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Abstract

This work studies optimal refinancing strategy for the debtors on the view of balancing

the profit and risk, where the strategy could be formulated as the utility optimization

problem consisting of the expectation and variance of the discounted profit if refinanc-

ing. An explicit solution is given if the dynamic of the interest rate follows the affine

model with zero-coupon bond price. The results provide some references to the debtors

in dealing with refinancing by predicting the value of the contract in the future. Special

cases are considered when the interest rates are deterministic functions. Our formula-

tion is robust and applicable to all of the short rate stochastic processes satisfying the

affine models.
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Chapter 1

Introduction

As one of the most frequently traded financial instruments, mortgage contract provides

its debtors a way to manage their accounts. Valuation of mortgage security is of

pivotal importance to investors, bankers and brokers in helping with their decision

making from various perspectives. Knowledge of this kind is used as a key economic

indicator not only in developed markets such as the US market, but also increasingly

in emerging markets such as China and Brazil (see Lynn et. al [25]). The valuation

of mortgage securities has to take into account the contracted choices to the debtors,

among which refinancing is one of the most common choices. The main financial reason

leading to refinancing, not taking into consideration the socioeconomic factors, is to

take advantage of lower interest rate. There has been a great deal of research on the

topic of modelling mortgage refinancing behaviours (see for example, Chen and Ling

[9], Dunn and McConnell [13, 14], Lee and Rosenfield [21], Longstaff [23]).

1.1 Research Objectives and Contributions

This work studies the optimal strategy for the debtors on the refinancing questions

based on continuous payment. In our study, refinancing is described as a financial

behavior to replace the existing mortgage contract with a new contract. The initial

balance of the new contract is the outstanding balance of the original contract, and the

duration of the new contract is the remaining duration of the original contract. This

research has two objectives. The first is to propose an analytical model to capture the

value of the contract, which can also be described as the profit that the debtor and the

lender (i.e. financial institutions) may gain from refinancing, and point out the time

where the expected value of the contract can be maximized. The second objective is

to find the balance or the tradeoff between the profit and the risk of refinancing with

a utility function. The optimal time under such a utility will be influenced both by

the profit and the risk. We remark that the implementation of our approach does not

restrict to the choice of any affine stochastic model, as long as such a model explains

the market trend with acceptable significance.
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This thesis presents a number of original contributions to the field of Mathematical

Finance. These include:

1. An extension of the previous assumptions of constant discount factor (see Lee

and Rosenfield [21], Dunn and McConnel[13], [14] et. al ) by suggesting that the

discount factor is a stochastic process.

2. Presenting general models for the expected value and variance of the portfolio

consisted of a loan and a refinancing agreement, which is applicable to all the

affine interest rate models.

3. Redefining the optimal time to mortgage refinancing including risk.

4. A new asymptotic analysis for the expected value and variance of the portfolio.

5. Proposing a utility function approach describing the tradeoff between profit and

risk, which makes the problem more realistic and applicable.

1.2 Organization of this Thesis

The contents of each chapter are outlined as follows.

Chapter 2: Preliminaries

We describe various views to capture the payment behavior of the debtors, and the

methods that have been adopted to solve, either analytically or numerically, the value

of the mortgage contract, or to make the refinancing decisions. First, we describe

the approach named structure-form method, and then we represent the reduced-form

approach. In addition, the term-structure of interest rates models are reviewed in this

chapter.

Chapter 3: Modelling of Refinancing

We formulate some assumptions to support our methodology. To compromise the risk

and the profit of refinancing, a utility function approach is proposed to describe the

satisfaction of the debtors. In addition, we present general formulations to capture the

expectation and the variance of the value of the contract.

Chapter 4: Results for Various Models

Our formulations are applied to three of the most common affine short rate models,

Merton model, Vasicek model and CIR model. Various methods are adopted to obtain

the asymptotic solution of the risk and the expected profit. In addition, we make

comments on the numerical results based on these three models.

2



Chapter 5: Special case: σ = 0

We consider the special case that the volatility of the market interest rate is zero.

We focus on the value of the contract and the optimal time the debtor may want to

refinance. Variation analysis of the life of the contract is presented in this chapter.

Chapter 6: Remarks and Future Work

We present some future work and directions for this research and summarize our project

and point out the merits of our method for research in Mathematical Finance.

3



Chapter 2

Preliminaries

2.1 General Introduction

The pricing of mortgages in the context of stochastic interest rate plays an impor-

tant role for financial management. The contributing factors impacting the value of

mortgage contract have been explored by abundant literatures. As one of the most

influential financial instruments in both the primary and secondary market, residential

mortgage contract typically grants the debtor several options to facilitate his or he

reaction to the market movement, among which the option of refinancing is of pivotal

importance. In fact, a rather more common scenario in China’s market is that the ma-

jority of mortgage debtors make periodical mortgage payment using their fixed income

inflow from other sources, typically in the form of salary, for instance. This economy

reality underscores the importance of the option of refinancing. (see Zheng et. al[48])

There has been a great deal of research on the topic of modelling mortgage refinance

and prepayment behaviours. These works endeavoured to understand the conditions

under which a debtor will pay back his or her outstanding debt before the end of the

contracted period. Our motivation is different from most of the earlier work modelling

the optimal mortgage prepayment problem. Their purpose was to determine the fair

price of a mortgage contract under the condition that the loan may be prepaid or

default. This mortgage contract pricing problem is closely related to the valuation

of residential mortgage backed securities (MBSs) – an important problem as the MBS

market has been one of the largest and fast-growing bond markets in the United States.

One approach to the mortgage contract pricing is to view the prepayment or default

opportunity as a built-in option in the mortgage contract that can be exercised by the

debtor under favourable conditions. This approach inevitably borrows techniques from

option pricing to calculate prices of mortgage contracts.

In an important early work, Dunn and McConnel ([13], [14]) first applied the contin-

gent claim techniques to estimate the present value of the mortgage backed pass-through

securities, in which partial differential equations were constructed and solved using the

finite-difference method. Following the option pricing approach, Chen and Ling ([9])
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applied the binomial tree method to calculate the prices of the prepayment option and

the mortgage contract. They considered the fixed-rate mortgage contract and assumed

that a debtor would prepay the outstanding debt when the contract rate dropped deep

enough. Their model incorporated the possibility of recursive refinancing. However, the

optimal refinancing threshold rate (the rate under which refinancing, if takes place, will

be optimal) cannot be obtained directly from the binomial tree. The optimal refinanc-

ing threshold rates could only be approximated through multiple tests. The difference

in basis point between this rate and the original contract rate was deemed as the value

that the mortgage rate has to drop to make refinancing at present time optimal. The

Longstaff-Schwartz ([24]) least-square Monte Carlo method is a well-known approach

in option pricing to value the prices of multi-asset American options. In [23], Longstaff

used this method to compute the prices of the prepayment options and the mortgage

contracts. More recently, Lee and Rosenfield ([21]) applied dynamic programming tech-

nique to estimate the overall cost to the debtor refinancing the outstanding debt at a

particular time with a new mortgage rate. The authors assumed that refinancing would

happen if this cost was lower than the overall cost without refinancing.

A wide variety of approaches have been applied to the refinancing problem, most of

which can be categorized into two main areas, as summarized by Pliska ([30]). One cat-

egory is called option-based or structural approach, in which the termination behaviour

is modelled as the optimal response of a rational debtor to the changes of some poten-

tial state variables, such as mortgage interest rate and house price. This type of model

is closely related to value the early exercise feature of American options. The previous

literature applies the contingent claim techniques to minimise the present value of the

mortgage contract. A rational debtor will compare the liability and outstanding princi-

pal to make decisions of immediate refinancing or postponing for an additional period.

Some researchers who followed and extended the option-based method are Schwartz

and Torous ([8]), Dunn and Spatt ([15]), Timmis ([38]) , Johnston and Drunen ([17]),

Kau et al ([19], [20]). The second main category is called a reduced form approach,

an exogenous approach, an empirical approach and an econometric approach. The re-

duced form approach usually builds a statistical model demonstrating how the value

of mortgages relies on interest rates and possibly other related factors. This method

assumes that prepayment time is a random time governed by some hazard rate to be

estimated from the historical prepayment data in large mortgage pools. Schwartz and

Torous ([31]) first introduced the concept of hazard rate describing the random time for

prepayment and formulated a partial differential equation for the value of a mortgage

contract through a two-factor model. Recent developments involving the hazard rate as

a function of a default time were presented in the papers of Schwartz and Torous([32],

[33]), Deng ([11]) and Deng et al ([12]).
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2.2 Basic Concept of Mortgage Contract

2.2.1 The behaviour of the debtors

A mortgage is a type of legal agreement that conveys the conditional right of ownership

on an asset or property by its owner (the debtor) to a lender (the mortgagee) as security

for a loan. Virtually any legally owned property can be mortgaged, although real

properties (land and buildings) are the most common (see [2]). Mortgage contracts

typically carry a lower interest rate than other loans since the real property can act

as a collateral. If the debtor suffers a worse financial condition and cannot afford

to repay the loan, the lenders have the right to take over the assets, which is called

default. The debtor also has the right to terminate the contact, the behavior of which

is called prepayment or refinancing. This thesis will concentrate on the typical case of

refinancing.

Prepayment refers to that behavior that the debtor chooses to settle all or part of

the loan balances even though the lender’s preference may be to keep receiving the

contracted continuous or periodical instalments, depending how the loan interest is

collected (of course, real continuous collection of interest is not possible in banking

practice)(see [43]). The main financial reason leading to prepayment, not taking into

consideration socioeconomic factors, is typically the low investment return that the

debtor may earn using the money at hand. That is, the available investment return

for the debtor, on average, does not compensate his contracted continuous payment

pledges to the lender. The studies on this aspect have seen important development

recently, especially those contained in the paper of Xie et al ([46]), and Xie ([44], [45]),

for instance, where the combination of advanced mathematical analysis with novelty

numerical methods has made it possible to find very fast and cost effective solutions to

the problem when the underlying interest rate is assumed as a specific but commonly

adapted mean reverting model. (see Zheng et. al[48])

On the other hand, not all debtors have sufficient fund to make alternative invest-

ment. The main reason for debtors to refinance is to improve the financial leverage

efficiency by obtaining an alternative mortgage loan with a lower interest rate. Most

of the previous literatures in this topic are empirical in nature from the perspective of

optimal refinancing differentials, where the optimal differential is defined when the net

present value of the interest payment saved reaches the sum of refinancing costs (see

the paper of Agarwal et al ([3]) and relevant references contained therein). (see Zheng

et. al[48])

The behaviour of terminating the original contract can occur for financial reasons or

other exogenous variables. The exogenous reasons will affect the value of the mortgage

payment indirectly, such as divorce or moving. For example, if the debtor knows that

he or she is likely to move, hence he or she might terminate the contract on some

6



day in the future. Relative to the case, it is more attractive to terminate the contract

immediately than to wait for an optimal time. In our research, early termination is

only considered for endogenous or financial reasons, based on the assumption that the

value of the mortgage to the bank is equal to the total debt the debtor has to repay.

2.2.2 Two basic types of mortgage contract

Some of the following paragraphs are from ([1], [42]).

The two basic types of amortized loans are the fixed rate mortgage (FRM) and

adjustable-rate mortgage (ARM). Fixed rate mortgages are prevalent because they

allow the debtor to predict what the payments will be in the future over the duration of

the loan. No matter what happens with interest rates, the payments won’t change if he

or she has been involved in a fixed rate mortgage. This contrasts to the adjustable rate

mortgages who do not have a fixed rate, leaving the debtor vulnerable and dependent

upon the interest rate, which changes periodically. With a fixed rate mortgage, the

debtor can calculate the amount of monthly payment, and the time he or she can

pay off all the principal and interest. He or she will pay the same monthly payment

during the life of the fixed rate mortgage contract. The monthly payment consists of

three components, the fraction of principal balance, the interest rate payment and the

transaction cost, or the service fee if the debtor wants to terminate the contract. The

monthly payment in the fixed rate contract is higher than other mortgage choices, such

as the fixed rate mortgage which offers the safety of knowing that the future payments

will not increase.

The fixed rate mortgage is practical as it will not affect the debtor, if the rates

increase. If the interest rates happen to decrease, it still will not affect the debtor

as he or she can decide to refinance the loan to benefit from a better interest rate.

An adjustable-rate mortgage differs from a fixed-rate mortgage in many ways. Most

importantly, with a fixed-rate mortgage, the interest rate stays the same during the life

of the loan. With an ARM, the interest rate changes periodically, usually in relation

to an index, and payments may go up or down accordingly. The rate for an adjustable

rate mortgage is determined by some market indices. Many adjustable rate mortgages

are tied to the LIBOR, Prime rate, Cost of Funds Index, or other indices. A main

reason to consider adjustable rate mortgages is that the debtor may end up with a

lower monthly payment. The bank rewards him or her with a lower initial rate because

the debtor is taking the risk that interest rates could rise in the future. However, the

increase in mortgage payments can be significant if interest rates rise. Some debtors

are unprepared for the increase in mortgage payments, and they may find themselves

in dire financial straits when mortgage payments increase unexpectedly.

The thesis will only concentrate on fixed-rate mortgage contract, which is the most

popular one in United States that almost 75% of all home loans are fixed rate mortgage.
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In financial terms, most literature considered the behaviour of the prepayment right

which can be viewed as an American option. The debtor can prepay the loan at any time

during the period of the contract. Compared to prepayment, refinancing is different

since once the original is prepaid, the debtor may enter into another contract, and the

payoff should be minimized under this transaction (from one contract to another).

2.3 Previous Work

2.3.1 Structure-form

The measurement of prepayment incentive for option-based approach is endogenous.

Many of the option-based approaches have been proposed, both in academic and prac-

titioner sides. The termination behaviour is modelled as the optimal response of a

rational debtor to the changes in some potential state variables, such as interest rate

and house price. This type of model is closely related to value the early exercise fea-

ture of American options. The previous literature assumes that the debtors will follow

an optimal call strategy. A rational debtor will compare the liability and outstanding

principal to make decisions of immediate refinancing or postponing for an additional

period, where the liability to the debtor and asset to the lender are not differentiated.

In these papers, (see Dunn and McConnell ([13], [14]), Bernnan and Schwarze ([8]),

Kau et al ([19], [20]) and relevant references contained therein), the debtor followed the

behaviour that he or she would exercise his or her call option whenever the value of

mortgage exceeded the remaining balance plus transaction costs, while Stanton ([36])

argued that this approach was not suitable when we considered structural changes in

the economic environment.

The early work of valuing the default-free Government National Mortgage Associa-

tion mortgage-backed pass-through securities was carried out by Dunn and McConnell

([13]). The model was based on a general equilibrium theory of the term structure

of the interest rates. They adopted the contingent claim techniques to generate the

price of the securities, and to avoid arbitrage opportunity. They constructed a PDE

related to the value of a GNMA security, risk-free interest rate, and the probability of

suboptimal prepayment, where Poisson-driven or jump process was considered to de-

scribe the suboptimal prepayments. Numerical solutions were presented by solving the

PDE. Afterwards, Dunn and McConnell ([14]) continued the research and compared

the price of GNMA mortgage-backed securities (denoted as MBS) with other types of

fixed-bonds such as (1) nonamortizing, noncallable coupon bonds, (2) nonamortizing,

callable coupon bonds, and (3) amortizing,noncallable coupon bonds. The compar-

isons provided the evidence that the impact of the call, amortization and prepayment

features on GNMA securities. The results suggested that the features of callability

would decrease the MBS price while the feature of amortization and prepayment had

8



a positive effect.

Brennan and Schwartz have proposed a two-state variable model, including short

rate and consol rate, to value the interest-dependent claims, i.e. default-free bonds

and options, in the series of papers ([4], [5], [6], [7]). In [8], the authors priced GNMA

securities through contrasting three different arbitrage-based models of the yield curve.

The yield differentials were influenced by the interest-rate uncertainty and call policy.

Transaction costs were introduced by Dunn and Spatt ([15]), Timmis ([38]) and

Johnston and Drunen ([17]). As the debtors may refinance as many times as they can

in the future, refinancing costs will reduce the incentive of refinancing. The model

proposed by Dunn and Spatt ([15]), was developed to value the debt contract with

refinancing. In their assumption, the immediate benefit from refinancing was equalled

to the refinancing costs and call premium at the refinancing point. The bound on the

pricing of debt contracts was obtained, and the method could be applied even if the

debtor would like to refinance recursively with transaction costs. In addition, Dunn

and Spatt ([15]) indicated a new method to handle transaction cost. The transaction

cost could be regraded as a refinancing option, which will be included in the agreement

or contract. The direction is of vital importance since it has significant influence on

the subsequent research. However, the main shortcoming is that the model implies all

of the bahaviours of refinancing occur simultaneously in the same pool.

Chen and Ling ([9]) followed the previous research and developed a dynamic model

of mortgage refinancing in a contingent claim for fixed-rate mortgage. With a binomial

interest rate process, they have solved (1) the optimal mortgage refinancing strategy, (2)

the value of the refinancing option, (3) the value of the mortgage liability to the debtor,

and (4) the value of the contract, simultaneously. They assumed that a debtor would

prepay the outstanding debt when the present value of interest rate savings exceeded

the refinancing costs. Their model incorporated the possibility of recursive refinancing.

IDF (interest rate differentials between the current market rate and contract rate)

was first demonstrated in this paper, and the results of which contained the required

minimum IDF for refinancing. The result showed that the IDF would increase with

transaction costs, interest rate volatility and debtor’s expected holding period.

Kau et al ([19]) incorporated possibility of default in valuing MBS, which occurred

when the house value was less than the market value of the loan. Due to the fact that

prepayment is dependent on the fluctuation of interest rate and default is concerned

with the value of the house, the valuation of any asset is a function of time, house

price and interest rate. The numerical results showed that responding of default to the

economic environment was quite different from that of prepayment, and the marginal

value of default was largely dependent on price volatilities. The work of Kau et al ([20])

extended on pricing of adjustable-rate mortgages and made comparison between these

and fixed-rate mortgages with default.

9



Stanton ([36]) observed the drawbacks of reduced-form models, and the major one of

which was that the prepayment model had low out-of-sample forecasting power. Stan-

ton ([36]) incorporated both rational and exogenously determined prepayment strate-

gies. He estimated heterogeneity in transaction cost faced by the debtors. Compared to

Dunn and McConnell ([13], [14]), Dunn and Spatt ([15]), Timmis ([38]), Johnston and

Drunen ([17]) et al, Stanton ([36]) assumed that the debtor would make decisions at

discrete time. He acknowledged that some debtors would prepay even their coupon rate

was below current rate, which meant these debtors failed to repay even at the optimal

time. The model gave a simple model for rational prepayment, which was allowed to

address the consequence of a structural shift in economic, such as seasonality.

Stanton and Wallace ([37]) developed the first contingent claims mortgage valuation

algorithm of self-election, which allowed the debtors to choose the different fixed-rate

loans with combinations of coupon rate and points, and an equilibrium model was

proposed with transaction costs. Although some literature have investigated the sim-

ilar problem before (see Yang ([47]), Leroy ([22])), they were unable to construct an

equilibrium in multiple refinancing. The numerical solutions in the paper [37] demon-

strated that, in determining the optimal menu of the mortgage contracts, the shape of

yield curve, the transaction cost and the mobility of the debtors played an significant

important role.

As the past option-based models focused on trying to predict future cash flows,

Kalotay et al ([18]) concentrated on the market value of MBS. The reasons for the fail-

ure of past option-based models were as followings. The previous models either used

Treasury or swap curves to model the behaviour refinancing. However, these curves

could not accurately reflect the actual cost of funds, which led to the fact that the past

option-based models were not able to explain and match market MBS prices. Instead,

Kalotay et al ([18]) used two different yield curves, one for discounting mortgage cash

flows and the other for MBS cash flows. By assuming that the sole purpose of refi-

nancing was to save interest expense, they modelled the full spectrum of refinancing

behaviour by a notion refinancing efficiency. They demonstrated that a rigorously con-

structed option-based model could accurately explain the market price and MBS were

well priced when most debtors exercise their refinancing option near-optimally.

Nakagawa and Shouda ([29]) proposed a model which explained the heterogene-

ity of prepayments in the actual MBS market. The debtor’s prepayment cost, which

should be evaluated as the difference of the present values of the remaining mortgage

between when the prepayment option was exercised or not exercised, was modelled as

a stochastic process and the debtor’s prepayment time was defined as when his or her

prepayment cost process fell below zero. The conditional distribution of prepayment

time in the loan pool given the debtors’ filtration could be represented in terms of

non-payment probability and the posterior density of loan pool risk.
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Longstaff ([23]) studied the optimal recursive refinancing problem. They used the

two-factor term structure model to describe interest rate fluctuation. The remarkable

improvement was that the approach incorporated three factors on the optimal refinanc-

ing strategy: transaction cost, the probability of prepaying for exogenous reasons and

the debtor’s financial situation. Longstaff borrowed method in Longstaff and Schwartz

([24]) to compute the prices of the prepayment options and the mortgage contracts.

The results illustrated that it was optimal to delay prepayment for the debtor beyond

the point when compared to the conventional models.

2.3.2 Reduced-form

Considering the fact that the debtors prepay their loans even the prevailing refinanc-

ing rate exceeds their initial contract rate, and other debtors do not prepay when the

initial contract rate exceeds the prevailing rate, Schwartz and Torous ([31]) have mod-

elled the factors such as economic, demographic and geographic elements, which would

influence the debtor’s decision by statistical estimation. Schwartz and Torous ([31])

incorporated an empirical prepayment function into a two-factor default-free interest-

dependent claim and led to a partial differential equation for the value of mortgage

contract. One significance is that in this research, it is recognized that at each time,

there exists a probability of prepaying, that the random time when a debtors prepays

could be described as a hazard rate model. They provided a complete model to value

the MBS. The later work of Schwartz and Torous ([32]) was the first to introduce the

possibility of default and investigate the interaction of prepayment and default decisions

for valuing MBS. With transaction costs, the conditional probability of prepayment or

default was given by the function of prepayment or default, separately. In an arbi-

trage free market, the value of the mortgage or mortgage pass-through satisfied the

second-order partial differential equation. Although some of the reduced-form models

can be quite complicated, it is straightforward to use the Monte Carlo simulation. In

1993, Schwartz and Torous ([33]) took advantage of Poisson regression to estimate the

parameters of a proportional hazards model instead of likelihood method, which was

more efficient to obtain the result.

As in reality, the debtors do not have perfect information about future interest rate

movement and there exists transaction, it is not appropriate to apply the reduced-form

models with deterministic term structures. Deng ([11]) incorporated a binomial mean-

reverting interest rate model into the hazard framework, and analyzed the residential

mortgage prepayment and default risk by a unified economic model of contingent claims.

The authors considered prepayment risk and default risk as interdependent competing

risk and estimated them jointly by a semi-parametric estimation approach. The results

showed that the uncertainty of interest rate movement and liquidity constraints affected

both on predicting mortgage prepayment and default behaviour. Deng et al ([12])
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extended the unified economic model to analyze the heterogeneity among debtors, which

was quite important in accounting for their prepayment and default behaviour.

2.4 Interest Rate Models

2.4.1 Merton model

Merton ([27]) proposed the following simplest stochastic process for the dynamic of

interest rate

rt = r0 + ut+ σWt,

where the u and σ are constants, andWt is the standard Brownian process. As rt follows

the normal distribution with mean r0 + ut and variance σ2t, the moment generation

function of rt is

Mrt(z) = e(r0+ut)z+ 1
2σ

2z2t.

The first and second moments of rt are unbounded, which allow the interest rate rt to

be infinity. In a sense, the model lacks stability and cannot be applicable to all the

conditions.

2.4.2 Vacicek model

The Vasicek model was introduced by Vasicek in 1977 ([39]). This model can be used

to interest rate derivative valuation and also adapted to credit market. Vasicek Model

is an Ornstein-Uhlenbeck stochastic process given by

drt = k (θ − rt) dt+ σdWt,

where reversion rate k, long-term mean level θ, volatility σ are positive constants, and

Wt is the standard Brownian process. Vasicek model was the first one to capture mean

reversion, which defined an elastic random walk around the trend.

• θ: ’long term mean level’. The long run equilibrium value towards which the

interest rate goes back, which means all future trajectories of rt will evolve around

a mean level θ in the long run.

• k: ’speed of reversion’. It gives the adjustment of speed and has to be positive in

order to maintain stability around for the long-term value.

• σ: ’instantaneous volatility’. It determines the volatility of the interest rate, and

higher σ implies more randomness.

• k (θ − rt) dt: ’drift term’. The drift factor that describes the expected change in

the interest rate at that particular time.
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• σ2

2k : ’long term variance’. All future trajectories of rt will revert around the long

term mean with such variance after a long time.

When rt goes under θ, the drift term k(θ − rt) becomes positive, generating a

tendency for the interest rate to move upwards, and vice versa.

Vasicek model was the first one to capture mean reversion property of the interest

rate. Unlike stock price, the model assumes interest rate moves within a limited range,

which shows tendency of the interest movement will finally revert to a long run value.

However, the main drawback of Vasicek model is that the short term interest rate can

become negative, which is not acceptable at the economic point-of-view.

Vasicek model yields an explicit formula

rt = θ + (r0 − θ)e−kt + σe−kt

∫ t

0
ekudWu,

with

E[rt] = θ + (rs − θ)e−kt

Var[rt] = σ2e−2ktE

[

(
∫ t

0
ekudWu

)2
]

= σ2e−2ktE

[∫ t

0
e2kudu

]

=
σ2

2k

(

1− e−2kt
)

.

One can see that rt is a Gaussian random variable. This follows from the definition of

the stochastic integral term σe−kt
∫ t
0 e

kudWu, which is lim||Π||→0
∑n−1

i=0 σe−k(t−ui)
(

Wui+1 −Wui

)

.

As the increment is Wui+1 −Wui ∼ N(0, ui+1 − ui),
∫ t
0 e

2kudWu is Gaussian.

As rt follows normal distribution with mean of θ + (r0 − θ)e−kt and variance of
σ2

2k

(

1− e−2kt
)

, the moment generating function of rt is

Mrt(z) = e(θ+(r0−θ)e−kt)z+σ2

4k (1−e−2kt)z2 .

Compare to Merton Model, Vasicek Model avoids the infinite interest rate. However,

the main disadvantage of Vasicek Model is that interest can be negative. When t → ∞,

we have

⎧

⎪

⎨

⎪

⎩

lim
t→∞

E[rt] = θ

lim
t→∞

Var[rt] = σ2

2k .

As the explicit formula is given, one can obtain the zero-coupon bond price in the

following way in the paper of Mamon ([26]). Using the risk-neutral valuation framework,

the price of a zero-coupon bond with maturity T at time t is

B(t, T ) = E
[

e−
∫ T
t rudu|Ft

]

.

We let Xt = rt − θ, as Xt is the solution of the Ornstein-Uhlenbeck equation, we have

dXt = −kXtdt+ σdWt,
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with the initial value

X0 = r0 − θ.

Applying Ito’s lemma formula, Xt is given by

Xt = e−ktX0 + σe−kt

∫ t

0
eksdWs,

with

E[Xt] =e−ktX0

Cov[Xt,Xu] =σ2e−k(u+t)E

[
∫ t

0
eavdWv

∫ u

0
eavdWv

]

.

=
σ2

2k
e−k(u+t)

(

e2k(u
∧

t) − 1
)

As Xu is a Gaussian process with continuous sample paths, then
∫ t
0 X(u)du is also

Gaussian, with

E

[
∫ t

0
Xudu

]

=

∫ t

0
E[Xu]du =

X0

k

(

1− e−kt
)

Var

[∫ t

0
Xudu

]

=Cov

[
∫ t

0
Xudu,

∫ t

0
Xvdv

]

=

∫ t

0

∫ t

0
Cov[Xu,Xv ]dudv

=
σ2

2k3

[

−e−2kt + 4e−kt + 2kt− 3
]

.

Since ru = Xu + θ, we have

E

[
∫ T

t

rudu

]

=E

[
∫ T

t

(Xu + θ) du

]

=−
rt − θ

k

(

1− e−k(T−t)
)

+ θ(T − t)

Var

[
∫ T

t
rudu

]

=Var

[
∫ T

t
Xudu

]

=
σ2

2k3

[

−e−2k(T−t) + 4e−k(T−t) + 2k(T − t)− 3
]

.

Thus, the value of the zero-coupon bond price can be described as

B(t, T ) = E
[

e−
∫ T
t

rudu|Ft

]

=E
[

e−
∫ T
t

rudu|rt
]

=e[−
∫ T
t rudu]+ 1

2Var[−
∫ T
t rudu]

=A1(t, T )e
−A2(t,T )rt ,

where

A1(t, T ) = exp

((

θ −
σ2

2k

)

[A2(t, T )− (T − t)]−
σ2A2

2(t, T )

4k

)

A2(t, T ) =
1− e−(T−t)k

k
.
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2.4.3 CIR model

The CIR short term interest rate process, first proposed by Cox et al ([10]), is a mathe-

matical model describing the evolution of interest rate. The model specifies that under

the risk-neutral measure Q, the instantaneous interest rate follows the stochastic dif-

ferential equation:

drt = k(θ − rt)dt+ σ
√
rtdWt. (2.1)

CIR model is one of the most well-known and widely used models for interest rate

and the pricing of interest rate derivatives, by which many books and books have

adopted to capture the term structure of interest rate (see Shreve ([35]), Dunn and

McConnell ([13], [14]), Sharp ([34]), Miranda-Mendoza ([28]) et al). It is composed of

one deterministic term and one random term. The deterministic term (also ’the drift

term’) is chosen to produce the so called ’mean-reverting’ property, which means that

if the interest rate is larger than the long-term mean, the drift term will be negative

so that the interest rate will be pulled down in the direction of the long-term mean.

However, if the interest rate is smaller than the long-term mean, the drift term will

be positive so that the interest rate will be pulled up in the direction of the long-term

mean. And the random term is to model the volatility caused by unpredictable factors.

In (2.1), k is the reversion rate, which refers to the speed measuring how fast the

process will be reverted back to the mean once it evolves away from the mean, while

θ is long−term mean interest rate and σ is the standard deviation, all of which are

positive constants. When we add one condition 2kθ > σ2, the interest rate is always

positive, otherwise the interest rate can reach zero. The volatility term σ is multiplied

with the term
√
rt, which eliminates the probability of negative interest rates compared

to the Vasicek model. The main reason to adopt CIR model to generate the mortgage

rate is that it avoids the negative rates, and corresponds to empirical observations

that higher interest rates are associated with higher volatility, which guarantee that

our simulated mortgage rate is more realistic. The probability density function of rs,

conditional on rv, where s > v, is given by Cox et al ([10])

frs|rv(x) = ae−brv−ax

(

ax

brv

) c
2

Ic

(

2
√

abrvx
)

, x > 0 (2.2)

where

a =
2k

σ2
(

1− e−k(s−v)
) , b = ae−k(s−v), c =

2kθ

σ2
− 1,

and Ic (y) is the Modified Bessel’s function of the first kind of order c, which is

Ic (y) =
∞
∑

m=0

(

y
2

)2m+c

m!Γ (m+ c+ 1)
.
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Based on (2.2), we can calculate the moment generating function as

Mrs|rv (t) = E
[

etrs |rv
]

=

∫ ∞

0
etxae−brv−ax

(

ax

brv

)
c
2

Ic

(

2
√

abrvx
)

=

∫ ∞

0
ae−brv

(

a

brv

)
c
2

∞
∑

m=0

(√
abrv

)2m+c

m!Γ (m+ c+ 1)
e−axx

c
2x

2m+c
2 etxdx

=

∫ ∞

0
ae−brv

(

a

brv

)
c
2

∞
∑

m=0

(√
abrv

)2m+c

m!Γ (m+ c+ 1)
e−(a−t)xxm+cdx

=ae−brv

(

a

brv

) c
2

∞
∑

m=0

(√
abrv

)2m+c

m!Γ (m+ c+ 1)
Γ (m+ c+ 1)

(

1

a− t

)m+c+1

=
∞
∑

m=0

e−brvbrmv am+c+1 1

m!

(

1

a− t

)m+c+1

=

(

a

a− t

)c+1 ∞
∑

m=0

e−brv
(

abrv
a−t

)m

m!

=

(

a

a− t

)c+1

e
brvt
a−t ,

and specifically, the moment generating function of rs, conditional on r0 (ie, v = 0), is

Mrs (t) =

(

a

a− t

)c+1

e
br0t
a−t ,

where

a =
2k

σ2 (1− e−ks)
, b = ae−ks, c =

2kθ

σ2
− 1.

In addition, the zero-coupon bond price based on CIR model is given in the following

section.

2.5 Term Structure of Interest Rate

For more details, the reader may refer to Gibson et al [16]).

2.5.1 Definitions

In the rational financial market, a lender will never lend money for free. As the value of

money is always higher today than future, the lender will charge for borrowed money

as the compensation for the loss of the future opportunities one could miss out for the

borrowed money.

The term-structure of interest rates refers to different interest rates that exist over

different term-to-maturity loans. As we only consider zero-coupon bonds, the yield

curve is the same as the term-structure of interest rates. We denote B(t, T ) as the

16



discount bond price of zero-coupon bond from current time t to the maturity time T .

At time t, the yield to maturity R(t, T ) of the discount bond B(t, T ) follows

B(t, T )e(T−t)R(t,T ) = 1,

and thus, R(t, T ) is represented as,

R(t, T ) = −
ln [B(t, T )]

T − t
, (2.3)

where R(t, T ) is the continuously compounded interest rate. When we fix t, one can

see that the yield curve is determined by T.

We define r(t) as the spot rate at time t, then

r(t) = lim
T→t

R(t, T ) = − lim
∆t→0

R(t, t+∆t)

=−
ln [B(t, t+∆t)]

∆t
.

As B(t, t) = 1, we have

r(t) = −
d ln [B(t, T )]

dT
|T=t.

We denote f(t, T1, T2) as forward rate, which can be agreed on the current time t

for a risk-free loan from T1 to T2. Similarly, the instantaneous forward rate is

f(t, T ) = −
d ln [B(t, T )]

dT
, (2.4)

which gives

B(t, T ) = e−
∫ T
t f(t,u)du.

Note that in our thesis, we only focus on the short rate model, which is given by

the following stochastic differential equation

drt = u(t, rt)drt + σ(t, rt)dWt,

which implies rt is a Markov process, and the zero-coupon bond price given by

B(t, T ) = E
[

e−
∫ T
t rsds|Ft

]

.

2.5.2 The theories

The Expectation Theory: This theory assumes that the implied forward rates are

unbiased estimates of the future prevailing spot rates. That is, the realized difference

between the actual spot interest rate and any previous periods forward interest rate is,

on average, zero. The key assumption behind this theory is that the rate of return on a
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bond maturating at time T should be equal to the geometric average of the short-term

rate from t to T .

The Market Segmentation Theory: The key assumption of this theory is that bonds

of different maturities are not substitutes at all. It implies markets are completely

segmented, and interest rate at each maturity are determined separately. As bonds of

shorter holding periods have lower inflation and interest rate risks, segmented market

theory predicts that yield on longer bonds will generally be higher, which explains why

the yield curve is usually upward sloping.

The Liquidity-Preference Theory: The liquidity premium theory views bonds of

different maturities as substitutes, but not perfect substitutes. Investors prefer short

rather than long bonds because they are free of inflation and interest rate risks. This

implies that the prices of longer-term bonds tend to be more volatile than the prices of

short-term bonds, resulting in a higher expected return, or risk premium, to offset the

higher risk.

2.5.3 Interest rate derivative pricing: PDE approach

Recall that we denote B(t, T ) as the discount bond price of zero-coupon bond. In the

risk-neutral world, one can define B(t, T ) as (see Shreve ([35]))

B(t, T ) = E
[

e−
∫ T
t rsds|Ft

]

.

We assume in the general case, the interest rate follows

drt = u(t, rt)drt + σ(t, rt)dWt,

where u(t, rt) and σ(t, rt) are functions related to t and rt.

We consider the short term rate is the single factor deriving the term structure (see

Gibson et al [16]). Thus, we can derive a PDE for valuation B(t, T ), whose value is a

function of interest rate rt, time t and maturity date T . Applying Ito lemma ([35]) to

the function B(t, T ), we obtain that

dB =
∂B

∂t
dt+

∂B

∂rt
drt +

∂2B

∂r2t
(drt)

2

=a(t, rt)dt+ b(t, rt)dWt,

with

a(t, rt) =a =
∂B

∂t
+ u(t, rt)

∂B

∂rt
+

1

2
σ2(t, rt)

∂2B

∂r2t
(2.5)

b(t, rt) =b = σ(t, rt)
∂B

∂rt
.

Now construct a portfolio Π, which consists of long one asset B1 and short ∆ of B2.

Thus

Π = B1 −∆B2.
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The change in the portfolio over dt is

dΠ =dB1 −∆dB2

=(a1 −∆a2)dt+ (b1 −∆b2)dWt.

To eliminate the risk of the portfolio, we choose

∆ =
b1
b2
.

As the return on an amount Π invested in riskless assets would see a growth of rΠdt

in a time dt.

rΠdt = (a1 −
b1
b2
a2)dt,

which gives

a1 − rB1

b1
=

a2 − rB2

b2
. (2.6)

As the (2.6) holds for any pair of B1 and B2, the ratio of a−rB
b needs to be only

concerned with r and t. We denote the market premium λ(r, t) = a−rB
b . In compatible

with the no-arbitrage requirement, we can assume that λ(r, t) = 0, which gives

a = rB, (2.7)

where a is defined in equation (2.5). Substituting equation (2.5) into (2.7), we have

∂B

∂t
+ u(t, rt)

∂B

∂rt
+

1

2
σ2(t, rt)

∂2B

∂r2t
− rtB = 0, (2.8)

We can guess the solution with the form of

B(t, T ) = A1(t, T )e
−A2(t,T )rt .

Thus

∂B

∂t
=A′

1(t, T )e
−A2(t,T )rt −A1(t, T )A

′
2(t, T )rte

−A2(t,T )rt

∂B

∂rt
=−A1(t, T )A2(t, T )e

−A2(t,T )rt

∂2B

∂r2t
=A1(t, T )A

2
2(t, T )e

−A2(t,T )rt ,

where

A′
1(s, t) =

dA1(t, T )

dt
, A′

2(s, t) =
dA2(t, T )

dt
.
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We adopt Merton’s Model as an example, where u(t, rt) = u and σ(t, rt) = σ, and

plug ∂B
∂t ,

∂B
∂rt

, ∂2B
∂r2t

in (2.8) gives

A′
1(s, t)− uA1(s, t)A2(s, t) +

1

2
σ2A1(s, t)A

2
2(s, t)−

[

A1(s, t)A
′
2(s, t) +A1(s, t)

]

rt = 0.

(2.9)

As the (2.9) holds for all rt, we can figure out that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A′
1(s, t)− uA1(s, t)A2(s, t) +

1

2
σ2A1(s, t)A

2
2(s, t) = 0

A1(s, t)A
′
2(s, t) +A1(s, t) = 0.

(2.10)

With the boundary conditions A1(T, T ) = 1 and A2(T, T ) = 0, we can obtain

A1(t, T ) = exp

(

−
u(T − t)2

2
+

σ2(T − t)3

6

)

A2(t, T ) =T − t.

Similar calculation can be worked out with Vasicek Model and CIR Model, and the

results are as followings: For Vasicek Model, we have

A1(t, T ) = exp

((

θ −
σ2

2k2

)

[A2(t, T )− (T − t)]−
σ2A2

2(t, T )

4k

)

A2(t, T ) =
1− e−(T−t)k

k
.

For CIR Model, we have

A1(t, T ) =

(

2ωe
(k+ω)(T−t)

2

2ω + (k + ω)
[

e(T−t)ω − 1
]

)

2kθ
σ2

A2(t, T ) =
2
[

e(T−t)ω − 1
]

2ω + (k + ω)
[

e(T−t)ω − 1
]

ω =
√

k2 + 2σ2.

2.5.4 Feynman-Kac formula

The Feynman-Kac formula (see [41]) establishes a link between parabolic partial dif-

ferential equations (PDEs) and stochastic processes.

Theorem 2.5.1. Let Xt be a stochastic process satisfying

dXt = u(Xt, t)dt+ σ(Xt, t)dWt.

Let F (Xt, t) be the price at time of t of any derived security in the economy maturing

at T , with the maturity price

F (XT , T ) = g(XT ),
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and one can derive a PDE

∂F

∂t
+ u(t, x)

∂F

∂x
+

1

2
σ2(t, x)

∂2F

∂x2
− V (t, x)F = 0,

with the boundary condition

F (T, x) = g(x) for all x.

Then the Feynman − Kac formula tells us that the solution can be written as a condi-

tional expectation

F (t, x) = E
[

g(xT )e
−

∫ T
t V (u,Xu)du|Xt = x

]

.

Proof. We assume F (t, x) is the solution of the PDE, and we construct

Y (s) = e−
∫ s
t
V (u,Xu)duF (s,Xs).

Apply Ito’s Lemma, we have

dY (s) =F (s,Xs)de
−

∫ s
t V (u,Xu)du + e−

∫ s
t V (u,Xu)dudF (s,Xs) + de−

∫ s
t V (u,Xu)dudF (s,Xs)

=F (s,Xs)de
−

∫ s
t V (u,Xu)du + e−

∫ s
t V (u,Xu)dudF (s,Xs)

=e−
∫ s
t V (u,Xu)du [−V (s,Xs)F (s,Xs) + dF (s,Xs)] .

As

dF (s,Xs) =
∂F

∂s
ds+

∂F

∂x
dx+

∂2F

∂x2
(dx)2

=
∂F

∂t
+ u(s,Xs)

∂F

∂x
+

1

2
σ2(s,Xs)

∂2F

∂x2
+ σ(s,Xs)

∂F

∂x
dW,

dY (s) can be continued as

=e−
∫ s
t
V (u,Xu)du

[

−V (s,Xs)F (s,Xs) +
∂F

∂s
+ u(s,Xs)

∂F

∂x
+

1

2
σ2(s,Xs)

∂2F

∂x2
+ σ(s,Xs)

∂F

∂x
dW

]

=e−
∫ s
t
V (u,Xu)duσ(s,Xs)

∂F

∂x
dW.

Integrating this equation from t to T , we can obtain that

Y (T )− Y (t) =

∫ T

t
e−

∫ s
t
V (u,Xu)duσ(s,Xs)

∂F

∂x
dW.

Taking the expectation, conditioned on Xt = x of both sides implies

E[Y (T )|Xt = x] = E[Y (t)|Xt = x] = F (t, x).

Thus

F (t, x) =E
[

F (T,XT )e
−

∫ T
t V (u,Xu)du

]

=E
[

g(xT )e
−

∫ T
t V (u,Xu)du|Xt = x

]

.

One can see that when the payoff g(xT ) = 1, the formula can be adopted to the

calculation of bond price.
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Chapter 3

Modelling of Refinancing

3.1 Business Economic Assumptions

As market increasingly diversifies, the mortgage contract itself becomes rather com-

plicated in real industry, the documentation of which concerns not only financial and

business consultants, but also commercial lawyers and regulatory compliance, etc. This

said, it is reasonable for us to summarise common contract specifics and economic en-

vironment in which the mortgage deals are cultivated.

1. With the continuous payment, one refinancing is granted throughout the whole

during of the original contract. The transaction fee is charged as the percentage

of the profit gained by refinancing. If the profit is Ms, the lender may charge the

transaction fee as βMs, with β ∈ (0, 1). In addition, the life of the contract will

not be affected by refinancing.

2. No prepayment or default will be considered in this thesis.

3. The market is complete, and both the lender and the debtor have equal access to

the market information.

4. The debtor does not have a sizable enough amount of fund to make early payment.

Among these assumptions, 1-2 are contract clauses or interpretations of these clauses;

and 3-4 are market and economic environment assumptions. In particular, the as-

sumption 3 guarantees the method and solutions contained in this thesis are arbitrage

free.

3.2 Model Setting for Mortgage Refinancing

1. rt: market interest rate at time t, we define e−
∫ s
0 rtdt as the discount process to

time s.

2. T : the duration of mortgage contract, in the unit of years, t ∈ [0, T ].
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3. c(t) = ct: mortgage rate contracted at t, for the time interval [t, T ]. ct is a

deterministic function of rt.

4. P (t): Consider a bank loan of amount P (0) at t = 0 for the duration of T .

P (t) is the principal balance at time t, which implies if the debtor wants to pay

off the debt at time t, he or she needs to repay P (t). Therefore, P (t) equals
P (0)

1−e−c0T

(

1− e−c0(T−t)
)

and at maturity date t = T , P (T ) = 0.

5. mt: rate of payment per unit amount of loan determined at t for the duration of

[t, T ]. The payment rate per unit amount and the mortgage rate satisfy

∫ T

t
e−ct(s−t)mtds = 1,

which gives

−mt
1

ct
e−ct(s−t)

∣

∣

∣

∣

T

t

=
mt

ct

(

1− e−ct(T−t)
)

= 1,

or equivalently

mt =
ct

1− e−ct(T−t)
. (3.1)

6. We consider a portfolio V consisting of a loan of P (0) at time t = 0 for the

duration of T years with the mortgage rate c0 and a refinancing agreement to be

exercised at time s ∈ (0, T ), if the mortgage rate cs at time s satisfies cs < c0.

Initially, the debtor would undertake the continuous payment rate of m0P (0)

with the mortgage rate c0. At time t = s, if refinancing is exercised leads to a

new payment rate of msP (s) with the mortgage rate cs. If Ms is the value of this

portfolio at time t = 0, with the market interest rate rs at time s, we have

Ms =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ T

s
[m0P (0) −msP (s)] e−

∫ t
0 rvdvdt cs < c0

0, cs ≥ c0,

(3.2)

where

m0P (0)−msP (s) = P (0)

[

c0
1− e−c0T

−
cs
[

1− e−c0(T−s)
]

[1− e−c0T ]
[

1− e−cs(T−s)
]

]

.

Ms can be also viewed as the total discounted profit of refinancing at time s. As

described, the lender may charge βMs as the transaction fee. Thus, the profit gained by

the debtor is (1−β)Ms. A natural question is to find the optimal time which maximizes

the utility of the profit and the risk. Since Ms is a stochastic process, we may consider
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its expectation E[Ms] and its variance Var[Ms] as key factors. If U : R2 → R is such a

utility function, our problem is equivalent to

U

(

E[Ms],
1

√

Var[Ms]

)

, (3.3)

where

E[Ms] =

∫ T

s
E
[

[m0P (0)−msP (s)] e−
∫ t
0 rvdv

]

dt, (3.4)

and

Var[Ms] = E

[

[m0P (0) −msP (s)]2
(
∫ T

s
e−

∫ t
0 rvdvdt

)2
]

− (E[Ms])
2 . (3.5)

In general, the unconstrained maximization problem U(x, y) will be obtained by

setting Ux = 0 and Uy = 0, with the second-order conditions Uxx < 0, Uyy < 0 and
∣

∣

∣

∣

Uxx Uxy

Uxy Uyy

∣

∣

∣

∣

< 0. Thus, for a utility function U(x, y), we can see that

∣

∣

∣

∣

Uxx Uxy

Uxy Uyy

∣

∣

∣

∣

is a

negative-definite matrix.

We let x(s) = E[Ms] and y(s) = 1√
Var[Ms]

in (3.3), thus, the optimal point will be

obtained by

d

ds
U (x(s), y(s)) = Uxx

′(s) + Uyy
′(s) = 0, (3.6)

because

d2

ds2
U (x(s), y(s))

=Uxx

[

x′(s)
]2

+ 2Uxyx
′(s)y′(s) + Uxx

′′(s) + Uyy

[

y′(s)
]2

+ Uyy
′′(s)

=
(

x′(s), y′(s)
)

(

Uxx Uxy

Uxy Uyy

)(

x′(s)
y′(s)

)

+
(

Ux, Uy

)

(

x′′(s)
y′′(s)

)

<0,

thus, the maximum value of U (x(s), y(s)) will occur at s satisfying (3.6).

In particular, The utility function can be described by the Cobb-Douglas model

(see [40]), where

U

(

E[Ms],
1

√

Var[Ms]

)

= (E[Ms])
ρ 1
(

√

Var[Ms]
)1−ρ

, (3.7)

where ρ ∈ (0, 1).

Without loss of generality, we assume E[Ms] and Var[Ms] are continuous, posi-

tive and differentiable. The maximum value of U

(

E[Ms],
1√

Var[Ms]

)

will occur at s

satisfying dU
ds = 0, implying

ρ
d

ds
ln (E[Ms]) = (1− ρ)

d

ds
ln
(

√

Var[Ms]
)

. (3.8)
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With ρ = 1, the maximum value of U

(

E[Ms],
1√

Var[Ms]

)

will occur at s satisfying

dE[Ms]
ds = 0.

We assume the mortgage rate ct is a function of rt with ct ≥ rt, and the market

interest rate rt satisfies the following SDE of

drt = u(t, rt)dt+ σ(t, rt)dWt,

where u(t, rt) is the drift coefficient, σ(t, rt) is the diffusion coefficient, and Wt is the

standard Brownian motion.

The expectation of Ms can be represented as

E[Ms] =

∫ T

s
E
[

[m0P (0) −msP (s)] e−
∫ t
0 rvdv

]

dt

=

∫ T

s

E
[

E
[

[m0P (0)−msP (s)] e−
∫ t
0 rvdv|rs

]]

dt

=

∫ T

s
E
[

[m0P (0) −msP (s)] e−
∫ s
0 rvdvE

[

e−
∫ t
s
rvdv |rs

]]

dt

=

∫ T

s

E
[

[m0P (0) −msP (s)] e−
∫ s
0 rvdvB(s, t)

]

dt, (3.9)

where B(s, t) = E
[

e−
∫ t
s
rvdv|rs

]

is zero-coupon discounted bond price with maturity t

with explicit formula

B(s, t) = A1(s, t)e
−A2(s,t)rs .

And the formulae of A1(s, t) and A2(s, t) will depend on the stochastic interest rate

process we adopted.

We can rewrite (3.9) as

E[Ms] =E

[

[m0P (0)−msP (s)] e−
∫ s
0 rvdv

∫ T

s

B(s, t)dt

]

=E

[

[m0P (0)−msP (s)] e−
∫ s
0 rudu lim

||Π||−→0

n
∑

i=0

B

(

s,
i

n
(T − s)

)

T − s

n

]

.

We construct a portfolio Bs = lim||Π||−→0
∑n

i=0B
(

s, i
n(T − s)

)

T−s
n , and the pay-

ment rate of the portfolio after refinance at time s denotes as Rs =
cs[1−e−c0(T−s)]

[1−e−c0T ][1−e−cs(T−s)]
.

Thus, we have

E[Ms] =E
[

P (0) (R0 −Rs)Bse
−

∫ s
0 rvdv

]

.

We may think the debtor holds a payment option. If the mortgage rate at time s,

cs, is lower than the contractual rate, c0, which implies Rs < R0, the debtor would

like to exercise the option and new payment becomes P (0)RsBs, making a profit of

P (0)Bs(R0 −Rs). Otherwise, the debtor will discard the option and keep the original

contract.
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Lemma 3.2.1. If the mortgage rate cs < c0, then Rs < R0 when s ∈ (0, T ).

Proof. Since

Rs

R0
=

cs
c0

1− e−c0(T−s)

1− e−cs(T−s)
,

we let f(x) = x
1−e−x(T−s) with x > 0, thus, the first derivative of f(x) gives

f ′(x) =
1− e−x(T−s) − x(T − s)e−x(T−s)

[

1− e−x(T−s)
]2 .

We let g(x) = 1− e−x(T−s) − x(T − s)e−x(T−s), then

g′(x) = x(T − s)2e−x(T−s) > 0.

Thus, g(x) is an increasing function and g(x) > g(0) = 0. In this case, f(x) is also an

increasing function. Then the Lemma is proved.

We may rewrite E[Ms] as

E[Ms] = P (0)
1 − e−c0(T−s)

1− e−c0T

∫ T

s

E

[(

c0

1− e−c0(T−s)
−

cs

1− e−cs(T−s)

)

e−
∫ t
0 rvdv

]

dt

= P (0)
1 − e−c0(T−s)

1− e−c0T

∫ T

s

E

[(

c0

1− e−c0(T−s)
−

cs

1− e−cs(T−s)

)

e−
∫ s
0 rvdvB(s, t)

]

dt,

and to simplify the calculation, we assume c0 = r0.

Theorem 3.2.2. If cs is defined by the equation

cs

1− e−cs(T−s)
=

r0

1− e−r0(T−s)
+

1− e−r0(T−s) − r0(T − s)
(

1− e−r0(T−s)
)

r0(T − s)
(r0 − rs), (3.10)

thus, (3.9) can be evaluated as

E[Ms] = P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

∫ T

s

[

r0 −
d ln(A1(s,t))

dt − d ln(A1(0,t))
dt + r0

dA2(0,t)
dt

dA2(s,t)
dt

]

B(0, t)dt.

(3.11)

Lemma 3.2.3. If cs is defined as in (3.10), we have

cs > rs. (3.12)

Proof. We let x = rs(T − s), x0 = r0(T − s) , and y = cs(T − s). Thus, we have

g(x) =
x0

1− e−x0
−

x

1− e−x
.

With g(x0) = 0 and g(0) = x0
1−e−x0

− 1, the slope m is

m =
g(0) − g(x0)

0− x0
=

1− e−x0 − x0
(1− e−x0)x0

.

As g′(x) < 0 and g′′(x) < 0, there exists an unique y ∈ (x, x0], such that

g(y) = m(x− x0),

thus, we have cs > rs.
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Theorem 3.2.4. The optimal time to refinance, with ρ = 1, can be obtained by the

following equation

(r0(T − s) + 1) e−r0(T−s) − 1

(T − s)
[

e−r0(T−s) + r0(T − s)− 1
]

∫ T

s

[

r0 −
d ln(A1(s,t))

dt − d ln(A1(0,t))
dt + r0

dA2(0,t)
dt

dA2(s,t)
dt

]

B(0, t)dt

=

{

∫ T

s

∂2 ln(A1(s,t))
∂s∂t

dA2(s,t)
dt − ∂2A2(s,t)

∂s∂t

[

d ln(A1(s,t))
dt − d ln(A1(0,t))

dt + r0
dA2(0,t)

dt

]

[

dA2(s,t)
dt

]2 B(0, t)dt

+

[

r0 −
d ln(A1(s,t))

dt |t=s − d ln(A1(0,t))
dt |t=s + r0

dA2(0,t)
dt |t=s

dA2(s,t)
dt |t=s

]

B(0, s)

}

. (3.13)

In addition, we can obtain s by numerical methods.

Theorem 3.2.5. The analytical solution of E[Ms] is obtained when ct is a linear func-

tion of rt, say, ct = λrt, where λ is a multiplier, with λ > 1.

E[Ms] =
P (0)

1− e−λr0T

∫ T

s

λr0B(0, t)−
[

1− e−λr0(T−s)
]

∞
∑

n=0

Bn
(−1)nλn(T − s)n−1G

(n)
α (0, s, t)

n!
dt,

with G(α, s, t) = A1(s,t)
A1(s,t̃)

B(0, t̃), and t̃ is a function of α and t. In addition, if α = 0,

we have G(0, s, t) = B(0, t).

Lemma 3.2.6. With ct = λrt, Ms could be rewritten as

Ms =
P (0)

1− e−λr0T

∫ T

s
λr0e

−
∫ t
0 rvdv −

[

1− e−λr0(T−s)
]

∞
∑

n=0

Bn
(−1)n(T − s)n−1

n!
λnrns e

−
∫ t
0 rvdvdt,

(3.14)

where Bn is the sequence of Bernoulli numbers with the explicit formula

Bn =
n
∑

k=0

k
∑

v=0

(−1)v
(

k

v

)

(v + 1)n

k + 1
.

Proof. We may arrange Ms as

Ms =P (0)

[

c0
1− e−c0T

−
cs
[

1− e−c0(T−s)
]

[1− e−c0T ]
[

1− e−cs(T−s)
]

]

∫ T

s
e−

∫ t
0 rvdvdt

=
P (0)

1− e−c0T

∫ T

s
c0e

−
∫ t
0 rvdv −

1− e−c0(T−s)

T − s

cs(T − s)

1− e−cs(T−s)
e−

∫ t
0 rvdvdt,

As we have

cs(T − s)

1− e−cs(T−s)
=

∞
∑

n=0

Bn
(−1)n(T − s)ncns

n!
=

∞
∑

n=0

Bn
(−1)n(T − s)nλnrns

n!
,
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thus, we may rewrite Ms as

Ms =
P (0)

1− e−λr0T

∫ T

s
λr0e

−
∫ t
0 rvdv −

[

1− e−λr0(T−s)
]

∞
∑

n=0

Bn
(−1)n(T − s)n−1

n!
λnrns e

−
∫ t
0 rvdvdt.

Lemma 3.2.7. Assume ct = λrt. Then the asymptotic formula of (3.9) can be simpli-

fied as

Ms ≈ λP (0)
1− e−λr0(T−s) − λr0(T − s)e−λr0(T−s)

[

1− e−λr0(T−s)
]

[1− e−λr0T ]

∫ T

s
(r0 − rs)e

−
∫ t
0 rvdvdt, (3.15)

thus, the expectation of (3.15) is

E[Ms] ≈λP (0)
1 − e−λr0(T−s) − λr0(T − s)e−λr0(T−s)

[

1− e−λr0(T−s)
]

[1− e−λr0T ]
∫ T

s

[

r0 −
d ln(A1(s,t))

dt − d ln(A1(0,t))
dt + r0

dA2(0,t)
dt

dA2(s,t)
dt

]

B(0, t)dt. (3.16)

Lemma 3.2.8. The approximation of c0
1−e−c0(T−s) − cs

1−e−cs(T−s) is

c0

1− e−c0(T−s)
−

cs

1− e−cs(T−s)
≈
1− e−c0(T−s) − c0(T − s)e−c0(T−s)

[

1− e−c0(T−s)
]2 (c0 − cs)

=λ
1− e−λr0(T−s) − λr0(T − s)e−λr0(T−s)

[

1− e−λr0(T−s)
]2 (r0 − rs).

However, the approximated value of Ms is slightly higher than the real value, sug-

gesting that our approximation will benefit the debtors. In this approximation method,

the lender may charge for a higher transaction cost (with the higher value of β) to keep

balance.

Proof. We let x = cs(T − s), x0 = c0(T − s) . As ∃ A, such that 0 ≤ x ≤ A, we

approximate f(x) = x
1−e−x − x0

1−e−x0
at the point x0 as

x

1− e−x
−

x0
1− e−x0

=
1− e−x0 − x0e

−x0

[1− e−x0 ]2
(x− x0) + o(x− x0).

As

f ′′(x) =
−2e−x + 2e−2x + xe−x + xe−2x

[1− e−x]3
> 0,

it is clear that f(x) is a convex function, implying o(cs − c0) > 0.

Lemma 3.2.9. For any given function g(rs), we have

E
[

g(rs)rse
−

∫ t
0 rvdv

]

= −
A1(s, t)
dA2(s,t)

dt

d

dt

(

1

A1(s, t)
E
[

g(rs)e
−

∫ t
0 rvdv

]

)

.
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Proof.

E
[

g(rs)e
−

∫ t
0 rvdv

]

=E
[

E
[

g(rs)e
−

∫ t
0 rvdv|rs

]]

=E
[

g(rs)e
−

∫ s
0 rvdvE

[

e−
∫ t
s rvdv|rs

]]

=E
[

g(rs)e
−

∫ s
0 rvdvB(s, t)

]

=E
[

g(rs)e
−

∫ s
0 rvdvA1(s, t)e

−A2(s,t)rs
]

.

Taking derivative of both sides with respect to t gives

d

dt
E
[

g(rs)e
−

∫ t
0 rvdv

]

=E

[

g(rs)e
−

∫ s
0 rvdv dA1(s, t)

dt
e−A2(s,t)rs

]

− E

[

g(rs)e
−

∫ s
0 rvdv dA2(s, t)

dt
rsA1(s, t)e

−A2(s,t)rs

]

=
d ln [A1(s, t)]

dt
E
[

g(rs)e
−

∫ s
0 rvdvB(s, t)

]

−
dA2(s, t)

dt
E
[

g(rs)rse
−

∫ s
0 rvdvB(s, t)

]

=
d ln [A1(s, t)]

dt
E
[

g(rs)e
−

∫ t
0 rvdv

]

−
dA2(s, t)

dt
E
[

g(rs)rse
−

∫ t
0 rvdv

]

.

Rearranging the above equation gives

E
[

g(rs)rse
−

∫ t
0 rvdv

]

=
1

dA2(s,t)
dt

[

−
d

dt
E
[

g(rs)e
−

∫ t
0 rvdv

]

+
d ln [A1(s, t)]

dt
E
[

g(rs)e
−

∫ t
0 rvdv

]

]

=−
A1(s, t)
dA2(s,t)

dt

d

dt

[

1

A1(s, t)
E
[

g(rs)e
−

∫ t
0 rvdv

]

]

.

This proves the Lemma.

Lemma 3.2.10. For any α in the positive neighborhood (0, ϵ), if we let G(α, s, t) =

E
[

eαrse−
∫ t
0 rvdv

]

, there exists t̃ = t̃(α, t) ∈ [s, t), such that

G(α, s, t) =
A1(s, t)

A1(s, t̃)
B(0, t̃). (3.17)

Then we have

E
[

rns e
−

∫ t
0 rvdv

]

= G(n)
α (0, s, t) =

dn

dαn
|α=0

(

A1(s, t)

A1(s, t̃)
B(0, t̃)

)

. (3.18)

Proof. We have

G(α, s, t) =E
[

g(rs)e
−

∫ s
0 rvdvB(s, t)

]

=E
[

eαrse−
∫ s
0 rvdvA1(s, t)e

−A2(s,t)rs
]

=E
[

e−
∫ s
0 rvdvA1(s, t)e

−(A2(s,t)−α)rs
]

,
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as A2(s, t) is an increasing function with respect to t, there exists t̃, such that

0 ≤ A2(s, t)− α = A2(s, t̃), (3.19)

and we can solve t̃ based on the function of A2(s, t). Thus, the above equation can be

continued as

=E
[

e−
∫ s
0 rvdvA1(s, t)e

−A2(s,t̃)rs
]

=
A1(s, t)

A1(s, t̃)
E
[

e−
∫ s
0 rvdvA1(s, t̃)e

−A2(s,t̃)rs
]

=
A1(s, t)

A1(s, t̃)
E
[

e−
∫ s
0 rvdvB(s, t̃)

]

=
A1(s, t)

A1(s, t̃)
B(0, t̃).

Both Lemma 3.2.9 and Lemma 3.2.10 can be used to calculate E
[

rns e
−

∫ t
0 rvdv

]

based

on affine Models. However, Lemma 3.2.10 is more applicable to analytical analysis, and

Lemma 3.2.9 is more suitable for numerical iteration.

Corollary 3.2.11. The same formulation of E
[

rse
−

∫ t
0 rvdv

]

can be obtained both by

Lemma 3.2.9 and Lemma 3.2.10.

Proof. We first consider g(rs) = 1 in Lemma 3.2.9, where

E
[

rse
−

∫ t
0 rvdv

]

= −
A1(s, t)
dA2(s,t)

dt

d

dt

(

1

A1(s, t)
E
[

e−
∫ t
0 rvdv

]

)

= −
A1(s, t)
dA2(s,t)

dt

d

dt

(

1

A1(s, t)
B(0, t)

)

=
A1(s, t)
dA2(s,t)

dt

dA1(s,t)
dt B(0, t)− dB(0,t)

dt A1(s, t)

A2
1(s, t)

=
1

dA2(s,t)
dt

dA1(s,t)
dt B(0, t)− dB(0,t)

dt A1(s, t)

A1(s, t)
.

As we have

dB(0, t)

dt
=

d

dt
A1(0, t)e

−A2(0,t)r0

=
dA1(0, t)

dt
e−A2(0,t)r0 − r0

dA2(0, t)

dt
A1(0, t)e

−A2(0,t)r0

=
dA1(0, t)

dt

1

A1(0, t)
A1(0, t)e

−A2(0,t)r0 − r0
dA2(0, t)

dt
A1(0, t)e

−A2(0,t)r0

=
d ln (A1(0, t))

dt
B(0, t)− r0

dA2(0, t)

dt
B(0, t),
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Thus,

E
[

rse
−

∫ t
0 rvdv

]

=
d ln(A1(s,t))

dt − d ln(A1(0,t))
dt + r0

dA2(0,t)
dt

dA2(s,t)
dt

B(0, t).

Similarly, we apply n = 1, in Lemma 3.2.10, which gives

E
[

rse
−

∫ t
0 rvdv

]

= G(1)
α (0, s, t) =

d

dα
|α=0

(

A1(s, t)

A1(s, t̃)
B(0, t̃)

)

.

As one can see that t̃ is a function of α, we may calculate G
(1)
α (0, s, t) as

G(1)
α (0, s, t) =

dG(α, s, t)

dt̃

dt̃

dα
|α=0.

Taking derivative with respect to α of both sides for A2(s, t)− α = A2(s, t̃) implies

−1 =
dA2(s, t̃)

dt̃

dt̃

dα
.

As α = 0 is equivalent to t̃ = t, we have

dt̃

dα
|α=0 =

dt̃

dα
|t̃=t = −

1
dA2(s,t)

dt

.

Thus,

G(1)
α (0, s, t)

=−
A1(s, t)
dA2(s,t)

dt

d

dt̃
|t̃=t

(

B(0, t̃)

A1(s, t̃)

)

=−
A1(s, t)
dA2(s,t)

dt

d

dt̃
|t̃=t

(

A1(0, t̃)

A1(s, t̃)
e−A2(0,t̃)r0

)

=−
A1(s, t)
dA2(s,t)

dt

⎡

⎣

dA1(0,t̃)
dt̃

A1(s, t̃)− A1(s,t̃)
dt̃

A1(0, t̃)

A2
1(s, t̃)

e−A2(0,t̃)r0 − r0
dA2(s, t̃)

dt̃

A1(0, t̃)

A1(s, t̃)
e−A2(0,t̃)r0

⎤

⎦ |t̃=t

=−
A1(s, t)
dA2(s,t)

dt

[

dA1(0,t)
dt A1(s, t)− A1(s,t)

dt A1(0, t)

A2
1(s, t)

e−A2(0,t)r0 − r0
dA2(s, t)

dt

A1(0, t)

A1(s, t)
e−A2(0,t)r0

]

=−
1

dA2(s,t)
dt

[

dA1(0,t)
dt A1(s, t)− A1(s,t)

dt A1(0, t)

A1(s, t)
e−A2(0,t)r0 − r0

dA2(s, t)

dt
A1(0, t)e

−A2(0,t)r0

]

=
d ln(A1(s,t))

dt − d ln(A1(0,t))
dt + r0

dA2(0,t)
dt

dA2(s,t)
dt

B(0, t).

One can see that we obtain the same formula of E
[

rse
−

∫ t
0 rvdv

]

based on Lemma 3.2.9

and Lemma 3.2.10.

Theorem 3.2.12. (3.5) can be evaluated as

Var[Ms] =2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s

r20G̃(0, s, t̃)

−2r0G̃
(1)
α (0, s, t̃) + G̃(2)

α (0, s, t̃)dhdt− (E[Ms])
2 , (3.20)
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with

G̃(0, s, t̃) =
A1(h, t)

Â1(h, t̃)
B̂(0, t̃)

G̃(1)
α (0, s, t̃) =

1

2

A1(h, t)

Â1(h, t̃)

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃)

G̃(2)
α (0, s, t̃) =

1

4

A1(h, t)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

⎡

⎣

d2 ln
(

Â1(0, t̃)
)

d2t̃
−

d2 ln
(

Â1(s, t̃)
)

d2t̃

+

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

2

−

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃

−
d ln

(

Â1(s, t̃)
)

dt̃

⎞

⎠

dÂ2(0, t̃)

dt̃
r̂0 −

d2Â2(0, t̃)

dt̃2
r̂0

⎤

⎦ B̂(0, t̃) +
1

4

[

dÂ2(0, t̃)

dt̃
r̂0

+
d2Â2(s,t̃)

dt̃2

dÂ2(s,t̃)
dt̃

⎤

⎦

A1(h, t)

Â1(h, t̃)
dÂ2(s,t̃)

dt̃

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃),

where r̂t = 2rt, and B̂(0, t̃) is the bond price under r̂t. t̃ satisfies A2(h,t)
2 = Â2(h, t̃).

Lemma 3.2.13. The formula of M2
s is

M2
s = 2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s

(

r20 − 2r0rs + r2s
)

e−
∫ h
0 rvdve−

∫ t
0 rvdvdhdt.

(3.21)

Proof. As we have

M2
s = [m0P (0) −msP (s)]2

(
∫ T

s

e−
∫ t
0 rududt

)2

= [m0P (0) −msP (s)]2
∫ T

s

∫ T

s

e−
∫ t
0 rudue−

∫ h
0 rududhdt

= [m0P (0) −msP (s)]2
(
∫ T

s

∫ t

s
+

∫ T

s

∫ T

t

)

e−
∫ t
0 rudue−

∫ h
0 rududhdt

=2

∫ T

s

∫ t

s

[m0P (0)−msP (s)]2 e−
∫ t
0 rudue−

∫ h
0 rududhdt

=2

(

P (0)
1 − e−r0(T−s)

1− e−r0T

)2
∫ T

s

∫ t

s

(

r0

1− e−r0(T−s)
−

cs

1− e−cs(T−s)

)2

e−
∫ h
0 rvdve−

∫ t
0 rvdvdhdt

=2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s

(r0 − rs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdvdhdt,

then the Lemma is proved.
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Theorem 3.2.14. The analytical solution of Var[Ms] is obtained when ct = λrt, where

Var[Ms] =2

(

P (0)

1− e−λr0T

)2 ∫ T

s

∫ t

s
λr0G̃(0, s, t̃)

−2λr0
[

1− e−λr0(T−s)
]

∞
∑

n=0

Bn
(−1)n(T − s)n−1λn

n!
G̃(n)

α (0, s, t̃)

+
[

1− e−λr0(T−s)
]2 ∞
∑

n=0

n
∑

m=0

BmBn−m
(−1)n(T − s)n−2λn

m!(n−m)!
G̃(n)

α (0, s, t̃)− (E[Ms])
2 ,

(3.22)

with G̃(α, s, t̃) = A1(h,t)Â1(s,t̃)

Â1(h,t̃)Â1(s,t̃1)
B̂(0, t̃1), and t̃1 is a function of α and t̃. If α = 0, we

have G̃(0, s, t̃) = A1(h,t)

Â1(h,t̃)
B̂(0, t̃).

Lemma 3.2.15. M2
s can be rewritten as

M2
s =2

(

P (0)

1− e−λr0T

)2 ∫ T

s

∫ t

s

(

λ2r20 − 2λr0
1− e−λr0(T−s)

T − s

∞
∑

n=0

Bn
(−1)n(T − s)nrns

n!

+

(

1− e−λr0(T−s)

T − s

)2 ∞
∑

n=0

n
∑

m=0

BmBn−m
(−1)n(T − s)nλnrns

m!(n −m)!

)

e−
∫ h
0 rvdve−

∫ t
0 rvdvdhdt.

Proof. We may rewrite M2
s as

M2
s =2

(

P (0)

1− e−λr0T

)2 ∫ T

s

∫ t

s

(

λr0 −
[

1− e−λr0(T−s)
] λrs

1− e−λrs(T−s)

)2

e−
∫ h
0 rvdve−

∫ t
0 rvdvdhdt,

and we have
(

λr0 −
[

1− e−λr0(T−s)
] λrs

1− e−λrs(T−s)

)2

=λ2r20 − 2λr0
1− e−λr0(T−s)

T − s

λrs(T − s)

1− e−λrs(T−s)
+

(

1− e−λr0(T−s)

T − s

)2
(

λrs(T − s)

1− e−λrs(T−s)

)2

=λ2r20 − 2λr0
1− e−λr0(T−s)

T − s

∞
∑

n=0

Bn
(−1)n(T − s)nrns λ

n

n!

+

(

1− e−λr0(T−s)

T − s

)2( ∞
∑

n=0

Bn
(−1)n(T − s)nrns λ

n

n!

)2

.
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We apply the Cauchy product to obtain
[

∑∞
i=0 Bi

(−1)i(T−s)iλiris
i!

]2
, which gives

[

∞
∑

i=0

Bi
(−1)i(T − s)iλiris

i!

]2

=
∞
∑

i=0

Bi
(−1)i(T − s)iλiris

i!

∞
∑

j=0

Bj
(−1)j(T − s)jλjrjs

j!

=
∞
∑

n=0

n
∑

m=0

Bm
(−1)m(T − s)mλmrms

m!
Bn−m

(−1)n−m(T − s)n−mλn−mrn−m
s

(n−m)!

=
∞
∑

n=0

n
∑

m=0

BmBn−m
(−1)n(T − s)nλnrns

m!(n −m)!
,

thus

M2
s =2

(

P (0)

1− e−λr0T

)2 ∫ T

s

∫ t

s

(

λ2r20 − 2λr0
1− e−λr0(T−s)

T − s

∞
∑

n=0

Bn
(−1)n(T − s)nrns

n!

+

(

1− e−λr0(T−s)

T − s

)2 ∞
∑

n=0

n
∑

m=0

BmBn−m
(−1)n(T − s)nλnrns

m!(n −m)!

)

e−
∫ h
0 rvdve−

∫ t
0 rvdvdhdt.

Lemma 3.2.16. E
[

e−
∫ h
0 rvdve−

∫ t
0 rvdv

]

= A1(h,t)

Â1(h,t̃)
B̂(0, t̃).

Proof.

E
[

e−
∫ h
0 rvdve−

∫ t
0 rvdv

]

= E
[

e−2
∫ h
0 rvdve−

∫ t
h
rvdv

]

= E
[

e−2
∫ h
0 rvdvE

[

e−
∫ t
h rvdv

]

|rh
]

= E
[

e−2
∫ h
0 rvdvB(h, t)

]

= A1(h, t)E
[

e−2
∫ h
0 rvdve−A2(h,t)rh

]

= A1(h, t)E
[

e−
∫ h
0 2rvdve−

A2(h,t)
2 2rh

]

, (3.23)

by letting r̂v = 2rv, we can see that r̂v follows the same distribution with rv. We denote

B̂(h, t) = Â1(h, t)e−Â2(h,t)r̂h as the bond price under the process of r̂, thus, the above

equation can be continued as

= A1(h, t)E
[

e−
∫ h
0 r̂vdve−

A2(h,t)
2 r̂h

]

.
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As A2(h, t) > 0, there exist t̃ > h, such that A2(h,t)
2 = Â2(h, t̃), thus, we have

= A1(h, t)E
[

e−
∫ h
0 r̂vdve−Â2(h,t̃)r̂h

]

=
A1(h, t)

Â1(h, t̃)
E
[

e−
∫ h
0 r̂vdvB̂(h, t̃)

]

=
A1(h, t)

Â1(h, t̃)
B̂(0, t̃).

Lemma 3.2.17. For any α in the positive neighborhood (0, ϵ), if we let G̃(α, s, t) =

E
[

eαrse−
∫ h
0 rvdve−

∫ t
0 rvdv

]

, there exists t̃1 = t̃1(α, t̃) ∈ [s, t̃), such that

G̃(α, s, t̃) =
A1(h, t)Â1(s, t̃)

Â1(h, t̃)Â1(s, t̃1)
B̂(0, t̃1).

Thus, we can obtain E
[

rns e
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

= G̃
(n)
α (0, s, t̃).

Proof.

E
[

eαrse−
∫ h
0 rvdve−

∫ t
0 rvdv

]

= E
[

eαrse−2
∫ s
0 rvdve−2

∫ h
s
rvdve−

∫ t
h
rvdv

]

= E
[

eαrse−2
∫ s
0 rvdvE

[

e−2
∫ h
s rvdve−

∫ t
h rvdv

]

|rs
]

= E

[

eαrse−2
∫ s
0 rvdvA1(h, t)

Â1(h, t̃)
B̂(s, t̃)

]

=
A1(h, t)Â1(s, t̃)

Â1(h, t̃)
E
[

e
α
2 r̂se−

∫ s
0 r̂vdve−Â2(s,t̃)r̂s

]

=
A1(h, t)Â1(s, t̃)

Â1(h, t̃)Â1(s, t̃1)
B̂(0, t̃1), (3.24)

where Â2(s, t̃)− α
2 = Â2(s, t̃1).

Corollary 3.2.18. Assume n = 1 in Lemma 3.2.17. Then we have

E
[

rse
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=
1

2

A1(h, t)

Â1(h, t̃)

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃),

with r̂0 = 2r0.

Proof.

E
[

rse
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=
d

dα
|α=0G̃(α, s, t̃)

=
d

dt̃1

(

A1(h, t)Â1(s, t̃)

Â1(h, t̃)Â1(s, t̃1)
B̂(0, t̃1)

)

dt̃1
dα

|α=0. (3.25)
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Taking derivative of Â2(s, t̃)− α
2 = Â2(s, t̃1) with respect to α gives

−
1

2
=

Â2(s, t̃1)

dt̃1

dt̃1
dα

|α=0,

thus, we have
dt̃1
dα

|α=0 =
dt̃1
dα

|t̃1=t̃ = −
1

2

1
dÂ2(s,t̃)

dt̃

,

Hence, we can continue (3.25) as

= −
1

2

1
dÂ2(s,t̃)

dt̃

d

dt̃1
|t̃1=t̃

(

A1(h, t)Â1(s, t̃)

Â1(h, t̃)Â1(s, t̃1)
B̂(0, t̃1)

)

= −
1

2

A1(h, t)Â1(s, t̃)

Â1(h, t̃)
dÂ2(s,t̃)

dt̃

d

dt̃1
|t̃1=t̃

(

Â1(0, t̃1)

Â1(s, t̃1)
e−Â1(s,t̃1)r̂0

)

=
1

2

A1(h, t)

Â1(h, t̃)

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃).

Corollary 3.2.19. Assume n = 2 in Lemma 3.2.17. Then we have

E
[

r2se
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

(3.26)

=
1

4

A1(h, t)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

⎡

⎢

⎣

d2 ln
(

Â1(0, t̃)
)

d2t̃
−

d2 ln
(

Â1(s, t̃)
)

d2t̃
+

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

2

−

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

dÂ2(0, t̃)

dt̃
r̂0 −

d2Â2(0, t̃)

dt̃2
r̂0

⎤

⎦ B̂(0, t̃)

+
1

4

⎡

⎣

dÂ2(0, t̃)

dt̃
r̂0 +

d2Â2(s,t̃)
dt̃2

dÂ2(s,t̃)
dt̃

⎤

⎦

A1(h, t)

Â1(h, t̃)
dÂ2(s,t̃)

dt̃

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃).

Proof.

E
[

r2se
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=
d2

dα2
|α=0G̃(α, s, t̃)

=
d2

dt̃21

(

A1(h, t)Â1(s, t̃)

Â1(h, t̃)Â1(s, t̃1)
B̂(0, t̃1)

)

(

dt̃1
dα

)2

|α=0

+
d

dt̃1

(

A1(h, t)Â1(s, t̃)

Â1(h, t̃)Â1(s, t̃1)
B̂(0, t̃1)

)

d2t̃1
dα2

|α=0. (3.27)

Taking derivative of Â2(s, t̃)− α
2 = Â2(s, t̃1) with respect to α twice gives

0 =
d2Â2(s, t̃1)

dt̃21

(

dt̃1
dα

)2

|α=0 +
dÂ2(s, t̃1)

dt̃1

dt̃21
d2α

|α=0,
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thus, we have

dt̃21
d2α

|α=0 = −
1

4

d2Â2(s, t̃1)

dt̃21

⎛

⎝

1
dÂ2(s,t̃1)

dt̃1

⎞

⎠

3

|t̃1=t̃ = −
1

4

d2Â2(s, t̃)

dt̃2

⎛

⎝

1
dÂ2(s,t̃)

dt̃

⎞

⎠

3

.

Hence, we can continue (3.27) as

=
d2

dt̃21

(

A1(h, t)Â1(s, t̃)

Â1(h, t̃)Â1(s, t̃1)
B̂(0, t̃1)

)

⎛

⎝

1

2

1
dÂ2(s,t̃)

dt̃

⎞

⎠

2

|t̃1=t̃

−
1

4

d

dt̃1

(

A1(h, t)Â1(s, t̃)

Â1(h, t̃)Â1(s, t̃1)
B̂(0, t̃1)

)

d2Â2(s, t̃)

dt̃2

⎛

⎝

1
dÂ2(s,t̃)

dt̃

⎞

⎠

3

|t̃1=t̃

=
1

4

A1(h, t)Â1(s, t̃)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

d2

dt̃21

(

Â1(0, t̃1)

Â1(s, t̃1)
e−Â2(0,t̃1)r̂0

)

|t̃1=t̃

−
1

4

A1(h, t)Â1(s, t̃)
d2Â2(s,t̃)

dt̃2

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)3

d

dt̃1

(

Â1(0, t̃1)

Â1(s, t̃1)
e−Â2(0,t̃1)r̂0

)

|t̃1=t̃

=
1

4

A1(h, t)Â1(s, t̃)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

⎡

⎣

d

dt̃1

⎛

⎝

dÂ1(0,t̃1)
dt̃1

Â1(s, t̃1)− Â1(s,t̃1)
dt̃1

Â1(0, t̃1)

Â2
1(s, t̃1)

e−Â2(0,t̃1)r̂0

⎞

⎠

−
d2Â2(0, t̃1)

dt̃21
r̂0
Â1(0, t̃1)

Â1(s, t̃1)
e−Â2(s,t̃1)r̂0 −

dÂ2(0, t̃1)

dt̃1
r̂0

d

dt̃1

(

Â1(0, t̃1)

Â1(s, t̃1)
e−Â2(0,t̃1)r̂0

)]

|t̃1=t̃

−
1

4

A1(h, t)Â1(s, t̃)
d2Â2(s,t̃)

dt̃2

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)3

d

dt̃1

(

Â1(0, t̃1)

Â1(s, t̃1)
e−Â2(0,t̃1)r̂0

)

|t̃1=t̃

=
1

4

A1(h, t)Â1(s, t̃)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

d

dt̃1

⎛

⎝

dÂ1(0,t̃1)
dt̃1

Â1(s, t̃1)− dÂ1(s,t̃1)
dt̃1

Â1(0, t̃1)

Â2
1(s, t̃1)

e−Â2(0,t̃1)r̂0

⎞

⎠ |t̃1=t̃

+
1

4

A1(h, t)Â1(s, t̃)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

[

−
d2Â2(0, t̃1)

dt̃21
r̂0
Â1(0, t̃1)

Â1(s, t̃1)
e−Â2(s,t̃1)r̂0

]

−
1

4

⎡

⎣

dÂ2(0, t̃1)

dt̃1
r̂0 +

d2Â2(s,t̃)
dt̃2

dÂ2(s,t̃)
dt̃

⎤

⎦

A1(h, t)Â1(s, t̃)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

d

dt̃1

(

Â1(0, t̃1)

Â1(s, t̃1)
e−Â2(0,t̃1)r̂0

)

|t̃1=t̃.
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As we have

1

4

A1(h, t)Â1(s, t̃)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

d

dt̃1

⎛

⎝

dÂ1(0,t̃1)
dt̃1

Â1(s, t̃1)− dÂ1(s,t̃1)
dt̃1

Â1(0, t̃1)

Â2
1(s, t̃1)

e−Â2(0,t̃1)r̂0

⎞

⎠ |t̃1=t̃

=
1

4

A1(h, t)Â1(s, t̃)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

⎛

⎝

d2Â1(0,t̃1)
dt̃21

Â1(s, t̃1)− d2Â1(s,t̃1)
d2 t̃21

Â1(0, t̃1)

Â2
1(s, t̃1)

e−Â2(0,t̃1)r̂0 +

(

dÂ1(0, t̃1)

dt̃1
Â1(s, t̃1)

−
dÂ1(s, t̃1)

dt̃1
Â1(0, t̃1)

)

−dÂ2(0,t̃1)
dt̃1

r̂0Â
2
1(s, t̃1)− 2Â1(s, t̃1)

dÂ1(s,t̃1)
dt̃1

Â4
1(s, t̃1)

e−Â2(0,t̃1)r̂0

⎞

⎠ |t̃1=t̃

=
1

4

A1(h, t)B̂(0, t̃)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

⎡

⎢

⎣

d2 ln
(

Â1(0, t̃)
)

d2t̃
−

d2 ln
(

Â1(s, t̃)
)

d2t̃
+

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃

⎞

⎠

2

−

⎛

⎝

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

2

+

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

⎛

⎝−
dÂ2(0, t̃)

dt̃
r̂0 − 2

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

⎤

⎥

⎦

=
1

4

A1(h, t)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

⎡

⎢

⎣

d2 ln
(

Â1(0, t̃)
)

d2t̃
−

d2 ln
(

Â1(s, t̃)
)

d2t̃
+

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

2

−

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

dÂ2(0, t̃)

dt̃
r̂0

⎤

⎦ B̂(0, t̃),

and

=
1

4

A1(h, t)Â1(s, t̃)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

[

−
d2Â2(0, t̃1)

dt̃21
r̂0

Â1(0, t̃1)

Â1(s, t̃1)
e−Â2(s,t̃1)r̂0

]

|t̃1=t̃

=
1

4

A1(h, t)B̂(0, t̃)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

[

−
d2Â2(0, t̃)

dt̃2
r̂0

]

,

and based on Corollary 3.2.18, we have

−
1

4

⎡

⎣

dÂ2(0, t̃1)

dt̃1
r̂0 +

d2Â2(s,t̃)
dt̃2

dÂ2(s,t̃)
dt̃

⎤

⎦

A1(h, t)Â1(s, t̃)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

d

dt̃1

(

Â1(0, t̃1)

Â1(s, t̃1)
e−Â2(0,t̃1)r̂0

)

|t̃1=t̃

=
1

4

⎡

⎣

dÂ2(0, t̃1)

dt̃1
r̂0 +

d2Â2(s,t̃)
dt̃2

dÂ2(s,t̃)
dt̃

⎤

⎦

A1(h, t)

Â1(h, t̃)
dÂ2(s,t̃)

dt̃

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃).
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Thus, we can obtain

E
[

r2se
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=
1

4

A1(h, t)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

⎡

⎢

⎣

d2 ln
(

Â1(0, t̃)
)

d2t̃
−

d2 ln
(

Â1(s, t̃)
)

d2t̃
+

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

2

−

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

dÂ2(0, t̃)

dt̃
r̂0 −

d2Â2(0, t̃)

dt̃2
r̂0

⎤

⎦ B̂(0, t̃)

+
1

4

⎡

⎣

dÂ2(0, t̃)

dt̃
r̂0 +

d2Â2(s,t̃)
dt̃2

dÂ2(s,t̃)
dt̃

⎤

⎦

A1(h, t)

Â1(h, t̃)
dÂ2(s,t̃)

dt̃

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃).

3.3 The Relationship Between Discrete Case and Contin-

ues Case

We adopt the same assumption for the discrete case that ms represent the monthly

payment instead of the continuous payment rate. We consider matching the repayment

of principal and interest method, in which a fixed amount of payment is made in each

month during the whole period of the mortgage contract. The typical settings in such

a scheme is that the principal is to be paid back over a period of 12T months. The

first payment is made at month 1, and the last at month 12T . In each month a fixed

amount of payment m0 is made and this monthly payment rate m0 is calculated by

m0 =
c0
12

1−
(

1 + c0
12

)−12T
, (3.28)

At the 12sth month, s ∈ {1, 2, . . . , T}, in this scheme, after the monthly payment m0

has been made, the outstanding balance P (s) owed to the lender is

P (s) =
12m0P (0)

c0

[

1−
(

1 +
c0
12

)−12(T−s)
]

. (3.29)

The value of the portfolio V consisting of a loan P(0) and a refinancing agreement is

Ms = [m0P (0) −msP (s)]
T
∑

i=s

1
∏i

j=0

[

1 + rj
12

] , (3.30)

where

m0P (0)−msP (s) = P (0)

⎡

⎣

c0
12

1−
(

1 + c0
12

)−12T −
cs
12

[

1−
(

1 + c0
12

)−12(T−s)
]

[

1−
(

1 + c0
12

)−12T
] [

1−
(

1 + cs
12

)−12(T−s)
]

⎤

⎦ .
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If the payment scheme is continuous, (3.30) can be transformed to

Ms

= lim
N→∞

P (0)

⎡

⎣

c0
N

1−
(

1 + c0
N

)−NT
−

cs
N

[

1−
(

1 + c0
N

)−N(T−s)
]

[

1−
(

1 + c0
N

)−NT
] [

1−
(

1 + cs
N

)−N(T−s)
]

⎤

⎦

T
∑

i=s

1
∏i

j=0

[

1 + rj
N

]

= lim
N→∞

P (0)

⎡

⎣

c0

1−
(

1 + c0
N

)−NT
−

cs

[

1−
(

1 + c0
N

)−N(T−s)
]

[

1−
(

1 + c0
N

)−NT
] [

1−
(

1 + cs
N

)−N(T−s)
]

⎤

⎦

T
∑

i=s

1
∏i

j=0

[

1 + rj
N

]

1

N

=P (0)

[

c0
1− e−c0T

−
cs
[

1− e−c0(T−s)
]

[1− e−c0T ]
[

1− e−cs(T−s)
]

]

lim
N→∞

T
∑

i=s

1
∏i

j=0

[

1 + rj
N

]

1

N
. (3.31)

As

lim
N→∞

ln

[

1
∏i

j=0

[

1 + rj
N

]

]

=− lim
N→∞

i
∑

j=0

ln
[

1 +
rj
N

]

=− lim
N→∞

i
∑

j=0

rj
N

=−
∫ i

0
rudu,

(3.31) is continued as

=P (0)

[

c0
1− e−c0T

−
cs
[

1− e−c0(T−s)
]

[1− e−c0T ]
[

1− e−cs(T−s)
]

]

lim
N→∞

T
∑

i=s

e−
∫ i
s rudu 1

N

=P (0)

[

c0
1− e−c0T

−
cs
[

1− e−c0(T−s)
]

[1− e−c0T ]
[

1− e−cs(T−s)
]

]

∫ T

s
e−

∫ t
0 rududt

= [m0P (0)−msP (s)]

∫ T

s

e−
∫ t
0 rududt.
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Chapter 4

Results for Various Models of

Interest Rate

4.1 Merton Model

Merton([27]) proposed a general stochastic process to describe the evolution of interest

rate dynamic. The explicit solution of rt is

rt = r0 + ut+ σWt. (4.1)

4.1.1 T < ∞

Recall that we have

E[Ms] =P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

∫ ∞

s
E
[

(r0 − rs)e
−

∫ t
0 rvdv

]

dt.

As r0 − rs = −us− σWs, we may continue the calculation of E
[

(r0 − rs)e−
∫ t
0 rvdv

]

as

E
[

(r0 − rs)e
−

∫ t
0 rvdv

]

=− usE
[

e−
∫ t
0 rvdv

]

− σE
[

Wse
−

∫ t
0 rvdv

]

=− usB(0, t)dt− σE
[

Wse
−

∫ t
0 rvdv

]

,

where

B(0, t) = e−r0t−
ut2

2 +σ2t3

6 .

We can rearrange E
[

Wse
−

∫ t
0 rvdv

]

as

E
[

Wse
−

∫ t
0 rvdv

]

=E
[

Wse
−

∫ t
0 r0+uv+σWvdv

]

=e−r0t−
1
2ut

2
E
[

Wse
−σ

∫ t
0 Wvdv

]

=e−r0t−
1
2ut

2
E
[

Wse
−σtWteσ

∫ t
0 vdWv

]

=e−r0t−
1
2ut

2
E
[

Wse
−σ(tWt−tWs)e−σtWseσ

∫ s
0 vdWveσ

∫ t
s vdWv

]

=e−r0t−
1
2ut

2
E
[

Wse
−σtWseσ

∫ s
0 vdWv

]

E
[

e−σ(tWt−tWs)eσ
∫ t
s vdWv

]

.
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Thus, as

E
[

e−σtWseσ
∫ s
0 vdWv

]

= E
[

e−σ
∫ s
0 (t−v)dWv

]

,

we let q =
∫ s
0 (t − v)dWv . It is well known that q follows normal distribution. Clearly,

we have

E[q] = 0,

and by adopting the Ito’s isometry, we obtain

Var[q] =E[q2]− [E[q]]2

=E[q2]

=E

[

(
∫ s

0
(t− v)dWv

)2
]

=

∫ s

0
(t− v)2dv

=
1

3
t3 −

1

3
(t− s)3,

which implies q ∼ N(0, 13t
3 − 1

3(t− s)3). Therefore, we have

E
[

e−σ
∫ t
s
(t−v)dWv

]

= Mq(−σ) = e
σ2[t3−(t−s)3]

6 .

And we can obtain E
[

Wse
−σtWseσ

∫ s
0 vdWv

]

as

E
[

Wse
−σtWseσ

∫ s
0 vdWv

]

=−
1

σ

dE
[

e−σtWseσ
∫ s
0 vdWv

]

dt

=−
1

σ

de
σ2[t3−(t−s)3]

6

dt

=−
σ
[

t2 − (t− s)2
]

2
e

σ2[t3−(t−s)3]
6 .

Similarity, we have

E
[

e−σ(tWt−tWs)eσ
∫ t
s vdWv

]

=E
[

e−σ
∫ t
s (t−v)dWv

]

=e
σ2(t−s)3

6 .
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Thus

E[Ms] =P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

∫ T

s

E
[

(r0 − rs)e
−

∫ t
0 rvdv

]

dt

=P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

∫ T

s

[

−us+ σ2

[

t2 − (t− s)2
]

2

]

B(0, t)dt

=P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

∫ T

s

[

r0 − E[rs] + σ2

[

t2 − (t− s)2
]

2

]

B(0, t)dt.

(4.2)

We apply Corollary 3.2.11 to check if the solution is consistent with our calculation.

As in the Merton model, we have with

d (lnA1(s, t))

dt
=− u(t− s) +

1

2
σ2(t− s)2

dA2(s, t)

dt
=1

d (lnA1(0, t))

dt
=− ut+

1

2
σ2t2

dA2(0, t)

dt
=1.

Thus, we can compute E
[

rse
−

∫ t
0 rvdv

]

as

E
[

rse
−

∫ t
0 rvdv

]

=
d ln(A1(s,t))

dt − d ln(A1(0,t))
dt + r0

dA2(0,t)
dt

dA2(s,t)
dt

B(0, t)

=

[

−u(t− s) +
1

2
σ2(t− s)2 + ut−

1

2
σ2t2 + r0

]

B(0, t)

=

[

r0 + us− σ2

[

t2 − (t− s)2
]

2

]

B(0, t).

Thus, we have

E[Ms] =P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

∫ T

s
E
[

(r0 − rs)e
−

∫ t
0 rvdv

]

dt

=P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

∫ T

s

[

r0 − E[rs] + σ2

[

t2 − (t− s)2
]

2

]

B(0, t)dt.

(4.3)

One can see that we obtain the same formula in (4.2) and (4.3).

Figure 4.1 demonstrates the numerical value of E[Ms] under Merton model. We

can see that the values of E[Ms] change significantly with the variation of T . The
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results are not surprising in Merton model. The interest rate can be infinite due to the

unboundedness of the first and the second moment of rt. Moreover, when we consider

the bond price under Merton model, it is clear that the bond price is an increasing

function with the maturity date. In the following section, we will see that the value of

E[Ms] approaches to infinity with the infinite maturity date, which is unrealistic.

Note that

E
[

M2
s

]

=2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ ∞

s

∫ t

s
E
[

(r0 − rs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdv

]

dhdt,

thus, we need to compute the value of E
[

(r0 − rs)2e
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

, where

E
[

(r0 − rs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=E
[

(us+ σWs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=u2s2E
[

e−
∫ h
0 rvdue−

∫ t
0 rvdv

]

+ 2usσE
[

Wse
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

+ σ2E
[

W 2
s e

−
∫ h
0 rvdve−

∫ t
0 rvdv

]

.

As we have

E
[

e−
∫ h
0 rvdue−

∫ t
0 rvdu

]

=e−r0t−
1
2ut

2−r0h−
1
2uh

2
E
[

e−σ(hWh+tWt)eσ
∫ h
0 Wvdveσ

∫ t
0 Wvdv

]

=e−r0t−
1
2ut

2−r0h−
1
2uh

2
E
[

e−σ(hWh+tWt−tWh+tWh)e2σ
∫ h
0 vdWveσ

∫ t
h vdWv

]

=e−r0t−
1
2ut

2−r0h−
1
2uh

2
E
[

e−σ
∫ h
0 (h+t−2v)dWv

]

E
[

e−σ
∫ t
h
(t−v)dWv

]

=e−r0t−
1
2ut

2−r0h−
1
2uh

2
e

σ2[(t+h)3−(t−h)3]
12 e

σ2(t−h)3

6

=e−r0t−
1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h)3+(t−h)3]

12 ,

E
[

Wse
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=e−r0t−
1
2ut

2−r0h−
1
2uh

2
E
[

Wse
−σ(hWh+tWt)e2σ

∫ h
0 vdWveσ

∫ t
h vdWv

]

=e−r0t−
1
2ut

2−r0h−
1
2uh

2
E
[

Wse
−σ((h+t)(Wh−Ws)+t(Wt−Wh)+(h+t)Ws)e2σ

∫ h
0 vdWveσ

∫ t
h
vdWv

]

=e−r0t−
1
2ut

2−r0h−
1
2uh

2
E
[

Wse
−σ

∫ s
0 (h+t−2v)dWv

]

E
[

e−σ
∫ h
s (h+t−2v)dWv

]

E
[

e−σ
∫ t
h(t−v)dWv

]

=e−r0t−
1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h−2s)3+(t−h)3]

12

⎡

⎣−
1

σ

dE
[

e−σ
∫ s
0 (h+t−2v)dWv

]

d(h + t)

⎤

⎦

=e−r0t−
1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h−2s)3+(t−h)3]

12

⎡

⎢

⎣
−
1

σ

de
σ2[(t+h)3−(t+h−2s)3]

12

d(h + t)

⎤

⎥

⎦

=− σ
(h+ t)2 − (h+ t− 2s)2

4
e−r0t−

1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h−2s)3+(t−h)3]

12 +
σ2[(t+h)3−(t+h−2s)3]

12

=− σs(t+ h− s)e−r0t−
1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h)3+(t−h)3]

12 ,
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and

E
[

W 2
s e

−
∫ h
0 rvdve−

∫ t
0 rvdv

]

=e−r0t−
1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h−2s)3+(t−h)3]

12

⎡

⎢

⎣

1

σ2

d2e
σ2[(t+h)3−(t+h−2s)3]

12

d(h+ t)2

⎤

⎥

⎦

=
[

s+ σ2s2(t+ h− s)2
]

e−r0t−
1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h)3+(t−h)3]

12 .

Hence, the value of E
[

(r0 − rs)2e−
∫ h
0 rvdve−

∫ t
0 rvdv

]

is

E
[

(r0 − rs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=
[

u2s2 − 2uσ2s2(t+ h− s) + σ2s+ σ4s2(t+ h− s)2
]

e−r0t−
1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h)3+(t−h)3]

12 .

Besides, we can apply Lemma 3.2.16, Corollary 3.2.18 and 3.2.19 to Merton model.

As the SDE of interest rate in Merton model in terms of r̂t in Lemma 3.2.16 is

dr̂t = ûdt+ σ̂dWt,

thus, we have û = 2u and σ̂ = 2σ. The bond price under r̂t is

B̂(h, t) = Â1(h, t)e
−Â2(h,t)r̂h ,

with

Â1(h, t) = exp

(

−
û(t− h)2

2
+

σ̂2(t− h)3

6

)

= exp

(

−u(t− h)2 +
2σ2(t− h)3

3

)

Â2(h, t) =t− h.

As A2(h,t)
2 = Â2(h, t̃) gives t̃ =

t+h
2 , based on Lemma 3.2.16, we have

E
[

e−
∫ h
0 rvdve−

∫ t
0 rvdv

]

=
A1(h, t)

Â1(h, t̃)
B̂(0, t̃)

=
A1(h, t)Â1(0, t̃)

Â1(h, t̃)
e−Â2(0,t̃)r̂0

=exp

(

−
u(t− h)2

2
+

σ2(t− h)3

6
− ut̃2 +

2σ2t̃3

3
+ u(t̃− h)2 −

2σ2(t̃− h)3

3

)

e−r̂0t̃

=exp

(

−
u(t− h)2

2
+

σ2(t− h)3

6
− u

(t+ h)2

4
+

σ2(t+ h)3

12
+ u

(t− h)2

4
−

σ2(t− h)3

12

)

e−r̂0 t̃

=exp

(

−u
(t+ h)2

4
+

σ2(t+ h)3

12
− u

(t− h)2

4
+

σ2(t− h)3

12

)

e−r0h−r0t

=e−r0t−
1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h)3+(t−h)3]

12 .
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We apply Corollary 3.2.18 to Merton model, and this yields

E
[

rse
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=
1

2

A1(h, t)

Â1(h, t̃)

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃)

=
1

2

A1(h, t)B̂(0, t̃)

Â1(h, t̃)

(

−û(t̃− s) +
1

2
σ̂2(t̂− s)2 + ût̃−

1

2
σ̂2t̂+ r̂0

)

=
1

2

A1(h, t)B̂(0, t̃)

Â1(h, t̃)

(

2us− 2t̃sσ2 + s2σ2 + 2r0
)

=
(

us− sσ2(t+ h− s) + r0
)

e−r0t−
1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h)3+(t−h)3]

12 ,

and Corollary 3.2.19 gives

E
[

r2se
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=
1

4

A1(h, t)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

⎡

⎢

⎣

d2 ln
(

Â1(0, t̃)
)

d2t̃
−

d2 ln
(

Â1(s, t̃)
)

d2t̃
+

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

2

−

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

dÂ2(0, t̃)

dt̃
r̂0 −

d2Â2(0, t̃)

dt̃2
r̂0

⎤

⎦ B̂(0, t̃)

+
1

4

⎡

⎣

dÂ2(0, t̃)

dt̃
r̂0 +

d2Â2(s,t̃)
dt̃2

dÂ2(s,t̃)
dt̃

⎤

⎦

A1(h, t)

Â1(h, t̃)
dÂ2(s,t̃)

dt̃

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃)

=
1

4

A1(h, t)B̂(0, t̃)

Â1(h, t̃)

[

− 2ut̃+ 4σ2t̃+ 2ut̃− 4σ2
(

t̃− s
)2

+ 4
(

us− sσ2(t+ h− s)
)2

+
(

2us− 2sσ2(t+ h− s)
)

r̂0

]

+
1

4

A1(h, t)B̂(0, t̃)

Â1(h, t̃)

[

r̂0
(

r̂0 + 2us− 2sσ2(t+ h− s)
)

]

=
[

σ2s+ u2s2 + 2r0us− 2uσ2s2(h+ t− s)− 2r0σ
2s(h+ t− s) + σ4s2(h+ t− s)2 + r20

]

e−r0t−
1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h)3+(t−h)3]

12 .

Hence, we have

E
[

(r0 − rs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=r20E
[

e−
∫ h
0 rvdve−

∫ t
0 rvdv

]

− 2r0E
[

rse
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

+E
[

r2se
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=
[

u2s2 − 2us2σ2(t+ h− s) + σ2s+ σ4s2(h+ t− s)2
]

e−r0t−
1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h)3+(t−h)3]

12 .
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Thus, Var[Ms] can be given by

Var[Ms]

=2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s
E
[

(r0 − rs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdv

]

dhdt− (E[Ms])
2

=2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s

[

u2s2 − 2us2σ2(t+ h− s) + σ2s

+ σ4s2(h+ t− s)2
]

e−r0t−
1
2ut

2−r0h−
1
2uh

2+
σ2[(t+h)3+(t−h)3]

12 dhdt− (E[Ms])
2 ,

where

[E[Ms]]
2 =

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2(
∫ T

s

[

−us+ σ2

[

t2 − (t− s)2
]

2

]

B(0, t)dt

)2

=2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s

([

−us+ σ2

[

t2 − (t− s)2
]

2

]

B(0, t)

)

([

−us+ σ2

[

h2 − (h− s)2
]

2

]

B(0, h)

)

dhdt

=2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s

(

u2s2 − us2σ2(t+ h− s)

+
s2σ4

4

(

4th− 2ts− 2hs+ s2
)

)

B(0, t)B(0, h)dhdt.

4.1.2 T = ∞

The value of E[Ms] can be evaluated as followings with T = ∞.

E[Ms] =P (0)

∫ ∞

s

E
[

(r0 − rs)e
−

∫ t
0 rvdv

]

dt

=P (0)

∫ ∞

s

[

r0 − E[rs] + σ2

[

t2 − (t− s)2
]

2

]

B(0, t)dt. (4.4)

We can see that the integration in (4.4) will be nonconvergent as T = ∞. And the

variance of Ms is

Var[Ms]

=2P 2(0)

∫ ∞

s

∫ t

s
E
[

(r0 − rs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdv

]

−
(

u2s2 − us2σ2(t+ h− s)

+
s2σ4

4

(

4th− 2ts− 2hs + s2
)

)

B(0, t)B(0, h)dhdt

=2P 2(0)

∫ ∞

s

∫ t

s

[

[

u2s2 − 2us2σ2(t+ h− s) + σ2s+ σ4s2(h+ t− s)2
]

e−
σ2h3

6

−
(

u2s2 − us2σ2(t+ h− s) +
s2σ4

4

(

4th− 2ts− 2hs+ s2
)

)]

B(0, t)B(0, h)dhdt.
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4.2 Vasicek Model

4.2.1 T < ∞

Vasicek ([39]) proposes a model to capture the dynamic of interest rate by a mean-

reverting process

drt = k (θ − rt) dt+ σdWt, (4.5)

where reversion rate k, long-term mean level θ, volatility σ are positive constants, and

Wt is the standard Brownian process. Recall that

E[Ms] =P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

∫ T

s
E
[

(r0 − rs)e
−

∫ t
0 rvdv

]

dt.

Integrating both sides of (4.5) gives

rt − r0 = kθt− k

∫ t

0
rvdv + σWt,

or equivalently,

∫ t

0
rvdv =

σWt + kθt− rt + r0
k

.

Since the explicit solution of (4.5) is given by

rt = θ + (r0 − θ)e−kt + σe−kt

∫ t

0
ekudWu,

we may rewrite E
[

rse
−

∫ t
0 rvdv

]

as

E
[

rse
−

∫ t
0 rvdv

]

=e−
(r0−θ)(1−e−kt)+kθt

k E

[

rse
−

σ
∫ t
0 1−e−k(t−v)dWv

k

]

=e−
(r0−θ)(1−e−kt)+kθt

k E

[[

θ + (r0 − θ)e−ks + σe−ks

∫ s

0
ekvdWv

]

e−
σ
∫ t
0 1−e−k(t−v)dWv

k

]

=e−
(r0−θ)(1−e−ks)+kθt

k

[

(

θ + (r0 − θ)e−ks
)

E
[

e
∫ t
0 f(v)dWv

]

+E

[
∫ s

0
g(v)dWve

∫ s
0 f(v)dWv

]

E
[

e
∫ t
s f(v)dWv

]

]

,

where f(v) = −σ
k

(

1− e−k(t−v)
)

and g(v) = σe−k(s−v).

Lemma 4.2.1. For n ≥ 1, we have

E

[(
∫ s

0
g(v)dWv

)n

e
∫ s
0 f(v)dWv

]

=
dn

dαn
|α=0e

∫ s
0

(αg(v)+f(v))2

2 dv.
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Proof. As we have

E
[

eα
∫ s
0 g(v)dWve

∫ s
0 f(v)dWv

]

=E
[

e
∫ s
0 (αg(v)+f(v))dWv

]

=e
∫ s
0

(αg(v)+f(v))2

2 dv,

thus

E

[(
∫ s

0
g(v)dWv

)n

e
∫ s
0 f(v)dWv

]

=
dn

dαn
|α=0E

[

eα
∫ s
0 g(v)dWve

∫ s
0 f(v)dWv

]

=
dn

dαn
|α=0e

∫ s
0

(αg(v)+f(v))2

2 dv.

Based on Lemma 4.2.1, we have

E

[
∫ s

0
g(v)dWve

∫ s
0 f(v)dWv

]

=
d

dα
|α=0e

∫ s
0

(αg(v)+f(v))2

2 dv

=

∫ s

0
g(v) (αg(v) + f(v)) dve

∫ s
0

(αg(v)+f(v))2

2 dv|α=0

=

∫ s

0
g(v)f(v)dve

∫ s
0

[f(v)]2

2 dv

=−
σ2

k

(

1− e−ks

k
−

e−k(t−s) − e−k(t+s)

2k

)

exp

[

σ2

2k2

(

s− 2
e−k(t−s) − e−kt

k
+

e−2k(t−s) − e−2kt

2k

)]

.

As one can see,
∫ b
a f(v)dWv follows a normal distribution, with

E

[
∫ b

a
f(v)dWv

]

=0

Var

[∫ b

a

f(v)dWv

]

=

∫ b

a

f2(v)dv.

Thus, E
[

e
∫ b
a
f(v)dWv

]

is the moment generating function of
∫ b
a f(v)dWv, implying that

E
[

e
∫ b
a
f(v)dWv

]

= e

∫ b
a f2(v)dv

2 ,

Therefore, we have

E
[

e
∫ t
0 f(v)dWv

]

=exp

[

σ2

2k2

(

t+
2e−kt

k
−

e−2kt

2k
−

3

2k

)]

E
[

e
∫ t
s
f(v)dWv

]

=exp

[

σ2

2k2

(

t− s+ 2
e−k(t−s)

k
−

e−2k(t−s)

2k
−

3

2k

)]

,
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we can obtain E
[

rse
−

∫ t
0 rvdv

]

as

E
[

rse
−

∫ t
0 rvdv

]

=e−
(r0−θ)(1−e−kt)+kθt

k

[

(

θ + (r0 − θ)e−ks
)

e
σ2

2k2

(

t+ 2e−kt

k
− e−2kt

2k − 3
2k

)

−
σ2

k

(

1− e−ks

k
−

e−k(t−s) − e−k(t+s)

2k

)

e
σ2

2k2

(

t+ 2e−kt

k
− e−2kt

2k − 3
2k

)

]

=
(

θ + (r0 − θ)e−ks
)

B(0, t)−
σ2

k

(

1− e−ks

k
−

e−k(t−s) − e−k(t+s)

2k

)

B(0, t).

Thus, we have

E[Ms] =P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

∫ T

s

[

r0 −
(

θ + (r0 − θ)e−ks
)

+
σ2

k

(

1− e−ks

k
−

e−k(t−s) − e−k(t+s)

2k

)]

B(0, t)dt

=P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

∫ T

s

[

r0 − E[rs]

+
σ2

k

(

1− e−ks

k
−

e−k(t−s) − e−k(t+s)

2k

)]

B(0, t)dt, (4.6)

where B(0, t) = A1(0, t)e−A2(0,t)r0 , A1(0, t) = exp
((

θ − σ2

2k2

)

[A2(0, t)− t]− σ2A2
2(0,t)
4k

)

and A2(0, t) =
1−e−tk

k .

Similarity, we apply Corollary 3.2.11 by substituting

d (lnA1(s, t))

dt
=

(

θ −
σ2

2k2

)

[

e−k(t−s) − 1
]

−
σ2e−k(t−s)

(

1− e−k(t−s)
)

2k2

dA2(s, t)

dt
=e−k(t−s)

d (lnA1(0, t))

dt
=

(

θ −
σ2

2k2

)

[

e−kt − 1
]

−
σ2e−kt

(

1− e−kt
)

2k2

dA2(0, t)

dt
=e−kt.

into the following equation

E
[

rse
−

∫ t
0 rvdv

]

=
d ln(A1(s,t))

dt − d ln(A1(0,t))
dt + r0

dA2(0,t)
dt

dA2(s,t)
dt

B(0, t)

=

(

θ − σ2

2k2

)

[

e−k(t−s) − e−kt
]

− σ2

2k2
[

e−k(t−s)
(

1− e−k(t−s)
)

− e−kt
(

1− e−kt
)]

+ r0e
−kt

e−k(t−s)
B(0, t)

=

[

(

θ + (r0 − θ)e−ks
)

−
σ2

k

(

1− e−ks

k
−

e−k(t−s) − e−k(t+s)

2k

)]

B(0, t),
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which implies we can obtain the same formula for E[Ms] with (4.6).

Thus, the optimal time to refinance when ρ = 1, can be solved by the following

equation with numerical methods.

∫ T

s

[

r0 − E[rs] +
σ2

k

(

1− e−ks

k
−

e−k(t−s) − e−k(t+s)

2k

)]

B(0, t)dt

=−

{

∫ T

s

[

k(r0 − θ)e−ks +
σ2

k

(

e−ks −
e−k(t−s) + e−k(t+s)

2

)]

B(0, t)dt

+

[

r0 − E[rs] +
σ2

k

(

1− e−ks

k
−

1− e−2ks

2k

)]

B(0, s)

}

(T − s)
[

e−r0(T−s) + r0(T − s)− 1
]

(r0(T − s) + 1) e−r0(T−s) − 1
.

(4.7)

Figure 4.2 represents the numerical value of E[Ms] with different parameters. It is

clearly that the maximum point appears at the early stage of the life of the contract.

Moreover, k and σ are two important parameters who have significant impacts on the

value of E[Ms] and the optimal time to refinance. The results show that the optimal

time, with ρ = 1, will be shorter when we either increase k or σ2. Furthermore, the

numerical value of E[Ms] will increase with the increasing of σ2, which can be proved

based on (4.6). However, we may obtain an infinite value of E[Ms] if the parameters

chosen for k, θ and σ2 lead to the infinite value of A1(0, t).

Table A.2 displays the numerical result of (4.7). The optimal time to refinance, with

ρ = 1, will increase with the increase of the life of the contract T . Moreover, one can

see that if we let s = f(T ), the slope of f(T ) will decrease gradually when T increases.

Eventually, the slope will be zero, say, when T is greater then 80, as described in Table

A.2.

Lemma 4.2.2. The numerical value of E[Ms] will increase with the increasing of σ2.

Proof. To evaluate the value of E[Ms] with respect to σ2, we let

f
(

σ2
)

=

[

r0 −
(

θ + (r0 − θ)e−ks
)

+
σ2

k

(

1− e−ks

k
−

e−k(t−s) − e−k(t+s)

2k

)]

B(0, t)

=aB(0, t) + bσ2B(0, t)

=aecσ
2
eθ[A2(0,t)−t]−A2(0,t)r0 + bσ2ecσ

2
eθ[A2(0,t)−t]−A2(0,t)r0 ,

with

a =r0 −
(

θ + (r0 − θ)e−ks
)

b =
1− e−ks

k2
−

e−k(t−s) − e−k(t+s)

2k2

c =−
A2(0, t) − t

2k2
−

A2
2(0, t)

4k
.
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Taking the first derivative of f
(

σ2
)

with respect to σ2 gives

df
(

σ2
)

dσ2
= acecσ

2
eθ[A2(0,t)−t]−A2(0,t)r0 + becσ

2
eθ[A2(0,t)−t]−A2(0,t)r0 + bcσ2ecσ

2
eθ[A2(0,t)−t]−A2(0,t)r0 .

As we can see that a,b and c are positive given k > 0 and t > s > 0, we have
df(σ2)
dσ2 > 0.

Thus, f
(

σ2
)

is an increasing function with respect to σ2.

Remark 4.2.2. a,b and c in Lemma 4.2.2 are positive. As we know that k > 0 and

t > s > 0, we have

a =r0 −
(

θ + (r0 − θ)e−ks
)

= (r0 − θ)
(

1− e−ks
)

> 0,

b =
1− e−ks

k2
−

e−k(t−s) − e−k(t+s)

2k2
=

2− 2e−ks − e−k(t−s) + e−k(t+s)

2k2
.

We let f(t) = 2−2e−ks−e−k(t−s)+e−k(t+s), thus, f ′(t) = k
(

e−k(t−s) − e−k(t+s)
)

. As we

know that k > 0 and t > s > 0, thus f ′(t) > 0, implying b = f(t)
2k2 > f(s)

2k2 = 1−2e−ks+e−2ks

2k2 .

As we have

f ′(s) = 2k
(

e−ks − e−2ks
)

> 0,

thus, f(s) > f(0) = 0, implying that b > 0.

c =−
A2(0, t)− t

2k2
−

A2
2(0, t)

4k

=−
1− e−kt − kt

2k3
−

1− 2e−kt + e−2kt

4k3

=
4e−kt − 3 + 2kt− e−2kt

4k3
.

We let g(t) = 4e−kt − 3 + 2kt− e−2kt, thus

g′(t) =− 4ke−kt + 2k + 2ke−2kt

g′′(t) =4k2e−kt − 4k2e−2kt = 4k2
(

e−kt − e−2kt
)

.

As t > 0 and k > 0, we have g′′(t) > 0, implying g′(t) > g′(0) = 0. We can see that

g(t) is an increasing function, and thus, c = g(t)
4k3 > g(0)

4k3 = 0.

As E
[

M2
s

]

is given by

E
[

M2
s

]

=2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s

E
[

(r0 − rs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdv

]

dhdt,

thus, we compute the value of E
[

(r0 − rs)2e−
∫ h
0 rvdve−

∫ t
0 rvdv

]

under Vasicek model as

following
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E
[

(r0 − rs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=E

[

[

(r0 − θ)
(

1− e−ks
)

− σe−ks

∫ s

0
ekudWu

]2

e−
∫ h
0 rvdve−

∫ t
0 rvdv

]

=e−
(r0−θ)(2−e−kt

−e−kh)+kθ(t+h)

k

{

(r0 − θ)2
(

1− e−ks
)2

E

[

e−
σ
∫ h
0 1−e−k(h−v)dWv

k e−
σ
∫ t
0 1−e−k(t−v)dWv

k

]

−2(r0 − θ)
(

1− e−ks
)

E

[∫ s

0
σe−k(s−v)dWve

−
σ
∫ h
0 1−e−k(h−v)dWv

k e−
σ
∫ t
0 1−e−k(t−v)dWv

k

]

+σ2E

[

(
∫ s

0
e−k(s−v)dWv

)2

e−
σ
∫ h
0 1−e−k(h−v)dWv

k e−
σ
∫ t
0 1−e−k(t−v)dWv

k

]}

,

We assume f1(v) = −σ
k

[

2− e−k(h−v) − e−k(t−v)
]

, g1(v) = σe−k(s−v), and q1(v) =

−σ
k

[

1− e−k(t−v)
]

, thus, we continue calculating E
[

(r0 − rs)2e
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

as

E

[

e−
σ
∫ h
0 1−e−k(h−v)dWv

k e−
σ
∫ t
0 1−e−k(t−v)dWv

k

]

=E
[

e
∫ h
0 f1(v)dWv

]

E
[

e
∫ t
h
q1(v)dWv

]

=exp

[

σ2

2k2

(

4h+ 4
e−kt + e−kh

k
− 3

e−k(t−h)

k
−

7

2k
−

e−k(t+h)

k
+

e−2k(t−h) − e−2kt − e−2kh

2k

)]

exp

[

σ2

2k2

(

t− h+ 2
e−k(t−h)

k
−

e−2k(t−h)

2k
−

3

2k

)]

=exp

[

σ2

2k2

(

t+ 3h+ 4
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

5

k
−

e−2kt + e−2kh

2k

)]

,

E

[∫ s

0
σe−k(s−v)dWve

−
σ
∫ h
0 1−e−k(t−v)dWv

k e−
σ
∫ t
0 1−e−k(t−v)dWv

k

]

=E

[
∫ s

0
g1(v)dWve

∫ s
0 f1(v)dWv

]

E
[

e
∫ h
s f1(v)dWv

]

E
[

e
∫ t
h q1(v)dWv

]

=
d

dα
|α=0e

∫ s
0

(αg(v)+f(v))2

2 dvE
[

e
∫ h
s f1(v)dWv

]

E
[

e
∫ t
h q1(v)dWv

]

=

∫ s

0
g1(v)f1(v)dve

∫ h
0

f21 (v)

2 dve
∫ t
h

q21(v)

2 dv

=−
σ2

2k2

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)

exp

[

σ2

2k2

(

t+ 3h+ 4
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

5

k
−

e−2kt + e−2kh

2k

)]

,
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and

E

[

(
∫ s

0
σe−k(s−v)dWv

)2

e−
σ
∫h
0 1−e−k(h−v)dWv

k e−
σ
∫ t
0 1−e−k(t−v)dWv

k

]

=E

[

(
∫ s

0
g1(v)dWv

)2

e
∫ s
0 f1(v)dWv

]

E
[

e
∫ h
s f1(v)dWv

]

E
[

e
∫ t
h q1(v)dWv

]

.

As we have

E

[

(
∫ s

0
g1(v)dWv

)2

e
∫ s
0 f1(v)dWv

]

=
d2

dα2
|α=0e

∫ s
0

(αg1(v)+f1(v))
2

2 dv

=

[

∫ s

0
g21(v)dv +

[
∫ s

0
(αg1(v) + f1(v)) g1(v)dv

]2
]

e
∫ s
0

[αg1(v)+f1(v)]
2

2 dv|α=0

=

[

∫ s

0
g21(v)dv +

(
∫ s

0
f1(v)g1(v)dv

)2
]

e
∫ s
0

[f(v)]2

2 dv,

thus, we can obtain

E

[

(∫ s

0
σe−k(s−v)dWv

)2

e−
σ
∫h
0 1−e−k(h−v)dWv

k e−
σ
∫ t
0 1−e−k(t−v)dWv

k

]

=

[

∫ s

0
g21(v)dv +

(
∫ s

0
f1(v)g1(v)dv

)2
]

e
∫ h
0

[f1(v)]
2

2 dve
∫ t
h

[q1(v)]
2

2 dv

=

[

σ2

2k

(

1− e−2ks
)

+
σ4

4k4

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)2
]

exp

[

σ2

2k2

(

t+ 3h+ 4
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

5

k
−

e−2kt + e−2kh

2k

)]

.

Thus, we have

E
[

(r0 − rs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=e−
(r0−θ)(2−e−kt

−e−kh)+kθ(t+h)

k

{

(r0 − θ)2
(

1− e−ks
)2

+2(r0 − θ)
(

1− e−ks
) σ2

2k2

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)

+
σ2

2k

(

1− e−2ks
)

+
σ4

4k4

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)2
}

exp

[

σ2

2k2

(

t+ 3h+ 4
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

5

k
−

e−2kt + e−2kh

2k

)]

.

Similarity, we can apply Lemma 3.2.16, Corollary 3.2.18 and 3.2.19 to Vasicek

model. The SDE of r̂t is

dr̂t =k̂
(

θ̂ − r̂t

)

dt+ σ̂dWt,
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thus, we have k̂ = k, θ̂ = 2θ and σ̂ = 2σ. The bond price under r̂t is

B̂(h, t) = Â1(h, t)e
−Â2(h,t)r̂h ,

with

Â1(h, t) = exp

(

(

θ̂ −
σ̂2

2k̂2

)

[Â2(h, t) − (t− h)]−
σ̂2Â2

2(h, t)

4k̂

)

=exp

(

(

2θ −
4σ2

2k2

)

[Â2(h, t)− (t− h)]−
4σ2Â2

2(h, t)

4k

)

Â2(h, t) =
1− e−(t−h)k

k
.

As A2(h,t)
2 = Â2(h, t̃) gives

1−e−t̃k

k = 2−e−tk−e−hk

2k based on Lemma 3.2.16, we have

E
[

e−
∫ h
0 rvdve−

∫ t
0 rvdv

]

=
A1(h, t)Â1(0, t̃)

Â1(h, t̃)
e−Â2(0,t̃)r̂0

=
exp

((

θ − σ2

2k2

)

[A2(h, t)− (t− h)]− σ2A2
2(h,t)
4k +

(

2θ − 4σ2

2k2

)

[Â2(0, t̃)− t̃]− 4σ2Â2
2(0,t̃)

4k

)

exp
((

2θ − 4σ2

2k2

)

[Â2(h, t̃)− (t̃− h)]− 4σ2Â2
2(h,t̃)
4k

) e
1−e−t̃k

k
r̂0

=
exp

((

θ − σ2

2k2

)

[A2(h, t)− (t− h)]− σ2A2
2(h,t)
4k +

(

2θ − 4σ2

2k2

)

[Â2(0, t̃)− t̃]− 4σ2Â2
2(0,t̃)

4k

)

exp

(

(

2θ − 4σ2

2k2

) [

A2(h,t)
2 − (t̃− h)

]

−
4σ2

(

A2(h,t)
2

)2

4k

) e
1−e−t̃k

k
r̂0

=exp

(

−θt− θh+
σ2

2k2
A2(h, t) +

σ2

2k2
t+

3σ2

2k2
h+ 2θÂ2(0, t̃)−

4σ2

2k2
Â2(0, t̃)−

σ2

k
Â2

2(0, t̃)

)

e
1−e−t̃k

k
r̂0

=exp

(

−θ(t+ h) + 2θÂ2(0, t̃) +
σ2

2k2

(

A2(h, t) + t+ 3h− 4Â2(0, t̃)− 2kÂ2
2(0, t̃)

)

)

e−r0
2−e−kh

−e−kt

k

=e−
(r0−θ)(2−e−kt

−e−kh)+kθ(t+h)

k

exp

[

σ2

2k2

(

t+ 3h+ 4
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

5

k
−

e−2kt + e−2kh

2k

)]

.
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We apply Corollary 3.2.18 to Vasicek model, which gives

E
[

rse
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=
1

2

A1(h, t)

Â1(h, t̃)

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃)

=
1

2

A1(h, t)B̂(0, t̃)

Â1(h, t̃)

⎡

⎣

2θ
(

e−k(t̃−s) − e−kt̃
)

− 2σ2

k2

(

e−k(t̃−s) − e−kt̃
)

e−kt̃

−
2σ2

k2

(

1− e−k(t̃−s)
)

e−k(t̃−s) − 2σ2

k2

(

1− e−kt̃
)

e−kt̃

e−kt̃

⎤

⎦

=
A1(h, t)B̂(0, t̃)

Â1(h, t̃)

[

θ
(

1− e−ks
)

−
σ2

k2

(

1− e−ks
)

−
σ2

k2

(

1− e−k(t̃−s)
)

+
σ2

k2

(

1− e−kt̃
)

e−ks + r0e
−ks

]

=
A1(h, t)B̂(0, t̃)

Â1(h, t̃)

[

r0e
−ks + θ

(

1− e−ks
)

−
σ2

k2

(

2− 2e−ks − e−k(t̃−s) + e−k(t̃+s)
)

]

=
A1(h, t)B̂(0, t̃)

Â1(h, t̃)

[

r0e
−ks + θ

(

1− e−ks
)

−
σ2

k2

(

2− 2e−ks +
e−kt + e−kh

2
e−ks −

e−kt + e−kh

2
eks
)]

=

[

r0e
−ks + θ

(

1− e−ks
)

−
σ2

2k2

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)

]

e−
(r0−θ)(2−e−kt

−e−kh)+kθ(t+h)

k

exp

[

σ2

2k2

(

t+ 3h+ 4
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

5

k
−

e−2kt + e−2kh

2k

)]

.

To simplify our notation, we let

X = −
σ2

2k2

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)

,
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hence, base on Corollary 3.2.19, we have

E
[

r2se
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=
1

4

A1(h, t)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

⎡

⎢

⎣

d2 ln
(

Â1(0, t̃)
)

d2t̃
−

d2 ln
(

Â1(s, t̃)
)

d2t̃
+

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

2

−

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

dÂ2(0, t̃)

dt̃
r̂0 −

d2Â2(0, t̃)

dt̃2
r̂0

⎤

⎦ B̂(0, t̃)

+
1

4

⎡

⎣

dÂ2(0, t̃)

dt̃
r̂0 +

d2Â2(s,t̃)
dt̃2

dÂ2(s,t̃)
dt̃

⎤

⎦

A1(h, t)

Â1(h, t̃)
dÂ2(s,t̃)

dt̃

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃)

=
1

4

A1(h, t)B̂(0, t̃)

Â1(h, t̃)e−2k(t̃−s)

[(

−2kθ +
2σ2

k

)

(

e−kt̃ − e−k(t̃−s)
)

+
2σ2

k

(

e−kt̃ − e−2kt̃ − e−k(t̃−s) + e−2k(t̃−s)
)

]

+
A1(h, t)B̂(0, t̃)

Â1(h, t̃)

[

θ2
(

1− e−ks
)2

+ 2θ
(

1− e−ks
)

X +X2 +
1

2

(

θ
(

1− e−ks
)

+X
)

ek(t̃−s)r̂0e
−kt̃

+
1

2
r0ke

kt̃e2ks
]

+
1

2

A1(h, t)B̂(0, t̃)

Â1(h, t̃)

[

e−kt̃r̂0 − k
]

ek(t̃−s)
(

r0e
−ks + θ

(

1− e−ks
)

+X
)

=
A1(h, t)B̂(0, t̃)

Â1(h, t̃)

[

r20e
−2ks + 2r0θ

(

1− e−ks
)

e−ks + θ2
(

1− e−ks
)2

+ 2r0e
−ksX + 2θ

(

1− e−ks
)

X

+
σ2

2k

(

2e−kt̃ − 2e−2kt̃ − 2e−k(t̃−s) + 2e−2k(t̃−s)
)

e2k(t̃−s) −
1

2
kXek(t̃−s)

]

=

[

r20e
−2ks + 2r0θ

(

1− e−ks
)

e−ks + θ2
(

1− e−ks
)2

+ 2r0e
−ksX + 2θ

(

1− e−ks
)

X +X2

+ X2 +
σ2

2k

(

1− e−2ks
)

]

e−
(r0−θ)(2−e−kt

−e−kh)+kθ(t+h)

k

exp

[

σ2

2k2

(

t+ 3h+ 4
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

5

k
−

e−2kt + e−2kh

2k

)]

.
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Thus, we have

E
[

(r0 − rs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=r20E
[

e−
∫ h
0 rvdve−

∫ t
0 rvdv

]

− 2r0E
[

rse
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

+ E
[

r2se
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=e−
(r0−θ)(2−e−kt

−e−kh)+kθ(t+h)

k

{

(r0 − θ)2
(

1− e−ks
)2

+2(r0 − θ)
(

1− e−ks
) σ2

2k2

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)

+
σ2

2k

(

1− e−2ks
)

+
σ4

4k4

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)2
}

exp

[

σ2

2k2

(

t+ 3h+ 4
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

5

k
−

e−2kt + e−2kh

2k

)]

.

The variance of Ms is

Var[Ms]

=2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s
E
[

(r0 − rs)
2e−

∫ h
0 rvdve−

∫ t
0 rvdv

]

dhdt− (E[Ms])
2

=2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s

e−
(r0−θ)(2−e−kt

−e−kh)+kθ(t+h)

k

{

(r0 − θ)2
(

1− e−ks
)2

+2(r0 − θ)
(

1− e−ks
) σ2

2k2

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)

+
σ2

2k

(

1− e−2ks
)

+
σ4

4k4

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)2
}

exp

[

σ2

2k2

(

t+ 3h+ 4
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

5

k
−

e−2kt + e−2kh

2k

)]

dhdt− (E[Ms])
2

=2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s

{

(r0 − θ)2
(

1− e−ks
)2

+2(r0 − θ)
(

1− e−ks
) σ2

2k2

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)

+
σ2

2k

(

1− e−2ks
)

+
σ4

4k4

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)2
}

exp

[

σ2

2k2

(

2h+ 2
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

2

k

)]

B(0, h)B(0, t)dhdt − (E[Ms])
2 ,

(4.8)
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where

[E[Ms]]
2 =

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2(
∫ T

s

[

(r0 − θ)
(

1− e−ks
)

+
σ2

k

(

1− e−ks

k
−

e−k(t−s) − e−k(t+s)

2k

)]

B(0, t)dt

)2

=2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s

([

(r0 − θ)
(

1− e−ks
)

+
σ2

k

(

1− e−ks

k
−

e−k(t−s) − e−k(t+s)

2k

)]

B(0, t)

)([

(r0 − θ)
(

1− e−ks
)

+
σ2

k

(

1− e−ks

k
−

e−k(h−s) − e−k(h+s)

2k

)]

B(0, h)

)

dhdt

=2

(

P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

)2
∫ T

s

∫ t

s

B(0, h)B(0, t)

[

(r0 − θ)2
(

1− e−ks
)2

+(r0 − θ)
(

1− e−ks
) σ2

2k2

(

4− 4e−ks − e−k(t−s) + e−k(t+s) − e−k(h−s) + e−k(h+s)
)

+
σ4

4k4

(

4− 8e−ks − 2e−k(h−s) + 2e−k(h+s) + 4e−2ks + 2e−kh − 2e−k(h+2s) − 2e−k(t−s)

+2e−kt + e−k(t+h−2s) − 2e−k(t+h) + 2e−k(t+s) − 2e−k(t+2s) + e−k(t+h+2s)

)

]

dhdt.

Figure 4.3 displays the value of Var[Ms] in (4.8). As shown in Figure 4.3, the time

where Var[Ms] reaches the maximum is less or equal to 5 years. We apply the utility

function presented in (3.7) to Vasicek model. As in our problem, we assume E[Ms] will

dominate the utility function, we may let ρ ∈ (0.5, 1]. Figure 4.4 shows the value of the

utility function under Vasicek model. It can be seen that the optimal refinancing time,

obtained by the optimization of the utility function will decrease with the increase of k.

The results are reasonable as increase k will enhance the probability of lower interest

rate, governed by the Vasicek model. From Table A.3, one can see that the optimal time

will decrease when ρ increases. With the increasing of ρ, Var[Ms] will have less impact

on the utility function, resulting in the decreasing of the optimal time. In particular,

when ρ = 1, the optimal time will be obtained by (4.7). In this case, E[Ms] will be

taken into consideration in the utility function, implying the optimal refinancing time

will be shortest.

4.2.3 T = ∞

The value of E[Ms] can be evaluated as followings with T = ∞.

E[Ms] = P (0)

∫ ∞

s

[

r0 − E[rs] +
σ2

k

(

1− e−ks

k
−

e−k(t−s) − e−k(t+s)

2k

)]

B(0, t)dt.

(4.9)
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As one can see from (4.9), the stableness of E[Ms] solely depends on the stableness of

B(0, t) under Vasicek model. And the variance of Ms is

Var[Ms]

=2P (0)2
∫ ∞

s

∫ t

s
{

(r0 − θ)2
(

1− e−ks
)2
[

exp

[

σ2

2k2

(

2h+ 2
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

2

k

)]

− 1

]

+(r0 − θ)
(

1− e−ks
) σ2

2k2

(

4− 4e−ks − e−k(t−s) + e−k(t+s) − e−k(h−s) + e−k(h+s)
)

[

2 exp

[

σ2

2k2

(

2h+ 2
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

2

k

)]

− 1

]

+

(

σ2

2k

(

1− e−2ks
)

+
σ4

4k4

(

4 + e−k(t+s) + e−k(h+s) − e−k(t−s) − e−k(h−s) − 4e−ks
)2
)

exp

[

σ2

2k2

(

2h+ 2
e−kt + e−kh

k
−

e−k(t−h) + e−k(t+h)

k
−

2

k

)]

−
σ4

4k4

(

4− 8e−ks − 2e−k(h−s) + 2e−k(h+s) + 4e−2ks + 2e−kh − 2e−k(h+2s) − 2e−k(t−s)

+2e−kt + e−k(t+h−2s) − 2e−k(t+h) + 2e−k(t+s) − 2e−k(t+2s) + e−k(t+h+2s)

)

}

B(0, h)B(0, t)dhdt.

4.3 CIR Model

The CIR short term interest rate process, first proposed by Cox, is a mathematical

model describing the evolution of interest rate. The model specifies that under the

risk-neutral measureQ, the instantaneous interest rate follows the stochastic differential

equation

drt = k (θ − rt) dt+ σ
√
rtdWt. (4.10)

It is well-known that B(s, t) described in (3.2) has the analytic solution when rt

follows (4.10), which gives

B(s, t) = A1(s, t)exp (−A2(s, t)rs) ,

where

A1(s, t) =

(

2ωe
(k+ω)(t−s)

2

2ω + (k + ω)
[

e(t−s)ω − 1
]

)

2kθ
σ2

A2(s, t) =
2
[

e(t−s)ω − 1
]

2ω + (k + ω)
[

e(t−s)ω − 1
]

ω =
√

k2 + 2σ2.

60



4.3.1 Preliminary analysis

Suppose at time s (in the following graph 4.5, we suppose s is the date the debtor

would like to consider refinancing) . Intuitively, one would possibly refinance at s only

if cs < c0, although this statement may be slightly challenged by a debtor who argues

to keep waiting, betting on a even better deal in future. To heuristically illustrate, we

display, in the following Figure. 4.5, the comparative level plots of initial mortgage

rate c0 and the mortgage rate process. For convenience, all these plots are based on

the assumption that σ = 0.

1. If c0 < cs, then for this scenario, there is zero possibility for the debtor to opti-

mally refinance at s. If he or she refinances, he or she immediately pays higher

monthly instalment, giving up the existing lower interest and also the possibility

of future refinancing where the interest rate can be better a deal depending on

whether the market trend goes deeply down enough.

2. If c0 > cs and cs is set to climb in future trend, these are typical scenarios

where the debtor would possibly refinance today. If he or she does so, he or she

immediately enjoys a lower interest and a lower monthly payment. The longer

he or she keeps waiting, the higher the interest rate. Also, the longer he or she

waits, the lower face value of the original loan, and the less benefit of refinancing.

This observation has been numerically verified in our previous paper with plots

of the density functions of optimal refinancing time, showing that the optimal

refinancing, if exists, usually occurs at the early stage of the contract. But why

does not the debtor always refinance at s for this case? It is because of the market

volatility. The market volatility issues a small probability that to wait for a little

while further actually grants even better deals.

3. If c0 > cs and cs is strictly decreasing, even if σ = 0 for this case (a higher σ > 0

is usually the main reason for debtor to take a wait-and-see strategy), chances

are debtor can wait for a while to optimally refinance. How long to wait depends

on how fast and how low the interest goes down in future. This is the most

interesting case to which our method and implementation are dedicated in the

subsequent analysis.

4.3.2 T < ∞

As the explicit formula for rs is not given under CIR model, we may apply Theorem

3.2.2 to obtain E[Ms] as

E[Ms] = P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

∫ T

s

[

r0 −
d ln(A1(s,t))

dt − d ln(A1(0,t))
dt + r0

dA2(0,t)
dt

dA2(s,t)
dt

]

B(0, t)dt,
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where

d (lnA1(s, t))

dt
=
kθ

σ2

[

k + ω −
2ω(k + ω)e(t−s)ω

2ω + (k + ω)
[

e(t−s)ω − 1
]

]

dA2(s, t)

dt
=

2ωe(t−s)ω

2ω + (k + ω)
[

e(t−s)ω − 1
] −

2ω(k + ω)e(t−s)ω
[

e(t−s)ω − 1
]

[

2ω + (k + ω)
[

e(t−s)ω − 1
]]2

=
4ω2e(t−s)ω

[

2ω + (k + ω)
[

e(t−s)ω − 1
]]2

d (lnA1(0, t))

dt
=
kθ

σ2

[

k + ω −
2ω(k + ω)etω

2ω + (k + ω) [etω − 1]

]

dA2(0, t)

dt
=

2ωetω

2ω + (k + ω) [etω − 1]
−

2ω(k + ω)etω
[

etω − 1
]

[2ω + (k + ω) [etω − 1]]2

=
4ω2etω

[2ω + (k + ω) [etω − 1]]2
,

and thus, we have

E[Ms] (4.11)

= P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

∫ T

s

[

r0 − r0e
sω

[

2ω + (k + ω)
(

e(t−s)ω − 1
)]2

[2ω + (k + ω) (etω − 1)]2

− kθ
(esω − 1)

[

2ω + (k + ω)
(

e(t−s)ω − 1
)]

ω [2ω + (k + ω) (etω − 1)]

]

B(0, t)dt

= P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]
∫ T

s

(ω − k)2
(

r0 +
kθ
ω

)

(1− esω) + (ω + k)2e2tω
(

r0 − kθ
ω

)

(1− e−sω)− 2kθσ2

ω etω (esω − e−sω)

[2ω + (k + ω) (etω − 1)]2
B(0, t)dt.

Hence, s can be obtained by the following equation with numerical methods

(r0(T − s) + 1) e−r0(T−s) − 1

(T − s)
[

e−r0(T−s) + r0(T − s)− 1
] (4.12)

∫ T

s

(ω − k)2
(

r0 +
kθ
ω

)

(1− esω) + (ω + k)2e2tω
(

r0 − kθ
ω

)

(1− e−sω)− 2kθσ2

ω etω (esω − e−sω)

[2ω + (k + ω) (etω − 1)]2
B(0, t)dt

= −
∫ T

s

−ω(ω − k)2
(

r0 +
kθ
ω

)

esω + ω(ω + k)2e2tω
(

r0 − kθ
ω

)

e−sω − 2kθσ2etω (esω + e−sω)

[2ω + (k + ω) (etω − 1)]2
B(0, t)dt

+
(ω − k)2

(

r0 +
kθ
ω

)

(1− esω) + (ω + k)2e2sω
(

r0 − kθ
ω

)

(1− e−sω)− 2kθσ2

ω

(

e2sω − 1
)

[2ω + (k + ω) (esω − 1)]2
B(0, s).

Figure 4.6 demonstrates the numerical value of E[Ms] based on CIR model. The

result suggests refinancing should be considered within 5 years after signed the original

contract. The graphs show that the optimal time to refinance, with ρ = 1, will be

shorter when we increase k, which is consistent with the result in the Vasicek model.
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Figure 4.7 describes the numerical value of E[Ms] through different approximating

methods under CIR model. In Figure 4.7, ’over’ represents the value of E[Ms] based

on (3.15), while ’real’ is the value based on (3.16). It is clearly that the approximation

method based on (3.15) overstates the real value of E[Ms], which will benefit to the

debtors. The result is consistent with the analytic discussion in Lemma 3.2.8.

The numerical solutions of the optimal time s, is presented in Table A.4. Similarly,

the optimal time will increase when T increases, arriving at the stable point. Moreover,

Figures 4.8, 4.9 and 4.10 display the relationship between the optimal time, k and σ2.

It is clearly that the optimal time will decrease with the increase of k or σ2, as in CIR

model, increasing k or σ2 will enhance the probability of the lower interest rate, which

shows the some property with the Vasicek model.

To apply Lemma 3.2.16, Corollary 3.2.18 and 3.2.19 to CIR model, we first describe

the SDE of r̂t, which gives

dr̂t =k̂
(

θ̂ − r̂t

)

dt+ σ̂
√

r̂tdWt,

thus, we have k̂ = k, θ̂ = 2θ and σ̂ = 2
√
σ. The bond price under r̂t is

B̂(h, t) = Â1(h, t)e
−Â2(h,t)r̂h ,

with

Â1(h, t) =

⎛

⎝

2ω̂e
(k̂+ω̂)(t−h)

2

2ω̂ + (k̂ + ω̂)
[

e(t−h)ω̂ − 1
]

⎞

⎠

2k̂θ̂
σ̂2

=

(

2ω̂e
(k+ω̂)(t−h)

2

2ω̂ + (k + ω̂)
[

e(t−h)ω̂ − 1
]

)

2kθ
σ2

Â2(h, t) =
2
[

e(t−h)ω̂ − 1
]

2ω̂ + (k + ω̂)
[

e(t−h)ω̂ − 1
]

ω̂ =
√

k2 + 4σ2 =
√

ω2 + 2σ2.

As A2(h,t)
2 = Â2(h, t̃) gives

[e(t−h)ω−1]
2ω+(k+ω)[e(t−h)ω−1]

=
2[e(t̃−h)ω̂−1]

2ω̂+(k+ω̂)[e(t̃−h)ω̂−1]
, implying

et̃ω̂ =

(

ω̂A2(h, t)

2− (k + ω̂)A2(h,t)
2

+ 1

)

ehω̂.
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Var[Ms] can obtained by (3.21), where

G̃(0, s, t̃)

=E
[

e−
∫ h
0 rvdve−

∫ t
0 rvdv

]

=
A1(h, t)Â1(0, t̃)

Â1(h, t̃)
e−Â2(0,t̃)r̂0

=

⎛

⎜

⎜

⎝

2ωe
(k+ω)(t−h)

2

2ω+(k+ω)[e(t−h)ω−1]

2ω̂e
(k+ω̂)(t̃−h)

2

2ω̂+(k+ω̂)[e(t̃−h)ω̂−1]

2ω̂e
(k+ω̂)t̃

2

2ω̂ + (k + ω̂)
[

et̃ω̂ − 1
]

⎞

⎟

⎟

⎠

2kθ
σ2

e
−

2

[

et̃ω̂−1

]

2ω̂+(k+ω̂)[et̃ω̂−1]
r̂0

=

⎛

⎝

2ωe
(k+ω)(t−h)

2

[

e(t̃−h)ω̂ − 1
]

ω̂e
(k+ω̂)(t̃−h)

2
[

e(t−h)ω − 1
]

2ω̂e
(k+ω̂)t̃

2

2ω̂ + (k + ω̂)
[

et̃ω̂ − 1
]

⎞

⎠

2kθ
σ2

e
−

2

[

et̃ω̂−1

]

2ω̂+(k+ω̂)[et̃ω̂−1]
r̂0

=

(

4ωe
(k+ω)(t−h)

2 e
(k+ω̂)h

2

e(t−h)ω − 1

e(t̃−h)ω̂ − 1

2ω̂ + (k + ω̂)
[

et̃ω̂ − 1
]

)

2kθ
σ2

e
−

2

[

et̃ω̂−1

]

2ω̂+(k+ω̂)[et̃ω̂−1]
r̂0

=

⎛

⎜

⎜

⎝

4ωe
(k+ω)(t−h)

2 e
(k+ω̂)h

2
ω̂A2(h,t)

2−(k+ω̂)
A2(h,t)

2

[

e(t−h)ω − 1
]

[

2ω̂ + (k + ω̂)

[

ω̂A2(h,t)ehω̂

2−(k+ω̂)
A2(h,t)

2

+ ehω̂ − 1

]]

⎞

⎟

⎟

⎠

2kθ
σ2

e

−

4

⎡

⎣

ω̂A2(h,t)e
hω̂

2−(k+ω̂)
A2(h,t)

2

+ehω̂−1

⎤

⎦

2ω̂+(k+ω̂)

⎡

⎣

ω̂A2(h,t)e
hω̂

2−(k+ω̂)
A2(h,t)

2

+ehω̂−1

⎤

⎦

r0

,

64



G̃(1)
α (0, s, t̃)

=E
[

rse
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=
1

2

A1(h, t)

Â1(h, t̃)

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃)

=
A1(h, t)B̂(0, t̃)

2Â1(h, t̃)

⎡

⎢

⎣
esω̂

[

2ω̂ + (k̂ + ω̂)
(

e(t̃−s)ω̂ − 1
)]2

[

2ω̂ + (k̂ + ω̂)
(

et̃ω̂ − 1
)

]2 r̂0 + k̂θ̂

(

esω̂ − 1
)

[

2ω̂ + (k̂ + ω̂)
(

e(t̃−s)ω̂ − 1
)]

ω̂
[

2ω̂ + (k̂ + ω̂)
(

et̃ω̂ − 1
)

]

⎤

⎥

⎦

=
A1(h, t)B̂(0, t̃)

Â1(h, t̃)

⎡

⎢

⎣
esω̂

[

2ω̂ + (k + ω̂)
(

e(t̃−s)ω̂ − 1
)]2

[

2ω̂ + (k + ω̂)
(

et̃ω̂ − 1
)]2 r0 + kθ

(

esω̂ − 1
)

[

2ω̂ + (k + ω̂)
(

e(t̃−s)ω̂ − 1
)]

ω̂
[

2ω̂ + (k + ω̂)
(

et̃ω̂ − 1
)]

⎤

⎥

⎦

=
A1(h, t)B̂(0, t̃)

Â1(h, t̃)

[

2ω̂ + (k + ω̂)
(

e(t̃−s)ω̂ − 1
)]

(ω̂ − k)

(

r0e
sω̂ +

kθ(esω̂−1)
ω̂

)

+ (ω̂ + k)et̃ω̂
(

r0 +
kθ(esω̂−1)

ω̂

)

[

2ω̂ + (k̂ + ω̂)
(

et̃ω̂ − 1
)

]2

=G̃(0, s, t̃)

[

2ω̂ + (k + ω̂)

[

ω̂A2(h, t)e(h−s)ω̂

2− (k + ω̂)A2(h,t)
2

+ e(h−s)ω̂ − 1

]]

(ω̂ − k)

(

r0e
sω̂ +

kθ(esω̂−1)
ω̂

)

+ (ω̂ + k)

(

ω̂A2(h,t)

2−(k+ω̂)
A2(h,t)

2

+ 1

)

ehω̂
(

r0 +
kθ(esω̂−1)

ω̂

)

[

2ω̂ + (k̂ + ω̂)

(

ω̂A2(h,t)ehω̂

2−(k+ω̂)
A2(h,t)

2

+ ehω̂ − 1

)]2 ,
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and

G̃(2)
α (0, s, t̃)

=E
[

r2se
−

∫ h
0 rvdve−

∫ t
0 rvdv

]

=
1

4

A1(h, t)

Â1(h, t̃)
(

dÂ2(s,t̃)
dt̃

)2

⎡

⎢

⎣

d2 ln
(

Â1(0, t̃)
)

d2t̃
−

d2 ln
(

Â1(s, t̃)
)

d2t̃
+

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

2

−

⎛

⎝

d ln
(

Â1(0, t̃)
)

dt̃
−

d ln
(

Â1(s, t̃)
)

dt̃

⎞

⎠

dÂ2(0, t̃)

dt̃
r̂0 −

d2Â2(0, t̃)

dt̃2
r̂0

⎤

⎦ B̂(0, t̃)

+
1

4

⎡

⎣

dÂ2(0, t̃)

dt̃
r̂0 +

d2Â2(s,t̃)
dt̃2

dÂ2(s,t̃)
dt̃

⎤

⎦

A1(h, t)

Â1(h, t̃)
dÂ2(s,t̃)

dt̃

d ln(Â1(s,t̃))
dt̃

− d ln(Â1(0,t̃))
dt̃

+ r̂0
dÂ2(0,t̃)

dt̃

dÂ2(s,t̃)
dt̃

B̂(0, t̃)

=
1

4
G̃(0, s, t̃)

⎡

⎢

⎣

kθ
(

et̃ω̂ − e(t̃−s)ω̂
) [

2ω̂ + (k̂ + ω̂)
(

e(t̃−s)ω̂ − 1
)]2

2ω̂2e2(t̃−s)ω̂
[

2ω̂ + (k̂ + ω̂)
(

et̃ω̂ − 1
)

]2

[

(ω̂ − k)2 − (k + ω̂)2et̃ω̂e(t̃−s)ω̂
]

+
4k2θ2

ω̂2

(

esω̂ − 1
)2
[

2ω̂ + (k̂ + ω̂)
(

e(t̃−s)ω̂ − 1
)]2

[

2ω̂ + (k̂ + ω̂)
(

et̃ω̂ − 1
)

]2

+
4kθesω̂r0

ω̂

(

esω̂ − 1
)

[

2ω̂ + (k̂ + ω̂)
(

e(t̃−s)ω̂ − 1
)]3

[

2ω̂ + (k̂ + ω̂)
(

et̃ω̂ − 1
)

]3

− 2r0

[

(ω̂ − k)− (k + ω̂)et̃ω̂
] [

2ω̂ + (k̂ + ω̂)
(

e(t̃−s)ω̂ − 1
)]4

4ω̂et̃ω̂e−2sω̂
[

2ω̂ + (k̂ + ω̂)
(

et̃ω̂ − 1
)

]3

⎤

⎥

⎦

+
1

2
G̃(1)

α (0, s, t̃)

⎡

⎢

⎣

2esω̂r0
[

2ω̂ + (k̂ + ω̂)
(

e(t̃−s)ω̂ − 1
)]2

[

2ω̂ + (k̂ + ω̂)
(

et̃ω̂ − 1
)

]2

+

[

(ω̂ − k)− (k + ω̂)e(t̃−s)ω̂
] [

2ω̂ + (k̂ + ω̂)
(

e(t̃−s)ω̂ − 1
)]

4ω̂e(t̃−s)ω̂

⎤

⎦ .

Figure 4.11 shows the value of Var[Ms] based on CIR model. As displayed in Figure

4.11 and 4.12, the time where Var[Ms] reaches the maximum occurs at the early stage

of the contract life. The utility function, described in (3.7), is applied to CIR model,

where the value of the utility function is presented in Figure 4.13 and 4.14. Vasicek

model is consistent with the optimal refinancing time, obtained by the optimization

of the utility function will decrease with the increase of k or σ2. Table A.5 shows

that the optimal time will decrease when ρ increases. Again, when ρ = 1, the optimal

refinancing time will be shortest.
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4.3.3 T = ∞

The value of E[Ms] can be evaluated as followings with T = ∞.

E[Ms]

=P (0)

∫ ∞

s

−(ω − k)2
(

r0 +
kθ
ω

)

+ (ω + k)2e2tω−sω
(

r0 − kθ
ω

)

− kθ
ω (ω2 − k2)

(

e(t−s)ω + etω
)

[2ω + (k + ω) (etω − 1)]2
B(0, t)dt

=P (0)

∫ ∞

s

−(ω − k)2
(

r0 +
kθ
ω

)

e−2tω + (ω + k)2e−sω
(

r0 − kθ
ω

)

− kθ
ω (ω2 − k2)

(

e−(t+s)ω + e−tω
)

[2ωe−tω + (k + ω) (1− e−tω)]2

B(0, t)dt,

which is convergent due to the fact that B(0,∞) = 0.

The value of Var[Ms] is

Var[Ms]

=2P (0)2
∫ ∞

s

∫ t

s

{

r20G̃(0, s, t̃)− 2r0G̃
(1)
α (0, s, t̃) + G̃(2)

α (0, s, t̃)dhdt

−
−(ω − k)2

(

r0 +
kθ
ω

)

e−2tω + (ω + k)2e−sω
(

r0 − kθ
ω

)

− kθ
ω (ω2 − k2)

(

e−(t+s)ω + e−tω
)

[2ωe−tω + (k + ω) (1− e−tω)]2
B(0, t)

−(ω − k)2
(

r0 +
kθ
ω

)

e−2hω + (ω + k)2e−sω
(

r0 − kθ
ω

)

− kθ
ω (ω2 − k2)

(

e−(h+s)ω + e−hω
)

[2ωe−hω + (k + ω) (1− e−hω)]2
B(0, h)

}

,

where the values of G̃(0, s, t̃), G̃(1)
α (0, s, t̃) and G̃

(2)
α (0, s, t̃) are given in Section 4.3.2.

0 5 10 15
0

1

2

3

4

5

6

7

8
x 108

Time

E(
M

s)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18
x 1076

Time

E(
M

s)

Figure 4.1: The numerical value of E[Ms] under Merton model when T = 15 and
T = 30, where the value of the parameters are u = −0.001 and σ2 = 0.04.
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Figure 4.2: The numerical value of E[Ms] with different parameters under Vasicek
model.
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Figure 4.3: The numerical value of Var[Ms] with different k under Vasicek model.
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Figure 4.4: The numerical value of U

(

E[Ms],
1√

Var[Ms]

)

under Vasicek model with

(a)ρ = 0.6, (b)ρ = 0.7, (c)ρ = 0.8, (d)ρ = 0.9.
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Figure 4.5: Comparison Between c0 and Mortgage Rate Process for Small Volatility.
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Figure 4.6: The numerical value of E[Ms] with different parameters under CIR model.
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Figure 4.7: The numerical value of E[Ms] through different approximating methods
under CIR model.
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Figure 4.8: The 3D Graph of Optimal Refinancing Time (ρ = 1) with the Change of k
and σ2 under CIR model.
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Figure 4.9: The Optimal Refinancing Time (ρ = 1) with the Change of k under CIR
model.

71



0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5

k

op
tim

al
 ti

m
e 

to
 re

fin
an

ce

 

 
σ2=0.01

0 0.2 0.4 0.6 0.8 1
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

k

op
tim

al
 ti

m
e 

to
 re

fin
an

ce

 

 
σ2=0.25

0 0.2 0.4 0.6 0.8 1
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

k

op
tim

al
 ti

m
e 

to
 re

fin
an

ce

 

 
σ2=0.75

0 0.2 0.4 0.6 0.8 1
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

k

op
tim

al
 ti

m
e 

to
 re

fin
an

ce
 

 
σ2=0.1

Figure 4.10: The Optimal Refinancing Time (ρ = 1) with the Change of σ2 under CIR
model.

0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

time

va
r(M

s)

 

 
k=0.1

0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

time

va
r(M

s)

 

 
k=0.2

0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

0.012

time

va
r(M

s)

 

 
k=0.3

0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

0.012

time

va
r(M

s)

 

 
k=0.4

Figure 4.11: The numerical value of Var[Ms] with different k under CIR model.
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Figure 4.12: The numerical value of Var[Ms] with different σ2 under CIR model.
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Figure 4.13: The numerical value of U

(

E[Ms],
1√

Var[Ms]

)

under CIR model with

(a)ρ = 0.6, (b)ρ = 0.7, (c)ρ = 0.8, (d)ρ = 0.9 by the variation of k.
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Figure 4.14: The numerical value of U

(

E[Ms],
1√

Var[Ms]

)

under CIR model with

(a)ρ = 0.6, (b)ρ = 0.7, (c)ρ = 0.8, (d)ρ = 0.9 by the variation of σ2.
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Chapter 5

Special Case: σ = 0

The special cases in this section give an intuitional view of our problem. We assume rt

is a deterministic decreasing function of t, and recall that

Ms =P (0)

[

c0
1− e−c0T

−
cs
[

1− e−c0(T−s)
]

[1− e−r0T ]
[

1− e−rs(T−s)
]

]

∫ T

s
e−R(t)dt

=P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]
(r0 − rs)

∫ T

s
e−R(t)dt, (5.1)

where R(t) =
∫ t
0 rvdv. The optimal time will be obtained by dMs

ds = 0.

5.1 rt is a decreasing linear function

5.1.1 T < ∞

When σ = 0 in (4.1), we obtain a linear function of rt, where

rt = r0 + ut. (5.2)

Note that in this case, the parameter u should be negative. Otherwise, rt will be an

increasing function and there is no point of refinancing. Thus, we may let u1 = −u > 0,

and thus rt = r0 − u1t. Then we rewrite (5.1) as

Ms =P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]
u1s

∫ T

s
e−

∫ t
0 r0−u1vdvdt

=P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]
u1s

∫ T

s
e−r0t+

1
2u1t2dt

=P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]
u1s

√

π

2u1
e
−

r20
2u1

[

erfi

(

u1T − r0√
2u1

)

− erfi

(

u1s− r0√
2u1

)]

,

(5.3)

where erfi(z) gives the imaginary error function erf(iz)
i . The optimal time will given

by s satisfying
[

(r0(T − s) + 1) e−r0(T−s) − 1

(T − s)
[

e−r0(T−s) + r0(T − s)− 1
] +

1

s

]

√

π

2u1
e
−

r20
2u1

[

erfi

(

u1T − r0√
2u1

)

− erfi

(

u1s− r0√
2u1

)]

=e−r0s+
1
2u1s

2
.
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From Table A.6, we can see the nonconvergent result of s when T increases. More-

over, the value of Ms will be infinite when T = ∞.
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Figure 5.1: The numerical value of Ms under Merton model with σ = 0 when T = 15
and T = 30, with u1 = 0.001.

5.1.2 T = ∞

We have the following formula for Ms when T = ∞, where

Ms =P (0)u1s

∫ ∞

s

e−r0t+
1
2u1t

2
dt.

(5.4)

Adopting dMs
ds = 0 gives

√

π

2u1
e
−

r20
2u1

[

erfi

(

u1T − r0√
2u1

)

− erfi

(

u1s− r0√
2u1

)]

= se−r0s+
1
2u1s

2
.

However, the value of Ms will be infinite as T = ∞, leading to an nonconvergent result

of the optimal time.

5.2 rt is a piecewise function

5.2.1 T < ∞

We assume rt is a piecewise function with

rt =

⎧

⎨

⎩

r0 for s < s⋆

r1 for s ! s⋆,
(5.5)

where r1 < r0.

Thus, Ms can be described as

Ms =P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]
(r0 − r1)

∫ T

s

e−r1t−(r0−r1)s⋆dt

=P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]

r0 − r1
r1

e−(r0−r1)s⋆
(

e−r1s − e−r1T
)

, (5.6)
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with s ∈ [s⋆, T ).

We let f(s) = e−r0(T−s)+r0(T−s)−1
T−s

(

e−r1s − e−r1T
)

, and we have

f ′(s) =

(

r0e
−r0(T−s) − r0

)

(T − s) + e−r0(T−s) + r0(T − s)− 1

(T − s)2
(

e−r1s − e−r1T
)

−r1e
−r1s e

−r0(T−s) + r0(T − s)− 1

T − s

=
r0
(

e−r0(T−s) − 1
)

T − s
+

[

e−r1s − e−r1T − r1e
−r1s(T − s)

] [

e−r0(T−s) + r0(T − s)− 1
]

(T − s)2
.

We let f1(s) = e−r1s − e−r1T − r1e
−r1s(T − s) and f2(s) = e−r0(T−s)+ r0(T − s)− 1, as

f ′
1(s) =− r1e

−r1s + r21e
−r1s(T − s) + r1e

−r1s = r21e
−r1s(T − s) > 0

f ′
2(s) =r0e

−r0(T−s) − r0 = r0

(

e−r0(T−s) − 1
)

< 0,

we have f1(s) < f1(T ) = 0 and f2(s) > f2(T ) = 0. Thus, we have f ′(s) < 0.

We can see that Ms is a decreasing function with s ∈ [s⋆, T ), thus, the maximum

value will be occurred at s = s⋆, with

Ms⋆ =P (0)
e−r0(T−s⋆) + r0(T − s⋆)− 1

r0(T − s⋆) [1− e−r0T ]

r0 − r1
r1

e−(r0−r1)s⋆
(

e−r1s⋆ − e−r1T
)

.

Figure 5.2 displays the value of Ms with the parameters P (0) = 1, r0 = 0.05,

r1 = 0.03, T = 15 and s⋆ = 3.5. As the interest rate will be constant after a sudden

change at s⋆, the debtor will lose benefit if he or she does not refinance at time t = s⋆,

due to the fact that the debtor will pay more interests in the future.
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Figure 5.2: (a)The function of rt. (b)The value of Ms when rt is a piecewise function.

If we assume

rt =

⎧

⎨

⎩

r0 for s < s⋆

rs for s ! s⋆
(5.7)

where rs is a decreasing function of s, with the initial value of r1. We are interested in
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the value of rs, where the profit by refinancing at time s equals a value C. As we have

Ms =P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]
(r0 − rs)

∫ T

s
e−

∫ s⋆

0 r0dve−
∫ t
s⋆

rvdvdt

=P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]
(r0 − rs)e

−r0s⋆
∫ T

s
e−

∫ t
s⋆ rvdvdt. (5.8)

Thus, rs can be solved by

∫ T

s
e−

∫ t
s⋆ rvdvdt =

Cr0(T − s)er0s
⋆ [

1− e−r0T
]

P (0)
[

e−r0(T−s) + r0(T − s)− 1
]

(r0 − rs)

We let f(s, rs) =
Cr0(T−s)er0s

⋆
[1−e−r0T ]

P (0)[e−r0(T−s)+r0(T−s)−1](r0−rs)
, such that

f(s, rs) =

∫ T

s
e−

∫ t
s⋆

rvdvdt, (5.9)

Taking derivative of (5.9) with respect of s for both sides gives

−
d

ds
f(s, rs) = e−

∫ s
s⋆ rvdv,

or equivalently,

ln

[

−
d

ds
f(s, rs)

]

= −
∫ s

s⋆
rvdv,

We can obtain the formula for rs by taking the derivative of the above equation with

respect to s, which implies

rs = −
d

ds
ln

[

−
d

ds
f(s, rs)

]

= −
d2

ds2
f(s, rs)

d
dsf(s, rs)

.

Hence, rs can be solved by the following ODE

rs =
(T − s)

[

−r20e
−r0(T−s) + 2r0

(

e−r0(T−s) − 1
)

drs
ds +

(

e−r0(T−s) + r0(T − s)− 1
)

d2rs
ds2

]

(

e−r0(T−s) + r0(T − s)− 1
) (

r0 − rs − (T − s)drsds

)

+ (T − s)r0
(

e−r0(T−s) − 1
)

(r0 − rs)

+2
r0
(

e−r0(T−s) − 1
)

(r0 − rs)−
(

e−r0(T−s) + r0(T − s)− 1
)

drs
ds

(

e−r0(T−s) + r0(T − s)− 1
)

(r0 − rs)
,

with the initial boundary of rs⋆ = r1,
drs
ds |s⋆ = γ < 0.

Figure 5.3 displays the relation between the optimal refinancing rate and the refi-

nancing time. The curve of rs can be defined as the optimal boundary to refinance.

The debtor will refinance when the market interest rate hits the curve. If the market

interest rate is on the boundary, the debtor is indifferent to the refinancing time as the

profit will stay at C.
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Figure 5.3: The relation between the optimal refinancing rate and the refinancing time.

5.2.2 T = ∞

As we have

Ms =P (0)(r0 − r1)

∫ ∞

s

e−r1t−(r0−r1)s⋆dt

=P (0)
r0 − r1

r1
e−(r0−r1)s⋆e−r1s, (5.10)

with s ∈ [s⋆, T ). It is clearly that Ms will reach the maximum point when s ∈ [s⋆, T ).

And the profit, Ms depends on the initial principle, the change of the interest rate and

the discount rate.

5.3 rt is a decreasing exponential function

When the volatility for the risk-free rate is negligible, the stochastic integral solution

to the CIR or Vasicek stochastic differential equation can be approximated by the

following deterministic functions. That is,

drt = k(θ − rt)dt,

or equivalently,

rt = θ + (r0 − θ)e−kt. (5.11)
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5.3.1 T < ∞

Ms =P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]
(r0 − rs)

∫ T

s
e−

r0−θ

k (1−e−kt)−θtdt

=P (0)
e−r0(T−s) + r0(T − s)− 1

r0(T − s) [1− e−r0T ]
(r0 − θ)

(

1− e−ks
)

∫ T

s
e−

r0−θ

k (1−e−kt)−θtdt.

As d
dsMs = 0, we have
[

(r0(T − s) + 1) e−r0(T−s) − 1

(T − s)
[

e−r0(T−s) + r0(T − s)− 1
] +

ke−ks

1− e−ks

]

∫ T

s
e−

r0−θ

k (1−e−kt)−θtdt

=e−
r0−θ

k (1−e−ks)−θs. (5.12)

We use the numerical solution to obtain the optimal refinancing time based on

(5.12). The result in Table A.7 shows the optimal time to refinance increases as the

contractual time T increases. However, with large T , the optimal time to refinance

stays at a stable point.

5.3.2 T = ∞

We have

Ms =P (0)(r0 − θ)
(

1− e−ks
)

∫ ∞

s

e−
r0−θ

k (1−e−kt)−θtdt.

We let x = e−ks, y = e−kt, and Ms can be continued as

Ms =− P (0)
r0 − θ

k
(1− x)

∫ 0

x
e−

r0−θ

k
(1−y)y

θ
k
−1dy

=P (0)
r0 − θ

k
e−

r0−θ

k (1− x)

∫ x

0
e

r0−θ

k
yy

θ
k
−1dy.

To obtain the maximum/minimun point, we let

d

dx
Ms =− P (0)

r0 − θ

k
e−

r0−θ

k

∫ x

0
e

r0−θ

k
yy

θ
k
−1dy + P (0)

r0 − θ

k
e−

r0−θ

k (1− x)e
r0−θ

k
xx

θ
k
−1 = 0.

which gives
∫ x

0
e

r0−θ

k
yy

θ
k
−1dy = (1− x)e

r0−θ

k
xx

θ
k
−1.

We let y = xv, the equation can be simplified as
∫ 1

0
e

r0−θ

k
xvx

θ
k v

θ
k
−1dv = (1− x)e

r0−θ

k
xx

θ
k
−1.

We always assume that r0 > θ, where the rational debtor will make profit by

refinancing. To simplify the equation, we let α = r0−θ
k > 0, then

x

∫ 1

0
eαx(v−1)v

θ
k
−1dv = 1− x.
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We let u = 1− v, then

g(x) =x

∫ 1

0
eαx(v−1)v

θ
k
−1dv

=x

∫ 1

0
eαxu(1− u)

θ
k
−1du

=x

∞
∑

n=0

(−1)nαnxn

n!

∫ 1

0
un(1− u)

θ
k
−1du

=xΓ

(

θ

k

) ∞
∑

n=0

(−1)nαnxn

Γ
(

n+ 1 + θ
k

)

=1− x. (5.13)

As g(x) is an alternating series, we have

xΓ

(

θ

k

) 2
∑

n=0

(−1)nαnxn

Γ
(

n+ 1 + θ
k

) >1− x

xΓ

(

θ

k

) 3
∑

n=0

(−1)nαnxn

Γ
(

n+ 1 + θ
k

) <1− x.

Then we can approximate 1− x as

1

2
xΓ

(

θ

k

) 2
∑

n=0

(−1)nαnxn

Γ
(

n+ 1 + θ
k

) +
1

2
xΓ

(

θ

k

) 3
∑

n=0

(−1)nαnxn

Γ
(

n+ 1 + θ
k

) = 1− x,

which can be simplified as

1

2

α3

θ
k

(

θ
k + 1

) (

θ
k + 2

) (

θ
k + 3

)x4 −
α2

θ
k

(

θ
k + 1

) (

θ
k + 2

)x3 +
α

θ
k

(

θ
k + 1

)x2 −

[

1
θ
k

+ 1

]

x+ 1 = 0.

We consider the special when θ
k = 1, such that (5.13) can be rearranged as

x

∞
∑

n=0

(−1)nαnxn

(n+ 1)!
=1− x,

which can be simplified as

e−αx − αx+ α− 1 = 0,

with the solution

x =
W (e1−α) + α− 1

α
.

where W (z) is the product log function.

Thus

s = −
ln
(

W (e1−α) + α− 1
)

− ln (α)

k
.
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Chapter 6

Remarks and Future Work

This work examines the debtor’s optimal refinancing strategy under restriction that

only one refinancing opportunity is allowed across the duration of a mortgage loan.

The numerical solution suggests the optimal refinancing time is more likely to appear

at the early stage of the contract. The values of the utility as a function of time are

generated, and the properties of which are analyzed and interpreted with real financial

implications.

The current paper overcomes several weaknesses and implicit premises requiring

both theoretical fortification and numerical enhancement in a recently developed sem-

inal work on the optimal refinancing strategy (see [48]). The current work provide a

complete and rigorous optimization formulation to the concerned problem.

Adopting the optimization of the utility function approach developed in this thesis,

the analytic formulae are presented for the affine interest models. The obvious future

work would be to present a general solution applicable to other interest rate models.

As closed form solutions are not available for the multiple refinancing problems, a vital

area for future research would be to introduce a model for the multiple refinancing

problem. In addition, the validation of the theory on real data will be tested in the

future.
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Appendix A

Appendix of Tables

Table A.1: The Relative Error of the approximation in Lemma 3.2.3, with y =
W (−ae−a)+a, whereW (z) is the product log function and a = x0

1−e−x0
+ 1−e−x0−x0

(1−e−x0)x0
(x0−

x) with x0 = 1.5.

x y y − x y−x
x

0.1 0.1216 0.0216 0.2160

0.2 0.2387 0.0387 0.1935

0.3 0.3518 0.0518 0.1727

0.4 0.4611 0.0611 0.1528

0.5 0.5672 0.0672 0.1344

0.6 0.6703 0.0703 0.1172

0.7 0.7707 0.0707 0.1010

0.8 0.8687 0.0687 0.0859

0.9 0.9643 0.0643 0.0714

1.0 1.0579 0.0579 0.0579

1.1 1.1496 0.0496 0.0451

1.2 1.2396 0.0396 0.0330

1.3 1.3279 0.0279 0.0215

1.4 1.4146 0.0146 0.0104

1.5 1.5 0 0
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Table A.2: The Optimal time to Refinance (with ρ = 1) under Vasicek model. The
value of parameters are k = 1, θ = 0.03 and σ2 = 0.01.

T Optimal Time T Optimal Time

5 1.2 55 3.3

10 1.8 60 3.4

15 2.1 65 3.4

20 2.4 70 3.5

25 2.6 75 3.5

30 2.8 80 3.5

35 2.9 85 3.6

40 3 90 3.6

45 3.1 95 3.6

50 3.2 100 3.6

Table A.3: The Optimal time to Refinance under Vasicek model based on the utility
function. The value of parameters are k = 1, θ = 0.03, σ2 = 0.01 and T = 15.

ρ Optimal Time ρ Optimal Time

0.55 3.4 0.8 2.3

0.6 2.9 0.85 2.3

0.65 2.7 0.9 2.2

0.7 2.5 0.95 2.2

0.75 2.4 1 2.1

Table A.4: The Optimal time to Refinance (with ρ = 1) under CIR model. The value
of parameters are k = 1, θ = 0.03 and σ2 = 0.01.

T Optimal Time T Optimal Time

5 1.2 55 3.2

10 1.7 60 3.3

15 2.1 65 3.3

20 2.4 70 3.3

25 2.6 75 3.4

30 2.7 80 3.4

35 2.9 85 3.4

40 3 90 3.4

45 3.1 95 3.5

50 3.1 100 3.5
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Table A.5: The Optimal time to Refinance under CIR model based on the utility
function. The value of parameters are k = 1, θ = 0.03, σ2 = 0.01 and T = 15.

ρ Optimal Time ρ Optimal Time

0.55 3.9 0.8 2.4

0.6 3.3 0.85 2.3

0.65 2.9 0.9 2.2

0.7 2.7 0.95 2.2

0.75 2.5 1 2.1

Table A.6: The Optimal time to Refinance under Merton model, with σ = 0.

T Optimal Time T Optimal Time

5 1.7 55 18.6

10 3.3 60 20.7

15 4.9 65 23.1

20 6.9 70 25.7

25 8.1 75 28.6

30 9.7 80 31.9

35 11.0 85 35.6

40 13.0 90 39.6

45 14.8 95 43.9

50 16.6 100 48.5

Table A.7: The Optimal time to Refinance under CIR or Vasicek Model when σ = 0.

T Optimal Time T Optimal Time

5 1.1 55 3.1

10 1.6 60 2.2

15 2 65 3.2

20 2.2 70 3.3

25 2.4 75 3.3

30 2.6 80 3.3

35 2.7 85 3.4

40 2.8 90 3.4

45 2.9 95 3.4

50 3 100 3.4
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Appendix B

Appendix: a new method to

compute B(s, t) under Vasicek

model

In the Vasicek model, as we have
∫ t

s
rudu =

σ(Wt −Ws) + kθ(t− s)− rt + rs
k

,

thus, the bond price is

B(s, t) = E
[

e−
∫ t
s rudu|rs

]

=E
[

e−
σ(Wt−Ws)+kθ(t−s)−rt+rs

k |rs
]

,

where rs is the short rate. As

rt = θ + (rs − θ)e−k(t−s) + σe−kt

∫ t

s
ekudWu,

the calculation of bond price could be continued as

=E

[

e−
σ(Wt−Ws)−kθ(t−s)−θ−(rs−θ)e−k(t−s)

−σe−kt ∫ t
s ekudWu+rs

k |rs
]

=e−
(rs−θ)(1−e−k(t−s))+kθ(t−s)

k E

[

e−
σ(Wt−Ws)−σe−kt ∫ t

s ekudWu
k |rs

]

=e−
(rs−θ)(1−e−k(t−s))+kθ(t−s)

k E

[

e−
σ
∫ t
s [1−e−k(t−u)]dWu

k

]

,

and we let f(u) = −σ
k

(

1− e−k(t−u)
)

, the above equation is

= e−
(rs−θ)(1−e−k(t−s))+kθ(t−s)

k E
[

e
∫ t
s f(u)dWu

]

. (B.1)

We suppose q =
∫ t
0 f(u)dWu. It is well known that q follows normal distribution.

Clearly, we have

E[q] =0,
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and by adopting the Ito’s isometry, we obtain

Var[q] =E[q2]− [E[q]]2

=E[q2]

=E

[

(∫ t

s
f(u)dWu

)2
]

=

∫ t

s

[f(u)]2 dv

=
σ2

k2

(

t− s+ 2
e−k(t−s)

k
−

e−2k(t−s)

2k
−

3

2k

)

,

which implies q ∼ N(0, σ
2

k2

(

t− s+ 2e−k(t−s)

k − e−2k(t−s)

2k − 3
2k

)

). Therefore, we have

E
[

e
∫ t
s
f(u)dWu

]

= e
σ2

2k2

(

t−s+2 e−k(t−s)

k
− e−2k(t−s)

2k − 3
2k

)

.

Thus, we continue calculating (B.1) as

=e−
(rs−θ)(1−e−k(t−s))+kθ(t−s)

k e
σ2

2k2

(

t−s+2 e−k(t−s)

k
− e−2k(t−s)

2k − 3
2k

)

=e
− 1−e−k(t−s)

k
rs+

1−e−k(t−s)

k
θ−

(

θ− σ2

2k2

)

(t−s)+ σ2

2k2

[

− 1−e−k(t−s)

k
+ e−k(t−s)

k
− e−2k(t−s)

2k − 1
2k

]

=e
− 1−e−k(t−s)

k
rs−

(

θ− σ2

2k2

)

(t−s)+
(

θ− σ2

2k2

)

1−e−k(t−s)

k
+ σ2

2k2

[

e−k(t−s)

k
− e−2k(t−s)

2k − 1
2k

]

=e
− 1−e−k(t−s)

k
rs−

(

θ− σ2

2k2

)

(t−s)+
(

θ− σ2

2k2

)

1−e−k(t−s)

k
−σ2

4k

(

1−e−k(t−s)

k

)2

=e

(

θ− σ2

2k2

)

[

1−e−k(t−s)

k
−(t−s)

]

−σ2

4k

(

1−e−k(t−s)

k

)2

− 1−e−k(t−s)

k
rs
.

If we let

A1(s, t) =e

(

θ− σ2

2k2

)

[A2(s,t)−(t−s)]−σ2

4k A2
2(s,t).

A2(s, t) =
1− e−k(t−s)

k
,

the bond price is

B(s, t) = E
[

e−
∫ t
s rudu

]

= A1(s, t)e
−A2(s,t)r2 .
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