
B0
s → D

(∗)+
s D

(∗)−
s Decays in the LHCb Detector,

and a Study of Radiation Damage in the Vertex

Locator

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy

by

Adrian Andrew Pritchard

Department of Physics,

Oliver Lodge Laboratory

University of Liverpool

October 2015



Abstract

The Large Hadron Collider (LHC) is currently the highest energy particle accelerator in

the world, and is designed to collide protons at a centre-of-mass energy up to 14 TeV.

The LHCb experiment is one of four main experiments situated on the LHC ring, and

is designed for making precision measurements of the decays of particles containing a b

quark.

In order to perform these measurements, it is necessary to precisely measure production

and decay vertices in the collisions, and LHCb makes use of the Vertex Locator (VELO)

to do this. The need for the VELO to be very close to the proton collision point requires

it to be able to withstand high levels of radiation. This thesis presents studies of the

damage suffered by the VELO during the full first run period of the LHC, with com-

parisons to the predicted levels of damage. It is observed that the VELO is performing

well despite the radiation damage, and should continue to do so until the planned end

of its operation.

This thesis also presents the full analysis of the measurement of the branching fraction of

the B0
s → D

(∗)+
s D

(∗)−
s decay. This measurement is of interest theoretically as it may pro-

vide information about B0
s oscillations, a phenomenon where B0

s mesons spontaneously

change to their B0
s anti-matter counterpart, and back. The analysis is performed on the

full LHCb 2011 data set, consisting of approximately 1.1 fb−1 of proton-proton collisions

at centre-of-mass energy of 7 TeV. The branching fraction is measured relative to the

decay B0 → D±s D
∓ in order to reduce the systematic uncertainty on the result, and is

found to be:

B(B0
s → D(∗)+

s D(∗)−
s ) = (3.07± 0.10(stat.)± 0.23(sys.)± 0.34(norm.))%.

This result is consistent with, and more precise than, all previous experimental deter-

minations, and also the theoretical prediction.
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Chapter 1

Introduction

Particle physics is the study of the fundamental particles that constitute the Universe,

and the forces that govern how these particles interact with one another. The Standard

Model currently provides the most successful and complete theory of nature, having

made a number of key predictions that have subsequently been verified experimentally.

This thesis begins with a brief overview of the Standard Model and the current status

of some key aspects of high energy physics in chapter 2.

Despite being an extremely successful theory, there are still a number of important obser-

vations, in both nature and experimentally, that cannot be explained within the current

realm of the Standard Model. One of the most important omissions is an explanation

of the level of CP -violation observed in the Universe; there is no understanding of why

matter seems to be so dominant over anti-matter. One of the key goals in experimental

particle physics is to determine exactly why this is the case, and one of the favoured

methods for investigating this is the study of B hadrons (particles containing a b or

b̄ quark). Chapter 3 examines how the LHC particle accelerator creates the necessary

conditions for the creation of B hadrons, and how the LHCb detector has been designed

and optimised to measure these particles.

A characteristic feature of B hadrons is the relatively long time they exist for before

decaying into lighter, more stable particles. This long lifetime means a B hadron can

travel a measurable distance after creation, and this provides a key way of identifying

these particles experimentally. Therefore it is vitally important for the efficient per-

formance of LHCb that the points at which particles are created and where they later

1



Chapter 3. Introduction 2

decay, known as vertices, can be well measured; this is performed with the Vertex Loca-

tor (VELO) detector. Chapter 4 outlines how this detector is designed to help identify

the production of these B hadrons, and also presents a study of the radiation damage

suffered by the detector due to its proximity to the particle collisions in the LHC.

LHCb allows the measurement of many different B hadron decays that could offer some

insight into the matter and anti-matter imbalance in the Universe. Chapter 5 presents

the measurement of the branching fraction of the B0
s → D

(∗)+
s D

(∗)−
s decay, and explains

why this is an important measurement for LHCb to make.

The thesis concludes with a summary of the two analyses presented in chapter 6, and

also further details of the B0
s → D

(∗)+
s D

(∗)−
s analysis in the Appendix.



Chapter 2

Theoretical Framework

2.1 The Standard Model

The Standard Model is currently the most complete theory explaining the fundamental

particles that make up the Universe, and also the forces that determine their interactions.

It is a Quantum Field Theory using a product of the groups SU(3)×SU(2)×U(1) to

simultaneously contain information on the QCD, electroweak, and QED interactions.

The remainder of this section firstly outlines the particles and forces involved in the

Standard Model, before covering each of the forces in more depth.

2.1.1 Particles and Forces

In the Standard Model, all matter is built from 12 fundamental spin-1
2 particles known

as fermions, along with their antimatter counterparts. These fermions are separated

into two distinct groups with different characteristics, the quarks and the leptons. The

quarks are further split into up-type quarks, which carry a charge of +2
3e, and the

down-type quarks, which carry a charge of −1
3e, where e is the fundamental charge

on the positron. Stable particles and bound states with fractional charge are never

experimentally observed, and quarks can only exist in bound states of three quarks or

three anti-quarks, known as baryons, or quark and anti-quark pairs, known as mesons.

The quarks are also grouped in three generations, with each generation consisting of an

up-type and a down-type quark, and the masses increasing with the generation. This

3



Chapter 2. Theoretical Framework 4

generational structure is also important in weak transitions between quarks, as will be

further discussed in section 2.3.

Leptons exist in three pairs, with each pair consisting of a massive particle carrying a

charge of −1e and a massless1 neutrino with the same flavour that carries no charge.

The anti-fermions carry the opposite charge to their fermion partner. The fermions that

are comprised within the Standard Model are summarised in table 2.1.

Generation Quarks Leptons
I up (u) down (d) electron (e) electron neutrino (νe)
II charm (c) strange (s) muon (µ) muon neutrion (νµ)
III top (t) bottom (b) tau (τ) tau neutrion (ντ )

Charge +2/3 -1/3 -1 0

Table 2.1: The 12 fundamental fermions in the Standard Model. The charges given
are in units of elementary charge.

The fundamental particles detailed in table 2.1 interact in four main ways: via the elec-

tromagnetic force, the strong nuclear force, the weak nuclear force, or the gravitational

force. The Standard Model describes the first three of these forces through the exchange

of particles with integer spin, called bosons. The electromagnetic force acts on any par-

ticle carrying charge, and is mediated via the photon. The strong nuclear force acts on

all particles carrying a colour charge, which holds together baryons and mesons, and

proceeds through the exchange of gluons. The weak nuclear force is responsible for the

decay of heavy leptons into lighter ones, and is mediated by either the W± or Z bosons.

The weak force also governs quark flavour changing processes mediated by a W± boson,

as discussed in more detail in section 2.2.1. No theory of the gravitational force exists in

the model, although a spin-2 particle known as a graviton is postulated to mediate this

force. The forces of the Standard Model, along with the gauge bosons that are involved

in each force, are summarised in table 2.2 and detailed further in the rest of this section.

In the Standard Model, particles acquire mass through interaction with the Higgs field.

The Higgs mechanism introduces another boson, the scalar Higgs boson, which has
1In the Standard Model neutrinos are massless, although this is known to be incorrect. See sec-

tion 2.1.6 for further details.
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Force Gauge Boson Charge
Strong 8 gluons (g) 0

Electromagnetic photon (γ) 0

Weak
Z 0
W± ±1

Table 2.2: The fundamental interactions in the Standard Model, along with the
mediator gauge bosons for each interaction. The charges given are in units of elementary

charge.

not been included with the spin-1 gauge bosons in table 2.2. The Higgs mechanism is

discussed in more detail in section 2.1.5.

2.1.2 Quantum Electrodynamics (QED)

Quantum Electrodynamics (QED) is the field theory that describes electromagnetic

interactions, and is mathematically the simplest of the quantum field theories. The

theory starts with a free Dirac field, ψ(x), which describes the behaviour of a fermion

with charge Q and mass m, with dynamics described by the Dirac equation [1], shown

in 2.1:

(iγµ∂µ −m)ψ(x) = 0. (2.1)

Here, γµ are the four Dirac gamma matrices. The Dirac equation is derived by applying

the Euler-Lagrange equations [2] to the Lagrangian density shown in equation 2.2, where

ψ̄ is the complex conjugate field:

LDirac = ψ̄iγµ∂µψ −mψ̄ψ. (2.2)

Equation 2.2 is invariant under a global U(1) gauge transformation of the form shown

in 2.3, where α is a global phase independent of spacetime position x:

ψ(x)→ eiαψ(x). (2.3)
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To transform this to a local gauge invariance requires that α is allowed to be a function

of the spacetime position x, such that the phases are instead α(x). Equation 2.2 does not

exhibit local gauge invariance under this transformation; to enable this, the derivative

∂µ must be switched for the covariant derivative Dµ shown in 2.4:

Dµ ≡ ∂µ + ieAµ. (2.4)

Here, Aµ is a new gauge vector boson field that transforms as shown in 2.5 under a local

gauge transformation:

Aµ → A′µ = Aµ −
1
e
∂µα(x). (2.5)

Physically, Aµ represents the photon field. The final step is to introduce a gauge in-

variant kinetic term describing the energy stored within the interacting fields, called the

electromagnetic field strength tensor, as shown in 2.6:

Fµν = ∂µAν − ∂νAµ. (2.6)

Replacing the derivative in equation 2.2 with the covariant derivative from 2.4, and

adding in the term containing Fµν , leads to the QED Lagrangian shown in 2.7:

LQED = ψ̄(x)(iγµDµ −m)ψ(x)− 1
4
FµνF

µν . (2.7)

The photon field does not introduce any new mass terms to the Lagrangian, and doing

so is forbidden as this would violate the gauge invariance of the Lagrangian. This is

consistent with experimental observation, where the photon is indeed seen to be massless.

The QED coupling constant depends on the energy scale of the interaction. At a very

low energy, the coupling is α−1 ≈ 137. However at the Z0 mass the coupling is instead

α−1 = 127.944± 0.014 [3].
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2.1.3 Quantum Chromodynamics (QCD)

The strong force governs the interaction of quarks and gluons, and is described mathe-

matically in a similar way to QED. Quantum Chromodynamics (QCD) is a more com-

plicated theory however, as the field is instead a triplet of Dirac fields as shown in 2.8

(representing the three separate colours), as opposed to the single field in QED:

ψ(x) =


ψR(x)

ψG(x)

ψB(x)

 . (2.8)

QCD is a non-abelian field theory based on the SU(NC) gauge group, where NC is the

number of colours, which has experimentally been shown to be 3. The group has N2
C−1

generators, and these correspond to the 8 different gluons. The QCD Lagrangian is

shown in 2.9:

LQCD =
∑
f

ψ̄f (x)(iγµDµ −mf )ψf (x)− 1
4
GaµνG

µν
a . (2.9)

Here, the summation f refers to the quark flavour, and mf is the mass of that particular

quark flavour. The covariant derivative, Dµ, is now defined as shown in 2.10:

Dµ =
(
∂µ − igs

(
λa
2

)
Aµ

)
. (2.10)

The field strength tensor is defined similarly to that for QED, but includes an extra

term as shown in 2.11:

Gaµν(x) = ∂µA
a
ν − ∂νAaµ − gsfabcAbµAcν . (2.11)

In the above equations, gs is the strong coupling constant, and λa are the 8 Gell-Mann

λ-matrices corresponding to the 8 generators of the group. The term fabc represents

the structure constants of the SU(3) group; the extra terms in the field strength tensor

result from the non-abelian nature of the group, and represent the gluon self-couplings.

This is a result of the gluons themselves carrying colour charge (the photon in QED
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carries no electric charge). There are two important consequences from the non-abelian

gauge theory that is used in QCD: confinement and asymptotic freedom.

αs(Q2) =
g2
s

4π
. (2.12)

The strong coupling constant varies with the energy scale of the interaction, Q2, and as

such is generally quoted at specific energy scales, as shown in equation 2.12. For example,

at the Z0 mass the coupling constant has a value of αs(MZ) = 0.1196± 0.0017 [3]. At a

low Q2, the strong force becomes very large. The force between two quarks increases as

they are separated, and it becomes energetically favourable to create a quark-antiquark

pair before the two original quarks are fully separated. Therefore isolated quarks are

never observed, and exist only in bound hadronic states; this is known as confinement.

Conversely, asymptotic freedom is a result of the strong coupling constant becoming very

small in high Q2 interactions. At this scale, quarks and gluons interact very weakly. This

ultimately means that at very small distances within hadrons, the constituent quarks

are essentially free [4].

2.1.4 Electroweak Theory

Electroweak theory is a unified field theory describing both the weak and electromag-

netic interactions, and is produced by requiring that the Lagrangian is locally gauge

invariant under transformations relating to the SU(2)L
⊗

U(1)Y gauge group. The gen-

erators of the group result in weak isospin, I, and weak hypercharge, Y , where the weak

hypercharge and the third component of weak isospin, I3, are related to the charge, Q,

as shown in equation 2.13:

Q = I3 +
Y

2
. (2.13)

Left-handed fermions have I = 1
2 , and form doublets with I3 = ±1

2 . Up-type quarks

and neutrinos take the value of I3 = +1
2 , whereas down-type quarks and leptons take

I3 = −1
2 . Quarks cannot weakly decay into other quarks with the same value of I3,

meaning up-type quarks only decay into down-type quarks, and vice versa. Right-handed

fermions instead have I = 0, and therefore form singlet states with I3 = 0. It should



Chapter 2. Theoretical Framework 9

be noted that, in the Standard Model, neutrinos are exclusively left-handed (with anti-

neutrinos being exclusively right-handed) and are also massless. This is inconsistent

with experimental observations, and is one of a number of issues with the Standard

Model that will be discussed in brief in section 2.1.6.

The SU(2)×U(1) group describing Electroweak interactions introduces 4 separate gauge

fields: W 1
µ , W 2

µ , W 3
µ , and Bµ. The first 3 of these result from the SU(2) group and are

required to maintain invariance under weak transformations, and the other is required to

maintain invariance under electromagnetic interactions. These gauge fields are related

to the physically observable vector bosons as shown in 2.14:

W±µ =
1√
2

(W 1
µ ∓ W 2

µ)

Zµ = cos θWW 3
µ − sin θWBµ

Aµ = sin θWW 3
µ + cos θWBµ.

(2.14)

Here, θW is the weak mixing angle, also known as the Weinberg Angle. More commonly

quoted as sin2 θW , the combined value from D0 and CDF as measured at the Z0 mass

is sin2 θW = 0.23200 ± 0.00076 [3]. The Weinberg Angle is related to the weak isospin

coupling constant, g, and the weak hypercharge coupling constant, g′, as shown in

equation 2.15:

tan θW =
g′

g
. (2.15)

Ensuring the local gauge invariance of the Electroweak Lagrangian requires the gauge

bosons to be massless. As with the QED and QCD Lagrangians, adding a mass term to

the gauge fields would break the local gauge invariance of the Lagrangian. Experimen-

tally it has been observed that, whilst the photon and the gluons are indeed massless,

the weak gauge bosons W+, W−, and Z, are actually massive. In order to unite the
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theoretical picture with these experimental observations, it is necessary to have a mech-

anism to generate mass whilst preserving the gauge invariance of the Lagrangian; in the

Standard Model, this is achieved through the Higgs Mechanism.

2.1.5 The Higgs Mechanism

The Higgs Mechanism is introduced in order to generate the masses of the weak gauge

bosons and the fermions without breaking the gauge invariance of the Lagrangian [5, 6].

This involves a scalar field, known as the Higgs field, that interacts with the Electroweak

boson fields and breaks the symmetry of the SU(2)
⊗

U(1) group. The Higgs field has

an associated boson called the Higgs Boson; this was observed experimentally by both

the CMS [7] and ATLAS [8] experiments.

The Higgs field is an isospin SU(2) doublet, Φ, comprised of two complex scalar fields,

as shown in 2.16:

Φ =
1
2

Φ+

Φ0

 =

φ1 + iφ2

φ3 + iφ4

 . (2.16)

The fields have an associated potential, V (Φ), as shown in 2.17:

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (2.17)

Here, µ and λ are constants. For the case where µ2 > 0, the potential is symmetric about

a minimum at Φ = 0. However, for the case where µ2 < 0, the potential instead takes the

form shown in figure 2.1, with an infinite number of minima as given by equation 2.18:
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Figure 2.1: Shape of the Higgs potential for µ2 < 0 [9]. The motion of the blue

ball illustrates the Spontaneous Symmetry Breaking process, resulting in a non-zero

Vacuum Expectation Value for the Higgs field.

|Φ| =
√
µ2

2λ
=

v√
2
. (2.18)

In equation 2.18, v is called the Vacuum Expectation Value (VEV). The solutions for the

minima of the potential are given by any point on the circle described by equation 2.19:

|Φ0|2 =
φ1 + φ2 + φ3 + φ4

2
=
v2

2
. (2.19)

The vacuum state can be chosen by selecting a particular point on the circle, in a process

called Spontaneous Symmetry Breaking (SSB). The vacuum is selected so that the VEVs

of φ1, φ2, and φ4 equal 0. The Goldstone Theorem [10] results in each of the four fields

having an associated Goldstone boson, three of which are massless and unphysical, with

the fourth being the Higgs Boson. It is possible to select a gauge, called the Unitary

Gauge, where the three unphysical fields, φ1, φ2, and φ4, are eliminated. This transforms

equation 2.16 into the equation shown in 2.20, where H is the neutral scalar Higgs field.

This also causes the three bosons W+, W−, and Z0 to acquire mass terms:

Φ =
1√
2

 0

v +H

 . (2.20)
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The Lagrangian for the four Electroweak fields W 1,2,3
µ and Bµ introduced in section 2.1.4

can be written to include the interaction with the Higgs field, as shown in 2.21:

LHiggs = (DµΦ)†(DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2. (2.21)

In the Unitary Gauge, this can be written as shown in 2.22:

LHiggs =
1
2
∂µH∂

µH +
1
4
g2(H2 + 2vH + v2)W+

µ W
−µ

+
1
8

(g2 + g′2)(H2 + 2vH + v2)ZµZµ

− µ2H2 − λ

4
(H4 + 4vH3).

(2.22)

Identifying the terms M2
WW

+
µ W

−µ and 1
2M

2
ZZµZ

µ, the mass terms corresponding to

the W± and Z0 bosons are therefore:

MW =

√
1
4
g2v2 =

1
2
gv

MZ =

√
1
4

(g2 + g′2)v2 =
1
2

(g2 + g′2)1/2v

=
1
2

gv

cos θw

=
MW

cos θw

(2.23)

where the relations (cos2 θw + sin2 θw) = 1 and g′ = g tan θw have been used to express

the Z0 mass in terms of the W± mass and the Weinberg angle.

In order for the fermions to also acquire mass, a further Yukawa term, LY , must be

added to the Standard Model Lagrangian to describe a coupling between the fermions

and the Higgs field. The Lagrangian contribution for each fermion is of the form shown

in 2.24:

LY (f) = −gf Ψ̄fΨfΦ. (2.24)



Chapter 2. Theoretical Framework 13

Here, gf represents the Yukawa coupling for a particular fermion. After SSB, this

becomes:

LY (f) = − 1√
2
gfvΨ̄fΨf −

1√
2
gf Ψ̄fΨfH. (2.25)

The first term gives the fermion mass, mf = gfv√
2

. The Yukawa coupling constants are not

predicted by the Standard Model, and can be set to match the fermion masses observed

in experiment. The second term gives the coupling of the fermion field to the Higgs

field, which equals mf
v . This means that the coupling to the Higgs field is proportional

to the mass of the fermion.

2.1.6 Problems with the Standard Model

Although the Standard Model has been hugely successful in both describing and predict-

ing experimental observations, there are still a number of issues preventing the model

from being a complete theory of the Universe, a few of which will be discussed here.

Neutrino masses: As noted in section 2.1.4, the Standard Model does not include mass

terms for any of the neutrino generations. Experimentally, however, neutrinos have

been observed to oscillate between flavours [11]. This means that the flavour and mass

eigenstates must be different, and means the neutrinos must have a non-zero mass. Two

possible mechanisms for generating neutrino masses have been proposed theoretically.

Introducing a right-handed neutrino field that interacts only with the Yukawa potential

discussed in section 2.1.5, therefore resulting in a sterile neutrino, is one option. The

alternative is that neutrinos and anti-neutrinos are the same particle, known as Majorana

neutrinos, and that mass terms are produced through the combination of the left handed

neutrino field with its complex conjugate. Experimentally neither of these theories has

so far been confirmed or disproven.

Gravity : The Standard Model does not include any theory of gravitation. It has been

postulated that the graviton should be the fundamental boson responsible for mediating

the gravitational force, but no experimental signature of the graviton has been observed.

To date it has not been possible to mathematically incorporate a field theory describing

gravity into the Standard Model.
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Dark matter/Dark energy : Observations from cosmology indicate that the particles

described by the Standard Model account for only approximately 5% of the energy in

the Universe. The rest is thought to be made up of dark matter, which would interact

very weakly with the forces in the Standard Model, and also dark energy. There are no

particles in the Standard Model that fit the characteristics required for dark matter, and

there has been no successful theory explaining dark energy in the realm of the Standard

Model.

Matter and anti-matter imbalance: The Standard Model does not account for the scale

of matter dominance over anti-matter in the Universe. It is generally accepted that

the Big Bang should have created equal amounts of matter and anti-matter, and the

existence of CP -violation subsequently caused the excess of matter currently observed.

Investigating potential sources of CP -violation is a key goal in experimental particle

physics; currently the only observed source of CP -violation is the Cabibbo-Kobayashi-

Maskawa matrix that governs the weak transitions of quarks. Studying the decays of

neutral particles containing b quarks is a key experimental technique for assessing the

levels of CP -violation in the quark sector.

2.2 Neutral B Mesons

Neutral B mesons are formed from the pairing of a b quark with either an s anti-quark

or a d anti-quark (or a b anti-quark with an s or d quark). The study of B mesons is of

great interest experimentally, as the b quark is the heaviest quark that has been observed

to hadronise. This means that B hadrons have a wider number of decays than any other

type of observed hadron, thus providing the largest number of channels for testing the

Standard Model. Numerous ways exist in which New Physics could be observed in the

decay of B mesons. The Cabibbo favoured transition for a decaying b quark is to a c

quark, but it is also possible, albeit much less likely, for the b quark to instead decay

to a first generation quark (see section 2.3 for more details about quark transitions).

Some of these decays proceed via loop diagrams and are therefore interesting to study,

as these loops give access to possible undiscovered particles. Comparing decay rates in

these channels to Standard Model predictions, or to other tree-level B meson decays, is

a key way of searching for potential new particles [12].
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The decay of B mesons is also of interest for a number of other reasons; these will be

the focus of the remainder of this chapter.

2.2.1 B0 and B0
s Oscillations

The spontaneous oscillation of B0 mesons to their B0 antiparticle counterpart (and

similarly for B0
s and B

0
s mesons), and vice versa, was a fundamental prediction from

the Standard Model. This phenomenon was first observed in B0 mesons by the ARGUS

collaboration in 1987 [13], and, in 2006, the CDF experiment was also able to determine

the rate of oscillation in the B0
s system [14]. The leading order Feynman diagrams for

this process are shown in figure 2.2.

Figure 2.2: Leading order Feynman diagrams for B0
s and B0 mixing.

This mixing means that the B0
s meson mass eigenstates are different to the flavour

eigenstates; the mass eigenstates are instead a linear combination of the B0
s and B

0
s,

as shown in equation 2.26, where H and L refer to heavy and light mass eigenstates

respectively:

|BL,H〉 = p|B0
s 〉 ± q|B0

s〉. (2.26)
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The time evolution of the B0
s system described in equation 2.26 is given by the solution

to the time dependent Schrödinger equation shown in 2.27:

i
d

dt

B0
s (t)

B
0
s(t)

 = H

B0
s (t)

B
0
s(t)

 . (2.27)

Here, H is a 2×2 effective Hamiltonian, which can be written in terms of the Hermitian

mass and lifetime matrices, M and Γ, as shown in 2.28:

H =
(

M− i

2
Γ
)
. (2.28)

The diagonal elements of M and Γ represent flavour-conserving transitions, but the

off-diagonal elements represent the oscillation of a B0
s to B0

s, and the reverse. Solving

the equation in 2.27 gives the ratio q/p in terms of the off-diagonal elements of M and

Γ, as shown in equation 2.29:

(
q

p

)2

=
M∗12 − (i/2)Γ∗12

M12 − (i/2)Γ12
. (2.29)

Any deviation from unity in the value of q/p would be a clear indication of CP -violation

in B0
s oscillations. The B0

s system is commonly described in terms of the mass difference,

∆ms, the decay width difference, ∆Γs, and the average decay width, Γs, of the two mass

eigenstates, which are all defined in equation 2.30:

∆ms = mH −mL

∆Γs = ΓL − ΓH

Γs =
ΓL + ΓH

2
.

(2.30)

Measuring these values experimentally can help determine the level of CP -violation in

the B0
s environment; this is performed generally in one of two ways. The first method
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involves selecting a final state that is a (near) pure CP eigenstate, and thus accessible

through decays of only one of the BH or the BL, such as B0
s →K+K− [15] (CP -Even)

or B0
s → J/ψ f0 [16] (CP -Odd). A measurement of the effective lifetime of the B0

s

in one of these channels then translates as a measurement of ΓH or ΓL. The second

method requires a time-dependent analysis of a channel that is accessible to both B0
s

and B
0
s mesons. In this case, the interference between the direct decay amplitude and

the amplitude for oscillation and then decay gives rise to a time dependent CP -violating

asymmetry that can be expressed in terms of ∆Γs and also a CP -violating phase, φs [17];

this is the method employed in the analysis of decays such as B0
s → J/ψφ [18].
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Figure 2.3: Current status of experimental measurements in the ∆Γs-φs plane, where

the contours represent a 68% confidence level. The grey circle shows the weighted aver-

age of all experimental results, and the thin black rectangle gives the Standard Model

prediction. Here, φsccs means that φs is determined from an average of measurements

where the quark transition is b→ ccs [19].

Figure 2.3 shows the experimental status of measurements of ∆Γs and φs, along with

the world average as produced by the Heavy Flavour Averaging Group (HFAG) [19].

The Standard Model prediction for ∆Γs is taken from [20], and the prediction for φs is

taken from [21]. The world average is consistent with Standard Model expectation, and
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the small measured value of φs = −0.015± 0.035 rad implies CP -violation in B0
s mixing

is minimal.

2.2.2 CP -Violation

CP symmetry, the combination of Charge conjugation and Parity reversal, was originally

thought to be an exact symmetry of nature, meaning that particles and anti-particles

would behave in exactly the same way. The apparent domination of matter over anti-

matter in the Universe implied that this was not the case, and the possibility of CP

symmetry being violated was postulated as a potential explanation for the matter and

anti-matter imbalance. CP -violation was first observed experimentally in the neutral

kaon system [22], and has subsequently been observed in other particle/anti-particle

systems.

CP -violation can occur in any of three distinct ways in the B0
s system; CP -violation

in decay, CP -violation in mixing, and CP -violation in interference between mixing and

decay. These are described in brief below:

CP -violation in decay : The first kind of CP -violation requires that the decay amplitudes

of B0
s → f and B

0
s → f̄ , where f is any final state accessible to the B0

s and f̄ is the

equivalent final state for the B0
s, are different, as shown in equation 2.31:

(
Āf̄
Af

)
6= 1. (2.31)

Here, Āf̄ is the decay amplitude of B0
s → f̄ , and Af is the decay amplitude of B0

s → f .

CP -violation in mixing : This would require the oscillation of a B0
s → B

0
s to have a

different probability to the reverse oscillation B
0
s → B0

s , as expressed in equation 2.32:

∣∣∣∣qp
∣∣∣∣ 6= 1. (2.32)

CP -violation in interference between mixing and decay : This would occur if there was

a complex phase between the decay amplitude for B0
s → f and B0

s → B
0
s → f ,
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where f is any final state accessible to both B0
s and B

0
s mesons. This can be expressed

mathematically as shown in equation 2.33:

Im
(
q

p

Āf
Af

)
6= 0. (2.33)

2.3 Quark Mixing and the Cabibbo-Kobayashi-Maskawa

(CKM) Matrix

The fact that quark flavour and generation are not conserved in weak decays implies

that the weak flavour eigenstates and the strong mass eigenstates of the quarks are not

the same. The relationship between the flavour eigenstates, d′, s′, and b′, and the mass

eigenstates, d, s, and b, is shown in equation 2.34:


d′

s′

b′

 = VCKM


d

s

b

 . (2.34)

Here, VCKM is a 3 × 3 unitary matrix that describes the mixing between quark gen-

erations, known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix; this is shown in

equation 2.35:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (2.35)

In the CKM matrix, each of the nine elements describes the coupling between two

separate quark flavours, e.g. Vcd is the coupling between a c quark and a d quark. The

CKM matrix can be written entirely in terms of three quark mixing angles, θ1,2, θ1,3,

and θ2,3, and a single CP -violating phase δ, as shown in equation 2.36:


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 . (2.36)
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In this representation, cij = cos θij and sij = sin θij . If the three angles θij were

all zero, this would produce the identity matrix, which would prevent quark mixing

from occurring. It is also interesting to note that removing the third generation of

quarks would reproduce the original Cabibbo matrix; the original two-generation quark

mixing model required only one mixing angle, the Cabibbo angle θC , but also allowed

no possibility of CP -violation.

2.3.1 Wolfenstein Parameterisation

The experimentally determined relationship of the hierarchy of the quark transition

strengths, s13 << s23 << s12 << 1, allows the CKM matrix to be parameterised as a

power series expansion in λ, where λ = sin θ12 [23]. Expanding to O(λ3) yields the form

of the matrix shown in equation 2.37:


1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 . (2.37)

As experiments have become more accurate, it has become important to expand the

parameterisation to higher orders in λ. To this end, it is useful to switch from (ρ, η)

space to (ρ̄, η̄) space, where ρ̄ and η̄ are defined [24] in equation 2.38:

ρ̄ = ρ

(
1− λ2

2

)

η̄ = η

(
1− λ2

2

)
.

(2.38)

2.3.2 The Unitarity Triangle

The unitarity of the CKM matrix requires that the relationships ΣiVijV
∗
ik = δjk and

ΣjVijV
∗
kj = δik are satisfied. These relationships yield 6 orthoganality relationships,

which can be represented diagramatically as triangles in the complex plane. Of the 6,
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only two relationships give triangles with comparable side lengths; these two are shown

in equations 2.39 and 2.40:

VudVub
∗ + VcdVcb

∗ + VtdVtb
∗ = 0 (2.39)

VudVtd
∗ + VusVts

∗ + VubVtb
∗ = 0. (2.40)

The most common representation of the unitarity triangle is formed by dividing each

side in equation 2.39 by the best known side, VcdVcb∗. This results in a triangle with

vertices at (0, 0), (0, 1), and (ρ̄, η̄), meaning the Standard Model can be represented by

this single latter point. Many different measurements can be displayed in the ρ̄, η̄ plane,

as displayed in the plot in figure 2.4 [25].

Figure 2.4: Constraints in the ρ̄, η̄ plane as determined from a global fit to all

measurements of CKM matrix elements and angles, as calculated by the CKMfitter

group.
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In the triangle in figure 2.4, the angles α, β, and γ are related to the CKM elements as

show in equation 2.41:

α = arg
(
− VtdVtb

∗

VudVub
∗

)

β = arg
(
−VcdVcb

∗

VtdVtb
∗

)

γ = arg
(
−VudVub

∗

VcdVcb
∗

)
.

(2.41)

The angles in equation 2.41 can be constrained with measurements of CP -violating

variables in B meson decays. The elements of the CKM matrix can also be determined

experimentally with various measurements; the current experimental results for the three

angles and the nine CKM elements are shown in 2.42 and 2.43:


0.97427± 0.00014 0.22536± 0.00061 0.00355± 0.00015

0.22522± 0.00061 0.97343± 0.00015 0.0414± 0.0012

0.00886+0.00033
−0.00032 0.0405+0.0011

−0.0012 0.99914± 0.00005

 (2.42)

α =
(
85.4+3.9

−3.8

)◦

β =
(
21.6+0.75

−0.74

)◦

γ =
(
68.0+8.0

−8.5

)◦
.

(2.43)

In the case of B0
s mesons the angle β is instead referred to as βs, and is related to the

B0
s CP -violating phase through the relationship shown in 2.44:

φs = −2βs. (2.44)
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In the Standard Model, φs is predicted to be small, meaning that CP -violation is pre-

dicted to be smaller in the B0
s system than in the B0 system. The angle βs can be

measured through a time dependent analysis of a decay to a CP eigenstate, such as the

CP even decay B0
s → D+

s D
−
s . This will be discussed further in chapter 5.

For a detailed review of the experimental measurements used to extract the CKM matrix

elements, and to constrain the three angles, the reader is directed to [26]. The precise

determination of the CKM matrix elements and Unitarity Triangle angles is one of the

key goals of the LHCb experiment, as this provides a stringent test of the Standard

Model. Any indication that the CKM matrix is not unitary, which would result from

the squares of the moduli of an individual row or column of the matrix not summing

to 1, or alternatively the sum of the three Unitarity Triangle angles not equalling 180◦,

would be a clear indication of New Physics not accounted for by the Standard Model.

Alternatively, discrepancies between various determinations of the same CKM parameter

can also be an indication of New Physics [27].



Chapter 3

The LHC and the LHCb detector

Particle accelerators have long been used in experimental particle physics to reach the

energies needed to produce higher mass particles in collisions. Two main types of particle

accelerator are used: linear accelerators (LINACs), and synchrotrons.

In a LINAC, particles are accelerated in a straight line with the use of high energy

alternating current electric fields. Most modern LINACs make use of radio frequency

(RF) cavities to provide the field as, when the accelerating particle reaches a high speed,

the polarity of the field must change many times a second to efficiently continue to

accelerate the particle. The maximum achievable energy in a LINAC is governed by the

accelerating length.

Synchrotrons overcome this limitation by allowing the particles to be accelerated in a

continuous loop by using magnets to bend the path around in a circular motion. The

majority of modern particle accelerators are synchrotrons, as these allow access to higher

energies without the same space considerations that would come from a LINAC.

3.1 The LHC complex

The Large Hadron Collider (LHC) is currently the highest energy synchrotron in the

world. At maximum design energy, the LHC will collide protons with a centre of mass

collision energy of
√
s = 14 TeV, although the analyses presented in chapters 4 and 5 use

data taken during 2011 and 2012, at centre-of-mass energy
√
s = 7 TeV and 8 TeV re-

spectively. Situated beneath the Franco-Swiss border, the LHC occupies the same 27 km

24
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tunnel that previously housed the Large Electron Positron (LEP) collider. Compared

to electrons, colliding protons has a number of advantages. Firstly, colliding protons

allows access to a much wider range of invariant masses at the same time; this allows for

much broader physics studies than those possible with the collision of electrons, which

are best suited to precision studies.

Another advantage of accelerating protons instead of electrons is that much higher colli-

sion energies can be achieved, as protons lose less energy through synchrotron radiation.

Synchrotron radiation is electromagnetic radiation emitted by charged particles during

acceleration, which causes the particle to lose an amount of energy per revolution of

radius r governed by equation 3.1 [28]:

∆E =
q2β3γ4

3ε0r
. (3.1)

Here, q is the charge of the particle, ε0 is the permittivity of free space, and β and γ are

the relativistic variables. As the particle approaches the speed of light, γ = E/m, and

thus the energy loss is inversely proportional to the mass of the particle to the fourth

power. This means that protons lose much less energy per revolution than electrons,

and can therefore reach much higher energies during acceleration in a synchrotron.

The maximum achievable energy of a proton synchrotron is governed by the radius of the

synchrotron, and also by the strength of the dipole magnets that are used to steer the

protons around the ring. As the radius of the ring was already set, the key to maximising

the energy of protons in the LHC was to use dipole magnets of extremely high field

strength; to this end, the LHC makes use of 1232 superconducting dipole electromagnets.

In addition to the dipole magnets, the LHC also contains 392 quadrupole magnets that

prevent the proton beam diverging as it traverses the ring, and a number of higher order

pole magnets to make more minor corrections to the beam.

To enable the LHC to effectively accelerate protons, they must be already travelling

at a high energy when they enter. To achieve this, there are a number of smaller

accelerators involved in accelerating the protons before they enter the LHC; the full

chain of accelerators is shown in figure 3.1.
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Figure 3.1: The complete chain of pre-accelerators for the LHC [29].

The protons for acceleration are obtained by applying a large electric field to hydrogen

gas, in order to strip the electrons from the hydrogen atoms and leave only the protons.

These protons are then passed in pulses into the first of the pre-accelerators for the LHC,

LINAC-2. This is a linear accelerator 30 m in length, which uses radiofrequency (RF)

cavities to accelerate the protons to an energy of 50 MeV.

From here, the protons are passed into the Proton Synchrotron Booster (PSB). The PSB

is the first of the synchrotrons involved in accelerating the protons to the LHC injection

energy and consists of four identical rings stacked on top of each other, each 157 m in

circumference. Each of the four rings accelerates 1.05 × 1012 protons simultaneously,

reaching an energy of 1.4 GeV.

Upon leaving the PSB, the protons pass into the Proton Synchrotron (PS). The PS,

with a circumference of 628 m, was the first of CERN’s synchrotrons and originally
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the laboratory’s flagship accelerator, but has since been modified to serve as a pre-

accelerator of either protons or heavy ions for eventual transfer to the LHC. When

accelerating protons, the PS takes two injection pulses from the PSB, with each pulse

containing approximately 0.83 × 1013 protons. The PS makes use of 277 conventional

electromagnets, including 100 dipole magnets, to guide the protons around the ring,

and accelerates the protons to an energy of 25 GeV. During this acceleration stage the

protons are separated into 72 bunches, with each bunch containing approximately 1011

protons.

After reaching the maximum energy of the PS, the protons are transferred to the penul-

timate stage of acceleration, the Super Proton Synchroton (SPS). Previously a particle

collider in its own right, facilitating the discovery of the W and Z bosons in 1983, the

SPS is now used to increase the energy of protons to a sufficient level to allow injection

into the LHC. The SPS is approximately 7 km in circumference and, with the assistance

of 1317 electromagnets (including 744 bending dipoles), accelerates the protons to an

energy of 450 GeV. The bunches formed in the PS are maintained in the SPS, but with

some deliberate gaps between the bunches. These gaps enable the powering of specially

designed dump ‘kicker’ magnets, which can eject the proton beam during acceleration

if required.

At this point the protons are travelling with enough energy to allow them to be efficiently

accelerated by the LHC, and are injected in two beams travelling in opposite directions.

To allow the acceleration of both beams, the LHC uses two beam pipes. Cost and space

considerations inside the LHC tunnel meant that the two beam pipes must be inside

the same ring; this is illustrated in the LHC cross section shown in figure 3.2. This

means that the magnet structure inside the LHC is relatively complex, as the magnetic

field provided must simultaneously control both the clockwise and anti-clockwise proton

beams. This structure does ensure that only one cooling system is required; this is very

cost effective, given that the superconducting magnets must be cooled to 1.7K using

superfluid Helium.
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Figure 3.2: Illustration of a cross-section of one of the LHC dipoles [30].

To help ensure the Helium is not warmed during operation, the LHC must be thermally

isolated from the surrounding tunnel. This is performed by using both a reflective

thermal shield around the outside of the beam line, and also a vacuum layer that prevents

heat being conducted into the beam line. Each beam pipe is also kept under ultra high

vacuum conditions to prevent the circulating proton bunches colliding with gas molecules

during acceleration. At full design capacity the LHC will contain 2808 bunches of protons

separated by 25 ns, with each bunch containing approximately 1012 protons. During the

2011 running, the LHC instead circulated 1380 proton bunches, with 50 ns spacing [31].

The LHC beam line consists of 8 straight sections and 8 bending sections. Each of the

straight sections has the potential to be used as a crossing point for the proton beams, but

four of these points are reserved to allow for beam cleaning and beam dumping. Beam

cleaning ensures the superconducting magnets are not damaged by protons straying from

the bunches, whereas a beam dump allows for extraction of the proton beam from the

LHC at the end of a run, or if the beam becomes unstable.

The remaining four straight sections around the LHC are where the two proton beams

are made to collide. Prior to collision, the beams are passed through a series of magnets

to ensure the transverse spread of the proton bunches is as small as possible, in order

to increase the chances of collisions occuring when two bunches cross. Each collision
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point is surrounded by a specialised particle detector. Two of these detectors, CMS

and ATLAS, are General Purpose Detectors (GPDs). These detectors are designed to

study a broad range of particle decays, searching for evidence of previously undiscovered

particles and New Physics. A third detector, ALICE, is designed to study quark-gluon

plasma, a form of matter that was present very shortly after the Big Bang. ALICE

primarily studies the collisions of lead ions in the LHC, and as such only takes data for

a short period of time each year.

The last of the main experiments situated on the LHC is the LHCb experiment. This

experiment, and the various components of the particle detector used in the experiment,

will be the focus of the remainder of this chapter.

3.2 The LHCb detector

Figure 3.3: View of the LHCb detector in the y-z plane; particles traverse the

detector from left to right in the image [32].

The LHCb detector is a single-arm spectrometer, designed to make precision studies of

decays of particles containing b quarks at the LHC. As shown in figure 3.4, b quarks are
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produced predominately in the forward or backward directions in p-p collisions. For this

reason, LHCb covers only a forward angle between 10 mrad − 300 mrad in the bending

plane of the magnet, and 10 mrad−250 mrad in the non-bending plane. This corresponds

to a pseudorapidity range 1.8 < η < 4.9, where pseudorapidity is defined in equation 3.2,

meaning LHCb is well positioned to provide complimentary measurements to those that

will be made at ATLAS and CMS:

η =
1
2

ln
|P |+ Pz
|P | − Pz

= − ln
(

tan
θ

2

)
.

(3.2)

Here, |P | is the modulus of the momentum, Pz is the component of the momentum

in the z direction, and θ is the angle that the particle track makes with the beamline.

A schematic of the LHCb detector is shown in figure 3.3. The detector makes use of

a number of highly specialised sub-detectors in order to reconstruct the decays of B

hadrons. Using information from the VELO, tracking stations, calorimeters, and muon

stations allows for the tracking of charged particles through the detector and enables

precise vertex reconstruction. The RICH detectors, along with the calorimeters and

muon stations, provide particle identification and allow the reconstruction of kaons and

pions; this is especially important, as many interesting B hadron decays contain these

particles in the final state. These decays are more difficult to identify in the GPDs,

where methods to distinguish between kaons and pions must be more intricate, but

LHCb is optimised for making these measurements. The rest of this chapter details

the individual components of the LHCb detector, and explains why the detector is well

suited to performing these studies.
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Figure 3.4: Pythia simulation of the relative bb production cross section as a function

of the b and b polar angles from the primary vertex [33].

3.2.1 Luminosity levelling

The maximum instantaneous luminosity of a collider is governed by equation 3.3 [34]:

L = f
N1N2

4πσxσy
. (3.3)

N1 and N2 are the number of particles in each of the colliding bunches, f is the fre-

quency of the beam crossing, and σx and σy govern the beam profile. At the LHC, a

high luminosity is required by both the ATLAS and CMS experiments, where many of

the physics analyses by these experiments are searching for processes with very small

predicted branching fractions, and therefore rely heavily on having a large amount of

data. Having a large luminosity has the effect of increasing the number of collisions per

bunch crossing, µ, and, whilst beneficial for the GPDs, a higher µ is actually detrimental

to the performance of LHCb. It is vitally important that LHCb is able to accurately

reconstruct the secondary and tertiary decay vertices that are characteristic of the de-

cays of B hadrons and D mesons, and correlate these with the correct primary vertices.

A larger number of interactions in each bunch crossing has the effect of increasing the

number of particles passing through the detector, which in turn makes it much harder to

reconstruct the decay vertices. For this reason, LHCb is designed to run at a luminosity
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a factor of 50 lower than the GPDs, 2× 1032 cm2 s−1, and this is achieved by offsetting

the beams as they collide in the detector; this process is known as luminosity levelling.

Figure 3.5: Instantaneous luminosity delivered to ATLAS, CMS, and LHCb over the

course of a fill. The luminosity in the GPDs drops off with time as the bunches lose

protons during collisions, whereas LHCb maintains a constant luminosity by adjusting

the beams during the course of the fill [35].

The beams are constantly adjusted to account for the loss of protons from each bunch as

they circulate and collide over the course of a fill. By gradually bringing the beams closer

together, the instantaneous luminosity can be kept constant in LHCb; this is shown in

figure 3.5. This levelling makes the determination of delivered luminosity much easier,

which is important for analyses that rely on a precise measurement of luminosity in order

to precisely determine branching fractions. The luminosity uncertainty can be avoided

by measuring a branching ratio rather than a branching fraction, where the decay of

interest is measured relative to a similar, previously well measured decay. This was the

method used in the analysis presented in chapter 5.

The beam in the LHC is larger during injection and acceleration than during the stable

beam period during which collisions can occur. As the beam is accelerated the positions

of protons within the bunch oscillate around the centre of the beam, as the magnetic

field is constantly increased. Collimators are used to remove stray ‘halo’ protons from

the edges of each bunch, as these particles could potentially damage the surrounding
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machine and the detectors. During acceleration, the proton beams have a transverse

diameter of approximately 1 mm when passing through LHCb. When the beams are

fully stabilised and ready for collisions, quadrupole magnets either side of LHCb focus

the beam such that the transverse diameter at the collision point is 16 µm. The design

of the vertex locator was therefore driven by the requirements to be as close as possible

to the collision point during collisions, whilst also not being damaged by stray protons

duing acceleration.

3.2.2 VELO

The Vertex Locator (VELO) is the first of the LHCb sub-detector systems. The main

purpose of the VELO is to precisely reconstruct the origin vertex of each particle that

traverses the detector; this allows for the identification of decay vertices that are dis-

placed from the original interaction point, which is characteristic of the decay of particles

containing b quarks. This requires a highly specialised detector that is capable of accu-

rately measuring the track that each charged particle follows, in the short space close

to the decay. The VELO consists of 42 modules split into two halves, one on each side

of the beam pipe, covering approximately a metre in the z axis surrounding the interac-

tion point, with modules both upstream and downstream of the collision region. Each

module consists of two silicon strip detectors, glued back to back; one of these measures

the r coordinate of a particle passing through the module and the other measures the

φ coordinate. Combining these two measurements, along with the z position of the

module, gives a three dimensional position measurement of the particle. Tracking the

particle through the various modules makes it possible to determine the origin vertex of

that particle, by examining where the particle’s path appears to coincide with the path

from another particle (or particles for multi-body decays). The VELO will be discussed

in detail in chapter 4.

3.2.3 Tracking system

To continue tracking the particles through the detector after the VELO, LHCb makes

use of a number of tracking sub-detectors at various points through the detector. These

stations consist of the Tracker Turicensis (TT), and the Tracking Stations, which are in

turn divided into the Inner Tracker (IT) and the Outer Tracker (OT). The primary goal
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of these tracking detectors is to measure the trajectory of a particle before and after the

magnet, thereby obtaining a measurement of the particle’s charge and momentum, by

considering the magnitude of the deflection caused by the magnetic field.

Figure 3.6: Illustration of the two pairs of silicon detectors used in the LHCb TT.

Note the first and last of the detectors share the same alignment, whilst the second and

third are rotated by +5◦ and −5◦ respectively [36].

The TT consists of two pairs of detectors, TTa and TTb, which are upstream of the

magnet and are separated by approximately 27 cm in the z direction. The four stations

are aligned in a x− u− v− x layout, where x denotes a vertical alignment, and u and v

correspond to a rotation of x by +5◦ and −5◦ respectively; this layout is demonstrated

in figure 3.6. The TTa detectors consist of 15 vertically aligned modules above the beam

pipe, and an identical set of modules below the beam pipe. Each module is made of

7 silicon microstrip sensors; these sensors are 500 µm thick, single-sided p-in-n doped

silicon, with 512 readout strips each and a strip pitch of 183 µm [37]. Adjacent modules

are offset by approximately 1 cm in the z axis, with a slight overlap in order to ensure full

coverage. The two TTb detectors are almost identical to the TTa detectors but instead

consist of 17 modules, which is necessary in order to achieve a similar angular coverage

as the TTb detectors are placed further downstream.

There are three tracking stations located downstream of the magnet, T1,T2 and T3.

Each station is split into two parts, where the IT forms the central portion of the

stations surrounding the beam pipe, and the OT makes up the rest of the stations. This

arrangement, along with the TT, is shown in figure 3.7.
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Figure 3.7: The layout of the tracking system in LHCb. This shows the two pairs of

TT stations in purple on the left of the figure, and the larger tracking stations in light

blue. The central portion of the tracking stations is the IT, in purple, while the rest is

the OT. Note that the magnet is placed between the two sections in the detector.

Each IT station is made from four segments which are above, below, left and right of the

beam pipe. Each module of the IT is made from 7 consecutive silicon microstrip sensors;

each sensor is again single-sided p-in-n doped silicon, but with only 384 readout strips,

and a slightly larger pitch than the TT, at 198 µm [38]. The segments above and below

the beam pipe consist of just one module, but the left and right segments are made from

two modules each. Each of the IT stations is made from 4 layers, which follow the same

x − u − v − x arrangement as in the TT. Therefore each station consists of 168 silicon

sensors, meaning the IT utilises 504 sensors in total. Two layers of an IT station are

illustrated in figure 3.8, where the layout and number of sensors is clearly seen.



Chapter 3. The LHC and the LHCb detector 36

Figure 3.8: Illustration of two layers of the IT, an x layer (top) and a stereo rotated

layer (bottom). Dimensions are given in cm, and refer to the sensitive silicon surface

area covered [38].

The IT uses silicon sensors as it covers the area closest to the beam pipe, where the

particle flux is higher. Using silicon in this area achieves a good hit resolution in spite

of the higher flux. However, using silicon for the entire area of the tracking stations

would prove far too expensive, as they have to be large in order to cover the entire

LHCb acceptance so far downstream of the interaction point. For this reason, the OT

surrounds the IT, from the edge of the IT stations out to the edge of the acceptance.

The OT stations use drift time detector technology; this reduces costs without degrading

the detector performance, as the resolution required in the OT is lower than the IT due

to the lower flux experienced further away from the beam pipe.
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The OT uses straw tubes with a 4.9 mm inner diameter, consisting of a gas mixture

surrounding an anode wire, with the whole straw kept under a 1.5kV bias voltage [39].

When a charged particle passes through the gas mixture, it ionises the gas. The liberated

electrons drift towards the anode wire, creating an avalanche of electrons as they travel

through the electric field. These electrons are then collected by the anode wire, which

is read out as an electric current. The time taken to read out the straw is determined

by the time taken for the electrons to drift towards the anode wire; thus the drift time

can be converted to a position measurement of the traversing charged particle. The gas

mixture of Argon (70%) and CO2 (30%) is chosen to provide a drift time of < 50 ns,

which is short enough to allow rapid readout of the detector, but long enough that

the position resolution is not adversely affected. Within a module, adjacent straws are

staggered in order to prevent acceptance gaps. Each of the OT stations consists of 2

modules, with each module again consisting of 4 layers arranged in the x − u − v − x

format. This means there are 8 detection layers per station, and therefore 24 layers in

total across the entire OT.

3.2.4 RICH detectors

The ability to separate between kaons and pions over a wide momentum range is vi-

tally important to LHCb, as these particles often appear in the final states of many of

the B hadron decays that LHCb will analyse. For example, the analysis presented in

chapter 5 studied the branching fraction of the decay B0
s → D

(∗)+
s D

(∗)−
s normalised to

the decay B0 →D±s D∓. In the analysis, D±s decays are reconstructed through the D±s

→K+K−π± final state, and D± decays are reconstructed through the D± →K∓π±π±

final state. The ability to separate kaons and pions was clearly vitally important for the

analysis, especially as the final states of the signal and normalisation channels differed

only through the the interchange of a K± for a π±. This analysis would have been much

tougher in the GPDs, where it would be necessary to use more difficult ways of identi-

fying hadron flavour, such as requiring the K+ and K− to come from an intermediate

φ resonance.

In order to separate the particles, LHCb makes use of two Ring Imaging Cherenkov de-

tectors, RICH1 and RICH2. These detectors utilise the principle of Cherenkov radiation

in order to measure the velocity of the particles that traverse them. When a particle
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travels through a medium at a speed greater than the speed of light in that medium it

emits a cone of photons, where the opening angle of the cone is related to the particle’s

velocity by the equation given in 3.4, where θc is the opening angle, c is the speed of light

in a vacuum, n is the refractive index of the medium, and v is the particle’s velocity:

cos θc =
c

nv
. (3.4)

This velocity measurement can then be combined with the momentum measurements

from the tracking systsems to provide an estimate of the mass of the particle, which can

be interpreted as an identification of the type of particle. LHCb is able to identify and

separate kaons and pions over a momentum range from about 2 GeV/c to 100 GeV/c. The

lower limit comes from the need to properly separate hadrons from multi-body B hadron

decays, and also the fact that hadrons with momenta below 2 GeV/c will generally be

bent out of the LHCb acceptance when traversing the magnetic field. The upper limit

is governed by the momentum spectrum of two body B hadron decays, such as B0

→Kπ and B0 →ππ, where there is also a great need to be able to properly identify

the daughter hadrons [15]. In order to achieve this, the RICH detectors make use of 3

different media, known as radiators, to provide a range of refractive indices to give good

K-π separation over the whole of the required range. The use of Silica Aerogel, C4F10,

and CF4 provides enough information to allow for the efficient separation over the whole

momentum range; figure 3.9 shows the Cherenkov angle versus momentum plot produced

with the C4F10 radiator, clearly showing the separation of kaons, pions, and protons.

Figure 3.10 is a simulation of the Cherenkov angle over the full momentum range in

the three different materials, illustrating the benefit of using multiple media in order

to increase the momentum range to which the detectors are sensitive. In figure 3.10,

n= 1.03 is the refractive index for the Aerogel, n= 1.0014 is the refractive index for CF4,

and n= 1.0005 is the refractive index for C4F10. This is also why the scale in figure 3.9

is much smaller, as only the C4F10 radiator is shown.
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Figure 3.9: Cherenkov angle as a function of track momentum in the C4F10 radiator

in the RICH1 detector; the ability to separate kaons, pions, and protons (and to a lesser

extent, muons) is clearly evident [40].

Figure 3.10: Simulated Cherenkov angle as a function of track momentum in the

three different media used in the RICH1 and RICH2 detectors. Using three materials

allows for separation across a wider momentum range [41]. The refractive index values,

n, are: Aerogel = 1.03, CF4 = 1.0014, and C4F10 = 1.0005.
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The geometry of the RICH detectors is shown in figure 3.11. RICH1 is situated upstream

of the magnet, and gives K/π separation up to momenta of approximately 40 GeV/c.

RICH2 measures the high-momentum particles up to approximately 100 GeV/c, and is

situated downstream of the magnet, as the higher momentum particles are affected less

by the magnetic field, and are less likely to be bent out of acceptance. RICH1 covers the

full angular acceptance of LHCb, whereas RICH2 covers a more central portion of the

acceptance as, in the forward region, high momentum particles are much more likely to

have low angles compared to lower momentum particles. In order to reduce the amount

of detector material that particles must pass through, the RICH photodetectors used

to measure the light emitted by hadrons are located outside of the LHCb acceptance in

both RICH1 and RICH2. The Cherenkov light is focused and reflected out by spherical

mirrors, onto the series of photodetectors. It is also necessary to use a series of flat

mirrors to reflect the light further out onto the photodetectors in RICH2, in order

to move the photodetectors out of the detector acceptance; this is also illustrated in

figure 3.11.
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Figure 3.11: Schematic of RICH1 (left) and RICH2 (right), showing the mirror

structure and the acceptance of the two detectors [42].
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The K-π separation that the RICH detectors provide is not perfect, and this can give rise

to numerous backgrounds in LHCb analyses when a hadron is misidentified by the RICH

as a different hadron. It is often important to properly account for these backgrounds

in the analyses; for example, section 5.4 shows how the B0
s → D

(∗)+
s D

(∗)−
s analysis dealt

with backgrounds resulting from the misidentification of protons and pions as kaons.

3.2.5 Dipole magnet

LHCb makes use of a magnet in order to bend the path of charged particles. This allows

for a measurement of a particle’s charge and momentum by the tracking stations, by

considering the trajectory of the particle both before and after traversing the magnetic

field. The LHCb magnet is a warm dipole magnet which produces a integrated magnetic

field of 4Tm in the y axis, which is large enough to have a measurable effect on high

momentum particles. The polarity of the magnet can be reversed, and this is performed

regularly in order to allow the assessment of charge asymmetric responses or slight

alignment offsets of the detector [43].

3.2.6 Calorimeters

The LHCb calorimetry system consists of a number of detectors that are designed to

make measurements of the energy of the particles as they pass through. There are four

sub-detectors making up the calorimetry, each with its own distinct role: the Scintillating

Pad Detector (SPD) and the Pre-Shower detector (PS) are mainly used for electron

identification, the Electromagnetic Calorimeter (ECAL) measures the energy of particles

that interact primarily via the electromagnetic force, and the Hadronic Calorimeter

(HCAL) measures the energy of particles that interact primarily through the strong

force. The calorimeters are also used in the event trigger of LHCb; this will be discussed

further in section 3.2.8.

All of the calorimeter sub-detectors use the same basic principles to measure the energy

of the particles passing through the detector [44]. When a high energy particle passes

through a certain amount of material, it gives up a portion of its energy in the form

of a particle shower. The energy of the particles produced in the shower can then be

directly measured using scintillating tiles, and this can be interpreted as a measurement
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of the energy of the original particle. For particles interacting electromagnetically, their

energy loss is governed by the radiation length of the material, X0. After traversing one

radiation length, the particle will lose energy such that it only has 1/e of its original

energy. For particles interacting mainly through the strong force, the energy loss is

instead related to the nuclear absorption length of the material, λint.

The SPD/PS system consists of two planes of scintillator pads, separated by a 15 mm

block of lead (corresponding to 2.5 X0). Both are segmented into inner, middle, and

outer sections, each with progressively larger dimensions. The SPD detects charged

particles before any showers are initiated, and can therefore be useful for differentiating

between electrons and photons. The PS detector provides another measurement of

showering effects before the particles reach the main calorimeters.

Figure 3.12: Illustration of the segmentation of the inner, middle, and outer sections

of the LHCb ECAL, including the length of the square cells in each section [44].

The ECAL consists of 60 modules placed along the beam line, with each module made

up of alternating layers of 2 mm thick lead plates and 4 mm thick scintillating tiles. This

set up initiates electromagnetic showers from mainly photons and electrons, where the

showers are caused by a combination of Bremmstrahlung and pair production. The

entire length of the ECAL corresponds to a thickness of 25X0. As with the SPD/PS,

the ECAL is split into inner, middle, and outer sections, which become gradually larger

to account for the greater hit density closer to the beam pipe. These sections, and their
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individual dimensions, are illustrated in figure 3.12. The energy resolution of the ECAL

is 8%√
E
⊕ 0.8% [45].

Figure 3.13: Illustration of the segmentation of the inner and outer sections of the

LHCb HCAL, including the length of the square cells in both sections [44].

The last of the calorimeters is the HCAL. The HCAL uses iron as the absorber material,

which causes hadrons to produce showers by interacting through the strong force. As λint

is in general greater than X0, the HCAL must be larger than the ECAL to measure the

energy of the hadrons with a similar precision. The entire size of the HCAL corresponds

to approximately 5.6λint. Unlike the prior two calorimeters, the HCAL is only segmented

into inner and outer sections, as illustrated in figure 3.13. The energy resolution of the

ECAL is 69%√
E
⊕ 9% [45].

3.2.7 Muon chambers

The final sub-detectors of LHCb are the muon detectors. Many of the decays that LHCb

will measure have final states that include muons, such as the B0
s → µ+µ− measure-

ment [46], so it is vitally important that the detector is able to identify and reconstruct

muons. Muons are the most highly penetrating detectable particle, so the muon detec-

tors are placed at the point of the detector furthest from the interaction point. There

are five muon detectors in total, M1-M5, with M1 situated before the calorimeters, and
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the other four coming after [47]. Thick iron absorbers are placed between the individual

detectors in order to remove any hadronic background and ensure that the only particles

detected at this stage are muons. Each of the muon detectors is split into four regions

which surround the beam pipe with progressively larger radii. The regions are designed

to have roughly equal occupancies, which means that the spatial resolution of the muon

detectors decreases with distance from the beam line [48].

3.2.8 Trigger and Stripping

Due to cost considerations for data storage, and also the speed at which data can be

written to disk, it is impossible for LHCb to record all of the collisions producing de-

tectable particles, estimated to occur at a rate of 10 MHz. The LHCb data acquisition

system was designed to read out data events at a rate of approximately 3 kHz, meaning

only a small fraction of the collisions that occur in the detector are stored as data. This

reduction is performed by the LHCb trigger system, which uses information from both

hardware and software systems to narrow down the huge number of initial collisions and

store only the events deemed to be most interesting for offline analysis by the various

LHCb analysis groups. The trigger system consists of three separate stages: the Level-0

(L0) hardware trigger, and two High Level Trigger (HLT) software triggers. Only events

that pass all three stages of the trigger are stored, as shown in figure 3.14.

Figure 3.14: Flow chart showing how the LHCb trigger system works to reduce

the initial event rate down to approximately 3 kHz in order to be saved for offline

analysis [49].
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L0

The first stage of the trigger system is a hardware level system that makes use of the

response from various parts of the detector in order to rapidly decrease the number of

events to a rate of approximately 1 MHz. There are three separate triggers acting at the

L0 stage, with the output of each used by the Decision Unit to decide whether to accept

or reject an event.

The first of the L0 triggers is the Pile-Up Trigger. This trigger was designed to use

two VELO R sensors, placed downstream of the VELO, to look for evidence of multiple

primary interaction vertices (PVs) in an event. Rejecting these events at trigger stage

is beneficial as the analysis of events with multiple PVs is much more difficult, meaning

these events are of little use to the analysis groups.

The L0 also makes use of a Calorimeter Trigger, which uses the various calorimeter

systems described in section 3.2.6 to look for evidence of high transverse energy (ET )

hadrons, electrons, photons, and neutral pions. High ET decay products can often

indicate an initial B hadron decay, making these events potentially interesting for offline

analysis. The Calorimeter Trigger also records the total HCAL ET deposit and the SPD

multiplicity, as these can help identify events with many final state particles that would

command a long processing time.

The final part of the L0 trigger is the Muon Trigger. This trigger uses the information

from the muon chambers to select events containing one or two high transverse momen-

tum (pT ) muons. This can be indicative of either the presence of a J/ψ particle at some

point in the detector, which can be often produced in B hadron decays, or alternatively

of various other B hadron decays of interest to LHCb analyses.

The L0 Decision Unit then combines the information from each of the three separate

triggers, and compares the outputs to five sets of pre-defined criteria that select events

that contain any of the following: one high pT muon, two high pT muons, a high ET

hadron, a high ET electron, or a high ET photon or π0.

Events in LHCb that are selected by the trigger can either be Triggered On Signal

(TOS), or Triggered Independent of Signal (TIS). If an event was recorded as TOS,

then the event was selected by the trigger due to one or more of the particles involved

in the signal event passing the required criteria for a particular trigger. If an event was
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recorded as TIS, then the event was selected as a result of a particle that was not part

of the signal decay meeting the criteria for the event to pass the trigger.

HLT1

The HLT1 is a software trigger that is designed to further reduce the event rate to

approximately 50 kHz. This trigger stage reconstructs tracks in the VELO, and then

attempts to match these tracks to the particles selected by the L0 trigger. This allows

HLT1 to confirm or reject the decision from the L0 Decision Unit.

HLT2

HLT2 is the final stage of the LHCb trigger, and uses the rest of the detector information

to fully reconstruct tracks in the events that have passed HLT1. HLT2 compares each

event to a number of different selection criteria, where each selection is designed to

identify events that appear to match a particular physical process or decay. The output

rate of HLT2 is approximately 3 kHz, and all remaining events are saved for offline

analysis. The HLT2 stage of the trigger works in much the same way as the actual final

selections used in the analyses at LHCb, often making use of the same information.

Stripping

The first stage of each analysis on LHCb is to pass the triggered data events through

stripping. Each analysis makes use of a specific stripping line, which is a tighter selection

designed to pick only events that may be of interest to that particular analysis. For

example, the B0
s → D

(∗)+
s D

(∗)−
s analysis presented in chapter 5 used a stripping line

designed to look for events containing decays of B0 or B0
s mesons into two oppositely

charged D mesons. The selection criteria applied to select such events are discussed in

section 5.3.

3.2.9 Software chain

LHCb makes use of a number of software packages for Monte Carlo production and real

data analysis. These are described in brief below.
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Gauss

Monte Carlo (MC) production in LHCb is carried out using the Gauss software pack-

age [50, 51]. The first stage of Gauss simulates the proton collisions using Pythia [52,

53], and decays B hadrons using the EvtGen package [54]. Final state radiation is sim-

ulated using Photos [55]. All of the MC particles are then passed through a full simu-

lation of the LHCb detector, which is produced using the Geant4 framework [56, 57].

Boole

The second stage of MC production is to digitise the output of the full simulation from

Gauss, and this is performed using the Boole [58] package. This stage makes the

simulated events look like data, by giving the detector response that would be produced

if the event had been an actual data event.

Moore

The Moore [59] package is used to run the trigger on digitised detector output.

Brunel

Brunel [60] is responsible for fully reconstructing the events based on the digitised

output, either of simulated events from Boole, or from the detector output from ac-

tual collisions. Following this stage, events are prepared for full analysis in .dst (data

summary tape) files.

DaVinci

Physics analyses are performed on the data and MC files using DaVinci [61]. Event

selections and specific decays can be programmed in the options in order to produce

analysis specific outputs for further study. It is also possible to select the variables to

include in the output that will be of interest in further analysis. DaVinci outputs .root

files that can be fully analysed using the Root analysis software [62].



Chapter 4

Radiation Damage in the Vertex

Locator

The use of semiconductor technology has become a popular choice for modern particle

detectors, as it offers better resolution and faster read out than has been previously

achievable; the first part of this chapter examines how this technology is used to track

charged particles. LHCb makes use of semiconducting silicon strip sensors in both the

VELO and the tracking stations, as described in chapter 3, and section 4.3 details the

set up and characteristics that allow the VELO to effectively track high energy particles

close to the interaction point in LHCb. One drawback of using silicon sensors so close

to the interaction region is that they are damaged by the high energy particles that

traverse the sensor, and this can ultimately degrade the performance of the sensor. The

final sections of this chapter examine the causes and effects of this radiation damage,

focusing specifically on the increase in leakage current in the sensors, and shows how

this damage is monitored and predicted at LHCb.

4.1 Semiconductors

A semiconductor material is characterised by the presence of an energy gap between the

valence and conduction electron bands that is large enough that the material behaves as

an insulator at very low temperatures, with no movement of electrons between bands,

but which allows some transitions of electrons at room temperature. An illustration

48
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of the difference between valence and conduction bands in conductors, insulators, and

semiconductors is shown in figure 4.1.

Figure 4.1: Illustration of the band gap structure in insulators, semiconductors, and

conductors (metals).

When an electron moves from a state in the valence band into a state in the conduction

band, it becomes a free negative charge carrier. The hole in the valence band left behind

by the electron may also be thought of as a positive charge carrier which will also

contribute to the conduction process [63]. In an intrinsic semiconductor, electrons and

holes are formed in pairs, and as such the number of free electrons is always equal to

the number of holes. These electron-hole pairs continuously form and then recombine.

It is possible to alter the characteristics of a semiconductor through a process known

as doping. Doping involves introducing small levels of impurities to the semiconductor

lattice in order to increase the number of free charge carriers, and can be performed in

two ways. The first type of doping is positive, or p-type doping. In this case, a number

of atoms of an element with one fewer outer shell electrons than the semiconductor

material are implanted in the lattice. This results in the presence of extra holes in the

valence band, and therefore a net increase of free charge carriers. The second type of

doping is negative, or n-type doping. Here, the lattice is doped with an element with

an extra outer shell electron, resulting in the presence of extra electrons in the material.

In silicon, phosphorus is commonly used as the n-type donor element, whereas boron is

used as the p-type material.
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4.2 p-n junctions

A p-n junction is created when n-type and p-type doped silicon are joined in the same

semiconductor crystal. Electrons from the n-type region diffuse into the p-type region,

and similarly holes from the p-type region diffuse into the n-type region. This creates

a third region between the p-type and n-type regions which is devoid of free charge

carriers, and is therefore known as the depletion region. This also creates an electric

field across the junction; the system reaches an equilibrium state where the net migration

of electrons and holes is balanced by electrons and holes moving in the opposite way due

to the electric field.

It is possible to increase the size of the depletion region by applying a reverse bias voltage

across the silicon. Connecting the n-type region to the positive terminal causes more

of the free electrons to drift away from the junction, with holes from the p-type region

being simultaneously pulled towards the negative terminal; this results in the depletion

region widening by an amount governed by equation 4.1 [64]:

VD =
q

2ε
|Neff | d2. (4.1)

In this equation, VD is the voltage required to deplete a region of thickness d, where q is

the electron charge, ε is the permittivity of the sensor material, and Neff is the number

of effective charge carriers present. When d is equal to the thickness of the sensor full

depletion is said to have occured, and increasing the applied voltage further will no

longer increase the depletion region.

4.2.1 p-n junctions as particle detectors

When a charged particle passes through a material it gives up a portion of its energy in

the form of ionising radiation. This charge deposition is governed by the Bethe-Bloche

formula shown in equation 4.2:

− dE

dx
=

4π
mec2

nz2

β2

(
e2

4πε0

)2 [
ln
(

2mec
2β2

I(1− β2)

)
− β2

]
. (4.2)
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In this equation, −dE
dx represents the energy loss of the traversing particle over the

distance travelled through the material, z is the charge of the particle, β is the particle’s

velocity divided by c, n is the number of charged nucleons in the material, I is the mean

excitation potential of the electrons in the material, me is the electron mass, and ε0 is

the permittivity of free space. An ionising particle passing through silicon will deposit

energy that liberates a number of electron-hole pairs, providing the particle has a high

enough energy.

By applying a high reverse bias voltage across the silicon p-n junction, these electron-

hole pairs can be separated before they can recombine in the lattice. The electrons drift

towards the n-type silicon, and the holes drift towards the p-type; this induces a charge

that can be read out and interpreted by external software in order to reconstruct the

hit position of the traversing particle.

Figure 4.2: Diagram of an n+-in-n silicon detector, as used in the LHCb VELO.

Electrons are carried by the electric field to the n+ strips, where they induce a mirror

charge in the aluminium readout strips [65].

Figure 4.2 shows the sensor set up used in the LHCb vertex locator detector, known

as an n+-in-n type detector. In this arrangement, the sensor consists of an n-type

bulk, with a more heavily doped n-type (n+-type) silicon as the strip implants, and a

p+-type backplane. The main sensor is separated from the readout strips by a layer of

silicon oxide and an additional layer of p-type silicon, in order to prevent an excessive
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build up of positive charge on the surface layer; the p-spray isolates the readout lines.

As an ionising particle passes through the silicon it liberates a number of electron-hole

pairs. The electrons then drift towards the n+ strip implants, where they induce a

mirror charge in the aluminium readout strips. This is then readout and converted to

Analogue-to-Digital-Converter (ADC) counts, which are analysed by the reconstruction

software. A full description of the VELO follows in the next section.

4.3 The LHCb vertex locator

One of the main goals of the LHCb experiment is the precise measurement of the prop-

erties of hadrons containing b quarks. B hadrons are notable for their relatively long

lifetime, which means that they travel a short distance after creation before decaying

into lighter hadrons. This is also the case, albeit to a lesser extent, for D mesons; as

the b → c quark transition dominates over other b transitions, this is also of importance

when measuring the decays of B hadrons. The ability to separate these secondary ver-

tices is vital for precision measurements of B hadron decays as it allows the decays to

be isolated from various background processes; in LHCb, this vertex identification is

performed using the Vertex Locator (VELO).

The VELO is a silicon strip detector that surrounds the collision point within LHCb. It

is split into two halves, with each half consisting of 21 modules spaced out along the z

axis. The modules immediately around the interaction region are evenly spaced, whereas

the modules further downstream are staggered at various intervals; the positioning of

the modules in the VELO is illustrated in figure 4.3. Each module is made from two

sensors, glued back to back, with one sensor measuring the r coordinate of a traversing

particle, and the other measuring the φ coordinate. Combining these measurements

with the known z position of the module gives a 3-dimensional position measurement of

a particle passing through the sensor.
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Figure 4.3: Illustration of the location of the modules within the VELO, along with

the positioning of the interaction region where the protons are brought to collide within

LHCb [66].

To increase the precision achievable with the VELO, it is essential to locate the sensors

as close to the collision point as possible. For this reason, when collisions are occuring

within LHCb, the sensitive area of each VELO sensor is just 8 mm from the proton

beams. As discussed in section 3.2.1, the LHC requires a larger beam aperture when

accelerating and stabilising the beams, and therefore the VELO sensors must retract to

30 mm from the beam in order to minimise the potential for damage from the beams.

During collisions the sensors are then moved back into position surrounding the beam,

with a slight overlap between the two halves in order to ensure complete coverage of the

active silicon area [66].

The sensors are all made using 300 µm thick n+-in-n silicon, except for two n-in-p sensors

(the replacement VELO sensors are all produced using n-in-p technology). They are

semicircular in shape, with an active region that covers from 8 mm to 42 mm in the

transverse plane when in the closed position. The r measuring sensors are split into

four 45◦ areas in order to reduce occupancy, with each area containing 512 circular

silicon strips. The strip pitch varies from 38 µm at the inner radius to 102 µm at the

outer radius, which accounts for the higher particle flux closer to the beam line. The

φ measuring sensors are split into two sections, inner and outer, to again account for

relative occupancies. The strip pitch in both sections increases with distance from the

beam line, from 38 µm to 78 µm in the inner section and 39 µm to 97 µm in the outer
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section [67]. There is also a small skew between alternating φ sensors in order to improve

the tracking performance of the detector. Alternating the direction of the φ sensors

introduces a stereo angle between strips on adjacent sensors, which resolves the stereo

ambiguities that result from multiple hits in the detector and reduces combinatoric

background in the pattern recognition [68]. The sensor geometries are illustrated in

figure 4.4.

Figure 4.4: Illustration of the geometry of the two sensor types used in the VELO.

The illustration of the φ sensor shows two adjacent sensor geometries overlaid, in order

to illustrate the alternating skew in these sensors [68].

The r and φ sensors are glued to a printed circuit board structure known as a hybrid.

The Beetle chips are also mounted on the hybrid, and are in turn connected to the

sensors; the Beetle chip is the front end readout chip in LHCb with each sensor utilising

one chip for every 128 silicon strips, totalling 16 chips for every sensor. The hybrid

also contains the negative temperature coefficient thermistors (NTCs) that are used

to monitor the temperature of the sensor; this is especially important when assessing

annealing effects after radiation damage, as will be discussed further in section 4.6.2.

The hybrid is connected to a rigid carbon fibre paddle, which contains the cooling

mechanics; this setup constitutes a single module. Figure 4.5 shows a photo of a single
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VELO module before installation, and figure 4.6 shows numerous modules fixed in place

ahead of installation in the detector.

Figure 4.5: Photograph of a single VELO module before installation in the detector.

Figure 4.6: Photograph of multiple modules in the VELO, after being secured and

awaiting installation into the full detector setup [69].
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Cooling of the VELO modules is vitally important to the successful operation of the

silicon sensors. Each of the modules requires 20W of power during normal operation,

and the heat created by the chips would raise the temperature of the silicon to such

an extent that the electronics would be damaged and the silicon would be destroyed by

thermal runaway. Thermal runaway results from the exponential temperature depen-

dence of the sensor leakage current. Raising the temperature of the sensor raises the

leakage current, and the increase in current causes an increase in sensor leakage power

which further heats the sensor. This feedback loop causes the temperature to run away,

destroying the sensor [70]. The increase in temperature would also cause uncontrollable

annealing after the silicon had been irradiated. To prevent this, each module is cooled

by a bi-phase CO2 system built into the carbon fibre support, as shown in figure 4.5.

Heat is conducted away from the silicon by a 400 µm thick Thermal Pyrolytic Graphite

(TPG) core, which is in turn connected to aluminium cooling blocks known as cooling

cookies. This aluminium is melted around the capillaries which carry the CO2 coolant

to and from the supply. The cooling system operates at a temperature of −30◦C and

provides temperatures of approximately −7◦C to the active silicon area during opera-

tion, although the determination of the actual silicon temperature during operation is

non-trivial, as will be further discussed in section 4.6.3.

The proximity of the VELO modules to the beam also introduces further mechanical

issues which require the inclusion of further structure for the detector. The potential

for damaging RF pickup from the proton beam passing between the VELO modules

necessitates the use of a shield around each VELO half. The shield, known as the RF-

foil, is made from 300 µm thick aluminium, and is corrugated in shape in order to allow

the two halves to close as near as possible to each other. A diagram of the RF-foil

showing this corrugation is shown in figure 4.7. In order to prevent the RF-foil being

deformed due to the very low pressure of the LHC beam vacuum, the VELO is kept in

a secondary vacuum system. The majority of the full VELO detector, including the two

sets of modules, the readout electronics, and the cooling system, is situated inside this

secondary vacuum vessel; a pressure of 10−6 mbar is maintained across the detector, as

opposed to 10−9 mbar for the main LHC vacuum. A diagram of the VELO vacuum

vessel is shown in figure 4.8.
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Figure 4.7: Diagram of the corrugated structure of the RF-Foil used in the VELO

to prevent RF pickup from the proton beam passing between the modules [66].

Figure 4.8: Illustration of the secondary vacuum vessel in which the majority of the

VELO detector is situated within LHCb [71].

When a charged particle traverses one of the VELO modules, it deposits energy through

ionisation which is then collected at the readout strips, as described in section 4.2.1. The

charge on the strips is read out by the aforementioned Beetle chips in analogue form,
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and then sent to a repeater board outside the VELO vacuum tank for amplification.

From here, the signal is sent to the TELL1 boards, which are common read out boards

designed for LHCb. These boards make use of four 10-bit Analogue to Digital Converters

(ADCs) in order to convert the original analogue signal from the Beetle chips to ADC

counts.

At this point, the collected charge is ready to be assessed as either signal or noise. As

a traversing particle can deposit charge on more than one strip in a sensor, there are

two separate threshold criteria that, if fulfilled, can define a signal. The first of these

is the seed threshold; for a signal to be detected, a strip must have a charge that is six

times the mean noise for that strip, which is typically equal to between 12 and 18 ADC

counts. Once a seed strip is found, the adjacent strips are then searched to see if either

of them pass the inclusion threshold criteria, which is set at 40% of the seed threshold.

If the strip does indeed pass the inclusion criteria, it is said to form a cluster with the

original seed strip. A cluster can contain a maximum of four strips, and the charge

on each strip in the cluster is then used in an algorithm that assesses exactly where

the incident particle traversed the detector. Figure 4.9 shows the distribution of ADC

counts in a two strip cluster in a VELO r-sensor; this represents the charge deposition

across a series of events. The distribution is modelled by a Landau function, which is

well known to describe the energy lost by a particle traversing material, convoluted with

a Gaussian function, which models the noise in the sensor. It should be noted that the

noise contribution is small, and as such the Gaussian portion of the fit does not greatly

transform the overall distribution from the underlying Landau distribution.
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Figure 4.9: Example of the distribution of ADC counts in a two strip cluster in a

VELO r-sensor [65].

The best possible single hit resolution of a VELO sensor is approximately 4 µm, although

this is dependent on a number of factors. By assessing the signal presence in all of the

modules in the VELO, charged particles can be tracked through the detector, allowing

the location of the various decay vertices present in an event in LHCb to be determined.

Whilst the precision with which a vertex can be measured depends strongly on the

number of tracks eminating from that vertex, the VELO can determine the position of a

vertex with typically approximately 20 µm resolution in the transverse plane, and 100 µm

resolution in the z-direction. Given that a b-hadron travels a distance of the order of

1 cm before decaying, the VELO is easily able to separate b-hadron decay vertices from

the original interaction region.

4.4 Radiation damage in silicon detectors

Silicon sensors can be damaged by the high energy particles which they are measuring,

which can result in a degradation in their performance over time. This damage is classed

as either ionising energy loss (IEL) or non-ionising energy loss (NIEL), depending on

the mechanism causing the damage. The bulk damage in silicon detectors is primarily

due to the displacement of a silicon atom, known as a primary knock on atom (PKA),
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from its lattice site [72]. The damage resulting from a PKA depends on the amount

of recoil energy transferred from the traversing particle; at low recoil energies damage

is restricted to fixed point defects, but at higher recoil energies the PKA has enough

energy to create a further defect cluster at the end of its track [73].

These defects alter the performance of the detector as they can ‘trap’ charge. For

example, a cluster of holes in the silicon lattice can trap electrons produced by an

incident ionising particle. This will delay the electrons reaching the implant strips, and

therefore prevent the signal being read out by the electronics; this has the effect of

decreasing the signal-to-noise ratio, and hence the tracking performance, of the silicon

detector. Further problems result from ionisation damage; this occurs when the trapped

electrons cause a concentration of charge to build up in an area of the silicon lattice

which alters the electic field at that point. Local variations in the electric fields within

the sensor cause changes in the mobility of electrons and holes in the lattice, which also

affect the charge collection efficiency of the detector.

As the impact of this radiation damage on the performance of the silicon detector can

be ultimately quite severe, it is important to understand the propensity for damage

depending on the environment in which the detector will be used. The energy transferred

to the silicon lattice by an incident particle varies greatly depending on both the type

of particle and its initial energy, and for this reason it is necessary to scale all damage

predictions and calculations to a reference point. The NIEL scaling hypothesis corrects

all particles and energies to the equivalent number of 1 MeV neutrons, and has been

shown to be a good approximation over a range of energies [74]. Incident particle fluences

are therefore described in terms of 1 MeV neutron-equivalent particles, as opposed to the

actual composition of incident particles; figure 4.10 shows the normalised damage factors

of a range of particles and energies.
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Figure 4.10: A plot showing the damage factors of various particles at different

energies. The damage factor is normalised such that a 1 MeV neutron has a damage

factor of 1. Plot produced using tables from [75].

This normalisation makes the prediction of total fluence received by the VELO silicon

sensors possible, as shown in section 4.6.1, which then allows for a prediction of the

likely damage that the silicon will sustain during use.

4.5 Monitoring leakage currents in the VELO

One of the main issues affecting the performance of a silicon detector after irradiation is

an increase in the leakage current present in the detector. When a new silicon detector

is operated under a reverse bias voltage, diffusion across the depletion region is heavily

suppressed. However, there is still a very small current that flows across the detector,
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which is known as the leakage current. This current increases with the reverse bias

voltage applied to the detector, and saturates after the detector is fully depleted.

In a detector that has not been subjected to radiation this leakage current is due mainly

to the thermal generation of electron-hole pairs in the depletion zone, with the applied

voltage preventing recombination, and is thus small. As the silicon lattice becomes

damaged by radiation, more defects are created in the depletion zone, meaning the

leakage current increases. An increased leakage current is detrimental to the performance

of the detector, as the noise present within the detector also increases. This alters the

signal-to-noise ratio achievable by the detector, and as such can affect the ability to

properly measure hit clusters. As the number of free charge carriers in the silicon is

altered by radiation damage, it can also become necessary to operate the detector at a

higher voltage to ensure full depletion. In order to maintain an efficient performance

from the detector, it is vital to monitor the leakage currents in the silicon at regular

points during its lifetime.

Figure 4.11: Plot of the I-V characteristic curve for one of the VELO sensors, as

recorded at the start and the end of the first full data taking period at LHCb.
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In LHCb, this monitoring is made possible by performing regular I-V (current-voltage)

scans on the silicon sensors. Whilst the detector is not in use, the leakage current in

the sensors is assessed by ramping the voltage from 0V to the operational voltage in

10V steps, and recording the current at each point. Figure 4.11 shows the results for

one sensor from I-V scans performed at the start of 2010, and also at the end of 2012

after the detector had been in operation for almost 3 years, with approximately 3 fb−1 of

delivered luminosity. The large increase in leakage current in the sensor is clearly seen.

Figure 4.12 shows the variation in leakage current for every sensor at full depletion over

the period of operation prior to the first long shutdown of the LHC. The trend of

increasing leakage current with delivered luminosity is clearly visible in all of the VELO

sensors. Also apparent from this figure is the high leakage current present in some of

the sensors at the start of operation; these increased currents result from surface defects

present in the sensor at installation. The leakage current due to surface defects decreases

with radiation damage, which causes the leakage current in these high production current

sensors to initially decrease with luminosity, before eventually reverting to the standard

behaviour displayed in the other sensors.
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Figure 4.12: Showing the increase in leakage current in the various silicon sensors over

time, as more luminosity is delivered to LHCb. The red dots represent the measurement

for each individual silicon sensor at each IV scan at full depletion, and the blue line

shows the total delivered luminosity in LHCb at that point.

The bulk damage to the silicon lattice resulting from irradiation is the main cause of

increased leakage current [76], and as such it is important to understand this effect in

order to maximise the long term performance of the VELO.

4.6 Predicting leakage currents

The leakage current in the VELO has two separate components: bulk leakage current,

and surface leakage current. Bulk leakage currents, as the name suggests, arise from the

current inside the detector volume. These currents have a known temperature depen-

dence, and can therefore be predicted by considering the characteristics of the detector.

Surface leakage currents result from imperfections or irregularities on the sensor sur-

face, often from the manufacturing process or scratches suffered during testing and

installation. In contrast to the bulk currents, surface currents do not display the same
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temperature dependence and are much more difficult to model. For this reason, the

predictions detailed in the remainder of this chapter are valid for describing only the

bulk leakage currents in the VELO sensors.

It is possible to calculate the bulk current in a sensor as a function of the fluence received

by the sensor using equation 4.3 [77]:

I = αV φ. (4.3)

I is the bulk current when the sensor is fully depleted (A), V is the active volume of

the sensor ( cm3), α is a constant that relates the increase in the current to the fluence

received by a sensor (A/cm) and will be discussed further in section 4.6.2, and φ is

the fluence received by the sensor, in units of 1 MeV neutron-equivalent per cm2. The

calculation of φ is discussed further in the following section.

4.6.1 Sensor fluence profiles

The sensors in the VELO are subjected to a very high flux of highly energetic particles.

The flux received by the sensors is simulated in order to allow the estimation of the

fluence profile across each sensor, for use in the bulk current predictions. The fluence

profile of each sensor has a high radial dependence, as the parts of the sensor closest to

the beam line receive a much greater flux than the outermost parts of the sensor. The

fluence profile across a sensor is described by the equation in 4.4:

φ = Ar−β. (4.4)

In this equation, A is the 1 MeV neutron-equivalent fluence per fb−1 at a radius of

r = 1 cm, and β describes the exponential radial dependence of the fluence across each

sensor. The fluence received depends not only on the region of the sensor, but also on

the z position of the sensor relative to the interaction point. The sensors closer to the

interaction point experience a higher flux of particles, meaning the A and β parameters

must be calculated for each individual sensor. Figure 4.13 shows how the two parameters

vary with the z position of the sensor, as well as two examples of the radial distribution

of the fluence across an individual sensor.
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Figure 4.13: (Left) The simulated fluence profile across VELO sensors both near to

(red) and downstream of (blue) the interaction region, and (right) the variation of the

β (top) and A (bottom) parameters as a function of z position of the sensor [78].

In order to assess the increase in current resulting from the fluence received by the

sensor, the sensor can first be modelled as a series of infinitesimal strips of radius δr at

radius r. Substituting the volume of one of the strips into equation 4.3, and combining

with equation 4.4, gives the current increase in the strip using the relationship shown in

equation 4.5:

δI =
(
αtAr−β

)
πrδr. (4.5)

Where t is the thickness of the silicon. Integrating this relationship, with respect to

radius, across the active area of the silicon then gives the increase in current across the

whole sensor, as shown in equation 4.6:

∆I =
Aαπt

2− β
[r2−β]ro=4.2 cm

ri=0.8 cm . (4.6)
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The final ingredient needed to allow for a prediction of the bulk current after a certain

luminosity is a calculation of the factor α; this is discussed in the following section.

4.6.2 Annealing

In order to obtain an accurate value for the α parameter in equation 4.6, it is necessary

to account for annealing in the silicon after radiation damage. Annealing is a process

whereby thermal energy modifies the damage in the silicon lattice, further altering the

performance of the sensor.

Figure 4.14: Results of annealing studies from [79]. The parameters in equation 4.7

are determined empirically by fitting to the 21◦C data in this figure.

Annealing must be calculated empirically, and is modelled using equation 4.7, which is

derived from fitting to data as shown in the plot in figure 4.14:

α(t) = αI × e
− t
TI + α0 − β ln

(
t

t0

)
. (4.7)

The parameters in equation 4.7, as determined using the 21◦C data, are shown in ta-

ble 4.1.
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Parameter Value at 21◦C
αI 1.23× 10−17A/ cm
TI 1.4× 104 minutes
α0 7.07× 10−17A/ cm
β 3.29× 10−18A/ cm
t0 1 minute

Table 4.1: The parameters for equation 4.7, determined empirically at 21◦C by fitting
to the data in figure 4.14, as taken from [79].

When the LHCb detector is not in operation, either between LHC fills or during shut-

down periods, the VELO is kept at approximately −30◦C by the cooling mechanics

described in section 4.3. At this temperature, the effect of annealing is negligible. The

effects of annealing are more pronounced during data taking, when the VELO modules

are much closer to 0◦C. The most problematic periods occur when the cooling for the

VELO is switched off, either temporarily due to cooling failures or intervention, or over

a longer period such as the Christmas period of 2010/2011. All of these various periods

are accounted for in the full prediction calculations.

4.6.3 Temperature corrections

As the annealing relationship used in equation 4.7 is only valid at 21◦C, it is necessary

to correct all annealing periods to this standardised temperature in order to accurately

predict the effect on the leakage current present in the sensor. The temperature of the

VELO is constantly monitored by an online Supervisory Control And Data Acquisition

(SCADA) system called PVSS, with temperature information from the NTCs read out

and stored at 10 second intervals1. This information is then analysed offline; each time

the temperature varies by more than 1◦C, the date and time is stored. This makes

it possible to assess what temperature the sensor has been at, and for how long. By

correcting this to an equivalent time spent at 21◦C using equation 4.8, and then adding

up the total time for the period between each IV scan, a prediction of the amount of

annealing for that period can be made:

tT2 =
(
e
− Ea
kT1 /e

− Ea
kT2

)
× tT1 . (4.8)

1The author wishes to thank Karol Hennessy for downloading and making available the PVSS data
for this study.
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In this equation, Ea is the silicon activation energy (1.31 eV), k is Boltzmann’s constant,

T1 is the inital temperature, T2 the target temperature, and tT1 and tT2 are the times

spent at these temperatures. tT2 is then used in equation 4.7 to obtain the α factor for

the corresponding period, which is then used to predict the total current increase.

As the predictions are made at the same point in time as the IV scans are taken, it is

important to accurately account for the luminosity delivered in the time between scans.

Due to the luminosity levelling in LHCb, described in section 3.2.1, the luminosity

delivered can be accurately approximated as one single injection, equal to the total

delivered luminosity in the period between the two scans, midway between the scans.

This method makes the final predictions much simpler and quicker to calculate. The

uncertainty on the prediction resulting from this luminosity approximation was examined

in [80], and was found to be negligible.

As this prediction is made at 21◦C, and the bulk current drawn in silicon is heavily

dependent on the temperature of the silicon, the final step to obtain a prediction com-

parable to the measurements shown in section 4.5 is to correct the current increase back

down to the operational temperature at which the scans are performed. This current

correction is performed using equation 4.9:

I(T1)
I(T2)

=
(
T1

T2

)2

× e−
Eeff

2k
×

“
1
T1
− 1
T2

”
. (4.9)

Here, Eeff is the effective silicon band gap (1.21 eV [81]), k is Boltzmann’s constant,

T1 and T2 are the initial and final temperatures, and I(T1) and I(T2) are the currents

drawn at these temperatures.

The operational temperature of the silicon is not easy to determine. The silicon temper-

ature relative to the temperature of the surrounding components was originally assessed

using thermal photography in a test environment prior to the installation of the modules,

as shown in figure 4.15, and was thought to be approximately −8.3◦C. However, due

to differences between the test environment set up and the conditions in the installed

VELO, this is now thought to give a temperature estimate that is a few degrees too

low. The extraction of precise silicon temperatures will require lengthy work that is be-

yond the scope of the analysis presented here, but will be included in future iterations.

The NTC chip calibrations are known to be incorrect, with a temperature dependent
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adjustment needed in order to properly correct the temperature information provided

by the chips. This will require a comparison of the NTC temperatures with the tem-

peratures recorded at the cooling cookies when the power is switched off, and therefore

the temperature gradient across the VELO modules is minimal. It will then be possible

to properly analyse the calibration error of the NTC chips, and therefore increase the

accuracy of the temperature information used in the analysis.

After discussion with the VELO group, it was decided to set the final correction tem-

perature to −5◦C, with a large uncertainty of ±2◦C. This uncertainty accounts for

the imperfect knowledge of the NTC calibration error, and also the temperature de-

pendence of the error. A better knowledge of the calibration error will allow a more

precise estimate of the operational silicon temperature in future, and therefore decrease

the size of the uncertainty due to the final temperature correction. This uncertainty is

by far the dominant source of systematic uncertainty in the analysis, and is thus the

only source considered in the final plots in the following section. When the NTC cal-

ibrations are better understood and the current temperature correction uncertainty of

40% is decreased, it will be necessary to consider systematic uncertainties resulting from

various other sources, including: the LHCb absolute delivered luminosity determination

(≈ 3.5%), the uncertainty resulting from the simulated fluence profiles (≈ 8%), the sep-

aration of the bulk and surface portions of the leakage current (estimated to be ≈ 2%),

and as a result of the 1◦C step size used when analysing the temperature changes in the

silicon (estimated to be less than 1%).
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Figure 4.15: Example of a thermal photograph of one of the VELO modules from

the vacuum tank test environment before installation [82].

4.6.4 Results

Figure 4.16 shows the initial plot from figure 4.12 with the mean sensor leakage current

prediction overlaid. The solid black line represents the mean prediction calculated from

all sensors at a final temperature of −5◦C, and the green dashed lines show the mean

value calculated at ±2◦C of the central value. The predicted trend clearly matches the

observed trend well, except for the high production current sensors, where the high initial

currents are due to surface leakage currents that are not modelled in the predictions.
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Figure 4.16: Showing the calculated mean leakage current prediction overlaid on the

sensor by sensor leakage currents as measured in the I-V scans. The prediction mean is

represented by the black line, corresponding to a temperature of −5◦C, while the green

dotted lines represent a ±2◦C area around the mean.

Figures 4.17 and 4.18 show the leakage current increase in two individual VELO sensors.

The sensor in figure 4.18 is closer to the interaction point than the sensor in figure 4.17,

and as such has a higher leakage current at the end of the analysis period after the same

luminosity. This behaviour is also modelled well by the prediction. In both cases, the

evolution of the leakage current with delivered luminosity is seen to be well modelled by

the prediction formalism.
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Figure 4.17: Example behaviour of the leakage current over time of one of the VELO

sensors, both as measured in regular I-V scans (red dots), and as predicted (black line,

with dashed green lines representing upper and lower uncertainty bounds).

Figure 4.18: Example behaviour of the leakage current over time of another of the

VELO sensors, both as measured in regular I-V scans (red dots), and as predicted

(black line, with dashed green lines representing upper and lower uncertainty bounds).
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4.6.5 Summary and outlook

The effect of ionising radiation on the silicon detectors used in the LHCb VELO detector

must be well controlled and understood in order to maximise the performance of the

detector. Of particular importance is the monitoring of the leakage currents within the

VELO sensors; regular I-V scans allow for the study of the evolution of these currents

over time and with increasing levels of delivered luminosity.

The increase in leakage current due to the bulk damage inflicted on the silicon is well

understood and modelled using the method detailed throughout this chapter. Under-

standing this current increase allows for a confident assessment of the capabilities of the

VELO detector and its life expectancy with regards to delivered luminosity in LHCb.

Providing there are no significant annealing periods, and excluding the likelihood of

unforeseen circumstances destroying the detector, the VELO will be capable of efficient

operation until being replaced by an upgraded VELO during the second long shutdown

period of the LHC during 2018 [83].

There are numerous improvements that will be made to the predictions during the second

data taking period in LHCb that will allow more precise assessments of the expected

leakage currents within the VELO sensors, and therefore make it easier to ensure that

the current evolution is well understood. A detailed analysis of the NTC chips on a

sensor by sensor basis should allow for a better estimation of the silicon temperature

during running, which will decrease the uncertainty on the final predicted currents. It

may also be possible to separate the bulk and surface leakage currents with the use

of current-temperature (I-T) scans in the VELO [84]. As the predictions documented

throughout this chapter are valid for the bulk leakage currents only, this could then allow

for a more accurate comparison of the prediction with the observed current change in

the VELO sensors.
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s D

(∗)−
s branching

fraction

The decay of a B0
s meson into a D+

s and a D−s is of interest for a number of different

analyses. The final state is CP -Even, and measuring decays to CP eigenstates provides a

convenient way to measure numerous parameters arising from B0
s mixing, as discussed in

detail in section 2.2.1. Measuring decays to CP eigenstates avoids the necessity for a full

angular analysis, which is needed to untangle CP -Even and CP -Odd states in mixed final

states. A time dependent analysis of the B0
s → D+

s D
−
s decay can determine the CKM

angle βs, which in turn determines the CP -violating phase φs. For more information

regarding the CKM angles and φs, please see section 2.3.2.

At quark level, the decay is a b →ccs transition, and proceeds at tree level via the

Feynman diagram illustrated in figure 5.1.
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Figure 5.1: Leading order Feynman diagram for the decay B0
s → D+

s D
−
s .

It is also possible for the decay to occur via a penguin topology, as shown in the Feynman

diagram in figure 5.2.

Figure 5.2: Feynman diagram showing the decay B0
s → D+

s D
−
s proceeding through

a penguin diagram.

As b →c is the Cabibbo favoured quark transition, the majority of B0
s → D+

s D
−
s decays

occur through the tree-level process, and penguin pollution is small. It is of interest, if

possible, to calculate observables such as Γs, ∆Γs, and φs both using tree-level dominated

processes and also in decays that have a greater contribution from penguin diagrams

in the final decay amplitude. Differences between the two measurements could be an

indication of New Physics entering the penguin loops.
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5.1 Previous measurements from B0
s →D+

s D
−
s

The following section briefly describes two previous measurements made at LHCb using

the B0
s → D+

s D
−
s decay. For full details of each analysis, please refer to the relevant

paper indicated in each subsection.

5.1.1 B0
s →D+

s D
−
s effective lifetime

The following is a brief summary of the LHCb measurement of the effective lifetime of

the B0
s when decaying to D+

s D
−
s ; a full description of the analysis can be found in [85].

Figure 5.3: Efficiency corrected yield ratio for B0
s → D+

s D
−
s relative to B− → D0D−s

as a function of decay time. Also shown is the exponential fit used to extract the effective

lifetime of the B0
s in the D+

s D
−
s decay channel.

As the B0
s → D+

s D
−
s has a final state that is almost entirely CP -Even, measuring the

lifetime of this decay translates as a measurement of ΓL, the decay width of the light B0
s

mass eigenstate, providing φs is approximately 0. The fitted value of (−0.015±0.035) rad

for φs, as described in section 2.2.1, justifies this assumption. LHCb measured the yield

of B0
s → D+

s D
−
s relative to B− → D0D−s in bins of decay time. Fitting an exponential

to the resulting plot, as shown in figure 5.3, made it possible to extract the effective

lifetime using the already measured lifetime of the B− → D0D−s decay. The results for
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the effective lifetime, τ eff
B0
s→D

+
s D
−
s

, and ΓL are shown below, where, in all cases, the first

uncertainty is statistical and the second is systematic:

τ eff
B0
s→D

+
s D
−
s

= (1.379± 0.026± 0.017) ps

ΓL = (0.725± 0.014± 0.009) ps−1.

These results are interesting to compare with measurements of the same observables

from the channel B0
s→ K+K−. The decay to K+K− is also a CP -Even eigenstate, but

the decay amplitude is expected to have larger contributions from loop processes [86].

The contribution of additional decay amplitudes from non-Standard Model particles is

expected to be larger in B0
s→ K+K−, if they exist [87]. The most recent measurement

of the effective lifetime in the B0
s→ K+K− decay is shown below [15]:

τ eff
B0
s→K+K−

= (1.407± 0.016± 0.007) ps.

No significant differences between the two effective lifetimes are observed.

5.1.2 φs from B0
s →D+

s D
−
s

LHCb has also used the B0
s → D+

s D
−
s decay channel to measure the CP -violating phase,

φs. For full details about the analysis, please refer to [88].
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Figure 5.4: Distribution of the decay time for B
0

s → D+
s D

−
s signal decays used to

extract a value for φs. Discontinuities in the shape of the fit line are a result of the

binned acceptance [88].

Measuring the decay time distribution of B0
s → D+

s D
−
s candidates allows the extraction

of φs; figure 5.4 shows the final fit in bins of decay time. The final data sample had

the background component subtracted by performing a fit to the invariant mass of the

B0
s , and using this fit to weight events by their probability of being signal. The shape

of the remaining distribution is dependent on a number of factors which are combined

to give the full final fit to extract φs. The values of Γs, ∆Γs, and ∆ms were all set to

their world average values in the fit, with Gaussian constraints. The fit also includes

efficiency contributions from the b-tagging algorithms used, along with the bin by bin

decay time efficiencies. The initial event selection used was biased against B0
s candidates

with a low decay time, due to the selection requiring the B0
s to have travelled in order

to effectively identify it. This is accounted for in the full fit, and is the reason that there

is a large drop in yield in the lowest decay time region of figure 5.4. The B0
s candidates

must be initially flavour-tagged so that the evolution of the system can be properly

determined, and φs can therefore be determined. An experimental measurement of φs

from B0
s → D+

s D
−
s decays is of interest theoretically, as an open charm1 final state may

have a different penguin pollution compared to the B0
s → J/ψφ decay which is most

1Meaning a final state where the c and c are not in a bound state, i.e. a final state without a J/ψ or
other excited charmonium resonance (ψ(2S) etc.).
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commonly used to measure φs. The LHCb result for φs determined from B0
s → D+

s D
−
s

decays is:

φs = (0.02± 0.17± 0.02) rad.

The Standard Model prediction is [21]:

φs =
(
0.0363+0.0016

−0.0015

)
rad.

The measurement is consistent with both the Standard Model prediction, and all other

measurements of φs using decays to different final states.

5.2 B0
s → D

(∗)+
s D

(∗)−
s

The remainder of this chapter focuses on the measurement of the branching fraction

of the inclusive B0
s → D

(∗)+
s D

(∗)−
s decay. The D∗+s is an excited state of the D+

s , and

decays to a D+
s and a photon 94.2% of the time, and to a D+

s and a π0 the remaining

5.8% of the time. The branching fraction of the inclusive decay, where one, both, or

neither D±s can pass through the excited state, was originally of great interest from a

theoretical viewpoint.

The branching fraction of B0
s → D

(∗)+
s D

(∗)−
s was thought to provide a good approxima-

tion to the value of ∆Γs/Γs (for a detailed discussion of the meaning and relevance of

this quantity, please refer to section 2.2.1), the difference in decay width between the

two B0
s mass eigenstates divided by the average decay width, using equation 5.1 [89]:

∆ΓsCP

Γs
=

2× B(B0
s → D

(∗)+
s D

(∗)−
s )

1− B(B0
s → D

(∗)+
s D

(∗)−
s )

. (5.1)
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Here, ∆ΓsCP is the difference in decay width between the CP eigenstates, and is equal

to ∆Γs in the limit that φs = 0. This approximation was based on some important

assumptions and limits:

1. that the decay of B0
s → D

(∗)+
s D

(∗)−
s is predominantly CP -Even

2. that the decays saturate the value of ∆Γs

3. the Heavy Quark limit applies in the calculation.

More recent theoretical updates have cast doubt on the validity of these assumptions,

suggesting that the decay modes containing at least one D∗±s will have a non-negligible

CP -Odd component, and also that other 3-body B0
s decays will contribute to the value

of ∆Γs [90]. This update suggested that the contribution from the other decays could be

a similar size to that from B0
s → D

(∗)+
s D

(∗)−
s , and hence that the original approximation

to ∆Γs/Γs is a poor one.

The decay B0
s → D∗+s D∗−s represents a pseudo-scalar decaying to two vectors. The

spin structure of the decay means that the D∗±s mesons can be either longitudinally

or transversely polarised with respect to the decay axis. The longitudinally polarised

states are CP -Even, whereas the transversely polarised decays are a superposition of

CP -Even, when the polarisation vectors of the D∗+s and D∗−s are parallel, and CP -Odd,

where the polarisation vectors of the D∗+s and D∗−s are perpendicular. This means that

the B0
s → D∗+s D∗−s decay can contain a CP -Odd component. The amplitudes of the

three polarisation states are termed AL, A‖, and A⊥, and are related to the helicity

eigenstates of the decay, A0, A+1, and A−1, as shown in 5.2 (where the helicity of a

particle corresponds to the projection of its spin along its momentum vector) [91]:

AL = A0

A‖ =
A+1 +A−1√

2

A⊥ =
A+1 −A−1√

2
.

(5.2)

The three helicity amplitudes are complex and have a magnitude and phase, and can

therefore interfere depending on the phase difference between the various eigenstates. In
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order to separate the various components, a full angular analysis of the D∗+s and D∗−s

decays would be required, requiring the reconstruction of the γ or π0 resulting from the

D∗±s decay. The neutral particle reconstruction was not performed in this analysis, and

therefore a full angular analysis to extract the polarisation amplitudes was not possible.

However, Belle were able to reconstruct the γ and π0 particles as the events are much

cleaner in a e− − e+ collider, and therefore were able to measure the longitudinally

polarised fraction as fL = 0.06+0.18
−0.17 ± 0.03 [92]. In the analagous decay B0 → D∗+D∗−,

the contribution of the CP odd component, A⊥, is estimated to be only 6% [93], and as

such it can be expected that the CP odd component of the B0
s → D∗+s D∗−s decay will

be small.

This does not end the interest in a measurement of the branching fraction of B0
s →

D
(∗)+
s D

(∗)−
s . The value of this branching fraction will still enable a calculation of ∆Γs/Γs,

although it would require further information from future analyses. Firstly, the CP odd

component of the B0
s → D∗+s D∗−s decay would have to be measured, which could be done

using the method described in [94]. Furthermore, it would be necessary to measure the

CP even component in all other b→ ccs decays in order to assess the contribution to ∆Γs

[95]. A detailed discussion of theoretical predictions of the B0
s → D

(∗)+
s D

(∗)−
s branching

fractions, and the predicted contribution of other modes to the value of ∆Γs/Γs, is given

in [96].

Furthermore, a precise measurement of the branching ratio B(b→ ccs) is interesting,

as it is an important ingredient in model independent searches for New Physics in B

decays [97]. As one of the dominant contributions to this value, it is important to have

an accurate measurement of the branching fraction of B0
s → D

(∗)+
s D

(∗)−
s .

This branching fraction has most recently been measured by CDF [98] and Belle [92],

who found respectively:

B(B0
s → D(∗)+

s D(∗)−
s ) = (3.38± 0.25± 0.30± 0.56)%

B(B0
s → D(∗)+

s D(∗)−
s ) = (4.32+0.42+1.04

−0.39−1.03)%
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Figure 5.5: The previous measurements of the branching fraction of B0
s →

D
(∗)+
s D

(∗)−
s , and the theoretical prediction from [96].

where the errors are statistical, systematic, and due to the normalisation for CDF,

and statistical and systematic for the Belle result. These previous results, along with

average of these results, and the theoretical prediction as taken from [96], are displayed

in figure 5.5.

5.3 Selection

The analysis is performed using the entire 2011 LHCb data set, comprising approx-

imately 1.1 fb−1 of proton-proton collisions with a centre of mass collision energy of
√
s = 7 TeV.

In order to reduce the effect of systematic uncertainties on the final result, the branching

fraction of B0
s → D

(∗)+
s D

(∗)−
s is measured relative to the decay B0 → D±s D

∓, which has

a very similar final state and kinematics. D±s candidates are reconstructed through

the decay to K+K−π±, whereas D± candidates are reconstructed through decays to a

K∓π±π± final state. Therefore the final states of the signal and normalisation channel

differ only through the interchange of a K± for a π±, meaning that many systematic
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uncertainties will cancel, and only the differences resulting from this interchange will still

contribute. The final branching fraction can then be calculated using equation 5.3. In

this equation, fd
fs

is the ratio of the B meson fragmentation fractions governing B0
s and

B0 production, and ε
B0/B0

s
rel is the relative selection efficiency between the two channels.

NB0
s

and NB0 are the total yields after full selection for the B0
s and B0 respectively.

B(B0
s → D+(∗)

s D−(∗)
s ) =

fd
fs
·εB

0/B0
s

rel · B(D+ → K−π+π+)
B(D+

s → K−K+π+)
·
NB0

s

NB0

·B(B0 → D±s D
∓). (5.3)

The D∗±s always decays to a D±s and either a π0 or a γ. In this analysis only the D±s is

reconstructed in the decay of a D∗±s , meaning the channels containing one or two D∗±s

are partially reconstructed and are identified through the missing invariant mass that

results from not reconstructing the π0 or γ.

The first stage of event selection is to use a stripping line to select events with a candidate

B meson decaying into two oppositely charged D mesons (see section 3.2.8 for more

details about stripping lines in LHCb). In order to make this initial loose selection,

the stripping line includes a number of different criteria which events must pass in

order to be selected. The different variables used in the selection are described in brief

in the following; for a more detailed description of each variable used, please refer to

appendix F.

The stripping line includes loose cuts on a number of variables for candidate B0
(s) mesons,

including requiring a mass in the range 4750 MeV − 7000 MeV, a lifetime longer than

0.2 ps, a DIRA2 greater than 0.999, a χ2/ndf less than 10 for the end vertex (the B0
s

decay vertex), and an impact parameter χ2 less than 25 with the primary vertex. There

are also loose cuts applied to the D±s and D± candidates; the maximal Distance Of

Closest Approach (DOCA) between the two charm daughters must be less than 0.5 mm,

their daughters must have a transverse momentum (pT) sum of greater than 1.8 GeV,

each must have a vertex χ2/ndf of less than 10, a χ2 of greater than 36 to any primary

vertex, and also a mass in the range 1769.62 MeV − 2068.49 MeV. Loose cuts are also
2Where DIRA represents the cosine of the angle between the momentum vector of the particle and the

flight direction from primary to secondary vertex; this cut ensures the B0
s is travelling forwards through

the detector.
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applied to all daughter candidates; all must have a total momentum (p) greater than

100 MeV and a pT greater than 1 GeV. They are also required to have a track χ2/ndf less

than 4, and an impact parameter χ2 greater than 4 to the primary vertex. Loose particle

identification (PID) requirements are placed on all kaons and pions, using information

from the RICH detectors. Finally, all events are required to have fewer than 500 long

tracks (a long track is a track with a trajectory that traverses the VELO and also the

tracking stations after the magnet), and must also be selected by specific triggers at the

HLT2 stage of trigger which look for decays of B hadrons containing multiple particles

in the final state [99](see section 3.2.8 for further information about the LHCb trigger).

As this line selects events matching the decay of any B meson to any two D mesons,

it is necessary to make a number of further cuts in order to isolate both the signal and

normalisation decays. D+
s and D−s candidates are required to have a mass in the range

1940 MeV− 2000 MeV, and D+ and D− candidates are required to have a mass between

1840 MeV− 1900 MeV. As the full B0
s distribution is of interest, only high mass cuts are

applied to B0
s candidates; each candidate must have a mass lower than 5800 MeV. Only

the main B0 peak is used for normalisation, and as such the B0 candidates are required

to have a mass in the range 5050 MeV− 5500 MeV. There are also particle identification

requirements placed on all final state kaons; the probability of particles being kaons is

determined with the aid of the RICH detectors, and a minimum probability threshold is

set which all kaons must fall above to be used in the analysis. All events are required to

be triggered either on signal by the L0Hadron trigger (L0HadronTOS), or independent of

signal by the L0Global trigger (L0GlobalTIS). The L0Hadron trigger looks for hadrons

leaving high transverse energy deposits in the calorimeters, and the L0Global trigger

requires that any of the various L0 triggers selected the event. Section 3.2.8 contains

more details about the LHCb trigger system, and the requirements for TOS and TIS

events.

The final cut applied makes use of a Boosted Decision Tree (BDT) [100, 101, 102] in

order to remove combinatorial background. The BDT is trained using simulated signal

events from the three signal channels (one, two or zero D∗±s ) as the signal sample, and

events from the data distribution sidebands as the background sample, where a sideband

event is required to have a B0
s mass greater than 5600 MeV, and also both D+

s and D−s

masses less than 1930 MeV or greater than 2010 MeV. The discriminating variables used

in the training of the BDT are listed in table 5.1. This set of variables was selected from
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an initial wide range of additional variables, by considering the effect that each variable

had on the overall effectiveness of the BDT performance; the ranking of the variables as

indicated by the BDT training is shown in table 5.2. The 14 variables (2 for the B0
s , and

6 each for the D+
s and D−s ) selected were seen to be the most useful in the BDT, giving a

similar performance to the BDT with more variables, but preventing any issues coming

from the finite sample sizes used for signal and background in the BDT training and

testing. As the training and testing signal samples are taken from simulated events, the

agreement between the simulated and actual distributions for all of the BDT variables

is demonstrated in appendix A. The signal and background samples are split randomly

and evenly into two separate samples, one for training, and the other for testing the

BDT.

The BDT was trained using the AdaBoost boosting algorithm to reweight events that are

wrongly classified at the end of previous trees. Events were reweighted using a parameter

α = log ((1− ε)/ε), where ε is the error rate for that event. The forest consisted of 400

trees, and each tree had a maximum depth of 3 levels. No pruning was used in the

BDT training. Also tested were a Fisher Discriminant and a Neural Net Multi-Layer

Perceptron (MLP). The MLP was trained using the Cross-Entropy (CE) estimator type,

used N + 5 hidden layers (where N is the number of input variables, leading to a total

of 19 hidden layers), and was trained over 600 cycles. As shown in figure 5.7, the BDT

method was observed to be the best performing, and as such this was the method used

in the analysis.

B0
s Variables D+

s and D−s Variables
Impact Parameter χ2 to own PV Impact Parameter χ2 to own PV

Transverse momentum Transverse momentum
DIRA to own PV

Lifetime
DIRA to origin vertex

Product of daughter transverse momentum

Table 5.1: Variables used in the BDT.

Figure 5.6 shows the overtraining check that is performed, indicating that the BDT

does not suffer from overtraining. Figure 5.7 shows the background rejection vs signal

efficiency curves for the various methods tested in TMVA, justifying the use of the BDT

due to its superior performance compared to the Neural Net and Fisher methods. The
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BDT Variable Variable Importance ×10−2

Ds2 transverse momentum 9.705
Ds1 transverse momentum 9.508

B0
s Impact Parameter χ2 to own PV 8.582

B0
s transverse momentum 8.334

Ds2 DIRA to origin vertex 8.185
Ds1 lifetime 7.118

Product of Ds1 daughter transverse momentum 6.658
Ds1 DIRA to own PV 6.568

Ds1 DIRA to origin vertex 6.504
Product of Ds2 daughter transverse momentum 6.392

Ds2 DIRA to own PV 6.325
Ds2 Impact Parameter χ2 to own PV 6.309

Ds2 lifetime 5.104
Ds1 Impact Parameter χ2 to own PV 4.707

Table 5.2: The ranking of variable importance for the 14 variables used to train the
BDT, listed in order of importance. Note that Ds1 and Ds2 are arbitrary labels for
the two D±s candidates in the events, and represent a random mixture of D+

s and D−s
candidates.

correlation matrices for the input variables for both signal and background events can

be seen in appendix A.

The BDT cut is chosen to maximise the value of the total B0
s → D

(∗)+
s D

(∗)−
s data yield

divided by the square root of the total signal and background events, with background

events taken from the full range from 4750 MeV−5800 MeV. This is performed by fitting

the data events remaining after various BDT cuts, and taking the signal and background

yields from these fits. The final mass distributions with various BDT cuts are shown

in appendix C. The top plot in figure 5.8 shows how the significance changes as the

selection progress, and how it varies with the BDT cut applied; the plot shows that the

significance is stable and maximum for any BDT cut from -0.10 to 0.00, so the cut value

was chosen to allow the most signal events in the final plot, at -0.10.

5.4 Backgrounds

There are a number of further backgrounds present in the full mass range, mainly due

to either the misidentification of another hadron as a kaon, or partial reconstruction

of other decays. These backgrounds must be either eliminated from the data, or be

understood well enough that an extra distribution can be added to the final mass fit.
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Figure 5.6: (Top) Plot showing the various figures of merit for the BDT using 1000
signal and 1000 background events. The efficiency of the selection is the fraction of
events remaining at a particular BDT cut, and the purity is the fraction of the total
final sample that was signal, (Bottom) Plot showing the signal and background training

and testing samples for the BDT overlaid.

5.4.1 B0 → D±s D
∓

The normalisation channel itself provides a background to the signal channel. If a pion

in the decay of the D+ is misidentified as a kaon, and the resulting reconstructed mass

falls in the D+
s mass window, this decay can fake a signal event. In order to remove

these events, a veto is applied to remove any D+
s or D−s consistent with being a D+
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Figure 5.7: Background rejection vs signal efficiency for the TMVA methods tested,
showing the superior performance of the BDT.

or D− under the exchange of the same sign kaon in the decay for a pion. In order to

virtually remove all of this background, a fairly wide cut is applied; any D±s candidate

with a mass in the range 1835− 1905 MeV after the switch is rejected by the veto. The

effect also occurs in the normalisation channel, where the signal channel can provide a

background to the decay. Therefore any D+ with a mass in the range 1950− 1990 MeV

after exchanging either of the pions in the decay for kaons is rejected. The efficiencies

of the signal channel vetoes are given in section 5.5.1, whilst the normalisation channel

veto efficiencies are given in section 5.5.2.

This veto technique was found to be the most efficient at removing this background

whilst keeping as much signal as possible. The effect of tightening the PID cut in order

to remove this background was examined, and the results are shown in figure 5.9. The

plots in this figure show the mass distribution of the D+
s candidate when the K+ is

switched to a π+. The peak from the misidentified D+ is clearly seen, and is only

removed by using a cut of greater than 0.5 (the value is an estimation of the probability

of a particle identified as a kaon actually being a kaon).

A cut of greater than 0.5 leaves a final data sample of 1595 for analysis, and a cut of

greater than 0.6 leaves only 950 data events; this is compared to 4004 events when using

the veto as described previously. For this reason the veto was used in the analysis to
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Figure 5.8: (Top) Figure of merit value vs BDT cut. Each consecutive stage includes
all of the previous selection criteria applied up to that point. S/∆S represents the total
signal yield divided by the statistical uncertainty on the yield, as indicated by the full
data fit. For the stripping line selection, and also when using only mass cuts, the full fit
to the B0

s and D±s mass distributions failed, hence the lack of a value in both of these
columns, (Bottom) Signal and background yields vs BDT cut.

remove the misidentified B0 → D±s D
∓ background, with the PID cut left at > 0.1 as

before.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.9: Plot showing the invariant mass distribtion of the D+
s data candidate

when the K+ mass hypothesis is switched to a π+, to illustrate the presence of a

background from misidentified D± → K−π+π+ decays. The effect of using a tighter

PID cut to remove this background is displayed, using a cut of (a) 0.0, (b) 0.1, (c) 0.2,

(d) 0.3, (e) 0.4, (f) 0.5, and (g) 0.6.
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5.4.2 Λ0
b → Λ+

c D
−
s

This channel provides a background to the signal decay in a similar way to the previous

channel. The Λ+
c decays to a proton, a kaon, and a pion; if the proton is misidentified

as a kaon, and the resulting reconstructed mass falls in the D+
s mass window, then this

decay can fake a signal event. This background is removed by vetoing any D+
s or D−s

candidates consistent with being a Λ+
c under the exchange of the same sign kaon for a

proton. A veto on any D+
s candidate with a mass in the range 2271−2301 MeV after the

switch was found to be sufficient to remove this background, as tested by examining the

number of simulated Λ0
b → Λ+

c D
−
s found to pass the B0

s → D
(∗)+
s D

(∗)−
s selection. The

efficiencies in the signal and normalisation channels are again available in sections 5.5.1

and 5.5.2 respectively. As can be seen in these sections, this invariant mass veto gives

a very high efficiency as it is, and thus it was not deemed necessary to make use of any

proton PID information.

5.4.3 B0
s → Ds(2460)+D−s

It is important to consider the possibility of decays of the form B0
s → D+

s
∗∗
D−s con-

tributing to the final mass distribution in the data. Of the various D+
s
∗∗ mesons the best

understood is the Ds(2460)+, and therefore the B0
s → Ds(2460)+D−s decay is chosen to

model this background. The Ds(2460)+ mostly decays to a D+
s and some combination of

photons and π0’s. For simulation studies, the Ds(2460)+ is generated to decay to the fol-

lowing states in the given fractions, where the fractions are taken from the PDG and nor-

malised to 100%: D∗+s π0 = 58.82%, D+
s γ = 23.53%, D+

s π
+π− = 5.89%, D∗+s γ = 5.88%,

and D+
s π

0γ = 5.88%. As with the signal channel decays involving the excited D+
s states,

the reconstructed D+
s is real, but there is missing mass in the B0

s reconstruction owing

to the neutral decay products not being reconstructed. It is therefore impossible to re-

move these background decays in any similar way to the previous two channels. Dealing

with this background properly is also complicated by the fact that the branching frac-

tion is as yet unmeasured. However, by using the branching ratios of the corresponding

B0 → D+
s
∗∗
D− decays, which have been measured, relative to the B0 → D±s D

∓ decays

as guidance, it can be expected that the branching fraction of these B0
s → Ds(2460)+D−s

decays could be of the same order as the signal channel.
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In order to account for this background in the data fit, simulated events were generated

and the efficiency of the selection on the events in this channel was measured. It was

found that the efficiency in this channel relative to the main signal channel was 0.548; it

was therefore necessary to add a term for this decay to the final data fit. This is covered

in more detail in section 5.6.6.

5.4.4 Further potential backgrounds

Checks were also made to see if there would be any expected contribution from decays

of the form B± → D+
(s)D

−
(s)h

±, where the hadron corresponds to either a pion or a

kaon. The decay B0
s → D+

s D
−
s was also considered where one of the D±s mesons decays

to K∓π±π± instead. Also considered was the decay B0
s → D+

s K+K−π−, where the

K+K−π− combination does not come from a D±s , but could have an invariant mass in

the selection range. In all cases, simulated events were put through the full selection, and

the efficiency of the selection for these events was calculated. It is shown in table 5.3

that the efficiency was negligible in all cases except for the decay B± → D+
s D
−
s π
±,

where presumably the decay is partially reconstructed without the bachelor pion and

the resulting decay falls within the B0
s mass window. However, this decay is heavily

suppressed with its branching fraction expected to be less than 10−5, much smaller

than the signal decay. For this reason, this decay is neglected as a potential background

contribution. It is deemed unnecessary to include contributions from any of these decays

in the final data fit.
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Decay Mode εrel to B0
s →D+

s D
−
s Branching Ratio to B0

s → D
(∗)+
s D

(∗)−
s

B0
s →D+

s D
−
s (K+π−π−) 0.0000± 0.0000 0.121± 0.009

B0
s →D+

s K+π−π− 0.0082± 0.0026 0.0073± 0.0027

B0
s →D+

s K+K−π− 0.0132± 0.0021 < 0.0073

B± → D+
s D
−
s π
± 0.1320± 0.0103 Unobserved

B± → D+
s D
−
s K

± 0.0118± 0.0030 Unobserved

B± → D+
s D
−π± 0.0009± 0.0009 Unobserved

B± → D+
s D
−K± 0.0063± 0.0022 Unobserved

B± → D+D−π± 0.0000± 0.0000 Unobserved

B± → D+D−K± 0.0000± 0.0000 0.0049± 0.0022

Table 5.3: Potential backgrounds and their selection efficiencies relative to the B0
s →

D+
s D

−
s decay channel. Note that the efficiency uncertainties arise from the finite size

of the MC samples used to test the various potential background channels.

5.5 Efficiencies

5.5.1 Signal channel efficiencies

Table 5.5 shows the efficiencies of the various cuts on the truth matched simulated signal

events for the various signal decay channels. The efficiencies in the table are presented

as relative to the previous cuts so, for instance, the BDT efficiency is measured on

the events that remain after both the stripping line and mass cuts have been applied.

The mass and BDT cut efficiencies are both measured by counting the number of truth

matched MC events both before and after the cut is applied.

The mass cut efficiency is defined as the total number of events that simultaneously

pass the mass selection criteria relating to the B0
s , and both of the D±s daughters. As

the efficiency here is taken from truth matched MC, the shape of the D±s was studied

in the three different channels to ensure there was no difference in data that could

change the efficiency. To separate the channels, the final mass distribution was split into

three sections relating to areas that were predominately D+
s D

+
s (5300 MeV−5410 MeV),

D∗±s D∓s (5140 MeV−5300 MeV), and D∗+s D∗−s (4900 MeV−5050 MeV). The two floating

parameters in the D±s fit, the mean value of the distribution and a parameter governing
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the width of the peak, were then recorded after the full selection had been applied,

and also with a tighter BDT cut in case the combinatorial background shape changed

the shape of the D±s distributions. The results are summarised in table 5.4 and the 6

distributions are also shown in figure 5.10; this confirmed that there was no distinct

difference in the distributions, as all parameters agreed within uncertainties.

BDT Parameter B0
s → D+

s D
−
s B0

s → D∗±s D∓s B0
s → D∗+s D∗−s

Normal Mean 1969.34± 0.29 1969.74± 0.21 1969.20± 0.24

Width 10.28± 1.47 11.98± 0.99 11.01± 1.98

Tight Mean 1969.30± 0.54 1969.87± 0.39 1969.13± 0.39

Width 12.62± 0.95 12.28± 0.61 10.60± 0.72

Table 5.4: Mean and width parameters for the D±s distributions in the various

channels under consideration. ‘Normal’ BDT cut refers to the cut used in the final data

selection, whereas ‘Tight’ is a BDT cut at 0.1 which removes virtually all combinatorial

background.

Figure 5.10: (Top) Left to right: D±s distributions for decays in the D+
s D

−
s ,

D∗±s D∓s ,and D∗+s D∗−s channels, after the full selection including the normal BDT cut
is applied, and (Bottom) left to right: the same plots, but with a tighter BDT cut at

0.1.
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The efficiency of the PID cuts is calculated using the LHCb PIDCalib package [103],

and is therefore not present in this table. The PIDCalib package reweights the track

PID according to variables that the PID is sensitive to, based on clean samples of kaons

and pions from D∗ decays. The reweighting variables used are the total momentum (p),

pseudorapidity (η) (previously defined in equation 3.2), and number of tracks (nTrack).

The signal distributions are set from data, after the full selection has been applied and

the large majority of the background has been removed with a BDT cut. The selection

is not restricted to the fiducial PIDCalib volume but, of the events used in the final

analysis, only a small number (< 2%) of kaons have a pT > 100 GeV/c, and only a very

small number of events have either a track outside the acceptance, or with more than

500 tracks. The efficiency of the PID cuts is found to be 82.40 ± 0.18%. A systematic

uncertainty of 3% is applied to account for the binning choice, which was estimated by

rerunning the calibration with a different binning and comparing the result with the

result using a default binning scheme.

The efficiency of the trigger selection applied is taken from simulation; the systematic

uncertainty resulting from this method is considered in section 5.8.8.

Cut B0
s → D+

s D
−
s B0

s → D∗±s D∓s B0
s → D∗+s D∗−s

Stripping Line 0.01362± 0.00008 0.0125± 0.0001 0.0110± 0.0001

Mass Cuts 0.894± 0.006 0.878± 0.010 0.883± 0.010

BDT Cut 0.979± 0.007 0.966± 0.011 0.967± 0.011

B0 → D±s D
∓ Veto 0.487± 0.005 0.503± 0.008 0.489± 0.008

Λ0
b → Λ+

c D
−
s Veto 0.963± 0.010 0.963± 0.016 0.959± 0.016

Trigger requirement 0.966± 0.007 0.967± 0.011 0.966± 0.011

Total 0.005596± 0.000056 0.005120± 0.000084 0.004408± 0.000078

Table 5.5: Efficiencies of the various cuts on the three channels of B0
s → D

(∗)+
s D

(∗)−
s ;

each efficiency is presented relative to the previous cut, with the full efficiency presented

in the final row.

It should be noted that although the B0 → D±s D
∓ veto is somewhat inefficient, it

was deemed necessary in order to avoid contaminating the low mass region of the final

B0
s → D

(∗)+
s D

(∗)−
s data distribution. The veto used here was sufficient to entirely remove

the B0 → D±s D
∓ background as determined from MC, alleviating the need for a further
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term in the full mass fit. Whilst the efficiency could be improved by using a looser

veto, this would allow some of these background events into the final signal sample, and

necessitate the inclusion of a small peak in the mass distribution to account for these

events. This would certainly be possible at the main B0
s → D+

s D
−
s peak, and is the

preferred method in other analyses in this signal channel. However, the distribution of

events coming from B0 → D±s D
∓ where one or both of the daughters come from a D∗±s

or D∗± is much harder to determine, which would affect the performance of the fit in

the lower mass region of the final data sample. For this reason, and considering that the

uncertainty on the final result is systematically dominated rather than statistically, the

less efficient veto was used in order to avoid using a much more complicated final PDF.

5.5.2 Normalisation channel efficiency

The efficiencies of the selection criteria on the truth matched B0 → D±s D
∓ simulated

events are presented in table 5.6. The PID cut efficiency is again calculated using the

PIDCalib package, and is found to be (84.23± 0.11)%.

Cut B0 → D±s D
∓

Stripping Line 0.01416± 0.00009

Mass Cuts 0.885± 0.006

BDT Cut 0.976± 0.007

D± Veto 0.687± 0.006

D±s Veto 0.648± 0.007

Λ0
b → Λ+

c D
−
s Veto 0.982± 0.008

Trigger requirement 0.968± 0.007

Total 0.005349± 0.000056

Table 5.6: Efficiencies of the various cuts on the B0 → D±s D
∓ channel; each efficiency

is presented relative to the previous cut, with the full efficiency presented in the final

row.
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5.5.3 Generator efficiencies

The generator efficiency is the efficiency with which the MC events generated in a par-

ticular channel pass selection criteria that ensure the event is produced in the LHCb

acceptance, and with greater than a minimum momentum. The generator level efficien-

cies of the three signal channels, and the normalisation channel, are shown in table 5.7.

The uncertainties on these efficiencies are negligible, and thus are ignored.

Channel Gen. Efficiencies

B0
s → D+

s D
−
s 0.1184± 0.0003

B0
s → D∗±s D∓s 0.1127± 0.0005

B0
s → D∗+s D∗−s 0.1061± 0.0005

B0 → D±s D
∓ 0.1071± 0.0002

Table 5.7: Generator level efficiencies for all signal and normalisation channels.

5.5.4 Relative efficiencies

The relative efficiency of the normalisation channel to each signal channel is shown in

table 5.8, and these are calculated by multiplying together the generator, PID, trigger,

and selection efficiencies. The efficiency of the B0 → D±s D
∓ decay relative to the

inclusive B0
s → D

(∗)+
s D

(∗)−
s decay efficiency is also presented; this is calculated by using

a weighted average of the individual signal channel efficiencies, weighted according to

the yields of each channel, as shown in equation 5.4 (see section 4.1 for further details

of yields). Here, ND+
s D
−
s

is the yield in the B0
s → D+

s D
−
s channel, ND∗±s D∓s

is the yield

in the B0
s → D∗±s D∓s channel, ND∗+s D∗−s

is the yield in the B0
s → D∗+s D∗−s channel, Nsig

is the total signal yield, and εx is the efficiency in the individual channel x:

ε
B0
s→D

(∗)+
s D

(∗)−
s

rel =
(
N
D

+
s D

−
s

Nsig
× ε

D+
s D

−
s

) + (
N
D
∗±
s D

∓
s

Nsig
× ε

D∗±s D∓s
) + (

N
D
∗+
s D

∗−
s

Nsig
× ε

D∗+s D∗−s
)

ε
D±s D∓

. (5.4)
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Channel εrel

B0
s → D+

s D
−
s 0.953± 0.045

B0
s → D∗±s D∓s 1.095± 0.054

B0
s → D∗+s D∗−s 1.351± 0.067

B0
s → D

(∗)+
s D

(∗)−
s 1.144± 0.053

Table 5.8: Relative efficiencies for all signal channels to B0 → D±s D
∓, where the

B0
s → D

(∗)+
s D

(∗)−
s efficiency is a weighted average of the three individual efficiencies,

weighted according to the relative yields in the individual channels.

5.6 Invariant mass distributions and fits

The fit to each data set is a simultaneous unbinned extended maximum likelihood fit to

the invariant mass of the B0
s and the two Ds candidates. A maximum likelihood fit seeks

to maximise the value of the natural logarithm of the sum of the individual likelihood

functions for all of the events in the distribution being fitted. As the observables of

interest are the yields of the various components of the fit rather than the fraction of

each component present, the fit is extended by including a Poisson term that depends

on the total fitted event yield n
′
. The extended maximum likelihood function used for

all of the fits in the rest of this analysis is shown in equation 5.5 [104]:

L =
en
′

N !

N∏
i=1

m∑
j=1

njPj(mi). (5.5)

In this equation, N is the total number of events, j = 1, ...,m represents the various

components of the fit, nj is the total yield of the component Pj of the fit, i = 1, ..., N

is the number of the event, and mi is the invariant mass of event i. The total fitted

event yield n
′

equals the sum of the yields of each individual component. For example,

in the full B0
s → D

(∗)+
s D

(∗)−
s fit, the P1,...,j components are the 3 signal channels, the

Ds(2460)+ background, and the combinatorial background. Maximising the value of

− lnL gives the most likely values of the yields for each one of the components.

The shapes for all of the fits are decided by fitting to simulated events for all signal

decays, and by fitting the distribution of data events taken from a wrong sign version of
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the stripping line (defined in section 5.6.5) in the case of combinatorial backgrounds. The

shape of the B0
s → Ds(2460)+D−s background is also determined by fitting simulated

events. In all cases where a pull plot is included, the pull is calculated at each point by

determining the χ2 between the model and the data.

5.6.1 B0
s → D+

s D
−
s

The fit to simulated events in this channel, along with the pull plot for the fit, is shown

in figure 5.11. The peak is described by the combination of a Gaussian and a Crystal

Ball function [105] with common means, where the Crystal Ball shape models the low

mass tail of the B0
s , caused by final state radiation. The Crystal Ball shape is defined

as shown in equation 5.6, where x is the invariant mass, m is the invariant mass of the

peak of the Gaussian portion of the function, α determines where the tail begins, σ is

the width, and n determines the power law tail of the function:

f(x) =

(
n
|α|

)n
exp

(
−1

2α
2
)(

n
|α| − |α| − x

)n
when x<−|α|

, exp

(
−1

2

(
x−m
σ

)2
)

when x>−|α|

. (5.6)

The n and α parameters for the Crystal Ball shape found in this fit to simulated events

are fixed in the data fit. Also fixed to the simulation values are the ratio of the Gaussian

width to the Crystal Ball fit, and the fraction of the fit that is taken from the Crystal

Ball function. The shared mean of the two functions and the width of the Crystal Ball

component are floated in the final data fit.
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Figure 5.11: Mass distribution and fit for simulated events in the B0
s →D+

s D
−
s decay

channel with the pull plot for the fit.

5.6.2 B0
s → D∗±s D∓s

Figure 5.12 shows the fit to simulated events where there is one D∗+s present. The fit

uses a combination of two separate Gaussian functions, with different means and widths.

The broadened structure is caused by the difference in mass distribution between events

where the D∗±s decays to D±s γ and those where it decays to D±s π
0. The mass distribution

of the D∗±s reconstructed without a γ or π0 depends on the spin of the missing particle;

the π0 is spin-0, which results in a ‘double-horn’ structure for the mass distribution

reconstructed without the π0. The D∗±s decays in simulation via a photon 94.2% of

the time, and via a π0 the other 5.8%, as listed in the PDG [106]. The invariant

mass distribution of simulated B0
s → D∗±s (→ D±s π

0)D∓s events is shown in 5.13, clearly

showing the horns that result from the π0 decays. The value for the ratio of the widths

of the two Gaussians, and also the fraction of the first Gaussian in the function, are

fixed in the final fit to data. The mean of each Gaussian is also fixed to the value found

from this fit to simulation.
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Figure 5.12: Mass distribution and fit for simulated events in the B0
s → D∗±s D∓s

decay channel with the pull plot for the fit.

Figure 5.13: Mass distribution for simulated B0
s → D∗±s D∓s events where the D∗±s

decays to a D±s and a π0. The helicity related double horn structure is clearly seen.

The double peak structure results from the angular distribution of the decay products

due to the spins of the particles involved. The momentum of the π0 depends on the

angle at which it is emitted, and as the π0 is not reconstructed the missing invariant

mass also depends on the angle.
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5.6.3 B0
s → D∗+s D∗−s

Events where there are two D∗+s decays are found to be well described by a single

Gaussian function, as shown in figure 5.14. The value for the mean of this Gaussian is

fixed in the final data fit.

These decays are only weakly helicity dependent, and this is accounted for in the MC

generation by using the SVV-HELAMP [54] decay package in EvtGen, and specifying no

helicity dependence, by using the values: SVV-HELAMP 1.0 0.0 1.0 0.0 1.0 0.0. Here,

SVV-HELAMP means scalar to vector vector helicity amplitude, and the 6 arguments cor-

respond to the 3 complex helicity eigenstates possible in the decay; the first 2 represent

the magnitude and phase of the A+1 eigenstate, the second 2 represent the magnitude

and phase of the A0 eigenstate, and the final 2 are the magnitude and phase of the A−1

eigenstate (for further details regarding the helicity eigenstates and their relation to

polarisation eigenstates, please see section 5.2). The values here are standard EvtGen

values for specifying no helicity dependence of the final decay amplitudes.

Figure 5.14: Mass distribution and fit for simulated events in the B0
s → D∗+s D∗∓s

decay channel with the pull plot for the fit.

To verify that the mass PDF is indeed independent of the helicity of the decay, a small

sample of MC events was produced with the SVV-HELAMP parameters altered to indicate

a greater helicity dependence, using the values: SVV-HELAMP 0.4904 0.0 0.7204 0.0 0.4904

0.0. These values are taken from the EvtGen values used to model the weak helicity
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dependence displayed in the decay B0 → D+
s D
∗−. The mass distribution was examined

using the same fit model, and the results are shown in table 5.9. The two parameters

agree within uncertainties, and therefore it was deemed that the B0
s → D∗+s D∗−s partially

reconstructed PDF is indeed helicity independent.

Helicity Dependence Gaussian mean Gaussian width
Weak 5011.13± 1.69 88.30± 1.22
Mild 5019.18± 5.81 89.67± 4.26

Table 5.9: Mean and width of the Gaussian used to fit the B0
s → D∗+s D∗∓s distri-

bution in both the central MC produced with weak helicity dependence, and the local
production with mild helicity dependence. The values are consistent within uncertain-

ties in both cases.

5.6.4 D±s Peaks

The D±s peaks for the signal and also the Ds(2460)+ background are described by the

same type of fit as used for the main B0
s peak, with the combination of Gaussian and

Crystal Ball functions with a shared mean, as shown in figure 5.15. Both peaks are

required to use the same set of parameters governing the shape. This simulation fit is

used to fix the n and α values of the Crystal Ball, the ratio of the two widths, the shared

mean and also the Crystal Ball fraction of the decay, in the final data fit.
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Figure 5.15: Mass distributions and fit for the D±s peaks in simulated events, with

the pull plots for the fits. Ds1 and Ds2 are arbitrary labels for the two D±s candidates.

5.6.5 B0
s → D

(∗)+
s D

(∗)−
s combinatorial background

The full data fit also includes a background component that results from combinations

of particles that are unrelated to one another, but appear to form two D±s mesons that

come from a B0
s decay. The combinatorial background is modelled by fitting to data

events from a wrong sign version of the stripping line used for signal. This line is identical

to the signal line but instead looks for B0
s → D±s D

±
s events, which are clearly unphysical,

but model the pairing of two unrelated D±s . The wrong sign line also has a pre-scaling of

0.1, and therefore allows only a tenth of the events to pass. The wrong sign data events

that remain after all cuts have been applied are modelled using a first-order Chebyshev

polynomial, as shown in figure 5.16. The shape parameters are floated in the full data

fit, as is the yield. Whilst there are not many events remaining in the wrong sign data

distribution after all cuts have been applied, the fit was also tested on the full wrong
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sign distribution before any of the selection criteria, which left a much higher number of

events in the distribution (shown in figure 5.17). It was found that all of the parameters

agree within one standard deviation both before and after the cuts were applied.

Figure 5.16: Mass fit and pull plot of the combinatorial background in the B0
s →

D
(∗)+
s D

(∗)−
s channel, as taken from data from the wrong sign stripping line selection,

after all cuts have been applied.

Figure 5.17: Mass fit and pull plot of the combinatorial background in the B0
s →

D
(∗)+
s D

(∗)−
s channel, as taken from data from the wrong sign stripping line selection but

before any of the offline selection is applied.
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5.6.6 B0
s → Ds(2460)+D−s background

The shape of the B0
s → Ds(2460)+D−s background is modelled with an Argus func-

tion [107], the result of which is shown in figure 5.18. The definition of the Argus

function is shown in equation 5.7, where x represents the invariant mass, m is the mass

cut off (the mass where the function has a value of 0), c is a constant that governs the

rate at which the function decreases at the low end, and p changes the rate at which the

function increases below the mass cut off:

f(x) = x

(
1−

( x
m

)2
)p

exp
(
c

(
1−

( x
m

)2
))

. (5.7)

The parameters of this shape are fixed in the full data fit to the values found when

fitting to simulated events, and the yield is allowed to vary. The Ds(2460)+ is gener-

ated to decay to the following states in the given fractions: D∗+s π0 = 58.82%, D+
s γ =

23.53%, D+
s π

+π− = 5.89%, D∗+s γ = 5.88%, and D+
s π

0γ = 5.88%. These fractions are as

taken from the PDG, but with the branching fractions normalised to 100% as required

for the MC generation.

Figure 5.18: Mass fit and pull plot of the B0
s →Ds(2460)+D−s background.
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Whilst the mass cut off point for the function is perhaps overly aggressive, a fairly large

systematic is applied to take into account the uncertainty on the mass distribution. This

is covered in further detail in section 5.8.1. The final data plots produced when analysing

the systematic for this background are available in appendix D.

Following studies of MC simulated B0
s → D+

s (2317)D−s decays, the background shape in

figure 5.18 was deemed to also account for any potential background from this channel,

albeit with the inclusion of a larger systematic in the D∗+s D−s channel to account for the

slightly higher mass cut off. This is again documented in detail in section 5.8.1.

5.6.7 B0 → D±s D
∓

The reconstructed distribution in the main peak for the normalisation channel is also

fitted with a combination of Gaussian and Crystal Ball functions, as with the main B0
s

peak and the D±s peaks. The fit and the resulting pull plot for the simulated events is

shown in figure 5.19.

Figure 5.19: Mass fit and pull plot of the B0 → D±s D
∓ decay from simulated events.

5.6.8 B0 → D∗±s D∓ and B0 → D±s D
∗∓

Compared to the central peak of the signal channel, which was fitted with a combination

of two Gaussians, the central peak of the normalisation channel is instead fitted with
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the sum of three Gaussian functions, with different means. This accounts for the fact

that in the case of the normalisation mode, either the D±s or the D± can pass through

an excited state. The D±∗ decays with a π0 much more often than the D±s , and hence

the ‘horned’ structure resulting from the conservation of angular momentum is much

more apparent in this case. The full fit to simulated events in both of these channels,

and the resulting pull plot, is shown in figure 5.20.

Figure 5.20: Mass fit and pull plot of the B0 → D±∗s D∓ and B0 → D±s D
∓∗ decays

from simulation.

5.6.9 B0 → D∗±s D∗∓

As was the case in the B0
s → D

(∗)+
s D

(∗)−
s fit, the lowest mass peak is fitted with a single

Gaussian function. The fit for these simulated decays is shown in figure 5.21. It should

be noted that practically all of this peak falls outside of the B0 selection mass window,

with no events at the actual B0 peak.
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Figure 5.21: Mass fit and pull plot of the B0 → D±∗s D∓∗ decay channel from

simulation.

5.6.10 D±s and D± peaks

The two D meson peaks are again fitted with a combination of Gaussian and Crystal

Ball functions, but this time the parameters are different between the two, owing to

differences in the widths of the D+
s and D+ particles. The distributions in the final fit

to data events contain both signal events and background events from D∗± and D∗±s

decays. The fits and their corresponding pull plots are shown in figure 5.22.
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Figure 5.22: Mass fits and pull plots of the D±s and D± peaks.

5.6.11 B0 → D
±(∗)
s D∓(∗)combinatorial background

As with the signal channel, the combinatorial background in the normalisation channel

is modelled using a Chebyshev polynomial, as shown in figure 5.23, fitted to data events

taken from a wrong sign version of the stripping line used for the signal. The shape

parameters are again floated in the full data fit, and the yield is allowed to vary. As only

the yield in the main peak of the B0 → D
±(∗)
s D∓(∗)channel is of interest for purposes of

normalisation, it was not deemed necessary to examine the possibility of other low mass

backgrounds in the channel.
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Figure 5.23: Mass fit and pull plot of the combinatorial background in the B0 →

D
±(∗)
s D∓(∗)channel.

5.7 Data Fits and Yields

The full data PDFs are created by combining the individual signal and background fits

detailed in section 5.6, and are then used to extract the yields for each signal channel.

5.7.1 B0
s → D

(∗)+
s D

(∗)−
s

The full PDFs for the B0
s → D

(∗)+
s D

(∗)−
s data distribution, and the two D±s distributions,

are shown in figures 5.24 and 5.25, where the final fit is a simultaneous unbinned max-

imum likelihood fit to all three particles. Fitting to all three particles simultaneously

gives the fit more information to separate the signal and background events, by consid-

ering where the event lies in terms of B0
s mass, and also both D±s masses. Therefore

every event is represented by a single point in the B0
s distribution, and a single point

in both of the D±s distributions. A number of parameters in the full data fits are fixed

to values taken from the individual simulation fits; these are detailed in the relevant

sections. Some of the parameters are found by performing the fit to only the B0
s mass

distribution, or only the D±s distributions; the parameters taken from these partial fits

are then fixed in the full simultaneous fit to the three distributions, to aid the stability

of the fit. The yields, and a number of other parameters, are allowed to float. A detailed
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break down of the parameters in the final data fit and whether they are fixed (and if

so, how) or floated can be seen in appendix E. The yields for all three signal channels

and the two backgrounds, along with the total signal yield, are shown in table 5.10.

The errors on the total signal yield are determined by considering the covariances of the

signal yields and are therefore lower than simply combining the errors in quadrature;

in regions of the mass distribution where peaks overlap, the fit can determine that an

event is part of a signal decay with a small error, but determining the exact identity of

that decay is more difficult.

Figure 5.24: Mass fit for the full B0
s → D

(∗)+
s D

(∗)−
s data set, showing the full B0

s

mass distribution with the pull plot underneath.
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Figure 5.25: Mass fits for the full B0
s → D

(∗)+
s D

(∗)−
s data set, showing the two D±s

fits along with their pull plots. Ds1 and Ds2 are arbitrarily assigned labels for the two

D±s candidates in each event. The cyan line in each case represents the combinatorial

background component of the distribution.

Decay Mode Yield

B0
s → D+

s D
−
s 412± 23

B0
s → D∗±s D∓s 1032± 39

B0
s → D∗±s D∗∓s 786± 48

Combinatorial Background 1342± 47

B0
s → Ds(2460)±D∓s 432± 42

B0
s → D

(∗)+
s D

(∗)−
s 2230± 63

Table 5.10: Yields in the B0
s → D

(∗)+
s D

(∗)−
s data fit.

Due to the relative complexity of the fit, and the large number of parameters involved

it was decided to investigate the stability of the fit and look for potential biases, by

producing toy Monte Carlo samples from the data fit. The samples were produced with

the same fixed parameters and same floated parameters as in the final data fit, with
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the yields allowed to vary around their central values. The results of the toy studies

are shown in detail in appendix B. All signal yields and their associated uncertainties

were reproduced by the toy samples, and the − log(L) of the fit to data was also well

reproduced. No evidence of underlying bias was seen in the pull plots for each yield,

where all mean and sigma values were consistent with 0 and 1 respectively.

5.7.2 B0 → D±s D
∓

The full fit to the B0 → D
±(∗)
s D∓(∗) data distribution is shown in figures 5.26 and 5.27.

The parameters of this fit are again found by performing partial fits to either the B0 dis-

tribution, or the D±(s) distributions. The parameters are then set in the full simultaneous

fits, with the yields and a few other parameters allowed to vary. The final data yields are

presented in table 5.11. The relatively very small yield from the B0 → D±∗s D∓∗ channel

is because the vast majority of these decays are reconstructed with a mass lower than

the 5050 MeV mass cut imposed on the B0 candidates, and only a small contribution

from the tail of this distribution remains, as seen in (a) in figure 5.26. Only the main

B0 → D±s D
∓ peak is used for normalisation purposes.
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Figure 5.26: Mass fits for the full B0 → D
±(∗)
s D∓(∗)data set, showing the full B0 fit

with the pull plot beneath.
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Decay Mode Yield
B0 → D±s D

∓ 3615± 64
B0 → D±∗s D∓/B0 → D±s D

∓∗ 3555± 110
B0 → D±∗s D∓∗ 195± 86

Combinatorial Background 1643± 56

Table 5.11: Yields in the B0 → D
±(∗)
s D∓(∗)data fit.

(b)

(c)

Figure 5.27: Mass fits for the full B0 → D
±(∗)
s D∓(∗)data set, showing the D±s and

D± fits along with their pull plots.

5.8 Systematic Uncertainties

The majority of systematic uncertainties cancel in the ratio. Five of the six final state

particles are common to the decay of both the B0 and B0
s , and only the switch from a

π+ to a K+ is likely to play a role. Other contributions arise from the various fit shapes

used, the selection efficiencies, and the uncertainty on fs/fd; these uncertainties are all

detailed in the remainder of this chapter.



Chapter 5. B0
s → D

(∗)+
s D

(∗)−
s branching fraction 118

Besides the switch from a π+ to a K+ in the final states, the signal and normalisation

channels also differ slightly due to the longer lifetime of the D+ compared to the D+
s .

This was investigated as a potential source of systematic uncertainty, by applying an

upper lifetime cut to the D+ of 0.002 ns in order to cut the distribution at the same

point the D+
s lifetime distribution becomes negligible. This cut was found to reduce

the yield in the normalisation channel to (87.6 ± 2.3)% of the original value, but the

efficiency of this cut relative to the previous selection was found to be (87.1 ± 1.3)%.

Therefore any possible systematic arising from this difference in lifetimes was deemed

to be negligible and was ignored.

5.8.1 Ds(2460) background shape

As the shape for this background is fixed in the final data fit, with just the yield allowed

to float, it was necessary to examine the effect that varying the parameters had on the

overall signal yields. The important parameters for the Argus shape used are the mass

cut off, and a constant governing the rate at which the function increases below the

mass cut off. The values of the parameters and their errors, as taken from the fit to

simulation, are shown in table 5.12.

Parameter Value Error

Mass cut off 5140.22 7.70

Constant 0.886 0.361

Table 5.12: Parameters for the Argus fit to MC events.

As the two parameters had a correlation coefficient of 0.17, it was decided to separately

vary the parameters within one sigma, and take the average of the largest plus and minus

effects as the systematic error. The effects of varying the parameters on the yields of

the signal channels are shown in table 5.13.



Chapter 5. B0
s → D

(∗)+
s D

(∗)−
s branching fraction 119

Decay Mode Actual Yield Cut off + Cut off − Constant + Constant −

B0
s → D+

s D
−
s 412± 23 412± 23 412± 23 412± 23 413± 23

B0
s → D∗±s D∓s 1032± 39 1020± 38 1034± 39 1030± 39 1029± 38

B0
s → D∗±s D∗∓s 786± 48 777± 48 794± 47 848± 45 695± 53

B0
s → D

(∗)+
s D

(∗)−
s 2230± 63 2220± 63 2241± 63 2290± 61 2136± 66

Table 5.13: Variations of yields in the B0
s → D

(∗)+
s D

(∗)−
s data fit, when the Argus

parameters are varied by their error from simulation.

The final data plots when the constant is varied can be seen in Appendix D.

It was also deemed necessary to consider potential contributions from partially recon-

structed B0
s → Ds(2317)D+

s decays. A small number of MC events were generated in

this channel, with the Ds(2317) forced to decay 100% of the time to D+
s π

0 (as this is

currently the only observed decay of the particle). Figure 5.28 shows the events remain-

ing after the stripping line selection (black) and after the full selection has been applied

(red). The selection efficiency of the events is similar to that for the Ds(2460) back-

ground MC sample, but there is no evidence from the plot in figure 5.28 to suggest that

the remaining distribution varies greatly from the Ds(2460) distribution, or that these

decays would not be accounted for in the Ds(2460) distribution already included in the

final fit. As the branching fraction is unknown, and owing to a lack of knowledge of the

other Ds(2317) decay modes, the Ds(2460) background shape is extended to 5180 MeV

to assess the potential systematic uncertainty on the yields due to this possible back-

ground. The yields after this extension are shown in table 5.14, and the systematic for

the Ds(2460) is extended to encompass this.
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Figure 5.28: Remaining B0
s → Ds(2317)D+

s MC signal events after stripping line

selection (black) and after the full selection have been applied (red). The Ds(2460) is

conservatively extended to 5180 MeV to assess a possible systematic from these decays.

Decay Mode Yield

B0
s → D+

s D
−
s 413± 23

B0
s → D∗±s D∓s 1015± 38

B0
s → D∗±s D∗∓s 748± 50

B0
s → D

(∗)+
s D

(∗)−
s 2176± 64

Table 5.14: Variations of yields in the B0
s → D

(∗)+
s D

(∗)−
s data fit, when the Argus

cut off is extended to 5180 MeV to account for potential background from decays of the

form B0
s → Ds(2317)D+

s .

5.8.2 Combinatorial background shape

To ensure that the signal yields are not biased by the choice of shape for the combinatorial

background, the fit type is switched from a Chebyshev polynomial to an exponential in

the final fit, where both shapes are allowed to float in the fit. The two sets of yields are

shown in table 5.15.
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Decay Mode Chebyshev Yield Exponential Yield

B0
s → D+

s D
−
s 412± 23 418± 23

B0
s → D∗±s D∓s 1032± 39 1044± 38

B0
s → D∗+s D∗−s 786± 48 801± 48

Combinatorial Background 1342± 47 1324± 46

B0
s → D

(∗)+
s D

(∗)−
s 2230± 63 2263± 63

Table 5.15: Effect of using an exponential combinatorial background fit on the signal

channel yields.

It is clear that the effect of switching to an exponential fit for the combinatorial back-

ground is small. The difference between the yields is used to assign a small systematic

in each case.

5.8.3 Mass PDFs

In order to account for the uncertainty on the parameters in the description of the B0
s

mass distribution, and also to propagate forward the uncertainties on the individual

parameters that are fixed, to values from either MC or the partial data fit, in the final

mass fit, a systematic uncertainty is applied based on the variation of these parameters.

The first parameter in the PDF has its value increased by one standard deviation, whilst

all other parameters are kept at the values used in the final fit. The effect of this variation

on the individual channel yields, and also on the overall inclusive yield, is recorded, and

then the procedure is repeated but with the parameter set to one standard deviation less

than its value in the final fit. This is repeated for every parameter in the fit individually.

In each case, the average of the largest deviation observed above and below the yield

from the final fit is taken to be the systematic error for that channel. A summary of the

parameters that have the largest effects on each yield, along with the size of the effect,

is shown in table 5.16.
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Decay Mode Largest Increase Parameter +Yield Largest Decrease Parameter -Yield Average

B0
s → D+

s D
−
s D+

s Crystal Ball width 6 D+
s Crystal Ball width 6 ±6

B0
s → D∗±s D∓s D∗+s D∗−s Gaussian width 28 D∗+s D∗−s Gaussian width 30 ±29

B0
s → D∗±s D∗∓s D∗+s D∗−s Gaussian width 66 D∗+s D∗−s Gaussian width 65 ±66

B0
s → D

(∗)+
s D

(∗)−
s D∗+s D∗−s Gaussian width 36 D∗+s D∗−s Gaussian width 38 ±37

Table 5.16: Largest and smallest deviations from the final yields when varying every

parameter in the PDF by plus and minus one standard deviation.

5.8.4 fs/fd and D meson branching ratio

The uncertainties on both the value of fs/fd and the ratio of the D+ to D+
s branching

fractions both contribute to the overall systematic uncertainty in the analysis. The

values, along with uncertainties, are shown in table 5.17.

Parameter Value Error

fs/fd 0.259 0.015
B(D+→K−π+π+)

B(D+
s →K−K+π+)

1.684 0.056

Table 5.17: Uncertainties on fs/fd and the ratio of the D+ to D+
s branching fractions.

As shown in [108], the uncertainty on the value of fs/fd is dependent on the uncertainty

of the ratio of the D+ to D+
s branching fractions. As the inverse is used in the branching

ratio calculation, the two errors cancel. Therefore the contribution from the ratio of the

D+ to D+
s branching fractions is removed, and is also removed in quadrature from the

uncertainty on fs/fd; this means the value taken for fs/fd = 0.259± 0.012.

5.8.5 Simulation size

There is an uncertainty on the selection efficiencies calculated from simulation, owing to

the finite size of the simulated samples. The uncertainties are calculated by considering

the square root of the sample size remaining after all cuts, relative to the size itself. This

value is then added in quadrature to the equivalent value for the normalisation channel

for each of the signal channels. The values found for the systematic uncertainties here

are shown in the summary table in 5.19.
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5.8.6 Data sample size

As the relative PID and trigger efficiencies are calculated from the data, both of these

values have a systematic uncertainty that is dependent on the size of the data sample.

These values are added in quadrature, and listed in the row ‘Sample size’ in table 5.19.

5.8.7 PIDCalib binning

There is a systematic uncertainty applied based on the binning scheme used in the

PIDcalib method for calculating the efficiency of the PID cuts used in the selection, as

detailed in 5.5.1. This is estimated by considering the efficiency given by the method

when using a different binning scheme, and is found to be 3.0%.

5.8.8 Trigger efficiency

A small systematic uncertainty is included to account for potential differences arising

from the trigger requirement between MC and data. This is calculated by considering the

maximum difference between the ratio of L0HadronTOS B0
s and B0 candidates from data

to the three signal MC samples. The fraction of B0
s candidates in the final signal data

sample that are L0HadronTOS is calculated relative to the fraction of B0 candidates in the

final normalisation data sample that are L0HadronTOS. This ratio is also calculated for

the three individual signal channels in MC. The three numbers from MC are compared to

the single number from data, and the maximum difference is taken to be the systematic

uncertainty arising from the trigger efficiency. Using this method, the uncertainty is

calculated to be 1.5%.

5.8.9 Further tests

This section details further tests that were performed, but that proved to have no sys-

tematic uncertainty associated with them.

Branching ratio dependence on BDT cut : the branching ratios of the four channels were

remeasured when the BDT cut was varied from −0.2 to 0.0, by considering the yield

and selection efficiency of the signal and normalisation channels at each BDT cut. The
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branching ratios as a function of BDT cut are shown in figure 5.29; the error bars in

this figure are systematic only, and the gradients are consistent with zero within one

standard deviation in each case. Thus it was deemed unnecessary to include a systematic

uncertainty resulting from the BDT cut choice.

Figure 5.29: The variation of the branching ratio of the four channels with the BDT

cut used in the selection. The error bars are systematic only. The lack of dependence

on the BDT cut value is clear for each of the four channels.

Multiple candidate events: A multiple candidate event is one where two or more B0
s

candidates pass the full selection criteria in the same event. There is a very small

probability of both b quarks in the event forming B0
s mesons and decaying to a D+

s and

D−s . Instead, the vast majority of multiple candidate events occur when a K± or π± is

switched for another K± or π± candidate, and the full event still satisfies all selection

criteria. The presence of multiple candidate events was examined in both the signal

and normalisation channels, in both the data and signal MC. The percentage of events

containing multiple candidates in each case is shown in table 5.18.
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Channel Multiple candidate events (%)

B0
s →D+

s D
−
s MC 1.40

B0
s → D

(∗)+
s D

(∗)−
s data 3.38

B0
s → D

(∗)+
s D

(∗)−
s data with tighter BDT 2.38

B0 →D±s D∓ MC 0.78

B0 → D
±(∗)
s D∓(∗)data 2.67

B0 → D
±(∗)
s D∓(∗)data with tighter BDT 1.37

Table 5.18: Showing the percentage of events containing multiple candidates in the

signal and normalisation channels, both in data and MC. The tighter BDT entries

refer to the results when using a BDT cut of 0.1, which ensures the background events

remaining in the data distributions are minimal.

The important results are the ratios between the normalisation and signal channels; in

MC, this is seen to be 0.557. In data, with the actual BDT cut used, this is found to

be 0.790. However, when using a tighter BDT cut of 0.1 to remove the combinatorial

background, this ratio is found to drop to 0.576, which is compatible with the value

found in MC. Therefore this ratio is well modelled by the MC, and it is determined that

any possible systematic effect resulting from multiple candidates is negligible.

5.8.10 Total systematic uncertainties

The relative contributions to the systematic uncertainty, and the overall totals after

combining the individual errors in quadrature, are shown in table 5.19.
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Systematic B0
s → D+

s D
−
s B0

s → D∗±s D∓s B0
s → D∗±s D∗∓s B0

s → D
(∗)+
s D

(∗)−
s

Simulation size 1.4% 1.9% 2.1% 1.9%

Ds(2460) 0.0% 1.6% 9.7% 3.5%

Comb. Background 1.5% 1.2% 1.9% 1.5%

fs/fd 4.7% 4.7% 4.7% 4.7%

Sample size 0.3% 0.3% 0.3% 0.3%

Mass PDF 1.5% 2.8% 8.4% 1.7%

Trigger Efficiency 1.5% 1.5% 1.5% 1.5%

PIDCalib binning 3.0% 3.0% 3.0% 3.0%

Total 6.3% 7.0% 14.4% 7.4%

Table 5.19: Sources of systematic uncertainty in the B0
s → D

(∗)+
s D

(∗)−
s data fit.

5.9 Results

The relative branching fraction of the B0
s → D

(∗)+
s D

(∗)−
s decays to B0 → D±s D

∓ is

calculated using equation 5.8:

B(B0
s → D

+(∗)
s D

−(∗)
s )

B(B0 → D±s D∓)
=
fd
fs
· εB

0/B0
s

rel · B(D+ → K−π+π+)
B(D+

s → K−K+π+)
·
NB0

s

NB0

. (5.8)

The value for the ratio of fragmentation fractions is taken as 0.259± 0.012 [108]. The D

meson branching fractions are B(D+ → K−π+π+) = (9.13± 0.19)% [106] for the D±,

and B(D+
s → K−K+π+) = (5.42± 0.14)% [108] for the D±s . The results for the three

individual channels, along with the result for the inclusive decay, are shown below:

B(B0
s → D+

s D
−
s )

B(B0 → D±s D∓)
= 0.71± 0.04 (stat)± 0.05 (syst)
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B(B0
s → D∗±s D∓s )

B(B0 → D±s D∓)
= 1.89± 0.08 (stat)± 0.13 (syst)

B(B0
s → D∗±s D∗∓s )

B(B0 → D±s D∓)
= 1.77± 0.11 (stat)± 0.26 (syst)

B(B0
s → D

(∗)+
s D

(∗)−
s )

B(B0 → D±s D∓)
= 4.26± 0.14 (stat)± 0.31 (syst).

Using the current world best measurement of the B0 → D±s D
∓ branching fraction of

(7.2± 0.8) · 10−3, the branching fractions of the various decay modes are shown below,

where the uncertainties are statistical, systematic and due to the normalisation:

B(B0
s → D+

s D
−
s ) = (5.10± 0.29± 0.39± 0.57) · 10−3

B(B0
s → D∗±s D∓s ) = (1.36± 0.06± 0.10± 0.15)%

B(B0
s → D∗±s D∗∓s ) = (1.28± 0.08± 0.18± 0.14)%

B(B0
s → D(∗)+

s D(∗)−
s ) = (3.07± 0.10± 0.23± 0.34)%.

5.10 Conclusions

The branching fraction of B0
s → D

(∗)+
s D

(∗)−
s has been measured using the 2011 LHCb

dataset, consisting of approximately 1.1 fb−1 of proton-proton collisions. The branching
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fraction was found to be

B(B0
s → D(∗)+

s D(∗)−
s ) = (3.07± 0.10± 0.23± 0.34)%

where the first uncertainty is statistical, the second is systematic, and the third is a result

of the normalisation to the channel B0 → D±s D
∓. The dominant systematic effects

come from the uncertainty in the value of fs/fd in the B0
s → D+

s D
−
s , B0

s → D∗±s D∓s ,

and B0
s → D

(∗)+
s D

(∗)−
s channels, and from the limited understanding of the shape of the

B0
s → Ds(2460)±D∓s background in the B0

s → D∗+s D∗−s channel. It should also be noted

that, for three of the four results, the dominant uncertainty arises from the normalisation

channel, and therefore the results can be improved with an improved measurement of the

B0 → D+
s D
− branching fraction. In addition, this is the first time that the background

arising from the B0
s → Ds(2460)±D∓s decay has been accounted for in the measurement

of the B0
s → D

(∗)+
s D

(∗)−
s decay. Comparing this new LHCb result with those from CDF

and Belle, and also the value from the PDG [106]:

B(B0
s → D(∗)+

s D(∗)−
s ) = (3.38± 0.25± 0.30± 0.56)% (CDF)

B(B0
s → D(∗)+

s D(∗)−
s ) = (4.32+0.42+1.04

−0.39−1.03)% (Belle)

B(B0
s → D(∗)+

s D(∗)−
s ) = (4.5± 1.4)% (PDG)

B(B0
s → D(∗)+

s D(∗)−
s ) = (3.07± 0.10± 0.23± 0.34)% (LHCb 2011 dataset).
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Figure 5.30: The previous measurements of the branching fraction of B0
s →

D
(∗)+
s D

(∗)−
s , and the theoretical prediction, along with the LHCb 1 fb−1 result. This

result is consistent with all previous measurements and the theoretical prediction, and
is the most precise result to date. The average result displayed here is an average of

the two previous results, rather than the PDG value.

Figure 5.30 reproduces the plot in figure 5.5, with the new LHCb result added. This

result is found to be consistent with, and more precise than, these two most recent

previous measurements and also the average of the two previous values.

The results for the individual branching fractions can also be compared to the results

from Belle. The Belle results for the three individual branching fractions, as taken

from [92], were:

B(B0
s → D+

s D
−
s ) = (5.80+1.1

−0.9 ± 1.3) · 10−3

B(B0
s → D∗±s D∓s ) = (1.76+0.23

−0.22 ± 0.40)%

B(B0
s → D∗±s D∗∓s ) = (1.98+0.33+0.52

−0.31−0.50)%.
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The branching fractions of the three individual channels presented in this chapter are

therefore consistent with, and more precise than, the previous individual measurements

from Belle.

Using equation 5.1, the B(B0
s → D

(∗)+
s D

(∗)−
s ) result can be interpreted in terms of

∆Γs/Γs. Substituting in the value for the branching fraction of B0
s → D

(∗)+
s D

(∗)−
s ,

∆Γs/Γs is found to be:

∆Γs
Γs

= 0.0633± 0.0087.

Comparing to the current world average from the PDG, which is calculated from two

separate analyses of B0
s→ J/ψφ decays from LHCb [18] and D0 [109]:

∆Γs
Γs

= 0.138± 0.012.

The result from B0
s → D

(∗)+
s D

(∗)−
s decays is found to be inconsistent with the world

average value, at approximately half the size. This suggests that the theoretical update

in [90] is indeed correct; B0
s → D

(∗)+
s D

(∗)−
s do not saturate the CP -Even modes, and it

appears that 3-body final states will contribute a similar level to ∆Γs/Γs. As suggested

in [92] and [96], the likelihood is that the CP -Odd contamination is only around 6%,

and the main issue is that 3-body B decays contribute a sizeable portion of the CP -Even

decays.

In order to fully determine this, it will be necessary to make future measurements of the

branching fractions of these other 3-body modes. For modes that are not CP eigenstates,

angular analyses will be needed in order to disentangle the different CP components.

Taken with these other measurements, it will be possible to determine a value for ∆Γs/Γs

that can be compared to the values determined from clean B0
s→ J/ψφ measurements,

in order to fully assess the compatibility with Standard Model predictions for the B0
s

mixing parameters.



Chapter 6

Summary

This thesis has presented studies of the effect of radiation damage on the performance

of the Vertex Locator detector of the LHCb experiment, specifically on the current-

voltage (I-V) characteristics of the silicon sensors used in the detector. The increase in

the bulk current drawn by sensors at full depletion with the luminosity delivered to the

detector is found to be well described theoretically within experimental uncertainties,

after annealing of the silicon has been properly assessed. It is seen that the detector will

be able to function properly in spite of the current level of radiation damage, and the

predicted future radiation damage it will endure, for the remainder of its lifespan.

In order to properly assess the precision of the predictions, it will be necessary to separate

the sensor leakage current into the bulk and surface components, as the prediction is valid

only for the bulk current. It will also be necessary to better measure the temperature

of the silicon during operation.

This thesis has also presented a measurement of the branching fraction of the B0
s →

D
(∗)+
s D

(∗)−
s decay, using approximately 1 fb−1 of proton-proton collisions recorded by

LHCb during 2011. The branching fraction is measured relative to the decay B0 →

D±s D
∓, and is found to be:

B(B0
s → D(∗)+

s D(∗)−
s ) = (3.07± 0.10(stat.)± 0.23(sys.)± 0.34(norm.))%.
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This measurement is found to be consistent with, and more precise than, all previous

measurements of the branching fraction, and the current world average. It is also con-

sistent with theoretical predictions. Comparison with direct determinations of the value

of ∆Γs/Γs suggest that updated theoretical suggestions, that the branching ratio of

B0
s → D

(∗)+
s D

(∗)−
s cannot be used to approximate ∆Γs/Γs, are indeed correct. Future

measurements of other final state B0
s decays are needed before this measurement can be

used to accurately determine the value of ∆Γs/Γs.

The three assumptions on which the original theory was based, as shown in section 5.2,

all require review in light of more recent theoretical updates and experimental results.

Calculations suggest that the assumption that B0
s → D

(∗)+
s D

(∗)−
s decays are predomi-

nantly CP -Even is approximately true, with a CP -Odd component of around 6%. How-

ever, an angular analysis of the B0
s → D∗+s D∗−s decays in particular is required in order

to confirm this. It is more likely that the main reason for the difference between the

value of ∆Γs/Γs inferred from B0
s → D

(∗)+
s D

(∗)−
s decays and the value measured from

B0
s→ J/ψφ decays results from other 3-body CP -Even decays that were neglected in the

original theory, but actually contribute a sizeable amount to the total width difference

between CP -Even and CP -Odd B0
s decays. Angular analyses of these 3-body B0

s decays

will be needed in order to measure the CP -Even components, which can then be used

with the B0
s → D

(∗)+
s D

(∗)−
s branching fraction to give a measurement of ∆Γs/Γs that is

comparable with the B0
s→ J/ψφ result.



Appendix A

BDT Variables MC vs Data

The BDT is trained using simulated events for the signal sample. This appendix demon-

strates the agreement between the MC and data distributions for the variables used in

the training and testing of the BDT. The MC distributions are taken from truth matched

signal B0
s →D+

s D
−
s decays, and the data distributions are taken from the events that

remain after the full selection, including a BDT cut at -0.1, has been applied. Therefore

the data distributions shown include combinatorial background events as well as signal

events. In all instances, the data distribution is shown in red, and the MC distribution is

shown in black. The only clear discrepancy that is seen is in the B0
s impact parameter χ2

to its primary vertex. This appears to be due to the combinatorial background having a

very different distribution in this variable compared with signal. This is apparent when

considering the distribution with a much tighter BDT cut, and therefore virtually no

combinatorial background, as demonstrated in figure A.2. Tightening the BDT cut also

removes the smaller discrepancies seen in the D±s lifetime, as show in A.6. In variables

where the combinatorial background has a very different distribution to the signal, the

comparison between signal MC and this data sample is not sufficient to demonstrate

the agreement between signal distribution in data and MC. Using a tight BDT cut to

remove the combinatorial background allows for a more accurate comparison between

the signal distributions, as the background contamination in the data samples is almost

all removed.

All variables shown and discussed in this appendix have been defined in brief in sec-

tion 5.3, and are also described in full detail in appendix F.
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Also shown is the BDT response in data and signal MC, in figure A.5.

Also shown are the linear correlation matrices for both signal and background events,

in figures A.7 and A.8.

Figure A.1: Plots showing the agreement between MC and data distributions for

the variables used in the BDT from the B0
s . Data is shown in red, and MC is in black.

The normalisation is arbitrary.

Figure A.2: Plot showing the agreement between signal MC and data signal for the

B0
s impact parameter χ2 to its own primary vertex, after tightening the BDT cut to

remove the combinatorial background component of the full data distribution. Data is

shown in red, and MC is in black. The normalisation is arbitrary.
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Figure A.3: Plots showing the agreement between MC and data distributions for

the variables used in the BDT from the first D±s . Data is shown in red, and MC is in

black. The normalisation is arbitrary.
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Figure A.4: Plots showing the agreement between MC and data distributions for the

variables used in the BDT from the second D±s . Data is shown in red, and MC is in

black. The normalisation is arbitrary.
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Figure A.5: Plots showing the data and MC distributions for the BDT response

value. The selection is tightened by using a harsher PID cut in this case, as it could

not be done by increasing the BDT cut. The BDT cut is the best way to remove

background however, so this is not a fully background removed data set. Data is shown

in red, and MC is in black. The normalisation is arbitrary.
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Figure A.6: Plots showing the agreement between signal MC and data signal for the

lifetime distributions of the D±s , after tightening the BDT cut to remove the combina-

torial background component of the full data distribution. Data is shown in red, and

MC is in black. The normalisation is arbitrary.
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Figure A.7: The correlation matrix for the BDT input variables for the signal events.
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Figure A.8: The correlation matrix for the BDT input variables for the background

events.



Appendix B

Toy MC Studies

The final fit to the data for the signal channel is a fairly complex fit with a number

of parameters. For this reason, it was decided to produce toy Monte Carlo samples to

analyse the stability of the fit, and check for potential biases. The toys were generated

using the same fixed parameters and same floated parameters as in the data fit, with the

yields allowed to vary around the central values as taken from the data fit. For each of

the yields, the yield and its error as measured by the toys are plotted in this appendix,

along with the pull plot for each case. The yields and their associated errors can be

compared with those measured in the data fit, shown in Fig. 5.10. Also shown is the

− log(L) distribution from the toys, with the actual value found from the fit to data,

which was 27680, shown as a red arrow on the plot. The pull plots display the number

of standard deviations between the point and the mean value.
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Figure B.1: Result of toy studies, showing the distributions for (a) D+
s D

−
s signal

yield, (b) D∗+s D−s signal yield, (c) D∗+s D∗−s signal yield, (d) Ds(2460)+D−s background

yield (e) combinatorial background yield, (f) − log(L), where the arrow represents the

value produced in the final data fit.



Appendix C

Data Fits with Varying BDT Cut

The plots in this section show the effect that varying the BDT cut has on the final

data fit. Higher values for the cut correspond to a tighter cut, and greater removal of

the combinatorial background, as shown in the plots. However this comes with a loss

of signal efficiency, which becomes detrimental after a certain point. The signal and

background yields were used to choose the optimal BDT cut. The plots demonstrate

the power of the BDT to remove combinatorial background; in the plot with the tightest

cut, it is almost entirely removed. By considering the yields, the optimal cut was set at

−0.1; this is the case in the final data plot shown in 5.24
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Figure C.1: The final B0
s →D+

s D
−
s and D±s data plots using a BDT cut of greater

than −0.2.

Figure C.2: The final B0
s →D+

s D
−
s and D±s data plots using a BDT cut of greater

than −0.15.
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Figure C.3: The final B0
s →D+

s D
−
s and D±s data plots using a BDT cut of greater

than −0.05.

Figure C.4: The final B0
s →D+

s D
−
s and D±s data plots using a BDT cut of greater

than 0.0.
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Figure C.5: The final B0
s →D+

s D
−
s and D±s data plots using a BDT cut of greater

than 0.05.

Figure C.6: The final B0
s →D+

s D
−
s and D±s data plots using a BDT cut of greater

than 0.1.



Appendix D

Ds(2460)+ Systematic Study Plots

This appendix contains the two final mass plots when a parameter for the Argus function

used to fit the contribution from the Ds(2460)± is varied to plus or minus one standard

deviation of the value found when fitting to simulation. This parameter governs the

rate at which the function increases below the mass cut-off, and, due to the size of the

uncertainty obtained from fitting to simulation, is the dominant source of systematic

uncertainty in the yield.
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(a)

(b)

Figure D.1: The two final mass distributions when the Argus parameter governing

the rate of increase in the function below the mass cut off is varied (a) to plus one

sigma of its simulation value, and (b) to minus one sigma from the simulation value.

The discontinuity in this plot at around 5120 MeV appears to be unphysical, resulting

from the sharp cut off in the Ds(2460)+ distribution in this case. The cut off is unlikely

to be this sharp in reality.



Appendix E

Full Data Fit Parameters

Parameter Fixed/Floated Value

D+
s D

−
s mean Floated 5369.80± 1.00

D+
s D

−
s σCB Floated 32.34± 1.86

D+
s D

−
s αCB Fixed to MC 1.07± 0.18

D+
s D

−
s nCB Fixed to MC 80.0± 60.0

D+
s D

−
s

σG
σCB

Fixed to MC 0.485± 0.024

D+
s D

−
s fracCB Fixed to MC 0.143± 0.027

D∗+s D−s Yield Floated 412± 23

D∗+s D−s Mean 1 Fixed to MC 5156.91± 2.89

D∗+s D−s Mean 2 Fixed to MC 5231.39± 2.99

D∗+s D−s σ1 Fixed to B0
s only data fit 52.58± 3.49

D∗+s D−s
σ1
σ2

Fixed to MC 0.787± 0.047

D∗+s D−s frac1 Fixed to MC 0.613± 0.041

D∗+s D−s Yield Floated 1032± 39

D∗+s D∗−s Mean Fixed to MC 5011.13± 1.69

D∗+s D∗−s σ Fixed to B0
s only data fit 77.48± 8.05

D∗+s D∗−s Yield Floated 786± 48

D+
s (2460) ARGUS m Fixed to MC 0.886± 0.361

D+
s (2460) ARGUS Cut off Fixed to MC 5140.22± 7.70

D+
s (2460) ARGUS parameter Fixed to MC −4.19± 4.96

D+
s (2460) Yield Floated 432± 42

D+
s mean Fixed to D+

s only data fit 1969.43± 0.12

D+
s σCB Fixed to D+

s only data fit 11.70± 0.56

D+
s αCB Fixed to MC 1.99± 0.26

D+
s nCB Fixed to MC 0.49± 0.78

D+
s

σG
σCB

Fixed to MC 0.479± 0.010

D+
s fracCB Fixed to MC 0.271± 0.021

B0
s background c0 Floated −0.947± 0.037

B0
s background c1 Floated 0.148± 0.042

D+
s background c0 Fixed to D+

s only data fit −0.022± 0.051

Combinatorial background yield Floated 1342± 47

Table E.1: Every parameter in the final signal channel data fit, whether the parameter

is floated or fixed in the final fit (and, if fixed, what to), and the final value of the

parameter.

148



Appendix E. Full Data Fit Parameters 149

Parameter Fixed/Floated Value

D±s D
∓ mean Floated 5284.25± 0.28

D±s D
∓ σCB Fixed to B only data fit 13.60± 0.25

D±s D
∓ αCB Fixed to MC 2.33± 0.17

D±s D
∓ nCB Fixed to MC 1.02± 0.39

D±s D
∓ σG

σCB
Fixed to MC 1.784± 0.077

D±s D
∓ fracCB Fixed to MC 0.785± 0.055

D±s D
∓ Yield Floated 3615± 64

D∗±s D∓/D±s D
∗∓ Mean 1 Fixed to B only data fit 5128.45± 2.90

D∗±s D∓/D±s D
∗∓ Mean 2 Fixed to B only data fit 5099.87± 3.12

D∗±s D∓/D±s D
∗∓ Mean 3 Fixed to B only data fit 5068.72± 1.79

D∗±s D∓/D±s D
∗∓ σ1 Fixed to B only data fit 9.69± 7.75

D∗±s D∓/D±s D
∗∓ σ1

σ2
Fixed to B only data fit 0.394± 0.217

D∗±s D∓/D±s D
∗∓ σ3 Fixed to B only data fit 54.46± 1.44

D∗±s D∓/D±s D
∗∓ frac1 Fixed to B only data fit 0.020± 0.009

D∗±s D∓/D±s D
∗∓ frac2 Fixed to B only data fit 0.046± 0.022

D∗±s D∓/D±s D
∗∓ Yield Floated 3556± 110

D∗±s D∗∓ Mean Fixed to MC 4916.99± 1.87

D∗±s D∗∓ σ Fixed to B only data fit 90.40± 5.63

D∗±s D∗∓ Yield Floated 195± 86

D+
s mean Fixed to D+

s only data fit 1969.36± 0.09

D+
s σCB Fixed to D+

s only data fit 11.65± 0.18

D+
s αCB Fixed to MC 1.23± 0.14

D+
s nCB Fixed to MC 9.99± 5.74

D+
s

σG
σCB

Fixed to MC 0.498± 0.016

D+
s fracCB Fixed to MC 0.744± 0.032

D+ mean Fixed to D+ only data fit 1871.70± 0.13

D+ σCB Fixed to D+ only data fit 14.76± 0.28

D+ αCB Fixed to MC 1.10± 0.09

D+ nCB Fixed to MC 29.95± 15.36

D+ σG
σCB

Fixed to MC 0.490± 0.014

D+ fracCB Fixed to MC 0.753± 0.027

B background c0 Floated −0.285± 0.055

B background c1 Floated −0.117± 0.056

D+
s background c0 Fixed to D+

s only data fit 0.038± 0.069

D+ background c0 Fixed to D+ only data fit 0.299± 0.065

Combinatorial background yield Floated 1643± 56

Table E.2: Every parameter in the final normalisation channel data fit, whether the

parameter is floated or fixed in the final fit (and, if fixed, what to), and the final value

of the parameter.



Appendix F

Variable descriptions

The following appendix is a description of all variables used in the B0
s → D

(∗)+
s D

(∗)−
s branching

fraction analysis described in chapter 5.

F.1 BDT Variables

B0
s Impact Parameter χ2 to own Primary Vertex (IP CHI2 OWNPV): The impact

parameter is the perpendicular distance between the reconstructed path of the B0
s and the

identified primary vertex. A lower χ2 value is desired as it ensures the B0
s did come from the

primary vertex.

B0
s Transverse Momentum (PT): The portion of the B0

s momentum that is perpendicular

to the beamline. Higher pT particles are easier to subsequently reconstruct through their decay

products.

D±s Impact Parameter χ2 to own Primary Vertex (IP CHI2 OWNPV): A higher value

is preferred for this χ2 as this makes it less likely that the D±s actually came from the primary

vertex, rather than being produced as a result of the B0
s decay as required.

D±s Transverse Momentum (PT): The portion of the D±s momentum that is perpendicular

to the beamline. Again, D±s with higher pT are easier to reconstruct from their decay products.

D±s Direction Angle to own Primary Vertex (DIRA OWNPV): The cosine of the angle

between the D±s momentum vector and the primary vertex in the event. To ensure the D±s is

not from the primary vertex, and is travelling forwards in the detector.
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D±s Direction Angle to own Origin Vertex (DIRA ORIVX): The cosine of the angle

between the D±s momentum vector and the production vertex for that D±s . To ensure the D±s

is produced at its associated vertex, and is travelling forwards in the detector.

D±s Lifetime (TAU): The lifetime of the D±s . An extended lifetime is characteristic of the

decays of particles containing b and c quarks. The longer the particle lives, the further it travels in

the detector, and the more accurately its decay can be assessed. This helps reduce combinatorial

background from ghost tracks.

D±s Product of Daughter Transverse Momentum (ProductDsDauPT): The product of

the transverse momentum of the K+, K−, and π± daughters of the D±s . Tracks associated with

low transverse momentum are harder to measure accurately, and thus the best case scenario is

when the D±s transverse momentum is shared equally amongst the daughters. This scenario

maximises the product of the daughter transverse momentum.

F.2 Other Variables

D±s Distance Of Closest Approach (DOCA): The DOCA of two particles is the closest

distance that they pass to each other in the event reconstruction. In the stripping line this is set

to less than 0.5 mm; this is to ensure the two D±s candidates originate from the same point.

Track χ2/ndf : This is a track quality variable. The lower the value, the better quality of track,

and the lower chance that the track is actually a fake track.

Vertex χ2/ndf : This variable assesses the quality of a specified vertex. The lower the value,

the better the quality of the vertex, and the greater the likelihood that the vertex is real and

not just a collection of particles that are not associated.

Linear Particle ID Variables (PIDK/PIDπ): There are two separate types of variable

used for particle identification in LHCb analyses. These PID variables make use of log likelihood

lnL information provided by the detector’s various sub-systems to compute a likelihood for each

particle mass hypothesis, relative to the pion hypothesis.

Multivariate Particle ID Variables (ProbNNk/ProbNNpi): The second set of particle

identification variables in LHCb make use of a Neural Net to improve on the lnL variables by

including more information, and considering correlations between detector systems.
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