
Streamlining Book Requests with Chrome

Abstract

This article starts by examining why a Chrome Extension was desired and how
we saw it making the workflow for requesting new items both easier and more
accurate. We then go on to outline how we constructed our extension, looking
at the folder structure, third party scripts and services that combine to make this
achievable. Finally, the article looks at how the extension is regulated and plans
for future development.

By Dr. Rachel Schulkins and Joseph Schulkins

The Chrome Extension – an Introduction

The idea for the Book Request extension developed after a team meeting, in
which several possibilities were raised to help standardise the format of book
requests reaching Acquisitions from in-house colleagues, primarily the
Academic Liaison. The problem was that there was no clear format for sending
book requests which resulted in disparate and insufficient information for
purchasing. Some of the emails reaching Acquisitions contained unnecessary
verbalism whereas others failed to provide basic information, all of which
hindered the process. To address these, Acquisitions needed a tool that would
be able to provide us with all the information we needed to process requests as
efficiently and quickly as possible, while also speeding the process for the
Librarians submitting the request. The initial idea was for librarians to fill out a
PDF form and email it as an attachment to Acquisitions. We concluded the
meeting with the intention of looking into replacing the PDF with an online form.
But it occurred to us that even the idea of an online form can be improved on.
Why not create some sort of an online mechanism that would automatically
gather a book’s metadata, search that book against our current Library holdings,
and finally send the book details to the Acquisitions Team to purchase, thus
making the process more efficient and accurate .

We developed the Chrome extension to specifically work with amazon.co.uk.
We selected amazon.co.uk because Amazon lists the majority of books
published worldwide. Whether it is an out of print book or a recently published
manuscript, Amazon will likely have the book’s metadata which can then be
imported using the extension. The book request process established with the
extension is quite simple. Once a librarian downloads the extension onto his/her
Chrome Browser, the extension becomes a primary point of contact for
submitting requests. When a librarian wishes to submit a book request, s/he
searches amazon.co.uk for the book. Once the librarian locates the book, s/he
clicks on the extension, which then gathers the book’s metadata and

automatically populates the book request form with the following details: Title,
Author, ISBN, Edition, Publisher, Year of publication. This leaves the librarian
with the responsibility of providing the following criteria: format,
Department/Fund, Location, Requesting Party, and reservation details. The need
for typing in any of the information is minimal as the majority of the fields are
made up of dropdown menus.

Though designed with amazon.co.uk in mind, the extension is compatible with
other online bookstores such as abe.com and Blackwell’s
(http://bookshop.blackwell.co.uk/) and it can even extract some data from
publishers’ websites. The disadvantage of working with a different website other
than amazon.co.uk is that the extension cannot extract the books’ metadata in a
single click, which means the librarians will have to fill the form manually.
Nevertheless, the fact that the request form embedded in the extension is a
mouse click away makes it easily accessible to users. Another major advantage
of working with the extension is related to its ability to check the book’s ISBN
against existing stock items in the Library, prior to purchasing. Whereas in the
past, the librarians had to manually check every book request reaching their
inbox against our library holdings, this task is now being performed by the
extension. The librarians see a message alert notifying them whether a book is
already available in the library or whether the extension could not perform the
check (this is usually happens when the extension is used on websites other
than amazon.co.uk). The same message is displayed in the email sent to
Acquisitions, who can then follow the necessary process to complete the
request depending on the book’s status. This has proven to be a great time
saver for librarians, who now have a single point of contact where they can
perform all the necessary steps prior to submitting a book request: check book
requests against existing holdings; extract the books’ metadata and populate
the book request; submitting their request to Acquisitions.

Getting the librarians to test the extension was quite easy as they could see its
immediate benefits. Within three months the extension became the main tool for
submitting book request across the library. It was adopted by the Academic
Liaison Team, Collection Management as well as Customer Service Team.
Having the majority of book requests reaching Acquisitions go through the
extension allows for important data to be collected. Prior to the extension there
was no way of monitoring requests live. Instead, we relied on our Library
Management Systems to run lists a few time a week according to different
variables. Now, the extension collects and analyzes incoming data live. Every
request submitted using the extension is stored on the Wufoo data page and the
information gathered is automatically analyzed and presented in various charts
and graphs to reflect fund usage, location of material (across several sites on
campus) and book format (print or ebook). The data gathered can then be used
to analyze efficiency, best practices and to monitor trends across the academic
year. For example, the data allows one to check the amount of requests

http://bookshop.blackwell.co.uk/

submitted in a given time and to see how many orders were placed in the same
amount of time. It allows us to see the time gap between request, execution and
reception of material, and adjust and amend departmental procedures to
maximize productivity and improve customer satisfaction.

Design and Implementation

A Chrome Extension is essentially a collection of Javascript, CSS and
HTML that you can add to the Chrome browser. These little pieces of software
allow you to add functionality or change the way Chrome behaves. Extensions
published to the Chrome store can then be downloaded by either a select few
that the developer allows or by the wider Chrome community. Given that the
only requirements are an understanding of JavaScript, CSS, HTML and the
subtleties of the development process, an extension can be manufactured
relatively quickly and painlessly.

That said, the hardest part in developing the extension was the flow of
communication between the extension and the open window; however the
official documentation covers this well as do numerous excellent tutorials.

1

Indeed, the official documentation and the tutorial by Gabe Berke-Williams ‘How
To Make a Chrome Extension’ provided the basis upon which I developed our

2

extension.

Our extension consists of:
manifest.json — this has the settings of the extension such as location of
background scripts and the default actions of the extension
src/bg/background.js — used to handle messages returned from the active
page to the extension:

/**
 * A background listener waiting for the extension to be triggered
 * @param object message sent by src/inject/inject.js
 */

chrome.runtime.onMessage.addListener(function(message,sender,sendResponse){

 /**
 * Set bibdetails as result of processing the returned message
 * the dataProcess function uses regular expressions to
 * chop up the message into the relevant bibliographic

1 What are extensions? [Internet]: Google [cited 2015 03/15]. Available from:
https://developer.chrome.com/extensions
2 How To Make a Chrome Extension [Internet]: Berke-Williams, Gabe [cited 2015
03/15]. Available from:
https://robots.thoughtbot.com/how-to-make-a-chrome-extension

https://developer.chrome.com/extensions
https://robots.thoughtbot.com/how-to-make-a-chrome-extension

 * parts
 * @type object
 */
 var bibDetails = dataProcess(message);

 /**
 * Function to check our catalogue against the submitted
 * bibliographic details and then populate the form using
 * the bibDetails object
 */
 checkCat(bibDetails);

});

/**
 * Insert the inject scripts into the current window
 */
chrome.tabs.executeScript(null, {file:"/src/inject/jquery.min.js"});
chrome.tabs.executeScript(null, {file:"/src/inject/inject.js"});

Figure 1. A snippet of our background.js showing how it injects scripts
and handles the returned message

src/browser_action/browser_action.html — this html page controls what the
user sees when they click on the extension and provides links to JavaScript and
CSS resources that are to be used to process the data retrieved from the active
page
src/inject/inject.js — used to communicate between the extension and the
active page using Chrome’s sendMessage method:

/**
* Set some basic variables to capture, taking a broad stab at where the
* title is located.
*/

var title, url, pub, isbn;
title = jQuery('title').text();
pub = jQuery('#detail_bullets_id ul li:contains("Publisher")').text();
isbn = jQuery('#detail_bullets_id ul li:contains("ISBN-13")').text();

/**
* Get the current URL. Typically this will be amazon.co.uk, but having this means users
* can request from elsewhere and someone in our Acquisitions team
* can go and view the item directly
*/

url = window.location.href;

/**
* Send the details from the webpage to the handling script to populate the form
*/

chrome.runtime.sendMessage({method:'setTitle',title:title,url:url,pub:pub,isbn:
isbn});

Figure 2. The inject script that sends information about the
current page back to the extension. This is triggered

when the extension button is clicked.

src/inject/jquery.min.js — to add jQuery functionality (if it doesn’t exist) to the
active page making it easier to access elements
css directory — has the bootstrap and alpacajs css files
js directory — has AlpacaJS (a JavaScript form which provides excellent

3

functionality), Bootstrap, isbnjs (a JavaScript library that validates isbns and
4

allows conversion between 10-13 digit)
fonts directory — contains Bootstrap glyphicons
icons directory — contains png’s of the plugin’s icon at various sizes to be used
by the browser

A core part of the extension is the form it uses to capture the metadata and
crucially we would then need to find a way to store any of the data captured by
the form, develop some statistical reporting and set up email alerts of when new
items were submitted. Whilst other tools may be available, having previously
used Wufoo forms Joseph knew that it could handle all of this quite

5

comfortably. When we created the form we did so exactly as we wanted it for
the Chrome extension with an idea that the form would be embedded. But as it
turned out this approach was impractical and instead we made use of the
Wufoo API.

Knowing that we would use Wufoo via their API, we settled on AlpacaJS as a
suitable front end alternative for the form and it would be this that would be filled
in when the user clicked on the extension. AlpacaJS uses jQuery and JSON to

6

arrange the form elements and is extremely extensible, not only does it lend
itself well to validation and conditional processing, but it will allow you to define
custom functions and callbacks. Whilst AlpacaJS is good in that it allows for
great control of the form, there are a few pinch points that Joseph encountered
when using it and the official documentation was not very helpful. In the end it
took several hours combing sites such as StackOverflow to find help or

7

solutions that Joseph could work into our form.

So with the front end form constructed and the Wufoo form in place to receive

3 Alpaca - Easy Forms for jQuery [Internet]: Gitana Software, Inc. [cited 2015 03/18].
Available from: http://www.alpacajs.org/
4 isbnjs: An ISBN JavaScript Library [Internet]. Google Project Hosting [cited 2015
04/09]. Available from: https://code.google.com/p/isbnjs/
5 Wufoo [Internet]: Wufoo [cited 2015 04/15]. Available from:
https://www.wufoo.com/
6 jQuery [Internet]: jQuery [cited 2015 04/10]. Available from: http://jquery.com/
7 alpaca javascript dom update [Internet]: StackOverflow [cited 2015 06/02].
Available from:
http://stackoverflow.com/questions/24146694/alpaca-javascript-dom-update

http://www.alpacajs.org/
https://code.google.com/p/isbnjs/
https://www.wufoo.com/
http://jquery.com/
http://stackoverflow.com/questions/24146694/alpaca-javascript-dom-update

entries, we needed something that would be able to send the information to the
Wufoo API and to receive back any response. As such we pointed the
customised AlpacaJS form to a PHP script. This script has our API key, API
endpoint and maps each entry from the form to a variable and, using CURL, this
information is sent to Wufoo. If a ‘success’ message is received by the CURL
function, then the PHP script displays a success message in the Chrome Plugin,
however should there be an error, the information regarding the CURL error and
the attempted values would be sent to Joseph with a message saying that there
had been a problem displayed to the user.

Before the plugin, it was standard practice for those both requesting and
processing the requests to check each item in the catalogue to see if we already
had a copy. If the item was found to be in the catalogue and the person
requesting the item hadn’t checked or indicated the reasons why extra copies
were needed, then this would spark a back and forth conversation (usually over
email). As such Joseph was asked whether an automatic catalog check could
be built into the form. Again, using PHP Joseph was able to create a quick and
simple script that received the ISBN as a get request and queried our mobile
catalogue for results. If the search failed (i.e. nothing with that ISBN was found)
an html page would be loaded that had content wrapped in a class of
‘errorArea’ and using DOMXpath() (since
getElementsByClassName doesn't exist in DOMDocument), the script would be
able to see whether the checked ISBN existed or not. With the existence of this
item now set to either ‘true’ or ‘false’, the PHP script would return this as JSON
so that the extension could parse it. The extension would then inform the user
that the item already existed and append this information to the notes field.
Because of this all parties are aware if there is an item being requested that is
already in the catalogue and it allows the person submitting the request to add
any additional comments. This early communication helps eliminate the
unnecessary email conversations. One great piece of feedback we have
received about this particular feature was from a librarian who whilst placing a
request was alerted that we already had an item that he was ordering in stock.
Since he was fairly sure nothing with this title or authors existed in our catalogue
he searched and found that we did have this particular item already, but that the
title had changed slightly and so too had the authors.

/**
* An ISBN is sent as a Get request to this script and we will return JSON
*/
header('Content-Type: application/json');

$isbn = isset($_GET['isbn'])?$_GET['isbn']:'error';

/**
* Did we capture the ISBN from the webpage or has it been set to false
*/
if($isbn == 'error' || $isbn == false){

echo '{"exists":"error"}';

}
else{

/**
* Our mobile catalog will be used to search against as
* this has less styling elements to navigate
*/
$url = 'http://m.library.liv.ac.uk/search/?searchtype=Y&searcharg='.$isbn;

/**
* Initialize a CURL object
*/
$ch = curl_init();

/**
* Set url and other options
*/
curl_setopt($ch, CURLOPT_URL, $url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

/**
* Get the page contents
*/
$output = curl_exec($ch);

/**
* Close curl resource to free up system resources
*/
curl_close($ch);

/**
* Create a DOM parser object
*/
$dom = new DOMDocument();

/**
* The @ before the method call suppresses any warnings that
* loadHTML might throw because of invalid HTML in the page.
*/
@$dom->loadHTML($output);

/**
* getElementsByClassName doesn't exist in DOMDocument so use xpath
* to find the error section if applicable
*/
$xpath = new DOMXpath($dom);
$error_area = $xpath->query('//p[@class="errorArea"]');

/**
* If there is an errorArea, then we don't have the item
*/
if($error_area->length > 0) {

 $exist = "false";
}
else {

 $exist = "true";

}

/*
* return the exist variable wrapped in JSON

*/
echo '{"exists":"'.$exist.'"}';

}

Figure 3. Our catalog lookup script

From the start we wanted this extension to behave like any other on Chrome in
that if/when updates were needed, we wouldn’t have to ask those who had
installed it to re-install a new version (best case scenario) or have to re-install
the new version ourselves on everyone’s Chrome (worst case scenario). The
only way to have an extension that updates automatically is to add it to the
Chrome Web Store. This has been a security change to prevent extensions from
loading malicious software into the browser. You can still load extensions (albeit
with the caveat that they won’t update) into your version of Chrome by enabling
‘Developer Mode’ on the extensions page of Chrome (chrome://extensions), and
this will enable you to upload a zip file of your extension. To publish to the
webstore you will need to have an account and pay a one time fee.

8

Before publishing though, Joseph found that we could set the extension as
private (meaning it wouldn’t be listed in the web store) but we could also either
a) specify individuals to grant access to (an individual Gmail account would be
required) or b) allow access to a group of users in Google Groups. For our
situation the second one seemed ideal as it would mean we could administer
access to the group independently of the extension and, since not all our staff
have Google accounts, provide an ingress to the extension via their University
email.

The submission process is relatively straightforward, first requiring you to upload
an extension as a zip and then through a form supplying information about the
plugin and its audience. Once you have completed these steps and selected to
publish to your private group/individuals, you are redirected to the landing page
of your extension. Copy the URL as this is what you will need to send to your
testers so they can load the extension. The extension will now take an hour or
so to become available for download. One important thing to note, when you are
creating the zip either for the first time or for subsequent updates, you will need
to make sure that the folder is zipped without any extra or hidden files and
folders as these can sometimes cause errors loading or running the extension.

Missing conclusion.

Conclusion

8 Publishing Your App [Internet]: Google [cited 2015 06/09]. Available from:
https://developer.chrome.com/webstore/publish

https://developer.chrome.com/webstore/publish

To conclude, the extension has proven to be popular and its implementation a
success for standardising book requests reaching the Acquisitions department.
At the moment, it is an in-house tool to allow departments in the library to
communicate their requests to the Acquisitions Team. However, the future
objective is to develop the extension for students and academic staff outside
the library. In the next academic year we will be developing the extension for
other browsers and also explore the possibilities of employing the idea to
develop a mobile app, to help enhance user experience and the ease of
accessibility to the material staff and student require for their research.

Further, we will look to create specific webpage filters that will match the
requesting url and adopt the appropriate filter to broaden the range of pages the
extension can capture data from. In particular we will look at additional
booksellers and high use publishers. Whilst to simplify the ordering process we
will add to the notification emails to the Acquisitions Team, links to our suppliers
formed of OpenURLs and the captured ISBN(s) to directly link to the requested
item.

About the Authors:
Dr. Rachel Schulkins holds a Phd in English Literature from the University of
Liverpool and currently works as a Principal Library Assistant.
Joseph Schulkins (joesch@liv.ac.uk) has been the Systems Librarian at the
University of Liverpool since 2007.

mailto:joesch@liv.ac.uk

