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Abstract
Nowadays, multiagent planning under uncertainty
scales to tens or even hundreds of agents. However,
current methods either are restricted to problems
with factored value functions, or provide solutions
without any guarantees on quality. Methods in the
former category typically build on heuristic search
using upper bounds on the value function. Unfortu-
nately, no techniques exist to compute such upper
bounds for problems with non-factored value func-
tions, which would additionally allow for meaning-
ful benchmarking of methods of the latter category.
To mitigate this problem, this paper introduces a
family of influence-optimistic upper bounds for fac-
tored Dec-POMDPs without factored value func-
tions. We demonstrate how we can achieve firm
quality guarantees for problems with hundreds of
agents.

1 Introduction
Planning for multiagent systems (MASs) under uncertainty is
an important open research problem in artificial intelligence.
The decentralized partially observable Markov decision pro-
cess (Dec-POMDP) is a framework for addressing such prob-
lems. Many recent approaches to solving Dec-POMDPs pro-
pose to exploit locality of interaction [Nair et al., 2005], also
referred to as value factorization [Kumar et al., 2011]. How-
ever, without making very strong assumptions, such as tran-
sition and observation independence [Becker et al., 2003],
there is no strict locality: in general the actions of any agent
may affect the rewards received in a different part of the
system. For large MASs, several heuristic approaches have
been proposed [Yin and Tambe, 2011; Kumar et al., 2011;
Velagapudi et al., 2011; Varakantham et al., 2012; Oliehoek
et al., 2013b; Wu et al., 2013; Varakantham et al., 2014],
which come without guarantees, however.

In this work, we mitigate this issue by proposing a novel
family of techniques that can be used to provide upper bounds
on the performance of large factored Dec-POMDPs. In addi-
tion to 1) quantifying the performance gap of heuristic meth-
ods, computing upper bounds is important for other reasons:
∗An extended version of this paper is available on ArXiv

[Oliehoek et al., 2015].

Knowledge of performance gaps 2) is crucial for researchers
to direct their focus to promising areas and 3) sheds light on
which problems are easier to approximate than others. 4)
Last, but not least, these bounds serve as admissible heuristics
for current and future branch&bound search methods.

Computing upper bounds on the achievable value of a plan-
ning problem typically involves relaxing the original prob-
lem by making some optimistic assumptions. By exploiting
the fact that transition and observation dependence leads to
a value function that is additively factored into a number of
small components, researchers have designed techniques for
computing upper bounds in so-called Networked Distributed
POMDPs (ND-POMDPs) with many agents [Varakantham et
al., 2007; Marecki et al., 2008; Dibangoye et al., 2014]. Un-
fortunately, the assumption of factored value functions nar-
rows down the applicability of such models, and no tech-
niques for computing upper bounds for more general factored
Dec-POMDPs with many agents are currently known.

We address this problem by proposing a general tech-
nique for computing what we call influence-optimistic up-
per bounds. These are upper bounds on the achievable value
in large-scale MASs formed by computing local influence-
optimistic upper bounds on the value of sub-problems that
consist of small subsets of agents and state factors. The key
idea is that if we make optimistic assumptions about how the
rest of the system will influence a sub-problem, we can de-
couple it from the rest of the problem, and effectively com-
pute a local upper bound on the achievable value. Finally, we
show how these local bounds can be combined into a global
upper bound. In this way, a major contribution of this paper
is that it shows how we can compute factored upper bounds
for models that do not admit factored value functions.

We empirically evaluate the quality guarantees the bounds
provide for heuristic methods and, in an extended version
[Oliehoek et al., 2015], use our bounds to prune in an A*
search. The proposed bounds give meaningful quality guar-
antees for factored Dec-POMDPs with hundreds of agents.
This is a major accomplishment since previous approaches
that provide guarantees 1) have required value factoriza-
tion [Becker et al., 2003; 2004; Varakantham et al., 2007;
Dibangoye et al., 2014] or specific interaction topologies
[Witwicki, 2011], and 2) have not scaled beyond 50 agents.
In contrast, this paper demonstrates quality bounds in settings
of hundreds of agents that all influence each others’ actions.



Figure 1: The FIREFIGHTINGGRAPH problem.

2 Background
We focus on Dec-POMDPs where the transition and obser-
vation models can be represented compactly as a two-stage
dynamic Bayesian network (2DBN) [Boutilier et al., 1999]:

Definition 1. A factored Dec-POMDP is a tuple M =
〈D,A,O,X , T,O,R, b0〉, where:
• D = {1, . . . , |D|} is the set of agents.
• A =

⊗
i∈DAi is the set of joint actions a.

• O =
⊗

i∈DOi is the set of joint observations o.
• X =

{
X1, . . . , Xm

}
is a set of state variables, or factors,

that determine the set of states S =
⊗m

k=1X
k.

• T (s′|s, a), the transition model specified by a set of con-
ditional probability tables (CPTs), one for each factor.

• O(o|a, s′), the observation model: a CPT per agent.
• R is a set of local reward function.
• b0 is the (factored) initial state distribution.

Each local reward function Rl has a state factor scope
X (l) ⊆ X and agent scope D(l) ⊆ D over which is it is
defined: Rl(xX (l), aD(l), x

′
X (l)) ∈ R. These local reward

functions form the global immediate reward function via ad-
dition. We slightly abuse notation and overload l to denote
both an index into the set of reward functions, as well as the
corresponding scopes:

R(s, a, s′),
∑
l∈R

Rl(xl, al, x
′
l).

For instance, Fig. 1 shows the FIREFIGHTINGGRAPH
(FFG) problem [Oliehoek et al., 2013b], which we adopt as
a running example. This problem defines a set of |D| + 1
houses, each with a particular ‘fire level’ indicating if the
house is burning and with what intensity. Each agent can
fight fire at the house to its left or right, making observations
of flames (or no flames) at the visited house. Each house has
a local reward function associated with it, which depends on
the next-stage fire-level,1 as illustrated in Fig. 3(left) which
shows the 2DBN for a 4-agent instantiation of FFG. The fig-
ure shows that the connections are local but there is no tran-
sition independence [Becker et al., 2003] or value factoriza-
tion [Kumar et al., 2011]: all houses and agents are connected
such that, over time, actions of each agent can influence the
entire system. While FFG is a stylized example, such locally-
connected systems can be found in applications as traffic con-
trol or communication networks.

This paper focuses on problems with a finite horizon h such
that t = 0, . . . , h − 1. A policy πi for an agent i specifies
an action for each observation history ~o ti = (o1i , . . . , o

t
i).

The task of planning for a factored Dec-POMDP entails

1FFG has rewards of form Rl(x′l), but we support Rl(xl, al, x
′
l)

in general.

Figure 2: Constructing a global upper bound for 6-agent FFG
using influence-optimistic upper bounds for sub-problems.

finding a joint policy π = 〈π1, . . . , π|D|〉 with maxi-
mum value, i.e., a maximum expected sum of rewards:
V (π),E[

∑h−1
t=0 R(s, a, s′) | b0, π]. Such an optimal joint

policy is denoted π∗.2
As explained in the introduction, computing upper bounds

is useful for many reasons. For ND-POMDPs, this is tractable
for problems with many agents [Varakantham et al., 2007;
Dibangoye et al., 2014].3 However, these methods rely on
the true value function being factored as the sum of a set E
of local value components: V (π) =

∑
e∈E Ve(πe), where πe

is the local joint policy of the agents that participate in com-
ponent e. An upper bound is easily constructed as the sum
of local upper bounds: V̂ =

∑
e∈E V̂e. The key point is that

computing the local upper bounds V̂e is easy because the orig-
inal problem has a factored value function: each component e
can be upper bounded in isolation.

3 Global Upper Bounds
In this paper, we propose a class of factored upper bounds,
which we call influence-optimistic upper bounds (IO-UBs),
for factored Dec-POMDPs that do not have a factored value
function. This is an important contribution, since currently
no methods to compute upper bounds for such problems are
available. The overall approach that we take is to divide the
problem into sub-problems (SPs, defined in Section 4), com-
pute overestimations of the achievable value for each of these
sub-problems and combine those into a global upper bound.

Combining the local bounds into a global bound is simi-
lar to existing methods for computing upper bounds for ND-
POMDPs. The basic idea is to apply a non-overlapping de-
composition C (i.e., a partitioning) of the reward functionsR
of the original factored Dec-POMDP into SPs c ∈ C, and to
compute a local IO-UB V̂ IOc for each (with the methods pro-
posed in Section 4). The global influence-optimistic upper
bound is then given by: V̂ IO ,

∑
c∈C V̂

IO
c .

We illustrate the construction of a global upper bound V̂
for the 6-agent FFG in Fig. 2, which shows the original prob-

2We omit the ‘*’ on values; all values are assumed to be optimal
with respect to their given arguments.

3It would also be possible to compute UBs for TD-POMDPs
[Witwicki and Durfee, 2010] with many agents, but here too, ex-
isting techniques would require a factored value function, which in
turn requires very specific restrictions: interactions must be directed
and agents can only have a few interaction ancestors.



lem (top row) and two possible decompositions in SPs. The
second row specifies a decomposition into two SPs, while the
third row uses three SPs. The illustration clearly shows how
(in this problem) a decomposition eliminates certain agents
completely and replaces them with optimistic assumptions:
E.g., in the second row, during the computation of V̂ IOc for
both SPs (c = 1, 2) the assumption is made that agent 3 will
always fight fire in SP c. Effectively, the bounds assume that
agent 3 fights fire at both house 3 and house 4 simultaneously
(and hence is represented by a superhero figure). Fig. 2 also
illustrates that, due to the line structure of FFG, there are two
types of SPs: ‘internal’ SPs which make optimistic assump-
tions on two sides, and ‘edge’ SPs that are optimistic on just
one side.

To prove correctness of this upper bounding scheme, we
define Vc(π) as the value realized for Rc, the reward com-
ponents modeled in SP c, under joint policy π. Given
the policies of other agents π−c, the best-response value of
c is V BRc (π−c),maxπc

Vc(πc, π−c). Finally, the locally-
optimal value for an SP c,

V LOc ,max
π−c

V BRc (π−c), (1)

is the local value, considering only the rewardsRc, that can be
achieved when all agents use a policy selected to optimize this
local value. We denote the maximizing argument by πLO−c .
Theorem 1. Let C be a partitioning of R into SPs. If
∀c∈C V̂ IOc ≥ V LOc then the global IO-UB is in fact an up-
per bound to the optimal value V̂ IO ≥ V ∗.

Proof. We have V̂ IO ,
∑
c∈C V̂

IO
c ≥

∑
c∈C V

LO
c ,∑

c∈C maxπ−c V
BR
c (π−c) =

∑
c∈C maxπ Vc(πc, π−c)≥

maxπ
∑
c∈C Vc(πc, π−c) = V (π∗). The last equality holds

because C is a partitioning of the reward functions.

4 Local Upper Bounds
In this section we present our main technical contribution:
the machinery to compute a number of influence-optimistic
upper bounds (IO-UBs) for the value of sub-problems. We
first introduce sub-problems formally and then move to tech-
niques for upper bounding their local values, based on theory
from influence-based abstraction. While not further explored
in this paper, we point out that these techniques can be triv-
ially modified to compute ‘pessimistic’ influence (i.e., lower)
bounds, which could be useful in competitive settings, or for
risk-sensitive planning [Marecki and Varakantham, 2010].

Here we introduce two local bounds, based on combin-
ing influence-optimism with solution methods for multia-
gent POMDPs (MPOMDPs) [Messias et al., 2011] and Dec-
POMDPs respectively. In the extended version, we also in-
troduce a bound based on multiagent MDPs [Oliehoek et al.,
2015]. While this latter bound can be less tight (as demon-
strated in the experiments), it is computationally cheaper.

4.1 Sub-Problems
The notion of an SP generalizes the concept of a local-
form model [Oliehoek et al., 2012] to multiple agents: A
sub-problem (SP) Mc of a factored Dec-POMDP M is a
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Figure 3: Left: A 2-agent sub-problem within 4-agent FFG.
Right: the corresponding IASP.

tuple Mc = 〈M,D′,X ′,R′〉, where D′ ⊂ D, X ′ ⊂
X , R′ ⊂ R denote subsets of agents, state factors and lo-
cal reward functions, respectively. An SP inherits many
features from M: we can define local states xc ∈⊗

X∈X ′ and the subsets D′,X ′,R′ induce local joint actions
Ac =

⊗
i∈D′ Ai, observations Oc =

⊗
i∈D′ Oi, and re-

wards Rc(xc, ac, x′c),
∑
l∈R′ R

l(xl, al, x
′
l).

However, this is generally not enough to end up with a
fully specified (smaller) factored Dec-POMDP. This is illus-
trated in Fig. 3(left), which shows an SP of FFG involving
two agents: state factors X ∈ X ′ (in this case Xi and Xi+2)
can be the target of arrows pointing into the sub-problem from
the non-modeled (dashed) part.4 We refer to such factors as
non-locally affected factors (NLAFs) and denote them xnkc ,
where k indexes the factor. The other state factors in X ′ are
referred to as only-locally affected factors (OLAFs) xlkc . The
figure shows that the transitions are not well-defined since the
NLAFs depend on the sources of the highlighted influence
links. We refer to these as influence sources uc = 〈yu, au〉
(in this case yu =

〈
Xi−1, Xi+3

〉
and au =

〈
ai−1, ai+2

〉
).

4.2 Influence-Augmented SPs
A local-form model can be transformed to an influence-
augmented local model, which captures the influence of non-
modeld parts of the environment [Oliehoek et al., 2012]. We
extend this approach to SPs, leading to influence-augmented
sub-problems (IASPs). The construction of an IASP consists
of two steps: 1) capturing the influence of the non-modeled
parts (given π−c, the policies of non-modeled agents) in an
incoming influence point I→c(π−c), and 2) using this I→c to

4We assume that the scopes of the observation CPTs for the in-
cluded agents are fully contained within the SP, and similarly for
the included reward factors. This is not a strong assumption, since
situations with arrows pointing to rewards or observations can be
modeled by introducing auxiliary state variables. These restric-
tions generalize previous notions of observation and reward inde-
pendence [Becker et al., 2003; Nair et al., 2005] (we allow overlap
on state factors that can be influenced by the agents themselves).
We do not assume transition independence, nor do we assume any
of the transition-decoupling (i.e., TD-POMDP [Witwicki and Dur-
fee, 2010]) restrictions.



create a model with a transformed transition model TI→c and
no further dependence on the external problem.

Step 1) An incoming influence point can be specified
as an incoming influence It→c for each stage: I→c =(
I1→c, . . . , I

h
→c
)
. Each such It+1

→c corresponds to the influ-
ence that the SP experiences at stage t + 1, and thus spec-
ifies the conditional probability distribution of the influence
sources uc = 〈yu, au〉 at stage t. Assuming that the influ-
encing agents use a deterministic policy πu, It+1

→c is given by
I(uc|Dc) =

∑
~ou

1{au=πu(~ou)} Pr(yu, ~ou|Dc, b
0, π−c), with

1{·} the Kronecker Delta function, and Dc the d-separating
set for It+1

→c : the history of a subset of all the modeled vari-
ables that d-separates the modeled variables from the non-
modeled ones (see [Oliehoek et al., 2012] for details).

Step 2) defines the IASP MIA
c = 〈Mc, I→c〉 for an SP

Mc = 〈M,D′,X ′,R′〉 as a factored Dec-POMDP with
the following components. The set of state factors X̄ =
X ′ ∪ {Dc} is such that states x̄c = 〈xc, Dc〉 specify a lo-
cal state of the SP, as well as the d-separating set Dc for
the next-stage influences. Only the agents (implying their
actions and observations) and rewards from c participate:
D̄ = D′ and R̄ = R′. For all OLAFs xkc we take the CPTs
from the factored Dec-POMDP M, but for all NLAFs we
take their induced CPTs [Oliehoek et al., 2012], leading to an
influence-augmented transition model which is the product of
CPTs of OLAFs and NLAFS:

T̄I→c
(x′c|〈xc, Dc〉, ac) = Pr(xl′c|xc, ac)∑

uc=〈yu,au〉

Pr(xn′c|xc, ac, uc)I(uc|Dc). (2)

(Note that xc, ac, x
′
c and Dc together uniquely specify D′c).

The observation model Ō follows directly from O (fromM).
Fig. 3(right) illustrates the IASP for FFG.

Theorem 2. Vc(I→c(π−c)), the value of an optimal solution
of the IASP for influence point I→c(π−c), equals the best-
response value: V BRc (π−c) = Vc(I→c(π−c)).

Proof. The proof by Oliehoek et al. [2012] extends to multi-
agent SPs.

4.3 An MPOMDP-Based Upper Bound
Via (1), it is clear that V LOc corresponds to the value of the lo-
cally optimal influence: V LOc = Vc(I→c(π

LO
−c )). As such, it

is optimistic about the influence, but maintains that the influ-
ence is feasible. Computing this value can be difficult, since
computing influences and subsequently constructing and op-
timally solving an IASP can be very expensive due to the
large number of augmented states x̄c = 〈xc, Dc〉. How-
ever, it turns out computing upper bounds to V LOc can be
done more efficiently, without even constructing the IASPs:
we can directly use the (under-specified) SPs and modify the
‘backup operators’ used to compute the optimal value func-
tion to make optimistic assumptions about the non-specified
influence sources.

The first such upper bounding method we introduce,
influence-optimistic Q-MPOMDP (IO-Q-MPOMDP), treats
the SP under concern as an (under-specified) multiagent

POMDP (MPOMDP) [Messias et al., 2011]. An MPOMDP
is partially observable, but assumes that the agents can freely
communicate their observations, such that the problem re-
duces to a centralized one in which a single decision maker
(representing the team of agents) takes joint actions, and re-
ceives joint observations. The optimal value for an MPOMDP
is analogous to that of a POMDP: Q(b, a) = R(b, a) +∑
o Pr(o|b, a)V (b′), where b′ is the joint belief resulting

from a Bayes update of b given a and o.
In case that the influence on an SP is fully specified,

POMDP techniques can be readily applied to the IASP. How-
ever, we want to deal with the case where this influence is
not specified. To accomplish this, IO-Q-MPOMDP adds op-
timistic assumptions on the influences. We propose a for-
mulation that makes use of ‘back-projected value vectors’:
νao(s),

∑
s′ O(o|a, s′)T (s′|s, a)ν(s′). (See, e.g., [Spaan,

2012; Shani et al., 2013] for more details.)
The key insight that enables applying influence-optimism

to the MPOMDP case is that in this back-projected form we
can take the maximum with respect to unspecified influences.
We define the influence-optimistic back-projection as:

νaoIO(xc),max
uc

∑
x′c

O(oc|ac, x′c)

Pr(xn′c|xc, ac, uc) Pr(xl′c|xc, ac)νIO(x′c). (3)

Comparing this equation to (2), it is clear that this equa-
tion is optimistic with respect to the influence: it selects the
sources uc in order to select the most beneficial transition
probabilities. Since this equation does not depend in any way
on the d-separating sets and influence, we can completely
avoid generating large IASPs. When combined with an ex-
act POMDP solver, such influence-optimistic back-ups will
lead to an upper bound V̂ Pc on the locally-optimal value.

Theorem 3. IO-Q-MPOMDP yields an upper bound on the
locally-optimal value: V LOc ≤ V̂ Pc .

Sketch of Proof. The proof shows that for any fixed joint pol-
icy πc, the value vectors νP ∈ V and νIO ∈ VIO (com-
puted under regular- and IO back-projections respectively)
satisfy: ∀xc

maxDc
ν(〈xc, Dc〉) ≤ νIO(xc). This implies

that, for any I→c, V PI→c
(b̄I→c

) ≤ V IO(b̄IO), provided that the
marginal of b̄I→c

coincides with b̄IO:
∑
Dc
b̄I→c

(〈xc, Dc〉) =

b̄IO(xc), a condition that is satisfied for the initial beliefs.

4.4 A Dec-POMDP-Based Upper Bound
The previous approach computes upper bounds by, apart
from the IO assumption, additionally making optimistic as-
sumptions on communication capabilities. Here we present
a method for computing Dec-POMDP-based upper bounds
that, other than the optimistic assumptions about neighbor-
ing SPs, makes no additional assumptions. The approach
builds on the recent insight [MacDermed and Isbell, 2013;
Dibangoye et al., 2013; Oliehoek et al., 2013a] that a Dec-
POMDP can be converted to a special case of POMDP,5 and

5Oliehoek and Amato [2014] give an overview of this reduction.



that therefore we can leverage the IO back-projection (3) to
compute an UB, V̂ Dc , that we refer to as IO-Q-Dec-POMDP.

In particular, we define the plan-time sub-problem MPT
c

as the (under-specified) POMDP with states of the form
š = 〈xc, ~oc〉. Each ǎ corresponds to a local joint decision
rule δc in the SP (composed of individual decision rules that
map observation histories to actions). Rewards are given
by Ř(š, ǎ) = Rc(xc, δc(~oc)). There is a single observa-
tion Ǒ = {NULL} that is received with probability 1 ir-
respective of the state and action. The horizon is unmod-
ified: ȟ = h. Finally, the transition model is underspeci-
fied, since it depends on the non-specified influence sources:
Ť (š′|š, ǎ) = Tuc

(x′c|xc, δc(~oc), uc)O(oc|δc(~oc), x′c).
Since this model is a special case of a POMDP, the theory

developed in Section 4.3 applies: we can write down the IO
back-projection (3) which in this case translates to6

νδc(xc, ~oc),max
uc

∑
x′c

Pr(oc|δc(~oc), x′c)

Pr(xn′c|xc, δc(~oc), uc) Pr(xl′c|xc, δc(~oc))ν(x′c, ~o
′
c ). (4)

Theorem 4. IO-Q-Dec-POMDP yields an upper bound to
the locally-optimal value: V LOc ≤ V̂ Dc .

Proof. Directly from the applying Theorem 3 toMPT
c .

4.5 Complexity Analysis
Due to the maximization in (3) and (4), IO back-projections
are more costly than regular (non-IO) back-projections. In
particular, the complexity of each backup is multiplied by the
number of influence source instantiations |uc|. As such, the
relative overhead, when compared to solving the SPs as regu-
lar (non-IO) MPOMDPs and Dec-POMDPs, is equal for both
methods [Oliehoek et al., 2015].

5 Empirical Evaluation
In order to test the potential impact of the proposed influence-
optimistic upper bounds, we present numerical results in the
context of a number of benchmark problems. We compare the
influence-optimistic MPOMDP and Dec-POMDP UBs, V̂ Pc
and V̂ Dc , as well as the IO multiagent MDP (MMDP) bound,
V̂Mc , based on the same technique [Oliehoek et al., 2015].
While we focus on the (relative) values found by these heuris-
tics, as the analysis of Section 4.5 indicates that relative tim-
ing results follow those of regular (non-IO) MPOMDP and
Dec-POMDP methods, we do provide some indicative run-
ning times.7 The extended version [Oliehoek et al., 2015]
provides preliminary evidence that our bounds can be used to
improved heuristic influence search [Witwicki et al., 2012].

Comparison of Different Bounds. Although the approach
described in the paper is general, in the numerical evalua-
tion here we exploit the benchmarks’ property that the op-

6Note that O(o′i|ai, x′i) in (3) corresponds to the NULL observa-
tion in the PT model, but since the observation histories are in the
states, Pr(oc|δc(~oc), x′c) comes out of the transition model.

7All experiments are run on an Intel Xeon E5-2650L, 32GB sys-
tem making use of one core only.
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Figure 4: Comparison of different bounds (see text).

timistic influences are easily identified off-line, which al-
lows for the construction of small ‘optimistic Dec-POMDPs’
(respectively MPOMDPs or MMDPs) without sacrificing in
bound quality. E.g., in order to compute the local IQ-Q-
Dec-POMDP upper bound for a 3-house FFG ‘edge’ SP, we
define a regular 3-house Dec-POMDP where the transition
model for the first house (say Xi in Fig. 3) is modified to ac-
count for the optimistic assumption that another (superhero)
agent fights fire there and that its neighbor is not burning (i.e.,
ai−1 = right and Xi−1 = not burning in Fig. 3).

Fig. 4(top) shows the values for such ‘edge’ problems.
Missing bars indicate time-outs (>4h). As an indication of
run time, the |D′| = 3, h = 5 problem took 2.21s for IO-Q-
MMDP, and 995.28s for IO-Q-Dec-POMDP. The shown val-
ues indicate that V̂ Dc , V̂ Pc can be tighter than V̂Mc in practice.
In most cases, the difference between V̂ Dc and V̂ Pc is small,
but these could become larger for longer horizons. The same
analysis for the ALOHA benchmark [Oliehoek et al., 2013b]
gave similar results.

We also compare different types of SPs (internal and edge
cases, see Fig. 2) encountered in FFG (h = 4). In addition,
Fig. 4(left) also includes—if computable within the allowed
time—values of SPs that are ‘full’ problems (i.e., the regular
optimal Dec-POMDP value for the full FFG instance with
the indicated number of agents.) These results demonstrate
a potentially large effect of influence-optimism: being opti-
mistic at one edge more than halves the optimal cost, and the
IO assumption at both edges of the SP leads to another sig-
nificant reduction of that cost. This is to be expected: the
optimistic problems assume that there always will be another
agent fighting fire at the house at an optimistic edge, while
the full problem never has another agent at that same house.
When also taking into account the transition probabilities—
two agents at a house will completely extinguish a fire—it is
clear that the IO assumption should have a high impact on the
local value; FFG has a high influence strength.

We devise a modification of FFG where the influence
strength can be controlled. In particular, we parameterize
the probability that a fire is extinguished completely when
2 agents visit the same house, which is set to 1 in the orig-
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Figure 5: The global IO-Q-Dec-POMDP upper bound on
large FFG instances.

inal problem definition. Lower values of this probability
mean that optimistically assuming there is another agent at
a house will lead to less advantage, and thus lower influence
strength. Fig. 4(right) shows that there is a clear relation be-
tween the fire-extinguish probability when two agents fight
fire at a house, and the ratio between the ‘full’ value (the Dec-
POMDP value) and optimistic value.

Bounding the Error of Heuristic Methods. Here we
investigate the ability to provide informative global upper
bounds. While the previous analysis shows that the overes-
timation is quite significant at the true edges of the problem
(where no agents exist), this is not necessarily informative
of the overestimation at internal edges in decompositions of
larger problems (where other agents do exist, even if not su-
perheros). As such, besides investigating the upper bounding
capability, the analysis here also provides a better understand-
ing of such internal overestimations.

We use the tightest upper bound we could find by consider-
ing different SP partitions, with sizes ranging from |D′| = 2–
5, and investigate the guarantees that it can provide for trans-
fer planning (TP) [Oliehoek et al., 2013b], one of the meth-
ods capable of providing solutions for large factored Dec-
POMDPs. Since this heuristic method does not provide the
exact value of the reported joint policy, the value of TP, V TP ,
is determined using 10.000 simulations of the found joint pol-
icy leading to accurate estimates. To put the results into con-
text, we also show the value of a random policy. Finally, we
show (second y-axis in Fig. 5) what we call the empirical ap-
proximation factor (EAF): max {V̂ IO/V TP , V TP /V̂ IO}, a
number comparable to the approximation factors of approxi-
mation algorithms [Vazirani, 2001].

Following this methodology, we computed upper bounds
for large, horizon h = 4, FFG instances. The computation of
the local upper bounds for the largest SPs used (i.e., |D′| = 5)
took 3.31 secs for IO-Q-MMDP and 2696.23s for IO-Q-Dec-
POMDP. Fig. 5 shows the results that indicate that the upper
bound is relatively tight: the solutions found by TP are not
far from the upper bound. In particular, the EAF lies typically
between 1.4 and 1.7, thus demonstrating that IO-UBs can pro-
vide firm guarantees for solutions of factored Dec-POMDPs
with up to 700 agents. Moreover, we see that we see that the
EAF stays roughly constant for the larger problem instances
indicating that relative guarantees do not degrade as the num-
ber of agents increase.

|D| 50 75 100 250

V TP −71.99 −111.07 −148.70 −382.47

V̂ IO −72.00 −107.06 −144.00 −360.00
EAF 1.00 1.04 1.03 1.06

Table 1: ALOHA: Empirical approximation factors for h = 3.

Table 1 shows results obtained for ALOHA with up to
|D| = 250 agents making use of SPs involving up to |D′| = 6
agents. The numbers clearly illustrate that it is possible to
provide very strong guarantees for problems up to 250 agents
(beyond which memory forms the bottleneck for TP); the so-
lution for the |D| = 50 instance is essentially optimal, indi-
cating also a very tight bound for this problem.

6 Related and Future Work
One way or another, all upper bounds in the literature make
some optimistic assumption, but influence-optimistic UBs are
novel. While the idea of being optimistic with respect to influ-
ences has been considered by Kumar and Zilberstein [2009a],
they do not provide an upper bound the global value. Instead
they employ optimistic assumptions on transitions in an ND-
POMDP to derive an MMDP-based policy which is used to
sample belief points. Kumar and Zilberstein [2009b] present
the only previous method that delivers scalability with respect
to the number of agents without assuming value factorization
by exploiting submodular function maximization for a spe-
cific class of sensor network problems.

Upper bounds for ND-POMDPs (e.g., [Varakantham et al.,
2007; Dibangoye et al., 2014]) resemble our global IO upper
bound. The crucial distinction is that for value factorized set-
tings computing V̂e does not require any influence-optimism:
the reason that value-factorization holds is precisely because
there are no influence sources for the components. As such,
our influence-optimistic upper bounds can be seen as a strict
generalization of the upper bounds that have been employed
for settings with factored value functions. A promising idea is
to employ our factored upper bounds in combination with the
heuristic search methods by Dibangoye et al. While it is not
possible to directly use that method since it additionally re-
quires a factored lower bound function, pessimistic-influence
bounds could provide those.

Finally, our upper-bounding method contributes a useful
precursor for techniques that automatically search the space
of possible upper bounds decompositions, efficient optimal
influence-space heuristic search methods (for which we pro-
vide preliminary evidence in the extended version of this pa-
per [Oliehoek et al., 2015]), and A* methods for a large class
of factored Dec-POMDPs (as mentioned above).

7 Conclusions
We presented a family of influence-optimistic upper bounds
for the value of sub-problems of factored Dec-POMDPs, to-
gether with a partition-based decomposition approach that
enables the computation of global upper bounds for very
large problems. The approach builds upon the framework of



influence-based abstraction [Oliehoek et al., 2012], but—in
contrast to that work—makes optimistic assumptions on the
incoming ‘influences’, which makes the sub-problems eas-
ier to solve. An empirical evaluation compares the proposed
upper bounds and demonstrates that it is possible to achieve
guarantees for problems with hundreds of agents, showing
that found heuristic solution are in fact close to optimal (em-
pirical approximation factors of < 1.7 in all cases and some-
times substantially better). This is a significant contribution,
given the (NEXP-complete [Rabinovich et al., 2003]) com-
plexity of computing ε-approximate solutions and the fact
that tight global upper bounds are of crucial importance to
interpret the quality of heuristic solutions.
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