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GENERAL ABSTRACT 

The use of antiretroviral therapy (ART) during pregnancy and lactation has significantly reduced 

the rate of mother-to-child transmission (MTCT) of HIV. However, pregnancy is known to affect 

the pharmacokinetics of many drugs, including key antiretroviral (ARV) drugs. In addition, ARV 

use during lactation raises questions about unintended exposure of breastfed infants to 

maternal drugs through breast milk. For drugs with significant genetic contribution to observed 

pharmacokinetic variability, we hypothesised that polymorphisms in drug disposition genes may 

accentuate or attenuate pregnancy-induced changes and/or breastfed infants’ exposure. HIV 

positive pregnant women and nursing mothers taking efavirenz (EFV)- or nevirapine (NVP)-based 

ART were recruited from three hospitals in Benue State, Nigeria. 

A novel strategy involving a preliminary pharmacogenetic association study was used to 

investigate the magnitude of pregnancy-induced changes in EFV and NVP pharmacokinetics in 

women stratified by single nucleotide polymorphisms (SNPs) in disposition genes. EFV apparent 

clearance (CL/F) was higher and AUC0-24, Cmax and Cmin were significantly lower in pregnant 

compared with postpartum women. When stratified based on the SNP with the highest 

predictive power, pregnant women with CYP2B6 516GG genotype were especially at risk. In the 

NVP cohort, exposure was also significantly lower in pregnant compared with postpartum 

women. When stratified based on composite CYP2B6 516G>T and 983T>C genotypes, Cmin was 

below target in most patients with combined CYP2B6 516GG and 983TT during pregnancy and 

postpartum. Cmin was below target in at least 50% of pregnant women with one or two variant 

alleles, compared with 0% in postpartum women. 

The intensive pharmacokinetics of EFV and NVP in breast milk and pharmacogenetic predictors 

were described for the first time. Breast milk pharmacokinetic parameters of EFV in breast milk 

differed significantly between patient groups stratified by CYP2B6 516G>T. The median time 

averaged milk-to-plasma concentration (M/P) ratio was 1.10 (range: 0.57-1.71) and the 

paediatric dose weight-adjusted exposure index was 4.05% (1.08-13.8). The resulting infant 

plasma concentration was influenced by CYP2B6 516G>T, highest up to 8 days of age at 1590 

ng/mL (190-4631) and decreased by about 90% in the age stratum 9 days to 3 months. NVP AUC0-

12, Cmax and Cmin in breast milk were significantly lower in patients with composite CYP2B6 

516GG/983TT than those with at least one variant allele. The M/P ratio was 0.88 (0.74-1.2) and 

paediatric dose weight-adjusted exposure index was 3.64% (1.99-9.88). Infant plasma 

concentration differed significantly based on CYP2B6 516G>T/983T>C and CYP3A4 20230G>A 

(*1G), highest in those exposed through both breast milk and post-exposure prophylaxis 

compared with either alone. A breastfeeding physiologically-based pharmacokinetic (PBPK) 

model to predict infant exposure to maternal drugs through breast milk was developed and 

validated, with over 90% of all individual observed data points within the predictive interval.  

This thesis presents details about five different studies where these findings were observed. 

Their clinical implications in the context of current knowledge and practice were also explored.
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1.1 HISTORY OF MOTHER-TO-CHILD TRANSMISSION OF HIV 

Between October 1980 and May 1981, five young men were treated for Pneumocystis carinii 

pneumonia at three different hospitals in Los Angeles, California, United States. Those cases 

prompted the official recognition of an epidemic that is perhaps the defining public health issue 

of our time: HIV/AIDS.1 By 1983, the risk of mother-to-child transmission (MTCT) of HIV was 

confirmed after reports of a number of paediatric cases of ‘a new syndrome of acquired 

immunodeficiency’ with clinical, histopathologic, and immunologic features similar to those 

described in adults (Figure 1.1).2-5 Since there were no available treatment or prevention 

strategies, avoidance of pregnancy was the only known way to prevent MTCT in HIV positive 

women. The first Centers for Disease Control and Prevention (CDC) guidance released in 1985 

also recommended advising HIV infected mothers to avoid breastfeeding for prevention of 

mother-to-child transmission (PMTCT) of HIV (Figure 1.1).6 Since those early days, MTCT has 

remained the major route of paediatric HIV infection, with an estimated 260,000 new cases in 

2012 alone,7 about 80% of these occurring during pregnancy, labour and delivery, and 20% 

during breastfeeding.8 

Therefore, the introduction of antiretroviral therapy (ART) consisting of a combination of three 

or more antiretroviral (ARV) drugs for PMTCT was arguably a major step in the efforts to prevent 

MTCT. This approach has been shown to reduce MTCT to less than 5% from 15-45% without 

intervention, even in breastfeeding populations.9-12 The 2013 WHO consolidated guidelines 

recommend breastfeeding-limited (Option B) or lifelong (Option B+) maternal ART for PMTCT 

during pregnancy and breastfeeding. HIV-exposed, uninfected infants are given six weeks of daily 

nevirapine (NVP) if breastfed, or four to six weeks of daily NVP or twice daily zidovudine (AZT) if 

receiving replacement feeding for post-exposure prophylaxis (PEP).13 Previous interventions 

involved monotherapy and/or short-course maternal and infant prophylaxis (Figure 1.1).  
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Figure 1.1 Significant developments in prevention of mother-to-child transmission of HIV since 1982, when vertical transmission of HIV 

was first reported (based on information from https://www.aids.gov/hiv-aids-basics/hiv-aids-101/aids-timeline/).   
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The AIDS Clinical Trials Group (ACTG) Study 076 was the first to demonstrate the efficacy of maternal 

and infant ARV prophylaxis for PMTCT.14 Maternal AZT monotherapy from 14 weeks of pregnancy 

and during delivery, and a six-week infant AZT PEP reduced MTCT rates to 8% from 25% in non-

breastfed infants. Initiating AZT monotherapy from 28 weeks of pregnancy achieved similar 

transmission rates in non-breastfed infants, suggesting that most of the remaining cases of 

transmission occurred during delivery.15 Subsequently, a single maternal oral dose of 200 mg NVP 

at the onset of labour and 2 mg/kg to the newborn within 72 hours of life was shown to reduce 

MTCT in breastfeeding populations, though not as effectively as AZT monotherapy.16 These 

observations prompted a trial of a combination of AZT monotherapy started during the third 

trimester and single-dose NVP given at the onset of labour. This further reduced MTCT to less than 

2% in non-breastfed infants.17 In addition, the probability of MTCT is significantly affected by the 

duration of AZT monotherapy and viral loads at baseline and at delivery (Figure 1.2).18 These simple 

short courses of maternal and infant ARV prophylaxis for PMTCT were widely used in resource-

limited settings. 

In 2010, the WHO recommended ART for pregnant women with CD4 cell counts below 350 

cells/mm3. Women with higher CD4 counts were given AZT monotherapy plus intrapartum single-

dose NVP, or triple ARV combination from as early as 14 weeks of pregnancy. In both cases, 

breastfed infants were given daily NVP PEP from birth until breastfeeding ends.19 A total of 37 

individual and combination ARVs have been approved by the FDA since 1987, with only 3 

discontinued (Figure 1.3). ARVs are classified into six groups based on their mechanism of action: 

(1) nucleoside (or nucleotide) reverse transcriptase inhibitors (NRTIs); (2) non-nucleoside reverse 

transcriptase inhibitors (NNRTIs); (3) protease inhibitors (PIs); (4) integrase strand transfer 

inhibitors, (INSTIs); (5) entry inhibitors (EIs); and (6) fusion inhibitors (FIs). Current first-line ART 
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Figure 1.2 Mother-to-child transmission probabilities according to AZT duration, viral load at 

baseline/delivery, and NVP intake. A: Probability of in utero HIV transmission as a function of AZT 

duration; B: Probability of in utero HIV transmission as a function of viral load at baseline. The lines 

denote the median (5th and 95th percentiles) of model predictions. The open circles stand for the 

observed mean proportion of transmission, the solid vertical segments denote the corresponding 

95% confidence intervals (numbers at top of each segment stand for the number of women in each 

time interval or VL interval); C: Probability of intra-partum HIV mother-to-child transmission as a 

function of viral load at delivery without single dose NVP; D: Probability of intra-partum transmission 

as a function of viral load at delivery with single dose NVP (Sripan et al. 2015).18  
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Figure 1.3 Antiretroviral drugs approval timeline by the FDA since 1987.  Colour coding: red, 

nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs and NtRTIs); blue, non-nucleoside  

reverse transcriptase inhibitors (NNRTIs); blue, protease inhibitors (PIs);  black, entry inhibitors (EIs); 

purple, fusion inhibitors (FIs); orange, integrase strand transfer inhibitors (INSTIs);  orange filled, 

fixed dose combinations. Note: cobicistat is used as a pharmacokinetic enhancer in combination 

with elvitegravir, it has no antiviral activity. 
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regimens include a combination of three or more drugs from at least two classes (e.g. two NRTIs 

plus one NNRTI, PI or INSTI).20 Although guidelines have since changed as new drugs became 

available, the goals of ART during pregnancy remain the same: to ensure rapid and durable 

virological suppression, restore immune system functions, and prevent MTCT. Achieving these 

requires optimal drug exposure during pregnancy, delivery and lactation. 

However, considerable inter-individual variability in exposure to ARVs has been observed, often 

attributable to host genetic factors.21 Additionally, many of the physiological changes associated 

with pregnancy affect the processes of drug absorption, distribution, metabolism, and excretion 

(ADME).22 The use of ARVs during pregnancy and breastfeeding also raises questions about fetal and 

breastfed infants’ exposure to maternal drugs in utero and through breast milk, respectively. This 

chapter reviews the effects of host genetics and pregnancy on the pharmacokinetics of ARVs as well 

as in utero fetal and breast milk infant exposure to maternal ARVs. A compelling argument is 

presented for possible accentuation or attenuation of pregnancy-associated pharmacokinetic 

changes in the presence of intrinsic genetically-induced variability. 

 

1.2 GENETIC VARIATIONS AND ARV 

PHARMACOKINETICS/PHARMACODYNAMICS 

About 20,000–25,000 protein-coding genes are estimated to be present in the human genome. 

Certain types of variations exist in individual genomes at frequencies > 5%: copy number variations 

(CNVs), insertion-deletion polymorphisms (indels), multiple-base nucleotide variations, single-

nucleotide polymorphisms (SNPs), and short tandem repeats. Of these, SNPs (single-base 

differences between individuals) are the most common (> 90% of all sequence variations) with more 

than 22 million estimated to be in the human genome. SNPs occur within the coding, non-coding, 

or in the intergenic regions of genes. SNPs within the coding region (e.g., exon) that result in amino 
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acid substitution are described as nonsynonymous, while those that do not affect amino acid 

sequence are called synonymous SNPs. The two types of nonsynonymous SNPs, missense and 

nonsense, can alter protein activity and affect the disposition and/or efficacy of drugs that utilise 

the protein for metabolism, transport, or as target (Figure 1.4). Synonymous SNPs can affect gene 

expression and protein synthesis when present in the regulatory region of a gene (e.g., promoter 

region, intron), sometimes with functional consequences for drug disposition. 

 

Figure 1.4 Sources of variability in drug response and safety. SNPs in genes that encode drug 

metabolising enzymes and transporter or their transcriptional regulator affect drug 

pharmacokinetics and those in genes encoding for drug target proteins alter pharmacodynamics. 

Pregnancy can affect pharmacokinetics by influencing the expression of metabolising enzymes, 

transporters, or their transcriptional regulators.  
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1.2.1 Drug Metabolising Enzymes 

Most NRTIs undergo renal excretion as unchanged drugs while drugs in other classes undergo phase 

I metabolism by the cytochrome P450 (CYP) superfamily of isoenzymes and/or phase II metabolism 

by uridine 5'-diphospho-glucuronosyltransferase (UGT). The CYPs are involved in the metabolism of 

> 60% of all registered ARVs (Table 1.1), and thus constitute the most clinically relevant group of 

drug metabolising enzymes. About 60 different CYP genes and 58 pseudogenes have been identified 

and grouped into 18 families and 44 subfamilies based on similarities in their amino acid sequences. 

Of these genes and pseudogenes, 15 are known to encode different isoenzymes involved in drug 

metabolism in humans, including CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and 

CYP3A5.23 CYP genes exhibit considerable polymorphisms that cause gene deletions, premature 

stop codons or splicing defects, amino acid changes, and gene duplications.  A number of non-CYP 

enzymes involved in drug metabolism also exhibit genetic polymorphisms that affect the 

metabolism and elimination of substrate drugs. Examples include dihydropyrimidine 

dehydrogenase (DPD), glutathione-S-transferase (GST), N-acetyltransferase (NAT), thiopurine-S-

methyltransferase (TPMT), and UGT. A number of ARVs are substrates for UGT enzymes. UGT is 

involved in glucuronidation of endogenous compounds and xenobiotics, including the ARVs 

abacavir, raltegravir and dolutegravir (Table 1.1), contributing about 35% of all phase II drug 

metabolism.24 

The resulting inter-individual differences in the number of functional variants or alleles of the 

affected gene encoding a specific enzyme is used to categorise patients into four general metabolic 

phenotypes. Poor metabolizers are individuals with defective or deleted alleles and abolished 

enzyme activity. Intermediate metabolizers carry either one functional and one defective allele, or 

two partially defective alleles, and in both cases have reduced activity of the enzyme. Extensive 

metabolizers have two functional alleles and normal enzyme activity. Individuals with a duplicated 
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or amplified gene variant, resulting in two or multiple copies of the functional allele and very high 

enzyme activity are classified as ultra-rapid metabolizers.24 The clinical significance of a functional 

genetic polymorphism affecting a drug metabolising enzyme depends on the relative contribution 

of the isoenzyme to the overall metabolism of the drug and whether the parent compound and/or 

the metabolite is the pharmacologically active form (Figure 1.4). For instance, poor metabolisers of 

an active parent drug that is mostly dependent on a polymorphic enzyme for elimination are more 

likely to experience adverse drug reactions, whereas ultra-rapid metabolisers may experience lower 

efficacy with the same standard dosage regimen. The situation will be reversed for a prodrug. The 

ARV substrate specificity of known ARV metabolising enzymes are presented in Table 1.1 and the 

functional consequences of reported SNPs on encoding genes are summarized in Table 1.2. 

1.2.2 Drug Transporters 

Membrane transport proteins facilitate the active movement of drugs across many endothelial and 

epithelial barriers in the brain, intestinal epithelial cells, hepatocytes, renal tubular cells, mammary 

glands, and placenta. By selectively facilitating the uptake of drugs into certain cells for access to 

target sites or for metabolism and elimination, while limiting it in others (e.g. blood brain barrier) to 

prevent toxicity, drug transporters play a key role in drug efficacy and safety, collectively termed 

pharmacodynamics. There are two classes of membrane transporters: the adenosine triphosphate 

binding cassette (ABC) family of efflux transporters, and the solute carrier (SLC) family of uptake 

transporters. The human ABC transporter family has 49 members further classified into 7 

subfamilies based on similarities in amino acid sequences. Members include ABCB1 (also known as 

permeability glycoprotein, P-gp), ABCC1 (formerly known as multidrug resistance protein 1, MRP1), 

ABBC2 (formerly known as multidrug resistance protein 2, MRP2), and ABCG2 (formerly known as 

breast cancer resistance protein, BCRP). The 360 members of the SLC family are grouped into 46   
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Table 1.1 Antiretroviral drugs metabolism enzymes and transporters. 

Drugs Metabolism Enzymes Transporters 

Nucleoside Reverse Transcriptase Inhibitors (NRTIs) 

Abacavir (ABC) ADH, UGT ABCB1, ABCG2 

Didanosine (ddI) Excreted unchanged ABCC4, SLC28A2, SLC28A3, SLC29A1, SLC29A2, SLC29A3 

Emtricitabine (FTC) Excreted unchanged ABCC1, ABCC4 

Lamivudine (3TC) Excreted unchanged 
ABCG2, ABCC4, SLC22A1, SLC22A2, SLC22A3, SLC28A1, 
SLC28A3, SLC29A3 

Stavudine (d4T) Excreted unchanged ABCC4, SLC28A1, SLC28A3, SLC29A3 

Tenofovir (TDF) Excreted unchanged ABCB1, ABCC4, ABCC10, SLC22A6, SLC22A8 

Zidovudine (AZT) UGT2B7 ABCG2, ABCC4, SLC22A6, SLC22A7, SLC22A8, SLC22A11 

Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs) 
Delavirdine (DLV) CYP3A4 Unknown 

Efavirenz (EFV) CYP2B6, CYP2A6, UGT2B7, CYP3A4 Unknown 

Etravirine (ETR) CYP2C19, CYP3A4, CYP2C9 Unknown 

Nevirapine (NVP) CYP3A4, CYP2B6 ABCC10 

Rilpivirine (RPV) CYP3A4, CYP3A5 Unknown 

Protease inhibitors (PIs) 

Amprenavir (APV) CYP3A4 ABCB1 

Atazanavir (ATV) CYP3A4 ABCB1, ABCC1, ABCG2 

Darunavir (DRV) CYP3A4 ABCB1, SLCO1A2, SLCO1B1 

Fosamprenavir (fAPV) CYP 3A4 ABCB1 

Indinavir (IDV) CYP3A4 ABCB1, ABCC2 

Lopinavir (LPV) CYP3A4 ABCB1, ABCC1, ABCC2, SLCO1A2, SLCO1B1 

Nelfinavir (NFV) CYP3A4, CYP2C19 ABCB1 

Ritonavir (RTV)1 CYP3A4, CYP2D6 ABCB1, ABCC2 

Saquinavir (SQV) CYP3A4, CYP3A5 ABCB1, ABCC2, SLCO1A2, SLCO1B1, SLCO1B3 

Tipranavir (TPV) CYP3A4 ABCB1 
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Table 1.1 continued   

Drugs Metabolism Enzymes Transporters 

Integrase Strand Transfer Inhibitors (INSTIs) 
Dolutegravir (DTG) UGT1A1, UGT1A3, UGT1A9, CYP3A4 ABCB1, ABCG2 

Elvitegravir (EVG)2 CYP3A4, UGT1A1, UGT1A3,  OATP1B1, OATP1B3 

Raltegravir (RAL) UGT1A1 ABCB1, SLC15A1, OAT1c, 

Fusion Inhibitors (FIs) 

Maraviroc (MVC) CYP3A4 ABCB1, SLCO1B1 

Entry Inhibitors (EIs) 
Enfuvirtide (T-20) Excreted unchanged Unknown 
1Ritonavir has a weak antiretroviral activity and is only used as a pharmacokinetic enhancer with other PIs; 2Elvitegravir is 

used in combination with cobicistat, a pharmacokinetic enhancer with no antiviral activity. Abbreviations: ADH, alcohol 

dehydrogenase; UGT2B7, uridine diphosphate glucuronosyltransferase 2 family, polypeptide B7; CYP2B6, cytochrome 

P450, family 2, subfamily B, polypeptide 6; ABCB1, ATP-binding cassette, subfamily B, member 1; SLC28A2, solute carrier 

family 28, member 2; SLCO1A2, solute carrier organic anion transporter, family 1, subfamily A, member 2. 
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Table 1.2 Effects of SNPs in genes encoding metabolising enzymes, transporter, and nuclear receptors on antiretroviral 
drugs exposure. 

Gene  SNPs Observed effects 

Metabolising enzymes  

CYP2A6a25,26 1836G>T; 1093G>A  ↑[EFV] 

CYP2B6a24,25 516G>T; 785A>G; 983T>C  ↑[EFV], ↑[NVP] 

CYP2C1927 rs4244285; rs12248560 ↓[SQV], ↓[IDV], ↓[ATV], ↓[NVP] 

CYP3A428 *22 ↑[LPV] 

UGT1A129,30 *28; 211G>A ↑ATV hyperbilirubinemia 

UGT2B7a25 735A>G; 802C>T  ↔[EFV]; ↓[EFV] 

Transporters (protein) 
 

ABCB1 (MDR1a)31-34 3435C>T; 2677G>T; -129T>C ↓exp, ↓[NVP]_ht; ↓exp; ↓exp 

ABCC2 (MRP2a)46,47 1249G>A; -24C>T;  [SQV]↑; ↓[IDV], ↓TFV-ktd 

ABCG2 (BCRPa,b)43,49 C421A ↓exp/act 

ABCC10 (MRP7a,b)35,36 rs9349256 and rs2125739 (c.2759T>C) ↑TFV-ktd, ↓[NVP] 

SLCO1A2 (OATP1A2a)37,38 516A>C ↔[LPV] 

SLCO1B1 (OATP1B1a)38,39 521T>C ↑[MVC], ↑[LPV] 

SLC22A6 (OAT1b)  R50H ↑affinity for substrates 

SLC22A1 (OCT1a,b)40-43 Arg61Cys; P283L; -P341L ↑mRNA exp; ↓uptake 

SLC22A2 (OCT2a)41,43,44 T199I; -T201M and -A270S ↓uptake 

SLC22A3 (OCT3a,b)40-42,45 rs2292334; rs2048327; rs1810126; rs3088442 ↑mRNA exp 

Nuclear hormone receptors 
 

NR1I3 (CAR)46 540CC ↑EFV discontinuation 

NR1I2 (PXR)47 63396 C>T  ↓[ATV] 

Footnotes: ↓, decreased; ↑, increased; ↔, no difference; a, expressed in the placental; b, expressed in the mammary 
glands. Abbreviations: act, activity; exp, protein expression; ktd, kidney tubular dysfunction; [X], drug exposure. Note: 
other transporters expressed in the placenta include ABCC1, ABCC5, SLCO1B3, SLC29A1, SLC29A2, SLC22A11, and 
SLC22A7. 
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subfamilies, including the organic anion transporting polypeptide (OATP), organic cation 

transporter (OCT), and organic anion transporter (OAT). Many of these transporters are involved 

in the disposition of ARVs (Table 1.1). 

Inter-individual variations in the expression of drug transport proteins has been reported, 

resulting in variability in the disposition of substrate drugs. For instance, 20- to 55-fold variability 

in ABCB1 expression in human liver48,49 and 3- to 6-fold variability in the small intestine have 

been observed.50 Similar variability has been reported for other efflux transporters and many 

uptake transporters. This has partly been attributed to genetic variations in the genes encoding 

these drug transport proteins that affect their expression, substrate specificity, and/or intrinsic 

transport activity, and ultimately the disposition, efficacy, and safety of many substrate drugs50,51 

(Figure 1.4). The ARV substrate specificity of known ARV transporters are presented in Table 1.1 

and the functional consequences of reported SNPs on encoding genes are summarized in Table 

1.2. 

1.2.3 Nuclear Hormone Receptors (Transcriptional Regulators) 

Nuclear hormone receptors are ligand-activated transcription factors (proteins) that regulate 

gene expression by interacting with specific DNA sequences and serve as on-off switches for 

transcription within the cell nucleus. They form part of the adaptive response to drug exposure 

and can also regulate gene expression in their non-ligand-bound form. Some of the well 

described receptors involved in the regulation of ARV disposition genes include nuclear receptor 

subfamily 1, group I, member 2 (NR1I2; also known as Pregnane X Receptor, PXR), NR1I3 (also 

known as Constitutive Androstane Receptor, CAR), Farnesoid X Receptor (FXR), Vitamin D 

Receptor (VDR), and arylhydrocarbon receptor (AhR).52  
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Nuclear receptors are usually resident in cellular cytoplasm. Binding of ligands causes the 

activation of a common signalling pathway that results in translocation of the bound receptor to 

the nucleus where it heterodimerizes with retinoid X receptor (RXR) to form a complex which 

binds to hormone response elements (HREs) normally located in regulatory regions of target 

genes. The release of corepressor proteins and recruitment of coactivators stimulates the 

transcriptional machinery. Ligand binding to NR1I2, NR1I3, FXR, VDR, or AhR within the complex 

causes differential conformational changes that result in permissive, nonpermissive, or 

conditional transcriptional activation.53 Importantly, post-translational modification of the 

receptor can also influence its ability to transactivate in the ligand-bound or non-ligand-bound 

form. 

The importance of nuclear hormone receptors for ARV disposition lies in their regulation of drug 

metabolising enzymes and transporters genes. For instance, expression of the efflux transporter 

ABCB1 is regulated by NR1I2, NR1I3, and VDR.54,55 CYP3A4 is known to share transcriptional 

regulation and induction pathways (mainly through NR1I2 and NR1I3) with other drug-

metabolising enzymes, including CYP2B6, CYP2Cs and UGTs.56-58  Inter-individual variability in 

regulation of gene expression by nuclear hormone receptors has been observed and reportedly 

associated with splice variants and genetic polymorphisms.59 The nuclear hormone receptors 

involved in transcriptional regulation of different ARV disposition genes and reported SNPs are 

presented in Table 1.2. 

 

 

 

 

 



 

17 
 

1.3 ARV PHARMACOKINETICS DURING PREGNANCY AND POSTPARTUM 

1.3.1 Pregnancy-Induced Physiological Changes Affecting Pharmacokinetics 

The physiological changes associated with pregnancy are known to affect the pharmacokinetics 

of many drugs, including many ARVs.22,60 Changes in drug absorption during pregnancy are 

caused by a number of factors, including up to 50% prolongation of gastric transit time as a result 

of increased progesterone levels, nausea and vomiting in early pregnancy, increase in gastric pH 

and the use of antacids to alleviate symptoms. Drug distribution is impacted by increase of up to 

50% in cardiac output and blood volume, increase in water and sodium retention at the kidney 

and the resultant 6-8 L increase in body water. These lead to a significant increase in the volume 

of distribution of most drugs thereby reducing plasma drug concentrations. In addition, 

pregnancy results in 15% decline in plasma albumin and > 50% decline in alpha-1-acid 

glycoprotein concentrations, increasing the clearance of highly protein bound drugs because of 

increased percentage of unbound drug available for metabolism (influencing hepatic extraction 

ratio). 

Alterations in the activities of several key hepatic drug metabolising enzymes during pregnancy 

have been reported, in most cases secondary to hormonal changes. For instance, a steady rise 

in plasma concentrations of estrogens and progesterone occurs during pregnancy, reaching up 

to 100-fold higher than pre-pregnancy levels at term.61,62 In a study that characterised the effects 

of estrogen and progesterone on key CYPs, estradiol was shown to enhance CYP2A6, CYP2B6, 

and CYP3A4 expression, whereas progesterone induced CYP2A6, CYP2B6, CYP2C8, CYP3A4, and 

CYP3A5 expression. Estradiol was observed to increase CYP2C9 and CYP2E1 activities 

independent of mRNA expression levels by unknown mechanisms.70 Pregnancy induces CYP2B6 

expression through estradiol possibly through a mechanism involving its transcriptional 



 

18 
 

regulators NR1I2 and NR1I3.63  Tracy et al. reported a 35-38% increase in CYP3A4 and CYP3A5 

activities at all stages of pregnancy compared to postpartum.64 UGT-mediated glucuronidation 

of some drugs is also increased during pregnancy. For example, the clearance of 

dihydroartemisinin (a UGT1A9 and UGT2B7 substrate), the active metabolite of the antimalarial 

drug artesunate, increases by 42% during pregnancy.65 The activity of alcohol dehydrogenase 

(ADH) was reportedly higher during pregnancy in rodents.66 Therefore, upregulation of enzyme 

expression as a result of nuclear hormone receptor activation by rising female hormones is likely 

one mechanism involved in observed pregnancy-induced changes in pharmacokinetics.22 The 

glomerular filtration rate in healthy women is at least 50% higher during pregnancy as a result 

of 60-80% increase in renal blood flow. In addition, active renal tubular secretion increases 

during pregnancy. These combine to increase the elimination of drugs that are excreted 

unchanged by the kidneys.67  

However, while pregnancy-induced changes in the pharmacokinetics of many drugs and the 

inter-individual variability introduced by genetic polymorphisms in drug disposition genes are 

individually well established, their combined effects have not been thoroughly investigated. 

Available pharmacokinetic data of individual ARVs during pregnancy versus postpartum are 

presented from Section 1.3.4. Where appropriate, logical assumptions are made about potential 

accentuation or attenuation of any observed changes by host genetic variability. 

1.3.2 Fetal Exposure to Maternal ARVs In Utero 

Maternal drug use during pregnancy often leads to exposure of the fetus to the drug. In the case 

of ARVs, the penetration of maternal drugs into fetal compartment may contribute to their 

overall prophylactic effect.68 Conversely, in utero fetal exposure to ARVs may have deleterious 

effects as highlighted in reported cases of mitochondria toxicity, fetal growth restriction, heart 
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defects, and alterations in haematological parameters.69-71 Some of the factors that determine 

the extent of drug penetration into the fetal compartment include maternal plasma 

concentration, physiochemical properties of the drug, placental blood flow, plasma pH, protein 

binding and placental drug metabolism. Perhaps more important in controlling in utero drug 

exposure are drug efflux and influx transporters: their placental expression, sub-cellular 

localisation, activity and substrate specificity.72 

Fetal exposure to potentially harmful compounds from maternal circulation is prevented by a 

number of protective mechanisms. At least 18 transporters known to be relevant for ARV 

distribution are expressed on either the apical (maternal) or basolateral (fetal) membranes of 

the syncytiotrophoblast as well as the endothelium of fetal capillaries (Figure 1.5). The ABC efflux 

transporters limit fetal exposure to maternal ARVs,73 while the SLC influx transporters, including 

the OATPs, OATs, OCTs and ENTs, facilitate the trans-placental passage of ARVs and distribution 

to the fetal compartment. In an extensive review of ARV penetration into the placenta and 

amniotic fluid, wide inter-individual variability and some class-specificity were observed with the 

following rank order of accumulation: raltegravir/NRTIs (tenofovir > AZT / lamivudine / 

emtricitabine / stavudine / abacavir) > NNRTIs (NVP > etravirine) > PIs > maraviroc / enfuvirtide.68  

Iqbal et al. reviewed the gestational changes in the expression and function of placental drug 

transporters as well as the associated genetic polymorphisms that can potentially affect fetal 

exposure.74 The functional consequences of genetic polymorphisms in the encoding genes were 

highlighted by Ieiri et al.75 The localisation of known ARV transporters on placental 

syncytiotrophoblast and reported functional SNPs are presented in Table 1.2. Other factors like 

drug-drug interactions, HIV infection and co-infections have been recognised to affect drug 

transport.31,33,76-78 Drug-drug interactions at the human placenta can also affect fetal exposure 



 

20 
 

to maternal drugs.79 Reported cord/maternal blood ratios for different ARVs are presented in 

sections 1.3.4 to 1.3.8. 

 

Figure 1.5 Mechanisms of maternal-fetal transfer. A: Overview of human placental morphology 

showing fetal vessels from the umbilical cord branching into villous trees, which are bathed by  
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Figure 1.5 continued 

maternal blood entering the placenta via spiral arteries. Trophoblast cells on the surface of the 

villous structures separate the maternal blood in the intervillous space from the fetal circulation, 

as highlighted in B. B: Cellular components of a placental villus, wherein multinucleated 

syncytiotrophoblast cells are formed by fusion of the precursor cytotrophoblast cells. The 

trophoblast cells and the fetal vascular endothelial cells are separated by basal lamina. Several 

transport mechanisms within the trophoblast cell layer are highlighted in C. C: Transport 

mechanisms in trophoblast cells, with different molecules represented by different shapes. 

Passive diffusion is governed by the concentration gradient of any compound (xenobiotic or 

intermediary metabolite). Two types of carrier-mediated transport (uptake and efflux) involve 

transport proteins that span the phospholipid bilayer of the cell membrane. The 

biotransformation of molecules by metabolizing enzymes is also represented. Adapted from: Erik 

Rytting and Mahmoud S. Ahmed. Fetal drug therapy. In: Donald R. Mattison (eds), Clinical 

pharmacology during pregnancy. USA: Elsevier. First Ed. 2013. 55-72. 

 

1.3.3 Exposure of Breastfed Infants to Maternal ARVs in Breast Milk 

The WHO recommends exclusive, “on demand” breastfeeding starting within one hour of birth, 

up to 6 months of age, and continued with gradual introduction of appropriate complementary 

foods up to 2 years of age or beyond. In addition to its nutritional benefits, ready availability and 

affordability, the health benefits of breastfeeding for both infant and mother have long been 

recognised.80-83 However, breastfeeding in the presence of maternal drug use is widespread 

despite lack of safety data for either proscriptions or permissive statements. In fact, over 90% of 

nursing mothers take at least one drug during the first week after delivery, 17% take at least one 

drug until 4 months after delivery, and 5% receive drugs for chronic conditions, giving rise to 

concerns over the presence of drugs in breast milk and their potential effects on the nursing 

infant.84 
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Making an informed decision requires accurate evaluation of the potential risks versus benefits 

based on knowledge of the extent of the drug’s excretion in human breast milk.85 For instance, 

HIV positive mothers breastfeed their babies while taking ARVs started before or during 

pregnancy for their own health and PMTCT. Determining the safety of maternal ARVs for the 

breastfed infant requires understanding their pharmacokinetics in breast milk.86 Therapeutic 

ARV concentrations in breast milk can prevent ongoing localised replication of HIV and 

development of drug resistant virus,87 which may otherwise be passed to infants who become 

infected if PMTCT fails.88 On the other hand, exposure to subtherapeutic concentrations may 

lead viral resistance in infected infants who are diagnosed late while very high concentrations 

may lead to toxicity. 

A recent systematic review of available studies on breast milk concentrations of 13 of the 

currently licensed ARVs indicated that while NRTIs and NNRTIs are excreted into breast milk in 

significant amounts and transferred to breastfeeding infants, the overall penetration of PIs into 

breast milk was low and tended to be undetectable in infant plasma.89 The authors suggested 

that ARVs transfer to breastfed infants may explain the development of drug-resistant HIV in 

infants where maternal ARVs have failed to prevent transmission.89 There are no data on infants’ 

exposure to newer ARVs through breast milk. Figure 1.6 illustrates five pathways of substance 

excretion into breast milk, including via transport proteins. The localisation of known ARV 

transporters in mammary gland epithelium and reported functional SNPs are presented in Table 

1.2. 

A major limitation hampering studies of breast milk pharmacokinetics is the inadequacy of 

available bioanalytical methods for the quantification of drugs in breast milk. The complexity of 

breast milk makes available methods either difficult to validate because of inadequate sample   
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Figure 1.6 Mammary epithelium cell layer showing pathways of milk excretion. I: monovalent 

ions, water, glucose, lipids, drugs and xenobiotics move across apical and basal membranes via 

transporter proteins. II: milk fat and lipid secretion with formation of cytoplasmic lipid droplets 

moving to the apical membrane for release as milk fat globules (MFG). III, IV and V: exocytotic 

secretion, vesicular transcytosis and transport through the paracellular pathway for plasma 

components and leukocytes. V opens only during pregnancy, involution and in the event of 

inflammatory states such as mastitis. Abbreviations: BM, basement membrane; BV, blood vessel; 

DS, desmosome; DT, drug transporter; ER, endoplasmic reticulum; GJ, gap junction; ME, 

myoepithelial cell; PC, plasma cell; TJ, tight junction. Adapted from: 

www.ibmm.unibe.ch/content/groups/albrecht_group/. 
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clean-up or complicated due to multiple sample clean-up steps involving a combination of liquid-

liquid and solid phase extraction in a single method.90,91 In addition, lack of standardisation 

makes cross-study comparisons difficult, particularly given differential drug accumulation within 

specific fractions of milk. For instance, studies reporting the excretion of abacavir, efavirenz 

(EFV), etravirine, lamivudine, lopinavir, NVP, AZT, tenofovir and emtricitabine in human breast 

milk have used methods validated only in plasma.92-97 A fully validated method was described for 

the quantification of lamivudine, lopinavir, nelfinavir, NVP, ritonavir, stavudine, and AZT (7 out 

of 25 ARVs in use) in breast milk.98 However, the multiple extraction steps make the method 

complicated, time-consuming and expensive. An additional limitation is imposed by the ethical 

challenges associated with paediatric clinical research. Therefore, bridging the existing gaps in 

our understanding of breastfed infant exposure to maternal ARVs through breast milk will 

require adopting novel strategies that will overcome both the methodological and the ethical 

challenges presented by the currently available methods. 

 

1.3.4 Nucleoside Reverse Transcriptase Inhibitors (NRTIs) 

There are currently eight NRTIs approved for HIV treatment. All NRTIs are administered as 

prodrugs and must undergo intracellular metabolism by cellular kinases to their active 

triphosphate anabolites. Routine measurement of intracellular NRTI-triphosphate 

concentrations remains challenging. Comprehensive NRTI pharmacokinetic data available during 

pregnancy has subsequently been restricted to plasma NRTI concentrations but the relationship 

between NRTI plasma concentrations and drug efficacy/toxicity remains unclear.99 Below is a 

summary of the effect of pregnancy on individual NRTI exposure and available pharmacogenetic 

data. 
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1.3.4.1 Zidovudine (AZT) 

AZT is primarily eliminated through hepatic metabolism by UGT.100 Several studies have reported 

that AZT pharmacokinetics during the third trimester of pregnancy is similar to non-pregnant 

adults.101-103 However, lower AZT exposure during the third trimester versus the postpartum 

period has been reported104 (Table 1.3; Figure 1.7). The standard dose of AZT is currently 300 

mg, twice daily, and no adjustments are recommended during pregnancy. A lower dose of AZT, 

200 mg twice daily, has been studied in non-pregnant adults with body weight < 60 kg due to 

concerns of higher rates of drug toxicity. Pharmacokinetic and efficacy data suggest that this 

lower dose may be preferable in this patient group105,106 but has not been studied in pregnant 

women. Specific associations between in utero exposure to AZT and congenital heart defects 

and a long-lasting postnatal myocardial remodeling in girls have been reported.71,107 

To date, no data on the effect of UGT host genetic polymorphisms on plasma AZT 

pharmacokinetics has been reported. Association between AZT-triphosphate concentrations 

and a SNP in ABCC4 in HIV-infected non-pregnant adults has been reported.108 Median AZT-

triphosphate concentrations were 49% higher in ABCC4 3724G>A (rs11568695) carriers versus 

non-carriers (P = 0.03). ABCC4 has been shown to contribute to AZT uptake into rat conditionally 

immortalised syncytiotrophoblasts.109 Therefore, the potential clinical implications of ABCC4 

polymorphisms during pregnancy, especially for fetal exposure, need to be explored. AZT readily 

crosses the placenta to the fetal compartment with cord-to-maternal blood concentration ratio 

of 1.13 to 1.27.104 The M/P ratio varies widely with a pooled estimate of 0.80 (95% CI 0.76–

0.85).89 
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Table 1.3 Summary of pharmacokinetic parameters of ARVs during pregnancy and post-partum from selected publications. 

Drug (FDA 
category) 

Pregnancy Postpartum 

AUC (µg.hr/mL) Cmax (µg/mL) Cmin (µg/mL) AUC (µg.hr/mL) Cmax (µg/mL) Cmin (µg/mL) 

NRTIs       

3TC (C)103  4.9 (4.0 – 6.1) 1.3 (1.1 – 1.6) - 5.1 (3.7 – 6.9) 1.2 (0.98 – 1.5) - 

ABC (C)110  5.9 (5.2 – 6.8) 1.9 (1.6 – 2.2) 
BQL (BQL – 
0.102) 

5.4 (4.3 – 6.8) 2.1 (1.6 – 2.7 BQL (BQL – 0.203) 

FTC (B)111  8.0 (7.1 – 8.9) 1.4 (1.2 – 1.6) 
0.06 (0.04 – 
0.06) 

9.7 (8.6 – 10.9) 1.4 (1.3 – 1.7) 0.09 (0.07 – 0.01) 

TDF (B)112  2.4 (2.1 – 2.6) 0.27 (0.22 – 0.33) 
0.05 (0.04 – 
0.06) 

3.2 (2.7 – 3.7) 
0.35 (0.29 – 
0.42) 

0.08 (0.06 – 0.09) 

AZT (C)104 1.2 (±0.27) 1.04 (±0.45) - 1.8 (±0.13) 1.2 (±0.01) - 

NNRTIs       

EFV (D)113  55.4 (13.5 – 220.3) 5.4 (1.9 – 12.2) 
1.6 (0.23 – 
8.13) 

58.3 (22.7 – 214.4) 
5.10 (1.96 – 
11.42) 

2.05 (0.31 – 8.43) 

ETR (B)114  8.3 (2.7 – 31.0) 1.02 (0.26 – 3.47) 
0.48 (0.08 – 
1.94) 

5.3 (2.1 – 16.4) 
0.63 (0.30 – 
1.60) 

0.33 (0.07 – 1.14) 

NVP (B)115  47.0 (41.5 – 58.9) 5.3 (4.7 – 6.3) 3.1 (2.7 – 4.1) 59.4 (53.6 – 69.6) 6.6 (5.9 – 7.7) 3.9 (3.5 – 4.9) 

RPV (B)116 1.99 (0.56 – 4.31) - 
0.06 (BQL – 
0.18) 

2.58 (0.19 – 6.74) - 0.10 (BQL-0.30) 

PIs       

fAPV (C)117 32.4 (14.2 – 54.4) 5.93 (1.66 – 12.53) 
1.70 (0.71 – 
3.23) 

50.7 (11.6 – 62.4) 5.7 (2.1 – 11.4) 2.43 (0.37 – 3.82) 

ATV/r (B)118  41.9 (27.4 – 60.8) 3.6 (2.8 – 5.1) 0.7 (0.5 – 1.1) 57.9 (47.1 – 64.8) 4.1 (3.0 – 5.8) 1.2 (1.1 – 2.0) 

ATV/ra (B) 119 46.6 (11.0 – 88.3) 4.7 (0.88 – 7.5) 
0.74 (0.14 – 
2.1) 

55.1 (9.9 – 99.5) 
4.52 (0.93 – 
9.45) 

0.88 (BQL – 2.7)  

DRV/r (B)120  63.5 (46.0 – 75.2) 5.78 (4.31 – 7.29) 
1.17 (0.73 – 
1.72) 

103.9 (85.9 – 
135.7) 

8.11 (6.93 – 
10.3) 

2.78 (2.05 – 2.98) 

DRV/ra (B)120  45.9 (29.3 – 52.5) 5.53 (4.44 – 7.10) 
2.22 (1.68 – 
3.26) 

61.7 (49.7 – 80.9) 
7.78 (6.11 – 
9.54) 

2.51 (2.04 – 3.27) 



 

27 
 

Table 1.3 continued 

Drug (FDA 
category) 

Pregnancy Postpartum 

AUC (µg.hr/mL) Cmax (µg/mL) Cmin (µg/mL) AUC (µg.hr/mL) Cmax (µg/mL) Cmin (µg/mL) 

IDV/r (C)121  16.1 (7.5 – 39.9) 3.5 (1.3 – 7.4) 
0.13 (0.07 – 
0.6) 

27.1 (18.6 – 44.7) 5.5 (3.8 – 9.4) 0.28 (0.14 – 0.71) 

LPV/r (C)122 58.0 (50.4 – 70.7) 7.5 (6.7 – 8.7) 2.5 (2.0 – 3.5) 89.4 (74.0 – 108) 10.0 (8.4 – 11.8) 4.7 (3.1 – 6.8) 

LPV/ra (C) 123 96 (43 – 198) 10.7 (5.8 – 19.1) 
5.1 (1.5 – 
12.2) 

133 (66 – 237) 14.6 (9.8 – 22.8) 7.2 (2.8 – 21.0) 

NFV (B)124 18.9 (3.6 – 53.7) 3.2 (0.9 – 6.5) 
0.9 (<0.039 – 
4.4) 

30.8 (1.3 – 123.9) 4.6 (0.3 – 9.9) 1.1 (<0.039 – 4.8) 

SQV/r (B)125 
12.71 (8.96 – 
26.93) 

3.23 (2.68 – 6.03) 
0.26 (0.23 – 
1.01) 

28.94 (14.55 – 
58.49) 

3.92 (2.96 – 
5.66) 

0.86 (0.25 – 2.21) 

Others       

RAL (C)126  8.3 (3.0 – 17.5) 1.8 (0.69 – 6.3) 
0.09 (0.014 – 
0.47) 

7.5 (2.0 – 25.5) 2.8 (0.35 – 8.9) 
0.50 (<0.010 – 
0.77) 

MVC (B)127 2.72 (2.04 – 3.62) 0.45 (0.32 – 0.63) 
0.11 (0.081 – 
0.15) 

3.65 (2.23 – 5.47) 
0.65 (0.41 – 
1.03) 

0.13 (0.089 – 
0.18) 

Footnote: BQL, below quantification limit; a, a modified dose/dosage was used in this study. FDA categories: A, no evidence of risk; B, no 
evidence of risk in animal studies; C, adverse effect on the fetus demonstrated in animal studies but may be used if benefits outweigh 
risk; D, positive evidence of human fetal risk but may be used if benefits outweigh risk; X, risk of fetal abnormalities outweigh benefits. 
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Figure 1.7 Forest plot showing studies of ARV pharmacokinetics in pregnancy vs postpartum. 

The solid line at 1.0 represents line of no difference and dashed lines represent ±25% difference. 

Abbreviations: 3TC, lamivudine; ABC, abacavir; APV, amprenavir; ATV, atazanavir; AZT, 

zidovudine; DRV, darunavir; EFV, efavirenz; ETR, etravirine; FTC, emtricitabine; IDV, indinavir; 

LPV, lopinavir; MVC, maraviroc; NFV, nelfinavir; NVP, nevirapine; RAL, raltegravir; RPV, 

rilpivirine; SQV, saquinavir; TDF, tenofovir disoproxil fumarate.  
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1.3.4.2 Stavudine (d4T) 

The WHO ARV treatment guidelines recommend a 30 mg twice daily dose of d4T, a thymidine 

analogue, for adults.67 The pharmacokinetics of d4T in pregnancy appears to be similar to those 

in HIV-infected men and no dose adjustment is recommended. A mean cord-to-maternal blood 

concentration ratio of 1.0 (95%CI 0.63-1.37) was reported.128 The pooled estimate of M/P ratios 

from three different studies is 1.21 (1.07– 1.36).89 It was widely used in resource-limited settings 

until recently when the WHO suggested that countries should phase it out and develop plans to 

move towards alternative first-line regimens, primarily due to d4T-associated lipodystrophy. No 

data are available on the role of transporter or metabolising enzymes genetic polymorphisms in 

d4T disposition but an association between human leukocyte antigen B*4001 (HLA-B*4001) and 

d4T-associated lipodystrophy was reported in a Thai cohort.129 

1.3.4.3 Abacavir (ABC) 

ABC is a guanosine analogue with recommended dosage of 300 mg twice daily or 600 mg once 

daily for adults. Best et al. reported that the pharmacokinetics of ABC was similar during the 

third trimester and postpartum (Figure 1.7; Table 1.3), and cord-to-maternal blood 

concentration ratio was 1.06.110 In another study using a population pharmacokinetic (popPK) 

approach, ABC population clearance was similar between pregnant and postpartum women, 

including those on once daily 600 mg regimen.130 A median M/P ratio of 0.85 has been 

reported.93 ABC is metabolised by ADH and UGT but there are currently no reports on the 

influence of ADH or UGT polymorphisms on ABC pharmacokinetics. Potentially fatal ABC-

induced hypersensitivity reactions occur in 5 to 8% of patients within 6 weeks of initiating 

treatment, necessitating immediate discontinuation and switching to an alternative regimen.131 

This has been associated with the presence of HLA-B*5701 allele. Patients with this allele are at 

significantly higher risk of developing ABC-induced hypersensitivity reaction and should not 

receive abacavir.132 This was later confirmed in the PREDICT-1 and SHAPE randomised controlled 

http://en.wikipedia.org/wiki/Guanosine
http://en.wikipedia.org/wiki/Analog_%28chemistry%29
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trials,133,134 establishing it as a routine pharmacogenetic testing used as standard of care for 

ART.135 

1.3.4.4 Lamivudine (3TC) 

3TC is a cytidine analogue excreted primarily unchanged via the kidneys. The recommended 

dosage for adults is 300 mg once daily or 150 mg twice daily. The pharmacokinetics of 3TC during 

the third trimester of pregnancy was reportedly similar to non-pregnant adults103 (Figure 1.7; 

Table 1.3). Another study used a popPK approach and reported 22% higher oral clearance in 

pregnant women but a dose adjustment was not warranted.136 3TC crosses the human placenta 

with median cord-to-maternal blood concentration ratio of 1.06. But amniotic fluid 

concentrations were five times higher than in maternal plasma, suggesting passive diffusion 

across the amnion, fetal uptake, and fetal clearance.137 Like AZT, 3TC is a substrate for ABCC4 

and the ABCC4 4131G>T (rs3742106) carrier status has been associated with 20% higher 3TC-

triphosphate intracellular concentrations (p = 0.004).138 Breast milk concentrations were 

approximately 3-fold higher than maternal serum concentrations.94 However, breast milk-

ingested 3TC appears to be poorly absorbed in infants and present at low concentrations in the 

plasma, < 0.10 µg/mL.95 3TC is also a substrate for OCT1, OCT2 and OCT3,41,139 all of which are 

expressed in the kidney, placenta and mammary gland (no OCT2 in the latter).140 In a recent 

study Choi et al. observed reduced 3TC uptake in oocytes expressing OCT1-P283L and OCT1-

P341L as well as those expressing OCT2-T199I, OCT2-T201M and OCT2-A270S variants compared 

to OCTs with the reference sequences.43 The consequences of functional SNPs of OCTs on 3TC 

pharmacokinetics have not been studied in vivo. Such SNPs may also influence the distribution 

of 3TC to the fetal compartment as well as its excretion into breast milk. 

Rare cases of lethal mitochondrial dysfunction in infants exposed in utero to AZT and 3TC were 

reported in the late 1990s.141 These severe cases are clinically very similar to known genetically 

induced mitochondrial defects. Evidence of mitochondrial damage has been demonstrated in 

http://en.wikipedia.org/wiki/Cytidine
http://en.wikipedia.org/wiki/Analog_%28chemistry%29
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HIV-uninfected infants exposed to AZT and 3TC for PMTCT.142 Recent studies have associated 

mtDNA halogroup T/L1c and mtDNA 4917G (increased risk), HFE 845G>A (rs1800562) and IL-

12B 3′-UTR*2 (rs3212227) (decreased risk), and TNF-α variants 1031*2 (rs1799964) and 308*2 

(rs1800629) (increased risk) with NRTI-associated adult neuropathy.143,144 Their roles in infant 

mitochondrial toxicity as a result of in utero exposure to maternal drug need further 

investigation. 

1.3.4.5 Emtricitabine (FTC) 

Like 3TC, FTC it is a cytidine analogue excreted primarily unchanged via the kidneys. The 

approved dosing in adults is 200 mg once daily. Within-subject comparisons of FTC 

pharmacokinetics during pregnancy and postpartum revealed significantly higher apparent 

clearance, and lower AUC and Cmin during pregnancy111 (Figure 1.7; Table 1.3). FTC is well 

distributed to the fetal compartment with mean cord-to-maternal blood concentration ratio of 

1.2 (1.0-1.5). It is excreted into breast milk, achieving concentrations corresponding to 

approximately 2% of recommended oral neonatal dose.97 It is a substrate for ABCC1,145 which is 

expressed in both the placenta and mammary gland (Table 1.2).140 However, no studies have 

assessed the influence of genetic polymorphisms on its disposition. 

1.3.4.6 Tenofovir disoproxil fumarate (TDF)  

TDF is a nucleotide analogue taken orally at a dose of 300 mg once daily for adults. It is a prodrug 

of tenofovir (TFV) and following oral administration and absorption, it undergoes esterase 

hydrolysis and is converted to TFV, a nucleotide (nucleoside monophosphate) analogue which is 

taken up by cells. Intracellularly TFV is rapidly phosphorylated by cellular nucleotide kinase to 

its active anabolite TFV diphosphate. TFV is primarily renally excreted unchanged through a 

combination of glomerular filtration and active tubular secretion.146 Best et al. assessed the 

pharmacokinetics of TFV between 30 and 36 weeks gestation and 6 to 12 weeks postpartum.147 

Median (range) TFV AUC was significantly lower during the third trimester, 2.5 µg.hr/mL (1.1-

http://en.wikipedia.org/wiki/Cytidine
http://en.wikipedia.org/wiki/Analog_%28chemistry%29
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2.6) versus 2.96 µg.hr/mL (1.62-7.2) postpartum (p = 0.02). However, third trimester Cmin were 

not different from postpartum values. A recent study reported a 25% reduction in TFV exposure 

during the third trimester compared to postpartum and the authors speculated that the 

decrease was due to reduced absorption and/or increased volume of distribution as no change 

in the terminal elimination half-life was observed112 (Figure 1.7; Table 1.3). Benabound et al. 

studied the effects of pregnancy on TFV pharmacokinetics using a popPK analysis involving 46 

pregnant and 156 non-pregnant HIV-infected women.148 The apparent oral clearance was 39% 

higher in pregnant women and increased TDF dose for pregnant women from the second 

trimester until delivery was suggested. 

The preferential transfer of TFV across the human placenta with cord-to-maternal blood 

concentration ratio of 1.04 (0.6 to 1.7)147 compared to the blood-CSF barrier with CSF to plasma 

ratio of 0.057 (0.03-0.1)149 may be indicative of differences in expression profiles of TFV 

transporters (Table 1.2). TFV is a substrate for ABCC4, ABCC10, OAT1, and OAT3.35,150 OAT1, 

OAT3 and ABCC4 are expressed in choroid plexus epithelial cells of the brain but not in the 

placenta151-153 while ABCC10 is expressed in both the placenta and CNS.140 OATs are involved in 

the efflux of their substrates out of the CNS.154,155 The mechanisms behind this observed 

difference have not been studied. However, combined with the fetal specific CSF-brain 

barrier,156,157 it does suggest the protection of fetal CNS from exposure to maternal TFV. Carriers 

of ABCC4 3463A>G (rs1751034) were reported to have 35% higher intracellular TFV diphosphate 

concentrations than non-carriers (p = 0.04).158 It is not known if ABCC10 polymorphisms affect 

TFV uptake into the fetal compartment. TFV is excreted into breast milk but at low 

concentrations equivalent to 0.03% of neonatal dose.97 

TFV is transported into proximal tubular cells by OAT1 and to a lesser extent by OAT3,159 which 

are located on the basolateral membrane. It remains unknown if changes in OAT1 expression or 

activity play any role in increased TFV clearance during pregnancy, and if such changes vary in 
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genetically-defined sub-groups of pregnant women. The luminal efflux systems involved in the 

transport of TFV out of proximal tubular cells into the urine are not well described. Three 

transporters, ABCC2,160 ABCC4161 and ABCC1035 have been reported to play a role in the active 

renal tubular efflux of TFV. A genetic variant of ABCC2 (rs717620),162 and two ABCC10 SNPs 

(rs9349256 and rs2125739) were identified as predictors of TFV-induced nephrotoxicity.35 

Higher plasma TFV concentrations in patients with kidney tubular dysfunction have also been 

reported.163 The implications of these SNPs on TFV pharmacokinetics during pregnancy and risk 

of tubular dysfunction is unknown. 

 

1.3.5 Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs) 

Four NNRTIs are currently available for the treatment of HIV. NNRTIs are primarily metabolised 

by CYP enzymes and, with the exception of NVP, are highly protein bound. Therefore, drugs in 

this class are expected to be susceptible to temporal changes in hepatic enzyme activities and 

plasma protein fluctuations during pregnancy. In addition, inter-individual variability in the 

pharmacokinetics of NNRTIs has been associated with SNPs in genes encoding their metabolism 

enzymes, transporters, and associated nuclear hormone receptors.  

1.3.5.1 Efavirenz (EFV)  

EFV is the only ARV outside FDA category A-C (Table 1.3). Early reports of congenital neural tube 

defects resulting from first trimester exposure initially limited its use during pregnancy.164 

However, emerging data on its safety during pregnancy have provided some reassurance.165-168 

In 2010, the WHO updated PMTCT guidelines and recommended EFV use as part of ART after 

the first trimester.67 Since 2013, EFV has been recommended as the preferred NNRTI component 

of ART across different populations, including at every stage of pregnancy and postpartum.13 

The first pharmacokinetic data of standard dose (600 mg, once daily) of EFV during the third 

trimester of pregnancy and postpartum were published in 2012 (Figure 1.8).113 Despite 
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significantly higher oral clearance and lower Cmin during the third trimester compared with 

postpartum, no significant changes in AUC and Cmax were observed. Geometric mean ratios (90% 

CI) of pregnancy versus postpartum AUC and Cmax were 0.97 (0.83-1.13) and 1.11 (0.99-1.24), 

respectively (Figure 1.7; Table 1.3). Cord-to-maternal blood concentration ratio was 0.49 (0.37–

0.74). The authors concluded that no dose adjustment is necessary during pregnancy. 

 

Figure 1.8 EFV median (IQR) concentration-time profiles in pregnant versus postpartum 

women and non-pregnant adults (Cressey et al. 2012).113  

 

Considerable data are available on the effects of genetic polymorphisms in EFV disposition genes 

on its pharmacokinetics. EFV is primarily metabolised by CYP2B6169 with a minor contribution 

from CYP2A6170,171 and glucuronidation of the 8-hydroxy metabolite by UGT2B7.172 Observed 

inter-individual variability has been attributed to polymorphisms in genes encoding these 

enzymes and NR1I3 (transcriptional regulator). The CYP2B6 516G>T (rs3745274), CYP2B6 

983T>C (rs28399499), CYP2A6 1836G>T (rs8192726), UGT2B7 735A>G (rs28365062) and 

UGT2B7 802C>T (rs7439366), and NR1I3 540C>T (rs2307424) SNPs have been extensively 

investigated. In studies conducted in HIV positive Ghanaian patients, Kwara et al. identified 
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CYP2B6 516G>T, CYP2A6 1836G>T and/or CYP2A6 1093G>A (rs28399454) and UGT2B7*1a 

carrier status as predictors of EFV plasma concentrations, accounting for 45.2%, 10.1% and 8.6% 

of the total variance, respectively.25,26 Rotger et al. also reported significantly higher plasma and 

intracellular EFV concentrations and AUC in Caucasians with CYP2B6 516TT than in those with 

CYP2B6 516GG genotype. CYP2B6 516TT was also associated with higher incidences of EFV 

neuropsychiatric side effects.173  The CYP2B6 983T>C polymorphism was associated with higher 

EFV concentrations.174 The CYP2B6 516TT and NR1I3 540CC genotypes were associated with 

early treatment discontinuation, with CNS toxicity accounting for 94.7% of cases of 

discontinuation.46  

The effects of these SNPs that influence EFV pharmacokinetics in non-pregnant adults should be 

studied during pregnancy. Induction of CYP2B6 expression is influenced by basal expression 

levels which is affected by CYP2B6 SNPs.175 Therefore, it is possible that the magnitude of 

pregnancy-induced changes will vary between genetically-defined subgroups of women. 

Interestingly, consistent with inter-individual variability observed in non-pregnant patients due 

to host genetic variations, Cmin ranged from 0.23 to 8.14 µg/mL during pregnancy in the study by 

Cressey et al, and 16% of the women had relatively high exposures with AUC between 146 and 

220 µ.h/mL.113 

EFV is excreted into breast milk with median (range) skim milk M/P ratio of 0.57 (0.35-1.03) and 

infant plasma concentration of 0.87 µg/mL (0.31-1.51).92 The recommended therapeutic range 

is 1.0-4.0 µg/mL.176 Maternal EFV concentration will be a major determinant of infant exposure. 

However, EFV transport across the placenta and into breast milk is also likely to be important 

but is, as yet, largely unstudied. Peroni et al. reported that EFV is a substrate of rat ABCG2 and 

inhibits its own intestinal permeability by promoting over-expression of ABCG2 in the rat 

gastrointestinal tract.177 The polymorphic ABCG2 is highly expressed in the apical membrane of 

human placenta syncytiotrophoblast178 and human mammary gland during lactation.179 It has 
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been suggested to play a role in protecting the fetus against exposure to potentially toxic 

compounds in maternal blood.180 EFV is not a known substrate of any drug transporter in 

humans.181 

1.3.5.2 Etravirine (ETR) 

ETR is used as part of salvage therapy in treatment-experienced adult patients with drug 

resistant viral strains. A study that involved four HIV-infected pregnant women treated with ETR 

(in combination with darunavir and ritonavir) was the first to describe ETR pharmacokinetics 

during pregnancy and showed exposures similar to historical data in non-pregnant adults.182 Two 

additional studies have since been reported with paired pregnancy and postpartum 

pharmacokinetic sampling, with evidence of reduced clearance and increase of 30-60% in Cmin, 

Cmax, and AUC observed during pregnancy114,183 (Figure 1.7; Table 1.3). Virological suppression 

was maintained and there were no cases of MTCT. Reported cord-to-maternal blood 

concentration ratios varied significantly between the two studies, 0.32 (0.13-0.63)183 and 0.76 

(0.19-4.25).114 

These results are consistent with ETR metabolic pathway. It is primarily metabolised by CYP2C19 

(Table 1.1),27 whose expression and activity declines during pregnancy.184 CYP2C19 is highly 

polymorphic and the CYP2C19*2 (rs4244285; high frequency in Asians) and CYP2C19*17 

(rs12248560; high frequency in Africans) alleles have been associated with poor and ultra-rapid 

metabolism of CYP2C19 substrates, respectively.185,186 ETR clearance was 23% lower in 

CYP2C19*2 (rs4244285) carriers than non-carriers and co-administration with 

darunavir/ritonavir or tenofovir reduces ETR clearance by 40% or more,187 creating a potentially 

complex scenario of pharmacokinetic variability. However, these do not seem to have any 

unfavourable impact on ETR pharmacokinetics and efficacy during pregnancy. 
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1.3.5.3 Nevirapine (NVP) 

NVP is initiated at a dose of 200 mg once daily for the first 2 weeks to allow for the auto-

induction of metabolising enzymes that increases its clearance, followed by 200 mg twice daily 

if there are no clinical signs of rash. Initiating NVP in this step-wise fashion reduces the frequency 

of drug-associated rashes. The use of single dose NVP for PMTCT is no longer recommended; 

chronic NVP dosing is now used as part of first-line ART for treatment and PMTCT. The influence 

of pregnancy on NVP pharmacokinetics has been investigated in four different studies; three 

reported reduced exposure during pregnancy,115,188,189 and one reported no difference.190 In the 

study by Lamorde et al., Cmax and AUC were 20% lower during pregnancy, and 67% had Cmin 

below the 3000 ng/mL study target during the third trimester compared with 20% postpartum 

(Figure 1.7; Figure 1.9; Table 1.3).115 

 

Figure 1.9 Nevirapine plasma concentration-time curve during pregnancy and postpartum 

(Lamorde et al. 2010)115. 

 

The CYP2B6 516G>T (rs3745274) and CYP2B6 983T>C (rs28399499) SNPs have been associated 

with higher NVP plasma concentrations. Penzak et al. reported NVP median plasma 

concentration of 7.61 µg/mL in individuals with CYP2B6 516TT genotype versus 4.18 and 5.56 
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µg/mL in those with 516GG and 516GT genotypes, respectively.191 These findings were 

confirmed in a larger study where NVP plasma concentrations were 5.18 µg/mL (1.89-11.16), 

6.13 µg/mL (0.15-11.69) and 6.69 µg/mL (4.16-21.03) in patients with CYP2B6 516 GG, GT and 

TT genotypes, respectively.174 This latter study was also the first to demonstrate that carriers of 

CYP2B6 983 T>C SNP had significantly higher NVP plasma concentrations. Both CYP2B6 516G>T 

and CYP3A5*3 (rs776746) were associated with NVP pharmacokinetics in a study conducted in 

Malawian population. The CYP2B6 516 T allele increased NVP AUC by 92% and CYP3A5*3 

decreased NVP AUC by 31% in a multivariable model.192 Therefore, inclusion of host genetic 

polymorphisms in pharmacokinetic studies of NVP during pregnancy may help identify sub-

populations of women who are at higher risk of subtherapeutic concentrations. To date, 

relatively little data have emerged on efflux or influx transporters capable of NVP transport. 

However, NVP has been shown to be a substrate for ABCC10 and SNPs within the ABCC10 gene 

were associated with plasma concentrations of NVP.36 This is an area where further mechanistic 

investigation is warranted since the identification of placental or mammary gland transporters 

may underpin studies to identify pharmacogenetic correlates of exposure of the fetus or infant, 

respectively.  

Higher incidences of NVP related rash and hepatotoxicity have been reported in HIV-infected 

pregnant women with CD4 counts > 250 cells/mm3 and NVP-containing ART is not 

recommended in these patients.193,194   An association between HLA-B*3505 and NVP-induced 

skin rash has been reported.195 Furthermore, a genome-wide association study revealed that 

variations in the CCHCR1 gene were strongly associated with NVP-induced skin rash.196  

Incorporating genetic and clinical risk factors may therefore have utility in reducing the 

incidence of NVP related-toxicities in women initiating NVP during pregnancy. 

NVP excretion into human breast milk has been reported with M/P ratios of 0.6794 and 0.7595 

resulting in 971 and 734-1032 ng/mL, respectively, in breastfed infants plasma. This is higher 
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than the > 100 ng/mL target on which current PEP dosing guideline is based197 but less than the 

target > 3000 ng/mL in HIV-infected children.198 However, breast milk ingestion of NVP has been 

associated with increased risk of cutaneous ADR in breastfed infants.199 The new WHO guidelines 

that recommend NVP for PEP in breastfeeding populations means double exposure for the many 

of exposed infants in developing countries whose mothers also take NVP as part of ART. 

Therefore, double exposure to NVP from breast milk and PEP may predispose breastfed infants 

to more severe NVP-associated cutaneous and hepatic ADRs. There are no data on infant plasma 

concentration or ADR resulting from such double exposure and the potential influence of SNPs 

known to affect NVP pharmacokinetics. 

1.3.5.4 Rilpivirine (RPV)  

RPV is indicated for the treatment of HIV-1 at a dosage of 25 mg once daily in ART-naïve adults 

with HIV-1 RNA load of 100 000 copies/mL or less.200 Very limited information is available on its 

pharmacokinetics during pregnancy. In two case reports, an average of 36, 21 and 49% reduction 

in AUC, Cmax and Cmin, respectively, were observed during pregnancy compared with 

postpartum.201 However, virological suppression was sustained and there was no MTCT. 

Similarly, significant reductions in some pharmacokinetic parameters, including AUC and Cmin, 

were observed in pregnant compared with postpartum women receiving the standard 25 mg 

daily dose in another study. However, the recommended AUC target was met in 94% (15/16), 

93% (27/29), and 88% (23/26) at second trimester, third trimester, and postpartum, respectively 

(Figure 1.7; Table 1.3). Cord-to-maternal blood concentration ratio was 0.55 (0.38-0.83).116 

RPV is metabolised by CYP3A enzymes and 99.7% bound to plasma proteins, mainly albumin. 

However, pregnancy-induced increase in CYP3A enzymes activity and decrease in albumin 

concentrations may partly explain the observed increase in RPV clearance. These cases highlight 

the need for caution in the use of 25 mg once daily RPV in pregnant women, especially in those 
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initiating therapy late in pregnancy. More studies are now warranted to further investigate 

these observations, including the implications of known CYP3A4 and CYP3A5 SNPs (Table 1.2). 

 

1.3.6 Protease Inhibitors (PIs) 

Ten PIs are currently available for the treatment of HIV. The PIs are primarily metabolised by the 

CYPs (Table 1.1) and are expected to be susceptible to pregnancy-induced changes in their 

pharmacokinetics like the NNRTIs. 

1.3.6.1 Lopinavir/ritonavir (LPV/r) 

LPV is one of the most widely studied ARVs during pregnancy.  It is co-administered with low-

dose ritonavir (RTV) to “boost” its pharmacokinetics. The standard dose of LPV/r in non-

pregnant adults is 400/100 mg twice daily.  LPV is primarily metabolised by CYP3A4 and CYP3A5. 

RTV is a potent CYP3A4 inhibitor and co-administration with LPV results in markedly higher LPV 

plasma concentrations. RTV is also a substrate for both CYP3A4 and CYP2D6.202 Both LPV and 

RTV are ABCB1 and ABCC1 substrates203,204 and highly bound (98%) to plasma proteins. LPV/r-

containing first-line regimen is preferred in children younger than 3 years, and reserved as 

second-line regimen in older children and adults after failure of NNRTI-based first-line regimen, 

including in pregnant women.13 

Stek et al. assessed standard LPV/r dosing during the third trimester and LPV exposure was 

approximately 50% lower compared to non-pregnant adults.205 Mean (SD) LPV cord-to-maternal 

blood concentration ratio was 0.2 (0.13). Changes in RTV pharmacokinetic parameters were not 

statistically significant. The soft-gel capsule formulation used in this study has now been 

replaced with a tablet formulation, which has been shown to have improved bioavailability and 

reduces the impact of pregnancy (Figure 1.7; Table 1.3).122 LPV exposure during the third 

trimester of pregnancy following standard dosing with the tablet formulation in Thai women 

was reduced by 22%.206 Similar findings have been reported by Calza et al., Ramautarsing et al. 
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and Lambert et al.207-209 A higher dose of 600/125 mg of the tablet formulation in American 

women provided comparable exposure to that observed in non-pregnant adults (Table 1.3).123 

There is ongoing debate regarding the optimal dose of LPV/r during pregnancy, which may differ 

between populations. Higher LPV plasma concentrations have been associated with SLCO1B1 

521T>C (rs4149056) polymorphism,38 and within a popPK model homozygosity for the C allele 

was associated with a 37% lower clearance.39 The influence of SLCO1B1 polymorphisms on LPV 

exposure during pregnancy should be investigated as the presence of this SNP may help 

compensate for the pregnancy-induced changes in some women. The possible influence of SNPs 

in SLCO1B1, ABCB1 and ABCC1 on transplacental transfer of LPV and RTV also warrants further 

study. LPV and RTV are mostly undetectable in breast milk.98 

1.3.6.2 Atazanavir (ATV) 

ATV is used in combination with low dose RTV (ATV/r) during pregnancy at 300/100 mg once 

daily. Conflicting data on ATV/r pharmacokinetics during pregnancy have been reported. 

Ripamonti et al. reported comparable AUC, Cmax and Cmin during pregnancy and postpartum.210 

Another study in which samples were collected at a single time-point similarly reported no 

difference in Cmin between pregnancy and postpartum (n = 103).211 In contrast, Mirochnick et al. 

observed significant differences in AUC, Cmax and Cmin with pregnancy versus postpartum ratios 

of 0.72, 0.47 and 0.58, respectively, without TDF, and 0.73, 0.61 and 0.67, respectively, with TDF 

(Figure 1.7; Table 1.3).118 Two other studies have also reported significantly reduced ATV 

exposure with 300/100 mg ATV/r during pregnancy, with sustained virological suppression and 

no MTCT.212,213 The 400/100 mg increased dose achieved exposure levels comparable to non-

pregnant adults despite pregnancy-induced changes.119 Median cord-to-maternal blood 

concentration ratio was between 0.14 and 0.23 but varied widely, 0.06-3.05 in one study.212 

Breast milk excretion of ATV has also been reported with a milk-to-plasma ratio of 0.13.214 
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ATV is metabolised by CYP3A enzymes. The CYP3A5*1B (rs28365095) allele has been associated 

with increased ATV clearance.215 The NR1I2 63396C>T (rs2472677) has also been associated with 

unboosted ATV plasma concentrations47 and a 17% increase in unboosted ATV clearance.216 

Furthermore, interaction between CYP3A5 expressor status and NR1I2 63396C>T (rs2472677), 

were reported by Kile et al. ATV clearance was 37% lower in non-expressors of CYP3A5 with 

NR1I2 63396CC genotype than those with CT or TT genotypes and 63% lower in expressors with 

NR1I2 63396CC genotype than those with CT or TT genotypes.217 Based on available data, the 

effect of the CYP3A5 expressor status on RTV boosted ATV during pregnancy may be limited. 

ABCB1 3435C>T (rs1045642) polymorphism may influence ATV plasma concentrations in the 

presence of RTV.218 Investigating the effect of ABCB1 3435C>T on ATV exposure during 

pregnancy will be particularly interesting given that ABCB1 is expressed in the placenta.219 ATV 

use is associated with hyperbilirubinemia and an association between the UGT1A1*28 

(rs8175347) and hyperbilirubinemia has been observed.29 Neonatal UGT1A1 211G>A 

(rs4148323) and SLCO1B1 388G>A (rs2306283) polymorphisms, breastfeeding,30 and ATV use 

during pregnancy220 are risk factors for neonatal hyperbilirubinemia. The effects of these SNPs 

on ATV-associated neonatal hyperbilirubinemia during pregnancy and lactation warrant further 

investigation. 

1.3.6.3 Darunavir (DRV) 

DRV is used in combination with low dose RTV (DRV/r) at 800/100 mg once daily in treatment-

naïve or treatment-experienced patients with no DRV-associated resistance mutations, or 

600/100 mg twice daily in treatment-experienced patients with at least one DRV-associated 

resistance mutation. Findings from different studies have consistently indicated significantly 

reduced DRV exposure during pregnancy. Stek et al. assessed the pharmacokinetics of DRV 

during the third trimester and postpartum with once and twice daily dosing regimens.  DRV 

clearance was significantly increased during pregnancy at both doses and the authors suggested 

using twice daily dosing during pregnancy to avoid subtherapeutic concentrations120 (Figure 1.7; 
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Table 1.3). Other studies have reported similar findings.221,222 However, virological suppression 

was maintained and there was no MTCT despite reduced exposure. Cord-to-maternal blood 

concentration ratio ranged from 0 to 0.82. SLCO3A1 rs8027174 GT/TT genotypes were 

reportedly associated with 12% decrease in DRV clearance.223 No other pharmacogenetic 

associations have been reported. Its excretion into breast milk has not been studied. 

Other PIs, including amprenavir (APV/r), fosamprenavir (fAPV/r), nelfinavir (NFV/r), saquinavir 

(SQV/r) and indinavir (IDV/r), are rarely used during pregnancy. However, available 

pharmacokinetic data indicate a general trend towards significantly reduced exposure during 

pregnancy in this class of ARVs (Figure 1.7; Table 1.3). 

 

1.3.7 Integrase Strand Transfer Inhibitors (INSTIs) 

1.3.7.1 Raltegravir (RAL)  

A number of case reports have documented rapid reduction in plasma HIV-1 RNA (> 2 log within 

10 days) following treatment initiation or intensification with RAL in women presenting with 

high HIV-1 RNA late in pregnancy.224-228 Comparisons of its pharmacokinetics during pregnancy 

versus postpartum showed significantly higher clearance and lower AUC, Cmax, and Cmin during 

pregnancy126,229 (Figure 1.7; Table 1.3). Cord-to-maternal blood concentration ratio ranged from 

0.09 to 2.3, suggesting significant but highly variable transfer into the fetal compartment.  

RAL is metabolised by UGT1A1 which is highly polymorphic. Co-administration with ATV, a 

known UGT1A1 inhibitor, resulted in > 2-fold elevation of RAL plasma concentration, but the 

UGT1A1*28/*28 (rs8175347) reduced function genotype was not associated in an Italian 

cohort.230 In a comprehensive population pharmacogenetic-pharmacokinetic analysis, the rare 

UGT1A9*3 (rs72551330) SNP was identified as possibly influencing RAL pharmacokinetics.231 

RAL is a substrate for ABCB131 and functional ABCB1 SNPs may contribute to the observed inter-
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individual variability in its trans-placental passage. Its excretion into breast milk and transfer to 

breastfed infants have not been studied. 

Other INSTIs, elvitegravir (EVG) and dolutegravir (DTG), are relatively new and there are no data 

on their pharmacokinetics during pregnancy. Three clinical trials are planned or ongoing to 

investigate the safety and pharmacokinetics of DTG during pregnancy (ClinicalTrials.gov ID: 

NCT02245022; NCT02075593; NCT00042289). NCT00042289 will also investigate the 

pharmacokinetics of EVG (in combination with cobicistat) during pregnancy. Breast milk 

excretion of DTG and transfer to breastfed infants will also be investigated in NCT02245022. 

Early integration of host genetics into these trials will provide important information about any 

observed variability and potential treatment optimisation strategies. 

 

1.3.8 Entry and Fusion Inhibitors 

Very limited information is available on enfuvirtide (T-20) during pregnancy. Its use in late 

pregnancy for PMTCT in women presenting with virological failure and multi-class viral 

resistance mutations have been reported. T-20 does not cross the placenta232-236 and has been 

associated with a case of MTCT despite adequate maternal virological suppression.237 A case 

report was located on the use of maraviroc (MVC) during pregnancy with cord/maternal blood 

ratio of 0.30.238 Colbers et al. evaluated MVC pharmacokinetics during pregnancy and 

postpartum. Its AUC, Cmax, and Cmin were 28, 30 and 15%, respectively, lower during pregnancy 

compared with postpartum.127 Viral load was detectable in 24% of patients at delivery but a 

relationship with drug exposure could not be demonstrated and there was no MTCT.127 MVC is 

a substrate for OATP1B1 and the SLCO1B1 521T>C (rs4149056) SNP has been associated with its 

plasma concentrations.239 
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1.4 THESIS OBJECTIVES 

Highly efficacious regimens are now available to prevent MTCT and increasing numbers of 

women are using ARVs during pregnancy and postpartum. In 2014, UNAIDS proposed the 90-

90-90 target, a new narrative on HIV treatment aimed at ensuring that 90% of people living with 

HIV know their status, 90% of HIV positive individual receive lifelong ART, and 90% of those 

receiving ART achieve virological suppression by the year 2020.240 As highlighted above, 

questions remain about the potential accentuation or attenuation of pregnancy-induced 

changes in the pharmacokinetics of ARVs or breastfed infants’ exposure by genetic 

polymorphisms in drug disposition genes. The overall aim of this thesis was to investigate the 

effects of host genetic variability on plasma and breast milk pharmacokinetics of two key ARVs 

(EFV and NVP) during pregnancy and lactation. Both drugs have significant genetic contribution 

to observed pharmacokinetic variability.241 Genetic correlates of breastfed infants’ exposure 

were also determined. In addition to highlighting novel strategies for conducting such 

investigations, it is expected that the data presented will fill important gaps in the medical 

literature and incentivise an evidence-based approach to pharmacogenetics-guided 

optimisation of ART in these special populations. 

The magnitude of pregnancy-induced changes in the pharmacokinetics of EFV in genetically-

defined subgroups of women was investigated in Chapter 2. Using a pharmacogenetic-guided 

approach, the effects of pregnancy on NVP pharmacokinetics was evaluated in Chapter 3. 

Chapters 4 and 5 detail the most comprehensive analysis to date of breast milk 

pharmacokinetics and breastfed infants’ exposure to EFV and NVP. Conducting the studies 

described in Chapters 2 to 5 necessitated development and validation of novel methods for 

quantifying both drugs in dried breast milk spots and dried blood spots. These are reported 

elsewhere and cited in relevant sections of this thesis.242,243 In a novel application of 

physiologically-based pharmacokinetic (PBPK) modeling, Chapter 6 describes the development 
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and application of a bespoke breastfeeding PBPK model to investigate breastfed infants’ 

exposure to maternal drugs through breast milk. 
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CHAPTER 2 

 

PHARMACOGENETICS OF PREGNANCY-

INDUCED CHANGES IN EFAVIRENZ 
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2.1 INTRODUCTION 

The use of antiretroviral (ARV) drugs has reduced mother-to-child transmission (MTCT) of HIV 

from the baseline 20-45% without intervention to less than 5%.9 The World Health Organisation 

(WHO) now recommends Option B or Option B+ for the treatment of HIV positive pregnant 

women and prevention of mother-to-child transmission (PMTCT) of HIV.13 Under these options, 

all HIV positive pregnant women receive triple antiretroviral therapy (ART) started during 

pregnancy and continued until breastfeeding ends (Option B) or for life (Option B+) regardless 

of CD4 count and the HIV-exposed infants are given daily nevirapine post-exposure prophylaxis 

(PEP) from birth through age 4-6 weeks.13 These simplified approaches are expected to 

significantly increase the number of pregnant women starting ARVs globally as seen in Malawi 

where Option B+ was first introduced.244 If successfully implemented, these strategies could 

accelerate progress towards eradicating new paediatric HIV infections. Arguably, the single most 

important factor that determines the success of any PMTCT intervention is sustained 

suppression of viral replication by prescribed ARVs.  

The physiological and anatomical changes associated with pregnancy are known to alter the 

pharmacokinetics of many drugs,22 including efavirenz (EFV),113 a popular component of first-

line ARV regimens.245 These changes include alterations in the expression and activity of hepatic 

drug-metabolizing enzymes, decreased plasma proteins, increased body water, increased gastric 

pH, and increased intestinal transit time.22 The effects of these changes on the pharmacokinetics 

of specific ARVs have been reported and extensively reviewed.60,246,247 Unfortunately, the 

historical exclusion of pregnant women from drug development trials has often led to lack of 

pregnancy-specific dosing guidelines.248 In addition, significant inter-individual variability in the 

pharmacokinetics of many ARVs due to SNPs in drug disposition genes has been reported. For 

instance, the hepatic cytochrome P450 (CYP) isoenzyme, CYP2B6, accounts for over 90% of EFV 

metabolism.249 Several SNPs in the CYP2B6 gene have been associated with variability in EFV 
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pharmacokinetics across different populations: 516G>T,250 983T>C,251 785A>G,252 and 485-

18C>T.253 SNPs in CYP2A6,25 NR1I3,254 ABCB1255 and other genes which play some role in EFV 

disposition have also been associated with this variability.  

Despite these observations, pregnancy-induced changes in the pharmacokinetics of EFV have 

not been well studied in the context of pharmacogenetic variability. We previously hypothesised 

that the magnitude of pregnancy-induced changes in pharmacokinetics may vary in genetically-

defined subgroups of pregnant women.247 In the present study, potential associations between 

EFV pharmacokinetics during pregnancy and postpartum and SNPs in CYP2B6, NR1I3, CYP2A6, 

and ABCB1 were explored. The magnitude of pregnancy-induced changes in EFV 

pharmacokinetics in genetically-defined subgroups, stratified by the SNP with the highest 

predictive power, was then investigated. 

 

2.2 METHODS 

2.2.1 Patients 

HIV positive pregnant women and nursing mothers were recruited from three hospitals in Benue 

State, Nigeria: Bishop Murray Medical Centre, Makurdi; St Monica’s Hospital, Adikpo; and St 

Mary’s Hospital, Okpoga. Potentially eligible subjects were identified using the current PMTCT 

record and invited to participate after an information session conducted in English and the local 

language. All participants gave prior written informed consent. Once subjects had signed a 

consent form, we ascertained their eligibility by examining their case notes and conducting a 

brief interview. The inclusion criteria included HIV positive and pregnant or breastfeeding, 

enrolled in the PMTCT programme and taking an EFV-containing regimen for at least the 

previous 4 weeks. Exclusion criteria included opportunistic infections (e.g. tuberculosis, 

pneumonia), severe illness, and concurrent treatment with other drugs or herbal medication 

with known or uncertain interaction with EFV. The protocol and the associated materials 
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transfer agreement were approved by the National Health Research Ethics Committee (NHREC), 

Abuja, Nigeria. Clinicaltrials.gov ID: NCT02269462. 

2.2.2 Study Design 

This was an observational study with an enrichment design256,257 conducted in two phases. The 

primary objective of the preliminary phase was to identify SNPs associated with EFV 

concentrations and nine SNPs in an unselected cohort of HIV positive women during pregnancy 

and postpartum were investigated. In the second phase, the SNP independently associated with 

the highest predictive power during pregnancy and postpartum was used to stratify patients 

into three groups: non-carriers, heterozygotes, and homozygotes. Randomly selected patients 

from each group were re-recruited and invited for the intensive pharmacokinetic phase. 

Different groups of patients were evaluated during pregnancy and postpartum. 

2.2.3 Sample Collection 

In the preliminary phase, dried blood spots (DBS) samples were collected from all patients at a 

single, recorded time point post-dose. In the intensive pharmacokinetic phase, DBS samples 

were collected from patients preselected based on the SNP with the highest predictive power 

at 0.5, 1, 2, 4, 8, 12, 24 h after an observed evening dose of 600 mg EFV. DBS samples were 

collected after sterile skin cleaning and finger prick using a 2mm safety lancet (BD, Oxford, 

Oxfordshire, UK). The first drop of blood was discarded and subsequent blood drops were 

collected on Whatman 903® Protein Saver cards (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK), dried at room temperature and stored with desiccant sachets in ziplock 

bags. Samples were shipped at room temperature to the Department of Molecular and Clinical 

Pharmacology, University of Liverpool, United Kingdom for analysis.  
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2.2.4 DNA Extraction and SNP Genotyping 

Genomic DNA was extracted using E.Z.N.A.® Blood DNA Mini Kit (Omega Bio-Tek, Inc., Norcross, 

GA, USA) in accordance with the manufacture’s protocol. The extracted DNA was quantified 

spectrophotometrically using NanoDrop® (Thermo Fisher Scientific Inc., Wilmington, DE, USA) 

and stored at -20oC until analysis. Genotyping was performed by allelic discrimination real-time 

PCR assay on a DNA Engine Chromo4 system (Bio-Rad Laboratories, Inc., Hercules, CA, USA). The 

PCR protocol involved an initial denaturation step at 95°C for 15 min, followed by 50 cycles of 

amplification at 95°C for 15 s and final annealing at 60°C for 1 min. TaqMan® Genotyping Master 

Mix and assays for CYP2B6 516G>T (rs3745274; ID: C_7817765_60), CYP2B6 983T>C 

(rs28399499; ID: C_60732328_20), CYP2B6 c.485-18C>T (rs4803419; ID: C_7817764_10), NR1I3 

c.540C>T (rs2307424; ID: C_25746794_20), NR1I3 c.152-1089T>C (rs3003596; ID: 

C_16194070_10), ABCB1 4046A>G (rs1045642; ID: C_7586657_20), ABCB1 4036A>G (rs3842; 

ID: C_11711730_20), ABCB1 1236C>T (rs1128503; ID: C_7586662_10) and CYP2A6 48T>G 

(rs28399433; C_30634332_10) were obtained from Life Technologies Ltd (Paisley, Renfrewshire, 

UK). Opticon Monitor® version 3.1 (Bio-Rad Laboratories, Inc., Hercules, CA, USA) was used to 

obtain allelic discrimination plots and make genotype calls. 

2.2.5 EFV Quantification and Pharmacokinetic Analysis 

EFV in DBS was quantified using a validated liquid chromatography-tandem mass spectrometry 

method described elsewhere.258 Plasma concentrations were determined using [DBS[EFV]/(1-

HCT)]*0.995, where DBS[EFV] is EFV concentration in DBS, HCT is the patient-specific haematocrit 

and 0.995 is the fraction of EFV bound to plasma protein.259 Minimum (Cmin) and maximum (Cmax) 

plasma concentrations were determined by direct inspection. The area under the concentration-

time curve during the dosing interval (AUC0-24) was calculated using the trapezoidal rule and the 

apparent clearance (CL/F) was calculated by dividing the dose by AUC0-24. 
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2.2.6 Statistical Analysis 

Compliance with Hardy-Weinberg Equilibrium was tested as described by Rodriguez et al.260 

Data were subjected to Kolmogorov-Smirnov normality test prior to statistical analysis. 

Relationships between continuous variables were tested by Pearson or Spearman correlation. 

Univariate linear regression analysis was conducted to identify variables associated with EFV 

plasma concentrations. Independent variables with p ≤ 0.05 in the univariate analysis were 

included in a multivariate stepwise linear regression analysis. Bonferroni correction was used to 

adjust for multiple testing. Differences in EFV concentrations and pharmacokinetic parameters 

between patient groups were investigated using one-way analysis of variance (ANOVA) and 

Mann-Whitney U test. All statistical analyses were conducted using IBM ®SPSS® Statistics version 

20.0 (IBM, Armonk, NY, USA) and GraphPad Prism® 5 (GraphPad Software, Inc., La Jolla, CA, 

USA). All charts were plotted using GraphPad Prism® 5. The putative target for Cmin was set at 

1000 ng/mL, the suggested minimum effective concentration.261,262 

 

2.3 RESULTS 

2.3.1 Patients’ Characteristics and Genotype Frequencies 

Between December 2012 and October 2013 a total of 211 eligible HIV positive women enrolled 

in the PMTCT programme (77 pregnant and 134 postpartum) were recruited. Patient 

characteristics and genotype frequencies are summarised in Table 2.1. The mean (SD) duration 

on current ARV regimen was 23.9 months (16.3) in pregnant women and 17.6 months (14.1) in 

postpartum women, starting with baseline CD4 counts of 312 cells/mm3 (195) and 380 cells/mm3 

(217), respectively. More than 70% of the pregnant women were in the third trimester. Most 

patients were taking regimens containing EFV, emtricitabine and tenofovir (> 60%) or EFV, 

lamivudine and zidovudine (> 20%). DBS samples were collected at 12.0 h (3.00-18.75) and 14.00 

h (0.50-21.5) post-dose during pregnancy and postpartum, respectively, in the preliminary 
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phase. Comparison of observed and expected genotype frequencies showed that all nine SNPs 

were in Hardy-Weinberg equilibrium in both groups, p > 0.05. 

Table 2.1 Characteristics* of patients during pregnancy and postpartum. 

Characteristics Pregnancy (n = 77) Postpartum (n = 134) 

Age (years) 28 (19-44) 29 (18-44) 

Weight (kg) 58 (43-90) 57 (39-80) 

Time since diagnosis (months) 28.4 (0.15-72) 21.1 (1.3-68) 

Gestational/Postnatal age (weeks) 27.3 (1.1-37) 20.0 (0.29-75) 

Trimester:   

1st 5% NA 

2nd 24% NA 

3rd 71% NA 

Drug regimen and CD4 count:   

TDF/FTC/EFV 63% 65% 

3TC/AZT/EFV 23% 32% 

3TC/TDF/EFV 11% 2% 

3TC/ABC/EFV 3% 1% 

Time post-dose (h) 12.0 (3.0-18.75) 14.0 (0.5-21.5) 

Duration on regimen (months) 23.9 (16.3) 17.6 (14.1) 

Baseline CD4 count (cells/mm3) 312 (195) 380 (217) 

CD4 change (cells/mm3) 116 (202) 177 (217) 

Genotype frequencies:   

CYP2B6 516G>T (rs3745274) 
GG, 0.32; GT, 0.54; 

TT, 0.14 

GG, 0.35; GT, 0.47; TT, 0.18 

CYP2B6 983T>C (rs28399499) 
TT, 0.75; CT, 0.25; 

CC, 0.00 

TT, 0.80; CT, 0.20; CC, 0.00 

CYP2B6 c.485-18C>T (rs4803419) 
CC, 0.82; CT, 0.18; 

TT, 0.00 

CC, 0.79; CT, 0.21; TT, 0.00 

NR1I3 c.540C>T (rs2307424) 
CC, 0.74; CT, 0.26; 

TT, 0.00 

CC, 0.77; CT, 0.23; TT, 0.00 

NR1I3 c.152-1089T>C (rs3003596) 
TT, 0.20; CT, 0.61; 

CC, 0.20 

TT, 0.19; CT, 0.54; CC, 0.27 

ABCB1 4046A>G (rs1045642) 
AA, 0.75; AG, 0.21; 

GG, 0.04 

AA, 0.75; AG, 0.25; GG, 0.00 

ABCB1 4036A>G (rs3842) 
AA, 0.68; AG, 0.30; 

GG, 0.01 

AA, 0.65; AG, 0.35; GG, 0.01 

ABCB1 1236C>T (rs1128503) 
CC, 0.69; CT, 0.30; 

TT, 0.01 

CC, 0.76; CT, 0.23; TT, 0.02 

CYP2A6 48T>G (rs28399433) 
TT, 0.94; GT, 0.06; 

GG, 0.00 

TT, 0.93; GT, 0.07; GG, 0.01 

* Values expressed as mean (standard deviation) or median (range) or % of subjects. 
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2.3.2 Pharmacogenetics of EFV Exposure during Pregnancy and Postpartum 

Of the nine SNPs investigated, only CYP2B6 516G>T (rs3745274) and CYP2B6 983T>C 

(rs28399499) were independently associated with EFV plasma concentrations during pregnancy 

with regression coefficients (95% Confidence Interval, CI) of 1530 ng/mL (771, 2290), p = 1.4 X 

10-4 and 1660 ng/mL (454, 2860), p = 8.0 X 10-3, respectively (Table 2.2). In postpartum women, 

only CYP2B6 516G>T (rs3745274) was independently associated with EFV plasma concentrations 

and the regression coefficient was 1700 ng/ml (1250, 2150), p = 1.7 X 10-11 (Table 2.2). After 

Bonferroni correction for multiple testing only CYP2B6 516G>T (rs3745274) was associated 

during pregnancy and postpartum, with Boferroni p values of 1.8 X 10-3 and 2.0 X 10-10, 

respectively. No other variable was significantly associated in either univariate or multivariate 

analysis (Table 2.2). Significant differences in EFV plasma concentrations between patients 

based on CYP2B6 516G>T (rs3745274) genotypes were observed during pregnancy and 

postpartum (Figure 2.1).  

Therefore, patients were stratified based on their CYP2B6 516G>T (rs3745274) status for 

enrolment in the intensive pharmacokinetic phase. A total of 25 pregnant women (8 GG, 14 GT 

and 3 TT) and a different group of 19 postpartum women (6 GG, 7 GT and 6 TT) were successfully 

re-recruited.  

2.3.3 EFV Pharmacokinetics in Pregnancy versus Postpartum 

A preliminary analysis was conducted to evaluate potential differences in EFV pharmacokinetic 

parameters between the different trimesters of pregnancy. There were no significant 

differences in CL/F and AUC0-24 (p = 0.53), Cmax (p = 0.98) and Cmin (p = 0.57) between the first 

two trimesters (n = 7) and the third trimester (n = 18). Therefore, all 25 pregnant women were 

included in subsequent analysis. A pooled comparison of EFV pharmacokinetic parameters 

showed a 42.6% increase in CL/F (p = 0.023), 29.8% decrease in AUC0-24 (p = 0.023) and 28.0% 

reduction in Cmin (p = 0.012) during pregnancy compared with postpartum controls, although the 
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median (range) Cmin was 1000 ng/mL (429-5190), a value within the suggested target.176,261,262 

There was no significant change in Cmax (p = 0.072) (Table 2.3; Figure 2.2A). However, when 

stratified based on CYP2B6 516G>T (rs3745274), EFV CL/F increased by 100% during pregnancy 

 

Figure 2.1 Association of CYP2B6 516G>T with EFV plasma concentrations during pregnancy and 

postpartum in the preliminary phase. P values on figures are for Mann-Whitney U test. EFV 

concentrations (median, IQR) during pregnancy were: GG (n = 23), 1390 ng/mL (1110, 1880); GT 

(n = 42), 1850 ng/mL (1450, 2510); TT (n = 11), 4860 ng/mL (2870, 6600); PANOVA < 0.0001 (A). 

Postpartum concentrations were: GG (n = 37), 1470 ng/mL (1170, 2270); GT ng/mL (n = 47), 2350 

(1580, 3730); TT (n = 21), 5400 ng/mL (4070, 6550); PANOVA < 0.0001 (B).  
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Table 2.2 Association of patient characteristics and single nucleotide polymorphisms in CYP2B6, NR1I3, CYP2A6, and ABCB1 with EFV 

plasma concentrations during pregnancy and postpartum. 

 Univariate linear regression Multivariate linear regression 

 βa (ng/mL; 95% CI) p value 
Bonferroni  

p value 
βa (ng/mL; 95% CI) p value 

Bonferroni 

p value 

Pregnant women (n = 77)       

Weight (kg) -36.5 (-99.7, 26.9) 0.26     

Age (years) -18.3 (-114, 77.2) 0.70     

Time post-dose (h) -21.1 (-188, 146) 0.80     

Trimester 151 (-1290, 1590) 0.83     

CYP2B6 516G>T (rs3745274) 1530 (771, 2290) 1.4 X 10-4 1.8 X 10-3 1530 (771, 2290) 1.4 X 10-4 1.8 X 10-3 

CYP2B6 983T>C (rs28399499) 1660 (454, 2860) 0.008 0.104    

CYP2B6 c.485-18C>T (rs4803419) -321 (-1730, 1090) 0.65     

NR1I3 c.540C>T (rs2307424) -493 (-1730, 746) 0.43     

NR1I3 c.152-1089T>C (rs3003596) 130 (-743, 1000) 0.77     

ABCB1 4046A>G (rs1045642) 531 (-488, 1550) 0.30     

ABCB1 4036A>G (rs3842) 19.3 (-1070, 1110) 0.97     

ABCB1 1236C>T (rs1128503) 87.9 (-1010, 1190) 0.87     

CYP2A6 48T>G (rs28399433) 158 (-2050, 2370) 0.89     

Postpartum (n = 134)       

Weight (kg) -17.0 (-71.9, 38.0) 0.54     

Age (years) 4.20 (-67.3, 75.7) 0.91     

Time post-dose (h) 37.4 (-34.7, 110) 0.31     

CYP2B6 516G>T (rs3745274) 1700 (1250, 2150) 1.7 X 10-11 2.0 X 10-10 1700 (1250, 2150) 1.7 X 10-11 2.0 X 10-10 

CYP2B6 983T>C (rs28399499) 209 (-718, 1140) 0.66     

CYP2B6 c.485-18C>T (rs4803419) -470 (-1390, 453) 0.32     
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Table 2.2 continued   

 Univariate linear regression Multivariate linear regression 

 βa (ng/mL) (95% CI) p value 
Bonferroni  

p value 
βa (ng/mL) (95% CI) p value 

Bonferroni 

p value 

Postpartum (n = 134) continued       

NR1I3 c.540C>T (rs2307424) -792 (-1670, 87.9) 0.077     

NR1I3 c.152-1089T>C (rs3003596) 30.4 (-523, 584.0) 0.91     

ABCB1 4046A>G (rs1045642) 643 (-189, 1480) 0.13     

ABCB1 4036A>G (rs3842) 386 (-356, 1130) 0.31     

ABCB1 1236C>T (rs1128503) 404 (-368, 1180) 0.302     

CYP2A6 48T>G (rs28399433) -31.7 (-1240, 1180) 0.959     
*β is the regression coefficient and represents incremental change in EFV plasma concentration per unit change in a patient characteristic 

(e.g. per kg body weight or per allele carried). 
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compared with postpartum controls (p = 0.0013) in patients with the CYP2B6 516GG 

genotype. The AUC0-24, Cmax and Cmin were reduced by 50.6% (p = 0.0013), 17.2% (p = 0.14) 

and 61.6% (p = 0.0027) during pregnancy, with values of 25,900 ng.h/mL (21,700-32,600), 

2640 ng/mL (1260-3490) and 592 ng/mL (429-917), respectively, compared with 52,400 

ng.h/mL (32,600-64,000), 3190 ng/mL (2700-3800) and 1540 ng/mL (867-2310), respectively, 

postpartum. (Table 2.3; Figure 2.2B). No pregnancy-induced changes in pharmacokinetic 

parameters were apparent in patients with the CYP2B6 516GT genotype (Table 2.3; Figure 

2.2C). In pregnant women with the CYP2B6 516TT genotype, EFV CL/F was 45.6% higher 

compared with postpartum controls (p = 0.095) and despite significant reduction (2890 

ng/mL (2660-4030) versus 5130 ng/mL (3830-6740); p = 0.048), Cmin was above 1000 ng/mL 

in all pregnant women with the CYP2B6 516TT genotype (Table 2.3; Figure 2.2D).  

2.3.4 Effect of Pregnancy on Immunological Recovery 

Baseline and antenatal or postpartum CD4 counts were available for 103 women (37 

pregnant, 66 postpartum). In a pooled linear regression analysis, pregnancy was associated 

with lower most recent CD4 count, β = -112 cells/mm3 (-193, -31.1), p = 0.0070. This 

association remained after adjusting for baseline CD4 count, but was lost after adding ART 

duration. Similarly, an association between most recent CD4 count and ABCB1 4036A>G 

(rs3842) in pregnant women observed in univariate analysis, β = -190 cells/mm3 (-342, -39.0) 

and p = 0.015, was lost after adjusting for baseline CD4 count and ART duration. In 

postpartum women, ABCB1 4046A>G (rs1045642) was independently associated with CD4 

change after adjusting for baseline CD4 count and ART duration, β = 154 cells/mm3 (36.5, 

271) and p = 0.011. No other associations were observed. 
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Table 2.3 EFV pharmacokinetic parameters (median, range) during pregnancy and postpartum based on CYP2B6 516G>T genotypes. 

All (CYP2B6 516GG, GT and TT) Clearance/F (L/h) AUC0-24 (ng.h/mL) Cmax (ng/mL) Cmin (ng/mL) 

Pregnancy (n = 25) 14.1 (2.96-27.7) 42,600 (21,700-203,000) 3490 (1260-14400) 1000 (429-5190) 

Postpartum (n = 19) 9.89 (3.39-20.7) 60,700 (29,000-177,000) 4850 (2050-9760) 2030 (755-6740) 

Pregnancy vs Postpartum: % change 42.6 -29.8 -28.0 -50.7 

p valuea 0.023 0.023 0.072 0.012 

CYP2B6 516GG     

Pregnancy (n = 8) 23.2 (18.4-27.7) 25,900 (21,700-32,600) 2640 (1260-3490) 592 (429-917) 

Postpartum (n = 6) 11.6 (9.37-18.4) 52,400 (32,600-64,000) 3190 (2700-3800) 1540 (867-2310) 

Pregnancy vs Postpartum: % change 100 -50.6 -17.2 -61.6 

p value 0.0013 0.0013 0.14 0.0027 

CYP2B6 516GT     

Pregnancy (n = 14) 13.7 (2.96-23.3) 43,900 (25,700-203,000) 3660 (2490-14400) 1120 (571-5190) 

Postpartum (n = 7) 11.9 (4.71-20.67) 50,700 (29,000-128,000) 4850 (2050-6780) 1520 (755-4860) 

Pregnancy vs Postpartum: % change 15.1 -13.4 -24.5 -26.3 

p value 0.85 0.85 0.43 0.63 

CYP2B6 516TT     

Pregnancy (n = 3) 6.83 (5.22-8.15) 87,900 (73,700-115,000) 5770 (5320-5950) 2890 (2660-4030) 

Postpartum (n = 6) 4.69 (3.39-5.35) 129,000 (112,000-177,000) 6940 (6370-9760) 5130 (3830-6740) 

Pregnancy vs Postpartum: % change 45.6 -31.9 -16.9 -43.7 

p value 0.095 0.095 0.024 0.048 
aMann-Whitney U test p value. 



 

61 

 

Figure 2.2 EFV concentration-time profiles (median, IQR) during pregnancy and postpartum. 

Global comparison shows decreased exposure during pregnancy (n = 25) compared with 

postpartum (n = 19), but the median Cmin was still within target (A). Stratifying patients based 

on CYP2B6 516G>T status showed significantly reduced exposure during pregnancy (n = 8) 

compared with postpartum (n = 6) in patients with the GG genotype, with median (range) 

AUC0-24, Cmax and Cmin of 25,900 ng.h/mL (21,700-32,600), 2640 ng/mL (1260-3490) and 592 

ng/mL (429-917), respectively (B); no changes in patients with the GT genotype during 

pregnancy (n = 14) compared with postpartum (n = 7) (C); and despite significantly reduced 

exposure during pregnancy (n = 3) compared with postpartum (n = 6) in patients with the TT 

genotype, Cmin was within suggested targets (D). Details are presented in Table 2.3. 
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2.4 DISCUSSION 

The magnitude of pregnancy-induced changes in EFV pharmacokinetics in genetically-defined 

subgroups has been described for the first time. Our findings indicate that at the standard 600 

mg dose, EFV exposure was significantly reduced during pregnancy, especially in patients with 

the CYP2B6 516GG genotype. Stratification of patients based on CYP2B6 516G>T (rs3745274) 

showed that EFV Cmin was below 1000 ng/mL in 100% of pregnant women with the CYP2B6 

516GG genotype, compared with 33% postpartum (Table 2.3). In fact, EFV plasma 

concentrations fell below 1000 ng/ml three or more times during the dosing interval in > 50% of 

pregnant women in this group (data not shown).  

However, it should be noted that the 1000 ng/mL target261,262 has been challenged on several 

grounds: (i) Firstly, the original evidence related virological failure to mid-dose plasma EFV 

concentrations, not Cmin,176 (ii) secondly,  earlier studies validating this target included 

treatment-experienced patients who might not have received sufficiently potent nucleoside 

backbone therapy,263 (iii) thirdly, a randomised controlled trial observed no difference in 

virological failure rate at a reduced dose of EFV (400 mg), even though plasma exposures were 

significantly lower.264,265 Nonetheless, our findings suggest that surveillance for MTCT in patients 

with the CYP2B6 516GG genotype taking EFV-based regimens during pregnancy may be justified. 

Whether particular scenarios (e.g. poor adherence, drug interactions, newly diagnosed pateints 

commencing EFV-based regimen late in pregnancy) may render this subgroup of patients at 

higher risk for treatment failure also needs to be investigated. 

EFV metabolism to 8-hydroxy EFV by CYP2B6 has been reported to account for > 90% of its 

hepatic clearance when genotypes are not considered.249 CYP2B6 516G>T (rs3745274) has been 

reported to decrease the rate of EFV 8-hydroxylation.266 The magnitude of EFV autoinduction 

has been reported to be genotype-dependent, highest in patients with the CYP2B6 516GG 

genotype.175 Interestingly, the basal expression of hepatic CYP2B6 is known to be highest in 
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CYP2B6 516GG homozygotes and lowest in CYP2B6 516TT homozygotes. Hence, the differences 

in inducible enzyme content in different genotypes may explain the observed differences in EFV 

autoinduction. A similar mechanism involving CYP2B6 induction by 17β-estradiol may explain 

the genotype-dependent differences in the magnitude of pregnancy-induced changes observed 

in the present study. The marked increase in 17β-estradiol plasma concentration during 

pregnancy has been shown to enhance CYP2B6 activity through activation of its transcriptional 

regulator, NR1I3 (also known as CAR, constitutive androstane receptor).267 The lack of 

association between CYP2B6 983 T>C and EFV concentration251,252 in the present study is most 

likely due to the relatively small sample size and absence of patients homozygote for this SNP. 

To date, only one other study has reported EFV intensive pharmacokinetics during pregnancy.113 

In that study, the moderate increase in CL/F observed during pregnancy produced only a 

minimal reduction in C24 with the median within target. Similarly, a pooled comparison of EFV 

pharmacokinetics during pregnancy and postpartum in the intensive pharmacokinetic phase of 

the present study revealed significant change only in CL/F during pregnancy but the median Cmin 

was within the suggested target. While plasma samples were used for drug quantification in the 

previous study, we used a fully validated DBS method which is associated with approximately 

40% negative bias compared with plasma concentration.258,259 However, we used patient-

specific haematocrit correction which has been shown to give concentrations similar to plasma 

concentrations, with a negligible difference of 80 ng/mL (SD 310 ng/mL) between the two 

methods.259 This approach was also used in the ‘PROMOTE study’ by Bartelink et al.268. In two 

other studies, sparse data were incorporated into population pharmacokinetic models to obtain 

estimates of CL/F and Cmin. In one of the studies (the ‘PROMOTE study’), the authors concluded 

that pregnancy did not affect EFV CL/F.268 However, in the second study involving a mixed cohort 

of tuberculosis treated and non-tuberculosis treated pregnant women, a higher risk of Cmin < 

1000 ng/ml in fast CYP2B6 metabolisers compared with poor metabolisers was reported, though 

MTCT was rare.269 The conflicting observations from the different studies may be a reflection of 
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differences in CYP2B6 516G>T (rs3745274) frequencies in the different study cohorts.270 

Suboptimal adherence was identified as a possible limitation in two of the studies.113,269 The 

design of the present study involved an observed evening dose of EFV which ensured 100% 

adherence. The potential benefits of using the enrichment design in pharmacogenetic studies 

have been highlighted elsewhere.257 In addition to matching patient characteristics in pregnant 

and postpartum groups, assigning patients to genotype-defined subgroups in an enrichment 

design is known to minimise potential variability.256 

These observations should be interpreted in the context of a number of limitations. Maternal 

viral load and rate of mother-to-child transmission of HIV were not evaluated as part of the 

present study. The number of patients with available CD4 counts was limited and this precluded 

an adequate evaluation of potential differences in CD4 change between patient groups. In 

addition, the number of patients re-recruited for the intensive pharmacokinetic phase was 

limited (23 during pregnancy and 19 postpartum controls) particularly for genotype-based 

comparisons. We did not use pregnant women as their own postpartum controls.  

In conclusion, these findings indicate significant reduction in EFV exposure during pregnancy, 

especially in patients with the CYP2B6 516GG genotype. Further studies to confirm these in a 

larger cohort as well as investigate the clinical implications are now warranted. Increasing 

numbers of HIV-positive pregnant women are receiving EFV during pregnancy.13 Recent update 

about virological rebound in the ‘Mississippi baby’ thought to be functionally cured of HIV 

highlights the fact that the use of ARVs during pregnancy is currently the only proven way for 

PMTCT.271 Due to uncertainty over the target minimum concentration for efficacy, these results 

do not preclude assessment of dose reduction strategies for EFV in special populations, but 

rather highlight the need for close pharmacokinetic and virological monitoring as well as 

integrated pharmacogenetics in any study design.272,273 
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3.1 INTRODUCTION 

The 2013 WHO consolidated guidelines for treating and preventing HIV infection recommend 

efavirenz (EFV), tenofovir and emtricitabine (or lamivudine), available as a once daily fixed dose 

tablet, as the preferred first-line regimen in pregnant women.13 This recommendation is partly 

based on potential clinical and programmatic advantages of a simplified regimen.13 Like EFV, 

nevirapine (NVP) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) and both are known 

to be comparable in therapeutic efficacy. It is recommended that individuals who are clinically 

stable on a NVP-based regimen with no contraindications continue this regimen.13 In addition, 

despite increasingly reassuring data on EFV safety throughout pregnancy,274,275 its safety during 

pregnancy has not been definitively established. Some patients also experience treatment-

limiting side effects after initiating EFV-based regimens. In either case, NVP is often the only 

available and recommended alternative, used in combination with two nucleoside reverse 

transcriptase inhibitors (NRTIs, e.g. zidovudine and lamivudine or tenofovir and emtricitabine) 

as the first-line regimen.13 

 As highlighted in Chapter 1, previous studies that investigated NVP pharmacokinetics in 

pregnant women have reported contradictory findings.115,188-190  In addition, the relative genetic 

contribution to variability in NVP pharmacokinetics is >70% in both African and European 

populations.241,276 NVP is metabolised by the cytochrome P450 enzymes CYP2B6 and CYP3A4277 

and is a substrate for the efflux transporter ABCC10.36 Single nucleotide polymorphisms (SNPs) 

in CYP2B6, CYP3A4, and ABCC10 genes have previously been associated with NVP 

pharmacokinetics. For instance, CYP2B6 516G>T and 983T>C have been associated with higher, 

and ABCC10 2843T>C (rs2125739) with lower plasma NVP concentrations.36,174,278 The 

expression and activity of CYP2B6 and CYP3A4 are regulated by the nuclear receptors NR1I2 and 

NR1I3 and the cytochrome P450 oxidoreductase (POR), influenced by SNPs in the NR1I2, NR1I3 
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and POR genes.279,280 The resulting inter-individual differences in exposure of the systemic 

circulation, target cells, and sanctuary sites to NVP may result in differential efficacy.281,282  

The combined effects of these SNPs and pregnancy on NVP pharmacokinetics have not been 

studied. The potential effects of polymorphisms in drug disposition genes on pregnancy-induced 

changes in ARV pharmacokinetics was highlighted in Chapter 1247 and this has now been 

confirmed in the case of EFV as highlighted in Chapter 2.269,283 In fact, the contradictions about 

the effect of pregnancy on NVP pharmacokinetics could be a reflection of differences in the 

frequencies of genetic polymorphisms that affect its disposition in the different cohorts.270  

In the preliminary phase of the present study, associations between nine SNPs in NVP disposition 

genes and its plasma concentrations in pregnant and postpartum women were investigated. The 

magnitude of pregnancy-induced changes was then investigated following genotype-guided 

stratification in an intensive pharmacokinetic phase. 

 

3.2 METHODS 

3.2.1 Patients 

The study was conducted in three hospitals in Benue State, Nigeria: Bishop Murray Medical 

Centre, Makurdi; St Monica’s Hospital, Adikpo; and St Mary’s Hospital, Okpoga. Potentially 

eligible HIV-positive pregnant women and nursing mothers were identified using the current 

PMTCT records and invited to participate after an information session conducted in both English 

and the local Tiv language. Written informed consent was obtained and eligibility was 

ascertained by examining case notes and conducting a brief interview. The inclusion criteria 

included HIV-positive and pregnant or breastfeeding, enrolled in the PMTCT programme and 

taking a regimen containing 200 mg NVP twice daily for at least the previous 2 weeks. Exclusion 

criteria included opportunistic infections (e.g. tuberculosis, pneumonia), severe illness, and 

concurrent treatment with other drugs or herbal medication with known or uncertain 
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interaction with NVP. The protocol and the associated materials transfer agreement were 

approved by the National Health Research Ethics Committee (NHREC), Abuja, Nigeria. 

Clinicaltrials.gov ID: NCT02269462. 

3.2.2 Study Design and Sample Collection 

In the preliminary phase of the study, associations between nine SNPs in NVP disposition genes 

and its plasma concentrations in pregnant and postpartum women were investigated. For this, 

dried blood spots (DBS) samples were collected from all patients at a single, recorded time point 

post-dose. The magnitude of pregnancy-induced changes was then investigated following 

genotype-guided stratification in an intensive pharmacokinetic phase. DBS samples were 

collected from patients preselected based on their genotypes at 0.5, 1, 2, 4, 8, and 12 h after an 

observed dose of a regimen containing 200 mg NVP. DBS samples were collected after sterile 

skin cleaning and finger prick using a 2mm safety lancet (BD, Oxford, Oxfordshire, UK). The first 

drop of blood was discarded and subsequent blood drops were collected on Whatman 903® 

Protein Saver cards (GE Healthcare, Little Chalfont, Buckinghamshire, UK), dried at room 

temperature and stored with desiccant sachets in ziplock bags. Samples were shipped at room 

temperature to the Department of Molecular and Clinical Pharmacology, University of Liverpool, 

United Kingdom for analysis.  

3.2.3 SNP Genotyping 

Genomic DNA was extracted using E.Z.N.A.® Blood DNA Mini Kit (Omega Bio-Tek, Inc., Norcross, 

GA, USA), quantified using NanoDrop® (Thermo Fisher Scientific Inc., Wilmington, DE, USA) and 

stored at -20oC until analysis. Genotyping was performed by real-time PCR allelic discrimination 

assay on a DNA Engine Chromo4 system (Bio-Rad Laboratories, Inc., Hercules, CA, USA). The PCR 

protocol involved an initial denaturation step at 95°C for 15 min, followed by 50 cycles of 

amplification at 95°C for 15 s and final annealing at 60°C for 1 min. TaqMan® Genotyping Master 

Mix and assays for CYP3A4 -392A>G (*1B; rs2740574; ID: C_1837671_50), CYP3A4 20230G>A 
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(*1G; rs2242480; ID: C_26201900_30), CYP2B6 516G>T (rs3745274; ID: C_7817765_60), CYP2B6 

983T>C (rs28399499; ID: C_60732328_20), NR1I3 c.540C>T (rs2307424; ID: C_25746794_20), 

NR1I3 c.152-1089T>C (rs3003596; ID: C_16194070_10), NR1I2 63396C>T (rs2472677; ID: 

C_26079845_10), POR 1508C>T (*28; rs1057868; ID: C_8890131_30), and ABCC10 2843T>C 

(rs2125739; ID: C_16173668_10) were obtained from Life Technologies Ltd (Paisley, 

Renfrewshire, UK). Allelic discrimination plots and genotype assignments were made using 

Opticon Monitor® version 3.1 (Bio-Rad Laboratories, Inc., Hercules, CA, USA). 

3.2.4 NVP Quantification and Pharmacokinetic Analysis 

A previously described liquid chromatography-tandem mass spectrometry method was used to 

quantify NVP in DBS.242 Plasma concentrations were determined using [DBS[NVP]/(1-HCT)]*0.6, 

where DBS[NVP] is NVP concentration in DBS, HCT is the patient-specific haematocrit and 0.6 is 

the fraction of NVP bound to plasma protein.259 The area under the concentration-time curve 

during the dosing interval (AUC0-12) was calculated using the trapezoidal rule and the apparent 

clearance (CL/F) was calculated by dividing the dose by AUC0-12. Minimum (Cmin) and maximum 

(Cmax) plasma concentrations were determined by direct inspection. 

3.2.5 Statistical Analysis 

Compliance with Hardy-Weinberg Equilibrium was tested as described by Rodriguez et al.260 

Data were subjected to Kolmogorov-Smirnov normality test prior to statistical analysis. 

Univariate linear regression analysis was conducted to identify variables associated with NVP 

plasma concentrations. Independent variables with P ≤ 0.2 in the univariate analysis were 

included in a multivariate stepwise linear regression analysis. Bonferroni correction was used to 

adjust for multiple testing. Differences in pharmacokinetic parameters between patient groups 

were investigated using Mann-Whitney U test. Post hoc analysis of statistical power achieved 

was conducted using G*Power version 3.9.1.2 (Heinrich-Heine-University, Düsseldorf, 

Germany). All other statistical analyses were conducted using IBM ®SPSS® Statistics version 20.0 
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(IBM, Armonk, NY, USA) and GraphPad Prism® (GraphPad Software, Inc., La Jolla, CA, USA). All 

charts were plotted using GraphPad Prism® 5. The previously suggested minimum effective 

concentration of 3400 ng/mL261 was set as the Cmin target. 

 

3.3 RESULTS 

3.3.1 Patients 

A total of 232 eligible patients (110 pregnant, 122 postpartum) were recruited between 

December 2012 and October 2013. Patient characteristics are summarised in Table 3.1. The 

median (range) duration on NVP-containing regimen was 37.5 months (0.97-75.7) in pregnant 

and 28.6 months (1.4-79.1) in postpartum women, starting at a baseline CD4 count of 241 c/mm3 

(31-864) and 241 c/mm3 (31-1015), respectively. NVP was used in combination with 

emtricitabine and tenofovir (44% in pregnant versus 49% in postpartum women) or lamivudine 

and zidovudine (54% in pregnant versus 49% in postpartum women) or lamivudine and 

tenofovir. All nine SNPs were in Hardy-Weinberg equilibrium within the study population. 

Genotype frequencies are presented in Table 3.1. 

3.3.2 NVP Pharmacogenetics in Pregnant and Postpartum Women 

In the preliminary phase, samples were collected at 4.0 h (0.5-8.0) in pregnant and 4.0 h (1.25-

8.25) post-dose in postpartum women. In pooled analysis, median (interquartile range; IQR) 

plasma concentration was 4130 ng/mL (3275, 5308) in pregnant compared with 5170 ng/mL 

(4120, 7380) in postpartum women (geometric mean ratio, 0.77; p value < 0.0001). Plasma 

concentrations below the recommended 3400 ng/mL were observed in 26% (29/110) of 

pregnant versus 14% (17/122) of postpartum women (Figure 3.1A).  

As shown in Table 3.2, CYP2B6 516G>T (rs3745274) and CYP2B6 983T>C (rs28399499) were 

independently associated with higher NVP plasma concentration in pregnant and postpartum 

women. CYP2B6 983T>C (rs28399499) was included in postpartum multivariate analysis despite
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Table 3.1 Characteristics of patients during pregnancy and postpartum. 

Characteristicsa Pregnancy (n = 110) Postpartum (n = 122) 

Age (years) 29 (19-42) 30 (20-40) 

Weight (kg) 61 (43-95) 57 (35-109) 

Gestational/Postnatal age (weeks) 28.9 (6.0-38.6) 19.4 (1.4-73.9) 

Trimester   

1st, 2nd, 3rd (%) 9, 32, 59 NA 

Drug regimen and CD4 count   

FTC/TDF/NVP (%) 44 49 

3TC/AZT/NVP (%) 54 41 

3TC/TDF/NVP (%) 2 10 

Time post-dose (h) 4.0 (0.5-8.0) 4.0 (1.25-8.25) 

Duration on regimen (months) 37.5 (0.97-75.7) 28.6 (1.4-79.1) 

Baseline CD4 count (cells/mm3) 241 (31-864) 241 (31-1015) 

CD4 change (cells/mm3) 276 (5-1187) 351 (45-1108) 

Genotype frequencies   

CYP3A4 -392A>G (*1B; rs2740574) CC, 0.64; CT, 0.30; TT, 0.06 CC, 0.62; CT, 0.35; TT, 0.03 

CYP3A4 20230G>A (*1G; rs2242480) TT, 0.84; CT, 0.15; CC, 0.01 TT, 0.73; CT, 0.18; CC, 0.09 

CYP2B6 516G>T (rs3745274) GG, 0.35; GT, 0.44; TT, 0.21 GG, 0.36; GT, 0.43; TT, 0.21 

CYP2B6 983T>C (rs28399499) TT, 0.85; CT, 0.14, CC, 0.01 TT, 0.81; CT, 0.18, CC, 0.01 

NR1I3 540C>T (rs2307424) CC, 0.77; CT, 0.22; TT, 0.01 CC, 0.81; CT, 0.19; TT, 0.00 

NR1I3 152-1089T>C (rs3003596) TT, 0.30; CT, 0.52; CC, 0.18 TT, 0.20; CT, 0.54; CC, 0.26 

NR1I2 63396C>T (rs2472677) CC, 0.34; CT, 0.49; TT, 0.17 CC, 0.35; CT, 0.54; TT, 0.11 

POR 1508C>T (*28; rs1057868) CC, 0.68; CT, 0.28; TT, 0.04 CC, 0.72; CT, 0.27; TT, 0.01 

ABCC10 2843T>C (rs2125739) TT, 0.52; CT, 0.37; CC, 0.12 TT, 0.50; CT, 0.36; CC, 0.14 
aUnless otherwise indicated, values are expressed as median (range). Abbreviations: FTC, 

emtricitabine; TDF, tenofovir disoproxil fumarate; NVP, nevirapine; 3TC, lamivudine; AZT, zidovudine. 
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Table 3.2 Association of patient characteristics and single nucleotide polymorphisms in CYP3A4, CYP2B6, NR1I3, NR1I2, POR, and ABCC10 

with log10 plasma NVP concentrations during pregnancy and postpartum. 

 Univariate linear regression Multivariate linear regression 

 βa (log10 NVP conc., 95% CI) p value βa (log10 NVP conc., 95% CI) p value 

Pregnant women (n = 110)     

Weight (kg) -0.001 (-0.005, 0.003) 0.69   

Age (years) 0.004 (-0.005, 0.012) 0.37   

Time post-dose (h) -0.004 (-0.012, 0.004) 0.29   

Trimester -0.004 (-0.086, 0.077) 0.92   

CYP3A4 -392A>G (*1B; rs2740574) 0.006 (-0.057, 0.068) 0.86   

CYP3A4 20230G>A (*1G; rs2242480) 0.075 (-0.020, 0.17) 0.12   

CYP2B6 516G>T (rs3745274) 0.041 (-0.008, 0.090) 0.098 0.061 (0.012, 0.11) 0.015b 

CYP2B6 983T>C (rs28399499) 0.12 (0.026, 0.21) 0.012 0.15 (0.055, 0.24) 0.002 

NR1I3 540C>T (rs2307424) -0.091 (-0.17, -0.013) 0.022 -0.093 (-0.17, -0.018) 0.015b 

NR1I3 152-1089T>C (rs3003596) 0.035 (-0.019, 0.089) 0.20   

NR1I2 63396C>T (rs2472677) 0.022 (-0.032, 0.075) 0.43   

POR 1508C>T (*28; rs1057868) -0.005 (-0.071, 0.060) 0.87   

ABCC10 2843T>C (rs2125739) -0.048 (-0.10, 0.005) 0.075   

Postpartum (n = 122)     

Weight (kg) -0.001 (-0.005, 0.003) 0.58   

Age (years) 0.003 (-0.009, 0.016) 0.59   

Time post-dose (h) 0.010 (-0.027, 0.046) 0.60   

CYP3A4 -392A>G (*1B; rs2740574) -0.005 (-0.070, 0.060) 0.88   

CYP3A4 20230G>A (*1G; rs2242480) 0.00 (-0.054, 0.054) 0.99   

CYP2B6 516G>T (rs3745274) 0.072 (0.024, 0.12) 0.004 0.10 (0.053, 0.16) 1.1 x 10-4 

CYP2B6 983T>C (rs28399499) 0.045 (-0.052, 0.14) 0.36c 0.11 (0.015, 0.21) 0.024b 
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Table 3.2 continued 

 Univariate linear regression Multivariate linear regression 

 βa (log10 NVP conc., 95% CI) p value βa (log10 NVP conc., 95% CI) p value 

Postpartum (n = 122) continued     

NR1I3 540C>T (rs2307424) 0.035 (-0.057, 0.13) 0.45   

NR1I3 152-1089T>C (rs3003596) -0.036 (-0.090, 0.017) 0.18   

NR1I2 63396C>T (rs2472677) -0.019 (-0.076, 0.038) 0.50   

POR 1508C>T (*28; rs1057868) 0.075 (-0.001, 0.15) 0.054 0.10 (0.026, 0.17) 0.008b 

ABCC10 2843T>C (rs2125739) 0.005 (-0.048, 0.058) 0.84   
aβ is the regression coefficient and represents incremental change in log10 plasma NVP concentration (conc.) per unit change in a patient 

characteristic; bBonferroni correction p value > 0.05; cCYP2B6 983T>C (rs28399499) was included in postpartum multivariate analysis 

despite p value > 0.2 in univariate analysis because of the observed association in the pregnant group. 
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p value > 0.2 in univariate analysis because of the observed association in the pregnant group. 

NR1I3 152-1089T>C (rs3003596) was associated with lower plasma concentration in pregnant 

women and POR 1508C>T (*28; rs1057868) with higher plasma concentration in postpartum 

women. No other associations were observed. Post hoc power analysis of the multivariate linear 

regression showed that the sample sizes of 110 and 122 achieved powers of 89.8% in pregnant 

and 99.8% in postpartum groups. To explore their combined effect, we stratified patients 

according to composite CYP2B6 516G>T (rs3745274) and CYP2B6 983T>C (rs28399499) 

genotypes: non-carriers, carriers of one allele of either SNP and carriers of two alleles of either 

SNP or one allele of both SNPs (designated 0, 1, and 2, respectively, in Figure 3.1B). Plasma NVP 

concentrations were significantly lower in pregnant (designated Preg in Figure 3.1B) versus 

postpartum (designated Postp in Figure 3.1B) women who were carriers of at least one allele of 

either SNP (Figure 3.1B). Plasma concentrations below the recommended 3400 ng/mL were 

observed in 46% versus 24% of pregnant versus postpartum women in non-carriers, 21% versus 

13% in carriers of one allele of either SNP, and 13% versus 10% in carriers of two alleles of either 

SNP or one allele of both SNPs. 

Patients were stratified according to composite CYP2B6 516G>T (rs3745274) and CYP2B6 

983T>C (rs28399499) genotypes for the intensive pharmacokinetic phase. A total of 31 pregnant 

(6 non-carriers, CYP2B6 516GG and 983TT genotypes combined; 19 carriers of one allele of 

either SNP, CYP2B6 516GT or 983TC genotype; and 6 carriers of two alleles of either SNP or one 

allele of both SNPs, CYP2B6 516GT and 983TC combined, or 516TT, or 983CC genotype) and 29 

postpartum (9 non- carriers, 10 carriers of one allele of either SNP, and 10 carriers of two alleles 

of either SNP or one allele of both SNPs) women were successfully re-recruited. 
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Figure 3.1 Plasma NVP concentrations in pregnant (closed circles) versus postpartum (open 

circles) women. In pooled analysis (A), median (IQR) plasma concentration was 4130 ng/mL 

(3280, 5310) in pregnant versus 5170 ng/mL (4120, 7390) in postpartum women (geometric 

mean ratio, 0.77; Mann-Whitney U test p value < 0.0001). When stratified based on composite 

CYP2B6 516G>T and 983T>C genotypes (B), NVP concentrations were significantly lower in 

pregnant (Preg) versus postpartum (Postp) women who were carriers of at least one allele of 

either SNP (0, non-carriers; 1, carriers of one allele of either SNP; 2, carriers of two alleles of 

either SNP or one allele of both SNPs). Dotted lines show target Cmin of 3400 ng/mL. 
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3.3.3 Magnitude of Pregnancy-Induced Changes in NVP Pharmacokinetics 

In pooled analysis, CL/F was 4.5 L/h (3.9, 5.1) in pregnant (n = 31) and 3.7 L/h (2.3, 4.6) in 

postpartum women (n = 28), representing 21.6% higher clearance during pregnancy (p = 0.022). 

The corresponding AUC0-12, Cmax and Cmin were 19.2% (p = 0.022), 18.6% (p = 0.013), and 28.5% 

(p = 0.0021) lower, respectively. Cmin was lower than target (3400 ng/mL) in 61% of pregnant 

compared with 25% of postpartum women (Table 3.3; Figure 3.2). When stratified based on 

composite CYP2B6 516G>T (rs3745274) and 983T>C (rs28399499) genotypes, CL/F was 

significantly higher during pregnancy compared with postpartum women, except in those with 

CYP2B6 516GG and 983TT genotypes combined. In this group of fast metabolisers, pregnancy 

was not associated with further increase in CL/F and the resulting Cmin was 2470 ng/mL (2070, 

5500) in pregnant and 2920 ng/mL (2440, 3300) in postpartum women, below target in 67% 

(4/6) and 88% (7/8), respectively (Table 3.3; Figure 3.2). In patients with CYP2B6 516GT or 983TC 

genotype, clearance was 40.6% higher in pregnant compared with postpartum women (p = 

0.0009) and the corresponding AUC0-12, Cmax, and Cmin were significantly lower. Cmin was 3130 

ng/mL (2990, 3540) in pregnant and 5590 ng/mL (4480, 7680) in postpartum women (p < 

0.0001), and below target in 58% (11/19) and 0% (0/10), respectively (Table 3.3; Figure 3.2). 

Similarly, clearance was 51.7% higher in pregnant women with CYP2B6 516GT and 983TC 

combined, or 516TT, or 983CC genotype than in postpartum women (p = 0.008). The 

corresponding AUC0-12, Cmax and Cmin were significantly lower, with Cmin below target in 50% (3/6) 

of pregnant and 0% (0/10) of postpartum women (Table 3.3; Figure 3.2). Post hoc power analysis 

showed that 63.6% power was achieved in pooled analysis and 12.3, 98.6 and 59.0%, 

respectively, in the three genotype-guided comparisons.  
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Table 3.3 NVP pharmacokinetic parameters (median, IQR) in pregnant and postpartum women in pooled analysis and based on composite CYP2B6 

516G>T and 983T>C genotypes. 

Combined CL/F (L/h) AUC0-24 (ng.h/mL) Cmax (ng/mL) Cmin (ng/mL) Cmin < target 

Pregnant (n = 31) 4.5 (3.9, 5.1) 44200 (39100, 51200) 4870 (4200, 5710) 3130 (2730, 3700) 61% (19/31) 

Postpartum (n = 28) 3.7 (2.3, 4.6) 54700 (43900, 85300) 5980 (5090, 8630) 4380 (3380, 6030) 25% (7/28) 

Pregnant versus postpartum (%) 21.6 -19.2 -18.6 -28.5  

p valuea 0.022 0.022 0.013 0.0021  

CYP2B6 516GG & 983TT      

Pregnancy (n = 6) 5.7 (3.8, 7.0) 36500 (28800, 63200) 3900 (2860, 6600) 2470 (2070, 5500) 67% (4/6) 

Postpartum (n = 8) 5.5 (4.7, 7.5) 36300 (26600, 42200) 4160 (3700, 5020) 2920 (2440, 3300) 88% (7/8) 

Pregnant versus postpartum (%) 3.64 0.551 -6.25 -15.4  

p value 0.45 0.45 0.63 0.95  

CYP2B6 516GT or 983TC      

Pregnancy (n = 19) 4.5 (3.9, 4.8) 44600 (41800, 51200) 5260 (4220, 5640) 3130 (2990, 3540) 58% (11/19) 

Postpartum (n = 10) 3.2 (2.0, 3.9) 63300 (51500, 103000) 7660 (5820, 10300) 5590 (4480, 7680) 0% (0/10) 

Pregnant versus postpartum (%) 40.6 -29.5 -31.3 -44.0  

p value 0.0009 0.0009 0.0006 < 0.0001  

CYP2B6 516GT & 983TC or 516TT  

or 983CC 

     

Pregnancy (n = 6) 4.4 (3.7, 5.4) 45300 (37600, 54700) 4870 (4231, 6640) 3150 (2570, 3920) 50% (3/6) 

Postpartum (n = 10) 2.9 (2.1, 3.8) 69800 (52800, 95900) 7280 (5680, 9310) 4910 (4150, 6100) 0% (0/10) 

Pregnant versus postpartum (%) 51.7 -35.1 -33.1 -35.8  

p value 0.008 0.008 0.040 0.0027  
aMann-Whitney U test p value. 
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Figure 3.2 NVP concentration-time profiles in plasma of pregnant versus postpartum women. In 

pooled analysis, Cmin was below target in 61% of pregnant compared with 25% of postpartum 

women (A). When stratified based on composite CYP2B6 516G>T and 983T>C genotypes, Cmin 

was below target in: 67% (4/6) of pregnant and 88% (7/8) of postpartum women in CYP2B6 

516GG and 983TT group (B); 58% (11/19) of pregnant and 0% (0/10) of postpartum women in 

the CYP2B6 516GT or 983TC group (C); 50% (3/6) of pregnant and 0% (0/10) of postpartum 

women in the CYP2B6 516GT and 983TC, or 516TT, or 983CC group (D). Solid lines and bars 

represent median and interquartile range while dotted lines show target Cmin of 3400 ng/mL. 

 

3.4 DISCUSSION 

To our knowledge, the present study is the largest to date to investigate the effect of pregnancy 

on NVP pharmacokinetics and the first to do so in the context of host genetics. The findings 

showed significantly higher clearance in pregnant compared with postpartum women, except in 
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those with combined CYP2B6 516GG and 983TT genotypes. In pooled analysis and when 

stratified into three genotype groups, Cmin was below the recommended therapeutic target (not 

PMTCT target) in 50-67% of pregnant women. These findings indicate that the effect of 

pregnancy on NVP pharmacokinetics is independent of patient genotype. In addition, Cmin was 

below target in 88% of postpartum women with combined CYP2B6 516GG and 983TT genotypes, 

suggesting higher risk of suboptimal drug exposure both during pregnancy and postpartum in 

this group. A major limitation in the present study was the inadequate power achieved in the 

intensive pharmacokinetic phase. In addition, pregnant women were not used as their own 

postpartum control. 

The effect of pregnancy on NVP pharmacokinetics have been investigated in four previous 

studies, three of which similarly reported significantly reduced exposure during pregnancy. NVP 

Cmin below the target utilised by the investigators (3000 ng/mL) was reported in 67% (10/15) of 

pregnant women during the third trimester and in 26.7% (4/15) postpartum in one of the 

studies. Third trimester AUC0-12 and Cmax were also significantly reduced.115 This is similar to the 

61 and 25% observed in the present study. A comparison of NVP pharmacokinetics between 

pregnant (n = 16) and non-pregnant women (n = 13) in an earlier study also revealed significant 

differences (>20%, p < 0.02) in CL/F, AUC0-12 and Cmax.188 Using sparse steady state NVP plasma 

concentrations available as part of routine care, Nellen et al. reported moderately lower 

exposure in pregnant (n = 45) versus postpartum (n = 152) women, 5200 ng/mL (IQR 3900-6800) 

versus 5800 ng/mL (4300-7700) ng/mL (p = 0.08).189 This is in the region of the 4550 ng/mL 

(1950) versus 5960 ng/mL (2820) observed in the preliminary phase of the present study. 

Collectively with these findings, the current data contrast with those of a combined 

pharmacokinetic analysis of two Pediatric AIDS Clinical Trials Group studies (P1022 and P1026S, 

n = 26) in which NVP AUC and Cmin during pregnancy and postpartum were reported to be 

comparable.190 The physiological changes associated with pregnancy are understood to be 
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responsible for the reduced NVP exposure observed in the present and other studies. These 

have been well reviewed in Chapter 1. 

The associations of CYP2B6 516G>T and CYP2B6 983T>C SNPs with plasma NVP concentrations 

observed in the present study are consistent with known NVP metabolic pathway and findings 

from other studies.278 NVP is predominantly metabolised by CYP2B6 and CYP3A4 to 3- and 8-

hydroxy and 2- and 12-hydroxy NVP, respectively.277 The expression of both CYP2B6 and CYP3A4 

in human hepatocytes are induced by NR1I2 (also known as PXR, pregnane X receptor) 

activation, while NR1I3 (also known as CAR, constitutive androstane receptor) activation 

predominantly induces the expression of CYP2B6.56 Estradiol is upregulated during human 

pregnancy and has been shown to induce the expression of POR, NR1I2 and NR1I3.267,284 The 

magnitude of pregnancy-induced changes in pharmacokinetics can be modulated by genetic 

polymorphisms in drug disposition genes.247 For instance, pregnant women classified as 

extensive metabolisers based on their metabolic capacity (CYP2B6 516GG) were recently shown 

to have a higher risk of EFV concentrations below the recommended target compared with poor 

metabolisers (CYP2B6 516GT and TT).269,283 In the present study, the impact of pregnancy on 

NVP pharmacokinetics was significant across all studied genotype groups, except in women with 

the CYP2B6 516GG and 983TT genotypes who were more likely to have Cmin below the 

recommended target both during pregnancy and postpartum.  

All CYP enzymes require POR for catalysis and SNPs in the POR gene affect CYP2B6 and CYP3A4 

activities.279 However, the associations observed between NVP plasma concentrations, and 

NR1I3 540C>T in pregnant and POR 1508C>T (not previously reported) in postpartum women 

were lost after Bonferroni correction. The observed differences in patterns of genetic 

associations between pregnant and postpartum women may reflect the complexity of the 

isoform-specific regulation of CYP enzymes by POR, NR1I2 and NR1I3 through estradiol and 

progesterone.284,285 
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These findings need to be interpreted with caution because the effects of the observed 

pregnancy-induced changes in NVP pharmacokinetics on efficacy and mother-to-child 

transmission risks are unknown. In fact, from two previous studies with data on infant HIV status 

postpartum, 0 out of 17 and 1 out of 25 infants became infected,188,190 despite significantly lower 

exposure in one.188  Though MTCT remained rare, most of the patients were treatment-

experienced and virologically suppressed. Therefore, the findings cannot be extrapolated to 

those initiating therapy late in pregnancy.286 However, these data might also challenge the 

appropriateness of the 3400 ng/mL therapeutic target for application in PMTCT, especially in 

women on suppressive therapy before pregnancy. Interestingly, the study by Lamorde et al. 

indicated that pregnant women who initiated therapy late were more likely to have suboptimal 

virological suppression (> 400 copies/mL), especially when Cmin was below target.115 Timely 

initiation of ART can reduce MTCT to less than 5% from the baseline 25-40% without 

intervention. However, about 250 000 infants are still infected every year (30 per hour).7 Factors 

contributing to these residual transmissions are not known. Late interventions as a result of late 

diagnosis or acute maternal infection during pregnancy or during breastfeeding are common.287-

289 This can potentially result in detectable HIV RNA at third trimester and delivery, increasing 

MTCT risks.290,291 

In conclusion, considering the pregnancy-induced changes in NVP pharmacokinetics observed in 

the present and previous studies, the potential effects on efficacy especially in women initiating 

therapy late in pregnancy now warrant further investigation. In addition to highlighting a 

possible source of residual MTCT in the ART era, this will also inform future studies on potential 

treatment intensification strategies. 
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4.1 INTRODUCTION 

Exclusive breastfeeding for the first six months of life, continued for up to two years with gradual 

introduction of safe and nutritionally adequate replacement feeding, is the recommended 

feeding option in the context of HIV/AIDS in resource-limited settings.292-294 The potential 

benefits of avoiding or early cessation of breastfeeding in this population are largely offset by 

increased infant morbidity/mortality from causes other than HIV/AIDS, including malnutrition, 

diarrhoea and pneumonia.295-298 Mother-to-child transmission (MTCT) during this period is 

prevented by maternal antiretroviral therapy (ART) started during pregnancy and continued 

until breastfeeding ends (Option B) or for life (Option B+).244,299 The infant is given daily 

nevirapine (NVP) post-exposure prophylaxis (PEP) from birth until 4-6 weeks old,299 which 

reduces MTCT to less than 5% in these settings from the baseline 20-45% without intervention.9 

The current WHO guidelines recommend efavirenz (EFV) as the preferred non-nucleoside 

reverse transcriptase inhibitor component of first-line ART for adults across different patient 

populations, including nursing mothers.13 However, EFV is not licensed for use in children < 3 

months old or < 3.5 kg because optimal dosing and safety have not been evaluated.300 However, 

it is increasingly used by nursing mothers and its presence in breast milk and breastfed infants’ 

plasma have been reported, but in limited numbers of mother-infant pairs and at single time 

points after maternal dose.92,301 Milk production, composition, and infant feeding patterns 

change during the dosing interval and may cause variations in the milk-to-plasma (M/P) 

concentration ratio, making single point estimates unreliable.85,302 In addition, the only study 

that reported EFV concentration in breast milk used skimmed milk, which often yields lower 

drug concentrations than whole milk. A recently developed method for the quantification of EFV 

in dried breast milk spots242 has now extended our ability to study the pharmacokinetics of EFV 

in whole milk during an entire dosing interval.  



 

88 

The influence of single nucleotide polymorphisms (SNPs) in drug metabolizing enzymes, 

transporter and nuclear receptor genes on plasma EFV concentration is well established.303 The 

interindividual variability observed in EFV plasma pharmacokinetics in different populations has 

been associated with such SNPs.304 We previously hypothesised that SNPs may affect EFV 

excretion into breast milk and transfer to breastfed infants.247 Understanding the 

pharmacokinetics of EFV in human breast milk during an entire dosing interval and potential 

differences introduced by genetic polymorphisms are crucial for an accurate estimation of infant 

exposure. 

In the present study, associations between EFV concentrations in plasma and breast milk of 

nursing mother-infant pairs and SNPs in CYP2B6, NR1I3, CYP2A6, ABCB1, ABCB5 and ABCG2 

genes were explored. We then investigated EFV plasma and breast milk pharmacokinetics and 

breastfed infants’ exposure in genetically-defined subgroups, stratified by the SNP with the 

highest predictive power. 

 

4.2 METHODS 

4.2.1 Patients 

HIV positive nursing mothers and their breastfed infants were recruited from three hospitals in 

Benue State, Nigeria: Bishop Murray Medical Centre, Makurdi; St Mary’s Hospital, Okpoga; and 

St Monica’s Hospital, Adikpo. Potentially eligible subjects were identified using the current 

PMTCT delivery register and invited to participate after an information session conducted in 

English and the local Tiv language. All participants gave prior written informed consent. Once 

subjects had signed a consent form, we ascertained eligibility by examining case notes and 

conducting a brief interview. The inclusion criteria included HIV positive and breastfeeding, 

enrolled in the PMTCT programme and started EFV-containing regimen during pregnancy. 

Exclusion criteria (assessed at enrolment) included exclusive formula feeding, mixed feeding in 
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infants less than 6 months old, opportunistic infections (e.g. tuberculosis, pneumonia), severe 

maternal or infant illness, and maternal or infant treatment with drugs or herbal medication 

with known or uncertain interaction with EFV. The protocol and the materials transfer 

agreement were approved by the National Health Research Ethics Committee (NHREC), Abuja, 

Nigeria and Ethics and Research Committee, Obafemi Awolowo University Teaching Hospital, 

Ile-Ife, Nigeria. Clinicaltrials.gov ID: NCT02269462. 

4.2.2 Study Design 

This was an observational study conducted in two phases. In the preliminary phase, we explored 

associations between 12 SNPs in drug disposition genes and mid-dose plasma and breast milk 

EFV concentrations in an unselected cohort of HIV positive nursing mothers and their breastfed 

infants. In the intensive pharmacokinetic phase, the SNP independently associated with the 

highest predictive power was used to stratify mother-infant pairs into three groups: non-

carriers, heterozygotes, and homozygotes. Randomly selected mother-infant pairs from each 

group were re-recruited and invited for the intensive pharmacokinetic phase. 

4.2.3 Sample Collection 

In the preliminary phase, paired dried blood spots (DBS) and dried breast milk spots (DBMS) 

were collected from mothers and DBS from infants at a single, recorded time point post-dose. 

In the intensive pharmacokinetic phase, maternal DBS and DBMS were collected at 0.5, 1, 2, 4, 

8, 12 and 24 hours after an observed evening dose of 600 mg EFV and stored as previously 

described 242. DBS samples were collected from infants at 2 h and 8 h after maternal EFV dose in 

the intensive pharmacokinetic phase. To reflect real-life situations, infant feeding times were 

not controlled; all infants were breastfed on demand. In addition, mothers took standard local 

meals about 30 min before drug administration. Samples were shipped at ambient temperature 

to the University of Liverpool, UK for analysis. 
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4.2.4 DNA Extraction and Genotyping 

Genomic DNA was extracted using E.Z.N.A.® Blood DNA Mini Kit (Omega Bio-Tek, Inc., Norcross, 

GA, USA) in accordance with the manufacturer’s protocol. DNA was quantified 

spectrophotometrically using NanoDrop® (Thermo Fisher Scientific Inc., Wilmington, DE, USA) 

before storage at -20°C. Genotyping was performed by real-time PCR on a DNA Engine Chromo4 

system (Bio-Rad Laboratories, Inc., Hercules, CA, USA).  The PCR protocol involved an initial 

denaturation step at 95°C for 15 min, followed by 50 cycles of amplification at 95°C for 15 s and 

final annealing at 60°C for 1 min. TaqMan® Genotyping Master Mix and assays (Table 4.1) were 

obtained from Life Technologies Ltd (Paisley, Renfrewshire, UK). Opticon Monitor® version 3.1 

(Bio-Rad Laboratories, Inc., Hercules, CA, USA) was used to obtain allelic discrimination plots and 

make genotype calls. 

Table 4.1 TaqMan® assays 

Gene and SNP Reference SNP ID Product ID 

CYP2B6 516G>T rs3745274 C_7817765_60 

CYP2B6 983T>C rs28399499 C_60732328_20 

CYP2B6 c.485-18C>T rs4803419 C_7817764_10 

NR1I3 c.540C>T rs2307424 C_25746794_20 

NR1I3 c.152-1089T>C rs3003596 C_16194070_10 

ABCB1 4046A>G rs1045642 C_7586657_20 

ABCB1 4036A>G rs3842 C_11711730_20 

ABCB1 1236C>T rs1128503 C_7586662_10 

CYP2A6 48T>G rs28399433 C_30634332_10 

ABCB5 c.2908G>A rs6461515 C_25621077_20 

ABCG2 c.1728-46G>A rs2231164 C_15922479_10 

ABCG2 78551A>G rs2622604 C_9510352_10 

 

4.2.5 EFV Quantification and Pharmacokinetic Analysis 

EFV in DBS and DBMS was quantified using validated liquid chromatography-tandem mass 

spectrometry methods described elsewhere.242,258 Plasma concentrations were determined 

using [DBS[EFV]/(1-HCT)]*0.995, where DBS[EFV] is EFV concentration in DBS, HCT is the patient-

specific haematocrit and 0.995 is the fraction of EFV bound to plasma protein.259 Minimum (Cmin) 
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and maximum (Cmax) plasma concentrations were determined by direct inspection. The area 

under the concentration-time curve during the dosing interval (AUC0-24) was calculated using the 

trapezoidal rule and the apparent clearance (CL/F) was calculated by dividing dose by AUC0-24. 

Maximum (InfantDosemax) and average (InfantDoseavg) infant EFV doses from breast milk were 

calculated using equations 4.1 and 4.2, respectively.  Paediatric dose (for children aged ≥ 3 

months and weighing ≥ 3.5 kg)300 weight-adjusted exposure index (EIpaediatric) and maternal dose 

weight-adjusted exposure index (EImaternal) were calculated using equations 4.3 and 4.4, 

respectively. 

InfantDose𝑚𝑎𝑥 (µg/kg/day)  =  150 ∗ 𝑀𝑖𝑙𝑘𝐶𝑚𝑎𝑥     (4.1) 

InfantDose𝑎𝑣𝑔 (µg/kg/day)  =  150 ∗ 𝑀𝑖𝑙𝑘𝐴𝑈𝐶0−24 24⁄     (4.2) 

EI𝑝𝑎𝑒𝑑𝑖𝑎𝑡𝑟𝑖𝑐 (%)  =  100 ∗ 𝐼𝑛𝑓𝑎𝑛𝑡𝐷𝑜𝑠𝑒𝑚𝑎𝑥 𝐷𝑜𝑠𝑒𝑝𝑎𝑒𝑑𝑖𝑎𝑡𝑟𝑖𝑐⁄    (4.3) 

EI𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 (%)  =  100 ∗ 𝐼𝑛𝑓𝑎𝑛𝑡𝐷𝑜𝑠𝑒𝑚𝑎𝑥 𝐷𝑜𝑠𝑒𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙⁄     (4.4) 

where 150 is the average volume of infant daily milk intake in mL/kg/day; MilkCmax is the 

maximum EFV concentration in breast milk (µg/mL); MilkAUC0-24 is EFV breast milk AUC0-24 

(µg.h/mL); 24 is the dosing interval in h; Dosepaediatric is the weight-adjusted licensed paediatric 

dose of EFV (µg/kg/day); Dosematernal is the weight-adjusted licensed adult dose of EFV 

(µg/kg/day). 

4.2.6 Statistical Analysis 

Compliance with Hardy-Weinberg Equilibrium was tested as previously described.260 Data were 

subjected to Kolmogorov-Smirnov normality test prior to statistical analysis. Relationships 

between continuous variables were tested by Pearson or Spearman correlation. Univariate 

linear regression analysis was conducted to identify variables associated with EFV 

concentrations in maternal plasma, infant plasma and breast milk. Bonferroni correction was 

used to adjust for multiple testing. Independent variables with Bonferroni p value ≤ 0.1 in the 
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univariate analysis were included in a multivariate stepwise linear regression analysis. 

Differences in EFV concentrations and pharmacokinetic parameters between patient groups 

were investigated using one-way analysis of variance (ANOVA) and Kruskal-Wallis or Mann-

Whitney U test. Trend across groups was investigated using Cuzick's test on StatDirect 

(StatsDirect Ltd, Altrincham, Cheshire, UK). Post hoc analysis of statistical power achieved was 

conducted using G*Power version 3.9.1.2 (Heinrich-Heine-University, Düsseldorf, Germany). All 

other analyses were conducted using IBM ®SPSS® Statistics version 20.0 (IBM, Armonk, NY, USA) 

and GraphPad Prism® (GraphPad Software, Inc., La Jolla, CA, USA). 

 

4.3 RESULTS 

4.3.1 Patients’ Characteristics 

Between December 2012 and October 2013, 134 eligible HIV positive nursing mothers and their 

breastfed infants were recruited. Maternal and infant characteristics are summarised in Table 

4.1. The mean (standard deviation, SD) duration on current ART regimen was 17.6 months 

(14.1), starting with baseline CD4 count of 380 c/mm3 (217). Most patients were taking EFV, 

emtricitabine and tenofovir (65%; 87/134) or EFV, lamivudine and zidovudine (32%; 43/134). 

Infants less than 6 weeks of age (22%; 29/134) were taking NVP PEP. Genotype frequencies are 

summarised in Table 4.1. All twelve SNPs were in Hardy-Weinberg Equilibrium. 

4.3.2 Factors Associated with Plasma and Breast Milk EFV Concentrations 

In the preliminary phase, samples were collected at 14 h (0.50-21.5) post maternal EFV dose and 

median (range) maternal plasma, breast milk and infant plasma EFV concentrations were 2310 

ng/mL (632-8880), 2280 ng/mL (475-10800) and 173 ng/mL (46.0-4630), respectively (Table 

4.3). There were strong to moderate positive correlations in EFV concentrations between 

maternal plasma and breast milk, Pearson’s r = 0.73 (0.62, 0.81), R2 = 0.53, p < 0.0001; maternal 
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plasma and infant plasma, Pearson’s r = 0.58 (0.45, 0.69), R2 = 0.33, p < 0.0001; and breast milk 

and infant plasma, Pearson’s r = 0.46 (0.28, 0.61), R2 = 0.21, p < 0.0001 (Figure 4.1).  

Table 4.1 Characteristics of nursing mother-infant pairs. 

Mothers (n = 134)a  

Age (years) 29 (18-44) 

Weight (kg) 57 (39-80) 

Time since diagnosis (months) 21.1 (1.3-68) 

Infants (n = 134)a  

Age (weeks) 20.0 (0.29-75) 

Weight (kg) 5.8 (2.2-10) 

Gender (Female) 52% (70/134) 

Maternal drug regimen and CD4 counta  

TDF/FTC/EFV 65% (87/134) 

3TC/AZT/EFV 32% (43/134) 

3TC/TDF/EFV 2% (3/134) 

3TC/ABC/EFV 1% (1/134) 

Time post-dose (h)b 11.8 (5.5) 

Duration on regimen (months)b 17.6 (14.1) 

Baseline CD4 count (c/mm3)b 380 (217) 

CD4 change (c/mm3)b 177 (217) 

Maternal genotype frequency  

CYP2B6 516G>T (rs3745274) GG, 0.36; GT, 0.45; TT, 0.19 

CYP2B6 983T>C (rs28399499) TT, 0.79; CT, 0.21; CC, 0.00 

CYP2B6 c.485-18C>T (rs4803419) CC, 0.79; CT, 0.21; TT, 0.00 

NR1I3 c.540C>T (rs2307424) CC, 0.77; CT, 0.23; TT, 0.00 

NR1I3 c.152-1089T>C (rs3003596) TT, 0.19; CT, 0.54; CC, 0.27 

ABCB1 4046A>G (rs1045642) AA, 0.75; AG, 0.25; GG, 0.00 

ABCB1 4036A>G (rs3842) AA, 0.65; AG, 0.35; GG, 0.01 

ABCB1 1236C>T (rs1128503) CC, 0.76; CT, 0.23; TT, 0.02 

CYP2A6 48T>G (rs28399433) TT, 0.93; GT, 0.07; GG, 0.01 

ABCB5 c.2908G>A (rs6461515) GG, 0.45; GA, 0.45; AA, 0.10 

ABCG2 c.1728-46G>A (rs2231164) GG, 0.68; GA, 0.30; AA, 0.02 

ABCG2 78551A>G (rs2622604) AA, 0.84; AG, 15; GG, 0.01 

Infants’ genotype frequency  

CYP2B6 516G>T (rs3745274) GG, 0.45; GT, 0.67; TT, 0.18 
aUnless otherwise indicated, values are expressed as median (range) or 

% (number) of subjects; bmean (SD). 
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Figure 4.1. Correlations between EFV concentrations in maternal plasma and breast milk (A), 

maternal plasma and infant plasma (B), and breast milk and infant plasma (C). Solid lines 

represent mean values and broken lines represent 95% confidence intervals. 
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Of the 12 SNPs investigated, only maternal CYP2B6 516G>T (rs3745274) was independently 

associated with EFV concentrations in maternal plasma, breast milk and infant plasma. In 

addition, infant age and time post maternal EFV dose were independently associated with infant 

plasma EFV concentration (Table 4.2). The regression coefficients (β), which represents 

incremental change in log10 EFV concentration per unit change in patient characteristics, are 

presented in Table 4.2. In a separate analysis, both infant CYP2B6 516G>T (p = 0.019) and 

composite infant/maternal CYP2B6 516G>T genotypes (p = 0.006) were independently 

associated with infant log10 EFV concentration after adjusting for breast milk concentration and 

infant age with β values of 0.105 (0.018, 0.193) and 0.033 (0.010, 0.057), respectively. More than 

99% statistical power was achieved in the multiple linear regression for plasma (maternal and 

infant) and breast milk concentrations. 

Significant differences were observed in maternal plasma EFV concentrations based on CYP2B6 

516G>T genotypes (p < 0.0001): GG (n = 42), 1660 ng/mL (632-3610); GT (n = 52), 2390 ng/mL 

(951-8880); and TT (n = 23), 5400 ng/mL (1920-8110). Breast milk concentrations also varied 

based on maternal CYP2B6 516G>T genotypes (p = 0.0002): GG, 1610 ng/mL (475-5580); GT, 

2370 ng/mL (713-10300); and TT, 4070 ng/mL (995-10800). A similar trend was observed for 

infant plasma concentrations based on both maternal and infant CYP2B6 516G>T genotypes 

(Table 4.3 and Figure 4.2). After excluding infants less than 10 days old with residual intrauterine 

exposure, plasma EFV concentrations in infants based on maternal CYP2B6 516G>T genotypes 

were: GG: 120 ng/mL (46.0-429); GT: 157 ng/mL (48.5-590); and TT: 329 ng/mL (75.5-705). There 

was a significant trend towards higher infant plasma EFV concentration from GG/GG to TT/TT 

composite maternal/infant CYP2B6 516G>T genotype, Cuzick’s test for trend p value was < 

0.0001 (Figure 4.3). Therefore, maternal CYP2B6 516G>T (rs3745274) was used to stratify 

mother-infant pairs and a total of 29 (GG, 10; GT, 11; TT, 8) were invited for the intensive 

pharmacokinetic phase. 
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Table 4.2 Linear regression analysis showing associations of patient characteristics and maternal single nucleotide polymorphisms in drug 

disposition genes with log10 EFV plasma concentrations in maternal plasma, breast milk and infant plasma. 

 Univariate linear regression Multivariate linear regression 

Patient characteristic βa (log10 EFV conc., 95% CI) p value 
Bonferroni  
p value 

βa (log10 EFV conc., 95% CI) p value 
Bonferroni  
p value 

Mother (n = 134)       

Weight (kg)       

Maternal plasma -0.002 (-0.011, 0.008) 0.73     

Breast milk -0.005 (-0.013, 0.004) 0.30     

Infant plasma -0.004 (-0.013, 0.004) 0.32     

Maternal age (y)       

Maternal plasma -0.0003 (-0.012, 0.012) 0.96     

Breast milk 0.006 (-0.007, 0.019) 0.089     

Infant plasma -0.002 (-0.014, 0.01) 0.71     

Infant age (months)       

Maternal plasma 0.002 (-0.016, 0.02) 0.80     

Breast milk 0.003 (-0.021, 0.027) 0.80     

Infant plasma -0.026 (-0.043, -0.009) 0.004 0.064 -0.032 (-0.047, -0.016) 9.9 x 10-5 0.0016 

Time post-dose (h)       

Maternal plasma 0.002 (-0.01, 0.014) 0.78     

Breast milk 0.011 (-0.006, 0.027) 0.20     

Infant plasma 0.016 (-0.005, 0.028) 0.006 0.096 0.017 (0.007, 0.027) 0.001 0.016 

CYP2B6 516G>T (rs3745274)      

Maternal plasma 0.24 (0.17, 0.31) 1.9 x 10-9 3.0 x 10-8 0.24 (0.17, 0.31) 1.9 x 10-9 3.0 x 10-8 

Breast milk 0.18 (0.098, 0.27) 4.7 x 10-5 7.5 x 10-4 0.18 (0.098, 0.27) 4.7 x 10-5 7.5 x 10-4 

Infant plasma 0.18 (0.10, 0.26) 2.3 x 10-5 3.7 x 10-4 0.19 (0.11, 0.27) 6.0 x 10-6 3.7 x 10-4 
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Table 4.2 continued 

 Univariate linear regression Multivariate linear regression 

Patient characteristic βa (log10 EFV conc., 95% CI) p value 
Bonferroni  
p value 

βa (log10 EFV conc., 95% CI) p value 
Bonferroni  
p value 

CYP2B6 983T>C (rs28399499)      

Maternal plasma 0.061 (-0.098, 0.22) 0.45     

Breast milk 0.043 (-0.13, 0.22) 0.63     

Infant plasma -0.051 (-0.21, 0.11) 0.53     

CYP2B6 c.485-18C>T (rs4803419)      

Maternal plasma -1.3E-5 (-0.17, 0.17) 1.00     

Breast milk 0.008 (-0.18, 0.2) 0.93     

Infant plasma -0.038 (-0.21, 0.14) 0.67     

NR1I3 c.540C>T (rs2307424)      

Maternal plasma -0.091 (-0.24, -0.061) 0.24     

Breast milk 0.025 (-0.14, 0.19) 0.76     

Infant plasma -0.044 (-0.20, 0.11) 0.57     

NR1I3 c.152-1089T>C (rs3003596)      

Maternal plasma -0.009 (-0.11, 0.087) 0.85     

Breast milk -0.020 (-0.12, 0.08) 0.69     

Infant plasma 0.042 (-0.055, 0.14) 0.39     

ABCB1 4046A>G (rs1045642)      

Maternal plasma 0.12 (-0.026, 0.27) 0.11     

Breast milk -0.011 (-0.17, 0.15) 0.89     

Infant plasma -0.095 (-0.24, 0.053) 0.21     

ABCB1 4036A>G (rs3842)      

Maternal plasma 0.037 (-0.1, 0.18) 0.59     
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Table 4.2 continued 

 Univariate linear regression Multivariate linear regression 

Patient characteristic βa (log10 EFV conc., 95% CI) p value 
Bonferroni  
p value 

βa (log10 EFV conc., 95% CI) p value 
Bonferroni  
p value 

Breast milk 0.071 (-0.075, 0.22) 0.34     

Infant plasma 0.084 (-0.054, 0.22) 0.23     

ABCB1 1236C>T (rs1128503)      

Maternal plasma 0.067 (-0.066, 0.2) 0.32     

Breast milk -0.030 (-0.18, 0.12) 0.69     

Infant plasma -0.052 (-0.19, 0.082) 0.44     

CYP2A6 48T>G (rs28399433)      

Maternal plasma 0.058 (-0.22, 0.34) 0.68     

Breast milk 0.11 (-0.40, 0.18) 0.44     

Infant plasma 0.019 (-0.26, 0.30) 0.89     

ABCB5 c.2908G>A (rs6461515)      

Maternal plasma 0.043 (-0.053, 0.14) 0.38     

Breast milk 0.070 (-0.034, 0.18) 0.18     

Infant plasma -0.039 (-0.14, 0.057) 0.42     

ABCG2 c.1728-46G>A (rs2231164)      

Maternal plasma -0.020 (-0.15, 0.11) 0.76     

Breast milk 0.11 (-0.050, 0.27) 0.18     

Infant plasma 0.010 (-0.12, 0.14) 0.88     

ABCG2 78551A>G (rs2622604)      
Maternal plasma -0.029 (-0.19, 0.13) 0.72     
Breast milk -0.065 (-0.24, 0.11) 0.47     
Infant plasma -0.11 (-0.27, 0.047) 0.16     

aβ is regression coefficient, which represents incremental change in log10 EFV concentration per unit change in a patient characteristic. 
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Figure 4.2. Associations between maternal CYP2B6 516G>T genotype (GG, 42; GT, 52, and 

TT, 23) and EFV concentrations in maternal plasma (A), breast milk (B), infant plasma (C), and 

infant CYP2B6 516G>T genotype (GG, 45; GT, 67; and TT, 18) and EFV concentrations in infant 

plasma (D). Bars represent median (IQR) and p values are for Mann-Whitney U test. 

 

4.3.3 Full Pharmacokinetic Profiles of EFV in Plasma and Breast Milk 

EFV concentration-time profiles in maternal plasma and breast milk in the entire population 

and in CYP2B6 516GG, CYP2B6 516GT, and CYP2B6 516TT groups are presented in Figure 4.4. 

The corresponding pharmacokinetic parameters are presented in Table 4.3. In pooled 

analysis, median (range) pharmacokinetic parameters in maternal plasma versus breast milk 

were: AUC0-24, 60700 ng.h/mL (26800-177000) versus 68500 ng.h/mL (26300-257000); Cmax, 

4630 ng/mL (2050-9760) versus 5390 ng/mL (1430-18400); and Cmin, 2030 ng/mL (755-6740) 

versus 1680 ng/mL (316-9570). Wide intra- and inter-individual variability in the M/P ratio 

during the dosing interval were observed. The time averaged M/P concentration ratio was  
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Figure 4.3. Effect of composite maternal/infant CYP2B6 516G>T genotype on infant plasma 

EFV concentration (median, IQR). A significant trend towards increasing infant plasma EFV 

concentration from GG/GG to TT/TT composite maternal/infant CYP2B6 516G>T genotype 

was observed. 

 

1.10 (0.57-1.71) and M/P AUC0-24 ratio was 1.13 (0.50-1.93) (Table 4.3; Figure 4.4). EFV 

pharmacokinetic parameters in plasma and breast milk differed significantly between 

patients stratified by CYP2B6 516G>T genotypes (p <0.05). As with plasma, EFV breast milk 

AUC0-24, Cmax and Cmin were significantly lower in nursing mothers with CYP2B6 516GG 

compared with CYP2B6 516GT or CYP2B6 516TT genotypes (Table 4.3; Figure 4.4). The study 

was sufficiently powered to detect differences between GG vs TT (100% power) and GT vs TT 

(99.9% power), but not between GG vs GT groups (26% power). 

4.3.4 Breastfed Infants’ Exposure to EFV from Breast Milk 

The average infant EFV dose from breast milk, calculated using AUC0-24-derived average milk 

concentration during the dosing interval and 150 mL/kg/day as average milk intake, was 428 

µg/kg/day (164-1610).  Using EFV breast milk Cmax as the maximum breast milk concentration,   
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Table 4.3 EFV pharmacokinetic parameters (median, range) in plasma and breast milk and breastfed infants’ exposure. 

Preliminary phase pharmacokinetic data Pooled (n = 117) CYP2B6 516GG (n = 42) CYP2B6 516GT (n = 52) CYP2B6 516TT (n = 23) 

Maternal plasma EFV conc. (ng/mL) 2310 (632-8880) 1660 (632-3610) 2390 (951-8880) 5400 (1920-8110) 

Breast milk EFV conc. (ng/mL) 2280 (475-10800) 1610 (475-5580) 2370 (713-10300) 4070 (995-10800) 

Infant plasma EFV conc. (ng/mL) 173 (46.0-4630) 124 (46.0-4630) 164 (48.5-2150) 333 (75.5-1590) 

Intensive pharmacokinetic parameters n = 29 n = 10 n = 11 n = 8 

Plasma     

Cl/F (L/h)a 9.89 (3.39-22.4) 12.2 (9.37-22.4) 10.0 (4.71-20.7) 4.64 (3.39-5.35) 

AUC0-24 (ng.h/mL)a 60700 (26800-177000) 49400 (26800-64000) 59700 (29000-128000) 130000 (112000-177000) 

Cmax (ng/mL)a 4630 (2050-9760) 3220 (2310-4630) 4750 (2050-6780) 6940 (5560-9760) 

Cmin (ng/mL)a 2030 (755-6740) 1640 (861-2310) 1580 (755-4860) 5150 (3830-6740) 

Breast milk      

AUC0-24 (ng.h/mL)b 68500 (26300-257000) 55000 (29200-105000) 60600 (26300-206000) 105000 (68100-257000) 

Cmax (ng/mL)c 5390 (1430-18400) 4020 (2400-8450) 4540 (1430-9220) 8920 (5810-18400) 

Cmin (ng/mL)d 1680 (316-9570) 1120 (534-2430) 1500 (316-6070) 2480 (1500-9570) 

Time averaged M/P conc. ratio 1.10 (0.57-1.71) 1.22 (0.61-1.71) 1.08 (0.57-1.57) 0.98 (0.59-1.66) 

M/P AUC0-24 ratio 1.13 (0.50-1.93) 1.23 (0.71-1.93) 1.18 (0.73-1.73) 0.95 (0.57-1.66) 

Infant exposure     

Average infant EFV dose (µg/kg/day) 428 (164-1610) 344 (182-656) 379 (164-1290) 656 (426-1610) 

Maximum infant EFV dose (µg/kg/day) 809 (215-2760) 603 (360-1270) 681 (215-1380) 1340 (872-2760) 

Average EIpaediatric
e (%) 2.14 (0.82-8.05) 1.72 (0.91-3.28) 1.90 (0.82-6.45) 3.28 (2.13-8.05) 

Maximum EIpaediatric
e (%) 4.05 (1.08-13.8) 3.02 (1.80-6.35) 3.41 (1.08-6.90) 6.70 (4.36-13.8) 

EImaternal
e (%) 7.69 (2.04-26.2) 5.73 (3.42-12.1) 6.47 (2.04-13.1) 12.7 (8.28-26.2) 

Infant plasma EFV conc. 1f (ng/mL) 173 (27.2-1590) 166.10 (27.3-208) 88.53 (37.7-273) 293 (103-1590) 

Infant plasma EFV conc. 2f (ng/mL) 146 (29.9-1130) 133.54 (30.0-223) 85.83 (45.2-313) 342 (113-1130) 
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Table 4.3 continued 
a, b and c: Significant differences between genotype groups (Kruskal-Wallis test) at 0.001, 0.05, 0.01 and levels, respectively;  d: no significant difference 

between genotype groups (Kruskal-Wallis test); e: EIpaediatric and EImaternal represent paediatric and maternal dose weight-adjusted exposure indices, 

respectively (average EIpaediatric was calculated by replacing InfantDosemax with InfantDoseavg in equation 4.3); f: Infant plasma EFV conc. 1 and 2 

represent infant plasma concentrations 2 h and 8 h after maternal dose, respectively. 
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Figure 4.4. EFV concentration-time profiles in plasma and breast milk of nursing mothers: in 

pooled analysis (n = 29) (A); with CYP2B6 GG genotype (n = 10) (B); with CYP2B6 516GT genotype 

(n = 11) (C); and with CYP2B6 516TT genotype (n = 8) (D). Values are plotted as median (IQR). 

Details are presented in Table 4.3. 

 

the maximum EFV dose from breast milk was 809 µg/kg/day (215-2760). In pooled analysis, 

paediatric dose (for children aged ≥ 3 months and weighing ≥ 3.5 kg)300 weight-adjusted 

exposure index was 4.05% (1.08-13.8) and maternal dose weight-adjusted exposure index was 

7.69% (2.04-26.2). When stratified by maternal CYP2B6 516G>T, paediatric and maternal dose 

weight-adjusted exposure indices were highest in CYP2B6 516TT group with values of 6.7 (4.36-

13.8) and 12.7 (8.28-26.2) respectively. Infant plasma concentrations did not change 

significantly during the dosing interval, with no significant  differences (p > 0.05) between 

concentrations at 2 h and 8 h after maternal EFV dose, with an average of 157 ng/mL (28.6-

1360), highest in infants of CYP2B6 516TT mothers with a value of 315 ng/mL (108-1360) (Table 

4.3; Figure 4.5). Infant EFV concentration decreased from 1590 ng/mL (190-4631) in 2-8 days  



 

104 

 

Figure 4.5. Infants’ plasma EFV concentrations during dosing interval. In pooled analysis and 

when stratified based on maternal genotype, there were no significant differences in infant 

plasma EFV concentrations at 2 h and 8 h after maternal dose. 

 

old infants, to 194 ng/mL (51.9-705) in 9 days-3 months old, 149 ng/mL (51.8-325) in > 3-6 

months old, and 102 ng/mL (40.8-590) in > 6 months old. All infants in this cohort achieved EFV 

concentrations above the IC50 of 0.51ng/mL for wild-type HIV-1 in protein-free medium, and 

more than 75% achieved greater than 100 x IC50.305 About 96% (129/134) achieved the protein 

binding-corrected IC50 of 36 ng/mL reported by Acosta et al.,306 but only 57% (76/134) achieved 

the corresponding IC95 of 126 ng/mL. 

 

4.4 DISCUSSION 

To our knowledge, this is the first study describing EFV pharmacokinetics in human breast milk 

during the entire dosing interval in genetically-defined subgroups of nursing mothers. This 

approach highlights possible worst case scenarios of infant exposure to drugs from breast milk 
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in terms of maternal drug metabolism capacity and infant feeding time. It is also the largest 

study of EFV excretion into human breast milk and transfer to breastfed infants. Findings 

indicated that maternal CYP2B6 516G>T was associated with EFV concentrations in maternal 

plasma, breast milk and infant plasma. With a paediatric dose weight-adjusted exposure index 

of 4.05% (1.08-13.8), the overall infant exposure to maternal EFV from breast milk was relatively 

low, highest in infants of mothers with the CYP2B6 516TT genotype at 6.7% (4.36-13.8). The 

infant plasma EFV concentrations also varied depending on maternal and infant CYP2B6 516G>T 

genotypes, suggesting a role for CYP2B6 SNPs in EFV disposition in neonates and supporting a 

recent FDA recommendation for CYP2B6 516G>T-guided dosing of EFV in children between 3 

months and 3 years old.300 CYP2B6 is known to be expressed in infants and to contribute to EFV 

pharmacokinetic variability in children.307,308 The relatively high infant plasma EFV 

concentrations in the early neonatal period which rapidly declined after day 8 is consistent with 

observations of in utero exposure to EFV and persistence in plasma up to day 7 after 

delivery.113,269 Significant increases in the expression of CYP2B6 after the neonatal period may 

also play a role.307  

The EFV dose below which there is no clinically significant effect in infants is unknown. An 

exposure index of no more than 10% weight-adjusted therapeutic paediatric dose has been 

proposed as a safety threshold for infant exposure to maternal drugs from breast milk.85 There 

was no report of drug-related adverse events in any infants in the present study, suggesting EFV 

ingestion through breast milk is unlikely to result in toxicity. However, CNS disturbance cannot 

be ruled out as it is impossible to diagnose in infants. Additionally, exposure to subtherapeutic 

EFV concentrations through breast milk raises concerns about potential development of 

resistance in the rare event of PMTCT failure as reported for other drugs.309,310 About 96% and 

57% of infants achieved plasma EFV concentrations above the published protein binding-

corrected IC50 and IC95, respectively, for wild-type HIV-1.306 



 

106 

Studies in chronically infected patients have demonstrated limited compartmentalisation and 

clonal amplification of functional HIV-1 in human breast milk, suggesting ongoing blood-to-

breast milk seeding of virus, followed by transient local replication in breast milk.311,312 

Therefore, therapeutic concentrations of EFV in breast milk may play an important role in 

preventing ongoing replication of HIV in mammary glands and development of resistance,87 

which may otherwise be passed to infants if PMTCT fails.88,313 These findings support recent 

updates in treatment guidelines recommending the use of EFV-based ART started during 

pregnancy and continued until breastfeeding ends (Option B) or for life (Option B+) for PMTCT.13 

These findings should be interpreted in the context of certain limitations. The study was not 

adequately powered to detect differences in pharmacokinetic parameters between the GG (n = 

10) vs GT (n = 11) groups; only 26% statistical power was achieved.  Although we observed higher 

EFV concentrations in 22% of the infants receiving NVP PEP (data not shown), we are unable to 

make firm conclusions about the interaction since PEP is given to younger infants who also have 

residual EFV from intrauterine exposure. As a result of practical challenges associated with 

plasma collection in resource-limited settings, samples were collected as DBS. However, the 

negative bias associated with EFV quantification in DBS was adequately compensated using a 

validated method correcting for patient haematocrit and protein binding.259 Dried breast milk 

spot allowed for EFV quantification in whole milk,242 a major difficulty associated with liquid 

milk.91  

In conclusion, most breastfed infants are exposed to less than 10% of weight-adjusted licensed 

paediatric dose of EFV through breast milk. Further studies to monitor the long-term safety, 

including possible emergence of resistance in infants who may become infected if PMTCT fails, 

are now warranted. 
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CHAPTER 5 

 

PHARMACOGENETICS OF NEVIRAPINE 

EXCRETION INTO BREAST MILK AND 

INFANTS’ EXPOSURE THROUGH 

BREAST MILK VERSUS PROPHYLAXIS  
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5.1 INTRODUCTION 

The risk of HIV transmission through breast milk was first recognised following case reports of 

HIV diagnosis in breastfed infants of women who were infected postnatally through blood 

transfusion or heterosexual exposure.314-319 In additional to intrauterine and intrapartum 

transmissions, breastfeeding is estimated to account for 15% (95% CI: 7-22) additional risk of 

transmission in women with established infection.320 Postpartum maternal HIV infection is 

associated with higher risk of breast milk transmission, estimated at 29% (16-42). HIV is present 

in breast milk321 and findings from several animal studies have suggested potential transmission 

mechanisms, including intestinal mucosal cell infection by cell-free HIV,322 transepithelial 

transport by intestinal M cells,323 and transcytosis across the intact epithelial barrier.324 Although 

avoidance of breastfeeding is an effective strategy to prevent postpartum MTCT, it is precluded 

by lack of access to safe and nutritionally adequate alternatives in resource-limited countries 

with the highest burden of the disease. Evidence from numerous clinical trials has shown that 

exclusive breastfeeding for the first six months of life along with maternal and infant 

antiretroviral therapy reduces MTCT to less than 2%. 

One of the early PMTCT interventions involved intrapartum single dose of 200 mg NVP in 

combination with zidovudine monotherapy and a single 2 mg/kg infant dose within 72 hours of 

birth. Although this strategy significantly reduced MTCT rates,17 about 35% of women and 53% 

of infants developed slow-clearing resistant virus, compromising future NVP-based treatment 

options in infants who may become infected.313,325 Therefore, current guidelines recommend 

longer term or lifelong maternal ART (Option B or B+)  started before or during pregnancy, or as 

soon as possible after postpartum diagnosis in combination with daily infant NVP post-exposure 

prophylaxis (PEP) for up to 6 weeks of age.13 As previously highlighted, NVP is an important 

component of first-line ART regimens (as an alternative to efavirenz) and it is widely used in 

women with established infection or those initiating treatment postpartum.13 In addition to 

further reducing MTCT rates, ART prevents the development and clonal amplification of NNRTI-
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resistant HIV variants in systemic and mammary gland compartments observed with the use of 

intrapartum single dose NVP.326,327 

Maternal drug use inevitably results in breastfed infant drug exposure. However, the level of 

exposure is within the recommended (albeit arbitrary) limit of 10% paediatric or maternal 

therapeutic dose for most drugs. Occasionally, serious adverse drug reactions and fatality have 

resulted from infant exposure to maternal drugs through breast milk. For instance, the use of 

codeine by nursing mothers has been associated with potentially fatal CNS depression in 

breastfed infants.328,329 The mechanism involves the accumulation of its active metabolite, 

morphine, in mothers with the CYP2D6 ultra-rapid genotype. In addition to the potential for 

adverse drug reaction (ADR) if infants are exposed to sufficiently high levels of ARVs through 

breast milk, exposure to subtherapeutic drug concentrations creates a selective pressure for the 

emergence of drug resistant virus. The concentration of NVP in breast milk and plasma of 

breastfed infants have been reported in several studies.89 However, infant exposure to maternal 

NVP through breast milk were confounded with additional exposure from infant PEP.89 In 

addition, samples were collected only at a single time-point during the dosing interval, limiting 

their utility in assessing potential risks.85 A recently described method for the quantification of 

NVP in dried blood spots (DBS) and dried breast milk spots (DBMS) has opened up more 

opportunities for conducting clinical pharmacokinetic studies in nursing mother-infant pairs.242 

For drugs with significant genetic contribution to observed inter-individual variability in plasma 

pharmacokinetics, potential variations in breast milk pharmacokinetics and infant exposure 

attributable to host genetics warrant investigation.247 NVP is predominantly metabolised by 

CYP2B6 and CYP3A4, and is a substrate for the efflux transporter ABCC10. Genetic variations in 

NVP disposition genes are known to affect its pharmacokinetics, including CYP2B6 516G>T and 

983T>C, and ABCC10 rs2125739.36,174,330 However, their effects on NVP breast milk 

pharmacokinetics and breastfed infant exposure have not been investigated. 
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The present study assessed breast milk pharmacokinetics of NVP during an entire dosing interval 

as well as genetically-driven differences between mother-infant groups. Infant plasma NVP 

concentrations were compared between infants exposed through breast milk alone, PEP alone, 

and combined breast milk and PEP.  

 

5.2 METHODS 

5.2.1 Patients 

This was part of an observational study to evaluate the effects of genetic factors on the 

pharmacokinetics of antiretroviral drugs during pregnancy and lactation (Clinicaltrials.gov ID: 

NCT02269462). As previously described,283,331 HIV positive nursing mothers and their breastfed 

infants were recruited from three hospitals in Benue State, Nigeria: Bishop Murray Medical 

Centre, Makurdi; St Mary’s Hospital, Okpoga; and St Monica’s Hospital, Adikpo. Written 

informed consent was obtained and eligibility was ascertained by examining case notes and 

conducting a brief interview in English and the local Tiv language. In this sub-study, HIV positive 

nursing mothers who started NVP-containing regimen before or during pregnancy and 

continued during breastfeeding were included. Exclusion criteria were assessed at study 

enrolment and included exclusive formula feeding, mixed feeding in infants less than 6 months 

old, opportunistic infections (e.g. tuberculosis, pneumonia), severe maternal or infant illness, 

and maternal or infant treatment with drugs or herbal medication with known or uncertain 

interaction with NVP. Ethical approval was obtained from the National Health Research Ethics 

Committee (NHREC), Abuja, Nigeria. 

5.2.2 Study Design and Samples Collection 

The purpose of the preliminary phase was to explore associations between SNPs in NVP 

disposition genes and its breast milk and plasma concentrations in an unselected cohort of 

nursing mother-infant pairs. For this, paired DBS and DBMS samples were collected from 
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mothers and infants at a single, recorded time point after maternal dose of regimen containing 

200 mg NVP. In the intensive pharmacokinetic phase, differences in plasma and breast milk 

pharmacokinetic parameters and measures of breastfed infants’ exposure was investigated in 

mother-infant pairs following genotype-guided stratification. For this, maternal DBS and DBMS 

were collected at 0.5, 1, 2, 4, 8, and 12 hours after an observed dose of regimen containing 200 

mg NVP and stored as previously described.242 DBS samples were collected from infants at 2 h 

and 8 h after maternal dose. To reflect real-life situations, infant feeding times were not 

controlled and all infants were breastfed on demand. In addition, mothers took standard local 

meals about 30 min before drug administration. Samples were shipped at ambient temperature 

to the University of Liverpool, UK, for analysis. 

5.2.3 SNP Genotyping 

E.Z.N.A.® Blood DNA Mini Kit (Omega Bio-Tek, Inc., Norcross, GA, USA) was used to extract 

genomic DNA from DBS. Extracted DNA was quantified using NanoDrop® (Thermo Fisher 

Scientific Inc., Wilmington, DE, USA) and stored at -20oC until analysis. Genotyping was 

conducted as previously described.283 TaqMan® Genotyping Master Mix and assays for CYP3A4 -

392A>G (*1B; rs2740574; ID: C_1837671_50), CYP3A4 20230G>A (*1G; rs2242480, ID: 

C_26201900_30), CYP2B6 516G>T (rs3745274; ID: C_7817765_60), CYP2B6 983T>C 

(rs28399499; ID: C_60732328_20), NR1I3 c.540C>T (rs2307424; ID: C_25746794_20), NR1I3 

c.152-1089T>C (rs3003596; ID: C_16194070_10), NR1I2 63396C>T (rs2472677; ID: 

C_26079845_10), POR 1508C>T (*28; rs1057868; ID: C_8890131_30), and ABCC10 2843T>C 

(rs2125739; ID: C_16173668_10) were obtained from Life Technologies Ltd (Paisley, 

Renfrewshire, UK). Allelic discrimination plots and genotype assignments were obtained using 

Opticon Monitor® version 3.1 (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Compliance with 

Hardy Weinberg Equilibrium was evaluated as previously described.260 

 



 

114 

5.2.4 NVP Quantification and Pharmacokinetic Analysis 

NVP in DBS and DBMS was quantified as previously described using a validated LC-MS/MS 

method.242 Plasma concentrations were determined using [DBS[NVP]/(1-HCT)]*0.6, where DBS[NVP] 

is NVP concentration in DBS, HCT is the patient-specific haematocrit and 0.6 is the fraction of 

NVP bound to plasma protein.259 Minimum (Cmin) and maximum (Cmax) plasma concentrations 

were determined by direct inspection. The area under the concentration-time curve during the 

dosing interval (AUC0-12) was calculated using the trapezoidal rule and the apparent clearance 

(CL/F) was calculated by dividing the dose by AUC0-12. Infant NVP dose from breast milk and 

exposure indices (infant PEP, infant treatment, and maternal doses) were calculated using 

equations described in Chapter 4.331 

5.2.5 Statistical Analysis 

Pearson correlation was used to test relationships between continuous variables and univariate 

linear regression analysis was conducted to identify variables associated with breast milk and 

plasma NVP concentrations. Independent variables with P ≤ 0.2 in the univariate analysis were 

included in a multivariate stepwise linear regression analysis. Bonferroni correction was used to 

adjust for multiple testing. Differences in pharmacokinetic parameters between patient groups 

were investigated using Mann-Whitney U test. All other statistical analyses were conducted 

using IBM ®SPSS® Statistics version 20.0 (IBM, Armonk, NY, USA) and GraphPad Prism® 

(GraphPad Software, Inc., La Jolla, CA, USA). All charts were plotted using GraphPad Prism® 5. 

The previously suggested minimum effective concentration of 3400 ng/mL261 was set as the Cmin 

target. 
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5.3 RESULTS 

5.3.1 Patients’ Characteristics 

A total of 122 eligible HIV positive nursing mothers and their breastfed infants were recruited 

between December 2012 and October 2013 (Table 5.1). The median (range) duration on current 

NVP-containing regimen was 28.6 months (1.4-79.1), starting at a baseline CD4 count of 241 

c/mm3 (31-1015). NVP was taken in combination with emtricitabine and tenofovir disoproxil 

fumarate (49%), lamivudine and zidovudine (41%), or lamivudine and tenofovir disoproxil 

fumarate (10%). Genotype frequencies are presented in Table 5.1; all nine SNPs were in Hardy 

Weinberg equilibrium. Infants were 19.4 weeks (1.4-73.9) old and 50% (61/122) were receiving 

NVP PEP at doses determined by their age and weight in line with current guidelines (Table 5.1). 

5.3.2 Pharmacogenetics of NVP in Plasma and Breast Milk  

NVP concentrations (median, range) in maternal plasma (n = 122), breast milk (n = 65), and infant 

plasma (n = 93; excluding those receiving NVP PEP) were 5170 ng/mL (1320-15600), 4830 ng/mL 

(1360-16300), and 660 ng/mL (104-3090), respectively. Very strong to moderate positive 

correlations in were observed between maternal plasma and breast milk (n = 65), maternal and 

infant plasma (n = 93), and breast milk and infant plasma (n = 53; Figure 5.1). 

Of the nine SNPs investigated, only CYP2B6 516 G>T (rs3745274) and CYP2B6 983T>C 

(rs28399499) were independently associated with higher NVP concentrations in maternal 

plasma and breast milk (Table 5.2). CYP2B6 983T>C which was included in the multivariate 

analysis for plasma concentration despite P > 0.2 in univariate analysis because of numerous 

literature supporting its role. Therefore, mother-infant pairs were stratified based on composite 

maternal CYP2B6 516 G>T (rs3745274) and CYP2B6 983T>C (rs28399499) genotypes for the 

intensive pharmacokinetic phase. POR 1508C>T (*28; rs1057868) and NR1I3 152-1089T>C 

(rs3003596) were associated with higher plasma and lower breast milk NVP concentrations, 

respectively; the former was lost after Bonferroni correction (Table 5.2). 
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Table 5.1 Characteristics of nursing mother-infant pairs. 

Mothers (n = 122)  

Age (years) 30 (20-40) 

Weight (kg) 57 (35-109) 

Infants (n = 122)  

Age (weeks) 19.4 (1.4-73.9) 

Weight (kg) 6.0 (2.4-10.0) 

Gender (% Female) 54 (66/122) 

Receiving NVP PEP (%) 23.8 (29/122) 

Maternal drug regimen and CD4 counta  

FTC/TDF/NVP (%) 49 

3TC/AZT/NVP (%) 41 

3TC/TDF/NVP (%) 10 

Time post-dose (h) 4.0 (1.25-8.25) 

Duration on regimen (months) 28.6 (1.4-79.1) 

Baseline CD4 count (c/mm3) 241 (31-1015) 

CD4 change (c/mm3) 351 (45-1108) 

Maternal genotype frequency  

CYP3A4 -392A>G (*1B; rs2740574) CC, 0.62; CT, 0.35; TT, 0.03 

CYP3A4 20230G>A (*1G; rs2242480) TT, 0.73; CT, 0.18; CC, 0.09 

CYP2B6 516G>T (rs3745274) GG, 0.36; GT, 0.43; TT, 0.21 

CYP2B6 983T>C (rs28399499) TT, 0.81; CT, 0.18, CC, 0.01 

NR1I3 540C>T (rs2307424) CC, 0.81; CT, 0.19; TT, 0.00 

NR1I3 152-1089T>C (rs3003596) TT, 0.20; CT, 0.54; CC, 0.26 

NR1I2 63396C>T (rs2472677) CC, 0.35; CT, 0.54; TT, 0.11 

POR 1508C>T (*28; rs1057868) CC, 0.72; CT, 0.27; TT, 0.01 

ABCC10 2843T>C (rs2125739) TT, 0.50; CT, 0.36; CC, 0.14 
aUnless otherwise indicated, values are expressed as median (range). 

Abbreviations: 3TC, lamivudine; AZT, zidovudine; FTC, emtricitabine; NVP, 

nevirapine; TDF, tenofovir disoproxil fumarate. 

 

Significant variations in breast milk NVP concentrations were observed between women in the 

three groups: 3670 ng/mL (2330-5240) in CYP2B6 516GG & 983TT (n = 12); 4830 ng/mL (1360-

10500) in CYP2B6 516GT or 983TC (n = 33); and 6270 ng/mL (3350-16300) in CYP2B6 516GT & 

983TC or 516TT or 983CC (n = 16). The corresponding maternal plasma concentrations were 

4360 ng/mL (1870-9880) (n = 25), 5250 ng/mL (1320-12300) (n = 61), and 6250 ng/mL (1950-

15600) (n = 31), respectively (Figure 5.2).  
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Figure 5.1 Correlations between NVP concentrations in maternal plasma and breast milk (A); 

maternal plasma and infant plasma (B); and breast milk and infant plasma (C). Solid lines 

represent mean values and broken lines represent 95% confidence intervals.  
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Table 5.2 Linear regression analysis showing associations of patient characteristics with log10 NVP concentrations in breast milk and plasma. 

 Univariate linear regression Multivariate linear regression 

Patient characteristics βa (log10 NVP conc., 95% CI) p value βa (log10 NVP conc., 95% CI) p value 

Maternal plasma (n = 122)     

Maternal weight (kg) -0.001 (-0.005, 0.003) 0.58   

Maternal age (y) 0.003 (-0.009, 0.016) 0.59   

Infant age (months) -0.002 (-0.019, 0.014) 0.77   

Time after maternal dose (h) 0.010 (-0.027, 0.046) 0.60   

CYP3A4 -392A>G (*1B; rs2740574) -0.005 (-0.070, 0.060) 0.88   

CYP3A4 20230G>A (*1G; rs2242480) 0.00 (-0.054, 0.054) 0.99   

CYP2B6 516G>T (rs3745274) 0.072 (0.024, 0.12) 0.004 0.10 (0.053, 0.16) 1.1 x 10-4 

CYP2B6 983T>C (rs28399499) 0.045 (-0.052, 0.14) 0.36 0.11 (0.015, 0.21) 0.024c 

NR1I3 540C>T (rs2307424) 0.035 (-0.057, 0.13) 0.45   

NR1I3 152-1089T>C (rs3003596) -0.036 (-0.090, 0.017) 0.18   

NR1I2 63396C>T (rs2472677) -0.019 (-0.076, 0.038) 0.50   

POR 1508C>T (*28; rs1057868) 0.075 (-0.001, 0.15) 0.054 0.10 (0.026, 0.17) 0.008c 

ABCC10 2843T>C (rs2125739) 0.005 (-0.048, 0.058) 0.84   

Breast milk (n = 65)b     

Maternal weight (kg) 0.001 (-0.003, 0.004) 0.77   

Maternal age (y) 0.005 (-0.008, 0.018) 0.43   

Infant age (months) -0.011 (-0.028, 0.005) 0.17 -0.015 (-0.029, 0.00) 0.049c 

Time after maternal dose (h) 0.027 (-0.009, 0.064) 0.14   

CYP3A4 -392A>G (*1B; rs2740574) -0.010 (-0.11, 0.094) 0.85   

CYP3A4 20230G>A (*1G; rs2242480) 0.02 (-0.050, 0.089) 0.57   

CYP2B6 516G>T (rs3745274) 0.089 (0.020, 0.16) 0.013 0.16 (0.084, 0.23) 6.0 x 10-5 

CYP2B6 983T>C (rs28399499) 0.11 (-0.030, 0.25) 0.12 0.18 (0.042, 0.31) 0.011c 
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Table 5.2 continued 

 Univariate linear regression Multivariate linear regression 

Patient characteristics βa (log10 NVP conc., 95% CI) p value βa (log10 NVP conc., 95% CI) p value 

Breast milk (n = 65)b continued     

NR1I3 540C>T (rs2307424) 0.11 (-0.020, 0.24) 0.095   

NR1I3 152-1089T>C (rs3003596) -0.077 (-0.15, -0.004) 0.039 -0.11 (-0.18, -0.052) 0.001 

NR1I2 63396C>T (rs2472677) -0.006 (-0.084, 0.073) 0.89   

POR 1508C>T (*28; rs1057868) 0.044 (-0.065, 0.15) 0.42   

ABCC10 2843T>C (rs2125739) 0.020 (-0.059, 0.10) 0.61   

Infant plasma (n = 93)b     

Infant weight (kg) -0.054 (-0.11, 0.00) 0.05   

Maternal age (y) -0.024 (-0.049, 0.00) 0.054   

Infant age (months) -0.078 (-0.010, -0.054) 2.6 x 10-9 -0.05 (-0.079, -0.02) 0.001 

Time after maternal dose (h) 0.083 (-0.008, 0.174) 0.071   

CYP3A4 -392A>G (*1B; rs2740574) 0.042 (-0.098, 0.181) 0.56   

CYP3A4 20230G>A (*1G; rs2242480) 0.18 (0.077, 0.282) 0.001 0.20 (0.096, 0.305) 3.7 x 10-4 

CYP2B6 516G>T (rs3745274) 0.051 (-0.059, 0.161) 0.36   

CYP2B6 983T>C (rs28399499) 0.018 (-0.20, 0.24) 0.87   

NR1I3 540C>T (rs2307424) 0.077 (-0.13, 0.29) 0.47   

NR1I3 152-1089T>C (rs3003596) -0.071 (-0.19, 0.042) 0.22   

NR1I2 63396C>T (rs2472677) 0.054 (-0.069, 0.18) 0.38   

POR 1508C>T (*28; rs1057868) 0.11 (-0.057, 0.28) 0.19   

ABCC10 2843T>C (rs2125739) -0.008 (-0.13, 0.11) 0.90   
aβ is regression coefficient, which represents incremental change in log10 NVP concentration per unit change in a patient characteristic; 
bonly 65 mothers had paired plasma and breast milk concentrations, and 93 infants remained after excluding those less than 7 weeks with 

residual intra-uterine and post-exposure prophylaxis exposures; cBonferroni correction p value  > 0.05. 
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Figure 5.2 Effects of composite maternal CYP2B6 516G>T and 983T>C genotypes on NVP 

concentrations in maternal plasma (A) and breast milk (B). Bars represent median and 

interquartile range (IQR) and p values are for Mann-Whitney U test. 

 

5.3.3 Intensive Pharmacokinetics of NVP in Breast Milk 

The concentration-time profiles of NVP in maternal plasma and breast milk in the entire 

population and the three composite CYP2B6 516G>T and 983T>C genotype groups are 

presented in Figure 5.3 and the corresponding pharmacokinetic parameters are presented in 

Table 5.3. In pooled analysis, median (range) pharmacokinetic parameters in maternal plasma 

versus breast milk were: AUC0-24, 54700 ng.h/mL (24500-172000) versus 56300 ng.h/mL (26500-

136000); Cmax, 5980 ng/mL (3390-17000) versus 5920 ng/mL (3080-15100); and Cmin, 4380 ng/mL 
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Figure 5.3 NVP concentration-time profiles in plasma and breast milk of nursing mothers: in 

pooled analysis (n = 28) (A); with no variant allele (n = 8) (B); one variant allele (n = 10) (C); and 

two variant alleles (n = 10) (D). Values are plotted as median (IQR). Details in Table 5.3. 

 

 (1110-13200) versus 4080 ng/mL (1190-9430). The time averaged M/P concentration ratio was 

0.88 (0.74-1.2) and M/P AUC0-12 ratio was 0.95 (0.56-1.5). NVP AUC0-12, Cmin, and Cmax in both 

plasma and breast milk were significantly lower in patients with composite CYP2B6 516GG & 

983TT than those with at least one variant allele (Mann-Whitney U test p < 0.001) (Table 5.3; 

Figure 5.3). Post hoc analysis showed that there was sufficient power to detect differences in 

AUC0-12 between patients with no variant allele and those with a least one variant allele (≥ 89% 

power), but not between those with one compared with those with two variant alleles (5.7% 

power). Cmin was below the recommended plasma target of 3400 ng/mL in breast milk of 87.5% 

(7/8) of women with the composite CYP2B6 516GG & 983TT genotypes compared with 10% 

(1/10) in women with at least one variant allele.



 

122 

Table 5.3 NVP pharmacokinetic parameters (median, range) in breast milk and plasma of nursing mothers and breastfed infants’ exposure based 

on composite maternal CYP2B6 516G>T and 983T>C genotypes. 

 
Pooled  

(n = 28) 

CYP2B6 516GG & 

983TT (n = 8) 

CYP2B6 516GT or 

983TC (n = 10) 

CYP2B6 516GT & 

983TC or 516TT or 

983CC (n = 10) 

Plasma pharmacokineticsa     

CL/F (L/h) 3.66 (1.16-8.15) 6.25 (3.86-8.15) 3.17 (1.57-4.07) 2.89 (1.16-3.85) 

AUC0-12 (ng.h/mL) 54700 (24500-172000) 32400 (24500-51800) 63300 (49100-127000) 69800 (51900-172000) 

Cmax (ng/mL) 5980 (3390-17000) 4150 (3390-5700) 7660 (5420-11900) 7280 (5290-17000) 

Cmin (ng/mL) 4380 (1110-13200) 2720 (1110-3610) 5590 (3940-10400) 4900 (3810-13200) 

Breast milk pharmacokineticsa     

AUC0-12 (ng.h/mL) 56300 (26500-136000) 37000 (26500-53400) 56300 (44300-123000) 73900 (39600-136000) 

Cmax (ng/mL) 5920 (3080-15100) 3960 (3080-5000) 6050 (4480-11700) 7360 (4170-15100) 

Cmin (ng/mL) 4080 (1190-9430) 2450 (1190-3920) 4980 (3100-9420) 4580 (3180-9430) 

Time averaged M/P conc. ratio 0.88 (0.74-1.2) 0.95 (0.86-1.1) 0.87 (0.80-1.0) 0.91 (0.74-1.2) 

M/P AUC0-12 ratio 0.95 (0.56-1.5) 1.0 (0.87-1.5) 0.89 (0.56-1.3) 0.96 (0.74-1.2) 

Measures of infant exposure 
    

Average infant NVP dose (µg/kg/day) 704 (331-1700) 463 (331-668) 704 (554-1540) 924 (495-1700) 

Maximum infant NVP dose (µg/kg/day) 888 (462-2270) 594 (462-750) 908 (672-1760) 1100 (626-2270) 

EI-prophylaxis (%) 26.0 (9.93-79.1) 20.8 (9.93-26.8) 26.7 (17.4-56.9) 32.8 (17.7-79.1) 

EI-treatment (%) 3.64 (1.99-9.88) 2.79 (1.99-3.35) 4.67 (2.94-7.11) 4.72 (2.34-9.88) 

EI-maternal (%) 13.8 (5.77-27.7) 8.9 (5.8-12.2) 13.9 (9.7-27.6) 16.7 (7.7-27.7) 

Infant plasma NVP at 2 hb (ng/mL) 1100 (234-4410) 860 (332-2100) 908 (234-2600) 1370 (304-4410) 

Infant plasma NVP at 8 hb (ng/mL) 1140 (215-3700) 1050 (329-2130) 765 (215-2214) 1280 (305-3700) 
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Table 5.3 continued 

Abbreviations: NVP, nevirapine; AUC0-12, area under the concentration-time curve during the dosing interval; CL/F, apparent clearance; Cmax, 

maximum plasma concentration; Cmin, minimum plasma concentration; EI, exposure index (expressed as percentages of prophylaxis, treatment, 

and weight-adjusted maternal doses); M/P, milk-to-plasma. aNVP plasma and breast milk AUC0-12, Cmax, and Cmin were significantly lower in patients 

with composite CYP2B6 516GG & 983TT than those with at least one variant allele (Mann-Whitney U test p < 0.001); btime after maternal dose 

(including exposure through post-exposure prophylaxis). 
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5.3.4 Infants’ Exposure to NVP from Breast Milk/Prophylaxis 

In combined analysis, the average and maximum NVP doses from breast milk were 704 

µg/kg/day (331-1700) and 888 µg/kg/day (462-2270), respectively. Calculated as 

percentages of paediatric, maternal and PEP weight-adjusted doses, the maximum 

exposure indices were 3.64% (1.99-9.88), 13.8% (5.77-27.7) and 26.0% (9.93-79.1), 

respectively. When stratified according to maternal composite CYP2B6 516G>T & 983T>C 

genotypes, NVP dose from breast milk and the corresponding exposure indices were lowest in 

infants whose mothers had no variant allele (Table 5.3).  

Plasma NVP concentrations in infants were 1100 ng/mL (234-4410) at 2 hours and 1140 ng/mL 

(215-3700) at 8 hours after maternal dose in combined analysis (Figure 5.4A). The highest 

plasma concentrations were observed in infants whose mothers had two variant alleles (Table 

5.3). After excluding infants still taking PEP, maternal CYP3A4 20230G>A (*1G; rs2242480) and 

infant age were independently associated with infant plasma NVP concentration (Table 5.2). 

After excluding infants less than 7 weeks old with residual intra-uterine and PEP exposures, 

those whose mothers were non-carriers (n = 56), heterozygotes (n = 20), or homozygotes (n = 

12) for this SNP had plasma concentrations of 497 ng/mL (141-3090), 851 ng/mL (120-2680), 

and 1410 ng/mL (673-2600), respectively (Figure 5.4B). The association was more pronounced 

after adjusting for infant age (Table 5.2). 

Additionally, increasing infant age was associated with decrease in plasma NVP concentration in 

infants (Figure 5.4C). Differences in infant plasma NVP concentrations between those exposed 

through breast milk alone, PEP alone, and a combination of breast milk and PEP were explored. 

Breastfed infants with no additional exposure through PEP (n = 65) had plasma concentration of 

660 ng/mL (104-3090) compared with 1020 ng/mL (401-3325) in infants taking PEP and whose 

mothers were on efavirenz-based regimen (n = 10), and 2720 ng/mL (1360-7290) in infants with 

both breast milk and PEP exposures (Figure 5.4D). The median infant age was 19.4 weeks (range: 
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1.4-73.9) and residual NVP from intra-uterine exposure was considered completely eliminated 

in most infants by age 7 days. 

 

Figure 5.4 Comparison of infant plasma concentrations: at different time-points after maternal 

dose (A); based on maternal CYP3A4 20230G>A (*1G; rs2242480) genotype (B); based on infant 

age (dashed line is at 49 days when residual intra-uterine and post-exposure prophylaxis 

exposures are assumed to have been cleared) (C); and between infants exposed through breast 

milk or post-exposure prophylaxis alone versus both breast milk and post-exposure prophylaxis 

(D). 

 

5.4 DISCUSSION 

The influence of genetic polymorphisms in NVP disposition genes on its breast milk 

concentrations, its pharmacokinetics in breast milk during an entire dosing interval, and infant 

exposure through breast milk, PEP, or dual breast milk and PEP have been described for the first 

time. The CYP2B6 516G>T and 983T>C SNPs, previously associated with higher plasma NVP 

concentrations in studies conducted across different populations, were shown to be associated 
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with higher concentrations in breast milk. The time-averaged M/P concentration ratio of 0.88 

(0.74-1.2) observed in the present study show that NVP penetrates well into human breast milk. 

Breast milk exposure alone resulted in plasma concentration of 660 ng/mL (104-3094) in infants, 

influenced by maternal CYP3A4 20230G>A (*1G; rs2242480) and infant age.  

Similar to previous studies, we observed high NVP concentrations in breast milk. The time-

averaged M/P concentration ratio reported here is similar to the 0.82 previously reported by 

Rezk et al. for single time points98 but higher than 0.58-0.75 in other studies.94,95,309 This reflects 

the complexity associated with drug quantification in breast milk and the differences in methods 

used in these studies. Here we used a fully validated method that quantifies NVP in whole 

milk.242 The higher M/P AUC0-12 ratio of 0.95 (0.56-1.5) is a more accurate reflection of infant 

exposure. Additionally, for the first time we incorporated a pharmacogenetic analysis and 

showed that most women with the composite CYP2B6 516GG and 983TT genotypes had plasma 

and breast milk concentrations below the recommended 3400 ng/mL (Table 5.3).261 It remains 

unclear if this plays any role in the emergence of resistance in a subset of women receiving ART 

for PMTCT. The NVP concentration in breast milk required to prevent localised HIV replication is 

unknown. However, patients with plasma NVP concentrations below 3000 ng/mL are five times 

more likely to experience virological failure than those with higher concentrations.332 

Interestingly, Chaix et al. associated slower clearance of NVP following intrapartum single dose 

with genotypic resistance detection at four weeks postpartum.333 This is consistent with the 

CYP2B6 slow metaboliser genotypes associated with reduced clearance and higher 

concentration in the present study, but will result in prolonged exposure to subtherapeutic 

concentrations after single dose NVP. 

Plasma NVP concentrations in infants with dual exposure from breast milk and PEP were 4-fold 

higher than in those exposed through breast milk alone and 2.7-fold higher than in those 

exposed through PEP alone. All infants, including those exposed through breast milk alone, 
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achieved plasma concentrations above the 46 ng/mL protein-adjusted IC50 and the 100 ng/mL 

recommended target for PEP.306 Observed concentrations in infants with dual exposure were 

not above the range reported for HIV infected infants treated with fixed-dose NVP containing 

regimens.334,335 However, it raises concerns about the potential for the emergence of resistant 

HIV strains where infants became infected, and early infant diagnosis and treatment initiation 

are delayed. In fact, prolonged exposure to subtherapeutic infant NVP concentrations has been 

linked with emergence of resistance in infants testing positive with wild-type HIV.309 The effects 

of maternal CYP3A4 20230G>A (*1G; rs2242480) and infant age on infant plasma NVP 

concentration as a result of breast milk exposure suggest a role for the infant CYP3A4 metabolic 

pathway which increases rapidly after birth, reaching 30-40% of the adult activity after one 

month.336 Unfortunately, we did not directly assess the impact of infant CYP3A4 20230G>A (*1G; 

rs2242480) or any other genetic factors and this should be considered a limitation. 

In conclusion, the data presented here support previous findings that NVP is present in human 

breast milk at high concentrations. Substantially higher infant plasma NVP concentrations 

resulted from dual breast milk and PEP exposures compared with breast milk or PEP alone. As 

with plasma, breast milk and the resulting infant plasma NVP concentrations are influenced by 

genetic polymorphisms in drug disposition genes. The long-term consequences of this exposure, 

including potential emergence of resistant HIV strains, warrant further investigation. 

Retrospective pharmacogenetic analysis of samples from previous studies with postpartum 

transmitters may reveal important associations that highlight sources of residual transmissions 

in ART era and potential treatment intensification strategies. 
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6.1 INTRODUCTION 

The re-enactment of The Best Pharmaceuticals for Children Act (BPCA), The Pediatric Research 

Equity Act (PREA) in the United States337,338 and The Paediatric Regulation in the European 

Union339 in 2007 were significant steps in paediatric health promotion. The BPCA and PREA were 

subsequently made permanent by the FDA Safety and Innovation Act in 2012, mandating 

necessary paediatric studies.340 Although these legal frameworks do not remove the ethical and 

logistical challenges of conducting research in paediatric patients, they reinforced that children 

be protected through research, not from it, giving impetus to clinical studies in this population. 

For instance, between September 27, 2007 and November 18, 2013 about 470 paediatric studies 

(involving more than 178,000 patients and 160 drugs) were completed under BPCA and PREA in 

the United States,341,342 reducing off-label paediatric drug use from over 80% to about 50%. 

However, paediatric drug exposure is not limited to those administered for specific paediatric 

indications. More than 90% of nursing mothers take at least one drug in the early postnatal 

period, 17% until 4 months after delivery, and 5% receive drugs for chronic conditions.84 For 

most drugs, the extent of excretion into breast milk and the potential effects on the breastfed 

infant are unknown. Though the FDA 2005 guidance on clinical lactation studies contain 

recommendations,343 there is still no legislation requiring drug companies to conduct clinical 

research in nursing mother-infant pairs to evaluate infant exposure through breast milk. It is 

apparent that to avoid legal liability, most drugs are thus labelled not to be used during lactation 

despite a lack of data. However, this is not practical in many cases, especially for nursing mothers 

being treated for chronic conditions. For instance, HIV positive nursing mothers take 

antiretroviral drugs for the entire duration of breastfeeding (Option B) or for life (Option B+) for 

their own health and/or for prevention of mother-to-child transmission of HIV.13 

Understandably, conducting clinical pharmacokinetic studies in nursing mother-infant pairs is 

fraught with ethical and logistical challenges.  
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Physiologically-based pharmacokinetic (PBPK) modeling is increasingly being used in paediatric 

studies, with significant regulatory support.344,345 Indeed, the US Food and Drug Administration 

(FDA) Advisory Committee for Pharmaceutical Science and Clinical Pharmacology unanimously 

voted in support of modeling and simulation for paediatric drug development.346 Interestingly, 

the advances in PBPK modeling now allow for integration of compartments and parameters 

representing the anatomical and physiological features of a nursing woman (system parameters) 

with physicochemical, in vitro, preclinical, and clinical data (drug parameters) to generate 

predictions of drug-specific pharmacokinetics. In addition, system-specific parameters can be 

modified for extrapolations across different age groups. They also allow for integration of 

maternal and infant anatomy and physiology to simulate complex scenarios of infant exposure 

to substances through lactation. However, a cursory literature search indicates that the 

application of PBPK modeling in the study of infant exposure to xenobiotics through breast milk 

has predominantly been limited to environmental risk assessments.347-351 There is no report of 

its application to describe infant exposure to maternal drugs through breast milk. 

The aim of the present study was to develop a bespoke PBPK model to predict infant exposure 

to maternal drugs through breast milk. Published clinical data on infant exposure to the 

antiretroviral drug efavirenz (EFV)331 presented in Chapter 4 was used for model validation. 

 

6.2 METHODS 

6.2.1 Model Structure and Parameterisation 

The human breastfeeding model integrates a whole-body PBPK maternal model with a whole-

body PBPK infant model (Figure 6.1). The maternal model was based on a previously validated 

adult model of orally administered EFV adapted for intramuscular long-acting 

nanoformulations,352 with appropriate adjustments to exclude male-specific system parameters 

and an additional compartment introduced to represent the mammary gland. As previously  
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Figure 6.1 Schematic representation of the breastfeeding PBPK model.  

 

described,353 individual organ weights and blood flows were predicted from anthropometric 

characteristics (age, height, weight, body mass index, and body surface area), based on values 

in the HIV positive breastfeeding cohort described in Chapter 4.331 The infant sub-model was 

scaled from the maternal model for different age groups (10 days-1 month, 1-3 months, 3-6 

months, and 6-12 months) to account for age-dependent anatomical and physiological changes 

in system parameters. These included organ/tissue volumes and blood flows. Infants less than 



 

134 
 

10 days old were excluded because of residual intrauterine EFV exposure.301,331 EFV-specific 

parameters included in the model are presented in Table 6.1. 

Table 6.1 Drug-specific physicochemical properties and in vitro data for efavirenz. 

Drug properties Description Values 

MW Molecular weight 316 

LogP Octanol-water partition coefficient 4.60 

pKa Acid dissociation constant 10.2 

R Oral bioavailability 0.74 

PSA Polar surface area 38.33 

HBD Hydrogen bond donor 1 

K (mg/mL) Water solubility 0.00855 

M/P ratio331 Milk/plasma AUC0-24 ratio 1.13 

Fu Fraction unbound in plasma 0.01 

Vd (L/kg) Volume of distribution at steady state 3.6 

Peff (cm/s) Effective permeability (Caco-2) 2.5 x 10-6 

CLint (µL/min/pmol)249  Intrinsic hepatic clearance  

rCYP1A2 CLint  0.008 

rCYP2A6 CLint  0.05 

rCYP2B6 CLint  0.55 

rCYP3A4 CLint  0.007 

rCYP3A5 CLint  0.03 

IndCYP (µM)354 Hepatic CYPs induction  

CYP2B6 Indmax  5.76 

CYP3A4 Indmax  6.45 

CYP2B6 Ind50  0.82 

CYP3A4 Ind50  3.93 

 

 

6.2.2 Modeling Absorption, Distribution, Metabolism and Elimination 

A compartmental absorption and transit model incorporating both gastric emptying and small 

intestinal transit flow was used to describe drug absorption. Fraction of dose absorbed (Fa) was 

described using effective permeability (Peff) derived from Caco-2 permeability as shown in 

equations 6.1 and 6.2.355  

Fa =  1 − (1 +  0.54 x Peff)
−7       (6.1) 

Peff =  10(0.6836 x (log Caco−2))−0.5579)       (6.2) 
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Intestinal drug clearance (CLgut) was calculated from bioavailability (R), in vitro CYP3A4 intrinsic 

clearance (rCLint), and intestinal CYP3A4 abundance (AbCYP3A4) using equation 6.3. The fraction 

of drug escaping gut metabolism (Fg) was calculated using equation 6.4, where Qgut and fu,gut 

are intestinal blood flow and fraction unbound in the intestine, respectively. 

CLgut =  (R x (CYP3A4 rCLint/0.34) x AbCYP3A4 x 1000 x 60)/1000000  (6.3) 

Fg =  
Qgut

(Qgut+ fu,gut x CLgut
        (6.4) 

Systemic circulation was defined as a function of the rate of blood flow to tissues (perfusion-

limited) and by a mechanism-based approach using tissue composition-based equations 6.5 and 

6.6. Volume of distribution (Vss) was calculated using equation 6.7.356,357  

Pt:p,nonadipose =  
[Po:w x (Vnlt+ 0.3 x Vpht)]+[1 x (Vwt+0.7 x Vpht)

[Po:w x (Vnlp 0.3 x Vphp)]+ [1 x (Vwp+0.7 x Vphp)]
 x 

fu,p

fu,t
   (6.5) 

Pt:p,adipose =  
[Dvo:w x (Vnlt+ 0.3 x Vpht)]+[1 x (Vwt+0.7 x Vpht)

[Dvo:w x (Vnlp 0.3 x Vphp)]+ [1 x (Vwp+0.7 x Vphp)]
 x 

fu,p

1
   (6.6) 

Vss =  (∑ V
t

∗ Pt:p)+ (Ve ∗ E: P) + Vp      (6.7) 

Pt:p is the non-adipose and adipose tissue:plasma partition coefficients, Po:w is the n-

octanol:buffer partition coefficient of the nonionized species at pH 7.4, Dvo:w is the olive 

oil:buffer partition coefficient of both the nonionized and ionized species at pH 7.4, V is the 

fractional tissue volume content of neutral lipids (nl), phospholipids (ph), and water (w), t is 

tissue, p is plasma, and fu is unbound fraction. In equation 6.7, V is the fractional body volume 

of a tissue (t), erythrocyte (e), and plasma (p), E:P is the erythrocyte:plasma ratio. All parameters 

are defined and calculated as previously described.356 

The abundances of cytochrome P450 (CYP) enzymes in nursing mothers were based on reported 

in vivo adult data.358,359 CYP2B6 abundances for different infant age groups were based on data 

from human liver microsomal samples obtained from 102 infants previously reported by Croom 
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et al.307  A plot of CYP2B6 expression in individual tissue samples from birth to 1 year was 

digitised using Plot Digitizer to provide the raw input data. Samples with levels below the limit 

of detection (0.25 pmol/mg protein) were excluded.307 The mass of microsomal protein per gram 

of liver (MMPGL), intrinsic clearance (CLint), CYP2B6 induction (IndCYP2B6), total intrinsic clearance 

(TCLint), total apparent clearance (CLapp), systemic clearance (CL), and fraction escaping first-pass 

metabolism (Fh) were calculated using previously described equations 6.8 to 6.14.352  

MMPGL = 10(1.407+0.0158 x Age−0.00038 x Age2+ 0.0000024 x Age3)   (6.8) 

CLint =  (Ind x (rCLint/0.34) x AbCYP x AbCYP x MMPGL x 1000 x 60 x Wtliver))/

1000000          (6.9) 

IndCYP2B6 =  1 + (5.7 x [𝐸𝐹𝑉]𝑝𝑙𝑎𝑠𝑚𝑎)/(0.252 + [𝐸𝐹𝑉]𝑝𝑙𝑎𝑠𝑚𝑎)   (6.10) 

TCLint =  (CLint x AbCYP x Wtliver x MMPGL x 1000 x 60)/1000000  (6.11) 

CLapp = ∑ TCLint
n
n =1

         (6.12) 

CL =
Qhv x fu x CLapp

Qh+ CLapp x fu
          (6.13) 

Fh =  1 −  CL/Qhv         (6.14) 

6.2.3 Population Variability 

Variability in system and drug-specific parameters in both maternal model and the infant sub-

model was introduced mainly through anthropometric characteristics as previously described. 

Variability in infant age was introduced using the MATLAB® linspace function to generate equally 

spaced values within each group. Where available clinical data were used, MATLAB® rule 

expressions incorporating the mean, standard deviation, minimum and maximum parameter 

values, were used to introduce variability. Some of the parameters thus varied were absorption 

constants, microsomal protein per gram of liver, CYP enzyme abundance and intrinsic clearance.  
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6.2.4 Modeling Breastfeeding 

Breastfeeding was described by four hourly oral doses of maternal breast milk regulated by the 

milk production/infant suckling rate.360 The corresponding infant EFV dose per feeding session 

(EFV Dosemilk) was calculated from breast milk volume (Vmilk) and EFV concentration in breast 

milk ([EFV]milk) according to equations 6.15 and 6.16. 

EFV Dosemilk =  Vmilk x [EFV]milk       (6.15) 

[EFV]milk =  M/PAUC0−24
 x [EFV]plasma      (6.16) 

where [EFV]plasma is the simulated plasma EFV concentration and M/PAUC is the reported milk-to-

plasma AUC0-24 ratio (median: 1.13; range: 0.50-1.93).331 In addition, previously described log-

transformed phase distribution361 model for predicting the M/P ratio was evaluated for possible 

integration into the current model to make it more predictive, especially for drugs with no in 

vivo breast milk data. Infant suckling rate was assumed to be equal to milk production rate 

reported by Gentry et al. from birth to 6 months of age.360 Suckling rate at 6 months was retained 

for older infants up to 12 months of age to reflect reduced breast milk intake following the 

introduction of alternative foods when exclusive breastfeeding ends at 6 months.  

6.2.5 Model Simulation and Evaluation 

The model was built and simulated using the SimBiology® (version 5.1, MATLAB® 2014b, 

MathWorks Inc., Natick, MA, USA). Virtual populations of nursing mother-infant pairs (n = 100 

per infant age group: 10 days-1 month, 1-3 months, 3-6 months, and 6-12 months) were 

simulated. All model simulations were run using female anatomical and physiological 

parameters to simulate EFV pharmacokinetics during lactation and breastfed infants were 

simulated as females because of the expected similarities between males and females at this 

early age. Simulated mothers were on a daily dose of 600 mg EFV and infants were not taking 

any medication.  
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The validity of model estimations was confirmed by comparison with reference values from the 

literature, with 2-fold difference acceptance limit. For organ weights and blood flows, data from 

Coppoletta et al. and Pryce et al. were used.362,363 Pharmacokinetic parameters were evaluated 

at steady state and AUC0-24 was calculated using the trapezoidal rule. The most comprehensive 

published clinical data of EFV pharmacokinetics in human breast milk and exposure of breastfed 

infants (Chapter 4)331 were used to validate the estimates of pharmacokinetic parameters. 

 

6.3 RESULTS 

6.3.1 Breastfed Infant Sub-Model Validation 

The validation of the adult model has been previously described.352 Key anatomical and 

physiological parameters predicted with the breastfed infant sub-model, including body weight, 

organ weights, regional blood flow, and CYP enzyme expression, were within 50% difference of 

available data for all four age groups. For instance, predicted cardiac output calculated as a 

function of body weight was 44 and 91 L/h in 10 days-1 month and 6-12 month old infants, 

respectively, comparable to the reference values of 36 and 72 L/h in newborn and 12 month old 

infants.364 Predicted infant body weight, organ weights, and blood flows calculated as fractions 

of cardiac output are presented in Table 6.2.307,362,363 

6.3.2 Predicted Breast Milk Pharmacokinetics and Breastfed Infants’ 

Exposure 

The simulated concentration-time profiles of EFV in breast milk and plasma of nursing mothers 

(n = 400) are shown in Figure 6.2. The model adequately described EFV pharmacokinetics, with 

over 90% of all individual (n = 29) observed data points within the predictive interval (Figure 

6.2). Predicted versus observed breast milk AUC0-24, Cmax and Cmin were 69.4 (17.2-317.0) versus 

68.5 µg.hr/mL (26.3-257), 4.1 (1.2-15.4) versus 5.4 µg/mL (1.4-18.4),   
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Table 6.2 Key simulated anatomical and physiological parameters (mean, SD) for 

infant sub-model. 

 10 days-1 month 1-3 months 3-6 months 6-12 months 

Age (y) 0.06 (0.02) 0.18 (0.04) 0.38 (0.07) 0.80 (0.12) 

Weight (kg) 3.89 (0.58) 4.81 (0.65) 6.40 (0.80) 8.65 (1.04) 

Organ Weights (kg)    

Adipose 1.14 (0.57) 1.38 (0.56) 1.94 (0.61) 2.59 (0.75) 

Blood 0.40 (0.00) 0.40 (0.00) 0.43 (0.01) 0.50 (0.03) 

Bones 0.21 (0.04) 0.26 (0.06) 0.34 (0.07) 0.48 (0.11) 

Brain1 0.40 (0.03) 0.46 (0.04) 0.58 (0.04) 0.82 (0.07) 

Heart1 0.02 (0.00) 0.03 (0.01) 0.04 (0.01) 0.10 (0.03) 

Intestines 0.06 (0.05) 0.08 (0.04) 0.09 (0.05) 0.12 (0.05) 

Kidneys1 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.06 (0.00) 

Liver1 0.18 (0.03) 0.22 (0.03) 0.27 (0.03) 0.34 (0.04) 

Lungs1 0.06 (0.00) 0.07 (0.01) 0.08 (0.01) 0.10 (0.01) 

Muscle 0.75 (0.46) 0.47 (0.38) 1.42 (0.73) 3.14 (0.95) 

Pancreas1 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.02 (0.00) 

Remaining 0.28 (0.03) 0.32 (0.04) 0.39 (0.04) 0.51 (0.06) 

Skin 0.29 (0.06) 0.30 (0.05) 0.34 (0.06) 0.40 (0.05) 

Spleen1 0.01 (0.00) 0.01 (0.00) 0.02 (0.00) 0.02 (0.00) 

Stomach 0.10 (0.05) 0.10 (0.05) 0.11 (0.06) 0.11 (0.05) 

Thymus1 0.01 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 

Total weight 4.57 (0.10) 4.72 (0.12) 4.99 (0.14) 5.51 (0.18) 

Organ Blood Flows (L/h)    

Cardiac output 44.66 (5.88) 53.96 (6.47) 69.60 (7.80) 91.05 (9.70) 

Adipose 1.74 (0.23) 2.10 (0.25) 2.71 (0.30) 3.55 (0.38) 

Brain 14.11 (1.86) 17.05 (2.04) 21.99 (2.46) 28.77 (3.07) 

QCC 15.19 (1.08) 15.00 (1.01) 15.12 (0.77) 15.10 (0.97) 

Gonads 0.22 (0.03) 0.27 (0.03) 0.35 (0.04) 0.46 (0.05) 

Gut 3.89 (0.51) 4.69 (0.56) 6.06 (0.68) 7.92 (0.84) 

Qha 2.90 (0.38) 3.51 (0.42) 4.52 (0.51) 5.92 (0.63) 

Qhv 3.90 (0.38) 4.51 (0.42) 5.52 (0.51) 6.92 (0.63) 

Kidneys 4.11 (0.54) 4.96 (0.60) 6.40 (0.72) 8.38 (0.89) 

Lungs 0.54 (0.07) 0.65 (0.08) 0.84 (0.09) 1.09 (0.12) 

Muscle 1.74 (0.23) 2.10 (0.25) 2.71 (0.30) 3.55 (0.38) 

Pancreas 0.54 (0.07) 0.65 (0.08) 0.84 (0.09) 1.09 (0.12) 

Qpv 6.42 (0.58) 7.34 (0.64) 8.89 (0.77) 11.01 (0.96) 

Qre 2.23 (0.29) 2.70 (0.32) 3.48 (0.39) 4.55 (0.49) 

Skin 1.16 (0.15) 1.40 (0.17) 1.81 (0.20) 2.37 (0.25) 

Spleen 0.89 (0.12) 1.08 (0.13) 1.39 (0.16) 1.82 (0.19) 

Stomach 0.40 (0.05) 0.49 (0.06) 0.63 (0.07) 0.82 (0.09) 
1Reference values are available from Pryce et al. and/or Coppoletta et al.; with the 

exception of pancreas in the 10 days-1 month stratum, infant organ weights and blood 

flows were within 50% fold difference of reference values.362-364 
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Figure 6.2 Simulated versus observed breast milk pharmacokinetic parameters and infant 

exposure indices. All predictions were within 2-fold difference (dotted lines) of the observed 

values (solid line). 

 

and 2.02 (0.382-11.9) versus 1.68 µg/mL (0.316-9.57), respectively (Table 6.3). Compared with 

clinical data, all parameters were within 0.5-fold difference (Figure 6.3). No reasonable 

predictions of the M/P ratio were obtained by the log-transformed phase distribution model, 

considered to be the most reliable of those evaluated by Fleishaker et al.361 Therefore, only the 

clinically derived M/P ratios were used within the final model. 

Model predictions for parameters relating to breastfed infant exposure were also comparable 

to clinical data. Predicted versus observed average and maximum infant EFV dose from breast 

milk were 412 (82.3-2170) versus 428 µg/kg/day (164-1610), and 571 (131-2430) versus 809 

µg/kg/day (215-2760), respectively. The resulting simulated concentration-time profiles in 

infants of different age groups were relatively flat (Figure 6.4), with average infant plasma 

concentration highest in the 10 days-1 month old at 0.22 µg/mL (0.061-0.77), 0.19 µg/mL (0.037-

0.81) in 1-3 month old, 0.15 µg/mL (0.035-0.52) in 3-6 month old, and 0.12 µg/mL (0.03-0.60) in 
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Table 6.3 Predicted versus observed pharmacokinetic parameters of efavirenz in breast milk and plasma (median, range). 

Parameters Predicted (n = 400a) Observed (n = 29a)331 

Breast milk AUC(0-24) (µg.hr/mL) 78.2 (15.3-335) 68.5 (26.3-257) 

Breast milk Cmax (µg/mL) 4.65 (1.15-18.0) 5.39 (1.43-18.4) 

Breast milk Cmin (µg/mL) 2.19 (0.283-13.0) 1.68 (0.316-9.57) 

Plasma AUC(0-24) (µg.hr/mL) 70.7 (21.0-336) 60.7 (26.8-177) 

Plasma Cmax (µg/mL) 4.26 (1.71-17.5) 4.63 (2.05-9.76) 

Plasma Cmin (µg/mL) 1.97 (0.371-12.6) 2.03 (0.755-6.74) 

Average infant EFV dose from breast milk (µg/kg/day) 412 (82.3-2170) 428 (164-1610) 

Maximum infant EFV dose from breast milk (µg/kg/day) 571 (131-2430) 809 (215-2760) 

Infant plasma EFV conc., 10 days-1 month old (µg/mL)c 0.22 (0.061-0.77) 0.19 (0.071-0.705) 

Infant plasma EFV conc., 1-3 months old (µg/mL)c 0.19 (0.037-0.81) 0.18 (0.036-0.504) 

Infant plasma EFV conc., 3-6 months old (µg/mL)c 0.15 (0.035-0.52) 0.15 (0.052-0.33) 

Infant plasma EFV conc., 6-12 months old (µg/mL)c 0.12 (0.026-0.60) 0.12 (0.038-0.590) 

aA total of 400 mothers and 100 infants per group were simulated; bobserved maternal data were obtained from 29 

mothers and 96 infants (n = 10, 26, 29 and 29, respectively; infants < 10 days and > 12 months old were excluded); 
cpredicted infant plasma EFV concentrations did not change significantly during the dosing interval. Median of predicted 

values, averaged for each infant, are presented. 
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6-12 month old infants. This is similar to the observed decrease from 0.19 µg/mL (0.52–0.71) in 

9 days-3 month old, to 0.15 µg/mL (0.052–0.33) in > 3–6 month old, and 0.10 µg/mL (0.041–

0.59) in > 6 month old infants in our clinical cohort.331 

 

Figure 6.3 Observed plasma (A) and breast milk (B) efavirenz data (open circles) and simulated 

concentration-time profiles (solid lines, median; dotted lines, range). The model adequately 

described efavirenz pharmacokinetics, with over 90% of all individual (n = 29) observed data 

points within the predictive interval. 
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Figure 6.4 Infant plasma efavirenz concentration-time profiles. Simulated concentration-time 

profiles were relatively flat in infants, highest in the 10 days-1 month old and lowest in 6-12 

months old. 

 

6.4 DISCUSSION 

PBPK modelling was applied for the prediction of plasma and breast milk pharmacokinetics of 

the antiretroviral drug EFV in nursing mothers and the exposure of breastfed infants. To our 

knowledge this is the first time this approach has been utilised for prescription drugs. The model 

integrates a previously validated whole-body oral adult PBPK model352 with a whole-body 

breastfed infant PBPK sub-model. System and drug-specific parameters for the infant sub-model 

were either obtained from the literature or scaled from the adult model, and variability was 

introduced to reflect in vivo observations. Plasma and breast milk profiles of EFV were 

successfully simulated. Breastfeeding was described by repeated ingestion of a volume of breast 

milk controlled by infant suckling rate.365  
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PBPK models have been used to describe plasma and intracellular EFV pharmacokinetics 

following oral and intramuscular administration, respectively.352,366 In addition to accurately 

predicting plasma pharmacokinetics as in previous models, breast milk pharmacokinetics 

predicted by the current model are very similar to those observed from clinical data.331 Previous 

applications of PBPK models in human lactation studies have been limited to environmental risk 

assessments. Such models have been used in environmental risk assessments to quantitatively 

describe the transfer of inhaled contaminants during lactation347 for trichloroethylene and its 

metabolite,348 tetrachloroethylene and associated cancer risk for breastfed infants,349,350 

perchlorate and iodide including inhibition of iodide thyroidal uptake by perchlorate.351 An 

extensive review by Corley et al. describes the underlying assumptions, model structures, data 

and methods used in the development and validation of these previous PBPK models.367 Similar 

models have been described for polychlorinated biphenyls,368 co-exposure to polychlorinated 

biphenyls and methyl mercury,369 persistent organic pollutants (including an initial infant body 

burden to represent intrauterine exposure),370 manganese,365 and perfluoroalkyl carboxylates 

and sulfonates.371,372  

Replicating the ontogeny of drug metabolism enzymes is one of the major challenges in the 

development of paediatric PBPK models. Children often display developmentally unique 

differences in drug disposition compared to adults, making simple scaling using anthropometric 

characteristics unreliable. For instance, paediatric doses of EFV derived from adult dose using 

simple allometric scaling have been reported to result in subtherapeutic and higher variability 

in plasma concentrations compared to adults.373 Hepatic CYP2B6 accounts for over 90% of EFV 

metabolism and polymorphisms in the CYP2B6 gene are known to underpin significant inter-

individual variability in CYP2B6 enzyme expression and activity, resulting in variability in the 

metabolism of substrate drugs.  We used the paediatric CYP2B6 protein expression data 

available in the literature,307 and replicated in vivo variability using MATLAB rule expression that 

incorporated the mean, standard deviation, minimum and maximum values for each age 
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stratum. Further variability in the resulting CYP2B6 intrinsic clearance was introduced through 

simple linear interpolation of age which modulates its abundance through liver weight. In view 

of their minimal role in EFV metabolism, CYP2A6, CYP3A4, and CYP3A5 intrinsic clearances were 

scaled from adult values through infant age, and variability in each age stratum was introduced 

by linear interpolation.  

This approach adequately described infant plasma EFV concentrations resulting from 

breastfeeding in the presence of maternal EFV for the different age groups, demonstrating the 

robustness of age-related changes in model parameters as well as the associated scaling and 

variability. As with the clinical data, model predictions indicate that infants are exposed to 

maternal EFV from breast milk. The implications for possible development of drug resistance in 

infants who become infected underscore the need for further clinical investigation. The model 

can be used for other drug classes and in other therapeutic areas, provided the requisite drug-

specific parameters are available or predictable from other known parameters.  

A major limitation of the current model is the absence of a milk-to-plasma ratio prediction 

component. Although the log-transformed phase distribution model did not yield reasonable 

predictions for EFV, other approaches have been described, including an artificial neural 

network model.274 In addition, the model did not consider the potential role of drug transporters 

in breast milk excretion because EFV is not a known substrate of any transporter in humans.181,374 

However, this could be incorporated for drugs with known active transport mechanisms in 

mammary gland. This was successfully done for OATP1B1/1B3-mediated hepatic uptake of 

irbesartan.275 For instance, ABCG2 is known to be highly expressed in lactating human mammary 

gland,179 involved in the secretion of its substrates into breast milk,375,376 and can be affected by 

polymorphisms in the ABCG2 gene.377 Integrating such approaches with the current model have 

the potential to extend its application to drugs with no available breast milk data and may have 

application during the drug development process. 
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In conclusion, the breastfeeding PBPK model described here provides opportunities for 

expanding the understanding of infant exposure to maternal drugs through breast milk, 

including during the drug development process. Its application can help in bridging existing gaps 

and pave the way for evidence-based recommendations for drug use during lactation. 
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CHAPTER 7 

 

GENERAL DISCUSSION 
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An HIV infected woman can become pregnant at any stage of infection and a woman can 

become HIV infected at any stage of pregnancy or postpartum. Timely initiation of life-long 

or breastfeeding-limited antiretroviral therapy (ART) before or as early as possible during 

pregnancy can prevent mother-to-child transmission (MTCT) by reducing viral load in the 

blood, cervicovaginal fluid and breast milk (Figure 7.1).378,379 Achieving sustainable 

virological suppression requires optimal plasma concentrations of antiretroviral (ARV) 

drugs, a surrogate for target site concentrations. The data presented in chapters 2 and 3 of 

this thesis provide evidence of significant pregnancy-induced changes in the 

pharmacokinetics of efavirenz (EFV) and nevirapine (NVP), key components of currently  

 

Figure 7.1 Natural course of HIV infection without treatment and with ART (thick lines). A woman 

can become pregnant before primary infection or at any of the later stages. The acute phase 

after primary infection lasts for 6-12 weeks with flu-like symptoms, peak viral load and drop in 

CD4+ T cells. Chronic phase is asymptomatic and lasts 7-10 years; viral replication reaches a 

steady level known as the ‘set point’. AIDS onset is associated with further increase in viral 

replication and declining CD4+ cell counts to < 200/mm3. Time to AIDS onset varies between 

individuals from 2 years to more than 15 years after seroconversion. ART initiated before or 

during pregnancy reverses these trends and prevents MTCT. Adapted from An et al.380 
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recommended first-line regimens for pregnant women.13 The differential impact of pregnancy 

on pharmacokinetics in women stratified by polymorphisms in drug disposition genes was 

observed, indicating a potential role for pharmacogenetics in treatment optimisation strategies. 

Chapters 4 and 5 describe the intensive breast milk pharmacokinetics of EFV and NVP for the 

first time and detail different measures of breastfed infants’ exposure. The novel application of 

PBPK modeling to predict infant exposure to maternal drugs from breast milk presented in 

chapter 6 extends our ability to evaluate the safety of drug use during lactation in virtual 

populations of nursing mother-infant pairs, and may constitute an invaluable tool in the absence 

of clinical data.  

Subtherapeutic exposure to ARVs results in virological failure and this is well documented for 

plasma concentrations of EFV < 1000 ng/mL and NVP < 3400 ng/mL in non-pregnant adults.176,381 

Many components of the preferred first-line regimens have lower exposure during pregnancy 

compared with postpartum (see Sections 1.3.4 to 1.3.8). However, the limitations of currently 

recommended pharmacokinetic targets highlight the need for robust systems to evaluate their 

adequacy prior to their wide application. Though the lack of pharmacodynamic endpoints 

precludes any conclusions about the effects of observed reduced EFV and NVP exposures during 

pregnancy on MTCT risk in the studies reported here, it can be speculated that this may influence 

viral decay dynamics in patients genetically predisposed to plasma concentrations below the 

recommended targets. This may affect the probability of virological suppression at delivery and 

the risk of MTCT in those initiating therapy late in pregnancy at high baseline viral loads (Figure 

7.2).  

Suboptimal virological suppression in HIV positive pregnant women results in detectable viral 

load at delivery and increases the risk of MTCT. This has been reported in a number of studies.382-

385 For instance, viral load > 1000 copies/mL near delivery was associated with a 12-fold 

increased risk of MTCT in a European Collaborative Study.385 In a large multicentre US cohort  
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Figure 7.2 Contour plot from probit model predicting probabilities of virological suppression (VS) 

at delivery according to pre-ART viral load (log10 copies/mL) and gestation at ART initiation. Red 

indicates < 20% (highest risk of MTCT) and purple indicates > 90% (lowest risk of MTCT) 

probability of VS at delivery. Adapted from Meyer et al.286 

 

study, Katz et al. reported detectable viral load at delivery in 13% of women who initiated ART 

during pregnancy (n = 671), increasing to 23.9% when started at third trimester, and identified 

gestational age at ART initiation, poor medication adherence, and treatment interruptions as 

factors increasing risk.291 Among South African women who started ART before pregnancy (n = 

574), 13% reportedly had viral load > 1000 copies/mL.386 Although the use of ART has reduced 

MTCT to less than 5% from the baseline 25-40% without intervention, about 250 000 infants are 

still infected every year.7 Therefore, lack of virological suppression at delivery appears to be a 

major contributor to residual MTCT in the era of ART and the role of pregnancy-induced changes 

in pharmacokinetics warrants further investigation. Figure 7.3 presents hypothetical scenarios 

of what such investigation may reveal. 
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Figure 7.3 Hypothetical scenarios of pregnancy-induced changes in antiretroviral drug 

pharmacokinetics and potential consequences on viral decay dynamics and MTCT risk. The 

shaded region indicate the gestational period; red line, hypothetical threshold above which the 

risk of MTCT increases; blue line, hypothetical minimum effective concentration (MEC). 

Abbreviations: EM, extensive metaboliser; IM, intermediate metaboliser; SM, slow metaboliser; 

VL, viral load.  
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Additionally, lower exposure to EFV and NVP in pregnant women have some important policy 

implications. The ENCORE1 trial demonstrated the non-inferiority of 400 mg daily dose of EFV 

compared with the standard 600 mg dose when used in combination with emtricitabine and 

tenofovir in non-pregnant adults. The percentage of patients with viral load < 200 copies/mL at 

96 weeks was 90·0% (289/321) with EFV 400 mg versus 90·6% (280/309) with EFV 600 mg (P = 

0·72). In addition, incidence of EFV-related adverse events was significantly lower in the 400 mg 

group (38% versus 48%, P = 0·01).265,387 A follow up pharmacokinetic-pharmacodynamic analysis 

showed that virological suppression was comparable between the two groups despite 

significantly lower exposure in the 400 mg group, including in patients with plasma 

concentrations < 1000 ng/mL and when stratified according to genotypes.388 The authors argue 

that these findings challenge the currently recommended 1000 ng/mL threshold and 

recommend the 400 mg reduced dose. Despite the inadequacy of currently applied cut-off, our 

findings highlight the need for a cautious evaluation of this dose in pregnant women, with close 

monitoring of those with CYP2B6 extensive metaboliser genotype, before widespread 

implementation.240  

As discussed in Chapter 3, NVP is still a major component of first-line ART recommended as an 

alternative to EFV.13 Our findings raise questions about the appropriateness of current dosing 

recommendations for NVP (200 mg once daily for 14 days followed by 200 mg twice daily) in 

pregnant women with CYP2B6 extensive metaboliser genotype, especially when therapy is 

initiated late in pregnancy. In this regard, a number of lessons can be learned from studies that 

investigated NVP dose optimisation strategies to overcome reduced exposure when co-

administered with rifampicin. Ramachandran et al. reported successful restoration of 

therapeutic concentrations with 300 mg twice daily dose with no clinical or laboratory evidence 

of adverse events.389 However, the same strategy was associated with increased risk of NVP 

hypersensitivity reaction in another study.390 The two-week 200 mg daily dose escalation 

strategy was associated with minimum plasma concentration (Cmin) below target in 79% 
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compared with 19% at 200 mg twice daily at week 2 in the latter study. Additionally, Cmin was 

7300 ng/mL (range 5600-11002) at the time of hypersensitivity compared to 5900 ng/mL (5020–

7400) at week 4 in the 600 mg/day group.390 This is consistent with the slow metaboliser 

phenotype and suggests a genetic component to the observed hypersensitivity. Interestingly, 

the CYP2B6 516G>T and 983T>C SNPs have been associated with NVP hypersensitivity, with odds 

ratios of 2.52 (P = 0.0005) and 4.2 (P = 0.0047) reported for 983T>C in two separate studies.391,392 

Therefore, an increased dose of NVP in patients observed to be genetically predisposed to 

suboptimal exposure during pregnancy in the present study (composite CYP2B6 516GG and 

983TT genotypes) warrants further investigation. The study by Ciccacci et al. showed that this 

composite genotype conferred a protective effect against NVP hypersensitivity.392 

The uncertainties about the possible effect of pregnancy-induced pharmacokinetic changes on 

MTCT risks highlight the need to better characterise or re-characterise the minimum effective 

concentration (MEC) for certain ARVs. The theoretical effective concentration at which virus 

replication is inhibited by 50%, 90%, or 95% (IC50, IC90, or IC95 for biochemical or subcellular 

assays; EC50, EC90, or EC95 for cell-based assays) is determined for susceptible virus strains using 

quantitative assays.393 These are corrected for plasma protein binding and reduced susceptibility 

of certain virus strains to obtain a parameter which would theoretically correspond to in vivo 

MEC. In addition, the combination antiviral activity of new ARVs with those from other classes 

is evaluated for antagonistic, synergistic, or additive effects where future combination therapy 

is anticipated.393 The goal is to select doses for phase II trials that will provide exposures 

expected to exceed, by several-fold, the protein binding-adjusted in vitro EC50 value of the drug 

for the relevant virus strain and subtype.393 A number of authors have highlighted the usefulness 

of the inhibitory quotient (IQ) in evaluating efficacy.394-397 The IQ relates in vivo drug exposure 

to viral susceptibility, usually Cmin divided by IC95, indicating the number of times the Cmin is 

greater than the IC95. Interestingly, Acosta et al previously reported protein-corrected IC95 of 126 

and 366 ng/mL for efavirenz and nevirapine, corresponding to IQ95 of 14 and 12, respectively.306 
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However, these values are for individual drugs and do not account for the influence of partner 

drugs in combination therapy or virus strains with reduced susceptibility. The inclusion of target 

IQs in regulatory guidance for ARV development will be more useful than the current non-

specific recommendations. 

Therefore, it can be argued that the MEC should be re-evaluated for new drug combinations. 

For instance, efavirenz is now used in combination with NRTIs that are more efficacious than 

those used when the current dose of 600 mg and the 1000 ng/mL Cmin target were established. 

Though lessons can be learned from preclinical and clinical oncology research about the design 

and analysis of combination therapy studies,398-400 the field is still developing and controversies 

persist.401,402 Additionally, limitations on study designs are imposed by the potential for 

resistance development if HIV infected patients are exposed to subtherapeutic drug 

concentrations.393 The FDA recommend the inclusion of wide enough range of doses in phase II 

dose ranging studies to adequately populate exposure- or dose-response curves and facilitate a 

reliable estimate of optimal drug exposure targets.393,403 The use of mechanistic modeling is 

recommended as the most appropriate approach to characterise the relationship between drug 

exposure and viral kinetics.393 However, the simplified approach of relating the proportion of 

virologically suppressed patients with an appropriate exposure variable is often used to justify 

dose selection in most dose ranging or dose comparison trials. Additionally, this is often done in 

phase III trials where all participants receive the same dose or assigned to a few doses within a 

narrow range. This limits opportunities for identifying the minimum optimal pharmacokinetic 

targets and potential savings in cost. This is likely to become more important as we transition to 

universal ART for HIV infected patients from 2016.404 Therefore, studies aimed at developing 

better in vitro assays for evaluating the antiviral activity of combination therapy, and robust 

statistical methods for designing and analysing dose finding phase II trials for combination 

therapy are warranted. 
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A novel approach incorporating genetically-defined maternal and infant metabolic capacity was 

used to evaluate the exposure of breastfed infants to maternal EFV and NVP from breast milk. 

The data presented in chapters 4 and 5 indicate that the levels of exposure observed are mostly 

within the acceptable limit of 10% of therapeutic dose. The relatively high plasma 

concentrations EFV and NVP observed during the neonatal period support the recommendation 

of a population-tailored approach to paediatric ADR assessment.405,406 However, assessment of 

ADR (especially CNS) in paediatric populations as a result of breast milk drug intake is difficult 

for drugs not used in particular age groups. For instance, EFV is not recommended for use in 

infants < 3 months old and weighing < 3.5 kg. Therefore, using the adult-derived 1000-4000 

ng/mL as the effective-toxic plasma concentration range is an oversimplification as the toxicity 

threshold could be lower in neonates. 

Reports about the emergence of resistant HIV strains in breast milk in parallel with the clearance 

of intrapartum single dose NVP highlight another clinical importance of the presence of ARVs in 

human breast milk. Aizire et al. reported a reversal of the virological suppression observed after 

single dose NVP following its clearance from plasma and breast milk.407 The presence of NVP at 

subtherapeutic concentrations creates a selective pressure that gives rise to the emergence of 

persistent NVP-resistant HIV detected in up to 65% of breast milk samples.408-410 The divergent 

resistance mutation patterns observed in plasma versus breast milk in many of these studies is 

indicative of possible compartmentalisation of HIV variants within the mammary gland.312,409-412 

Up to 87% of infants who became infected when single dose NVP failed to prevent MTCT have 

been shown to have resistant HIV strains that often differed from those in maternal 

plasma.411,413-415 All infants in both EFV and NVP cohorts used six-week extended NVP 

prophylaxis; similar findings have been reported when it is used without maternal ART.411 

Unlike single dose NVP prophylaxis for PMTCT, long-term ART under Option B or B+ ensures 

persistently high ARV concentrations in breast milk throughout the breastfeeding period. The 
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importance of this in prevention of resistance emergence and transmission is unclear. The 

plasma concentrations of EFV and NVP observed in studies reported here are well above the IC50 

for wild-type HIV and, combined with co-administered ARVs that are also excreted into breast 

milk,89 may play a role in PMTCT. However, the concentrations are mostly subtherapeutic after 

the first week of life and this raises concerns about the potential for the emergence of resistance 

in infants who may become infected. This further highlights the importance of early infant 

diagnosis and treatment. In the Kisumu Breastfeeding Study, HIV-infected pregnant women took 

zidovudine, lamivudine, and either NVP or nelfinavir from gestation week 34-36 until 6 months 

postpartum while the infants received single-dose NVP at birth.310 The cumulative MTCT or 

death rate was 15.7% at 24 months and genotypic resistance mutations were detected in most 

infected infants between 2 weeks and 6 months postpartum.310,416 However, the Mitra plus 

Study recently reported increasing postpartum virological failure and drug resistance in parallel 

with declining adherence,417 indicating a possible role for suboptimal adherence in postpartum 

emergence of resistant HIV in the presence of ART. Interestingly, Palombi et al. did not observe 

resistant HIV strains in breast milk and plasma of mothers who initiated ART during pregnancy.309 

Pregnant women and nursing mothers have historically been excluded from drug development 

studies as a result of the practical and ethical challenges involved in conducting research in these 

populations. This has often led to the adoption of adult dosing recommendations in pregnant 

women and lack of practical recommendations on drug use during lactation.248 Conducting the 

clinical studies described in this thesis necessitated the adoption of novel strategies to 

circumvent the challenges presented by traditional pharmacokinetic sampling techniques.242,243 

The breastfeeding PBPK model described in chapter 6 further highlights how novel approaches 

may have utility to generate data to inform clinical decisions in real life situations. Only two 

other groups have used a population pharmacokinetic modeling approach to describe drug 

excretion into breast milk and/or transfer to breastfed infants and further development in this 

area is required.418,419 Recent advances in PBPK modeling now allow for incorporation of the 
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complex changes that happen during pregnancy for accurate prediction of pharmacokinetics. As 

with the breastfeeding model, a pregnancy PBPK model is first validated in non-pregnant adults 

and then extended to pregnant populations by inclusion of certain physiological and anatomical 

parameters changes associated with pregnancy and extra compartments to represent the 

fetoplacental unit, uterus and mammary glands.420  

In most cases, the prerequisite drug and system data for parameterising such models already 

exist in the literature. Abdujalil et al. recently used a meta-analysis of published data to generate 

a comprehensive list of equations describing these changes.421 These equations were included 

in a pregnancy PBPK model to predict changes to the pharmacokinetics of substrates for CYP1A2, 

CYP2D6 and CYP3A4 during pregnancy using caffeine, metoprolol and midazolam as model 

drugs.422 Prior to this, a PBPK model to predict the pharmacokinetics and enzyme induction sites 

of CYP3A-metabolised drugs midazolam, nifedipine and the ARV indinavir during the third 

trimester were described.423 Interestingly, the pregnancy-induced changes in AUC, Cmax and Cmin 

of indinavir predicted by the PBPK model were similar to clinically observed changes.424 

Incorporation of pregnancy-induced CYP1A2 suppression and CYP2D6 induction into the same 

model allowed for accurate prediction of the disposition of theophylline (CYP1A2 substrate), 

paroxetine, dextromethorphan and clonidine (CYP2D6 substrates) during pregnancy.425 Such 

models can be validated with available clinical data and then used to simulate dose optimisation 

strategies for drugs with clinically significant pharmacokinetic alterations during pregnancy. 

Additionally, a PBPK model can be coupled with a pharmacodynamic model to predict the effects 

of pharmacokinetic changes on treatment outcomes.426 However, caution needs to be applied 

when using modeled data for clinical decisions because a mathematical model is only as good 

as the input data and significant but unknown variables are usually unaccounted for. 

In conclusion, for drugs with significant relative genetic contribution to pharmacokinetic 

variability, an enrichment design in which patients are stratified based on their genotypes is 
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recommended to unravel important pharmacokinetic changes during pregnancy. The novel data 

presented in this thesis highlight how this approach reveal the effects of host genetics on the 

magnitude of pregnancy-induced changes in EFV and NVP pharmacokinetics. Early diagnosis and 

treatment in infants who become infected with HIV in utero, during labour/delivery, or during 

the breastfeeding period will reduce the likelihood of resistance development as a result of 

exposure to subtherapeutic concentrations of ARVs in breast milk. Where clinical research in 

pregnant women and nursing mothers is impractical or precluded, novel applications of 

pharmacokinetic modeling strategies may help generate surrogate data. 
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