
Modelling Catastrophe Risk Bonds

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy

in Mathematical Science

by

Jia Shao

October 2015



Abstract

Insurance companies are seeking more adequate liquidity funds to cover the insured

property losses related to nature and man-made disasters. Past experience shows that

the losses caused by catastrophic events, such as earthquakes, tsunamis, floods or hur-

ricanes, are extremely large. One of the alternative methods of covering these extreme

losses is to transfer part of the risk to the financial markets, by issuing catastrophe-

linked bonds.

This thesis focuses on model and value Catastrophe (CAT) risk bonds. The find-

ings of this thesis is twofold. First, we study the pricing process for CAT bonds with

different model setups. Second, based on different framework, we structured three

catastrophe based (earthquake, general and nuclear risk) bonds, estimated the param-

eters of the model by employing real world data and obtained numerical results using

Monte Carlo simulation. Comparison between different models is also conducted.

The first model employed the structure of n financial andm catastrophe-independent

risks, and obtain the valuation framework. This generalized extension allows an easier

application in the industry. As an illustration, a structured earthquake is considered

with parametric trigger type – annual maximum magnitude of the earthquake – and

the pricing formulas are derived. The second model presents a contingent claim model

with the aggregate claims following compound forms where the claim inter-arrival

times are dependent on the claim sizes by employing a two-dimensional semi-Markov

process. The final model derives nuclear catastrophe (N-CAT) risk bond prices by ex-

tending the previous model. A two-coverage type trigger CAT bond is analysed by

adding a perturbed state into the claims system, i.e. the system stops (N-CAT bond

contract terminated) immediately after a major catastrophe.
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Chapter 1

Introduction

Due to the potentially enormous financial demands on insurance (reinsurance) busi-

nesses and the increasing difficulty of covering catastrophic losses by reinsurance, it is

considerable to introduce a securitization method to protect vulnerable individuals. In-

surance companies alleviate part of their risks by introducing securitization mechanics

to achieve a more adequate liquidity fund. An alternative method is to issue catastrophe

(CAT) bonds, which transfer the financial consequences of catastrophic events from is-

suers to investors in a contract to cover huge liabilities through traditional reinsurance

providers or governmental budgets.

CAT bonds spread the risks to another level – global financial markets. Investors

take on a specific set of risks (generally catastrophe and natural disaster risks) of a

specified catastrophe or event occurring in return for attractive rates of investment. If

a predetermined catastrophe or event occurs, the investors will lose the principal they

invested and the issuer (often insurance or reinsurance companies) will receive that

money to cover their losses.

The aim of this thesis is to model and value the price of the catastrophe risk bonds.

Our structure of catastrophe risk bonds involve different catastrophic perils (earth-

quake and nuclear power risk) with different payoff functions and interest rate models.

This thesis gives a dynamic view of modelling CAT bonds, and finally numerically

computes and then compares between the prices under the different scenarios.

In this chapter, we will explain the motivation behind this work. Section 1.1
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presents the definition of catastrophe and catastrophic risks. It also answers the ques-

tion of what is the size of loss of a catastrophic event and what is the probability of

having a catastrophic event occur in the given period. Section 1.2 illustrates the cur-

rent nuclear liability conventions and also the liability limitation regimes. Section 1.3

provides the definition and structure of CAT bonds and then introduces the CAT bonds

history. And finally in Section 1.4 is the literature review of pricing CAT bonds.

1.1 Catastrophic Events and Catastrophic Risks

A catastrophic event is defined to be a sudden event that causes one person or a group of

people to suffer, or that makes difficulties. Catastrophic accidents include earthquakes,

nuclear and chemical accidents, extreme storms, super-volcanoes, outer space related

events, pandemics, etc. Such events occur infrequently, but cause massive losses over

a short period. The Insurance Service Office’s (ISO’s) Property Claim Service (PCS)1

declared 254 catastrophes (in United States) that incurred damages of approximately

US$112 billion between 1990 and 1996, while the losses due to Hurricane Andrew in

1992 reached US$ 26 billion2. Thus, even a single event can led to the insolvency of

insurance companies.

Some arguments state that due to catastrophic accidents rarely occurring, an insur-

ance company may not face such an event during its life time. Take nuclear accident

risks as an example, a report to the United States Congress from the Presidential Com-

mission on Catastrophic Nuclear Accidents in 1990, see Griffith et al. (1990), provides

an estimate of a catastrophic nuclear accident probability in the United States of about

1 in a billion year per nuclear power plant (NPP) unit, i.e. a reactor. Expressing this

1ISO’s Property Claim Service unit is the internationally recognized authority on insured property

losses due to catastrophes in the USA, Puerto Rico, and the US Virgin Islands. It contains information

on all the historical catastrophes since 1949, including the states affected, perils, and associated loss

estimates. http://www.verisk.com/property-claim-services/.
2An illustration of the PCS catastrophe loss data converted to 2014 dollars using the Consumer Prices

Index (CPI) in US is given in Figure 1.1, e.g. the Northridge earthquake (1994) with losses of US$20

billion, 9/11 Terrorist Attacks (2001) with losses of US$25 billion, Hurricane Katrina (2005) with losses

of US$50 billion and Hurricane Sandy with losses of US$20 billion. Data from PCS.
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Figure 1.1: Annual catastrophe loss in the USA in 1985–2013, data from PCS.

best estimate in this manner implicitly assumes no enhancements to the safety of nu-

clear plants in the 1 billion years which is unrealistic.

Societies and decision makers desire to know “what is the probability of a catas-

trophic event in the remaining lifetime of today’s plants?” The underlying compu-

tations are approximate to allow for using simple multiplication to account for the

increase in unit-years. These computations show catastrophic nuclear accidents would

approach inevitability based on current practices, and growth in number of units and

their ages as demonstrated in Figure 1.2. The curves in Figure 1.2 are based on Grif-

fith et al. (1990) updated by the increase in NPP units and are not updated to account

for accidents which occurred afterwards, such as the Fukushima and Chernobyl disas-

ters. With an assumed remaining lifetime of about 30 years per plant and about 100

NPP units operating in 1990, we obtain about 1 in 0.33 million years. These estimates

can be refined based on the scenarios postulated in Nuclear Regulatory Commission

(NRC) reports, such as NUREG–1150 U.S.NRC (2012a) and WASH–1400 U.S.NRC

3



(2012b) and recent Probabilistic Risk Analysis (PRA) of NPPs. Considering the un-

certainties associated with underlying random variables, parameters and assumptions,

the best estimate of 1 in 0.33 million can be expressed as a range of 1 in 1.66 million

to 1 in 0.066 million.

Figure 1.2: Time to a catastrophic nuclear accident as a function of the number of

nuclear power plant units worldwide, Griffith et al. (1990).

In light of the 2011 Fukushima disaster, recent discussion has focused on maxi-

mizing the oversight power of global institutions and strengthening safety measures.

Without accounting for the variation in nuclear technology, regulatory regimes, op-

erators’ experience and NPP units’ ages, the worldwide probability of a catastrophic

nuclear accident can be estimated as significantly greater than, by orders of magnitude,

the levels provided by Griffith et al. (1990). The Fukushima and Chernobyl disasters

of 2011 and 1986, respectively, provide empirical evidence for such levels. With a

nuclear renaissance underway, the worldwide inventory of NPP units is expected to in-

crease from 439 to 508, with corresponding increases in net electric outputs as shown

in Figure 1.3, European Nuclear Society (2015).

Assessing the adequacy of liability coverage requires examining the consequences

of historic and postulated nuclear accidents. Most notable nuclear accidents3 in the

civil power sector include: the 1979 Three Mile Island in which the containment re-

3More detail check Appendix A.
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(a) Number of plant units (b) Electric net output

Figure 1.3: Nuclear power plant units worldwide, in operation and under construction,

as of March 10, 2015, European Nuclear Society (2015).

mained intact and resulted in 1993 US$1 billion dollar cleaning-up cost performed

over 14 years; and the 1986 Chernobyl disaster in the former Soviet Union resulting

in 56 lives lost, over 4000 people with long-term effects, and US$15 billion of direct

loss. It is estimated that the damages could accumulate to US$305 billion for Ukraine

and US$261 billion for Belarus in the thirty years following the Chernobyl accident.

Various estimates of the total damage which could be caused by accidents at nuclear

power plants range from US$110 billion to as much as US$7 trillion, Friends of the

Earth Europe (2007); Raju and Ramana (2010).
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1.2 Nuclear Liability Conventions and Liability Limi-

tation Regimes

Most countries with commercial nuclear programs adhere to one of the international

conventions and concurrently have their own legislative regimes for nuclear liability,

see Balachandran (2010); American Nuclear Insurers (2013). The national regimes

implement the conventions’ principles and impose the financial security requirements

that vary from country to country. The thirty-four countries that possess NPPs can be

grouped as follows:

1. The first group includes those countries that are parties to one or more of the

conventions, and which have their own legislative regimes. Prominent examples

are France, Germany, Spain and the United Kingdom, all of which are parties to

the Paris Convention (PC) and Revised Paris Protocol (RPC, not yet in force).

Since 1988, parties to the Joint Protocol (JP) are treated as if they are parties to

both the Vienna Convention (VC) and the PC. Seventeen countries have signed

the Convention on Supplementary Compensation for Nuclear Damage (CSC),

including Czech Republic, Canada, Ukraine and India, but most have not yet

ratified it. In 2014 Japan and UAE passed legislation to ratify the CSC.

2. The second group includes those countries that are not parties to the conventions,

but which have their own legislative regimes. Prominent examples are USA,

Canada, Japan and Republic of Korea (South Korea). These countries impose

strict liability on their nuclear installation operators. So they conform with the

channeling requirements of the Paris and Vienna Conventions, despite not being

parties to those conventions.

3. The final group of countries neither being parties to the conventions nor having

their own legislative regimes. Although these countries are relatively few, China

is the most prominent example that has issued directives stating its position on

nuclear liability, but has not yet developed a specific regime. China’s nuclear

liability directives were issued in 1986 as an interim measure in connection with

the French-designed Daya Bay nuclear power plant. It contains most of the

6



elements of the international nuclear liability conventions, e.g. channeling of

absolute nuclear liability to the plant operator and exclusive court jurisdiction.

Other countries in this group include Pakistan, with 3 NPPs. Pakistan is neither

members of any international convention nor have any national legislation.

Table 1.1 provides a summary of the convention and membership by country, World

Nuclear Association (2015).

In addition, the US enacted a nuclear liability regime – the Price Anderson Act – to

manage the risk of a nuclear accident in 1957. It has created a favorable climate for the

nuclear American industry and provides US$13.6 billion in cover without cost to the

public or government and without fault needing to be proven. The Act was amended

over the years. Someone could arguably demonstrate that the US government is pro-

viding subsidies since the coverage is far less than the potential loss, see Balachandran

(2010); GAO (2004); World Nuclear Association (2015).

So far in this section, we have presented exposures from the perspectives of the

public, operators and government; however, what does all this mean for a designer,

builder or supplier? If the products or services are provided to a nuclear installation in

a country subject to the PC or VC, the supplier likely does not need nuclear liability

insurance. The supplier should not be held liable for damages resulting from a nuclear

incident. Liability should be channeled to the facility operator.

The two exposures for suppliers, according to World Nuclear Association (2015)

are: to have nuclear legislation which legally channels liability to the facility operator

and to have cross-border liability. These exposures might necessitate suppliers to pur-

chase their own insurance. The decision whether to purchase insurance often reflects

how risk averse a supplier and its risk-management philosophy. American Nuclear

Insurers (2013) makes available a foreign Supplier’s and Transporter’s policy (called

S&T policy) for this purpose, that indemnifies the insured for third-party bodily injury

or property damage resulting from the nuclear energy hazard, which is defined as the

radioactive, toxic, explosive or other hazardous properties of nuclear material. The

policy’s current maximum limit of liability is US$50 million available in all insured

countries except Japan, Mexico, South Africa, Spain and Sweden, where the avail-

able limit is US$15 million because of reinsurance commitments. The policy excludes

7



Table 1.1: Nuclear power countries and liability conventions to which they are party,

World Nuclear Association (2015).

Countries Conventions party to Countries Conventions party to

Argentina VC; RVC; CSC Lithuania VC; JP; (CSC signed)

Armenia VC; Mexico VC

Belgium PC; BSC; RPC; RBSC Netherlands PC; BSC; JP; RPC; RBSC

Brazil VC Pakistan

Bulgaria VC; JP Romania VC; JP; RVC; CSC

Canada (CSC signed) Russia VC

China Slovakia VC; JP

Czech Rep. VC; JP; (CSC signed) Slovenia PC; BSC; JP; RPC; RBSC

Finland PC; BSC; JP; RPC; RBSC South Africa

France PC; BSC; RPC; RBSC Spain PC; BSC; RPC; RBSC

Germany PC; BSC; JP; RPC; RBSC Sweden PC; BSC; JP; RPC; RBSC

Hungary VC; JP Switzerland PC; RPC; BSC; RBSC

India (CSC signed)* Taiwan, China

Iran Ukraine VC; JP; (CSC signed)

Japan CSC UAE RVC; CSC

Kazakhstan RVC United Kingdom PC; BSC; RPC; RBSC

Korea United States CSC

PC = Paris Convention (PC).

RPC = 2004 Revised Paris Protocol. Not yet in force.

BSC = Brussels Supplementary Convention.

RBSC = 2004 Revised Brussels Supplementary Convention. Not yet in force.

VC = Vienna Convention.

RVC = Revised Vienna Convention.

JP = 1988 Joint Protocol.

CSC = Convention on Supplementary Compensation for Nuclear Damage (CSC), in force from 15 April 2015.

*India has not ratified CSC; domestic liability law may not conforms with the requirements of the convention.
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several countries for various reasons, most notably the United States, Canada, China,

India and Russia.

1.3 Catastrophe Risk Bonds

Losses and recovery costs from catastrophic accidents are typically covered by a com-

bination of utility companies, special insurance programs and/or governments. For

example losses from the 2011 Fukushima disaster were covered primarily by the gov-

ernment of Japan. Resources for this purpose are often inadequate and require a cash

reserve that could be challenging to maintain. Low penetration rates for insurance

leaves individuals, companies and governments to shoulder the financial losses aris-

ing from catastrophic events. In emerging markets with nonexistent or immature legal

regimes, liability could lead to international tensions and potentially wars, particularly

in cases of cross-border exposures.

According to the information in Section 1.1, using a nuclear accident rate of 10−6

per year, assuming 500 policies, loss per accident of US$5 trillion, and price of a pol-

icy for the break-even point can be computed to be US$10, 000 per year. Obviously,

an insurance model of this type would not sustain itself and would bankrupt upon the

occurrence of the first catastrophic accident within the life of the present NNPs pop-

ulation. Insurers covering other catastrophic perils – earthquake risk – may also face

problems. According to historical information from the National Earthquake Infor-

mation Center (NEIC), 12,000–14,000 earthquakes are recorded annually throughout

the world4. In California, two or three earthquakes of magnitude 5.5 and higher occur

annually, and these are large enough to cause moderate damage5. Although infrequent,

earthquakes and their side effects, including landslides, surface fault ruptures, lique-

faction, aftershock fires, and tsunamis, have huge potential to cause injury, loss of life,

and property damage. The California Geological Survey6 has reported that more than

4Accessed on 01/07/2015, http://earthquake.usgs.gov/earthquakes/?source=

sitenav.
5http://www.conservation.ca.gov/index/earthquakes/Pages/qh_

earthquakes.aspx, accessed on 01/07/2015.
6Accessed on 01/07/2015, http://www.consrv.ca.gov/CGS/Pages/Index.aspx.
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70% of California residents live within an area where significant earthquakes could

occur in the next 50 years, according to slip rates in geological time. Therefore, the

potential financial demands on insurance and reinsurance businesses make it realistic

to introduce a mechanism for individuals against nature and man-made disasters.

The requirement to achieve adequate liability coverage is to have a system that

has adequate financial depth to fulfill claims. To succeed, financing is essential using

special purpose instruments from the global market. Figure 1.4 provides an estimate

of the 2012 global outstanding bonds and loans to be US$175 Trillion out of the total

US$225 Trillion of capital stock (outstanding bonds, loans and equity) with stocks at

US$50 Trillion, Lund et al. (2013). Despite the 2008 financial crisis, global bonds

and loan markets have increased consistently over the past twenty years from US$45

Trillion in 1990.

Figure 1.4: Global stock of debt and equity outstanding, US$ Trillion, end of period,

constant 2011 exchange rates, Lund et al. (2013).

CAT risk bonds (or Act-of God bonds) are born for these extreme events and shar-

ing the risk to another level – global financial markets as the only pool of cash large

enough to underwrite such losses lies in capital markets and the collection of big in-

vestors like pension funds, hedge funds and sovereign wealth funds that normally in-

vest in stocks and bonds. CAT risk bonds are the most popular insurance-linked finan-
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cial securities and their use has been accelerating in the last decade.

The first experimental transaction was completed in the mid-1990s after Hurricane

Andrew and the Northridge earthquake, which incurred insurance losses of US$15.5

billion and US$12.5 billion, respectively, by a number of specialized catastrophe-

oriented insurance and reinsurance companies in the USA, including AIG, Hannover

Re, St Paul Re, and USAA, GAO (2002). The CAT bonds market has boomed over the

years. The issued capital has increased tenfold within ten years, from less than US$0.8

billion in 1997 to over US$8 billion in 2007. The issuers raised more than US$9 bil-

lion of new CAT bonds in 20147. CAT bonds are inherently risky, non-indemnity-based

multi-period deals, which pay a regular coupon to investors at end of each period and

a final principal payment at the maturity date, if no predetermined catastrophic events

occur. A major catastrophe in the secured region before the CAT bond maturity date

leads to full or partial loss of the capital.

CAT bonds structure including where the capital flows from one party to another

is presented in Figure 1.5. The issuer does not directly issue the CAT bond, but uses

Special Purpose Vehicle (SPV) for the transaction. SPV can be interpreted as a focused

insurer whose only purpose is to write one insurance contract. The existence of SPV,

which is equal to a focused one-policy insurer, minimises the frictional cost of capital.

Furthermore, sufficient high endowment of the SPV eliminates the counterparty risk.

SPV enters into a reinsurance agreement with a sponsor or counterparty (e.g. insurer,

reinsurer, or government) by issuing CAT bonds to investors and receives premiums

from the sponsor in exchange for providing a pre-specified coverage. Therefore, spon-

sors can transfer part of the risks to investors who bear the risk in return for higher

expected returns. The SPV collects the capital (principal and premium) and invests

the proceeds into a collateral account (trust account, which is typically highly related

to short-term securities, e.g. Treasure bonds). The returns generated from collateral

accounts are swapped for floating returns based on London Interbank Offered Rate

7Accessed on 17/08/2015, http://www.artemis.bm/deal_directory/cat_bonds_

ils_issued_outstanding.html. ARTEMIS is an online website since 1999, Artemis provides

news, analysis and data on catastrophe bonds, insurance-linked securities and alternative reinsurance

capital.
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(LIBOR) in order to immunize the sponsor and the investors from interest rate risk and

default risk, Cummins (2008).

The investors coupon payments are made up of SPV investment returns, plus the

premiums from the sponsor. If no trigger event occurs during the term time of the

CAT bond, then the collateral is liquidated at maturity date of CAT bond and investors

are repaid principal plus a compensation for bearing the catastrophe risks (solid line

in Figure 1.5). However, if a trigger event occurs before the maturity, the SPV will

liquidate collateral required to make the payment and reimburse the counterparty ac-

cording to the terms of the catastrophe bond transaction, and CAT bond investors will

only receive part of the capital (dashed line in Figure 1.5).

Counterparty 
or Sponsor

CAT Bond 
Investors

Collateral Account 
(Eligible 

Investments)

Premiums

Reimbursement1

Principal+LIBOR 
+Premium2

Principal

Liquidation  
of Assets3 Returns Cash 

Proceeds 

1 Event Contingent 
2 At maturity 
3 Event contingent or at maturity

Special purpose  
vehicle (SPV)

Swap  
Counterparty

LIBOR

Investment 
Return

Part of Principal

Figure 1.5: Structure of CAT bonds.

Finally, the feature of correlation of the traditional stock market allows CAT bond

investors to still gain in a bad economic circumstance. CAT bonds reduce barriers to

entry and increase the contestability of the reinsurance market, Froot (2001).

To bear the catastrophe risks, CAT bonds carry a 3 to 5 year maturity and compen-

sate for a floating London Interbank Offered Rate (LIBOR) coupon plus a premium at

a rate between 2% and 20%, see Cummins (2008); GAO (2002). Detailed information

of CAT bonds premium level is given in Figure 1.68. One of the key elements of any

CAT bond is the terms under which the securities begin to experience a loss. Catas-

8Accessed on 01/07/2015, http://www.artemis.bm/deal_directory/cat_bonds_

ils_by_coupon_pricing.html.
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trophe bonds utilise triggers with defined parameters which have to be met to start

accumulating losses. Only when these specific conditions are met do investors begin

to lose their investment. Triggers can be structured in many ways from a sliding scale

of actual losses experienced by the issuer (indemnity) to a trigger which is activated

when industry wide losses from an event hit a certain point (industry loss trigger) to

an index of weather or disaster conditions, which means actual catastrophe conditions

above a certain severity will trigger a loss (parametric index trigger) etc, Hagedorn

et al. (2009); Burnecki et al. (2011). Figure 1.7 presents the amount and percentage

of CAT bonds issued by trigger type9. Indemnity trigger type is subject to the highest

degree of moral hazard due to the fact that loss is controlled by sponsor. To tackle

this problem, a better choice would be using industry loss trigger or parametric index

trigger, although these might bear a relatively higher basis risk.

Figure 1.6: Catastrophe bonds & ILS outstanding by coupon pricing, data from

Artemis, accessed on 01/07/2015.

CAT bonds can be structured to provide per-occurrence cover, so exposure to a

single major loss event (currently US$ 14,850.33 million which account for 64.2%),

or to provide aggregate cover, exposure to multiple events over the course of each
9Accessed on 01/07/2015, http://www.artemis.bm/deal_directory/cat_bonds_

ils_by_trigger.html.
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Figure 1.7: Catastrophe bonds & ILS outstanding by trigger type, data from Artemis,

accessed on 01/07/2015.

annual risk-period (US$ 8,269.14 million which account for 35.8%)10. Some CAT

bonds transactions work on a multiple loss approach and so are only triggered (or

portions of the deals are) by second and subsequent events. This means that sponsors

can issue a deal that will only be triggered by a second landfalling hurricane to hit a

certain geographical location, for example.

1.4 Literature Review

Despite the raising popularity, the number of previous studies devoted to CAT bonds

pricing is relatively limited. Among the current pricing literature, authors mainly de-

voted to modelling CAT bonds by different approaches, and a few have attempted to

model and price from the real world perspective, in order to provide a tradeable CAT

bond for a given catastrophe.

10Accessed on 01/07/2015, http://www.artemis.bm/deal_directory/cat_bonds_

ils_by_aggregate_occurrence.html.
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The prediction of catastrophe risks requires an incomplete markets framework to

evaluate the CAT bonds price, because the catastrophe risk cannot be replicated by a

portfolio of primitive securities, see Harrison and Kreps (1979); Cox et al. (2000); Cox

and Pedersen (2000); Vaugirard (2003). In the case of an incomplete market, there is

no universal pricing theory that successfully addresses issues such as specification of

hedging strategies and price robustness, see Young (2004). For example, Wang (2004)

addressed market incompleteness using the Wang transform, an approach adopted by

Lin and Cox (2005, 2008); Pelsser (2008); Galeotti et al. (2011). Froot and Posner

(2000, 2002) derived an equilibrium pricing model for the uncertain parameters of

multi-events risks. Follmer and Schweizer (1991) introduced a minimal martingale

measure for option pricing, whereas Schweizer (1995) used a variance optimal martin-

gale measure.

Another common technique used in an incomplete market setting is the principle of

equivalent utility for obtaining indifferent pricing. Young (2004) calculated the price

of a contingent claim under a stochastic interest rate for an exponential utility function.

An extension was proposed by Egami and Young (2008), who introduced a more com-

plex payment structure based on the assumption of utility indifference. Dieckmann

(2011) applied a CAT bond model based on consumption, while Zhu (2011) detailed

the premium spread using an intertemporal equilibrium framework. Braun (2012) anal-

ysed the premium using OLS regression with robust standard errors. Cox and Pedersen

(2000) used a time-repeatable representative agent utility. Their approach was based

on a model of the term structure of interest rates and a probability structure for catas-

trophe risks, which assumed that the agent uses a utility function to make choices

about consumption streams. They applied their theoretical results to Morgan Stanley,

Winterthur, USAA, and Winterthur-style bonds. Reshetar (2008) used a similar setting

for multiple-event CAT bonds for the first time. Zimbidis et al. (2007) adopted the

Cox and Pedersen (2000) framework to price a Greek bond using equilibrium pricing

theory with dynamic interest rates.

Several studies have used stochastic processes to price CAT bonds. Under the as-

sumption of continuous time, one of the approaches is to model the probability of credit

default which follows the methodology of pricing credit derivatives in finance. Barysh-
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nikov et al. (2001) presented a continuous time no-arbitrage price of zero coupon and

non-zero coupon CAT bonds that incorporated a compound doubly stochastic Poisson

process. The main weakness of this paper is the authors assumed that the arbitrage

measure and real world measures coincide. Burnecki and Kukla (2003) corrected and

then applied their results with PCS data to calculate the arbitrage-free price of zero-

coupon and coupon CAT bonds. Burnecki et al. (2011) illustrated the value of CAT

bonds with loss data provided by PCS when the flow of events was an inhomogeneous

Poisson process. These approaches were utilized by Härdle and Cabrera (2010) for cal-

ibrating CAT bonds prices for Mexican earthquakes. Jarrow (2010) obtained a simple

closed form CAT bond solution with a LIBOR term structure of interest rate.

Another approach in continuous time is to model the trigger involving aggregate

loss process. It is important to note that Vaugirard (2003) was the first to develop

a simple arbitrage approach for evaluating catastrophe risk insurance-linked securi-

ties, although they employed a non-traded underlying framework. In this paper, CAT

bondholders have a short position on an option. Lin et al. (2008) applied a Markov-

modulated Poisson process for catastrophe occurrences using a similar approach to that

of Vaugirard (2003). Lee and Yu (2002, 2007) also introduced the default risk, moral

hazard, and basis risk with stochastic interest rate. Pérez-Fructuoso (2008) developed

a CAT bond with index triggers. Ma and Ma (2013) proposed a mixed approximation

method to simplify the distribution of aggregate loss and to find the numerical solu-

tions of CAT bonds with general pricing formulae. In addition, Nowak and Romaniuk

(2013) expanded Vaugirard’s model and obtained CAT bond prices using Monte Carlo

simulations with different payoff functions and spot interest rates.

This thesis is organized as follows. Chapter 2 introduces the preliminary presen-

tation for CAT bond pricing under an assumption that the occurrence of a localized

catastrophe is independent of the global financial market behaviour. In this chapter, we

first answer the question of why we need to model in an incomplete framework. Then,

we list three universal model assumptions made within this thesis. Classical probabilis-

tic structure and valuation formula are also given, which will be used in Chapters 4 and

5. And finally, we analysis two interest rate models (ARIMA and CIR) and the extreme

value theory.
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Chapter 3 develops a model with multiple catastrophes and financial risks frame-

work in a discrete-time period as an extension of the approach of Cox and Pedersen

(2000). It applies an incomplete and no-arbitrage framework and assumes that all risks

are mutually independent, while aggregate consumptions depend only on financial risk

variables. Then, we apply theoretical results to construct a structured parametric index

earthquake multi-variable CAT bond for one-period and multi-period. As a numeri-

cal example, a CAT bond with historical data from California is proposed in which

the magnitude, latitude, longitude, and depth are included in the model. In addition,

appropriate models are constructed for the term structure of interest and inflation rate

dynamics, and a stochastic process for the coupon rate. Finally, on the basis of analy-

sis for the aforementioned catastrophe and financial market risks, we use equilibrium

pricing theory to find a certain value price for the CAT California earthquake bond.

Chapter 4 derives CAT bond pricing formulae under the special case of the previ-

ous chapter, one financial and one catastrophic risk. We make three main contributions

to the area of CAT bond pricing. First, we construct our model in a Markov-dependent

environment as an extension of the approach proposed by Ma and Ma (2013). For the

first time in the CAT bonds area, we model the dependency between the claims sizes

and the claim inter-arrival times for the aggregate claims as a semi-Markov process.

The main benefit of this extension is the development of a more realistic model, where

the occurrence time before the next claim is partially dependent on the previous claim

size, which indicates that a major catastrophic event triggers many other catastrophic

events in a short period. Second, in order to obtain a more complete example, we struc-

ture four different payoff functions (classical zero-coupon and coupon, multi-threshold

zero-coupon, and defaultable) and we give analytical formulae for CAT bonds. Third,

we apply our theoretical results to construct a CAT bond and we then use PCS data

to estimate relevant parameters to obtain analytical solutions, thereby providing clear

guidance for practitioners.

As a further extension and application, Chapter 5 conducts, for the first time, a

two-coverage type trigger nuclear catastrophe risk bond (N-CAT) for potentially sup-

plementing the covering of US commercial nuclear power plants beyond the coverage

per the Price Anderson Act as amended, and potentially other plants worldwide are
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proposed and designed. The N-CAT peril is categorized by three risk layers: incident,

accident and major accident. Assume that if a major accident (e.g. nuclear reactor core

failure) occurs, the N-CAT expire immediately, which means there is an absorbing state

in the system. The pricing formula is derived by using a semi-Markovian dependence

structure in continuous time with a perturbed state, which is also an extension of the

previous chapter. A numerical application illustrates the main findings of the paper.
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Chapter 2

Preliminaries

2.1 Incomplete Market

Brigo and Mercurio (2007) defined in Definition 2.1.3.: ‘A financial market is complete

if and only if every contingent claim is attainable.’ Harrison and Kreps (1979); Harri-

son and Pliska (1981, 1983) stated the following two fundamental arbitrage-free theo-

rem: Firstly, if a market exists an equivalent martingale measure (risk-neutral probabil-

ity measure), then the market is arbitrage free. Secondly, if this risk-neutral probability

measure is unique, then the financial market is complete. However, an arbitrage-free

market does not necessarily need to be complete. In a complete market, the derivation

of a unique price equals the discounted expected value of the future payoff under the

risk-neutral measure. In an incomplete market, the derivative price is not unique due

to the fact that one can construct several different hedging portfolios. Therefore, in

order to evaluate derivatives under an incomplete framework, one can choice a suitable

risk-neutral probability measure and then take the conditional expectation under this

measure.

In this study, the introduction of catastrophe risk requires an incomplete market

framework to evaluate the CAT bond price, because the catastrophe risk cannot be

replicated by a portfolio of primitive securities, see Harrison and Kreps (1979); Cox

et al. (2000); Cox and Pedersen (2000); Vaugirard (2003). In this section, we are going

to briefly discuss the nature of incomplete markets with catastrophe risks. Assuming
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the same setting as in Section 4 of Cox and Pedersen (2000): a single period model

with two tradeable zero-coupon bonds (a one-period bond and a two-period bond),

when interest rate (6%) will go ‘up’ (7%) or ‘down’(5%) during this period with equal

probabilities. Denote n1 as the number of one-period bonds and n2 as two -period

bonds in this portfolio, with cost

1

1.06
n1 +

1

1.06
0.5(

1

1.07
+

1

1.05
)n2. (2.1)

Then, the value of the portfolio at time 1 is equal to the cash flow at time 1:cu
cd

 =

1 1
1.07

1 1
1.05

n1

n2

 . (2.2)

Then, solve this equation to obtain:n1

n2

 =

1 1
1.07

1 1
1.05

−1 cu
cd

 =

 53.5cu − 52.5cd

−56.175cu + 56.175cd

 .
Substituting into Eq. (2.1) and price of cash flow [cu, cd]T at time 1 is equal to

1

1.06
(0.5cu + 0.5cd) = 0.4717cu + 0.4717cd,

and this means that the model is complete. Assuming that there is additional catas-

trophic risks with the condition that occurrence of catastrophic event is independent of

the financial variables. Therefore, the cash flows at time 1 is:
cu,+

cu,−

cd,+

cd,−

 .

Comparing with Eq. (2.2), there are cash flows at time 1 which cannot be obtained

by the portfolio, which means that the model is incomplete. According to Cox and

Pedersen (2000), in order to obtain such a bond with a unique price, we need to give

the probability distribution of the catastrophic risks and assume that the prices are dis-

counted expected values. However, because of the catastrophic risks, CAT bonds can-

not be perfectly hedged in an incomplete market and the high yields received may not

be sufficient to balance investor risk. In the next section, a formal classical assumption

is given in order to model and obtain explicit prices for catastrophe risk bonds.

20



2.2 Classical Probabilisitic Structure and Valuation The-

ory

We price CAT bonds under the following assumptions: (i) an arbitrage-free investment

market exists with equivalent martingale measure, (ii) the financial market behaves

independently of the occurrence of catastrophes, and (iii) the interest rate changes can

be replicated using existing financial instruments.

In this section, the probabilistic structure and valuation theory for the classical

model is given. We will use this structure in Chapters 4 and 5 and extend to multi-

dimension in Chapter 3. Let 0 < T < ∞ be the maturity date of the continuous

time trading interval [0, T ]. The market uncertainty is defined on a filtered probability

space (Ω,F , (Ft)t∈[0,T ],P), where Ft is an increasing family of σ-algebras, which is

given by Ft = F (1)
t × F

(2)
t ⊂ F , for t ∈ [0, T ], where F (1)

t represents the invest-

ment information (e.g. past security prices and interest rates) available to the market

at time t and F (2)
t represents the catastrophic risk information (e.g. insured property

losses). The financial risk variables and the catastrophic risk variables can be mod-

elled on (Ω(1),F (1), (F (1)
t )t∈[0,T ],P(1)) and (Ω(2),F (2), (F (2)

t )t∈[0,T ],P(2)), respectively.

Moreover, define two filtrations A(1) (A(1)
t = F (1)

t × {∅,Ω2} for t ∈ [0, T ]) and A(2)

(A(2)
t = {∅,Ω1}×F (2)

t for t ∈ [0, T ]). It is proved by Lemma 5.1 of Cox and Pedersen

(2000) that σ-algebras A(1)
t and A(2)

t are independent under the probability measure

P. Thus, an A(κ)
T measurable random variable X on (Ω,F , (Ft)t∈[0,T ],P) (or an A(κ)

adapted stochastic process Y ) is said to depend only on the financial risk variables

(κ = 1) or catastrophic risk variables (κ = 2).

The presence of catastrophic risks that are uncorrelated with the underlying finan-

cial risks leads us to consider an incomplete market, and there is no universal theory

addresses all aspects of pricing. The benchmark to price uncertain cash flow under an

incomplete framework is the representative agent. For valuation purposes, similar to

Merton (1976), we assume that under the risk-neutral pricing measure Q, the overall

economy depends only on financial risk variables. This is a fairly natural approxima-

tion because the global economic circumstances in terms of exchange and production

are only marginally influenced by localized catastrophes. For more information, see
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Merton (1976); Doherty (1997); Cox and Pedersen (2000); Lee and Yu (2002); Ma and

Ma (2013). According to Lemma 5.2 in Cox and Pedersen (2000), under an assump-

tion that the aggregate consumption is A(1) adapted (assumption (ii)), for any random

variable X that is A(2)
T measurable, that

EQ[X] = EP[X]. (2.3)

Thus, a A(2) adapted aggregate loss process {L(t) : t ∈ [0, T ]} retains its original

distributional characteristics after changing from the historical estimated actual prob-

ability measure P to the risk-neutral probability measure Q. And the σ-algebras A(1)
T

andA(2)
T are independent under the risk-neutral probability measure Q. In an arbitrage-

free market (assumption (i)) at any time t, the price of an attainable contingent claim

with payoff {P (T ) : T > t} can be expressed by the fundamental theorem of asset

pricing in the following form,

V (t) = EQ(e−
∫ T
t r(s)dsP (T )|Ft), (2.4)

see Delbaen and Schachermayer (1994).

2.3 Interest Rate Process

There are different types of interest rates, such as government and interbank rates.

Zero-coupon rates can be either from government rates which are usually deduced by

bonds issued by governments or from interbank rates which are exchanged deposits be-

tween banks. The most important interbank rate usually considered as a reference for

contracts is the LIBOR (London InterBank Offered Rate) rate, fixed daily in London.

For the purpose of bond prices, all kinds of rates are available. The first stochastic in-

terest rate model was proposed by Merton (1973), followed by the pioneering approach

of Vasicek (1977) and some other classical models, such as Dothan (1978); Cox et al.

(1985); Ho and Lee (1986); Hull and White (1990); Black et al. (1990). In this section,

we provide analysis for two interest rate models11 (ARIMA and CIR), which will be

used in this thesis.
11Nowak and Romaniuk (2013) compared the CAT bond prices under the assumption of the spot

interest rate described by the Vasicek, Hull-White, and CIR models. However, we are not interested
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2.3.1 ARIMA

The Auto-Regressive Integrated Moving Average (ARIMA) is a typical form to analyse

time series data in statistics and econometrics and can be denoted as ARIMA(p, d, q),

where p the number of lags of the stationarized series in the prediction equation, or

formally called ‘autoregressive terms’; d is the number of nonseasonal differences a

time series needs for stationarity, called ‘integrated’; and q is the number of lagged

forecast errors in the equation, called ‘moving average terms’.

Special cases of ARIMA models are as follows:

• random-walk (ARIMA(0, 1, 0) without constant),

X(t) = X(t− 1) + ε(t);

• exponential smoothing models (ARIMA(0, 1, 1) without constant),

X(t) = X(t− 1)− (1− α)ε(t− 1);

• first-order autoregressive models (ARIMA(1, 0, 0)),

X(t) = C + θX(t− 1) + ε(t);

• first-order moving average models (ARIMA(0, 0, 1)),

X(t) = C + ε(t) + αε(t− 1);

• damped-trend linear exponential smoothing (ARIMA(1, 1, 1)),

X(t)−X(t− 1) = C + θ(X(t− 1)−X(t− 2)) + ε(t) + αε(t− 1);

where C is a constant, θ, α are parameters and ε(t) is a white noise process. In partic-

ular, if slope coefficient θ is close to 0, then the process looks like white noise; as θ

approaches 1, the model describes mean-reverting behaviour.

For the purposes of estimating the parameters and predicting by the ARIMA model,

we use arima and predict functions in R.

in the pricing process which is affected by the interest rate dynamics. Readers can refer to Brigo and

Mercurio (2007) for more information on interest rate dynamics.
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2.3.2 CIR

A typical instantaneous interest rate dynamics proposed by Cox, Ingersol, and Ross

(CIR model, Cox et al. (1985)) assumed a ‘square-root’ term in the diffusion coef-

ficient. This model is a benchmark because it provides analytical bonds and bond

options pricing. The short-rate dynamics {r(t) : t ∈ [0, T ]} under the risk-neutral

measure Q can be expressed as follows,

dr(t) = k(θ − r(t))dt+ σ
√
r(t)dW (t), (2.5)

with the condition

2kθ > σ2, (2.6)

where r(0), k, θ, and σ are positive constants. The condition Eq. (2.6) guarantees that

the process r(t) remains in the positive domain and the origin is inaccessible. Assum-

ing the spot interest rate under the real world measure P with the form:

dr(t) = [kθ − (k + λr)r(t)]dt+ σ
√
r(t)dW ∗(t), (2.7)

where W ∗(t) = W (t) +
∫ t
0

λr
√
r(s)

σ
ds is a Brownian motion under the risk measure

P and λr is a positive constant12 contributing to the market price of risk. Assuming

Q and P are equivalent measures, then compare Eq. (2.5) and Eq. (2.7) and we obtain

Radon-Nikodym derivative of Q with respect to P:

dQ
dP

∣∣∣∣
Ft

= exp

(
−1

2

∫ t

0

λ2rr(s)

σ2
ds+

∫ t

0

λr
√
r(s)

σ
dW ∗(s)

)
.

The market price of risk process λ∗r(t) is a stochastic process with the functional form

λ∗r(t) =
λr
σ

√
r(t), t ∈ [0, T ].

For detailed information about this transformation, please refer to Ma and Ma (2013);

Nowak and Romaniuk (2013); Shirakawa (2002); Lee and Yu (2002); Remillard (2013).

According to Brigo and Mercurio (2007), we can price a pure-discount T-bond at

time t by the following equalities:

BCIR(t, T ) = A(t, T )e−B(t,T )r(t), (2.8)
12For the case λr = 0, dynamics Eq. (2.5) and Eq. (2.7) coincide, where risk neutral world and

objective world are identical.
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where

A(t, T ) =

[
2he(k+λr+h)(T−t)/2

2h+ (k + λr + h)(e(T−t)h − 1)

] 2kθ
σ2

, (2.9)

B(t, T ) =

[
2(e(T−t)h − 1)

2h+ (k + λr + h)(e(T−t)h − 1)

]
, (2.10)

h =
√

(k + λr)2 + 2σ2. (2.11)

We complete this subsection by giving maximum likelihood estimation of the CIR

model. Glasserman (2003) stated that in the CIR model, the increments of the short-

rate follows a non-central chi-square distribution and the transition density of Eq. (2.5)

can be written as:

r(t) =
σ2(1− e−k(t−u))

4k
χ2
d

(
4ke−k(t−u)

σ2(1− e−k(t−u))
r(u)

)
, t > u,

where,

d =
4θk

σ2
and λ =

4ke−k(t−u)

σ2(1− e−k(t−u))
r(u).

The cumulative distribution function is

P(r(t) ≤ y|r(u)) = Fχ2
(d,λ)

(
4ky

σ2(1− e−k(t−u))

)
,

and the probability density function is given as

Pr(t)(y|r(u)) = cpχ2
(d,λ)

(cy) ,

where pχ2
(d,λ)

(·) is the density of the non-central χ2 distribution, where

c =
4k

σ2(1− e−k(t−u))
.

Finally, one can have the log-likelihood function:

l(θ, k, σ; y) =
n∑
i=2

log(c) +
n∑
i=2

log(pχ2
(d,λ)

(cyi|yi−1)),

where y = r1, . . . , rn is given according to the data. We use numerical optimization

to find the maximum likelihood estimation of the parameters and the R-function of the

model is given in Appendix C.2. Alternatively, one can use the R Package SMFI5 with

LogLikCIR function.

25



2.4 Extreme Value Theory

Extreme value theory deals with the stochastic of the minimum or the maximum of a

very large collection of random observations from the same arbitrary distribution. The

first statement of extremal limit theorem was by Fisher and Tippett (1928), and they

suggested that the behaviour of the maxima can be described by only a few forms.

Thereafter, Gnedenko (1943) gave convergence to a unified version type theorem –

the Generalized Extreme Value distribution (GEV). Gumbel (1958) showed statistical

application of theory to estimate extremes.

Suppose X1, X2, . . . are independent and identically distributed random variables

with common cumulative distribution function F . Let Mδ = max{X1, X2, . . . , Xδ}

denote the maximum of the first δ random variables. In theory, the exact distribution

of Mδ can be derived by

P(Mδ ≤ z) = P(X1 ≤ z, . . . , Xδ ≤ z)

= P(X1 ≤ z) · · ·P(Xδ ≤ z) = (F (z))δ.

However, this is not immediately helpful in practice, since the distribution function F

is not always available. There are two possible methods to solve this problem, first

is the Central Limit Theorem (CLT) and second is Fisher-Tippett-Gnedenko theorem

which is discussed in this section, see Fisher and Tippett (1928); Embrechts et al.

(1997); Coles et al. (2001).

Theorem 2.4.1. (Fisher–Tippett–Gnedenko)

If there exist sequences of constants {σδ : σδ > 0,∀δ ∈ N} and {βδ : δ ∈ N} such

that

P
{
Mδ − βδ
σδ

≤ z

}
→ G(z) as δ →∞, z ∈ R,

then

G(z) ∝ exp
{
−(1 + αz)−1/α

}
,

where α depends on the tail shape of the distribution. When normalized, G is a non-

degenerate distribution function and belongs to one of the following forms (γ > 0):

I. (Gumbel) G(z) = exp
{
− exp

(
−
(
z−β
σ

))}
when the distribution of Mδ has an

exponential tail.
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II. (Fréchet) G(z) =

0 z ≤ β

exp
{
−
(
z−β
σ

)−γ}
z > β.

when the distribution of Mδ

has a heavy tail (including polynomial decay).

III. (Weibull)G(z) =

exp
{
−
(
−
(
z−β
σ

))γ}
z < β

1 z ≥ β

when the distribution ofMδ

has a light tail with finite upper bound.

These can be grouped into the the single distribution called Generalized Extreme

Value (GEV) distribution, with c.d.f.

G(z) = exp

{
−
[
1 + α

(
z − β
σ

)]−1/α}
, (2.12)

defined on {z : 1 + α(z − β)/σ > 0}, where β ∈ R, σ > 0 and α ∈ R.

The model has three parameters: location parameter β, scale parameter σ, and

shape parameter α. The case α = 0 is interpreted as the limit α → 0 and Eq. (2.12)

corresponds to the Gumbel family. For the cases α > 0 (α = 1
γ

) and α < 0 (α = − 1
γ

),

Eq. (2.12) leads to Frechét and Weibull family distributions, respectively.

We complete this section by giving maximum likelihood estimation for GEV dis-

tribution parameters (α, σ, β). Assuming M1, . . . , Mδ are independent variables with

GEV distribution, then the log-likelihood for parameters (α, σ, β) (α 6= 0) is given by

l(α, σ, β) = n log σ−(1+
1

α
)

δ∑
i=1

log

[
1 + α

(
Mi − β
σ

)]
−

δ∑
i=1

[
1 + α

(
Mi − β
σ

)]−1
α

,

(2.13)

provided that

1 + α

(
Mi − β
σ

)
> 0, for i = 1, 2, . . . , δ.

There is no analytic solution for maximize Eq. (2.13), but for any given dataset the

maximization is obtained straightforwardly by using standard numerical algorithms,

Coles et al. (2001). In the following chapters, we use R Package fExtremes with

gevFit function (or R library ismev with gev.fit function) to estimate GEV parameters.
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Chapter 3

Multi Variables CAT Bond Model

In this chapter, a model with m catastrophe risks and n financial risks in a discrete-

time period is developed as an extension of the approach of Cox and Pedersen (2000).

Theoretical results are applied to construct a multi-variable CAT bond, and then use

California earthquakes data to derive the price density function for a 5-year structured

parametric earthquake CAT bond. This chapter works under an incomplete and no-

arbitrage framework, assuming that all risks (both financial and catastrophic risks) are

pairwise independent.

The reminder of this chapter is organized as follows. Section 3.1 describes the

probability structure for the model and a valuation framework of CAT bonds. The

fact that catastrophic risks are uncorrelated with financial risk movements makes the

problem much simpler. In Section 3.2, one-period and multi-period payoff formulas

for earthquake CAT bonds are specified, and the term structures or the distributions

of the risk variables relative to the bond are analysed. The distribution of the annual

maximum earthquake magnitude in California is estimated using extreme value theory.

It is assumed that the dynamics of the LIBOR rate is a CIR model and that the interest

and inflation rates follow ARIMA processes. Section 3.3 presents numerical examples

for 1-year and 5- year CAT bonds. The density plot for the price is derived to illustrate

the applicability of our results. Finally, Section 3.4 discusses the results.
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3.1 Modeling CAT bonds

3.1.1 Model Description and Preliminaries

In this subsection, a preliminary presentation for the CAT bond structure is given.

Generalizing the ideas of Cox and Pedersen (2000), a CAT bond that combines n

financial market variables and m catastrophic risk variables is designed. The model

set-up requires a probabilistic structure which is given as follows.

Assume that issuers are trading CAT bonds in an investment market that is arbitrage-

free. The time of the catastrophe(s) is independent of the term structure(s) under the

relevant probability measure. We assume that there are n financial risk variables,

each modelled on a filtered probability space (Ω1,i,F (1,i), (F (1,i)
t )t=0, 1,..., T ,P1,i) for

i = 1, 2, . . . , n. Let T <∞ be the maturity time of the trading interval. Let F (1,i)
t be

the σ-algebras of Ω1,i representing the investment information available to the market

at time t (t = 0, 1, . . . , T ), where F (1,i) (i = 1, 2, . . . , n) are corresponding filtra-

tions. Thus, each probability measure P1,i is defined for all events belonging to the

F (1,i)
t σ-algebra, t ≤ T . Note that the measures P1,i do not necessarily have the same

distributions.

Then considerm catastrophic risk variables, which are modelled on a filtered prob-

ability space (Ω2,j,F (2,j), (F (2,i)
t )t=0, 1,..., T ,P2,j), where F (2,j)

t are the σ-algebras of

Ω2,j representing the catastrophic risk information available at time t (t = 0, 1, . . . , T )

and P2,j (j = 1, 2, . . . , m) are the probability measures governing the catastrophe

structure (not necessarily with the same distribution). The filtrations F (2,j) are indexed

by the same times t = 0, 1, . . . , T as previously. The sample space of the full model

can be constructed, such that

Ω =
(

Ω1,1 × Ω1,2 × · · · × Ω1,n

)
×
(

Ω2,1 × Ω2,2 × · · · × Ω2,m

)
.

A typical event of the full model sample space is of the form ω = (ω̃1,n, ω̃2,m), where

ω̃κ,` = (wκ,1, wκ,2, . . . , wκ,`), κ = 1, 2, ` = n, m, such that w1,i ∈ Ω1,i (i =

1, 2, . . . , n) and w2,j ∈ Ω2,j (j = 1, 2, . . . , m).

Assuming that the events wκ,1, wκ,2, . . . , wκ,` (κ = 1, 2, ` = n, m) are pairwise
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independent, then the probability measure on the sample space Ω is given by

P(ω) =
n∏
i=1

P1,i(ω1,i) ·
m∏
j=1

P2,j(ω2,j), i = 1, 2, . . . , n, j = 1, 2, . . . , m.

In addition, the natural filtration produced by the σ-algebras of Ω is denoted by F

and given by

Ft =
(
F (1,1)
t ×F (1,2)

t × · · · × F (1,n)
t

)
×
(
F (2,1)
t ×F (2,2)

t × · · · × F (2,m)
t

)
,

for t = 0, 1, . . . , T . Thus, (Ω,F , (Ft)t=0, 1,..., T ,P) constitutes a probability space for

the full model with all the elements defined as above. In order to define random vari-

ables in the full model that depends only on either financial variables or catastrophic

variables, let us introduce the increasing filtrations A(1)
t ⊂ A(1) and A(1,i)

t ⊂ A(1,i)

(i = 1, . . . , n), and similarly A(2)
t ⊂ A(2) and A(2,j)

t ⊂ A(2,j) (j = 1, . . . , m) gener-

ated from the following σ-algebras:

A(1)
t = F (1,1)

t × · · · × F (1,n)
t × {∅,Ω2,1, . . . ,Ω2,m},

A(1,i)
t = F (1,i)

t × {∅,Ω2,1, . . . ,Ω2,m}, i = 1, . . . , n,

A(2)
t = {∅,Ω1,1, . . . ,Ω1,n} × F (2,1)

t × · · · × F (2,m)
t ,

A(2,j)
t = {∅,Ω1,1, . . . ,Ω1,n} × F (2,j)

t , j = 1, . . . ,m,

for t = 1, . . . , T . AnA(κ)
T measurable random variable X on (Ω,F , (Ft)t=0, 1,..., T ,P)

(or an A(κ) adapted stochastic process Y ) depends on financial risk variables (κ =

1) or catastrophic risk variables (κ = 2). Let financial events be α1,i ∈ A(1,i)
T and

catastrophic events be α2,j ∈ A(2,j)
T . We need the independent notion ofA(κ,`)

T because

we cannot refer to F (κ,`)
T as being independent under P, since each of F (κ,`)

T does not

contain events defined on (Ω,F , (Ft)t=0, 1,..., T ,P).

Lemma 3.1.1. For i = 1, . . . , n and j = 1, . . . ,m, the σ-algebrasA(1,i)
T andA(2,j)

T are

independent under the probability measure P.

Proof. For i = 1, . . . , n and j = 1, . . . ,m, we have α1,i ∈ A(1,i)
T and α2,j ∈ A(2,j)

T .

Therefore, α1,i = A1,i × Ω2,1 × · · · × Ω2,m for some A1,i ∈ F (1,i)
t , and α2,j = Ω1,1 ×

· · · × Ω1,n × A2,j for some A2,j ∈ F (2,j)
t , and we have that

P

[( n⋂
i=1

α1,i

)⋂( m⋂
j=1

α2,j

)]
= P

(
A1,1 × · · · × A1,n × A2,1 × · · · × A2,m

)
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=
n∏
i=1

P1,i(A1,i) ·
m∏
j=1

P2,j(A2,j)

=
n∏
i=1

P1,i(A1,i)
m∏
j=1

P2,j(Ω2,j)
n∏
i=1

P1,i(Ω1,i)
m∏
j=1

P2,j(A2,j)

=
n∏
i=1

P(α1,i) ·
m∏
j=1

P(α2,j).

And the result follows.

3.1.2 The Valuation Framework

In this subsection, we show how to implement valuation under the full model by

choosing the equivalent measure. Similar to Cox and Pedersen (2000) and Magill

and Quinzii (2002), the setting of a representative agent is adopted to price uncertain

cash flow streams, as which is the benchmark financial economics technique. By this

technique, we need to assume a representative utility function and an aggregate con-

sumption process.

Assume a T -period economy, in which agents can make choices and consume dur-

ing each period. An agent makes choices about his future consumption, represented by

the stochastic process {c(t); t = 0, 1, . . . , T}. The aggregate consumption stochastic

process is denoted by {C∗(t); k = 0, 1, . . . , T}. Both these processes are adapted

to filtration of the full model. Only the first choice is known with certainty at time

t = 0. For i = 1, 2, . . . , n, let {ri(t); t = 0, 1, . . . , T − 1} be the one-period financial

market rates. Then these one-period financial market rates can be defined through the

conditional expectation

n∏
i=1

1

1 + ri(t)
=

1

u′k(C
∗(t))

EP[u′t+1(C
∗(t+ 1))|Ft

]
, t = 0, 1, . . . , T − 1, (3.1)

where u0, u1, . . . , uT represent the utility functions, and also assume representative

agent’s utility is additively separable and differentiable. The Randon-Nikodym deriva-

tive of Q with respect to P is defined in the same vein as Cox and Pedersen (2000)

dQ
dP

=
n∏
i=1

T−1∏
s=0

[1 + ri(s)]

[
u′T (C∗(T ))

u′0(C
∗(0))

]
. (3.2)
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Note that this new random variable is measurable with respect to FT . In addition, we

clearly need to ensure that EP
[
dQ
dP

]
= 1 (Lemma 3.1.2). First, for notation simplicity,

denote the one-period financial market discount rates by

B(k) =


n∏
i=1

t−1∏
s=0

[1 + ri(s)], for t = 1, 2, . . . , T,

1, for t = 0.

Then, define the stochastic processes {ξ(t); t = 0, 1, . . . , T} and {ζ(t); t = 0, 1 . . . , T}

as

ξ(t) = EP
[
dQ
dP

∣∣∣∣Ft] =
dQ
dP

∣∣∣∣
Ft

and ζ(t) = B(t) · u
′
t(C

∗(t))

u′0(C
∗(0))

,

with t = 1, . . . , T and B(0) = 1, which leads to ζ(0) = 1. By Eq. (3.2) it holds

that ζ(T ) = dQ
dP ∈ FT . Similar to Lemma B.1 and Theorem B.1 of Cox and Pedersen

(2000), we have the following lemma and theorem.

Lemma 3.1.2. The process {ζ(t); t = 0, 1, . . . , T} is a P-martingale on the filtration

F , and ζ(t) = ξ(t) for t = 0, 1, . . . , T .

Proof. First, note that the process {ζ(t); t = 0, 1, . . . , T} is F adapted, since the

processes ri(t) and C∗(t) are F adapted processes, as well. Furthermore,

EP[ζ(t+ 1)|Ft]

=EP

[
B(t)

n∏
i=1

[1 + ri(t)]
u′k(C

∗(t+ 1))

u′0(C
∗(0))

∣∣∣∣Ft
]

=EP

[
ζ(t)

n∏
i=1

[1 + ri(t)]
u′t+1(C

∗(t+ 1))

u′t(C
∗(t))

∣∣∣∣Ft
]

=ζ(t)
n∏
i=1

[1 + ri(t)]
1

u′t(C
∗(t))

EP
[
u′t+1(C

∗(t+ 1))

∣∣∣∣Ft] = ζ(t),

where the last equality is obtained by using Eq. (3.1). Finally, by using the fact that the

process {ζ(t); k = 0, 1, . . . , T} forms a martingale, we conclude that

ζ(t) = EP[ζ(T )|Ft
]

= EP
[dQ
dP

∣∣∣Ft] = ξ(t).
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Remark 3.1.1. An immediate consequence of Lemma 3.1.2 is that

1 = EP
[
ζ(0)

]
= EP

[
ζ(T )

]
= EP

[
ξ(T )

]
= EP

[dQ
dP

]
,

which ensures that the Radon-Nikodym derivative in Eq. (3.2) indeed defines a new

probability measure.

Intuitively, the probability measure Q(·) is equivalent to knowledge of the repre-

sentative investor’s utility function and the aggregate consumption process.

Theorem 3.1.1. Under the assumptions of the representative agent pricing model, the

value of a generic future cash flow process {PCAT (t); t = 1, 2, . . . , T} at time 0 is

given by

V (PCAT ) = EQ
[ T∑
t=1

1∏n
i=1

∏t−1
s=0[1 + ri(s)]

PCAT (t)

]
= EQ

[
T∑
t=1

1

B(t)
PCAT (t)

]
.

(3.3)

Remark 3.1.2. When in incomplete markets, there is no unique interpretation for the

prices that we assign to CAT bonds unless we introduce the probability distribution of

the catastrophe risk, see Section 2.1.

Using similar arguments to those in Theorem B.2 of Cox and Pedersen (2000), the

general intertemporal valuation of a future cash flow can be expressed in terms of the

equivalent measure Q(·).

Theorem 3.1.2. Under the assumptions of the representative agent pricing model, the

value of a generic future cash flow process {d(t); t = k + 1, p + 2, . . . , T} at time k

is given by

EP
[ T∑
t=k+1

u′t(C
∗(t))

u′k(C
∗(k))

PCAT (t)

∣∣∣∣Fk] = EQ
[ T∑
t=k+1

B(k)

B(t)
PCAT (t)

∣∣∣∣Fk],
where k = 0, 1, . . . , T , with the convection

a∑
b

= 0 for a < b, a, b ∈ N.

For analysis of CAT bonds, hereafter we assume that the aggregate consumption

depends only on financial risks, given as C∗(ω̃1,n, ω̃2,m; t) = C∗(ω̃1,n; t) for ω ≡

(ω̃1,n, ω̃2,m) ∈ Ω. Then C∗ is A(1) adapted. This is quite a natural approximation
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since global economic conditions in terms of exchange and production are not strongly

related to localized catastrophes, see Cox and Pedersen (2000). Assuming that the

aggregate consumption process depends only on financial risk information available at

time t, and that the structure at time 0 is known.

Lemma 3.1.3. Under the assumption thatC∗ isA(1) adapted, for any random variable

X that is A(2)
T measurable we have

EQ[X] = EP[X].

In particular, for any catastrophic events α2,j (j = 1, 2, . . . , m) that are A(2,j)
T mea-

surable, it holds that

Q(
m⋂
j=1

(α2,j)) = P(
m⋂
j=1

(α2,j)) =
m∏
j=1

P2,j(A2,j), (3.4)

where A2,j ∈ F (2,j)
T .

Proof. Note that dQ
dP in Eq. (3.2) is A(1)

T measurable, because of the fact that C∗ and

B(T ) are A(1) adapted. Therefore, for any random variable X that is A(2)
T measurable

we have thatX and dQ
dP are independent under P. Together with Lemma 3.2.5 of Shreve

(2004), one can prove that

EQ[X] = EP
[
X
dQ
dP

]
= EP[X]EP

[
dQ
dP

]
= EP[X] · 1 = EP[X].

Moreover, define

X =
m∏
j=1

1α2,j
= 1

⋂m
j=1 α2,j

,

where α2,j ∈ A(2,j)
T , j = 1, 2, . . . ,m. Substituting into Eq. (3.4), and obtain

Q(
m⋂
j=1

(α2,j)) = EQ
[
1
⋂m
j=1 α2,j

]
= EQ[X] = EP[X] = EP

[
1
⋂m
j=1 α2,j

]
= P(

m⋂
j=1

(α2,j)) = P
[ m⋂
j=1

{
Ω1,1 × · · · × Ω1,m × A2,j

}]

=
m∏
j=1

[( n∏
i=1

P(Ω1,j)
)
P(A2,j)

]
=

m∏
j=1

P2,j(A2,j).
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Remark 3.1.3. Under the measure P(·) and the assumption that C∗ depends only on

financial risk variables, we can conclude that the catastrophic events α2,j that depend

on the jth catastrophic risk (j = 1, . . . ,m) are independent.

To implement Theorems 3.1.1 and 3.1.2, it is crucial to assume that the events

are mutually independent, that is, they depend only on financial risks and only on

catastrophic risks, under the measure Q.

Lemma 3.1.4. Under the assumption that C∗ isA(1) adapted, the σ-algebrasA(1)
T and

A(2)
T are independent under Q.

Proof. Let α1,i ∈ A(1,i)
T and α2,j ∈ A(2,j)

T . Applying Lemma 3.2.5 of Shreve (2004),

then have

Q
(( n⋂

i=1

α1,i

)⋂( m⋂
j=1

α2,j

))
= EQ

[
1
⋂n
i=1 α1,i

1
⋂m
j=1 α2,j

]
= EP

[
1
⋂n
i=1 α1,i

1
⋂m
j=1 α2,j

dQ
dP

]
.

Since dQ
dP in Eq. (3.2) is A(1)

T measurable,

1
⋂m
i=1 α1,i

dQ
dP

and 1
⋂m
j=1 α2,j

are independent under P. Consequently,

EP
[
1
⋂n
i=1 α1,i

1
⋂m
j=1 α2,j

dQ
dP

]
= EP

[
1
⋂n
i=1 α1,i

dQ
dP

]
EP
[
1
⋂m
j=1 α2,j

]
= EQ[

1
⋂n
i=1 α1,i

]
P
[ m⋂
j=1

α2,j

]
= Q

[ n⋂
i=1

α1,i

] m∏
j=1

P2,j[α2,j].

Referring back to Lemma 3.1.3, we have

EP
[
1
⋂n
i=1 α1,i

1
⋂m
j=1 α2,j

dQ
dP

]
= Q

[ n⋂
i=1

α1,i

] m∏
j=1

P2,j[α2,j]

= Q
[ n⋂
i=1

α1,i

]
Q
[ m⋂
j=1

α2,j

]
.

Therefore, we conclude that under Q the σ-algebrasA(1)
T andA(2)

T are independent.
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As a direct implication of Lemmas 3.1.3 and 3.1.4, the current value of cash flows

X depending on catastrophic risks has the simple form as below. For notation simplic-

ity, we denote the current value of non-defaultable zero-coupon bond maturing at time

t with face amount 1 as P (t) = EQ
[

1
B(t)

]
.

Corollary 3.1.1. The current value of an A(2)
t measurable cash flow X paid at time t

is given by

EQ
[

1

B(t)
X

]
= P (t)EP[X].

Under the discrete time framework, we can express the valuation measure as a

product measure of the probability measures Q1 and P2,j ,

Q(ω) =
dQ
dP

(ω)P(ω)

= B(ω;T )
u′T (C∗(ω;T ))

u′0(C
∗(ω; 0))

P(ω)

=
T−1∏
s=0

[ n∏
i=1

[1 + ri(ω1,i; s)]

]
u′T (C∗(ω̃1,n;T ))

u′0(C
∗(ω̃1,n; 0))

n∏
i=1

P1,i(ω1,i)
m∏
j=1

P2,j(ω2,j)

= Q1(ω̃1,n)
m∏
j=1

P2,j(ω2,j), (3.5)

where

Q1(ω̃1,n) =
T−1∏
s=0

[ n∏
i=1

[1 + ri(ω1,i; s)]

]
u′T (C∗(ω̃1,n;T ))

u′0(C
∗(ω̃1,n; 0))

n∏
i=1

P1,i(ω1,i). (3.6)

The probability measure in Eq. (3.6) is generated in terms of the term structure of

financial risks, see Pedersen (1994). It is practical to have Eq. (3.5) since the empirical

probabilities of catastrophic events can be used for the probability measures P2,j , where

j = 1, . . . ,m.

3.1.3 Implication for Valuation

In this subsection, a concrete form for pricing certain CAT bonds is presented un-

der the discrete time framework. The valuation structure of CAT bonds can be fur-

ther simplified because the discount factors B(t) are A(1)
t measurable and depend

only on financial risks. Consider a generic future cash flow process PCAT (ω; t) =
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PCAT (ω̃1,n, ω̃2,m; t) depending on financial and catastrophic risks. In addition, define

an associated process of future cash flow as

PCAT (t) = EQ[PCAT (t)|A(1)
t ],

which is the conditional expectation over the loss distribution of catastrophic risks

given fixed financial risk variables. The value of PCAT reflects the financial events by

filtration A(1); thus, PCAT (t) is A(1)
t measurable. We now reformulate Eq. (3.3) using

the process PCAT , with B(t) and PCAT (t) are both A(1)
t measurable. We have

V (PCAT ) = EQ

[
T∑
t=1

1

B(t)
PCAT (t)

]
= EQ1

[
T∑
t=1

1

B(t)
PCAT (t)

]
, (3.7)

where Q1 is the valuation measure in terms of n financial risk variables given in

Eq. (3.6). This is practical since one can use Eq. (3.7) to value the CAT bond by

choosing a term structure for arbitrage-free financial risks and calculating the expected

cash flow conditionally on the financial risk process.

However, to complete the valuation, we also need to verify the structure of the cash

flow process. A direct deduction from Corollary 3.1.1 is the case in which the CAT

bond cash flows depend only on the catastrophic risk variables.

Theorem 3.1.3. For CAT bond cash flows that are A(2) adapted,

PCAT (t) = EQ
[
d(t)|A(1)

t

]
= EP[PCAT (t)]

and the value of the CAT bond can be given as

V (t) =
T∑
t=1

P (t)EP[PCAT (t)]. (3.8)

The pricing formulas for CAT bonds given in Eqs. (3.7) and (3.8), which are an

extension of work by Cox and Pedersen (2000), are the core results of this chapter.

3.2 Application of The Results for Earthquakes

In this section, a model with three financial risks (n = 3 with LIBOR, real interest,

and inflation rates) and two catastrophe risks (m = 2 with earthquake magnitude and
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depth) is introduced. The maximum earthquake magnitude in one region is selected as

the parametric index trigger for this CAT bond. It becomes clearer to the reader later

in this section that the region in which the earthquake occurs is included in the CAT

bond payoff function.

We model one financial market risk, the real interest rate, via a discrete process

{r1(t); t = 1, 2, . . . , T} within the triple (Ω1,1,F (1,1),P1,1), that is equipped with

the filtration F (1,1). Similarly, the inflation rate process {r2(t); t = 1, 2, . . . , T} is

modelled on another complete probability triple (Ω1,2,F (1,2),P1,2) equipped with the

filtration F (1,2). The final financial risk US LIBOR rate {R(t); t = 1, 2, . . . , T} is

modelled within (Ω1,3,F (1,3),P1,3), which is equipped with the filtration F (1,3).

Catastrophic risks are modelled via two random variables. We model the annual

maximum-magnitude earthquake using the random variable {M(t); t = 1, 2, . . . , T}

within the probability space (Ω2,1,F (2,1),P2,1), which is equipped with the filtration

F (2,1), and the depth {D(t); t = 1, 2, . . . , T} within (Ω2,2,F (2,2),P2,2), which is

equipped with the filtration F (2,2).

One-period and multi-period models are developed and the CAT bond valuation is

performed in three stages. In the first stage we specify cash flows to the bondholder,

which are dependent on the above risk variables. In this application, parametric trigger

type (annual maximum magnitude earthquake in the region as the triggering event) is

used for this structured CAT bond, and investors can benefit from no moral hazard risk

while sponsors can enjoy a quicker reimbursement. In the next stage we analyse the

dynamics of financial risks and catastrophic risks by assuming a suitable distribution

function and estimating parameters from historical data. In the final stage we generate

sequences of a discrete-time process for future risks and obtain the price of CAT bonds

in an arbitrage-free framework.

3.2.1 One-period (basic) Model

In this subsection, a simple one-period model is formulated. Under the discrete-time

framework of the analysis, we first define the following symbols and notations:

T : maturity date for the CAT bond.
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Z : face amount of the CAT bond.

r1(t) : risk-free real interest rate at time t (e.g. 1-year US Treasury securities rate).

r2(t) : inflation rate at time t (e.g. represented by the consumer price index (CPI)).

R(t) : deterministic coupon payment rate at time t (e.g. 12-month US LIBOR rate on

the bond issuance date).

e : extra premium loading for the earthquake risk (normally positive considering risk-

averse investors).

M(t) : maximum earthquake magnitude at tth year within all selected regions. If

we have two regions, M(t) = max{M1(t),M2(t)}, where M1(t) and M2(t)

represent the maximum-magnitude earthquake in each of the two regions, which

have the common distributions described in sub-Section 3.2.3.

D(t) : depth (km) of the earthquake at time t.

V (PCAT ) : value of the CAT bond at time of issuance.

Due to the fact that we are working in a one period model, for the remainder of this

subsection we from this point in this subsection assume that T = t = 1. Thus one can

simplify the notations as r1, r2, R, M , and D and assume the dynamics of financial

risks (real interest rate, inflation rate, and LIBOR rate) are constant.

Denote PCAT (R;M,D) as payoff function of the CAT bond with piecewise cash

flow on maturity. Zimbidis et al. (2007) gave a similar expression for CAT bond cash

flows that depend on M and D. As an illustration, the structure of the cash value is
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given by

PCAT (R;M,D) =



Z · (1 + f(R)), M ∈ [0, µ1],with {D ≤ δ1} or {D > δ1}

Z · (1 + g(R)), M ∈ (µ1, µ2],with {D ≤ δ2} or {D > δ2}

Z · (1 + h(R)), M ∈ (µ2, µ3],with {D ≤ δ3} or {D > δ3}

Z, M ∈ (µ3, µ4]

φ(Z), M ∈ (µ4, µ5],with {D ≤ δ4} or {D > δ4}

γ(Z), M ∈ (µ5, µ6],with {D ≤ δ5} or {D > δ5}

η(Z), M ∈ (µ6,∞),

where the trigger points µ1, µ2, . . . , µ6 and δ1, δ2, . . . , δ5 ∈ R+ are the pre-determined

levels in the CAT bonds contract for magnitude and depth, respectively, and 0 < µ1 <

µ2 < . . . < µ6, 0 < δ1 < δ2 < . . . < δ5. Selection of µ1, µ2, . . . , µ6 affects the

securitization level of the bond, which an individual company should balance between

profit and marketability by analysing historical earthquake loss data. Finally, coupon

payment functions f(R), g(R), h(R), φ(Z), γ(Z), and η(Z) are normally designed

according to company policy. Here we illustrate a possible example:

f(R) =

2.6R · 1{D≤δ1} + 2.8R · 1{D>δ1}, for M = M1

2.9R · 1{D≤δ1} + 3R · 1{D>δ1}, for M = M2

g(R) =

1.6R · 1{D≤δ2} + 1.9R · 1{D>δ2}, for M = M1

1.8R · 1{D≤δ2} + 2R · 1{D>δ2}, for M = M2

h(R) =

0.5R · 1{D≤δ3} + 0.6R · 1{D>δ3}, for M = M1

R · 1{D≤δ3} + 1.1R · 1{D>δ3}, for M = M2

φ(Z) =

0.8Z · 1{D≤δ4} + 0.85Z · 1{D>δ4}, for M = M1

0.95Z · 1{D≤δ4} + 0.98Z · 1{D>δ4}, for M = M2

γ(Z) =

0.55Z · 1{D≤δ5} + 0.6Z · 1{D>δ5}, for M = M1

0.7Z · 1{D≤δ5} + 0.75Z · 1{D>δ5}, for M = M2
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and η(Z) =

0.2Z, for M = M1

0.5Z, for M = M2.

In the one-period case, we assume that Z, r1, r2, R, and e are constant. Therefore,

cash flow is independent of financial risks, and we can apply Eq. (3.8) and obtain the

price of the CAT bond:

V (PCAT ) =
1

1 + (r1 + e)
· 1

1 + r2
EP [PCAT (R;M,D)] , (3.9)

where P is the probability measure corresponding to the distribution of M1, M2 (ob-

tained in Table 3.2), and D. It is important to note that one of our financial market

rates (r1 + e) is a shift of the interest rate, which makes CAT bonds more attractive

than normal return bonds.

Assuming that expectation exists in Eq. (3.9), CAT bond prices can be approx-

imated by using the same logic as Zimbidis et al. (2007) according to equilibrium

pricing theory:

V (PCAT ) = lim
h→∞

V (h)(PCAT ),

where

V (h)(PCAT ) =
1

1 + (r1 + e)

1

1 + r2

1

h

h∑
l=1

PCAT (R;M (l), D(l)). (3.10)

Here M (l), D(l) represents the lth simulated value in h simulations. Therefore, we

approximate the value of V (PCAT ) based on Eq. (3.10) by generating h events, see

Boyle et al. (1997); Romaniuk (2003).

3.2.2 Multi-period (advanced) Model

Under the discrete-time framework, we now introduce the notation for multi-period

models. T , Z, e, M(t), D(t) and the coupon payment functions f(R), g(R), h(R),

φ(Z), γ(Z), and η(Z) have the same form as in the one-period model.

r1(t) : market yield at the 1-year US Treasury securities rate at time t. More precisely,

r1(t) gives the annual compounded interest discount rate of a typical cash flow
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for the period t+1. We assume that r1(t) is ARIMA (1, 1, 1) model with param-

eters θ1 and α1 for any t = 1, 2, . . . , T , which simulates the interest rate well,

see Box et al. (2011); Dhaene (1989)13. For r1(t) > 0,

∆r1(t) = C1 + θ1∆r1(t− 1) + ε1(t) + α1ε1(t− 1),

where ∆r1(t) = r1(t) − r1(t − 1), C1 is constant, and the error terms ε1(t)

are assumed to be independent, identically distributed variables sampled from a

normal distribution with zero mean.

r2(t) : 1-year inflation rate at time t. In a similar setting as for the treasury rate, we

assume that r2(t)(r2(t) > 0) follows an ARIMA (0, 0, 1) model with parameter

α2 for any t = 1, 2, . . . , T . For r2(t) > 0,

r2(t) = C2 + ε2(t) + α2ε2(t− 1),

where ε2(t) are i.i.d. normal distributed random variables representing the white

noise of the model.

R(t) : the 12-month LIBOR rate at time t. Here, we assume that the fundamental

process for the instantaneous LIBOR rate {R(t); t = 1, 2, . . . , T} is the CIR

process Cox et al. (1985) given by the following stochastic differential equa-

tion14:

dR(t) = α3(β3 −R(t))dt+ σ3
√
R(t)dW (t), (3.11)

where θ3 = (α3, β3, σ3) are the model parameters and W (t) is standard Brown-

ian motion.

PCAT (R(t);M(t), D(t)) : coupon payment value received by the CAT bondholder at

time t = 1, 2, . . . , T , constructed in the following form:

PCAT (R(t);M(t), D(t)) =

13Detailed information is shown in sub-Section 2.3.1.
14Detailed information is shown in sub-Section 2.3.2.
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

Zf(R(t))1{0≤M(t)≤µ1} + Zg(R(t))1{µ1<M(t)≤µ2} + Zh(R(t))1{µ2<M(t)≤µ3},

for t = 1, 2, . . . , T − 1,

Z(1 + f(R(t)))1{0≤M(t)≤µ1} + Z(1 + g(R(t)))1{µ1<M(t)≤µ2}+

+Z(1 + h(R(t)))1{µ2<M(t)≤µ3} + Z1{µ3<M(t)≤µ4} + φ(Z)1{µ4<M(t)≤µ5}+

+γ(Z)1{µ5<M(t)≤µ6} + η(Z)1{M(t)>µ6}, for t = T.

(3.12)

Therefore,

PCAT (R(t);M(t), D(t)) = EQ[PCAT (k)|A(t)(1)] =

EQ
[
Zf(R(t))1{0≤M(t)≤µ1} + Zg(R(t))1{µ1<M(t)≤µ2} + Zh(R(t))1{µ2<M(t)≤µ3}

]
,

for t = 1, 2, . . . , T − 1,

EQ[Z(1 + f(R(t)))1{0≤M(t)≤µ1} + Z(1 + g(R(t)))1{µ1<M(t)≤µ2}+

+Z(1 + h(R(t)))1{µ2<M(t)≤µ3} + Z1{µ3<M(t)≤µ4} + φ(Z)1{µ4<M(t)≤µ5}+

+γ(Z)1{µ5<M(t)≤µ6} + η(Z)1{M(t)>µ6}], for t = T.

Assume that random variables {M(t); t = 1, 2, . . . , T}, {D(t); t = 1, 2, . . . , T},

{ε1(t); t = 1, 2, . . . , T}, and {ε2(t); t = 1, 2, . . . , T} and stochastic processes

{r1(t); t = 1, 2, . . . , T}, {r2(t); t = 1, 2, . . . , T}, {R(t); t = 1, 2, . . . , T}, and

{W (t); t = 1, 2, . . . , T} are pairwise independent.

According to Eq. (3.7), the value of a T -period CAT bond is

V (PCAT ) = EQ1

[
T∑
t=1

1∏t−1
s=0[1 + r1(s) + e][1 + r2(s)]

PCAT (R(t);M(t), D(t))

]
,

(3.13)

which can be calculated using the same method as for Eq. (3.10). Assuming that

expectation exists in Eq. (3.13), similar to the one-period model, the CAT bond price

can be approximated by the strong law of large numbers:

V (PCAT ) = lim
h→∞

V (h)(PCAT ),

where

V (h)(PCAT ) =
1

h

h∑
l=1

T∑
t=1

PCAT (R(l)(t);M (l)(t), D(l)(t))∏t−1
s=0[1 + r

(l)
1 (s) + e][1 + r

(l)
2 (s)]

. (3.14)
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Here r(l)1 (·), r(l)2 (·), R(l)(·), M (l)(·), D(l)(·) represents the lth simulated value in h

simulations. For future convenience, we use the magnitude and depth trigger points

µ1 = 5.4, µ2 = 5.8, µ3 = 6.2, µ4 = 6.6, µ5 = 7.0, µ6 = 7.4, and δ1 = 20, δ2 =

15.δ3 = 10, δ4 = 10, δ5 = 10 in the numerical example. A catastrophe might or

might not occur before the maturity date T . According to the cash flow stream given

in Eq. (3.12), a CAT bond with face amount US$K will pay coupons f(R), g(R), and

h(R) to bondholders at the end of each period if an earthquake of maximum magnitude

in the intervals (0, 5.4], (5.4, 5.8], and (5.8, 6.2], respectively, occurred in this period,

or no coupon payment if the magnitude is greater than 6.2. On the maturity date, the

CAT bond is scheduled to repay the full principal payment plus its normal coupon

when maximum magnitude earthquake level is (0, 6.6]; or only partial of the principle,

which is φ(Z), γ(Z), or η(Z), if the magnitude is in the interval (6.6, 7.0], (7.0, 7.4],

or (7.4,∞), respectively.

3.2.3 California Earthquake Data for Catastrophic Risk Variables

Earthquake data from California is used in order to carry out this example in the fol-

lowing section. Figure 3.115 shows recent significant earthquakes in California, with a

darker colour representing more severe earthquakes. The two circles denote locations

where the most significant earthquakes occurred. In this example, we analyse the earth-

quakes that hit these circled areas, San Francisco (region 1) and Los Angeles (region

2), over the period 1968 – 2011. Table 3.116 lists the annual maximum-magnitude (M)

earthquakes in each region and the corresponding latitude (La), longitude (Lo), and

depth (D). These two regions include the biggest cities in California which claim the

majority of the economic losses. The elements of the data set is presented according

to Coles et al. (2001).
15Source by NOAA National Geophysical Data Center, on 30/12/2011, http://maps.ngdc.

noaa.gov/viewers/hazards/.
16Data from Southern California Earthquake Data Center (SCEC), http://www.data.scec.

org/.
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Figure 3.1: Recent significant earthquakes in California with highlighted regions,

source by NOAA.

Magnitude

The traditional approach for defining extremes is to focus on the statistical behavior of

M q
δ (t) = max{Xq

1(t), Xq
2(t), . . . , Xq

δ (t)},

where q = 1, 2 and Xq
1(t), Xq

2(t), . . . , Xq
δ (t) is a sequence of δ = 365 independent

random variables with a universal distribution function F that measures the daily

maximum-magnitude earthquake in each region for the period [t, t+1). Xq
δ (t) = 0 if no

earthquake occurs in region q on the day. The sequenceMδ(t) = max{M1
δ (t), M2

δ (t)}

corresponds to the tth year maximum-magnitude earthquake. The distribution ofM q
δ (t)

can be derived using the GEV distribution. The rescaled sample maxima (M q
δ (t))∗ =

(M q
δ (t) − bδ(t))/aδ(t) is a heavy-tailed distribution and the possible distribution is

provided by GEV family17, as δ →∞

G(z) = exp

{
−
[
1 + α4

(
z − β4
σ4

)]−1/α4
}

(3.15)

17For more information, please check Section 2.4 Theorem 2.4.1.
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defined on {z : 1 +α4(z− β4)/σ4 > 0}, where −∞ < β4 <∞, σ4 > 0, −∞ < α4 <

∞, and β4 = E(M q
δ (t)), σ4 =

√
Var(M q

δ (t)).

The model has three parameters: location parameter β4, scale parameter σ4, and

shape parameter α4. When α4 = 0 is the limit of Eq. (3.15) as α4 → 0, the model

corresponds to the Gumbel family. For the cases α4 > 0 and α4 < 0, Eq. (3.15) leads

to Frechét and Weibull family distributions, respectively.

According to time series plots of the maxima for both regions (Figure 3.2), it is

reasonable to assume that the patterns of variation have stayed constant over the ob-

served period, which suggests that the data are independent observations from the GEV

distribution, see Coles et al. (2001); Zimbidis et al. (2007).

Figure 3.2: Scatter plot of the annual maximum-magnitude earthquakes M1(t) in re-

gion 1 and M2(t) in region 2 in California, 1968 – 2011.

In this subsection, we take region 1 as an example for analysis. Maximize the GEV

log-likelihood for these data and achieve the estimate

(β̂4, σ̂4, α̂4) = (4.71946946, 0.44861472, 0.05866229),

for which the log-likelihood is 35.72926. The approximate variance-covariance matrix
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of the parameter estimates is

V =


0.005854675 0.001935385 −0.003127097

0.001935385 0.003228341 −0.001542433

−0.003127097 −0.001542433 0.013764031

 .
Therefore, one can easily obtain standard errors 0.0765, 0.0568, and 0.1173 for β4, σ4,

and α4, respectively, with approximate 95% confidence intervals of β4 ∈ [4.64, 4.80],

σ4 ∈ [0.39, 0.51], and α4 ∈ [−0.06, 0.18].

To assess the accuracy of the GEV model fitted to the California earthquake data,

various diagnostic plots ofM1(t) are shown in Figure 3.3. The probability and quantile

plots are close to linear, which confirms the validity of the fitted model. The estimate

of α4 is close to zero, and the estimated curve in the return level plot is nearly linear.

According to the histogram density plot of the data, the density estimate is consistent.

Consequently, the analysis provides strong evidence that the GEV model provides a

good fit.

Furthermore, the tail behaviour of the distribution displayed in Figure 3.4 reflects

the sample mean excess, and the downward trend suggests a very short tail behaviour

for the annual maximum-magnitude earthquakes in region 1 in California, see Beirlant

et al. (1996); Embrechts et al. (1997).

Similar analysis can be conducted in region 2 and estimate the GEV distribution

with parameters (µ̂, σ̂, α̂4) = (4.9275121, 0.4833782, 0.1181457), and the exceeding

probabilities intervals M1(t) and M2(t) for the GEV distributions are listed in Ta-

ble 3.2. The possibility of an earthquake of magnitude greater than 6.6 occurring in

the target regions is less than 8%, so we can introduce a bond with 92% capital guar-

antee.

Depth

The next stage is to analyse the earthquake depth distribution. According to the density

plot in Figure 3.5, earthquake depth follows a right-skewed heavy-tailed distribution

and we fit it as a gamma distribution:

f(x;α5, β5) = βα5
5

1

Γ(α5)
xα5−1e−β5x
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Figure 3.3: Diagnostic plots for GEV fitting to the annual maximum-magnitude earth-

quakes M1(t) in region 1 in California.

for which the estimated parameters are (α̂5, β̂5) = (2.35378504, 0.25460951) and

(α̂5, β̂5) = (1.44878306, 0.14585340) for regions 1 and 2, respectively. This model

is realistic since earthquakes that occur near the surface tend to be of higher magnitude

compared with deeper earthquakes, see Fujikura et al. (1999).
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Figure 3.4: Sample mean excess for annual maximum-magnitude earthquakes M1(t)

in region 1 in California, with 95% confidence interval.

3.3 Numerical Examples

3.3.1 Numerical Example For The One-period Model

Consider a one-period model with face value Z =US$1000, interest rate r1 = 0.12%,

and inflation rate18 r2 = 3.16%. Given risk premium e = 3% and LIBOR rate19

R = 1.13%, Eq. (3.10) yields20 the value of a one-period CAT bond as US$940.

18Board of Governors of the Federal Reserve System, accessed on 30/12/2011, http://www.

federalreserve.gov/.
19Accessed on 30/12/2011, http://www.bba.org.uk/.
20Code for one-period model, please check the Appendix B.1.
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Table 3.2: Annual maximum-magnitude earthquakes exceeding probabilities for the

GEV model in regions 1 and 2 in California.

Region 1 Region 2

P(5.0 < M ≤ 5.4) 0.205599827 0.250286661

P(5.4 < M ≤ 5.8) 0.105005438 0.150399888

P(5.8 < M ≤ 6.2) 0.049947001 0.080828401

P(6.2 < M ≤ 6.6) 0.023619037 0.042623696

P(6.6 < M ≤ 7.0) 0.011371076 0.022816466

P(7.0 < M ≤ 7.4) 0.005618113 0.012543028

P(M > 7.4) 0.006178647 0.01813135

Figure 3.5: Density depth plot for the annual maximum-magnitude earthquakes D1(t)

in region 1 and D2(t) in region 2 in California.

3.3.2 Pricing For The Multi-period Model

Consider a 5-year period CAT bond with payments depending on earthquake magni-

tude in selected areas. Because the probability of large-magnitude earthquakes is low,
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large number of events need to be considered to estimate the price of CAT bonds with

a relatively small error, see Romaniuk (2003). One can build the simulation using the

following five steps21.

Step 1:

First, generate 100, 000 5-year period sequence values via GEV distributions represent-

ing the maximum-magnitude earthquakes in each region. Similarly, we can generate

100, 000 depth sequences for both regions by gamma distributions. Then we select

depth in the larger-magnitude branch for future simulation.

Step 2:

Second, obtain 100, 000 paths for the LIBOR rateR(t) for t ∈ [0, 5] using Monte Carlo

simulations. Following Romaniuk (2003), we use an iterative stochastic equation with

the concept of local characterizations for the Levy process.

In this simulation, let [0, T ] be the lifetime interval for the CAT bond and discretize

this into δ different steps. The time moments are τ = {τ(0) = 0, τ(1), . . . , τ(δ) = T},

where δ is the number of steps. The steps are constant at 1 day (250 business days

a year), with ∆τ = τk+1 − τk, where k = 1, 2, . . . , δ − 1. The discrete version of

Eq. (3.11) given by Kladıvko (2007) takes the form

R(τ + ∆τ)−R(τ) = α3(β3 −R(τ))∆τ + σ3
√
R(τ)

√
∆τε3(τ), (3.16)

where ε3(τ) follow N(0,∆τ) as a white noise process for τ = 1, 2, . . ..

The MATLAB implementation of the estimation processes provided by Kladıvko

(2007) suggests use of the ordinary least square of Eq. (3.16) to find the starting point

for the parameters. Then the log-likelihood function of the CIR process is maximized.

Statistical analysis of 12-month LIBOR historical data for 2000 – 2011 yields the pa-

rameter estimates θ̂ = (α̂3, β̂3, σ̂3) = (0.212421, 1.084655, 0.420791). For the initial

value in Eq. (3.16) we set R(0) = 1.13%, which was the actual LIBOR rate in Decem-

ber 2011.

21Code for multi-period model, please check the Appendix B.2.
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Step 3:

The next step is the generation of sequences for the annual interest and inflation rates22.

Recall from Section 3.2.1 that r1(t) follows an ARIMA (1, 1, 1) model with parameters

(Ĉ1, θ̂1, α̂1) = (−0.0976,−0.2833, 1), and r2(t) follows an ARIMA (1, 0, 0) model

with parameters (Ĉ2, α̂2) = (0.7867, 0.7867), for any t = 1, 2, . . . according to the

maximum log-likelihood estimate of the 1–year US Treasury securities rate and infla-

tion rate for 1968 – 2011.

Step 4:

The next step is to calculate the coupon payments (cash flows PCAT (R(t);M(t), D(t)))

of the CAT bond for the 5-year period. It should be mentioned that this procedure is

quite complex and involves logical functions and many subroutines. According to the

cash flow stream in Eq. (3.12), the capital of our CAT bond may decrease if and only

if an earthquake of magnitude greater than 6.6 hits California before the maturity date.

Moreover, we assume a face amount of US$1000 and a risk premium of e = 3%.

Step 5:

The final step is to calculate the present value of cash flows for every year, and then

average over all the discounted values based on r1(t), r2(t) for each period. According

to Eq. (3.14), the price of the T = 5 CAT bond is approximately US$779.73.

To test the validity of the results, we ran the algorithm 100 times to generate 100

possible value of the CAT bond, for which the variance equals 0.91. It can easily be

derived that the price variance dramatically decreases as h increases, and is asymptoti-

cally equal to zero after 10, 000. Figure 3.6 is a density plot of price values in which the

density reaches the mode at US$778.62 at a density of 0.43. This is quite a promising

result since the low volatility level suggests that our pricing model is both consistent

and computationally efficient. Compared to a zero-coupon bond with price US$935,

which depends only on financial risks, this CAT bond with a 92% capital guarantee is

22Data from Board of Governors of Federal Reserve System, http://www.federalreserve.

gov/. for the period 1968–2011
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very attractive to investors.

The density plot of CAT bond price
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Figure 3.6: Density plot and cumulative density plot of the CAT bond price after run-

ning the algorithm 100 times with h = 100, 000.

3.4 Summary

This chapter built a valuation framework for earthquake CAT bonds with n financial

and m catastrophic independent risks. These securitization products can play a vital

role in the financial sustainability of insurers and re-insurers, as well as for governmen-

tal authorities. The high return of the CAT bond identified here can generate sufficient

funds to pay claims and post-disaster reconstruction costs if a significant catastrophic

event occurs in an area. Furthermore, the assumptions made are quite standard and

realistic, so the valuation model is easy to modify further and apply in industry. To

simplify the model, all the risks are mutually independent. It is quite natural that earth-

quakes occur only in certain regions, and such events generally do not affect exchange

and production levels and the economic environment on a global scale.

We also demonstrated how to construct a practical pricing model for earthquakes

in California from 1968 to 2011 by adapting parametric triggers. Extreme value the-

ory for the maximum-magnitude earthquakes in each year was used and we concluded

54



that they follow a Frechét distribution in this case. In addition, earthquake depth fit-

ted a gamma distribution. For financial risks, a classical ARIMA model for interest

and inflation rates was chosen, and a CIR model for the stochastic process of coupon

payment as a predetermined function of the annual LIBOR rate. Consequently, we

were able to identify an equilibrium price for an earthquake CAT bond that depends on

the risk variables above. The model, as an extension of the Cox and Pedersen (2000)

approach, provides a more accurate approximation of price by considering multiple

variables cross financial and catastrophic risks.

The dependence between the different risk variables cannot be used within our

methodology and framework for bond pricing. Consequently, it should be character-

ized as a separate problem. This issue will be considered in the next chapter.
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Chapter 4

Semi-Markov CAT Bond Model

In this chapter, as a special case of the previous chapter, CAT bonds are modelled with

one financial risk (interest rate) and one catastrophe risk (PCS loss). We present a con-

tingent claim model similar to Ma and Ma (2013), for pricing catastrophe risk bonds.

Firstly, analytical bond pricing formulas are derived into a stochastic interest rate envi-

ronment with the aggregate claims following compound forms where the claim inter-

arrival times are dependent on the claim sizes, by employing a two-dimensional semi-

Markov process. Secondly, explicit CAT bond price formulas are obtained in terms of

four different payoff functions. Thirdly, estimates and calibrates of the parameters of

the pricing models are made, using catastrophe loss data provided by Property Claim

Services (PCS) from 1985–2013. According to Lin and Wang (2009) and Ma and

Ma (2013), the estimates provided by the PCS are widely accepted as the reference

industry index triggers in financial-market derivatives, including exchange-traded fu-

tures and options, CAT bonds, catastrophe swaps, industry loss warranties (ILWs), and

other catastrophe-linked instruments. Thus, it is reasonable to use the PCS index losses

from the entire property and casualty industry in the USA to estimate the parameters

related to aggregate losses for pricing CAT bonds in the present study. Furthermore,

we assume that the CAT loss industry indices are instantaneously measurable and up-

datable. Industrial trigger helps to tackle moral hazard and prevents insurers from dis-

closing detailed information to their competitors, Ma and Ma (2013). Finally, Monte

Carlo simulations are used to analyze the numerical results for the aforementioned
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CAT bonds pricing formulas.

The reminder of this chapter is organized as follows. Section 4.1 presents the

pricing model of CAT bonds including: assumptions, aggregate claims processes, and

payoff functions. Section 4.2 presents a numerical analysis of the PCS data and com-

parison between different models. In Section 4.3, we provide a discussion of the re-

sults.

4.1 Modelling CAT bonds

4.1.1 Modelling Assumptions

In this subsection, we provide preliminary details of the CAT bond structure. We

follow the classical modelling assumption (Section 2.2) and then define stochastic pro-

cesses and random variables with respect to the probability measure P. Denote the CAT

bond price process by {V (%)
` (t) : t ∈ [0, T ]} , which is characterized by the aggregate

loss process {L(t) : t ∈ [0, T ]}, and the payoff functions P (%)
CAT , where ` = 0, 1, 2 and

% = 1, 2, 3, 4. For each t ∈ [0, T ], the process {N(t) : t ∈ [0, T ]} describes the number

of claims that occur until the time t. Also define {Xk : k ∈ N+} as a sequence of i.i.d.

random variables that represent the size of individual claims and {Tk : k ∈ N+} repre-

sents a sequence of epoch times for the claims. In addition, define the spot interest rate

process by {r(t) : t ∈ [0, T ]} and {W (t) : t ∈ [0, T ]} is a standard Brownian motion.

According to the CAT bonds payment structure, CAT bond investors receive pre-

miums if trigger has not been pulled. In this study, an insurance industry index trigger

is utilized to price CAT bonds. This means that investors might lose their capital if

the estimated aggregate losses from the whole industry exceeds a predetermined level.

Furthermore, in this chapter, we use valuation theory which is given in Section 2.2

and price the CAT bond formulae with interest rate r(t) following a CIR interest rate

process, as discussed in Section 2.3.

57



4.1.2 Aggregate Claims Process

In the classical actuarial literature, Bowers Jr. et al. (1986) stated that risk models

are characterized by the following two stochastic processes: the claim number pro-

cess, which counts the claims; and the claim amounts process, which determines the

losses when a claim occurs. All previous studies of CAT bonds assumed that these

two processes are mutually independent. However, because the independence assump-

tion is restrictive in many applications, a more appropriate option, especially for CAT

bonds, is to add dependence between the claim sizes and the inter-arrival times in the

claims process when modelling the aggregate losses. In this chapter, for the first time

in this area, a CAT bond’s aggregate claims process, where the dependency among the

characterized processes is described by a semi-Markov risk model. This model was

first introduced by Miller (1962) and fully developed by Janssen (1969); Janssen and

Manca (2007). In addition, a special case of this model is introduced where the claim

arrival process is a continuous time Markov process with an exponential inter-arrival

time.

Define the claim number process {N(t) : t ∈ [0, T ]}, which follows a Poisson

process with parameter λ > 0, to describe the number of future catastrophes in the

insured region. The claim sizes {Xk : k ∈ N+}, which are independent of the process

{N(t) : t ∈ [0, T ]}, comprise a sequence of positive i.i.d. random variables with a

common distribution function F (x) = P{Xk < x}, which describes the amount of

losses incurred by the kth event. Then, the aggregate loss process {L(t) : t ∈ [0, T ]} is

modelled by a compound Poisson process, as follows:

L(t) =

N(t)∑
k=1

Xk, (4.1)

with the convention that L(t) = 0 when N(t) = 0.

Consider a semi-Markovian dependence structure in continuous time, where the

process {Jn, n ≥ 0} represents the successive type of claims or environment states,

which take their values in J = {1, ...,m} (m ∈ N+). Define {Xn, n ≥ 1} as a

sequence of successive claim sizes, X0 = 0 a.s. and Xn > 0,∀n, and {Tn, n ∈ N+} is

the epoch time of the nth claim. Suppose that 0 < T1 < T2 < . . . < Tn < Tn+1 < . . .,
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T0 = U0 = 0 a.s., and Un = Tn − Tn−1 (n ∈ N+) denotes the sojourn time in state

Jn−1. Suppose that the trivariate process {(Jn, Un, Xn);n ≥ 0} is a semi-Markovian

dependence process defined by the following matrix Q(= (Qij), i, j ∈ J),

Qij(t, x) = P(Jn = j, Un ≤ t,Xn ≤ x|(Jk, Uk, Xk), k = 1, 2, ..., n− 1, Jn−1 = i),

(4.2)

where the process of successive claims {Jn} is an irreducible homogeneous continuous

time Markov chain with state space J and transition matrix P(= (pij), i, j ∈ J), where

limt→∞,x→∞Qij(t, x) = pij, i, j ∈ J . The process changes its state at every claim

instance based on the transition matrix P, and an interpretation of this model in terms

of CAT bonds is that the arrival time before the next catastrophic event Uk+1 depends

partially on the severity of the previous catastrophic event Xk, for all k = 0, 1, 2, . . ..

Assuming that the random variable Jn, n ≥ 0 and the two-dimensional random

variable (Un, Xn), n ≥ 1 are conditionally independent, then

Gij(t, x) =P(Un ≤ t,Xn ≤ x|J0, ..., Jn−1 = i, Jn = j)

=

Qij(t, x)/pij, for pij > 0,

1{t ≥ 0}1{x ≥ 0}, for pij = 0,

(4.3)

where 1{·} represents an indicator function. The random variable Jn, n ≥ 0 is con-

ditionally dependent on the random variable Un, n ≥ 1 and also dependent on the

random variable Xn, n ≥ 1. Denote

Gij(t,∞) = P(Un ≤ t|J0, ..., Jn−1 = i, Jn = j), (4.4)

Gij(∞, x) = P(Xn ≤ x|J0, ..., Jn−1 = i, Jn = j), (4.5)

and obtain the following equations by suppressing the condition Jn,

Hi(t, x) = P(Un ≤ t,Xn ≤ x|J0, ..., Jn−1 = i) =
m∑
j=1

pijGij(t, x),

Hi(t,∞) = P(Un ≤ t|J0, ..., Jn−1 = i), (4.6)

Hi(∞, x) = P(Xn ≤ x|J0, ..., Jn−1 = i). (4.7)

Assuming that the sequences {Un, n ≥ 1}, {Xn, n ≥ 1} are conditionally independent

and given the sequence {Jn, n ≥ 0}, then

Gij(t, x) = Gij(t,∞)Gij(∞, x),∀t, x ∈ R,∀i, j ∈ J.
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Thus, the semi-Markov kernel Q can be expressed as

Qij(t, x) = pijGij(t,∞)Gij(∞, x),∀t, x ∈ R,∀i, j ∈ J.

Define AQ(= (AQij), i, j ∈ J) as the kernel of the process {(Jn, Un);n ≥ 0} and
BQ(= (BQij), i, j ∈ J) as the kernel of the process {(Jn, Xn);n ≥ 0}, then

AQij(t) = Qij(t,∞) = pijGij(t,∞),∀t ∈ R,∀i, j ∈ J,
BQij(x) = Qij(∞, x) = pijGij(∞, x),∀x ∈ R,∀i, j ∈ J.

In order to calculate the distribution function of the accumulated claims amount,

consider the following random walk process, as presented in Janssen and Manca (2007).

Let Ln be the successive total claims amount after the arrival of the nth claim, which is

defined as:

Ln =
n∑
k=1

Xk, ∀n ≥ 1,∀i, j ∈ J. (4.8)

Then, the joint probability of the process {(Jn, Tn, Ln);n ≥ 0} is denoted as

P[Jn = j, Tn ≤ t, Ln ≤ x|J0 = i] = Q∗nij (t, x).

This n-fold convolution matrix Q(n)(= (Q
(n)
ij ), i, j ∈ J) can be valued recursively by:

Q∗0ij (t, x) =

(1−Gij(0,∞))(1−Gij(∞, 0)), if i = j

0, elsewhere,

Q∗1ij (t, x) = Qij(t, x), . . .

Q∗nij (t, x) =
m∑
l=1

∫ t

0

∫ x

0

Q
∗(n−1)
lj (t− t′, x− x′)dQil(t

′, x′).

Similarly to the processes {(Jn, Tn);n ≥ 0} and the process {(Jn, Xn);n ≥ 0} have

P[Jn = j, Tn ≤ t|J0 = i] = AQ∗nij (t) =
m∑
l=1

∫ t

0

AQ
∗(n−1)
lj (t− t′)dAQil(t

′), (4.9)

P[Jn = j, Ln ≤ x|J0 = i] = BQ∗nij (x) =
m∑
l=1

∫ x

0

BQ
∗(n−1)
lj (x− x′)dBQil(x

′).

Then, one can obtain the following equations:

P[Jn = j|J0 = i] = p∗nij =
m∑
l=1

p
∗(n−1)
lj pil,
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P[Ln ≤ x|J0 = i, Jn = j] = G∗nij (∞, x) =


BQ
∗n
ij (x)

p∗nij
, for p∗nij > 0,

1{x ≥ 0}, for p∗nij = 0,

, (4.10)

Q∗nij (t, x) = AQ∗nij (t)G∗nij (∞, x).

Let the counting process {Ni(t), t ≥ 0} denote the total number of type i claims

that occur in (0, t], for all i ∈ J . Thus, the total number of claims {N(t), t ≥ 0} that

occur in (0, t] is

N(t) =
m∑
i=1

Ni(t),

with the convention that N(0) = 0, Ni(0) = 0. Moreover, define JN(t) as the type of

the last claim that occurred before or on t, and thus the aggregate claims process can

be expressed as

L(t) = LN(t) =

N(t)∑
k=1

Xk,

which is the same form as the classical aggregate claims process Eq. (4.1). Moreover,

suppose that the embedded Markov Chain {Jn;n ≥ 0} is ergodic and that a sequence

of unique probabilities (Π1, ...,ΠM) exists, which represents the stationary probability

distribution, Π1 + ...+ ΠM = 1 and Π1, ...,ΠM ∈ [0, 1].

Proposition 4.1.1 produces the density function of the aggregate loss, which is very

useful in the CAT bonds pricing procedure in subsection 4.1.3.

Proposition 4.1.1. Let F1(t,D) denotes the probability function that aggregate claims

L(t) which are less than or equal to the threshold D, at time t. Then,

F1(t,D) =
m∑
i=1

m∑
j=1

Πi

∞∑
n=0

∫ t

0

(1−Hj(t− t′,∞))d[AQ∗nij (t′)G∗nij (∞, D)].

Proof. Starting with the stationary probability for J0, Eq. (4.2) in Janssen (1980) gives

F1(t,D) = P(

N(t)∑
k=1

Xk ≤ D) =
m∑
i=1

m∑
j=1

ΠiP(

N(t)∑
k=1

Xk ≤ D, JN(t) = j|J0 = i).

Furthermore, according to Chapter 7, Eq. (3.32) in Janssen and Manca (2007), the

following equality holds:

P(

N(t)∑
k=1

Xk ≤ D, JN(t) = j|J0 = i) =
∞∑
n=0

∫ t

0

(1−Hj(t− t′,∞))dQ∗nij (t′, D),

and the result follows by simple substitution.

61



Introduce the SM’/SM model as a particular case of the previous model, and the

matrix G(t,∞)(= Gij(t,∞), i, j ∈ J) is defined as:

Gij(t,∞) =

0, t < 0

1− e−λit, t ≥ 0.

Thus, the distribution function of the sojourn time depends uniquely on the current state

i, which is exponentially distributed with the parameter λi. Furthermore, assume that

the Markov chain jumps to state j at each claim instance with a claim size distribution

of Fj(D) = Pj(Xk ≤ D). This has a practical meaning because a bigger catastrophic

event can trigger many other events as side effects. Formally, we have the following

assumptions:

Gij(t,∞) = Gi(t,∞), Gij(∞, D) = Gj(∞, D) = Fj(D), i, j ∈ J, t, x > 0.

More precisely, the process {Jn, Un, Xn;n ≥ 0} has the following probabilistic struc-

ture:

Qij(t,D) = P[Jn = j, Un ≤ t,Xn ≤ D|(Jk, Uk, Xk), k = 1, 2, ..., n− 1, Jn−1 = i]

= P[J1 = j, U1 ≤ t,X1 ≤ D|J0 = i]

= pijFj(D)(1− e−λit),

∀t,D ∈ R,∀i, j ∈ J . Thus, Jn,Wn, and Xn are independent of the past given Jn−1,

and the sequences {Un, n ≥ 1}, {Xn, n ≥ 1} are conditionally independent given the

sequence {Jn, n ≥ 0}. Rewrite the Eq. (4.9), Eq. (4.10), and Eq. (4.6) as:

AQ
∗n
ij (t) = (pij(1− e−λit))∗n,

G∗nij (∞, D) =
(pijFj(D))∗n

p∗nij
,

Hj(t,∞) =
m∑
i=1

pji(1− e−λjt) = 1− e−λjt.

Substituting in Proposition 4.1.1, following corollary can be easily obtained.

Corollary 4.1.1. At time t, the probability that the total loss amount L(t) is less than

or equal to the predefined level D can be computed as:

F2(t,D) =
m∑
i=1

m∑
j=1

Πi

∞∑
n=0

∫ t

0

e−λj(t−t
′)d

[
(pij(1− e−λit

′
))∗n(pijFj(D))∗n

p∗nij

]
.

62



Remark 4.1.1. For m = 1, this model is the classical Poisson process model with

parameter λ. It is also possible to have the matrix G(t,∞) as:

Gij(t,∞) =

0, t < 0

1− e−λi(t)t, t ≥ 0,

where λi(t) represents the intensity of the Poisson point process in state i, i ∈ J .

Therefore, if we assume that m = 1 in this example, the model will reduce to a model

that employs the number-of-claims process {N(t) : t ∈ [0, T ]} using a nonhomoge-

neous Poisson process (NHPP) with parameters λ(t) > 0, as utilized by Ma and Ma

(2013). One can easily show that the probability of aggregate claims L(t) less than or

equal to the threshold D, at time t is equal to:

F0(t,D) =
∞∑
n=0

e−λ(t)t
(λ(t)t)n

n!
F ∗n(D), (4.11)

where F ∗n(x) = P(X1 + X2 + · · · + Xn ≤ x) denotes the n-fold convolution of F ,

which is the same as Eq. (21) in Ma and Ma (2013).

4.1.3 Pricing Model For The CAT Bonds

In this subsection, we show how to price CAT bonds using the standard tool of a

risk-neutral valuation measure with the following payoff functions for T time maturity

one-period CAT bonds23. Their valuation is a consequence of Eq. (2.4).

Defining a hypothetical zero coupon CAT bond at the maturity date, as follows:

P
(1)
CAT =

Z, for L(T ) ≤ D,

rpZ, for L(T ) > D,

(4.12)

where L(T ) is the total insured loss value at the expiry date T , D denotes the threshold

value agreed in the bond contract, and rp (rp ∈ [0, 1)) is the fraction of the principle

Z, which the bondholders must pay when a trigger event occurs.

The next payoff function with a multi-threshold value is given by the equation

P
(2)
CAT = rpkZ ∀Dk−1 < L(T ) ≤ Dk, (4.13)

23We only discuss one-period bonds in this study because multi-period coupon bonds can be treated

as a portfolio of zero-coupon bonds with different maturities.
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where k = 1, 2, . . . , h with rp1 = 1 > rp2 > · · · > rph ≥ 0 and D0 = 0 < D1 <

· · · < Dh = D. In general, an investor’s rate of return is inversely proportional to the

total catastrophe claims.

Another payoff function with a coupon payment at the maturity date, if the trigger

has not occurred, is of the form

P
(3)
CAT =

Z + C, for L(T ) ≤ D,

Z, for L(T ) > D,

(4.14)

where C > 0 is the coupon payment level.

In order to introduce the final payoff function, consider a CAT bond issuer with the

asset value Aissue and debt value Bissue at the bond maturity time. Define the default

risk as the risk when the sponsor is unable to pay their obligations (i.e. the premium of

the CAT bond). Thus, a CAT bondholder would not receive the full amount of capital

even if the aggregate loss is less than the predetermined level. Let {Nissue : Nissue ≥

0} be the number of this issued CAT bond. Furthermore, assume that the issuer’s

financial situation is independent of the aggregate industry-estimated catastrophic loss

process. If the issuing company obtains sufficient funds to pay the bondholders at the

maturity date T , the face value Z will be paid on the condition that a trigger event

has not occurred, or a proportion will be paid according to the principle employed. If

the issuing company fails to meet its obligation, the bondholders will lose all of their

capital. More precisely, the structure of the defaultable payoff function is equal to

P
(4)
CAT =


Z, if L(T ) ≤ D and Aissue > Bissue + ZNissue

rpZ, if L(T ) > D and Aissue > Bissue + rpZNissue

0, otherwise.

(4.15)

In this case, the payoff of the CAT bond depends not only on the listed catastrophic

events, but also on the issuer’s financial position. However, at this stage, we are not

interested in the performance of the issuing company throughout the trading period.

According to the payoff structures of the CAT bonds Eqs (4.12)–(4.15), the interest

rate dynamics Eq. (2.5) and the aggregate loss process Eq. (4.1), we present the prices

of the CAT bonds in Theorem 4.1.1–4.1.4. These are the main results of this study.
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Zero-coupon CAT bond prices at time t when paying principal Z at the time of

maturity T with payoff function Eq. (4.12) is shown in Theorem 4.1.1.

Theorem 4.1.1. Let V (1)
` (t) (` = 0, 1, 2) be the prices of the T-maturity zero-coupon

CAT bond under the risk-neutral measure Q at time t with payoff function P (1)
CAT , as

defined in Eq. (4.12). Then,

V
(1)
` (t) = BCIR(t, T )Z(rp+ (1− rp)F`(T − t,D)), ` = 0, 1, 2,

where F`(T − t,D) represents the accumulated function of the aggregate loss in the

alternative models given in Proposition 4.1.1, Corollary 4.1.1, and Remark 4.1.1, re-

spectively, and the pure discounted bond price BCIR(t, T ) with the CIR interest rate

model is given by Eqs (2.8)–(2.11).

Proof. Cox and Pedersen (2000) suggested that the payoff function is independent

of the financial risks variable (interest rate) under the risk-neutral measure Q. Then,

according to Eq. (2.4), we have

V
(1)
` (t) = EQ(e−

∫ T
t rsdsP

(1)
CAT (T )|Ft) = EQ(e−

∫ T
t rsds|Ft)EQ(P

(1)
CAT (T )|Ft).

Using the result of the zero-coupon bond price with the CIR interest rate model, as

discussed in Section 4.2 we have EQ(e−
∫ T
t rsds) = BCIR(t, T ). With Eq. (2.3), the

above equation can be written as

BCIR(t, T )EP(P
(1)
CAT (T )|Ft).

By simply applying the payoff function Eq. (4.12) and rearranging the formula, the

CAT bond price can be formulated as

V
(1)
` (t) =BCIR(t, T )EP(Z1{L(T ) ≤ D}+ rpZ1{L(T ) > D}|Ft)

=BCIR(t, T )(ZP(L(T ) ≤ D) + rpZP(L(T ) ≥ D))

=BCIR(t, T )Z(F`(T,D) + rp(1− F`(T,D))),

where ` = 0, 1, 2 and the result follows.

Similarly, in the next theorem, we compute the value of the zero-coupon CAT

bond at time t when paying principal Z at the time of maturity T , with payoff function

Eq. (4.13) determining by the amount of the aggregate claims.
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Theorem 4.1.2. Let V (2)
` (t) (` = 0, 1, 2) be the price of the T-maturity zero-coupon

CAT bond under the risk-neutral measure Q at time t with the payoff function P (2)
CAT ,

as defined in Eq. (4.13). Then,

V
(2)
` (t) = BCIR(t, T )Z

h∑
k=1

rpk(F`(T − t,Dk)− F`(T − t,Dk−1)), ` = 0, 1, 2,

where F`(T − t, x) represents the accumulated function of the aggregate loss in the

alternative models given in Proposition 4.1.1, Corollary 4.1.1, and Remark 4.1.1, re-

spectively, and the pure discounted bond price BCIR(t, T ) with the CIR interest rate

model is given by Eqs (2.8)–(2.11).

Proof. Similar to the proof in Theorem 4.1.1, let the payoff function follow Eq. (4.13),

and can easily obtain that

V
(2)
` (t) =BCIR(t, T )EP(

h∑
k=1

Zrpk1{Dk−1 < L(T ) ≤ Dk}|Ft)

=BCIR(t, T )(Z
h∑
k=1

rpkP(Dk−1 < L(T ) ≤ Dk))

=BCIR(t, T )Z
h∑
k=1

rpk(F`(T,Dk)− F`(T,Dk−1)),

where ` = 0, 1, 2 and the result follows.

In the next theorem, we show that the value of the coupon CAT bond at time twhen

paying principal Z and a coupon C at the time to maturity T depends on the payoff

function Eq. (4.14).

Theorem 4.1.3. Let V (3)
` (t) (` = 0, 1, 2) be the price of the T-maturity coupon CAT

bond under the risk-neutral measure Q at time t with the payoff function P (3)
CAT , as

defined in Eq. (4.14). Then,

V
(3)
` (t) = BCIR(t, T )(Z + CF`(T − t,D)), ` = 0, 1, 2,

where F`(T − t, x) represents the accumulated function of the aggregate loss in the

alternative models given in Proposition 4.1.1, Corollary 4.1.1, and Remark 4.1.1, re-

spectively, and the pure discounted bond price BCIR(t, T ) with the CIR interest rate

model is given by Eqs (2.8)–(2.11).
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Proof. Similar to the proof in Theorem 4.1.1 and if we let the payoff function follow

Eq. (4.14), we can easily obtain

V
(3)
` (t) =BCIR(t, T )EP((Z + C)1{L(T ) ≤ D}+ Z1{L(T ) > D}|Ft)

=BCIR(t, T )((Z + C)P(L(T ) ≤ D) + ZP(L(T ) ≥ D))

=BCIR(t, T )((Z + C)F`(T,D) + Z(1− F`(T,D)))

where ` = 0, 1, 2 and the result follows.

In the next theorem, we show that the price of the zero-coupon CAT bond at time t

when paying principal Z at time to maturity T depends on the amount of the aggregate

claims, which is also associated with the probability of the issuing company defaulting

at time T .

Theorem 4.1.4. Let V (4)
` (t) (` = 0, 1, 2) be the price of the T-maturity zero-coupon

CAT bond under the risk-neutral measure Q at time t with the payoff function P (4)
CAT ,

as defined in Eq. (4.15). Then

V
(4)
` (t) = BCIR(t, T )Z[rp+ (1− rp− F̃ (Z)− rpF̃ (rpZ))F`(T − t,D)) +pF̃ (rpZ)],

where ` = 0, 1, 2 and F`(T − t,D) represents the accumulated function of the ag-

gregate loss in the alternative models given in Proposition 4.1.1, Corollary 4.1.1, and

Remark 4.1.1, respectively, and the pure discounted bond price BCIR(t, T ) with the

CIR interest rate model is given by Eqs (2.8)–(2.11). F̃ (x) denotes the issuing com-

pany’s default probability at time T and

F̃ (x) = P(
Aissue −Bissue

Nissue

≤ x).

Proof. Similar to the proof in Theorem 4.1.1, we have

V
(4)
` (t) = BCIR(t, T )EP(P

(3)
CAT (T )|Ft).

Let the payoff function follow Eq. (4.15) and denote M = Aissue−Bissue
Nissue

. According to

the assumption that the default risk and catastrophe risk are independent, i.e. L(T ) and

M are independent under the measure P, the following equalities hold:

EP(P
(4)
CAT (T )|Ft) =EP[Z1{L(T ) ≤ D,Aissue > Bissue + ZNissue}
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+ rpZ1{L(T ) > D,Aissue > Bissue + rpZNissue + 0}

=ZP(L(T ) ≤ D,M > Z) + rpZP(L(T ) > D,M > rpZ)

=ZP(L(T ) ≤ D)P(M > Z) + rpZP(L(T ) > D)P(M > rpZ),

where ` = 0, 1, 2 and the result follows.

4.2 Numerical Analysis

In this section, we compute the value of the CAT bonds modelled in Section 4.1 with

face value Z =US$1 at time t = 0. In order to apply pricing formulas to the real

world and to obtain the CAT bond prices, we need to compute the exact distribution

of the aggregate loss F`(T,D) (` = 0, 1, 2). However, as in Ma and Ma (2013), this is

extremely difficult to calculate because the closed form solutions of these high-order

convolutions are not available. Therefore, we employ Monte Carlo simulations for the

analysis and we approximate the CAT bonds prices via numerical computation.

We calculate the CAT bond price where the spot interest rate process followed the

CIR model. In this experiment, we employ 3-month maturity US monthly Treasury

bill data (1994 – 2013)24 to estimate the parameters of the CIR model25. Based on the

MLE method, we conclude that both the initial short-term interest rate r0 and the long-

term mean interest rate θ were 2.04% annually, the mean-reverting force k = 0.0984,

and the volatility parameter σ = 4.77%. Furthermore, we assume that the market price

of risk λr was a constant −0.01.

In actuarial research, an event is referred to as catastrophic if it occurs with a low

probability and it causes severe damage. Empirical studies are conducted for the data

provided by ISO’s PCS unit, which describe insured property losses in the USA caused

by catastrophic events over a predetermined threshold that occurred between 1985 and

2013. And then inflation is adjusted for a set of 870 original loss data using the CPI.

24It is not necessary to use a dataset with the same time period as the PCS data because the financial

risks and catastrophe risks are independent, Cox and Pedersen (2000).
25Detailed information in sub-Section 2.3.2.

68



Figure 4.1 shows the annual adjusted PCS loss and the total annual number of qualified

catastrophes between 1985 and 2013. The 20 most expensive insured CAT losses are

listed in Table 4.1. (An illustration of the individual CAT loss is shown in Figure 1.1,

where the peaks in the figure represent the most costly events.) Thus, we can conclude

that the PCS loss data are heavy-tailed, see Ma and Ma (2013).

Figure 4.1: PCS annual catastrophe losses (left) and the number of catastrophes (right)

in the USA during 1985 – 2013.

In this study, details of the processes used for parameter estimation and the non-

parametric tests is omitted26. We fit the distribution of PCS losses by the general

extreme value (GEV, as discussed in Section 2.4) distribution with the following pa-

rameters: shape parameter = 0.9273133, location parameter = 10.2718058, and scale

parameter = 10.6295782, which we compare with the next best fit lognormal dis-

tribution with the parameters: µ2 = 2.858557 and σ2 = 1.26377. In the classi-

cal non-homogenous model, by applying the nonlinear least squares procedure, we

conclude that the quantity of loss process could be modelled as an inhomogeneous

Poisson process with intensity λ(s) = 31.067647 − 1.122352 sin2(s − 0.473033) +

1.167737 exp{cos( 2πs
7.704062

)}. This allows us to model the catastrophic data in chang-

ing economic or natural environments. Figure 4.2 shows a real catastrophe loss tra-

26The choice of the distribution is very important because it varies the bond price. Readers can refer

to Ma and Ma (2013) for details of the use of MLE to estimate parameters and selecting the best fit

model with nonparametric tests.
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Table 4.1: The 20 most costly insured CAT losses in the USA during 1985 – 2013.

Event Date PCS loss 2014 dollars

(US$ billion) (US$ billion)

Hurricane Katrina 25/08/2005 41.10 49.56

Hurricane Andrew 24/08/1992 15.50 26.02

Terrorist attacks 11/09/2001 18.78 24.97

Northridge Earthquake 17/01/1994 12.50 19.86

Hurricane Sandy 28/10/2012 18.75 19.23

Hurricane Ike 12/09/2008 12.50 13.67

Hurricane Wilma 24/10/2005 10.30 12.42

Hurricane Charley 13/08/2004 7.47 9.32

Hurricane Ivan 15/09/2004 7.11 8.86

Hurricane Hugo 17/09/1989 4.20 7.97

Wind and Thunderstorm Event 22/04/2011 7.30 7.64

Wind and Thunderstorm Event 20/05/2011 6.90 7.22

Hurricane Rita 20/09/2005 5.63 6.79

Hurricane Frances 03/09/2004 4.59 5.73

Hurricane Jeanne 15/09/2004 3.65 4.56

Hurricane Irene 26/08/2011 4.30 4.50

Hurricane Georges 21/09/1998 2.96 4.27

Wind and Thunderstorm Event 02/05/2003 3.21 4.10

Tropical Storm Allison 05/06/2001 2.50 3.32

Hurricane Opal 04/10/1995 2.10 3.25

jectory (in green) and sample trajectories of the aggregate claims process generated

under the assumptions of a GEV distribution (red) and a lognormal distribution (blue)

with non-homogeneous Poisson intensity, respectively, between 1985 and 2013. This

suggests that the GEV distribution fitted better to the long-term real-world aggregate

loss process.
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Figure 4.2: Sample trajectories of the aggregate loss process in the USA during 1985–

2013.

In order to analyse the semi-Markov process model 27, assuming that we are work-

ing in a two-state (m=2) environment, i.e. a many claims period (state 1, a stormy sea-

son with claim frequency λ1, Siegl and Tichy (1999)) and a few claims period (state 2

with claim frequency λ2). Define a period as a stormy season (or many claims period)

based on the following conditions:

1. more than one claim per month during each month of the stormy season;

2. the next claim after the stormy season occurred at least 10 days after the last

claim in the stormy season;

3. the first claim in the stormy season occurred at least 10 days after the previous

claim;

4. the gap between two stormy seasons (i.e. a non-stormy season or a few claims

period) lasted at least 3 months;
27The SM’/SM model is a special case of a general Markov model, so in this part of the application,

we considered the SM’/SM model as an example.
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5. less than one claim per month during non-stormy seasons.

By analysing the dates of occurrence for the PCS loss data, we can observe that there

were 19 stormy seasons and the parameters of the model are given in Table 4.2.

Table 4.2: Parameters of the semi-Markov process model.

Parameters State 1 State 2

GEV distribution k 0.9417813 0.7368964

σ3 10.5249838 12.8791786

µ 10.0954148 11.6702931

Lognormal distribution µ 2.8487725 2.9874937

σ3 1.2730741 1.1261473

Intensity of Poisson process λ 34.967753 10.520688

Transition probabilities p1j for j ∈ 1, 2 0.9767442 0.0232558

p2j for j ∈ 1, 2 0.3064516 0.6935484

For each model, we obtain the T ∈ [0.25, 2.25] years maturity zero-coupon CAT

bond prices in Monte-Carlo simulations28. For the payoff functions Eq. (4.12) and

Eq. (4.15), we assumed that rp = 0.5 when the aggregate loss L(T ) exceeds the

threshold level D ∈ [434, 5210] US$10 million, i.e. the threshold level in the interval

of quarterly to three times the annual average loss. In addition, for the payoff function

Eq. (4.13), arbitrarily set the following parameters: h = 3, rp1 = 1, rp2 = 0.5,

rp3 = 0.25, D1 = 434 US$10 million, D2 ∈ [434, 5210] US$10 million, and D3 =∞.

For a real-world CAT bond, the issuing company might use a multi-threshold payoff

structure to reduce the risk of investment and to attract more investors. Furthermore,

the probabilities of the issuing company defaulting at time T were F̃ (Z) = 0.1 and

F̃ (rpZ) = 0.05. Finally, we assume that the coupon payment rate in Eq. (4.14) is US$

0.1.
28For R code for valuing CAT bond, see Appendix C.4.
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Figure 4.3 illustrates the CAT bond prices for the payoff functions P (1)
CAT with the

threshold levelD and time to maturity T under the stochastic interest rate assumptions.

We show the CAT bond values for the accumulated distributed function of the classi-

cal aggregate loss process F0(t,D) given in Remark 4.1.1, where the loss distribution

followed the GEV distribution and the intensity of the claims was a non-homogenous

Poisson process in Figure 4.3a. In Figure 4.3b, we show the CAT bond prices where

the c.d.f. of the aggregate loss process F2(t,D) follows the SM’/SM model given in

Corollary 4.1.1. With similar settings, Figure 4.3 and Figures 4.4 – 4.6 illustrate the

CAT bonds prices with the GEV distribution for the payoff functions P (2)
CAT , P (3)

CAT , and

P
(4)
CAT , respectively. Using the payoff function P (1)

CAT as an example, the price differ-

ences between the CAT bond prices with the classical and SM’/SM models are shown

in Figure 4.7a under the GEV, the NHPP, and stochastic interest rates assumptions. In

Figure 4.7b, we show how the bond prices are affected by the distribution of the sever-

ity of the losses (lognormal and GEV distributions). The differences are particularly

evident in the tails (higher threshold level); therefore, a heavy-tailed distribution is a

more appropriate choice for modelling catastrophe loss, as demonstrated by Ma and

Ma (2013).

Figures 4.3 – 4.6 show that there are few differences in shape between the different

aggregate loss models because we used the same dataset. In general, the CAT bond

price decreases as the maturity time and threshold level increases. By comparing the

different payoff functions, it is clear that CAT bond prices decreased with increasing

threshold and when the default risk is added to the payoff function, while the coupon

CAT bonds has higher prices compared with the zero-coupon CAT bonds. This indi-

cates that the choice of different payoff functions has a major impact on the CAT bond

prices. According to Figure 4.7a, the differences in the bond price change significantly,

by as much as 3.5%. We notice that the prices in our model are slightly higher than

those in the model of Ma and Ma (2013). This might because our model has more

information (longer estimate period) for both catastrophe risks and financial risks, and

this might also because we make the model more realistic by considering the depen-

dency between the claim size and intensity. We can protect the sponsors of the CAT

bonds from the default risks with a higher bond price. Our results also demonstrate that
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the choice of the aggregate loss process model affects the bond prices. An illustration

of the characteristic CAT bond prices is presented in Table 4.3. The case using GEV

decrease at a faster rate than the lognormal case. This is an interesting result because

the trajectory of the aggregate loss process GEV distribution was always larger than

the lognormal distribution process, as shown in Figure 4.2. Our model with a GEV

distribution yields a fairer price than others in the market.

(a) V (1)
0 (t) (based on Ma and Ma (2013)

model) with GEV distribution.

(b) V (1)
2 (t) (based on our model) with GEV

distribution.

Figure 4.3: CAT bonds prices (z-coordinate axes) for the payoff function P (1)
CAT under

the GEV, the NHPP, and stochastic interest rate assumptions. The time to maturity (T)

decreases on the left axes and threshold level (D) increases on the right axes.

4.3 Summary

This chapter developed a contingent claim process to price CAT bonds using models

with a risk-free spot interest rate under assumptions of a no-arbitrage market, indepen-

dently of the financial risks and catastrophe risks, as well as the possibility of replicated

interest rate changes with existing financial instruments. Under the risk-neutral pricing

measure, bond price formulae is derived for four types of payoff functions (the clas-

sic zero coupon, the multi-threshold zero coupon, the defaultable zero coupon, and the
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(a) V (2)
0 (t) (based on Ma and Ma (2013)

model) with GEV distribution.

(b) V (2)
2 (t) (based on our model) with GEV

distribution.

Figure 4.4: CAT bonds prices (z-coordinate axes) for the payoff function P (2)
CAT under

the GEV, the NHPP, and stochastic interest rate assumptions. The time to maturity (T)

decreases on the left axes and the threshold level (D) increases on the right axes.

(a) V (3)
0 (t) (based on Ma and Ma (2013)

model) with GEV distribution.

(b) V (3)
2 (t) (based on our model) with GEV

distribution.

Figure 4.5: CAT bonds prices (z-coordinate axes) for the payoff function P (3)
CAT under

the GEV, the NHPP, and stochastic interest rate assumptions. The time to maturity (T)

decreases on the left axes and the threshold level (D) increases on the right axes.
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(a) V (4)
0 (t) (based on Ma and Ma (2013)

model) with GEV distribution.

(b) V (4)
2 (t) (based on our model) with GEV

distribution.

Figure 4.6: CAT bonds prices (z-coordinate axes) for the payoff function P (4)
CAT under

the GEV, the NHPP, and stochastic interest rate assumptions. The time to maturity (T)

decreases on the left axes and the threshold level (D) increases on the right axes.

coupon payoff functions) when trigger is determined by the aggregate loss process with

a semi-Markov-dependent structure. Here the spot interest rate followed CIR model

and the inter-arrival time followed an exponential distribution.

The numerical experiments utilized Monte Carlo simulations with data from the

PCS loss index in the USA during 1985 – 2013. The numerical analyses showed

that the CAT bond prices decreased as the threshold level decreased, as the time to

maturity increased, and with the existence of a default probability. The CAT bond

prices increased after the introduction of coupons. Furthermore, we showed that the

choice of the fitted loss severity distribution had a great impact on the bond prices.

The additional dependency between the claim sizes and the claim inter-arrival times is

a significant factor when pricing CAT bonds, thereby yielding higher and fairer CAT

bond prices.
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(a) Differences between V (1)
0 (based on Ma

and Ma (2013) model) and V (1)
2 with GEV.

(b) Differences between the lognormal and

GEV distribution of V (1)
2 .

Figure 4.7: Differences (z-coordinate axes) in the CAT bond prices for P (1)
CAT under

the GEV (or lognormal), the NHPP, and stochastic interest rate assumptions. The time

to maturity (T) decreases on the left axes and the threshold level (D) increases on the

right axes.
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Table 4.3: Characteristic CAT bond prices for the payoff function P (1)
CAT .

Maturity

T

Threshold

D

Ma and Ma (2013) model Our model

V
(1)
0 with GEV V

(1)
2 with GEV lognormal

0.25 434.2084 0.8364458 0.8462135 0.8782797

0.25 2948.0462 0.9728978 0.9710456 0.9829963

0.25 5210.5003 0.9788091 0.9767331 0.9827252

0.6710526 434.2084 0.527049 0.5616225 0.5572698

0.6710526 2948.0462 0.9184668 0.9224868 0.9589832

0.6710526 5210.5003 0.9415366 0.9434254 0.9599925

1.0921053 434.2084 0.4704685 0.4830596 0.4817231

1.0921053 2948.0462 0.8501765 0.8581766 0.9336625

1.0921053 5210.5003 0.9022568 0.9050835 0.936414

1.5131579 434.2084 0.4583024 0.4618092 0.4619588

1.5131579 2948.0462 0.7685499 0.7775374 0.8952628

1.5131579 5210.5003 0.8606659 0.8629707 0.914194

2.25 434.2084 0.4403813 0.441893 0.4420322

2.25 2948.0462 0.6046435 0.6143239 0.745787

2.25 5210.5003 0.7750711 0.7765762 0.8780913

78



Chapter 5

Towards Resilience to Nuclear

Accidents: Financing Nuclear

Liabilities via Catastrophe Risk Bonds

In light of the 2011 Fukushima disaster, recent discussion has focused on maximizing

the oversight power of global institutions and strengthening safety measures. In addi-

tion to these, the development of dependable liability coverage that can be tapped in an

emergency is also needed and should be considered thoughtfully. To succeed, financ-

ing is essential using special purpose instruments from the global bond market which

is as big as US$175 trillion. In the global financial market nuclear CAT risk bonds are

nonexistent, which specifically are designed for covering losses from nuclear disasters,

like the 2011 Fukushima disaster. Expanding the use of nuclear power, particularly

in emerging markets, could contribute towards addressing global climate change and

sustainability concerns. This expansion can be facilitated by nuclear CAT risk bonds

covering nuclear related perils. It shifts the liability to the market and helps this sector

to grow through increased participation of various service and product providers.

In this chapter, for the very first time, a catastrophe risk bond for financing nuclear

liability is proposed based on a concept conceived by Ayyub and Parker (2011). The

model is fashioned after the CAT bond financial products, and similarly tied to the

global bond market. Previous literature focused on one type of coverage (either per-

79



occurrence or annual aggregate). In this chapter a nuclear perils focused CAT risk

bond with multi coverage type is proposed. An example of two-coverage type CAT

risk bond is Residential Reinsurance 2012 Ltd., on behalf of USAA, which provide

per-occurrence coverage for the all perils and also provides coverage on an annual

aggregate basis. This is an extension of the previous chapter.

The reminder of this chapter is organized as follows. Section 5.1 presents the

pricing model of CAT bonds including: assumptions, aggregate claims processes, and

the payoff function. An explicit closed form solution is given for valuing nuclear

CAT bond.s Section 5.2 presents a numerical example of nuclear CAT bonds with a

discussion of the results. Section 5.3 is the summary of the chapter.

5.1 Modelling N-CAT Risk Bond

According to The International Nuclear Event Scale (INES), IAEA (2013), events are

classified on the Scale at 7 levels which can be categorized by three risk layers: incident

(level 1 to 3), accident (level 4 to 6) and major accident (level 7). Figure 5.1 provides

examples of risk perils for each layer. In this chapter, a nuclear CAT risk bond, termed

N-CAT risk bonds, covers all nuclear power plants (104 operating reactors) in US

which triggers are determined by the losses due to each peril, is modelled. An incident

is defined to include, for instance, strike, failures in safety provisions and lost or stolen

highly radioactive sealed sources, where the event with insignificant off-site impact

and affordable in-site impact. An accident includes the release of radioactive material,

cost of fitting a core machine, etc, which has severe in-site and off-site impact. A major

accident is defined to include nuclear reactor core failure with widespread health and

environmental effects, such as 2011 Fukushima disaster which caused total economic

losses of US$210 billion.

5.1.1 Modelling Assumptions

Similar to the previous Chapter 4, let 0 < T < ∞ be the maturity date of the con-

tinuous time trading interval [0, T ]. The market uncertainty is defined on a filtered
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Figure 5.1: The nuclear power risks (five risks as an example) with respect to the risk

layers: incident, accident and major accident.

probability space (Ω,F , (Ft)t∈[0,T ],P), where Ft is an increasing family of σ-algebras

given by Ft ⊂ F , for t ∈ [0, T ]. All stochastic processes and random variables

are defined with respect to probability measure P. Denote the CAT bond price pro-

cess by {V (t) : t ∈ [0, T ]} , which is characterized by the aggregate loss process

{L(t) : t ∈ [0, T ]}, and the payoff functions PCAT . In addition, the aggregate

loss process is determined by the following two processes: claim number process

{N(t) : t ∈ [0, T ]}, which describes the number of claims that occur until the time t,

and claim size process {Xk : k ∈ N+}, which is a sequence of i.i.d. random variables

that represent the size of individual claims. Let {Tk : k ∈ N+} represent a sequence

of epoch times for the claims. In addition, define the spot interest rate process by

{r(t) : t ∈ [0, T ]} and {W (t) : t ∈ [0, T ]} is a standard Brownian motion.

As for the CAT bonds payment structure, CAT bond investors receive premiums (or

coupons) if trigger has not been pulled. This chapter utilizes an insurance indemnity,

two-coverage type trigger: per-occurrence trigger and aggregate loss trigger.
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5.1.2 Aggregate Claims Process

The aggregate loss process is modelled as a compound distribution process, which is

characterized by the frequency (claim number process) and the severity (claim amounts

process) of catastrophic events, see Klugman et al. (2012), Tse (2009) and Ma and Ma

(2013). As an extension of Chapter 4, a perturbed (absorbing) state model is introduced

in order to model the per-occurrence trigger. In this model, time before the next claim

occurs depends on the state where the system stays, and the system stops (N-CAT bond

contract is terminated) when it has jumped to the perturbed state.

The model considers a semi-Markovian dependence structure in continuous time,

where the process {Jn, n ≥ 0} represents the successive type of claims or environ-

ment states take their values in J = {0, 1, 2, 3, 4}. For notation convenience, denote

J ′ = {1, 2, 3, 4}, therefore, J = {0} + J ′. Here states J ′ are called work of the sys-

tem, which refers to the incident and accident risks, and state 0 is the failure of the

system (perturbed state) and we refer to the nuclear reactor failure risk in this case.

Figure 5.2 shows the possible state changes of the system that contrasted in this paper.

The transition matrix P(= pij, i, j ∈ J) can be written as

P =



1 0 0 0 0

p10 p11 p12 p13 p14

p20 p21 p22 p23 p24

p30 p31 p32 p33 p34

p40 p41 p42 p43 p44


,

where
∑4

j=0 pij = 1, i ∈ J . To interpret this N-CAT bond more precisely, if an

incident or accident level loss occurs, N-CAT bond stay in the period of work of the

system (state i, where i ∈ J ′), the probability to have a state j (j ∈ J) type risk is

pij . If a state 0 major accident loss occurs, the N-CAT bond contract will terminate

immediately, i.e. the system will stay in the state 0.

Define {Xn, n ≥ 1} to be a sequence of successive claim sizes from all 104 NPPs

in US, X0 = 0 a.s. and Xn > 0,∀n, and {Tn, n ∈ N+} is the epoch time of the nth

claim. Suppose that 0 < T1 < T2 < . . . < Tn < Tn+1 < . . ., T0 = U0 = 0 a.s.,

and Un = Tn − Tn−1 (n ∈ N+) denotes the sojourn time in state Jn−1. Suppose that
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Figure 5.2: Possible states changes of the system with respect to the five listed risks.

the trivariate process {(Jn, Un, Xn);n ≥ 0} is a semi-Markovian dependency process

defined by the matrix Q(= Qij, i, j ∈ J), which in the same form as Eq. (4.2) in

Chapter 4. An explanation of the special case in terms of US N-CAT bonds will be

given in the end of this subsection.

In the same vein as in Chapter 4, assuming that the random variable Jn, n ≥ 0

and the two-dimensional random variable (Un, Xn), n ≥ 1 are conditionally indepen-

dent, then Gij(t, x) = P(Un ≤ t,Xn ≤ x|J0, ..., Jn−1 = i, Jn = j) is same as

Eq. (4.3). Then the similar definition is given forGij(t,∞) andGij(∞, x) by Eq. (4.4)

and Eq. (4.5), respectively. Suppressing the condition Jn,

Hi(t, x) = P(Un ≤ t,Xn ≤ x|J0, ..., Jn−1 = i) =
4∑
j=0

pijGij(t, x),

and Hi(t,∞), Hi(∞, x) is defined by Eq. (4.6) and Eq. (4.7), respectively. Assuming

that the sequences {Un, n ≥ 1}, {Xn, n ≥ 1} are conditionally independent and given

the sequence {Jn, n ≥ 0}, then

Gij(t, x) = Gij(t,∞)Gij(∞, x),∀t, x ∈ R,∀i, j ∈ J.

Thus, the semi-Markov kernel Q can be expressed as the following product

Qij(t, x) = pijGij(t,∞)Gij(∞, x),∀t, x ∈ R,∀i, j ∈ J.
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Define the claim number process {N(t) : t ∈ [0, T ]} (N(0) = 0), which describes

the number of claims in 104 NPPs which are insured in US. The claim sizes {Xk :

k ∈ N+} are independent of the process {N(t) : t ∈ [0, T ]}. Then, the aggregate loss

process {L(t) : t ∈ [0, T ]} is modelled by a compound Poisson process, as follows:

L(t) =

N(t)∑
k=1

Xk,

with the convention that L(t) = 0 when N(t) = 0. And JN(t) is the state where the

last claim stays. Let Ln be the successive total claims amount after the arrival of the

nth claim, which is defined in the same form as given in Eq. (4.8). Then, the joint

probability of the process {(Jn, Tn, Ln);n ≥ 0} can be denoted as

P[Jn = j, Tn ≤ t, Ln ≤ x|J0 = i] = Q∗nij (t, x),

P[Jn = 0, Tn ≤ t, Ln−1 ≤ x|J0 = i] = Q∗ni0 (t, x),

where i, j ∈ J ′. This n-fold convolution matrix Q(n)(= Q
(n)
ij , i, j ∈ J) can be valued

recursively by the following two parts:

Q∗0ij (t, x) =

(1−Gij(0,∞))(1−Gij(∞, 0)), if i = j,

0, elsewhere,

Q∗1ij (t, x) = Qij(t, x), . . .

Q∗nij (t, x) =
4∑
l=1

∫ t

0

∫ x

0

Q
∗(n−1)
lj (t− t′, x− x′)dQil(t

′, x′).

and

Q∗0i0 (t, x) = 0,

Q∗1i0 (t, x) = Qi0(t, x) = Gi0(t,∞)pi0, . . .

Q∗ni0 (t, x) = P[Jn = 0, Jn−1 = J ′, ..., J1 = J ′, Ln−1 ≤ x, Tn ≤ t|J0 = i]

=
4∑
l=1

∫ t

0

Q∗(n−1)il (t− t′, x)d(Gl0(t
′,∞)pl0),

where i, j ∈ J ′.

Moreover, suppose that there exist a sequence of probabilities (Π1,Π2,Π3,Π4) ex-

ists (here we assume Π0 = 0, a.s.), which represents the starting probability distri-

bution for the embedded Markov Chain {Jn;n ≥ 0}, Π1 + Π2 + Π3 + Π4 = 1 and

Π1,Π2,Π3,Π4 ∈ [0, 1].
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The following probabilities are essential for the purposes of pricing N-CAT bonds.

At time t, for the predetermined threshold level D (D ≥ 0), we derive that

F1(t,D) = P(L(t) ≤ D, JN(t) 6= 0)

=
4∑
i=1

4∑
j=1

Πi

∞∑
n=0

∫ t

0

(1−Hj(t− t′,∞))dQ∗nij (t′, D), (5.1)

F2(t,D) = P(JN(t) = 0) =
4∑
i=1

Πi

∞∑
n=1

Q∗ni0 (t,D), (5.2)

F3(t,D) = P(L(t) > D, JN(t) 6= 0) = 1− F1(t,D)− F2(t,D). (5.3)

In particular, a special case of this US N-CAT bond is SM’/SM model, which can

be structured as (i ∈ J ′, j ∈ J):

1. The inter-arrival time distribution only depends on the current state, and is given

by matrix Gij(t,∞) = Pi(Uk ≤ t).

2. Claim size distribution is given by Gij(∞, x) = Pj(Xk ≤ x).

That is, the process changes its state at every claim instance based on the transition

matrix P, with the claim size distribution dependant on the future state . While the

arrival time before the next catastrophic claim Uk depends on the severity of the current

event Xk, for all k = 0, 1, 2, . . ..

5.1.3 Pricing Model For The N-CAT Bonds

Defining a hypothetical zero coupon N-CAT bond at the maturity date T with face

value Z, the price of the N-CAT risk bond is given to be the following payoff structure:

1. If at expiring time T , L(T ) ≥ D (D ≥ 0) and Jk 6= 0 (∀k), that is, the total

loss is greater than a predefined level and no major accident occurred prior to T ,

bond holder will lose part of their capital and receive rp1Z(rp1 > 0);

2. If a major accident (state 0 event) (Jk = 0) occurs before the expiry date T , the

N-CAT bond expires immediately and bond holder will receive a partial amount

of their principle rp2Z (normally 0 < rp2 < rp1);

3. Otherwise bond holder will receive Z.
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Formally, the payoff function described above is given mathematically by

PCAT =


Z, for L(T ) ≤ D and JN(t) 6= 0,

rp1Z, for L(T ) > D and JN(t) 6= 0,

rp2Z, JN(t) = 0.

(5.4)

Zero-coupon N-CAT bond prices at time t paying principal Z at time to maturity

T is given in the following Theorem 5.1.1.

Theorem 5.1.1. Let V (t) be the value of T-maturity zero-coupon CAT bond under the

risk-neutral measure Q at time t with payoff function PCAT Eq. (5.4). Then

V (t) = BCIR(t, T )Z[rp1 + (1− rp1)F1(T − t,D) + (rp2 − rp1)F2(T − t,D)],

where F1(T−t,D) and F2(T−t,D′) represent the probabilities given in Eq. (5.1) and

Eq. (5.2), respectively, and pure discounted bond price BCIR(t, T ) with CIR interest

rate model is given by Eq. (2.8)–(2.11).

Proof. Similar to the proof in Chapter 4, Theorem 4.1.1 and apply the payoff function

Eq. (5.4), the value of N-CAT bond price can be formulated as

V (t) =BCIR(t, T )EP(Z1{L(T ) ≤ D, JN(t) 6= 0}+ rp1Z1{L(T ) > D, JN(t) 6= 0}

+ rp2Z1{JN(t) = 0}|Ft)

=BCIR(t, T )(ZP(L(T ) ≤ D, JN(t) 6= 0) + rp1ZP(L(T ) > D, JN(t) 6= 0)

+ rp2ZP(JN(t) = 0))

=BCIR(t, T )Z(F1(T,D) + rp1F3(T,D) + rp2F2(T,D))

=BCIR(t, T )Z[rp1 + (1− rp1)F1(T − t,D) + (rp2 − rp1)F2(T − t,D)]

=BCIR(t, T )Z[rp1 + (1− rp1)
4∑
i=1

4∑
j=1

Πi

∞∑
n=0

∫ T

0

(1−Hj(T − t′,∞))dQ∗nij (t′, D)

+ (rp2 − rp1)
4∑
i=1

Πi

∞∑
n=1

Q∗ni0 (T,D)].
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5.2 Numerical Example of N-CAT Risk Bond

In this section, a numerical example illustrates the applicability of the theoretical model

which has been presented previously. Due to data limitations, the following assump-

tions need to be made.

For the US N-CAT bond SM’/SM model, the inter-arrival time distribution is as-

sumed to be a Poisson process with parameter λi, and it can be given by matrix

G(t,∞)(= Gij(t,∞), i ∈ J ′, j ∈ J),

Gij(t,∞) =

0, t < 0

1− e−λit, t ≥ 0.

Furthermore, arbitrarily assume that λi = 10, 30, 5, 20, for i = 1, 2, 3, 4, respec-

tively. That is to say, if an event occurs (termed to be either strike, failures in safety

provisions, release of radioactive or core machine failure), the time before the next

event follows an exponential distribution with parameter λi. The claim size distribu-

tion is assumed to follow a lognormal distribution with mean µj and variance σj ,

Gij(∞, x) =
1

xσj
√

2π
exp

(
−(lnx− µj)2

2σ2
j

)
, i ∈ J ′, j ∈ J.

Furthermore, assume that µj = 2, 1, 2.5, 3 and σj = 1, 0.8, 1.5, 1.2, for j =

1, 2, 3, 4, respectively. Due to the properties of the catastrophic events, the loss cost

by each type of the peril is a heavy tailed distribution. In this case study, it is also

assumed that core machine failure tends to cause more losses, while failure in safety

provisions causes less losses. Moreover the transition matrix P is given by

P =



1 0 0 0 0

0.003 0.397 0.3 0.2 0.1

0.004 0.4 0.096 0.3 0.2

0.001 0.4 0.4 0.199 0.1

0.001 0.2 0.2 0.5 0.098


,

and the starting distribution (Π1, Π2, Π3, Π4) = (0.3476325, 0.2609975, 0.2642861,

0.1264328). Here, pi0 (i ∈ J ′) is very small because the probability of having a nuclear

reactor failure is very rare. The first row (p0j, j ∈ J) are zeros because if a major
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accident (state 0 event, nuclear reactor failure) occurs, the system stops and the N-CAT

bond is terminated immediately. p11 = 0.397 means that the probability of having a

strike after a strike is 0.397, and p12 = 0.3 means that the probability of failures in

safety provisions after a strike is 0.3, and so on.

We obtain the T ∈ [0.5, 2] years maturity zero-coupon CAT bond prices with face

amount of US$1, 000 in Monte-Carlo simulations29. For the payoff function Eq. (5.4),

it is assumed that rp1 = 0.5 when the aggregate loss L(T ) exceeds the threshold level

D = [100, 1600] in million US$, and rp2 = 0.25.

In this case study, the same data set as Chapter 4 is fitted to the interest rate model.

Thus, both the initial short-term interest rate r0 and the long-term mean interest rate θ

were 2.04% annually, the mean-reverting force k = 0.0984, and the volatility parame-

ter σ = 4.77%. Furthermore, it is assumed that the market price of risk λr is a constant

−0.01.

Table 5.1 and Figure 5.3 illustrate the value of N-CAT bonds for the payoff func-

tions Eq. (5.4) with the CAT threshold level D and time to maturity T under the stochas-

tic interest rate assumptions, where the loss distribution follows the lognormal distri-

bution and the intensity of the claims is a Poisson distribution. For example, an N-CAT

bond buyer needs to pay US$781.16 now in order to buy this N-CAT bond with face

value US$1, 000 which will mature in six months and with threshold level US$100

million. With fixed threshold level US$100 million, the bond value decreases from

US$781.16 to US$455.31 for the maturity time from half year to 2 years. This is

a quicker rate for threshold level US$1, 600 million, with the bond value decreasing

from US$948.42 to US$855.32. For fixed time to maturity, the N-CAT bond value

increases when the threshold level increases (from US$100 million to US$1, 600 mil-

lion.), and with a quicker rate for longer maturity time (from US$781.16 to US$948.42

for T = 0.5 and US$455.31 to US$855.32 for T = 2.)

Obviously, the value of the N-CAT (V ) decreases in relation with the maturity time

(T ). Moreover, with higher pre-determined threshold levels (D), the N-CAT bond

value (V ) increases accordingly, although a change of D won’t affect the probability

of having a major accident claim.

29For R code for valuing CAT bond, see Appendix D.
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Table 5.1: Vaule of N-CAT bonds with face value US$1, 000 for time to the maturity

(T = 0.5, 1, 1.5, 2, years) and threshold level (D = 100, 600, 1000, 1600 in million

US$).

N-CAT

value (V , US$)

Time to maturity (T , years)

0.5 1 1.5 2

Threshold

(D, US$ millions)

100 781.16 603.19 500.64 455.31

600 942.38 905.84 853.43 792.51

1000 947.09 919.22 881.91 843.62

1600 948.42 922.55 888.49 855.32
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Figure 5.3: Vaule of N-CAT bonds (z-coordinate axes) under the lognormal, the NHPP

and stochastic interest rates assumptions. Here, time to the maturity (T ) decreases on

the left axes and threshold level (D) increases on the right axes.
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5.3 Summary

In this chapter, for the very first time, a two-coverage type trigger nuclear catastrophe

(N-CAT) bond was proposed for financing nuclear liability, which can be categorized

by three risk layers: major accident, accident and incident. In the Global CAT risk

bond market, a similar trigger type of a total size of US$400 million has been pro-

posed recently by Residential Reinsurance 2012 Ltd. (Series 2012-2)30 for covering

U.S. hurricane, U.S. earthquake, U.S. severe thunderstorm, U.S. winter storm and Cal-

ifornia wildfire. After the 2011 Fukushima disaster, the development of dependable

liability coverage that can be tapped in an emergency is of significant importance to

the many countries with a significant number of NPPs. For instance, with 104 oper-

ating reactors, the U.S. has a total of about US$12 billion in coverage (as of 2011),

Griffith et al. (1990), before congressional authorization for additional funding, esti-

mating the damage due to a catastrophic accident from US$110 billion to as much as

US$7 trillion.

In this study, the value of N-CAT bonds was formulated under assumptions of a no-

arbitrage market, independent of the financial risks and catastrophe risks, and the possi-

bility of replicated interest rate changed with existing financial instruments. Under the

risk-neutral pricing measure, the pricing formula was derived by using a semi-Markov

dependent structure in continuous time where the claim inter-arrival times were depen-

dent on the claim sizes together with CIR interest rate model and two-coverage type

payoff function. Numerical experiments utilized Monte Carlo simulations by assum-

ing the distributions and parameters. The values of the N-CAT bonds were obtained

under the lognormal, the NHPP and stochastic interest rates assumptions for different

threshold levels (D) and time to the maturities (T ). The numerical analysis showed

that the CAT bond prices decreased as the threshold level decreased, as the time to

maturity increased.

30See Artemis 2012, Residential Reinsurance 2012 Ltd. (Series 2012-2)

http://www.artemis.bm/deal_directory/residential-reinsurance-2012-

ltd-series-2012-2/.
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Chapter 6

Conclusion

The study was set out to explore the concept of modelling CAT bonds in order to help

CAT bond sponsors to provide a fair price. The study had also sought to compare the

differences between the models with different probability structures.

The reasons and motivation behind this work is because the economic losses caused

by catastrophic events are huge, sometimes even a single event can cause insurance and

reinsurance companies to face bankruptcy. As an alternative solution, CAT bonds are

developed. CAT bond markets have boomed over the past twenty years and valuing

CAT bonds have become a hot topic in academic literature. However, current litera-

ture of this topic is limited to building pricing models of CAT bonds by different ap-

proaches. To fill the gap, this study sought to model CAT bonds in a multi dimensional

view:

1. Developing two different probabilistic structures (generalized multiple financial

and catastrophic risk variables structure in Chapter 3, and back to classical single

financial and catastrophic structure in Chapters 4 and 5).

2. Raising different CAT bond payoff functions (Chapter 3 studied a parametric

trigger type, while Chapter 4 analysed four payoff functions with industry index

trigger, and in Chapter 5 payoff function are triggered by both per-occurrence

and aggregate loss).

3. Assuming different dependency between variables (variables in Chapter 3 are
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pairwise independent, and Chapters 4 and 5 assumed the size of the claim de-

pended on the inter-arrival time between the claims).

4. Applying to different catastrophic events (utilized earthquake data, PCS data and

nuclear, respectively).

The pattern in Chapter 3 was consistent with that presented by Cox and Pedersen

(2000). It provided a generalized multi-variables valuation formulae for easy appli-

cation in the industry. Here, the n financial risk variables and m catastrophic risk

variables are pairwise independent. The numerical example of a one-period and multi-

period parametric CAT bonds with the California earthquake data can be the guidelines

for earthquake CAT bond issuers when issuing similar bonds.

Instead of assuming total independence, Chapter 4 assumed the aggregate claims

follows compound forms where the claim inter-arrival times are dependent on the claim

sizes by employing a two-dimensional semi-Markov process. Softening the of depen-

dence argument helps to develop a more realistic model, where claims sizes depend on

the current state the system in. And the application of PCS data makes it possible to

compare with the models in the other literature, i.e. Ma and Ma (2013).

Finally, Chapter 5 also works in a semi-Markov environment, however, the model

was of a more complex design due to the addition of a perturbed state. This extra term

allowed us to model a CAT bond which will redeem at the per-determined expiry date,

and will expire immediately after a certain event hits the insured region. The N-CAT

bond introduced in this chapter is new to the literature and shifted liability to the capital

market in any nuclear liability limitation regimes.

The limitations of this thesis are mainly in the application part. The estimation of

the parameters involved in the model is always a challenging aspect as the collection

of historical data for losses due to catastrophic events in commercial NPPs is rather

limited, which makes the accuracy of the pricing method even more challenging. In

addition, one could always employ the data with longer periods to obtain a better es-

timation of the model. In this thesis, we used Monte-Carlo simulation to compute

the CAT prices, however, this method is very computationally expensive. It is very

challenging to find a more efficient alternative approximation method to reduce the
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computation time in order to use the programme in the industry.

Instead of having inter-arrival time depend on claims sizes, there is potential for a

new model with different types of dependency for other catastrophe risk random vari-

ables using the probabilistic structure we generalized. Although we solved the problem

of characterizing the dependency between catastrophe claims, the dependency between

the CAT market and the financial market cannot be used within our framework. Thus,

the problem of the dependency between CAT risks and the financial market risks is

very interesting, and thus it will be addressed in future research. Another direction of

extension can be the reliability of the CAT bonds.

As the continuity of the final chapter, an ongoing project is carried on for N-CAT

bond, and we are going to extend the Chapter 5 in following five directions:

1. Model under the probabilistic structure in Chapter 3 with n financial and m

catastrophic risks. Moreover, consider the dependency among the catastrophe

risks, i.e. a multi-perils product.

2. Present a generalized model by extending state sizes from 5 to n. Generally

speaking, the 5 states case in Chapter 5 is an example of how one can model

nuclear risks. However, it is worthwhile to have more risks perils and with dif-

ferent combinations. For instance, two types of multi-peril CAT bonds can be

modelled: one with earthquakes, tsunami and nuclear power plant failure and

another one with hurricanes, tornadoes, flood and nuclear power plant failure.

3. Different interest rate models, e.g. Vasicek, Hull-White and CIR, then compare

the sensitivity of the CAT prices.

4. Structure different payoff functions.

5. And apply different scenarios by employing different types of distribution for

claims sizes and claims inter-arrival times processes.

Also, the analysis of the impact of N-CAT risk bonds-specific variables on premiums

is also a very interesting question, in particular considering complexity in terms of

the number of insured peril types or regions. Finally, it is useful to investigate how
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the future nuclear disasters (especially in emerging markets, like China and India) and

financial crises might affect N-CAT bond premiums and demand.

The benefit of this work is to model CAT bonds under different scenarios and ob-

tain realistic and comparable prices for different perils by numerical simulation as a

benchmark for the future CAT bonds. It also highlights how the dependence argu-

ment can influence the value of a CAT bond with the same payoff function. Therefore,

readers can have a complete picture of all aspects of CAT bonds pricing.
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Appendix A

Nuclear power plant accidents and

incidents with multiple fatalities

and/or more than US$100 million in

property damage, 1961-201131

31http://en.wikipedia.org/wiki/Nuclear_and_radiation_accidents_and_

incidents.
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Date Location Cost US$m 2006 (Fatalities)

3/1/1961 Idaho Falls, Idaho, US 22 (3)

5/10/1966 Frenchtown Charter Township, US 132 (0)

7/12/1975 Greifswald, East Germany 443 (0)

5/1/1976 Jaslovské Bohunice, Czechoslovakia (2)

22/2/1977 Jaslovské Bohunice, Czechoslovakia 1,700 (0)

28/31979 Three Mile Island, Pennsylvania, US 2,400 (0)

15/9/1984 Athens, Alabama, US 110 (0)

9/3/1985 Athens, Alabama, US 1,830 (0)

11/4/1986 Plymouth, Massachusetts, US 1,001 (0)

26/4/1986 Chernobyl disaster, Ukrainian SSR (56 direct )

4/5/1986 Hamm-Uentrop, Germany 267 (0)

31/3/1987 Delta, Pennsylvania, US 400 (0)

19/12/1987 Lycoming, New York, US 150 (0)

17/3/1989 Lusby, Maryland, US 120 (0)

20/2/1996 Waterford, Connecticut, US 254 (0)

2/9/1996 Crystal River, Florida, US 384 (0)

30/9/1999 Ibaraki Prefecture, Japan 54 (2)

16/2/2002 Oak Harbor, Ohio, US 143 (0)

9/8/2004 Fukui Prefecture, Japan 9 (4)

25/7/2006 Forsmark, Sweden 100 (0)

11/3/2011 Fukushima, Japan (2+)

12/9/2011 Marcoule, France (1)
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Appendix B

R Code For Chapter 3

B.1 One-period Model

Parameters used in this section.

1 l i b r a r y ( f E x t r e m e s )

2 T<−1 # t i m e p e r i o d

3 m<−100000 # s i m u l a t i o n t i m e s

4 premium<−0 . 0 3 # t h e e x t r a r i s k premium

5 I n t<−0 .0012 # r i s k−f r e e i n t e r e s t r a t e

6 I n f l<−0 .0316 # i n f l a t i o n r a t e

7 r1<−rep ( 0 . 0 1 3 ,m) # LIBOR r a t e

8 K=1000 # f a c e v a l u e o f t h e CAT bond

9

10 ## g e n e r a t e m c a s e s f o r Magni tude and Depth

11 Mag1<−r gev (m, x i = 0 .05866229 , mu = 4 .71946946 , beta =

0 . 4 4 8 6 1 4 7 2 )

12 Mag2<−r gev (m, x i = 0 . 1181457 , mu = 4 .9275121 , beta =

0 . 4 8 3 3 7 8 2 )

13 Depth1<−rgamma (m, shape =2 .35378504 , r a t e = 0 . 2 5 4 6 0 9 5 1 )

14 Depth2<−rgamma (m, shape =1 .44878306 , r a t e = 0 . 1 4 5 8 5 3 4 0 )

15
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16 C=rep (NA,m) # v a l u e o f p a y o f f f u n c t i o n

17 f =rep (NA,m)

18 g=rep (NA,m)

19 h=rep (NA,m)

20 p=rep (NA,m)

21 q=rep (NA,m)

22 s=rep (NA,m)

23 # t h r e s h o l d s l e v e l s

24 aa<−2 . 6 ; ab<−2 . 8 ; ac<−1 . 6 ; ad<−1 . 8 ; ae<−0 . 5 ; a f<−0 . 6

25 ba<−2 . 9 ; bb<−3 ; bc<−1 . 8 ; bd<−2 ; be<−1 ; b f<−1 . 1

26 ag<−0 . 8 ; ah<−0 . 8 5 ; a i<−0 . 5 5 ; a j<−0 . 6 ; ak<−0 . 2

27 bg<−0 . 9 5 ; bh<−0 . 9 8 ; b i<−0 . 7 ; b j<−0 . 7 5 ; bk<−0 . 5

Price payoff function PCAT .

1 f o r ( i i n 1 :m)

2 {

3 i f ( Mag1 [ i ]>Mag2 [ i ] )

4 {

5 i f ( Mag1 [ i ] <5 .4)

6 { i f ( Depth1 [ i ]<=20) f [ i ]<−aa ∗ r1 [ i ]

7 i f ( Depth1 [ i ]>20) f [ i ]<−ab∗ r1 [ i ]

8 C[ i ]=K∗ (1+ f [ i ] ) }

9

10 i f ( Mag1 [ i ] < 5 . 8 && Mag1 [ i ]>=5.4)

11 { i f ( Depth1 [ i ]<=15) g [ i ]<−ac ∗ r1 [ i ]

12 i f ( Depth1 [ i ]>15) g [ i ]<−ad∗ r1 [ i ]

13 C[ i ]=K∗ (1+ g [ i ] ) }

14

15 i f ( Mag1 [ i ] < 6 . 2 && Mag1 [ i ]>=5.8)

16 { i f ( Depth1 [ i ]<=10) h [ i ]<−ae ∗ r1 [ i ]

17 i f ( Depth1 [ i ]>10) h [ i ]<−a f ∗ r1 [ i ]
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18 C[ i ]=K∗ (1+ h [ i ] ) }

19

20 i f ( Mag1 [ i ] < 6 . 6 && Mag1 [ i ]>=6.2)

21 C[ i ]=K

22

23 i f ( Mag1 [ i ] < 7 . 0 && Mag1 [ i ]>=6.6)

24 { i f ( Depth1 [ i ]<=10) p [ i ]<−ag∗K

25 i f ( Depth1 [ i ]>10) p [ i ]<−ah∗K

26 C[ i ]= p [ i ]}

27

28 i f ( Mag1 [ i ] < 7 . 4 && Mag1 [ i ]>=7.0)

29 { i f ( Depth1 [ i ]<=10)q [ i ]<−a i ∗K

30 i f ( Depth1 [ i ]>10)q [ i ]<−a j ∗K

31 C[ i ]=q [ i ]}

32

33 i f ( Mag1 [ i ] >7.4)

34 { s [ i ]<−ak∗K

35 C[ i ]= s [ i ]}

36 }

37

38 e l s e

39 {

40 i f ( Mag2 [ i ] <5 .4)

41 { i f ( Depth2 [ i ]<=20) f [ i ]<−ba∗ r1 [ i ]

42 i f ( Depth2 [ i ]>20) f [ i ]<−bb∗ r1 [ i ]

43 C[ i ]=K∗ (1+ f [ i ] ) }

44

45 i f ( Mag2 [ i ] < 5 . 8 && Mag2 [ i ]>=5.4)

46 { i f ( Depth2 [ i ]<=15) g [ i ]<−bc∗ r1 [ i ]

47 i f ( Depth2 [ i ]>15) g [ i ]<−bd∗ r1 [ i ]

48 C[ i ]=K∗ (1+ g [ i ] ) }
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49

50 i f ( Mag2 [ i ] < 6 . 2 && Mag2 [ i ]>=5.8)

51 { i f ( Depth2 [ i ]<=10) h [ i ]<−be∗ r1 [ i ]

52 i f ( Depth2 [ i ]>10) h [ i ]<−bf ∗ r1 [ i ]

53 C[ i ]=K∗ (1+ h [ i ] ) }

54

55 i f ( Mag2 [ i ] < 6 . 6 && Mag2 [ i ]>=6.2)

56 C[ i ]=K

57

58 i f ( Mag2 [ i ] < 7 . 0 && Mag2 [ i ]>=6.6)

59 { i f ( Depth2 [ i ]<=10) p [ i ]<−bg∗K

60 i f ( Depth2 [ i ]>10) p [ i ]<−bh∗K

61 C[ i ]= p [ i ]}

62

63 i f ( Mag2 [ i ] < 7 . 4 && Mag2 [ i ]>=7.0)

64 { i f ( Depth2 [ i ]<=10)q [ i ]<−b i ∗K

65 i f ( Depth2 [ i ]>10)q [ i ]<−b j ∗K

66 C[ i ]=q [ i ]}

67

68 i f ( Mag2 [ i ] >7.4)

69 { s [ i ]<−bk∗K

70 C[ i ]= s [ i ]}

71 }

72 }

Final value of the CAT bond according to Eq. (3.10).

1 d i s c o u n t<−(1+ I n f l ) ∗ (1+ premium+ I n t )

2 P<−C/ d i s c o u n t

3 mean ( P ) # t h i s i s t h e f i n a l p r i c e o f t h e CAT bond
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B.2 Multi-period Model

Parameters used in this section.

1 l i b r a r y ( f E x t r e m e s )

2 T<−5 # t i m e p e r i o d

3 m<−100000 # s i m u l a t i o n t i m e s

4 premium<−0 . 0 3 # t h e e x t r a r i s k premium

5 K=1000 # f a c e v a l u e o f t h e CAT bond

6 C=matrix ( 0 , T , m) # v a l u e o f p a y o f f f u n c t i o n

7 f =matrix ( 0 , T , m)

8 g=matrix ( 0 , T , m)

9 h=matrix ( 0 , T , m)

10 p=matrix ( 0 , T , m)

11 q=matrix ( 0 , T , m)

12 s=matrix ( 0 , T , m)

13 aa<−2 . 6 ; ab<−2 . 8 ; ac<−1 . 6 ; ad<−1 . 8 ; ae<−0 . 5 ; a f<−0 . 6

14 ba<−2 . 9 ; bb<−3 ; bc<−1 . 8 ; bd<−2 ; be<−1 ; b f<−1 . 1

15 ag<−0 . 8 ; ah<−0 . 8 5 ; a i<−0 . 5 5 ; a j<−0 . 6 ; ak<−0 . 2

16 bg<−0 . 9 5 ; bh<−0 . 9 8 ; b i<−0 . 7 ; b j<−0 . 7 5 ; bk<−0 . 5

Generating m cases for LIBOR rate, interest rate and inflation rate.

1 ## LIBOR r a t e

2 a l p h a = +0.212421

3 mu = +1.084655

4 s igma = +0.420791

5 d e l t a<−1

6 r<−matrix (NA, T , m)

7 r [ 1 , ]<−1 . 1 3 # i n i t i a l v a l u e

8 f o r ( i i n 1 : ( T−1) )

9 {

10 r [ i +1 , ]<−r [ i , ]
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11 f o r ( days i n 1 : 2 5 0 )

12 {

13 e<−rnorm (m, mean=0 , sd= s q r t ( d e l t a ) )

14 f o r ( j i n 1 :m)

15 {

16 r [ i +1 , j ] <− r [ i +1 , j ] + a l p h a ∗ (mu−r [ i +1 , j ] ) ∗ d e l t a + sigma ∗

s q r t ( r [ i +1 , j ] ) ∗e [ j ]+ days−days

17 i f ( r [ i +1 , j ]<0)

18 r [ i +1 , j ]<− r [ 1 , j ] + a l p h a ∗ (mu−r [ 1 , j ] ) ∗ d e l t a

19 r [ 1 , j ]<−r [ i +1 , j ]

20 }}}

21 r [ 1 , ]<−1 . 1 3

22 r t<−r / 100

23

24 # i n t e r e s t r a t e

25 a r<−−0.2833

26 ma<−1

27 c o n s t<−−0.0976

28 I n t<−matrix (NA, T+2 ,m)

29 e <−matrix (NA, T ,m)

30 I n t [ 1 , ]<−0 . 2 9

31 I n t [ 2 , ]<−0 . 1 2

32 f o r ( j i n 1 : T )

33 {e [ j , ]<−rnorm (m)

34 f o r ( i i n 1 :m)

35 {

36 I n t [ j +2 , i ]<− I n t [ j +1 , i ]+ a r ∗ I n t [ j +1 , i ]− a r ∗ I n t [ j , i ]+ma∗e

[ j , i ]− c o n s t

37 i f ( I n t [ j +2 , i ]<0)

38 I n t [ j +2 , i ]<− I n t [ j +1 , i ]+ a r ∗ I n t [ j +1 , i ]− a r ∗ I n t [ j , i ]

39 }
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40 }

41 I n t<− I n t / 100

42 I n t<−rbind ( I n t [ 2 : ( T+2) , ] )

43

44 # i n f l a t i o n r a t e

45 e<− matrix (NA, T , m)

46 I n f l<−matrix (NA, T+1 ,m)

47 I n f l [ 1 , ]<−3 . 1 6

48 f o r ( i i n 1 : T )

49 {e [ i , ]<−rnorm (m)

50 I n f l [ i + 1 , ]<−0 .8899+0 .7867 ∗ I n f l [ i , ] + e [ i , ]

51 f o r ( j i n 1 :m)

52 {

53 i f ( I n f l [ i +1 , j ]<0)

54 I n f l [ i +1 , j ]<−0 .8899+0 .7867 ∗ I n f l [ i , j ]

55 }}

56 I n f l<− I n f l / 100

57 I n f l<−rbind ( I n f l [ 1 : ( T+1) , ] )

Generating m cases for Magnitude and Depth in both regions.

1 Mag<−array (NA, c ( T , m, 2 ) )

2 f o r ( i i n 1 : T )

3 {

4 Mag[ i , , 1 ]<−r gev (m, x i = 0 .05866229 , mu = 4 .71946946 ,

beta = 0 . 4 4 8 6 1 4 7 2 )

5 Mag[ i , , 2 ]<−r gev (m, x i = 0 .1181457 , mu = 4 .9275121 , beta

= 0 . 4 8 3 3 7 8 2 )

6 }

7

8 Dep<−array (NA, c ( T , m, 2 ) )

9 f o r ( i i n 1 : T )
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10 {

11 Dep [ i , , 1 ]<−rgamma (m, shape =2 .35378504 , r a t e =

0 . 2 5 4 6 0 9 5 1 )

12 Dep [ i , , 2 ]<−rgamma (m, shape =1 .44878306 , r a t e =

0 . 1 4 5 8 5 3 4 0 )

13 }

14 mag<−array (NA, c (m) )

15 f o r ( i i n 1 :m)

16 {

17 mag [ i ]<−max (Mag[ T , i , 1 ] , Mag[ T , i , 2 ] )

18 }

Price payoff function PCAT .

1 # Coupon payment f o r t h e p e r i o d o f 1 t o ( T−1) .

2 f o r ( j i n 1 : ( T−1) )

3 {

4 f o r ( i i n 1 :m)

5 {

6 i f (Mag[ j , i ,1]>Mag [ j , i , 2 ] ) # Magni tude o f r e g i o n 1 i s

l a r g e r

7 {

8 i f (Mag[ j , i , 1 ] <5 . 4 )

9 {

10 i f ( Dep [ j , i ,1]<=20) f [ j , i ]<−aa ∗ r t [ j , i ]

11 i f ( Dep [ j , i ,1 ] >20) f [ j , i ]<−ab∗ r t [ j , i ]

12 C[ j , i ]=K∗ (0+ f [ j , i ] )

13 }

14

15 i f (Mag[ j , i , 1 ] < 5 . 8 && Mag[ j , i , 1 ] >= 5 . 4 )

16 { i f ( Dep [ j , i ,1]<=15) g [ j , i ]<−ac ∗ r t [ j , i ]

17 i f ( Dep [ j , i ,1 ] >15) g [ j , i ]<−ad∗ r t [ j , i ]
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18 C[ j , i ]=K∗ (0+ g [ j , i ] ) }

19

20 i f (Mag[ j , i , 1 ] < 6 . 2 && Mag[ j , i , 1 ] >= 5 . 8 )

21 { i f ( Dep [ j , i ,1]<=10) h [ j , i ]<−ae ∗ r t [ j , i ]

22 i f ( Dep [ j , i ,1 ] >10) h [ j , i ]<−a f ∗ r t [ j , i ]

23 C[ j , i ]=K∗ (0+ h [ j , i ] ) }

24 }

25 i f (Mag[ j , i ,1]<Mag [ j , i , 2 ] ) # Magni tude o f r e g i o n 2 i s

l a r g e r

26 {

27 i f (Mag[ j , i , 2 ] <5 . 4 )

28 {

29 i f ( Dep [ j , i ,2]<=20) f [ j , i ]<−ba∗ r t [ j , i ]

30 i f ( Dep [ j , i ,2 ] >20) f [ j , i ]<−bb∗ r t [ j , i ]

31 C[ j , i ]=K∗ (0+ f [ j , i ] )

32 }

33

34 i f (Mag[ j , i , 2 ] < 5 . 8 && Mag[ j , i , 2 ] >= 5 . 4 )

35 { i f ( Dep [ j , i ,2]<=15) g [ j , i ]<−bc∗ r t [ j , i ]

36 i f ( Dep [ j , i ,2 ] >15) g [ j , i ]<−bd∗ r t [ j , i ]

37 C[ j , i ]=K∗ (0+ g [ j , i ] ) }

38

39 i f (Mag[ j , i , 2 ] < 6 . 2 && Mag[ j , i , 2 ] >= 5 . 8 )

40 { i f ( Dep [ j , i ,2]<=10) h [ j , i ]<−be∗ r t [ j , i ]

41 i f ( Dep [ j , i ,2 ] >10) h [ j , i ]<−bf ∗ r t [ j , i ]

42 C[ j , i ]=K∗ (0+ h [ j , i ] ) }

43 }

44 }

45 }

46 # For t h e f i n a l payment

47 f o r ( i i n 1 :m)
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48 {

49 j =T

50 i f (Mag[ j , i ,1]>Mag [ j , i , 2 ] ) # Magni tude o f r e g i o n 1 i s

l a r g e r

51 {

52 i f (Mag[ j , i , 1 ] <5 . 4 )

53 { i f ( Dep [ j , i ,1]<=20) f [ j , i ]<−aa ∗ r t [ j , i ]

54 i f ( Dep [ j , i ,1 ] >20) f [ j , i ]<−ab∗ r t [ j , i ]

55 C[ j , i ]=K∗ (1+ f [ j , i ] ) }

56

57 i f (Mag[ j , i , 1 ] < 5 . 8 && Mag[ j , i , 1 ] >= 5 . 4 )

58 { i f ( Dep [ j , i ,1]<=15) g [ j , i ]<−ac ∗ r t [ j , i ]

59 i f ( Dep [ j , i ,1 ] >15) g [ j , i ]<−ad∗ r t [ j , i ]

60 C[ j , i ]=K∗ (1+ g [ j , i ] ) }

61

62 i f (Mag[ j , i , 1 ] < 6 . 2 && Mag[ j , i , 1 ] >= 5 . 8 )

63 { i f ( Dep [ j , i ,1]<=10) h [ j , i ]<−ae ∗ r t [ j , i ]

64 i f ( Dep [ j , i ,1 ] >10) h [ j , i ]<−a f ∗ r t [ j , i ]

65 C[ j , i ]=K∗ (1+ h [ j , i ] ) }

66

67 i f (Mag[ j , i , 1 ] < 6 . 6 && Mag[ j , i , 1 ] >= 6 . 2 )

68 C[ j , i ]=K

69

70 i f (Mag[ j , i , 1 ] < 7 . 0 && Mag[ j , i , 1 ] >= 6 . 6 )

71 { i f ( Dep [ j , i ,1]<=10) p [ j , i ]<−ag∗K

72 i f ( Dep [ j , i ,1 ] >10) p [ j , i ]<−ah∗K

73 C[ j , i ]= p [ j , i ]}

74

75 i f (Mag[ j , i , 1 ] < 7 . 4 && Mag[ j , i , 1 ] >= 7 . 0 )

76 { i f ( Dep [ j , i ,1]<=10) q [ j , i ]<−a i ∗K

77 i f ( Dep [ j , i ,1 ] >10) q [ j , i ]<−a j ∗K
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78 C[ j , i ]=q [ j , i ]}

79

80 i f (Mag[ j , i , 1 ] >7.4)

81 { s [ j , i ]<−ak∗K

82 C[ j , i ]= s [ j , i ]}

83

84 }

85 i f (Mag[ j , i ,1]<Mag [ j , i , 2 ] ) # Magni tude o f r e g i o n 2 i s

l a r g e r

86 {

87 i f (Mag[ j , i , 2 ] <5 . 4 )

88 { i f ( Dep [ j , i ,2]<=20) f [ j , i ]<−ba∗ r t [ j , i ]

89 i f ( Dep [ j , i ,2 ] >20) f [ j , i ]<−bb∗ r t [ j , i ]

90 C[ j , i ]=K∗ (1+ f [ j , i ] ) }

91

92 i f (Mag[ j , i , 2 ] < 5 . 8 && Mag[ j , i , 2 ] >= 5 . 4 )

93 { i f ( Dep [ j , i ,2]<=15) g [ j , i ]<−bc∗ r t [ j , i ]

94 i f ( Dep [ j , i ,2 ] >15) g [ j , i ]<−bd∗ r t [ j , i ]

95 C[ j , i ]=K∗ (1+ g [ j , i ] ) }

96

97 i f (Mag[ j , i , 2 ] < 6 . 2 && Mag[ j , i , 2 ] >= 5 . 8 )

98 { i f ( Dep [ j , i ,2]<=10) h [ j , i ]<−be∗ r t [ j , i ]

99 i f ( Dep [ j , i ,2 ] >10) h [ j , i ]<−bf ∗ r t [ j , i ]

100 C[ j , i ]=K∗ (1+ h [ j , i ] ) }

101

102 i f (Mag[ j , i , 2 ] < 6 . 6 && Mag[ j , i , 2 ] >= 6 . 2 )

103 C[ j , i ]=K

104

105 i f (Mag[ j , i , 2 ] < 7 . 0 && Mag[ j , i , 2 ] >= 6 . 6 )

106 { i f ( Dep [ j , i ,2]<=10) p [ j , i ]<−bg∗K

107 i f ( Dep [ j , i ,2 ] >10) p [ j , i ]<−bh∗K
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108 C[ j , i ]= p [ j , i ]}

109

110 i f (Mag[ j , i ,2]< 7 . 4 && Mag [ j , i , 2 ] >= 7 . 0 )

111 { i f ( Dep [ j , i ,2]<=10) q [ j , i ]<−b i ∗K

112 i f ( Dep [ j , i ,2 ] >10) q [ j , i ]<−b j ∗K

113 C[ j , i ]=q [ j , i ]}

114

115 i f (Mag[ j , i , 2 ] >7.4)

116 { s [ j , i ]<−bk∗K

117 C[ j , i ]= s [ j , i ]}

118 }

119 }

Final value of the CAT bond according to Eq. (3.14).

1 d i s c o u n t =matrix (NA, T ,m)

2 d i s c o u n t [ 1 , ]<−(1+ I n t [ 1 , ] + premium ) ∗ (1+ I n f l [ 1 , ] )

3

4 f o r ( i i n 1 : ( T−1) )

5 {

6 f o r ( j i n 1 :m)

7 { d i s c o u n t [ i +1 , j ]<−d i s c o u n t [ i , j ] ∗ (1+ I n t [ i +1 , j ]+ premium ) ∗

(1+ I n f l [ i +1 , j ] )

8 }

9 }

10 P<−colSums (C/ d i s c o u n t )

11 mean ( P ) # t h i s i s t h e f i n a l p r i c e o f t h e CAT bond
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Appendix C

R Code For Chapter 4

C.1 Data

In this example, we are using PSC data set with ‘Claim number’,‘State’,‘Gross Loss’,

‘CPI index’,‘Loss’,‘Time of year’,‘Start time’ and ‘End time’. Size of the data set =

3950, total claim number = 879.

1 df = read . t a b l e ( ” . . . /PCSCATDATA. t x t ” , head=T )

2 d f s<− data . frame ( Number=rep (NA, 879) , Loss=rep (NA, 879) ,

3 Time=rep (NA, 8 7 9 ) , CPI=rep (NA, 879) , S t a r t =rep (NA, 879) ,

4 s t r i n g s A s F a c t o r s =FALSE)

5 # In t h e da ta s e t , t h e o r i g i n a l ‘ S t a r t t ime ’ and ‘ End

t ime ’ are i n t h e form o f day / month / year .

6 df $ S t a r t<−as . Date ( df $ S t a r t , format =”%d /%m/%Y” )

7 d f s $ S t a r t<−as . Date ( d f s $ S t a r t , format =”%d /%m/%Y” )

8 # load da ta t h e f i r s t l i n e o f o r i g i n a l da ta s e t

9 d f s [ 1 , ] <−df [ 1 , c ( 1 , 5 , 6 , 4 , 7 ) ]

10 # c a l c u l a t e t h e t o t a l l o s s i n t e r m s o f each c l a i m

11 l e n<−1

12 f o r ( i i n 1 : 3 9 5 0 )

13 {

14 i f ( df $Number [ i ] ! =df $Number [ i + 1 ] )
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15 { l e n<−l e n +1

16 d f s [ l en , ]<−df [ i +1 , c ( 1 , 5 , 6 , 4 , 7 ) ]

17 }

18 i f ( df $Number [ i ]== df $Number [ i + 1 ] )

19 { d f s $ Loss [ l e n ]<−d f s $ Loss [ l e n ]+ df $ Loss [ i +1]}

20 }

21 f o r ( i i n 1 : 8 7 9 )

22 {

23 i f ( d f s $ Loss [ i ]>4.51 e8 )

24 { d f s $ S t a t e [ i ]<−1}

25 e l s e

26 { d f s $ S t a t e [ i ]<−0}

27 }

28 # T o t a l l o s s f o r each c l a i m i n US$ 10 m i l l i o n s .

29 d f s $ Loss<−d f s $ Loss / 1 e7

30 # C a l c u l a t e t h e t o t a l l o s s f o r each year .

31 t o t a l l o s s<−c ( )

32 v<−d f s $ Loss [ 1 ]

33 f o r ( i i n 1 : 8 7 8 )

34 {

35 i f ( d f s $CPI [ i ]== d f s $CPI [ i + 1 ] )

36 {v<−v+ d f s $ Loss [ i +1]}

37 e l s e

38 { t o t a l l o s s<−c ( t o t a l l o s s , v )

39 v<−d f s $ Loss [ i +1]}

40 }

41 # Make a p l o t f o r annua l t o t a l l o s s

42 par ( mfrow=c ( 1 , 2 ) )

43 p l o t ( 1 9 8 5 : 2 0 1 3 , t o t a l l o s s / 100 , t y p e =” o ” , x l a b =” Time ( y e a r ) ” ,

y l a b =” A d j u s t e d PCS ( 2 0 1 4 , b i l l i o n d o l l o r s ) ” )

44 # C a l c u l a t e t h e number o f c l a i m s f o r each year
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45 Noclaim<−c ( )

46 f o r ( i i n 1 : 8 7 8 )

47 {

48 i f ( d f s $CPI [ i ] ! = d f s $CPI [ i + 1 ] )

49 {Noclaim<−c ( Noclaim , sum ( d f s $CPI== d f s $CPI [ i ] ) ) }

50 }

51 # Make a p l o t f o r annua l t o t a l number o f c l a i m s

52 p l o t ( 1 9 8 5 : 2 0 1 3 , Noclaim , t y p e =” o ” , x l a b =” Time ( y e a r ) ” , y l a b =”

Number o f CATs” )

And this is the plot of Figure 4.1.

In this example, we value the CAT bond prices for time to maturity T ∈ [0.25, 2.25],

and threshold level D ∈ [mean(totalloss)/4, 3×mean(totalloss)].

1 t<−seq ( from = 0 . 2 5 , t o = 2 . 2 5 , l e n g t h =20)

2 D<−seq ( from=mean ( t o t a l l o s s ) / 4 , t o =mean ( t o t a l l o s s ) ∗ 3 ,

l e n g t h . o u t =20)

3 myGrid <− data . frame ( expand . gr id ( t ,D) )

4 colnames ( myGrid ) <− c ( ” t ” , ”D” )

5 t a u<−myGrid$ t # t a u . . . ( T−t ) , t i m e t o m a t u r i t y

We defined two different states in the model (many claims period and few claims pe-

riod), and separate original data into those two states.

1 s t a t e n<−l e n g t h ( d f s $ S t a t e )−sum ( d f s $ S t a t e )

2 s t a t e n n<−s t a t e n +1

3 a<−d f s $ S t a t e # a s e q u e n c e o f i n d e x o f s t a t e s

4 # i n i t i a l p r o b a b i l i t y m a t r i x p i 0

5 p i<−sum ( a ) / l e n g t h ( a )

6 p i 0<−matrix ( c ( p i ,(1− p i ) ) , nrow =2 , nco l =2 , byrow=F )

7

8 # T r a n s i t i o n p r o b a b i l i t y m a t r i x P

9 # F i r s t f i n d t h e t o t a l number o f t r a n s i t i o n
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10 a l e n<−l e n g t h ( a )−1

11 np1<−0

12 np2<−0

13 np3<−0

14 np4<−0

15 f o r ( i i n 1 : a l e n )

16 {

17 i f ( a [ i ]==1 && a [ i +1]==1) # from s t a t e 1 t o 1

18 {np1<−np1 +1}

19 i f ( a [ i ]==1 && a [ i +1]==0) # from s t a t e 1 t o 0

20 {np2<−np2 +1}

21 i f ( a [ i ]==0 && a [ i +1]==1) # from s t a t e 0 t o 1

22 {np3<−np3 +1}

23 i f ( a [ i ]==0 && a [ i +1]==0) # from s t a t e 0 t o 0

24 {np4<−np4 +1}

25 }

26 p1<−np1 / ( np1+np2 )

27 p2<−np2 / ( np1+np2 )

28 p3<−np3 / ( np3+np4 )

29 p4<−np4 / ( np3+np4 )

30 P<−array ( c ( p1 , p3 , p2 , p4 ) , dim=c ( 2 , 2 , l e n g t h ( t ) ) )

31

32 #we need t h e da ta i n two s e t s o f s t a t e s

33 df<−d f s [ order ( S t a t e ) , ]

34 df1<−df [ 1 : s t a t e n , ]

35 df2<−df [ s t a t e n n : l e n g t h ( df $ S t a t e ) , ]

C.2 CIR Interest Rate

Estimate parameter of CIR model.
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1 C I R l o g l i k e<−f u n c t i o n ( param , data , t imes , t e s t =F , a d d s i g n =T ) {

2 #CIR log− l i k e l i h o o d F u n c t i o n

3 #param . . . p a r a m e t e r s o f t h e CIR model

4 # d t . . . t i m e i n t e r v a l ( i n y e a r s ) be tween t h e da ta p o i n t s

5 # c . . . m u l t i p l y i n g term f o r t h e ch i−sq ua re d i s t r i b u t i o n

6 # d f . . . d e gr e e o f f reedom

7 # ncp . . . non−c e n t r a l i t y parame te r

8 t h e t a =param [ 1 ]

9 k=param [ 2 ]

10 s igma=param [ 3 ]

11 N<−l e n g t h ( data )

12 i f ( t e s t ==T )

13 dt= t i m e s

14 e l s e

15 dt<−d i f f ( t imes , 1 )

16 r a t e =data [ 1 : ( N−1) ]

17 l a g r a t e =data [ 2 :N]

18 ncp= r a t e ∗ ( ( 4 ∗k∗exp(−k∗dt ) ) / ( s igma ˆ2 ∗(1−exp(−k∗dt ) ) ) )

19 d=4∗ t h e t a ∗k / s igma ˆ2

20 c=4∗k / ( s igma ˆ2 ∗(1−exp(−k∗dt ) ) )

21 r e s<−sum ( dchisq ( c∗ l a g r a t e , df=d , ncp=ncp , l o g =TRUE) + l o g ( c ) )

22 i f ( a d d s i g n )

23 re turn (− r e s )

24 e l s e

25 re turn ( r e s )

26 }

27

28 MLE CIR=optim ( par=c ( 0 . 1 , 0 . 1 , 0 . 1 ) , fn = C I R l o g l i k e , method=

29 ”L−BFGS−B” , lower=c ( 0 . 0 1 , 0 . 0 1 , 0 . 0 1 ) , upper=c ( 1 , 1 , 1 ) , data

30 = i n t e r e s t r a t e $ i n t e r e s t , t i m e s =1 / 12 , t e s t =T ) $par

31 # r e s u l t s >[1] 0 .02040567 0 .09839527 0 .04772081
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Value of a zero coupon bond with interest rate follow CIR model, which can be calcu-

lated by Eq. (2.8)–(2.11).

1 t h e t a<−0 .09839527 ∗ 0 .02040567 / 0 .08839527 #\ t h e t a ∗=k\ t h e t a /

( k+\ lambda r )

2 k<−0 .08839527 # k∗=k+\ lambda r =0.09839527−0.01

3 s igma2<−0 .04772081ˆ2

4 C i r P r i c e Y i e l d<− f u n c t i o n ( r , t au , Param , p r i c e y n =F ) {

5 # r . . . r ( t ) c u r r e n t v a l u e o f s h o r t r a t e

6 # t a u . . . ( T−t ) , t i m e t o m a t u r i t y

7 # Param . . . v e c t o r h o l d i n g t h e p a r a m e t e r s o f t h e CIR

model

8 h= s q r t ( k ˆ2+2 ∗ s igma2 )

9 B= 2∗ ( exp ( h∗ t a u )−1) / (2 ∗h +( k+h ) ∗ ( exp ( t a u ∗h )−1) )

10 A= ( ( 2 ∗h∗exp ( ( k+h ) ∗ ( t a u ) / 2) ) / (2 ∗h +( k+h ) ∗ ( exp ( t a u ∗h )−1) )

) ˆ ( 2 ∗k∗ t h e t a / s igma2 )

11 i f ( p r i c e y n ) {

12 i f ( t a u ==0) re turn ( 1 ) # p r i c e i s par−v a l u e ( 1 ) a t m a t u r i t y

13 e l s e re turn (A∗exp(−B∗ r ) )

14 }

15 e l s e re turn ( ( r ∗B−l o g (A) ) / t a u )

16 }

17 p r i c e C I R<−c ( )

18 f o r ( j i n 1 : l e n g t h ( t a u ) )

19 {

20 p r i c e C I R<−c ( p r iceCIR , C i r P r i c e Y i e l d ( r , t a u [ j ] , c ( t h e t a , k ,

s igma2 ) ,T ) )

21 }
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C.3 Claim Frequency Distribution

1 ## Having t h e da ta s e t d f s , need t o e s t i m a t e p a r a m e t e r s

P o i s s o n

2 a t t a c h ( d f s )

3 x d a t a <− cumsum ( d f s $Time )

4 y d a t a <− seq a l o n g ( x d a t a ) / cumsum ( d f s $Time )

5 a<−seq ( from =40 , t o =879 , by =15)

6 x d a t a<−x d a t a [ 5 : 8 7 9 ]

7 y d a t a<−y d a t a [ 5 : 8 7 9 ]

8 data<−data . frame ( yda ta , x d a t a )

9 detach ( d f s )

10 a t t a c h ( data )

11 # some s t a r t i n g v a l u e s

12 a = 27

13 b = −3

14 c = −0.3

15 d = 4

16 o = 8

17 # f i t t h e model

18 f i t = n l s ( y d a t a ˜ a+b∗ ( s i n ( x d a t a +c ) ) ˆ2+ d∗exp ( cos ( ( 2 ∗ p i ∗

19 x d a t a ) / o ) ) , s t a r t = l i s t ( a=a , b=b , c=c , d=d , o=o ) , data=data )

20 # a b c d o

21 # 31 .067647 −1.122352 −0.473033 1 .167737 7 .704062

22 a= c o e f ( f i t ) [ 1 ]

23 b= c o e f ( f i t ) [ 2 ]

24 c= c o e f ( f i t ) [ 3 ]

25 d= c o e f ( f i t ) [ 4 ]

26 o= c o e f ( f i t ) [ 5 ]

27 NHP<−f u n c t i o n ( t ime ) {a+b∗ ( s i n ( t ime+c ) ) ˆ2+ d∗exp ( cos ( ( 2 ∗ p i ∗

t ime ) / o ) ) }
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28

29 # I n t e n s i t y o f P o i s s o n p r o c e s s

30 f i t d i s t r ( d f1 $Time , ” e x p o n e n t i a l ” )

31 f i t d i s t r ( d f2 $Time , ” e x p o n e n t i a l ” )

C.4 Value of CAT Bond

As a demonstrator, here we calculate the probability function given in Proposition 4.1.1,

with lognormal distribution and NHPP. Other distributions, one can easily change the

distribution code, i.e. to pgev function.

1 r a t e 1 = 34 .967753 # r a t e o f P o i s s o n p r o c e s s i n s t a t e 1

2 r a t e 2 = 10 .520688 # r a t e o f P o i s s o n p r o c e s s i n s t a t e 2

3 # c l a i m s i z e d i s t r i b u t i o n

4 mulog1<−2 .84877246

5 s igma log1<− 1 .27307413

6 mulog2<− 2 .9874937

7 s igma log2<−1 .1261473

8

9 d e l t a t<−0 .0002 # s t e p o f d t

10 d e l t a x<−0 . 5 # s t e p o f dx

11

12 r e s u l t i n f s u m<−c ( )

13

14 f o r ( seno i n 1 : 4 0 0 )

15 {

16 D=myGrid [ seno , 2 ]

17 T=myGrid [ seno , 1 ]

18 r u n s<−f l o o r ( T / d e l t a t )

19 r u n s s<−r u n s ∗2+1

20 c h o i c e m i d d l e t<−seq ( 2 , r u n s s , by =2)
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21 n o i n d e x t<−seq ( 1 , r u n s s , by =2)

22 t<−seq ( from =0 , t o =T , l e n g t h . o u t = r u n s s )

23 i n d e x t<−t [ n o i n d e x t ]

24 t<−t [ c h o i c e m i d d l e t ]

25

26 r u n s x<−f l o o r (D/ d e l t a x )

27 r u n s s x<−r u n s x ∗2+1

28 c h o i c e m i d d l e x<−seq ( 2 , runs sx , by =2)

29 no indexx<−seq ( 1 , runs sx , by =2)

30 d<−seq ( from =0 , t o =D , l e n g t h . o u t = r u n s s x )

31 i n de xx<−d [ no indexx ]

32 d<−d [ c h o i c e m i d d l e x ]

33

34 # C o n d i t i o n a l p r o b a b i l i t y o f s o j o u r n t i m e m a t r i x AF

35 ag1<−pexp ( t , r a t e = r a t e 1 , lower . t a i l = TRUE, l o g . p =

FALSE)

36 ag2<−pexp ( t , r a t e = r a t e 2 , lower . t a i l = TRUE, l o g . p =

FALSE)

37 dag1<− pexp ( i n d e x t , r a t e = r a t e 1 , lower . t a i l = TRUE, l o g

. p = FALSE)

38 dag2<− pexp ( i n d e x t , r a t e = r a t e 2 , lower . t a i l = TRUE, l o g

. p = FALSE)

39 AG <−array (NA, dim=c ( 2 , 2 , r u n s ) )

40 AG[ 1 , 1 , ] <− ag1

41 AG[ 1 , 2 , ] <− ag1

42 AG[ 2 , 1 , ] <− ag2

43 AG[ 2 , 2 , ] <− ag2

44 dAG <−array (NA, dim=c ( 2 , 2 , r u n s ) )

45 dAG[ 1 , 1 , ] <− d i f f ( dag1 )

46 dAG[ 1 , 2 , ] <− d i f f ( dag1 )

47 dAG[ 2 , 1 , ] <− d i f f ( dag2 )
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48 dAG[ 2 , 2 , ] <− d i f f ( dag2 )

49 AQ<−array ( P , dim=c ( 2 , 2 , r u n s ) ) ∗AG

50 dAQ<−array ( P , dim=c ( 2 , 2 , r u n s ) ) ∗dAG

51

52 # C o n d i t i o n a l p r o b a b i l i t y o f c l a i m s i z e s m a t r i x BF

53 bg1<−plnorm ( d , meanlog = mulog1 , s d l o g = s igma log1 )

54 bg2<−plnorm ( d , meanlog = mulog2 , s d l o g = s igma log2 )

55 BG <−array (NA, dim=c ( 2 , 2 , r u n s x ) )

56 BG[ 1 , 1 , ] <− bg1

57 BG[ 2 , 1 , ] <− bg1

58 BG[ 1 , 2 , ] <− bg2

59 BG[ 2 , 2 , ] <− bg2

60 dbg1<−plnorm ( indexx , meanlog = mulog1 , s d l o g = s igma log1 )

61 dbg2<−plnorm ( indexx , meanlog = mulog2 , s d l o g = s igma log2 )

62 dBG <−array (NA, dim=c ( 2 , 2 , r u n s x ) )

63 dBG [ 1 , 1 , ] <− d i f f ( dbg1 )

64 dBG [ 1 , 2 , ] <− d i f f ( dbg2 )

65 dBG [ 2 , 1 , ] <− d i f f ( dbg1 )

66 dBG [ 2 , 2 , ] <− d i f f ( dbg2 )

67 BQ<−array ( P , dim=c ( 2 , 2 , r u n s x ) ) ∗BG

68 dBQ<−array ( P , dim=c ( 2 , 2 , r u n s x ) ) ∗dBG

69

70 # r e l a x t h e dependence on J n=j we need t h e AH

71 AH <−array (NA, dim=c ( 1 , 2 , r u n s ) )

72 AH[ 1 , 1 , ]<−1−exp(− r a t e 1 ∗ t )

73 AH[ 1 , 2 , ]<−1−exp(− r a t e 2 ∗ t )

74

75 # ######## n=0− t i m e s c o n v o l u t i o n

76 M0<−array ( 0 , dim=c ( 2 , 2 ) )

77 M0[ 1 , 1 ]<−exp(− r a t e 1 ∗T ) ∗(1−plnorm (D , meanlog = mulog1 ,

s d l o g = s igma log1 ) )
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78 M0[ 2 , 2 ]<−exp(− r a t e 2 ∗T ) ∗(1−plnorm (D , meanlog = mulog2 ,

s d l o g = s igma log2 ) )

79 M<−M0

80 # ############# n=1

81 dQn<−array (NA, dim=c ( 2 , 2 , runs −1) )

82 dQn [ 1 , 1 , ] <− d i f f (AQ[ 1 , 1 , ] ∗BG[ 1 , 1 , r u n s x ] )

83 dQn [ 1 , 2 , ] <− d i f f (AQ[ 1 , 2 , ] ∗BG[ 1 , 2 , r u n s x ] )

84 dQn [ 2 , 1 , ] <− d i f f (AQ[ 2 , 1 , ] ∗BG[ 2 , 1 , r u n s x ] )

85 dQn [ 2 , 2 , ] <− d i f f (AQ[ 2 , 2 , ] ∗BG[ 2 , 2 , r u n s x ] )

86 dQn<−array ( c ( dQn , 0 , 0 , 0 , 0 ) , dim=c ( 2 , 2 , r u n s ) )

87 M1<−array ( 0 , dim=c ( 2 , 2 ) )

88 M1[ 1 , 1 ]<−AQ[ 1 , 1 , r u n s ] ∗BG[ 1 , 1 , r u n s x ]−sum ( rev (AH[ 1 , 1 , ] ) ∗dQn

[ 1 , 1 , ] )

89 M1[ 1 , 2 ]<−AQ[ 1 , 2 , r u n s ] ∗BG[ 1 , 2 , r u n s x ]−sum ( rev (AH[ 1 , 2 , ] ) ∗dQn

[ 1 , 2 , ] )

90 M1[ 2 , 1 ]<−AQ[ 2 , 1 , r u n s ] ∗BG[ 2 , 1 , r u n s x ]−sum ( rev (AH[ 1 , 1 , ] ) ∗dQn

[ 2 , 1 , ] )

91 M1[ 2 , 2 ]<−AQ[ 2 , 2 , r u n s ] ∗BG[ 2 , 2 , r u n s x ]−sum ( rev (AH[ 1 , 2 , ] ) ∗dQn

[ 2 , 2 , ] )

92 M<−M+M1

93 # ############# n=n

94 AQnn<−AQ

95 BQnn<−BQ

96 Pnn<−P

97 n f o l d t i m e s<−200

98 f o r ( t i m e s i n 1 : n f o l d t i m e s )

99 {

100 AQn<−array ( 0 , dim=c ( 2 , 2 , r u n s ) )

101 BQn<−array ( 0 , dim=c ( 2 , 2 , r u n s x ) )

102 Mn<−array ( 0 , dim=c ( 2 , 2 ) )

103 f o r ( j i n 1 : r u n s )
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104 {

105 AQn[ 1 , 1 , j ]<−sum ( rev (AQnn [ 1 , 1 , 1 : j ] ) ∗dAQ[ 1 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 1 , 1 : j ] ) ∗dAQ[ 1 , 2 , 1 : j ] )

106 AQn[ 1 , 2 , j ]<−sum ( rev (AQnn [ 1 , 2 , 1 : j ] ) ∗dAQ[ 1 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 2 , 1 : j ] ) ∗dAQ[ 1 , 2 , 1 : j ] )

107 AQn[ 2 , 1 , j ]<−sum ( rev (AQnn [ 1 , 1 , 1 : j ] ) ∗dAQ[ 2 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 1 , 1 : j ] ) ∗dAQ[ 2 , 2 , 1 : j ] )

108 AQn[ 2 , 2 , j ]<−sum ( rev (AQnn [ 1 , 2 , 1 : j ] ) ∗dAQ[ 2 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 2 , 1 : j ] ) ∗dAQ[ 2 , 2 , 1 : j ] )

109 }

110 f o r ( j i n 1 : r u n s x )

111 {

112 BQn[ 1 , 1 , j ]<−sum ( rev ( BQnn [ 1 , 1 , 1 : j ] ) ∗dBQ [ 1 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 1 , 1 : j ] ) ∗dBQ [ 1 , 2 , 1 : j ] )

113 BQn[ 1 , 2 , j ]<−sum ( rev ( BQnn [ 1 , 2 , 1 : j ] ) ∗dBQ [ 1 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 2 , 1 : j ] ) ∗dBQ [ 1 , 2 , 1 : j ] )

114 BQn[ 2 , 1 , j ]<−sum ( rev ( BQnn [ 1 , 1 , 1 : j ] ) ∗dBQ [ 2 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 1 , 1 : j ] ) ∗dBQ [ 2 , 2 , 1 : j ] )

115 BQn[ 2 , 2 , j ]<−sum ( rev ( BQnn [ 1 , 2 , 1 : j ] ) ∗dBQ [ 2 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 2 , 1 : j ] ) ∗dBQ [ 2 , 2 , 1 : j ] )

116 }

117 Pn<−array (NA, dim=c ( 2 , 2 ) )

118 Pn [ 1 , 1 ]<−Pnn [ 1 , 1 ] ∗P [ 1 , 1 ] + Pnn [ 1 , 2 ] ∗P [ 2 , 1 ]

119 Pn [ 1 , 2 ]<−Pnn [ 1 , 1 ] ∗P [ 1 , 2 ] + Pnn [ 1 , 2 ] ∗P [ 2 , 2 ]

120 Pn [ 2 , 1 ]<−Pnn [ 2 , 1 ] ∗P [ 1 , 1 ] + Pnn [ 2 , 2 ] ∗P [ 2 , 1 ]

121 Pn [ 2 , 2 ]<−Pnn [ 2 , 1 ] ∗P [ 1 , 2 ] + Pnn [ 2 , 2 ] ∗P [ 2 , 2 ]

122 BGn<−BQn [ , , r u n s x ] / Pn

123 dQn<−array (NA, dim=c ( 2 , 2 , runs −1) )

124 dQn [ 1 , 1 , ] <− d i f f (AQn[ 1 , 1 , ] ∗BGn [ 1 , 1 ] )

125 dQn [ 1 , 2 , ] <− d i f f (AQn[ 1 , 2 , ] ∗BGn [ 1 , 2 ] )

126 dQn [ 2 , 1 , ] <− d i f f (AQn[ 2 , 1 , ] ∗BGn [ 2 , 1 ] )
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127 dQn [ 2 , 2 , ] <− d i f f (AQn[ 2 , 2 , ] ∗BGn [ 2 , 2 ] )

128 dQn<−array ( c ( dQn , 0 , 0 , 0 , 0 ) , dim=c ( 2 , 2 , r u n s ) )

129 Mn[ 1 , 1 ]<−AQn[ 1 , 1 , r u n s ] ∗BGn[1 ,1]−sum ( rev (AH[ 1 , 1 , ] ) ∗dQn

[ 1 , 1 , ] )

130 Mn[ 1 , 2 ]<−AQn[ 1 , 2 , r u n s ] ∗BGn[1 ,2]−sum ( rev (AH[ 1 , 2 , ] ) ∗dQn

[ 1 , 2 , ] )

131 Mn[ 2 , 1 ]<−AQn[ 2 , 1 , r u n s ] ∗BGn[2 ,1]−sum ( rev (AH[ 1 , 1 , ] ) ∗dQn

[ 2 , 1 , ] )

132 Mn[ 2 , 2 ]<−AQn[ 2 , 2 , r u n s ] ∗BGn[2 ,2]−sum ( rev (AH[ 1 , 2 , ] ) ∗dQn

[ 2 , 2 , ] )

133

134 M<−M+Mn

135 AQnn<−AQn

136 BQnn<−BQn

137 Pnn<−Pn

138 i f ( mean (Mn)<1e−9 && t imes >40){break}

139 }

140 # #### s t a t i o n a r y p r o b a b i l i t y

141 p i 1<−817 / 879

142 p i 2<−62 / 879

143 i n f sum<−(M[ 1 , 1 ] +M[ 1 , 2 ] ) ∗ p i 1 +(M[ 2 , 1 ] +M[ 2 , 2 ] ) ∗ p i 2

144 r e s u l t i n f s u m<−c ( r e s u l t i n f s u m , in f sum )

145 p r i n t ( c ( seno , in f sum ) )

146 }

And finally obtain the price of the CAT bond for each payoff function.

1 bond1<−p r i c e C I R ∗ ( p+(1−p ) ∗ r e s u l t i n f s u m )

2 bond2<−p r i c e C I R ∗ ( 0 . 2 5 + 0 . 5 ∗ r e s u l t i n f s u m +0.25 ∗ r e s u l t i n f s u m

[ 1 : 2 0 ] )

3 bond3<−p r i c e C I R ∗ ( 1 + 0 . 1 ∗ r e s u l t i n f s u m )

4 bond4<−p r i c e C I R ∗ ( p+(1−p−0.1−p∗ 0 . 0 5 ) ∗ r e s u l t i n f s u m +p∗ 0 . 0 1 )
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5 # 3D p l o t o f t h e p r i c e i n t e r m s o f D and t , he re p l o t

bond1 as an example .

6 l i b r a r y ( l a t t i c e )

7 w i r e f r a m e ( bond1 ˜ myGrid$ t ∗ myGrid$D ,

8 s c a l e s = l i s t ( arrows = FALSE) ,

9 x l a b = ”T ( y e a r s ) ” , y l a b = ”D( $10 m i l l i o n ) ” , z l a b =”V( $ ) ” ,

10 d r a p e = TRUE, c o l o r k e y = TRUE,

11 s cr ee n = l i s t ( z = −45, x = −60) ,

12 )
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Appendix D

R Code For Chapter 5

1 r a t e 0 = 0 . 5 # r a t e o f P o i s s o n p r o c e s s i n s t a t e 0

2 r a t e 1 = 5 # r a t e o f P o i s s o n p r o c e s s i n s t a t e 1

3 r a t e 2 = 20 # r a t e o f P o i s s o n p r o c e s s i n s t a t e 2

4 r a t e 3 = 10 # r a t e o f P o i s s o n p r o c e s s i n s t a t e 3

5 r a t e 4 = 30 # r a t e o f P o i s s o n p r o c e s s i n s t a t e 4

6

7 # c l a i m s i z e d i s t r i b u t i o n

8 mulog1<−2 . 5

9 s igma log1<− 1 . 5

10 mulog2<− 3

11 s igma log2<−1 . 2

12 mulog3<−2

13 s igma log3<− 1

14 mulog4<−1

15 s igma log4<−0 . 8

16 P<−array ( c ( 0 . 1 9 9 , 0 . 5 , 0 . 2 , 0 . 3 , 0 . 1 , 0 . 0 9 8 , 0 . 1 , 0 . 2 ,

0 . 3 , 0 . 2 , 0 . 3 9 7 , 0 . 4 , 0 . 4 , 0 . 2 , 0 . 3 , 0 . 0 9 6 ) , dim=c ( 4 , 4 ) )

17 P0<−array ( c ( 0 . 0 0 1 , 0 . 0 0 2 , 0 . 0 0 3 , 0 . 0 0 4 ) , dim=c ( 4 , 1 ) )

18

19 # s t a t i o n a r y p r o b a b i l i t y
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20 p i 0<−0

21 p i 1<−0 .2642861

22 p i 2<−0 .1264328

23 p i 3<−0 .3476325

24 p i 4<−0 .2609975

25

26 t<−seq ( from = 0 . 5 , t o =2 , l e n g t h =7)

27 D<−seq ( from =100 , t o =1600 , l e n g t h . o u t =16)

28 myGrid <− data . frame ( expand . gr id ( t ,D) )

29 colnames ( myGrid ) <− c ( ” t ” , ”D” )

30 t a u<−myGrid$ t # t a u . . . ( T−t ) , t i m e t o m a t u r i t y

Here we obtain F1(t,D) and F2(t,D) given in Eq. (5.1) and (5.2), respectively.

1 r e s u l t i n f s u m 1<−c ( )

2 r e s u l t i n f s u m 2<−c ( )

3 d e l t a t<−0 .0002

4 d e l t a x<−0 . 5

5 f o r ( seno i n 1 : 1 1 2 )

6 {

7 D=myGrid [ seno , 2 ]

8 T=myGrid [ seno , 1 ]

9 r u n s<−f l o o r ( T / d e l t a t )

10 r u n s s<−r u n s ∗2+1

11 c h o i c e m i d d l e t<−seq ( 2 , r u n s s , by =2)

12 n o i n d e x t<−seq ( 1 , r u n s s , by =2)

13 t<−seq ( from =0 , t o =T , l e n g t h . o u t = r u n s s )

14 i n d e x t<−t [ n o i n d e x t ]

15 t<−t [ c h o i c e m i d d l e t ]

16 r u n s x<−f l o o r (D/ d e l t a x )

17 r u n s s x<−r u n s x ∗2+1

18 c h o i c e m i d d l e x<−seq ( 2 , runs sx , by =2)
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19 no indexx<−seq ( 1 , runs sx , by =2)

20 d<−seq ( from =0 , t o =D , l e n g t h . o u t = r u n s s x )

21 i n de xx<−d [ no indexx ]

22 d<−d [ c h o i c e m i d d l e x ]

23

24 # C o n d i t i o n a l p r o b a b i l i t y o f s o j o u r n t i m e m a t r i x AF

25 ag1<−pexp ( t , r a t e = r a t e 1 , lower . t a i l = TRUE, l o g . p =

FALSE)

26 ag2<−pexp ( t , r a t e = r a t e 2 , lower . t a i l = TRUE, l o g . p =

FALSE)

27 ag3<−pexp ( t , r a t e = r a t e 3 , lower . t a i l = TRUE, l o g . p =

FALSE)

28 ag4<−pexp ( t , r a t e = r a t e 4 , lower . t a i l = TRUE, l o g . p =

FALSE)

29 dag1<− pexp ( i n d e x t , r a t e = r a t e 1 , lower . t a i l = TRUE, l o g

. p = FALSE)

30 dag2<− pexp ( i n d e x t , r a t e = r a t e 2 , lower . t a i l = TRUE, l o g

. p = FALSE)

31 dag3<− pexp ( i n d e x t , r a t e = r a t e 3 , lower . t a i l = TRUE, l o g

. p = FALSE)

32 dag4<− pexp ( i n d e x t , r a t e = r a t e 4 , lower . t a i l = TRUE, l o g

. p = FALSE)

33 AG <−array (NA, dim=c ( 4 , 4 , r u n s ) )

34 AG[ 1 , 1 , ] <− ag1

35 AG[ 2 , 1 , ] <− ag2

36 AG[ 3 , 1 , ] <− ag3

37 AG[ 4 , 1 , ] <− ag4

38 AG[ 1 , 2 , ] <− ag1

39 AG[ 2 , 2 , ] <− ag2

40 AG[ 3 , 2 , ] <− ag3

41 AG[ 4 , 2 , ] <− ag4
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42 AG[ 1 , 3 , ] <− ag1

43 AG[ 2 , 3 , ] <− ag2

44 AG[ 3 , 3 , ] <− ag3

45 AG[ 4 , 3 , ] <− ag4

46 AG[ 1 , 4 , ] <− ag1

47 AG[ 2 , 4 , ] <− ag2

48 AG[ 3 , 4 , ] <− ag3

49 AG[ 4 , 4 , ] <− ag4

50 dAG <−array (NA, dim=c ( 4 , 4 , r u n s ) )

51 dAG[ 1 , 1 , ] <− d i f f ( dag1 )

52 dAG[ 2 , 1 , ] <− d i f f ( dag2 )

53 dAG[ 3 , 1 , ] <− d i f f ( dag3 )

54 dAG[ 4 , 1 , ] <− d i f f ( dag4 )

55 dAG[ 1 , 2 , ] <− d i f f ( dag1 )

56 dAG[ 2 , 2 , ] <− d i f f ( dag2 )

57 dAG[ 3 , 2 , ] <− d i f f ( dag3 )

58 dAG[ 4 , 2 , ] <− d i f f ( dag4 )

59 dAG[ 1 , 3 , ] <− d i f f ( dag1 )

60 dAG[ 2 , 3 , ] <− d i f f ( dag2 )

61 dAG[ 3 , 3 , ] <− d i f f ( dag3 )

62 dAG[ 4 , 3 , ] <− d i f f ( dag4 )

63 dAG[ 1 , 4 , ] <− d i f f ( dag1 )

64 dAG[ 2 , 4 , ] <− d i f f ( dag2 )

65 dAG[ 3 , 4 , ] <− d i f f ( dag3 )

66 dAG[ 4 , 4 , ] <− d i f f ( dag4 )

67 AQ<−array ( P , dim=c ( 4 , 4 , r u n s ) ) ∗AG

68 dAQ<−array ( P , dim=c ( 4 , 4 , r u n s ) ) ∗dAG

69

70 # C o n d i t i o n a l p r o b a b i l i t y o f c l a i m s i z e s m a t r i x BF

71 bg1<−plnorm ( d , mulog1 , s igma log1 )

72 bg2<−plnorm ( d , mulog2 , s igma log2 )
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73 bg3<−plnorm ( d , mulog3 , s igma log3 )

74 bg4<−plnorm ( d , mulog4 , s igma log4 )

75 BG <−array (NA, dim=c ( 4 , 4 , r u n s x ) )

76 BG[ 1 , 1 , ] <− bg1

77 BG[ 1 , 2 , ] <− bg2

78 BG[ 1 , 3 , ] <− bg3

79 BG[ 1 , 4 , ] <− bg4

80 BG[ 2 , 1 , ] <− bg1

81 BG[ 2 , 2 , ] <− bg2

82 BG[ 2 , 3 , ] <− bg3

83 BG[ 2 , 4 , ] <− bg4

84 BG[ 3 , 1 , ] <− bg1

85 BG[ 3 , 2 , ] <− bg2

86 BG[ 3 , 3 , ] <− bg3

87 BG[ 3 , 4 , ] <− bg4

88 BG[ 4 , 1 , ] <− bg1

89 BG[ 4 , 2 , ] <− bg2

90 BG[ 4 , 3 , ] <− bg3

91 BG[ 4 , 4 , ] <− bg4

92 dbg1<−plnorm ( indexx , mulog1 , s igma log1 )

93 dbg2<−plnorm ( indexx , mulog2 , s igma log2 )

94 dbg3<−plnorm ( indexx , mulog3 , s igma log3 )

95 dbg4<−plnorm ( indexx , mulog4 , s igma log4 )

96 dBG <−array (NA, dim=c ( 4 , 4 , r u n s x ) )

97 dBG [ 1 , 1 , ] <− d i f f ( dbg1 )

98 dBG [ 1 , 2 , ] <− d i f f ( dbg2 )

99 dBG [ 1 , 3 , ] <− d i f f ( dbg3 )

100 dBG [ 1 , 4 , ] <− d i f f ( dbg4 )

101 dBG [ 2 , 1 , ] <− d i f f ( dbg1 )

102 dBG [ 2 , 2 , ] <− d i f f ( dbg2 )

103 dBG [ 2 , 3 , ] <− d i f f ( dbg3 )
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104 dBG [ 2 , 4 , ] <− d i f f ( dbg4 )

105 dBG [ 3 , 1 , ] <− d i f f ( dbg1 )

106 dBG [ 3 , 2 , ] <− d i f f ( dbg2 )

107 dBG [ 3 , 3 , ] <− d i f f ( dbg3 )

108 dBG [ 3 , 4 , ] <− d i f f ( dbg4 )

109 dBG [ 4 , 1 , ] <− d i f f ( dbg1 )

110 dBG [ 4 , 2 , ] <− d i f f ( dbg2 )

111 dBG [ 4 , 3 , ] <− d i f f ( dbg3 )

112 dBG [ 4 , 4 , ] <− d i f f ( dbg4 )

113 BQ<−array ( P , dim=c ( 4 , 4 , r u n s x ) ) ∗BG

114 dBQ<−array ( P , dim=c ( 4 , 4 , r u n s x ) ) ∗dBG

115

116 # r e l a x t h e dependence on J n=j we need t h e AH

117 AH <−array (NA, dim=c ( 1 , 4 , r u n s ) )

118 AH[ 1 , 1 , ]<−pexp ( r a t e 1 ∗ t ) #P [ 1 , 1 , 1 ] ∗ pexp ( r a t e 1 ∗ t )+P [ 1 , 2 , 1 ] ∗

pexp ( r a t e 2 ∗ t )+P [ 1 , 3 , 1 ] ∗ pexp ( r a t e 2 ∗ t )+P [ 1 , 4 , 1 ] ∗ pexp (

r a t e 4 ∗ t )

119 AH[ 1 , 2 , ]<−pexp ( r a t e 2 ∗ t ) #P [ 2 , 1 , 1 ] ∗ pexp ( r a t e 1 ∗ t )+P [ 2 , 2 , 1 ] ∗

pexp ( r a t e 2 ∗ t )+P [ 2 , 3 , 1 ] ∗ pexp ( r a t e 2 ∗ t )+P [ 2 , 4 , 1 ] ∗ pexp (

r a t e 4 ∗ t )

120 AH[ 1 , 3 , ]<−pexp ( r a t e 3 ∗ t ) #P [ 3 , 1 , 1 ] ∗ pexp ( r a t e 1 ∗ t )+P [ 3 , 2 , 1 ] ∗

pexp ( r a t e 2 ∗ t )+P [ 3 , 3 , 1 ] ∗ pexp ( r a t e 2 ∗ t )+P [ 3 , 4 , 1 ] ∗ pexp (

r a t e 4 ∗ t )

121 AH[ 1 , 4 , ]<−pexp ( r a t e 4 ∗ t ) #P [ 4 , 1 , 1 ] ∗ pexp ( r a t e 1 ∗ t )+P [ 4 , 2 , 1 ] ∗

pexp ( r a t e 2 ∗ t )+P [ 4 , 3 , 1 ] ∗ pexp ( r a t e 2 ∗ t )+P [ 4 , 4 , 1 ] ∗ pexp (

r a t e 4 ∗ t )

122

123 # ######## n=0− t i m e s c o n v o l u t i o n

124 M0<−array ( 0 , dim=c ( 4 , 4 ) ) # s t a t e i n J ’

125 M<−M0

126 F20<−array ( 0 , dim=c ( 4 , 1 ) ) # from i t o s t a t e 0
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127 F2<−F20

128 # ############# n=1

129 dQn<−array (NA, dim=c ( 4 , 4 , runs −1) )

130 dQn [ 1 , 1 , ] <− d i f f (AQ[ 1 , 1 , ] ∗BG[ 1 , 1 , r u n s x ] )

131 dQn [ 1 , 2 , ] <− d i f f (AQ[ 1 , 2 , ] ∗BG[ 1 , 2 , r u n s x ] )

132 dQn [ 1 , 3 , ] <− d i f f (AQ[ 1 , 3 , ] ∗BG[ 1 , 3 , r u n s x ] )

133 dQn [ 1 , 4 , ] <− d i f f (AQ[ 1 , 4 , ] ∗BG[ 1 , 4 , r u n s x ] )

134 dQn [ 2 , 1 , ] <− d i f f (AQ[ 2 , 1 , ] ∗BG[ 2 , 1 , r u n s x ] )

135 dQn [ 2 , 2 , ] <− d i f f (AQ[ 2 , 2 , ] ∗BG[ 2 , 2 , r u n s x ] )

136 dQn [ 2 , 3 , ] <− d i f f (AQ[ 2 , 3 , ] ∗BG[ 2 , 3 , r u n s x ] )

137 dQn [ 2 , 4 , ] <− d i f f (AQ[ 2 , 4 , ] ∗BG[ 2 , 4 , r u n s x ] )

138 dQn [ 3 , 1 , ] <− d i f f (AQ[ 3 , 1 , ] ∗BG[ 3 , 1 , r u n s x ] )

139 dQn [ 3 , 2 , ] <− d i f f (AQ[ 3 , 2 , ] ∗BG[ 3 , 2 , r u n s x ] )

140 dQn [ 3 , 3 , ] <− d i f f (AQ[ 3 , 3 , ] ∗BG[ 3 , 3 , r u n s x ] )

141 dQn [ 3 , 4 , ] <− d i f f (AQ[ 3 , 4 , ] ∗BG[ 3 , 4 , r u n s x ] )

142 dQn [ 4 , 1 , ] <− d i f f (AQ[ 4 , 1 , ] ∗BG[ 4 , 1 , r u n s x ] )

143 dQn [ 4 , 2 , ] <− d i f f (AQ[ 4 , 2 , ] ∗BG[ 4 , 2 , r u n s x ] )

144 dQn [ 4 , 3 , ] <− d i f f (AQ[ 4 , 3 , ] ∗BG[ 4 , 3 , r u n s x ] )

145 dQn [ 4 , 4 , ] <− d i f f (AQ[ 4 , 4 , ] ∗BG[ 4 , 4 , r u n s x ] )

146 dQn<−array ( c ( dQn , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , dim=

c ( 4 , 4 , r u n s ) )

147 M1<−array ( 0 , dim=c ( 4 , 4 ) )

148 M1[ 1 , 1 ]<−AQ[ 1 , 1 , r u n s ] ∗BG[ 1 , 1 , r u n s x ]−sum ( rev (AH[ 1 , 1 , ] ) ∗dQn

[ 1 , 1 , ] )

149 M1[ 1 , 2 ]<−AQ[ 1 , 2 , r u n s ] ∗BG[ 1 , 2 , r u n s x ]−sum ( rev (AH[ 1 , 2 , ] ) ∗dQn

[ 1 , 2 , ] )

150 M1[ 1 , 3 ]<−AQ[ 1 , 3 , r u n s ] ∗BG[ 1 , 3 , r u n s x ]−sum ( rev (AH[ 1 , 3 , ] ) ∗dQn

[ 1 , 3 , ] )

151 M1[ 1 , 4 ]<−AQ[ 1 , 4 , r u n s ] ∗BG[ 1 , 4 , r u n s x ]−sum ( rev (AH[ 1 , 4 , ] ) ∗dQn

[ 1 , 4 , ] )
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152 M1[ 2 , 1 ]<−AQ[ 2 , 1 , r u n s ] ∗BG[ 2 , 1 , r u n s x ]−sum ( rev (AH[ 1 , 1 , ] ) ∗dQn

[ 2 , 1 , ] )

153 M1[ 2 , 2 ]<−AQ[ 2 , 2 , r u n s ] ∗BG[ 2 , 2 , r u n s x ]−sum ( rev (AH[ 1 , 2 , ] ) ∗dQn

[ 2 , 2 , ] )

154 M1[ 2 , 3 ]<−AQ[ 2 , 3 , r u n s ] ∗BG[ 2 , 3 , r u n s x ]−sum ( rev (AH[ 1 , 3 , ] ) ∗dQn

[ 2 , 3 , ] )

155 M1[ 2 , 4 ]<−AQ[ 2 , 4 , r u n s ] ∗BG[ 2 , 4 , r u n s x ]−sum ( rev (AH[ 1 , 4 , ] ) ∗dQn

[ 2 , 4 , ] )

156 M1[ 3 , 1 ]<−AQ[ 3 , 1 , r u n s ] ∗BG[ 3 , 1 , r u n s x ]−sum ( rev (AH[ 1 , 1 , ] ) ∗dQn

[ 3 , 1 , ] )

157 M1[ 3 , 2 ]<−AQ[ 3 , 2 , r u n s ] ∗BG[ 3 , 2 , r u n s x ]−sum ( rev (AH[ 1 , 2 , ] ) ∗dQn

[ 3 , 2 , ] )

158 M1[ 3 , 3 ]<−AQ[ 3 , 3 , r u n s ] ∗BG[ 3 , 3 , r u n s x ]−sum ( rev (AH[ 1 , 3 , ] ) ∗dQn

[ 3 , 3 , ] )

159 M1[ 3 , 4 ]<−AQ[ 3 , 4 , r u n s ] ∗BG[ 3 , 4 , r u n s x ]−sum ( rev (AH[ 1 , 4 , ] ) ∗dQn

[ 3 , 4 , ] )

160 M1[ 4 , 1 ]<−AQ[ 4 , 1 , r u n s ] ∗BG[ 4 , 1 , r u n s x ]−sum ( rev (AH[ 1 , 1 , ] ) ∗dQn

[ 4 , 1 , ] )

161 M1[ 4 , 2 ]<−AQ[ 4 , 2 , r u n s ] ∗BG[ 4 , 2 , r u n s x ]−sum ( rev (AH[ 1 , 2 , ] ) ∗dQn

[ 4 , 2 , ] )

162 M1[ 4 , 3 ]<−AQ[ 4 , 3 , r u n s ] ∗BG[ 4 , 3 , r u n s x ]−sum ( rev (AH[ 1 , 3 , ] ) ∗dQn

[ 4 , 3 , ] )

163 M1[ 4 , 4 ]<−AQ[ 4 , 4 , r u n s ] ∗BG[ 4 , 4 , r u n s x ]−sum ( rev (AH[ 1 , 4 , ] ) ∗dQn

[ 4 , 4 , ] )

164 M<−M+M1

165 F21 <−array (NA, dim=c ( 4 , 1 ) )

166 F21 [ 1 , 1 ]<−ag1 [ r u n s ] ∗P0 [ 1 , 1 ]

167 F21 [ 2 , 1 ]<−ag2 [ r u n s ] ∗P0 [ 2 , 1 ]

168 F21 [ 3 , 1 ]<−ag3 [ r u n s ] ∗P0 [ 3 , 1 ]

169 F21 [ 4 , 1 ]<−ag4 [ r u n s ] ∗P0 [ 4 , 1 ]

170 F2<−F2+F21
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171 dF2<−array (NA, dim=c ( 4 , 1 , r u n s ) )

172 dF2 [ 1 , 1 , ]<−d i f f ( dag1∗P0 [ 1 , 1 ] )

173 dF2 [ 2 , 1 , ]<−d i f f ( dag2∗P0 [ 2 , 1 ] )

174 dF2 [ 3 , 1 , ]<−d i f f ( dag3∗P0 [ 3 , 1 ] )

175 dF2 [ 4 , 1 , ]<−d i f f ( dag4∗P0 [ 4 , 1 ] )

176 # ############# n=n

177 AQnn<−AQ

178 BQnn<−BQ

179 Pnn<−P

180 n f o l d t i m e s<−200

181 f o r ( t i m e s i n 1 : n f o l d t i m e s )

182 {

183 AQn<−array ( 0 , dim=c ( 4 , 4 , r u n s ) )

184 BQn<−array ( 0 , dim=c ( 4 , 4 , r u n s x ) )

185 Pn<−array (NA, dim=c ( 4 , 4 ) )

186 Mn<−array ( 0 , dim=c ( 4 , 4 ) )

187 F2n<−array ( 0 , dim=c ( 4 , 1 ) )

188

189 # f o r t h e case o f jump i n t o s t a t e 0

190 F2n [ 1 , 1 ]<−sum ( rev (AQnn [ 1 , 1 , 1 : r u n s ] ∗ ( BQnn [ 1 , 1 , r u n s x ] / Pnn

[ 1 , 1 ] ) ) ∗dF2 [ 1 , 1 , 1 : r u n s ]+ rev (AQnn [ 1 , 2 , 1 : r u n s ] ∗ ( BQnn

[ 1 , 2 , r u n s x ] / Pnn [ 1 , 2 ] ) ) ∗dF2 [ 2 , 1 , 1 : r u n s ]

191 +rev (AQnn [ 1 , 3 , 1 : r u n s ] ∗ ( BQnn [ 1 , 3 , r u n s x ] / Pnn [ 1 , 3 ] ) ) ∗dF2

[ 3 , 1 , 1 : r u n s ]+ rev (AQnn [ 1 , 4 , 1 : r u n s ] ∗ ( BQnn [ 1 , 4 , r u n s x ] /

Pnn [ 1 , 4 ] ) ) ∗dF2 [ 4 , 1 , 1 : r u n s ] )

192 F2n [ 2 , 1 ]<−sum ( rev (AQnn [ 2 , 1 , 1 : r u n s ] ∗ ( BQnn [ 2 , 1 , r u n s x ] / Pnn

[ 2 , 1 ] ) ) ∗dF2 [ 1 , 1 , 1 : r u n s ]+ rev (AQnn [ 2 , 2 , 1 : r u n s ] ∗ ( BQnn

[ 2 , 2 , r u n s x ] / Pnn [ 2 , 2 ] ) ) ∗dF2 [ 2 , 1 , 1 : r u n s ]

193 +rev (AQnn [ 2 , 3 , 1 : r u n s ] ∗ ( BQnn [ 2 , 3 , r u n s x ] / Pnn [ 2 , 3 ] ) ) ∗dF2

[ 3 , 1 , 1 : r u n s ]+ rev (AQnn [ 2 , 4 , 1 : r u n s ] ∗ ( BQnn [ 2 , 4 , r u n s x ] /

Pnn [ 2 , 4 ] ) ) ∗dF2 [ 4 , 1 , 1 : r u n s ] )
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194 F2n [ 3 , 1 ]<−sum ( rev (AQnn [ 3 , 1 , 1 : r u n s ] ∗ ( BQnn [ 3 , 1 , r u n s x ] / Pnn

[ 3 , 1 ] ) ) ∗dF2 [ 1 , 1 , 1 : r u n s ]+ rev (AQnn [ 3 , 2 , 1 : r u n s ] ∗ ( BQnn

[ 3 , 2 , r u n s x ] / Pnn [ 3 , 2 ] ) ) ∗dF2 [ 2 , 1 , 1 : r u n s ]

195 +rev (AQnn [ 3 , 3 , 1 : r u n s ] ∗ ( BQnn [ 3 , 3 , r u n s x ] / Pnn [ 3 , 3 ] ) ) ∗dF2

[ 3 , 1 , 1 : r u n s ]+ rev (AQnn [ 3 , 4 , 1 : r u n s ] ∗ ( BQnn [ 3 , 4 , r u n s x ] /

Pnn [ 3 , 4 ] ) ) ∗dF2 [ 4 , 1 , 1 : r u n s ] )

196 F2n [ 4 , 1 ]<−sum ( rev (AQnn [ 4 , 1 , 1 : r u n s ] ∗ ( BQnn [ 4 , 1 , r u n s x ] / Pnn

[ 4 , 1 ] ) ) ∗dF2 [ 1 , 1 , 1 : r u n s ]+ rev (AQnn [ 4 , 2 , 1 : r u n s ] ∗ ( BQnn

[ 4 , 2 , r u n s x ] / Pnn [ 4 , 2 ] ) ) ∗dF2 [ 2 , 1 , 1 : r u n s ]

197 +rev (AQnn [ 4 , 3 , 1 : r u n s ] ∗ ( BQnn [ 4 , 3 , r u n s x ] / Pnn [ 4 , 3 ] ) ) ∗dF2

[ 3 , 1 , 1 : r u n s ]+ rev (AQnn [ 4 , 4 , 1 : r u n s ] ∗ ( BQnn [ 4 , 4 , r u n s x ] /

Pnn [ 4 , 4 ] ) ) ∗dF2 [ 4 , 1 , 1 : r u n s ] )

198 f o r ( j i n 1 : r u n s )

199 {

200 AQn[ 1 , 1 , j ]<−sum ( rev (AQnn [ 1 , 1 , 1 : j ] ) ∗dAQ[ 1 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 1 , 1 : j ] ) ∗dAQ[ 1 , 2 , 1 : j ]+ rev (AQnn [ 3 , 1 , 1 : j ] ) ∗dAQ[ 1 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 1 , 1 : j ] ) ∗dAQ[ 1 , 4 , 1 : j ] )

201 AQn[ 1 , 2 , j ]<−sum ( rev (AQnn [ 1 , 2 , 1 : j ] ) ∗dAQ[ 1 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 2 , 1 : j ] ) ∗dAQ[ 1 , 2 , 1 : j ]+ rev (AQnn [ 3 , 2 , 1 : j ] ) ∗dAQ[ 1 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 2 , 1 : j ] ) ∗dAQ[ 1 , 4 , 1 : j ] )

202 AQn[ 1 , 3 , j ]<−sum ( rev (AQnn [ 1 , 3 , 1 : j ] ) ∗dAQ[ 1 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 3 , 1 : j ] ) ∗dAQ[ 1 , 2 , 1 : j ]+ rev (AQnn [ 3 , 3 , 1 : j ] ) ∗dAQ[ 1 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 3 , 1 : j ] ) ∗dAQ[ 1 , 4 , 1 : j ] )

203 AQn[ 1 , 4 , j ]<−sum ( rev (AQnn [ 1 , 4 , 1 : j ] ) ∗dAQ[ 1 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 4 , 1 : j ] ) ∗dAQ[ 1 , 2 , 1 : j ]+ rev (AQnn [ 3 , 4 , 1 : j ] ) ∗dAQ[ 1 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 4 , 1 : j ] ) ∗dAQ[ 1 , 4 , 1 : j ] )

204

205 AQn[ 2 , 1 , j ]<−sum ( rev (AQnn [ 1 , 1 , 1 : j ] ) ∗dAQ[ 2 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 1 , 1 : j ] ) ∗dAQ[ 2 , 2 , 1 : j ]+ rev (AQnn [ 3 , 1 , 1 : j ] ) ∗dAQ[ 2 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 1 , 1 : j ] ) ∗dAQ[ 2 , 4 , 1 : j ] )
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206 AQn[ 2 , 2 , j ]<−sum ( rev (AQnn [ 1 , 2 , 1 : j ] ) ∗dAQ[ 2 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 2 , 1 : j ] ) ∗dAQ[ 2 , 2 , 1 : j ]+ rev (AQnn [ 3 , 2 , 1 : j ] ) ∗dAQ[ 2 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 2 , 1 : j ] ) ∗dAQ[ 2 , 4 , 1 : j ] )

207 AQn[ 2 , 3 , j ]<−sum ( rev (AQnn [ 1 , 3 , 1 : j ] ) ∗dAQ[ 2 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 3 , 1 : j ] ) ∗dAQ[ 2 , 2 , 1 : j ]+ rev (AQnn [ 3 , 3 , 1 : j ] ) ∗dAQ[ 2 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 3 , 1 : j ] ) ∗dAQ[ 2 , 4 , 1 : j ] )

208 AQn[ 2 , 4 , j ]<−sum ( rev (AQnn [ 1 , 4 , 1 : j ] ) ∗dAQ[ 2 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 4 , 1 : j ] ) ∗dAQ[ 2 , 2 , 1 : j ]+ rev (AQnn [ 3 , 4 , 1 : j ] ) ∗dAQ[ 2 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 4 , 1 : j ] ) ∗dAQ[ 2 , 4 , 1 : j ] )

209

210 AQn[ 3 , 1 , j ]<−sum ( rev (AQnn [ 1 , 1 , 1 : j ] ) ∗dAQ[ 3 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 1 , 1 : j ] ) ∗dAQ[ 3 , 2 , 1 : j ]+ rev (AQnn [ 3 , 1 , 1 : j ] ) ∗dAQ[ 3 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 1 , 1 : j ] ) ∗dAQ[ 3 , 4 , 1 : j ] )

211 AQn[ 3 , 2 , j ]<−sum ( rev (AQnn [ 1 , 2 , 1 : j ] ) ∗dAQ[ 3 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 2 , 1 : j ] ) ∗dAQ[ 3 , 2 , 1 : j ]+ rev (AQnn [ 3 , 2 , 1 : j ] ) ∗dAQ[ 3 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 2 , 1 : j ] ) ∗dAQ[ 3 , 4 , 1 : j ] )

212 AQn[ 3 , 3 , j ]<−sum ( rev (AQnn [ 1 , 3 , 1 : j ] ) ∗dAQ[ 3 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 3 , 1 : j ] ) ∗dAQ[ 3 , 2 , 1 : j ]+ rev (AQnn [ 3 , 3 , 1 : j ] ) ∗dAQ[ 3 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 3 , 1 : j ] ) ∗dAQ[ 3 , 4 , 1 : j ] )

213 AQn[ 3 , 4 , j ]<−sum ( rev (AQnn [ 1 , 4 , 1 : j ] ) ∗dAQ[ 3 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 4 , 1 : j ] ) ∗dAQ[ 3 , 2 , 1 : j ]+ rev (AQnn [ 3 , 4 , 1 : j ] ) ∗dAQ[ 3 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 4 , 1 : j ] ) ∗dAQ[ 3 , 4 , 1 : j ] )

214

215 AQn[ 4 , 1 , j ]<−sum ( rev (AQnn [ 1 , 1 , 1 : j ] ) ∗dAQ[ 4 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 1 , 1 : j ] ) ∗dAQ[ 4 , 2 , 1 : j ]+ rev (AQnn [ 3 , 1 , 1 : j ] ) ∗dAQ[ 4 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 1 , 1 : j ] ) ∗dAQ[ 4 , 4 , 1 : j ] )

216 AQn[ 4 , 2 , j ]<−sum ( rev (AQnn [ 1 , 2 , 1 : j ] ) ∗dAQ[ 4 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 2 , 1 : j ] ) ∗dAQ[ 4 , 2 , 1 : j ]+ rev (AQnn [ 3 , 2 , 1 : j ] ) ∗dAQ[ 4 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 2 , 1 : j ] ) ∗dAQ[ 4 , 4 , 1 : j ] )

217 AQn[ 4 , 3 , j ]<−sum ( rev (AQnn [ 1 , 3 , 1 : j ] ) ∗dAQ[ 4 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 3 , 1 : j ] ) ∗dAQ[ 4 , 2 , 1 : j ]+ rev (AQnn [ 3 , 3 , 1 : j ] ) ∗dAQ[ 4 , 3 , 1 :
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j ]+ rev (AQnn [ 4 , 3 , 1 : j ] ) ∗dAQ[ 4 , 4 , 1 : j ] )

218 AQn[ 4 , 4 , j ]<−sum ( rev (AQnn [ 1 , 4 , 1 : j ] ) ∗dAQ[ 4 , 1 , 1 : j ]+ rev (AQnn

[ 2 , 4 , 1 : j ] ) ∗dAQ[ 4 , 2 , 1 : j ]+ rev (AQnn [ 3 , 4 , 1 : j ] ) ∗dAQ[ 4 , 3 , 1 :

j ]+ rev (AQnn [ 4 , 4 , 1 : j ] ) ∗dAQ[ 4 , 4 , 1 : j ] )

219 }

220 f o r ( j i n 1 : r u n s x )

221 {

222 BQn[ 1 , 1 , j ]<−sum ( rev ( BQnn [ 1 , 1 , 1 : j ] ) ∗dBQ [ 1 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 1 , 1 : j ] ) ∗dBQ [ 1 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 1 , 1 : j ] ) ∗dBQ [ 1 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 1 , 1 : j ] ) ∗dBQ [ 1 , 4 , 1 : j ] )

223 BQn[ 1 , 2 , j ]<−sum ( rev ( BQnn [ 1 , 2 , 1 : j ] ) ∗dBQ [ 1 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 2 , 1 : j ] ) ∗dBQ [ 1 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 2 , 1 : j ] ) ∗dBQ [ 1 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 2 , 1 : j ] ) ∗dBQ [ 1 , 4 , 1 : j ] )

224 BQn[ 1 , 3 , j ]<−sum ( rev ( BQnn [ 1 , 3 , 1 : j ] ) ∗dBQ [ 1 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 3 , 1 : j ] ) ∗dBQ [ 1 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 3 , 1 : j ] ) ∗dBQ [ 1 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 3 , 1 : j ] ) ∗dBQ [ 1 , 4 , 1 : j ] )

225 BQn[ 1 , 4 , j ]<−sum ( rev ( BQnn [ 1 , 4 , 1 : j ] ) ∗dBQ [ 1 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 4 , 1 : j ] ) ∗dBQ [ 1 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 4 , 1 : j ] ) ∗dBQ [ 1 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 4 , 1 : j ] ) ∗dBQ [ 1 , 4 , 1 : j ] )

226

227 BQn[ 2 , 1 , j ]<−sum ( rev ( BQnn [ 1 , 1 , 1 : j ] ) ∗dBQ [ 2 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 1 , 1 : j ] ) ∗dBQ [ 2 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 1 , 1 : j ] ) ∗dBQ [ 2 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 1 , 1 : j ] ) ∗dBQ [ 2 , 4 , 1 : j ] )

228 BQn[ 2 , 2 , j ]<−sum ( rev ( BQnn [ 1 , 2 , 1 : j ] ) ∗dBQ [ 2 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 2 , 1 : j ] ) ∗dBQ [ 2 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 2 , 1 : j ] ) ∗dBQ [ 2 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 2 , 1 : j ] ) ∗dBQ [ 2 , 4 , 1 : j ] )

229 BQn[ 2 , 3 , j ]<−sum ( rev ( BQnn [ 1 , 3 , 1 : j ] ) ∗dBQ [ 2 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 3 , 1 : j ] ) ∗dBQ [ 2 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 3 , 1 : j ] ) ∗dBQ [ 2 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 3 , 1 : j ] ) ∗dBQ [ 2 , 4 , 1 : j ] )

230 BQn[ 2 , 4 , j ]<−sum ( rev ( BQnn [ 1 , 4 , 1 : j ] ) ∗dBQ [ 2 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 4 , 1 : j ] ) ∗dBQ [ 2 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 4 , 1 : j ] ) ∗dBQ [ 2 , 3 , 1 :
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j ]+ rev ( BQnn [ 4 , 4 , 1 : j ] ) ∗dBQ [ 2 , 4 , 1 : j ] )

231

232 BQn[ 3 , 1 , j ]<−sum ( rev ( BQnn [ 1 , 1 , 1 : j ] ) ∗dBQ [ 3 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 1 , 1 : j ] ) ∗dBQ [ 3 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 1 , 1 : j ] ) ∗dBQ [ 3 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 1 , 1 : j ] ) ∗dBQ [ 3 , 4 , 1 : j ] )

233 BQn[ 3 , 2 , j ]<−sum ( rev ( BQnn [ 1 , 2 , 1 : j ] ) ∗dBQ [ 3 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 2 , 1 : j ] ) ∗dBQ [ 3 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 2 , 1 : j ] ) ∗dBQ [ 3 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 2 , 1 : j ] ) ∗dBQ [ 3 , 4 , 1 : j ] )

234 BQn[ 3 , 3 , j ]<−sum ( rev ( BQnn [ 1 , 3 , 1 : j ] ) ∗dBQ [ 3 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 3 , 1 : j ] ) ∗dBQ [ 3 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 3 , 1 : j ] ) ∗dBQ [ 3 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 3 , 1 : j ] ) ∗dBQ [ 3 , 4 , 1 : j ] )

235 BQn[ 3 , 4 , j ]<−sum ( rev ( BQnn [ 1 , 4 , 1 : j ] ) ∗dBQ [ 3 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 4 , 1 : j ] ) ∗dBQ [ 3 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 4 , 1 : j ] ) ∗dBQ [ 3 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 4 , 1 : j ] ) ∗dBQ [ 3 , 4 , 1 : j ] )

236

237 BQn[ 4 , 1 , j ]<−sum ( rev ( BQnn [ 1 , 1 , 1 : j ] ) ∗dBQ [ 4 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 1 , 1 : j ] ) ∗dBQ [ 4 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 1 , 1 : j ] ) ∗dBQ [ 4 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 1 , 1 : j ] ) ∗dBQ [ 4 , 4 , 1 : j ] )

238 BQn[ 4 , 2 , j ]<−sum ( rev ( BQnn [ 1 , 2 , 1 : j ] ) ∗dBQ [ 4 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 2 , 1 : j ] ) ∗dBQ [ 4 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 2 , 1 : j ] ) ∗dBQ [ 4 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 2 , 1 : j ] ) ∗dBQ [ 4 , 4 , 1 : j ] )

239 BQn[ 4 , 3 , j ]<−sum ( rev ( BQnn [ 1 , 3 , 1 : j ] ) ∗dBQ [ 4 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 3 , 1 : j ] ) ∗dBQ [ 4 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 3 , 1 : j ] ) ∗dBQ [ 4 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 3 , 1 : j ] ) ∗dBQ [ 4 , 4 , 1 : j ] )

240 BQn[ 4 , 4 , j ]<−sum ( rev ( BQnn [ 1 , 4 , 1 : j ] ) ∗dBQ [ 4 , 1 , 1 : j ]+ rev ( BQnn

[ 2 , 4 , 1 : j ] ) ∗dBQ [ 4 , 2 , 1 : j ]+ rev ( BQnn [ 3 , 4 , 1 : j ] ) ∗dBQ [ 4 , 3 , 1 :

j ]+ rev ( BQnn [ 4 , 4 , 1 : j ] ) ∗dBQ [ 4 , 4 , 1 : j ] )

241 }

242 Pn [ 1 , 1 ]<−Pnn [ 1 , 1 ] ∗P [ 1 , 1 ] + Pnn [ 1 , 2 ] ∗P [ 2 , 1 ] + Pnn [ 1 , 3 ] ∗P [ 3 , 1 ] +

Pnn [ 1 , 4 ] ∗P [ 4 , 1 ]
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243 Pn [ 1 , 2 ]<−Pnn [ 1 , 1 ] ∗P [ 1 , 2 ] + Pnn [ 1 , 2 ] ∗P [ 2 , 2 ] + Pnn [ 1 , 3 ] ∗P [ 3 , 2 ] +

Pnn [ 1 , 4 ] ∗P [ 4 , 2 ]

244 Pn [ 1 , 3 ]<−Pnn [ 1 , 1 ] ∗P [ 1 , 3 ] + Pnn [ 1 , 2 ] ∗P [ 2 , 3 ] + Pnn [ 1 , 3 ] ∗P [ 3 , 3 ] +

Pnn [ 1 , 4 ] ∗P [ 4 , 3 ]

245 Pn [ 1 , 4 ]<−Pnn [ 1 , 1 ] ∗P [ 1 , 4 ] + Pnn [ 1 , 2 ] ∗P [ 2 , 4 ] + Pnn [ 1 , 3 ] ∗P [ 3 , 4 ] +

Pnn [ 1 , 4 ] ∗P [ 4 , 4 ]

246

247 Pn [ 2 , 1 ]<−Pnn [ 2 , 1 ] ∗P [ 1 , 1 ] + Pnn [ 2 , 2 ] ∗P [ 2 , 1 ] + Pnn [ 2 , 3 ] ∗P [ 3 , 1 ] +

Pnn [ 2 , 4 ] ∗P [ 4 , 1 ]

248 Pn [ 2 , 2 ]<−Pnn [ 2 , 1 ] ∗P [ 1 , 2 ] + Pnn [ 2 , 2 ] ∗P [ 2 , 2 ] + Pnn [ 2 , 3 ] ∗P [ 3 , 2 ] +

Pnn [ 2 , 4 ] ∗P [ 4 , 2 ]

249 Pn [ 2 , 3 ]<−Pnn [ 2 , 1 ] ∗P [ 1 , 3 ] + Pnn [ 2 , 2 ] ∗P [ 2 , 3 ] + Pnn [ 2 , 3 ] ∗P [ 3 , 3 ] +

Pnn [ 2 , 4 ] ∗P [ 4 , 3 ]

250 Pn [ 2 , 4 ]<−Pnn [ 2 , 1 ] ∗P [ 1 , 4 ] + Pnn [ 2 , 2 ] ∗P [ 2 , 4 ] + Pnn [ 2 , 3 ] ∗P [ 3 , 4 ] +

Pnn [ 2 , 4 ] ∗P [ 4 , 4 ]

251

252 Pn [ 3 , 1 ]<−Pnn [ 3 , 1 ] ∗P [ 1 , 1 ] + Pnn [ 3 , 2 ] ∗P [ 2 , 1 ] + Pnn [ 3 , 3 ] ∗P [ 3 , 1 ] +

Pnn [ 3 , 4 ] ∗P [ 4 , 1 ]

253 Pn [ 3 , 2 ]<−Pnn [ 3 , 1 ] ∗P [ 1 , 2 ] + Pnn [ 3 , 2 ] ∗P [ 2 , 2 ] + Pnn [ 3 , 3 ] ∗P [ 3 , 2 ] +

Pnn [ 3 , 4 ] ∗P [ 4 , 2 ]

254 Pn [ 3 , 3 ]<−Pnn [ 3 , 1 ] ∗P [ 1 , 3 ] + Pnn [ 3 , 2 ] ∗P [ 2 , 3 ] + Pnn [ 3 , 3 ] ∗P [ 3 , 3 ] +

Pnn [ 3 , 4 ] ∗P [ 4 , 3 ]

255 Pn [ 3 , 4 ]<−Pnn [ 3 , 1 ] ∗P [ 1 , 4 ] + Pnn [ 3 , 2 ] ∗P [ 2 , 4 ] + Pnn [ 3 , 3 ] ∗P [ 3 , 4 ] +

Pnn [ 3 , 4 ] ∗P [ 4 , 4 ]

256

257 Pn [ 4 , 1 ]<−Pnn [ 4 , 1 ] ∗P [ 1 , 1 ] + Pnn [ 4 , 2 ] ∗P [ 2 , 1 ] + Pnn [ 4 , 3 ] ∗P [ 3 , 1 ] +

Pnn [ 4 , 4 ] ∗P [ 4 , 1 ]

258 Pn [ 4 , 2 ]<−Pnn [ 4 , 1 ] ∗P [ 1 , 2 ] + Pnn [ 4 , 2 ] ∗P [ 2 , 2 ] + Pnn [ 4 , 3 ] ∗P [ 3 , 2 ] +

Pnn [ 4 , 4 ] ∗P [ 4 , 2 ]

259 Pn [ 4 , 3 ]<−Pnn [ 4 , 1 ] ∗P [ 1 , 3 ] + Pnn [ 4 , 2 ] ∗P [ 2 , 3 ] + Pnn [ 4 , 3 ] ∗P [ 3 , 3 ] +

Pnn [ 4 , 4 ] ∗P [ 4 , 3 ]
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260 Pn [ 4 , 4 ]<−Pnn [ 4 , 1 ] ∗P [ 1 , 4 ] + Pnn [ 4 , 2 ] ∗P [ 2 , 4 ] + Pnn [ 4 , 3 ] ∗P [ 3 , 4 ] +

Pnn [ 4 , 4 ] ∗P [ 4 , 4 ]

261 BGn<−BQn [ , , r u n s x ] / Pn

262 dQn<−array (NA, dim=c ( 4 , 4 , runs −1) )

263 dQn [ 1 , 1 , ] <− d i f f (AQn[ 1 , 1 , ] ∗BGn [ 1 , 1 ] )

264 dQn [ 1 , 2 , ] <− d i f f (AQn[ 1 , 2 , ] ∗BGn [ 1 , 2 ] )

265 dQn [ 1 , 3 , ] <− d i f f (AQn[ 1 , 3 , ] ∗BGn [ 1 , 3 ] )

266 dQn [ 1 , 4 , ] <− d i f f (AQn[ 1 , 4 , ] ∗BGn [ 1 , 4 ] )

267 dQn [ 2 , 1 , ] <− d i f f (AQn[ 2 , 1 , ] ∗BGn [ 2 , 1 ] )

268 dQn [ 2 , 2 , ] <− d i f f (AQn[ 2 , 2 , ] ∗BGn [ 2 , 2 ] )

269 dQn [ 2 , 3 , ] <− d i f f (AQn[ 2 , 3 , ] ∗BGn [ 2 , 3 ] )

270 dQn [ 2 , 4 , ] <− d i f f (AQn[ 2 , 4 , ] ∗BGn [ 2 , 4 ] )

271 dQn [ 3 , 1 , ] <− d i f f (AQn[ 3 , 1 , ] ∗BGn [ 3 , 1 ] )

272 dQn [ 3 , 2 , ] <− d i f f (AQn[ 3 , 2 , ] ∗BGn [ 3 , 2 ] )

273 dQn [ 3 , 3 , ] <− d i f f (AQn[ 3 , 3 , ] ∗BGn [ 3 , 3 ] )

274 dQn [ 3 , 4 , ] <− d i f f (AQn[ 3 , 4 , ] ∗BGn [ 3 , 4 ] )

275 dQn [ 4 , 1 , ] <− d i f f (AQn[ 4 , 1 , ] ∗BGn [ 4 , 1 ] )

276 dQn [ 4 , 2 , ] <− d i f f (AQn[ 4 , 2 , ] ∗BGn [ 4 , 2 ] )

277 dQn [ 4 , 3 , ] <− d i f f (AQn[ 4 , 3 , ] ∗BGn [ 4 , 3 ] )

278 dQn [ 4 , 4 , ] <− d i f f (AQn[ 4 , 4 , ] ∗BGn [ 4 , 4 ] )

279 dQn<−array ( c ( dQn , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , dim=

c ( 4 , 4 , r u n s ) )

280

281 Mn[ 1 , 1 ]<−AQn[ 1 , 1 , r u n s ] ∗BGn[1 ,1]−sum ( rev (AH[ 1 , 1 , ] ) ∗dQn

[ 1 , 1 , ] )

282 Mn[ 1 , 2 ]<−AQn[ 1 , 2 , r u n s ] ∗BGn[1 ,2]−sum ( rev (AH[ 1 , 2 , ] ) ∗dQn

[ 1 , 2 , ] )

283 Mn[ 1 , 3 ]<−AQn[ 1 , 3 , r u n s ] ∗BGn[1 ,3]−sum ( rev (AH[ 1 , 3 , ] ) ∗dQn

[ 1 , 3 , ] )

284 Mn[ 1 , 4 ]<−AQn[ 1 , 4 , r u n s ] ∗BGn[1 ,4]−sum ( rev (AH[ 1 , 4 , ] ) ∗dQn

[ 1 , 4 , ] )
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285

286 Mn[ 2 , 1 ]<−AQn[ 2 , 1 , r u n s ] ∗BGn[2 ,1]−sum ( rev (AH[ 1 , 1 , ] ) ∗dQn

[ 2 , 1 , ] )

287 Mn[ 2 , 2 ]<−AQn[ 2 , 2 , r u n s ] ∗BGn[2 ,2]−sum ( rev (AH[ 1 , 2 , ] ) ∗dQn

[ 2 , 2 , ] )

288 Mn[ 2 , 3 ]<−AQn[ 2 , 3 , r u n s ] ∗BGn[2 ,3]−sum ( rev (AH[ 1 , 3 , ] ) ∗dQn

[ 2 , 3 , ] )

289 Mn[ 2 , 4 ]<−AQn[ 2 , 4 , r u n s ] ∗BGn[2 ,4]−sum ( rev (AH[ 1 , 4 , ] ) ∗dQn

[ 2 , 4 , ] )

290

291 Mn[ 3 , 1 ]<−AQn[ 3 , 1 , r u n s ] ∗BGn[3 ,1]−sum ( rev (AH[ 1 , 1 , ] ) ∗dQn

[ 3 , 1 , ] )

292 Mn[ 3 , 2 ]<−AQn[ 3 , 2 , r u n s ] ∗BGn[3 ,2]−sum ( rev (AH[ 1 , 2 , ] ) ∗dQn

[ 3 , 2 , ] )

293 Mn[ 3 , 3 ]<−AQn[ 3 , 3 , r u n s ] ∗BGn[3 ,3]−sum ( rev (AH[ 1 , 3 , ] ) ∗dQn

[ 3 , 3 , ] )

294 Mn[ 3 , 4 ]<−AQn[ 3 , 4 , r u n s ] ∗BGn[3 ,4]−sum ( rev (AH[ 1 , 4 , ] ) ∗dQn

[ 3 , 4 , ] )

295

296 Mn[ 4 , 1 ]<−AQn[ 4 , 1 , r u n s ] ∗BGn[4 ,1]−sum ( rev (AH[ 1 , 1 , ] ) ∗dQn

[ 4 , 1 , ] )

297 Mn[ 4 , 2 ]<−AQn[ 4 , 2 , r u n s ] ∗BGn[4 ,2]−sum ( rev (AH[ 1 , 2 , ] ) ∗dQn

[ 4 , 2 , ] )

298 Mn[ 4 , 3 ]<−AQn[ 4 , 3 , r u n s ] ∗BGn[4 ,3]−sum ( rev (AH[ 1 , 3 , ] ) ∗dQn

[ 4 , 3 , ] )

299 Mn[ 4 , 4 ]<−AQn[ 4 , 4 , r u n s ] ∗BGn[4 ,4]−sum ( rev (AH[ 1 , 4 , ] ) ∗dQn

[ 4 , 4 , ] )

300 F2<−F2+F2n

301 M<−M+Mn

302 p r i n t ( c ( seno , ( t i m e s +1) ) )

303 AQnn<−AQn
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304 BQnn<−BQn

305 Pnn<−Pn

306 i f ( mean (Mn)<1e−9 && t imes >40){break}

307 }

308 in f sum1<−sum (M[ 1 , 1 : 4 ] ) ∗ p i 1 +sum (M[ 2 , 1 : 4 ] ) ∗ p i 2 +sum (M

[ 3 , 1 : 4 ] ) ∗ p i 3 +sum (M[ 4 , 1 : 4 ] ) ∗ p i 4

309 in f sum2<−F2 [ 1 , 1 ] ∗ p i 1 +F2 [ 2 , 1 ] ∗ p i 2 +F2 [ 3 , 1 ] ∗ p i 3 +F2 [ 4 , 1 ] ∗ p i 4

310 r e s u l t i n f s u m 1<−c ( r e s u l t i n f s u m 1 , in f sum1 )

311 r e s u l t i n f s u m 2<−c ( r e s u l t i n f s u m 2 , in f sum2 )

312 p r i n t ( c ( seno , infsum1 , in f sum2 ) )

313 }

And finally obtain the price of N-CAT bond.

1 v a l u e = p r i c e C I R ∗ ( 0 . 5 + 0 . 5 ∗ r e s u l t i n f s u m 1 −0.25∗ r e s u l t i n f s u m 2 )

2 l i b r a r y ( l a t t i c e )

3 w i r e f r a m e ( v a l u e ˜ myGrid$ t ∗ myGrid$D ,

4 s c a l e s = l i s t ( arrows = FALSE) ,

5 x l a b = ”T ( y e a r s ) ” , y l a b = ”D(US$ m i l l i o n ) ” , z l a b =”V(US$

) ” ,

6 d r a p e = TRUE, c o l o r k e y = TRUE,

7 s cr ee n = l i s t ( z = −45, x = −60) ,

8 )
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