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Abstract

Gaussian process surrogates of computationally expensive computer codes provide fast statistical approxi-
mations to model physical processes. The training of these surrogates depends on the set of design points
chosen to run the expensive simulator. However, such training set is bound to be limited and quantifying the
resulting uncertainty in the hyper-parameters of the emulator by uni-modal distributions is likely to induce
bias. This paper proposes a computationally efficient sampler based on an extension of the Asymptotically
Independent Markov Sampling, a recently developed algorithm for Bayesian inference and extended to optimi-
sation problems. Structural uncertainty of the emulator is obtained as a by-product of the Bayesian treatment
of the hyper-parameters. Model uncertainty is also acknowledged through numerical stabilisation measures by
including a nugget term in the formulation of the probability model. The efficiency of the proposed sampler is
illustrated in examples where multi-modal distributions are encountered. For the purposes of reproducibility,
further development, and use in other applications, we made the code used to generate the examples in this
paper freely available for download at https://github.com/agarbuno/paims_codes.
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1. Introduction

Computationally expensive computer codes are frequently needed to implement mathematical models
which are assumed to be reliable approximations to physical processes. Such simulators often require intensive
use of computational resources that makes them inefficient if further exploitation of the code is needed, e.g.
optimisation, uncertainty propagation and sensitivity analysis [Forrester et al., 2008, Kennedy and O’Hagan,
2001a]. For this reason, surrogate models are needed to perform fast approximations to the output of
demanding simulators and enable efficient exploration and exploitation of the input space. In this context,
Gaussian processes are a common choice to build statistical surrogates -also known as emulators- which allow
to take into account the uncertainty derived from the inability to evaluate the original model in the whole
input space. Gaussian processes have become popular in recent years due to their ability to fit complex
mappings between outputs and inputs by means of a non-parametric hierarchical structure. Such applications
are found, amongst many other areas, in Machine Learning [Rasmussen and Williams, 2006], Spatial Statistics
[Cressie, 1993] (with the name of Kriging), likelihood-free Bayesian Inference [Wilkinson, 2014] and Genetics
[Kalaitzis and Lawrence, 2011].

To build an emulator, a number of runs from the simulator is needed, but due to computing limitations
only a small amount of evaluations can be performed. With a small amount of data, it is possible that the
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uncertainty of the parameters of the model cannot be described by a clearly uni-modal distribution. In such
scenarios, Model Uncertainty Analysis [Draper, 1995] is capable of setting a proper framework in which we
acknowledge all uncertainties related to the idealisations made through the modelling assumptions and the
available, albeit limited information. To this end, hierarchical modelling should be taken into account. This
corresponds to adding a layer of structural uncertainty to the assumed emulator either in a continuous or
discrete manner [see Draper, 1995, §4]. In the case of Gaussian processes, continuous structural uncertainty
can be accounted for as a natural by-product from a Bayesian procedure. Hence, this is pursued in this work
by focusing on samplers capable of exploring multi-modal distributions.

In order for the Gaussian process to be able to replicate the relation between inputs and outputs and
make predictions, a training phase is necessary. Such training involves the estimation of the parameters of
the Gaussian process from the data collected by running the simulator. These parameters are referred to
as hyper-parameters. The selection of the hyper-parameters is usually done by using Maximum Likelihood
estimates (MLE), or their Bayesian counterpart Maximum a Posteriori estimates (MAP) [Oakley, 1999,
Rasmussen and Williams, 2006], or by sampling from the posterior distribution [Williams and Rasmussen,
1996] in a fully Bayesian manner.

In this paper we assume a scenario where the task of generating new runs from the simulator is prohibitive.
Such limited information is not enough to completely identify either a candidate or a region of appropriate
candidates for the hyper-parameters. In this scenario, traditional optimisation routines [Nocedal and Wright,
2004] are not able to guarantee global optima when looking for the MLE or MAP, and a Bayesian treatment is
the only option to account for all the uncertainties in the modelling. In the literature, however, it is common
to see that MLE or MAP alternatives are preferred [Kennedy and O’Hagan, 2001a, Gibbs, 1998] due to the
numerical burden of maximising the likelihood function or because it is assumed that Bayesian integration
will not produce results worth the effort. Though it is a strong argument in favour of estimating isolated
candidates, in high-dimensional applications it is difficult to assess if the number of runs of the simulator is
sufficient to produce robust hyper-parameters. Robustness is usually measured with a prediction-oriented
metric such as root-mean-square error (RMSE) [Kennedy and O’Hagan, 2001b], ignoring uncertainty and
risk assessment of choosing a single candidate of the hyper-parameters by an inference process with limited
data. In order to account for such uncertainty in the hyper-parameters when making predictions, numerical
integration should be performed. However, methods as quadrature approximation become infeasible as the
number of dimensions increases [Kennedy and O’Hagan, 2001a]. Therefore, an appropriate approach is to
perform Monte Carlo integration [MacKay, 1998]. This allows to approximate any integral by means of a
weighted sum, given a sample from the correct distribution.

In Gaussian processes, as in many other applications of statistics, the target distribution of the hyper-
parameters cannot be sampled directly and one should resort to Markov Chain Monte Carlo (MCMC) methods
[Robert and Casella, 2004]. MCMC methods are powerful statistical tools but have a number of drawbacks if
not tuned properly, particularly if one wishes to sample from multi-modal distributions [Neal, 2001, Hankin,
2005]. One of such limitations is the tuning of the proposal distribution, which allows the generation of a
candidate in the chain. This proposal function has to be tuned with parameters that define its ability to
move through the sample space. If an excessively wide spread is selected, this will produce samples with
space-filling properties but which are likely to be rejected. On the other hand, having a narrower spread
will cause an inefficient exploration of the sample space by taking short updates of the states of the chain,
known in the literature as Random Walk behaviour [Neal, 1993]. In practice it is desirable to use a proposal
distribution which is capable of balancing both extremes. To find an appropriate tuning in high-dimensional
spaces with sets of highly correlated variables can be an overwhelming task and often MCMC samplers can
become expensive due to the long time needed to reach stationarity [Ching and Chen, 2007]. Neal [1998]
and Williams and Rasmussen [1996] favour the Hybrid Monte Carlo (HMC) method to generate a sample
from the posterior distribution, preventing the random walk behaviour of traditional MCMC methods. If
tuned correctly, the HMC should be able to explore most of the input space [Liu, 2008]. Such tuning process
is problem-dependent and there is no guarantee that the method will sample from all existing modes, thus
failing to adapt well to multi-modal distributions [Neal, 2011].
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This paper proposes a sampler for the hyper-parameters of a Gaussian process based on recently developed
methods for Bayesian inference problems. Additionally, it uses the Transitional Markov Chain Monte Carlo
(TMCMC) method of Ching and Chen [2007] to set a framework for the parallelisation of Asymptotically
Independent Markov Sampling in both the context of hyper-parameter sampling (AIMS) [Beck and Zuev,
2013] and in stochastic optimisation (AIMS-OPT) [Zuev and Beck, 2013] reminiscent of Stochastic Subset
Optimisation [Taflanidis and Beck, 2008a,b]. Such an extension is built using concepts of Particle Filtering
methods [Andrieu et al., 2010, Gramacy and Polson, 2009], Adaptive Sequential Monte Carlo [Del Moral
et al., 2006, 2012] and Delayed Rejection Samplers [Zuev and Katafygiotis, 2011, Mira, 2001]. AIMS is chosen
since it provides a framework for Sequential Monte Carlo sampling [Neal, 1996, 2001, Del Moral et al., 2006]
which automatically chooses the sequence of transitions. Moreover, it uses most of the information generated
in the previous step in the sequence as opposed to traditional sequential methods, thus building a robust
sampler when applied to multi-modal distributions.

By selecting the hyper-parameters using the AIMS-OPT framework the effect is twofold. First, the
uncertainty inherent to the specification of the hyper-parameters is embedded in the set of suboptimal
approximations to the solution. This uncertainty, expressed in a mixture of Gaussian process emulators,
yields a robust surrogate where model uncertainty is accounted for. Second, computational implementation
deficiencies of the inference procedure in Gaussian processes is overcome by incorporating stabilising approaches
exposed in the literature as in Ranjan et al. [2011], Andrianakis and Challenor [2012] but in a Bayesian
framework. The problem is therefore treated from both a probabilistic and an optimisation perspective.

The paper is organised as follows. In Section 2, a brief introduction to the Gaussian processes and
their treatment by Bayesian inference is discussed. Section 3 presents both the AIMS algorithm and the
proper generalisation for a parallel implementation. Section 4 discusses several aspects of the computational
implementation of the algorithm and their effect on the modelling assumptions. The efficiency and robustness
of the proposed sampler are discussed in Section 5 with some illustrative examples. Concluding remarks are
given in Section 6.

2. Gaussian processes

Let X = {x1, . . . ,xn} be the set of trials run by the simulator where xi ∈ Rp denotes a given configuration
for the model. The set X will be referred to as the set of design points. Let y = {y1, . . . , yn} be the set of
outputs observed for the design points. The pair (xi, yi) will denote the training run being used to learn the
emulator that approximates the simulator. The emulator is assumed to be a real-valued mapping η : Rp → R
which is an interpolator of the training runs, i.e. yi = η(xi) for all i = 1, . . . , n. This omits any random error
in the output of the computer code in the observed simulations, that is, the simulator is deterministic. It is
assumed that the output of the simulator can be represented by a Gaussian process. Therefore, the set of
design points is assumed to have a joint Gaussian distribution where the output satisfies the structure

η(x) = h(x)Tβ + Z(x|σ2,φ), (2.1)

where h(·) is a vector of known basis (location) functions of the input, β is a vector of regression coefficients,
and Z(·|σ2,φ) is a Gaussian process with zero mean and covariance function

cov(x,x′|σ2,φ) = σ2 k(x,x′|φ), (2.2)

where σ2 is the signal noise and φ ∈ Rp+ denotes the length-scale parameters of the correlation function k(·, ·).
Note that for a pair of design points(x,x′), the function k(·, ·|φ) measures the correlation between η(x) and
η(x′) based on their respective input configurations. The effect of different values of φ in a one-dimensional
example is depicted in Figure 1.
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Figure 1: The length-scale parameters represent how sensitive is the output of the simulator to variations in each
dimension. The plot corresponds to 8 design points chosen for the function η(x) = 5+x+cos(x)+ .5 sin(3x).
For low values of the length-scale parameter the training runs are less dependent of each other.

The role of the correlation function is to measure how close to each other the design points are, following
the assumption that similar input configurations should produce similar outputs. For its analytical simplicity,
interpretation and smoothness properties, this work uses the squared-exponential correlation function, namely

k(x,x′|φ) = exp

{
−1

2

p∑
i=1

(xi − x′i)2

φi

}
. (2.3)

Note that other authors prefer the parametrisation with φ2
i as denominators. However, this work uses a linear

term in the denominator since the restriction of the length-scale parameters to lie in the positive orthant is
more natural, as weights in the norm used to measure closeness and sensitivity to changes in such dimensions.

In summary, the output of a design point, given the parameters β, σ2 and φ, has a Gaussian distribution

y|x,β, σ2,φ ∼ N (h(x)Tβ, σ2 k(x,x′|φ)), (2.4)

which can be rewritten as the joint distribution of the vector of outputs y conditional on the design points X
and hyper-parameters β, σ2 and φ as

y|X,β, σ2,φ ∼ N (Hβ, σ2K), (2.5)

where H is the design matrix whose rows are the inputs h(xi)
T and K is the correlation matrix with elements

Kij = k(xi,xj |φ) for all i, j = 1, . . . , n.

2.1. Estimating the hyper-parameters
The parameters of the process are not known beforehand and this induces uncertainty in the emulator

itself. They can be estimated by Maximum Likelihood principles, but doing so lacks rigorous uncertainty
quantification by concentrating all the density of the unknown quantities in a single value. The alternative
is to treat them in a fully Bayesian manner and marginalise them when performing predictions. This way
their respective uncertainty is taken into account. In this scenario, the prediction y∗ for a non-observed
configuration x∗ can be performed with the data available, D = (y, X), and the evidence they shed on the
parameters of the Gaussian process. Therefore, the predictions should be made with the marginalised posterior
distribution

p(y∗|x∗,D) =

∫
Θ

p(y∗|x∗,D,θ) p(θ|D) dθ, (2.6)
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where θ = (β, σ2,φ) denotes the complete vector of hyper-parameters. One should note that given the
properties of a collection of Gaussian random variables, a prediction for y∗ conditioned in the data and θ is also
a Gaussian random variable [see Oakley, 1999]. As in hierarchical modelling, each possible value of θ defines
a specific realisation of a Gaussian distribution, so it is appropriate to refer to θ as the hyper-parameters of
the Gaussian process.

Due to its computational complexity, the integral in (2.6) is often omitted when making predictions. It is
commonly assumed that the MLE of the likelihood

L(θ) = p(y|X,β, σ2,φ) (2.7)

or the MAP estimate from the posterior distribution

p(θ|D) ∝ p(y|X,β, σ2,φ) p(β, σ2,φ) (2.8)

are robust enough to account for all the uncertainty in the modelling. However, when either the likelihood
(2.7) is a non-convex function or the posterior (2.8) is a multi-modal distribution, conventional optimisation
routines might only find local optima, thus failing to find the most probable candidate of such distribution.
Moreover, by selecting only one candidate, robustness and uncertainty quantification are lost in the process.
Additionally, there are degenerate cases when it is crucial to estimate the integral in (2.6) by means of
Monte Carlo simulation instead of by proposing a single candidate. As it has been noted by Andrianakis and
Challenor [2012], two extreme cases for the Gaussian process length-scale hyper-parameters can be identified.
One possibility is for φ to approach infinity, which makes every design point dependent of each other; the
other, when φ approaches the origin where a multivariate regression model becomes the limiting case. In
the first case, high correlation among all the training runs results in a model which is not able to distinguish
local dependencies. As for the second, it violates the assumptions that constitute a Gaussian process, by
completely ignoring the correlation structure in the design points to predict the output. Consequently, if
MCMC is performed one can approximate the integrated predictive distribution in (2.6) by means of

p(y∗|x∗,D) ≈
N∑
i=1

wi p(y
∗|x∗,D,θi), (2.9)

where θi is obtained through an appropriate sampler, i.e. one capable of sampling from multi-modal distri-
butions. The coefficients wi denote the weights of each sample generated. Since each term p(y∗|x∗,D,θi)
corresponds to a Gaussian density function, the predictions are made by a mixture of Gaussians.

Proposition 1. If the emulator output y∗ conditional on its configuration vector x∗ has a posterior density
as in (2.9), then its mean function and covariance function can be computed as

µ(x∗) =

N∑
i=1

wi µi(x
∗), (2.10)

cov(x∗,x′) =

N∑
i=1

wi [(µi(x
∗)− µ(x∗))(µi(x

′)− µ(x′)) + cov(x∗,x′|θi)] , (2.11)

where µi(x∗) denotes the expected value of the likelihood distribution of y∗ conditional on the hyper-parameters
θi, the training runs D and the input configuration x∗.

Proof. Equality in (2.10) is a direct application of the tower property of conditional expectation and (2.11)
follows from the covariance decomposition formula using the vector of weights wi as an auxiliary probability
distribution on the conditioning. �

From equation (2.11) we can compute the variance, also known as the prediction error, of an untested
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configuration x∗ as

σ2(x∗) =

N∑
i=1

wi ((µi(x
∗)− µ(x∗))2 + σ2

i (x∗)). (2.12)

By doing this, a more robust estimation of the prediction error is made since it balances the predicted error
in one sample with how far the prediction of such sample is from the overall estimation of the mixture.

2.2. Prior distributions
In order to perform a Bayesian treatment for the prediction task in equation (2.6) the prior distribution

p(β, σ2,φ) in equation (2.8) has to be specified. Weak prior distributions are commonly used for β and σ2

[Oakley, 1999]. Such weak prior has the form

p(β, σ2,φ) ∝ p(φ)

σ2
(2.13)

where it is assumed a priori that both the covariance and the mean hyper-parameters are independent. Even
more, β and σ2 are assumed to have an improper non-informative distribution.

As for the length-scale hyper-parameter φ, a prior distribution p(φ) is still needed. In this case the
reference prior [studied by Berger and Bernardo, 1992, Berger et al., 2009] sets an objective framework to
account for the uncertainty of φ, thus avoiding any potential bias induced by the modelling assumptions.
This prior is built based on Shannon’s expected information criteria and allows the use of a prior distribution
in a setting where no previous knowledge is assumed. That way, the training runs are the only source of
information for the inference process. Additionally, the reference prior is capable of ruling out subspaces
of the sample space of the hyper-parameters [Andrianakis and Challenor, 2011], thus reducing regions of
possible candidates of Gaussian distributions in the mixture model in equation (2.9). Since this provides an
off-the-shelf framework for the estimation of the hyper-parameters, the reference prior developed by Paulo
[2005] is used in this work. However, there are no known analytical expressions for its derivatives which limits
its application to MCMC samplers that use gradient information. Note that there are other possibilities
available for the prior distribution of φ. Examples of these are the log-normal or log-Laplacian distributions,
which can be interpreted as a regularisation in the norm of the parameters. Andrianakis and Challenor [2011]
suggest a decaying prior. Another option is to elicit prior distributions from expert knowledge as in Oakley
[2002].

2.3. Marginalising the nuisance hyper-parameters
The nature of the hyper-parameters β, σ2 and φ is potentially different in terms of scales and dynamics,

as seen and explained in Figure 2. It is possible to cope with this limitations by using a Gibbs sampling
framework, but it is well-known that such sampling scheme can be inefficient if it is used for multi-modal
distributions in higher dimensions. Analogously, a Metropolis-Hastings sampler can also be overwhelmed.
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Figure 2: In 2(a), different dynamics of the hyper-parameters for the log-posterior distribution of test function 5.1 are
shown: A. corresponds to positive correlation. B. corresponds to an independent region. C. corresponds
to negative correlation. In 2(b), the marginal log-posterior function of the same example with h(x) = 1,
presents the same contour level for a wide range of β. Thus, the hyper-parameters exhibit very different
scales. The dot represents the minimum of the corresponding function.

Another alternative is to focus on φ and perform the inference in the correlation function. This is done
by regarding β and σ2 as nuisance parameters and integrating them out from the posterior distribution
(2.8). The modelling assumptions in the training runs and the prior distribution, equations (2.5) and (2.13)
respectively, allow to identify a Gaussian-inverse-gamma distribution for β and σ2, which can be shown to
yield the integrated posterior distribution

p(φ|D) ∝ p(φ) (σ̂2)−
n−p

2 |K|− 1
2 |HTK−1H|− 1

2 , (2.14)

where

σ̂2 =
yT

(
K−1 −K−1H(HTK−1H)−1HTK−1

)
y

n− p− 2
(2.15)

and

β̂ = (HTK−1H)−1HTK−1y (2.16)

are estimators of the signal noise σ2 and regression coefficients β [see Oakley, 1999, for further details].
Additionally, the predictive distribution conditioned on the hyper-parameters follows a Gaussian distribution
with mean and correlation functions

µ(x∗|φ) = h(x∗)T β̂ + t(x∗)TK−1(y −Hβ̂), (2.17)

corr(x∗,w∗|φ) = k(x∗,w∗|φ)− t(x∗)TK−1 t(w∗) +(
h(x∗)T − t(x∗)TK−1H

)
(HTK−1H)−1

(
h(w∗)T − t(w∗)TK−1H

)T
, (2.18)

where x∗, w∗ denote a pair of test configurations and t(x∗) denotes the vector obtained by computing the
covariance of the new proposal with every design point t(x) = (k(x,x1|φ), . . . k(x,xn|φ))T . Note that both
estimators depend only on the correlation function hyper-parameters φ since both β and σ2 have been
integrated out. Considerations of when it is appropriate to integrate out the hyper-parameters in a model has
been discussed by MacKay [1996]. In the Gaussian process context it gains additional significance since it
allows the development of appropriate MCMC samplers capable of overcoming the dynamics of different sets
of hyper-parameters.

In the light of the above discussion, this work focuses on the inference drawn from the correlation function
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k(·, ·) in equation (2.2), since the structure of dependencies of the training runs to predict the outputs is
recovered by it. The main assumption is that the mean function hyper-parameter β contains minor information
on the structural dependencies of the data, relative to the correlation function hyper-parameters, which would
prevent the use of integrated likelihoods [see Berger et al., 1999, for further discussion]. If prior information is
available, then an additional effort can be made on eliciting an appropriate mean function for the Gaussian
process emulator. Such information can be related to expert knowledge of the simulator which eventually
allows the analyst to build a better mean function by adding significant regression covariates [see Vernon
et al., 2010, for a detailed discussion].

3. AIMS Framework

Hyper-parameter marginalisation by means of Monte Carlo methods in Gaussian processes is usually
performed by Hybrid Monte Carlo methods [Neal, 1998, Williams and Rasmussen, 1996] which are capable of
suppressing the Random Walk behaviour of MCMC samplers if tuned correctly. In this work, the sampling of
the hyper-parameters is done by means of Asymptotically Independent Markov Sampling (AIMS) [Beck and
Zuev, 2013]. This method combines techniques developed for Bayesian inference such as Importance Sampling
and Simulated Annealing [Kirkpatrick et al., 1983] to sample from the posterior distribution as done by other
MCMC algorithms. Additionally, AIMS can also be adapted for global optimisation (AIMS-OPT) [Zuev and
Beck, 2013] in a fashion of the traditional simulated annealing method for stochastic optimisation. Let the
problem be

min
φ∈Φ

H(φ|D), (3.1)

where H(φ|D) denotes the negative log-posterior distribution conditional on the set of training runs D. Let
the set of optimal solutions to the optimisation problem above be

Φ∗ =

{
φ ∈ Φ : φ = arg min

φ∈Φ
H(φ|D)

}
, (3.2)

where |Φ∗| ≥ 1. This formulation acknowledges the presence of multiple global optima in the posterior
distribution conditional on the training runs. It is important to note that using the logarithm of the posterior
distribution reduces the overflow in the computation of the equation (2.14), which is likely to arise due to
ill-conditioning of the matrix K [Neal, 2003].

In this context, AIMS-OPT is capable of producing samples by means of a sequence of nested subsets
Φk+1 ⊆ Φk that converges to the set of optimal solutions Φ∗. Thus, if the algorithm is terminated in a
premature step, a set of sub-optimal approximations to (3.2) will be recovered. Let {pk(φ|D)}∞k=1 be the
sequence of density distributions such that

pk(φ|D) ∝ p(φ|D)1/τk = exp {−H(φ|D)/τk} , (3.3)

for a sequence of monotonically decreasing temperatures τk. By tempering the distributions in this manner,
the samples obtained in the first step of the algorithm are approximately distributed as a uniform random
variable over a practical support; while in the last annealing level, they are distributed uniformly on the set
of optimal solutions, namely

lim
τ→∞

pτ (φ|D) = UΦ(φ), (3.4)

lim
τ→0

pτ (φ|D) = UΦ∗(φ), (3.5)

where UA(φ) denotes a uniform distribution over the set A for every φ ∈ A.
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3.1. Annealing at level k
The general framework for the AIMS-OPT algorithm is presented, focusing on how to sample from the

hyper-parameter space at level k based on the sample of the previous level. Let φ(k−1)
1 , . . . ,φ

(k−1)
N be samples

of the hyper-parameters distributed as pk−1(φ) at level k − 1. For notational simplicity, the conditional on
D will be omitted from pk−1(·), however the training runs are crucial to build statistical surrogates. The
objective is to use a kernel such that pk(·) is the stationary distribution of the Markov chain. Let Pk denote
such Markov transition kernel, which satisfies the continuous Chapman-Kolmogorov equation

pk(φ) dφ =

∫
Φ

Pk(dφ|ξ) pk(ξ) dξ, (3.6)

where pk(dφ) = pk(φ) dφ denotes the probability measure. By applying importance sampling using the
distribution at the previous annealing level, equation (3.6) can be approximated as

pk(φ) dφ =

∫
Φ

Pk(dφ|ξ)
pk(ξ)

pk−1(ξ)
pk−1(ξ) dξ

≈
N∑
j=1

Pk(dφ|φ(k−1)
j )ω

(k−1)
j = p̂k,N (dφ), (3.7)

where p̂k,N (·) is used as the global proposal distribution for a candidate in the chain and

ω
(k−1)
j =

pk

(
φ

(k−1)
j

)
pk−1

(
φ

(k−1)
j

) ∝ exp

{
−H

(
φ

(k−1)
j |D

)( 1

τk
− 1

τk−1

)}
, (3.8)

ω
(k−1)
j =

ω
(k−1)
j∑N

j=1 ω
(k−1)
j

, (3.9)

are the importance weights and the normalised importance weights respectively. Note that for computing
ω

(k−1)
j the normalising constant of the integrated posterior distribution (2.14) is not needed.
The proposals of candidates for the chain are done in two steps. In the first step, a candidate is drawn

as an update from a random marker from the sample of the previous annealing level, checking whether it is
accepted or not. If the local candidate is rejected by a Random Walk Metropolis-Hastings evaluation, then
the chain remains invariant, φ(k)

i+1 = φ
(k)
i , and another marker is selected at random. In the second step, given

the candidate has been accepted as a local proposal, such candidate is considered as being drawn from the
approximation in (3.7) and accepted in an Independent Metropolis-Hastings framework, hence called a global
candidate for the chain. Let qk(·|·) denote the symmetric transition distribution used for local proposals for
the Markov chain. The subscript k accounts for the adaptive nature of the transition steps in each annealing
level. Thus, the kernel distribution of the Random Walk, which leaves the intermediate density invariant, can
be written as

Pk(dφ|ξ) = qk(φ|ξ) min

{
1,
pk(φ)

pk(ξ)

}
dφ + (1− αk(ξ)) δξ(dφ), (3.10)

where δξ(dφ) denotes a delta density and αk(ξ) is the probability of accepting the transition from ξ to Φ\{ξ}.
It follows from (3.7) that the approximated stationary condition of the target distribution at annealing level k
can be written as
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p̂k,N (φ) =

N∑
j=1

ω
(k−1)
j qk

(
φ
∣∣∣φ(k−1)
j

)
αlk

(
φ
∣∣∣φ(k−1)
j

)
, (3.11)

with

αlk (ξ |φ ) = min

{
1,
pk(ξ)

pk (φ)

}
, (3.12)

the probability of accepting the local transition; whereas

αgk (ξ |φ ) = min

{
1,
pk(ξ) p̂k,N (φ)

pk (φ) p̂k,N (ξ)

}
(3.13)

denotes the probability of accepting such candidate for the Markov chain, hence accepting a global transition
[see Zuev and Beck, 2013, for a detailed discussion]. This leads to the following two algorithms for each level
in the annealing sequence.
Algorithm 1: AIMS-OPT at annealing level k

Input :
� φ

(k−1)
1 , . . . ,φ

(k−1)
N ∼ pk−1(φ), generated at previous level;

� φ
(k)
1 ∈ Φ\

{
φ

(k−1)
1 , . . . ,φ

(k−1)
N

}
, initial state of the chain;

� qk(φ|ξ), symmetric local proposal;

Output :

� φ
(k)
1 , . . . ,φ

(k)
N ∼ pk(φ);

for i← 2 to n− 1 do
(1) Generate a local candidate using the previous level samples as “markers”

ξ ∼Qk
(
ξ
∣∣∣φ(k−1)

1 , . . . ,φ(k−1)
n

)
=

N∑
j=1

ω
(k−1)
j qk

(
ξ
∣∣∣φ(k−1)
j

)
(3.14)

(a) Select index j with probability proportional to importance weights ω(k−1)
1 , . . . , ω

(k−1)
N .

(b) Generate candidate from the local proposal distribution

ξ ∼ qk
(
ξ
∣∣∣φ(k−1)
j

)
(3.15)

(c) Accept ξ as a local candidate with probability

αlk

(
ξ
∣∣∣φ(k−1)
j

)
(3.16)

(2) Update φ
(k)
i → φ

(k)
i+1 by accepting or rejecting ξ using Algorithm 2.

end
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Algorithm 2: Global acceptance of ξ
if ξ was accepted as local candidate then

Accept ξ as a global transition with probability

αgk

(
ξ
∣∣∣φ(k)
i

)
(3.17)

else
Leave the chain invariant

φ
(k)
i+1 = φ

(k)
i (3.18)

end

According to Algorithm 1 the initialising step should also be provided for the annealing level. In
practical implementations it is suggested that it should be considered to be φ

(k)
1 ∼ qk(φ|φ(k−1)

j ) where
j = arg maxi ω

(k−1)
i , i.e. the sample with the largest normalised importance weight.

3.2. Adaptive proposal distribution and temperature scheduling
Even though a Random Walk is performed in every local proposal, AIMS-OPT performs efficient sweeping

of the sample space by producing candidates from neighbourhoods of the markers from the previous annealing
level {φ(k−1)

j }Nj=1. This is accomplished if the transition distribution qk(φ|φ(k−1)
j ) uses an appropriate proposal

distribution where sampling is to be realised; namely, the level curves of the tempered distribution. To be
able to cope with the non-negative restriction and to neglect the effect of the scales on each dimension, the
transitions are performed in the log-space of the length-scale parameters φ, as suggested by Neal [1997]. The
symmetric transition distribution proposed is a Gaussian distribution for such log-parameters. That is, each
local candidate will be distributed as

ξ ∼ N
(
ξ
∣∣∣φ(k−1)
j , ckΣk

)
, (3.19)

where ck is a decaying parameter for the spread of the proposal, i.e. ck = ν ck−1 with ν ∈ (0, 1) commonly
chosen as ν = 1/2 [Zuev and Beck, 2013]. The matrix Σk denotes the covariance matrix for log-parameters
where typical choices can be the identity matrix Ip×p, a diagonal matrix or a symmetric positive definite
matrix. We propose the use of the weighted covariance matrix estimated from the sample and their importance
weights of the previous level (ω

(k−1)
1 ,φ

(k−1)
1 ), . . . , (ω

(k−1)
N ,φ

(k−1)
N ). By doing so, the scale and directions of

the ellipsoids of the Gaussian steps are learned as in Adaptive Sequential Monte Carlo methods [Haario et al.,
2001, Fearnhead and Taylor, 2013] from the information gathered from the previous level in the sequence.

The annealing sequence and its effective exploration of the sample space is dictated by the temperature
τk of the intermediate distributions. Moreover, it defines how different is one target distribution from the
next one, so the effectiveness of the sample as markers from the previous annealing level depends strongly on
how the scheduling is performed. It is clear that abrupt changes lead to rapid deterioration of the sample,
whilst low paced changes could produce unnecessary steps in the annealing schedule. In order to cope with
this compromise, Zuev and Beck [2013] used the effective sampling size to determine the value of the next
temperature in the process. That is solving for τk, when a sample from level k − 1 has been produced, in∑n

j=1 exp
{
−2H(φ

(k−1)
j )

(
1
τk
− 1

τk−1

)}
(∑n

j=1 exp
{
−H(φ

(k−1)
j )

(
1
τk
− 1

τk−1

)})2 =
1

γn
, (3.20)

where γ defines a threshold for the proportion of the sample to be as effective from the importance sampling.
Note that the value of γ defines additionally how many annealing steps will be performed. As suggested from
Zuev and Beck [2013] a value of 1/2 is used for such parameter.
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3.3. Stopping condition
If the temperature continues to drop along the sequence of intermediate distributions, eventually an

absolute zero τk = 0 would be reached. However, such limit cannot be achieved in practical implementations
and a stopping condition is needed for the algorithm. By the same assumptions as in the original paper [Zuev
and Beck, 2013] and without loss of generality, the objective function H(φ) is assumed to be non-negative.
Similarly, let δk denote the Coefficient of Variation (COV) of the sample H(φ

(k)
1 ), . . . ,H(φ

(k)
N ), i.e.

δk =

√
1
N

∑N
i=1

(
H
(
φ

(k)
i

)
− 1

N

∑N
j=1H

(
φ

(k)
j

))2

1
N

∑N
j=1H

(
φ

(k)
j

) . (3.21)

Therefore, δk is used as a measure of the sensitivity of the objective function to the hyper-parameters in
the domain Φ∗τk . If the samples are all located in Φ∗ then their COV will be zero, since ∀ j H(φ

(k)
j ) =

minφ∈Φ∗ H(φ). As the progression of the intermediate distributions advances with k, it is expected that
δk → 0. As a consequence, a criteria to stop the annealing sequence is needed, and the algorithm will stop
when the following condition is attained

δk < αδ0 = δtarget, (3.22)

where α is assumed to be 0.10 in practical implementations to prevent the algorithm to generate redundant
annealing levels in the last steps of the procedure.

3.4. Parallel implementation and guarding against rejection
As found in our earliest experiments, AIMS-OPT with the global acceptance rule as in Algorithm 2 might

degenerate quickly in higher dimensions since the starting of the chain comes from the highest normalised
weighted sample and a transition might take too long to be performed, resulting in high rejection rates.
Furthermore, information from the markers is lost since they do not provide good transition neighbourhoods
and the ability to create new samples for the next annealing level is maimed. This aside, AIMS-OPT can
become computationally expensive when the number of samples increases. To cope with these limitations we
propose to incorporate the Transitional Markov Chain Monte Carlo (TMCMC) and the Delayed Rejection
methods into the AIMS-OPT framework. This extension not only enhances the mixing properties of the
sampler, i.e. improve acceptance rates, but also provides a computational framework in which parallel Markov
chains can be sampled from the intermediate distributions pk(φ) of the length-scale hyper-parameters.

The idea to enable parallelisation comes from the TMCMC algorithm [see Ching and Chen, 2007, for
further details]. In the framework of Algorithm 1, every marker from the annealing level k − 1 is a starting
point for a Markov chain. This produces not only specialised chains which are likely to explore the marker’s
neighbourhood on the sample space, but also allows an assessment of which markers will generate a better
chain. The normalised weights ω(k)

j will dictate how deeply a chain will evolve starting from its marker φ(k−1)
j .

Consequently, the number of samples in each chain will be set with probability proportional to the normalised
weight, a direct result from the TMCMC algorithm.

In order to guard against high rejection rates, and therefore degeneracy on the sampling scheme, we
propose to generate an additional candidate if the first one is rejected as in Delayed Rejection Algorithms
[Mira, 2001]. Let S1(·|·), S2(·|·, ·) be a one step and two steps proposal density distributions respectively; π(·)
the target distribution of the Markov chain and a1(·, ·) the probability of accepting a transition in one step.
Then, the probability of accepting a transition in two steps, denoted by a2(·, ·), is

a2(φ0,φ2) = min

{
1,
π(φ2)S1(φ1|φ2)S2(φ0|φ2,φ1) (1− a1(φ2,φ1))

π(φ0)S1(φ1|φ0)S2(φ2|φ0,φ1) (1− a1(φ0,φ1))

}
, (3.23)
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where φ0 denotes the starting point, φ1 the rejected candidate and φ2 the second stage candidate. In our
context, the target distribution π(·) is each annealing level pk(·) density distribution, the one step proposal
distribution S1 is the independent approximation in equation (3.11) and the one-step acceptance probability
is the global acceptance probability in (3.13). The two-step proposal density S2 can be chosen from several
alternatives. In this work we use a symmetric distribution centred at the starting point φ0, since it can be
seen as a back-guard against S1 being a deficient independent sampler [see Zuev and Katafygiotis, 2011, for a
detailed discussion]. Therefore, the previous equation can be rewritten in compact form as

αk,2(φ0,φ2) = min

{
1,
pk(φ2) (1− αgk(φ1|φ2))

pk(φ0) (1− αgk(φ1|φ0))

}
, (3.24)

where αgk(·|·) is defined as in equation (3.13). The fact that S2 is a symmetric distribution centred in the
starting point φ0 has been used, i.e. S2(φ2|φ0,φ1) = g(φ2|φ0) = g(φ0|φ2) = S2(φ0|φ2,φ1), where g(·|·)
denotes such symmetric proposal density. By performing the second stage proposal, the stationary condition
of pk(·) is maintained as stated in the following proposition.

Proposition 2. AIMS-OPT coupled with delayed rejection in two stages leaves the target distribution pk(·)
invariant at each annealing level.

Proof. See Appendix A for a proof using a general transition distribution S2(·|·, ·). �

From the above discussion, the proposed scheme provides a fail-safe against any possible mismatch of the
approximation done with (3.11). Additionally, the results presented in this paper correspond to the second
step candidate being a Gaussian random variable, ξ ∼ N (φ

(k)
i |c0Σk). The ideas to accept a global transition

after having accepted a local proposition can be summarised in Algorithm 3.
Algorithm 3: Global acceptance using delayed rejection

if ξ was accepted as local candidate then
Accept ξ as a global transition with probability

αgk

(
ξ
∣∣∣φ(k)
i

)
(3.25)

else
Generate a second candidate ξ2 from

ξ2 ∼ N (φ
(k)
i |c0Σk) (3.26)

if ξ2 is accepted with probability αk,2(φ
(k)
i , ξ2) computed as in equation (3.24) then

φ
(k)
i+1 = ξ2 (3.27)

else

φ
(k)
i+1 = φ

(k)
i (3.28)

end
end

4. Implementation Aspects

The computational complexity of the posterior distribution in equation (2.14) is governed by the inverse
of the covariance matrix K as it scales with the number of training runs N . Several solutions have been
developed in the literature, such as computation of inverse products of the form K−1u, with u ∈ RN , by means
of Cholesky factors or Spectral Decomposition [see Golub and Van Loan, 1996, for efficient implementations]
to preserve numerical stability in the matrix operations [see Gibbs, 1998]. Nonetheless, numerical stability is
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not likely to be achieved if the training runs are very limited, or if the sampling scheme for such training runs
cannot lead to stable covariance matrices, as depicted in Figure 3.
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Figure 3: Projection of the negative log-posterior curves in the two dimensional length-scale space. Adding the nugget
φδ results in a numerically stable surface.

To overcome this practical deficiency, a correction term in the covariance matrix can be added in order to
preserve diagonal dominancy, that is, we add a nugget hyper-parameter φδ to the covariance such that

Kδ = K + φδ I, (4.1)

is positive definite. Doing so results in the stochastic simulator

yi = η(xi) + σ2 φδ. (4.2)

Note that the interpolating quality of the Gaussian process is lost, however, the term σ2 φδ accounts for
the variability of the simulator that cannot be explained by the emulator given the original assumptions
(adequacy of the covariance function, for example). The nugget can also provide further quantification of
model uncertainty in the inference process as it provides an alternative to smoothing an already complex
surface. As it is also noticed by Andrianakis and Challenor [2012] and Ranjan et al. [2011], the quality
of the emulator changes with the inclusion of the nugget, since it modifies the objective function itself by
introducing new modes in the landscape of the posterior distribution. Note that if such modified landscape is
assessed as not appropriate for the model, a regularisation term can be added in the optimisation formulation
[Andrianakis and Challenor, 2012]. However, by using a multi-modal sampler for stochastic optimisation as
the one proposed, a robust emulator capable of mixing various possibilities can be provided. This results in
an emulator that is able to cope with violations to the modelling assumptions originated by working with a
limited amount of training runs.

We incorporate the nugget term φδ as a hyper-parameter of the correlation function in the Bayesian
inference process. As suggested by Ranjan et al. [2011] a uniform prior distribution U(10−12, 1) for such
parameter is considered. The effect of the bounds is twofold. First, the lower bound is used to guarantee
stability in the covariance matrix. Second, the upper bound is used to force the numerical noise of the
simulator to be smaller than the signal noise of the emulator itself. Note that this last assumption can be
omitted if the problem requires it. By considering the correlation matrix as in equation (4.1), this yields

Σδ = σ2Kδ, (4.3)

where Kδ denotes the corrected correlation matrix and Σδ has been used to denote the covariance matrix of
the Gaussian process. By doing so it is clear that previous considerations regarding σ2, such as the ability of
marginalising it as a nuisance parameter and the use of a non-informative prior remain unchanged [De Oliveira,
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2007].

5. Numerical Experiments

To illustrate the robustness of estimating the hyper-parameters of a Gaussian process using the parallel
AIMS-OPT framework, three test cases have been selected. The first two are common examples that can be
found in the literature. The first is known as the Branin function and has been modified to resemble usual
properties of engineering applications [Forrester et al., 2008]. The second one [Bastos and O’Hagan, 2009] has
been used as a two dimensional function with a challenging complexity for emulating purposes. The third
example presented in this section comes from a real dataset also presented in Bastos and O’Hagan [2009]. In
all the examples it is assumed that h(x) = (1, x1, . . . , xp)

T . Regarding the nugget, a sigmoid transformation
has been performed in order to sample from a Gaussian distribution. Namely, we sample an auxiliary zδ as
part of the multivariate Gaussian in (3.19), and compute the nugget as

θδ =
1− lb

1 + exp(−zδ)
+ lb (5.1)

where lb is the lower bound for the nugget, which is set equal to 10−12. Additionally, the uniform meta-prior
distribution of equation (3.4) has been considered in a practical support of the length-scale parameters in the
logarithmic space, namely a uniform distribution with support in [−7, 7]. For the nugget, a truncated beta
distribution with parameters α = β = 0.5 has been considered since it corresponds to a non informative meta-
prior in the interval [lb, 1]. Here the prefix meta has been used to refer to the algorithm’s prior distribution
and to set a clear distinction from the prior used in the modelling assumptions in equation (2.13).

The code has been implemented in MATLAB and all examples have been run in a GNU/Linux machine
with an Intel i5 processor with 8 Gb of RAM. For the purpose of reproducibility, the code used to generate
the examples in this paper is available for download at https://github.com/agarbuno/paims_codes.

5.1. Branin Function
The version of the Branin function used in this paper is a modification made by Forrester et al. [2008]

for the purpose of Kriging prediction in engineering applications. It is a rescaled version of the original in
order to bound the inputs to the rectangle [0, 1]× [0, 1], with an additional term that modifies its landscape
to include a global optimum. Namely,

f(x) =

(
x2 −

5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

[(
1− 1

8π

)
cos(x1) + 1

]
+ 5x1, (5.2)

where x1 = 15x1 − 5 and x2 = 15x2.
For this case, a sample of 18 design points were chosen with a Latin hypercube sampling scheme. The

resulting log-posterior function possesses 4 different modes in its landscape (see Figure 4(a)) leading to 4
possible configurations of the correlation function. Thus, the impact of the training runs used to construct the
emulator is evident. Among these modes, 4 different types of emulators can be distinguished: an emulator with
high sensitivity to changes in input x1 (mode A in Figure 4(a)); an emulator with rapid changes in x2 for the
correlation structure of the training runs (mode B); a limiting case where dimension x2 is disregarded in the
correlation function, due to a high value in φ2 (mode C); or a second limiting emulator which approximates a
Bayesian linear regression model (mode D) [see Andrianakis and Challenor, 2012, for a detailed discussion].
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Figure 4: Projection of the negative log-posterior curves in the two dimensional length-scale space for the Branin
simulator. The minimum possible value of 10−12 for the nugget φδ has been used for such projection. The
reference diagonal helps visualise the regions where the length scales favour one dimension over the other.

For this example, two thousand samples were generated in each annealing level. The parallel AIMS-OPT
algorithm generated 7 annealing levels to produce the samples in Figure 4(b). The RMSE of the MAP model
is 7.068 whereas the RMSE of the mixture is 15.099 which is an indication that in terms of brute prediction,
the mixture model could be improved by taking more samples. Figure 4(c) depicts the standardised residuals
from both the MAP approach (top) and the mixture model (bottom) using equations (2.10) and (2.11) with
uniform weights in the sample.The standardised residuals are defined as

r(x) =
y − µ(x)√
σ2(x)

, (5.3)

where y is the output for configuration x, µ(x) = E[y|x,D] and σ2(x) = var(y|x,D), the posterior mean and
variance for configuration x [see Bastos and O’Hagan, 2009]. By marginalising the hyper-parameters it is
clear that our estimation is a more robust in terms of error prediction. Even with such limited amount of
information the residuals suggest that the uncertainty is being incorporated appropriately in the marginalised
predictive posterior distribution in equation (2.6). The standardised residuals are inside the bands, though
not too close to 0. This avoids an excessively large variance for the predictive distribution.

5.2. 2D Model
This function has already been used as an example for emulation purposes and can be found in GEM-

SA software web page (http://ctcd.group.shef.ac.uk/gem.html). Even though it is a two dimensional
problem it also serves as a good illustration of the importance of estimating the hyper-parameters of a
Gaussian process with a multi-modal sampler. The mathematical expression for this simulator is

f(x) =

[
1− exp

(
−0.5

x2

)] (
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x2
1 + 500x2

1 + 4x1 + 20

)
. (5.4)

As in the previous case, the training runs and the modelling assumptions fail to summarise the uncertainty
in a uni-modal posterior distribution. The design points where selected using a Latin hypercube in the
rectangle [0, 1]× [0, 1]. It can be seen from Figure 5(a) that the modes are separated by a wide valley of low
posterior probability, which can become an overwhelming task for traditional MCMC samplers. The proposed
sampler is able to cope with all local and global spread dynamics present in the neighbourhoods of the modes
it encounters, as shown in Figure 5(b).
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Figure 5: Projection of the negative log-posterior curves in the two dimensional length-scale space for the 2D Model
simulator. The minimum possible value of 10−12 for the nugget φδ has been used for such projection. The
reference diagonal helps visualise the regions where the length scales favour one dimension over the other.

Depicted in Figures 5(a) and 5(c) the use of the reference prior in the posterior distribution removes
probability mass from the neighbourhood around the origin. This validates the use of the reference prior
to cut out regions from the sample space for the sampling and exploit the most information contained in
the data available, namely, the training runs D. As in the previous example, two thousand samples were
generated in each annealing level. The parallel AIMS-OPT algorithm generated 7 annealing levels to produce
the samples in Figure 5(b). In terms of prediction accuracy, we now obtain that the RMSE is 1.356 for the
MAP estimate and 1.345 for the mixture model. While as for the residuals, we can see from Figure 5(d) that
the mixture model consistently narrows the spread of the prediction, resulting in a more robust estimation of
the error predictions.

5.3. Nilson-Kuusk Model
This simulator is built from the Nilson-Kuusk model for the reflectance for homogeneous plant canopy.

Such model is a five dimensional simulator whose inputs are the solar zenith angle, the leaf area index, relative
leaf size, the Markov clumping parameter and a model parameter λ [see Nilson and Kuusk, 1989, for further
details on the model itself and the meaning of the inputs and outputs]. For the analysis presented in this paper
a single output emulator is assumed and the set of the inputs have been rescaled to fit the hyper-rectangle
[0, 1]5 on a five dimensional space as in Bastos and O’Hagan [2009].

As in the previous test cases, the design points were chosen by Latin hypercube designs (100 for this
case). In this example, the dimension of the problem makes it impossible to plot the level curves of the
posterior distribution for the length scale hyper-parameters. However, the plots of the estimated densities
computed from the sample obtained after 11 levels of the parallel AIMS-OPT algorithm strongly suggest
that the samples come from a multi-modal posterior distribution, even though the samples are concentrated
around one mode. Additionally, it can be noted that for the third and fourth input of the model the output
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changes very smoothly. Furthermore, a limit-case emulator can be suggested by the plot in 6(d) by considering
a surrogate with no fourth input in the model. Notice the scale for such hyper-parameter and the mode
appearing around e10.
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Figure 6: Estimated densities for the hyper-parameters and objective function obtained from the Nilson-Kuusk model.

Due to the larger number of dimensions, five thousand samples were generated for each annealing level. In
this case we have that the RMSE of the MAP estimate is 0.022 while the RMSE of the mixture proposal is
0.021 which is a consequence of the sample being highly concentrated around one mode. In Figure 7 there
is evidence that even with such behaviour the predictive error is improved by narrowing the spread of the
standardised residuals. In this case the residuals cannot all be contained in the bands but as noted by Bastos
and O’Hagan [2009] in their experiments there is strong evidence that in this case more runs of the simulator
are needed to adequately built a statistical surrogate.
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Figure 7: Residuals plot for the Nilson-Kuusk simulator
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6. Conclusions

This paper proposes to estimate the hyper-parameters of a Gaussian process using a new sampler based
on the Asymptotically Independent Markov Sampling (AIMS) method. The AIMS-OPT algorithm, used in
stochastic optimisation, provides a robust computation of the MAP estimates of the hyper-parameters. This
is done by providing a set of approximations to the optimal solution instead of a single approximation as it is
so frequently done in the literature. The problem is approached in a combined effort from the computational,
optimisation and probabilistic perspectives which serve as solid foundations for building surrogate models for
computationally expensive computer codes.

The original AIMS algorithm has been extended to provide an efficient sampler in computational terms,
by means of parallelisation, as well as an effective sampler with good mixing qualities, by means of both the
delayed rejection and adaptive modification exposed. It has been demonstrated that by using the parallel
AIMS-OPT algorithm it is possible to acknowledge uncertainty in the structure of the emulator proposed
as illustrated in the examples provided. Structural uncertainty should be taken into account to determine
when the training runs available are sufficient to narrow the posterior distribution of the hyper-parameters
to a uni-modal convex distribution. Even though it has been proven to be effective in lower and medium
dimensional design spaces, research in high dimensional spaces has been left for future research.
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Appendix A.

In this appendix, a proof that using the delayed rejection algorithm in the AIMS framework leaves the
target distribution pk(·) invariant is provided.

A sufficient condition to prove that indeed pk(·) is the stationary distribution for the Markov chain is to
prove that the detailed balance condition is satisfied. Since the first stage approval has been proven to satisfy
the detailed balance condition in Zuev and Beck [2013], it will only be proved for the second stage sampling.

Let fk(φ2|φ0) describe the AIMS-OPT delayed transitions in the k-th annealing level from φ0 → φ2, with
φ2 6= φ0. Let φ1 be the rejected transition in the first stage, for any φ0,φ1,φ2 ∈ Φ\{φ(k−1)

1 , . . . ,φ(k−1)
n }. It

will be proved that for such candidates the following holds:

pk(φ0)f2(φ2|φ0) = pk(φ2)f2(φ0|φ2). (A.1)

As seen from the description in section 3.4 it follows that

fk(φ2|φ0) = p̂k,n(φ1)︸ ︷︷ ︸
generate φ1

(1− a1(φ0,φ1))︸ ︷︷ ︸
reject φ1

S2(φ2|φ0,φ1)︸ ︷︷ ︸
generate φ2

a2(φ0,φ2)︸ ︷︷ ︸
accept φ2

, (A.2)

where it is used the fact that AIMS-OPT generates first stage proposals with an independent approximate
distribution. Recall that the probability of a second stage proposal is

a2(φ0,φ2) = min

{
1,
pk(φ2)S2(φ0|φ2,φ1) (1− a1(φ2,φ1))

pk(φ0)S2(φ2|φ0,φ1) (1− a1(φ0,φ1))

}
(A.3)

and the fact that for any two positive numbers a, b the equality a min{1, b/a} = b min{1, a/b} is satisfied.
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With these two equalities we can substitute the left hand side of equation (A.1) as

pk(φ0)f2(φ2|φ0) = p̂k,n(φ1) [pk(φ0)S2(φ2|φ0,φ1) (1− a1(φ0,φ1))] a2(φ0,φ2)

= p̂k,n(φ1) [pk(φ2)S2(φ0|φ2,φ1) (1− a1(φ2,φ1))] a2(φ2,φ0)

= pk(φ2) f2(φ0|φ2), (A.4)

which proves the detailed balance for the second stage proposal. Note that the proof has been made with no
further assumptions about the second stage proposal distribution S2(φ2|φ0,φ1), as it can be defined from
several candidates. In this work, a symmetric proposal that ignores the rejected sample has been used since it
can be interpreted as a Random Walk safeguard against a possible ill approximation done by the independent
sampler.
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