convergence of algorithm is also derived by using some equivalent state-

ments of the weak sharpness of the solution set of the VIP(C,F ). What’s more,

we construct that xn is still a solution to the VIP(C,F ) for sufficiently large n

by considering a new projection, where {xn} is a sequence in C.

Overall, we obtain some new results and methods for characterizing solutions

of variational inequality problems. In particular, we characterize weakly sharp

solutions of the VIP(C,F ) by using the primal gap function g, which is a major
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breakthrough. However, some of our results are abstract and they need to be

tested by some numerical examples in the future.

As discussed in section 6.1, the variational inequality methods have already

been used in Engineering, i.e., image processing, and this formulated variational

inequality problem is solved by a dynamic system approach in the work of Kitch-

ener etc. [42].

In the future, we will attempt to do interesting work for the applications of

variational inequality problems:

(i) We will attempt to construct proper gap functions for the variational in-

equality problem (6.3) to characterize its solutions.

(ii) In addition, it is noted that Kitchener, Bouzerdoum and Phung [42] applied

the variational inequality approach for restoring cameraman images and we

could also utilize this method for depth images in future research.

We will build these results by using the methods we have used before, or by

introducing some new approaches for dealing with these problems.
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