Uncertainty quantification of squeal instability via surrogate modelling
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Abstract
One of the major issues that car manufacturers are facing is the noise and vibration of brake systems. Of the different sorts of noise and vibration, which a brake system may generate, squeal as an irritating high-frequency noise costs the manufacturers significantly. Despite considerable research that has been conducted on brake squeal, the root cause of squeal is still not fully understood. The most common assumption, however, is mode-coupling.
Complex eigenvalue analysis is the most widely used approach to the analysis of brake squeal problems. One of the major drawbacks of this technique, nevertheless, is that the effects of variability and uncertainty are not included in the results. Apparently, uncertainty and variability are two inseparable parts of any brake system. Uncertainty is mainly caused by friction, contact, wear and thermal effects while variability mostly stems from the manufacturing process, material properties and component geometries. Evaluating the effects of uncertainty and variability in the complex eigenvalue analysis improves the predictability of noise propensity and helps produce a more robust design. 
The biggest hurdle in the uncertainty analysis of brake systems is the computational cost and time. Most uncertainty analysis techniques rely on the results of many deterministic analyses. A full finite element model of a brake system typically consists of millions of degrees-of-freedom and many load cases. Running time of such models is so long that automotive industry is reluctant to do many deterministic analyses. This paper, instead, proposes an efficient method of uncertainty propagation via surrogate modelling. A surrogate model of a brake system is constructed in order to reproduce the outputs of the large-scale finite element model and overcome the issue of computational workloads. The probability distribution of the real part of an unstable mode can then be obtained by using the surrogate model with a massive saving of computational time and cost. The established model can be used subsequently for design, reliability analysis and optimisation. 
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1. Introduction
Noise, vibration and harshness (NVH) of frictional brake systems have been an active research topic for many years. Car manufacturers are leading the investigations in order to deliver their customers’ quality expectations and meet their commitments to environmental issues. Customer satisfaction surveys reveal that a significant number of warranty claims concerning brake systems are related to friction noise. Therefore, any improvement in predicting noise propensity during the design stage will improve the manufacturer’s quality and profitability.
Frictional brake systems can generate different types of noise and vibration. According to the noise and vibration characteristics, they can be categorized as groan, judder, squeal, wire brush, etc. The one which is the main concern of this study is brake squeal. In terms of vibration characteristics, brake squeal usually ranges from 1 to 20 kHz, and its frequency is fairly independent of the rotor speed and it occurs when the stick-slip motion is largely absent. While out-of-plane modes of the disc are usually responsible for generating squeal, in-plane modes are often involved. If such single tone noise is measured one meter away from the brake and its sound pressure level equals or is greater than 78 dB, it is called squeal and can be heard in a vehicle [1].
 Early research on brake squeal was mostly dedicated to the source of squeal while the remainder was on its effects. The fugitive nature of brake squeal often obscures its root cause, so there is not a single mathematical model or expression which is capable of giving an absolute explanation for squeal. Therefore, several squeal mechanisms such as stick-slip [2], sprag-slip [3], hammering [4] and mode-coupling, are attributed to squeal instability. Kinkaid et al. [5] discussed these frictional mechanisms in a comprehensive review paper. More recently, moving loads [6] were suggested as a squeal mechanism for disc brakes. Friction force in both circumferential and radial directions and its moving-load nature were considered in [7]. Time delay was also suggested as responsible for squeal in reciprocating sliding friction [8].
Of these mechanisms, mode-coupling which is also called binary flutter has attracted the most attention in the literature. By means of a minimal model, Hoffmann et al. [9] demonstrated that friction can disturb the symmetry of the stiffness matrix and cause instability at certain values of the friction coefficient. Through increasing the friction coefficient, the imaginary parts of the system eigenvalues merge and simultaneously the real parts of the eigenvalues bifurcate. At the bifurcation point, the system eigenvalues are purely imaginary, but further increase of the friction coefficient causes one of the real parts of the eigenvalues to become positive. This is thought to generate noise since the amplitude of vibration in the linearised system will grow boundlessly due to this term. Kang et al. [10] studied the mode-coupling instability for a reduced-order analytical model consisting of the disc and pad. 
Mode coupling instability has been studied in different friction-induced problems. The sign of the real parts of the eigenvalues in the linearised system can determine whether its steady-state solution is stable or not [11, 12]. The linearised stability analysis is performed around an equilibrium point determined from a nonlinear static contact analysis. However, nonlinear dynamic contact and nonstationary behaviour cannot be investigated by CEA. Massi et al. [13] emphasized the significance of the stability analysis in predicting the onset of squeal and also stated that the nonlinear time solution was an essential part in attaining squeal limit cycles. D’Souza and Dweib [14] determined the limit cycle of a nonlinear pin-on-disc system and Coudeyras et al. [15] studied limit cycles of unstable vibration of a pad-disc brake model. Von Wagner and Schlagner [16] investigated excitation mechanism of brake squeal and more importantly explored its active suppression by means of pads with integrated piezoceramic actuators.  Ouyang et al. [17] discussed the pros and cons of analysing brake squeal via numerical methods: complex eigenvalue analysis (CEA) and transient analysis. In brief, the computational efficiency of the former approach is appreciated although more realistic results can be achieved via the latter one if the system model is sufficient. Sinou et al. [18, 19] pointed out that CEA may lead to under- or over-estimation of unstable modes. In [18], it was shown that additional unstable modes appeared during transient and steady-state oscillations, which were not predicted by CEA, because CEA excludes dynamic contact that a dynamic transient analysis includes. It is expected that more realistic models of brakes will be analysed by dynamic transient analyses. In this paper, complex eigenvalue analysis (CEA) is used.
Uncertainties in structures are typically classified into two categories: variability and uncertainty. In the literature, variability is referred to those sorts of uncertainties which are caused by the deviation of material properties from the nominal values, the imperfection of component geometries and the variation in manufacturing process. The second category is mostly due to the lack of knowledge. In the case of brake systems, friction and contact are the major sources of uncertainty. Several experimental and numerical investigations have been carried out for studying the pressure distribution at disc-pad contact interface [20], thermal effects [21, 22], wear and roughness [23, 24] and the friction coefficient [20, 25]. These studies deepen understanding of friction-induced vibration of brakes.
Statistical approaches to the brake squeal problem have received the attention of car manufacturers recently. Statistical interpretations of experimental data [26] and stochastic simulations of brake models can provide more reliable predictions of squeal. In order to conduct an uncertainty analysis, probabilistic, non-probabilistic or mixed uncertainty methods can be used [27]. Of the probabilistic methods, Monte Carlo simulation is known as the most reliable technique, in particular for highly nonlinear problems. Culla and Massi [28] implemented Monte Carlo simulation to propagate the uncertainty of contact instability. The computational inefficiency of Monte Carlo simulation has encouraged researchers to use some smarter probabilistic methods such as the perturbation methods and polynomial chaos expansions. Butlin and Woodhouse [29] applied the 1st-order perturbation method to study the uncertainty of a friction-induced problem. Sarrouy et al. [30] improved the efficiency and accuracy of stochastic simulations of brake squeal by using polynomial chaos expansions. Interestingly, Grange et al. [31] used a stochastic approach to establish a linearised model of a brake with unilateral contact between brake disc and pads.
This paper aims to implement a statistical method for uncertainty analysis of brake squeal with a significant saving of computational workloads. Industrial brake models are typically composed of different components, whose degrees of freedom are in the order of millions. Their computational time can range from 12 to 36 hours depending on the computational facilities. Obviously, implementing the uncertainty analysis via those techniques which demand thousands of analyses of deterministic models is not feasible in this case. This study investigates the efficacy of surrogate (or meta) modelling in the squeal propensity prediction. 
Design and analysis of computer experiments (DACE) is a type of study replacing expensive numerical models with cheap-to-evaluate surrogate predictors [32]. The idea behind surrogate modelling is comprehensively explained in [32, 33]. In brief, a surrogate model is able to approximate the outputs of a large-scale numerical model for any desirable inputs through realisation of a regression model and a random process. The parameters which are included in the regression model and random process are estimated with a set of samples spread over the design space. In an iterative process, the number of samples is increased until the surrogate model meets the desired accuracy. Thereafter, a computer experiment can be designed by means of the surrogate predictor. In the case of brake squeal, a surrogate model is constructed for two objectives. In the first place, analysts can come up with some design recommendations by exploring the meta model with respect to different inputs. A slight change in the value of input variables may result in a quieter design which can practically be achieved via surrogate modelling.  Secondly, the reliability of a brake design in terms of squeal noise is quantified in this way. The second objective is the motivation behind the current study. 
Surrogate modelling with different predictors such as the response surface method (RMS) [34], neural networks [35] and Kriging [32, 33, 36, 37] have been studied in several applications of structural dynamics [38, 39]. Since Kriging uses a correlation model that is totally dependent on the absolute distances between the points in the design domain, it suits numerical models whose outputs are smooth. The results of this study show that squeal instability can be estimated by a smooth function of parameters included in the model. Moreover, the efficacy of Kriging in multi-variable cases is well known [33]. Thus, the Kriging predictor is used for approximating the outputs of a large-scale brake model.  As this study aims to generalise this approach for various sources of uncertainties in brake systems, the Kriging predictor is chosen to quantify the uncertainties of input variables. It is worth noting that the mathematical details of surrogate modelling are out of the scope of this study; however, its implementation procedure is fully explained.
In order to meet the final objective of this paper, i.e. the uncertainty analysis of squeal instability, several steps are required. These steps are briefly listed here to provide an overview of the whole procedure. These steps can be classified into two groups: complex eigenvalue analysis (deterministic approach) and the uncertainty analysis (statistical approach).
The deterministic approach includes:
· Normal mode analysis of the individual components and the full brake system
· Complex eigenvalue analysis (CEA)
· The dynamometer (Dyno) test for identifying squeals and correlation of modes
· Design sensitivity analysis (DSA).
The statistical approach includes:
· Making an optimum sampling plan
· Training the Kriging predictor with well-correlated results of the sampling plan
· Validating the surrogate predictor 
· Propagating the uncertainty of input parameters over the output space
· Reliability analysis of the results: Quantifying the probability of ‘failure’ in terms of the likelihood of unstable vibration.
Apart from some intermediate sections, the contents will be presented in the mentioned order.  

2. Finite element model of the brake system under study
The brake system under this study is shown in figure 1. It is composed of the disc, calliper, pads, knuckle, hub, upper control arm, tension link, lateral link and other suspension components. The first step for investigating squeal instability is the finite element (FE) modelling of the brake system.
[image: ]
Figure 1. The brake system under study
In the FE model of the brake, it is not necessary to include all lateral and suspension links although they are present in the dynamometer tests. Including these components increases the job running time significantly but they are believed to play a minor role in squeal generation. A sensitivity analysis is typically done to find out what components have major impacts on a particular squeal mode, which leads to the FE model shown in figure 2. The remainder is then excluded in the FE model. The suspension links mostly affect low frequency noises. As the dominant squeal mode of this brake is at about 2.5 kHz, the links are discarded form the FE model.
[image: ]
Figure 2. The finite element model of the brake
The validation of the FE model is not the main concern of this study. However, as the manufacturing variability of the disc and pads is discussed in the following sections, the results of the normal mode analyses are presented here. These results help determine the range in which the input variables should vary.
Normal mode analysis is executed to extract the natural frequencies and mode shapes of the individual components. Since there is no damping in the FE model of the components, the eigenvalue problem is expressed as
	
	(1)


where M and K are the mass and stiffness matrices,  represents the natural frequency and  indicates the eigenvector of the system. The results of the normal mode analysis are used for model updating of individual components. For individual components, the material properties such as Young’s modulus and density will typically be obtained through model updating. For the assembly structure, on the other hand, the properties of the interactions such as bolted joints, welds and bushes are identified.
Therefore, model validation is firstly done by extracting the natural frequencies and mode shapes of each component numerically. In parallel with these numerical simulations, modal testing is conducted on the actual components. An optimization tool is employed to achieve a high correlation between the measured and simulated results. Finally, the components are assembled and only the properties of interactions are identified during an updating process.

2.1. Normal mode analysis of the disc
A modal test is done to capture the frequencies and mode shapes of the disc via the roving hammer technique. The normal mode analysis is also carried out in Abaqus. The material properties of the disc are then updated so that a strong correlation between the measured and simulated modes is achieved. The results corresponding to the out-of-plane modes are listed in table 1. In order to avoid confusion, the out-of-plane mode shapes are named based on the number of nodal diameters. As seen in table 1, there is a good match between the simulated and measured natural frequencies and mode shapes of the first five out-of-plane modes. The updated value of the disc’s Young’s modulus is then determined.
Table 1. Simulated and measured out-of-plane mode shapes of the disc.
	No. of nodal diameters
	Simulated Freq. (Hz)
	Out-of-plane Mode shapes
	Measured Freq. (Hz)
	Out-of-plane Mode shapes
	Error 
(%)

	
2
	
675.48
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676.10
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0.1

	
3
	
1591.8
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1583.8
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0.5


	
4
	
2673.3
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2634.8
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1.5

	
5
	
3825.2
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3757.5
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1.8

	
6
	
5005.3
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4900.6
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2.1


The brake system under study (see figure 1) is a car’s left front corner. The front discs are usually made of high-carbon cast iron since it is more resistive to cracking, distortion, etc. As a part of the quality control process, disc manufacturers typically measure the resonant frequency of the first out-of-plane mode at the end of the production. The histogram of the measured frequencies is obtained from thousands of manufactured discs. This distribution can then provide the mean value and the standard deviation. In fact, the inputs of the uncertainty analysis must be collected in such a way. 


The frequency scatter of the disc is mainly affected by the carbon content. Some reliable experimental data reveal that the frequency variation of low-carbon discs is within percent from the mean value, while in the case of high-carbon discs, the variation is within percent. These variations are normally distributed about the mean values. Moreover, these data illustrate that Young’s modulus of low-carbon discs are slightly larger than high carbon discs. 
Accordingly, two Gaussian distribution are considered for the low and high carbon discs in this study. The mean values and standard deviations of these distributions are listed in table 2.
Table 2. Disc variability
	Disc’s elastic Modulus
	Mean value (GPa)
	Standard deviation (%)
	Min. (GPa)
	Max. (GPa)

	Low-carbon cast iron
	111.7
	1.0
	108.35
	115.05

	High-carbon cast iron
	109.5
	3.0
	99.645
	119.35


Note that the reported ranges of variations correspond to the resonant frequency of the first out-of-plane mode. The variations of Young’s modulus have been calculated based on these values.  

2.2. Normal mode analysis of the pad
There are many challenges associated with measuring friction material properties. A large number of investigations have been conducted on the measurement of these properties, yet there is a great deal of uncertainty about the results. The measurement of these properties is out of the scope of the current work. What is important here is how to include the friction material uncertainties in the results. For this purpose, it is worth to review the stress-strain law of friction material. Several experimental studies have confirmed that friction material is transversely (or planar) isotropic. In such materials, there are five independent parameters and  where  and  represent “in-plane” and “transverse”, respectively.  represents Young’s modulus,  indicates the shear modulus and   denotes Poisson’s ratio. The stress-strain law of friction material:
	
	
(2)


where  and . To get an idea of how the variability of the friction material should be randomized, a few modal tests are done on two pads. The updated elastic and shear moduli which bring about a close correlation between the measured and simulated data are shown in table 3. For randomizing the friction material properties, according to the results,  is independently randomized first. Then, in order to avoid getting odd mode shapes,  and  are linked with the randomized value of  in the way that the ratios between these modulus remain unchanged. Indeed, this is the assumption which is made in this study. Further experimental studies on friction material properties can improve this assumption in the future.
Table 3. The measure frequencies of the pads and the updated Young’s and shear modulus in the FE model
	
	1st Bending Freq.(Hz)
	
	1st Torsion Freq. (Hz)
	
	 (MPa)
	  (MPa)
	 (MPa)

	
	Test
	FE
	
	Test
	FE
	
	
	
	

	1
	1846
	1853
	
	2082
	2031
	
	552
	3170
	727

	2
	1912
	1914
	
	2120
	2088
	
	662
	3802
	872



Since squeal instability will be evaluated at a constant pressure, the variations due to the nonlinear behaviour of friction material are not considered here. Therefore, to construct the brake surrogate model, is randomized from 552 to 662 MPa. If the distribution allocated to the friction material is assumed to be Gaussian, its mean value will equal 607 MPa and the standard deviation will be three percent of the mean values.

3. Complex eigenvalue analysis (CEA) 
Early research on brake squeal was mostly dedicated to the root cause of this phenomenon. Several frictional mechanisms have been proposed for the source of squeal, yet there is no mathematical model covering all aspects of squeal. Of these mechanisms, mode-coupling has attracted most attention recently. The onset of squeal is considered to be due to the coupling of two or more modes of the system whose frequencies, or imaginary parts of the eigenvalues, coalesce. As certain parameters in the system such as the friction coefficient change, these imaginary parts of the eigenvalues can merge and simultaneously one or more real parts of them may become positive. In the linearised system, depending on the sign of the real part of the eigenvalues, the amplitude of vibration can decay or grow. A positive real part causes the amplitude of vibration to grow without bound. This theoretical instability is thought to indicate propensity of squeal in reality.   
Complex eigenvalue analysis (CEA) is the most popular deterministic approach to squeal instability, especially in car industry. CEA extracts the real and imaginary parts of the eigenvalues of a brake system. The system stability is then determined by the sign of the real parts. In other words, a negative real part shows that the equilibrium point remains stable, while a positive real part indicates instability of the equilibrium point. In the stability analysis, i.e. CEA, the nonlinear system is linearised about this static equilibrium point [18]. One of the main factors playing a significant role in determining this equilibrium point is the brake pressure which is applied through the fluid elements in this study. 
However, it is worth mentioning that the dynamic contact at the contact interfaces is not considered here. In fact, one of the major drawbacks of CEA is that it cannot deal with a time-varying system (for example, when the contact area changes with time during vibration). In the linearised system, the equation of motion can be written as:
	
	(3)


where M, C and K are mass, damping and stiffness matrices, respectively. The stiffness matrix K contains contributions from the frictional forces at the contact interfaces. Due to the fact that there is no external force in this self-excited vibration problem,  is equal to zero. Moreover, in a brake system, the friction material has the most contribution to the damping matrix . As there has not been an extensive study of the damping model for friction materials and there is not reliable information on damping of the pads of the brake under this study, damping is not included in the FE model. Since damping can stabilise some unstable modes (“lowering effect”), excluding it provides analysts with more potentially unstable modes. Therefore, CEA conducted by industrial researchers tends to exclude damping for this reason. However, it is worthwhile to clarify that damping can present the so-called “destabilisation paradox” in brake systems. Although the general function of damping is to make a system more stable, it has been found in theoretical research that disproportional damping can lead to “smoothing effect” and cause instability. The effect of damping on mode-coupling instability has been extensively discussed in [12, 40] for low-order models. Fritz et al. [41] investigated the destabilisation paradox in a finite element brake model.
Running CEA produces complex eigenvalues, i.e. , and complex mode shapes.  and  represent the real and imaginary parts of the -th mode. As long as all real parts of the system are negative or zero, the steady-state solution is stable. However, a positive real causes instability and may result in squeal. Many studies in the brake squeal research community take the damping ratio  as an index to evaluate the quality of a brake in terms of noise. Each car manufacturer accordingly sets a target value for the ‘squeal index’.  If the absolute values of this index remain smaller than the target level from different CEA runs, this brake design will be considered acceptable. Otherwise, some structural modifications must be made to avoid squeal. Although it is not guaranteed that smaller real parts lead to a quieter brake and larger ones causes squeal, this index is taken as a criterion to evaluate squeal propensity for the brake system under this study.
The finite element model of the brake consists of the disc, pads, calliper, hub and knuckle. In contrast with the most previously studied brake models, a full industrial model is studied here. The FE model of the brake is shown in figure 2. Apart from the major components, some connectors such as bushes, joints and guide-pins are also included in the model. Four bushes are embedded in the knuckle holes, which are used to apply the right boundary condition. The small conical shape on the top of the knuckle is one of these bushes. The points of the bushes along with the disc holes are clamped. If the other components (see figure 1) are needed to be modelled, these bushes can be used to attach the knuckle to the lateral links. As the dominant squeal frequency of this brake is not sensitive to the modal properties of the upper control arm and the other suspension links, it seems reasonable to exclude them from the FE model and decrease the job running time. The total number of degrees-of freedom is over 2.3 million.
In Abaqus, there are several contact formulations depending on the surface roles, contact discretisations and tracking approaches. A surface role can be a choice of “master” or “slave”. The main constraint regarding the surface role is that a slave node should not penetrate into the master surface during the analysis. The contact discretisation can be either “node-to-surface” or “surface-to-surface”. In the first approach, a slave node interacts with a group of nodes on the master surface, which are located close to the slave node. A slave node never penetrates into the master surface in this way. However, in the surface-to-surface contact discretisation, the interaction occurs over some regions which are determined by averaging the positions of salve nodes. As a result, a small number of the master nodes may penetrate into the slave surface. Since in a surface-to-surface contact, the interactions occur in an average sense, it brings about more accurate stresses (smoother stress contours) in comparison with a node-to-surface contact [42]. 
There are two options for the tracking approach in Abaqus/Standard: small-sliding and finite-sliding. The major difference is that two bodies in contact may largely be deformed in the small-sliding approach while the relative sliding motion is small. Therefore, this approach can deal with many geometrically nonlinear problems. However, a relatively large sliding motion and even separation may occur in the finite-sliding tracking approach. In the brake model under study, there are several contact interfaces such as pads-to-disc, pads-to-pistons and pads-to-calliper (abutment) interfaces. These contacts are modelled as being in surface-to-surface, small-sliding with friction.
The friction at the contact interfaces follows the principle of the Coulomb friction. It is worth mentioning that in the basic Coulomb model, the friction coefficient is considered the same for all directions. However, an extended version of this model is also available in Abaqus for contact analyses [42]. This version allows the friction coefficient to be different in various directions. Moreover, depending on the friction coefficient and contact pressure, a sticking phase may also exist during an analysis. However, no sticking phase is investigated in the current study.
The contact pressure is defined in Abaqus based on a choice of hard or softened contact. In the first option, the contact pressure and the overclosure of the surfaces are monitored in order to find out whether the contact is open or closed. When the contact pressure is zero and the overclosure of the surfaces is smaller than zero, the contact is open. On the other hand, the contact is closed when the pressure is greater than zero and the overclosure of the surfaces is zero. This constraint applies with a Lagrange multiplier during an analysis. In the case of the softened contacts, a user-defined relationship between the contact pressure and overclosure of the surfaces is required in the analysis [42]. The contacts of the brake model follow the principle of the hard contacts.
In the literature, it is very common to pressurize the pistons with uniform loads in a brake model. However, three-dimensional, 3-node hydrostatic fluid elements are employed here to model the brake fluid. It is believed that the pressure at the piston-pad interfaces generated by brake pressure is better represented in this way. As mentioned earlier, the brake pressure has a significant influence on the static equilibrium point, which consequently affects the squeal propensity. Therefore, modelling in a more realistic way brings about more reliable results. 
The fluid elements are provided in Abaqus for defining a fluid cavity. In order to use these elements, the pressure and temperature of the fluid must be uniform at any point in time although the pressure and temperature can vary during the analysis [42]. In the finite element model of the brake, these elements fill the gaps between the calliper and pistons. Figure 3 displays a cross-section of the calliper in which the red elements show a part of the fluid elements and the blue elements represent one of the pistons. For the fluid elements, a reference node with a single degree-of-freedom must also be defined. This node is associated with the fluid pressure, whose location is specified by the geometry of the fluid cavity. Moreover, in order to define the fluid properties, there is an option in Abaqus specifying the “TYPE” of the fluid.  For the brake fluid, the type is set to “HYDRAULIC”, which means that the fluid is incompressible or approximately incompressible [42].
[image: ]
Figure 3. The fluid elements representing the brake fluid
The typical deterministic approach is to run CEA in order to extract the complex eigenvalues of the model. For this purpose, Abaqus is extensively used in car industry.  Several CEA runs are made with different brake line pressures and friction coefficients between the disc and pads. In these runs, the disc is spun at a constant speed. An example of the results is shown in figure 4. In the range of 2.0 to 5.0 kHz, there are two unstable modes for the brake shown in figure 1. Brake engineers will identify the critical mode and the components that have a significant amount of strain energy within that mode. Structural modifications will be proposed and if they bring the ‘squeal index’ within acceptable levels, the recommendations are discussed for feasibility with the suppliers. If they are practical, they will be incorporated into the design ready for validation on a test rig.
[image: ]
Figure 4. The deterministic approach to squeal instability
The mode shapes of the first and second unstable mode are displayed in figure 5. This study is focused on the first unstable mode, which was considered a priority for the car manufacturer. This mode occurs in the form of calliper’s shear mode and disc’s 4-ND out-of-plane mode where ND represents “nodal diameter”. In the second unstable mode, only pads’ ears and guide-pins are deformed (effectively there is no deformation elsewhere). Therefore, the calliper has been removed from figure 5b in order to better display the second unstable mode. 
[image: ]
(a)                                                                            (b)
Figure 5. The unstable modes of the brake: a) the 1st mode at about 2.5 kHz; b) the 2nd mode at about 4.8 kHz
Although CEA is used commonly in industry due to its computational efficiency, one of the major drawbacks of CEA is that squeal limit cycles cannot be obtained in this way. CEA employs the linearised equations of motion while nonlinear terms cause the response to tend to a limit cycle. Since the noise sound pressure level depends on the magnitude of limit cycles, the nonlinear solution of the system is also important. The real part itself cannot determine whether the amplitude of vibration will exceed the limit or not. Therefore, in parallel with the numerical simulations, some Dyno tests must be carried out to identify which one of the predicted unstable modes causes squeal. This matter will be discussed in the next section.

4. Dynamometer test
In order to evaluate the soundness of the numerical simulations, or the validity of the model, the physical brake is tested. The measurement setup is shown in figure 6. A two dimensional (2D) scanning vibrometer is used to measure the operational deflection shapes in the range of 1.0 to 10.0 kHz. The brake starts to squeal when the disc temperature is 95ºC and the brake line pressure is 6 bar.  The displacements of the deflection shape in the frequency range of 1.0 to 5.0 kHz are displayed in figure 7. As seen, there is one dominant squeal frequency at 2.512 kHz. A microphone simultaneously records the sound pressure level which is 121 dB.  Since the level is over 78 dB, this noise is assuredly classified as squeal. In figure 7, some additional peaks also appear around 1200 Hz, 1500 Hz, 1800 Hz and 2200 Hz. Since the peak at 2.5 kHz is overwhelmingly dominant in the test data, and there is no unstable mode corresponding to these additional peaks in the CEA analysis, they are assumed to be due to noise or nonlinearity of the components in the test rig and hence are not considered further. 
[image: ]
Figure 6. Measurement setup
Comparing the results shown in figures 4 and 7 indicates that there is good agreement between the experimental data and CEA results. Of course, a more reliable validation could be achieved if it was possible to compare the experimental data with the results of a transient analysis. However, for the purpose of the current study, the FE model is believed to represent the brake system sufficiently.
[image: ]
Figure 7. Vibration displacement of the response

5. Design sensitivity analysis (DSA)
The design sensitivity analysis (DSA) is extensively applied in structural dynamics, especially model updating. From the mathematical viewpoint, model updating is an optimisation problem which attempts to minimise the discrepancy between experimental and numerical results (for example, mode shapes and frequencies) of a structure. One of the efficient ways of model updating is to find the optimum values based on the sensitivity of outputs to input parameters [43]. Due to the broad application of model updating in structural dynamics, some software such as MSC Nastran and Abaqus/Design are able to carry out DSA concerning the resonant frequencies, i.e. imaginary parts of the eigenvalues of the structure. 
However, what is significant about squeal instability is the sensitivity of the real part of an unstable eigenvalue to the system parameters. The results of DSA regarding the real parts are useful for the structural modification of brakes to reduce noise and also for constructing the brake surrogate model. Including inactive parameters in the surrogate model increases the computational workloads significantly, yet no benefit can be gained. As DSA is not available in Abaqus/Standard, the finite difference method is implemented to find the sensitivity of the real part of the unstable eigenvalue with respect to the input parameters. In order to avoid scaling issues, the differences are normalized to the values used in the baseline design [43]. Equation (4) shows the normalised sensitivity of the real part with respect to the system parameters: 
	
	(4)


where  represents the value of the -th parameter in the baseline design and  indicates the real part of the -th unstable eigenvalue. 
A sensitivity analysis can broadly be conducted on a brake system in order to identify highly active parameters in the model. However, based on brake engineers’ recommendation and knowledge, the number of variables has been restricted to only important and practically modifiable variables for this particular brake. One consideration is that it is not feasible to structurally modify all input variables. In this study, five input parameters are selected for DSA. The derivatives of the unstable eigenvalue are evaluated with respect to these parameters: transverse modulus of the pad (), Young’s modulus of the disc (), Young’s modulus of the calliper (), friction coefficient between the disc and pads () and friction coefficient at the abutment (). One percent variation from the values of the baseline design is considered for. The results are listed in table 4. At this point, only the absolute values of the derivatives are reported since their magnitudes are important to decide on the sensitive parameters in the model and their signs only show the direction of the gradient. 
Table 4. The sensitivity of the unstable mode with respect to the parameters of FE model
	
	Parameter
	Baseline values
	Sensitivity

	1
	
	607.1 MPa
	1.43

	2
	
	111.7 GPa
	8.08

	3
	
	70.0 GPa
	0.67

	4
	
	0.5
	1.97

	5
	
	0.15
	0.03


The results reveal that the real part of the unstable eigenvalue is considerably sensitive to Young’s modulus of the disc. The pads-to-disc friction, the transverse modulus of the pad and Young’s modulus of the calliper have lower influences, yet they are significant. However, the friction at the abutment has the least effect on this particular mode. Hence, the first four parameters will be used to construct the brake surrogate model.

6. Surrogate Modelling
Most engineering designs nowadays are based on numerical simulations. Such analyses essentially involve a great deal of computational workloads which impose a limit on the number of analyses needed for decision making. On the other hand, analysts must gain an in-depth understanding of the design space in order to come up with an optimum design. To meet this objective, the results of many numerical simulations should be collected, which is not necessarily feasible. For example, in the case of brake squeal, running CEA for the brake shown in figure 2 takes 12 to 36 hours depending on the computational facilities. Then, imagine that it is aimed to investigate the effects of variability and uncertainty of several parameters on squeal instability. The most straightforward way is to collect the outputs of the model by using a random generator for the input variables. Obviously, a few months must be spent to gain a desirable insight into the problem in this way. Spending such an amount of time would contravene the tight deadlines of industry and would cost car manufacturers significantly.  
Alternatively, the use of surrogate (or meta) models can overcome this issue. Surrogate modelling can bridge the gaps between the results of a limited number of analyses and capture the major properties of an expensive experiment or numerical simulation. The most common example of surrogate modelling is the use of the least squares fit for predicting the results of an experiment at the points where there is no output. A few tests are done to collect some data points over a desirable range of inputs and then the least squares method provides the best fit to the points. The fitted curve can estimate the outputs with a mathematical function bringing about a significant increase in the speed of producing the results with enough accuracy. 
Such an approach can likewise be applied to expensive simulation codes. In fact, the Design and Analysis of Computer Experiments (DACE) has been established on the ground of this notion [32]. Designing a computer experiment means approximating the outputs of an expensive code for any desirable input. For this purpose, a sampling plan is firstly made over the design space. Then, these samples are used for estimating the parameters included in the realisation of a regression model and a random process. The statistical replacement model is able to reproduce the outputs of the expensive code with sufficient accuracy. As it is always beneficial to include the smallest possible number of samples, the estimation of the model parameters is done in an iterative process. The number of observations is increased until the expected accuracy is achieved. Hereafter, the expensive numerical model is replaced with the cheap-to-evaluate surrogate model.
Constructing the surrogate model of the brake shown in figure 2 can be useful for two reasons. Firstly, the influences of different parameters on the unstable mode can be studied in an efficient way. It is then possible to find out what values of the inputs result in a smaller real part of the eigenvalues (or a smaller absolute value of the squeal index) and accordingly come up with some idea for structural modifications. Secondly, the surrogate model can be used as a predictor of squeal instability, so the uncertainty and variability of the inputs can be mapped to the output space cost-effectively. The latter outcome will also be useful for doing a reliability analysis. In the sense that a brake design fails to satisfy the noise performance criterion, it can be considered a reliability issue. As a result, calculating the probability of ‘failure’ helps identify how robust a design is in terms of squeal noise. 
The above introduction to surrogate modelling explains that this technique relies on two major steps: making a sampling plan and constructing the surrogate model. Since the mathematical details of this method is not the main focus of this study, its application on squeal instability is discussed in the following sections. In order to get a better understanding of how this method works and also to visualise the results, first it is used only for two input variables: the transverse modulus of the pad () and Young’s modulus of the disc (). Then, the method is applied to the sensitive input variables based on the DSA results: ,, and . Finally, the variability and uncertainty of these parameters will be mapped to the output space. 

6.1. Making an optimum plan
The main feature of evaluating the outputs of an expensive simulation code via surrogate modelling is that these approximations are more accurate in the vicinity of samples [33]. If a desirable point is located far from the sampled points, the accuracy of the approximation will be lost to some degree. Therefore, the uniformity of the sampling plan has a vital role in the success of surrogate modelling. 
The notion of uniformity suggests the simplest way of sampling: the full factorial sampling technique. Imagine that the number of variables in the design domain is  and the number of points along -th dimension is . The total number of samples then equals . As seen, the size of the sampling plan will grow exponentially if the number of variables or points along each dimension is increased. Indeed, it would defeat the desirable efficiency of surrogate modelling.
The Latin hypercube sampling (LHS), nevertheless, can resolve the issue of the dimensionality markedly. In fact, LHS is an extension of the Latin squares to multivariable cases. In this method, the design space is equally split into hypecubes. In each hypercube, only one sample may be embedded. Spreading the samples is done so that no coincidence among the points is experienced if they are moved in parallel with any dimension. It is worth noting that the conventional LHS is not necessarily well-spread. Forrester et al. [33] thoroughly explained how the best LHS can be achieved by optimizing the distances between the points. A MATLAB code is also provided in [33], which is used for making the sampling plan in this study. 
For the two dimensional case (, ), the intervals in which these variables should be randomized are given in section 2.1 and 2.2. In other words, the transverse modulus of the pad () is randomized from 552 to 662 MPa and Young’s modulus of the disc () varies from 108.349 to 115.051 GPa. At this point, just the low-carbon disc is considered since the aim is only to explain the method and visually demonstrate the results. The best LHS is run to generate the random inputs in the above ranges. The results are pictured in figure 8. In the literature, it is recommended to translate the design space into the unit cube in order to avoid scaling issues. Therefore, a normalized Latin square with 36 points is built by the best LHS; however, they are translated back to the design domain in figure 8 for the convenience of readers. The reason behind choosing 36 points is related to the accuracy of the surrogate model. As mentioned earlier, in an iterative process, the number of samples is increased until the expected accuracy is achieved. For this particular example, collecting 36 observations meets the expectation. 
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Figure 8. The sampling plan for the 2D case
Note that the best LHS does not cover the corners of the design domain unless the number of samples is highly increased. As stated in the introduction of surrogate modelling, a meta model loses its accuracy if the desired points are located far from the sampled points. Therefore, it is expected that the accuracy of the model is reduced around the corners. For a 2D case, it is not necessary to add the points on the corners to the sampling plan since the errors can simply be plotted over the domain. However, for multi-dimensional cases, this study recommends to include the corners of the design space deliberately. The reason is that for such cases, it is not straightforward to plot the errors in order to assess the accuracy of the established surrogate model. Alternatively, some indexes will be used to quantify the errors. If the corners are not included in the samples, these indexes will mostly indicate the maximum error around the corners.  

6.2. Constructing a surrogate model
Assume that  represents the response of the FE brake model to the vector of normalized inputs. In the case of squeal instability, for the -th observation point  of a -variable design space,  represents the positive real part of the eigenvalue of the unstable mode (see figure 9).  It is aimed to replace  with a cheap-to-evaluate model which is able to reproduce the responses of the FE model. In order to form the replacement model, the realization of a regression model  and a random process  are used for expressing the observed data, i.e. 
	
	(5)


where  is the vector of the unknown coefficients of the regression model. A linear combination of polynomials of orders 0, 1 or 2 is typically considered for the regression model. The coefficients of these polynomials are unknown and must be estimated by the use of the sampled data.
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Figure 9. Observations needed for training the surrogate model
The random process is assumed to be normally distributed with zero mean value and the following covariance matrix:
	
	(6)


where  is the standard deviation of the random process and  represents the correlation function between the - and -th samples. The correlation function which is used in this study is Kriging. By the use of this function, the correlation between the sampled points will depend on their absolute distances , the parameters  and . For a -variable design space, the Kriging function can then be expressed as:
	.
	(7)


This correlation function possesses three important properties. First of all, its dependence on the absolute distance yields the maximum correlation, i.e. nearly 1, for two close points while the correlation will tend to zero if the points are fairly far from each other. The reason behind emphasising the uniformity of the sampling plan can be realised by this term. It will be seen that this correlation function has a vital role in making predictions of untried points. If in a part of the design space, the samples are not uniformly spread, there is a weak correlation between an untried point and the observed data, so the corresponding predication is not sufficiently accurate.
Parameter  indicates how active a variable is in the FE model. Larger values of  can be interpreted as high-level of activity while small values of  indicate that variable  can be ignored in the surrogate model. In the case of squeal instability, this value may be employed to come up with an idea for design recommendations of brake systems. A slight adjustment to a design parameter which is highly active in the model may resolve the issue of squeal whereas major modifications of a fairly inactive parameter are not helpful.
The smoothness of the correlation function is determined by parameter  . Typically, the value of this parameter varies from 1 to 2. When  approaches 1 and meanwhile the absolute distances between the points are increased, a rapid drop in the value of correlation is experienced. However, in the literature,  is mostly fixed at 2 in order to have a smooth drop in the correlation function [33].  Likewise,  is kept constant at 2 in this study.
In order to understand how the Kriging predictor works, it is worth to briefly review the Maximum Likelihood Estimation (MLE) method. In statistics, this method is applied for estimating the mean value and variance of a stochastic model. Imagine that for estimating the mean value and variance of squeal instability, the results of millions of simulations are required. However, only collecting a few hundreds of the results is affordable due to the computational workloads. If it is assumed that the whole dataset are generated in a Gaussian process, the mean value and variance of the whole dataset can be estimated by the use of MLE and the collected observations. In other words, this method supposes that the sampled points are representative of the whole dataset. According to figure 9, the likelihood of can be defined by means of the following Probability Density Function (PDF): 
	

	
(8)


where  is the -by- correlation matrix of the observed data and is formed by means of equation (7).  and  are the mean value and standard deviation of the Gaussian process, respectively.  indicates an -by- vector of ones. The values of  and  which maximize the above PDF is referred to as the most likely values:  and . The derivatives of equation (8) are set to zero to find the most likely values: 
	
	
(9)


Substituting the estimated values into equation (8) forms the concentrated likelihood function [36]. It is common to use the logarithmic form of this function, i.e.:
	.
	(10)


Equation (10) is dependent on the two sets of unknown parameters:  and . An optimization technique is then implemented to find these sets of unknowns. In [33], a global search method such as the genetic algorithm is chosen for finding the optimum values since the numerical evaluation of the objective function is not very expensive. 
Now the estimated values (, ) and the parameters of the correlation function (,) are employed in making predictions of untried points. Jones et al. [36] stated that the Kriging correlation function is so powerful that only a constant term () can be used in place of the regression model. Accordingly, the prediction of an untried point  is made by the use of  and a term which is calculated by the correlation between the new point and the observed data. Forrester et al. [33] and Jones et al. [36] derived an equation for the predicted value of an untried point:
	
	(11)


where  is the correlation between the untried point  and the observed data  : . This term relates  to the absolute distance between the new point and the sampled data, so the uncertainty of the predicted value must be minor if the new point is sufficiently close to one of the sampled points. On the other hand, the uncertainty of the predicted value for a far-located point is significant. The uncertainty of the predicted values is measured by the Mean Squared Error (MSE) [36] which is again dependent on :
	
	
(12)


The third term in the bracket is often ignored because it is a higher-order small term [33]. The square root of equation (12) RMSE is usually used as an index for measuring the accuracy of a surrogate model over the design space. In an iterative process, the number of samples will be increased until RMSE meets the desired criterion for the accuracy of a surrogate model. Obviously, when the dimensions of the design space exceed three, it is impossible to visualize the results in one chart. In such cases, it is necessary to employ a validation method which is able to portray the accuracy of the surrogate model. In addition to RMSE, there are some other methods for this purpose. This matter will be discussed for the brake surrogate model with four input variables.


To construct the 2D surrogate model (,), the outputs of the finite element simulation are collected according to the samples shown in figure 8. Before using the observations for the surrogate model, there is one more point which is worth to be considered. Since randomizing the material properties affects the stiffness, mass or damping matrices, the unstable modes of the randomized inputs can be different from those of the baseline. In order to make sure that the same unstable modes are being used for constructing the predictor, the correlation between the unstable mode shapes of the randomized inputs and those of the baseline design should be taken into consideration. For this purpose, the Modal Assurance Criterion (MAC) is employed:
	
	
(13)


where  represents the mode shape (eigenvector) of the unstable mode and subscript B indicates “baseline design”. Due to the large number of nodes in the FE model (over 700 thousands in the FE model) only those nodes are included in the MAC whose displacements are usually significant. For example, figure 5a shows the nodes located on the disc rim having relatively large displacements in comparison with the rest of disc nodes. Thus, only the displacements of the highlighted nodes in figure 10 are considered for the calculation of MAC.
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Figure 10. Nodes with the largest displacement on the disc rim
Figure 11 illustrates the correlation between the reduced eigenvectors of a randomized input and those of the baseline design. The value of MAC is 0.98 in this case. The numerator of MAC is calculated separately along each direction and then added together. Due to its axial-symmetry, a nodal diameter mode of the brake disc, when shifted by an arbitrary angle, is still a nodal diameter mode. In other words, the symmetry of the disc sometimes causes a shift in the location of the maximum displacement in a mode computed by Abaqus. In such cases, before calculating MAC, the randomized eigenvector is shifted until the maximum displacement in both vectors occurs in the same location.
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Figure 11.The displacements of the nodes located on the disc rim
 Therefore, only those results are kept for constructing the surrogate model whose MAC is greater than 90 percent. For the samples shown in figure 8, MAC varies from 92 to 99 percent and then all observations are included in the estimation of the parameters of the surrogate model. The 2D brake surrogate model (, ) are shown in figure 12. 
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Figure 12. The surrogate model of the brake system for two parameters (, )
The Kriging predictor, i.e. the response surface shown in figure 12, is built by the MATLAB code given in [33]: ModelInfo.Option='Pred'. Likewise, RMSE over the design space can be plotted by ModelInfo.Option='RMSE'. 
[image: ][image: ]
                                                     (a)                                                                                   (b)
Figure 13. RMSE and the coefficient of variation over the design space
Figure 13a shows the absolute values of RMSE. In order to make a better judgment and determine the amount of the errors, it seems reasonable to normalize RSME: 
	
	
(14)


where  is called ‘the coefficient of variation’ in this study. In statistics, the coefficient of variation is a dimensionless measure obtained through dividing the standard deviation of a distribution by its mean value. Since in the Kriging model, the errors are normally distributed around the predicted values, it seems reasonable to take the same approach for presenting the uncertainties of the predictions. Figure 13b shows the coefficient of variation over the design space. A threshold can be set for  if someone intends to use it as the stopping criterion in the iterative process of surrogate modelling. Based on the accessible computing facilities, the threshold is set to four percent in this paper. 
Figure 13 also reveals that the errors on the corner of the design space are considerably larger than the errors in the central part. As discussed in section 6.1, the sampling plan made over the design space does not cover the corners of the domain. In fact, the corners are not covered well by LHS unless the number of samples is considerably increased. As a result, RMSE values are fairly large around the corners. However, in the central part of the design space, which is the point of interest here, the errors are practically zero. Since for a 2D case, RMSE can be plotted over the parameter domain, it is not necessary to include the corners in the sampling plan if the central part of the domain is the point of interest. However, for a multi-dimensional case, it is recommended to include the corners in the sampling plan as some indexes are employed to evaluate the errors. Otherwise, although the model may be entirely accurate in the central part of the domain, the errors around the corner would cause the algorithm to keep increasing the number of sampling points until the stopping criteria are satisfied. This situation is not desirable since the sampling process can become very expensive.
Moreover, the simulation results of 15 untried points which are not involved in the sampling plan are collected to compare with the predicted results. The simulated and predicted values of the unstable mode are listed in table 5.
Table 5. Comparing the FE and predicted values of the untried points.
	No.
	 (MPa)
	 (GPa)
	FE results
	Predicted results
	Error (%)

	1
	607
	112.179
	179.94
	179.96
	0.0

	2
	662
	112.657
	152.45
	152.73
	0.2

	3
	631
	108.349
	201.10
	196.88
	2.1

	4
	592
	110.743
	197.08
	197.30
	0.1

	5
	615
	109.785
	199.11
	199.20
	0.0

	6
	576
	108.828
	205.68
	207.53
	0.9

	7
	646
	114.572
	110.07
	110.71
	0.6

	8
	654
	109.306
	194.75
	195.42
	0.3

	9
	623
	113.615
	150.05
	148.98
	0.7

	10
	566
	111.700
	195.81
	196.29
	0.2

	11
	560
	114.094
	171.25
	170.45
	0.5

	12
	599
	115.051
	127.06
	126.65
	0.3

	13
	584
	113.136
	174.22
	174.25
	0.0

	14
	638
	111.221
	182.24
	182.56
	0.2

	15
	553
	110.264
	207.40
	206.01
	0.7






The errors in table 5 are practically zero in most cases. These results thus prove the efficacy of the Kriging model in predicting the squeal instability. In order to generalize this conclusion, a surrogate model is also built when the variations in four parameters,,and  are considered. According to the DSA results presented in section 5, it is aimed to build a brake surrogate model including ,, and . The ranges in which  and  vary were previously reported in section 2.1 and 2.2. Table 6 lists the bounds that are considered for  and .
Table 6. The variations in calliper’s elastic modulus and friction coefficient
	
	Mean value
	STD (%)
	Min.
	Max.

	Calliper’s elastic modulus (GPa)
	70.0
	1.0
	67.9
	72.1

	Friction coefficient
	0.5
	5.0
	0.425
	0.575


 A sampling plan is made by the best LHS over the design space with 120 points. The corners of the design domain are also added to the samples. In other words, 136 observations are collected for the brake surrogate model. CEA is carried out for the randomized inputs and MAC is calculated for the result of each observation. Three samples are discarded due to a weak correlation between the mode shapes of the randomized points and those of the baseline design. The remainders are employed for constructing the surrogate model.
Parameters  of the trained surrogate models are  in a logarithmic scale. The results reveal that the disc’s elastic modulus undergoes the highest level of activity in the model. The friction coefficient, pad’s transverse modulus and calliper’s elastic modulus take the second to the fourth places, respectively. These results are sensibly comparable with the ones that DSA produced. It is worth noting that these two results should not necessarily be identical since DSA was only done at the baseline design point. If it were affordable to run DSA all over the design domain, both DSA and the surrogate model would deliver comparable results.
To test the accuracy of the fitted model, the cross validation procedure is employed this time due to the number of dimensions of the design space. The idea behind this technique is fully explained in [36, 38]. In brief, one of the observation points (is left out when constructing a surrogate model and the remaining points are used to make prediction of . This predication is expressed by  in which  indicates the point  is not included in constructing the predictor. If enough information, i.e. observation points, has been collected, excluding one of the points should make very little difference on the estimation of (, ). Now, by means of the prediction  and RMSE  at point , it is possible to compute the standard error as
	
	
(15)


where  represents the standardized cross-validated residual [36]. In the early part of section 6.2, it is explained that a Gaussian process is used in the Kriging model and there is a normally distributed uncertainty about each predicted value  with the standard deviation of . Then, the predictor is 99.7 % confident that   is placed within the interval . Therefore, if the standardized cross-validated residuals do not exceed the range of , the constructed model is considered valid. However, it is not unexpected to observe a few outliers [36, 38]. The number of outliers is reduced if the number of sampled points is increased. Figure 14 shows the standardized residuals for the brake surrogate model. 
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Figure 14. The standardized errors of the untried points
Since 125 out of 133 observations meet the cross-validation criterion, i.e. , this model is sufficiently accurate for the objectives of this study. 

7. Uncertainty quantification of squeal instability 
In order to carry out an uncertainty analysis, probabilistic, non-probabilistic or mixed probabilistic approaches may be considered. The probabilistic approaches are usually more informative since the statistical measures of the outputs such as the mean value and variance can be obtained by means of the produced distributions. However, such approaches are computationally expensive due to the required number of deterministic analyses for producing the results.  Incidentally, there are some probabilistic techniques such as the 1st and 2nd order perturbation methods which are able to provide the statistical measures of the output space efficiently [44]. However, the main shortcoming of these approaches is the difficulty of calculating sensitivities of the outputs with respect to input variables. Undoubtedly, for a large scale model with over 2.3 million of degrees-of-freedom (figure 2), it is not convenient to calculate the sensitivities due to the numerical representation of the brake system with the FE model. Furthermore, the 1st- and 2nd-order differentiations of the outputs with respect to some input variables such as the friction coefficient are not readily feasible. Indeed, the industry is not willing to take an approach which is mathematically complicated and prefers to do the uncertainty analysis via simpler techniques. 
 The most fundamental, yet practical, technique of the uncertainty analysis is the conventional Monte Carlo simulation. There are two advantages for Monte Carlo simulation in comparison with other techniques. First, the idea behind this method is very simple. The samples are mapped one-by-one to the output space until a statistical description of the results is achieved. Secondly, when the output or mapping function is a nonlinear function of input variables, the most reliable way of uncertainty propagation is Monte Carlo simulation [45]. 
On the other hand, the major drawback of Monte Carlo simulation is its computational inefficiency. This method employs a random generator to produce a considerable amount of samples over the design domain. Then, the corresponding output distributions are achieved by using the mapping function. If the mapping function is very expensive to evaluate like the FE model of the brake, running Monte Carlo simulation is not doable. Collecting the results of millions of observations may take several months or a few years depending on the computational facilities. 
This study, instead, tackles this problem by replacing the large-scale FE mapping function with the cheap-to-evaluate surrogate model. The evaluation of an individual observation now takes some milliseconds and there is no big hurdle in using the conventional Monte Carlo simulation. Since it has been proved that the constructed surrogate model makes predictions with minor errors, it is reasonable to lose a few percentages of accuracy in exchange for a massive saving of the computational costs and time.
Apart from the uncertainty method, the distributions of the input variables play a significant role in forming the output profile. Unfortunately, there is no published data for the distributions of the input variables which are used in this study. As mentioned earlier, it is only known the input distribution of the disc’s elastic modulus is Gaussian (section 2.1). Moreover, Sarrouy et al. [30] used both uniform and Gaussian distributions for the friction coefficient between the disc and pads, but no experimental data are used for supporting these assumptions. In this study, the distributions of all of the input variables are assumed to be truncated Gaussian. In other words, the non-physical values of the input variables have been removed from their domains. The histograms of the input variables are shown in figure 15.  It is worth noting that there is no limitation for using any combination of different input distributions in the proposed method. In fact, one of the strongest points of this approach is that any form of distributions can be considered for the inputs, and the uncertainty analysis can readily be executed. By the use of a random generator one million vectors of inputs are created. Each vector contains four random values of ,, and . 
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Figure 15. Gaussian distributions of the inputs
The real parts of the eigenvalues of the unstable mode associated with the one-million random inputs are produced in a few minutes by the brake surrogate model. Figure 16 displays the histogram of the outputs and the dotted line shows the mean value of the distribution. The location of the mean value indicates the output distribution is not Gaussian as expected due to the nonlinear relation of the real part of the unstable mode with the input variables. The mean value of the distribution is 182.1514 and its standard deviation is 21.161.
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Figure 16. The distribution of the output
The probability distribution of the real parts of unstable modes is useful for quantifying the uncertainty and variability existing in a brake system. Likewise, the probability of ‘failure’ of a brake design can be evaluated in terms of noise. If some experimental data were accessible to represent the variability and uncertainty of the input parameters, the noise margin could also be determined effectively. If some structural modifications are made on the brake design to reduce the noise, another surrogate model must be built for quantifying the uncertainties. In that case, the outputs are expected to be more stable. Unfortunately, making another surrogate is not affordable in this investigation.

8. Discussions
Car manufactures can gain three benefits from surrogate modelling of brake systems: coming up with some design recommendations to reduce the noise, quantifying the uncertainty and variability existing in a brake system and conducting a reliability analysis in terms of noise. The second outcome has been fully explained, yet it is worthwhile to discuss the other two. Moreover, for constructing the surrogate model, only the results of low carbon discs has been presented. It is also important to discuss what happens if high carbon discs are considered in surrogate modelling. 

8.1. Design recommendations
In industry, structural modifications of brake systems are commonly made for reducing squeal. The idea behind these modifications is to shift the resonant frequencies of the components slightly in order to suppress the mode-coupling. Brake analysts either locally or globally manipulate the stiffness, mass and damping of a structure to come up with some design recommendations. Although reducing squeal is out of the scope of this study, it is worth to appreciate the capability of surrogate modelling in the structural modification.
Kriging predictions are actually made via a mathematical function (equation (11)). As a result, exploring such a function can cheaply be done [33]. This exploration can provide brake analysts with some trends in which the outputs change, and also the values of local or absolute minimums (or maximums) of the outputs. For example, figure 12 illustrates that increasing the disc stiffness, in this particular brake, leads to a decrease in the real part of the unstable mode, so increasing  would definitely be a solution to reduce the noise. One of the ways of increasing Young’s modulus is to reduce the carbon content, but it causes some side effects. The carbon content is crucial for the thermal performance of discs. Changing the carbon content can affect the disc’s resistance to cracking, distortion, etc. Then, the disc itself cannot resolve the issue of squeal as expected. The analysts should reach the desirable design point by either increasing the disc stiffness with some other ways or compensating this shortcoming with the manipulation of the other input variables. Currently, there is not a systematic way to make the structural modifications of brake systems. It is mostly done in a trial and error procedure. Surrogate modelling can then pave the way of such modifications and save analysts’ time significantly.
8.2. Reliability analysis
Looking back at the first concern about brakes mentioned in the introduction, the warranty claims are mostly filed due to brake noise. If a practical way is employed to quantify the uncertainty and variability of brake systems, it is possible to figure out what percentage of manufactured brakes will ‘fail’ in terms of noise either at the end of the production or due to the operational conditions and aging effects. In this sense, squeal noise can be considered a reliability issue for a brake design. The deviation of the material properties from the nominal values, the dissimilarity between assemblies and the imperfection of component geometries can cause the ‘failure’ at the end of production. However, thermal effects, non-uniform pressure distributions and wear are some examples causing the ‘failure’ during brake operations. Regardless of how these variability and uncertainty of the input variables are characterised in the FE model, the method of quantifying the probability of ‘failure’ is discussed here. 
The constructed surrogate model in this study is for the brake before making structural modifications for reducing noise. However, in order to quantify the probability of ‘failure’, a new surrogate model should be built after the modifications. The probability distribution of the outputs should be produced for the new model and the target level is used to divide the output space into acceptable and unacceptable regions. Then, the probability of failure is evaluated by the probability of the results which exceed the acceptable threshold. The probability of ‘failure’ can be expressed as
	.
	(16)


where  represents the real part of the unstable eigenvalue (section 3). Unfortunately, constructing another surrogate model is not affordable within this investigation. 

8.3. High carbon discs: Multi-output case
In section 2, the variation of disc’s Young’s modulus for high carbon discs is also reported. Increasing the carbon content can enlarge the variation of the elastic modulus (table 2). If a high carbon disc is considered for the uncertainty quantification, the unstable mode shape does not remain the same for the entire range of the input. In other words, the large variation of the disc properties causes the mode at about 2.5 kHz to disappear but two other unstable modes to arise. 
Assume that the variations of the three other parameters are kept constant while the range of  of the high carbon disc is considered. The histogram of  for the high carbon disc is shown in figure 17a. In this way, the constructed surrogate model is only valid while  varies from 108.349 to 115.051 GPa. 
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   (a)                                                                                   (b)

Figure 17. High carbon disc: a) the variation of; b) the range of validity of the surrogate model.
Figure 17b shows the range in which the constructed surrogate model is still valid. This time, two-million random vectors of input variables are generated. About 800 thousands of samples are discarded as they exceed the range of validity of the model. 
The histogram of the real part of the unstable mode is shown in figure 18 for the new random inputs. As seen, the mean value of the distribution (the dotted line) is moved to the right in comparison with figure 16. The mean value and standard deviation are now 185.7978 and 26.2885, respectively. The distribution profile is also slightly different.
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Figure 18. Output distribution for high carbon disc
In such cases, a few surrogate models, typically three or four, must be constructed to investigate all unstable modes of a brake. A single surrogate model cannot completely portray the stochastic nature of all unstable modes. In this study, the main focus is to establish a methodology instead of solving the squeal problem. The proposed approach remains the same regardless of the form of inputs, the range of inputs, the number of input variables and the number of outputs or unstable modes. 

9. Conclusions 
NVH of brake systems has remained an active research topic in recent decades. In spite of the considerable efforts that have been made to investigate brake noises, in particular brake squeal, no absolute solution has been found. One of the main reasons is different sources of the uncertainty and variability existing in brake systems. Friction and contact mostly cause uncertainties while manufacturing process results in variability. In order to improve the predictions of squeal instability, the uncertainty analysis of brake systems must be done. Generally speaking, an uncertainty analysis relies on the results of deterministic approaches. 
The typical deterministic approach toward brake squeal is the complex eigenvalue analysis. Although this numerical approach cannot independently predict squeal modes, the onset of squeal can be specified by the stability analysis of the linearised system. Positive real parts of the eigenvalues of the system indicate that the system becomes unstable. For large-scale FE models, running complex eigenvalue analysis is very expensive. It takes 12 to 36 hours depending on the computational facilities. Therefore, conducting those techniques of the uncertainty analysis demanding thousands of the deterministic results is impractical. 
This study presents a Kriging surrogate model and shows that a Kriging surrogate model of brake systems can overcome the issue of computational workloads.  The FE model of a brake is replaced with the realization of a regression model and a random process. In this way, it is possible to design a computer experiment: predict the outputs of any desirable input by means of a surrogate model whose parameters are estimated by a uniform sampling plan. Surrogate modelling provides brake analysts with two advantages. First, they can come up with some design recommendations in order to reduce the noise. Exploring the surrogate model reveals how the outputs will change with input variables. Therefore, the structural modification of brake systems can efficiently be done. Secondly, the use of surrogate modelling paves the way of the uncertainty quantification of squeal instability. Since the real parts of eigenvalues of unstable modes are nonlinear functions of input variables, the most practical way to propagate the uncertainty and variability is Monte Carlo simulation. One the other hand, Monte Carlo simulation is not computationally efficient and cannot be applied to a large FE model directly. Therefore, the brake surrogate model is used for this purpose, which is able to predict the outputs accurately in a few milliseconds. Monte Carlo simulation is applied to the surrogate model to yield the probability distribution of squeal instability. Reliability analysis in terms of the likelihood of unstable vibration can also be carried out in this way. Any improvement in the probability of ‘failure’ will lead to a reduction in the costs caused by warranty claims. 
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