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ABSTRACT 

Nrf2 (Nuclear factor erythroid 2-related factor 2), a redox-sensitive transcription factor, 

plays a critical role in the regulation of cellular defence and contributes to a number of 

cellular processes. Nrf2 is regulated through an interplay of complex transcriptional and 

post-translational mechanisms that modulates its activity during cellular perturbations or 

other biological processes thereby ensuring cellular homeostasis is maintained through the 

orchestration of adaptive responses. However, there is mounting evidence that constitutive 

upregulation of the Nrf2 pathway drives the enhanced proliferation and chemoresistance 

of various cancers. Therefore, an ability to modulate the activity of the Nrf2 pathway holds 

promise as a therapeutic strategy in certain disease settings. 

 

The work presented in this thesis showed that CDDO-Me provoked the induction of the 

Nrf2 pathway in C57BL6J WT and Nrf2 KO mice and CD1 WT mice. Analysis of CDDO-Me 

induced gene expression changes in both WT and Nrf2 KO mice showed a significant 

increase in the relative mRNA levels of ARE-dependent genes in the livers of CDDO-Me 

treated WT animals. Notably, CDDO-Me also provoked the accumulation of Nrf2 and NQO1 

in human PBMCs and PHHs demonstrating its translational relevance. The mechanism of 

action of CDDO-Me as an inducer of Nrf2 is poorly understood.  It was shown here that 

CDDO-Me post-transcriptionally evoked concentration and time-dependent, accumulation 

of Nrf2 protein in Hepa1c1c7 cells. Furthermore, CDDO-Me was shown to stabilize Nrf2 

protein independently of the modulation of protein kinases and other signalling pathways 

that are purported to regulate Nrf2 activity. 

 

The work here also provides in vitro insights into the molecular mechanism of Nrf2 

inhibition by the quassinoid brusatol. Brusatol post-transcriptionally evoked concentration- 

and time-dependent, yet transient, depletion of basal and inducible protein levels of Nrf2 in 

Hepa-1c1c7 cells. Furthermore, the ability of brusatol to inhibit Nrf2 was not affected by 

siRNA depletion of Keap1. In keeping with the latter observation, brusatol induced the 

depletion of Nrf2 independently of the proteasome and autophagic degradation 

machineries. Thus, these findings indicate that brusatol exploits a previously unknown 

mechanism of Nrf2 degradation.  By examining the molecular mechanisms underlying the 

activation of Nrf2 by CDDO-Me and its inhibition by brusatol, this work reveals novel 

aspects of regulation within this important cellular pathway, and informs the design of new 

pharmacological inducers and inhibitors, which hold promise as therapeutic agents in a 

number of diseases. 
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1.0 INTRODUCTION 

 

1.1 The Nrf2:Keap1 pathway 

 

Cells are constantly being exposed to insults which result from various chemical and 

oxidative reactions such as those involving environmental toxicants, mutagens and 

carcinogens. Such insults pose a high risk to the cell, disrupting homeostasis and 

normal cellular function and, not surprisingly, have been associated with disease 

pathogenesis (Osburn et al., 2008).  Mammalian cells have thus evolved complex 

signaling pathways and defense systems that function synergistically in order to 

reduce the deleterious effects of such intrinsically and extrinsically generated 

insults. One such pathway is the Keap1-Nrf2 cell defense pathway. 

  

Nuclear Factor (erythroid-derived2)-like factor 2 (henceforth referred to as Nrf2) is 

a redox sensitive bZip transcription factor that induces the expression of a variety of 

genes which serve to protect against the deleterious effects of oxidative and 

chemical stress, thus ensuring normal cellular functions are maintained or restored. 

Nrf2 is a member of the cap ‘n’ collar family of transcription factors; these include 

Nrf1, Nrf3, Bach1 and Bach 2 (Motohashi et al., 2002). The physiological importance 

of Nrf2 has been highlighted by the use of transgenic Nrf2 knockout mice (KO), 

which show enhanced susceptibility to various drug-induced toxicities such as 

acetaminophen and dextran sulphate (McMahon et al., 2001; Ramos-Gomez et al., 

2001; Cho et al., 2002). 

  

Nrf2 is a protein that is highly conserved across species and ubiquitously expressed 

throughout the body. Homologues have been identified in various species including 

fish, nematodes and flies (Moi et al., 1994; Itoh et al., 1995; Kobayashi et al., 2002; 

Motohashi et al., 2002; An et al., 2003). The importance of this pathway in cell 

homeostasis is highlighted by the fact that Nrf2 is a ubiquitously expressed protein, 

and in particular, as shown in Nrf2 KO mice, plays a role not only in basal cell 

defense, but also in diverse cellular processes such as differentiation, proliferation 

and lipid metabolism (Kitteringham et al., 2010; Bryan et al., 2013) with its aberrant 
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expression playing a role in the pathogenesis of various diseases, such as 

neurodegeneration (Valko et al., 2007; Bryan et al., 2013).  

 

The activity of Nrf2 is primarily governed by an interaction with a homodimer of 

Keap1 (Kelch-like ECH-associated protein 1), a cytosolic repressor protein that 

facilitates the ubiquitination and subsequent proteasomal degradation of Nrf2 via 

the Cul3 ubiquitin ligase complex (Itoh et al., 1999a; Zhang et al., 2004) (figure 

1.1a).  Upon the exposure of cells to toxic insult and/or oxidative stress by 

electrophiles and oxidants, which cause an imbalance in the redox state of the cell, 

the Keap1-directed ubiquitination and degradation of Nrf2 is disrupted, leading to 

Nrf2 accumulation in the cytosol followed by its translocation to the nucleus. Here, 

Nrf2 binds to its transcriptional partner small masculoaponeurotic fibrosarcoma 

(Maf) proteins to form heterodimers (Motohashi et al., 2004). These Nrf2-small Maf 

heterodimers then bind to the enhancer sequences (antioxidant response elements 

(ARE) or electrophile response element (ERE)) in the promoter regions of 

cytoprotective target genes (Friling et al., 1990; Rushmore et al., 1990b), which 

include a host of antioxidants, xenobiotic detoxification and DNA repair enzymes, 

molecular chaperones, anti-inflammatory response proteins and other 

cytoprotective enzymes (Hayes et al., 2010). The coordinated expression of these 

genes converts toxic compounds to less harmful intermediates whilst repairing any 

damage caused within the cell (figure 1.1b). 
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(A) 

 

(B) 

 

Figure 1.1 - Schematic diagram of the Keap1:Nrf2 pathway: In the absence of stress, the 

basal activity of Nrf2 is primarily governed by an interaction with a homodimer of Keap1, a 

cytosolic repressor protein that facilitates the ubiquitination and subsequent proteasomal 

degradation of Nrf2 via the Cul3 ubiquitin ligase complex (A). In the presence of oxidative or 

chemical stress, the association between Nrf2 and Keap1 is disrupted, preventing the 

Keap1-directed ubiquitination of Nrf2.  Nrf2 then translocates to the nucleus where it binds 

to sMaf proteins to transactivate ARE-dependent genes. The coordinated induction of these 

genes augments numerous cell defence pathways and processes (B). 
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ARE sequences were first identified in the early 1990’s prior to the discovery of Nrf2 

itself (Friling et al., 1990; Rushmore et al., 1990b) and defined as 5’-

gagTcACaGTgAGtCggCAaaatt-3’ (Nioi et al., 2003). The complex formed by Nrf2-

small Maf heterodimers binding to the ARE sequence results in the recruitment of 

co-activators such as CREB binding protein (CBP) and receptor associated 

coactivator (RAC) which in turn, facilitate transcriptional processes (Katoh et al., 

2001; Lin et al., 2006). Several other proteins have also been implicated in the 

regulation of Nrf2, including proteins of the cap ‘n’ collar family of proteins, AP-1 

family, nuclear receptors, the chromatin remodeling factor BRG1 and the 

transcription co-repressor SMRT (Venugopal et al., 1996; Zhang et al., 2006; Iwasaki 

et al., 2007; Wang et al., 2007). 

 

Structurally, Nrf2 is composed of 605 amino acids and categorized into six 

functional domains Neh1 - 7 (figure 1.2) (Itoh et al., 1999b; Wang et al., 2013). The 

Neh1 domain facilitates its nuclear localization, and contains a bZIP DNA binding 

domain through which interaction with transcriptional partners such as small Maf 

proteins occurs (Itoh et al., 1995; Katsuoka et al., 2005). The Neh2 domain functions 

as a negative regulator by providing a binding domain for Keap1. The Neh3 domain 

functions as a co-activator that facilitates the transcription of the ARE-dependent 

genes. The Neh4 and 5 domains function together to bind to co-activator such as 

CBP (Katoh et al., 2001; Taguchi et al., 2010). Neh6 is the domain that regulates the 

Keap1-independent regulation of Nrf2 pathway (McMahon et al., 2004). Neh7 is the 

domain that facilities retinoid X receptor alpha (RXRα)-mediated Nrf2 repression 

through a direct interaction between the two proteins (Wang et al., 2013).  
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Figure 1.2 - Schematic illustrating the structure of Nrf2. The relative positions and main 

roles of each domain are shown in the diagram.  

 

 

Several models of Nrf2 regulation have been suggested and can be categorized into 

Keap1- dependent and Keap1–independent regulation of Nrf2 which will be 

discussed below. For a detailed overview of these regulations, see reviews by (Baird 

et al., 2011; Bryan et al., 2013). Notably, none of the models suggested so far can 

fully address how constitutive activation of Nrf2-regulated genes is controlled 

basally. This could be as a result of auto-regulation of Nrf2, as suggested by Kwak et 

al., or due to the constitutive generation of reactive oxygen species from normal 

cellular metabolic processes (Kwak et al., 2002).  
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1.2 Keap1-dependent regulation of Nrf2 

 

Keap1 is a cytoplasmic protein and a Cullin-3-based ubiquitin ligase adaptor. It is a 

protein rich in cysteine residues and interacts with the actin cytoskeleton through 

its double glycine repeat domain as revealed by immunocytochemistry and 

immunoprecipitation (Kang et al., 2004; Watai et al., 2007). It is composed of 624 

amino acids and consists of three main functional domains; the Bric-a-brac, tram-

track, broad complex (BTB), Intervening Region (IVR) and Kelch domains. The BTB 

region is involved in dimerization, the IVR is targeted by many thiol-reactive small 

molecule inducers of Nrf2, and the Kelch domain moderates Nrf2 binding (Baird et 

al., 2011). 

 

Following the discovery of Keap1 as an Nrf2 repressor (Itoh et al., 1999b), the 

physiological importance of Keap1 was demonstrated by the genetic knock down of 

Keap1 gene which resulted in lethal deficiencies in new born mice most likely, as a 

result of hyperkeratosis of the upper GI tract leading to malnutrition (Wakabayashi 

et al., 2003). In a recent study to support this, a graded depletion of Keap1 showed 

increased mortality in young mice (Taguchi et al., 2010). Following hepatocyte-

specific deletion of Keap1, there is a marked increase in the levels of Nrf2. This 

stimulation of Nrf2 reduces sensitivity of the cells to acetaminophen liver toxicity 

(Okawa et al., 2006).   

 

1.2.1 Nrf2 ubiquitination and proteasomal degradation 

 

Under basal conditions, Keap1 directs Nrf2 ubiquitination and proteasomal 

degradation. In the presence of pharmacological inhibitors of the proteasome, Nrf2 

is upregulated, as is the expression of ARE-dependent genes (Sekhar et al., 2000; 

Itoh et al., 2003; Stewart et al., 2003). Keap1 acts as a substrate adaptor for a Cullin 

3 (Cul3)-dependent E3 ubiquitin ligase complex, thereby bringing together Nrf2 and 

ROC1/RBX1 (Ring-box protein 1), a ring-box protein which recruits a ubiquitin 

charged E2 molecule. The ubiquitin molecule is conjugated to one of the lysine 

residues (lys-44,-50,-52,-53,-56,-64,-68) located on Nrf2 at the Neh2 domain 
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(Cullinan et al., 2004b; Kobayashi et al., 2004; Zhang et al., 2004; Furukawa et al., 

2005). A study by Zhang shows that mutation of these lysine residues causes an 

accumulation of Nrf2 whilst the reverse was seen when the mutated residues were 

substituted back to the initial lysine residues re-establishing the Keap1-directed 

ubiquitination and proteasomal degradation (Zhang et al., 2004).  Nrf2 has been 

shown to have a relatively short half-life of 10-20 minutes, hence contributing to a 

low basal expression in cells, most likely due to the continuous production of Nrf2 

and its rapid degradation (Alam et al., 2003; Itoh et al., 2003). Keap1 is also a target 

for ubiquitination within the IVR domain under conditions of oxidative and chemical 

stress, however, this seems to be inducer specific.  The Nrf2 inducer tert-

butylhydroquinone (tBHQ) directs Keap1 for proteasomal degradation and using 

tandem mass spectrometry (MS/MS), the addition of an ubiquitin molecule onto 

ectopically expressed Keap1-V5 in cells at the Lys-298 residue was detected in the 

presence of tBHQ or Iodoacetamide (IAA). Notably, not all Nrf2 inducers cause 

Keap1 ubiquitination (Hong et al., 2005; Zhang et al., 2005). 

 

1.2.2 Keap1 as a sensor of oxidative stress 

 

The high frequency of cysteine residues in the Keap1 sequence confers it with a 

relative high reactivity to electrophilic inducers (Miseta et al., 2000).  Several 

studies (Dinkova-Kostova et al., 2002; Wakabayashi et al., 2004) have shown the 

covalent modification of multiple cysteine residues by Nrf2 inducers, which is 

hypothesized to alter the conformation of Keap1, thus preventing its association 

with Nrf2, allowing Nrf2 to translocate to the nucleus. Dinkova-Kostova et al. 

identified the most reactive Keap1 cysteines using mass spectrometry in which 

dexamethasone mesylate modified C257, C273, C288 and C297 within the IVR 

domain in purified murine Keap1 (Dinkova-Kostova et al., 2002).  

 

Further to this discovery, mutagenesis analysis showed that C273 and C288 

(mutants C273S/A and C288S/A) within the IVR domain are primarily responsible for 

repressing Nrf2 activity under basal conditions (Wakabayashi et al., 2004). In 

support of this, it has been shown that in the presence of the mutant C273S/A, Nrf2 
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activity was increased, in comparison to wild-type Keap1 (Zhang et al., 2004; 

Kobayashi et al., 2006). Recently, Yamamoto et al. further confirmed this in vivo 

using a transgenic complementation rescue model. The authors reported that 

transgenic expression of C273A or C288A mutant Keap1 was unable to reduce the 

constitutive high levels of Nrf2 in Keap1 null mice (Yamamoto et al., 2008). In 

addition, the mutant forms of C273A and C288A were unable to prevent the 

lethality seen with the loss of Keap1, indicating the role of Nrf2/Keap1 in animal 

viability (Yamamoto et al., 2008).  

 

In addition to the aforementioned cysteines with roles in basal Nrf2 regulation, 

C151 found in the BTB domain has been shown to be important for the ability of 

various inducers (sulforaphane, nitric oxide, tBHQ, H2O2) to upregulate Nrf2 (Zhang 

et al., 2003). In addition, it has been suggested that C151 may be important for the 

interaction between Keap1 and Cul3, the E3 ligase responsible for Nrf2 

ubiquitination (Zhang et al., 2003). In contrast to this, Yamamoto et al. saw the 

opposite, as tBHQ was able to induce Nrf2 in the presence of mutant C151 in 

isolated MEFs (Yamamoto et al., 2008). This indicates that whilst C151 plays a role 

in the Keap1-dependent induction of Nrf2 by some compounds, it is not required 

for the action of all Nrf2 activators. This is also highlighted by the findings of C273 

and C288 mutagenesis studies and that various electrophiles form covalent adducts 

with a subset of cysteine residues in Keap1, not just those mentioned above.  

 

It is of major interest to know how the modifications of the cysteine residues confer 

a suppression of Keap1 and subsequent upregulation of Nrf2, thus providing vital 

information on the regulation of the Nrf2 pathway. Additionally, whilst it is plausible 

to state that a certain electrophile both modifies a subset of cysteine residues in 

Keap1 and induces Nrf2, this by no means links cause and effect due to the 

substantial number of other factors which may contribute- such as changes in redox 

state of the cell, changes in transcription and translation and alterations in protein 

degradation, among other things. 
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1.3 Models of Nrf2 regulation 

Different models of Nrf2 regulation have been proposed, and include the following: 

Sequester and release, Keap1 and Cul3 dissociation, Hinge and latch model, Keap1 

nucleocytoplasmic shuttling, ubiquitination of Keap1, Nrf2 as a direct sensor. Each 

of these models is discussed in the following sections. 

 

1.3.1 Sequester and release:  

This model proposes that Keap1, a predominantly cytoplasmic protein sequesters 

Nrf2 in the cytoplasm under basal conditions. In the presence of inducers, Nrf2 is 

released from Keap1 and translocates to the nucleus where it transactivates 

cytoprotective genes. The proposal for this model initiated from a study by Itoh et 

al. which showed that Nrf2 is localized both in the cytoplasm and the nucleus 

whereas Keap1 was found in the cytoplasm (Itoh et al., 1999b). When Nrf2 is co-

expressed with Keap1, the latter is able to sequester Nrf2 from the nucleus into the 

cytoplasm whereas in the absence of co-expressed Keap1, Nrf2 accumulates in the 

nucleus (Itoh et al., 1999b)(figure 1.3). In support of this, sulforaphane and bis(2-

hydroxybenzylidene)acetone have been shown to provoke a concentration-

dependent dissociation of Keap1 from the Nrf2 Neh2 domain in vitro (Dinkova-

Kostova et al., 2002). The sequester and release model of Nrf2 regulation is 

summarised in figure 1.3. 
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(A) 

 

(B) 

 

 

Figure 1.3 - Schematic illustrating sequester and release model of Nrf2 regulation. In the 

absence of stress, the basal activity of Nrf2 is primarily governed by an interaction with a 

homodimer of Keap1 by binding to the actin cytoskeleton in the cytoplasm (A). In the 

presence of inducers, the association between Nrf2 and Keap1 is disrupted, Nrf2 then 

translocates to the nucleus where it binds to sMaf proteins to transactivate ARE-dependent 

genes. The coordinated induction of these genes then illicit a response (B). Adapted from 

Baird et al., 2011. 
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1.3.2 Dissociation of Keap1 and Cul3 

 

Following studies showing the involvement of a Keap1-Cul3-Rbx1 complex in 

directing the proteasome-mediated degradation of Nrf2 (Cullinan et al., 2004b; 

Kobayashi et al., 2004; Zhang et al., 2004; Furukawa et al., 2005), it was 

hypothesised that the dissociation of Keap1 and Cul3 leads to the stabilization of 

Nrf2 (figure 1.4).  This was confirmed by Zhang and other researchers, who 

observed a dissociation of Keap1 from Cul3 in the presence of several Nrf2 inducers 

including tBHQ, sulforaphane, eicosapentaenoic acid (EPA) and N-iodoacetyl-N-

biotinylhexylenediamine (IAB) (Zhang et al., 2004; Gao et al., 2007; Rachakonda et 

al., 2008; Niture et al., 2009). The dissociation of Keap1 and Cul3 prevents the 

ubiquitination and subsequent degradation of Nrf2. The dissociation of Keap1 and 

Cul3 was shown to be dependent on the presence of C151 within the BTB domain of 

Keap1. C151 is surrounded by four positively charged amino acids (K131, R135 and 

K150 and H154), theoretically making it highly reactive towards inducers. The 

modification of C151 by electrophilic Nrf2 inducers may provoke Cul3 dissociation 

via steric hindrance (Eggler et al., 2009). However, it appears that not all Nrf2 

inducers cause Keap1-Cul3 dissociation. The dissociation of Keap1 and Cul3 model 

of Nrf2 regulation is summarised in figure 1.4. 
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(A) 

 

(B) 

 

Figure 1.4 - Schematic illustrating dissociation of Keap1 and Cul3 model of Nrf2 

regulation. In the absence of stress, the basal activity of Nrf2 is primarily governed by an 

interaction with a homodimer of Keap1, a cytosolic repressor protein that facilitates the 

ubiquitination and subsequent proteasomal degradation of Nrf2 via the Cul3 ubiquitin ligase 

complex (A). In the presence of inducers, the association between Keap1 and Cul3 is 

disrupted, preventing the Keap1-directed ubiquitination of Nrf2.  Nrf2 then translocates to 

the nucleus where it binds to sMaf proteins to transactivate ARE-dependent genes. The 

coordinated induction of these genes then illicit a response (B). Adapted from Baird et al., 

2011. 
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1.3.3 Hinge and Latch Model  

 

The homodimer Keap1 binds to a single molecule of Nrf2 at the Neh2 domain (Lo et 

al., 2006; McMahon et al., 2006). The ETGE motif within the Neh2 domain provides 

a binding site for the beta propeller formed by the Kelch repeats of Keap1 

(Kobayashi et al., 2004). Notably, a binding still occurs in the absence of this motif 

(McMahon et al., 2006), however, it is insufficient to facilitate the ubiquitination of 

Nrf2 suggesting a second association is needed to initiate ubiquitination, hence the 

involvement of DLG motif (McMahon et al., 2006). The ETGE and DLG motifs have 

different affinities for Nrf2 due to different electrostatic interactions. The ETGE 

motif has 13 electrostatic interactions with Keap1, and almost double of the DLG 

motif, which has 8 interactions with Keap1. Without the binding of both motifs with 

Keap1, no ubiquitination or degradation of Nrf2 is observed (McMahon et al., 2006; 

Tong et al., 2006). A recent study showed that the Keap1-DLGex binding is both 

enthalpy and entropy driven while Keap1-ETGE binding is enthalpy driven only 

(Fukutomi et al., 2014). Further kinetic analysis therefore showed Keap1-DLGex 

binding to occur through fast-association and fast-dissociation complex (association 

rate constant (ka) = 6.1 x 104M-1 s-1) and dissociation rate constant (kd) = 0.196 s-1) 

whereas Keap1-ETGE displayed a slow-association complex, hence a stable complex 

(association rate constant (ka) = 1.20 x 10-3M-1 s-1) and dissociation rate constant 

(kd) = 1.22 x 10-4 s-1)  (Fukutomi et al., 2014).  

Further exploration showed that Nrf2 forms an alpha helix with six lysine residues 

between the ETGE and DLG motifs. Deletion analysis showed that the lysine 

residues were necessary for Keap1-mediated Nrf2 degradation, as mutation of the 

lysine residues increased the stability of Nrf2 (Zhang et al., 2004). Under basal 

conditions, one Nrf2 protein is sequestered by two Keap1 proteins via the DLG and 

ETGE motifs. Binding via the high-affinity ETGE motif provides the hinge which 

allows the free movement of Nrf2, whilst binding via the DLG acts as a latch 

positioning the lysine residues for ubiquitin conjugation (McMahon et al., 2006; 

Tong et al., 2006; Padmanabhan et al., 2008).  In the presence of inducers, it is 

thought that a conformational change of Keap1 inhibits binding via the DLG motif 
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(the latch) but does not affect binding via the ETGE motif (the hinge) of Nrf2. This 

impedes the ability of Keap1 to direct the ubiquitination of Nrf2, which is no longer 

degraded. Keap1 becomes saturated with Nrf2 and newly synthesized Nrf2 proteins 

are free to accumulate in the nucleus, bind to small Maf proteins and transactivate 

ARE regulated genes (figure 1.5). The destabilization of the Keap1-Nrf2 interaction is 

suggested to be due to a conformational change in the IVR domain of Keap1, as a 

result of cysteine modification. For a review, see (Copple, 2012; Bryan et al., 2013).  

Although the hinge and latch model explains the mechanism by which certain 

inducers might activate Nrf2, it does not explain how compounds such as arsenic 

and chromium can completely dissociate the Nrf2-Keap1 complex. Taken together, 

this suggests that the Nrf2 response to different inducers is controlled by different 

mechanisms (He et al., 2006; He et al., 2008). However, currently the hinge and 

latch model is the most widely accepted mechanism of those proposed to date 

(Tong et al., 2006). The hinge and latch model of Nrf2 regulation is summarised in 

figure 1.5. 
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(A) 

 

(B) 

 

Figure 1.5 - Schematic illustrating hinge and latch model of Nrf2 regulation. In the absence 

of stress, the basal activity of Nrf2 is primarily governed by an interaction with a homodimer 

of Keap1 at the high affinity ETGE and low affinity DLG motif. This binding stabilizes Nrf2 

orientation and facilitates the ubiquitination and subsequent proteasomal degradation of 

Nrf2 via the Cul3 ubiquitin ligase complex (A). In the presence of inducers, the association 

between Keap1 and Nrf2 is disrupted at the weaker DLG motif, leading to a conformational 

change in Keap1, thus preventing Keap1-directed ubiquitination of Nrf2.  Newly synthesized 

Nrf2 then translocates to the nucleus where it binds to sMaf proteins to transactivate ARE-

dependent genes. The coordinated induction of these genes then illicit a response (B). 

Adapted from Baird et al., 2011. 
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1.3.4 Keap1 nucleocytoplasmic shuttling 

 

Studies using Nrf2 knockout mice have highlighted the role of Nrf2 in the basal 

regulation of ARE-dependent genes (McMahon et al., 2001). This illustrates that 

some Nrf2 must be localised in the nucleus under basal conditions. Since the 

regulation of Nrf2 is primarily controlled by Keap1, it is possible that Keap1 

somehow regulates Nrf2 levels in the nucleus or that Nrf2 can evade Keap1 under 

resting conditions. The identification of the nuclear export signal Crm1 within the 

IVR domain of Keap1 supported this view (Nguyen et al., 2005; Velichkova et al., 

2005) and the chemical inhibition of Crm1 led to an increase in the nuclear levels of 

Keap1. In contrast, (Watai et al., 2007) concluded that the vast majority of Keap1 is 

localised in the cytoplasm and does not translocate to the nucleus, although a small 

fraction was located in the nucleus with unknown physiological relevance. This 

model has several discrepancies and will need further elucidation. For a review see 

(Baird et al., 2011). In summary, Keap1 nucleocytoplasmic shuttling model of Nrf2 

regulation is summarised in figure 1.6. 
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(A) 

 

(B) 

 

Figure 1.6 - Schematic illustrating Keap1 nucleocytoplasmic shuttling model of Nrf2 

regulation. In the absence of stress, the basal activity of Nrf2 is primarily governed by an 

entry of Keap1 into the nucleus which regulates it (A). In the presence of inducers, the entry 

of Keap1 into the nucleus is prevented, allowing Nrf2 to transactivate ARE-dependent genes. 

The coordinated induction of these genes then illicit a response (B). Adapted from Baird et 

al., 2011. 
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1.3.5 Keap1 ubiquitination 

 

Another proposed mode of Nrf2 regulation is Keap1 auto-ubiquitination. Keap1 can 

be ubiquitinated in response to the inducer tBHQ (Hong et al., 2005; Zhang et al., 

2005). The authors confirmed this by mass spectrometry, with ubiquitination of 

Keap1 shown to occur at lysine 298 residue of the IVR domain in response to the 

Nrf2 inducer IAB (Hong et al., 2005; Zhang et al., 2005). The role of Keap1 

ubiquitination in the mechanism of action of other Nrf2 inducers has yet to be 

examined. In summary, Keap1 ubiquitination model of Nrf2 regulation is 

summarised in figure 1.7. 
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(A) 

 

(B) 

 

Figure 1.7 - Schematic illustrating ubiquitination of Keap1 model of Nrf2 regulation. In the 

absence of stress, the basal activity of Nrf2 is primarily governed by an interaction with a 

homodimer of Keap1, which facilitates the ubiquitination and subsequent proteasomal 

degradation of Nrf2 via the Cul3 ubiquitin ligase complex (A). In the presence of inducers, 

Keap1 becomes a target of ubiquitination and subsequent degradation via the Cul3 

ubiquitin ligase complex. Nrf2 becomes stabilized and then translocates to the nucleus 

where it binds to sMaf proteins to transactivate ARE-dependent genes. The coordinated 

induction of these genes then illicit a response (B). Adapted from Baird et al., 2011. 
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1.3.6 The cyclic sequential attachment and regeneration model  

Another recently proposed model of Keap1-mediated degradation of Nrf2 is the 

cyclic sequential attachment and regeneration model (Baird et al., 2013)(figure 1.8). 

Using the techniques of quantitative FRET (Forster resonance energy transfer)-

based system to investigate the interaction of Keap1 and Nrf2 in single live cells, it 

was shown that under basal conditions, Nrf2 and Keap1 exhibit two conformations; 

the open and closed conformations which occurs through binding of ETGE motif and 

DLG motif respectively (Baird et al., 2013). Thus, at the basal state, the open 

conformation is formed first through the binding of Nrf2 to Keap1 at the ETGE motif 

followed by the binding of DLG to form the closed conformation. Hence, in the 

closed conformation, Nrf2 is correctly aligned with the E2 ubiquitin-conjugating 

enzyme bound to E3 and ubiquitination occurs. The released ubiquitinated Nrf2 is 

further degraded by the proteasome. This then frees up Keap1 dimer to be 

regenerated and then ready to bind newly translated Nrf2 and the whole cycle 

repeats again. In the presence of inducers, the cycle is disrupted in which Nrf2 is not 

correctly positioned for ubiquitination due to a conformational change in Keap1 

occurring as a result of its cysteine modification by the inducers. Whilst Nrf2 is still 

bound to Keap1, it is no longer aligned appropriately with the E2 ubiquitin-

conjugating enzyme bound to initiate ubiquitination. Thereby, Nrf2 is not released 

from Keap1 in the closed conformation and Keap1 becomes saturated. Newly 

translated Nrf2 is then free and able to bind to ARE on the cytoprotective genes and 

initiate their transcription (Baird et al., 2013). In summary, the cyclic sequential 

attachment and regeneration model of Nrf2 regulation is summarised in figure 1.8. 
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Figure 1.8 - The cyclic sequential attachment and regeneration model of Nrf2 regulation. 

In the basal state, newly translated Nrf2 binds to Keap1 at the ETGE motif to form the open 

conformation followed by the DLG binding to form the closed conformation. This binding 

stabilizes Nrf2 orientation and facilitates the ubiquitination and subsequent proteasomal 

degradation of Nrf2 via the Cul3 ubiquitin ligase complex (A). In the presence of inducers, 

the closed conformation is stabilized as a result of the conformational change in Keap1, thus 

preventing Keap1-directed ubiquitination of Nrf2.  Newly synthesized Nrf2 then translocates 

to the nucleus to illicit a response (B). Adapted from Baird et al., 2013. 
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1.3.7 Nrf2 as a sensor of stress 

Using recombinant proteins and Nrf2 purified from cell lysates, it has been shown 

that Nrf2 itself could be a sensor of the inducers FIAsH (an arsenic-based 

fluorophore) and phenylarsine oxide (PAO), which were able to bind directly to Nrf2 

(He et al., 2009). The authors confirmed that the binding of these inducers occurs at 

Cys235, Cys311, Cys414 and Cys506 of Nrf2, whilst mutation of these residues 

impeded the ability of Nrf2 to bind to the ARE of target genes (He et al., 2009). 

In addition, Nrf2 also contains nuclear import and export signals within the Neh5 

domain, and these provide a means for auto-regulation of Nrf2 through its cellular 

localisation (Li et al., 2005; Li et al., 2006). Under basal conditions, there is an 

homeostatic balance between the NES and the NLS signals, maintaining the levels of 

Nrf2 in the nucleus. In the presence of an Nrf2 inducer, there is an imbalance 

through which the NES is deactivated, thereby causing an accumulation of the 

protein in the nucleus, as confirmed by studies in which mutation of the NES 

triggers an increase in the nuclear levels of Nrf2 (Li et al., 2006) (figure 1.9). 

However, it has been shown that typical Nrf2 inducers can not potentiate the 

nuclear accumulation of Nrf2 that is associated with genetic loss of Keap1 

(Wakabayashi et al., 2003). Therefore, the inhibition of the nuclear export of Nrf2 

does not appear to be a universal mechanism of Nrf2 activation.   
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(A) 

 

(B) 

 

Figure 1.9 - Schematic illustrating Nrf2 senses inducers directly model of Nrf2 regulation. 

In the absence of stress, the basal activity of Nrf2 is primarily regulated by the nuclear 

export signal (NES) which controls the cytoplasmic distribution of Nrf2 (A). In the presence of 

inducers, which reacts with the cysteine residues within Nrf2, the NES becomes inactivated 

allowing the entry of Nrf2 through its nuclear localization signal (NLS) into nucleus where it 

binds to sMaf proteins to transactivate ARE-dependent genes. The coordinated induction of 

these genes then illicit a response (B). Adapted from Baird et al., 2011. 
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1.4 Keap1-independent Regulation of Nrf2 

 

There is also mounting evidence that demonstrates that Nrf2 activity can be 

regulated independently of Keap1. This will be further discussed below. 

 

1.4.1 Transcriptional control of Nrf2 

The possibility of Nrf2 being regulated at the transcriptional level is a sound 

hypothesis. In contrast to cellular work, where most effect on Nrf2 induction was 

seen at the protein level, (Nguyen et al., 2003; Stewart et al., 2003), certain induces 

like D3T (3H-1, 2-dithiole-3-thione), Oltipraz, b-NF initiated an increase in the Nrf2 

mRNA levels in vivo using mouse samples (Kwak et al., 2001; Ramos-Gomez et al., 

2001). In addition, ARE and XRE sequences are found in the promoter region of 

genes such as  glutathione S-transferases (GSTs)  that are regulated by Nrf2 and 

AHR (aryl hydrocarbon receptor) respectively (Rushmore et al., 1990a; Miao et al., 

2005). The intermediates generated as a result of the activation of the AHR pathway 

have been shown to induce ARE as seen in a study conducted by Miao et al. using 

TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), which induced AHR, ROS and Nrf2 

simultaneously (Miao et al., 2005).  Analysis of the promoter sequence of Nrf2 

shows that XRE-like elements are found at position -712 and at positions +755 and 

+850 within the mRNA initiation site (Miao et al., 2005). Microarray data from the 

study by Kwak et al., 2012 identified the presence of ARE sequences in Nrf2 

promoter regions suggesting an auto-regulatory mechanism (Kwak et al., 2002). 

Notably in this study, it was shown that D3T increased both Nrf2 protein and mRNA 

levels. This effect was inhibited in the presence of a protein synthesis inhibitor, 

cyclohexamide (CHX) indicating this compound functions at the mRNA level 

preventing Nrf2 transcription and translation. Interestingly, in a luciferase reporter 

assay, in which the direct binding of Nrf2 to the ARE sequences is assessed within its 

own promoter showed, an enhanced activity is seen whilst this effect was repressed 

using a mutant form (Kwak et al., 2002).   
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It is also plausible for a cross-talk to exist between Nrf2 and other transcription 

factors that combat oxidative stress such as NF-kB (nuclear factor k-light-chain-

enhancer of activated B cells). A study confirmed the presence of an NF-kB binding 

region on Nrf2’s promoter region highlighting the possibility of NF-kB regulating 

Nrf2’s activity (Nair et al., 2008).  Taken together, this suggests that the regulation 

of Nrf2 pathway is complex and regulated at multiple levels.  

 

1.4.2 Post-transcriptional control of Nrf2 - Nrf2 and microRNAs 

Evidences are mounting up about the involvement of microRNAs (miRNAs) in 

cellular homeostasis but require further investigation for it to be fully elucidated. 

miRNAs are also implicated in different pathways such as aging processes and their 

associated proteins that cross-talk with the Nrf2 pathway (Narasimhan et al., 2012; 

Papp et al., 2012; Stachurska et al., 2013). miRNAs are short single stranded non-

coding regulatory RNAs of about 18-24 nucleotides in length that coordinate the 

regulation of various physiological and pathological pathways such as 

atherosclerosis (Droge, 2002; Stocker et al., 2004; Filipowicz et al., 2008). Following 

their transcription by RNA polymerase II from genetic loci, they are exported as 

short hair pins to the cytoplasm where they are cleaved by cytoplasmic RNAses (e.g. 

DICER) which then yield a single stranded miRNA which can bind to the protein 

complexes in the RNA-induced silencing complex (RISC)-complexes and elicit 

function. miRNAs function by binding to the mRNA at the UTR (3’ untranslated 

region) to initiate degradation or inhibition of the translational process (Brodersen 

et al., 2009; Krol et al., 2010). miRNAs could be regulating the Nrf2 pathway by two 

processes: they could either by regulated by the redox itself as seen with the down-

regulation of Dicer protein, ribonuclease III, a regulatory enzyme in miRNAs 

synthesis with hydrogen peroxide (Ungvari et al., 2013), or they are regulating the 

antioxidant pathway directly (Cheng et al., 2013). 
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1.4.3 Role of microRNAs in regulating the Nrf2 pathway 

The role of miRNAs in regulating the Nrf2 pathway and the associated Nrf2 binding 

partners is a focus of investigation in several laboratories. In silico analysis of Nrf2 

mRNA identified 85 binding sites for miRNAs (Papp et al., 2012), suggesting the 

potential role of miRNAs in regulating the Nrf2 pathway. It has been suggested that 

the majority of the miRNAs regulate the Nrf2 pathway in a negative feedback loop 

(Cheng et al., 2013). miRNAs identified so far in direct Nrf2 down-regulation by 

binding to its mRNA 3’UTR include the following: miR-153, miR-27a, miR-142-5p, 

miR-144, miR-28, miR-122, miR-34a (Lu, 2009; Sangokoya et al., 2010; Li et al., 

2011; Yang et al., 2011; Narasimhan et al., 2012) (table 1). miR-144 was the first 

micro-RNA shown to be involved in the regulation of Nrf2. miR-144 has shown a 

negative regulation of the Nrf2 pathway targeting the 3’ UTR at the 265-271 and 

370-377 sites (Sangokoya et al., 2010). 

Independently of Keap1, a study saw the down-regulation of Nrf2 through mRNA 

degradation and the alteration of Nrf2 protein stability by miR-28 in human 

epithelial and MCF-7 cells (Yang et al., 2011). This was further supported by other 

microRNAs summarized in table 1 that saw similar findings in neuronal cell SH-SY5Y 

(Narasimhan et al., 2012). Importantly, miR-200a on the other hand has been seen 

to show a positive regulation of Nrf2 by targeting the Keap1 mRNA. miR-200a has 

been shown to down regulate keap1 which caused an increase in Nrf2 levels in 

MDA-MB-231 and Hs578T breast cancer cell lines (Eades et al., 2011).  The reverse 

was seen when miR-200a was silenced leading to a down-regulation of the Nrf2 

pathway (Eades et al., 2011).  

MicroRNAs may also regulate the Nrf2 pathway response by targeting the 

downstream targets of Nrf2 directly as seen in a study in which miR-34 targets the 

glutathione S-transferase 1 gene in HEK293 cells (Li et al., 2011). Notably, miR-34 

also targets sirtuin 1(Sirt1), a key protein involved in maintaining the antioxidant 

pathway during aging processes (Houtkooper et al., 2012). The regulation of Nrf2 by 

Sirt1 still remains to be elucidated.  
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Furthermore, an association between microRNAs and other Nrf2 binding partners 

such as Bach1, DJ-1 and small Maf protein has been revealed (Minones-Moyano et 

al., 2011; Hou et al., 2012). Hence the microRNAs let-7b, let-7c, miR-98, miR-196, 

miR-155 and miR-34b/c have thus been shown to regulate Nrf2 through the 

regulation of the aforementioned binding partners (Alam et al., 2007; Hou et al., 

2010; Hou et al., 2012; Wagner et al., 2012). 

Notwithstanding, the regulation of the Nrf2 pathway by microRNAs through direct 

binding or indirectly via Nrf2 binding partners or Nrf2 target genes is plausible but 

further understanding of the individual functions of microRNAs is needed (Kulkarni 

et al., 2014). For a summary of the microRNAs that have been shown to have a 

direct/indirect interaction with the Nrf2 pathway, see table 1.  

1.4.4 MicroRNAs and reactive oxygen species (ROS) induction 

It is also of interest to note that miRNAs may also regulate genes such as p47phox, 

subunits of NADPH oxidase complex, HMG box-containing protein 1, NOX4 which 

coordinate the generation of reactive oxygen species. A knock down studies on 

Dicer showed the down-regulation of reactive oxygen species when treated with 

known inducers such as TNF-α, phorbol ester and vascular endothelial growth factor 

(Berasi et al., 2004; Shilo et al., 2008; Vasa-Nicotera et al., 2011; Jung et al., 2012). 
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Table 1: microRNAs that has been illustrated in regulating the Nrf2 pathway 

 

microRNA 

Target 

Protein  Interaction Cell Type Regulation Reference 

miR144 Nrf2 Direct K562 &  Negative Sangokoya et al., 2010 

  Nrf2 Direct Reticulocytes Negative Ferreira et al., 2011 

miR-28 Nrf2 Direct MCF-7 cells Negative Yang et al., 2011 

miR-153 Nrf2 Direct SH-SY5Y Negative 

Narasimham et al., 

2012 

miR-27a Nrf2 Direct SH-SY5Y Negative 

Narasimham et al., 

2012 

miR-142-5p Nrf2 Direct SH-SY5Y Negative 

Narasimham et al., 

2012 

miR-122 Nrf2 Direct HEK293 Negative 

Lu, 2009; Li et al., 

2011 

miR-34a Gst1 Indirect HEK293 Negative Li et al., 2011 

miR-200a keap1 Indirect 

MDA-MB-231 & 

Hs578T Positive Eades et al., 2011 

let-7b Bach 1 Indirect Huh-7 cells  Positive 

Hou et al., 2010; Hou 

et al., 2012 

let-7c Bach 1 Indirect Huh-7 cells  Positive 

Hou et al., 2010; Hou 

et al., 2012 

miR-98 Bach 1 Indirect Huh-7 cells  Positive 

Hou et al., 2010; Hou 

et al., 2012 

miR-199 Bach 1 Indirect Huh-7 cells  Positive 

Hou et al., 2010; Hou 

et al., 2012 

miR-155 Bach 1 Indirect HUVECS Positive Pulkkinen et al., 2011 

miR-34b/c  DJ-1 Indirect SH-SY5Y  Positive 

Minones-Moyano et 

al., 2011 
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1.4.5 Translational control of Nrf2 

In addition to the transcriptional control of Nrf2, it may also be regulated at the 

translational level as seen in a study using rat cardiomyocytes (Purdom-Dickinson et 

al., 2007) in which Nrf2 mRNA showed no significant increase following H2O2 

treatment. However,  in the presence of the RNA synthesis inhibitior actinomycin D, 

there was no inhibition of Nrf2 protein accumulation and the measurement of new 

protein synthesis confirmed an increase in the translation of Nrf2 protein in 

response to H2O2 (Purdom-Dickinson et al., 2007). Analysis of Nrf2 mRNA identified 

the presence of a redox-sensitive internal ribosomal entry site (IRES) in the 5’-UTR 

(Li et al., 2010). In the presence of H2O2 and sulforaphane, there was an increase in 

the Nrf2 protein level resulting from an increased translation from the IRES in the 

Nrf2 transcript (Li et al., 2010). Recently, a study by Perez-Leal et al. Suggested that 

an as-yet unidentified molecular process represses the translation of Nrf2 within 

the open reading frame (ORF) of the gene under basal condition (Perez-Leal et al., 

2013). Thus, it was identified by the same authors that the repressor mechanism 

involves the mRNA nucleotide sequences or tertiary structure of the 3’ ORF, 

however, the mechanism of repressing Nrf2 at these sequences requires further 

investigation (Perez-Leal et al., 2013). Due to the speed of activation seen with most 

Nrf2 inducers, it is not likely that translational control plays a major role, but it 

could enhance the stability of Nrf2 protein following induction.  

 

1.4.6 Post-translation control of Nrf2 - Phosphorylation 

The involvement of additional signalling pathways in regulating the Nrf2 pathway is 

also plausible and there is mounting evidence implicating their roles (Bryan et al., 

2013). Most inducers that have been shown to covalently modify Keap1 have 

additional effects on several signalling pathways which could ultimately induce 

Nrf2. Not surprisingly, several kinases have been identified to have a contribution to 

Nrf2 pathway regulation. These include the PI3K/AKT, ERK1/2 MAPK, P-SAPK/JNK 

and the p38 MAPK pathways. PKC was identified to have a role in the Nrf2’s 

regulation as its induction increases Nrf2-dependent genes and vice versa (Huang et 
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al., 2000). In addition, its inhibition attenuates tBHQ-mediated induction of Nrf2.  

Whilst Serine-40 was identified to be the site of phosphorylation on Nrf2 (Huang et 

al., 2000), its mutation did not completely abolish the induction of Nrf2-dependent 

genes. In light of this, it could be possible that PKC’s involvement is in conjunction 

with Keap1 (Huang et al., 2002; Bloom et al., 2003). Further exploration showed 

that it’s the PKC-delta isoform that mediates the release of Nrf2 from Keap1 

supporting findings where oxidative stress activates Src and the ATM family of the 

PKC pathways (Li et al., 2004; Guo et al., 2010). Using PKC-delta knock out cells, 

inducers were unable to initiate Nrf2’s full response illustrating its significance in 

regulating the Nrf2 pathway.  

Mitogen-activated protein kinase (MAPK) signalling has also been a focus of several 

studies associated with Nrf2 regulation as it is activated by oxidative stress. Some 

Nrf2 inducers such as tBHQ, sulforaphane and cadmium are known modulators of 

this pathway (Yu et al., 1999; Alam et al., 2000). The inhibition of key proteins in 

this pathway including ERK, MEK or p38 attenuate the expression of Nrf2 regulated 

genes (Yu et al., 1999; Alam et al., 2000). However, this is not conclusive as the 

opposite effect has been seen in that the inhibition of the p38 induced Nrf2 showed 

a negative regulation. These findings would therefore require further investigation 

(Yu et al., 2000), however, the effect seen could be as a result of phosphorylation of 

Nrf2, Keap1 or both proteins at specific residues. Also importantly, it could also be 

as a result of an influence from an alternative pathway. Screening the Nrf2 

sequence identified the presence of different threonine and serine residues (S215, 

S408,S558, T559, S577) corresponding to the MAPK consensus sequence (Sun et al., 

2009). Mutational studies on all residues had a slight decrease on the expression of 

Nrf2-regulated genes suggesting that the involvement of MAPK is limited, but may 

be involved in fine-tuning. 

Additionally, PI3K has been shown to be a contributor to Nrf2 regulation. The Nrf2 

inducer tBHQ has been shown to activate the PI3K pathway showing a positive 

regulation by increasing ARE-dependent genes (Kang et al., 2001; Lee et al., 2001). 

PI3K also contributes to ARE-dependent genes constitutive expression. A study by 

Healy et al., 2005 saw an induction of NQO1 with the constitutive activation of PI3K 
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(Healy et al., 2005). Interestingly, Nrf2 also regulates some kinase pathways as Nrf2 

KO mice attenuated the expression of AKT and ERK1/2 to PDGF and insulin 

illustrating a complex feedback mechanism existing between pathways (Reddy et 

al., 2008). Furthermore, Nrf2 has been shown to be phosphorylated by other 

proteins CK2, PERK and GSK3β suggesting a complex interplay of different 

mechanisms in Nrf2 regulation (Cullinan et al., 2003; Cullinan et al., 2004a; Salazar 

et al., 2006; Pi et al., 2007). 

Studies by Jain and Jaswal et al., suggested the involvement of GSK3-β and Fyn 

kinase, a member of Src family, in Nrf2 regulation. These authors hypothesised that 

these kinase proteins reduce the accumulated Nrf2 levels in the nucleus upon the 

removal of Nrf2 inducers. This in turn phosphorylates GSK3β which increases the 

nuclear accumulation of Fyn, phosphorylating Nrf2 at Y568. Nrf2 is exported upon 

phosphorylation and targeted for ubiquitination by Keap1 (Jain et al., 2006; Jain et 

al., 2007). Further exploration of the involvement of GSK3β in Nrf2 stability suggests 

it to have an important role. GSK3β is involved in the regulation of several 

metabolic processes such as glycogen metabolism, Wnt signalling and apoptosis 

(Salazar et al., 2006). Hayes group showed that the GSK3β phosphorylates the Neh6 

domain of Nrf2, directing it for ubiquitination through the adaptor protein β-

transducin repeat-containing protein (β-TrCP) which acts as a substrate receptor for 

Skp1-Cul1-Rbx1/Roc1 ubiquitin ligase complex (Rada et al., 2011). It was also shown 

that Nrf2 has two binding sites, DSGIS338 andDSAPGS378 for b-TrCP as confirmed by 

biotinylated-peptide pull-down assays (Chowdhry et al., 2013). GSK3β is a common 

downstream target of several signalling pathways such as PI3K and MAPK. A study 

by Rojo et al., propose that the inhibition of GSKβ stabilizes Nrf2 due to a reduction 

in the GSK3β-directed ubiquitination (Rojo et al., 2012) as seen with 

nordihydroguaiaretic acid (NDGA), an Nrf2 activator. The inhibition of GSK3β in 

Keap1 knock out cells also stabilizes Nrf2 and vice versa (Rojo et al., 2012; 

Chowdhry et al., 2013). In support of this, similar effects were seen in Keap1 

knockout mice and in mutant Nrf2DETGE where the ability of Keap1 to repress Nrf2 is 

inhibited (Rada et al., 2011; Chowdhry et al., 2013) suggesting that the involvement 

of GSK3β in Nrf2 regulation is in a Keap1-independent manner. 
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1.4.7 Cross-talk between Nrf2 and other pathways: 

 A further mode of Nrf2 regulation is through its interaction with other proteins. 

This could be as a result of direct binding with Nrf2 or through competing with its 

negative regulator Keap1. A number of proteins have been proposed to compete 

with Keap1 including fetal Alz-50 clone, prothymosin and caveolin-1 (Cav-1) 

(Strachan et al., 2004; Karapetian et al., 2005; Li et al., 2012). Cav-1, a scaffold 

protein functions in signal transduction and uptake of lipophilic compounds and has 

also been shown to interact with a number of regulatory proteins such as Toll-like 

receptor 4; LC3B, Fas and survivin (Li et al., 2012; Zheng et al., 2012). The knock-

down of Cav-1 using siRNA resulted in Nrf2-Keap1 dissociation whilst Cav-1 

overexpression had no significant effect on their association but impeded the 

transcriptional activation of ARE-dependent genes by Nrf2 (Li et al., 2012). Further 

analysis showed that the Nrf2-Keap1 association was increased following mutation 

of the Cav-1 binding motif on Nrf2 (Li et al., 2012).  

NF-kB, another transcription factor important in regulating cellular homeostasis 

(Oeckinghaus et al., 2011), has been shown to cross-talk with Nrf2, negatively 

regulating its activity (Liu et al., 2008). The p65 subunit of NF-kB binds to Keap1 to 

enhance ubiquitination of Nrf2, thus affecting the ability of Nrf2 to regulate the 

expression of downstream ARE-dependent genes (Liu et al., 2008). Conversely, 

Keap1 has been shown to regulate the NF-kB pathway by binding inhibitor of kB 

kinase beta (IKKβ) thereby enhancing its ubiquitination and degradation (Lee et al., 

2009; Kim et al., 2010). Elucidating the molecular mechanism of interaction 

between IKKb and Keap1 and the subsequent effect on the Nrf2 pathway will have 

particular value in validating the potential of Nrf2 as a therapeutic target. 

P62/sequestosome is a poly-ubiquitin binding protein and a selective substrate for 

autophagy that can also cross-talk with both Nrf2 and NF-kB (Moscat et al., 2009). 

Studies have shown that binding occurs between p62 and Keap1 at the consensus 

sequence, (D/N)X(E/S)(T/S)GE, preventing the binding of Nrf2 to Keap1 (Copple et 

al., 2010; Fan et al., 2010; Jain et al., 2010; Komatsu et al., 2010; Lau et al., 2010). 

Of recent, it was also shown that phosphorylation of P62 on serine 351 enhances 
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the binding between P62 and Keap1, hence increasing the expression of Nrf2-

dependent genes. It was thus shown that the phosphorylation of P62 occurs in an 

mTORC1-dependent manner (Ichimura et al., 2013). P62 also promotes the 

ubiquitination and degradation of Keap1 which in turn stabilizes Nrf2, and thus 

increases its activity. Notably, the p62 gene has an ARE binding consequence in its 

promoter region, highlighting the fact that it is also regulated by Nrf2 (Jain et al., 

2010). This results in a positive feedback mechanism, increasing the levels of p62 

under conditions of cellular and environmental stress.  

Other proteins that has been found to have a role in the regulation of Nrf2 activity 

is p21, a cyclin-dependent kinase inhibitor and the ectoderm neural cortex protein 1 

(ENC1), a neutral matrix protein that functions in neuronal differentiation (Chen et 

al., 2009c; Wang et al., 2009). P21 is able to bind directly to Nrf2 at the DLG and 

ETGE motif, thus preventing binding of Keap1to the transcription factor (Chen et al., 

2009c). On the other hand, ENC1 negatively regulates Nrf2 protein levels and 

reduces expression of downstream genes.  The downregulation of Nrf2 by ENC1 

does not appear to occur at the mRNA level, nor does it result from an effect on 

protein stability, rather ENC1 has been shown to down-regulate synthesis of the 

Nrf2 protein (Wang et al., 2009). 

Regulation of the Nrf2 pathway may also be mediated by proteins that do not bind 

directly to either Nrf2 or Keap1.  It has been suggested that DJ-1, a Parkinson’s 

disease associated protein belonging to the Thi/Pfpl family could be one such 

protein. The protein has been shown to regulate Nrf2 processes but has not been 

found to bind to either Nrf2 or Keap1. (Clements et al., 2006; Yang et al., 2007). 

In summary, the Keap1-independent regulation of Nrf2 is summarised in figure 1.9 
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Figure 1.10 - Schematic illustrating Keap1-independent mechanism of Nrf2 regulation. 

Nrf2 activity has been shown to be regulated independently of Keap1, including via 

transcriptional control  by AHR-ARNT and NF-κB, post-transcriptional control by micro-RNAs,  

translation control by increasing translation of  the Nrf2 transcript, the IRES, and  post-

translational control by phosphorylation mediated by a variety of kinases. Nrf2 binding 

partners including p21, Cav-1 have also been shown to regulate Nrf2 activity. 
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1.5 Role of Nrf2 in protection against disease and its therapeutic significance in 

different organs. 

Evidence suggesting that Nrf2 plays a role in regulating several metabolic processes 

in organs including the liver, kidney and brain is mounting (figure 1.10) (Copple, 

2012).  Dysregulation of the Nrf2 pathway has also been implicated in the 

pathogenesis of diverse diseases such as neurodegeneration, cancer and chronic 

kidney diseases (Zhao et al., 2011b; Copple, 2012). Transgenic Nrf2 null mice have 

been shown to experience enhanced susceptibility to various drug-induced 

toxicities including those associated with acetaminophen (Chan et al., 2001; 

Enomoto et al., 2001), carbon tetrachloride (Xu et al., 2008) and butylated hydroxyl 

toluene (Chan et al., 1999). Notably, a recent study saw the opposite in which the 

intrahepatic shunt present in the Nrf2 KO mice may affect acetaminophen 

metabolism and hence reduce the sensitivity of these animals to the toxicological 

effects of acetaminophen (Skoko et al., 2014). These observations suggest Nrf2 as a 

potential therapeutic target in a variety of pathological contexts. This will be further 

discussed in the following sub sections.  

 

Figure 1.11 – Role of Nrf2 in protection against disease. Selected examples of implications 

of Nrf2 in diseases and its therapeutic significance in various organs  
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1.5.1 Liver: 

Drug-induced liver toxicities are a major cause of liver failure and a key factor in 

drug attrition (Ostapowicz et al., 2002; Park et al., 2011). Early studies noted that 

Nrf2 KO mice were more susceptible to acetaminophen-induced liver injury (Chan 

et al., 2001; Enomoto et al., 2001). Conversely, Keap1 KO mice show a high 

resistance to the drug’s toxicity (Okawa et al., 2006). Studies have shown the 

induction of Nrf2 and regulated genes by acetaminophen and its reactive 

metabolite within the non-toxic and toxic dose ranges (Goldring et al., 2004; Copple 

et al., 2008a).  Other compounds have also been associated with enhanced 

hepatotoxicity in Nrf2 KO animals, such as pentachlorophenol, carbon tetrachloride, 

pyrazole and arsenic (Umemura et al., 2006; Lu et al., 2008; Xu et al., 2008; Jiang et 

al., 2009).  

Pharmacological activation of Nrf2 using the potent inducer CDDO-Im has been 

shown to attenuate the liver injury provoked by acetaminophen in Nrf2 WT mice 

(Reisman et al., 2009). In Nrf2 KO mice, the effect of CDDO-Im was lost, highlighting 

the involvement of Nrf2 in CDDO-Im induced protection against acetaminophen 

liver injury. Further to this, a similar effect was observed when sauchinone, an 

antioxidant lignan and inducer of Nrf2, was used to pre-treat mice prior to 

administration of toxic doses of APAP (Kay et al., 2011). Other small molecule 

inducers of Nrf2 such as oltipraz and BHA (butylated hydroxyanisole) have been 

shown to protect against the oxidative and electrophilic stress associated with 

various drug-induced liver injuries (for a review see (Klaassen et al., 2010). These 

findings together suggest the possibility of using Nrf2-inducing agents as an 

adjuvant/co-treatment to prevent drug toxicities in the liver.  

 

1.5.2 Kidney: 

Kidney toxicity is a major concern in the development of new therapeutic drugs. 

Therefore, an understanding of the mechanisms that underlie kidney injury will 

inform the development of safe and effect drug candidates. Aged female Nrf2 KO 

mice develop lupus-like autoimmune nephritis, suggesting that Nrf2 regulates 
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homeostasis in the aging kidney (Yoh et al., 2001). In addition, Nrf2 KO mice 

exposed to streptozotocin show enhanced susceptibility to hyperglycemia-induced 

diabetic nephropathy (Yoh et al., 2008; Jiang et al., 2010b). Elucidating the role of 

Nrf2 in the kidney could prove useful in the management of acute kidney injury 

occurring as a result of disease or drug administration. The role of Nrf2 in conferring 

protection against kidney injury has been highlighted in animal models of renal 

ischaemic-reperfusion (Yoon et al., 2008; Wu et al., 2011b) and also in models in 

which nephrotoxicity is induced by heavy metals (Chen et al., 2009a; Molina-Jijon et 

al., 2011; Prabu et al., 2012), cyclosporine A (Louhelainen et al., 2006) and 

ochratoxin A (Cavin et al., 2007; Cavin et al., 2009). The pre-induction of Nrf2 in 

these models ameliorates the deleterious effects of the nephrotoxins for example, 

treatment of WT mice with CDDO-Im has been shown to reduce the nephrotoxic 

effects of cisplatin (Aleksunes et al., 2010). Furthermore, a phase II trial of CDDO-

Me for the treatment of patients with lymphomas noted an enhanced glomerular 

filtration rate and reduced levels of creatinine and blood urea nitrogen in the 

CDDO-Me treatment group indicative of an improvement of renal function (Jiang et 

al., 2010b). These studies together highlight an important role for Nrf2 in the kidney 

and identify the transcription factor as a promising target for treating a number of 

renal diseases. For a review, see (Shelton et al., 2013) 

 

1.5.3 Brain: 

Mao et al. and Jin et al. reported several nervous system dysfunction phenotypes 

such as neuronal apoptosis; tissue swelling in Nrf2 KO mice (Jin et al., 2009; Mao et 

al., 2011). Using Nrf2 activators CDDO-ethyl amide (CDDO-EA) and CDDO-

trifluoroethyl amide (CDDO-TFEA), the dysfunctional effect was found to be 

alleviated in Nrf2 WT mice, but not in Nrf2 KO mice, indicating that the effect is 

attributable to the induction of Nrf2 and its target genes. This highlights the 

important role of Nrf2 in the brain and nervous system. In support of this, CDDO-Me 

has been shown to confer protection against Huntington’s disease in a transgenic 

mouse, improving the behavioural phenotype and brain pathology (Stack et al., 
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2010). In addition, Cullinan et al., 2003 highlighted the role of Nrf2 in protecting 

cells against the deleterious effects associated with misfolded proteins as a result of 

stress induced in the endoplasmic reticulum (Cullinan et al., 2003). This is of 

importance as a number of disorders in the nervous system are associated with 

misfolded protein. In Parkinson’s disease models, Nrf2 has been shown to confer 

cytoprotection against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)(Chen 

et al., 2009b; Jazwa et al., 2011). Induction of the Nrf2 pathway (either by over 

expressing Nrf2, silencing Keap1 or using an inducer of Nrf2 such as CDDO-Me) 

inhibited the progression of disease in Parkinson’s (Barone et al., 2011) and 

Alzheimer’s disease models (von Otter et al., 2010), suggesting the modulation of 

the Nrf2 pathway as a novel therapeutic strategy. For a review, see (Zhang et al., 

2013). 

 

1.5.4 Lipid Metabolism: 

Recently, studies have highlighted a role for Nrf2 in regulating lipid metabolism. The 

proteomic profiling of Nrf2 KO mice revealed a significant upregulation of fatty-acid 

synthetic pathway proteins highlighting a role for Nrf2 in the regulation of fatty acid 

synthesis in the liver (Kitteringham et al., 2010). In keeping with this, Nrf2 KO mice 

fed a high fat diet show an elevated total hepatic lipids and polyunsaturated fats 

(Shin et al., 2009). In addition, overexpression of Nrf2 in Keap1 KO mice or the 

treatment of the WT mice with inducers of Nrf2 (CDDO-Im or oltipraz) depleted 

lipid-synthesis genes (Shin et al., 2009; Chowdhry et al., 2010). Although these 

findings illustrate a negative control of lipid synthesis by Nrf2, there are conflicting 

reports showing the opposite. For a review, see (Schneider et al., 2013). 

Nonetheless, these findings highlight Nrf2 as a novel therapeutic target in lipid-

related disorders, such as obesity and metabolic syndrome (Yu et al., 2011; 

Schneider et al., 2013).  
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1.6 Activation of Nrf2 by small molecules: 

Given that a large number of studies have highlighted the important roles of Nrf2 in 

disease pathology and drug toxicity, a number of groups have worked to develop 

small molecules that can activate the Nrf2 pathway. The semi-synthetic 

triterpenoids, which are derived from oleanic acid and include CDDO, are potent 

activators of the Nrf2 pathway and have been shown to have anti-cancer properties 

(Dinkova-Kostova et al., 2005b; Liby et al., 2005; Sporn et al., 2011). Indeed, the 

methyl derivative of CDDO, CDDO-Me, is known to be one of the most potent 

activators of Nrf2, inducing the pathway at nanomolar concentrations in cellular 

systems (Dinkova-Kostova et al., 2005b). CDDO-Me entered clinical trials for the 

treatment of chronic kidney disease in patients with type 2 diabetes but was 

withdrawn due to adverse  events however, a new trial in pulmonary arterial 

hypertension patients is currently being carried out (Pergola et al., 2011a; Pergola 

et al., 2011b; de Zeeuw et al., 2013).  

Another Nrf2 activator, dimethyl fumarate (DMF) was recently licensed for 

treatment of relapsing-remitting multiple sclerosis (Bar-Or et al., 2013; de Zeeuw et 

al., 2013), while others including oltipraz, D3T, sulforaphane, and CPDT (5,6-

Dihydrocyclopenta-1,2-dithiole-3-thione) are also under clinical investigation (for a 

review, see (Zenkov et al., 2013)). While Nrf2 activating compounds hold promise as 

novel therapeutic tools, a comprehensive understanding of their mechanisms of 

action and the pathways they stimulate is required before they can be fully utilised 

in clinical settings. Due to the varied number of Nrf2 activators known, much focus 

of investigation is on the most-specific inducer of Nrf2 presently known (CDDO-Me). 

 

1.7 Cancer & Inhibition of Nrf2 

There is an increasing body of evidence pointing towards the dark side of Nrf2 in 

cancer initiation and progression. In normal and premalignant tissues, Nrf2 holds an 

important role in cytoprotection and cancer prevention. However, in malignant 

cells, overexpression of Nrf2 has been implicated in chemoresistance and is thought 
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to contribute to the progression of cancer (Sporn et al., 2012). Mechanisms leading 

to the enhanced levels of Nrf2 in cancer have been described in several studies and 

include (1) Keap1 somatic mutations, including those identified in pancreatic 

cancers (Takahashi et al., 2010; Lister et al., 2011); (2) Epigenetic silencing of Keap1 

(Eades et al., 2011) (3)  Altered expression of Nrf2 binding partners such as p62 

(Nezis et al., 2012) (4) Transcriptional induction of Nrf2 by oncogens such as K-Ras, 

B-Raf and Myc, as seen in mouse fibroblasts and in vivo models of pancreatic cancer 

(DeNicola et al., 2011) (5) Keap1 post translational modifications leading to its 

altered expression (DeNicola et al., 2011; Taguchi et al., 2011; Sporn et al., 2012), 

and (6) Nrf2 gene mutations (Shibata et al., 2008b).  The increased level of Nrf2 in 

cancer cells results in increased expression of genes encoding detoxification 

enzymes, antioxidant proteins and xenobiotic transporters, thus conferring 

protection against chemotherapeutic drugs and radiotherapy and contributing to 

the treatment-resistant phenotype of the cells. Furthermore, Nrf2 has also been 

shown to enhance cancer cell proliferation (Lister et al., 2011; Mitsuishi et al., 

2012). This could be related to the role of the transcription factor in the regulation 

of Notch1 signalling (Wakabayashi et al., 2010), given that the pathway is important 

in proliferation, as well as differentiation and apoptosis.  

In addition to the aforementioned mechanisms by which Nrf2 contribute to cancer 

progression, Nrf2 has also been shown to regulate both the oxidative and non-

oxidative pathways of the pentose phosphate pathway (PPP), a biochemical 

reaction that generates NADPH and pentoses. Hence, Nrf2 was shown to regulate 

the PGD (6-phosphogluconate dehydrogenase) and G6PD (glucose-6-phosphate 

dehydrogenase), critical genes in the regulation of glucose which primarily occurs 

through glycolysis or the oxidative phase of pentose phosphate pathway. Nrf2 was 

also shown to regulate the non-oxidative phase of the PPP by positively modulating 

the expression of transaldolase (TALDO)1 and transkelotase (TKT), hence regulating 

the entry of carbon to the PPP (Wu et al., 2011a; Mitsuishi et al., 2012; Singh et al., 

2013). The analysis of the promoter region of TALDO1 showed the presence of 

functional ARE sequence, hence a direct target of Nrf2, however, the other studied 

genes in the PPP namely G6PD, PGD and TKT seems to be regulated indirectly by 
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Nrf2. Studies have shown the involvement of Nrf2-micro-RNAs mediated regulation 

of these genes through redox-sensitive histone deacetylase (HDAC)4 (Singh et al., 

2013). miR-1 and miR-206 have been shown to negatively regulates the expression 

of G6PD, PGD and TKT and since Nrf2 was shown to regulate the miR-1 and miR-

206, then Nrf2 indirectly regulates the expression of G6PD, PGD and TKT (Singh et 

al., 2013). In addition, Nrf2 has also been shown to regulate the expression of PK, a 

protein that catalyses the final step in glycolysis aiding the conversion of PEP 

(phosphoenolpyruvate) to pyruvate. Aberrant expression of these genes has been 

implicated in cancer progression thereby supporting role of Nrf2 in cancer 

progression (Chaneton et al., 2012; Rabinowitz et al., 2012; Hayes et al., 2014a). 

All these factors taken together lead to a poor prognosis for cancer patients with 

tumours in which Nrf2 is overexpressed. Consequently, the inhibition of Nrf2 may 

be a promising strategy in the treatment of such patients. Indeed, Nrf2 siRNA has 

been shown to increase the sensitivity of cancer cells to chemotherapeutic drugs 

including cisplatin and etopoxide (Shibata et al., 2008a; Homma et al., 2009; Jiang et 

al., 2010a; Lister et al., 2011). However, only a limited number of small molecules 

inhibitors of Nrf2 have been developed to date. The most recently described small 

molecule inhibitors of Nrf2 include: retinoic acid receptor α agonists that inhibit 

Nrf2 activity through the formation of complexes between the retinoic acid 

receptor α and Nrf2 (Wang et al., 2007); brusatol, a quassinoid isolated from the 

plant Brucea javanica that depletes Nrf2 in a rapid and reversible manner (Ren et 

al., 2011); leutolin that has been shown to inhibit Nrf2 in human A549 lung cancer 

cells (Tang et al., 2011); and 4-methoxychalcone, which has also been shown to 

inhibit Nrf2 in A549 cells (Lim et al., 2013).  

A recently developed approach involves the use of cancer suicide gene therapy, 

which utilises Nrf2-driven lentiviral vectors containing thymidine kinase. The 

lentiviral vectors, in conjuction with a prodrug ganciclovir, are transfected into 

cancer cells. The prodrug is then metabolized via a phosphorylation cascade into a 

toxic metabolite which actively kills the cancer cells, as well as neighbouring cells 

due to a bystander effect (Moolten, 1986; Leinonen et al., 2012). This approach has 

significant potential given that it could be combined with conventional therapies 
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(Leinonen et al., 2012). These factors together demonstrate the important role of 

Nrf2 in a cancer setting, and highlight the transcription factor as a potentially useful 

target in treating associated diseases.  

 

1.8 Thesis aims 

On the basis that: 

 The Nrf2 pathway plays a critical role in maintaining homeostasis under 

conditions of cellular stress,  

 The Nrf2 pathway plays an important role in the pathogenesis of various 

diseases, and  

 The Nrf2 pathway could be a useful therapeutic target,  

The key aim of this thesis is to better define the chemical and molecular 

mechanisms that are required for the pharmacological manipulation of Nrf2, and 

the likely therapeutic significance of modulating the activity of this important 

pathway. This thesis will therefore examine:  

 The responsiveness of the Nrf2 pathway to an inducer across a number of 

mammalian test systems, in order to understand the translational relevance 

of the in vivo and in vitro findings, 

 Platforms for assessing inter-individual variability in activity of the Nrf2 

pathway and its relevance to disease,  

 The mechanism of action of CDDO-Me as an inducer of Nrf2, 

 The inhibition of Nrf2 by the small molecule brusatol and its significance for 

defence against chemical stress, and  

 The mechanism of action of brusatol as an inhibitor of Nrf2. 
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2.1 Materials and Reagents 

Unless otherwise stated, all other reagents were purchased from Sigma (Poole, 

Dorset, UK). CDDO-Me was synthesised by Michael Wong (Department of 

Chemistry, University of Liverpool, UK). Brusatol and Brucein D were synthesised by 

the School of Chinese Medicine, The Chinese University of Hong Kong.  

20S human proteasome fragments (Enzo Life Sciences, UK), 7-amido-4-

ethylcoumarin (AMC) standard (Enzo Life Sciences, UK), Absolute optically clear 

QPCR adhesive seal sheets (ABgene, Epsom, UK), Actinomycin D, AEBSF, Aproptinin, 

A23187, Ammonium Chloride, Bafilomycin A1, Bapta-AM, Bestatin Methyl Ester, 

Boc-LSTR-AMC, Brucein D, Calpeptin, CellTiter-Glo® Luminsecent Cell Viability Assay 

(Promega, UK), Collagenase A/IV (Roche, Basel, Switzerland/Sigma Aldrich, St. Louis, 

MO), Collagen-I coated plates (BD Beckinson, San Jose, CA), Cyclohexamide, 

Cyclosporin A, Dexamethasone, DNase/RNase free water, DMEM, DMSO, E64d, 

EGTA, Ethanol (Fisher, UK), Gel loading buffer (70 % (v/v) NUPAGE sample loading 

buffer, 30 % (v/v) NUPAGE reducing agent), Geneamp 9700 PCR system (Applied 

Biosystems, Warrington, UK), GF109203X, Glycine, GM6001, Go6976, GS-800 

calibrated imaging densitometer (Biorad, Hemel Hempstead, UK), Hanks balanced 

salt solution, Hepatocyte growth factor (hGF), HEPES-buffered saline (HBS), HEPES 

buffer (Sigma, UK) Hybond nitrocellulose membrane (GE Healthcare, Little Chalfont, 

UK), Hyperfilm ECL (Amersham, Little Chalfont, UK), ImProm-II reverse transcription 

system (Promega, Southampton, UK), Insulin-transferrin-selenium (Life 

Technologies, Carlsbad, CA), Iodoacetamide, KCl, Kodak developer and fixer 

solutions, Lipofectamine RNAimax (Invitrogen, Paisley, UK), L-glutamine, 

Lymphoprep (Axis-Shield, UK), MG132, Microfluidic TaqMan Low Density Array 

cards (Applied Biosystems, Paisley,UK), Mini TRANS-Blot Cell System (Invitrogen, 

Paisley UK), Molecular weight markers (PrecisionPlus protein kaleidoscope 

standards) (Biorad, Hemel Hempstead, UK), MOPS, MRX microplate reader 

(Dynatech Laboratories, Billingshort, UK), NaCl (Fisher, Loughborough, UK), Nano-

drop ND1000 Spectrophotometer (Labtech, East Sussex, UK), N-Ethlymaleimide, 

Non-fat dry milk (Biorad, UK),  U0126, PBS, PCR primers (Sigma-Genosys, Haverhill, 

UK), Penicillin/Streptomycin, Pepstatin A Methyl Ester, Ponceau S solution, PP2, 
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Pre-cast 4-12 % NuPAGE Novex bis-tris polyacrylamide gels (Invitrogen, Paisley, UK), 

Rapamycin, RIPA Buffer, RNA extraction kit RNeasy Mini-kit (Qiagen, West Sussex, 

UK), The RNA 6000 Nano Kit was from Agilent (Berkshire UK), SDS, siRNA targeted 

against Keap1 and Nrf2 (Dharmacon, Lafayette, USA),   SB203580, SP600125, 10x 

TBE,Tris-HCl (Fisher, Loughborough, UK), Suc-LLVY-AMC (Enzo Life Sciences, UK), 

Triton-X 100, U0126, Varioscan fluorescent plate reader, Williams E medium (Sigma 

Aldrich, St. Louis, MO), Western lightening chemiluminescence reagents 

(PerkinElmer, Beaconsfield, UK), Wortmanin, X-Cell Surelock mini-cell sytem 

(Invitrogen, Paisley, UK),  Z-LLG-AMC (Enzo Life Sciences, UK), ZVAD.   

 

2.2 Antibodies: Antibodies raised against Nrf2 (EP1808Y; Abcam, UK), ATP citrate 

lyase (ACL) (EP704Y; Abcam, UK), NQO1 (ab234; Abcam, UK), beta-actin (AC-15; 

Abcam, UK), Keap1 (E-20; Santa Cruz Biotechnology, Germany), Cyclin A (H-432; 

Santa Cruz Biotechnology), p62/SQSTM1 (P0067; Sigma-Aldrich, UK), phospho-p38 

MAPK (#4511S, Cell Signaling Technology), phospho-AKT473 (#4060S; Cell Signaling 

Technology), phospho-Erk1/2 (#4377S, Cell Signaling Technology), phospho-SAPK 

(#9251S; Cell Signaling Technology) and phospho-CREB (#9198; Cell Signaling 

Technology), HIF-1α (610959; BD Biosciences, UK) and Horseradish peroxidise-

linked anti-rabbit (A9169; Sigma-Aldrich), mouse (A9044; Abcam) and goat (P0449; 

Dako, UK) secondary antibodies were purchased from the indicated companies. 
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Table 2.1 Antibodies Table 

 

Name Code Blocking Primary dilution Mol weight 

Nrf2 EP1808Y 10% milk TBST 1:400 in 2% milk TBST 75 kDa 

Keap1 E-20 10% milk TBST 1:2000 in 2% milk TBST 75 kDa 

NQO1 ab2346 10% milk TBST 1:5000 in 2% milk TBST 31 kDa 

ACL EP704Y 10% milk TBST 1:5000 in 2% milk TBST 125 kDa 

p-AKT473 #4060S 5% BSA TBST 1:1000 in 2% BSA TBST 62 kDa 

p-JNK1/2 #9251S 5% BSA TBST 1:1000 in 2% BSA TBST 46/54 kDa 

p-p38 MAPK #4511 5% BSA TBST 1:1000 in 2% BSA TBST 38 kDa 

p-Erk1/2  #4377S 5% BSA TBST 1:1000 in 2% BSA TBST 42/44 kDa 

p-Creb #9198 5% BSA TBST 1:1000 in 2% BSA TBST 43 kDa 

HIF-1α 610959 5% BSA TBST 1:1000 in 2% BSA TBST 120 kDa 

Cyclin A H-432 5% milk PBST 1:1000 in 5% milk PBST 54 kDa 

P62 P0067 10% milk TBST 1:10,000 in 2% milk TBST 62 kDa 

Β-Actin AC-15 10% milk TBST 1:20,000 in 2% milk TBST 42 kDa 

 

2.3 Mice 

All animal experiments were conducted under the Animals (Scientific Procedures) 

Act 1986 guideline and approved by the University of Liverpool Animal Ethics 

Committee. The transgenic Nrf2 null mice and genotyping of progeny have been 

previously described (McMahon et al., 2001; Itoh et al., 1997). Non-fasted male CD1 

wild-type, C57BL6J wild-type and C57BL6J Nrf2 Knock-out mice aged 10-12 weeks 

old were fed on a chow diet and housed at 19 °C – 23 °C, under 12 h light/dark 

cycles with free access to water.  
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2.4 Treatment of animals with CDDO-Me 

For the pilot study to determine the optimum concentration of CDDO-Me that 

would give a maximum Nrf2 activation and subsequent downstream protein 

expression after 24 hours, a single dose of CDDO-Me (0, 0.1, 0.3, 1, 3 or 10 mg/kg in 

100 µL DMSO; (n=2)) was administered to the animals by intraperitoneal injection in 

the morning. At 24 hour post-dosing, the animals were culled by exposure to a 

rising concentration of CO2 in a chamber. This was then followed by cardiac 

puncture and the livers were removed using sterile scissors and tweezers. The 

isolated livers were immediately snap-frozen in liquid nitrogen and stored at 80 oC. 

For the subsequent studies, wild type and Nrf2 knockout C57BL6J mice and wild 

type CD1 mice were dosed with 3mg/kg CDDO-Me or DMSO vehicle control (n=6), 

and the livers were isolated according to the protocol described above, snap-frozen 

and stored at -80 oC.   

 

2.5 Liver homogenisation  

100 mg of isolated liver from the treated mice was homogenised using a hand held 

glass-teflon homogeniser. The tissue was homogenized using 10 passes in 

phosphate buffered saline (PBS). The resulting homogenate was centrifuged at 

10,000 g for 5 minutes. The supernatant was transferred to a fresh eppendorf while 

the unhomogenised tissue pellet containing the cell debris was discarded.  

 

2.6 Cell lines: 

The mouse hepatoma Hepa1c1c7 cell line (ATCC CRL-2026), and human HepG2 cell 

line (ATCC HB-8065) were purchased from American Type Culture Collection (ATCC).  
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2.7 Cell culture 

Hepa-1c1c7 and HepG2 cell lines were maintained in a Dulbecco modified eagles 

medium (DMEM) supplemented with 10 % fetal bovine serum, 100 U/mL penicillin 

and 100 µg/mL streptomycin under a humidified environment at 37 oC in a 5 % CO2. 

Cells were allowed to grow in 75 cm2 Nunclon culture flasks and passaged when 

about to reach full confluency. Briefly, when reached about 80 % confluency, cells 

were washed with DMEM without FBS, discarded and trypsinized at room 

temperature for few minutes. The trypsin was discarded and cells incubated for 

about 5 minutes to allow detachment. Cells were blasted off and resuspended in 

DMEM supplemented with FBS, broken down with a 21 gauge needle and a syringe 

couple of times to break cell clumps. The cells were then resuspended at 

appropriate ratio in a new 75 cm2 Nunclon culture flask. 

 

2.8 Pheripheral blood mononucleocytes Isolation (PBMCs) protocol 

Blood was donated from 8 voluntary healthy donors aged 20-40 years; 4 males and 

4 females following a signed informed consent as approved by the Local Research 

Ethics Committee. Human peripheral blood mononuclear cells (PBMCs) were then 

isolated by density gradient centrifugation. Briefly, 100 mL of heparinised venous 

whole blood was transferred into 50 mL falcon tubes and equal volume of 

LymphoprepTM (density of 1.077 g/mL, 9.1 % (w/v) sodium diatrizoate and 5.7 % 

(w/v) polysaccharide) was added to another falcon tube. The heparinised blood is 

carefully overlaid on top of the lymphoprep using 50 mL pipettes. The mixture was 

then centrifuged at 700 g (2000 rpm) for 20 minutes at room temperature with no 

brakes and acceleration set at 3. Following centrifugation, layers were formed 

according to the density of the cells. Cells of higher density like red blood cells 

(RBCs) and granulocytes form a layer at the bottom of the tube, followed by the 

lymphoprepTM layer while PBMCs with lower density form a layer above the 

lymphoprepTM layer   Using a sterile Pasteur pipette, the PMBC layer (whitish 

interface) was aspirated into a new falcon tube and made up to 50 mL with 

Phosphate buffered saline (PBS), Hanks balanced salt solution (HBSS) or culture 
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medium. This was centrifuged at 700 g (1800 rpm) for 10 minutes with brakes set to 

9. The supernatant was discarded and then pellet was then resuspended in 1 mL of 

culture media. This was then made up to 25 mL total volume using the culture 

media and the total cell number was counted using the haemocytometer.  

 

2.9 Primary human hepatocytes isolation 

Primary human hepatocytes were isolated according to a protocol previously 

described which involved a 2-step collagenase method (LeCluyse et al., 2005; Seglen 

et al., 1976; Berry et al., 1969). Briefly, patients’ liver resections were donated as 

surgical waste from Aintree hospital, Liver United Kingdom following their full 

consent as approved by the Local Research Ethics Committee. The resections were 

perfused with HEPES-buffered saline (HBS) and thereafter digested with 

Collagenase A/IV (Roche, Basel, Switzerland/Sigma Aldrich, St. Louis, MO) in HBS 

containing calcium. The capsule was opened and the detached cells following their 

digestion were separated with the use of gauze. The cell suspension went through 2 

steps of centrifugation at 80 x g for 5 minutes at a temperature of 4 oC. The cells 

were resuspended in Williams E medium (Sigma Aldrich, St. Louis, MO). Cells were 

counted accurately using a haemocytometer and seeded onto Collagen-I coated 

plates (BD Beckinson, San Jose, CA) at cell density 2.5 x 105 cells/cm2 in Williams E 

supplemented with 1% insulin-transferrin-selenium (Life Technologies, Carlsbad, 

CA), 2 mM L-glutamine (Sigma Aldrich, St. Louis, MO), 10-7M dexamethasone and 

1% penicillin/streptomycin (Sigma Aldrich, St. Louis, MO). After 3 hours of 

incubation, non-attached cells were isolated from the attached cells by performing 

a series of washes and the culture medium was replaced. 

 

2.10 Cell counting and cell seeding 

Cells were counted accurately using a haemocytometer. Briefly, cells were detached 

from the flasks and resuspended as described above and 10 μL of the cells was 
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added onto the haemocytometer. Cells at the central grid (5 x 5 squares) were 

visualised using the 20X objective lens of Nikon T1-SM light microscope.  

 

2.11 Treatment of cells with chemicals or compounds 

Hepa-1c1c7 or HepG2 cells were seeded on a 12 well Nunclon plate at a density of 

300,000 cells/well in growth media unless otherwise stated and incubated for 16-18 

hours. The chemicals/compounds are dissolved in their appropriate solvent (Table 

2.2) and a stock concentration of 200x the required concentration. Thereafter, the 

cells were treated with the appropriate volume to get the overall concentration of 

DMSO/solvent in the cell culture media to maximum of 0.5 % (v/v). The cells were 

transferred to an incubator for the required time periods at 37 oC post-treatment. 

 

Table 2.2: Chemicals or compounds and their appropriate solvent 

Chemical/Compound Solvent Chemical/Compound Solvent 

A23187 DMSO/ethanol EGTA DMSO 

Actinomycin D DMSO/ACN GF109203X DMSO 

AEBSF H2O GM6001 DMSO 

Ammonium Chloride H2O Go6976 DMSO 

Aproptinin H2O/DMSO Hepatocyte growth factor 

(hGF) 

H2O/PBS+

0.1% BSA 

Bafilomycin A1 DMSO Iodoacetamide DMSO 

Bapta-AM DMSO MG132 DMSO 

Bestatin Methyl Ester  N-Ethlymaleimide DMSO 

Brucein D DMSO Pepstatin A Methyl Ester DMSO 
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Brusatol DMSO PP2 DMSO 

Chemical/Compound Solvent Chemical/Compound Solvent 

Calpeptin DMSO Rapamycin DMSO 

CDDO-Me DMSO SB203580 DMSO 

Cyclohexamide DMSO U0126 DMSO 

Cyclosporin A DMSO/ethanol Wortmanin DMSO 

E64d DMSO/ethanol ZVAD DMSO 

 

2.12 Treatment of PBMCS with chemicals or compounds 

Freshly isolated PBMCs cells were seeded on a 6 well Nunclon plate at a density of 

10 x 106 cells/well in a total volume of 3 mL of growth media and incubated for 1 or 

24 hours. CDDO-Me or DMSO was dissolved in the culture media at 100 x the 

required concentration for the required time periods. 30 μL of CDDO-Me or DMSO 

was added to the required wells and the overall concentration of DMSO in the cell 

culture medium is 0.1 % (v/v). The cells were transferred to an incubator for the 

required time periods at 37 oC following treatment.  

 

2.13 Cell viability assay 

Cell viability was measured using the CellTiter-Glo® Luminsecent Cell Viability Assay 

(Promega, UK) which determines the number of viable cells based on the 

quantification of ATP present. Briefly, Hepa-1c1c7 cells were seeded into 96 well 

plates at 3 x 104 cells per well in 200 μL supplemented-DMEM and the appropriate 

compound was added. Each well was then treated with 10 μL CellTiter-Glo® 

Reagent and mixed for 1 minute on an orbital shaker at 45 g (700 rpm) to induce 

cell lysis. Thereafter, the sample was left for 5 minutes to equilibrate. 150 μL of 

each sample from each well was then transferred to a white 96-well plate and the 

plate was left in the dark for additional 5-10 minutes at the room temperature to 
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equilibrate and stabilize the luminescent signal. Luminescence was then measured 

at 570 nm wavelength using a Varioscan flash fluorescent plate reader. 

 

2.14 RNA Interference 

Short Interfering RNA (siRNA) duplexes targeted against mouse Keap1 

(subsequently referred to as si-KEAP1) and a scrambled, non-targeting control 

duplex (D-001210-03; subsequently referred to as si-CON) were purchased from 

Dharmacon’s (Lafayette, CO) siGENOME library. Hepa1c1c7 cells were seeded into 

12 well plates at 1.25 x 105 cells per well and transfected for 48 hours with 10 nM 

siRNA using Lipofectamine RNA iMAX (Invitrogen, UK) according to the 

manufacturer’s instructions. Cells were then dosed with appropriate doses of 

brusatol or DMSO for 2 hours and 24 hours and lysed in RIPA buffer. 

 

2.15 Isolation of RNA / DNAse treatment 

After incubation, the media in the cells were removed and washed twice with ice-

cold phosphate buffered saline (PBS) and discarded. The cells were then digested 

using RLT lysis buffer and transferred to RNase-free eppendorfs. Lysates were 

centrifuged for 3 minutes at 17000 g (14000 rpm) and the supernatant was 

removed and put into new RNase-free eppendorfs. 420 μL of 100 % ethanol or 1 

volume of 70 % ethanol was added to the supernatant and mixed gently. Up to 700 

μL of the sample including any precipitate formed was transferred into an RNeasy 

mini column placed in 2 mL collection tube. This was centrifuged for 15 seconds at 

8000 g (9500 rpm) to wash. The flow-through was discarded. 350 μL of buffer RW1 

was added to the spin column, centrifuged again for 15 seconds at 8000 g 

(9500rpm) to wash. 10 μL of DNase I stock solution was added to 70 μL buffer RDD 

per sample. This was gentle mixed by inverting the tube and added directly onto the 

RNase silica-gel membrance and was left for 15 minutes at the room temperature 

(20-30oC). 350 μL of buffer RW1 was added to the spin column, centrifuged again 

for 15 seconds at 8000 g (9500 rpm) to wash and the flow through was discarded. 
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500 μL of buffer RPE was added to the mini spin column, centrifuged again for 15 

seconds at 8000 g (9500 rpm) to wash and the flow through was discarded. 500 μL 

of buffer RPE was added to the mini spin column, centrifuged again for 2 minutes at 

8000 g to wash and the flow through was discarded. The column was placed into a 

new 2 mL collection tube and centrifuged at 17000 g (14000 rpm) for 1 minute to 

dry the column. Finally, 30-50 μL of RNase free water was added to the column 

placed in a new collection tube and centrifuged at 9500 rpm for 1 minute. 

 

2.16 RNA quality control 

The concentration and quality of the RNA was measured using the NanoDrop ND-

1000 spectrophotometer. 1.5 μL of DNase/RNase free water was added to the 

sensor and measured as a blank. Thereafter, 1.5 μL of each RNA was added to the 

sensor and then the concentration was measured based on the ‘Beer’s Law’ 

equation as shown below: 

C= (A*e)/b 

Where: 

C = Nucleic acid concentration in ng/μL 

A = Absorbance in AU 

e = wavelength-dependent extinction coefficient in ng-cm/μL 

b = path length in cm 

Note: path length is 1, this means the equation now becomes C = (A*e) 

The RNA quality is then assessed from two parameters: 

1. 260/280 nM sample absorbance ratio: This indicates the purity of the RNA in 

relation to the protein. A value of > 1.8 is accepted. Values below this is regarded as 

contaminated by the protein and discarded. 
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2. 260/230 nM sample absorbance ratio: This indicates the purity of the RNA in 

relation to the solvents. A value of >1.8 is accepted. Values below this is regarded 

as contaminated by the solvents e.g. ethanol and discarded. 

 

2.17 cDNA protocol 

cDNA synthesis from the sample RNA was carried out using the Promega ImProm-

II™ Reverse Transcription System according to the manufacturer’s instructions. 

Briefly, 2 μg of RNA was combined with 1 μL of random hexomer/oligo primer 

solution and was made to a volume of 20 μL with nuclease-free dH2O in RNAse-free 

tubes. The mixture was incubated at 70 °C for 5 minutes and cooled on ice 

immediately.   A reverse transcription reaction mixture was made up containing 8 

μL of ImProm-IITM 5 x reaction buffer, 6.4 µL 25 mM MgCl2, 1 μL 0.5 mM dNTP mix 

and 2 μL ImProm-IITM reverse transcriptase in a final volume of 20 μL was added to 

the RNA solution of each sample.  Reverse transcription was performed using 

GeneAmp 9700 polymerase chain reaction (PCR) system with the following 

parameters:  strands were annealed (25 °C; 5 min) and extended (42 °C; 1 hour), 

before the reverse transcriptase was inactivated (70 °C; 15 min) and was cooled on 

ice immediately.  Samples not containing random primers, dNTPS and reverse 

transcriptase were used as controls. Finally, 160 μL of nuclease-free dH2O was 

added to each tube to give a final cDNA concentration of 10 ng/μL. 

 

2.18 Real-time Polymerase Chain Reaction (RT-PCR) 

RT-PCR was performed according to the manufacturer’s protocol using the SYBR 

Green JumpStart Taq Ready Mix Kit. Briefly, 4 μL of cDNA (50 ng), 10 μL of 2x SYBR 

Green JumpStart Taq ReadyMix, 0.25 μL reference dye, 2 μL each of 250 nM of both 

forward and reverse primers and 2 μL of DNAse/RNase-free water was combined in 

a 96 well PCR plates. Optically clear QPCR adhesive seal sheets were then used to 

seal the plate and centrifuged for 15 seconds at 700 g (1800 rpm) at 4oC. The plate 

was then placed in ABI PRISM 7000 Sequence Detection System to carry out the RT-

PCR with the following protocol: Initial denaturation stage for 2 minutes at 94 oC. 
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Thereafter, there is a 40 cycle of 94oC for 15 seconds, 60 oC for 1 minute. 

Dissociation protocol was also set up to check the specificity of the primers and the 

accuracy of the SYBR Green I fluorescence with the following protocol: 95 oC for 15 

seconds, 60 oC for 1 minute and 95 oC for 15 seconds. The data was analyzed using 

the cycle threshold (CT) generated from the amount of template from each sample. 

 

2.19 Primer design for PCR amplification 

The following primers sequences for Nrf2, Keap1, Gapdh, Nqo1, Mrp3, Hmox, Gstpi, 

Gclc and Gclm are outlined below:  

Table 2.3 - Primer Table  

Primer Name Forward primer (5’ – 3’) Reverse Primer (3’ – 5’) 

Nrf2 GACATCCTTTGGAGGCAAGA AGGCATCTTGTTTGGGAATG 

Keap1 CACAGCAGCGTGGAGAGA CAACATTGGCGCGACTAGA 

Gapdh TGTCCGTCGTGGATCTGAC CCTGCTTCACCACCTTCTTG 

Nqo1 AGCGTTCGGTATTACGATCC AGTACAATCAGGGCTCTTCTCG 

Mrp3 GCTGAGGGTGGGGATAATCT GGCTCGGGCTAGGCATAC 

Hmox GTCAAGCACAGGGTGACAGA ATCACCTGCAGCTCCTCAAA 

Gstpi TGTCACCCTCATCTACACCAAC GACAGCAGGGTCTCAAAAGG 

Gclc ATGATAGAACACGGGAGGAGAG TGATCCTAAAGCGATTGTTCTT 

Gclm TGACTCACAATGACCCGAAA GATGCTTTCTTGAAGAGCTTCC 

 

2.20 Microfluidic cards 

Microfluidic TaqMan Low Density Array cards were custom-made by Applied 

Biosystems (Paisley, UK). On each card is a combination of 48 several Nrf2 target 

genes to be amplified simultaneously. These 48 genes were selected based on the 

findings of the study by Kitteringham et al., which reported some Nrf2-regulated 

proteome or those that function in the Nrf2-regulated pathway as identified by 

MetaCore analysis (Kitteringham et al., 2010). The reverse transcribed cDNA as 

described in the section above was made up to a concentration of 2 ng/µL in 
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nuclease-free water. cDNA was pooled from all the samples (n=8) and then included 

on each plate to be amplified by the custom-designed genes and used as a 

reference marker. Samples were added across 5 TaqMan array cards in a 

randomised order, which was determined, using a programme in random.org 

(http://www.random.org/). The expressions of all other genes were expressed 

relative to the pool and normalised against the housekeeping gene, 18s ribosomal 

RNA as analysed by 7900HT Fast Real-Time PCR System (ABSciex) according to the 

manufacturer’s instructions. The amplified data was analysed based on the fold 

increase using the comparative CT method (ΔΔCT) method. CT values were 

determined using the RQ manager 1.2 component of the 7900HT Fast System 

software using a threshold manually set to a value of 0.3 for all plates.  

 

2.21 Preparation of Hepa1c1c7 and HepG2 cell lysate samples 

After incubation, the media in the cells were removed and washed twice with ice-

cold PBS and discarded. The cells were then lysed in radioimmunoprecipitation 

assay (RIPA) buffer (50 mM Tris-HCl, pH 8.0, with 150 mM NaCl, 1.0 % Igepal CA-630 

(NP-40), 0.5 % sodium deoxycholate, and 0.1 % sodium dedocyl sulphate) or directly 

in LDS with β-mercaptoethanol and transferred to an eppendorf tube. Lysates were 

centrifuge at 17,000 g (14,000 rpm) for 5 minutes at 4 oC and the supernatant 

containing the whole cell contents were collected in a new eppendorf. All samples 

were stored at -80oC prior to protein content determination and western blotting.  

 

2.22 Preparation of PBMCs cell lysate samples 

After incubation, cells were scraped and transferred using a pipette into 5 mL glass 

or 15 mL falcon tubes and centrifuged at 700 g (1800 rpm) for 5 minutes with 

acceleration and brake set to 9. The supernatant was discarded and the cells were 

resuspended in 1 mL HBSS and then transferred to 1.5 mL eppendorf. This was 

centrifuged again at 1800 rpm for 5 minutes with acceleration and brake set to 9. 

The supernatant was discarded and the cell pellet was lysed in 70 µL of 
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radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl, pH 8.0, with 150 

mM NaCl, 1.0 % Igepal CA-630 (NP-40), 0.5 % sodium deoxycholate, and 0.1 % 

sodium dedocyl sulphate). Lysates were centrifuge at 14,000 rpm for 5 minutes at 4 

oC and the supernatant containing the whole cell contents were collected in a new 

eppendorf. All samples were stored at -80 oC prior to protein content determination 

and western blotting.  

 

2.23 Protein content determination of whole cell lysates 

The total protein content of the whole cell lysates was measured using the BCA 

(Bicinchoninic Acid; Sigma UK) assay according to the manufacturer’s instructions. 

Briefly, the assay relies on the principle of the colour change as a result of the 

biochemical reactions between the concentration of the protein and the BCA 

reagents. Firstly, the peptide bonds in the protein cause a reduction of the Cu2+ ions 

to Cu+ ions in a temperature dependent manner at 37 oC. Secondly, the reduced Cu+ 

ions then bind to two molecules of bicinchonic acid, which causes a colour change. 

The colour of the solution changes from green to purple depending on the 

concentration of the protein in the lysates. The increase in abundance at 570 nm, 

which is proportional to the colour change, was measured using a MRX microplate 

reader. The total amount of the protein was quantified from a standard curve 

generated from known concentrations (0-2 μg/µL) of bovine serum albumin (BSA). 

 

2.24 Protein content determination of liver homogenates 

The total protein content of the liver homogenates was performed as described by 

Lowry (Lowry et al., 1951). Briefly, the assay relies on the principle of the colour 

change as a result of the biochemical reactions between the concentration of the 

protein and the Lowry reagents. Firstly, the peptide bonds in the protein react with 

the copper generating Cu+ ions in a temperature dependent manner at 37 oC which 

then reacts with the Folin reagent which causes a colour change. The protocol was 

therefore as follows:  Briefly, a set of standards (0-2 µg/µL) were prepared using 



 

61 
 

BSA. A series of dilutions of the sample were made up to a volume of 200 µL. 

Following this, 1 mL of Lowry’s reagent was added to the samples and the 

standards, and left for 10 minutes at room temperature. Thereafter, 0.1 mL of 

diluted Folin’s reagent was added to the mixture and the mixture was left at room 

temperature for 30 mins. The increase in abundance at 750 nm which is 

proportional to the colour change, was measured using a MRX microplate reader. 

The total amount of the protein is quantified from a standard curve generated from 

the known concentration of BSA. 

 

2.25 Western blotting 

20 μg of whole cell lysates were added to 5 μL of the Nupage sample loading buffer 

(containing 30 % (v/v) NuPAGE reducing agent and 70 % (v/v) NuPAGE loading 

buffer; Invitrogen). The sample was then heated up for 5 minutes at 80 oC to allow 

protein denaturing.  4 μL of the molecular weight marker (PrecisionPlus protein 

kaleidoscope standards) and the whole denatured samples were loaded on a 4-12% 

Novex bis-tris polyacrylamide gels (Life Technologies, Uk) using XCell Surelock mini-

cell electrophoresis tanks and MOPS running buffer (50 mM MOPS, 50 mM Tris 

base, 3.5 mM sodium dodecyl sulphate, 1 mM EDTA, 0.25 % (v/v) NuPAGE 

antioxidant ). Samples were run at 90 V for 10 minutes to allow samples to settle 

down into the wells properly. Following this, the voltage was increased to 170 V for 

a further 60-70 minutes. The separated proteins in the gels are transferred onto 

hybond nitrocellulose paper (GE Healthcare, UK) at 230 mA current for 60 minutes 

using a Mini TRANS-Blot Cell System. To check if the proteins were transferred 

appropriately, Ponceau S solution was added to the membrane for few minutes and 

then washed off using tris-buffered saline (TBS; pH 7.0). Membranes were blocked 

for 30 minutes or overnight in tris-buffered saline (TBS; 0.15 mM NaCl, 25 mM Tris 

base, 3 mM KCl, pH 7.0) containing 0.1 % Tween 20 (TBS-T) and 10 % 

(weight/volume; (v/v)) non-fat milk (Bio-Rad) on an orbital shaker.  

Membranes were probed for 3 hours with anti-Nrf2 (1:400 in TBS-Tween containing 

2 % (w/v) non-fat dry milk; EP1808Y; Abcam, UK), overnight with anti-Keap1 (1:200 
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in TBS-Tween containing 2 % (w/v) non-fat dry milk; E-20; Santa Cruz, UK), anti-

NQO1 (1:5,000 in TBS-Tween containing 2 % (w/v) non-fat dry milk; ab2346; Abcam, 

UK), anti-ACL (1:5,000 in TBS-Tween containing 2 % (w/v) non-fat dry milk; EP704Y; 

Abcam, UK),  anti-phospho-AKT473 (1:1,000 in TBS-Tween containing 2 % (w/v) BSA; 

#4060S;Cell signaling technology, UK), anti-phospho-JNK1/2 (1:1,000 in TBS-Tween 

containing 2 % (w/v) BSA; #9251S; Cell signaling technology, UK), anti-phopsho-p38 

MAPK (1:1,000 in TBS-Tween containing 2 % (w/v) BSA; #4511; Cell signaling 

technology, UK), anti-p-Erk1/2 (1:1,000 in TBS-Tween containing 2 % (w/v) BSA; 

#4377S; Cell signaling technology, UK), anti-phopsho-CREB (1:1,000 in TBS-Tween 

containing 2% (w/v) BSA; #9198; Cell signaling technolog, UK), anti-HIF-1α (1:1000 

in TBS-Tween containing 2 % (w/v) BSA; 610959; BD Biosciences, UK), anti-Cyclin A 

(1:1000 in PBS-Tween containing 5 % (w/v) milk; H-432; Santa Cruz, UK)  or for 1 hr 

with anti-p62 (1:10,000 in TBST-Tween containing 2% (w/v) milk, P0067; Sigma-

Aldrich, UK) primary antibodies. Mouse β-Actin (1:20,000 in TBS-Tween containing 

2% (w/v) non-fat dry milk; AC-15; Abcam, UK) was used as a loading control. 

Membranes were washed in 6 x 10 minutes in TBS-Tween and probed for 1 hour 

with the appropriate HRP-linked secondary antibody. The following secondary 

antibodies were used: goat anti-rabbit (1:10,000 in TBS-Tween containing 2 % (w/v) 

non-fat dry milk; A9169; Sigma-Aldrich, UK), rabbit anti-goat (1:5,000 in TBS-Tween 

containing 2 % (w/v) non-fat dry milk; P0449; Dako, UK ), anti-mouse (1:10,000 in 

TBS-Tween containing 2 % (w/v) non-fat dry milk; A9044; Abcam, UK). 

Membranes were washed in 6 x 10 minutes in TBS-Tween and visualised in the dark 

by the addition of enhanced western lightening chemiluminescence reagents 

Hyperfill ECL (Perkin Elmer, UK) to the membrane, a film placed on the membrane 

to pick up bands and exposed to Kodak developer and fixer solutions in ratio 1:1.  

Immunoreactive bands were scanned and quantified using GS-800 calibrated 

imaging densitometer and the Quantity one software according to the 

manufacturer’s protocol and all blots normalised to β-actin 
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2.26 Measurement of Proteasome activity  

1 μg 20S human proteasome fragments (Enzo Life Sciences, UK) were added to each 

well of a 96 well plate. 5 mg of the Fluorogenic peptides Boc-LSTR-AMC (Boc-Leu-

Ser-Thr-Arg-7-amido-4-methylcoumarin, Sigma UK), Suc-LLVY-AMC (Suc-Leu-Leu-

Val-Tyr-AMC, Enzo Life Sciences, UK) and Z-LLG-AMC (Z-Leu-Leu-Glu-AMC, Enzo Life 

Sciences, UK) were each dissolved in DMSO to give a concentration of 10 mM. This 

was diluted in assay buffer (50 mM HEPES, pH 7.8) to give a concentration of 500 

μM for Boc-LSTR and Suc-LLVY-AMC and 5 mM for ZLLG-AMC and 20 μL was added 

to each well of a 96 well plate to give a final concentration of 50 μM for Boc-LSTR-

AMC and Suc-LSTR-AMC and 500 μM for ZLLG-AMC. The tested compounds CDDO-

Me, Brusatol, MG132 and epoxomicin were diluted in DMSO to give a concentration 

of 10 mM each. 0.3728 g potassium chloride (KCl) was dissolved in assay buffer to 

give a concentration of 20 mM. Each compound was further diluted in assay buffer 

to give the final concentrations as follows; potassium chloride (KCl) 20 mM, MG132 

(10 nM, 100 nM, 1 µM, 10 µM), CDDO-Me (10 nM, 100 nM, 1 µM, 10 µM), Brusatol 

(10 nM, 100 nM, 1 µM, 10 µM) and epoxomicin (10 nM, 100 nM, 1 µM, 10 µM) 

were incubated at 37˚C for a 24 hr time period. Simultaneously, a standard curve 

for protein degradation was created using the 20S proteasome substrate AMC 

diluted in assay buffer from 0-2 μM. Proteolytic activity was monitored by 

measuring the release of the fluorescent group 7-amido-4-ethylcoumarin (AMC) 

with a Varioscan fluorescent plate reader with excitation at 360 nm and emission at 

460 nm.. 

 

2.27 Liquid chromatography-mass spectrometric analyses of brusatol and other 

quassinoids 

2.271 Sample processing 

Aliquots (10 L) of brusatol solutions (100 µg/mL for the standard solution; DMSO-

water, 1:9, v/v) and aliquots (25-80 L) of the various brusatol incubations (10 or 

100 µg/mL; whole incubated solutions or supernatants of protein-containing 
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incubations deproteinized with acetonitrile) were injected onto the HPLC column 

without further treatment.  

2.272 Analysis 

Aliquots of the whole solutions and supernatants were chromatographed at room 

temperature on an Agilent ZORBAX Eclipse 5-µm XDB-C18 column (4.6 mm × 150 

mm; Agilent Technologies, Santa Clara, CA, USA) using a linear gradient of 

acetonitrile in aqueous acetic acid (0.25 %, v/v). Typically, the entire gradient profile 

was 5 % to 50 % over 20 min, 50 % for 5 min, 50 % to 5 % over 1 min and 5 % for 4 

min. When the supernatants of deproteinized surfactant-containing incubations 

were analysed, the gradient profile was 5 % to 50 % over 20 min, 50 to 80 % over 1 

min, 80 % for 5 min, 80 to 5 % over 1 min and 5 % for 3 min.  The flow rate was 1 

mL/min.  Eluent was delivered by a PerkinElmer series 200 HPLC system (pump and 

autosampler; PerkinElmer, Norwalk, CT, USA).  

The LC column was connected to the Turbo V electrospray source of an API 4000 

Qtrap hybrid quadrupole mass spectrometer (AB Sciex, Warrington, UK) via a flow-

splitting T-piece. The split flow of eluate to the mass spectrometer was 

approximately 150 µL/min. 

The standard operating parameters of the mass spectrometer (Q1 operation) were 

as follows: source temperature, 400 oC; ionspray (electrospray capillary) voltage, 

4,500 V; desolvation potential, 100 V or 200 V; curtain gas setting, 15; source gas 

(Gas-1) setting, 50; heater gas (Gas-2) setting, 50. All of the source gas requirements 

were met by a nitrogen/zero-grade air generator. The instrument was set up for 

full-scanning acquisitions in the positive-ion mode over a scan range of  m/z 100-

1,000 with a scan time of 5 s. Instrument management and data processing were 

accomplished through Analyst 1.5.1 software.  

 
 

2.29 Data and Statistical analysis 

Data are expressed as mean ± S.D from the 3 independent experiments. The 

significance of differences within the data was assessed with an unpaired student t 
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test. A two-sided p value of ≤ 0.05 was considered to be statistically significant. For 

TLDA data, the significance of differences within the relative expression of genes in 

wild type and Nrf2 knock out mice where CT values were available for ≥4 animals in 

each group was assessed with a one way ANOVA with Tukey multiple comparison 

testing. The normality of the data was assessed with a Shapiro-Wilk test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

66 
 

 

 

 

 

 

 

CHAPTER THREE 

 

INVESTIGATING THE EFFECTS OF NRF2 

MODULATION IN MOUSE IN VIVO MODELS AND 

PRIMARY HUMAN CELLS 
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3.1 INTRODUCTION 

Nrf2 has been highlighted by various studies to have numerous roles in maintaining 

cell homeostasis especially in the area of cytoprotection against toxic insults (for a 

review see (Bryan et al., 2013)). Transgenic Nrf2 null mice have been shown to 

experience enhanced susceptibility to various drug-induced toxicities including 

acetaminophen (Chan et al., 2001; Enomoto et al., 2001), carbon tetrachloride (Xu 

et al., 2008) and butylated hydroxyl toluene (Chan et al., 1999). The low basal 

expression of Nrf2-regulated proteins in Nrf2-null mice coupled with a reduced 

ability to induce cytoprotective genes, could account for the enhanced toxicity seen 

following induction of chemical stress in Nrf2-null mice. 

Previous studies have shown differences in the Nrf2 knock out (KO) and wild type 

(WT) mouse using gene microarray studies and targeted protein analysis 

(Thimmulappa et al., 2002; Hu et al., 2006; Nair et al., 2007). In a recent study 

conducted by Kitteringham et al., the basal WT and Nrf2 KO liver proteome was 

compared. This study showed that there was a depletion of cytoprotective proteins 

in the Nrf2 KO mice, whilst the opposite was seen with lipid metabolism, with an 

increased expression of proteins that function in the fatty acid synthetic pathway 

(Kitteringham et al., 2010).  

In recent years, investigations into Nrf2’s role in health and disease have primarily 

focussed on the potential value of manipulating this pathway in cancerous 

environments. In particular, the activation of Nrf2 was considered to be beneficial. 

Many naturally occurring phytochemicals with proven cancer chemopreventive 

abilities such as sulforaphane and resveratrol are also Nrf2 inducers (Kensler et al., 

2000; Wolf, 2001; Kode et al., 2008). Additionally, synthetic compounds like the 

triperpenoid CDDO and its derivatives (CDDO-Me and CDDO-Im) have recently been 

shown to inhibit cancer cell proliferation (Bernstein et al., 2012; Deeb et al., 2012b; 

Qin et al., 2013) whilst simultaneously being potent inducers of the Nrf2 pathway.  

The triterpenoid CDDO and its derivates are semi-synthetic compounds and have a 

high potency for the Nrf2:Keap1 pathway. This was first demonstrated in a study 

that saw the potent activation of phase-II response by CDDO in wild type, but not 
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Nrf2-deficient cells (Dinkova-Kostova et al., 2005a). This was further confirmed in a 

study that demonstrated the induction of Nrf2 protein and an increase in its 

associated downstream target gene HO-1 by CDDO (Liby et al., 2005). It was also 

demonstrated in mice in vivo that CDDO-Im and CDDO-Me induce Nrf2-target gene 

Nqo1, with induction seen in the liver, lung and small intestine (Yates et al., 2007). 

Recently, CDDO-Me has been tested in clinical trials for the treatment of chronic 

kidney disease in patients with type 2 diabetes (Pergola et al., 2011b; de Zeeuw et 

al., 2013) and it showed a high therapeutic potential. However, it was withdrawn in 

phase III due to adverse cardiovascular events in some patients (Tayek et al., 2013). 

The mechanism of action of CDDO and its derivatives as inducers of Nrf2 remains 

unknown, but it has been suggested that these compounds are capable of 

modifying cysteine residues in Keap1 (Dinkova-Kostova et al., 2005b; Ahn et al., 

2010; Takaya et al., 2012). Due to the growing interest in investigating Nrf2 

activators such as CDDO-Me as potential therapeutics and the adverse effects seen 

in clinical trials after chronic dosing, it is of interest to define the profile of Nrf2 

induction at the mRNA and protein level and distinguish between the Nrf2-

dependent and –independent effects of CDDO-Me. It is also important to define the 

expression of these proteins in different species and organs and investigate how 

these might translate to the susceptibility to or protection against drug-induced 

toxicities in humans.  It will also be highly valuable to identify a surrogate marker of 

Nrf2 induction in humans, to allow the efficacy and safety of Nrf2 activators to be 

determined in vivo with minimal invasion. 

Previous work conducted in the department has investigated the hepatic proteome 

in WT and Nrf2 KO mice, both at the basal level and following a single dose of 

CDDO-Me (Kitteringham et al., 2010; Walsh et al., 2014). These studies identified an 

important role for Nrf2 in the regulation of various aspects of cellular homeostasis. 

Therefore, the aim of the work described in this chapter was to establish the 

responsiveness of the Nrf2 pathway to CDDO-Me across a number of mammalian 

test systems, in order to understand the translational relevance of findings in the 

mouse, and establish a platform for assessing inter-individual variability in the 

activity of the pathway and its relevance to disease.   
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3.2 RESULTS 

 

3.2.1 Induction of the Nrf2 pathway by CDDO-Me in Vivo 

The constitutive proteomic study identified Nrf2 as a positive regulator of 

cytoprotection and negative regulator of fatty acid synthesis in the mouse liver 

(Kitteringham et al., 2010). It was of interest to investigate the impact of Nrf2 

induction on these pathways. To determine the optimum concentration of CDDO-

Me that would induce the Nrf2 pathway, a pilot study was conducted in which 

C57BL6J WT mice were treated with CDDO-Me across a range of doses by 

intraperitoneal injection for 24 hours. Western blotting of liver lysates showed a 

dose-dependent increase in the level of NQO1 protein, a downstream target of Nrf2 

with maximum induction seen at a concentration of 3mg/kg CDDO-Me (figure 3.1). 

 

Figure 3.1 - Induction of Nrf2 pathway by CDDO-Me in vivo. Nqo1 protein levels in C57BL6J 

WT liver homogenates, following in vivo exposure to the indicated concentrations of CDDO-

Me for 24h as determined by western blotting  (n=2). The mean Nrf2 values were plotted 

after normalization with actin + SEM.  

This dose was therefore used in the subsequent study, in which WT and Nrf2 KO 

mice were exposed to CDDO-Me.  In order to confirm the activation of Nrf2 at the 

selected dose of 3mg/kg CDDO-Me in WT animals, a western blot for Nqo1 was 

performed. CDDO-Me provoked a marked increase in hepatic Nqo1 in WT mice, but 
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had no effect in the livers of Nrf2 KO mice. The increased expression of Nqo1 

confirms the activation of Nrf2 at the selected dose (figure 3.2).   The work 

described in 3.2.1 has previously been reported in the PhD thesis of J. Henry (2012) 

and in our subsequent publication (Walsh et al., 2014). It forms the basis for the in 

vivo work described in this chapter, and is included here with her permission.    

 

Figure 3.2 - Induction of Nqo1 protein expression by CDDO-Me is dependent on Nrf2. Nqo1 

protein levels in C57BL6J mice liver homogenates following in vivo exposure to 3mg/kg 

CDDO-Me or DMSO for 24 hour, as determined by immunoblotting. The blots shown are a 

representative of six individual animals and quantified by densitometry. The mean Nqo1 

values were plotted after normalization with actin + SEM. Statistical analysis was performed 

using a one way ANOVA with Tukey multiple comparison *** p ≤ 0.001 wild-type vehicle vs. 

wild-type CDDO-Me, ### p ≤ 0.001 wild-type vehicle vs. KO vehicle, N.S. non-significant 

difference.  

 

3.2.2 Investigation into the induction of Nrf2 signalling by CDDO-Me at the 

transcriptional level 

The study conducted by Kitteringham et al., 2010, identified cytoprotection and 

lipid metabolism as key pathways modulated by Nrf2. It was therefore of interest to 
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investigate whether the basal differences in the protein levels of enzymes in these 

pathways were reflected at the mRNA level thus providing insight into the 

regulation of the Nrf2 pathway at the level of transcription. Furthermore, given that 

evidence for Nrf2-regulation of lipid metabolism has only recently emerged, an 

investigation into the differential expression of the lipid metabolism genes upon 

induction was also carried out using liver samples from the WT and Nrf2 knock-out 

C57BL6J mice dosed with 3mg/kg CDDO-Me. RNA was extracted from liver 

homogenates of vehicle and CDDO-Me treated WT and Nrf2 KO mice, and the 

associated cDNA was subjected to real-time PCR amplification using the custom-

made Microfluidic TaqMan Low Density Array cards. The expression of all genes was 

determined relative to the pool and normalised against the house-keeping gene, 

18S rRNA (figure 3.3)(Table 3.1). 

Consistent with CDDO-Me’s ability to induce Nrf2 signalling, there was a marked 

increase in the expression of 11 well characterized Nrf2 downstream target genes in 

the livers of CDDO-Me-treated WT animals, when compared to the vehicle control, 

including the following: Nqo1, Ces1g, Ephx, Ugt1a6a, Ugt2b5, Gsta4, Gstm1, Gstp1, 

Mgst, Gclc and Cyp1a2. The mRNA levels of 3 genes, Ces1g, Cyp2c50 and Lipg were 

shown to be significantly lower in the livers of vehicle control treated Nrf2 KO 

animals when compared to their WT counterparts. Importantly, CDDO-Me was 

unable to provoke changes in the expression of these genes in the livers of Nrf2 KO 

mice. Notably, Nrf2 mRNA was detected in Nrf2 KO mice. The Nrf2 probe used on 

the TLDA plate spans a region that includes part of exon 1 and exon 2. Since the KO 

mouse was generated through loss of exon 5, the probe was able to detect Nrf2 

mRNA in the KO animal. This is consistent with the loss of exon 5 in the KO animals, 

which results in the translation of a non-functional protein (Lu et al., 2011).  The 

genes that were up-regulated by CDDO-Me in wild type animals are associated with 

drug metabolism and their regulation by Nrf2 has been well characterised. 

However, expression of the lipid metabolism genes that were included in the TLDA 

analysis was not significantly altered by CDDO-Me treatment.  



 

73 
 

 

Figure 3.3 - Investigation into the induction of Nrf2 signalling by CDDO-Me at the 

transcriptional level. Relative expression of mRNA levels in C57BL6J  WT and KO liver 

homogenates following in vivo exposure to 3mg/kg CDDO-Me or DMSO for 24 h, as 

determined by Microfluidic TaqMan low denstity array analysis.  mRNA levels were 

normalised to the 18S ribosomal subunit. Levels of mRNA for Nqo1, Ces1, Ephx, Ugt1a6a, 

Ugt2b5 Gsta4, Gstm1, Gstp1, Mgst, Gclc and Cyp1a2 were statistically significantly higher in 

CDDO-Me-treated wild type animals when compared to vehicle control (*), while Ces1g, 

Cyp2c50 and Lipg were significantly lower in Nrf2(-/-) vehicle control animals (#). There was 

no statistical difference in mRNA levels in CDDO-me and vehicle control Nrf2(-/-) animals. 

Data represent Mean + SEM of n=6 animals, and statistical significance was assessed using 

a one way ANOVA with Tukey multiple comparison testing.   
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Table 3.1 – Genes on custom-made Microfluidic TaqMan Low Density Array cards  

Code Name  General biochemical function 

Nfe2l2 Nuclear factor-erythroid 2-like 2 Transcription factor 

Keap1 Kelch-like ECH-associated protein 1 Ubiquitin ligase substrate adaptor 

Jun Jun-proto-oncogene Regulation of stimuli 

Nqo1 NADPH:quinone oxidoreductase Detoxification: Phase I reaction 

Aldh8a1 Aldehyde dehydrogenase 8 family, member A1 Detoxification: Phase I reaction 

Ces1g Carboxyesterase 1G Lipid metabolism: fatty acid oxidation 

Ephx Epoxide hydrolase 1, microsomal Detoxification: Phase I reaction 

Ugt1a6a UDP glucuronosyltransferase 1 family, 

polypeptide A6 

Detoxification: Phase II reaction 

Ugt2b5 UDP glucuronosyltransferase 2 family, 

polypeptide B5 

Detoxification: Phase II reaction 

Gsta4 Glutathione S- transferase class Alpha 1 Detoxification: Phase II reaction 

Gstm1 Glutathione S-transferase class Mu 1 Detoxification: Phase II reaction 

Gstp1 Glutathione S- transferase class Pi 1 Detoxification: Phase II reaction 

Gstt3 Glutathione S-transferase theta 3 Detoxification: Phase II reaction 

Mgst Microsomal glutathione S-transferase  Detoxification: Phase II reaction 

Gclc Glutamate-cysteine ligase, catalytic subunit Antioxidant: GSH-based system 

Gclm Glutamate-cysteine ligase, modifier subunit Antioxidant: GSH-based system 

Gsr Glutathione reductase Antioxidant: GSH-based system 

Glul Glutamate-ammonia ligase Metabolism of nitrogen 

Cyp1a2 Cytochrome P450 1A2 Drug metabolism 

Cyp2c50 Cytochrome P450 2c50 Drug metabolism 

Cyp2e1 Cytochrome P450 2e1 Drug metabolism 
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Cyp7b1 Cytochrome P450 7b1 Drug metabolism 

Sds Serine dehydratase Serine and glycine metabolism 

Glo1 Glyoxalase Catalyzes the conversion of hemimercaptal 

Selenbp1 Selenium binding protein 1 Selenium regulation 

Slc2a1 Solute carrier family 2, member A1 Glucose transport 

Slc22a7 Solute carrier family 2, member A7 Glucose transport 

Uox Urate oxidase Converts uric acid to allantoin 

Acaa1b Acetyl-CoA acyltransferase 1b Peroxisome β-oxidation of fatty acid 

Acaca Acetyl-CoA carboxylase alpha (ACC1) Synthesis of malonyl-CoA 

Acly ATP-citrate lyase (ACL) Synthesis of cytosolic acetyl CoA 

Acsl5 Acyl-CoA synthetase long-chain family member 

5 

Lipid biosynthesis 

Agxt Alanine-glyoxylate aminotransferase Glyoxylate detoxification 

Dbi Diazepam binding inhibitor Lipid metabolism: displacement of beta-carbolines 

and benzodiazepines 

Elovl6 Elongation of very long-chain fatty acids 6 Synthesis: Fatty acid elongation 

Fasn Fatty acid synthase Fatty acid synthesis 

Lipg Lipase, endothelial Catabolism of fatty acid 

Pklr Pyruvate kinase, liver and RBC Catalyses the production of phosphoenolpyruvate 

Scd1 Stearoyl-CoA desaturase 1 Desaturation of fatty acid 

Scp2 Sterol carrier protein 2 Oxidation of fatty acids 

Srebf1 Sterol regulatory element-binding 

transcription factor 1 

Transcription factor: regulates lipogenesis 

Usp2 Ubiquitin specifi peptidase 2 Protein breakdown regulation 

 



 

76 
 

3.2.3 Use of alternative strain of mouse to investigate the regulation of fatty acid 

synthesis genes by Nrf2  

Following the identification of Nrf2 as a negative regulator of fatty acid synthesis at 

the basal level using C57BL6 WT and Nrf2 KO mice, it was of interest to see if the 

effects of Nrf2 modulation were reproducible in another strain of mouse in order to 

demonstrate the responsiveness of the Nrf2 pathway in different mammalian test 

systems.  To do this, a time-course study of Nrf2 pathway induction by CDDO-Me 

was conducted in CD1 WT mice, which were exposed to 3mg/kg CDDO-Me for up to 

24 h. Western-blotting of liver homogenates showed a maximum increase in Nrf2 

protein at 1 h in CD1 mice treated with CDDO-Me (figure 3.4a-b). Consistent with 

CDDO-Me’s ability to induce Nrf2, the protein level of NQO1, a well characterized 

Nrf2 target was markedly increased in a time-dependent manner following the 

exposure of CD1 mice to CDDO-Me (figure 3.4c-d). These data indicate that CDDO-

Me causes a functional activation of the Nrf2 pathway in CD1 mice.  

(A)                                                                   

  

(B) 
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(C) 

 

(D) 

 

Figure 3.4 Induction of the Nrf2 pathway by CDDO-Me in CD1 mice. Nrf2 protein levels in 

liver homogenates of CD1 mice exposed to 3mg/kg CDDO-Me in DMSO for 1 hour (A)(n=4). 

The mean Nrf2 values were plotted after normalization with actin +/- SD (B). Nqo1 protein 

levels in liver homogenates of CD1 mice exposed to 3mg/kg CDDO-Me in DMSO for 24 hours 

(C). The mean Nqo1 values were plotted after normalization to actin +/- SD (D). Statistical 

analysis was performed using an unpaired t-test (*P<0.05 wild-type CDDO-Me vs. wild-type 

vehicle). 

 

3.2.4 Investigation of the role of Nrf2 in the regulation of fatty acid synthesis 

genes 

Once it had been established that Nrf2 was functionally activated by CDDO-Me in 

the CD1 mouse model, the effect of the compound on the fatty acid synthesis 

pathway was investigated by determining hepatic levels of ATP citrate lyase (ACL) 
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protein expression by western blotting which is one of the key enzymes in fatty acid 

biosynthesis by catalyzing the metabolism of carbohydrates and the production of 

fatty acids. In addition, ACL was one of typical fatty acid synthesis proteins shown to 

be modulated in earlier studies (Kitteringham et al., 2010). CDDO-Me provoked a 

time-dependent decrease in ACL expression in the livers of CD1 mice, when 

compared to the vehicle-treated mice (figure 3.5).  

 

Figure 3.5: Investigation of the role of Nrf2 in the regulation of fatty acid synthesis genes. 

ACL protein levels in liver homogenates of CD1 mice exposed to 3mg/kg CDDO-me or DMSO 

for 24 h (n=4), as determined by immunoblotting. ACL values were plotted after 

normalization to actin (n=4). Statistical analysis was performed using an unpaired t-test 

(*P<0.05 wild-type CDDO-Me vs. wild-type vehicle). 

 

3.2.5 Investigation of Nrf2 response to CDDO-Me in human cells 

In light of the previous data illustrating the role of CDDO-Me in the induction of 

Nrf2 signalling, and given the well characterized role of Nrf2 in cytoprotection, it 

was of interest to investigate the role of CDDO-Me in human cells, in order to 

understand the translational relevance of the findings in mice in vivo. To do this, the 



 

79 
 

ability of CDDO-Me to induce Nrf2 in freshly isolated primary human hepatocytes 

(PHHs) and peripheral blood mononucleocytes (PBMCs) was tested. Freshly isolated 

PHHs or PBMCs were exposed to 100nM CDDO-Me ex vivo for 24 h, and whole-cell 

Nrf2 levels were determined by immunoblotting. CDDO-Me stimulated the 

accumulation of Nrf2 protein in PHHs and PBMCs (figure 3.6). Consistent with these 

observations, CDDO-Me caused an induction of Nqo1 in PBMCs, indicating that the 

induction of Nrf2 was functionally relevant (figure 3.6).  

(A) 

 

(B) 

Donor A                                                                       
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Donor B 

 

(C)                                                                                       

 

Figure 3.6 - Induction of Nrf2 pathway in freshly isolated human cells. Nrf2 protein levels 

in freshly isolated primary human hepatocytes exposed to 100nM CDDO-me or DMSO for 

the indicated times, as determined by western blotting (A). Nrf2 and Nqo1 protein levels in 

human PBMCs exposed to the indicated concentrations of CDDO-me for 1 or 24 h as 

determined by Western blotting (B-C). Human PBMCs treated with the proteasome inhibitor 

Mg132 for 2 h were used as a positive control. The blots shown are representative of 

experiments utilising cells from the 4 (PHH) and 6 (PBMC) separate donors and quantified by 

densitometry. The average Nrf2 and Nqo1 values of the independent experiments were 

plotted after normalization with actin + SD. Statistical analysis was performed using an 

unpaired t-test (*P<0.05, **P<0.01 vs. vehicle ). 
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3.3 DISCUSSION 

A large number of studies have furthered our understanding of the mechanisms 

that regulate Nrf2 activity and the important functions of this pathway, especially in 

cytoprotection (Itoh et al., 1997; Chan et al., 2001; Copple et al., 2008b; Bryan et al., 

2013). Due to the growing interest in investigating Nrf2 activators as therapeutic 

targets, gaining further information regarding the Nrf2-inducible genome, 

proteome and metabolome will be of utmost importance. In terms of drug safety 

science, identifying biomarkers of Nrf2 modulation and predicting the likely 

outcomes of sustained Nrf2 activation in man is crucial. It is thus important to 

characterize the proteins that are regulated by the Nrf2 pathway both basally and 

at the inducible levels. This will enable us to define the expression profiling of these 

proteins in different species and organs and how these might translate to the 

susceptibility to or protection against toxicities of various chemicals.  

The findings of this chapter demonstrate that the triterpenoid CDDO-Me provokes 

an induction of the Nrf2 pathway in C57BL6J and CD1 mice. The induction of Nrf2 by 

CDDO-Me is associated with an increase in a classic Nrf2 target, Nqo1. Notably, 

CDDO-Me was shown not to activate Nqo1 in Nrf2-null mice. 

A particular aim of the work described in this chapter was to define CDDO-Me 

induced gene expression changes in both wild type and Nrf2 knockout mice, to 

define any change in gene expression that might be observed as Nrf2-dependent or 

independent effects. In addition, as changes in mRNA are often not reflected at the 

protein level, it was also of interest to investigate whether the changes observed in 

the basal proteomic study (Kitteringham et al., 2010) were reflected at the mRNA 

level. 

The findings of the investigation into the hepatic genetic profile showed a 

significant increase in the relative mRNA levels of Nqo1, Ces1, Ephx, Ugt1a6a, 

Ugt2b5, Gsta4, Gstm1, Gstp1, Mgst, Gclc and Cyp1a2 in the livers of CDDO-Me 

treated wild type animals, when compared to vehicle-treated controls (figure 3.3). 

These genes are important in the regulation of phase II drug metabolism and 

glutathione synthesis. Whilst a positive role for Nrf2 in the regulation of 
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cytoprotective genes was seen in the mRNA study, in line with the findings at the 

protein level in the study by Kitteringham et al., no negative regulation of fatty acid 

synthesis genes was identified at the mRNA level, in contrast to effects reported at 

the protein level (Kitteringham et al., 2010). This lack of correlation between mRNA 

and protein could be indicative of a post-transcriptional role of Nrf2 in the 

regulation of lipid metabolism. However, other groups have reported an increase in 

the expression of genes involved in fatty acid synthesis in Nrf2 KO mice fed a high 

fat diet, when compared to WT mice (Tanaka et al., 2008; Meakin et al., 2014), as 

well as a down-regulation of lipid synthesis genes in Keap1 knockout mice and 

CDDO-Me treated WT mice (Yates et al., 2009). The latter finding was corroborated 

here, with CDDO-Me shown to provoke a time-dependent inhibition of ACL protein 

expression in CD1 mice, under conditions of Nrf2 induction (figure 3.5). Therefore, 

whilst the weight of evidence indicates that Nrf2 negatively regulates lipid 

metabolism in the liver, the detailed underlying mechanisms require further 

investigation.  

Of the tested genes that were up-regulated in CDDO-Me-treated WT mice, Nqo1 

showed the greatest increase in mRNA expression. Nqo1 has previously been 

documented as a paradigmatic Nrf2-regulated gene (McWalter et al., 2004; Yates et 

al., 2007). Nqo1 is important for the reduction of quinones to hydroquinones. 

Altered expression of Nqo1 has also been implicated in the pathogenesis of cancers 

and Alzheimer’s disease (Wang et al., 2006; Kanagal-Shamanna et al., 2012). The 

other tested genes that show significant upregulation of Nrf2 have also been 

identified as having a role in cytoprotection against chemical insults (Hayes et al., 

2014b). This data further confirms the ability of Nrf2 to regulate numerous 

cytoprotective processes in the mammalian liver. 

It was also of interest to define the basal and inducible activity of Nrf2 in human 

cells and the differential activity of Nrf2 in discrete organs. This will be particularly 

useful when developing Nrf2-activators as therapeutic agents for the treatment of 

diseases where the aberrant expression of Nrf2 plays a role. There was a significant 

induction of Nrf2 by CDDO-Me in primary human hepatocytes and lymphocytes 

(figure 3.6). From the mouse hepatic profile, it was seen that Nqo1 had the highest 
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induction. This was therefore used as a surrogate marker of Nrf2 induction in the 

lymphocytes. Nqo1 induction in human Pheripheral blood mononucleocytes was 

first examined by Gordon et al., prior to the findings that saw  Nqo1 gene induction 

by CDDO-Im and CDDO-me by Thimmulappa (Gordon et al., 1991; Thimmulappa et 

al., 2007) but the protein expression has not previously been defined, to our 

knowledge. Nqo1 protein levels were elevated in PBMCs following exposure to 

CDDO-Me for 24 h (figure 3.6b-c). Consistent with this, Boettler et al., 2011 

demonstrated induction of Nrf2 in PBMCs by the coffee constituent 5-O-

caffeoylquinic acid (Boettler et al., 2011). However, the above studies did not 

investigate inter-individual variation in the activity of the Nrf2 pathway between 

patients. Such variation could be due to differences in age, gender, genetic makeup, 

drug-drug interactions, lifestyle and environment (Severino et al., 2004). This is of 

particular importance when considering idiosyncratic adverse drug reactions, a 

major limitation to drug development and approval. The findings here identify 

variation in the Nrf2 response to CDDO-Me amongst the six volunteers’ PBMCs 

(figure 3.6). 

As seen in the lymphocytes, there was also a clear indication of variation in Nrf2 and 

Nqo1 responses to CDDO-Me in the primary human hepatocytes of 4 donors (figure 

3.6a). Nrf2 induction in hepatocytes has been described before (Keum et al., 2006a) 

but inter-individual variation has not been fully explored. It will be useful to 

examine these variations and to investigate the effect of genetic influences, as 

polymorphisms have been identified in the promoter region of Nrf2 (Marzec et al., 

2007). It will therefore be of value to examine the role of Nrf2 pathway variation in 

determining susceptibility to drug-induced toxicity in humans. Future investigations 

could address this using a larger cohort of donors and by correlating inter-individual 

variability with susceptibility to adverse drug reactions. The expression levels of 

Nrf2 target genes in blood-derived immune cells could potentially be used as a 

marker to assess/predict the prognosis of drug-induced toxicity. It will also be 

valuable to assess which composition of the PBMCs are the most responsive to Nrf2 

pathway modulation as there is variation in the composition of the macrophages, 

monocytes and lymphocytes among individuals.  
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In conclusion, this study supports a role for Nrf2 in the protection against chemical 

toxins through the induction of cytoprotective genes. Future work should focus on 

the characterization of the Nrf2-regulated proteome at the constitutive and 

inducible levels in lymphocytes in order to define the Nrf2-regulated proteins that 

are most sensitive to modulation of the pathway, and could therefore be used to 

assess inter-individual variation on a wider scale. 
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4.1 INTRODUCTION 

The findings of the previous chapter and those of studies by (Dinkova-Kostova et al., 

2005b; Liby et al., 2005; Yates et al., 2007) have shown that CDDO-Me has a high 

potency towards the Nrf2:Keap1 pathway across a number of mammalian test 

systems.  It has also been shown to be an inhibitor of cellular inflammatory 

processes (Dinkova-Kostova et al., 2005a) and have anti-proliferative properties, 

hence having chemopreventive and chemotherapeutic potentials (Bernstein et al., 

2012; Deeb et al., 2012a; Qin et al., 2013). CDDO-Me has been shown to have 

therapeutic potential in chronic kidney disease and cancer (Pergola et al., 2011b; de 

Zeeuw et al., 2013), although a recent clinical trial was terminated due to adverse 

cardiovascular events in some patients (Tayek et al., 2013). However, CDDO-Me is 

currently going through another clinical trial in pulmonary arterial hypertension 

patients. CDDO-Me therefore holds promise as a novel therapeutic tool in settings 

where induction of Nrf2 is desirable.  

The mechanism of action of CDDO-Me and its derivatives has yet to be fully 

characterized but studies have suggested that these compounds are capable of 

modifying cysteine residues in Keap1 (Dinkova-Kostova et al., 2005b; Ahn et al., 

2010; Takaya et al., 2012). A more detailed understanding of the chemical and 

molecular mechanisms that underlie the ability of CDDO-Me and its derivatives to 

induce Nrf2 would provide an opportunity to design and develop alternative small 

molecule inducers of Nrf2 for use in experimental and, potentially, clinical settings. 

In addition, the understanding of the mechanism of action of CDDO-Me will inform 

its clinical use and facilitates the fine-tuning of the compound to increase potency 

whilst preventing adverse drug reactions. 

Therefore, the aim of the work described in this chapter was to provide in vitro 

insights into the mechanism of action of Nrf2 induction by CDDO-Me in hepatoma 

cells. 
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4.2 RESULTS: 

4.2.1 Concentration- and time-dependent Induction of Nrf2 by CDDO-Me in Vitro 

Western blotting on whole cell lysates from mouse hepatoma Hepa1c1c7 and 

human HepG2 cell lines exposed to CDDO-Me across a range of concentrations for 

24 h, or 2 and 24 h respectively, was carried out in order to determine the optimal 

conditions for Nrf2 induction. CDDO-Me provoked a concentration-dependent 

increase in Nrf2 protein in Hepa1c1c7 cells and HepG2 cells with maximum 

induction seen at concentrations of 100 nM and 300 nM CDDO-Me at incubation 

times of 2 and 24 h, respectively (figure 4.1a-c). It was observed that beyond 300 

nM CDDO-Me treatment, Nrf2 was reduced to lower than basal levels at both time 

points (figure 4.1b-c). This suggests that CDDO-Me may be toxic to the cells beyond 

300 nM. 

To determine the time course effect of CDDO-Me on Nrf2, Hepa1c1c7 cells were 

exposed to 100 nM CDDO-me for up to 24 h and whole-cell Nrf2 levels were 

determined by immunoblotting. Time course experiments demonstrated a rapid 

significant accumulation of Nrf2 within 15 minutes of exposure to 100 nM CDDO-

Me, with maximum induction seen at 3 h of incubation with the compound (figure 

4.2). 

 (A) 
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(B) 

 

(C)  

 

Figure 4.1 – Concentration-dependent induction of Nrf2 by CDDO-Me in vitro. Nrf2 protein 

levels in whole cell lysates prepared from Hepa1c1c7 cells treated with the indicated 

concentrations of CDDO-Me for 24 h (A) or from HepG2 cells treated with the indicated 

concentration of CDDO-Me for 2 or 24 h (B) as determined by western blotting. Hepa1c1c17 

cells treated with 10 µM Mg132 were used as a positive control. The blots shown are a 

representative of three independent experiments and quantified by densitometry (C). The 

average Nrf2 values of the three independent experiments represented in (B) were plotted 

after normalization with actin + SD. Statistical analysis was performed using an unpaired t-

test (*P<0.05, **P<0.01 vs. vehicle). 
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(A) 

 

(B) 

 

Figure 4.2 - Time-dependent induction of Nrf2 in Hepa1c1c7 cells exposed to CDDO-Me. 

Nrf2 protein levels in whole cell lysates prepared from Hepa1c1c7 cells exposed to 100 nM 

CDDO-Me for the indicated times as determined by western blotting. The blot shown (A) is 

representative of three independent experiments quantified by densitometry (B). The 

average Nrf2 values of the three independent experiments were plotted after normalization 

with actin + SD. Statistical analysis was performed using an unpaired t-test (**P<0.01, 

***P<0.001 vs. vehicle). 

 

4.2.2 Functional consequences of Nrf2 induction by CDDO-Me  

Nrf2 is known to regulate the basal and inducible expression of genes containing 

antioxidant response elements (ARE). Consistent with the ability of CDDO-Me to 
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provoke Nrf2 protein accumulation, NQO1, a well characterized Nrf2 target, showed 

a marked increase in a time-dependent manner following the exposure of 

Hepa1c1c7 cells to 100 nM CDDO-Me (figure 4.3). This result indicates that CDDO-

Me causes a functional activation of Nrf2 cytoprotective pathway.  

(A) 

 

(B) 

 

Figure 4.3 - Time-dependent induction of Nqo1 in Hepa1c1c7 cells exposed to CDDO-Me. 

NQO1 protein levels in whole cell lysates prepared from Hepa1c1c7 cells exposed to 100 nM 

CDDO-Me for the indicated times as determined by western blotting. The blot shown (A) is 

representative of three independent experiments quantified by densitometry (B). The 

average NQO1 values of the three independent experiments were plotted after 

normalization with actin + SD. Statistical analysis was performed using an unpaired t-test 

(*P<0.05, **P<0.01 vs. vehicle). 
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4.2.3 CDDO-Me induces Nrf2 via a post-transcriptional mechanism 

It was hypothesized that CDDO-Me might induce Nrf2 protein accumulation at the 

transcriptional level by increasing the synthesis of Nrf2 mRNA. To examine this, 

total RNA was extracted from Hepa1c1c7 cells following exposure to CDDO-Me for 

up to 2 h. The cDNA was reverse transcribed and analysed by quantitative RT-PCR 

using oligonucleotide primers specific for Nrf2 and Keap1. The level of Gapdh mRNA 

was used to normalise the data. The findings of the experiment showed no 

significant increase in Nrf2 mRNA level within 1 h of exposure to CDDO-Me, despite 

these conditions provoking a maximal accumulation of Nrf2 protein (figure 4.4). This 

indicates that the increase in Nrf2 protein observed in Hepa1c1c7 cells following 

exposure to CDDO-Me is not a result of an increase in the expression of Nrf2 mRNA, 

and suggests that the compound exerts its effect on Nrf2 through a post-

transcriptional mechanism. In addition, the level of Keap1 mRNA did not change 

significantly following CDDO-Me treatment (figure 4.4) 

  

Figure 4.4 - CDDO-Me does not provoke acute changes in Nrf2 or Keap1 mRNA expression.  

Hepa1c1c7 cells were treated with 100 nM CDDO-Me for the indicated times, total RNA was 

isolated and the cDNA was synthesized. The cDNA was subjected to quantitative RT-PCR 

analysis using primers specific for Nrf2, Keap1 and Gapdh. The average Nrf2 and Keap1 

mRNA levels were plotted after normalization with Gapdh mRNA levels + SD. No statistical 

significance was observed.  
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4.2.4 Activation of Nrf2 by CDDO-Me is not dependent on the 

activation/inhibition of protein kinases and other signalling pathways  

Protein kinases have important roles in various cellular processes; they are 

modulated upon exposure to chemicals which could lead to an imbalance in cellular 

homeostasis. It was therefore hypothesised that CDDO-Me could be inducing Nrf2 

via the modulation of kinase signaling pathways previously implicated in the 

regulation of Nrf2 (Bryan et al., 2013). To determine whether the ability of CDDO-

Me to provoke Nrf2 was dependent on the modulation of these signaling pathways, 

Hepa1c1c7 cells exposed to CDDO-Me for up to 2 hours were analysed by western 

blotting for phosphorylation of AKT-473, p38 MAPK, ERK1/2 MAPK and JNK1/2. 

There was no significant effect on the phosphorylation of p38, AKT, ERK1/2 and 

JNK1/2 within the time-frame of Nrf2 induction with CDDO-Me (figure 4.5a).  This 

was further confirmed using a panel of specific inhibitors GF109203X (PKC), U0126 

(MEK1), Wortmanin (PI3K), PP2 (SRC), Cyclosporin A (Calcineurin) and Rapamycin 

(P70 S6). Hepa1c1c7 cells were pretreated for 1 h with these inhibitors before 

further treatment with CDDO-Me. The ability of CDDO-Me to induce Nrf2 was 

unaffected by the presence of these inhibitors (figure 4.5b). Taken together, the 

modulation of these signaling pathways does not appear to be an important 

element by which CDDO-Me induces Nrf2. Notably, Cyclohexamide, a protein 

synthesis inhibitor, prevented the activation of Nrf2 by CDDO-Me whilst CDDO-Me 

was still able to induce Nrf2 in the presence of actinomycin D (figure  4.5b). Taken 

together, this suggests that CDDO-Me could be stabilizing Nrf2 via a post-

transcriptional mechanism. 

(A) 
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(B) 

 

Figure 4.5 - Activation of Nrf2 by CDDO-Me is not dependent on the activation/inhibition 

of protein kinase and other signalling pathways. Nrf2 and phospho-p38 MAPK, AKT, 

ERK1/2 and JNK1/2 levels in total cell lysates of Hepa1c1c7 cells treated with 100 nM CDDO-

Me for up to 2 h as determined by immunoblotting (A). Nrf2 protein levels in total cell 

lysates of Hepa1c1c7 cells pre-incubated with GF109203 (5 µM), U0126 (5 µM), Wortmanin 

(0.1 µM), PP2 (5 µM), Cyclosporin A (0.1 µM), Rapamycin (0.1 µM), cyclohexamide (5 

µg/mL) and actinomycin D (5 µg/mL) for 1 h followed by a further treatment of 100 nM 

CDDO-Me for 1 h as determined by western blotting (B). The blots shown are a 

representative of three independent experiments and quantified by densitometry. The 

average Nrf2 values of the three independent experiments were plotted after normalization 

with actin + SD. Statistical analysis was performed using an unpaired t-test (***P<0.001 vs. 

vehicle).(NB: please refer to section 6.2.6. for the positive controls for the inhibitors) 

 

4.2.5 CDDO-Me does not stabilize Nrf2 mRNA 

From figure 4.5, the findings showed that the inhibition of general protein synthesis 

by CHX completely blocks the induction of Nrf2 by CDDO-Me, whilst CDDO-Me was 

able to induce Nrf2 protein in the presence of the RNA synthesis inhibitor 

actinomycin D. This suggests that CDDO-Me could be stabilizing the Nrf2 mRNA, 
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protein synthesis or the Nrf2 protein itself. To test that CDDO-Me works by 

stabilizing the Nrf2 mRNA, a time-course experiment was performed to characterize 

the effect of the inhibition of Nrf2 mRNA by actinomycin D in the presence or 

absence of CDDO-Me.   To do this, Hepa1c1c7 cells were pretreated with 100 nM 

CDDO-Me or vehicle (DMSO) for 1 h, before further treatment with actinomycin D 

or vehicle for up to 8 h. Actinomycin D alone depleted Nrf2 mRNA over a time-

course of 8 h (figure 4.6) with a half-life of approximately 2.8 h. Co-treatment of 

CDDO-Me with actinomycin D failed to increase the half-life of Nrf2 mRNA 

suggesting that CDDO-Me does not stabilize Nrf2 mRNA (figure 4.6). 

 

Figure 4.6 CDDO-Me does not stabilize Nrf2 mRNA. Hepa1c1c7 cells were exposed to 100 

nM CDDO-Me, treated with 5 µg/mL Actinomycin D or pretreated with 100 nM CDDO-Me 

for 1 h followed by 5 µg/mL Actinomycin D for the indicated time period. Total RNA was 

isolated and the cDNA was synthesized. The cDNA was subjected to quantitative RT-PCR 

analysis using primers specific for Nrf2 and Gapdh. The average Nrf2 mRNA levels of the 

two independent experiments were plotted after normalization with Gapdh mRNA levels + 

SD. 
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4.2.6 CDDO-Me stabilizes Nrf2 protein 

To test the possibility that CDDO-Me could be stabilizing the Nrf2 protein itself, a 

CHX chase experiment was performed to characterize the inhibition of Nrf2 protein 

synthesis by CHX in the presence/absence of CDDO-Me. To do this, Hepa1c1c7 cells 

were pretreated with 100 nM CDDO-Me or vehicle (DMSO) for 1 h before further 

treatment with CHX or vehicle for up to 1 h. CHX depleted Nrf2 over a time-course 

of 60 min (figure 4.4) giving Nrf2 a half-life of approximately 18 min which is 

consistent with findings of other studies (Nguyen et al., 2003). A trace amount of 

Nrf2 was detected after 30 min exposure to CHX in Hepa1c1c7 cells. Co-treatment 

of CHX with CDDO-Me increased the half-life of Nrf2 protein from 18 to 38 min 

illustrating that CDDO-Me stabilizes the Nrf2 protein (figure 4.7) 

 

Figure 4.7 - CDDO-Me stabilizes Nrf2 protein in Hepa1c1c7 cells. Nrf2 protein levels in 

whole cell lysates of Hepa1c1c cells were treated with 100 nM CDDO-Me alone (A), treated 

with 5 µg/ml CHX  alone (B) or pretreated with 100 nM CDDO-Me for 1 h  followed by CHX 

(C) for the indicated times as determined by immunoblotting. Nrf2 protein levels were 

normalised to beta-actin and quantified using densitometry.  Data shown is a representative 

of three independent experiments + SD.  Statistical analysis was performed using an 

unpaired t-test (*P<0.05, ***P< 0.01 vs. CHX treated cells). 
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4.2.7 CDDO-Me does not inhibit the catalytic activity of the proteasome in vitro  

Given that the findings of figures 4.3-4.7 demonstrated that CDDO-Me induces Nrf2 

in the absence of an effect on the Nrf2 mRNA, and has the ability to stabilize Nrf2 

protein, it is plausible for CDDO-Me to be stabilizing the Nrf2 protein through the 

inhibition of its proteasomal degradation (Nguyen et al., 2003). To investigate this, 

the effect of CDDO-Me on the catalytic activities of human 20S proteasome was 

examined in vitro. Subunits of the human 20S proteasome and the fluoregenic 

peptide substrates Boc-Leu-Ser-Thr-Arg-7-amido-4-methylcoumarin (BOC-LSTR-

AMC), Suc-Leu-Leu-Val-Tyr-AMC (SUC-LLCY-AMC)  and Z-Leu-Leu-Glu-AMC (Z-LLG-

AMC) corresponding to the trysin, chymotrypsin and caspase-like activities 

respectively, were utilised to monitor the activities of the proteasome in the 

presence of CDDO-Me for up to 8 h in vitro.  The hydrolysis of the fluoregenic 

substrates BOC-LSTR-AMC, SUC-LLVY-AMC and Z-LLG-AMX was measured at an 

excitation of 360 nm and emission of 460 nm (figure 4.8). The findings demonstrate 

that CDDO-Me does not have an inhibitory effect on the catalytic activities of the 

20S proteasome when compared to classical proteasome inhibitors MG132 and 

epoxomicin, which both exerted a concentration-dependent inhibition of each of 

the proteasomal catalytic sites (figures 4.8a-c). Therefore CDDO-Me appears to 

induce Nrf2 via a process that does not involve the inhibition of proteasomal 

activity.  
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Figure 4.8 – CDDO-Me does not inhibit proteasomal activity. Proteasome activity assay 

showing the effect of incubation with the indicated concentrations of CDDO-Me, epoxomicin 

or MG132 on the (A) trypsin (Boc-LSTR-AMC), (B) chymotrypsin (Suc-LLVY-AMC), and (C) 

caspase (Z-LLE-AMC)-like activities of human 20S proteasome at the indicated times.  The 

average values of the three independent experiments were plotted. Statistical analysis was 

performed using an unpaired t-test (*P<0.05, **P<0.01, ***P<0.001 vs. vehicle).  
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4.3 DISCUSSION 

The synthetic-triterpenoid CDDO and its derivates (CDDO-Me and CDDO-Im) have 

proven anti-tumour, anti-viral and anti-inflammatory activities (Bernstein et al., 

2012; Deeb et al., 2012; Qin et al., 2013) and are some of the most potent inducers 

of Nrf2 described to date (Dinkova-Kostova et al., 2005; Liby et al., 2005). Due to 

the growing interest in the use of Nrf2 activators such as CDDO-Me as novel 

therapeutics, it was of interest to define the mechanism of action of this drug to 

optimise its therapeutic effects in disease settings.  

The data presented in this chapter provides in vitro insights into the mechanism of 

Nrf2 activation by CDDO-Me in mouse Hepa-1c1c7 hepatoma cells. CDDO-Me 

provoked both concentration and time-dependent accumulation of Nrf2 protein. 

CDDO-Me showed a high specificity for the Nrf2 pathway at the nanomolar 

concentrations tested, as it did not induce the other panel of proteins tested such 

as p-p38, p-AKT473, p-JNK1/2 and p-ERK1/2.  However, it has been reported that 

CDDO-Me modulates the activity of proteins such as NF-kB, STAT, ERK, SMAD and 

PPARy at higher concentrations (Suh et al., 2003; Ahmad et al., 2006; Ji et al., 2006; 

Liby et al., 2006; Yore et al., 2006; Wu et al., 2011b).  

Induction of Nrf2 by CDDO-Me was found to be independent of changes in the level 

of Nrf2 mRNA, indicating that the induction of Nrf2 by CDDO-Me proceeds through 

a post-transcriptional mechanism. Notably, the findings here suggest that CDDO-Me 

stabilizes Nrf2 protein, as seen from the CHX pulse chase experiment whereby the 

co-treatment of CDDO-Me with CHX increased the half-life of Nrf2 protein from 18 

minutes to 38 minutes. CHX alone depleted Nrf2 protein over a time period of 60 

minutes giving it a half-life of approximately 18 mins. This is consistent with the 

findings of other studies (Nguyen et al., 2003). However, given that CDDO-Me had 

no effect on the level of Nrf2 mRNA and did not stabilize the Nrf2 mRNA, as the co-

treatment of CDDO-Me with actinomycin D failed to increase the half-life of Nrf2 

mRNA, these all point towards a post-transcriptional mechanism by which CDDO-

Me stimulates Nrf2 accumulation.   
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It is plausible that CDDO-Me could be stabilizing Nrf2 protein by inhibiting its 

proteasomal degradation. However, when the ability of CDDO-Me to inhibit the 

human 20S proteasome was examined in vitro, the data showed CDDO-Me to have 

no significant effect on the proteasomal catalytic activities in vitro. Despite this 

result indicating that CDDO-Me does not inhibit the 20S proteasome in vitro, it is 

not conclusive enough to say CDDO-Me does not induce Nrf2 through this pathway, 

since it was examined in an in vitro system. Indeed, CDDO-Me could be metabolised 

in cells and the resulting metabolites might act as inhibitors of proteasomal 

activation.  

Studies have suggested CDDO-Me and its derivatives induce Nrf2 through various 

mechanisms including the modification of Keap1 at critical cysteine residues 

although direct evidence is lacking (Dinkova-Kostova et al., 2005; Ahn et al., 2010; 

Takaya et al., 2012). However, recent findings in our laboratory indicate that a 

chemically-tuned derivative of CDDO-Me modifies Keap1 in vitro and in cells. 

Therefore, triterpenoids are capable of directly modifying Keap1, although the 

mechanistic link between this and the activation of Nrf2 remains to be elucidated 

(data to be presented in the thesis of Holly Bryan). 

It was also examined whether CDDO-Me stabilises Nrf2 protein through the 

modulation of intracellular signalling pathways implicated in the regulation of Nrf2 

signalling, such as p38 (Keum et al., 2006), PI3K (Nguyen et al., 2003), MAPK/ERK 

(Nguyen et al., 2003; Yuan et al., 2006), JNK (Yuan et al., 2006) and PERK (Cullinan et 

al., 2003). The data demonstrated that CDDO-Me did not activate the mitogen-

activated protein kinase p38, stress activated protein kinase JNK 1/2 and 

Phosphoinoside 3-kinase AKT within the time frame of Nrf2 accumulation. Using a 

panel of inhibitors of different signalling pathways such as GF109203X, U0126, 

Rapamycin, PP2 and Cyclosporin A, CDDO-Me still induced the activation of Nrf2 in 

the presence of these inhibitors. Although several studies have reported the 

modulation of some of these signalling pathways by CDDO-Me (Liby et al., 2006; 

Ahmad et al., 2006; Yore et al., 2006; Ji et al., 2006; Suh et al., 2003; Wu et al., 

2011), experimental differences should be noted, mostly with regard to the 

concentrations used (µM) which is higher than the nM concentrations that 
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provoked the maximum induction of Nrf2 here. In addition, the exposure time could 

also influence the biological effects of CDDO-Me in cells.  

Taken together, whilst the data described here has furthered our understanding of 

the mechanisms that underlie the ability of CDDO-Me to induce Nrf2 in hepatoma 

cells, further information regarding the mechanism of action of CDDO-Me is needed 

to allow its potency and efficacy to be optimised for experimental and clinical use. 

Such insights will inform the design of safe and potent inducers of Nrf2 which hold 

promise as therapeutic agents in a number of disease contexts.  
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5.1 INTRODUCTION 

Nrf2 has been shown to contribute to a number of diverse cellular processes other 

than cell defence, such as differentiation, proliferation and lipid metabolism 

(Kitteringham et al., 2010; Bryan et al., 2013). In doing so, Nrf2 promotes the 

maintenance of cellular homeostasis under stress conditions, coordinating repair 

pathways in an attempt to return the cell to basal conditions. Transgenic Nrf2 

knockout mice experience enhanced susceptibility to various drug-induced toxicities 

(McMahon et al., 2001; Ramos-Gomez et al., 2001; Cho et al., 2002)  supporting the 

notion that Nrf2 has various roles in the pathogenesis of various diseases such as 

neurodegeneration (Valko et al., 2007; Bryan et al., 2013).  

In recent years, studies have seen the involvement of Nrf2 in the pathogenesis of 

various diseases and how the manipulation of this pathway could be a therapeutic 

strategy in alleviating symptoms and potentially curing the disease of interest. This 

has led to the screening of many naturally occurring phytochemicals with proven 

cancer chemopreventive abilities (Wolf, 2001). Notably, most of these compounds 

are also potent Nrf2 inducers such as sulforaphane, resveratrol (Kensler et al., 2000; 

Kode et al., 2008)  and triperpenoid CDDO and CDDO derivatives (CDDO-Im and 

CDDO-Me). These amongst many other Nrf2 inducers have shown potency in 

several disease settings like diabetes and cancer (Bernstein et al., 2012; Deeb et al., 

2012b; Qin et al., 2013). Whether there is a direct link between Nrf2 activation and 

cancer prevention is yet to be fully elucidated. 

Interestingly, despite various findings showing the roles of Nrf2 in 

chemoprevention, there is mounting evidence to suggest that a variety of cancer 

cell types harbour a constitutive upregulation of the Nrf2 pathway, driving 

enhanced proliferation and chemoresistance (Ikeda et al., 2004; Singh et al., 2006; 

Wang et al., 2008; Lister et al., 2011).  In this respect, Nrf2 seems to play a dual role 

by protecting cells from cancer promoting and chemotherapeutic agents (For a 

review see (Copple, 2012). Mutations within the Keap1 or Nrf2 genes have been 

identified in the domains responsible for protein dimerisation, resulting in de-

regulation of Nrf2 by Keap1, thus high basal levels of Nrf2 in cancerous 
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environments (Padmanabhan et al., 2006; Ohta et al., 2008). A study by Kim et al., 

2007 showed the upregulation of Nrf2 and Prx1 in conditions of hypoxia, which is 

typical of a tumour microenvironment (Kim et al., 2007). Wang et al, 2008 also 

showed Nrf2 is expressed at the stage II and stage III of three cancer cell lines 

(neuroblastoma SH-SY5Y, breast adenocarcinoma MDA-MB-231 and non-small cell 

lung carcinoma A549), thus enhancing their chemoresistance to cisplatin, 

doxorubicin and etoposide (Wang et al., 2008). 

Therefore, an ability to modulate the activity of the Nrf2 pathway, through 

pharmacological inhibition of the transcription factor, holds promise as a 

therapeutic strategy in cancer settings. Studies on silencing Nrf2 or over-expressing 

Keap1 to reduce the basal levels of Nrf2 have shown positive results in overcoming 

chemoresistance in cultured cells (Cho et al., 2008; Kim et al., 2008). The effect is 

reversed when Nrf2 is over expressed, increasing resistance in various cancer cells 

(Wang et al., 2008; Homma et al., 2009; Zhang et al., 2010). 

The quassinoid brusatol, is a drug isolated from the plant Brucea javanica (Mata-

Greenwood et al., 2002) which has been shown to be a selective inhibitor of the 

Nrf2 pathway in various cell lines such as HeLa, MDA-MB-231 and Ishikawa and 

proven effective in reducing chemoresistance (Ren et al., 2011). Brusatol showed 

specificity for the Nrf2 pathway as it had no effect on a panel of key modulators of 

various pathways including NF-kB and apoptotic pathways (Ren et al., 2011). 

Brusatol sensitized A549 xenografts to cisplatin and this drug combination initiated 

apoptosis and reduced cell growth and tumour size significantly more than the 

individual drugs alone. Ren et al., 2011 proposed that brusatol inhibits Nrf2 through 

enhanced ubiquitination and proteasomal degradation (Ren et al., 2011) however 

its mechanism of action in this respect is yet to be fully elucidated. 

Therefore, the aim of the work described in this chapter is to provide in vitro 

insights into the molecular mechanism of Nrf2 inhibition by brusatol in mouse 

Hepa-1c1c7 hepatoma cells.  
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5.2 RESULTS 

5.2.1 Brusatol inhibits Nrf2 in a dose- and time-dependent manner 

In order to determine the optimal conditions of Nrf2 inhibition by brusatol, 

Hepa1c1c7 cells were treated with brusatol across a range of doses and incubation 

times, and the levels of Nrf2 protein in the cell lysates were determined by 

immunoblotting with an anti-Nrf2 antibody.  It was observed that brusatol reduces 

the basal level of Nrf2 protein in Hepa1c1c7 cells in a dose-dependent manner with 

Nrf2 levels reduced to below the limit of detection following treatment with 100 

nM brusatol for 2 hours (figure 5.1a). Interestingly, levels of Nrf2 protein were no 

lower following 24 hours treatment however protein levels follow the same pattern 

across the high doses at both time points (figure 5.1b) 

Time course experiments show that treatment with 300 nM brusatol reduced Nrf2 

levels to below the limit of detection of the assay within 30 minutes. Subsequently 

Nrf2 levels were restored at 4-8 hours post-treatment with 300 nM brusatol, 

following which Nrf2 levels reached basal levels (figure 5.1c) 
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Figure 5.1 – Depletion of Nrf2 in Hepa1c1c7 cells exposed to brusatol. Nrf2 levels in total 

cell lysates prepared from Hepa1c1c7 cells treated with the indicated concentrations of  

brusatol for 2 (A) or 24 hours (B) or with 300 nM for the indicated times (C) as determined 

by western blotting. The blots shown are a representative of three independent experiments 

and quantified by densitometry. The average Nrf2 values of the three independent 

experiments were plotted after normalization with actin + SD. Statistical analysis was 

performed using an unpaired t-test (*P<0.05 vs. Vehicle or 0 h control). 
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5.2.2 Decreased Levels of Nrf2 regulated genes in cells treated with brusatol 

To determine whether the depletion of Nrf2 protein by brusatol is functionally 

relevant, the mRNA levels of a panel of Nrf2-regulated genes was determined by 

real time-PCR following the treatment of Hepa1c1c7 cells with 300 nM brusatol for 

up to 24 hours. Total RNA was extracted following brusatol treatment and the cDNA 

was analysed by quantitative RT-PCR using oligonucleotide primers specific for 

Nqo1 and Gclm. The levels of Gapdh mRNA were measured as a loading control to 

normalise the data. It was shown that the reduction in Nrf2 protein levels following 

brusatol treatment does in fact translate to a reduction in mRNA of downstream 

genes indicating a perturbed cell defence response (figures 5.2a-b)  
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Figure 5.2 – Brusatol reduced mRNA levels of Nrf2 downstream target genes. Hepa1c1c7 

cells were treated with 300 nM brusatol for the indicated times, total RNA was isolated and 

the cDNA was synthesized. The cDNA was subjected to quantitative RT-PCR analysis, using a 

primers specific for Nqo1, Gclm and Gapdh. The average Nqo1 and Gclm mRNA levels were 

plotted after normalization with Gapdh mRNA levels + SD (A-B). Statistical analysis was 

performed using an unpaired t-test (*P<0.05, **P<0.01, ***P<0.001 vs. 0 h control).  

 

5.2.3 Brusatol can stimulate the depletion of pharmacologically induced Nrf2  

Given the ability of brusatol to reduce basal Nrf2 levels, and the potential 

therapeutic value of Nrf2 inhibitors in cancer cells exhibiting constitutively high 

levels of Nrf2, we decided to determine whether brusatol can deplete 

pharmacologically induced Nrf2. To investigate this, cells were treated with the 

small molecule Nrf2 inducers, CDDO-Me, N-ethylmaleimide and iodoacetamide. 

Specifically, Hepa1c1c7 cells were pre-treated with 300 nM brusatol for 2 hours 

before being exposed to CDDO-Me (figure 5.3a) or N-ethylmaleimide (figure 5.3b) 

or iodoacetamide (figure 5.3c) for 1 hour and the level of Nrf2 protein in the cell 

lysates was determined by immunoblotting. Brusatol inhibited the ability of the 

small molecules to induce Nrf2. 
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Additionally, cells were pre-treated with CDDO-Me for 1 hour prior to treatment 

with brusatol to determine whether brusatol can clear pharmacologically induced 

Nrf2 levels. Brusatol was able to attenuate the induction of Nrf2 seen with CDDO-

Me, significantly reducing the maximal increase in Nrf2 seen with this compound 

(figure 5.3d).  

To determine whether brusatol was preventing CDDO-Me from inducing Nrf2 due 

to a chemical interaction that may occur outside the cells, cells were washed with 

DMEM media following CDDO-Me pre-treatment for 1 hour before brusatol was 

added. Following the removal of CDDO-Me, there was an induction of Nrf2 protein 

in Hepa1c1c7 cells, however, as seen in the previous results, brusatol depleted the 

induced levels of Nrf2 (figure 5.3e) implying that brusatol-mediated depletion of 

CDDO-Me-induced Nrf2 is not due to a chemical interaction between the two small 

molecules.   
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(A) 

 

(B) 
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(C) 

 

(D)  
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(E) 

 

Figure 5.3 Brusatol inhibits the pharmacological induction of Nrf2. Nrf2 protein levels in 

whole cell lysates prepared from Hepa1c1c7 cells pretreated with 300 nM Brusatol for 2 

hours respectively and then treated with the indicated concentrations of CDDO-Me (A) N-

ethylmaleimide (B) or Iodoacetamide for 1 hour (C). Nrf2 protein levels in total cell lysates 

from Hepa1c1c7 cells pre-treated with 100 nM CDDO-Me for 1 hour followed by 300nM 

brusatol for 2 hours (D). Nrf2 protein levels in Hepa1c1c7 cells pre-treated with 100 nM 

CDDO-Me for 1hour, washed with DMEM and then treated with 300 nM brusatol for 2 hours 

(E). The blots shown are a representative of three independent experiments and quantified 

by densitometry. The average Nrf2 values of the three independent experiments were 

plotted after normalization against actin + SD. Statistical analysis was performed using an 

unpaired t-test (*P<0.05, **P< 0.01 vs. CDDO-Me, IAA or NEM alone). 

 

 

 



 

116 
 

5.2.4 Brusatol-mediated inhibition of Nrf2 is not associated with a reduction in 

cell viability 

Using a cell viability assay, it was determined that Nrf2 levels were not being 

reduced due to brusatol provoking cell death. This experiment confirmed that 2 

hours of treatment with brusatol from 0-1 μM was not toxic to the cells when 

compared to 2% Triton X 100 that showed a significant reduction in cell viability. 

However at higher concentrations of brusatol, toxicity was observed after 24 hours 

(figure 5.4a). It was also confirmed that treatment with both CDDO-Me and brusatol 

simultaneously was not causing any significant cell death (figure 5.4b). 

 

(A) 
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(B) 

 

Figure 5.4 - Hepa1c1c7 cell viability following exposure to brusatol – ATP levels were 

measured in Hepa1c1c7 cells treated with the indicated concentrations of brusatol for 2 or 

24 hours (A) or pre-treated with 100 nM or 300 nM Brusatol for 3 hours and 2 hours 

respectively, followed by exposure to the indicated concentrations of CDDO-Me for 1 hour 

(B). 2 % (w/v) triton X 100 (TX100) was used as a positive control. ATP levels are expressed 

as a percentage of those measured in vehicle exposed cells + SD. Statistical analysis was 

performed using an unpaired t-test (*P<0.05, **P< 0.01 vs. Vehicle control). 

 

5.2.5 Brusatol sensitizes cells to chemical stress 

Due to an increasing body of evidence highlighting the role of elevated levels of 

Nrf2 in chemo-resistance, and the ability of brusatol to reduce constitutive and 

induced Nrf2 levels, it was of interest to determine if brusatol could sensitize cells 

to the toxicity provoked by chemical stressors. To investigate this, Hepa1c1c7 cells 

were pretreated with 300 nM brusatol for up to 24 hours and then treated with 

DNCB or IAA for 6 hours or NAPQI for 12 hours. The toxicity of the compounds was 

determined using the ATP assay (figures 5.5a-d). Brusatol significantly sensitized 

Hepa1c1c7 cells to the stress generated by DNCB, IAA, NEM and NAPQI in both a 

concentration and time-dependent manner (figures 5.5a-d). 
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(C)  

 

Figure 5.5 – Brusatol sensitizes cells to chemical stress- ATP levels were measured in 

Hepa1c1c7 cells treated with 300 nM brusatol 8,12,20 and 24 hours before being treated 

with the indicated concentrations of (A) DNCB for 6 hours (B) Iodoacetamide for 6 hours (C) 

NAPQI for 12 hours. ATP levels are expressed as a percentage of those measured in vehicle 

exposed cells + SD. Statistical analysis was performed using an unpaired t-test (*P<0.05, 

**P< 0.01 vs. Vehicle control). 

 

5.2.6 Brusatol depletes Nrf2 in primary human hepatocytes 

In light of the ability of brusatol to deplete Nrf2 in vitro and in vivo (Ren et al., 

2011), it was of interest to determine its ability to inhibit the Nrf2 pathway in 

primary human cells. To do this, freshly isolated human hepatocytes were pre-

treated with CDDO-Me, a potent Nrf2 inducer for 1 hour prior to treatment with 

brusatol. Brusatol depleted CDDO-Me induced Nrf2 protein in the cell lysates, as 

determined by immunoblotting (figure 5.6). Brusatol also prevented the induction 
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of Nqo1 by CDDO-Me in primary human hepatocytes indicating that the inhibition 

of Nrf2 was functionally relevant (figure 5.6). 

 

Figure 5.6 – Brusatol depletes Nrf2 in primary human hepatocytes. Nrf2 levels in total cell 

lysates prepared from isolated primary human hepatocytes pre-treated with 100 nM CDDO-

Me for 1 hour before being treated with 100 nM brusatol for the indicated times. Primary 

human hepatocytes treated with Mg132 for 2 hours were used as a positive control. The 

blots shown are a representative of independent experiments utilising cells from 4 different 

donors and quantified by densitometry. The average Nrf2 values of the four independent 

experiments were plotted after normalization with actin + SD. Statistical analysis was 

performed using an unpaired t-test (*P<0.05 vs. CDDO-Me alone). 
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5.2.7 Brusatol has a high specificity for the Nrf2 pathway and not a universal 

protein synthesis inhibitor 

In light of the above data demonstrating the ability of brusatol to inhibit Nrf2 

signalling in different mammalian test systems, it was of interest to test whether 

brusatol was a universal protein synthesis inhibitor or it has a high specificity for the 

Nrf2 pathway. To do this, Hepa1c1c7 cells were treated with brusatol for up to 8 h 

and the levels of short-lived proteins cyclin A and HIF-1α, in the cell lysates were 

determined by immunoblotting with an anti-cyclin A and anti-HIF-1α antibodies.  It 

was observed that brusatol does not reduce the basal level of cyclin A and HIF-1α 

proteins in Hepa1c1c7 cells in a time-dependent manner (figure 5.7). Thus, brusatol 

has a high specificity for the Nrf2 pathway and that it is not a universal protein 

synthesis inhibitor as it had no effect on these proteins tested here at nanomolar 

concentrations of brusatol. 

 

Figure 5.7 – Brusatol is not a universal protein synthesis inhibitor. Cyclin A and HIF-1α 

protein levels in total cell lysates prepared from Hepa1c1c7 cells treated with 300 nM for 

the indicated times as determined by western blotting. The blots shown are a representative 

of three independent experiments and quantified by densitometry.  
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5.2.8 Uptake and cellular stability of brusatol 

5.2.8i Development/Optimisation of LC-MS and LC-MS/MS methods for analysing 

brusatol 

The findings of this chapter showed that the time-dependent reduction of Nrf2 

protein levels occurred in a reversible manner. It was therefore of interest to 

investigate the uptake and cellular stability of brusatol. This could give a further 

insight into understanding the transient nature of brusatol-mediated depletion of 

Nrf2, which was possibly due to instability of the parent drug as a result of 

metabolism to one or more inactive metabolites. To investigate this, a mass 

spectrometric analysis of the uptake and stability of brusatol was developed (figure 

5.8b).  100 µg/mL brusatol was incubated in cell culture medium containing phenol 

red +/- FCS over 24 hours under standard incubation conditions of 37 oC and 

O2/CO2. Aliquots of the incubation mixture were deproteinised with ice-cold ACN 

(1:1) and analysed by LC-MS (Q1). 100 µg/mL of brusatol (Rt 17 min) yielded an 

abundant protonated molecule ([M+H]+) at m/z 521 (figure 5.8b-c). There was 

evidence of partial (ca 15%) hydrolysis of brusatol (m/z 521) to its putative 

carboxylic acid (m/z 507) in cell culture medium (± FCS) over 24 hours under 

standard incubation conditions of 37oC under 02/CO2 (figure 5.8b-c). However, no 

evidence of protonated molecule ([M+H]+) at m/z 521 or partial hydrolysis m/z 507 

were seen in aliquots of cell culture medium alone or with the vehicle (DMSO) 

incubated in cell culture medium at 0 and 24 hours confirming that the observed 

peaks seen with brusatol is due to the presence of the parent compound only 

(figure 5.8d-e). In addition, bruceine D (Rt 8 min) yielded corresponding ions at m/z 

411 and m/z 433, respectively (figure 5.8f). 
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Figure 5.8 - Development of LC-MS/MS methods for analysing brusatol. The molecular 

structure of brusatol (A). LC–MS/MS chromatograms showing the presence/absence of 

brusatol (m/z 521; retention time, 17 min), brusatol carboxylic acid (m/z 507; retention 

time, 14 min) or brucein D signal (m/z  433; retention time, 8 min) by co-eluting materials 

extracted from brusatol incubated in cell culture medium alone (B) brusatol incubated in cell 

culture medium + FCS (C) DMSO incubated in cell culture medium + FCS (D) cell culture 

medium alone (E) brusatol and brucein D incubated in cell culture medium + FCS (E) at a 

concentration of 100 µg/mL brusatol, 100 µg/mL or DMSO vehicle alone. 
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5.2.8ii Analysis of brusatol stability in incubations of Hepa1c1c7 cells  

To check if the same results were observed under cellular conditions, brusatol (10 

µg/mL) was incubated with triton X-100 lysed Hepa1c1c7 cells for a time period up 

to 24 hour under standard incubations. 50 µg/mL brucein D was added to the 

supernatant as internal standard (IS), and aliquots were deproteinised with ice-cold 

ACN (1:1) before being analysed by LC-MS (Q1). Brusatol (Rt 17 min) yielded an 

abundant protonated molecule ([M+H]+) at m/z 521  while bruceine D (Rt 8 min) 

yielded a corresponding ion at m/z 411 (figure 5.9a) with lysed Hepa1c1c7 cells at 1 

hour of incubation time (figure 5.9a).  At 24 hour time point, similar peaks were 

yielded, but no obvious hydrolysis of 10 µg/mL brusatol (m/z 521) to its putative 

carboxylic acid (m/z 507) was seen with lysed Hepa1c1c7 cells as had been observed 

with the 100 µg/mL brusatol incubated in cell medium alone (figure 5.9b). This may 

have been due to the concentration of the 10 µg/mL brusatol used instead of the 

100 µg/mL used earlier or was possibly due to the method of lysing the cells. To 

investigate the result seen with the triton X 100 lysed Hepa1c1c7 cells, the same 

experiment was repeated with Hepa1c1c7 cells lysed by sonication and incubated 

with 10 µg/mL brusatol, using brucein D as the internal standard. Similar results 

were observed (figure 5.9c), with no evidence of the carboxyl brusatol metabolite. 

To investigate whether the transient nature of Nrf2 depletion caused by brusatol 

was due to the instability of the parent compound, a time-course analysis of 10 

µg/mL brusatol incubated with Hepa1c1c7 cells lysed by sonication in the cell 

culture medium under standard conditions was performed. 50 µg/mL bruceine D 

was added to the supernatant as internal standard (IS), and aliquots of the 

incubation were deproteinised with ice-cold ACN (1:1) and analysed by LC-MS (Q1). 

Analyte [M+H]+ peak areas were integrated and the ratio of brusatol:IS was 

analysed at each time point (figure 5.9d). The results showed that brusatol was 

stable over time until 24 hour when there was a decline in the relative peak area 

(figure 5.9d). However, it should be noted that the brucein D peak was unstable 

over the 24 hour time period indicating that further work is needed to confirm the 

findings seen with brusatol. Overall, these results suggest that the rapid loss of Nrf2 

inhibition caused by brusatol in Hepa1c1c7 cells (0.5-2 h) is probably not due to 
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metabolism of the parent compound to an inactive derivative. Thus, the short-lived 

inhibition of Nrf2 by brusatol is still unexplained and requires further investigation.  
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Figure 5.9 - Analysis of brusatol stability in incubations of Hepa1c1c7 cells. LC–MS/MS 

chromatograms showing the presence/absence of brusatol (m/z 521; retention time, 17 

min), brusatol carboxylic acid (m/z 507; retention time, 14 min) or brucein D signal (m/z  

433; retention time, 8 min) by co-eluting materials extracted from lysed Hepa1c1c7 cells 

treated with 10µg/mL brusatol for 1 h (A) or 24 h (B), sonicated Hepa1c1c7 cells treated 

with 10 µg/mL brusatol for 24 h (C). Q1 peak areas of 10 µg/mL brusatol incubated with 

sonicated Hepa1c1c7 (D). 50 µg/mL brucein D was used as IS. 
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5.3 Discussion 

The naturally occurring quassinoid brusatol, one of few known inhibitors of Nrf2, 

has proven anti-tumour, anti-viral and anti-inflammatory activities (Hall et al., 1983; 

Yan et al., 2010; Zhao et al., 2011a). Consistent with the findings of Ren et al, 

brusatol has a high specificity for the Nrf2 pathway and it is not a universal protein 

synthesis inhibitor as it had no effect on a panel of proteins tested here and those in 

the study of Ren et al., at nanomolar concentrations of brusatol. However, at 

micromolar concentrations, it was seen to be a general protein synthesis inhibitor 

(Willingham et al., 1981; Willingham et al., 1984). The importance of this compound 

as an inhibitor of Nrf2 has previously been highlighted by its use to augment the 

pharmacological activity of known chemotherapeutic agents in models of drug-

resistant cancer (Ren et al., 2011).  

The aim of this chapter was to provide in vitro insights into the ability of brusatol to 

mediate Nrf2 inhibition in mouse Hepa-1c1c7 hepatoma cells. Brusatol evoked both 

concentration and time -dependent, yet transient, depletion of basal and inducible 

protein levels of Nrf2 (Figure 5.1 and 5.3). In addition, brusatol also reduced the 

mRNA levels of the Nrf2 targets Nqo1, and Gclm further indicating its inhibitory 

effect on the Nrf2 pathway. 

Studies have highlighted the role of Nrf2 in conferring protection against the 

deleterious effects of oxidative stress and other insults generated by electrophiles 

(Copple et al., 2008b). This is of particular interest in cancer settings as recent 

investigation into the roles that Nrf2 may play in cancer have shown that a number 

of cancer cells- both primary and immortalised cell lines- contain constitutively high 

Nrf2 levels. This up-regulation has been shown to enhance cell proliferation and 

confer a degree of chemo-resistance (Lister et al., 2011). 

Hence, various researchers have focused on developing a therapeutic strategy by 

the use of the combination approaches in which the knock-down of Nrf2 sensitizes 

cells to the action of chemotherapeutic drugs (Cho et al., 2008; Kim et al., 2008). 

Silencing of Nrf2 using siRNAs has also been shown to sensitize cells to oxidative 

stress and other chemical insults (Chia et al., 2010). Therefore the use of brusatol 
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alongside chemotherapy could reduce Nrf2 levels in the cell allowing the active 

compound to take advantage of the compromised cell defence situation of the 

cancer cell. In line with this, brusatol was able to sensitize cells to oxidative stress 

induced by various electrophiles (DNCB, IAA and NAPQI) in a time-dependent 

manner, thus highlighting the role of Nrf2 in cytoprotection. 

Depletion of Nrf2 by brusatol was associated with a decrease in expression of the 

classic Nrf2 targets Nqo1 and Gclm. A small number of studies have seen a 

correlation between an increase in drug transporters like Mrps and other Nrf2-

regulated genes like Gclc and chemo-resistance as observed in cancer settings 

(Wang et al., 2010; Mahaffey et al., 2012; Siegel et al., 2012). It is plausible that 

brusatol may be reducing the drug transporters and other associated proteins, 

thereby sensitizing cancer cells to chemotherapy but this requires further 

investigation. 

Thus, it is of interest to develop small molecule inhibitors of Nrf2 as the genetic 

prolonged down-regulation of Nrf2 may initiate compensatory mechanisms due to 

the cells reacting to the reduction in Nrf2 levels and attempting to restore cell 

homeostasis, making the interpretation of data more complex and more difficult to 

understand.  

It was observed that the inhibitory effect of brusatol on the Nrf2 pathway is 

reversible, and Nrf2 quickly recovers to basal levels after treatment with brusatol, 

which is consistent with findings of Ren et al. (2011). A recovery of Nrf2 protein 

levels was observed using Hepa1c1c7 cells after 2-4 hours of exposure to brusatol. 

In line with the study of Ren et al, where brusatol was removed after 4 hours of 

incubation, the same effect of recovery was observed in this study using Hepa1c1c7 

cells pretreated with brusatol without the removal of brusatol from the cell culture. 

There are three possible explanations for the recovery of Nrf2 levels. First, it could 

be by a natural regulatory process, which accelerates selectively the reading rate of 

Nrf2 mRNA, perhaps via a de-repression mechanism resulting in an increase of Nrf2 

synthesis that counterbalances the enhanced degradation of Nrf2. Secondly, 

brusatol could be removed actively. It might be eliminated or bioinactivated by 
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metabolism processes. Lastly, if the second process is true i.e. brusatol being 

metabolised, the resulting metabolites might act as antagonists of Nrf2 

ubiquitination.  

As seen from section 5.2.8, there was evidence of partial (ca 15%?) hydrolysis 

of brusatol (m/z 521) to its putative carboxylic acid (m/z 507) in cell culture medium 

(± FCS) over 24 hours under standard incubation conditions. However, under 

cellular conditions using both Triton-x lysed cells and cells lysed by sonication, no 

evidence of hydrolysis was observed. This could be the result of the ten-fold 

difference from a concentration of 100 µg/mL used in cell culture condition to 10 

µg/mL under cellular conditions. Notably, the hydrolysis observed was seen at the 

24 hour time point after which the recovery of Nrf2 had occurred at earlier time 

points of 2-4 hours of drug incubation. In addition, a time-course analysis of 10 

µg/mL brusatol stability under cellular conditions also showed that brusatol was 

stable up until 24 h. However, this might not be conclusive yet as the internal 

standard (brucein D) showed inconsistent reading over time. Nonetheless, the 

rapidity of suppression of Nrf2 levels by brusatol in Hepa1c1c7 cells (0.5-2 

h) suggests this effect is produced by the parent compound and the recovery in Nrf2 

is not due to metabolism of the parent compound, as the recovery time is not 

within the time frame within which Nrf2 protein has gone to the basal levels and 

beyond. Future work should aim to investigate enzymology by considering the 

following Phase I pathways: hydrolysis of one or both of the ester linkages, 

hydrolysis of the lactone ring, reduction of one or both of the carbonyl functions, 

reduction of the enol function, dehydrogenation of one or both of the secondary 

alcohol functions, hydroxylations yielding primary or secondary alcohol functions 

and dehydrogenation of the dihydrodiol function. Furthermore, irrespective of 

whether brusatol undergoes metabolism in Hepa1c1c7 cells, analysis of brusatol 

stability in incubations of freshly isolated mouse/human hepatocytes should be 

considered as this will shed more insight into the safety aspects of the drug under 

clinical use.  

Therefore, the recovery of Nrf2 seen with brusatol could be as a result of a natural 

regulatory process as indicated above which is discussed in the next chapter or a 



 

132 
 

novel mechanism, which will require further investigation. Future investigations 

should aim to better understand the chemical and molecular mechanisms that 

underlie the transient nature of Nrf2 inhibition provoked by brusatol. Such 

knowledge may allow chemical optimisation to generate analogues that have a 

long-lasting effect and overcoming the need to undertake repeated dosing to 

achieve a desired pharmacological effect.  

Gaining further information regarding the pharmacology of brusatol will be of the 

utmost importance in terms of drug safety science, given its apparent value as a 

pharmacological and biochemical tool. Currently there are few small molecule 

compounds available to specifically and significantly reduce Nrf2 levels in the cell. 

Leutolin has been shown to inhibit Nrf2 in human a549 lung cancer cells (Tang et al., 

2011) but there has been discrepancies as to how specific it is in inhibiting Nrf2, as a 

study also saw an opposite effect where the Nrf2 pathway was induced at the same 

micromolar concentrations tested in both systems (Sun et al., 2012). This is also 

true for another Nrf2 inhibitor 4-methoxychalcone described recently (Lim et al., 

2013). In addition, trigonelline has also been shown to be an inhibitor or Nrf2 in 

pancreatic cancer cell lines and sensitize these cells to chemotherapeutic drugs (Arlt 

et al., 2013).  

Other means to inhibit Nrf2 include the use of targeted siRNA, however this comes 

with its own caveats such as the toxicity of Lipofectamine used to transfect cells. 

Therefore the ability to deplete Nrf2 in a timely manner with a pharmacological 

agent will be invaluable in the study of the role of Nrf2 regarding cytoprotection in 

vitro and in vivo. Brusatol could also be used alongside siRNA experiments to 

confirm observations seen in the absence of Nrf2. In this case, it is important to 

note that brusatol had minimal effects within the cell and caused minimal toxicity. 

This will be of immense use when translated to the use of brusatol in clinical 

patients. Additionally, the depletion of Nrf2 in cells using brusatol could give 

insights into the mechanism of action of other compounds, which may work via 

Nrf2. 



 

133 
 

By further defining the pharmacological effects of brusatol on the Nrf2 pathway, 

brusatol could be developed into therapies where the inhibition of Nrf2 is needed. 

This may also reveal novel aspects of regulation within this important cellular 

pathway, and inform the design of new pharmacological inhibitors, which hold 

promise as therapeutic agents, particularly in the treatment of cancer. 
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CHARACTERIZATION OF THE MECHANISM OF 

ACTION OF BRUSATOL 
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6.1 INTRODUCTION 

The findings of the previous chapter and those of a study by Ren et al., 2011 have 

shown that brusatol selectively inhibits the Nrf2 pathway and sensitizes cells to the 

cytotoxic effects of chemotherapeutics drugs like cisplatin (Ren et al., 2011) and 

model electrophiles in mammalian cells. Brusatol therefore holds promise as a 

novel therapeutic tool in disease settings where inhibition of Nrf2 is desirable e.g. to 

overcome chemoresistance in cancer.  

The mechanism of action of brusatol has yet to be fully characterized. Ren et al., 

2011 proposed that brusatol inhibits Nrf2 by enhancing its ubiquitination and 

degradation but this requires further clarification (Ren et al., 2011). A more detailed 

understanding of the chemical and molecular mechanisms that underlie the ability 

of brusatol to inhibit Nrf2 would provide an opportunity to design and develop 

alternative small molecule inhibitors for use in experimental and, potentially, 

clinical settings. 

In this chapter, in vitro insights are provided into the mechanism of action of Nrf2 

inhibition by brusatol in mouse Hepa1c1c7 hepatoma cells.  
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6.2 RESULTS 

6.2.1 Brusatol inhibits Nrf2 post-transcriptionally 

To determine whether the decrease in Nrf2 protein expression with brusatol was 

due to an inhibition of the synthesis of Nrf2 protein, the levels of Nrf2 mRNA were 

measured. Total RNA was extracted from Hepa1c1c7 cells following exposure to 

brusatol for up to 24 h. The cDNA was then analysed by quantitative RT-qPCR using 

oligonucleotide primers specific for Nrf2 and Keap1. The level of Gapdh mRNA was 

used as a control to normalise the data. The mRNA levels of Nrf2 did not decrease 

within the early time points at which there was a depletion of Nrf2 protein 

following brusatol treatment (figure 6.1a & c); however, there was an increase in 

the Nrf2 mRNA level at later time points reaching a maximum between 4 to 8 h of 

exposure to brusatol (figure 6.1a). Indeed, Nrf2 protein was depleted to below the 

limit of detection of the western blotting assay within 30 minutes of exposure to 

brusatol, whilst the recovery of Nrf2 protein towards the resting level occurred after 

the significant increase in the level of Nrf2 mRNA as seen from the superimposition 

of the mRNA and protein data (figure 6.1d). This indicates that a mechanism via a 

reduction in the expression of Nrf2 mRNA is not responsible for the depletion of 

Nrf2 protein observed in Hepa1c1c7 cells following exposure to brusatol. In 

addition, the level of Keap1 mRNA did not change significantly following brusatol 

treatment (figure 6.1b); therefore an increase in Keap1-mediated Nrf2 degradation 

at the transcriptional level is unlikely to be responsible for the observed reduction 

in Nrf2 levels (figure 6.1b) 
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(D)  

 

Figure 6.1 - Brusatol reduces Nrf2 via a post-transcriptional mechanism. Hepa1c1c7 cells 

were treated with 300 nM brusatol for the indicated times, total RNA was isolated and the 

cDNA was synthesized. The cDNA was subjected to quantitative RT-PCR analysis using 

primers specific for Nfr2, Gapdh and Keap1. The average Nrf2 and Keap1 mRNA levels were 

plotted after normalization with Gapdh mRNA levels + SD (A-B). Nrf2 protein levels in total 

cell lysates prepared from Hepa1c1c7 cells treated with the 300 nM brusatol for the 

indicated times as determined by western blotting (C). Superimposition of Nrf2 protein 

expression and Nrf2 mRNA expression to brusatol treatment for up to 24 h (D). The blots 

shown are a representative of three independent experiments and quantified by 

densitometry. The average Nrf2 values of the three independent experiments were plotted 

after normalization with actin + SD. Statistical analysis was performed using an unpaired t-

test (*P<0.05, **P< 0.01). 
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6.2.2 Brusatol Inhibits Nrf2 independently of Keap1 and the proteasome 

Having determined that brusatol is capable of depleting basal and 

pharmacologically induced Nrf2 (chapter 5), it was hypothesised that it was doing so 

via increased proteasomal degradation of Nrf2, as this is one of the classical  

mechanisms whereby low cellular protein levels including Nrf2 are maintained in 

the cell (Nguyen et al., 2003). As Keap1 is responsible for targeting Nrf2 to the 

proteasomes, and an increase in Keap1 has been associated with a decrease in Nrf2 

(Zhang et al., 2004), Hepa1c1c7 cells were exposed to with brusatol for up to 2 

hours and the levels of Keap1 protein was analysed by immunoblotting. Keap1 

protein levels did not change following treatment with brusatol (figure 6.2a). 

Additionally, siRNA mediated knock down of Keap1 in Hepa-1c1c7 cells did not 

abrogate the ability of brusatol to inhibit Nrf2 (figure 6.2b), whilst Keap1 siRNA 

reduced cellular Keap1 protein levels significantly (figure 6.2b).  
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(B)   

 

Figure 6.2 - Brusatol depletes Nrf2 independently of Keap1. Keap1 protein levels in total 

cell lysates prepared from Hepa1c1c7 cells treated with 300 nM brusatol for the indicated 

times as determined by western blotting (A). Nrf2 and Keap1 protein levels in Hepa1c1c7 

cells transfected with 10 nM keap1-targeting siRNA or non-targeting control siRNA for 48 

hours followed by exposure to the indicated concentrations of brusatol for additional 2 

hours as determined by western blotting (B). The blots shown are a representative of three 

independent experiments and quantified by densitometry. The average Nrf2 values of the 

three independent experiments were plotted after normalization with actin + SD. Statistical 

analysis was performed using an unpaired t-test (*P<0.05, **P< 0.01).  

 

 

 

 

 



 

143 
 

6.2.3 Brusatol does not enhance the catalytic activities of the proteasome in vitro 

To investigate whether brusatol was able to activate Nrf2 degradation via the 

proteasome independently of Keap1, subunits of the human 20S proteasome and 

the fluorogenic peptide substrates Boc-LSTR-AMC (50µM), Suc-LLVY-AMC (50µM) 

and Z-LLG-AMC (400µM) corresponding to the trypsin, chymotrypsin and caspase-

like activities respectively were utilised to monitor the activities of the proteasome 

in the presence of brusatol for up to 8 hours in vitro. The hydrolysis of the 

fluoregenic substrates BOC-LSTR-AMC, Suc-LLVY-AMC and Z-LLG-AMC was 

measured at excitation 360 nm and emission of 460 nM (figure 6.3a). The findings 

demonstrate that brusatol does not enhance the catalytic activities of the 20S 

proteasome; hence the ability of brusatol to deplete Nrf2 appears to work via a 

process that does not involve the enhancement of the proteasomal degradation of 

Nrf2. As Nrf2 is rapidly degraded by the proteasome, cells treated with the 

proteasomal inhibitor MG132 showed marked Nrf2 accumulation (figure 6.3b). 

However, brusatol was able to abrogate the accumulation of Nrf2 provoked by 

MG132 (figure 6.3b). 

Taken together, this data suggests that brusatol does not alter the levels of Keap1 

(section 6.2.2) thus targeting Nrf2 for proteasomal degradation, nor does it activate 

the proteasome. Brusatol is also capable of reducing Nrf2 protein levels in 

conditions when the proteasome is inhibited. Therefore brusatol is able to clear 

basal and pharmacologically induced Nrf2 protein via a mechanism that is 

independent of Keap1 and the proteasome. 
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Figure 6.3 - Brusatol depletes Nrf2 independently of the proteasomal degradation 

pathway.  Proteasome activity assay showing the effect of the indicated concentration of 

brusatol and MG132 on the trypsin (Boc-LSTR-AMC), chymotrypsin (Suc-LLVY-AMC), and 

caspase (Z-LLE-AMC)-like activities of human 20S proteasome at the indicated times (A). 

Nrf2 protein levels in total cell lysates prepared from Hepa1c1c7 cells treated with the 

indicated concentrations of MG132 for 2 hours followed by 300 nM brusatol for a further 2 

hours, as determined by western blotting (B). The blots shown are a representative of three 

independent experiments and quantified by densitometry. The average Nrf2 values of the 

three independent experiments were plotted after normalization with actin + SD. Statistical 

analysis was performed using an unpaired t-test (*P<0.05, **P< 0.01). 
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6.2.4 Brusatol initiates the depletion of Nrf2 independently of the autophagy 

pathway 

Having determined that brusatol inhibits Nrf2 independently of Keap1 and the 

proteasome, alternative mechanisms of protein degradation were investigated. 

Recently, the Keap1/Nrf2 pathway has been linked with autophagy via the scaffold 

protein sequestosome/p62 which binds Keap1 targeting it for autophagic 

degradation (Copple et al., 2010). It was thus hypothesised that brusatol could 

promote the degradation of Nrf2 via this mechanism. To determine whether the 

decrease in Nrf2 protein expression was dependent on autophagy, Hepa1c1c7 cells 

were treated with brusatol for up to 2 hours and the levels of p62 protein were 

analysed by immunoblotting (p62 accumulation is indicative of a reduction in 

autophagy (Nezis et al., 2012)). p62 protein levels did not change following 

treatment with brusatol (figure 6.4a). Additionally, Hepa1c1c7 cells were treated 

with the autophagy inhibitors Bafilomycin A1 or Ammonium chloride (NH4Cl) for 16 

hours. Cells were then treated with 0, 100 or 300 nM brusatol for a further 2 hours. 

Autophagy inhibition was confirmed by the accumulation of p62 in cells exposed to 

Bafilomycin A1 and NH4Cl. In the presence of autophagy inhibitors, brusatol was still 

able to reduce Nrf2 protein levels (figure 6.4b). Therefore, these data indicate that 

brusatol does not activate the autophagic pathway as a means of depleting Nrf2 

protein. 

(A) 

 

 

 

 

 

 



 

147 
 

(B) 

 

Figure 6.4 - Brusatol decreases Nrf2 independently of the autophagic protein degradation 

machinery. p62 levels in total cell lysates of Hepa1c1c7 cells treated with 300 nM brusatol 

or DMSO for the indicated times, as determined by western blotting. HeLa cells expressing 

p62-FLAG were used a positive control for p62 protein (A) Nrf2 and p62 protein levels in 

total cell lysates of Hepa1c1c7 cells pretreated with 30 nM Bafilomycin A1, 10 mM 

Ammonium chloride (NH4Cl) or vehicle control (DMSO/H2O) for 16 hours to inhibit 

autophagy followed by treatment with the indicated concentration of brusatol for a further 

2 hours, as determined by western blotting (B). The blots shown are a representative of 

three independent experiments and quantified by densitometry. The average Nrf2 values of 

the three independent experiments were plotted after normalization with actin + SD. 

Statistical analysis was performed using an unpaired t-test (*P<0.05, **P< 0.01). 
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6.2.5 Brusatol clears Nrf2 independently of protease and caspases 

To determine whether the decrease in Nrf2 protein expression brusatol was 

dependent on the activation of proteases, Hepa1c1c7 cells were treated with a 

panel of protease inhibitors; AEBSF (serine), GM6001 (matrix metalloproteinase), 

Calpeptin (calpains), Pepstatin A (aspartyl peptidases), Bestatin Methyl Ester 

(aminopeptidase), E64D (thiol protease), ZVAD (caspases) or vehicle control 

(DMSO/H2O) for 1 hour. Cells were then treated with 300 nM brusatol for a further 

2 hours and the levels of Nrf2 protein were analysed by immunoblotting. Brusatol 

was able to deplete Nrf2 protein in the presence of the protease and caspase 

inhibitors (Figures 6.5a & b) both individually and in combination. Interestingly, 

E64D on its own was able to induce Nrf2 protein expression suggesting a role for 

cysteine proteases in the regulation of Nrf2 (Figures 6.5a&b). 

(A) 
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(B) 

 

Figure 6.5 - Brusatol does not deplete Nrf2 via proteases and caspases. Nrf2 protein levels 

in total cell lysates of Hepa1c1c7 cells pretreated with 250 µM AEBSF, 50 µM GM6001, 50 

µM Calpeptin, 50 µM Pepstatin Methly Ester, 50 µM Bestatin Methyl Ester, 50 µM E64D, all 

6 drugs combined, 50 µM ZVAD or vehicle (H2O/DMSO) for 1 h followed by 300 nM brusatol 

for 2 h as determined by immunoblotting (A-B). The blots shown are a representative of two 

independent experiments. 

 

6.2.6 Brusatol induces the phosphorylation of p38 MAPK, SAPK JNK 1/2 AND 

PI3K/AKT pathways, but the depletion of Nrf2 is independent of the activation of 

these pathways 

It was hypothesised that brusatol could be depleting Nrf2 via the modulation of 

kinase signalling pathways previously implicated in the regulation of Nrf2 (Bryan et 

al., 2013). To determine whether the depletion of Nrf2 provoked by brusatol was 

dependent on the modulation of these kinase signaling pathways, Hepa1c1c7 cells 

exposed to brusatol for up to 2 hours were analysed by western blot for 

phopshorylation of AKT-473, p38 MAPK, ERK1/2 MAPK and JNK1/2 SAPK.  In parallel 

with the depletion of Nrf2, brusatol provoked a marked increase in the 

phosphorylation of p38, AKT473, JNK1/2 and ERK1/2 (figure 6.6a). To test whether 

the activation of these kinases played a mechanistic role in the depletion of Nrf2, 

Hepa1c1c7 cells were pre-treated for 1 hour with the specific inhibitors SB203580 

(p38), LY294002 (AKT), SP600125 (SAPK) and U0126 (ERK1/2) before further 

treatment with brusatol and analysed by immunoblotting. Brusatol’s inhibitory 
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effect on Nrf2 was unaffected by the presence of these kinase inhibitors (figure 

6.6b-d). Recent studies have also shown the involvement of GSK-3β in the 

degradation of Nrf2 (Chowdhry et al., 2013), however brusatol’s inhibitory effect on 

Nrf2 was found to be independent of GSK-3β activity as brusatol still provoked the 

depletion of Nrf2 protein in the presence of GSK-3β inhibitor CT99021 (figure 6.6c). 

Taken together, the increase in the phosphorylation of AKT, p38, ERK1/2 and 

JNK1/2 provoked by brusatol does not appear to be an important element of its 

mechanism of action as an inhibitor of Nrf2. 

 

(A) 
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(C)  
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(D)  
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(E)  

 

Figure 6.6 - Brusatol depletes Nrf2 independently of the activation of protein kinase 

signalling pathways: Nrf2 and phospho-p38 MAPK, AKT, ERK1/2 and SAPK levels in the total 

cell lysates of Hepa1c1c7 cells treated with 300 nM brusatol for up to 2 hours as determined 

by immunoblotting (A). Nrf2 and phospho-Creb, AKT and SAPK in Hepa1c1c7 cells 

pretreated with the indicated concentration of SB203580, LY2940002, CT99021, SP600125 

or 5 µM for 1 h, before treatment with 300 nM brusatol for a further 2 hours as determined 

by immunoblotting (B-E). The average protein levels of the three independent experiments 

were plotted after normalization with actin + SD. Statistical analysis was performed using 

an unpaired t-test (*P<0.05, **P< 0.01). 
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6.2.7 Inhibition of Nrf2 by Brusatol may be partially dependent on calcium 

modulation 

It was further hypothesized that the brusatol-mediated decrease in Nrf2 may 

involve a calcium-dependent process as some biological processes depend on 

calcium regulation. To test this, Hepa1c1c7 cells were treated with the following: 

EGTA, an extracellular calcium chelator, for 15 minutes; A23187, a calcium 

ionophore for 20 minutes, BAPTA-AM, an intracellular calcium chelator, for 60 

minutes. Thereafter, cells were treated with 300 nM brusatol for 2 hours. Brusatol 

depleted Nrf2 protein in the presence of A23187 and EGTA (figure 6.7a). However, 

brusatol was unable to totally deplete Nrf2 in the presence of BAPTA-AM, 

suggesting the inhibition of Nrf2 by brusatol may be partly dependent on a calcium-

regulated process (figure 6.7a). Surprisingly, BAPTA-AM induced Nrf2 protein 

expression suggesting that a calcium-regulated process could also be regulating the 

basal level of Nrf2 (figure 6.7a). To further test BAPTA-AM’s ability to induce Nrf2, a 

time-course comparison between BAPTA-AM and the potent inducer of Nrf2, 

CDDO-Me was performed. BAPTA-AM induced Nrf2 transiently with induction seen 

by 0.5 hours and stabilized up until 2 hours, after which the level of Nrf2 returned 

to baseline (figure 6.7b). To further confirm whether brusatol’s mechanism of 

action is partially dependent on a calcium-regulated process, a time-course 

comparison between BAPTA-AM and CDDO-Me in the presence of brusatol was 

performed. Brusatol was less able to reduce the BAPTA-AM-induced Nrf2 protein 

compared to Nrf2 that had been induced by CDDO-Me (figure 6.7c). The diminished 

ability of brusatol to deplete Nrf2 in the presence of BAPTA-AM could be attributed 

to the fact that the increase in Nrf2 protein provoked by BAPTA-AM is transient 

compared to the sustained effect of CDDO-Me (figures 6.7b & c).  Taken together, 

this data suggests that brusatol-mediated degradation of Nrf2 could be partly 

mediated via a calcium-regulated process.  
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(A) 

 

(B) 
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(D) 

 

Figure 6.7 - Brusatol-mediated depletion of Nrf2 is partially dependent on the modulation 

of calcium signalling. Nrf2 protein levels in the total cell lysates of Hepa1c1c7 cells 

pretreated with 2.5 mM EGTA or 5 µM A23187 for 15 and 20 mins respectively, or 10 µg/mL 

aproptinin or 20 µM BAPTA-AM for 60 minutes followed by 300 nM brusatol treatment for a 

further 2 hours (A), or in Hepa1c1c7 cells treated with 20 µM BAPTA-AM or 100 nM CDDO-

Me or vehicle for the indicated times (B) or in Hepa1c1c7 cells pretreated with 20 µM 

BAPATA-AM or 100 nM CDDO-me  or vehicle for 60 minutes before the addition of 300 nM 

of brusatol for the indicated times (C) as determined by western blotting. The blots shown 

are a representative of three independent experiments and quantified by densitometry. The 

average Nrf2 values of the two independent experiments for the result present in C were 

plotted after normalization with actin (D). 
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6.3 Discussion 

The data presented in this chapter provides in vitro insights into the mechanism of 

Nrf2 inhibition by brusatol in mouse Hepa-1c1c7 hepatoma cells. As data from 

chapter 5 had shown that brusatol provoked both concentration and time -

dependent, yet transient, depletion of Nrf2, it was of interest to define the 

mechanism of action of this drug. Brusatol-mediated depletion of Nrf2 protein was 

found to be independent of changes in the level of Nrf2 mRNA, suggesting that 

brusatol works through a post-translational mechanism. Furthermore, the ability of 

brusatol to inhibit Nrf2 was not affected by siRNA depletion of Keap1 indicating that 

brusatol may by-pass the canonical mechanisms of Nrf2 regulation (Zhang et al., 

2004). Brusatol’s lack of dependence on Keap1 indicates its potential utility in 

disease contexts, particularly cancer, where Keap1-mediated repression of Nrf2 has 

been by-passed. Brusatol did not enhance the catalytic activities of the human 20S 

proteasome in vitro, and was able to induce the depletion of Nrf2 in the presence of 

the proteasome inhibitor MG132 and the autophagy inhibitors bafilomycin A1 and 

ammonium chloride. Additionally, brusatol was able to induce the depletion of Nrf2 

in the presence of various protease inhibitors. It should be noted that the 

concentration of protease inhibitors used here are consistent with those used 

routinely in the published literature. Further work is needed to confirm that the 

relevant proteases were indeed inhibited under the experimental conditions. 

Several intracellular signalling pathways such as p38 (Keum et al., 2006b), PI3K 

(Nguyen et al., 2003), MAPK/ERk (Yuan et al., 2006), JNK (Yuan et al., 2006), PERK 

(Cullinan et al., 2003)  have been implicated in the regulation of Nrf2 signalling. 

Notably, brusatol stimulated a marked activation of the mitogen-activated protein 

kinase p-p38, stress activated protein kinase p-JNk1,2 and Phosphoinoside 3-kinase 

p-AKT within the time frame of Nrf2 depletion (figure 6.6a) however, in the 

presence of the p38 inhibitor SB203580, JNK inhibitor SP600125, AKT inhibitor 

LY294002, GSK-3β inhibitor CT99021 and ERK inhibitor U0126, the ability of brusatol 

to provoke the depletion of Nrf2 was unaffected. The increase in the 

phosphorylation of p-P38, p-AKT and p-JNk1/2 stimulated by brusatol could be a 

direct effect of the depletion of Nrf2 due to cross talk between Nrf2 and these 
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signaling pathways. The induction of these stress response pathways may also 

underlie, at least partly, the ability of brusatol to limit the proliferation of cancer 

cells in vitro and in vivo (Ren et al., 2011).  

Interestingly, BAPTA-AM appears to partly inhibit the inhibitory action of brusatol 

towards Nrf2s. Of note, BAPTA-AM alone induced Nrf2 transiently in a time-

dependent manner, with maximum induction seen at 2 hours. Taken together this 

suggests a role of Ca2+ signalling in the mechanism of action of brusatol. A role for 

Ca2+ signalling in the Nrf2-activation process has been suggested previously 

(Burdette et al., 2010; Reddy et al., 2012; Lee et al., 2013);  Indeed, Burdette et al. 

reported the induction of Nrf2 with HCV (hepatitis C virus) infection, and that the 

HCV induction of Nrf2 was inhibited by BAPTA-AM (Burdette et al., 2010). Reddy et 

al and Lee et al also showed that BAPTA-AM abrogrates the induction of Nrf2 by 

antioxidants. It is possible that the time frames used in these studies overlaps with 

the time at which the effect of BAPTA-AM or Nrf2 has worn off. Nonetheless, it is 

plausible that Ca2+ signalling has a role in the regulation of the Nrf2 pathway.  

Taken together, these findings indicate that brusatol exploits a previously unknown 

mechanism of Nrf2 regulation and exhibits high specificity for the Nrf2 pathway. 

Indeed, it appears unlikely that the depletion of Nrf2 provoked by brusatol is due to 

universal inhibition of protein synthesis, as the compound had no effect on a panel 

of proteins tested here and by (Ren et al., 2011). 

In conclusion, brusatol’s mode of action as an inhibitor of Nrf2 is not dependent on 

Keap1 or proteasomal degradation, nor does it work through alternative 

conventional protein degradation pathways such as autophagy and the activation of 

proteases. Brusatol induces the PI3K, MAPK and SAPK signaling pathways but its 

ability to deplete Nrf2 is independent of these effects. These findings point towards 

a novel mechanism by which brusatol inhibits the Nrf2 pathway and suggest that 

unknown processes are involved in the regulation of  Nrf2 perhaps via a repression 

of the translation of the Nrf2 mRNA within the open reading frame of the gene 

(Perez-Leal et al., 2013). Further exploration of the mechanism of action of this 

compound is needed to allow its potency and efficacy to be optimised for 
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experimental and clinical use. Such insights will also inform the design of new 

pharmacological inhibitors, which hold promise as therapeutic agents, particularly 

in the treatment of cancer. 
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7.1 Introduction 

Since the discovery of Nrf2, the role of this transcription factor has been highlighted 

in the maintenance of cellular homeostasis by combating toxic insults generated 

intrinsically and extrinsically (Itoh et al., 1997; Chan et al., 2001; Enomoto et al., 

2001; Copple et al., 2008a; Xu et al., 2008). In addition, Nrf2 has been shown to 

have a role in the pathogenesis of various diseases in discrete organs of the body 

(Copple, 2012). Many of these diseases have a low survival rate due to drug-

resistance or a lack of appropriate therapies (Jemal et al., 2009). For example, 

heightened cell defence, which is common in cancer settings as a result of 

intrinsically generated reactive oxygen species associated with oncogenic 

proliferation, ensures that cellular homeostasis is maintained (Bhat et al., 2010). 

This, on the other hand, enhances chemoresistance, reducing the efficacy of 

cytotoxic cancer drugs. Thus, there is an urgent need for the identification of novel 

targets for pharmacological manipulation, to directly treat the disease of interest or 

increase the efficacy of currently used therapies. Since Nrf2 is a master regulator of 

cell defence and has been shown to have roles in different organs and associated 

diseases such as neurodegeneration, cardiovascular dysfunction and cancer 

(Copple, 2012; Bryan et al., 2013), the main aims of the studies presented in this 

thesis were to explore the pharmacological induction and inhibition of Nrf2 and its 

therapeutic significance, to better understand the likely value of manipulating Nrf2 

to treat disease and/or enhance the action of existing therapies. 

 

7.2 Activation of Nrf2 and its pharmacological significance 

Transgenic Nrf2 knockout mice show enhanced susceptibility to various toxicities 

and diseases such as chronic obstructive pulmonary disease and acute lung injury 

due to low basal expression of cell defence genes (Chan et al., 2001; Enomoto et al., 

2001; Xu et al., 2008; Copple, 2012).  In addition, the pharmacological induction of 

Nrf2 or genetic activation by silencing of Keap1 reduces the deleterious effects of 

oxidative stress and reduces the progression of stress-induced diseases (Klaassen et 

al., 2010; Ohkoshi et al., 2013). 
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Many Nrf2 inducers have been identified so far, amongst which the triterpenoid 

CDDO & its derivatives CDDO-Im and CDDO-Me are potent inducers with anticancer 

properties (Liby et al., 2005). CDDO-Me was tested in clinical trials for the treatment 

of chronic kidney disease but was withdrawn due to adverse cardiovascular effects 

(Tayek et al., 2013). Notably, the mechanistic reasons behind these adverse 

reactions are yet to be determined but suggested recently that it could be as a 

result of CDDO-Me promoting fluid retention in patients with more advanced 

chronic kidney disease (Chin et al., 2014; Van Laecke et al., 2014), although the 

lethal effects of Keap1 knock out in vivo illustrate that constitutive activation of Nrf2 

can have deleterious effects (Wakabayashi et al., 2003; Taguchi et al., 2010). 

Dimethyl fumarate (DMF), another Nrf2 activator was recently licensed for the 

treatment of multiple sclerosis (Linker et al., 2011). 

Therefore, triterpenoids continue to have potential for development into novel 

therapies but their pharmacological mechanisms need to be fully defined to ensure 

their safe and efficacious use. Here, CDDO-Me was found to activate the Nrf2 

pathway in a number of mammalian test systems ranging from established mouse 

hepatoma cells to primary human cells. Notably, CDDO-Me stimulated the 

accumulation of Nrf2 and Nqo1 in human PBMCs and PHHs. These findings 

demonstrate the translational relevance of data generated in mouse and other test 

systems in published works. In addition, the work presented here also establishes a 

platform for assessing inter-individual variability in the activity of the Nrf2 pathway 

and its relevance to disease. It was found that the basal and inducible levels of Nrf2 

and Nqo1 vary across a relatively small number of individuals. Further work is 

required to assess the robustness of these observations in a larger number of 

individuals, and the correlation between inter-individual variability in Nrf2 pathway 

activity and susceptibility to disease and drug-induced toxicities. 

Due to the adverse effects associated with CDDO-Me during a recent clinical trial, it 

is crucial to understand the mechanism of action of this compound. The findings of 

this work have shown that CDDO-Me stabilizes Nrf2 via a post-transcriptional 

mechanism. This, coupled with kinase signalling pathways not having significant 

roles in CDDO-Me-mediated Nrf2 induction, provides a platform for current and 
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future work to build upon. Previous work has indicated that CDDO-Me and related 

triterpenoids modify Keap1 and its ability to repress Nrf2, thus stabilising the 

transcription factor. Further work will be necessary to prove this concept directly. 

 

7.3 Inhibition of Nrf2 and its pharmacological significance 

Recent studies have illustrated a role for Nrf2 in the progression of cancer and 

resistance to chemotherapy (Ikeda et al., 2004; Singh et al., 2008; Wang et al., 2008; 

Kensler et al., 2010; Lister et al., 2011; Taguchi et al., 2011), as a result of somatic 

mutations in the Keap1 gene (Suzuki et al., 2008), somatic mutations in the Nrf2 

gene (Shibata et al., 2008b), promoter methylation of Keap1 (Muscarella et al., 

2011) and other factors that dysregulate Keap1:Nrf2 signaling. The elevated Nrf2 

level could contribute to chemoresistance by upregulating the expression of 

detoxification enzymes, antioxidant proteins and xenobiotic transporters thereby 

decreasing the potency of cytotoxic anticancer drugs (Wang et al., 2008).  Therefore 

there is an interest in developing compounds that selectively inhibit Nrf2 as 

adjuvants to conventional chemo- and radio-therapies. 

Amongst the very few compounds identified to date, the quassinoid brusatol is a 

potent inhibitor of Nrf2. Brusatol has been reported in a study by (Ren et al., 2011) 

to be a selective inhibitor of Nrf2 that enhances cisplatin treatment in xenografts. 

However, the mechanism of action of this compound is yet to be fully determined. 

The findings of (Ren et al., 2011) and those in this thesis have shown brusatol to be 

a promising Nrf2 inhibitor. Brusatol was found to inhibit the Nrf2 pathway in a 

number of mammalian test systems ranging from mouse hepatoma cells to primary 

human cells. Brusatol inhibits Nrf2 in freshly isolated primary human hepatocytes 

indicating its potential utility in humans. Its mechanism of action still requires 

further investigation, but the findings presented here show that brusatol inhibits 

Nrf2 in a post-transcriptional manner and that the inhibition is independent of the 

conventional processes of Nrf2 regulation, including Keap1 mediated repression 

and degradation via the proteasomes and autophagic systems. This, coupled with 

kinase signalling pathways not having significant roles in Nrf2 inhibition by brusatol, 



 

165 
 

provides a platform for current and future work to build upon. Brusatol could 

therefore be enhancing the repression of Nrf2 mRNA translation but this requires 

further investigation (Figure 7.1)  

 

 

Figure 7.1 – Proposed mechanism of action of brusatol 

 

Knowing the significant role of Nrf2 in chemoprevention, there is a potential for 

Nrf2 inhibitors to sensitise cells to chemical stress. Here, it was shown that brusatol 

sensitises mammalian cells to chemical stress. Therefore, the inhibition of Nrf2 

could increase adverse reactions to drugs. Thus, the ratio of risk and benefit of 

inhibiting Nrf2 needs to be determined in different disease and therapeutic 

contexts.  
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The search for novel Nrf2 activators and inhibitors will be aided by the use of high-

throughput screening systems, such as cells expressing Nrf2-sensitive luciferase 

reporter transgenes that are responsive to Nrf2-inducing compounds (Linker et al., 

2011; Smirnova et al., 2011; Hirotsu et al., 2012; Oikawa et al., 2012), and shown in 

our lab to respond to inhibitors of Nrf2 (data presented in the reports of Min-Wei 

Wong). Another approach involves the in silico screening of compounds that can 

modify Keap1 (Wu et al., 2010), although such a strategy is currently limited by the 

absence of a complete crystal structure of the Keap1 protein. 

 

7.4 Concluding Remarks and future investigations 

The work in this thesis highlights Nrf2 as a potential therapeutic target and has 

furthered the understanding of the mechanisms that regulate Nrf2 activity and the 

important functions of this pathway, especially in cytoprotection, and forms the 

basis for several areas of future investigations. Despite the potential value of Nrf2 

inducers, some concerns remain as to whether the activation of Nrf2 could promote 

chemoresistance and the progression of diseases such as atherosclerosis (Sussan et 

al., 2008; Harada et al., 2012). Additional unknown undesirable effects could also be 

associated with Nrf2 activation under clinical application, and the need to fully 

define the pharmacodynamic effects of these activators in patients is clear. A body 

of evidence has also indicated that elevated levels of Nrf2 aid cancer progression. 

Therefore, an understanding of the balance between the positive and negative roles 

of Nrf2 needs to be established, to enable the development of Nrf2 activators as 

safe and efficacious therapies. Therefore, future work should aim to address these 

concerns. 

In conclusion, this work has added to the body of evidence that highlights the 

promising therapeutic significance of manipulating Nrf2 activity. It is hoped that it 

provides a foundation for future work that aims to develop small molecule inducers 

and inhibitors of Nrf2 with utility in a number of clinical scenarios. 
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