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Abstract 

Identifying the parameters of a model and rating competitive models based on measured data has 

been among the most important but challenging topics in modern science and engineering, with 

great potential of application in structural system identification, updating and development of 

high fidelity models. These problems in principle can be tackled using a Bayesian probabilistic 

approach, where the parameters to be identified are treated as uncertain and their inference 

information are given in terms of their ‘posterior’ (i.e., given data) probability distribution. For 

complex models encountered in applications, efficient computational tools robust to the number 

of uncertain parameters in the problem are required for computing the ‘posterior statistics’, 

which can generally be formulated as a multi-dimensional integral over the space of the 

uncertain parameters. Subset Simulation (SuS) has been developed for solving reliability 

problems involving complex systems and it is found to be robust to the number of uncertain 

parameters. An analogy has been recently established between a Bayesian updating problem and 

a reliability problem, which opens up the possibility of efficient solution by SuS. The 

formulation, called BUS (Bayesian Updating with Structural reliability methods), is based on 

conventional rejection principle. Its theoretical correctness and efficiency requires the prudent 

choice of a multiplier, which has remained an open question. Motivated by the choice of the 

multiplier and its philosophical role, this paper presents a study of BUS. The work leads to a 

revised formulation that resolves the issues regarding the multiplier so that SuS can be 
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implemented without knowing the multiplier. Examples are presented to illustrate the theory and 

applications. 
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Introduction  

Making inference about the parameters of a mathematical model based on observed 

measurements of the real system is one of the most important problems in modern science and 

engineering. The Bayesian approach provides a fundamental means to do this in the context of 

probability logic (Malakoff 1999, Cox 1961, Jaynes 2003), where the parameters are viewed as 

uncertain variables and the inference results are cast in terms of their probability distribution 

after incorporating information from the observed data. In engineering dynamics, for example, 

vibration data from a structure is collected from sensors and used for identifying the modal 

properties (e.g. natural frequencies, damping ratios, mode shapes) and structural model 

properties (e.g. stiffness, mass) (Hudson 1977, Ewins 2000). This has been formulated in a 

Bayesian context (Beck & Katafygiotis 1998, Beck 2010), which resolved a number of 

philosophically challenging issues of the inverse problem, such has the treatment of multiple sets 

of parameters giving the same model fit to the data, an issue known as ‘identifiability’.   

 

Let nRΘ  be a set of parameters of a model M , based on which a probabilistic prediction of 

the data D  can be formulated through the ‘likelihood function’ ),|( MθDP . Clearly, the 

probability distribution of Θ  depends on the available information. Based only on knowledge in 

the context of M , the distribution is described by the ‘prior distribution’ )|( Mθp . When data 

about the system is available, it can be used to update the distribution. Using Bayes’ Theorem, 

the ‘posterior distribution’ that incorporates the data information in the context of M  is given by 

)|(),|()|(),|( 1 MMMM θθθ pDPDPDp        (1) 

where 
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 θθθ dpDPDP )|(),|()|( MMM         (2) 

is a normalizing constant. Future predictions of a response quantity of interest )(θr  (say) can be 

updated by incorporating data information, through the posterior expectation (Papadimitriou et 

al. 2001): 

 θθθθ dDprDrE ),|()(],|)([ MM         (3) 

As far as the posterior distribution of Θ  for a given model M  is concerned, the constant in (2) is 

immaterial because it does not change the distribution. However, it is the primary quantity of 

study in Bayesian model class selection problems where competing models are compared based 

on the value of )|()( MM DPP  (Carlin & Chib 1995, Chen et al. 2000, Beck & Yuen 2004). In 

that context, )|( MDP  is often called the ‘evidence’ (the higher the better).  

 

Capturing efficiently essential information about the posterior distribution, i.e., posterior 

statistics, and calculating the posterior expectation is a highly non-trivial problem, primarily 

resulting from the complexity of the likelihood function. In many applications, the likelihood 

function is only implicitly known, i.e., its value can be calculated point-wise but its dependence 

on the model parameters is mathematically intractable. This renders analytical solutions 

infeasible and conventional numerical techniques inapplicable. In this case, Markov Chain 

Monte Carlo (MCMC) (Metropolis et al. 1953, Hastings 1970, Robert & Casella 2004, Fishman 

1996) is found to provide a powerful computational tool. MCMC allows the samples of an 

arbitrarily given distribution to be efficiently generated as the samples of a specially designed 

Markov chain. In MCMC, candidate samples are generated by a ‘proposal distribution’ (chosen 

by the analyst) and they are adaptively accepted based on ratios of the target distribution value at 

the candidate and the current sample. If the candidate is rejected, the current sample is taken as 

the next sample. In the context of the Bayesian updating problem, samples following the 

posterior distribution are generated using MCMC and they are used for estimating posterior 

statistics by means of statistical averaging.  

 

While MCMC in principle provides a powerful solution for Bayesian computation, difficulties 

are encountered in applications, motivating different variants of the algorithm. For example, in 
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problems with a large amount of data, the posterior distribution takes on significant values only 

in a small region of the parameter space, whose size generally shrinks in an inverse square root 

law with the data size. Depending on sufficiency or relevance of the data for the model 

parameters, the regions of significant probability content can be around a set of isolated points 

(globally or locally identifiable) or a lower dimensional manifold (unidentifiable) with non-

trivial geometry (Katafygiotis & Beck 1998, Katafygiotis & Lam 2002). To the least extent this 

causes efficiency problems, making the choice of the proposal distribution difficult and leading 

to high rejection rate of candidates and hence poor efficiency. When the issue is not managed 

properly, significant bias can result in the statistical estimation based on the samples. Strategies 

similar to simulated annealing have been proposed to convert the original difficult updating 

problem effectively into a sequence of more manageable problems with less data, thereby 

allowing the samples to adapt gradually (Beck & Au 2002, Cheung & Beck 2009, Ching & Chen 

2007). Another issue is ‘dimension sustainability’, i.e., whether the algorithm remains applicable 

when the number of variables (i.e., dimension) of the problem increases. This imposes 

restrictions on the design of MCMC algorithms so that quantities such as the ratio of likelihood 

functions involved in the simulation process do not ‘degenerate’ as the dimension of the problem 

increases.     

 

Application robustness and dimension sustainability are well-recognized in the engineering 

reliability method literature (Au & Beck 2003, Schueller et al. 2004, Katafygiotis & Zuev 2008). 

In this area, the general objective is to determine the failure probability that a scalar response of 

interest exceeds a specified threshold value, or equivalently to determine its complementary 

cumulative distribution function (CCDF) near the upper tail (i.e., large thresholds). Subset 

Simulation (SuS) (Au & Beck 2001, Au & Wang 2014) has been developed as an advanced 

Monte Carlo strategy that is efficient for small failure probabilities (rare events) but still retain a 

reasonable robustness similar to the Direct Monte Carlo method. In SuS, samples conditional on 

a sequence of intermediate failure events are generated by MCMC and they gradually populate 

towards the target failure region. These ‘conditional samples’ provide information for estimating 

the whole CCDF of the response quantity of interest. SuS typically does not make use of any 

problem-specific information, treating the input-output relationship between the response and the 
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uncertain parameters as a ‘black box’. Based on an independent-component MCMC strategy, it 

is applicable for an arbitrary (potentially infinite) number of uncertain variables in the problem.  

 

By establishing an analogy with the reliability problem that SuS is originally designed to solve, it 

is possible to adapt SuS to provide an efficient solution for another class of problems. For 

example, by considering an ‘augmented reliability problem’ where deterministic design 

parameters are artificially considered as uncertain, SuS has been applied to investigate the 

sensitivity of the failure probability with respect to the design parameters and their optimal 

choice without repeated simulation runs (Au 2005, Ching & Hsieh 2007, Song et al. 2009, 

Taflanidis & Beck 2009). Another example can be found in constrained optimization problems, 

where an analogy was established between rare failure events in reliability problems and extreme 

events in optimization problems, allowing SuS to be applied to solving complex problems with 

nonlinear objective functions and potentially a large number of inequality constraints and 

optimization variables (Li & Au 2010, Wang et al. 2011). 

 

In view of the application robustness and dimension sustainability, it would be attractive to adapt 

SuS for Bayesian computations. This is not trivial since the problem contexts are different. One 

major difference is that in the reliability problem the uncertain parameters follow standard 

classes of distributions (e.g., Gaussian, exponential) specified by the analyst; while in the 

Bayesian updating problem the uncertain parameters follow the posterior distribution, which 

generally does not belong to any standard distribution because the likelihood function is 

problem-dependent.  

 

Recent developments have shown promise for adapting SuS to Bayesian updating problems. In 

the context of Approximate Bayesian Computation (ABC), Chiachio et al. (2014) built an 

analogy with the reliability problem so that the posterior samples in the Bayesian updating 

problem can be obtained as the conditional samples in SuS at the highest simulation level 

determined by a tolerance parameter that gradually diminishes. The latter controls the 

approximation of the likelihood function through a proximity model (a feature of ABC) between 

the measured and simulated data for a given value of model parameter.  
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Along another line of thought, Straub and Papaioannou (2014) recently provided a formulation 

called BUS (Bayesian Updating using Structural reliability methods) that opens up the possibility 

of Bayesian updating using Subset Simulation. It combined an earlier idea (Straub 2011) with the 

standard rejection principle to establish an analogy between a Bayesian updating problem and a 

reliability problem, or more correctly a ‘probabilistic failure analysis’ problem (Au & Beck 

2003, Au 2004, Au & Wang 2014). Through the analogy, the samples following the posterior 

distribution in the Bayesian updating problem can be obtained as the conditional samples in the 

reliability problem. Unlike ABC, the formulation is exact as it respects fully the original 

likelihood function; and in this sense it is more fundamental. One outstanding problem, however, 

is the choice of the ‘likelihood multiplier’, or ‘multiplier’ in short, in the context of rejection 

principle. To guarantee the theoretical correctness of the analogy, it must be less than the 

reciprocal of the maximum value of the likelihood function, which is generally unknown 

especially before the problem is solved. Some suggestions have been given in Straub & 

Papaioannou (2014) based on inspection of the likelihood function. An adaptive choice was 

suggested based empirically on the generated samples (Betz et al. 2014). It is more robust to 

applications as it does not require prior input from the analyst. However, the problem remains 

open, since Betz et al. conjecture in their paper that the samples produced by their method are 

from the posterior distribution. They point out that more theoretical analysis of their results is 

needed. 

 

This work is motivated by the choice of the multiplier and its mathematical and philosophical 

role in the BUS formulation. A rigorous mathematical study is carried out to provide 

understanding of the multiplier, which leads to a revised formulation, allowing SuS to be 

implemented independent of the choice of the multiplier and convergence of results to be 

checked formally. Essentially, by defining the failure event in the BUS formulation, we show 

that SuS can in fact be implemented without the multiplier and the samples beyond a certain 

simulation level all have the same target posterior distribution.  

 

This paper is organized as follows. We first give an overview of Subset Simulation and the 

original BUS formulation. The mathematical role of the multiplier and its bias effect arising from 

inappropriate choice are then investigated. A revised formulation is then proposed and associated 
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theoretical issues are investigated, followed by a discussion on the application of SuS under the 

revised formulation. Examples are presented to explain the theory and illustrate its applications.      

 

Subset Simulation 

We first briefly introduce Subset Simulation (SuS) to facilitate understanding its application in 

the context of Bayesian model updating and model class selection later. SuS is an advanced 

Monte Carlo method for reliability and failure analysis of complex systems, especially for rare 

events. It is based on the idea that a small failure probability can be expressed as a product of 

larger conditional failure probabilities, effectively converting a rare simulation problem into a 

series of more frequent ones.  

 

Reliability and failure analysis problem 

Despite the variety of failure events in applications, they can often be formulated as the 

exceedance of a critical response over a specified threshold. Let )(ΘhY  , be a scalar response 

quantity of interest that depends on the set of uncertain parameters Θ  distributed as the 

parameter probability density function (PDF) )(θq . The function h  represents the relationship 

between the uncertain input parameters and the output response. The parameter PDF q  is 

specified by the analyst from standard distributions. Without loss of generality, the uncertain 

parameters are assumed to be continuous-valued and independent, since discrete-valued 

variables or dependent variables can be obtained by mapping continuous-valued independent 

ones.  

 

The primary interest of reliability analysis is to determine the ‘failure probability’ )( bYP   for a 

specified threshold value b : 

  θθθ dFIqbYP )()()(          (4) 

where  

})(:{}{ bhRbYF n  θθ         (5) 
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denotes the failure event or the failure region in the parameter space, depending on the context; 

)(I  is the indicator function, equal to 1 if its argument is true and zero otherwise. Probabilistic 

failure analysis on the other hand is concerned with what happens when failure occurs, which 

often involves investigating the expectation of some response quantity )(Θr  (say) conditional on 

the failure event, i.e.,  

 θθθΘ dFqrFrE )|()(]|)([         (6) 

where 

)()()|( 1 FIqPFq F  
θθθ          (7) 

is the PDF of Θ  conditional on failure.  

 

When the relationship between Y  and Θ , i.e., the function h , is complicated, analytical or 

conventional numerical integration is not feasible for computing )( bYP   or ]|)([ FrE Θ . 

Advanced computational methods are then required for their efficient determination. SuS offers 

an efficient solution by generating a sequence of sample populations of Θ  conditional on 

increasingly rare failure events }{ ibY  , where ,...}2,1:{ ibi  is an increasing sequence of 

threshold values adaptively determined during the simulation run. These ‘conditional samples’ 

provide information for estimating the CCDF of Y , i.e., )( bYP   versus b  from the frequent 

(left tail) to the rare (right tail) regime. When the right tail covers the threshold value associated 

with the target failure event, the required failure probability can be obtained from the estimate of 

the CCDF. The conditional samples can also be used for estimating the conditional expectation 

in probabilistic failure analysis, a feature not shared by conventional variance reduction 

techniques. As we shall see in the next section, through the analogy between the reliability and 

Bayesian updating problem, the conditional samples provide the posterior samples required for 

Bayesian model updating. The failure probability provides the information for estimating the 

evidence for Bayesian model class selection.  
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Subset Simulation procedure 

A typical SuS algorithm is presented as follows (Au & Beck 2001, Au & Wang 2014). Two 

parameters should be set before starting a simulation run: 1) the ‘level probability’ )1,0(0 p  

and 2) the ‘number of samples per level’ N . It is assumed that Np0  and 1
0
p  are positive 

integers. As will be seen shortly, these are respectively equal to the number of chains and the 

number of samples per chain at a given simulation level. In the reliability literature, a prudent 

choice is 1.00 p . The number of samples N  controls the statistical accuracy of results (the 

higher the better), generally in an inverse square root manner. Common choice ranges from a 

few hundreds to over a thousand, depending on the required accuracy of the target failure 

probability estimate.   

 

A simulation run starts with Level 0 (unconditional), where N  i.i.d. (independent and identically 

distributed) samples of Θ  are generated from q , i.e., Direct Monte Carlo. The corresponding 

values of Y  are computed and arranged in ascending order, giving an ordered list denoted by 

},...,1:{
)0(

Nkb
k

 . The value 
)0(

k
b  gives the estimate of b  corresponding to the exceedance 

probability )(
)0(

bYPp
k

  where 

N

kN
pk




)0(
    Nk ,...,1       (8) 

The next level, i.e., Level 1, is conditional on the intermediate failure event }{ 1bY  , where 1b  is 

determined as the )1( 0 Np -th largest sample value of Y  at Level 0, i.e.,  

)0(
)1(1

0pN
bb


            (9) 

By construction, the Np0  samples of Θ  corresponding to },...,1:{ 0
)0(

)1( 0
Npjb

jpN



 are 

conditional on }{ 1bY  . These conditional samples are used as ‘seeds’ for generating additional 

samples conditional on }{ 1bY   by means of MCMC. A MCMC chain of 1
0
p  samples is 

generated from each seed, giving a total a population of NpNp  1

00  samples conditional on 

}{ 1bY   at Level 1.  
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During MCMC the values of Y  of the conditional samples at Level 1 have been calculated. They 

are arranged in ascending order, giving the ordered list denoted by },...,1:{
)1(

Nkb
k

 . The value 

)1(
k

b  gives the estimate of b  corresponding to exceedance probability )(
)1(

bYPp
k

  where 

N

kN
pp

k


 0

)1(
   Nk ,...,1       (10) 

The next level, i.e., Level 2, is conditional on }{ 2bY   where 2b  is determined as the 

)1( 0 Np -th largest sample value of Y  at Level 1, i.e.,  

)1(
)1(2

0pN
bb


            (11) 

The above process of generating additional MCMC samples and moving up simulation levels is 

repeated until the target threshold level or probability level has been reached. In general, at Level 

i  ( ,...2,1i ), in the ordered list of sample values of Y  denoted by },...,1:{
)(

Nkb
i

k
 , the value 

)(i
k

b  gives the estimate of b  corresponding to exceedance probability )(
)(

bYPp
i

k
  where 

N

kN
pp ii

k


 0

)(
   Nk ,...,1       (12) 

 

Several features of SuS are worth-mentioning. It is population-based in the sense that the 

samples at a given level are generated from multiple ( Np0 ) chains, making it robust to ergodic 

problems. An independent-component MCMC algorithm is used, which is the key to be 

sustainable for high dimensional problems (Au & Beck 2001, Schueller et al. 2004, Haario et al. 

2005). The conditional samples at each level all have the target conditional distribution and there 

is no ‘burn-in’ problem commonly discussed in the MCMC literature. This is because the 

MCMC chains are all started with a seed distributed as the target distribution (conditional on that 

level), and so they are stationary right from the start. 

 

Variants of the SuS algorithm have been proposed to improve efficiency, e.g., Papadopoulos et 

al. (2012), Zuev & Katafygiotis (2011), Bourinet et al. (2011). See also the review in Section 5.9 

of Au & Wang (2014). The algorithm can even be implemented as a VBA (Visual Basic for 

Applications) Add-In in a spreadsheet (Au et al. 2010, Wang et al. 2010). 

 



11 

 

BUS formulation 

In this section we review the BUS formulation (Straub & Papaioannou 2014) that builds an 

analogy between the Bayesian updating problem and a reliability problem, thereby allowing SuS 

to be applied to the former. For mathematical clarity and to simplify notation, in the Bayesian 

updating problem we use )(θq  to denote the prior PDF )|( Mθp , )(θL  to denote the likelihood 

function ),|( MθDp , DP  to denote the normalizing constant )|( MDP , and )(θDp  to denote 

the posterior PDF ),|( MDp θ . The same symbol )(θq  is used for the prior PDF in the Bayesian 

updating problem and the parameter PDF in the reliability problem, as it has the same 

mathematical property (chosen from standard distributions by the analyst) and role (the 

distribution to start the SuS run) in both problems. In a Monte Carlo approach the primary target 

in Bayesian model updating is to generate samples according to the posterior PDF )(θDp  

(rewritten from (1)): 

)()()( 1
θθθ LqPp DD

          (13) 

 

Rejection principle 

The BUS formulation is based on the conventional rejection principle. Let c , called the 

‘likelihood multiplier’ in this work, or simply ‘multiplier’, be a scalar constant such that for all θ  

the following inequality holds: 

1)( θcL             (14) 

Also, assume that i.i.d. samples can be efficiently generated from the prior PDF )(θq . This is a 

reasonable assumption because the prior PDF is often chosen from a standard class of 

distributions (e.g., Gaussian, exponential). In the above context, a sample Θ  distributed as the 

posterior PDF )()()( θθθ LqpD   in (13) can be generated from the following straightforward 

application of the rejection principle: 

 

Step 1. Generate U  uniformly distributed on ]1,0[  and Θ  distributed with the prior PDF )(θq . 

Step 2. If )(ΘcLU  , return Θ  as the sample. Otherwise go back to Step 1.  
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The following standard proof shows that the sample Θ  returned from the above algorithm is 

distributed as )(θDp  in (13). First note in Step 1 that Θ  is distributed as )(θq  and U  as 

)10(  uI , and so their joint PDF is )10()(  uIq θ . In Step 2, since ),( UΘ  are only returned 

when )(ΘcLU  , their joint PDF is simply the joint PDF in Step 1 conditional on this event. 

That is, 

)]([)10()(),( 1
, θθθΘ cLuIuIqPup AU         (15) 

where 

   θθθ dudcLuIuIqPA )]([)10()(        (16) 

is the probability that the sample is accepted in Step 2, i.e., ‘acceptance probability’.  

 

The marginal PDF of Θ  returned by the rejection algorithm can be obtained by integrating out 

the uncertainty of U : 

)(           

)()(           

)]([)10()(           

),()(

1

1

0

1

1

0 ,

θ

θθ

θθ

θθ ΘΘ

D

A

A

U

p

cLqP

ducLuIuIqP

duupp
















      (17) 

where the third equality follows from the fact that 1)( θcL  from (14). This shows that the 

sample Θ  returned by the rejection algorithm indeed follows the posterior PDF )(θDp . 

Integrating (13) and (17) over the whole space and noting that the integral on the LHS is 1 gives 

DA cPP             (18) 

 

Although the above rejection algorithm is theoretically viable, the acceptance probability and 

hence efficiency is often very low in typical updating problems with a reasonable amount of 

data. This is because a typical sample drawn from the prior PDF )(θq  often has a low likelihood 

value )(θL  when the data is informative about the uncertain parameters, leading to significant 

change from the prior to the posterior PDF. 
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Equivalent reliability problem 

Recognizing the high rejection rate when the rejection principle is directly applied, BUS 

transforms the problem into a reliability problem. The premise is that this will allow the existing 

algorithms developed in the reliability method literature to be applied to Bayesian updating 

problems, especially those are that capable of generating samples from the frequent (safe) region 

to the rare (failure) region, such as SuS. The reliability problem analogy of the Bayesian 

updating problem is constructed as follows. Consider a reliability problem with uncertain 

parameters ),( UΘ  having the joint PDF )10()(  uIq θ , where the ‘failure event’ is defined as  

)}({ θcLUF            (19) 

Suppose that by some means (e.g., SuS) we can obtain a ‘failure sample’ distributed as 

)10()(  uIq θ  and conditional on the failure event F . The PDF of the failure sample, denoted 

by ),( U Θ , is given by 

)]([)10()(),( 1
, θθθΘ cLuIuIqPup FU  
       (20) 

where 

   θθθ dudcLuIuIqPF )](()10()(        (21) 

is the ‘failure probability’ of the reliability problem. Except for the normalizing constant (which 

does not affect the distribution), the expression in (20) is the same as that in (15). Following 

exactly the same steps in (17), the marginal PDF of the failure sample is shown to be equal to the 

posterior PDF: 

)(            

)()(            

)]([)10()(            

),()(

1

1

0

1

1

0 ,

θ

θθ

θθ

θθ ΘΘ

D

F

F

U

p

cLqP

ducLuIuIqP

duupp



















      (22) 

Integrating (13) and (22) over the whole space and noting that the integral on the LHS is 1 gives 

AF PP             (23) 
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Posterior samples by Subset Simulation 

The theory described in the last subsection is the essence of the formulation proposed in Straub & 

Papaioannou (2014), called BUS (Bayesian Updating using Structural reliability methods). It 

converts the generation of samples from the posterior PDF in Bayesian updating problems into 

the generation of failure samples in a reliability problem, or more specifically, a ‘probabilistic 

failure analysis’ problem (Au & Beck 2003, Au 2004). The significance of the BUS analogy is 

that it generalizes the idea of rejection principle so that the posterior samples need not come from 

a standard rejection algorithm. Any algorithm that can generate the failure samples in the 

equivalent reliability problem can be used. SuS is a natural choice because it not only provides 

the estimate for failure probability but also the failure samples, which are not provided by 

conventional reliability methods.  

 

In Straub & Papaioannou (2014), the driving response variable was defined as (see a quick remark 

after this paragraph)  

UcLY  )(Θ           (24) 

so that the failure event corresponds to  

}0{  YF            (25) 

Populations of failure samples conditional on the intermediate failure events }{ ii bYF   for 

adaptively increasing ib  ( ,...2,1i ) are then generated until they pass the target failure event 

}0{  YF , from which the samples conditional on F  are collected as the posterior samples. 

 

As a remark, in Straub & Papaioannou (2014) the driving response variable was in fact defined in 

a reverse manner as )(ΘcLUY  . The presentation in (24) is adopted here so that it is 

consistent with the conventional SuS literature, where the intermediate threshold level increases 

rather than decreases as the simulation level ascends.   

 

Likelihood multiplier 

One issue of concern in the BUS formulation is the choice of the multiplier c  satisfying the 

inequality in (14), which is not always trivial. Some suggestions were given, e.g., by inspecting 
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the mathematical structure of the likelihood function (Straub & Papaioannou 2014); or by 

adaptively using empirical the information from the generated samples (Betz et al. 2014). The 

latter is more robust as it does not require preliminary analysis, but, as stated by the authors, in 

order to guarantee that it satisfies the inequality, more theoretical analysis is needed.. In this 

section we rigourously investigate the role of the multiplier and its effect on the results if it is not 

properly chosen. The investigation leads to a revised formulation to be proposed in the next 

section. 

 

In the context of BUS, the multiplier needs to be chosen before starting a SuS run as it affects the 

definition of the driving variable UcLY  )(Θ  in (24). Clearly, the multiplier affects the 

distribution of the driving variable as well as the generated samples. Recall that only those 

samples conditional on 0)(  UcLY Θ  are collected as the posterior samples. The larger the 

value of c  the more efficient the SuS run, because this will increase Y  and the failure 

probability )0( YP , thereby reducing the number of simulation levels required to reach the 

target failure event.  

 

Largest admissible value 

From the inequality in (14), the choice of the multiplier is governed by the region in the 

parameter space of θ  where the value of )(θL  is large. The largest admissible value of c  is 

given by  

1
max )]([max  θθ Lc          (26) 

This result is well-known in the rejection principle literature. Clearly, this value is not known 

before computation. While using a value smaller than maxc  will be less efficient but still give the 

correct distribution in the samples, using a value larger than maxc will lead to bias in the 

distribution of the samples. In some problems it is possible to investigate the mathematical 

structure of )(θL  and derive inequalities to propose a choice of c  that guarantees 1)( θcL . In 

such cases, it is computationally beneficial to use that value. However, in general it is  difficult 

by numerical means to have choice of c  that guarantees the inequality.   
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Truncation effect of inadmissible multiplier 

When an inadmissible (too large) value of the multiplier is used, the resulting distribution of the 

failure samples will be truncated, leading to bias in the posterior statistical estimates based on 

them. To see this, note that the inequality (14) was used in establishing the third equality in (22) 

(and (17) for the rejection algorithm). Suppose this inequality is violated, say, within some 

region B : 

}1)(:{  θθ cLRB n          (27) 

Then for any Bθ , 1)]([  θcLuI  for 10  u  and so (22) implies 

)()]([)()( 11

0

1
θθθθΘ qPducLuIqPp FF


     Bθ     (28) 

For those θ  not in B , the inequality is satisfied and the PDF value )(θΘp  remains to be the 

correct posterior PDF )(θDp  as in (22): 

)()()()( 1
θθθθΘ DF pcLqPp  

     Bθ     (29) 

Thus, an inadmissible (too large) value of c  introduces bias in the problem by truncating the 

posterior PDF to be the prior PDF in the region of θ  where the inequality is violated. Intuitively, 

in the context of rejection principle, if the multiplier is not small enough, the samples drawn 

from the prior PDF are accepted (incorrectly) ‘too often’, rendering their distribution closer to 

the prior PDF than they should be. 

 

The truncation effect is illustrated in Figure 1, where the shaded interval denotes the region B . 

The prior PDF )(θq  has been taken to be constant (for simplicity in illustration) and so 

)()( θθ cLpD  . Instead of the target posterior PDF, the resulting distribution of the sample takes 

the shape of the center line. Within the region B  it is truncated to the shape of )(θq .  
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Figure. 1. Truncation of distribution in rejection algorithm. Center line – resulting distribution 

(short of the constant 1
FP ); shaded interval – truncation region B  where 1)( θcL . 

 

Distribution invariance to admissible multiplier 

As long as the multiplier satisfies the inequality in (14), it is completely arbitrary and it does not 

affect the distribution of the resulting samples, which is equal to the correct posterior PDF. This 

observation is trivial but has important implications. In the original BUS context, for example, it 

implies that the samples generated in different simulation runs with different admissible values 

of the multiplier can be simply averaged for estimating posterior statistics, because they all have 

the same correct posterior distribution. This fact shall also be used later when developing the 

proposed algorithm in this work.  

 

Alternative BUS formulation 

Having clarified the role of the multiplier, we now present a modification of the original BUS 

formulation that isolates the effect of the multiplier in a fundamental manner. This leads to a 

formulation where SuS can be performed without having to choose the multiplier before the 

simulation run; and where the effect of the multiplier appears clearly in the accuracy of the 

posterior distribution.  
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The modification is based on the simple observation that the failure event in (19) can be 

rewritten as  

















 c

U

L
F ln

)(
ln

Θ
         (30) 

This means that the driving variable in SuS can be defined as  











U

L
Y

)(
ln

Θ
           (31) 

and the target failure event can now be written as 

}{ bYF             (32) 

where 

cb ln            (33) 

The base of the logarithm is arbitrary but we choose to use natural logarithm here to facilitate the 

mathematical analysis.  

 

Despite the apparently slight change in definition of the driving variable, the setup above 

changes the philosophy behind the multiplier and the way SuS is implemented to produce the 

posterior samples. The driving variable no longer depends on the multiplier and so the choice of 

the latter is no longer needed to start the SuS run. The multiplier only affects the target threshold 

level b  beyond which the samples can be collected as posterior samples. As remarked at the end 

of the last section, as long as the multiplier is sufficiently small to satisfy the inequality in (14), 

the distribution of the samples conditional on the failure event )}({ ΘcLUF   is invariably 

equal to the posterior distribution. This implies that in the proposed formulation the distribution 

of the samples conditional on }{ bY   will settle (remain unchanged) for sufficiently large b . In 

the original BUS formulation where the driving variable is defined as UcLY  )(Θ  in (24) for 

a particular value of c  (assumed to be admissible), only the samples conditional on the failure 

event }0{  YF , i.e., for a threshold value of exactly zero, have the posterior distribution. 

 

Substituting cb ln  from (33) into (14) and rearranging, the inequality constraint in terms of 

b  is given by, for all θ , 

)(ln θLb             (34) 
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From (26), the maximum admissible value of c  is 1
max )]([max  θθ Lc . Correspondingly the 

minimum value of b  beyond which the distribution of samples will settle at the posterior PDF is  

)](ln[maxln maxmin θθ Lcb          (35) 

Similar to maxc , the value of minb  is generally unknown but this does not affect the SuS run. 

Under the proposed formulation, one can simply perform SuS with increasing levels until one 

determines that the threshold level of the highest level has passed minb . Despite not knowing 

minb , this turns out to be a more well-defined task as it is shown later that the CCDF of Y , i.e., 

)( bYP   versus b , has characteristic behavior for minbb  . 

 

The authors believe that, while respecting the originality of BUS, the proposed formulation  

resolves the issue with the multiplier, as the requirement of choosing it a priori in the original 

formulation has been eliminated. The theoretical foundation of the proposed formulation is 

encapsulated in the following theorem. The first claim of the theorem has been established in 

(22). The second claim will be shown in (40).  

 

Theorem 

Let nRΘ  be distributed as )(θq , U  be uniformly distributed on ]1,0[ ; Θ  and U  be 

independent. Let )(θL  be a non-negative scalar function of nRθ . Define ]/)(ln[ ULY Θ . 

Then for any )](ln[max θθ Lb  ,  

1) the distribution of Θ  conditional on }{ bY   is )()()( 1
θθθ LqPp DD

  where 

 zzz dLqPD )()(  is a normalizing constant;  

2) )( bYPeP b
D  .    

■ 

 

Remarks on the definition of driving variable 

From first glance it appears that the driving variable could have been defined without the 

logarithm, without affecting the canonical nature of the proposed formulation. The logarithm is 
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introduced for analytical and computational reasons, so that the driving variable is a well-defined 

random variable. In particular, if the driving variable is defined without the logarithm, i.e., 

ULY /)(Θ , then, since Θ  and U  are independent, its expectation is given by 

][)]([]
)(

[ 1 UELE
U

L
E Θ

Θ
         (36) 

However, 
1

0

1

0

11 ln][ uduuUE  
  is unbounded and so is ]/)([ ULE Θ . Similarly, the second 

moment ][])([])([ 2222   UELEULE ΘΘ  is unbounded because 
1

0

11

0

22 ][    uduuUE   

is unbounded. 

 

On the other hand, for the driving variable proposed in (31),  

)ln()(ln]
)(

ln[ 1 UL
U

L
Y Θ

Θ
        (37) 

For U  uniformly distributed on ]1,0[ , )ln( 1U  is exponentially distributed with mean 1. For a 

well-posed likelihood function )(ΘL  one can expect that )(ln ΘL  is a well-defined random 

variable when Θ  is distributed as q , and so is the driving variable Y . In particular, if the first 

two moments of )(ln ΘL  are bounded, then the same is also true for the first two moments of Y  

because 

1)]([ln         

]ln[)]([ln][ 1



 

Θ

Θ

LE

ULEYE
         (38) 

2)]([ln2})]({[ln          

})]{[ln()][ln()]([ln2})]({[ln          

})]ln()({[ln][

2

2112

212











ΘΘ

ΘΘ

Θ

LELE

UEUELELE

ULEYE

   (39) 

since 1)][ln( 1 UE  and 2})]{[ln( 21 UE  (properties of exponential variable )ln( 1U ).  

 

Bayesian model class selection 

In addition to providing the posterior distribution and estimating the updated expectation in (3), 

the posterior samples can be used for estimating the normalizing constant DP  in (2). This is the 
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primary target of computation in Bayesian model class selection problems, where competing 

models are rated. In this section we show how this can be done using the conditional samples 

generated by SuS in the context of the proposed formulation. 

 

Let b  be an admissible threshold level, i.e., minbb  , so that the samples conditional on }{ bY   

have the correct posterior distribution )(θDp . Consider the failure probability )( bYP  , which 

can be estimated using the samples in SuS. Since ]/)(ln[ ULY Θ  and ),( UΘ  has a joint 

parameter PDF )10()(  uIq θ , )( bYP   is given by 



 

 



















θθθ

θθθ

θ
θ

θ

dLqe

dudLeuIq

dudb
u

L
IuIqbYP

b

b

)()(              

)]([)(              

]
)(

log[)10()()(

1

0
     (40) 

 since )()]([
1

0
θθ LeduLeuI bb    when 1)( 

θLe b  for all θ  (b  is admissible). Observe 

from (2) that DP  is simply the last integral in (40). Thus, 

)( bYPeP b
D      minbb       (41) 

That is, when minbb  , DP  can be obtained as the product of be  and the failure probability 

)( bYP   it corresponds to.  

 

Equation (41) can be rewritten as  

D
bPebYP  )(     minbb       (42) 

Since DP  is constant for a given problem, this suggests that for sufficiently large b , )( bYP   

will decay exponentially with b . Interpreting )( bYP   as the CCDF of Y , this exponential 

decay gives a picture similar to a typical CCDF encountered in reliability analysis. This is 

another (though secondary) merit of introducing the logarithm in the definition of the driving 

variable Y  in (31).  
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Characteristic trends 

As shown in the last section, when minbb   the failure probability )( bYP   in the proposed 

context is theoretically related to the evidence DP  through (41). In the actual implementation 

minb  is not known and so it is necessary to determine whether minbb   so that the samples 

conditional on }{ bY   can be confidently collected as the correct posterior samples. Below we 

argue that the variation of )( bYP   with b  takes on different characteristics on two different 

regimes of b . This may be utilized to judge in a SuS run whether the threshold value of a 

particular simulation level has already passed minb , thereby determining the stopping criterion. 

 

First, note that )( bYP   is a non-increasing function of b . When b  is at the left tail of the 

CCDF, 1)(  bYP  and it typically decreases with b , equal to DP  at minbb  . When minbb   

we know from (42) that b
DePbYP  )(  and so it decays exponentially with b . We can thus 

expect that, as b  increases from the left tail and passes minb , the CCDF of Y  typically changes 

from a decreasing function to a fast (exponentially) decaying function. Correspondingly, the 

function )(ln bYP   changes from a slowly decreasing function to a straight line with a slope of 

1 . 

 

On the other hand, consider the following function: 

)(ln)( bYPbbV            (43) 

This function can be used for computing the log-evidence DPln  as it can be readily seen that 

DPbV ln)(       minbb       (44) 

When b  is at the left tail of the CCDF, 0)(ln  bYP  and so bbV )(  increases linearly with 

b . The above means that as b  increases from the left tail of the CCDF of Y  the function )(bV  

increases linearly, going through a transition until it settles (remains unchanged) at DPln  after 

minbb  . The characteristic behavior of )(ln bYP   and )(bV  are depicted in Figure 2. 
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Figure 2. Characteristic trends of )(ln bYP   and )(bV . 

 

Strictly speaking, the above arguments only apply to the theoretical quantities. In a SuS run the 

quantities )(ln bYP   and )(bV  as a function of b  can only be estimated on a sample basis. The 

resulting estimated counterparts will exhibit random deviation from the theoretical trends due to 

statistical estimation error, whose extent depends on the number of samples used in the 

simulation run (the larger the number of samples, the smaller the error). Nevertheless, the above 

arguments and Figure 2 provide the basis for determining the simulation level to stop and to 

collect the posterior samples. That is, one stops at the simulation believed to have passed the 

transition.  

 

Subset Simulation under the new framework 

In the proposed context, the posterior samples can be obtained from the conditional samples in a 

straightforward manner from a SuS run. No modification of SuS is necessary. Below we outline 

how this can be done, focusing only on issues directly related to the Bayesian updating problem.  

 

Recall the Bayesian updating problem where the primary target is to generate posterior samples 

of nRΘ  distributed as the posterior PDF )()()( θθθ LqpD  , where )(θq  is the prior 

distribution assumed to be chosen from a standard class of distributions (e.g., Gaussian, 

exponential); and )(θL  is the likelihood function for a given set of data. As reviewed in the 

section “Subset Simulation”, a SuS run produces the estimate of the CCDF of the driving 
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variable Y , i.e., )( bYP   versus b . The posterior samples for Bayesian model updating can be 

obtained as the conditional samples in a SuS run for the reliability problem with driving variable 

]/)(ln[ ULY Θ , where Θ  is distributed as )(θq  and U  is uniformly distributed on ]1,0[ ; Θ  

and U  are independent. The conditional samples are collected from the level whose threshold 

level is determined to be greater than minb . 

 

Stopping criteria 

During SuS, suppose simulation levels mi ,...,1,0  has been performed, resulting in the 

estimates )}1(,...,1:),{( 0
)()(

pNkpb
i

k
i

k
  (Levels 1,...,1,0  mi ) and 

},...,1:),{(
)()(

Nkpb
m

k
m

k
  (Level m ) for the CCDF of Y . Plot the estimate of )(ln bYP   and 

)()( bYPebV b   versus b . Examine these two curves and determine whether the threshold 

level mb  of Level m  has passed the point minb  depicted in Figure 2. If this is not the case then 

proceed to the next level. Otherwise, there is no need to proceed to the next level and the 

simulation can be stopped. In this case, take the samples },...,1:{
)(

Nk
m

k
Θ  at Level m  (the 

highest level performed, conditional on }{ mbY  ) as the posterior samples. 

 

The number of simulation levels m  to reach the target level (i.e., with minbbm  ) depends on 

)( minbYP  . The smaller the )( minbYP   the larger the m  required. Assume for simplicity 

that minbbm  . Since mpbYP 0min)(  , the number of levels required is  

0

min

ln

)(ln

p

bYP
m


           (45) 

Evaluating (42) at minbb   gives D
b

PebYP min)( min


 . Substituting )(maxmin θθ Lb   from 

(35) and noting that )]([)()( Θθθθ LEdqLPD    gives 

)(max

)]([
)( min

θ

θ

θ L

LE
bYP           (46) 

and so 
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}
)]([

)(max
ln{)(ln 1

0
θ

θθ

LE

L
pm           (47) 

Equations (46) and (47) are invariant to the scaling of the likelihood function. They show that the 

number of levels to reach the target level depends on how high the likelihood function can reach 

)(max θθ L  compared to its average value )]([ θLE . In this sense, problems requiring more 

computational effort are those when there is a large disparity between the highest value of the 

likelihood function and typical values of the likelihood function sampled from the prior PDF. 

Those problems are precisely the ones that require more advanced strategies than Direct Monte 

Carlo (i.e., sampling from the prior). This is very intuitive and reveals fundamentally one 

computational challenge of Bayesian updating problems. Note that the same conclusions can also 

deduced from the original BUS formulation by following a similar argument. 

 

Posterior statistical estimation 

The posterior samples },...,1:{
)(

Nk
m

k
Θ  obtained from simulation level m  for which 

minbbm   can be used for estimating posterior statistics in Bayesian updating problem and the 

evidence for Bayesian model class section. For the former, the posterior expectation in (3) is 

estimated by simple averaging: 





N

k

m
k

r
N

DrE

1

)(
)(

1
],|)([ Θθ M         (48) 

On the other hand, based on (41), the evidence can be estimated by  

mb
DD pePPDP m

0
~

)|( M         (49) 

Taking logarithm, the log-evidence is estimated by 

0ln
~

lnln)|(ln pmbPPDP mDD M        (50) 

 

Standard Gaussian space 

As a remark on implementation, it is recommended to perform SuS in standard Gaussian space. 

That is, one starts with the standard Gaussian variables },...,{ 11 nZZ  as the uncertain parameters 

in the SuS run and map them to the required variables in the problem, by ),...,( 1 nZZTΘ  and 
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)( 1 nZU . Here )(T  is the Rosenblatt transformation that gives Θ  the desired distribution 

)(θq ; and )(  denotes the standard Gaussian CDF responsible for mapping a the standard 

Gaussian variable 1nZ  to the uniformly distributed variable U  on ]1,0[ . Performing SuS in the 

standard Gaussian space is preferred because it is easier to choose the one-dimensional proposal 

distribution for the independent-component MCMC algorithm. This is especially relevant for the 

variable U  uniformly distributed on ]1,0[ , whose bounded domain can lead to frequent rejection 

near the boundaries. In the standard Gaussian space, one typical choice for the one-dimensional 

proposal PDF is the standard Gaussian PDF or a uniform PDF centered at the current sample. 

Operating in the standard Gaussian space was also mentioned in the original BUS formulation 

(Straub & Papaioannou 2014). 

 

Statistical error assessment 

Some comments are in order regarding the statistical error of the results, in terms of the quality 

of the posterior samples and the statistical variability of the log-evidence estimator. Provided that 

the threshold value of the simulation level is greater than minb , its conditional samples are 

always distributed as the target posterior PDF )(θDp . As MCMC samples they are correlated, 

however. When used for statistical estimation they will give less information compared to if they 

were independent. Typically their correlation tends to increase with the simulation level. In view 

of this, it is not necessary to perform more simulation levels than is necessary to pass minb . This 

is the reason behind the stopping criterion.  

 

For the evidence estimate in (49), it should be noted that its statistical variability arises from mb . 

By taking small random perturbation of the estimation formula, it can be reasoned that  

mDD bPP  of std.
~

ln of std.
~

ln of c.o.v.         (51) 

where ‘std.’ is an abbreviation for ‘standard deviation’. An estimation formula for the c.o.v. of 

mb  based on samples in a single SuS run is not available, however. Conventionally only the 

c.o.v. of the estimate bP
~

 (say) for )( bYP   for fixed b  is available, rather than the c.o.v. of the 

quantile value mb  for fixed exceedance probability. It can be reasoned, however, that the c.o.v. 
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of DP
~

 (where mb  is random) can be approximated by the c.o.v. of b
bPe

~
 for fixed b  (then taking 

mbb   obtained in a simulation run). The latter is equal to the c.o.v. of bP
~

, for which standard 

estimation formula is available (Au & Beck 2001, Au & Wang 2014). 

  

Comparison with original BUS formulation 

Table 1 provides a comparison between BUS and the proposed formulation. Implementing SuS 

under the proposed framework has several advantages over the original BUS, stemming mainly 

from the treatment of the multiplier in the former. First of all, there is no need to determine the 

appropriate value of the multiplier to start the simulation run. The definition of the driving 

variable is more intrinsic as it only depends on the likelihood function and not on the multiplier. 

In the BUS context, if the chosen value of the multiplier is not small enough, it will lead to bias 

in the distribution of the samples, unfortunately in the high likelihood region of the posterior 

distribution that is most important. If it is chosen too small it will result in lower efficiency, as it 

requires more simulation levels to reach the target event from which the samples can be taken as 

posterior samples. In both cases if it is found after a SuS run that the choice of the multiplier is 

not appropriate, one needs to perform an additional run with a (hopefully) better choice of the 

multiplier. These issues are all irrelevant in the proposed context because the problem 

specification of the SuS run does not depend on the multiplier. 

 

Table 1. Comparison of BUS and proposed formulation 

 BUS* Proposed 

Driving variable 

 

 

UcLY  )(Θ  

for any 1)]([max  θθ Lc  

]/)(ln[ ULY Θ  

Target failure event 

 

 

}0{  YF  }{ bYF   

for any )](ln[max θθ Lb   

Evidence calculation 

 

 

)0(  YcPPD  )( bYPeP b
D   

for any )](ln[max θθ Lb   
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Stopping criterion When threshold value of 

simulation level is equal to 

zero 

After log-evidence becomes 

flat with threshold level; or 

after log-failure probability 

displays a slope of 1     

* Original definition is )(ΘcLUY  . Changed here for consistency with SuS literature 

 

On the other hand, in the BUS context the posterior samples must be obtained as those 

conditional on the target failure event }0{ Y  where UcLY  )(Θ . For example, samples 

conditional on }1.0{ Y  cannot be directly used. Since the threshold values ,...},{ 21 bb  generated 

adaptively in different simulation levels of SuS are random, they generally do not coincide with 

0 , i.e., the target threshold value of interest.  In this case, not all samples can be used directly as 

conditional samples. In the original BUS algorithm (Straub & Papaioannou 2014), if the threshold 

level of the next level determined adaptively from the samples of the current level is greater than 

zero, it is set equal to zero so that the next (and final) level is exactly conditional on }0{ Y . In 

the proposed context, the posterior samples can be directly collected from the samples generated 

in SuS. This is because any sample conditional on }{ bY   with minbb   ( ]/)(log[ ULY Θ ) 

can be taken as a posterior sample. The value of minb  is unknown but whether minbb   can be 

determined from the sample estimates of )( bYP   or )(ln)( bYPbbV   versus b , based on 

their characteristic behavior (see Figure 2).   

 

Illustrative examples 

We now present two examples that illustrate the applicability of the proposed methodology. The 

first one is the locally identifiable case of a two-degree-of-freedom shear building model 

originally presented in Beck and Au (2002). The second example is the unidentifiable case of the 

same model. 

Example1. Two-DOF shear frame: locally identifiable case 

Consider a two-storied building structure represented by a two-degree-of-freedom shear building 

model. The objective here is to identify the interstory stiffnesses which allow the structural 



29 

 

response to be subsequently updated. The first and second story masses are given by 16.510
3
 

kg and 16.110
3
 kg respectively. Let ][ 21 θ,θ=θ  be the stiffness parameters to be identified. The 

interstory stiffnesses are thus parameterized as 111 kθ=k  and 222 kθ=k , where the nominal 

values for the stiffnesses are given by =k=k 21 29.710
6
 N/m. The joint prior distribution q  for 

1θ  and 2θ  is assumed to be the product of two Lognormal distributions with most probable 

values 1.3 and 0.8 respectively and unit standard deviations. For further details on the 

assumptions behind the parameterization and the choice of nominal values, refer to Beck and Au 

(2002). Let  21

~~
f,f=D  be the modal data used for the model updating, where =f1

~
3.13 Hz and 

=f2

~
9.83 Hz are the identified natural frequencies. The posterior PDF is formulated following 

Vanik et al. (2000) as 

)(]2ε/)([exp)( 2
θθθ qJpD          (52) 

where ε  is the standard deviation of the prediction error and )(θJ  is a modal measure-of-fit 

function given by 

 
2

1

2222 ]1
~

/)([)(
=j

jjj ffλ=J θθ          (53) 

Here, 1λ  and 2λ  are weights and )(1 θf  and )(2 θf  are the modal frequencies predicted by the 

corresponding finite element model.  

 

For the implementation of SuS, a conventional choice of algorithm parameters in the reliability 

literature is adopted in this study. The level probability is chosen to be =p0 0.1 and the number 

of samples per level N  is fixed at 10,000. In the standard Gaussian space, the one-dimensional 

proposal PDF is chosen to be uniform with a maximum step width of 1. A relatively large 

number of samples per level is been chosen in this study to illustrate the theoretical aspects of the 

proposed method. Strategies for efficiency improvement such as adaptive proposal PDF or 

likelihood function can be explored but are not further investigated here. 

 

Figures 3 and 4 show the Markov chain samples for ],[ 21 θ  at six consecutive simulation 

levels. The results are shown respectively in the standard Gaussian space, where the simulation 

was carried out, and the Lognormal space after the application of the relevant transformation. 
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Level 0 corresponds to the unconditional case (i.e., Direct Monte Carlo), that is, the joint prior 

PDF. As the simulation level ascends, the distribution of the samples evolves from the prior 

distribution to the target posterior distribution, which is bimodal in the present example. 

 

Figure 3. Markov chain samples in the standard Gaussian space for the stiffness parameters 

][ 21 θ,θ=θ  from Level 0 (prior distribution) to Level 5. 
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Figure 4. Markov chain samples in the Lognormal space for the stiffness parameters ][ 21 θ,θ=θ  

from Level 0 (prior distribution) to Level 5. 

 

Figures 5 and 6 show the marginal histograms for 1θ  and 2θ  corresponding to those samples in 

Figures 3 and 4. The bimodal nature of the marginal PDFs is clearly visible from Level 2. For 

comparison, the solid lines show the target marginal posterior distributions obtained by 
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numerically integrating the expression for the posterior PDF. It is apparent that the distribution 

of the samples has settled after Level 3. In reality, the exact target PDF is not available and so 

alternative means based on the simulated samples must be employed to determine whether the 

distribution of the samples has settled at the target one. Within the context of the proposed 

methodology, this is done through the plot of the log-failure probability and log-evidence versus 

the threshold level, which shall be discussed next. 
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Figure 5. Posterior marginal PDF for 1θ  at different simulation levels. The target marginal 

posteriors were obtained numerically and are shown for comparison. 

 

Figure 6. Posterior marginal PDF for 2θ  at different simulation levels. The target marginal 

posteriors were obtained numerically and are shown for comparison. 
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Figure 7(a) plots the estimate of the log-CCDF of Y , i.e., )(ln bYP   versus b . The general 

shape of the resulting simulated curve coincides with the characteristic trend predicted by the 

theory, that is, there is a transition from a slowly decreasing function to a line with slope equal to 

-1. When zooming into the region where 0b , the figure shows the boundaries of each level 

computed via SuS. The transition appears to complete somewhere after Level 3. This 

corresponds to the theoretical value of 1c , found in the original BUS formulation. 

Additionally, the log-evidence was computed following (43) and is shown in Figure 7(b). As 

with the log-CCDF, the theoretical prediction of the characteristic trend is also verified for this 

case. The curve flattens after Level 3. It should be noted that the samples after Level 3 

theoretically all have the same distribution equal to the target posterior PDF. However, for 

statistical estimation their quality deteriorates as the simulation level ascends because their 

correlation (due to mechanism of SuS) tends to increase. According to the theory, minb should lie 

in the neighborhood of the threshold for Level 3. As pointed out before, the flattening of the 

characteristic trend of the log-evidence applies only to the theoretical (exact) quantities. In our 

case, the simulated curve exhibits random deviation, i.e., statistical error. Figure 5 suggests that 

the samples at Level 3 should be taken as the posterior samples for Bayesian updating purposes. 

Those samples at the higher levels can still be used but they have lower quality due to higher 

correlations. In fact, in the actual implementation, one can stop after it is ascertained that the 

threshold level of the last simulation level has passed minb , e.g., Level 4 in the present case.  

 

                           (a)                                                                        (b) 

Figure 7. Log-CCDF computed through SuS (a) for the identifiable case. The curve slowly 

transitions into a straight line with negative unit slope. Correspondingly, the log-evidence (b) 
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flattens as the threshold exceeds minb . The dotted lines show the thresholds for different 

simulation levels. 

 

 

Example 2. Two-DOF shear frame: unidentifiable case 

The exercise was repeated for the case where the story masses are also unknown and need to be 

updated. The problem is characterized as unidentifiable, since there are an infinite number of 

combinations of parameter values that can explain the measured modal frequencies. In addition 

to the stiffnesses, the masses are parameterized as 131 mθ=m  and 242 mθ=m , where the nominal 

values for the are given by =m1 16.510
3
 kg and =m2 16.110

3
 kg. Thus, for this case, 

][ 4321 θ,θ,θ,θ=θ  where the marginal prior distributions for 1θ  and 2θ  are the same Lognormals 

as in the previous example. The prior marginal distributions for 3θ  and 4θ  are both assumed to 

be Lognormals with most probable values equal to 0.95 and standard deviation of 0.1. The joint 

prior PDF is therefore taken as the product of the four Lognormals. Figure 8 shows the Markov 

chain samples for θ  ( 1θ  versus 2θ  for visualization purposes) at simulation levels 0 through 5. 

Again, the updated distribution results in a bimodal posterior PDF. For the sake of brevity, the 

results are only displayed in the Lognormal space. 
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Figure 8. Markov chain samples in the standard Gaussian space for the stiffness parameters 1θ  

and 2θ  of the unidentifiable case at simulation levels 0 (prior distribution) to level 5. 
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Analogously, Figure 9 shows the samples for 3θ  and 4θ  in the Lognormal space. There is no 

noticeable pattern in the distribution of the masses, consistent with the findings in Beck and Au 

(2002). 

 

Figure 9. Markov chain samples in the Lognormal space for the mass parameters 3θ  and 4θ  of 

the unidentifiable example at simulation levels 0 to level 5. 
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The log-CCDF for the unidentifiable case shows similar characteristics to the ones displayed by 

the locally identifiable case. The transition into a straight line also appears to be complete in 

Level 3 and thus the optimal b  should lie in this neighborhood. This is confirmed by the 

flattening log-evidence curve. The results are displayed in Figure 10.  

 

                           (a)                                                                        (b) 

Figure 10. Log-CCDF computed through SuS (a) for the unidentifiable case. The curve slowly 

transitions into a straight line with negative unit slope. Correspondingly, the log-evidence (b) 

flattens as the threshold passes minb . The dotted lines show the thresholds for different 

simulation levels. 

 

Example 3. Model Class Selection 

Following the two preceding examples, we can compute the log-evidence corresponding to each 

model according to equation (44). Figure 12 shows the ratio of the evidence for the 

unidentifiable case to the evidence of the locally identifiable case. Discounting the random 

deviation due to simulation error, the ratio of evidence seems to converge to 1, which suggests 

that, given the available data, there is not enough evidence to prefer the unidentifiable model 

over the more parsimonious one. 
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Figure 11. Ratio of evidence of the unidentifiable model to the evidence of the locally 

identifiable model. 

 

Conclusions 

We have presented a fundamental analysis of BUS, a recently proposed framework that 

establishes an analogy between the Bayesian updating problem and the reliability problem. This 

work was motivated by the question of choosing the correct likelihood multiplier and it has led to 

an improved formulation which resolves this question. By redefining the target failure event, we 

have expressed the driving variable in the equivalent reliability problem using the likelihood 

function alone, without the multiplier. This redefinition provides the key advantage over the 

original BUS, since our implementation no longer requires a predetermined value for the 

multiplier in order to start the SuS runs. This immediately eliminates the need to perform 

additional runs in case an inadmissible or inefficient value for the multiplier is chosen. 

Moreover, the samples generated at different levels of SuS can be used directly as posterior 

samples as long as their thresholds are greater than the minimum admissible value. We have also 

performed a rigorous analysis that predicts the properties of the log-evidence function, which has 

provided a stopping criterion for the proposed formulation. The lowest level to reach the target 

posterior distribution is determined by the ratio of the highest to the average value of likelihood 

function, which reveals a fundamental characteristic reflecting the difficulty of Bayesian 



40 

 

updating problems. The theoretical predictions of our study have been verified by applying our 

proposed strategy to two illustrative examples. 
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