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ABSTRACT 

There are some contradictory theories on how tolerant honey bees are of pesticides. 

Since the honey bee genome has been published (Honey bee Genome Sequencing 

Consortium, 2006), more is known about their metabolic systems, especially the 

detoxification pathways for potential xenobiotics. Bioassay and biochemical data 

from various studies have shown that both P450s and carboxylesterases are 

responsible for pesticide metabolism in honey bees. Here, those metabolic enzymes 

that confer primary defence to different classes of insecticides (mainly neonicotinoid, 

thiacloprid) in honey bee were validated. Metabolic enzymes are characterised 

regarding their ability to interact with the insecticide. Synergist bioassay results with 

PBO and EN 16/5-1 suggest that detoxification mechanism(s) play an important role 

in protecting honey bees from tau-fluvalinate and thiacloprid toxicity. No binding 

was found between honey bee esterases and tested insecticides (thiacloprid and tau-

fluvalinate), whilst inhibition of P450 activity sensitised the honey bees to these 

chemicals. Metabolism of tau-fluvalinate and thiacloprid in honey bees is due to 

P450 activity, but this metabolism may not be the only reason for the relatively 

benign action of this insecticide on bees. Honey bees are less sensitive to 

neonicotinoids containing a cyanoimino pharmacophore than to those with a 

nitroimino group, however the specific enzymes involved in detoxification remain to 

be characterised. In this work, pre-treatment of honey bees with a sub-lethal dose of 

thiacloprid induced protection to the same compound immediately following 

thiacloprid feeding. Transcriptome profiling, using microarrays, identified a number 

of genes encoding detoxification enzymes that were overexpressed significantly in 

insecticide-treated bees compared to untreated controls. These included five P450s, 

CYP6BE1, CYP305D1, CYP6AS5, CYP301A1, CYP315A1 and an esterase CCE8. 
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The four P450s and cytochrome b5 were functionally expressed in E. coli and their 

ability to metabolise thiacloprid examined by LC-MS analysis. There was no obvious 

metabolism of thiacloprid, thus their role in the metabolism and disposition of 

thiacloprid is still unclear. 

Race-based and caste-based bioassay studies were carried out to investigate the 

differential sensitivity. Honey bee caste-based synergism studies revealed that nurse 

bees (younger) may tolerate thiacloprid toxicity more than forager bees (older) by 

means of esterase-based metabolism/sequestration. In addition to the metabolic 

differences, race-based studies also suggested that target-site insensitivity of nAChRs 

may enhance thiacloprid tolerance in honey bees. However, screening of nAChRs of 

A. m. caucasica and A. m. buckfast did not identify polymorphism variants except 

several splice variants of subunits. As the integrity of the sample material was 

compromised this mechanism has not been confirmed.  
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1. GENERAL INTRODUCTION 

1.1 Honey Bees 

Honey bees belong to the family Apidae in the order Hymenoptera within the class 

Insecta. They are represented in the genus Apis. According to Ruttner (1988) four 

species of honey bees are recognised; Apis cerana, Apis dorsata, Apis florea, and 

Apis mellifera. However, recent studies increased Ruttner’s list by adding new 

species: Apis andreniformis, Apis koschevnikovi, Apis laboriosa, Apis nigrocincta, 

Apis nuluensis, Apis binghami and Apis breviligula (Michener, 2000).  

This study focuses exclusively on Apis mellifera which shows wide geographical 

distribution being found in Europe, the Middle East, Asia, and Africa. This wide 

distribution has resulted in the classification of four different lineages based on 

morphological and genetic properties, M (West and North Europe), C (South and 

East Europe), O (East and Central Asia) and A (Africa) (Garnery et al., 1993; Arias 

and Sheppard, 1996; Whitfield et al., 2006).  

Among these races, 10 originate in Europe. The present study was carried out 

utilising 4 European races A. mellifera carnica, A. mellifera caucasica, A. mellifera 

ligustica and A. mellifera buckfast.  

1.1.1 Biology and life cycle of honey bee 

 Apis mellifera lives in large social clusters called “colonies” which consists of three 

different castes with a designated specific task for each:  a queen bee (fertile female), 

workers (sterile females) and drones (males).     
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The life cycle in the colony begins with the eggs laid by the queen. During mating 

activity, the queen bee gathers sperm cells from drones (whose only task is to mate 

with the queen in the colony), she then manages colony development through 

fertilization control by transferring or not transferring sperm to eggs. This 

reproductive strategy called haplodiploidy results in haploid males from unfertilized 

eggs while diploid females are produced from fertilized eggs (Charlesworth, 2003; 

Heimpel and de Boer, 2008). Emergence of a new adult from the laid egg takes 

around 21 days: 0-3 days for the egg stage, 4-10 days for the larval stage and 11 – up 

to 24 days for the pupal stage. The length of the pupal stage differs for each cast. 

While development of the queen from egg to its emergence as an adult is completed 

within 16 days, workers require 21 days and drones 24 days to emerge as an adult 

(Figure 1.1). The reason for this difference is linked to the final morphological 

development of the adult in sealed cells (pupal stage).  

Worker bees are the main task force of the colony. The responsibility of the worker 

is defined by age. The young workers (from adult emergence, adult day 1 to adult 

day 21), so called “nurse bees” are responsible for cleaning the hive, feeding the 

larvae, comb building, and similar ‘in hive’ tasks. Older workers, so called “forager 

bees” (from adult day 22 to adult day 42) are responsible for nectar collecting, 

orientation flights, hive ventilation and guarding the colony (Figure 1.2) (Winston, 

1987).  
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Figure 1.1 Illustration of honey bee larval and adult life cycle (by Marguerite 

Meyer). 

 

 

Figure 1.2 Activity chart of a honey bee through the life cycle (adapted from 

Waller, 1980). 

 

This text box is where the unedited thesis included the following third 

party copyrighted material:  

 

Meyer, M. (1996-2015) The Pollinator Partnership. Online source: 

http://pollinator.org/beeissues.htm 

This text box is where the unedited thesis included the following third 

party copyrighted material:  

 

Waller, G.D. (1980) ‘Honey Bee Life History’. Beekeeping in the 

United States Agriculture Handbook 335: 24 – 29 

http://pollinator.org/beeissues.htm


4 
 

1.1.2 Economic importance of honey bees and concerns on negative impacts of 

pesticides 

Honey bees are commercially important beneficial organisms worldwide. Their 

pollination service has been estimated to be worth £120-200 million and their honey 

production contributes £10-30 million annually to the UK economy (Defra, 2008). 

Their contribution to human diet and human health are also very important. For 

example; laboratory and clinical studies have demonstrated that the antibacterial 

property of honey could be used as a treatment to control bacterial growth in human 

health problems (Jeffrey and Echazarreta, 1996). 

Food demand increases in parallel with rising global population. In this case 

pollinators, especially honey bees, have an economically and agriculturally important 

role in crop production as well as a positive effect on biological diversity (Herrera 

and Pellmyr, 2002). For example, today one third of global food crops are pollinator-

dependent, essentially honey bee pollination service-dependent (e.g. berries, nuts, 

plums, cherries, kiwi, melon) (Klein et al., 2007; Aizen et al., 2008). However, a 

variety of factors represent significant threats to apiculture including disease, 

parasites and unintended insecticide exposure (Southwick and Southwick, 1992). 

Chemical control is currently an indispensable input for global agriculture but 

pesticides are suspected by many to be involved in the disappearance of honey bees 

since the first report of colony collapse disorder in 2006 (Le Conte et al., 2010).   

The current concern regarding the adverse effects of neonicotinoids on honey bee 

health is resulting in many studies that investigate the effects of this class of 

compounds on economically important pollinators (Godfray et al., 2014). Due to 

their positive impacts in crop protection including low toxicity to mammals, birds 
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and fish, systemic control of plant-sucking insect pests (aphids, whiteflies, thrips, 

some coleopteran and lepidopteran) and selective toxicity, the neonicotinoids have 

rapidly become the preferred new generation of synthetic insecticides (Tomizawa 

and Casida, 2003). It is therefore vital to understand the effects of neonicotinoids on 

honey bees to gain advantages from these innovative chemicals with regards to 

controlling pest species safely and effectively (Atkins, 1992). There are various 

methods to apply neonicotinoids associated with multiple agricultural purposes. Seed 

treatment and soil applications are mostly preferred because they protect young 

plants and are long-lasting due to their systemic effect (Elbert et al., 2008). Multiple 

routes of pesticide exposure are therefore possible for honey bees including both 

contact (visiting the plants during foraging activity) and oral routes (consuming the 

infected food source) (Krupke et al., 2012). There is evidence that sublethal exposure 

of neonicotinoids may cause disorientation in foraging activity and impairment on 

olfactory memory and learning activity (Henry et al., 2012; Yang et al., 2008; 

Decourtye et al., 2005). However, the question of whether the sublethal doses, 

received by pollinators in the field, leads to significant impairment in individual and 

colony performance is a topic of active research and considerable controversy 

(Godfray et al., 2014). 

1.2 Pyrethroids 

Pyrethroids are synthetic insecticides which have been designed by replicating the 

structure of the naturally occurring insecticide compounds, pyrethrins. Pyrethrins are 

neurotoxicant compounds that occurred naturally in the metabolism of the 

chrysanthemum plants (pyrethrum daises; Chrysanthemum spp.) (Elliott, 1995). They 

affect the insects’ nerve system by acting on insect sodium channels present in nerve 

membrane, by altering the “open and close” sequence/rhythm and prolonging the 
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open phase, which results in paralysis and death due to extended stimulation 

(Soderlund and Bloomquist, 1989; Naumann, 1990; Soderlund et al., 2002). In 

comparison with pyrethrins pyrethroids are both more stable and more active against 

a range of insect species and also have other desirable properties such as relatively 

low mammalian toxicity, rapid and broad-spectrum activity, photo-stability and low 

bioaccumulation potential. As a result this class of insecticide has enjoyed increasing 

market share since its commercial development in 1960s (Casida et al., 1983; Casida 

and Quistad, 1998). In this study, two of the members of the pyrtehroid class of 

insecticides, tau-fluvalinate and alpha cypermethrin, have been used.  

Tau-fluvalinate is a pyrethroid insecticide and acaricide used against several pest 

species on fruits, vegetables, ornamentals and many other crops. In relation to this 

PhD study it has also been used to control the honey bee parasitic mite Varroa 

destructor as a hive acaricide due to its relatively low toxicity to honey bees (Roberts 

and Hutson, 1999; Johnson et al., 2006). 

Alpha cypermethrin is a non-systemic pyrethroid insecticide used against several 

pest species especially active on Lepidoptera family members on wide range of 

agricultural crops. Additionally, it is also used for vector control in public and animal 

health (Roberts and Hutson, 1999). 

1.3 Neonicotinoids 

Neonicotinoids are synthetic neurotoxic insecticides which have structural 

similarities and a similar mode of action, with naturally occurring nicotine (and 

nicotinoids, synthetic insecticides modelled against nicotine with an improved 
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insecticidal activity) but are both more potent and safe (Tomizawa and Casida, 

2003).  

Neonicotinoids are systemic compounds that once absorbed to the plant are, 

translocated through the vascular tissues to roots, leaves, flowers and stem, which 

makes them excellent in sucking-pests control. They affect the central nervous 

system of insects, by binding agonistically to the nAChR, and results in persistent 

excitation and ultimately death (Jeschke and Nauen, 2008). Different to nicotinoids 

which are mostly protonated and bind to an anionic subsite of the mammalian 

nAChR, neonicotinoids are negatively charged (have a nitro or cyano 

pharmacophore) and binds to a possible unique cationic subsite of insect nAChRs, 

which makes them selective to insects (Tomizawa and Casida, 2003; Tomizawa and 

Casida, 2004) and as a result display generally low toxic to mammals, birds and fish.  

Neonicotinoids can be divided into two main groups, the cyano-substituted 

compounds (thiacloprid and acetamiprid) and the nitro-substituted compounds 

(imidacloprid, clothianidin, thiamethoxam, dinotefuran, nitenpyram).  

In this PhD study, two cyano-substituted compounds, thiacloprid and acetamiprid, 

and one nitro-substituted compounds, imidacloprid, have been used.  

Thiacloprid is a novel broad-spectrum neonicotinoid insecticide with high efficacy 

against sucking (sap-feeding) and biting insects. Uses of thiacloprid globally, vary 

from top fruits to cotton and vegetables. Thiacloprid has a favourable environmental 

profile (short half-life in soil, good safety margins for avians, fishes and many 

beneficial insects) and low acute toxicity to vertebrates (Elbert et al., 2000).  
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Acetamiprid acts on a broad range of pests (Hemiptera, Thysanoptera and 

Lepidoptera). It shows low toxicity to mammals and also has a good environmental 

profile (Roberts, 1999). 

Imidacloprid is the first representative of the neonicotinoids, synthesized in 1985 

(Tomizawa and Casida, 2003). As a systemic and broad spectrum insecticide it offers 

effective control of sucking (sap-feeding) insects and some species of biting insects 

(Nauen et al., 1998).   

1.4 Insecticide Synergists 

Compounds that are non-toxic at the concentration used but enhance the toxicity of 

an insecticide by inhibiting the enzymes responsible for metabolic detoxification are 

known as synergists (Metcalf, 1967; Matsumura, 1985). Use of synergists may vary 

depending on the susceptibility of the target insect pest. If used against susceptible 

populations, synergists allow the insecticide dosage that confers mortality to be 

reduced, however, if the target is a resistant (metabolic) population, then synergist 

usage can restore the susceptibility for the partnering insecticide. Furthermore, as 

employed in this PhD study synergists are also important tools for investigating the 

molecular basis of resistance. By using different synergists it is possible to identify 

and characterise the mechanisms that are responsible for resistance. 

In this PhD study, two methylenedioxyphenyl (MDP) synergists (a kind gift from 

Endura SpA, Italy); piperonyl butoxide (PBO) and EN 16/5-1 (an analogue of PBO) 

were used. 

PBO is synthesised from naturally occurring safrole which supplies the MDP moiety 

(Wachs, 1947). This chemical moiety provides the oxidase inhibitory character of the 
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compound. This property has been used in laboratory studies to characterise the 

resistance mechanisms conferred by oxidases (Forgash et al., 1962; Matthews and 

Casida, 1970; Philippou et al., 2011). However later findings suggests that PBO also 

has the capability of inhibiting resistance-associated esterases in pest insects (e.g. 

Helicoverpa armigera, Bemicia tabaci) (Young et al., 2005; Young et al., 2006). 

In contrast the analogue of PBO EN16/5-1 has only limited ability to inhibit oxidases 

but retains the ability to inhibit esterases. As a result synergism studies benefit from 

these properties by allowin this synergist to be used in parallel with PBO to 

characterise resistance mechanisms mediated by P450s and esterases (Moores et al., 

2009).  

1.5 Insecticide Resistance 

“Sustainable agriculture” refers to practices and systems that result in decreased 

environmental damage use less natural resources and contribute to the production of 

sufficient and good quality food to feed an increasing world population. Chemical 

control of pests is currently an essential component of many crop production 

programmes and is likely to remain so for the foreseeable future. However, beside all 

the irresistible offerings for society and farmers (such as food security and food 

safety, good yield, product quality), it should be recognised that pesticides also carry 

some risks, and these should be managed to obtain the most benefits. This is 

acknowledged in the current discussions on the role of the insecticide on honey bee 

loses and/or a significant risk of development of resistance in some important insect 

pests. These two issues may seem different to each other, but since both beneficial 

and pest species in this instance are  insects,  it is not suprising to see that tools 

designed to kill insect pests may have a potential to harm benefical insects – such as 
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honey bees too. Vice versa, mechanisms avaliable for an insect pest to develop 

resistance against insecticides is also avaliable for honey bees to adapt themselves to 

a toxic compound present in the environment.  

IRAC (Insecticide Resistance Action Committee) defines resistance as “a heritable 

change in the sensitivity of a pest population that is reflected in the repeated failure 

of a product to achieve the expected level of control when used according to the label 

recommendation for that pest species”. Another definition by the WHO (World 

Health Organization) is “the inherited ability of a strain or organism to survive doses 

of a toxicant that would kill the majority of individuals” (Zlotkin, 1999).  

Resistance is a result of intensive, frequent and multiple uses of insecticides with the 

same mode of action. Some insect strains have become so resistant to a specific 

insecticide that they can survive exposure to virtually any dose (Scott, 1990). 

Whalon et al. (2008) reported that more than 500 insect species have now become 

insensitive to at least one insecticide and some sources state that this number has 

reached 1000 species since 1945 (Miller, 2004).   

In order to be effective, an insecticide has to reach its target–site and any barriers to 

the intact insecticide molecule reaching the target–site may cause resistance to that 

compound (Nauen, 2007).  

Four main mechanisms of resistance have been described 1) biochemical changes in 

the metabolism of xenobiotics (metabolic resistance), 2) mutations which modify the 

target site protein (target-site resistance), 3) reduced penetration of insecticide 

through the insect cuticle and 4) behavioural modification to avoid insecticide 

exposure (Denholm and Devine, 2001; Li et al., 2007).  
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Most resistant insect populations have one major resistance (defence) mechanism 

against synthetic chemicals or plant compounds. Similarly, honey bees have also the 

ability to tolerate toxic compounds by adapting their metabolism by utilising the 

same defence mechanisms.   

Therefore, extrapolations from thoroughly investigated insecticide resistance 

mechanisims may also guide the research on defining honey bee defence 

mechanisms against toxic compounds.  

1.5.1 Behavioural resistance 

Sparks et al. (1989) explained behavioural resistance as “the behavioural 

mechanisms evolved that reduce an insect’s exposure to toxic compounds or that 

allow an insect to survive in what would otherwise be a toxic and fatal environment”. 

It is reported in the same study that the housefly, Musca domestica Linnaeus exhibits 

behavioural resistance to malathion and, although it is not easy to determine 

behavioural traits in the laboratory, more than 30 insect species with behavioural 

resistance to insecticides have been described. This mechanism is perhaps the most 

poorly understood and least well studied of the four resistance pathways.  

This kind of avoidance behaviour has been reported in honey bees against 

imidacloprid-contaminated food resulting in reduced foraging activity. This 

repellency/antifeedant effect reduced the risk of imidacloprid exposure (Mayer and 

Lunden, 1997; Kirchner, 1999; Maus et al., 2003; Blacquière et al., 2012).   
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1.5.2 Reduced penetration 

Reduced penetration, which is the result of a modification to the insect cuticle to 

prevent insecticide absorption, was first described in the early 1960s (Forgash, 1962; 

Fine, 1963). It has been shown to function as a resistance mechanism in several 

reports involving reduced penetration of organophosphates, carbamates (Ku and 

Bishop, 1967; Price, 1991; Siegfried and Scott, 1991) pyrethroids (Farnham, 1973; 

Gunning et al., 1991) and more recently a neonicotinoid, imidacloprid (Puinean et 

al., 2010). On its own, reduced penetration usually confers limited insensitivity, but 

it is often found together with other resistance mechanisms. 

1.5.3 Metabolic resistance 

After penetration, an insecticide may be metabolised by detoxification pathways into 

a non-toxic molecule or a form that can be eliminated rapidly from the insect body 

(Fukuto, 1990). These reactions often occur faster in resistant strains due to enhanced 

levels of detoxification enzymes such as esterases, cytochrome P450s and 

glutathione S-transferases (GST) (Hemingway and Ranson, 2000; Hemingway et al., 

2004) (Figure 1.3). 

Esterases 

Esterases are enzymes that hydrolyse/sequester ester bonds and are an important 

mechanism to detoxify insecticides (that contain an ester bond) such as 

organophosphates, carbamates and pyrethroids (Devonshire and Moores, 1982; 

Cahill et al., 1995; Hemingway and Karunaratne, 1998; Wheelock et al., 2005). 

Esterase-based resistance can occur by either/both sequestration and/or increased 

hydrolysis. Sequestration usually occurs when there are increased quantities of an 

esterase present in resistant individuals, whilst increased hydrolysis results from 
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changes occurring in the active site of an enzyme, enabling it to hydrolyse 

insecticidal esters more effectively (Devonshire and Moores, 1982; Oakeshott et al., 

2005; Wheelock et al., 2005). In Lucilia cuprina organophosphate resistant 

acetylcholinesterase may be protected by carboxylesterase E3 via phosphorylation 

(Chen et al., 2001). 

Cytochrome P450s 

Cytochrome P450s are haem proteins (Omura and Sato, 1964), involved in many 

biosynthetic pathways including the oxidation of xenobiotics (e.g. insecticides) 

(Nelson et al., 1996). Xenobiotic oxidation was first reported in the endoplasmic 

reticulum of rabbit liver (Axelrod, 1955; Brodie et al., 1955). It was subsequently 

found that the pigment from pig and rat liver when saturated with carbon dioxide had 

a discernible peak of absorbance at a wavelength of 450 nm (cited by Omura and 

Sato, 1964). P450s follow a general detoxification pathway as represented below: 

Xenobiotic (X) + NADPH + H
+
 + O2 → XO + NADP

+ 
+ H2O 

In this reaction one atom of molecular oxygen is incorporated into a xenobiotic (X) 

and a second atom of oxygen is reduced to produce a molecule of water. The 

resulting XO molecule may be less toxic and/or more easily excreted. This catalytic 

activity requires two electrons. This electron transportation is usually provided by 

NADPH via cytochrome P450 reductase and cytochrome b5 (Feyereisen, 1999; 

Paine et al., 2005; Murataliev et al., 2008). Cytochrome P450s can be divided into 

several clades according to their similarity and evolutionary pathways. In insects 4 

clades of P450s have been described CYP2, CYP3, CYP4 and mitochondrial-specific 

CYPs. It is reported that P450s from the CYP3, CYP4 and the mitochondrial CYP 

clades are most frequently involved in conferring insecticide resistance (Claudianos 
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et al., 2006; Feyereisen, 2006). Enhanced expression of specific P450s confers 

resistance to insecticides in many crop pest species with two examples CYP6CY3 in 

Myzus persicae (Bass et al., 2013) and CYP6CM1 in Bemicia tabaci (Karunker et 

al., 2008).  

Esterases and P450s which act directly on the insecticidal molecule are considered 

“phase 1” metabolic enzymes.  

Glutathione S-transferases 

Another class of enzymes, the glutathione S-transferases (GSTs), are usually 

considered “phase 2” enzymes because they act on primary or secondary metabolites 

of the insecticide rather than the intact insecticide itself. They catalyse the 

conjugation of glutathione to the electrophilic centers of xenobiotics which produces 

formation of a water-soluble product. Additionally, GSTs are also involved in 

insecticide binding and sequestration (Li et al., 2007). There are three groups of 

GSTs: cytosolic, microsomal and mitochondrial (Lumjuan et al., 2007). The Delta 

and Epsilon classes of the cytosolic group are specific to insects and may be related 

to GST-caused insecticide resistance (Lumjuan et al., 2005, Strode et al., 2008). 

High levels of GST activity have been recorded in some resistant insects such as 

houseflies (Motoyama and Dauterman, 1975; Ottea and Plapp, 1984) and resistance 

development mediated by enhanced GST activity has been confirmed (Fournier et 

al., 1987; Zhu et al., 2007). 
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Figure 1.3 Schematic diagram of detoxification pathways whereby insecticides 

are converted to less lipophilic metabolites through phase 1 and phase 2 

metabolic reactions. (adapted from Kranthi, 2005). 

1.5.4 Target-site resistance 

Target site resistance is usually the consequence of mutations in genes encoding 

insecticide target proteins, for example, the voltage-gated sodium channel which is 

the target for pyrethroid insecticides; the γ-aminobutyric acid (GABA) receptor, the 

target for cyclodienes etc; acetylcholinesterase (AChE) the target for 

organophosphates and carbamates and the nicotinic acetylcholine receptor (nAChR) 

the target for neonicotinoids, which is considered further below (Williamson et al., 

1996; ffrench-Constant et al., 1993; Walsh et al., 2001; Tomizawa and Casida, 2003; 

Bass et al., 2011).  

Acetylcholine (ACh) is a neurotransmitter which is contained in synaptic vesicles of 

presynaptic axons. The arrival of a nerve impulse leads to release of acetylcholine 

into the synaptic cleft, it then diffuses into the postsynaptic membrane where it binds 

This text box is where the unedited thesis included the following third party 

copyrighted material:  
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to specific receptors, the nAChRs, which are ligand-gated ion channels causing 

membrane electrical depolarization and propagation of the nerve impulse. nAChRs 

are members of the cys-loop ligand-gated ion channel superfamily and are composed 

of five subunits arranged around a central pore (Sine and Engel, 2006). Each subunit 

shares a similar structure, composed of three main regions, 1) a large hydrophilic N-

terminal region that protrudes into the synaptic cleft and has the ligand binding site, 

2) four hydrophobic transmembrane regions M1-M4 of which M2 is thought to line 

the channel pore and 3) a hydrophilic segment between M3 and M4 that is exposed 

to the cytoplasm of the cell and carries phosphorylation sites important in regulation 

and desensitisation of the receptor (Unwin, 1989; Wagner et al., 1991; Miles et al., 

1994; Hucho et al., 1996). There are two kinds of subtypes of vertebrate nAChR; the 

muscular subtype (Torpedo) which consists of α2βγδ in embryonic muscle and α2βδε 

in adult muscle and the neuronal subtype which has greater subunit diversity being 

composed of  α2-α10 and β2-β4 subunits expressed in vertebrate brain and ganglia 

(Arias, 2000; Millar, 2003). nAChR subunits have been identified from many insects 

and classified as α or β according to the presence or absence respectively of two 

cysteine residues that form a disulphide  loop (Kao et al., 1984);  however,  little is 

known about subunit diversity in vivo.  

1.6 Sensitivity of honey bees to pesticides  

There are some contradictory theories on how tolerant bees are to pesticides. Since 

the honey bee genome was sequenced (Honey bee Genome Sequencing Consortium, 

2006), more is known about their metabolic systems, especially the detoxification 

pathways of potential xenobiotics. The honey bee genome contains a smaller number 

of genes encoding detoxification enzymes than the published genomes of Drosophila 

melanogaster and Anopheles gambiae with only 46 P450 genes, 24 carboxylesterases 
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and 10 glutathione S-transferases present in the honey bee, compared to 85 P450 

genes, 35 carboxylesterases and 38 glutathione S-transferases for D. melanogaster 

and 106 P450 genes, 51 carboxylesterases and 31 glutathione S-transferases for A. 

gambiae. It has been suggested that this reduction in detoxification diversity may 

make honey bees more susceptible to xenobiotics than other insects (Claudianos et 

al., 2006). However, a lower number of detoxification genes does not necessarily 

correspond to lower detoxification activity (Hardstone and Scott, 2010). Bioassay 

and biochemical data from various studies have shown that both P450s and 

carboxylesterases are responsible for pesticide metabolism in honey bees. For 

example, studies using P450 inhibitors indicated that P450s have an important role in 

detoxification (Yu et al., 1984; Pilling et al., 1995; Suchail et al., 2003). In line with 

other insects, P450 genes in the honey bee genome group into four clades, CYP2, 

CYP3, CYP4 and mitochondrial CYPs. P450s in the CYP3 and CYP4 clades have 

been commonly associated with insecticide resistance in a range of insect species 

(Feyereisen, 2005). In particular the CYP3 clade includes the CYP6 and CYP9 

families that have been shown to participate in detoxification of a range of 

xenobiotics including pesticides. It has been reported that P450s of the CYP9Q 

family are responsible for tau-fluvalinate detoxification in the honey bee midgut 

(Mao et al., 2011). Although the total CYP gene complement is lower in honey bees 

compared to other insects, the CYP 6 family contains 43% of all honey bee P450s.  

In terms of the target-site of neonicotinoid insecticides the nAChR, A. mellifera has 

11 nAChR subunit genes (Amelα1-9 and Amelβ1-2), a similar number to D. 

melanogaster (10 subunit genes) and A. gambiae (10 subunit genes) (Satelle et al., 

2005; Jones et al., 2005; Jones et al., 2006). Although these insects have a smaller 

number of subunit genes than birds and mammals (17 subunit genes) (Millar et al., 



18 
 

2003) subunit diversity can be increased by alternative splicing (Stetefeld and Ruegg, 

2005) and mRNA A-to-I editing (Seeburg, 2002). Jones et al. (2006) have shown, 

using RT-PCR that Amelα4 has two alternative splice forms for exon 4 which are 

differentially expressed during the honey bee life cycle. Moreover, there are two 

variants for Amelα3 (long and short variants) which have TM3-TM4 intracellular 

loops that differ in length by 13 amino acid residues. mRNA A-to-I editing may also 

serve to increase subunit diversity (Jones et al., 2007). 

 1.7 Background of research 

Following the latest incidents of honey bee losses, the role of insecticides has been 

widely vocalised in public discussion platforms. It is sometimes believed that honey 

bees are defenceless organisms that will be killed by all insecticides. However, an 

extensive number of studies found honey bees to be no more sensitive to numerous 

insecticides than other insect species, but their metabolic capacity may be limited. 

Since the honey bee genome has been published, it is known that detoxification 

genes are relatively lower in number than other insects but other studies have shown 

that certain genes play an important role in defence mechanisms of the honey bees 

against specific insecticides (in-hive). This PhD study aims to demonstrate, honey 

bees may have intrinsic mechanisms that provide protection against certain 

insecticide classes. 

1.8 Aims and Objectives 

The overall aim of this project is to characterise the molecular and biochemical 

mechanisms of defence against pesticides in the honeybee. 

This may be sub-divided into two main objectives: 
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1) Determination of the metabolic enzymes conferring the primary defence to 

select ‘less toxic’ insecticides, with a focus on esterases and P450s: 

a. Esterases – use the ‘interference assay’ (Khot et al., 2008) to 

determine the interactions between esterases and insecticides, to 

determine if bee esterase has the capability to inhibit/bind toxicants 

conferring defence mechanism. 

b. P450s – identify defence P450(s) by microarray analyses following 

exposure to sub-lethal concentrations of insecticides, to determine if 

the upregulation of genes encoding metabolic enzymes protects honey 

bees by detoxifying that insecticide Any candidate genes will be 

heterologously expressed and the interaction between the P450 and 

insecticide characterised by functional assays.  

c. Synergism studies - investigate phase 1 metabolic enzyme(s) 

responsible for defence by bioassaying bees with PBO and EN16/5-1. 

2) Investigation of the sensitivity of different honey bee races/castes to 

neonicotinoid insecticides. If differential sensitivity in bee races/castes is 

found then the underlying molecular mechanisms will be explored by: 

a.  Sequencing nAChR subunits to examine if qualitative changes 

(mutations) in the target-site are associated with insensitivity. 
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b. Transcriptome profiling of different bee races using microarrays to 

examine if qualitative changes in gene expression are associated with 

insensitivity (such as genes encoding P450s and nAChR subunits). 

c. Synergism studies and biochemical analyses to assess the metabolic 

defence of different bee races/castes  
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2. GENERAL MATERIALS AND METHODS 

2.1 Oligonucleotide Primers 

Oligonucleotide primers were designed using Primer3web version 4.0.0 

(http://primer3.ut.ee/) and custom synthesised by Sigma-Aldrich. They were 

dissolved in nuclease-free water to a final stock concentration of 100 µM and used to 

prepare working concentrations of 10 µM for PCR and sequencing and 5 µM for 

qRT-PCR.  

2.2 Plasmid Vectors 

The strataClone PCR cloning vector pSC-A-amp/kan (Agilent Technologies) was 

used for standard cloning. For expression of P450s, the pCW-ori+ vector was used 

and for the expression of P450 reductase (from Anopheles gambiae), the vector 

pACYC184 was used; both were obtained from Liverpool School of Tropical 

Medicine. 

2.3 Bacterial Strain 

The Eschericia coli strain JM109 was obtained from Sigma-Aldrich.  

2.4 Honey Bee Strains 

This study was conducted with four different honey bee races (Table 2.1): Apis 

mellifera ligustica, Apis mellifera caucasica and Apis mellifera buckfast which were 

kindly supplied by Prof H. Vasfi Gencer (Ankara University Agricultural Faculty, 

Turkey). Hives were maintained and checked regularly by beekeepers before bee 

collections to ensure they were disease and pest free. Bees were placed in 

RNAlater/on dry ice and transported from Ankara University to Rothamsted 
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Research.  All studies with bee races from Turkey were carried out at Rothamsted 

Research with the exception of in vivo assays. 

Apis mellifera carnica was provided by the AgroEcology Department, Rothamsted 

Research. All Rothamsted Research hives were treated with Fumidil (an antibiotic to 

treat Nosema disease) in September, and treated with Apiguard (to reduce Varroa 

mite) in August and September by the beekeeper. The colonies were checked weekly 

between April and September, given more boxes/space as required, honey taken off 

for extraction during the summer, and fed sugar syrup in the Autumn to maintain 

survival. 

Table 2.1 Origins of Apis mellifera races. 

Bee Race Origin Subspecies 

Apis mellifera carnica Rothamsted Research, UK Western 

Apis mellifera ligustica Ankara University, Turkey South-west of Europe 

Apis mellifera caucasica Ankara University, Turkey Middle East 

Apis mellifera buckfast Ankara University, Turkey Cross of several subspecies* 

*Buckfast bees are a bee ‘strain’ containing heritage from several A. mellifera 

subspecies that was developed by Brother Adam at Buckfast Abbey (Bee keeping at 

Buckfast Abbey, 2014). 

2.5 Insect Bioassays 

2.5.1 Full dose contact toxicity bioassays 

Worker honey bees were transferred to plastic cages after anesthetising with CO2 (ten 

honey bees per cage, at least three replicates per insecticide dosage). For each cage a 

reservoir of 50% sucrose in water was available for ad lib feeding. Prior to treatment 

bees were anesthetised by exposure to low levels of CO2 and then placed in a circular 
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plastic container which allowed release of CO2 from the bottom to keep the bees 

inactive during treatment. Each bee was topically dosed with either insecticide in 

acetone or acetone alone applied to the dorsal thorax using a Burkard 

microapplicator (Burkard, Rickmansworth, UK). All treated bees were maintained at 

25
o
C in the dark. All bioassays were scored after 24 h and if any bees were not 

walking or flying they were counted as dead.  

2.5.2 Full dose oral response bioassays 

For oral toxicity tests, technical grade thiacloprid (Sigma Aldrich) was firstly 

dissolved in acetone and then combined with sucrose syrup (50%) in water. Worker 

bees were exposed to a range of thiacloprid concentrations while control groups were 

exposed to acetone combined with sucrose syrup for 24 hours through oral feeding; 

the amount of treated diet consumed by each cage was measured by weight. All 

treated bees were maintained at 25
o
C in the dark. All bioassays were scored after 24 

h and if any bees were not walking or flying they were counted as dead.  

2.5.3 Statistical Analysis 

The data for full dose contact and oral bioassays were analysed using a 4 parameter 

non-linear fit (Grafit 3.0, Leatherbarrow). The curves and LD50 values were 

generated using 4 parameter logistic equation given below, where a is the maximum 

y range, and s is a slope factor: 

Y= a/1+(x/IC50)s + background 

When the curve is fitted and the equation resolved, then values of y can be entered 

for values of x (i.e. if y= 5% mortality, what is the concentration (x)). 
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2.6 Biochemical Methods 

2.6.1 Total protein assay (Bradford protein assay) 

Protein measurements were carried out using the Bradford Protein Assay (Bradford, 

1976) with bovine serum albumin used as a standard. 10 µL replicates of bee 

homogenate were mixed with 200 µl Bradford Reagent (Sigma-Aldrich) in a separate 

microplate (NUNC, maxisorb). After 20 minutes incubation at room temperature, 

readings were taken at 595 nm using a SpectraMax 250 microplate reader (Molecular 

Devices, Menlo Park, CA).   

2.7 Molecular Methods 

2.7.1 Standard polymerase chain reaction (PCR) protocol 

Each PCR reaction (total volume 20 µL)  was carried out in 0.2 mL tubes and 

consisted of: 10 µL DreamTaq Green PCR Master Mix (2X) (Thermo Scientific), 7 

µL nuclease-free water, 1 µL of each forward and reverse primers (10 µM) and 1 µL 

of cDNA or gDNA template. PCR was performed in a thermal cycler (G-storm) 

using the following conditions: 2 minutes at 94°C (initial denaturation) then 35-40 

cycles of 30 seconds at 94ºC (denaturation), 30 seconds at the specific annealing 

temperature and 1.20 minutes at 72ºC (extension) with a final extension step at 72°C 

for 5 minutes. When required, the primary PCR products were used as templates for 

a second nested PCR reaction.  

2.7.2 Gel electrophoresis 

DNA (PCR products, digestion products) and RNA were examined by 

electrophoresis. 1% agarose gels were prepared with the addition of ethidium 

bromide (Sigma-Aldrich) in 1X TAE (Tris Acetate EDTA) buffer (Appendix 9.1.1) 

for digestion products or a 1X TBE (Tris Borate EDTA) buffer (Fisher Scientific) 
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(Appendix 9.1.1) for PCR products and RNA. For 1% agarose gel, 0.5 mg agarose in 

50 mL TBE or TAE was mixed in a flask and melted in a microwave. When the 

solution was cooled down to handling temperature, 5 µL of 10 mg/mL ethidium 

bromide was added. This was transferred to a casting system and left to set at room 

temperature.   When DreamTaq Green (which contains a loading dye) (Thermo 

Fisher Scientific) was not used as the master mix, samples were mixed with 1/10 

volume of 6X loading dye (Thermo Fisher Scientific). Samples were run in the same 

buffer as the gel at a voltage of 100V for approximately 45 minutes with GeneRuler 

100 bp or 1 kb ladder (Thermo Fisher Scientific) run as a DNA standard. The gels 

were visualised on an UV transilluminator. 

2.7.3 Purification of gel and PCR products 

To purify gel and PCR products the Wizard
®
 SV Gel and PCR Clean-up System 

(Promega) was used. The desired band was excised from the agarose gel with a 

sterilized, sharp blade under a blue light transilluminator and placed in a pre-weighed 

1.5 mL Eppendorf tube. Membrane binding solution (1 µL per 1 mg gel slice) was 

added to the gel slice which was then melted at 50-65°C on a heat block (with 

vortexing at regular intervals). For PCR product preparation, the membrane binding 

solution was mixed with an equal amount of PCR product. After the preparation step, 

samples were loaded into an SV Minicolumn system and centrifuged at 13,000 rpm 

for 1 minute on a desktop centrifuge to bind the DNA to the filter column. Two 

washing steps were then carried out with membrane wash solution using 700 µL for 

the first step and 500 µL for the second step.  The washes were removed by spinning 

at 13,000 rpm for 1 minute and 5 minutes, respectively with the flow through 

discarded after each step. DNA was eluted from the filter column with 30 µL of 

nuclease-free water by spinning the column at 16,000 × g for 1 minute. 
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2.7.4 PCR cloning 

PCR products were cloned using StrataClone PCR cloning kit (Agilent 

Technologies) for cloning Taq DNA polymerase-amplified PCR products. Cloning 

steps were performed according to the manufacturer’s protocol.  

Ligation 

PCR products were ligated into the pSC-A-amp/kan cloning vector with 2 µL PCR 

product (5-50 ng), 3 µL of StrataClone Cloning Buffer and 1 µL StrataClone vector 

mix added to a 1.5 mL Eppendorf tube and incubated at room temperature for 5 

minutes before being placed on ice.  

Transformation 

After the ligation step, 1 µL of cloning reaction was transformed into StrataClone 

SoloPack competent cells which carry the lacZΔM15 mutation (allowing blue/white 

selection to take place (in conjunction with X-gal)). The ligation/cell mixture was 

incubated on ice for 20 minutes followed by a heat-shock step at 42°C for 45 seconds 

then immediately transferred to ice for 2 minutes. After adding 250 µL of warm LB 

medium (Appendix 9.1.1), samples were incubated for 1 hour at 37°C with shaking 

(200 rpm). 100 µL of the transformation mix was plated on LB/ampicillin (50 

mg/mL) agar plates with 40 µL of 2% X-gal (5-bromo-4-chloro-indolyl-β-D-

galactopyranoside) and incubated overnight at 37°C. White colonies were selected 

and analysed by single colony PCR using the plasmid specific primers T3 and T7 or 

M13F/R that flank the cloning site and using the standard PCR protocol (see above) 

before they were screened on a 1% agarose gel. A single colony containing the insert 

was picked and grown in 5 mL LB/ampicillin media overnight at 37°C with shaking.  
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Plasmid DNA minipreps  

Plasmid DNA was extracted from overnight 5 mL cultures using GeneJET Plasmid 

Miniprep kit (Thermo Scientific) following the manufacturer’s protocol. Cells were 

pelleted by centrifugation (4,000 rpm, 4 minutes, 4°C) and the supernatant was 

removed. The pellet was resuspended in 250 µL of resuspension solution and 

transferred to a 1.5 mL microcentrifuge tube before 250 µL of lysis solution was 

added. After mixing by inverting the tube, 350 µL of neutralization solution was 

added and the tube mixed again by inversion. After spinning for 5 minutes at 13,000 

rpm to remove cell debris and chromosomal DNA, the supernatant was loaded onto 

the GeneJet spin column and centrifuged for 1 minute at 13,000 rpm. The column 

was then washed twice with 500 µL of the wash solution with centrifugation for 1 

minute at 13,000 rpm between each wash. The remainder of the wash solution was 

removed by centrifugation as above. The column was placed in a clean 1.5 mL 

microcentrifuge tube and 50 µL of the elution buffer was added. The column was 

incubated at room temperature for 2 minutes before it was centrifuged for 2 minutes 

as above to elute the plasmid DNA. The quantity and quality of this was then 

checked with a NanoDrop 1000 spectrophotometer. 

2.7.5 Extraction of total RNA  

RNA was extracted from a pooled sample of four honey bees using the Bioline 

Isolate II RNA Mini Kit (Bioline Reagents) following the product manual with minor 

modification. Bees were ground to a fine powder in liquid nitrogen using a pestle and 

mortar. To ~30 mg of powdered sample, 350 µL of lysis buffer RLY and 3.5 µL of 

β-ME was added and mixed by vortexing before centrifugation at 16,000 x g for 10 

minutes. The cell - lysis supernatant was then applied to Isolate II filter and 

centrifuged at 11,000 x g for 1 minute to clean the lysate. The filter was then 
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discarded and the clean lysate was mixed with 350 µL of 70% ethanol and directly 

transferred to an Isolate II RNA mini column and centrifuged at 11,000 x g for 30 

seconds. The column was desalted by adding 350 µL of membrane desalting buffer 

and then dried by centrifugation at 11,000 x g for 1 minute. DNase I reaction mixture 

was prepared as described in the protocol, and 95 µL of this was added to the centre 

of the membrane before it was incubated at room temperature for 15 minutes. The 

column was washed by adding 200 µL of wash buffer RWI, 600 µL of wash buffer 

RW2 then 250 µL of wash buffer RW2. The column was centrifuged at 11,000 x g 

for 30 seconds between the first 2 washing steps then for 2 minutes after the 3
rd

 

washing step to dry the column. The column was then placed in a 1.5 mL 

microcentrifuge tube and RNA was eluted with 30 µL RNase-free water 

(centrifugation at 11,000 x g for 1 minute). RNA quantity and quality were checked 

with a NanoDrop 1000 spectrophotometer.  

2.7.6 cDNA synthesis 

First strand cDNA was synthesised from total RNA using Superscript
TM

 III Reverse 

Transcriptase (Invitrogen). To 4 µg of RNA, 1 µL random primers (50 ng/µL), 1 µL 

dNTP mix (10mM) and nuclease-free water (up to 13 µL) were added and the 

reaction was incubated at 65ºC for 5 minutes, and then on ice for 1 minute. To this, 4 

μL 5X First-Strand buffer, 1 μL 0.1M DTT, 1 μL RNaseOUTTM Recombinant 

Ribonuclease Inhibitor (Invitrogen, 40 units/µL) and 1μL SuperScriptTM III RT were 

added and incubated at 25ºC for 5 minutes and then terminated at 50ºC for 60 

minutes. Finally the reaction was stopped by incubation at 70ºC for 15 minutes and 

samples chilled on ice. 
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2.7.7 Quantitative real time PCR (qRT-PCR) 

Microarray results were validated by qRT-PCR for selected genes. Primers were 

designed to amplify products of 90–150 bp in length. All the primer pairs tested had 

efficiency between 90 and 110%. Each PCR reaction consisted of 4 µL of cDNA (10 

ng), 5 µL of SensiMix SYBR Kit (Bioline Reagents) and 0.5 µl of each forward and 

reverse primer (0.25 µM). The experiment was performed on a Rotor-Gene 6000 

(Corbett Research) using the following cycling conditions: 10 minutes at 95°C 

followed by 40 cycles of 95°C for 15 seconds, 60°C for 15 seconds and 72°C for 20 

seconds. A final melt-curve step was included post-PCR (ramping from 72°C to 

95°C by 1°C every 5 seconds) to confirm the absence of any non-specific 

amplification. The efficiency of PCR for each primer pair was assessed using a serial 

dilution from 100 ng to 0.01 ng of cDNA. Each qRT-PCR experiment consisted of at 

least three independent biological replicates with two technical replicates for each. 

Data were analysed according to the ΔΔCT method (Pfaffl 2001), using the 

geometric mean of three selected housekeeping genes (ef1 (elongation factor-1), tbp 

(tubulin) and actin) for normalisation according to the strategy described previously 

(Vandesompele et al., 2002). 

2.7.8 Microarray analysis 

Using the official honey bee coding sequence gene set release 1 (~10,000 genes), and 

a manually curated file comprising genes encoding detoxification enzymes, an 

expression array of 15744 elements was designed using Agilent Technologie’s 

eArray online software (https://earray.chem.agilent.com/earray/). A SurePrint HD 

(8x15k) expression array was designed using the Agilent eArray platform. The base 

composition and best probe methodologies were selected to design sense orientation 
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60-mer probes with a 3′ bias. The OGS CDS 1 was used as the reference 

transcriptome to eliminate potential probe sequences that would have significant 

cross-hybridization with targets other than the one of interest. In the case of 

detoxification genes (P450s, GSTs and CEs) three alternate probes for each EST 

were designed. 

 Prior to microarray experiments the quality and quantity of RNA was checked using 

a nanodrop spectrophotometer and by running an aliquot on a 1.5% agarose gel. For 

the latter, RNA was mixed with 1x loading buffer (95% formamide; 0.025% xylene 

cyanol; 0.025% bromophenol blue; 18 mM EDTA; 0.025% SDS), heated for 5 

minutes at 65°C and briefly chilled on ice prior to loading. Two micrograms of each 

RNA was used to generate labelled cRNA, which was hybridised to arrays and these 

were washed and scanned as described in the Agilent Quick Amp Labeling Protocol 

(Version 5.7). The microarray experiments consisted of four/five biological 

replicates and for each of these, hybridisations were completed in which the Cy3 and 

Cy5 labels were swapped between samples to avoid any dye effects. 

Microarrays were scanned at the University College of London with an Agilent 

G2565CA scanner and fluorescence intensities of individual spots were obtained 

using the Agilent Feature Extraction software with default Agilent parameters.  Data 

were analysed using GeneSpring GX software and using the t-test against zero 

function. Genes were considered differentially expressed if they had a p value of 

<0.05 and a fold change (up or down) of greater than 1.5. A less stringent approach 

was used in this study in the selection of the fold-change cut-off than in previous 

studies where a fold change value (FC>2) is commonly used. In this thesis a FC >1.5 

was used as a relatively small number of genes were identified as differentially 
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expressed and we wished to capture even more subtle changes in gene expression 

associated with insecticide exposure. It is important to stress that the expression of 

all candidate genes, even those which showed an change in expression <2-fold were 

experimentally validated by qRT-PCR. 
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3. CHARACTERISING THE BIOLOGICAL AND BIOCHEMICAL 

RESPONSE OF HONEY BEE PHASE 1 DETOXIFICATION ENZYMES 

3.1 Introduction 

As for other insects, honey bees have several superfamilies of enzymes that have the 

capacity to detoxify xenobiotics including pesticides. These include esterases, P450s 

and glutathione S-transferases.  

Esterases and P450s as phase 1 metabolic enzymes (i.e. act directly upon the intact 

insecticide) have been reported to metabolise a variety of insecticides such as 

organophosphates, carbamates, pyrethroids and neonicotinoids (Devonshire et al., 

1998; Stok et al., 2004; Feyereisen, 2005).  

Esterases contribute to metabolism through hydrolysis and/or sequestration whilst 

P450s catalyse oxidation of xenobiotics in the presence of electron donors (CPR and 

cyt b5) (Oppenoorth, 1985; Feyereisen, 1999). P450 and esterase involvement of 

pyrethroid metabolism in honey bees has been demonstrated by synergistic 

interactions e.g. the toxicity of deltamethrin was enhanced when bees were treated 

with a mixture of the P450 inhibitor fungicide prochloraz and deltamethrin (Colin 

and Belzunces, 1992). P450 and esterase associated metabolism of lambda-

cyhalothrin was also screened in the presence of prochloraz and the observation of a 

metabolite of esterase hydrolysis (Pilling and Jepson, 1993; Pilling et al., 1995). 

Further, Johnson et al. (2006) tested the tolerance of honey bees to pyrethroids in the 

absence and presence of ‘specific’ detoxification enzyme inhibitors and the 

involvement of three main detoxification enzymes in pyrethroid metabolism was 

reported as mainly due to P450s, followed by esterases, with GSTs having little 

effect on detoxification. 
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Similar synergistic interaction studies were assayed on bees using neonicotinoids. 

Triflumizole (14α-demethylase inhibitor fungicide) enhanced the toxicity of 

acetamiprid and thiacloprid (cyano substituted) in laboratory studies. Additionally,  

PBO synergism of thiacloprid was found to be much higher than synergism of 

imidacloprid (nitro-substituted),  suggesting that P450s are a significantly more 

important mechanism for cyano-substituted neonicotinoids compared to nitro-

substituted neonicotinoids (Iwasa et al., 2004).  

The role of esterase (E4) in insecticide detoxification in Myzus persicae was 

characterised by Devonshire (1977) as the organophosphate resistance-associated 

isozyme which offers a broad spectrum resistance in aphids by both ester hydrolysis 

and sequestration (Devonshire, 1977; Devonshire et al., 1982). The inhibition of E4 

by PBO, which can be demonstrated by in vivo bioassays, is not easily observed with 

simple in vitro spectrophotometric assays using model substrates such as esters of 1-

naphthol. However, by using the interference assay reported by Khot et al. (2008), 

esterase inhibition and/or binding can be observed in vitro (Bingham et al., 2008). 

Piperonyl butoxide (PBO) has been used as a synergist to increase the efficacy of 

insecticides for many years (Casida, 1970; Wilkinson et al., 1984). Since its 

inhibition of both phase 1 metabolic enzymes (esterases and P450s) was reported, it 

has also been used to control resistant pests in the laboratory and field, and, in 

combination with its analogue EN 16/5-1, as a discriminating tool to characterise 

metabolic resistance (Gunning et al., 1998; Moores et al., 1998; Young et al., 2005; 

Young et al., 2006; Moores et al., 2009).  
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Despite tau-fluvalinate and thiacloprid having considerably lower toxicity to honey 

bees than many other pyrethroids and neonicotinoids, it has been reported that P450 

inhibition following exposure to PBO may enhance their toxicity to honey bees 

(Johnson et al., 2006; Iwasa et al., 2004). However, since it has been shown that 

PBO can inhibit both phase 1 detoxification enzymes, PBO synergism alone is not 

sufficient to indicate P450 detoxification (Moores et al., 2009). 

This study was conducted to test binding of semi-purified esterase from honey bee 

with two pyrethroids (tau-fluvalinate and α-cypermethrin) and two neonicotinoids 

(imidacloprid and thiacloprid). Resistance-associated esterase E4 from Myzus 

persicae was used as a control enzyme for binding studies to demonstrate the 

‘blockade’ of an esterase by insecticide or synergist. Also, in vitro experiments were 

carried out to measure the potency of synergists as inhibitors of oxidase activity of 

honey bees. Metabolic metabolism of two relatively less toxic insecticides, tau-

fluvalinate and thiacloprid, was characterised by differential synergist studies using 

PBO in combination with its analogue EN 16/5-1 (Moores et al., 2009). Further, 

semi-purified esterase from honey bee was tested for the ability to bind to both 

synergists. 

3.2 Materials and Methods 

3.2.1 Insects 

Worker bees were collected from the entrance of the hive using a rechargeable 

vacuum collector and kept in a bee housing cage (Bioquip, California). They were 

then distributed to plastic containers for assays following anaesthetic (CO2) for no 

more than 2 minutes. Drones and dead bees were removed from the containers. Two 

separate honey bee strains from different locations were collected: A. mellifera 
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carnica was tested for tau-fluvalinate studies while A. mellifera buckfast was utilized 

for thiacloprid studies (see section 2.4, Chapter 2). 

3.2.3 Insect bioassays  

3.2.3.1 Full dose contact toxicity bioassay 

To obtain a suitable discriminating dose of insecticide to combine with synergists, 

full dose response assays were carried out using a range of thiacloprid concentrations 

and tau-fluvalinate concentrations (see section 2.5.1, Chapter 2). 

Full dose-response bioassay results of Apis mellifera carnica against tau-fluvalinate 

were analysed by probit analysis using the statistical programme PC Polo Plus 

(LeOra, Software, Berkeley, USA). Polo Plus programme calculated the 

concentrations required to kill 50% of the population, 95% confidence intervals (CI 

95%), slopes with standard errors (SE), chi-square (X
2
) and degrees of freedom (df). 

3.2.3.2 Discriminating dose response bioassays 

To investigate synergism activity, bioassays were carried out using a discriminating 

dose of thiacloprid or tau-fluvalinate obtained from the full dose response bioassays 

as described above. Each bee was dosed topically with either 1 µl of 1% PBO in 

acetone, 1 µl of 1% EN 16/5-1 in acetone or 1 µl acetone alone and then allowed to 

rest for 2 hours to provide time for transport of the compound into the insect system. 

Afterwards 1 µl of 0.5 µg (LD25) thiacloprid or 10 g L
-1

 tau-fluvalinate (5 µg per bee) 

tau-fluvalinate in acetone or acetone alone as control was applied topically. All 

treated bees were stored and scored as described in section 2.5.1, Chapter 2. 
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3.2.4 Enzyme assays  

3.2.4.1 Esterase purification 

Non-specific esterase was purified from honey bees using the method developed by 

Devonshire (1977), with some modification. 70 honey bees without heads were 

homogenised in 20 mL 0.02 M phosphate buffer (pH 7.0) and centrifuged at 10,000 x 

g for 5 minutes. Supernatant was passed through a Sephadex G-25 column 

(Amersham Biosciences) and proteins eluted with 0.02 M Tris/HCl buffer pH 8.5. 

Protein fractions were further purified by ion exchange chromatography using a 

DEAE Sepharose Fast Flow column and eluted with a linear 0-0.35 M NaCl gradient 

in 500 mL of 0.02 M Tris/HCl (pH 8.5). Fractions were tested for esterase activity 

using 1-naphthyl acetate and those containing the highest levels were pooled and 

concentrated by centrifugal filters (Amicon Ultra, 30K). 

3.2.4.2 Esterase inhibition (Esterase interference assay) 

To examine the interactions of purified honey bee esterase/esterase E4 with PBO and 

insecticides, an esterase ‘interference assay’ was carried out as described by Khot et 

al. (2008). Briefly, stock solutions of synergist and insecticide (1% in acetone) were 

pre-incubated with purified esterase for 1 hour at 4°C. Aliquots (15 μL) of esterase, 

esterase+PBO, esterase+insecticides were incubated for 1 hour with 60 μL of serial 

dilutions of azamethiphos in 0.02 M phosphate buffer, pH 7.0, in separate wells of a 

NUNC microplate. Aliquots (25 μL) of housefly head homogenate (source of AChE) 

were added to each well and incubated for 15 minutes at room temperature. Esterase 

in acetone and buffer only served as the positive and negative controls respectively. 

AChE activity was measured at 405 nm using a Tmax kinetic microplate reader 

(Molecular Devices, Menlo Park, CA). Readings were taken automatically for 10 
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minutes at 10 seconds intervals. The rate (mOD min
−1

) was calculated by the 

integrated software Softmax Pro 5.2. Concentrations to inhibit 50% of the enzyme 

activity (IC50) were calculated using Grafit 3.0 (Leatherbarrow, Erithacus Software). 

All treatments were performed in triplicate.  

3.2.4.3 Microsomal preparation 

After collection using a vacuum aspirator, bees were anesthetised with ether. 

Because of suspected P450 inhibitor ‘xanthommatin’ activity, which was detected 

within eye pigment of housefly (Danielson and Fogleman, 1994), heads were 

removed using a scalpel and samples were kept on ice during experiments. To 

prepare microsomes, 50 worker bees were homogenised in sodium phosphate buffer, 

pH 7.6, 0.1 M with protease inhibitors (1 mM EDTA, 1 mM DTT, 1 mM PTU and 1 

mM PMSF) using a motorised homogeniser. Samples were centrifuged at 35000 rpm 

at 4ºC for 1 hour. The supernatant was discarded and the pellet resuspended in 2 ml 

sodium phosphate buffer containing protease inhibitors.  

3.2.4.4 Fluorometric kinetic oxidase assay 

O-deethylation inhibition was measured according to the protocol as described by de 

Sousa et al. (1995). Fifty µl of resuspended microsomal pellet were added to the 

wells of a 96-well microplate (Perkin Elmer, white). Subsequently, 80 µL of 0.5 mM 

7-ethoxycoumarin in sodium phosphate pH 7.8, 0.1 M was added and the plate 

incubated for 5 minutes at 30ºC, followed by 10 µl of 9.6 mM NADPH in sodium 

phosphate pH 7.8. The plate was read using 370 nm excitation and 460 nm emmision 

for 1 hour at 30 seconds intervals using a fluorometer (SpectraMax Gemini XPS, 

Molecular Devices, Menlo Park, CA). 
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3.2.4.5 Intact abdomen oxidase inhibition 

After collection using a vacuum aspirator adult worker honey bees were anesthetised 

with ether. O-deethylation of 7-EC was measured in intact honey bee abdomens 

according to Ullrich and Weber (1972), following the method of de Sousa et al. 

(1995) with some modifications. Five bee abdomens were placed in a 2 mL 

Eppendorf containing either 0.1 M phosphate buffer, pH 7.6 alone, or buffer 

containing 10 mM PBO or buffer containing 10 mM EN 16/5-1. After 10 minutes, 7-

EC was added to give a final concentration of 0.4 mM and incubated with constant 

shaking at 30ºC for 1 hour. An aliquot (100 µL) was taken from the assay mix and 

the reaction stopped by the addition of a mixture of 0.1 mM glycine buffer, pH 10.4 / 

ethanol (1:1; v:v). Fluorescence was measured using 390 nm excitation and 450 nm 

emission. 

3.2.4.6 Protease activity towards ala-ala-ala-pNA 

Protease activity was checked against the substrate ala-ala-ala-pNA. To prepare the 

homogenate different body regions of honey bee (head, thorax and abdomen) were 

separated with a fine scalpel. Each body part was homogenised in 500 µL of 0.05 M 

Tris buffer pH 7.5 and 50 µL of homogenate was added to a microplate (NUNC, 

maxisorb). Following addition of 100 µL of 10 mM substrate in 0.05 M Tris/HCl 

buffer or 100 µL buffer only for controls the plate was read at 405 nm overnight at 

10 minutes intervals using a Thermomax microplate reader (Molecular Devices, 

Menlo Park, CA). 
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3.3 Results 

3.3.1 Insecticide bioassays 

The result of the full dose response bioassay of tested honey bee colony was 

characterised for thiacloprid and is presented in Figure 3.1 where LD50 is 1.86 µg 

(1µl/bee). A discriminating dose (0.5 µg) was derived from this toxicity data plot and 

was applied after pretreatment with either PBO or EN 16/5-1 on the honey bee 

colony. It has been well-documented in the literature that EN 16/5-1 has a reduced 

capacity to inhibit insect P450 activity. This has been used experimentally to 

characterise oxidative resistance in M. persicae against imidacloprid, and in M. 

aeneus against pyrethroids (Moores et al., 2009; Philippou et al., 2010) In both 

cases, these findings have been confirmed by subsequent molecular investigations 

(Puinean et al., 2010; Zimmer and Nauen, 2011).  

 

Figure 3.1 Full dose response bioassay results for thiacloprid on Apis mellifera 

buckfast population. 
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The effect of a 2 hours pre-treatment with either PBO (1%) or EN 16/5-1 (1%) on 

worker honey bees prior to exposure to a discriminating dose of thiacloprid is 

presented in Figure 3.2. In the experiment all control groups (insecticide, PBO or EN 

16/5-1 alone) show no mortality while pretreatment with PBO resulted in 78.3% 

mortality and pre-treatment with EN 16/5-1 resulted in 12.78% mortality. 

 

Figure 3.2 Synergistic effect of PBO and EN 16/5-1 mixed with a discriminating 

dose of thiacloprid on Apis mellifera buckfast population (Error bars represent 

standard error of mean). 

Results from the probit analysis of the full dose-response bioassays of the honey bee 

colony using tau-fluvalinate are presented in Table 3.1. The LD10 (5.5 µg) relates to a 

concentration of 11 g L
-1

; the LD25 (9.8 µg) to 19.6 g L
-1

; and the LD50 (18.5 µg) to a 

concentration of 37 g L
-1

. 
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Table 3.1 Full dose-response bioassay results of Apis mellifera carnica against 

tau-fluvalinate. 

LD10 
a
  95% CI 

b
 LD25 

c
 95% CI 

b
 LD50

d
 95% CI 

b
 Slope df 

e
 Χ

2 f
 

5.5 2.8 – 8.2 9.8 6.3 – 13.6 18.5 13.3 – 27.4 1.86 ± 0.41 18 33.7 

a 
LD10 = lethal dose of tau-fluvalinate to kill 10% of the population (µg/bee) 

b 
CI = confidence limits 

c 
LD25 = lethal dose of tau-fluvalinate to kill 25% of the population (µg/bee) 

d
 LD50 = lethal doseof tau-fluvalinate to kill 50% of the population (µg/bee) 

e
 df = degrees of freedom 

f
 X

2
= chi-square 

Based on the results of the full dose bioassays (Table 3.1), a concentration of 10 g L
-1

 

tau-fluvalinate (5 µg per bee) was chosen as the discriminating concentration for the 

evaluation of synergism by PBO and EN 16/5-1, to give a response of approximately 

10 – 20% mortality.  

The addition of PBO increased the mortality conferred by tau-fluvalinate to around 

90%, whilst that of the PBO analogue, EN 16/5-1, increased the mortality from 

around 20% to just above 30% (Figure 3.3). Although both synergists significantly 

increased mortality above that of tau-fluvalinate alone (P < 0.05), the mortality given 

by the EN 16/5-1 + tau-fluvalinate mixture was not greater than the sum of their 

separate mortalities. In contrast, addition of PBO resulted in a significant increase in 

mortality (P < 0.05), and this mortality was greater than the sum of the individual 

mortalities. 
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.  

Figure 3.3 Synergistic effect of PBO and EN 16/5-1 mixed with a discriminating 

dose of tau-fluvalinate on Apis mellifera carnica population (Error bars 

represent standard error of mean). 

3.3.2 Esterase interferance assay 

The interference assay detects the AChE activity remaining following esterase 

blockade on azamethiphos. If tested insecticide or synergist binds to the esterase, the 

esterase cannot bind to azamethiphos and as a result AChE activity is present (Figure 

3.4). 

The reduced protection of AChE towards azamethiphos provided by the purified 

honey bee esterase following pre-incubation with PBO, EN 16/5-1 and tau-

fluvalinate is shown in Figure 3.5. This shows that PBO (final concentration 0.01%) 

does inhibit, or block, the bee esterase resulting in a loss of sequestration of the 

azamethiphos. However, results with tau-fluvalinate show that the bee esterase does 

not bind to tau-fluvalinate. Since the bee esterase does not bind to tau-fluvalinate, it 

can be surmised that although PBO inhibits bee esterase, this will not result in higher 
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sensitisation. However, it does show that caution would have to be used if PBO were 

used in conjunction with insecticides that are sequestered by bee esterase, as this 

protection would be reduced. The influence of tau-fluvalinate on esterase E4 was 

detected by the same method. In contrast E4 showed binding with tau-fluvalinate 

after 1 hour incubation period (Figure 3.6). Considering the recent structure-activity 

characterisation between E4 and PBO, E4 is the most suitable candidate esterase as a 

control to validate the method for the determination of the esterase binding 

(Philippou et al., 2012).  

 

Figure 3.4 The interaction between the insecticide, target site, synergist/tau-

fluvalinate and esterase enzymes, used as the basis for the ‘esterase interference 

assay’ (Khot, 2009). In this assay esterase activity is detected indirectly by 

measuring AChE activity. A negative symbol denotes an inhibitory action. 

*measured by activity on a model substrate (ATChI). (Reproduced from Khot, 

2009). 

This text box is where the unedited thesis included the 

following third party copyrighted material: 

 

Khot, A. (2009) ‘The use of botanical synergists to 

increase the efficacy of natural pyrethrins’. pp 59, 

PhD thesis, Imperial College, London. 
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Figure 3.5 Binding of honey bee esterases with PBO, EN 16/5-1 and tau-

fluvalinate. 

 

Figure 3.6 Binding of esterase E4 with PBO, EN 16/5-1 and tau-fluvalinate. 

The impact of honey bee esterase on neonicotinoids was determined by the 

interference assay. After 1 hour incubation of bee esterase with each neonicotinoid, 

no sequestration was observed. Purified honey bee esterase failed to bind to α-

cypermethrin, imidacloprid and thiacloprid (Figure 3.7). 
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Figure 3.7 Binding of honey bee esterases to α-cypermethrin, imidacloprid and 

thiacloprid. 

3.3.3 Oxidase assays 

Although measurement of honey bee oxidase activity has been reported (Kezic et al., 

1992) microsomal preparations from honey bee homogenate failed to demonstrate 

any O-deethylation activity (Figure 3.8), perhaps due to strong protease activity (as 

reported in aphids) (Philippou et al., 2010).  

 

Figure 3.8 O-deethylation activity of bee microsomal homogenate 

(homogenate+substrate (hollow circles) and honey bee microsomal homogenate-

substrate (hollow squares)). 
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However, a method using honey bee intact abdomen bioassay was utilized to 

measure O-deethylation inhibition by PBO and EN 16/5-1. The ability of PBO and 

EN 16/5-1 to inhibit honey bee oxidase activity was compared using 7-EC as 

substrate (Table 3.2). The activity after inhibition by EN 16/5-1 is greater than that 

found after inhibition by PBO. This is a strong indication that the honey bee oxidases 

that are capable of O-deethylation, in common with those found in many insect pest 

species, are more susceptible to inhibition by a molecule containing an intact MDP 

ring. 

Table 3.2 Inhibition of honey bee O-deethylation activity by PBO and EN 16/5-1 

(Values are means of triplicates). 

Treatment O-deethylation 

(fmol
-1

 bee
-1

 h
-1

) 

±SE % Activity 

remaining 

±SE 

Acetone 174 23.5 100 13.5 

PBO 87.8 4.3 50.3 7.2 

EN 16/5-1 135 17.8 77.4 10.2 

3.3.4 Protease activity measurement 

The substrate ala-ala-ala-pNA offers an indirect measurement possibility for protease 

activity by the proteolytic cleavage of  ala-ala-ala resulting in  free pNA and so 

allowing the measurement of esterase activity. Because of the suspected high 

protease activity while measuring the oxidase activity this experiment has been 

conducted to exhibit proteolytic activity of tested honey bees. All the insect body 

parts examined showed varying protease activity against the substrate ala-ala-ala-

pNA (Table 3.3). These proteases may affect the microsomal extract and cause the 

failure of oxidase activity measurement. There were several protease inhibitors 

included in the microsome preparations, but this does not negate the possibility of 
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protease inhibition of P450 activity. It  has been reported that trypsin-like, 

chymotrypsin-like enzymes and the total caseinolytic activity within the honey bee 

midgut was age dependent (nurse bees had the highest activity) (Grogan and Hunt, 

1980; Moritz and Crailsheim, 1987). When the functional role of nurse bees is 

considered, the proteolytic activity in the midgut is probably employed to digest rich 

proteins like pollen (Crailsheim, 1990). Therefore the variation of the thorax and 

abdomen activity against the substrate ala-ala-ala-pNA may be explained by the age-

correlated differences of tested bees. For the future, P450 activity measurement 

studies using microsomes may be possible if the proteases responsible for P450 

inhibition are identified and nullified by bespoke proteolytic inhibitors. 

Table 3.3 Protease activity of head, thorax and abdomen with the presence and 

absence of ala-ala-ala-pNA. 

 
with substrate without substrate 

Body parts mean n SEM mean n SEM 

Head 5.14 3 0.14 -0.16 3 0.1 

Thorax 20.8 3 4.96 -0.07 3 0.02 

Abdomen 13.27 3 2.47 0.08 3 0.08 

3.4 Discussion 

Prior work has documented the involvement of three detoxification enzyme families 

in honey bee ‘defence’ against pyrethroids and their contribution to metabolism of 

tau-fluvalinate in the presence and absence of several enzyme inhibitors by 

calculating the synergism ratios (LD50 pyrethroid without inhibitor/LD50 pyrethroid 

with inhibitor). Johnson et al. (2006), for example, reports that tau-fluvalinate 

toxicity was enhanced with PBO and DEF synergism (980-fold and 4.8-fold 

synergistic ratio respectively).  
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Similar detoxification studies are also published with neonicotonids, e.g. the 

investigations on enzyme inhibitors by Iwasa et al. (2004), which highlights that 

whilst PBO enhances thiacloprid toxicity, there was no significant effect on 

imidacloprid toxicity.   

In this chapter, the contribution of esterases and P450s to tau-fluvalinate and 

thiacloprid metabolism was assayed in honey bees. Synergist bioassay results with 

PBO and EN 16/5-1 suggest that detoxification mechanism(s) play an important role 

in protecting honey bees from tau-fluvalinate and thiacloprid toxicity. P450s were 

found to contribute the most protection to tau-fluvalinate, which confirms data from 

Johnson et al. (2006) and to thiacloprid confirming the results of Iwasa et al. (2004). 

Bioassays with collected samples from two different honey bee colonies showed 

different results for synergist alone mortality (i.e. the controls). This variation in 

results may be linked to the differential exposure to xenobiotics, age differences of 

tested bees and seasonal variation in different honeybee colonies (Terriere, 1984 and 

Meled et al., 1998).  

However, in the case of tau-fluvalinate it is seen that whilst the resistance-associated 

esterase from Myzus persicae is capable of binding to tau-fluvalinate and prevent it 

interacting with azamethiphos, the esterases in honey bees are seemingly unable to 

bind to the pyrethroid. Thiacloprid and imidacloprid were also assessed for 

interactions with honey bees’ esterases, and also found to remain free of binding. 

Regardless, tau-fluvalinate remains an insecticide that can be considered relatively 

less toxic. Both the lack of esterase interaction and the relatively low toxicity of the 

molecule could possibly be due to the presence of an aromatic moiety in the acid part 

of the molecule. This could both prevent access to the active site of the esterase and 
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also lead to steric hindrance within the sodium channel of the honey bee. 

Alternatively, it may be that the action of honey bee esterases is limited to 

organophosphate insecticides. Further investigations would be needed to confirm this 

hypothesis. 

Although there is evidence to measure oxidase activity in previous studies (Kezic et 

al., 1992) characterisation of oxidase activity could not be determined by the usual 

ECOD assay in preliminary experiments due to strong protease activity. An 

alternative method using intact bee abdomens was utilised. However, intrinsic 

activity was found to be very variable according to the abdomen tested. The action of 

PBO upon the oxidases resulted in sensitisation of the honey bees to insecticides, 

confirming the protection provided by this enzyme system.  

As a future work it may be interesting to monitor how honey bee microsomes 

respond to the absence and presence of CYP3A4 (human P450) for which oxidase 

activity measurement is possible by using model substrate 7-EC. By that way it 

would be possible to build a preliminary understanding on whether honey bee 

microsomes have protease activity that inhibits P450 activity. 
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4. INDUCTION OF NEONICOTINOID INSENSITIVITY IN HONEY BEES 

AND GLOBAL TRANSCRIPTOME PROFILING 

4.1 Introduction  

The work described in this chapter aimed to establish which (if any) molecular 

defence mechanism(s) in bees can affect their sensitivity to neonicotinoids. It is 

known that in humans and other vertebrates neonicotinoids are metabolised by 

cytochrome P450 monooxygenases, heme proteins that contribute to insecticide 

detoxification metabolism in many organisms (Casida, 2011). Indeed, neonicotinoid 

resistance in a range of crop pests is reported to be most commonly mediated by 

P450 detoxification (Suchail et al., 2003).  Although honey bees have a reduced 

number of P450 genes (46 P450s) compared to other insect genomes, it is not known 

whether this results in lower neonicotinoid detoxification. To better understand the 

detoxification function and response against xenobiotics of specific P450s in the 

honey bee, gene expression induction has been used as a method in studies to 

identify P450s that are induced following exposure to xenobiotics. Phenobarbital, 

which is a well-known general inducer of P450s, failed to enhance the expression of 

honey bee P450s (Johnson et al., 2012). In contrast, Kezic et al., (1992) reported that 

benzo(a)pyrene monooxidase activity was induced after exposure to benzo-(a)-

pyrene, tau-fluvalinate and cymiazole. Moreover the CYP9Q family of P450s was 

found to be associated with tau-fluvalinate metabolism with CYP9Q1 and CYP9Q2 

transcript levels being higher after exposure to tau-fluvalinate and cypermethrin and 

CYP9Q3 transcript levels being induced approximately 1.5-fold by tau-fluvalinate 

(Mao et al., 2011). Taken together these findings demonstrate that using xenobiotics 

as inducing factors might increase oxidative activity and lead to the identification of 

the specific P450s involved in detoxification of neonicotinoids in the honey bee. 
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Neonicotinoids include two groups of chemicals, the cyano-substituted (thiacloprid 

and acetamiprid) and the nitro-substituted (imidacloprid, clothianidin, thiamethoxam, 

dinotefuran, nitenpyram). Laboratory bioassays have demonstrated that cyano-

substituted neonicotinoids have been shown to be orders of magnitude less acutely 

toxic to honey bees than nitro-substituted compounds (Iwasa et al., 2004). Insecticide 

bioassays of honey bees using inhibitors of detoxification enzymes has provided 

strong indications that the differential toxicity observed between the two groups of 

neonicotinoids is due to increased metabolism of cyano-substituted neonicotinoids, 

rather than intrinsic differences in their affinity for the nAChR (Iwasa et al., 2004). 

The use of synergists has suggested that the difference observed may be mediated by 

metabolic activity as pretreatment of honey bees with piperonyl butoxide (inhibitor 

of P450s and esterases) and other chemically distinct P450 inhibitors was shown to 

dramatically increase the toxicity of thiacloprid and acetamiprid, whereas no 

significant differences were observed between bioassays with imidacloprid alone and 

those pretreated with these inhibitors (Iwasa et al., 2004). These findings provided 

the rationale to use a cyano-substituted neonicotinoid (thiacloprid) as the P450 

inducer in this PhD study.  

The aims of this study were to use an induction strategy, in combination with a range 

of biological, biochemical and genomic approaches to determine: 1) do honey bees 

have the ability to mount a molecular defence (via gene induction) to a neonicotinoid 

(thiacloprid) after initial exposure to a sub lethal dose that results in a measurable 

alteration in phenotype to subsequent exposure? 2) What are the specific 

detoxification genes, particularly members of the P450 superfamily, induced by 

exposure to a neonicotinoid (thiacloprid)? 
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4.2 Materials and Methods 

4.2.1 Insects 

Studies in this chapter were carried out with two different honey bee strains: 1) For 

induction experiment 1, worker bees of A. mellifera buckfast were used which were 

collected from the entrance to a hive, 2) for induction experiment 2, newly emerged 

worker bees of A. mellifera carnica were used which were collected as sealed brood 

(see section 2.4, Chapter 2). 

4.2.2 Toxicity bioassays 

4.2.2.1 Contact toxicity tests 

For contact toxicity tests separate samples were subjected to a range of thiacloprid 

concentrations by topical application. Each bee was topically dosed (1µL) with either 

thiacloprid in acetone or acetone alone applied to the dorsal thorax using a 

microapplicator (see section 2.5.1, Chapter 2).  

4.2.2.2 Oral toxicity tests 

Worker bees (~10) were transferred to plastic cages and then subjected to a range of 

thiacloprid concentrations for 24 hours through oral feeding (see section 2.5.2, 

Chapter 2). 

4.2.3 Sampling for transcriptome profiling 

To investigate thiacloprid as a potential P450 inducer, two unconnected induction 

experiments were carried out with different sampling methodologies/strategies 

employed 
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4.2.3.1 Induction experiment 1 - Sampling after topical application 

Worker bees of Apis mellifera buckfast were dosed topically on the dorsal thorax 

region with 1 μL containing sub lethal dose of (LD25) thiacloprid/acetone. At 1 h, 3 h 

and 10 h after topical application, treated and control bees (live bees) were stored in 

RNAlater™ (Sigma-Aldrich) according to the manufacturer’s instruction and 

transported from Ankara University, Turkey to Rothamsted Research, UK for 

microarray studies. 

4.2.3.2 Induction experiment 2 – Sampling after oral exposure and post-exposure 

bioassay assessment of changes in phenotype  

Thiacloprid toxicity was assayed in vivo after exposure to a sub-lethal concentration 

of thiacloprid, to check for measurable alteration in phenotype. A factorial set of 16 

treatments was tested in two repeat experiments. Bees (9–15 per cage = one replicate, 

72 cages in total) were fed either a sub-lethal dose (LD5 ) of thiacloprid (dissolved in 

acetone and then sugar solution) or acetone in sugar solution (controls) for 24 h, as 

detailed above (16 and 20 cages for each in experiments 1 and 2, respectively). At 

each of 0 h, 48 h, 96 h and 144 h a diagnostic dose of thiacloprid (LD50) in acetone 

was then topically applied to a subset of both the treated and control bees (two cages 

each in experiment 1, three in experiment 2); the remaining cages (two per feed 

treatment per experiment) received a topical application of acetone alone (Figure 

4.1). Before and after topical application test/control bees were snap frozen in liquid 

nitrogen and stored at −80°C for subsequent molecular analyses. 
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Figure 4.1 General scheme for induction bioassay and sampling. 
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4.2.4 Statistical analysis 

For full dose oral and contact bioassays, the concentration of thiacloprid required to 

kill 5% of the population (LD5, oral) and 50% of the population (LD50, contact) were 

calculated as described in section 2.5.3, Chapter 2. 

Data from the induction bioassays were analysed in GenStat (14
th

 edition, VSN 

International) using logistic regression (i.e. a generalized linear model with binomial 

error and logit link), allowing for differences between experiments before testing 

treatment effects and with adjustment for over-dispersion. Statistical analysis for the 

induction bioassay was carried out by a consultant statistician at Rothamsted 

Research, Suzanne Clark. 

4.2.5 Microarray analysis and GO enrichment analysis 

Transcriptome profiling in treated and control groups collected at different time 

points was assessed to screen gene expression as described at section 2.7.8, Chapter 

2. 

Functional annotation using Gene Ontology is anapproach to interrogate microarray 

data to identify common patterns in gene expression changes, in this case relating to 

biological process, cellular component and molecular functions (Ashburner et al., 

2000). Enrichment analysis was performed using Fisher’s exact test implemented in 

the Blast2GO software using a false discovery rate (FDR) of < 0.05 to characterize 

biological properties of significantly differentially expressed genes (Bariami et al., 

2012). GO enrichment analyses were conducted on GO terms of differentially 

expressed genes compared to GO terms of all the genes in the microarray. GO term 
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enrichment analyses were run separately on lists of differentially expressed genes 

from each time point versus all detected genes. 

4.2.6 qRT-PCR analysis 

qRT-PCR was used to validate the microarray results for selected genes. All samples 

are normalized against two housekeeping genes (ef1 (elongation factor-1), and actin) 

The method is described in section 2.7.7, Chapter 2. Primers used are as in Table 4.1. 

Table 4.1 Oligonucleotide primer sequences used in qRT-PCR 

 

4.3 Results 

4.3.1 Induction experiment 1  

4.3.1.1 Toxicity bioassay 

Full-dose mortality response curves for contact toxicity bioassays with thiacloprid 

resulted in the dose for induction (LD25) being calculated as 0.5 µg/bee (derived from 

fitted curve) (Figure 4.2). 
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Figure 4.2 Full dose response contact bioassay results for thiacloprid on Apis 

mellifera buckfast population. 

4.3.1.2 Transcriptome Profiling and qRT-PCR 

Global gene expression in treated and control samples collected at 1h, 3h and 10h 

time points was assessed by whole transcriptome analysis using microarrays. 

Microarray analysis after a topical application of thiacloprid (LD25) revealed limited 

responses in gene induction in treated compared with control bees for all three time 

points. In the microarray analysis 94 probes (69 up-regulated and 25 down-

regulated), 93 probes (23 up-regulated and 70 down-regulated) and 59 probes (6 up-

regulated and 53 down-regulated) were identified as significantly differentially 

expressed between control and treated bees at the 1 h, 3 h, 10 h time points 

respectively (Appendix 9.2). Only one P450 gene (CYP4AA1) was overexpressed 

(2.9 fold) after 1 h of thiacloprid treatment, in addition to two other detoxification 

genes encoding carboxylesterases and a nAChR gene subunit alpha 2.  At the 3 hour 

time point a single P450 gene, CYP6AS3 was down-regulated, as were genes 

encoding a carboxylesterase and an ABC transporter.  At the final 10 hour time point 

a number of CYP genes were down-regulated along with two carboxylesterase genes 

and an ABC transporter gene. The overexpression of CYP4AA1 and CYP6AS3 was 
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confirmed by qRT-PCR as shown in Figure 4.3. In qRT-PCR experiments the up-

regulation of CYP4AA1 in the treated group was validated but CYP6AS3 down-

regulation was not validated. During quality control of RNA samples prior to 

microarrays by electrophoresis it was noted that RNA extracted from samples stored 

in RNAlater™ showed a degree of smearing indicating a certain amount of RNA 

degradation had taken place when samples were transported from Turkey to the UK. 

This finding may, in part, underlie the minimal induction response observed in 

subsequent microarray experiments. 

 

Figure 4.3 Expression levels determined with qRT-PCR for CYP4AA1 and 

CYP6AS3 using the geometric mean of selected housekeeping genes (ef1 and 

actin) (Error bars represent 95% confidence limits). 
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4.3.2 Induction experiment 2  

4.3.2.1 Toxicity bioassays 

Full-dose mortality response curves for oral and contact toxicity bioassays with 

thiacloprid resulted in doses for induction (oral LD5) being calculated as 10 µg/bee 

(derived from fitted curve) and contact toxicity (LD50) 62 +/-12 µg/bee. For the oral 

toxicity assays the LD5 was calculated by assuming average consumption (0.055 

mg/ml active) (Figure 4.4 and Figure 4.5). 

 

Figure 4.4 Results of analysis on oral toxicity (thiacloprid) data for A. mellifera 

carnica 
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Figure 4.5 Results of analysis on contact toxicity (thiacloprid) data for A. 

mellifera carnica 

4.3.2.2 Induction experiment 

A second induction experiment was used to investigate if honey bees show a 

measurable alteration in phenotype to the neonicotinoid thiacloprid after initial 

exposure to a sub-lethal dose of the same compound. Significant differences were 

identified in the proportion of mortality resulting from topical application (i.e. 

whether bees were topically applied acetone or thiacloprid); time (i.e. time after pre-

treatment that topical application was made); and with both feed and time parameters 

combined (i.e. within the group topically applied with thiacloprid, time after pre-

treatment). Immediately following a pre-treatment time of 24 h, topical application 

resulted in a significantly increased tolerance to thiacloprid compared to the controls 

(t-test, P = 0.006). 48 h and 144 h following pre-treatment there were no significant 

differences between a thiacloprid or acetone pre-treatment (t-test, P > 0.05). At 96 h 

there was a significantly increased sensitivity in the bees pre-treated with thiacloprid 

(t-test, P = 0.043) (Table 4.2, Table 4.3 and Figure 4.6). 
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Table 4.2 Comparison of mean mortalities (logit scale) for bees fed either 

thiacloprid or acetone and subsequently topically applied with acetone at 

various times post-feeding 

TIME 0 h 48 h 96 h 144 h 

Difference 0.966 0.471 -0.419 0.766 

t-statistic 0.628 0.384 -0.403 0.470 

P value 0.5327 0.7024 0.6885 0.6403 

Table 4.3 Comparison of mean mortalities (logit scale) for bees fed either 

thiacloprid or acetone and subsequently topically applied with thiacloprid at 

various times post-feeding 

TIME 0 h 48 h 96 h 144 h 

Difference -1.351 -0.628 0.978 0.789 

t-statistic -2.884 -1.199 2.075 1.547 

P value 0.0057 0.2360 0.0430 0.1279 

 

 

 

Figure 4.6 Predicted treatment mean mortalities (logit scale; n = 1–3 cages of 9–

15 bees) from logistic regression (± SE).  Fed acetone, topical acetone (circles); 

fed thiacloprid, topical acetone (diamonds); fed acetone, topical thiacloprid 

(squares); fed thiacloprid, topical thiacloprid (triangles). Time = delay following 

24 h oral pre-treatment. 

0 48 96 144 
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4.3.2.3 Transcriptome Profiling 

Transcriptome profiling using microarrays was used to compare gene expression in 

bees fed sucrose-insecticide (treated) and those fed sucrose syrup (control) at each 

time point. An additional array comparison was conducted comprising bees fed 

sucrose-insecticide that subsequently survived the 0 h topical bioassay versus the 

non-treated control from the same time point (‘survivor’ experiment). In the time 

course experiment 21 probes (11 up-regulated and 10 down-regulated), 42 probes (21 

up-regulated and 21 down-regulated), 27 probes (20 up-regulated and 7 down-

regulated) and 13 probes (7 up-regulated and 6 down-regulated) were identified as 

significantly differentially expressed between control and treated bees at the 0 h, 48 

h, 96 h and 144 h time points respectively. In the ‘survivor’ experiment 96 probes 

were identified as differentially expressed (57 probes were up-regulated and 39 

down-regulated) between treated bees surviving the topical bioassay at 0 h and non-

treated controls from the same time point (Appendix 9.3). Gene enrichment analysis 

based on gene ontology revealed the enrichment of a number of GO-terms in the 

differentially expressed gene sets of each time point  with terms related to stress 

response (‘innate immune response’, ‘defence response to bacterium’, ‘response to 

oxidative stress’, ‘antioxidant activity’), a common theme observed between the time 

points. A greater number of GO-terms were enriched in the ‘survivor’ experiment, 

with several terms suggestive of enhanced oxidative/P450 activity including 

‘oxidoreductase activity’, ‘oxidation-reduction process’, ‘heme binding’ and 

‘monooxygenase activity’ (Figure 4.7, Figure 4.8, Figure 4.9, Figure 4.10, Figure 

4.11, Figure 4.12, Figure 4.13, Figure 4.14, Figure 4.15 and Figure 4.16). 
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Figure 4.7 Enriched Gene Ontology (GO) terms in genes differentially up-regulated in microarray experiment (0h).
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Figure 4.8 Enriched Gene Ontology (GO) terms in genes differentially down-regulated in microarray experiment (0h).
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Figure 4.9 Enriched Gene Ontology (GO) terms in genes differentially up-regulated in microarray experiment (48h).



66 
 

 

Figure 4.10 Enriched Gene Ontology (GO) terms in genes differentially down-regulated in microarray experiment (48h).
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Figure 4.11 Enriched Gene Ontology (GO) terms in genes differentially up-regulated in microarray experiment (96h).
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Figure 4.12 Enriched Gene Ontology (GO) terms in genes differentially down-regulated in microarray experiment (96h).
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Figure 4.13 Enriched Gene Ontology (GO) terms in genes differentially up-regulated in microarray experiment (144h).
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Figure 4.14 Enriched Gene Ontology (GO) terms in genes differentially down-regulated in microarray experiment (144h).
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Figure 4.15 Enriched Gene Ontology (GO) terms in genes differentially up-regulated in microarray experiment (survivors). 
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Figure 4.16 Enriched Gene Ontology (GO) terms in genes differentially down-regulated in microarray experiment (survivors).
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In relation to the above among the differentially expressed probes were several that 

correspond to genes with putative roles in insecticide metabolism that are potential 

candidates to explain the alterations seen in phenotype in treated bees compared to 

controls. In the 0 h comparison two probes representing the P450 gene CYP315A1 

were overexpressed (~1.5-fold) and in the 48 h comparison a single probe 

representing the gene cytochrome b5 was overexpressed 4.5-fold. At the 96 h time 

point three probes corresponding to the P450 gene CYP9Q1 and a single probe 

representing the carboxylesterase gene CCE11 were differentially expressed, 

however in all cases they were down-regulated (-1.5 to -1.7). At the 144 h time point 

no probes encoding detoxification enzymes were differentially expressed. The 

‘survivor comparison’ displayed the greatest number of differentially expressed 

probes encoding detoxification genes with in all cases probes up-regulated. In the 

case of P450s this included four probes encoding CYP6BE1 (1.9-2.2-fold), four 

probes encoding the P450 CYP305D1 (1.8-1.9-fold), four probes encoding 

CYP6AS5 (1.6-1.7-fold) and a single probe encoding CYP301A1 (1.6-fold). For 

esterases five probes encoding CCE8 were up-regulated 2.1-2.2-fold. In the case of 

glutathione S-transferases a single probe encoding GSTD1 was over expressed 1.9-

fold. Finally a single probe representing the gene cytochrome b5 was overexpressed 

(1.5-fold). 

In relation to genes with regulatory roles which might explain the induction of the 

detoxification genes detailed above a number of probes encoding genes associated 

with the regulation of transcription/signal transduction were differentially expressed 

in multiple array comparisons. This included three G-protein-coupled receptor genes 

(GPCRs) in the survivor comparison (GB18244-RA, GB18304-RA and GB17560-

RA), one GPCR related-gene (GB15369-RA) in the 0 h time point and one GPCR in 
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the 144 h time point (GB18786-RA). Two genes encoding transcription factors 

(GB15791-RA and GB10501-RA) were identified as differentially expressed in the 

0h time point, one in the 48 h time point (GB14951-RA), and two in the 96 h time 

point (GB18833-RA, GB12301-RA). 

The expression levels of seven of the detoxification candidate genes from the 

microarray experiment were validated by qRT-PCR with excellent concordance seen 

between fold-changes calculated using the qRT-PCR and array approaches (Table 

4.4) 

Table 4.4 Fold change in expression of candidate genes in treated groups 

compared to control groups. 

Gene Fold change 

(qRT-PCR) 

95% confidence 

limits 

Fold change (microarray) 

CYP305D1 2.4 0.5 1.8-1.9 

CYP315A1 1.8 0.6 1.5-1.6 

CYP6AS5 1.4 0.1 1.6-1.7 

CYP6BE1 1.7 0.4 1.9-2.2 

Cyt b5 2 0.2 1.5 

GSTD1 1.1 0.3 1.9 

CCE8 3.3 0.4 2.1-2.2 

The qRT-PCR experiments provided confirmation that six of the seven candidate 

genes were significantly upregulated in treated bees compared to controls with the 

exception of GSTD1 which was eliminated as a potential candidate as it showed no 

significant increase in expression in treated bees. 
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4.4 Discussion 

Cyano-substituted neonicotinoids are reportedly less toxic to bees because of P450 

metabolism to less toxic metabolites (Iwasa et al., 2004). However, the identification 

of specific enzymes contributing to thiacloprid metabolism and whether their 

expression is constitutive or induced upon exposure to neonicotinoids is unknown. A 

previous study reported no effect on the toxicity of the pyrethroid insecticide tau-

fluvalinate to bees fed phenobarbital, xanthotoxin, salicylic acid, or indole-3-carbinol 

when compared to controls fed sucrose (Johnson et al., 2012). Although the effect of 

tau-fluvalinate feeding on subsequent tau-fluvalinate toxicity was not examined in 

the previous study, quercetin, a constituent of pollen and honey was found to reduce 

tau-fluvalinate toxicity (~1.4-fold) (Johnson et al., 2012). The main aim of present 

study was to address these two questions by feeding bees a sublethal dose of 

thiacloprid and assessing 1) changes in thiacloprid tolerance of honey bees in insect 

bioassays and 2) changes in gene expression in whole transcriptome microarrays.  

In the first approach of induction experiment only a single gene encoding a P450, 

CYP4AA1, was induced. Although the induction of this CYP was confirmed by 

qRT-PCR, it is not a strong candidate to metabolise insecticides as it was reported 

that the function of CYP4AA1 is stearic acid hydroxylation during ecdysteroid 

hormone production. In addition owing to the absence of a complete coding sequence 

for CYP4AA1, a three-dimensional model of CYP4G11 (which has close homology 

to CYP4AA1) was used to demonstrate that the binding pocket of CYP4AA1 is 

likely to be too small to accommodate neonicotinoid compounds (Hlavica, 2011).  

The bioassay time course experiment showed that a measurable reduction in 

thiacloprid sensitivity could be induced in honey bees after exposure to a sub-lethal 
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dose of this neonicotinoid for 24 hours. This effect was time dependent with 

increased tolerance only observed immediately following the 24 h of thiacloprid 

feeding, with treated bees becoming more susceptible than controls at the later time 

point (96 h). To our knowledge this is the first report with honey bees of a sub-lethal 

dose of an insecticide providing a protective effect to subsequent exposure of the 

same insecticide. Indeed, in a related study on honey bees, no effect on the toxicity 

of the pyrethroid insecticide tau-fluvalinate was observed in bees fed phenobarbital, 

xanthotoxin, salicylic acid, indole-3-carbinol compared to controls fed sucrose, 

although  the effect of tau-fluvalinate feeding on subsequent tau-fluvalinate toxicity 

was not examined (Johnson et al., 2012).  

One possible explanation for the finding of an induced decrease in sensitivity to 

thiacloprid in bees is that the sub-lethal exposure activates the transcription of one or 

more genes encoding detoxification/defence proteins over the 0-48 h time points and 

that these subsequently return to constitutive levels or lower than constitutive levels 

at the later time points. To explore this a series of microarray comparisons of global 

gene expression levels were carried out in treated versus control bees over the time 

series (‘time course experiment’) and a second experiment where treated bees 

surviving the topical bioassay at 0 h were compared with non-treated controls from 

the same time point (‘survivor experiment’). Across all comparisons the number of 

genes differentially expressed (13-96 probes representing 0.08-0.6% of the 15737 

probes on the array), and the fold changes observed (<8-fold), between treated and 

control bees were low. Nevertheless, the observed changes were subsequently 

confirmed by qRT-PCR with a number of candidate genes being validated as 

moderately, but significantly, over-expressed in treated bees. GO-term analysis of 

these differentially expressed genes revealed enriched ontology terms associated with 
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a general stress response and also terms relating to P450-mediated detoxification, the 

latter resulting from the enhanced expression of a number of probes encoding several 

honey bee P450s/cytochrome b5. P450 genes were only identified in the earlier time 

points (0 h, 0 h surivors, 48 h) where altered thiacloprid toxicity was observed in 

bioassays and the only gene related to detoxification observed in two separate array 

experiments was cytochrome b5, which can act as an electron donor to P450s. 

Among the CYP genes CYP315A1 was the only P450 identified as overexpressed in 

the time course experiment (at the 0 h time point) and this is the ortholog of the 

Drosophila melanogaster sad gene encoding the steroid 2-hydroxylase (Claudianos 

et al., 2006). However, in the ‘survivor’ experiment in which ‘treated bees’ were fed 

thiacloprid for 24 h and then survived a subsequent topical application of thiacloprid 

(LD50) a number of P450s were identified as being over-expressed. This included 

two members of the CYP3 clade CYP6BE1 and CYP6AS5, whose members have 

been most commonly involved in detoxification of xenobiotics including pesticides 

in other insects (Li et al., 2007). Two further P450s CYP305D1 and CYP301A1, the 

latter of which was only represented by a single probe, belong to the CYP2 and 

mitochondrial clades respectively were also overexpressed. The role of CYP305D1 is 

yet to be determined but CYP301A1 is thought to be involved in ecdysone regulation 

during adult cuticle formation (Sztal et al., 2012). Beyond detoxification genes 

several genes involved in the regulation of transcription/signal transduction were also 

identified as differentially expressed in multiple array comparisons including both 

transcription factors and a number of G-protein-coupled receptors (GPCRs). It is 

possible that these genes may play a role in triggering/regulating the enhanced 

transcription of the CYP/detox genes. In the case of GPCRs recent work has 

suggested they may be involved in regulating overexpressed P450s observed in 
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resistant moquitoes, Culex quinquefasciatus, and housefly, Musca domestica, (Li et 

al., 2014; Li et al., 2013). For C. quinquefasciatus knockdown of four GPCR genes 

by RNAi both decreased resistance to permethrin and repressed the expression of 

four insecticide-resistance related P450 genes (Li et al., 2014). It would be 

interesting to examine the role of these receptors in honey bee gene expression 

responses to xenobiotics in more detail using a similar approach. 

From the overexpressed genes induced in thiacloprid fed bees from this experiment 

four P450s, CYP6BE1, CYP6AS5, CYP315A1 and CYP305D1, cytochrome b5 and 

the esterase CCE8  all of which were represented by multiple overexpressed probes 

in array comparisons and validated by qRT-PCR, were selected for further functional 

analysis (see Chapter 5). 
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5. PROTEIN EXPRESSION OF HONEY BEE CYP305D1, CYP315A1, 

CYP6AS5, CYP6BE1, CYTOCHROME b5 AND CCE8 

5.1 Introduction 

Expression or production of recombinant enzyme proteins offers the opportunity to 

conduct structural and enzymatic characterisation in vitro. Recently, expression 

systems have become more commonly used for the characterisation of metabolic 

insecticide resistance or detoxification enzyme-mediated insecticide tolerance 

(Feyereisen, 1999; Li et al., 2007). Functional characterisation of detoxification 

enzymes associated with resistance is an important step in demonstrating their causal 

role in resistance. There are several approaches to express heterologous proteins in 

different host cells including Escherica coli (E. coli), yeast, baculovirus infected 

insect cells and mammalian cells. All have pros and cons for the expression of high 

amounts of high quality protein, therefore the most appropriate system for each 

specific study should be selected (Battula et al., 1987; Guengerich et al., 1993; 

Waterman et al., 1995; Grogan et al., 1995; Gonzalez and Korzekwa, 1995). 

Expression in E. coli is a popular system to express cytochrome P450s because of the 

simple protocols involved, economy and its ability to provide large amounts of 

catalytically active P450s (Waterman et al., 1995; Pritchard et al., 2006). The first 

successful eukaryotic P450 expressed in E. coli was bovine P45017α (Barnes et al., 

1991). However, the most important limitation of expressing eukaryotic P450 in E. 

coli has been identified as a requirement to modify the N-terminal sequence of P450s 

which Pritchard et. al. (1997) overcame by fusion of the N-terminal sequence of 

P450 with E. coli signal sequence, thus succeeding in expressing unmodified P450s.  



80 
 

It is well known that neonicotinoids can be metabolised by insecticide resistant insect 

pests as a result of the enhanced expression of specific cytochrome P450s, for 

example, CYP6CY3 in Myzus persicae and CYP6CM1 for Bemisia tabaci (Bass et 

al., 2013, Karunker et al., 2008).  More recently in vitro characterisation of eight 

honey bee P450s of the CYP3 clan revealed that three members of the CYP9Q 

family have the capacity to metabolise the insecticides tau-fluvalinate and 

coumaphos (Mao et al., 2011). As discussed in the previous chapter several 

resistance detoxification genes were shown to be overexpressed or associated with 

metabolism by synergism studies, however, overexpression does not always mean 

that these genes are functionally responsible in detoxifying insecticides. Thus, clear 

identification of such metabolism needs further investigation to prove metabolism. 

This chapter addresses the following question; do specific candidate detoxification 

genes which are induced upon exposure to a neonicotinoid (thiacloprid) (see Chapter 

4) have the capacity to metabolise these compounds and explain the differential 

toxicity of different members of the neonicotinoid class?  

5.2 Material and Methods 

5.2.1 Functional P450 expression 

5.2.1.1 Plasmid DNA extraction 

The E. coli strain JM109 was grown in Luria-Bertani (LB) broth (25 µL of bacteria 

cells in 5 mL LB) (Appendix 9.1.1) at 37°C with shaking (200 rpm). DNA was 

isolated from 5 mL bacterial culture using the GeneJET plasmid miniprep kit 

(Thermo Scientific) following the manufacturer’s protocol.  
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5.2.1.2 Cloning CYPs for expression in Escherichia coli 

Honey bee CYP305D1, CYP315A1, CYP6AS5, CYP6BE1 were amplified from 

cDNA using KAPA high-fidelity DNA Polymerase (Kapa Biosystems) following the 

product manual and using gene specific primers and the annealing temperatures 

listed in Table 5.1 in PCR. As a proofreading DNA polymerase was used for 

amplification, which leaves blunt ended DNA, A-tailing reactions were run before 

cloning the gel purified or PCR purified PCR products. An adenosine residue was 

added by incubating the PCR product with 0.25 µL of 5U/µL GoTaq
®

 Flexi DNA 

Polymerase (Promega), 6 µL of 25 mM MgCl2, 10 µL of 5X GoTaq
®
 Green 

Reaction Buffer (Promega), 1 µL of 100 mM dATP and nuclease-free water (to 50 

µL) at 70°C for 20 minutes. After the product was cleaned, it was ligated into the 

pSC-A-amp/kan cloning vector (StrataClone PCR Cloning Kit). After 

transformation, positive colonies (containing an insert of the correct size) were 

selected by single colony PCR using M13F/R primers. Plasmids were purified using 

the GeneJET plasmid miniprep kit (Thermo Scientific) and sequenced by Eurofins 

using M13F/R. Plasmid sequences were verified with   the corresponding P450 

sequence from the honey bee genome sequence database using the Geneious 

alignment tool. 

For functional P450 expression in E. coli the N-terminal coding region of P450 

cDNA was modified: the ompA leader sequence (21 amino acid residues) and two 

linker amino acid residues (alanine-proline) were added to the 5' end of P450s 

(ompA+2 strategy) (Figure 5.1) (Pritchard et al., 1997; Pritchard et al., 2006; 

McLaughlin et al., 2008). Two fusion PCR reactions were carried out using high-

fidelity DNA polymerase (Kapa Biosystems) according to the manufacturer’s 

instructions. In the first PCR, JM109 genomic DNA was used as template to amplify 
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a ~100 bp nucleotide fragment (containing the ompA+2 sequence and the first 21 

bases of the target P450 gene) preceded by a NdeI restriction site respectively, using 

the primers described in Table 5.2. Primary PCR reactions (total volume 50 µL) 

consisted of: 10 µL 5X KAPA HiFi Fidelity buffer, 1.5 µL of 10 mM dNTP mix, 1 

µL HiFi DNA Polymerase (1 U/µL), 1.5 µL of each forward and reverse primers (10 

µM), 33.5 µL nuclease-free water and 2.5 µL of template JM109 DNA. PCR was 

performed in a thermal cycler using the following conditions: 2 minutes at 95°C 

(initial denaturation) then 35 cycles of 20 seconds at 98ºC (denaturation), 20 seconds 

at the specific annealing temperature and 30 seconds at 72ºC (extension) with a final 

extension step at 72°C for 1 minute. This intermediate PCR product was purified and 

then fused to the P450 plasmid template in a second PCR reaction using the same 

forward and CYP specific reverse primers (Table 5.2) to generate the full-length 

ompA-AP-CYP coding sequence flanked by NdeI and XbaI restriction sites. 

Secondary PCR reactions (total volume 50 µL) consisted of: 10 µL 5X KAPA HiFi 

Fidelity buffer, 1.5 µL of 10 mM dNTP mix, 1 µL HiFi DNA Polymerase (1 U/µL), 

1.5 µL of each forward and reverse primers (10 µM), 33 µL nuclease-free water, 0.5 

µL of linker PCR product (first PCR product) and 1 µL of CYP plasmid (diluted 

1/1000). PCR was performed in a thermal cycler using the following conditions: 2 

minutes at 95°C (initial denaturation) then 25 cycles of 20 seconds at 98ºC 

(denaturation), 20 seconds at the specific annealing temperature and 90 seconds at 

72ºC (extension) with a final extension step at 72°C for 2 minute. The final product 

was digested and ligated into modified pCWOri+ vector via XbaI and NdeI 

restriction sites and the final sequences were confirmed by sequencing prior to 

expression.
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Figure 5.1 ompA+2 strategy process map (Reproduced from Pritchard et al., 1997). (1) Primers forward primer (F) and a reverse 

‘‘linker’’ primer (L) were used to amplify the ompA sequence stitched to the gene of interest. (2) Intermediate product was used as a 

template to fuse bacterial leader sequence to P450 cDNA by employing Primers forward primer (F) and CYP specific reverse primer (R) 

with restriction site (X).  

(1) 

(3) 

(2) 

This text box is where the unedited thesis included the following third party copyrighted material: 

 

 

Pritchard, M.P., et al. (1997) ‘A General strategy for the expression of recombinant human cytochrome P450s 

in Escherichia coli using bacterial signa peptides: expression of CYP4A4, CYP2A6 and CYP2E1’. Arch. 

Biochem. Biophys. 345: 342-354 



84 
 

5.2.1.3 Cloning cytochrome b5 for expression in Escherichia coli 

Honey bee cytochrome b5 (b5) was amplified from cDNA and the gene was then 

cloned into the pSC-A-amp/kan cloning vector and sequenced as described in section 

2.7.4, Chapter 2. The annealing temperature and primers used in PCR are listed 

below in Table 5.2. To simplify the purification of the expressed protein the N-

terminal coding region of b5 was modified with six histidine residues (His6) attached 

to the 5' end of b5. The His6:b5 was amplified from the holding vector using high-

fidelity DNA polymerase (Kapa Biosystems) and the following forward primer                                                                                                                

5'-GGAATTCCATATGCACCATCACCATCACCACATGTCGAAAATTTTTACAGCGGA-3' 

(NdeI restriction site underlined and six histidine codons in bold inserted right before start 

codon) and reverse primer 5'-GAATTCTCTAGATTATGAATACCAAAAATAGTAAAAT-3' 

(XbaI restriction site underlined). The final product was digested and ligated into 

modified pCWOri+ vector via the XbaI and NdeI restriction sites and the final 

sequences were confirmed by sequencing prior to expression. 

5.2.1.4 Restriction enzyme digestion 

Before ligation of the pCWOri+ vector and ompA-AP-CYP or 6H-b5 to generate 

full-length ompA-AP-CYP, 6H-b5 and modified pCWOri+ vector, a double 

digestion was conducted using two restriction enzymes: XbaI (Promega) and NdeI 

(Promega). The digestion was performed with 1000 ng plasmid DNA using 2 µL 

restriction enzyme 10X Buffer D, 0.2 µL 10 µg/µL acetylated BSA, 1 µL of each  

restriction enzyme, XbaI (10 U/µL) and NdeI (10 U/µL) and sterile, deonized water 

(to 20 µL). The reaction was incubated at 37°C for 4 hours. For ompA-AP-

CYP305D1 a partial digestion process was carried out as the CYP305D1 sequence 

has an internal additional NdeI site. In this case digestion with XbaI was carried out 

first following the protocol described above and the digested product obtained was 
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digested with diluted NdeI for 5 minutes at 37°C. Digested fragments were analysed 

by gel electrophoresis and partially digested DNA fragments of the correct size were 

extracted from an agarose gel.  

5.2.1.5 Ligation of ompA-AP-CYP into vector pCWOri+ 

Each ligation reaction contained 1 μL digested pCWOri+ vector plasmid (pB13), 7 

μL digested insert DNA (ompA-AP-CYP or 6H-b5), 1 μL 10X T4 ligase Buffer 

(Thermo Scientific), 1 μL T4 DNA ligase (Thermo Scientific) and was incubated at 

22°C for 1 hour. 

Table 5.1 Primers and annealing temperatures used for amplifying honey bee 

CYPs (All primers are listed in the 5' to 3' direction). 

Genes Forward Primer Reverse Primer 

Annealing 

Temperature 

(°C) 

CYP305D1 ATGTTTGTTATAATGTTAATAGTGATA TTATCGTTTTTCAACTAATACATTATA 54 

aCYP315A1 ATGAATCTTGCGCAAAATATTTTG CTAATTTCTCTCCATCAATTTTAATT 60, 60b 

CYP6AS5 ATGGCGAGCAGTTTCGAAATT TCATATTTTTGTTATTTTCAAATATATTC 60 

CYP6BE1 ATGTTTTTAACTACGTGGTTAATA TTATATTGGCTCAATATTTAGATG 60 

Cyt b5 ATGTCGAAAATTTTTACAGCGG TTATGAATACCAAAAATAGTAAAATAT 60 

a
Primary PCR product was used as template. For primary PCR the forward primer used was 

5'-CTATCACCAGTGTTATCATTGG-3' and the reverse primer was 5'-

GGATAAAATATTATTGCATAGAAGGA-3' designed on the published mRNA sequence.  

b
This annealing temperature was used during the second step PCR. 
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Table 5.2 Primers and annealing temperatures used for fusion PCRs (All 

primers are listed in the 5' to 3' direction). 

CYPsa Reverse Primerb CYP Specific Reverse Primerc 

Annealing 

Temperature 

(°C)d 

ompA-AP-

CYP305D1 
ACTATTAACATTATAACAAACA

T XXX 

GAATTCTCTAGATTATCGTTTTTCAAC

TAATACA 
60,60 

ompA-AP-

CYP315A1 
AATATTTTGCGCAAGATTCAT 

XXX 

GAATTCTCTAGACTAATTTCTCTCCAT

CAATTT 
60,60 

ompA-AP-

CYP6AS5 
AATTTCGAAACTGCTCGCCAT 
XXX 

GAATTCTCTAGATCATATTTTTGTTAT
TTTCAAATA 

60,57 

ompA-AP-

CYP6BE1 

TAACCACGTAGTTAAAAACAT 

XXX 

GAATTCTCTAGATTATATTGGCTCAAT

ATTTAGA 
60,60 

a
The forward primer used for ompA+2 fusion PCR strategy was always 5'- 

GGAATTCCATATGAAAAAGACAGCTATCGCG -3' with the NdeI restriction site 

underlined. 

b
Reverse complement of the start of CYPs and XXX represents 5'- 

CGGAGCGGCCTGCGCTACGGTAGCGAA-3' which corresponds to the reverse 

complement of proline and alanine codons and the ompa segment sequence. 

c 
The region corresponding to the reverse complement of the end of CYPs with XbaI 

restriction site (underlined). 

d
The first temperature was used to anneal the forward and reverse primer to the ompA+2 

template during step 1 of the PCR reaction. The second annealing temperature was used 

during the second step of PCR to attach the ompA+2 segment to the full length CYP using 

the forward and CYP specific reverse primers. 

5.2.1.6 Transformation in JM109 cells 

After cells were thawed on ice, 3 µL of ligation reaction were added and mixed 

gently. Cells were then incubated for 30 minutes on ice before heat shocking at 37°C 

for 45 seconds in a water bath and transferred immediately to ice for 2 minutes. To 

the transformation reaction 450 µL super optimal culture (SOC) media was added 

and samples left to recover at 37°C for 1 hour with shaking (200 rpm). Transformed 

cells (200 µL) were distributed onto the LB agar plates containing appropriate 
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antibiotic (50 µg/mL of ampicillin for pb13-CYPs and pb13-b5 or 25 µg/mL of 

chloramphenicol for pACYC-AgCPR and plates were incubated overnight at 37°C. 

Next morning colonies were selected and grown in LB media with selective 

antibiotic overnight at 37°C. If required an aliquot of overnight incubated samples 

were preserved long term by mixing an equal amount of culture with 50% glycerol. 

Plasmid DNA minipreps were prepared as described in section 2.7.4, Chapter 2. 

5.2.1.7 Coexpression of CYPs and P450 reductase (CPR) 

Competent E. coli JM109 cells were co-transformed with pCWOri+-CYPs and 

pACYC-AgCPR (obtained from LSTM) to enable co-expression of each CYP with 

Anopheles gambiae CPR. 0.5 µL of plasmid of each pb13-CYPs and pACYC-

AgCPR were transformed in JM109 cells and plated onto LB agar plates containing 

50 µg/mL of ampicillin and 25 µg/mL of chloramphenicol. A single colony was 

picked into 5 ml of LB/ampicillin+chloramphenicol medium and clones grown 

overnight at 37°C. 4 mL of these overnight cultures were transferred to 200 mL 

terrific broth (TB) (Appendix 9.1.1) media containing 50 µg/mL of ampicillin and 25 

µg/mL of chloramphenicol in 1L flasks and incubated at 30°C with shaking (200 

rpm). The OD600 of the cultures were monitored by using an Eppendorf 

spectrophotometer at regular intervals and when they reached 0.7-1.0 (usually in 3.5 

hours) 0.5 mM ALA and 1 mM IPTG were added. Cultures were then incubated at 

24°C for 23 hours. P450s were quantified by CO difference spectrophotometry. 
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5.2.1.8 Purification of P450 membranes 

Cells were chilled on ice for 10 minutes and then harvested by centrifugation at 2800 

x g for 20 minutes at 4°C (Eppendorf centrifuge 5810R). Pelleted cells were 

resuspended in 10 mL of ice-cold 2X TSE (Appendix 9.1.2) and then diluted by 

adding an equal amount of ice-cold water (10 mL). After addition of 250 µL of 20 

mg/mL lysozyme, cultures were stirred gently at 4°C for 1 hour to degrade the cell 

walls. Spheroplasts were pelleted by centrifugation at 2800 x g for 25 minutes at 4°C 

and the supernatant discarded. Spheroplasts were resuspended in 8 mL of spheroplast 

resuspension buffer (Appendix 9.1.2) and after addition of aprotinin, leupeptin (final 

concentration of 1 µg/mL) and PMSF (final concentration of 1 mM) sonicated for 1.5 

minutes. This suspension was then centrifuged at 30,000 x g for 20 minutes at 4°C 

(Beckman Coulter Avanti J-30i centrifuge, JA-20 fixed angle rotor) and the 

supernatant transferred to ultracentrifuge tubes and centrifuged at 49,600 rpm for 1 

hour at 4°C (Beckman optima XL-90 ultracentrifuge, ultra-centrifuge rotor type 

45Ti). The supernatant was discarded and the red-brown coloured membrane 

resuspended in ice-cold 1X TSE buffer in a Dounce tissue homogeniser with 8-10 

strokes of the pestle. P450 content in membranes was quantified by 

spectrophotometry (see below). 

5.2.1.9 Spectral determination of P450  

P450 content was measured using a Varian Cary 300 spectrophotometer. 2 mL of 

P450 spectrum buffer (Appendix 9.1.4) was mixed with 100 µL of cell culture or 50 

µL of P450 membrane in 2 mL eppendorf tubes. A few grains of sodium dithionite 

was added and mixed by inversion. This mixture was divided equally to a pair of 

matched quartz glass cuvettes (Hellma). A baseline scan was then run on the 

spectrophotometer from 500 to 400 nm and the sample cuvette then removed and CO 
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bubbled through the solution for approximately 45 seconds (about 1 bubble/second) 

in a fume hood. Both this cuvette and the reference (which was not exposed to CO) 

were scanned again across the same wavelengths and the size of the peak at 450 nm 

recorded and compared with that at 490 nm. These values were used to quantify 

P450 using the P450 extinction coefficient, 0.091 µM
-1

 cm
-1

 within the formula
 

([ΔA450–ΔA490]/0.091 = nmol of P450 per ml)
 
(Omura and Sato, 1964; Guengerich 

et al., 2009). The protein concentration of each CYP membrane was calculated by 

performing a Bradford protein assay (Bradford, 1976).  

5.2.1.10 Cytochrome - c reductase assay   

The cytochrome - c reductase assay was performed using a 96 – well NUNC 

microplate. Samples were prepared by mixing 150 µL of 0.1 mM cytochrome-c with 

2 µL of membranes and the reaction started by adding 150 µL of 0.1 mM NADPH or 

buffer in the case of negative controls. Reactions were read at 550 nm in a 

spectrophotometer. The change in optical density (OD) per minute was observed and 

the slope then calculated.   

5.2.2 Expression of cytochrome b5 

5.2.2.1 Expression and purification of cytochrome b5 

Competent E. coli JM109 cells were used to express 6H-b5. 0.5 µL of plasmid of 

pb13-b5 was transformed into JM109 cells as described above and plated onto LB 

agar plates containing 50 µg/mL of ampicillin. A single colony was picked into 5 mL 

of LB/ampicillin medium and grown overnight at 37°C. 4 mL of overnight culture 

was transferred to 500 mL terrific broth (TB) media containing 50 µg/mL of 

ampicillin in a 1L flask and shaken at 37°C at 200 rpm. The OD600 of the culture was 

monitored using an Eppendorf spectrophotometer at regular intervals and when it 
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reached 0.8 (usually in 3 hours) 0.5 mM ALA and 1 mM IPTG were added. The 

cultures were incubated at 30°C for overnight. Expression of b5 was checked and 

quantified by spectrophotometry: 2 mL of culture was centrifuged and the pellet was 

resuspended in 2 mL of 0.1 M potassium phosphate at pH 7.5. The suspension was 

divided into two cuvettes and the baseline recorded from 380 nm to 580 nm. A few 

grains of sodium dithionite were added into the sample cuvette and the spectrum was 

checked over the same wavelengths. Additionally, 5 µL of 30% hydrogen peroxide 

was mixed into the reference cuvette and the spectrum recorded. This addition does 

not affect the signal if b5 is present. Cells were harvested as for the P450s. Pelleted 

cells were resuspended in Buffer A (25 mL of buffer for 0.5 L culture) (Appendix 

9.1.3) and lysed by sonication for 1 minute on ice. After addition of CHAPS powder 

(final concentration of 1% (w/v)) samples were stirred gently at 4°C for 1 hour. 

Samples were then centrifuged at 30,000 x g for 30 minutes at 4°C (Beckman 

Coulter Avanti J-30i centrifuge, JA-20 fixed angle rotor) and the supernatant 

transferred onto a 5 mL HisTrap affinity column (GE Healthcare) that had been 

equilibrated with buffer B2 (Appendix 9.1.3) according to the manufacturer’s 

protocol. A laboratory pump was filled with distilled water and connected to the 

column which was washed with 25 mL of distilled water. The column was then 

equilibrated with 25 mL of buffer B2 (5 mL/min flow rate). The sample was applied 

onto the column using a pump and then the column was washed with 50 mL of 0.5% 

buffer B3 (Appendix 9.1.3) in buffer B2 to elute loosely-bound endogenous protein. 

b5 was eluted in 25 mL of buffer B3 and purified b5 was loaded onto the PD-10 

desalting column (GE Healthcare) that had been equilibrated with buffer C 

(Appendix 9.1.3) according to the manufacturer’s manual: After removing the top 

cap and column storage solution the sealed end of the column was cut. For column 
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equilibration 25 mL of buffer C was applied onto the column and allowed to enter 

the packed bed and the flow-through was discarded. 2.5 mL of sample was applied 

and allowed to enter the packed bed and the flow-through was discarded. Then the 

sample was eluted with 3.5 mL of buffer C. 

5.2.2.2 Spectral determination of cytochrome b5  

Cytochrome b5 concentration was determined using a Varian Cary 300 

spectrophotometer. 20 µl of purified b5 or 2 mL of cell pellet was mixed with 2 mL 

of 0.1M potassium phosphate buffer (pH7.5) and was divided between two cuvettes: 

1 mL for the reference cuvette and 1 mL for the sample cuvette. A baseline scan was 

recorded from 380 nm to 580 nm. A few grains of sodium hydrosulphite were added 

to the sample cuvette and it was scanned with the reference cuvette. After adding 5 

µL hydrogen peroxide into the reference cuvette the difference spectrum was 

scanned again. The concentration of b5 was calculated by using reduced vs. oxidised 

spectroscopy (A424-A409), extinction coefficient = 185 cm
-1 

mM
-1

 (Omura and Sato, 

1964). Protein concentration was calculated by performing the Bradford protein 

assay. 

5.2.3 Insecticide metabolism  

Insecticide (thiacloprid and imidacloprid) metabolism assays of recombinant bee 

P450s/CPR/b5 standard reactions were carried out using three replicates for each 

P450 in the presence or absence of NADPH. 10 mM stock solution of thiacloprid and 

imidacloprid were prepared in DMSO and diluted as 100 µM in phosphate buffer 

(0.1 M, pH 7.6) before adding the reaction to avoid the precipitation of insecticide. 

Standard reactions consisted of final concentrations of 10 µM insecticide, 100 µl 

NADPH regeneration system (Promega) (or buffer alone in the case of minus 
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NADPH controls), 0.0117 µM cytochrome b5 and 0.1- 0.4 µM P450 membrane. 

Reactions (200 µl total) were incubated at 30˚C with 1200 rpm shaking for 2 hours 

and stopped by adding 300 µl of acetonitrile. Samples were then spun at 2000 x g for 

5 minutes and 250 µl of supernatant was transferred to HPLC vials and stored at -

20˚C for LC-MS/MS analysis. 

5.2.4 LC-MS analysis 

Due to the equipment and expertise availability all LC-MS analyses were performed 

by Miriam Daniels at Syngenta, Jealott’s Hill. 

Aliquots of each sample were diluted 50:50 in acetonitrile prior to LC-MS/MS 

analysis. Separation was achieved using Ultra Performance LC
®

 (ACQUITY UPLC-

System; Waters, UK) using an ACQUITY UPLC column (HSS T3, 1.8 μm, 100 x 

2.1 mm), with a mobile phase consisting of water (+0.2% formic acid), with a flow 

rate of 0.6 mL/min. The gradient elution conditions of acetonitrile:water were as 

follows: 0 min 0:100, 0.5 min 0:100, 3.5 min 95:5, 4.5 min 95:5, 4.6 min 0:100, 5 

min 0:100. The mass spectrometer used was a Finnigan TSQ Quantum Discovery 

(Thermo Scientific, UK) equipped with an Ion Max source operating in positive ion 

mode. Analytes were detected using selected-reaction-monitoring (SRM) transitions 

are outlined in Table 5.3. Quantification was achieved using standard calibration 

curves constructed in 50:50 acetonitrile:water.  

Table 5.3 SRM transitions and collision energies. 

Analyte Molecular Weight 

(Da) 

SRM Transition 

Parent m\z > Product m\z 

Retention Time 

(min) 

Thiacloprid 254 253 > 126 

253 > 186 

4.83 

Imidacloprid 257 256 > 175 

256 > 209 

4.47 
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5.3 Results  

5.3.1 Heterologous expression of A. mellifera CYP305D1, CYP315A1, 

CYP6AS5, CYP6BE1, cytochrome b5 and CCE8 in E. coli 

Heterologous expression focused on exploring the functional role of the P450s 

CYP305D1, CYP315A1, CYP6AS5 and CYP6BE1, as well as cytochrome b5 and 

CCE8 in insecticide detoxification. Isolated cDNAs were amplified for each gene. 

The expected band sizes for CYP305D1, CYP315A1, CYP6AS5, CYP6BE1, 

cytochrome b5 and CCE8 were confirmed by gel electrophoresis. 

The candidate P450 genes were fused to a bacterial ompA + 2 leader sequence for 

functional expression in E.coli. In order to produce catalytically active P450s the 

candidate P450s, were co-expressed together with A. gambiae CPR in E. coli as 

previously described by McLaughlin et al. (2008). Variation was observed in the 

yield of recombinant protein produced for each P450 (Table 5.4), however, each 

P450 reduced CO-difference spectra suggesting correctly folded and active enzyme 

as indicated by significant peaks at 450 with secondary smaller 420 peaks observed 

(Figure 5.2). Honey bee cytochrome b5 was also successfully expressed and purified 

from E. coli membranes (0.83 g cytochrome b5/L). It  generated a characteristic b5 

spectra (Guzov et al., 1996), with a peak at 420-430 nm observed when reduced with 

sodium hydrosulphite (Figure 5.3). 
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Table 5.4 P450 concentration and CPR activity in expressed CYPs. 

 

In order to express the candidate honey bee esterase CCE8 in E. coli, the enzyme was 

histidine tagged, expressed and purified using a HisTrap affinity column with minor 

modification as described in Godinho et al. (2011). However, no esterase activity 

could be measured in the resulting preparations. This could be a result of several 

factors as detailed in previous studies (Fakruddin et al., 2013). Firstly, E. coli may 

have limited ability to produce functional insect esterase as it may lack some of the 

functional machinery of protein production or post-translational modification present 

in insect cells. Secondly, active enzyme may not have been observed due to protein 

degradation or it may be that honey bee esterase insertion into the membrane was 

incorrect. Finally this result may be linked with expressed protein insolubility, 

however, due to the limited time frame of this PhD, no further assessment could be 

conducted to confirm these possibilities by SDS page gel electrophoresis or western 

blot.  

CYPs P450 concentration  

(nmol P450/mg protein) 

CPR activity  

(nmoles cyt c/min/mg protein) 

CYP305D1 0.17 8.8 

CYP315A1 0.116 6.9 

CYP6AS5 0.045 4 

CYP6BE1 0.0518 7 
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Figure 5.2 CO - difference spectra. Four P450s show an absorbance peak at 450 nm indicating. 
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Figure 5.3 Absorbance of reduced CO - difference P450 spectrum. Cyt b5 expression is detected at an absorbance of about 424 nm. 
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5.3.2 Metabolism Assay 

The ability of CYP305D1, CYP315A1, CYP6AS5 and CYP6BE1 (in combination 

with A. gambiae CPR and honey bee cytochrome b5) to detoxify thiacloprid and 

imidacloprid in the presence and absence of NADPH was examined in insecticide 

metabolism assays. Figure 5.4 outlines the results of monitoring thiacloprid recovery 

in the samples using selected-reaction-monitoring (SRM) methods, with 

quantification against standard calibration curves. NADPH is an obligate cofactor for 

P450 metabolism as it is required by CPR to deliver electrons to P450 for catalytic 

activity. Therefore, incubation of substrate was carried out in the presence and 

absence of NADPH to monitor the NADPH dependant depletion of substrate 

indicative of P450 metabolism. No significant differences were observed in the 

thiacloprid recoveries between the +/- NADPH samples for any of the four P450s. 

Figure 5.5 outlines the results of monitoring imidacloprid recovery in the samples 

using SRM  methods, with quantification against standard calibration curves. Again 

no significant differences were observed in the IMI recoveries between the +/- 

NADPH samples.   
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Figure 5.4 Recovery of thiacloprid after a 2 h incubation with the four honeybee 

P450s. Graph represents mean final recovery (μM) ± SE (n = 3). 

 

Figure 5.5 Recoveries of imidacloprid after a 2 h incubation with the four 

honeybee P450 expression systems. Graph represents mean final recovery (μM) 

± SE (n = 3). 
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5.4 Discussion 

In order to determine if CYP6BE1, CYP6AS5, CYP315A1 and CYP305D1 were 

involved in thiacloprid metabolism they were functionally expressed in E.coli. Since 

P450s require electrons from P450 reductase for catalytic activity, the P450s were 

co-expressed with A. gambiae CPR. Honey bee cytochrome b5 was also cloned and 

expressed and included in metabolism assays as this enzyme has been shown to 

augment the catalytic activity of insect P450s  (Stevenson et al., 2011). 

In this study the ompA+2 strategy was employed to direct P450s to the inner 

bacterial membrane. This technique was used previously in human P450 CYP3A4 

expression studies and resulted in higher yield in comparison to the 17α hydroxylase 

NH2 terminus site modification approach (Pritchard et al., 1997). In the case of insect 

P450s, several Anapholes gambiae P450s including CYP6Z2 and CYP6M2 

(Mclaughlin et al., 2008; Stevenson et al., 2011) and the Bemicia tabaci P450 

CYP6CM1vQ (Karunker et al., 2009) have been successfully expressed using the 

ompA+2 strategy in E. coli.  

Honey bee P450s (CYP6AS1, CYP6AS3, CYP6AS4, CYP6AS10) have previously 

been expressed in Sf9 insect cells (Mao et al., 2009). However, this is the first report 

that describes the functional expression of honey bee P450s in E. coli. This is 

significant since there are a number of advantages of using E. coli for recombinant 

protein expression including low cost simplicity and high protein yields, thus 

recommending this as a useful system for future biochemical characterisation of 

honey bee P450s. 
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Although functional P450 was obtained for all CYP genes expressed, incubation of 

thiacloprid and imidacloprid with recombinant P450 failed to produce evidence for 

the metabolism of thiacloprid or imidacloprid as assessed by parent compound 

depletion.  There are several possible explanations for this finding. Firstly these 

P450s may lack the ability to metabolise these insecticides. Secondly,  although these 

P450s were upregulated in response to thiacloprid exposure, it is nevertheless 

possible that the enzyme responsible for metabolism was not induced, but instead 

constitutively expressed at levels sufficient to provide protection to honey bees 

against this compound. In such a scenario our induction strategy would have failed to 

identify the causal detoxification enzyme that underlies thiacloprid tolerance. 

Alternatively the lack of metabolism may be due to technical factors. For example, as 

there are no other substrates for these P450s to act as a positive control,  it is not 

known if the lack of insecticide metabolism was due to lack of substrate recognition 

or due to experimental factors such as inactive enzyme or suboptimal experimental 

conditions, as these were not optimised in this study. Due to time constraints the 

functional activity of P450s were tested only against two well-known fluorescent 

model substrates (7-Ethoxy-coumarin (7-EC) and 7-Methoxy-4-(tri-fluoromethyl)-

coumarin (MFC)). No activity was seen for any of the expressed P450s using these 

substrates. This result does not indicate that the expressed honey bee P450s were 

inactive as it is entirely possible that neither 7-EC nor MFC are substrates for the 

P450s tested. In relation to this finding other studies testing recombinant insect P450 

against a range of model substrates have shown that insect P450s can demonstrate 

very significant differences in their substrate profile for model substrates (Zimmer et 

al., 2014). Therefore, future investigation to identify model fluorogenic substrate is 

recommended. It is also possible that the P450s examined here are only very weak 
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metabolisers of imidacloprid and/or thiacloprid, thus metabolism cannot be detected 

by simply assaying parent compound depletion. A more sensitive approach would be 

to assay for the appearance of insecticidal metabolites in insecticide/P450 

incubations by liquid chromatography tandem mass spectrometry (LC-MS/MS). 

Such an approach has been used for other neonicotinoid metabolising P450s and 

identified 5-hydoxy imidacloprid as the primary metabolite produced upon 

incubation of CYP6CM1 with imidacloprid (Karunker et al., 2009). However, this 

approach requires reference standards of known metabolites which were unavailable 

to Syngenta (who were in a position to carry out LC-MS/MS analysis) during the 

course of this PhD. It should also be considered that honey bee P450s were co-

expressed with mosquito CPR, which might affect the biotransformation activity of 

P450. Therefore co-expression of honey bee, P450s with honey bee CPR might 

produce enhanced activity against insecticides.  

Finally a different enzyme system, such as esterases may be responsible for 

thiacloprid metabolism/sequestration. Although it is reported that  P450s play the 

major role in metabolism of these compounds,  the toxicity of the cyano-substituted 

neonicotinoid acetamiprid was synergised (synergism ration of 2.96) by the inhibitor 

S,S,S,-tributylphosphophorotrithioate (DEF) suggesting esterases may play a 

contributory role in detoxification (Iwasa et al., 2004). In our ‘survivor’ array 

comparison five probes representing the esterase CCE8 were overexpressed and this 

was confirmed by qRT-PCR. Attempts to functionally express this esterase in E. coli 

resulted in non-functional enzyme (data not shown) so we were unable to confirm or 

refute the role of this enzyme in thiacloprid metabolism. Although CCE8 expression 

was not achieved using the E. coli system, eukaryote expression systems have been 

successfully applied to esterases including Helicoverpa armigera esterase expression 
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in baculovirus  (Teese et al., 2013) and Tribolium casteneum esterase expression  in 

methylotrophic yeast Pichia pastoris (Delroisse et al., 2005).  CCE8 expression in 

baculovirus or yeast expression systems may be worth considering in future. 
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6. DIFFERENTIAL SENSITIVITY OF DIFFERENT HONEY BEE RACES 

TO NEONICOTINOIDS 

6.1 Introduction 

Over the past few years there has been increasing investigation of the effects of 

insecticides on non-target organisms (especially bee pollinators) (Osborne, 2012). 

The growing interest and concerns of the general public in relation to reports of 

recent honey bee declines and the role of pesticides in this has led to response from 

the scientific community. New data has been generated on the toxicity of pesticides 

to bees (honey bees, bumble bees and wild bees) and their metabolism (Marletto et 

al., 2003; Mommaerts and Smagghe, 2011). This is especially true for neonicotinoids 

(Bonmatin et al., 2005; Wu et al., 2011). The development of comprehensive data 

sets that evaluate the impact of changing factors (such as bee age, nutritional status 

and stress factors like temperature affects the colony health) on pesticide sensitivity 

and physiological condition is critical (Suchail et al., 2001). Previous work has 

demonstrated that a number of factors influence bee sensitivity to pesticides. These 

include age (the susceptibility of older bees is higher than younger bees), the quality 

of consumed pollen (the susceptibility of bees fed on protein deficient pollen is 

higher than bees fed on high protein pollen) and/or the presence of stress factors, 

such as hive temperature at rearing (lower temperature <33
o
C) develops more 

susceptible adults (Wahl and Ulm, 1983; Rortais et al., 2005; Medrzycki et al., 

2009). 

Another factor that may be relevant in honey bee sensitivity to insecticides is bee 

subspecies/race. There are only a few studies published on the relationship between 

honey bee race and toxicity to insecticides. Gromisz and Gromisz (1980) reported 
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that A. mellifera L. (western European bee) was more susceptible than A. m. 

caucasica, A. m. ligustica and A. m. carnica to oral exposure to permethrin (synthetic 

pyrethroid) and phosalone (organophosphate). Another study related to imidacloprid 

toxicity indicated that the LD50 of A. m. caucasica is lower than A. m. mellifera after 

contact application, whereas via oral exposure the LD50 values were similar for both 

races (Suchail et al., 2000). Although African and European bees showed equal 

susceptibility to topically applied malathion (organophosphate) and carbofuran 

(carbamate) (Elzen et al., 2003), European bees were slightly more susceptible to 

methyl parathion (organophosphate) (Danka et al., 1986). Despite these findings 

there are no studies to date on the possible mechanisms underlying race-related 

differences in sensitivity to insecticides. The identification ofcandidate genes 

associated with differential sensitivity could be invaluable for directing future 

development of insecticides/synergists.   

6.2 Materials and Methods 

6.2.1 Insects  

Adult worker honey bees of Apis mellifera ligustica, Apis mellifera caucasica and 

Apis mellifera buckfast were obtained from different hives belonging to Ankara 

University, Agricultural Faculty Campus, Turkey (section 2.4, Chapter 2).  Hives 

were exposed to smoke before collection and nurse bees were shaken from the 

frames. Forager bees were trapped in front of the hive entrance and were collected 

into plastic cups following minimal CO2 exposure. Drones and dead bees were 

removed from containers.  
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6.2.2 Toxicity Bioassays 

Worker bees were briefly anaesthetised with CO2 before applying 1 μL of 

neonicotinoid (thiacloprid or acetamiprid) in acetone (96% AR) (ranging from 1µg to 

100 µg) or only acetone for controls to the thorax using a microapplicator. All assays 

were repeated at least twice, and each treatment contained approximately ten bees 

(see section 2.5.1, Chapter 2).  

Extra sum of squares F-test was applied to compare full dose contact toxicity data 

between forager and nurse bees of A. m. ligustica. 

Bioassays combined with synergists (PBO and EN16/5-1) were carried out using a 

discriminating dose of insecticide obtained from a full dose contact toxicity 

experiment. Bees were dosed topically with either 1 µl of synergist in acetone or 1 µl 

of acetone prior to insecticide application (see section 3.2.3.2, Chapter 3). 

6.2.3 Haem Peroxidise Assay  

Since it was not possible to measure honey bee microsomal oxidase activity (see 

Chapter 3), the variation of haem content which is directly correlated with the molar 

amount of oxidases was monitored among the races. Haem peroxidise assays were 

carried out using the method described by Penilla et al. (1998) with some 

modifications. Ten frozen bees from each race were homogenised individually in 1 

mL dH2O with a motorised homogeniser and centrifuged at 10,000 x g for 1 minute. 

The supernatant was used as the assay source. Ten µl of homogenate and 70 µl of 

potassium phosphate (90 mM, pH 7.2) were pipetted into the wells of a 96-well 

microplate (NUNC, maxisorb). Aliquots (200 µl) of 0.2% 3,3′,5,5′-

tetramethylbenzidine (TMBZ) in methanol/sodium acetate and 25 µl 3% H2O2 were 
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added. The reaction was incubated for 5 minutes at room temperature. An endpoint 

reading was taken at 620 nm using a Thermomax microplate reader (Molecular 

Devices, Menlo Park, CA). The concentration of cytochtome c used in the positive 

control was calibrated to the standard curve. To create the standard curve several 

quantities of cytochrome c were used (range between 0.01 µg – 0.2 µg). Results were 

calculated as µg cytochrome/mg protein for each honey bee. Unpaired t-test was 

applied to compare the haeme content of the tested races, to determine if the means 

of the two independent samples were significantly different. 

6.2.4 Microarray Analysis and Quantitative Polymerase Chain Reaction (qRT-

PCR) 

Microarray and qRT-PCR were designed as described previously (section 2.7.8 and 

section 2.7.7, Chapter 2). All samples are normalized against two housekeeping 

genes (ef1 (elongation factor-1), and tbp (tubulin)). qRT-PCR was carried out to 

validate the microarray results for selected genes (Table 6.1). 

Table 6.1 Oligonucleotide Primers for qRT-PCR (nAChR alpha 6 subunit) 

Alpha 6 F1 TCACTTGGTTCCCCTTTGAC 

Alpha 6 R1 CCGATCAGGTACCATTCTCC 

Alpha 6 F2 CCGCATCGTTACCTCTTAGC 

Alpha 6 R2 AAGCCTGTCCACCACCATAG 
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6.2.5 Sequencing and Cloning 

First strand cDNA was synthesised using random hexamers, SuperScript II reverse 

transcriptase (Ambion) and total RNA (1 μg) extracted from two separate pooled 

samples of A. m.buckfast and A. m. caucasia. cDNA (1µl) was used as template for 

PCR using PCR Master Mix (Fermentas) and specific primer sets designed on the 

published nAChR subunit sequences (Jones et al., 2006) (Table 6.2). Temperature 

cycling conditions were: 94
o
C for 2 minutes, followed by 40 cycles of 30 seconds at 

94
o
C, 30 seconds at the annealing temperature given in Table 6.3 and 1.20 minutes at 

72
o
C with a final extension step at 72

o
C for 5 minutes. When required the primary 

PCR products were used as templates for a second nested PCR reaction. PCR 

products were analysed by electrophoresis on a TBE gel and then purified using the 

Wizard® SV Gel and PCR Clean-Up System (Promega) before being sequenced by 

Eurofins.  

As required, PCR products were ligated into pSC-A-amp/kan (Agilent) cloning 

vector. After transformation, positive colonies were selected by PCR using the 

plasmid’s primers T3 (5'-AATTAACCCTCACTAAAGGGAA-3') and T7 (5'-

CCTATAGTGAGTCGTATTAC-3'). Plasmids containing the inserts were custom 

sequenced at Eurofins.  
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Table 6.2 Oligonucleotide primers for PCR to amplify nAChR subunits  

 

Table 6.3 Description of PCR reactions and primer squences 

 

6.3 Results 

6.3.1 Toxicity Bioassays 

Bee mortality was recorded 24 hours after topical application. The results of topical 

application with two neonicotinoids are presented in figures 6.1 and 6.2. No 
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mortality was observed with A. m. caucasica worker bees when treated with any dose 

of either thiacloprid or acetamiprid. However a mortality dose response curve was 

observed for A. m. buckfast worker bees to both compounds (Figure 6.1 and Figure 

6.2) generating LC50 values of 1.86 ± 0.61 µg and 7.6 ± 4 µg respectively. 

 

Figure 6.1 Dose-response curve from topical bioassay; thiacloprid against A. m. 

buckfast 

 

Figure 6.2 Dose-response curve from topical bioassay; acetamiprid against A. m. 

buckfast 
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Toxicity bioassays were repeated but forager bees and nurse bees of A. m. ligustica 

were assayed separately. Thiacloprid was more toxic to forager bees of A. m. 

ligustica (LD50: 0.5429 +/- 0.3545 µg) compared to the nurse bees of same 

subspecies (LD50: 58.9748 +/- 39.0658 µg) (Figure 6.3). As indicated by the rejection 

of the null hypothesis, (a single parameter for both data sets) there is a statistically 

significant difference between forager and nurse bees of A. m. ligustica (P< 0.0001) 

in response to thiacloprid (Appendix 9.6).    

Additionally, whilst PBO synergised thiacloprid (95%) equally for both A. m. 

ligustica worker and nurse bees, EN 16/5-1 synergised thiacloprid more for nurse 

bees (92%) compared to foragers (26%) (Figure 6.4 and Figure 6.5). Dose response 

curves as shown in figure 6.3 displays the % mortality of tested forager and nurse 

bees against thiacloprid concentrations. At some concentrations the mortality of 

nurse bee replicates overlapped the forager bee mortality response to the same 

concentrations. This error might be related to collection of bees from the hive. After 

allowing the foragers to leave the hive, frames were shaken for nurse bee collections 

thus a few forager bees may have remained in the hive at this point and so were 

included in the experimental nurse bee group.  
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Figure 6.3 Dose-response curves from topical bioassays; thiacloprid against 

forager and nurse bees from A. m. ligustica. 

 

Figure 6.4 Synergistic effect of PBO and EN 16/5-1 mixed with a discriminating 

dose of thiacloprid on A. m. ligustica (forager bees) (Error bars represent 

standard error of mean). 
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Figure 6.5 Synergistic effect of PBO and EN 16/5-1 mixed with a discriminating 

dose of thiacloprid on A. m. ligustica (nurse bees) (Error bars represent 

standard error of mean). 

6.3.2 Haem peroxidise assay (Quantification of haem group of different bee 

races) 

This assay does not directly measure oxidase activity but instead quantifies the total 

haem content. A higher haem content is assumed to reflects up-regulation of haem 

containing P450(s). Comparisons of total haem of 3 different bee races are shown in 

Figure 6.6. A. m. caucasica has the highest haem content (0.191 µg haem/mg 

protein) compared to A. m. buckfast (0.099 µg haem/mg protein) and A. m. ligustica 

(0.056 µg haem/mg protein). The non-paired t-test results also show that the haem 

content of A. m. caucasica is significantly higher than haem content of other two 

tested races (P<0.05) while there is no significant difference of haem content 

between  A. m. ligustica and A. m. buckfast (P>0.05) (Appendix 9.7). 
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Figure 6.6 Haem content for 3 different honey bee races (Error bars represent 

standard error of mean). 

6.3.3 Comparison of Two Honey Bee Races by Microarray Analysis 

In the microarray experiment gene expression in A. m. buckfast and A. m. caucasica 

were compared. Total RNA was extracted from pooled samples of 5 bees using 

TRIzol Reagent (Ambion). Four independent extractions were performed for each 

race. When RNA integrity of these samples was assessed by electrophoresis there 

was evidence of a sıgnificant degree of RNA degradation, which presumably 

occurred during transport of bees from Turkey to the UK, despite the samples being 

transported in RNAlater™ (Figure 6.7).  

 

Figure 6.7 RNA gel image of A. mellifera buckfast and A. mellifera caucasica 
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This was of some concern because the RNA extracted from caucasica bees appeared 

to be more degraded than that extracted from buckfast bees. As it was too late in the 

season to obtain fresh samples, microarray analysis was continued after purifying 

these samples further by running them through an RNA purification column (Qiagen) 

and carefully normalising the amount of starting RNA, after measuring RNA 

concentration by spectrophotometry. Microarray analysis was carried out as 

described previously in section 2.7.8, Chapter 2 and the results are shown in 

Appendix 9.4. 

6.3.4 qRT-PCR validation 

Microarray results were validated for selected candidate genes using qRT-PCR. 

Although RNA concentration was normalised for the two races prior to cDNA 

synthesis using a nanodrop spectrophotometer, the results of expression analysis of 

several house-keeping genes indicated that there are significant differences in the 

cDNA quantity/quality obtained with lower Cts (threshold cycle) observed for A. 

mellifera caucasica for all genes (Figure 6.8 and Figure 6.9).  

 

Figure 6.8 Cts of reference genes (ef1) 
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Figure 6.9 CTs of reference genes (tbp) 

This is likely to be a result of the differential RNA degradation which may have 

affected the outcome of the microarray experiments.  Nevertheless, in the microarray 

study a nAChR alpha 6 subunit was up-regulated ~8-fold in A. m. caucasica 

compared to A. m. buckfast and, after normalisation for differences in RNA quantity 

using reference genes in qRT-PCR, these results were confirmed, using two different 

primers sets (Figure 6.10).  

 

Figure 6.10 Expression levels determined with qRT-PCR for nAChR alpha 6 

subunit (Error bars represent 95% confidence limits). 
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6.3.5 Sequence Analysis of Nicotinic Acetylcholine Subunits in Two Honey Bee 

Races 

Using the published A. mellifera genome data, 11 AChR subunits from two races (A. 

m. buckfast and A. m. caucaisca) were screened by sequence analysis (Appendix 

9.5). Sequences were aligned using Geneious with the A. mellifera genome sequence 

as the template. To date  this analysis has identified 5 splice variants in Alpha 4 

subunit in buckfast, 2 splice variants in alpha 5 in caucasica and 2 splice variants in 

alpha 7 in buckfast. No non-synonymous nucleotide changes were identified in 

nAChR subunit genes between both races.  

6.4 Discussion 

A. m. buckfast and A. m. caucasica subspecies showed different toxicity responses to 

two cyano-substituted neonicotinoids (thiacloprid and acetamiprid). A. m. caucasica 

exhibited greater tolerance to both assayed neonicotinoids compared to A. m. 

buckfast. Several factors might be involved in the sensitivity difference observed 

such as physiological differences (different cuticle penetration properties or varying 

body sizes, or differences in development timings) or biochemical differences 

(metabolic processes) between the two bee races. Previous work has suggested P450 

metabolism may enhance the tolerance of honey bees against cyano-substituted 

neonicotinoids as the toxicity of such compounds to bees can be significantly 

increased using detoxification enzyme inhibitors (Iwasa et al., 2004). In addition 

biochemical examination of bee esterase did not show binding to thiacloprid (see 

Chapter 3). Higher haem content in A. m. caucasica may be an indicator of a greater 

metabolic activity which provides protection against cyano-substituted 

neonicotinoids, and this may be a race-specific characteristic of A. m. caucasica 



117 
 

bees. The transcriptome profiling revealed that a subunit of the nAChR (the nAChR 

target-site) was overexpressed in A. m. caucasica compared to A. m. buckfast, while 

a large number of P450s and esterases were down-regulated. Although rapid P450 

detoxification of cyano neonicotinoids appears to be the primary mechanism for 

relative tolerance of bees, target-site insensitivity might act as an additional 

mechanism of tolerance.  

Target-site resistance to neonicotinoids has been described in other insect species. 

For example Bass et al. (2011) identified multiple mechanisms of resistance in a 

field population of Myzus persicae (peach-potato aphid) to imidacloprid.  These 

included metabolic resistance due to P450-mediated detoxification but also target site 

resistance as a result of mutation of a key residue in the loop D region of a nAChR 

β1 subunit. 

In another study, a point mutation in two nAChR alpha subunits (Nlα1 and Nlα3) in 

a brown planthopper laboratory-selected strain of Nilaparvata lugens were reported 

to confer resistant to imidacloprid (Liu et al., 2005). However, to date, field 

populations with resistance to this compound appear to exclusively result from P450 

detoxification (Wen et al., 2009; Puinean et al., 2010). 

In reference to these findings, the nAChR of A. m. caucasica and A. m. buckfast was 

examined to identify if any mutations could be found to implicate target-site 

resistance. In the honey bee genome 9 nAChR alpha subunits and 2 beta subunits 

have been described. However, in my sequencing studies, no non-synonymous 

mutations were observed between the two races. However, several splice variants 

were detected in screened nAChR subunits of both sub species A. m. caucasica and 
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A. m. buckfast. Alternative splicing of nAChR subunits has been implicated in 

resistance to insecticidal nAChR agonists previously.  For example, a spinosad 

resistant strain of diamondback moth Plutella xylostella has a mutation resulting in 

mis-splicing of the nAChR Pxα6 which results in a truncated protein (Baxter et al., 

2010). However I did not observe alternative splicing resulting in frame-shifts or 

truncated nAChR subunits in the honey bee race sequences. 

Although the nAChR subunit alpha 6 was overexpressed in A. m. caucasica 

compared to A. m. buckfast, it is important to point out that the degraded RNA 

observed in these experiments might have affected the quality of results. Thus, as a 

future work, the microarray results should therefore be interpreted with caution and 

ideally repeated using fresh material. If overexpression of the nAChR subunit alpha 6 

can be confirmed it would be interesting to carry out functional analyses to explore if 

this has any effect on resistance to neonicotinoids. One way to do this would be to 

use the GAL4/UAS system to create transgenic Drosophila that express honey bee 

nAChR subunit alpha 6 at different levels and then examine the sensitivity of the 

transgenic lines to neonicotinoids. In such an experiment it would be useful to 

knock-out the endogenous Drosophila nAChR subunit alpha 6 (which would not be 

lethal to Drosophila), this could be done by RNAi or alternatively using the new 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 

(CRISPR-associated protein-9 nuclease) technology (Bassett and Liu, 2014). 

Insensitivity differences to thiacloprid were also observed between forager and nurse 

bees of A. m. ligustica with nurse bees showing higher tolerant to thiacloprid. This 

significant insensitivity on nurse bees has been detected in other studies where young 

bees were found to be more tolerant to pesticides (Wahl and Ulm, 1983; Rortais et 
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al., 2005; Wu et al., 2011). This might be explained simply as age-related weakness 

or could be related to sub-lethal exposure to insecticides/xenobiotics that older 

(forager) bees may be exposed to during foraging activity. Synergism studies carried 

out in the presence and absence of PBO and EN 16/5-1 suggested that esterases may 

provide extra protection to nurse bees against thiacloprid. Further studies are needed 

to confirm the involvement of esterase to metabolism in nurse bees. This could 

include an investigation into the interaction of nurse bee esterase and neonicotinoid 

by “interference assay”.  

Understanding the mechanism of enzyme detoxification/target-site sensitivity may 

contribute to the development of a novel technique for pest control and any findings 

on race-based/labour division based sensitivity will be the first example confirmed 

using both molecular and biochemical techniques. It would also become an important 

attribute to be considered by bee-keepers when choosing the race of bees best suited 

for their particular purpose and that would also have important ramifications for the 

pesticide registration procedure.    
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7. GENERAL DISCUSSION 

The work of this thesis has provided significant additional evidence for the 

involvement of phase 1 detoxification enzymes (esterases and P450s) in honey bee 

‘defence’ against the insecticides tau-fluvalinate and thiacloprid. Synergist bioassay 

results using PBO and EN 16/5-1 suggested that these detoxification mechanism(s) 

may play an important role in protecting honey bees from tau-fluvalinate and 

thiacloprid toxicity. P450s were found to contribute the most protection to both 

compounds and this was further supported by the “interference assay” with neither 

insecticide interacting with semi-purified bee esterases. Similar binding studies with 

another pyrethroid (alpha-cypermethrin) and neonicotinoid (imidacloprid) revealed 

these compounds also failed to bind to honey bee esterases.  

This is in contrast to herbivorous insects that have been assayed using the same 

interference assay. The resistance-associated esterase, E4, was used as a positive 

control in the thesis, and in other herbivores (Bemisia tabaci, Plutella xylostella, 

Helicoverpa armigera) semi-purified esterase(s) has always been found to interact 

with a variety of xenobiotics (G. Moores, pers comm).  

Taken together the synergist and interference assays strongly suggest that P450s are 

the primary mechanism of detoxification of these insecticides in honey bees.   

Specific P450s involved in honey bee detoxification of tau-fluvalinate have been 

identified previously with in vitro characterisation of eight honey bee P450s of the 

CYP3 clan revealing that three members of the CYP9Q family have the capacity to 

metabolise tau-fluvalinate and also the organophosphate coumaphos (Mao et al., 
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2011). However, to date, the P450s involved in the detoxification of cyano-

substituted neonicotinoids like thiacloprid have not been identified. 

The honey bee genome contains 46 P450 genes and to identify which of these is/are 

involved in insecticide detoxification requires a high-throughput approach. In this 

thesis, therefore, an induction strategy followed by whole transcriptome profiling 

was adopted to identify genes up-regulated in response to exposure to a sub-lethal, 

topical, dose of thiacloprid. 

This is the first demonstration with honey bees of a sub-lethal dose of an insecticide 

providing a protective effect to subsequent exposure of the same insecticide. In a 

similarly structured study by Johnson et al. (2012), no effect on honey bee toxicity 

was detected for tau-fluvalinate (pyrethroid) in individuals fed with phenobarbital, 

xanthotoxin, salicylic acid and indole-3-carbinol; in contrast, quercetin fed 

individuals showed a reduced sensitivity. However, this study did not include the 

effect of a tau-fluvalinate feeding on subsequent sensitivity to the same chemical 

compound. Beyond honey bees, tolerance of Aedes aegypti against a sub lethal dose 

of the pyrethroid permethrin, the organophosphate temephos, the herbicide atrazine 

and other xenobiotics (fluoranthene and copper) has been explored using a similar 

approach to this thesis. Larval tolerance to permethrin was moderately enhanced 

following exposure to xenobiotics while larval tolerance to temephos improved 

moderately after exposure to atrazine, copper and permethrin, however, none of the 

insecticides provided a protective effect on larval tolerance to subsequent exposure to 

the same insecticides (Poupardin et al., 2008). 

The induction bioassay was planned to monitor the phenotypic effects on honeybees 

exposed by feeding to sub-lethal doses for 24 hours. This experimental design and 
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the results obtained revealed that 24 hours of exposure reduced bee sensitivity to an 

immediate subsequent exposure to a much higher dose of thiacloprid, however this 

was not a permanent phenomenon and by the 48 hours time point bees fed 

thiacloprid were no more tolerant than controls. It would be interesting to explore, in 

future, if longer/continual initial exposure times resulted in a longer ‘protective 

effect’. This type of longer, low-level exposure more closely resembles the type of 

exposure scenario bees might encounter in the field, and it would be interesting to 

carry out similar experiments at the field scale. The findings of such a study could 

theoretically also inform a new approach in apiculture of designing complementary-

diets where honey bees can be fed with sub-lethal doses of certain compounds to 

establish colony defence to that compound. However, such a strategy would require 

careful examination of possible sub-lethal effects on bees from the low level 

exposure doses used and any carry through into bee honey. Although theoretically 

possible in reality such an approach is unlikely to garner widespread support. 

Interestingly a protective effect from other stress factors such as diseases, parasites or 

involvement of other pesticides or phytochemicals could not be demonstrated in the 

laboratory, so replicating similar studies in field conditions are necessary.   

The results of the induction bioassay may be interpreted as sub-lethal exposure of 

thiacloprid activating the transcription of one or more genes encoding 

detoxification/defence and these subsequently return to constitutive levels, or lower 

than constitutive levels, at the later time points.  

Although identification of the specific genes of honey bees that regulate the 

metabolism of detoxification enzymes is an important research topic, only a very 

limited number of studies related to detoxification gene induction have been 
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published. However, several studies, including this report, show that detoxification 

capacity can be induced by specific agents. Yu et al. (1984) exposed honey bees 

orally to sub-lethal doses of 5 insecticides (permethrin, metoxychlor, carbaryl, 

malathion, diflubenzuron) to assess the effects on expression of detoxification 

enzymes. Surprisingly dietary exposure did not show any effect of detoxification 

enzyme activity except in the case of permethrin, which was found to significantly 

induce GST activity; Kezic et al. (1992) investigated P450 induction in bees after the 

9
th

 day of dietary exposure to benzo-(α)-pyrene, and found that benzo-(α)-pyrene 

monooxidase activity was increased 5-25 fold in honey bees. In addition, Mao et al. 

(2011) found that CYP9Q3 and CYP9Q2 were induced after exposure to tau-

fluvalinate and bifenthrin respectively. Johnson et al., (2012) found that when honey 

bees were exposed to honey extracts, it resulted in the up regulation of the CYP6AS 

sub family of clade 3. Derecka et al. (2013) demonstrated that exposure to a sub 

lethal dose of pesticides induced the expression of metabolic enzymes of honey bees 

with CYP6AS3, CYP6AS4, CYP6AS14, CYP6AS15, CYP6AR1, CYP9R1, and 

CYP9S1 upregulated in larvae following 15 day feeding with imidacloprid. 

Coumaphos and fluvalinate upregulated CYP6AS3, CYP6AS4 and CYP9S1 in adult 

honey bees (Schmehl et al., 2014). These findings principally implicated members of 

the CYP3 clade of P450s.. In this thesis study, CYP6AS5 and CYP6BE1 which also 

members of CYP3 clade were identified as up-regulated in honey bees fed 

thiacloprid and have not been found to be up-regulated by any xenobiotic previously 

(Berenbaum and Johnson, 2015). Furthermore, this thesis study shows that, 

CYP305D1 of the CYP2 clade and was up-regulated in treated bees. This gene was 

also shown to be upregulated previously in honey bees after exposure to coumaphos 

(Scmehl et al., 2014).  
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Additionally CCE8, a carboxylestrase was found to be up-regulated by thiacloprid in 

this study. Honey bee esterases have been shown to be induced previously by several 

different groups of insecticides including organophosphates, neonicotinoids, 

pyrethroids, phenylpyrazoles, and spinosyns (Carvalho et al., 2013; Berenbaum and 

Johnson, 2015). Similarly, esterase E4-like was found to be upregulated by 

coumaphos (Scmehl et al., 2014). As, the results of esterase ‘interference assays’ 

conducted in this thesis did not showing any interaction between tested insecticides 

and honey bee estrases it is likely that the upregulation of this gene represents a 

generic stress response which in this case provides no protective effect. 

Beyond honey bees there are examples of induction studies in other insects which 

aimed to understand the metabolic basis of insecticide resistance and/or identify the 

enzymes which are capable of detoxifying xenobiotics. Thiamethoxam induces 

detoxification enzymes including P450s in a resistant Bemicia tabaci strain (Yang et 

al., 2013). Willoughby et al. (2006) revealed that in Drosophila melanogaster 

minimal induction of detoxification enzymes were observed after a short exposure to 

high lethal concentrations of several insecticides (spinosad, diazinon, nitenpyram, 

lufenuron and dicyclanil), in contrast the natural plant compound caffeine and the 

barbituate phenobarbital induced a number of CYP and GST genes related to 

insecticide resistance. Thus, insecticides may not always be the most active inducer 

of detoxification enzymes which are capable of metabolising them (Poupardin et al., 

2008). 

Similarly, p-coumaric acid (constituent of honey) were found to be the most active 

inducer of detoxification enzymes in honey bees and upregulated fourteen 

xenobiotic-metabolising P450s (Mao et al., 2013; Berenbaum and Johnson, 2015). In 
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contrast in this thesis thiacloprid upregulated only four candidate P450s (CYP315A1, 

CYP6BE1, CYP305D1, CYP6AS5) which may participate in xenobiotic metabolism. 

For the first time, the ompA+2 technique has been used to successfully express 

honey bee P450s in E. coli, enabling further studies to assess the prescence/absence 

of pesticide metabolism by particular honey bee P450s. Although functional P450 

was obtained for all CYP genes expressed, incubation of thiacloprid and 

imidacloprid with recombinant P450s and cytochrome b5 failed to produce evidence 

for the metabolism of these compounds as assessed by parent compound depletion. 

Similarly, in previous studies coumaphos and fluvalinate were found to up-regulate 

CYP6AS3, CYP6AS4 and CYP9S1 in honey bees (Scmehl et al., 2014); however, 

once expressed heterologously these P450 enzymes did not metabolize either of these 

two insecticides (Mao et al., 2009). 

This negative result may be due to several possible factors: Firstly, the induction 

strategy used has failed to identify the detoxification enzyme which enhances 

thiacloprid tolerance. This could be because the detoxification enzyme which is 

responsible for metabolising neonicotinoids may not be induced but rather is 

constitutively expressed at levels sufficient to provide protection to honey bees 

against this compound.  Alternatively, because the activity of recombinant enzymes 

could not be validated using two model substrates, it is not clear whether the lack of 

insecticide metabolism was due to lack of an active enzyme or through the enzyme 

being unable to metabolise the insecticide. However for all recombinant P450s 

expressed a clear P450 peak was observed in CO-difference spectrum assays 

suggesting correctly-folded P450 was obtained. This provides evidence that the latter 

scenario is perhaps more likely. 
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Mao et al. (2011) described the importance of such findings for selectively induced 

P450 genes by a specific induction agent which would help to develop monitoring 

strategies for honey bee exposure to specific pesticides while foraging and to 

differentiate between in-hive exposure to non-target acaricides applied to control 

Varroa and to exposure to non-target pesticides used on agricultural crops.   

In addition, identification of the specific detoxification genes that metabolise 

insecticides could be used to design new less toxic pesticides/synergists to minimise 

severe damage to non-target organisms. These new strategies would aim to design 

chemicals which have the ability to inhibit pest detoxification activities without 

damaging the honey bee defence mechanism or possibly even stimulate its 

detoxification capacity.  

In humans a great deal of research focuses on the metabolism of xenobiotics, 

especially therapeutic drugs, by P450s. As an example human CYP3A4 is the most 

studied drug-metabolised model P450 and has a broad substrate detoxification 

capacity. Similarly, finding generalist bee detoxification enzymes and identifying a 

specific model substrate can provide an opportunity to develop high-throughput in 

vitro screening tools which detect insecticides that are substrates/inhibitors and 

therefore may be metabolised. Furthermore identification of P450s involved in 

insecticide metabolism would allow the P450/insecticide interaction to be studies 

using homology modelling. Such studies may guide the synthesis of the new 

chemical via rational design and allow critical catalytic sites in P450s unique for 

pests and honey bees to be identified. 
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In summary identification of the specific honey bee genes that regulate the 

metabolism of the detoxification enzymes or the alternative target-sites will enable 

agrochemical R&D to develop safer and target-specific products.  

Bee pollinators carry out a vital ecosystem service and their wellbeing is essential to 

ensure future food security. Because they are insects, bees may be as sensitive to 

insecticides as the target-pests. However, there are a number of examples where this 

is not the case, and indeed certain members of the pyrethroid (tau-fluvalinate) and 

organophosphate (coumaphos) class of insecticides show low toxicity to bees and are 

used as in-hive treatments to control Varroa destructor, a parasitic mite of honey 

bees. Another example is cyano-substituted neonicotinoids (thiacloprid and 

acetamiprid) that have been shown to be orders of magnitude less acutely toxic to 

honey bees than nitro-substituted compounds (imidacloprid, clothianidin, 

thiamethoxam, dinotefuran, nitenpyram) (Iwasa et al., 2004). 

Differences between the sub-classes of the neonicotinoids could direct the future 

focus on insecticide development. Since a nitro group is known to be more toxic to 

honey bees, by focussing on the development of safer alternatives incorporating a 

cyano group, which targets insect pest nAChRs rather than the honey bee nAChRs, it 

may be possible to create a more suitable environment for the registration of 

neonicotinoids regarding honey bee health. 

7.1 Future Work 

As a result of the findings of this PhD study, several outstanding questions require 

further investigation: 
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 Further examination of the ‘protective effect’ of honey bee exposure to low 

levels of thiacloprid: This work has shown that bees exposed to thiacloprid 

for 24 hours are less sensitive to subsequent immediate exposure. The 

duration of this ‘protective effect’ could be explored using longer exposure 

times of using different concentrations of insecticides. Furthermore the 

design of similar field-level experiments is required to show if a similar trend 

is seen at this scale. 

 Examination of the proteolytic activity of honey bee: Examining CYP3A4 

oxidase activity in combination with honey bee microsomes i.e. to monitor 

fluorometrically how the activity of CYP3A4 is affected by the presence of 

honey bee microsomes using a model substrate such as  7-EC. Such studies 

will confirm or otherwise the presence of protease activity that inhibits P450 

activity within honey bee microsomes. 

 Co-expression of honey bee P450s with honey be CPR: In this PhD study 

honey bee P450s were co-expressed with mosquito CPR, which might affect 

the biotransformation activity of P450. Therefore co-expression of honey bee 

P450s with honey bee CPR might produce enhanced activity against 

insecticides.  

 More sensitive analysis of insecticide metabolism by candidate P450s. 

In this study metabolism was assessed by measuring parent compound 

depletion. A more sensitive detection methodology could be used to monitor 

the appearance of specific P450-mediated insecticidal metabolites using LC-

MS/MS. This would require the use of metabolite standards which were not 

available during the course of this PhD. 
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 CCE8 expression in alternative expression systems: CCE8 expression was not 

achieved using the E. coli system; eukaryote expression systems have been 

successfully applied to esterases including Helicoverpa armigera esterase 

expression in baculovirus  (Teese et al., 2013) and Tribolium casteneum 

esterase expression  in methylotrophic yeast Pichia pastoris (Delroisse et al., 

(2005).  CCE8 expression in baculovirus or yeast expression systems may be 

worth considering in future. 

 Model substrate characterisation: Further investigation of alternative model 

substrates of recombinant honey bee P450s is required which would facilitate 

future insecticide screening. 

 Interference Assay: Employing the interference assay for screening the 

binding of nurse and forager bee esterases on neonicotinoids; if binding is 

found, it will be valuable to identify candidate esterases as important 

detoxification enzymes.  

 Examination of the nAChR sub-units: Examination of mis-spliced variants of 

nAChRs from different honey bee races (with different susceptibility to 

insecticide) may lead to identification of an alternative defence mechanism to 

nAChR agonist insecticides.  
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9. APPENDICES 

9.1 Solutions, Buffers and Media 

9.1.1 Antibiotics, media, electrophoresis buffers 

Antibiotics 

50 mg/ml Ampicillin in water 

25 mg/ml Chloramphenicol in ethanol 

Luria Bertani (LB) medium 

10 g of Bacto-tryptone  

5g of yeast extract  

10 g of NaCl 

Deonized water (to 1 liter)  

pH adjusted to 7 and autoclaved 

LB agar 

LB medium  

20 g of Bacto agar 

Terrific Broth (TB) 

47.6 g terrific broth powder  

8 mL glycerol  

Deonized water (to 1 liter)  

Autoclaved 

50x TAE (Tris Acetate EDTA) buffer 

242 g Tris base  

100 ml 0.5 M EDTA pH 8.0  

Deonized water (to 1 liter) 

When diluted, the 1X solution contains 40 mM Tris, 20 mM acetic acid, 1 mM EDTA. 
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10x TBE (Tris Borate EDTA) buffer 

Concentrated solution of 10X TBE in deionized water was obtained from National 

Diagnostic. When diluted, the 1X solution contains 0.089M Tris base, 0.089M boric acid 

(pH 8.3) and 2mM Na2EDTA. 

9.1.2 Solutions for preparation of bacterial membranes  

2X TSE buffer 

100 mM Trizma base, pH 7.6 

500 mM sucrose 

0.5 mM EDTA 

Filter sterilized and store at 4°C 

Lysozyme 

20 mg/mL in water, freshly prepared 

Spheroplast resuspension buffer 

100 mM potassium phosphate, pH 7.6  

6 mM magnesium acetate  

20% (v/v) glycerol 

0.1 mM dithiothreitol (DTT)  

Filter-sterilized. Solution was prepared without DTT and store at room temperature, and 

DDT was added from a separate 1 M stock (stored in aliquots at −20°C) just before use. 

Protease inhibitors 

0.2 M (100mM) phenylmethylsulfonyl fluoride (PMSF), in ethanol (X100 stock); 10 

mg/mL of aprotinin, in 10 mM HEPES, pH 8.0 (X10,000 stock); 10 mg/mL leupeptin, in 

water (X10,000 stock). Stock solutions of protease inhibitors are stored at −20°C. 

9.1.3 Solutions for preparation of cytochrome b5  

Phosphate buffered saline (PBS)  

137 mM NaCl, 10 mM phosphate at pH 7.4 
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Buffer A 

75 mM Tris at pH 8 containing 0.1 mM EDTA, 10 µg/ml aprotinin, and 1 mM PMSF. 

For 50 ml, add 3.75 ml of 1 M Tris for pH 8, 0.5 ml of 10 mM EDTA at pH 8, 50 µl of 10 

mg/ml aprotinin stock, and 250 µl of 200 mM PMSF in ethanol (add 28.7 µl of ethanol 

per mg of PMSF) to 45.5 ml of deionised water. 

Buffer B2 

20 mM Tris at pH 8, 2 mM 2-mercaptoethanol (2ME), 20% glycerol (v/v), and 0.1% 

(w/v) CHAPS. For 50 ml, add 1 ml of 1 M Tris for pH 8, 7 µl of 2ME (in fume-hood), 

0.05 g of CHAPS and 10 ml of glycerol to 39 ml of deionised water. 

Buffer B3 

As with B2, but with 0.1 M imidazole. Prepare a 0.5 M (34 g/l) imidazole stock solution 

at pH 8 (add HCl while monitoring pH before making up to a final volume) and filter 

through a syringe. Use 10 ml of this stock and 29 ml of deionised water for 50 mL. 

Buffer C (b5 storage buffer) 

10 mM Tris at pH 7.5, 20% (v/v) glycerol, 0.5 mM EDTA, 0.1 mM DTT, and 0.05% 

(w/v) CHAPS. For 50 ml, add 0.5 ml of 1 M Tris for pH 7.5, 10 ml of glycerol, 2.5 ml of 

10 mM EDTA at pH 8, 0.001 g of DTT, 0.025 g of CHAPS, and make up to 50 ml with 

deionised water. 

9.1.4 Solutions for spectral determination 

P450 spectrum buffer (2X stock) 

200 mM Tris-HCl, pH 7.4  

20 mM CHAPS 

40% (v/v) glycerol 

2 mM EDTA 

Filter-sterilized and stored at 4°C. 
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9.2 Microarray Analysis for Induction Experiment 1 

9.2.1 Genes identified by microarray as differentially transcribed between 1h 

treated (neonicotinoid/acetone) samples  

ProbeName p-value Regulation Fold change Description 
CUST_7297_PI425798793 0.010733 up 4.786921 sodium calcium exchanger 3 
CUST_7865_PI425798793 0.004494 up 4.6502337 serine threonine-protein kinase sbk1 
CUST_5381_PI425798793 0.018708 up 4.457718 guanine nucleotide-binding protein subunit beta 1 
CUST_4166_PI425798793 0.01412 up 3.7678204 ras-related and estrogen-regulated growth inhibitor 
CUST_5654_PI425798793 0.007943 up 3.6812813 protein fam46a 
CUST_9366_PI425798793 0.024454 up 3.667787 receptor-type tyrosine-protein phosphatase r 
CUST_1699_PI425798793 0.013827 up 3.5489256 guanine nucleotide-binding protein g subunit alpha 
CUST_9901_PI425798793 0.031895 up 3.5088837 isoform c 
CUST_7488_PI425798793 0.003326 up 3.5001063 voltage-dependent l-type calcium channel subunit beta-2 
CUST_6768_PI425798793 0.006894 up 3.3167112 moxd1 homolog 1-like 
CUST_4231_PI425798793 0.003783 up 3.316596 protein lin-10 
CUST_8546_PI425798793 0.02436 up 3.243571 postreplication repair protein hrad18p 
CUST_8228_PI425798793 0.004417 up 3.1261861 kv channel-interacting protein 4 
CUST_1444_PI425798793 0.030679 up 3.062578 heparan sulfate n-deacetylase n-sulfotransferase 
CUST_7400_PI425798793 0.00866 up 2.9893198 isoform a 
CUST_6819_PI425798793 0.016199 up 2.9656339 f-box lrr-repeat protein 16 
CUST_220_PI425798793 0.027258 up 2.9087846 potassium sodium hyperpolarization-activated cyclic 

nucleotide-gated channel 4 
CUST_6669_PI425798793 0.004677 up 2.9058588 aftiphilin isoform 1 
CUST_237_PI425800172 0.005437 up 2.8929057 CYPAA1 
CUST_1222_PI425798793 0.046722 up 2.8699787 proline synthetase co-transcribed bacterial-like protein 
CUST_4004_PI425798793 0.023215 up 2.8373952 mothers against decapentaplegic-like protein 4 
CUST_5470_PI425798793 0.048042 up 2.7222314 disco-interacting protein 2 
CUST_6789_PI425798793 0.004279 up 2.7124064 egf- fibronectin type-iii and laminin g-like domain-

containing protein 
CUST_3806_PI425798793 0.019587 up 2.7120137 neurexin isoform b 
CUST_6276_PI425798793 0.017909 up 2.6342287 mitochondrial ubiquitin ligase activator of nfkb 1 
CUST_7675_PI425798793 0.011607 up 2.6053603 acetylcholine receptor subunit alpha-like 2 
CUST_5553_PI425798793 0.01342 up 2.6013956 alpha gamma epsilon 
CUST_3336_PI425798793 0.035661 up 2.583453 isoform c 
CUST_5248_PI425798793 0.032529 up 2.5769362 myosin iiia 
CUST_8809_PI425798793 0.023689 up 2.5726 dipeptidyl peptidase 
CUST_262_PI425798793 0.012211 up 2.553966 cysteine serine-rich nuclear protein 2 
CUST_1023_PI425798793 0.036961 up 2.5527952 nmda receptor isoform e 
CUST_3880_PI425798793 0.002709 up 2.5419142 tripartite motif-containing protein 71-like 
CUST_3243_PI425798793 0.044888 up 2.5316353 amp dependent coa ligase 
CUST_8256_PI425798793 0.033604 up 2.5216749 alpha-2-macroglobulin-like 1 
CUST_4634_PI425798793 0.04595 up 2.5158482 pyruvate dehydrogenase 
CUST_5375_PI425798793 0.021767 up 2.4476688 calcium-activated potassium channel alpha chain 
CUST_6822_PI425798793 0.010474 up 2.393839 serotonin receptor 
CUST_8342_PI425798793 0.027994 up 2.3602626 angiotensin-converting enzyme 
CUST_1112_PI425798793 0.011576 up 2.3437738 protein vav 
CUST_3375_PI425798793 0.028684 up 2.334226 cytokine receptor 
CUST_6782_PI425798793 0.025637 up 2.3321173 hepatoma-derived growth factor 
CUST_2055_PI425798793 0.007865 up 2.3202736 membrane associated ring finger 
CUST_5021_PI425798793 0.01574 up 2.2792106 peripheral plasma membrane protein cask-like isoform 1 
CUST_2974_PI425798793 0.006557 up 2.2788162 mkl myocardin-like protein 1 
CUST_819_PI425798793 0.008188 up 2.2655263 myosin-rhogap myr 
CUST_6490_PI425798793 0.006891 up 2.2642448 camp-dependent protein kinase type ii regulatory subunit 
CUST_7939_PI425798793 0.04134 up 2.2550404 glutamate decarboxylase 
CUST_2742_PI425798793 0.01922 up 2.2498593 protein btg1 
CUST_2653_PI425798793 0.014069 up 2.2475896 protein fam49b 
CUST_1604_PI425798793 0.024058 up 2.2360082 transmembrane protein 38a 
CUST_9425_PI425798793 0.046063 up 2.1780593 cd63 antigen 
CUST_3948_PI425798793 0.023512 up 2.1644561 26s proteasome non-atpase regulatory subunit 11 
CUST_10018_PI425798793 0.035467 up 2.1601832 tpa_inf: venus kinase receptor 
CUST_9485_PI425798793 0.031598 up 2.1538413 isoform a 
CUST_7330_PI425798793 0.007028 up 2.1500232 groucho-like protein 
CUST_8858_PI425798793 0.038219 up 2.136555 ap-2 complex subunit mu-1 
CUST_10100_PI425798793 9.79E-04 up 2.1307929 probable nuclear hormone receptor hr38 
CUST_6994_PI425798793 0.033845 up 2.0769582 longitudinals lacking isoforms a b d l 
CUST_10072_PI425798793 0.033493 up 2.0755143 protein jagged-1 
CUST_1777_PI425798793 0.048921 up 2.0702293 rhomboid family member 1 
CUST_5829_PI425798793 0.003435 up 2.0536528 phosphofurin acidic cluster sorting protein 2 
CUST_2580_PI425798793 0.009873 up 2.043548 maguk p55 subfamily member 7 
CUST_5499_PI425798793 0.044448 up 2.0409653 galactosylgalactosylxylosylprotein 3-beta-

glucuronosyltransferase i 
CUST_196_PI425798793 0.013107 up 2.037705 voltage-gated potassium channel 
CUST_64_PI425800172 0.040366 up 2.0266533 CCE3_GB19866 
CUST_5693_PI425798793 0.031864 up 2.0234327 tetratricopeptide repeat protein 14 
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CUST_8241_PI425798793 0.02765 up 2.013083 protein scai-like 
CUST_4031_PI425798793 0.021992 up 2.009252 pipsqueak 
CUST_9340_PI425798793 0.028587 down -2.0031161 odorant-binding protein 
CUST_8272_PI425798793 0.045757 down -2.0291111 proton-coupled amino acid transporter 4 
CUST_2517_PI425798793 0.019649 down -2.0361173 upf0184 protein c9orf16-like 
CUST_4370_PI425798793 0.018101 down -2.1150079 tes14 
CUST_88_PI425798793 0.035789 down -2.1150546 casein kinase ii subunit alpha 
CUST_4403_PI425798793 0.00503 down -2.1879268 mucoepidermoid carcinoma 
CUST_5771_PI425798793 3.41E-04 down -2.229174 malate dehydrogenase 
CUST_7467_PI425798793 0.024024 down -2.2656353 doublesex- and mab-3-related transcription factor a2 
CUST_5072_PI425798793 0.00985 down -2.266004 unkempt protein 
CUST_6359_PI425798793 0.015326 down -2.3462105 ef-hand domain-containing protein cg10641-like 
CUST_7122_PI425798793 0.003202 down -2.3663533 probable nucleolar gtp-binding protein 1 
CUST_5222_PI425798793 8.83E-06 down -2.3806221 disks large 1 tumor suppressor protein 
CUST_7344_PI425798793 0.001547 down -2.4076295 morn repeat-containing protein 3 
CUST_435_PI425798793 0.021117 down -2.4617956 homeobox protein b-h1 
CUST_3126_PI425798793 0.006364 down -2.5796573 glucose dehydrogenase 
CUST_5818_PI425798793 0.029934 down -2.8680818 cytochrome c oxidase subunit va 
CUST_1924_PI425798793 0.009095 down -2.9166398 defensin 
CUST_4160_PI425798793 0.003587 down -2.939596 major royal jelly protein 3 
CUST_4206_PI425798793 0.023382 down -3.0589104 scavenger mrna-decapping enzyme 
CUST_7235_PI425798793 0.023386 down -3.0733514 major royal jelly protein 3 
CUST_9585_PI425798793 0.003939 down -3.2095392 transcriptional adapter 3-like 
CUST_5591_PI425798793 0.01431 down -4.058212 major royal jelly protein 3 
CUST_7917_PI425798793 0.017072 down -4.066629 major royal jelly protein 3 
CUST_1821_PI425798793 0.024243 down -5.3423085 outer membrane protein 
CUST_4118_PI425798793 0.022173 down -8.511289 superoxide dismutase 

9.2.2 Genes identified by microarray as differentially transcribed between 3h 

treated (neonicotinoid/acetone) samples  

ProbeName p-value Regulation Fold change Description 
CUST_247_PI425798793 0.010895832 up 5.547489 trypsin inhibitor like cysteine rich domain containing 

protein 
CUST_3548_PI425798793 0.001678284 up 3.9009383 cysteine-rich venom 
CUST_9788_PI425798793 0.021804081 up 3.3960483 loc100170577 protein 
CUST_173_PI425798793 0.048496258 up 3.2618349 major royal jelly protein 3 
CUST_8592_PI425798793 0.033318084 up 2.9624407 1-phosphatidylinositol- -bisphosphate 

phosphodiesterase epsilon-1 
CUST_7747_PI425798793 0.039179113 up 2.90226 viral a-type inclusion 
CUST_8815_PI425798793 0.011987592 up 2.639624 immune deficiency 
CUST_7694_PI425798793 0.026038697 up 2.637517 vacuolar protein sorting-associated protein 8-like 

protein 
CUST_3484_PI425798793 0.013860128 up 2.5683146 glucose dehydrogenase 
CUST_1924_PI425798793 0.037255697 up 2.5456228 defensin 
CUST_2297_PI425798793 0.021540679 up 2.4789007 major royal jelly protein 3 
CUST_8119_PI425798793 0.04585064 up 2.3938794 equilibrative nucleoside transporter 4 
CUST_7081_PI425798793 0.042608418 up 2.3484716 PREDICTED: hypothetical protein LOC100576118 [Apis 

mellifera] 
CUST_3747_PI425798793 0.018547371 up 2.3220384 glucose dehydrogenase 
CUST_1454_PI425798793 0.03865754 up 2.286891 ubiquitin-conjugating enzyme e2-230k 
CUST_1700_PI425798793 0.03022541 up 2.191358 long wave opsin 
CUST_1527_PI425798793 0.020368654 up 2.14928 deah (asp-glu-ala-his) box polypeptide 35 
CUST_5745_PI425798793 0.03061435 up 2.138745 ws dgat mgat 
CUST_7332_PI425798793 4.97E-04 up 2.130464 trna modification gtpase mitochondrial 
CUST_2579_PI425798793 0.005724432 up 2.0782223 39s ribosomal protein mitochondrial 
CUST_982_PI425798793 0.001416966 up 2.0757914 uncharacterized protein c14orf118-like protein 
CUST_5938_PI425798793 0.011112488 up 2.0300066 PREDICTED: hypothetical protein LOC724746 [Apis 

mellifera] 
CUST_96_PI425798793 0.010346935 up 2.019559 polycomb protein scm 
CUST_2622_PI425798793 0.04753748 down -2.0010383 lethal giant 
CUST_2101_PI425798793 0.004411719 down -2.0138924 polypeptide n-acetylgalactosaminyltransferase 5 
CUST_8913_PI425798793 0.02753207 down -2.0144675 anion exchange protein slc4a2 
CUST_9205_PI425798793 0.035459135 down -2.0227416 like-glycosyltransferase 
CUST_334_PI425798793 0.004300451 down -2.025464 uncharacterized protein c21orf59 homolog 
CUST_7624_PI425798793 0.014684644 down -2.041426 phosphatidylserine synthase 
CUST_2135_PI425798793 0.010302767 down -2.0672367 glutamate receptor 1 
CUST_8124_PI425798793 0.045941904 down -2.1059608 chitin deacetylase-like isoform d 
CUST_8017_PI425798793 0.047077447 down -2.1072052 dimethylanaline monooxygenase-like 
CUST_8712_PI425798793 0.021942269 down -2.1151617 btb poz domain-containing protein 9 
CUST_6552_PI425798793 0.009923634 down -2.1162202 takeout like protein 
CUST_9879_PI425798793 0.009377559 down -2.118461 u7 snrna-associated sm-like protein lsm11-like 
CUST_8074_PI425798793 0.04123245 down -2.1382153 ceramide kinase 
CUST_4899_PI425798793 0.002305262 down -2.1506019 -like protein subfamily c member 16 
CUST_2136_PI425798793 0.039292745 down -2.1646595 protein pygopus 
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CUST_8279_PI425798793 0.047096364 down -2.1749442 nad dependent epimerase dehydratase 
CUST_1630_PI425798793 0.031342927 down -2.1818328 sodium-dependent phosphate transporter 
CUST_7494_PI425798793 0.031938843 down -2.1852958 cytoplasmic phosphatidylinositol transfer protein 1 
CUST_2094_PI425798793 0.016493998 down -2.1864464 spatzle 5 
CUST_8511_PI425798793 0.019186694 down -2.1890955 rh-like protein 
CUST_4923_PI425798793 0.044578027 down -2.192101 cytochrome b5 
CUST_4925_PI425798793 0.04692916 down -2.2024152 zinc iron transporter 
CUST_884_PI425798793 0.02729844 down -2.2041411 mite allergen der f 3 
CUST_6527_PI425798793 0.010686804 down -2.2080128 chloride intracellular channel exc-4 
CUST_1622_PI425798793 0.04505086 down -2.2141113 pheromone-binding protein 1 
CUST_9456_PI425798793 0.015693266 down -2.2152958 cral trio domain-containing protein 
CUST_8266_PI425798793 0.014298315 down -2.2185054 isoform r 
CUST_8268_PI425798793 0.047693733 down -2.2240942 bifunctional 3 -phosphoadenosine 5 -phosphosulfate 

synthetase 
CUST_5221_PI425798793 0.029660821 down -2.2515223 coiled-coil domain-containing protein c6orf97-like 
CUST_4932_PI425798793 0.045602243 down -2.290013 ddb1- and cul4-associated factor 15 
CUST_4909_PI425798793 0.032066837 down -2.2924225 lysozyme c-1 
CUST_9402_PI425798793 0.00887567 down -2.3113406 talin-2- partial 
CUST_1021_PI425798793 0.022559276 down -2.3333988 zinc finger protein 652-a 
CUST_3975_PI425798793 3.32E-04 down -2.3535538 zinc finger protein 
CUST_1260_PI425798793 0.03882464 down -2.3732214 isoform b 
CUST_5164_PI425798793 0.033564698 down -2.3987763 -like 1 homeobox protein 
CUST_6111_PI425798793 0.024603931 down -2.4149394 aquaporin 
CUST_20_PI425798793 0.039649975 down -2.4158115 chymotrypsin-1 
CUST_3455_PI425798793 0.00500319 down -2.4383614 cdc42-interacting protein 4-like 
CUST_6960_PI425798793 0.012129285 down -2.473678 e3 ubiquitin-protein ligase march2 
CUST_9754_PI425798793 0.03821448 down -2.5041711 maltase 1 
CUST_10040_PI425798793 0.020195676 down -2.5140288 upf0368 protein cxorf26-like 
CUST_3916_PI425798793 0.03496071 down -2.522396 ctl transporter 
CUST_3978_PI425798793 0.026711615 down -2.5575175 juvenile hormone acid methyltransferase 
CUST_9939_PI425798793 0.030466026 down -2.600827 protein bric-a-brac 2 
CUST_59_PI425800172 0.019108819 down -2.6016052 CCE5_GB15030 
CUST_4555_PI425798793 0.03307161 down -2.6261923 microphthalmia-associated transcription factor 
CUST_5308_PI425798793 0.018325917 down -2.647188 hypothetical protein EAI_15505 [Harpegnathos 

saltator] 
CUST_9850_PI425798793 0.014187377 down -2.6516306 empty spiracles 
CUST_8443_PI425798793 0.026801256 down -2.6572807 fatty acid 2-hydroxylase 
CUST_470_PI425798793 0.001565642 down -2.670148 high affinity copper uptake protein 1 
CUST_5462_PI425798793 0.037256587 down -2.6912901 isoform c 
CUST_4748_PI425798793 0.030083979 down -2.7089057 potassium-dependent sodium-calcium 
CUST_6997_PI425798793 0.008668294 down -2.7091343 cyclic amp response element-binding protein a-like 
CUST_1505_PI425798793 0.037769914 down -2.7228534 arrestin domain-containing protein 3 
CUST_8412_PI425798793 0.005408483 down -2.7623749 kn motif and ankyrin repeat domain-containing protein 

1 
CUST_8723_PI425798793 0.002246974 down -2.8027396 aminopeptidase n 
CUST_8321_PI425798793 0.036099084 down -2.8097558 sodium-dependent multivitamin transporter 
CUST_5251_PI425798793 0.028310487 down -2.825005 tubulin polyglutamylase ttll4-like 
CUST_6292_PI425798793 0.008431396 down -2.8343017 multidrug resistance-associated protein lethal 03659 
CUST_3369_PI425798793 0.044521704 down -2.928311 chitin synthase 
CUST_187_PI425800172 0.015580353 down -2.968103 CYP6AS3 
CUST_9842_PI425798793 0.02003154 down -3.058137 10g08 
CUST_6963_PI425798793 0.002298112 down -3.2358053 chymotrypsin-like protein 
CUST_6976_PI425798793 0.029641083 down -3.2927341 ornithine mitochondrial 
CUST_2205_PI425798793 0.030673258 down -3.4320717 glycyl-trna alpha subunit 
CUST_3264_PI425798793 0.029718885 down -3.4371207 cg7381 cg7381-pa 
CUST_8625_PI425798793 0.038416393 down -3.6984138 protein g12 
CUST_2967_PI425798793 0.023993196 down -4.1990643 calcium and integrin-binding protein 1 
CUST_3794_PI425798793 0.040469788 down -7.254076 synaptotagmin-14 

9.2.3 Genes identified by microarray as differentially transcribed between 10h 

treated (neonicotinoid/acetone) samples  

ProbeName p-value Regulation Fold change Description 
CUST_5149_PI425798793 0.0089916 up 2.675777 alpha- -glucosyltransferase alg10-b 
CUST_6576_PI425798793 6.38E-04 up 2.30214 hig1 domain family member 2a 
CUST_9563_PI425798793 0.0397261 up 2.204715 PREDICTED: hypothetical protein LOC100576410 [Apis 

mellifera] 
CUST_7105_PI425798793 0.0142645 up 2.146234 cell cycle checkpoint protein rad17 
CUST_1740_PI425798793 0.0376775 up 2.033679 heat shock protein 
CUST_7611_PI425798793 0.0292974 up 2.008059 upf0539 protein cg14977 
CUST_6292_PI425798793 0.0173277 down -2.00198 multidrug resistance-associated protein lethal 03659 
CUST_183_PI425800172 0.0078993 down -2.01238 CYP6AS5 
CUST_185_PI425800172 0.0034302 down -2.01354 CYP6AS4 
CUST_4161_PI425798793 0.0175501 down -2.04301 cation transport regulator-like protein 1 
CUST_2863_PI425798793 0.0368153 down -2.04415 septin isoform g 
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CUST_184_PI425800172 0.0084713 down -2.04541 CYP6AS4 
CUST_224_PI425800172 0.0336211 down -2.07389 CYP6AQ1 
CUST_1291_PI425798793 0.0420191 down -2.07426 cellular retinaldehyde-binding protein 
CUST_716_PI425798793 0.0118097 down -2.07542 zinc finger protein 318 
CUST_63_PI425800172 0.0317928 down -2.09257 CCE4_GB10854 
CUST_8285_PI425798793 0.0330954 down -2.09365 phd and ring finger domain-containing protein 1 
CUST_2252_PI425798793 0.0494144 down -2.09859 nucleolar gtp-binding protein 2 
CUST_9760_PI425798793 0.0387926 down -2.1017 fkbp12-rapamycin complex-associated protein 
CUST_2532_PI425798793 0.0192375 down -2.11354 hmg-box protein hmg2l1 
CUST_9435_PI425798793 0.0297576 down -2.11458 neutral ceramidase 
CUST_4773_PI425798793 0.0425249 down -2.12522 innexin inx7 
CUST_1122_PI425798793 0.0377178 down -2.14658 homeotic protein female sterile 
CUST_5751_PI425798793 0.0457867 down -2.15041 chymotrypsin inhibitor 
CUST_6654_PI425798793 0.0098413 down -2.15327 phytanoyl- dioxygenase domain-containing protein 1-like 

protein 
CUST_1970_PI425798793 0.0089234 down -2.16213 PREDICTED: hypothetical protein LOC100577919 [Apis 

mellifera] 
CUST_3232_PI425798793 0.0185917 down -2.16239 atp-dependent helicase brm 
CUST_8885_PI425798793 0.040924 down -2.17135 mediator of rna polymerase ii transcription subunit 25 
CUST_5521_PI425798793 0.0024439 down -2.17665 calcium calmodulin-dependent protein kinase type 1 
CUST_8343_PI425798793 0.0256019 down -2.20104 protein prenyltransferase alpha subunit repeat-containing 

protein 1 
CUST_8693_PI425798793 0.0348745 down -2.22608 5-3 2583 
CUST_5205_PI425798793 0.0143332 down -2.22649 flavone synthase i 
CUST_4732_PI425798793 0.038627 down -2.22756 myosin heavy nonmuscle or smooth muscle 
CUST_9169_PI425798793 0.0280329 down -2.24645 ubiquitin carboxyl-terminal hydrolase 8 
CUST_5758_PI425798793 0.0267979 down -2.29065 mediator of rna polymerase ii transcription subunit 12 
CUST_4223_PI425798793 0.027989 down -2.30517 centrosomal protein of 135 kda 
CUST_5151_PI425798793 0.0311573 down -2.33098 PREDICTED: hypothetical protein LOC727135 [Apis 

mellifera] 
CUST_5110_PI425798793 0.0081381 down -2.34732 ubiquitin-protein ligase e3b 
CUST_423_PI425798793 0.04253 down -2.36228 large proline-rich protein bat2 
CUST_4057_PI425798793 0.0076458 down -2.3625 PREDICTED: hypothetical protein LOC100576843 [Apis 

mellifera] 
CUST_2147_PI425798793 0.0195042 down -2.41311 apidaecin 
CUST_2232_PI425798793 0.0262928 down -2.42028 pleckstrin-like proteiny-like domain family b member 2 
CUST_867_PI425798793 0.0067102 down -2.45466 leucine-rich transmembrane protein 
CUST_9664_PI425798793 0.0238757 down -2.49274 bifunctional protein ncoat 
CUST_1846_PI425798793 0.012703 down -2.54578 apidaecin 
CUST_7640_PI425798793 0.0402278 down -2.55829 tyrosine-protein kinase abl 
CUST_1751_PI425798793 0.0462197 down -2.56869 argininosuccinate synthase 
CUST_43_PI425800172 0.0145989 down -2.58322 CCE10_GB15327 
CUST_7407_PI425798793 0.002677 down -2.59319 ccr4-not transcription complex subunit 4 
CUST_5393_PI425798793 0.0185967 down -2.6022 tar-binding protein 
CUST_309_PI425798793 0.0041579 down -2.64577 10-formyltetrahydrofolate dehydrogenase 
CUST_8017_PI425798793 0.0325266 down -2.70762 dimethylanaline monooxygenase-like 
CUST_6117_PI425798793 0.0148357 down -2.72644 peptidyl-prolyl cis-trans isomerase 
CUST_8_PI425800189 0.0486213 down -2.84126 CCE10_GB15327 
CUST_7293_PI425798793 0.0056272 down -2.8445 fk506 binding protein 133kda 
CUST_7512_PI425798793 0.0088102 down -3.01509 apidaecins type 73- partial 
CUST_8351_PI425798793 0.0185886 down -3.08359 15-hydroxyprostaglandin dehydrogenase 
CUST_8165_PI425798793 0.0152481 down -3.08775 vitellogenin 
CUST_7792_PI425798793 0.0224281 down -4.69373 large proline-rich protein bat2 

 

9.3 Microarray Analysis for Induction Experiment 2 

9.3.1 Genes identified by microarray as differentially transcribed between 24h 

treated (neonicotinoid/aceton) samples (0 h).  

ProbeName p-value Regulation Fold change Description 

CUST_6604_PI425798793 9.22E-04 up 1.9713323 targeting protein for xklp2 

CUST_6995_PI425798793 0.043324564 up 1.7756 adenylate cyclase type 5 

CUST_268_PI425798793 0.001737259 up 1.7610627 dna-directed rna polymerase i subunit rpa49 

CUST_7467_PI425798793 0.04851442 up 1.6056362 
doublesex- and mab-3-related transcription 
factor a2 

CUST_4833_PI425798793 0.033569846 up 1.5604886 dentin sialophosphoprotein 

CUST_5208_PI425798793 0.01740102 up 1.5601617 cytochrome p450 315a1 
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CUST_3876_PI425798793 0.012360056 up 1.5426717 
PREDICTED: hypothetical protein LOC724776 
[Apis mellifera] 

CUST_6131_PI425798793 0.035290223 up 1.5215477 sodium dicarboxylate 

CUST_6450_PI425798793 0.03291238 up 1.5189786 forkhead protein forkhead protein domain 

CUST_114_PI425800172 0,02338815 up 1,5180756 CYP315A1 

CUST_9020_PI425798793 0.021897076 up 1.5013951 likely vesicular transport factor uso1p 

CUST_6231_PI425798793 0.02271951 down -1.5002693 camp-specific 3 -cyclic phosphodiesterase 

CUST_1225_PI425798793 0.012310382 down -1.5253805 morn repeat containing 5 

CUST_3735_PI425798793 0.011783974 down -1.548099 phospholipase membrane-associated-like 

CUST_9751_PI425798793 0.024212694 down -1.5546798 isoform a 

CUST_6466_PI425798793 0.024032887 down -1.5588487 
elongation of very long chain fatty acids protein 
aael008004 

CUST_9066_PI425798793 0.024007775 down -1.5625936 asparagine synthetase 

CUST_8142_PI425798793 0.046044823 down -1.6152343 
elongation of very long chain fatty acids protein 
6-like 

CUST_9438_PI425798793 0.006334751 down -1.9447331 katanin p60 atpase-containing subunit a-like 2 

CUST_9099_PI425798793 0.013743192 down -2.1038406 two pore potassium channel protein sup-9 

CUST_4882_PI425798793 0.017791532 down -2.755642 tetratricopeptide repeat protein 25 

9.3.2 Genes identified by microarray as differentially transcribed between 24h 

treated (neonicotinoid/aceton) samples (48 h).  

ProbeName p-value Regulation Fold change Description 

CUST_1238_PI425798793 0.025606 up 8.141132 platelet glycoprotein v 

CUST_7512_PI425798793 0.003339 up 6.147865 apidaecins type 73- partial 

CUST_2147_PI425798793 0.004503 up 5.440981 apidaecin 

CUST_1846_PI425798793 0.005482 up 5.2217507 apidaecin 

CUST_7153_PI425798793 0.036384 up 4.374178 cytochrome b5 

CUST_4874_PI425798793 0.013625 up 2.834694 serine protease inhibitor serpin-4 

CUST_7526_PI425798793 0.015691 up 2.3446848 serine protease snake 

CUST_1665_PI425798793 0.034487 up 2.232396 protein serac1 

CUST_10063_PI425798793 0.032066 up 2.2065122 glyceraldehyde-3-phosphate dehydrogenase 

CUST_1764_PI425798793 0.01999 up 2.1187086 transferrin 

CUST_5811_PI425798793 0.019978 up 2.09544 protein malvolio 

CUST_2284_PI425798793 0.022002 up 2.0370576 protein malvolio 

CUST_8218_PI425798793 0.043786 up 1.9772508 histamine-gated chloride channel subunit 

CUST_7833_PI425798793 0.038769 up 1.9219334 serine protease snake 

CUST_4829_PI425798793 0.025807 up 1.8215269 gram negative bacteria binding protein 1 

CUST_5763_PI425798793 0.008763 up 1.7943552 isoform e 

CUST_6379_PI425798793 0.020011 up 1.7472343 neurobeachin 

CUST_9168_PI425798793 0.005947 up 1.7180558 protein 

CUST_8231_PI425798793 0.038261 up 1.7103626 
PREDICTED: hypothetical protein LOC408280 
[Apis mellifera] 

CUST_4080_PI425798793 0.020181 up 1.6636832 
PREDICTED: hypothetical protein LOC100576863 
[Apis mellifera] 

CUST_9401_PI425798793 0.022749 up 1.5626922 krueppel-like factor 6 

CUST_509_PI425798793 0.029009 down -1.5087018 tubulin polyglutamylase ttll4-like 

CUST_642_PI425798793 0.04983 down -1.514742 
lysosomal alpha-mannosidase (mannosidase 
alpha class 2b member 1) 
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CUST_325_PI425798793 0.029218 down -1.5184697 b9 domain-containing protein 1 

CUST_3549_PI425798793 0.043155 down -1.5395374 abc superfamily atp binding cassette abc protein 

CUST_721_PI425798793 0.041707 down -1.539955 osiris 2 cg1148-pb 

CUST_6248_PI425798793 0.040055 down -1.5538408 
PREDICTED: hypothetical protein LOC100576480 
[Apis mellifera] 

CUST_7259_PI425798793 0.037588 down -1.5553044 odorant receptor 13a-like 

CUST_2769_PI425798793 0.042468 down -1.5567945 collagen alpha-2 chain-like 

CUST_9751_PI425798793 0.04053 down -1.5681636 isoform a 

CUST_4731_PI425798793 0.039713 down -1.6068443 
mitochondrial 2-oxoglutarate malate carrier 
protein 

CUST_3926_PI425798793 0.003196 down -1.691649 sugar transporter 

CUST_6794_PI425798793 0.008408 down -1.7064772 odorant receptor or1-like 

CUST_5108_PI425798793 0.011489 down -1.7116566 female reproductive tract protease gleanr_2574 

CUST_5441_PI425798793 0.02156 down -1.8329759 mpa2 allergen 

CUST_657_PI425798793 0.030361 down -1.952797 dc-stamp domain-containing protein 1 

CUST_9256_PI425798793 0.03966 down -2.0899084 serine proteinase stubble 

9.3.3. Genes identified by microarray as differentially transcribed between 24h 

treated (neonicotinoid/aceton) samples (96 h).   

ProbeName p-value Regulation Fold change Description 

CUST_1463_PI425798793 0.049497 up 6.376693 resolvase 

CUST_1087_PI425798793 0.039399 up 5.633321 Chymotrypsin-1 [Camponotus floridanus] 

CUST_8706_PI425798793 0.037097 up 3.5076187 mitochondrial import receptor subunit tom40 

CUST_7579_PI425798793 0.038965 up 3.4363163 golgin subfamily a member 4 

CUST_2798_PI425798793 0.049757 up 2.9664958 inhibitory pou 

CUST_8159_PI425798793 0.030399 up 2.4203706 fmrfamide-related neuropeptides-like 

CUST_5672_PI425798793 0.04982 up 2.2832217 potassium channel subfamily k member 9 

CUST_1020_PI425798793 0.016938 up 1.8158408 carbonic anhydrase 

CUST_7536_PI425798793 0.046573 up 1.7571479 
hypothetical protein EAI_15441 [Harpegnathos 
saltator] 

CUST_8020_PI425798793 0.002945 up 1.721585 receptor protein tyrosine 

CUST_5587_PI425798793 0.029452 up 1.699726 ankyrin repeat 

CUST_4483_PI425798793 0.030238 up 1.6795725 microsomal glutathione s-transferase 1 

CUST_101_PI425798793 0.004036 up 1.6372229 inwardly rectifying k+ 

CUST_7524_PI425798793 0.02664 up 1.6332836 opioid-binding protein cell adhesion molecule 

CUST_8209_PI425798793 0.037997 up 1.5630051 down syndrome cell adhesion molecule 

CUST_4087_PI425798793 0.007829 up 1.5628208 n-acetylneuraminate lyase 

CUST_6550_PI425798793 0.045778 up 1.5520744 soluble adenylyl cyclase 

CUST_8392_PI425798793 0.012066 up 1.5214038 lrr domain-containing protein 

CUST_628_PI425798793 0.012342 down -1.5195068 t-box transcription factor tbx1 

CUST_9803_PI425798793 0.010071 down -1.5204513 methyl- -binding domain protein 5 

CUST_157_PI425800172 0,006223253 down -1,5258377 CYP9Q1 

CUST_158_PI425800172 0,005355946 down -1,5515327 CYP9Q1 

CUST_159_PI425800172 0,004108407 down -1,56696 CYP9Q1 

CUST_5980_PI425798793 0.027902 down -1.5726794 alkyl hydroperoxide reductase c22 protein 

CUST_42_PI425800172 0,018325403 down -1,7419939 CCE11 
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9.3.4 Genes identified by microarray as differentially transcribed between 24h 

treated (neonicotinoid/aceton) samples (144 h).  

ProbeName p-value Regulation Fold change Description 

CUST_2179_PI425798793 0.007345277 up 2.8889785 
PREDICTED: hypothetical protein LOC411614 [Apis 
mellifera] 

CUST_3548_PI425798793 0.003103808 up 2.4244373 cysteine-rich venom 

CUST_6964_PI425798793 0.016088877 up 1.9232169 protein sidekick 

CUST_6131_PI425798793 0.041350212 up 1.6362138 sodium dicarboxylate 

CUST_1924_PI425798793 0.009486358 up 1.579293 defensin 

CUST_5602_PI425798793 0.015709711 up 1.5144125 tp53rk-binding protein 

CUST_9477_PI425798793 0.04003594 up 1.5102307 thioredoxin domain-containing protein 3-like protein 

CUST_2018_PI425798793 0.02088651 down -1.5186478 lactosylceramide 4-alpha-galactosyltransferase 

CUST_295_PI425798793 0.028327812 down -1.5826136 sulfakinin receptor 

CUST_9020_PI425798793 0.017685506 down -1.6455889 likely vesicular transport factor uso1p 

CUST_7262_PI425798793 0.03082237 down -1.6624129 crispr-associated helicase cas3 

CUST_9097_PI425798793 0.048801497 down -1.848457 mitochondrial ribosome recycling factor 

CUST_1865_PI425798793 0.003078663 down -2.0232155 dusky- isoform a 

9.3.5 Genes identified by microarray as differentially transcribed bees fed 

sucrose-insecticide that subsequently survived the 0 h topical bioassay versus 

the non-treated control from the same time point (‘survivor’ experiment).  

ProbeName p-value Regulation Fold change Description 

CUST_2739_PI425798793 0,008332 up 3,340471 sodium-dependent multivitamin transporter 

CUST_865_PI425798793 0,040361 up 3,1733584 luciferin 4-monooxygenase 

CUST_2668_PI425798793 0,011924 up 2,7343066 fatty acyl- reductase 1 

CUST_5851_PI425798793 0,018411 up 2,6648848 pickpocket 16 

CUST_5843_PI425798793 0,046257 up 2,3613145 glutamate ionotropic kainate 2 

CUST_167_PI425800172 0,019711 up 2,2130027 CYP6BE1 

CUST_2921_PI425798793 0,009353 up 2,1903648 CCE8 

CUST_168_PI425800172 0,012499 up 2,173628 CYP6BE1 

CUST_51_PI425800172 0,008251 up 2,1672835 CCE8 

CUST_49_PI425800172 0,007901 up 2,1377225 CCE8 

CUST_6277_PI425798793 0,024458 up 2,125866 uncharacterized protein kiaa0825-like protein 

CUST_10_PI425800189 0,011164 up 2,1244037 CCE8 

CUST_4316_PI425798793 0,034784 up 2,1203434 odorant-binding protein 1 

CUST_50_PI425800172 0,009093 up 2,108859 CCE8 

CUST_3792_PI425798793 0,002433 up 2,102347 pancreatic triacylglycerol lipase-like 

CUST_7831_PI425798793 9,72E-04 up 2,1012146 probable g-protein coupled receptor 158 

CUST_6877_PI425798793 0,01685 up 2,0207298 venom serine protease 34 

CUST_126_PI425800172 0,00515 up 1,9427272 CYP305D1 

CUST_166_PI425800172 0,015335 up 1,896606 CYP6BE1 

CUST_2108_PI425798793 0,001027 up 1,888185 sugar transporter 
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CUST_6536_PI425798793 0,011137 up 1,8763047 CYP6BE1 

CUST_125_PI425800172 0,007929 up 1,8594306 CYP305D1 

CUST_2882_PI425798793 0,015103 up 1,8542668 CYP305D1 

CUST_8843_PI425798793 0,03351 up 1,8523376 protein fam179b 

CUST_2724_PI425798793 0,012744 up 1,8512197 glutathione s transferase d1 

CUST_124_PI425800172 0,016052 up 1,8471639 CYP305D1 

CUST_6682_PI425798793 0,012494 up 1,8187755 multifunctional protein ade2 

CUST_8215_PI425798793 0,032531 up 1,7948278 odorant receptor or1-like 

CUST_9940_PI425798793 0,011462 up 1,7727959 synaptic vesicle glycoprotein 2b 

CUST_7552_PI425798793 0,028927 up 1,7591382 supernumerary limbs 

CUST_607_PI425798793 0,005469 up 1,7560664 neuromedin-b receptor 

CUST_3123_PI425798793 0,019608 up 1,7548373 sentrin sumo-specific protease senp7 

CUST_8078_PI425798793 0,047474 up 1,7481846 keratin-associated protein 4-12-like 

CUST_7410_PI425798793 0,007825 up 1,7075233 purine nucleoside phosphorylase 

CUST_3340_PI425798793 0,013496 up 1,6914514 coiled-coil domain containing 19 

CUST_182_PI425800172 0,006756 up 1,6913733 CYP6AS5 

CUST_822_PI425798793 0,008549 up 1,6500429 
glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide 
synthetase-glycinamide ribonucleotide transformylase 

CUST_1830_PI425798793 0,011204 up 1,647102 bifunctional purine biosynthesis protein purh 

CUST_135_PI425800172 0,027643 up 1,6465889 CYP301A1 

CUST_183_PI425800172 0,003475 up 1,6459757 CYP6AS5 

CUST_965_PI425798793 0,001697 up 1,6411326 histone-lysine n-methyltransferase setmar 

CUST_53_PI425798793 0,04627 up 1,6407721 radial spoke head protein 3 homolog 

CUST_5176_PI425798793 0,03292 up 1,630514 fatty acyl- reductase 1-like 

CUST_6508_PI425798793 0,030229 up 1,6272887 4-nitrophenylphosphatase 

CUST_4299_PI425798793 0,008606 up 1,6192172 nadph oxidase 5 

CUST_181_PI425800172 0,008646 up 1,6171824 CYP6AS5 

CUST_1806_PI425798793 0,023932 up 1,6089267 cral trio domain-containing protein 

CUST_7582_PI425798793 0,03307 up 1,5909684 ubiquitin carboxyl-terminal hydrolase 1 

CUST_1397_PI425798793 0,012735 up 1,5845821 isoform a 

CUST_6539_PI425798793 0,013308 up 1,5622213 CYP6AS5 

CUST_8355_PI425798793 0,001226 up 1,5514377 zinc metalloprotease 

CUST_2041_PI425798793 0,008503 up 1,5508599 acyl- delta desaturase 

CUST_3765_PI425798793 0,017659 up 1,543425 rotatin 

CUST_4923_PI425798793 0,008841 up 1,5402261 cytochrome b5 

CUST_3237_PI425798793 0,011887 up 1,5247549 serine hydroxymethyltransferase 

CUST_3987_PI425798793 0,024422 up 1,5185658 homogentisate -dioxygenase 

CUST_4308_PI425798793 0,019139 up 1,5138578 kinesin-like protein costal2 

CUST_171_PI425798793 0,019072 down -1,5002978 g-protein coupled receptor 

CUST_7323_PI425798793 1,71E-04 down -1,5036476 domon domain-containing protein cg14681 

CUST_7299_PI425798793 0,03333 down -1,5165423 sodium potassium-transporting atpase subunit beta-2 

CUST_9651_PI425798793 0,022884 down -1,5209029 jmjc domain-containing protein 4-like 

CUST_659_PI425798793 0,014305 down -1,5289698 atpase family aaa domain-containing protein 3 

CUST_6533_PI425798793 0,019921 down -1,5309825 scm-like with four mbt domains 1 

CUST_6709_PI425798793 0,010713 down -1,547853 apidermin 1 

CUST_6062_PI425798793 0,037298 down -1,5529456 ecdysone-induced protein isoform c 

CUST_4987_PI425798793 0,016796 down -1,5536581 PREDICTED: hypothetical protein LOC725148 [Apis mellifera] 
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CUST_7751_PI425798793 0,011414 down -1,5540562 fatty acid 

CUST_4896_PI425798793 0,031905 down -1,5635372 ras gtp exchange 

CUST_984_PI425798793 0,006639 down -1,5695513 pih1 domain-containing protein 1 

CUST_6285_PI425798793 0,017421 down -1,571939 hypothetical protein EAI_08187 [Harpegnathos saltator] 

CUST_3419_PI425798793 0,003331 down -1,6051137 atp synthase subunit s-like protein 

CUST_783_PI425798793 0,036487 down -1,6214337 cuticle protein 6 

CUST_7066_PI425798793 0,042473 down -1,6274552 PREDICTED: hypothetical protein LOC409776 [Apis mellifera] 

CUST_3823_PI425798793 0,018577 down -1,6374342 protein takeout 

CUST_512_PI425798793 0,039985 down -1,665058 PREDICTED: hypothetical protein LOC100576198 [Apis mellifera] 

CUST_9952_PI425798793 0,03704 down -1,6775784 dusky- isoform a 

CUST_8159_PI425798793 0,044579 down -1,6825999 fmrfamide-related neuropeptides-like 

CUST_3928_PI425798793 0,007446 down -1,6833814 PREDICTED: hypothetical protein LOC100578025 [Apis mellifera] 

CUST_5575_PI425798793 0,012786 down -1,6879627 dual specificity tyrosine-phosphorylation-regulated kinase 

CUST_3406_PI425798793 0,008475 down -1,7076722 insulin-like growth factor-binding protein complex acid labile chain 

CUST_634_PI425798793 0,041529 down -1,7190806 collagen alpha-2 

CUST_4306_PI425798793 0,037394 down -1,7243892 isoform h 

CUST_2613_PI425798793 0,009794 down -1,7420032 PREDICTED: hypothetical protein LOC100578730 isoform 1 [Apis mellifera] 

CUST_9643_PI425798793 0,023003 down -1,7731405 protein notum-like protein 

CUST_7571_PI425798793 0,007616 down -1,798004 zinc finger with ufm1-specific peptidase domain 

CUST_22_PI425800172 0,030528 down -1,8105357 AChE-2 

CUST_8652_PI425798793 0,048051 down -1,9201459 short-chain dehydrogenase reductase 

CUST_4263_PI425798793 0,00919 down -1,9956423 wd repeat-containing protein c10orf79 

CUST_9029_PI425798793 0,00615 down -2,01419 elongation of very long chain fatty acids protein 6-like 

CUST_7486_PI425798793 0,024014 down -2,1047797 dynein intermediate chain axonemal 

CUST_15_PI425798793 0,042165 down -2,3336186 cyclin b 

CUST_5769_PI425798793 0,015138 down -2,4185452 glucose dehydrogenase 

CUST_1591_PI425798793 0,035515 down -2,421504 sidestep protein 

CUST_3811_PI425798793 0,022085 down -2,5501926 pdz and lim domain protein 3 

CUST_3657_PI425798793 0,002785 down -2,6696415 tpa: cuticle protein 

9.4 Microarray Analysis for Comparison of Two A. mellifera races 

9.4.1 Genes identified by microarray as differentially transcribed between A. 

mellifera caucasica and A. mellifera buckfast. (p-value: 0.05)  

ProbeName Fold change Regulation Description 

CUST_4282_PI425798793 33,532467 up ikk interacting protein isoform 1 isoform 1 

CUST_8592_PI425798793 29,753315 up 1-phosphatidylinositol- -bisphosphate phosphodiesterase epsilon-1 

CUST_1850_PI425798793 21,545534 up protein still isoforms c sif type 2 

CUST_8580_PI425798793 18,554037 up transcription factor sp5 

CUST_3042_PI425798793 16,670176 up sulfotransferase family cytosolic 1b member 1 

CUST_2047_PI425798793 15,455329 up ankyrin repeat domain-containing protein 17 

CUST_3317_PI425798793 14,983871 up -like protein subfamily c member 3 

CUST_8446_PI425798793 14,7673 up rap1 gtpase-activating protein 1 
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CUST_4114_PI425798793 13,618349 up uncharacterized protein kiaa1843 

CUST_7311_PI425798793 12,70549 up sodium- and chloride-dependent glycine transporter 2 

CUST_307_PI425798793 11,941381 up thiazole biosynthesis protein 

CUST_2414_PI425798793 11,27214 up preprotachykinin 

CUST_10138_PI425798793 10,486459 up hypothetical protein G5I_02214 [Acromyrmex echinatior] 

CUST_3281_PI425798793 10,300925 up forkhead box protein p2 

CUST_1143_PI425798793 9,906644 up carcinoembryonic antigen-related cell adhesion molecule 1 

CUST_6156_PI425798793 9,6251135 up glutamate 

CUST_9757_PI425798793 9,340608 up c-myc promoter-binding protein 

CUST_9488_PI425798793 9,124976 up PREDICTED: hypothetical protein LOC100578514 [Apis mellifera] 

CUST_4311_PI425798793 9,119858 up u1 small nuclear ribonucleoprotein 70 kda 

CUST_3669_PI425798793 8,863236 up cg31997 cg31997-pa 

CUST_413_PI425798793 8,648826 up major royal jelly protein 9 

CUST_7778_PI425798793 8,605673 up uncharacterized protein kiaa1843 

CUST_8404_PI425798793 8,019917 up inner centromere protein 

CUST_5620_PI425798793 7,988599 up diacylglycerol kinase beta 

CUST_235_PI425798793 7,918174 up protein lethal essential for life-like 

CUST_6760_PI425798793 7,8404245 up nicotinic acetylcholine receptor alpha6 subunit 

CUST_6029_PI425798793 7,697769 up isoform b 

CUST_4075_PI425798793 6,965165 up sterol regulatory element-binding protein 1 

CUST_1613_PI425798793 6,7807713 up discoidin domain-containing receptor 2-like 

CUST_4992_PI425798793 6,780687 up neuroglobin- partial 

CUST_243_PI425798793 6,7141423 up chromatin-remodeling complex atpase chain iswi 

CUST_7541_PI425798793 6,6486363 up protein gpr107 

CUST_10057_PI425798793 6,6460724 up fused lobes 

CUST_3998_PI425798793 6,5742083 up dipeptidase 1 

CUST_3671_PI425798793 6,4853196 up potassium voltage-gated channel subfamily h member 8 

CUST_5739_PI425798793 6,207248 up prp38 pre-mrna processing factor 38 domain containing b 

CUST_3360_PI425798793 6,201318 up isoform r 

CUST_9492_PI425798793 6,157097 up synaptosomal-associated protein 25-like isoform 1 

CUST_2905_PI425798793 6,1552854 up transmembrane protein 151b-like 

CUST_8016_PI425798793 6,144512 up nucleoside diphosphate-linked moiety x motif mitochondrial 

CUST_8697_PI425798793 6,13546 up polycomb protein 

CUST_5578_PI425798793 6,02984 up g-protein coupled receptor 143 

CUST_600_PI425798793 5,868349 up elks rab6-interacting cast family member 1 

CUST_536_PI425798793 5,861872 up wd repeat-containing protein 63 

CUST_977_PI425798793 5,7479515 up protein turtle 

CUST_7410_PI425798793 5,7445073 up purine nucleoside phosphorylase 

CUST_7388_PI425798793 5,6991167 up solute carrier family 35 member c2-like 

CUST_4074_PI425798793 5,6233377 up electron transfer flavoprotein-ubiquinone mitochondrial 

CUST_7947_PI425798793 5,5911093 up e3 ubiquitin-protein ligase hectd1 

CUST_6221_PI425798793 5,5101905 up stringent starvation protein b 

CUST_3184_PI425798793 5,44364 up actin-related protein 2 3 complex subunit 3 

CUST_2029_PI425798793 5,359347 up trifunctional enzyme beta subunit (tp-beta) 

CUST_1821_PI425798793 5,3457236 up outer membrane protein 

CUST_9669_PI425798793 5,241773 up 

von willebrand factor type egf and pentraxin domain-containing 

protein 1 
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CUST_4384_PI425798793 5,187204 up transcriptional regulating factor 1 

CUST_874_PI425798793 5,1773868 up discoidin domain-containing receptor 2 

CUST_435_PI425798793 5,1327186 up homeobox protein b-h1 

CUST_8751_PI425798793 4,8947678 up g t mismatch-specific thymine dna glycosylase 

CUST_2120_PI425798793 4,881628 up PREDICTED: hypothetical protein LOC100578368 [Apis mellifera] 

CUST_1320_PI425798793 4,8502126 up uv excision repair protein rad23 homolog a 

CUST_5344_PI425798793 4,8364058 up cg13055 cg13055-pa 

CUST_4266_PI425798793 4,7884583 up u6 snrna-associated sm-like protein lsm4 

CUST_5885_PI425798793 4,718782 up zinc finger protein 227 

CUST_3274_PI425798793 4,656548 up sulfate transporter 

CUST_6631_PI425798793 4,5974984 up brefeldin a-inhibited guanine nucleotide-exchange protein 3 

CUST_6488_PI425798793 4,522455 up serine threonine-protein phosphatase pp1-beta catalytic subunit 

CUST_1453_PI425798793 4,4226294 up neuroendocrine convertase 2 

CUST_9041_PI425798793 4,395365 up cue domain-containing protein 2 

CUST_7826_PI425798793 4,394957 up cyclic-nucleotide-gated cation channel 

CUST_450_PI425798793 4,325883 up cytochrome o ubiquinol oxidase subunit iii 

CUST_5688_PI425798793 4,280633 up rho-related btb domain-containing protein 1 

CUST_2671_PI425798793 4,15218 up peroxiredoxin 1 

CUST_10122_PI425798793 4,099335 up PREDICTED: hypothetical protein LOC410449 [Apis mellifera] 

CUST_9758_PI425798793 4,070908 up n- isoform h 

CUST_989_PI425798793 4,0214477 up regulator of g-protein signaling 20 

CUST_7601_PI425798793 4,02036 up PREDICTED: hypothetical protein LOC409327 [Apis mellifera] 

CUST_4701_PI425798793 4,0030766 up uncharacterized protein cg1161 

CUST_5459_PI425798793 3,9734368 up transmembrane and tpr repeat-containing protein 2 

CUST_8085_PI425798793 3,8750951 up amnionless protein 

CUST_7352_PI425798793 3,836276 up cyclin-dependent kinase inhibitor protein 

CUST_2662_PI425798793 3,7926352 up 

dolichyl-diphosphooligosaccharide--protein glycosyltransferase 

subunit dad1 

CUST_9332_PI425798793 3,687651 up soluble guanylyl cyclase alpha 1 subunit 

CUST_6576_PI425798793 3,4908772 up hig1 domain family member 2a 

CUST_8692_PI425798793 3,4017885 up g protein-coupled 

CUST_5411_PI425798793 3,283473 up 

voltage- gated calcium channel alpha subunit (voltage-dependent t-

type calcium channel 

CUST_3318_PI425798793 3,2207315 up growth hormone-inducible transmembrane protein 

CUST_1951_PI425798793 3,1573675 up leucine rich repeat containing 29-like 

CUST_6296_PI425798793 3,089434 up vertebrate growth-associated protein gap-43 homolog 

CUST_8838_PI425798793 3,0518377 up diacylglycerol kinase theta 

CUST_3220_PI425798793 3,0502532 up esr1 protein 

CUST_7139_PI425798793 3,0278466 up protein disulfide-isomerase 

CUST_500_PI425798793 3,0209117 up polypeptide n-acetylgalactosaminyltransferase 5 

CUST_8269_PI425798793 3,0189474 up hypoxia-inducible factor 1 alpha 

CUST_9300_PI425798793 2,9966571 up 

udp-n-acetylglucosamine--peptide n-acetylglucosaminyltransferase 

110 kda subunit 

CUST_7137_PI425798793 2,9335222 up glucose dehydrogenase 

CUST_6207_PI425798793 2,8376086 up polyubiquitin-a-like isoform 1 

CUST_9314_PI425798793 2,5659058 up general receptor for phosphoinositides 1-associated scaffold protein 

CUST_1500_PI425798793 2,5474083 up muconate transport protein 

CUST_1183_PI425798793 2,5237482 up 

hyperpolarization activated cyclic nucleotide-gated potassium 

channel 

CUST_8621_PI425798793 2,4164288 up chemosensory protein 
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CUST_6756_PI425798793 2,3662262 up 15-hydroxyprostaglandin dehydrogenase 

CUST_6172_PI425798793 2,2477434 up creb-regulated transcription coactivator 1 

CUST_3885_PI425798793 2,1999733 up encore protein 

CUST_23_PI425798793 2,176429 up odorant receptor 22c-like 

CUST_1101_PI425798793 2,167046 up organic anion transporter 

CUST_5946_PI425798793 2,1374755 up dual specificity tyrosine-phosphorylation-regulated kinase 

CUST_503_PI425798793 2,13312 up protein tob1 

CUST_594_PI425798793 -2,0002928 down plasma membrane calcium isoform i 

CUST_8911_PI425798793 -2,0067947 down cop9 signalosome complex subunit 5 

CUST_32_PI425800172 -2,0282557 down CCE14 

CUST_9291_PI425798793 -2,0301576 down btb poz domain-containing protein 10 

CUST_1340_PI425798793 -2,0308006 down mitochondrial carrier protein 

CUST_2331_PI425798793 -2,039188 down single-strand selective monofunctional uracil dna glycosylase 

CUST_7408_PI425798793 -2,0426185 down pleckstrin-like proteiny domain-containing family j member 1 

CUST_2856_PI425798793 -2,0473793 down chitin deacetylase 4 

CUST_6206_PI425798793 -2,0533595 down transmembrane protein 222 

CUST_3064_PI425798793 -2,072209 down coiled-coil domain containing 74b 

CUST_202_PI425800172 -2,0742695 down CYP6AS14 

CUST_3642_PI425798793 -2,0748029 down transcription initiation factor tfiid subunit 12 

CUST_8852_PI425798793 -2,0813322 down coiled-coil domain-containing protein 135 

CUST_4991_PI425798793 -2,1036706 down protein fam76a 

CUST_6372_PI425798793 -2,108802 down isoform a 

CUST_5446_PI425798793 -2,1110446 down histone h2a 

CUST_2960_PI425798793 -2,11121 down uncharacterized protein 

CUST_4017_PI425798793 -2,1141725 down alcohol dehydrogenase class-3 

CUST_4786_PI425798793 -2,119312 down gtp cyclohydrolase 

CUST_6420_PI425798793 -2,1230037 down golgi snap receptor complex member 1 

CUST_4702_PI425798793 -2,1247602 down snare-associated protein snapin 

CUST_777_PI425798793 -2,141306 down vacuolar protein sorting-associated protein 37a 

CUST_7098_PI425798793 -2,1423845 down vacuolar protein sorting 37b 

CUST_1323_PI425798793 -2,1454496 down dipeptidyl peptidase iii 

CUST_4622_PI425798793 -2,1486638 down slc39a9-prov protein 

CUST_3597_PI425798793 -2,15616 down porphobilinogen deaminase 

CUST_5779_PI425798793 -2,1574056 down small calcium-binding mitochondrial 

CUST_5938_PI425798793 -2,16159 down PREDICTED: hypothetical protein LOC724746 [Apis mellifera] 

CUST_7781_PI425798793 -2,1693602 down vacuolar atp synthase subunit f 

CUST_9055_PI425798793 -2,177115 down son protein 

CUST_5099_PI425798793 -2,1793878 down outer dense fiber protein 3 

CUST_8791_PI425798793 -2,1843536 down nicotinamide riboside kinase 1 

CUST_2688_PI425798793 -2,1864529 down connector of kinase to ap- isoform a 

CUST_4652_PI425798793 -2,1879635 down isoform a 

CUST_9059_PI425798793 -2,1980004 down f-box only protein 22 

CUST_9525_PI425798793 -2,1999013 down isocitrate dehydrogenase 

CUST_1960_PI425798793 -2,2013817 down membrane protein tms1d 

CUST_1461_PI425798793 -2,2017605 down was protein family-like protein 1 

CUST_4906_PI425798793 -2,2018046 down ataxin 3 variant ref 
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CUST_5123_PI425798793 -2,2021368 down excitatory amino acid transporter 3 

CUST_4378_PI425798793 -2,203001 down integrator complex subunit 12 

CUST_8387_PI425798793 -2,2034097 down PREDICTED: hypothetical protein LOC409518 [Apis mellifera] 

CUST_4589_PI425798793 -2,205263 down isoform a 

CUST_1095_PI425798793 -2,2071698 down phosphoglycolate phosphatase 

CUST_593_PI425798793 -2,228004 down seryl-trna synthetase 

CUST_6647_PI425798793 -2,2292416 down c-myc promoter-binding protein 

CUST_3505_PI425798793 -2,2325056 down troponin c type iib 

CUST_4069_PI425798793 -2,2359648 down ras-related protein rab-43 

CUST_5777_PI425798793 -2,2362363 down epidermal growth factor receptor substrate 15-like 1 

CUST_1314_PI425798793 -2,2380111 down splicing arginine serine-rich 7 

CUST_8708_PI425798793 -2,252444 down mrg-binding protein 

CUST_121_PI425798793 -2,252583 down odorant binding protein 12 

CUST_1953_PI425798793 -2,2554388 down ubiquitin protein ligase 

CUST_3367_PI425798793 -2,2563207 down e3 ubiquitin-protein ligase bre1 

CUST_7000_PI425798793 -2,2595556 down hypothetical protein EAG_12683 [Camponotus floridanus] 

CUST_1990_PI425798793 -2,2612214 down short-chain dehydrogenase 

CUST_8230_PI425798793 -2,2663262 down -like 2 

CUST_4366_PI425798793 -2,2672079 down isoform b 

CUST_8850_PI425798793 -2,271632 down endonuclease exonuclease phosphatase family protein 

CUST_2941_PI425798793 -2,2743437 down wd-repeat protein 

CUST_8186_PI425798793 -2,2748654 down smu-1 suppressor of mec-8 and unc-52 homolog ( elegans) 

CUST_6424_PI425798793 -2,2752235 down acidic fibroblast growth factor intracellular-binding protein 

CUST_3337_PI425798793 -2,3110962 down set and mynd domain-containing protein 4 

CUST_8487_PI425798793 -2,3116212 down phosphatidylinositol-glycan biosynthesis class f 

CUST_8890_PI425798793 -2,313811 down upf0430 protein cg31712 

CUST_8070_PI425798793 -2,3162777 down ptb domain-containing engulfment adapter protein 1 

CUST_1622_PI425798793 -2,3171513 down pheromone-binding protein 1 

CUST_5392_PI425798793 -2,3219035 down nuclear pore complex protein nup93 

CUST_8596_PI425798793 -2,3309402 down transmembrane protein 115 

CUST_112_PI425798793 -2,3349116 down hypothetical protein EAI_07295 [Harpegnathos saltator] 

CUST_4110_PI425798793 -2,3383167 down ubiquitin carboxyl-terminal hydrolase bap1 

CUST_7314_PI425798793 -2,3414853 down hypothetical conserved protein 

CUST_9297_PI425798793 -2,3428485 down viral a-type inclusion protein 

CUST_2468_PI425798793 -2,3532457 down isoform a 

CUST_8352_PI425798793 -2,364249 down isoform e 

CUST_5287_PI425798793 -2,3651435 down 39s ribosomal protein mitochondrial 

CUST_8318_PI425798793 -2,3656113 down probable cytochrome p450 6a14 

CUST_3555_PI425798793 -2,3693192 down 

serine threonine-protein phosphatase 2a 65 kda regulatory subunit a 

alpha isoform 

CUST_4494_PI425798793 -2,372037 down pyridoxal-dependent decarboxylase domain-containing protein 1 

CUST_9926_PI425798793 -2,3728883 down alkylated dna repair protein alkb-like protein 4 

CUST_8924_PI425798793 -2,381683 down cysteine mitochondrial 

CUST_7171_PI425798793 -2,3825207 down isoform a 

CUST_5428_PI425798793 -2,3882613 down glutamine-oxaloacetic transaminase 

CUST_1244_PI425798793 -2,390972 down elongation factor ts 

CUST_5665_PI425798793 -2,407198 down coiled-coil domain-containing protein 93 
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CUST_5455_PI425798793 -2,4105349 down scf apoptosis response protein 

CUST_6150_PI425798793 -2,411699 down cell adhesion 

CUST_5357_PI425798793 -2,414717 down 

ica_apime ame: full=icarapin-like ame: full=venom carbohydrate-

rich protein flags: precursor 

CUST_7573_PI425798793 -2,418628 down isoform h 

CUST_2273_PI425798793 -2,4217453 down transcription initiation factor tfiid subunit 6 

CUST_7303_PI425798793 -2,4273002 down uroporphyrinogen decarboxylase 

CUST_6765_PI425798793 -2,436456 down atp-binding cassette sub-family b member mitochondrial 

CUST_3860_PI425798793 -2,446153 down deoxyhypusine hydroxylase 

CUST_2405_PI425798793 -2,4490683 down ephrin-b2a-like isoform partial 

CUST_517_PI425798793 -2,4589012 down evolutionarily conserved signaling intermediate in toll mitochondrial 

CUST_6228_PI425798793 -2,4671104 down cd82 antigen 

CUST_8376_PI425798793 -2,4678168 down nadh dehydrogenase 

CUST_7005_PI425798793 -2,4688876 down 26s proteasome non-atpase regulatory subunit 13 

CUST_3100_PI425798793 -2,4785337 down wd-repeat protein 

CUST_9404_PI425798793 -2,479613 down 

sorting and assembly machinery component 50 homolog ( 

cerevisiae) 

CUST_4746_PI425798793 -2,4860592 down eukaryotic translation elongation factor 1 epsilon 1 

CUST_7090_PI425798793 -2,4895637 down ankyrin repeat domain-containing protein 39 

CUST_5160_PI425798793 -2,4907167 down cytochrome c oxidase assembly protein cox15 

CUST_147_PI425800172 -2,4907708 down CY9S1 

CUST_3486_PI425798793 -2,490837 down adp-ribosylation factor-like 2 

CUST_4062_PI425798793 -2,493331 down anaphase-promoting complex subunit 7 

CUST_4425_PI425798793 -2,493807 down coatomer subunit epsilon 

CUST_6222_PI425798793 -2,5021787 down rab11 family-interacting protein 4 

CUST_831_PI425798793 -2,5147784 down methionine-r-sulfoxide reductase 

CUST_5607_PI425798793 -2,52321 down isoform b 

CUST_1773_PI425798793 -2,5238817 down sugar phosphate exchanger 2 

CUST_1540_PI425798793 -2,5253065 down protein mto1-like mitochondrial 

CUST_465_PI425798793 -2,530881 down 28s ribosomal protein mitochondrial 

CUST_1405_PI425798793 -2,5340374 down sin3 histone deacetylase corepressor complex component sds3 

CUST_4572_PI425798793 -2,5369625 down complementary sex determiner 

CUST_2088_PI425798793 -2,5396156 down galactokinase 2 

CUST_3264_PI425798793 -2,5515409 down cg7381 cg7381-pa 

CUST_3375_PI425798793 -2,5789747 down cytokine receptor 

CUST_2170_PI425798793 -2,59198 down ribokinase 

CUST_2731_PI425798793 -2,5943387 down zinc finger protein 

CUST_3785_PI425798793 -2,597476 down carbonyl reductase 

CUST_2994_PI425798793 -2,602803 down sodium-dependent phosphate transporter 

CUST_1234_PI425798793 -2,6068232 down homocysteine s-methyltransferase 

CUST_2223_PI425798793 -2,6115077 down cdk5 and abl1 enzyme substrate 1 

CUST_21_PI425798793 -2,6156566 down vacuolar atp synthase subunit d 

CUST_1899_PI425798793 -2,6335382 down PREDICTED: hypothetical protein LOC100576614 [Apis mellifera] 

CUST_5519_PI425798793 -2,63655 down 26s protease regulatory subunit s10b 

CUST_8104_PI425798793 -2,640344 down cob yrinic acid -diamide mitochondrial 

CUST_698_PI425798793 -2,6506414 down phosphoinositide 3-kinase regulatory subunit 4 

CUST_7198_PI425798793 -2,6565804 down ribonuclease h2 subunit b 

CUST_4801_PI425798793 -2,6583087 down flavin reductase 
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CUST_1235_PI425798793 -2,6597092 down sugar transporter 

CUST_3585_PI425798793 -2,6649473 down mitochondrial ribosomal protein s31 

CUST_5013_PI425798793 -2,6670036 down furin 2 

CUST_542_PI425798793 -2,6744814 down peroxisome proliferator-activated receptor binding protein 

CUST_8137_PI425798793 -2,6746526 down gram-negative bacteria-binding protein 1-2 

CUST_629_PI425798793 -2,6792784 down leucine-rich repeats and immunoglobulin-like domains protein 3 

CUST_46_PI425798793 -2,6803458 down probable actin-related protein 2 3 complex subunit 2 

CUST_8734_PI425798793 -2,695933 down wd-repeat protein 

CUST_1636_PI425798793 -2,6999187 down signal peptidase complex subunit 3 

CUST_7030_PI425798793 -2,700543 down protein fam45b 

CUST_8939_PI425798793 -2,7026014 down ribosomal protein l7ae 

CUST_3689_PI425798793 -2,710902 down mitochondrial carrier protein 

CUST_5073_PI425798793 -2,7140431 down periodic tryptophan protein 1 homolog 

CUST_5500_PI425798793 -2,7192225 down pumilio 

CUST_6460_PI425798793 -2,721631 down x-linked retinitis pigmentosa gtpase regulator-like protein 

CUST_5427_PI425798793 -2,7270088 down splicing factor u2af large subunit 

CUST_7199_PI425798793 -2,7377818 down a disintegrin and metalloproteinase with thrombospondin motifs 7 

CUST_7404_PI425798793 -2,7467954 down PREDICTED: hypothetical protein LOC724644 [Apis mellifera] 

CUST_5476_PI425798793 -2,7562556 down tbc1 domain family member 14 

CUST_68_PI425800172 -2,7568207 down CCE2 

CUST_2256_PI425798793 -2,773383 down mitochondrial solute carrier 

CUST_865_PI425798793 -2,773756 down luciferin 4-monooxygenase 

CUST_8248_PI425798793 -2,7766333 down tailless 

CUST_8040_PI425798793 -2,7768734 down odorant binding protein 14 

CUST_9146_PI425798793 -2,7778625 down delta-aminolevulinic acid dehydratase 

CUST_1469_PI425798793 -2,7813323 down cramped protein 

CUST_9381_PI425798793 -2,7928176 down zinc finger miz domain-containing protein 1 

CUST_9222_PI425798793 -2,7930245 down n-acetylgalactosamine kinase-like 

CUST_362_PI425798793 -2,8046722 down ubiquitin carboxyl-terminal hydrolase isozyme l5 

CUST_8231_PI425798793 -2,8058286 down PREDICTED: hypothetical protein LOC408280 [Apis mellifera] 

CUST_2901_PI425798793 -2,8110533 down thrombospondin type-1 domain-containing protein 4 

CUST_4135_PI425798793 -2,8147402 down sterol regulatory element-binding protein 1 

CUST_7015_PI425798793 -2,8210363 down forkhead box protein n3 

CUST_2759_PI425798793 -2,8213944 down gpi transamidase component pig-s 

CUST_3916_PI425798793 -2,8246686 down ctl transporter 

CUST_191_PI425800172 -2,8253715 down CYP6AS2 

CUST_937_PI425798793 -2,8273451 down headcase protein 

CUST_7011_PI425798793 -2,8276074 down PREDICTED: hypothetical protein LOC100577512 [Apis mellifera] 

CUST_2501_PI425798793 -2,8288953 down ring-box protein 2 

CUST_943_PI425798793 -2,831371 down vit_apime ame: full=vitellogenin flags: precursor 

CUST_6767_PI425798793 -2,8357763 down thymidylate synthase 

CUST_739_PI425798793 -2,841961 down serine threonine-protein kinase lats1 

CUST_5921_PI425798793 -2,8519075 down cg11044 cg11044-pa 

CUST_7547_PI425798793 -2,8536956 down extra macrochaetae 

CUST_8253_PI425798793 -2,8795962 down rag1-activating protein 1-like protein 

CUST_7839_PI425798793 -2,8841157 down probable multidrug resistance-associated protein lethal 03659 
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CUST_7829_PI425798793 -2,8906438 down tropomyosin 1 isoform b 

CUST_7654_PI425798793 -2,8962255 down transmembrane protein 85 

CUST_4941_PI425798793 -2,9010496 down nadh dehydrogenase 

CUST_2278_PI425798793 -2,916248 down cytochrome b5 domain-containing protein 2 

CUST_848_PI425798793 -2,9189384 down glyceraldehyde-3-phosphate dehydrogenase 

CUST_4373_PI425798793 -2,9195192 down protein transport protein sec23 

CUST_876_PI425798793 -2,9269981 down dullard-like protein 

CUST_6882_PI425798793 -2,9285004 down 

coiled-coil-helix-coiled-coil-helix domain-containing protein 

mitochondrial 

CUST_9043_PI425798793 -2,9319358 down 39s ribosomal protein mitochondrial 

CUST_7261_PI425798793 -2,9350488 down 3-5 exoribonuclease csl4 homolog 

CUST_343_PI425798793 -2,9558246 down protein kibra-like isoform 2 

CUST_5052_PI425798793 -2,9606347 down mitochondrial-processing peptidase subunit alpha 

CUST_6759_PI425798793 -2,9641137 down coiled-coil domain-containing protein 85c 

CUST_315_PI425798793 -2,9704168 down rna-binding protein 8a 

CUST_209_PI425798793 -2,989234 down f-box only protein 32 

CUST_4333_PI425798793 -3,0035737 down sorting nexin-29 

CUST_6387_PI425798793 -3,009809 down acetyl-coenzyme a transporter 1 

CUST_2981_PI425798793 -3,016091 down renin receptor 

CUST_1072_PI425798793 -3,0262678 down troponin i 

CUST_1329_PI425798793 -3,027074 down suppression of tumorigenicity 1 

CUST_936_PI425798793 -3,0292263 down prophenoloxidase 

CUST_2761_PI425798793 -3,0367448 down golgi-specific brefeldin a-resistance factor 

CUST_9322_PI425798793 -3,0386283 down hypothetical conserved protein 

CUST_2079_PI425798793 -3,0555975 down serologically defined colon cancer antigen 3-like protein 

CUST_462_PI425798793 -3,066242 down cabut 

CUST_7723_PI425798793 -3,067868 down transmembrane protein 147 

CUST_9_PI425798793 -3,0734177 down glial cell differentiation regulator-like 

CUST_1055_PI425798793 -3,07397 down mevalonate kinase 

CUST_8207_PI425798793 -3,0800817 down otu domain-containing protein 7b 

CUST_5336_PI425798793 -3,080689 down larval cuticle protein a3a 

CUST_5496_PI425798793 -3,103762 down protein-l-isoaspartate (d-aspartate) o-methyltransferase 

CUST_6744_PI425798793 -3,1085293 down actin-related protein 2 3 complex subunit 4 

CUST_3631_PI425798793 -3,1147978 down glutamate synthase 

CUST_2797_PI425798793 -3,11918 down general transcription factor 3c polypeptide 2 

CUST_8901_PI425798793 -3,1198733 down monocarboxylate transporter 9 

CUST_8337_PI425798793 -3,1227646 down lipase 1 precursor 

CUST_9822_PI425798793 -3,1232853 down subfamily member 17 

CUST_5132_PI425798793 -3,1246142 down defective proboscis extension 

CUST_392_PI425798793 -3,1302466 down membrane metallo-endopeptidase-like 1 

CUST_6102_PI425798793 -3,131828 down solute carrier family member 37 

CUST_3587_PI425798793 -3,1334343 down zinc finger cchc domain-containing protein 24 

CUST_9098_PI425798793 -3,1372705 down oligopeptidase a 

CUST_7997_PI425798793 -3,1437457 down exonuclease 3 -5 domain-like-containing protein 1 

CUST_3774_PI425798793 -3,1572402 down nadh dehydrogenase 1 alpha 1-like 

CUST_7946_PI425798793 -3,159479 down activating signal cointegrator 1 complex subunit 1 

CUST_3843_PI425798793 -3,1604903 down isoforms a c f g 
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CUST_7616_PI425798793 -3,1651552 down aspartyl-trna synthetase 

CUST_9106_PI425798793 -3,171164 down 

nuclear lim interactor-interacting factor (nli-interacting factor) (nli-

if) 

CUST_7984_PI425798793 -3,1736844 down eukaryotic translation initiation factor 3 subunit 4 

CUST_814_PI425798793 -3,173952 down glutaredoxin-related protein 5 

CUST_3892_PI425798793 -3,1760514 down actin-related protein 3 

CUST_5272_PI425798793 -3,1800528 down wd repeat-containing protein 92 

CUST_1489_PI425798793 -3,1881735 down lysine-specific histone demethylase 1a 

CUST_4126_PI425798793 -3,18861 down chloride channel protein 3 

CUST_3224_PI425798793 -3,1889746 down polymerase delta-interacting protein 2 

CUST_4972_PI425798793 -3,201896 down glutathione synthetase 

CUST_771_PI425798793 -3,2032933 down elongation factor 1 delta 

CUST_1635_PI425798793 -3,2155123 down bmp-binding endothelial regulator protein 

CUST_5656_PI425798793 -3,2227514 down upf0369 protein c6orf57-like protein 

CUST_4347_PI425798793 -3,2230837 down leucine-rich repeats and immunoglobulin-like domains protein 3 

CUST_5394_PI425798793 -3,229625 down alpha-aminoadipic semialdehyde mitochondrial 

CUST_6716_PI425798793 -3,231887 down nadh-ubiquinone oxidoreductase subunit 

CUST_888_PI425798793 -3,23398 down cox assembly mitochondrial protein homolog 

CUST_7568_PI425798793 -3,2395566 down extensin-like protein dif10 

CUST_5874_PI425798793 -3,2433007 down v-type proton atpase 116 kda subunit a isoform 1-like 

CUST_5178_PI425798793 -3,2462687 down inositol triphosphate 3-kinase 

CUST_5234_PI425798793 -3,2464943 down eukaryotic translation initiation factor 4b 

CUST_7861_PI425798793 -3,2488852 down dna repair protein xp-c rad4 

CUST_181_PI425800172 -3,2489274 down CYP6AS5 

CUST_5115_PI425798793 -3,2576537 down cg1909-like protein 

CUST_8664_PI425798793 -3,2591803 down ino80 complex subunit b-like 

CUST_8643_PI425798793 -3,2738435 down glutamyl aminopeptidase 

CUST_5791_PI425798793 -3,2814019 down d-beta-hydroxybutyrate mitochondrial 

CUST_3546_PI425798793 -3,2820792 down f-box only protein 21-like 

CUST_9105_PI425798793 -3,2838836 down mitochondrial carrier protein 

CUST_6833_PI425798793 -3,284709 down dna ligase 3 

CUST_4043_PI425798793 -3,287955 down histone h3 

CUST_2517_PI425798793 -3,2934208 down upf0184 protein c9orf16-like 

CUST_10041_PI425798793 -3,3206356 down ubiquinone biosynthesis protein coq4 mitochondrial-like 

CUST_5889_PI425798793 -3,3247607 down probable cytochrome p450 6a14 

CUST_3726_PI425798793 -3,3339553 down cub and sushi domain-containing protein 3 

CUST_2956_PI425798793 -3,3362596 down 

serine threonine-protein phosphatase 2a regulatory subunit b subunit 

alpha 

CUST_5038_PI425798793 -3,339512 down upf0545 protein c22orf39-like protein 

CUST_9969_PI425798793 -3,3470879 down 

dihydrolipoamide acetyltransferase component of pyruvate 

dehydrogenase 

CUST_229_PI425800172 -3,3491082 down CYP4AZ1 

CUST_1816_PI425798793 -3,3497822 down 26s proteasome non-atpase regulatory subunit 7 

CUST_7309_PI425798793 -3,3530452 down cytochrome b-c1 complex subunit mitochondrial 

CUST_9566_PI425798793 -3,3530946 down g protein pathway suppressor 2 

CUST_526_PI425798793 -3,3552887 down translocase of outer membrane 34 

CUST_3805_PI425798793 -3,3627372 down retinoblastoma-binding protein 5 

CUST_574_PI425798793 -3,3663743 down b( +)-type amino acid transporter 1 

CUST_5537_PI425798793 -3,3693895 down 

dolichyl-diphosphooligosaccharide--protein glycosyltransferase 

subunit 4 
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CUST_223_PI425798793 -3,387382 down plasma membrane calcium-transporting atpase 3 

CUST_6840_PI425798793 -3,3878715 down pyrroline-5-carboxylate reductase 2 

CUST_3703_PI425798793 -3,3889897 down charged multivesicular body protein 6 

CUST_2304_PI425798793 -3,3940356 down stromal cell-derived factor 2 

CUST_6497_PI425798793 -3,4000719 down catenin alpha 

CUST_3995_PI425798793 -3,4013474 down tau-tubulin kinase 1 

CUST_6249_PI425798793 -3,4070508 down isoform a 

CUST_7464_PI425798793 -3,4116437 down 39s ribosomal protein mitochondrial 

CUST_1168_PI425798793 -3,4181406 down glutamate cysteine ligase 

CUST_2964_PI425798793 -3,4203231 down proteasome subunit beta type-2 

CUST_705_PI425798793 -3,4242442 down isoform a 

CUST_6129_PI425798793 -3,4286187 down uncharacterized protein c12orf41-like protein 

CUST_7796_PI425798793 -3,4539418 down cytochrome p450 

CUST_420_PI425798793 -3,4869652 down methionine aminopeptidase 

CUST_7678_PI425798793 -3,4926295 down tay bridge 

CUST_5577_PI425798793 -3,5168111 down mesoderm induction early response protein 1 

CUST_8495_PI425798793 -3,5193577 down PREDICTED: hypothetical protein LOC726382 [Apis mellifera] 

CUST_5470_PI425798793 -3,5195148 down disco-interacting protein 2 

CUST_2128_PI425798793 -3,5335188 down charged multivesicular body protein 5 

CUST_10011_PI425798793 -3,5343785 down protein sidekick-1 

CUST_183_PI425800172 -3,5375016 down CYP6AS5 

CUST_2168_PI425798793 -3,5579135 down hypothetical protein SINV_04665 [Solenopsis invicta] 

CUST_3468_PI425798793 -3,561992 down isoform a 

CUST_1666_PI425798793 -3,5627053 down neuronal calcium sensor 2 

CUST_8671_PI425798793 -3,5645273 down coiled-coil-helix-coiled-coil-helix domain-containing 

CUST_4187_PI425798793 -3,5713756 down 

high affinity camp-specific and ibmx-insensitive 3 -cyclic 

phosphodiesterase 8a 

CUST_6565_PI425798793 -3,5784533 down zinc finger swim domain-containing protein kiaa0913 

CUST_6166_PI425798793 -3,5803578 down amino acid transporter 

CUST_4919_PI425798793 -3,5948846 down vacuolar atp synthase subunit ac39 

CUST_3701_PI425798793 -3,5980232 down splicing factor 45 

CUST_6300_PI425798793 -3,5980527 down phosphoenolpyruvate carboxykinase 

CUST_6677_PI425798793 -3,603277 down PREDICTED: hypothetical protein LOC552190 [Apis mellifera] 

CUST_2276_PI425798793 -3,6036298 down tumor suppressor candidate 3 

CUST_6629_PI425798793 -3,6059716 down uncharacterized protein c20orf111-like protein 

CUST_2971_PI425798793 -3,6214013 down placental protein 11 

CUST_257_PI425798793 -3,6288204 down maguk p55 subfamily member 6 

CUST_6668_PI425798793 -3,62943 down dna-directed rna polymerase i subunit rpa2 

CUST_6454_PI425798793 -3,6362345 down acylglycerol mitochondrial 

CUST_5771_PI425798793 -3,6418648 down malate dehydrogenase 

CUST_1206_PI425798793 -3,6447697 down plasma glutamate carboxypeptidase 

CUST_4514_PI425798793 -3,650609 down 

leucine-rich repeat and calponin-like proteiny domain-containing 

protein 3 

CUST_4982_PI425798793 -3,654903 down uncharacterized protein c8orf55-like protein 

CUST_1028_PI425798793 -3,6736348 down mitochondrial inner membrane 

CUST_8799_PI425798793 -3,6739168 down wd repeat-containing protein 7 

CUST_7491_PI425798793 -3,7064168 down beta-arrestin 1 

CUST_1456_PI425798793 -3,717051 down sterol regulatory element-binding protein cleavage-activating protein 
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CUST_7585_PI425798793 -3,7187505 down chromobox protein 5 

CUST_8395_PI425798793 -3,7265236 down adenosine kinase 

CUST_9647_PI425798793 -3,7282708 down monocarboxylate transporter 

CUST_6360_PI425798793 -3,736838 down sap30-binding protein 

CUST_8139_PI425798793 -3,7379034 down thyroid receptor-interacting protein 11 

CUST_2813_PI425798793 -3,7445323 down ubiquinone biosynthesis protein mitochondrial 

CUST_250_PI425798793 -3,7449703 down eukaryotic initiation factor 4a-iii 

CUST_6348_PI425798793 -3,7466173 down n -adenine-specific dna methyltransferase 1 

CUST_793_PI425798793 -3,7534566 down lkb1 interacting protein 

CUST_8234_PI425798793 -3,7732108 down retinal degeneration slow protein 

CUST_3087_PI425798793 -3,773462 down 2-oxoglutarate dehydrogenase 

CUST_1255_PI425798793 -3,7950935 down glucose dehydrogenase 

CUST_5041_PI425798793 -3,7958555 down inosine-uridine preferring nucleoside hydrolase 

CUST_248_PI425798793 -3,7990205 down 3-hydroxyacyl- dehydrogenase type-2 

CUST_7225_PI425798793 -3,8025608 down mitochondrial import inner membrane translocase subunit tim10 

CUST_3425_PI425798793 -3,8041632 down trafficking kinesin binding 2 

CUST_4431_PI425798793 -3,8211799 down enolase 

CUST_4467_PI425798793 -3,8222454 down protein dj-1 

CUST_7080_PI425798793 -3,823601 down zinc carboxypeptidase a 1 

CUST_6344_PI425798793 -3,8302717 down succinyl-coa synthetase beta chain 

CUST_8482_PI425798793 -3,832733 down translocon-associated delta subunit 

CUST_1725_PI425798793 -3,8385417 down upf0518 protein fam160b1 

CUST_9408_PI425798793 -3,8509893 down oxidative stress induced growth inhibitor 1 

CUST_9992_PI425798793 -3,8524175 down hexokinase 

CUST_179_PI425800172 -3,86283 down CYP6AS7 

CUST_186_PI425800172 -3,8657403 down CYP6AS4 

CUST_5044_PI425798793 -3,8659124 down calponin transgelin 

CUST_8858_PI425798793 -3,865956 down ap-2 complex subunit mu-1 

CUST_3786_PI425798793 -3,8755326 down beta lactamase domain 

CUST_2984_PI425798793 -3,8800936 down proteasome subunit beta 7 

CUST_6052_PI425798793 -3,9208612 down cation-transporting atpase 

CUST_5419_PI425798793 -3,9244075 down e3 ubiquitin-protein ligase huwe1 

CUST_4777_PI425798793 -3,9278672 down h2a histone member v 

CUST_9307_PI425798793 -3,951184 down PREDICTED: hypothetical protein LOC727647 [Apis mellifera] 

CUST_8198_PI425798793 -3,9568276 down phosphatidylinositol 3-kinase regulatory subunit alpha 

CUST_2898_PI425798793 -3,98912 down mediator of rna polymerase ii transcription subunit 15 

CUST_6183_PI425798793 -3,99052 down cordon-bleu 1 

CUST_3326_PI425798793 -3,993762 down mitochondrial carrier protein 

CUST_8585_PI425798793 -4,01788 down reversion-inducing cysteine-rich protein with kazal motifs 

CUST_6720_PI425798793 -4,0228815 down PREDICTED: hypothetical protein LOC409502 [Apis mellifera] 

CUST_287_PI425798793 -4,0300055 down cofilin actin-depolymerizing factor-like protein 

CUST_1544_PI425798793 -4,0404243 down sorbin and sh3 domain-containing protein 1 

CUST_1805_PI425798793 -4,0438147 down wd repeat-containing protein 37 

CUST_9866_PI425798793 -4,0533257 down solute carrier family 23 member 1 

CUST_7412_PI425798793 -4,0595098 down isoform b 

CUST_36_PI425800172 -4,063884 down CCE13_GB18660 
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CUST_8368_PI425798793 -4,0742607 down 

b chain crystallographic studies of nucleosome core particles 

containing histone sin mutants 

CUST_2788_PI425798793 -4,0880914 down integrin-linked protein kinase 

CUST_6275_PI425798793 -4,1179843 down zinc finger protein 650 

CUST_6654_PI425798793 -4,1327744 down phytanoyl- dioxygenase domain-containing protein 1-like protein 

CUST_4319_PI425798793 -4,1483316 down t-complex protein 1 subunit epsilon 

CUST_2645_PI425798793 -4,176508 down PREDICTED: hypothetical protein LOC725232 [Apis mellifera] 

CUST_4719_PI425798793 -4,1854877 down heparan-alpha-glucosaminide n-acetyltransferase 

CUST_192_PI425800172 -4,191722 down CYP6AS2 

CUST_9797_PI425798793 -4,197727 down nadh-ubiquinone oxidoreductase 75 kda mitochondrial 

CUST_3498_PI425798793 -4,2005258 down importin beta-3 

CUST_7277_PI425798793 -4,202723 down endoa 

CUST_8243_PI425798793 -4,2276316 down adp-ribosylation factor gtpase-activating protein 3 

CUST_3186_PI425798793 -4,2284045 down muscular protein 20 

CUST_188_PI425800172 -4,229183 down CYP6AS3 

CUST_53_PI425800172 -4,2346225 down CCE7_GB13602 

CUST_6276_PI425798793 -4,261806 down mitochondrial ubiquitin ligase activator of nfkb 1 

CUST_5834_PI425798793 -4,267766 down uncharacterized protein kiaa0090-like 

CUST_7871_PI425798793 -4,268149 down voltage-dependent anion-selective channel 

CUST_1428_PI425798793 -4,268762 down mitochondrial manganese superoxide dismutase 

CUST_182_PI425800172 -4,2930236 down CYP6AS5 

CUST_3293_PI425798793 -4,295341 down PREDICTED: hypothetical protein LOC410044 [Apis mellifera] 

CUST_4925_PI425798793 -4,318452 down zinc iron transporter 

CUST_7802_PI425798793 -4,342163 down cg11699-ra protein 

CUST_2749_PI425798793 -4,3632693 down tropomyosin 1 

CUST_9645_PI425798793 -4,3769193 down elongator complex protein 3 

CUST_9343_PI425798793 -4,3801737 down isocitrate dehydrogenase 

CUST_6966_PI425798793 -4,3827024 down glutamate transporter 

CUST_78_PI425800172 -4,4036846 down GSTmic1 

CUST_52_PI425798793 -4,4119277 down calponin transgelin 

CUST_2774_PI425798793 -4,4149766 down low-density lipoprotein receptor-related protein 

CUST_1158_PI425798793 -4,4312673 down nadh-ubiquinone oxidoreductase ashi subunit 

CUST_4651_PI425798793 -4,4592285 down l 01289 long form 

CUST_5218_PI425798793 -4,4594736 down interferon-related developmental regulator 1 

CUST_6577_PI425798793 -4,467044 down microsomal glutathione s-transferase 

CUST_475_PI425798793 -4,4687796 down endothelin-converting enzyme 

CUST_1593_PI425798793 -4,53095 down arylsulfatase b 

CUST_738_PI425798793 -4,534731 down triosephosphate isomerase 

CUST_3817_PI425798793 -4,535735 down isoform a 

CUST_1137_PI425798793 -4,5445085 down probable cytochrome p450 6a14 

CUST_5562_PI425798793 -4,5692344 down myosin heavy muscle isoform 1 

CUST_9833_PI425798793 -4,588997 down protein phosphatase 2c 

CUST_619_PI425798793 -4,6100273 down double-stranded rna-binding protein staufen-like protein 2 

CUST_8656_PI425798793 -4,616942 down chorion b-zip transcription factor 

CUST_727_PI425798793 -4,6489325 down ubx domain-containing protein 8 

CUST_8335_PI425798793 -4,6650662 down glucose dehydrogenase 

CUST_8382_PI425798793 -4,667315 down mannose-1-phosphate guanyltransferase 
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CUST_8443_PI425798793 -4,675484 down fatty acid 2-hydroxylase 

CUST_143_PI425800172 -4,686591 down CYP15A1 

CUST_9033_PI425798793 -4,6964984 down 

acyl-coenzyme a:6-aminopenicillanic-acid-acyltransferase 40 kda 

form 

CUST_5654_PI425798793 -4,7044716 down protein fam46a 

CUST_9790_PI425798793 -4,7079144 down ribonuclease oy 

CUST_198_PI425798793 -4,7348495 down ubiquitin-conjugating enzyme rad6 

CUST_5553_PI425798793 -4,745271 down alpha gamma epsilon 

CUST_11_PI425800189 -4,7454104 down CCE7_GB13602 

CUST_9073_PI425798793 -4,750506 down 6-phosphofructo-2-kinase fructose- -bisphosphatase short form 

CUST_5773_PI425798793 -4,7549376 down b-cell receptor-associated protein 31 

CUST_4279_PI425798793 -4,773872 down protein g12 

CUST_7687_PI425798793 -4,8261685 down synaptotagmin 1 

CUST_4280_PI425798793 -4,847702 down muscular protein 20 

CUST_1929_PI425798793 -4,8549194 down guanine nucleotide-binding protein beta 2 (g protein beta2) 

CUST_8733_PI425798793 -4,867089 down sterol o-acyltransferase 1 

CUST_4458_PI425798793 -4,8679132 down 

dihydrolipoamide succinyltransferase component of 2-oxoglutarate 

dehydrogenase 

CUST_10106_PI425798793 -4,8783545 down protein tipe 

CUST_4020_PI425798793 -4,8919168 down zinc finger ccch domain-containing protein 11a 

CUST_9848_PI425798793 -4,899198 down nadh dehydrogenase 

CUST_215_PI425800172 -4,9113274 down CYP6AS10 

CUST_1080_PI425798793 -4,9328976 down ester hydrolase c11orf54-like protein 

CUST_7732_PI425798793 -5,0151296 down lymphoid-restricted membrane isoform cra_a 

CUST_7868_PI425798793 -5,0152 down prefoldin subunit 2 

CUST_5236_PI425798793 -5,0233274 down serine threonine-protein kinase doa 

CUST_217_PI425798793 -5,035859 down insulin-like growth factor-binding protein complex acid labile chain 

CUST_3128_PI425798793 -5,086801 down ensangp00000017418-like protein 

CUST_5658_PI425798793 -5,1149855 down nadh dehydrogenase 

CUST_7258_PI425798793 -5,1160336 down bmp and activin membrane-bound inhibitor homolog 

CUST_207_PI425800172 -5,1898584 down CYP6AS13 

CUST_2803_PI425798793 -5,284858 down dynein light chain cytoplasmic 

CUST_4722_PI425798793 -5,2958837 down transmembrane protein 8 

CUST_6014_PI425798793 -5,302268 down proteasome subunit alpha type-2 

CUST_6021_PI425798793 -5,3089137 down serine threonine-protein kinase mark2 

CUST_7007_PI425798793 -5,3196874 down isoform a 

CUST_39_PI425800172 -5,35144 down CCE12 

CUST_6127_PI425798793 -5,3610034 down dehydrogenase reductase sdr family member 7 

CUST_1981_PI425798793 -5,3940864 down glycogen phosphorylase 

CUST_125_PI425798793 -5,402744 down lysosomal aspartic protease 

CUST_5011_PI425798793 -5,421019 down mitochondrial ribosomal protein l50 

CUST_691_PI425798793 -5,4529004 down chondroitin proteoglycan-2 

CUST_6267_PI425798793 -5,47572 down isoform b 

CUST_3558_PI425798793 -5,4957423 down 5 nucleotidase 

CUST_7233_PI425798793 -5,5211678 down solute carrier family 22 member 3 

CUST_6730_PI425798793 -5,569195 down glucosyl glucuronosyl transferases 

CUST_3907_PI425798793 -5,6251836 down tubulin-specific chaperone e 

CUST_1710_PI425798793 -5,665791 down golgin subfamily b member 1-like 
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CUST_616_PI425798793 -5,7230973 down perq amino acid-rich with gyf domain-containing protein 2 

CUST_1548_PI425798793 -5,723992 down lupus la 

CUST_1958_PI425798793 -5,733195 down juvenile hormone epoxide hydrolase 1 

CUST_2064_PI425798793 -5,7529483 down t-complex protein 1 subunit delta 

CUST_4243_PI425798793 -5,7568555 down dipeptidyl peptidase 

CUST_106_PI425800172 -5,771479 down CYP336A1 

CUST_8763_PI425798793 -5,799202 down nadh dehydrogenase 

CUST_4834_PI425798793 -5,8594956 down u6 snrna-associated sm-like protein lsm5 

CUST_3142_PI425798793 -5,8692026 down nadh-ubiquinone oxidoreductase 39 kda subunit 

CUST_1014_PI425798793 -5,876833 down protein isoform b 

CUST_5850_PI425798793 -5,8805656 down hypothetical protein EAG_14228 [Camponotus floridanus] 

CUST_4727_PI425798793 -5,9220114 down cytochrome p450 6k1 

CUST_9276_PI425798793 -5,96185 down protein grainyhead 

CUST_8525_PI425798793 -5,974938 down nadh dehydrogenase 

CUST_9366_PI425798793 -5,9780955 down receptor-type tyrosine-protein phosphatase r 

CUST_3242_PI425798793 -6,0126324 down glucosyl glucuronosyl transferases 

CUST_5823_PI425798793 -6,017715 down aldo-keto reductase 

CUST_4316_PI425798793 -6,0275326 down odorant-binding protein 1 

CUST_10049_PI425798793 -6,0447216 down calcium-independent phospholipase a2-gamma 

CUST_3015_PI425798793 -6,1027837 down venom acid phosphatase 

CUST_4166_PI425798793 -6,144366 down ras-related and estrogen-regulated growth inhibitor 

CUST_154_PI425800172 -6,158186 down CYP9Q2 

CUST_223_PI425800172 -6,188366 down CYP6AQ1 

CUST_2220_PI425798793 -6,2242804 down mitochondrial ribosomal protein l50 

CUST_8211_PI425798793 -6,289498 down isoform a 

CUST_1018_PI425798793 -6,438594 down peptidyl-prolyl cis-trans rhodopsin-specific isozyme 

CUST_3675_PI425798793 -6,440037 down ras-related protein rab-5b-like 

CUST_5509_PI425798793 -6,4742994 down conserved insect protein 

CUST_206_PI425800172 -6,518891 down CYP6AS13 

CUST_9719_PI425798793 -6,5917616 down organic cation transporter 

CUST_4510_PI425798793 -6,6127834 down adenylate cyclase 

CUST_6655_PI425798793 -6,6306534 down nadh dehydrogenase 

CUST_4739_PI425798793 -6,638666 down karyopherin alpha 6 

CUST_4433_PI425798793 -6,640064 down water dikinase 

CUST_774_PI425798793 -6,6840096 down nucleolar protein c7b 

CUST_3372_PI425798793 -6,7949424 down protein kinase dc2 

CUST_6254_PI425798793 -6,815934 down cytochrome p450 9e2 

CUST_184_PI425800172 -6,979884 down CYP6AS4 

CUST_7497_PI425798793 -6,9915004 down phosphorylase b kinase gamma catalytic skeletal muscle isoform 

CUST_5290_PI425798793 -7,0253105 down peptidoglycan-recognition protein s2 

CUST_2665_PI425798793 -7,027776 down ecdysteroid udp-glucosyltransferase 

CUST_6938_PI425798793 -7,085281 down mitochondrial cytochrome c oxidase subunit 6b 

CUST_4257_PI425798793 -7,1145344 down smoothelin-like protein 2 

CUST_9151_PI425798793 -7,1943254 down probable cytochrome p450 6a14 

CUST_5708_PI425798793 -7,2413197 down mature t-cell proliferation 1 neighbor 

CUST_7754_PI425798793 -7,2773786 down receptor expression-enhancing protein 5 
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CUST_6503_PI425798793 -7,2797565 down PREDICTED: hypothetical protein LOC100578955 [Apis mellifera] 

CUST_6559_PI425798793 -7,3665266 down eupolytin 

CUST_8334_PI425798793 -7,4118977 down trehalase 

CUST_5130_PI425798793 -7,634765 down basic helix-loop-helix zip transcription factor 

CUST_2243_PI425798793 -7,903392 down p53 regulated pa26 nuclear protein 

CUST_197_PI425798793 -8,140963 down membrane-associated transporter protein 

CUST_6519_PI425798793 -8,15039 down protein isoform a 

CUST_6911_PI425798793 -8,20804 down ubiquitin-protein ligase e3a 

CUST_4822_PI425798793 -8,299138 down myb protein 

CUST_8356_PI425798793 -8,328981 down isoform a 

CUST_747_PI425798793 -8,365029 down troponin c 

CUST_8492_PI425798793 -8,388883 down long-chain-fatty-acid coa ligase 

CUST_5492_PI425798793 -8,42016 down chymotrypsin-2 

CUST_5564_PI425798793 -8,46128 down female-specific doublesex isoform f2 

CUST_6128_PI425798793 -8,512053 down aminopeptidase n 

CUST_538_PI425798793 -8,650761 down isoform e 

CUST_369_PI425798793 -8,731529 down octopamine receptor beta-2r 

CUST_6410_PI425798793 -8,856543 down polymerase ii (dna directed) polypeptide h 

CUST_7253_PI425798793 -8,860517 down lysozyme isoform 1 

CUST_5852_PI425798793 -8,862886 down inwardly rectifying k+ channel protein 

CUST_7844_PI425798793 -9,025035 down PREDICTED: hypothetical protein LOC724993 [Apis mellifera] 

CUST_5375_PI425798793 -9,472136 down calcium-activated potassium channel alpha chain 

CUST_912_PI425798793 -9,538921 down synaptotagmin-like protein 5 

CUST_6610_PI425798793 -9,665585 down troponin c 

CUST_224_PI425800172 -9,756338 down CYP6AQ1 

CUST_880_PI425798793 -9,903043 down sodium potassium-dependent atpase beta-2 subunit 

CUST_35_PI425800172 -9,943121 down CCE13_GB18660 

CUST_4895_PI425798793 -10,121311 down nuclear hormone receptor ftz-f1 beta 

CUST_1699_PI425798793 -10,143931 down guanine nucleotide-binding protein g subunit alpha 

CUST_7631_PI425798793 -10,33982 down muscle-specific protein isoform i 

CUST_5838_PI425798793 -10,382632 down PREDICTED: peritrophin-1-like [Apis mellifera] 

CUST_15_PI425800189 -10,409016 down CCE3_GB19866 

CUST_9091_PI425798793 -10,631098 down alpha-amylase 

CUST_4209_PI425798793 -11,071764 down uncharacterized protein 

CUST_6861_PI425798793 -11,286233 down 28s ribosomal protein mitochondrial 

CUST_7219_PI425798793 -11,328418 down gtp-binding protein sar1b 

CUST_1603_PI425798793 -12,278866 down glycerol-3-phosphate dehydrogenase 

CUST_1584_PI425798793 -12,379415 down ring finger protein nhl-1 

CUST_366_PI425798793 -13,319147 down held out wings 

CUST_9057_PI425798793 -13,693938 down carboxypeptidase a 

CUST_212_PI425800172 -13,829649 down CYP6AS11 

CUST_7095_PI425798793 -14,274029 down 

ice_drome ame: full=caspase ame: full=drice contains: ame: 

full=caspase subunit p21 contains: ame: full=caspase subunit p12 

flags: precursor 

CUST_71_PI425800172 -14,546093 down CCE1_GB16342 

CUST_65_PI425800172 -15,053115 down CCE3_GB19866 

CUST_211_PI425800172 -16,128645 down CYP6AS11 

CUST_2536_PI425798793 -16,675543 down carboxypeptidase a-like 
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CUST_4568_PI425798793 -17,238838 down thymus-specific serine protease 

CUST_9733_PI425798793 -18,05587 down PREDICTED: hypothetical protein LOC408608 [Apis mellifera] 

CUST_9901_PI425798793 -19,71263 down isoform c 

CUST_70_PI425800172 -20,303305 down CCE1_GB16342 

CUST_5304_PI425798793 -20,47923 down maltase 1 

CUST_5441_PI425798793 -21,472687 down mpa2 allergen 

CUST_8632_PI425798793 -24,529428 down teratocyte released chitinase 

CUST_5469_PI425798793 -43,227585 down protein g12 
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9.5 Sequence alignment of A. m. mellifera, A. m. buckfast and A. m. caucasica nAChR subunits 

  
                10        20        30        40        50        60        70        80        90       100                   

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A1  ATGGCGACGGCCATTTCCTGTCTTGTTGCCCCGTTTCCGGGTGCCTCGGCCAATTCGGAAGCGAAGCGTCTCTACGACGACCTGCTGTCCAACTACAACC  

buck A1  ------------------..................................................................................  

cauc A1  ----------------------------------------------------------------------------------------------------  

 

                 110       120       130       140       150       160       170       180       190       200          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A1  GCCTCATCCGCCCCGTTGGCAACAACAGCGATCGCCTCACTGTCAAAATGGGACTGCGCCTCTCCCAGCTCATCGACGTTAACCTGAAGAACCAGATCAT  

buck A1  ....................................................................................................  

cauc A1  ----------------------------------------------------------------------------------------------------  

 

                 210       220       230       240       250       260       270       280       290       300          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A1  GACGACGAACGTTTGGGTGGAACAAGAGTGGAACGATTACAAGCTGAAGTGGAACCCGGATGATTATGGCGGTGTCGACACCCTCCACGTGCCGTCGGAG  

buck A1  ....................................................................................................  

cauc A1  ----------------------------------------------------------------------------------------------------  

 

                 310       320       330       340       350       360       370       380       390       400          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A1  CATATATGGTTGCCGGACATTGTTCTTTACAACAACGCCGATGGCAACTACGAGGTGACCATTATGACCAAGGCAATTTTGCACCATACGGGGAAGGTCG  

buck A1  ....................................................................................................  

cauc A1  ------------------------------......................................................................  

 

                 410       420       430       440       450       460       470       480       490       500          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A1  TGTGGAAACCGCCGGCCATCTATAAATCATTTTGCGAGATCGACGTGGAGTACTTCCCCTTTGACGAGCAGACTTGCTTCATGAAGTTTGGTTCGTGGAC  

buck A1  ....................................................................................................  

cauc A1  ....................................................................................................  

 

                 510       520       530       540       550       560       570       580       590       600          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A1  TTACGACGGGTACACGGTCGACTTGCGACACCTTGCCCAGACCGAAGACTCGAACCAGATCGAGGTCGGGATCGACCTGACCGACTACTACATTTCCGTC  

buck A1  ....................................................................................................  

cauc A1  ....................................................................................................  
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                 610       620       630       640       650       660       670       680       690       700          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A1  GAGTGGGACATCATAAAAGTGCCTGCCGTGAGGAACGAGGCGTTCTACATATGCTGCGAGGAGCCCTACCCCGATATCGTGTTCAATATCACCCTACGCC  

buck A1  ....................................................................................................  

cauc A1  ....................................................................................................  

 
                 710       720       730       740       750       760       770       780       790       800          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A1  GCAAGACCCTCTTCTACACGGTGAACCTGATCATACCGTGCGTGGGCATATCTTTTCTCTCGGTGCTGGTGTTCTACCTGCCGAGCGACAGCGGGGAGAA  

buck A1  ...........................................................................................T........  

cauc A1  ..........................................----------------------------------------------------------  

 

                 810       820       830       840       850       860       870       880       890       900          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A1  GGTCTCGCTCTCGATCTCGATCCTGCTGTCGTTGACGGTGTTCTTCCTACTGCTCGCCGAGATAATCCCGCCCACGTCGCTAACGGTGCCGTTGCTCGGC  

buck A1  ......----------------------------------------------------------------------------------------------  

cauc A1  ----------------------------------------------------------------------------------------------------  

 

 

 

                    10        20        30        40        50        60        70        80        90       100                   

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A3    ATGATGAAGAGCCTGGTGGGGATCATGTGGATAGTGTTGGTGCTCATATCAGGATGCTCGGGAAATCCGGACGCGAAGCGGCTGTACGACGACCTCCTGT  

buck A3    ------------------------------------------..........................................................  

                   110       120       130       140       150       160       170       180       190       200          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A3    CGAATTACAACAAGCTGGTTCGTCCAGTAGTCAACGTCACAGACGCCCTCACCGTTAAAATCAAGCTCAAACTCTCTCAGTTGATCGACGTAAATCTGAA  

buck A3    ............................G.......................................................................  

 

                   210       220       230       240       250       260       270       280       290       300          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A3    AAATCAAATCATGACAACGAACCTCTGGGTAGAACAGTCATGGTACGATTACAAGTTAAAATGGGATCCAAAGGAATATGGTGGGGTGGAAATGCTACAC  

buck A3    ....................................................................................................  

 

                   310       320       330       340       350       360       370       380       390       400          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A3    GTGCCATCCGATCATATATGGAGGCCCGATATAGTTTTGTACAACAACGCCGACGGTAATTTCGAGGTGACGCTGGCAACGAAGGCGACGCTGAATTACA  

buck A3    ....................................................................................................  
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                   410       420       430       440       450       460       470       480       490       500          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A3    CAGGGAGGGTCGAATGGAAGCCACCGGCCATATACAAATCCTCTTGCGAGATCGACGTAGAATACTTTCCGTTCGACGAGCAAACGTGCGTCATGAAGTT  

buck A3    ....................................................................................................  

 

                   510       520       530       540       550       560       570       580       590       600          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A3    CGGCTCGTGGACTTATGACGGCTTCCAGGTTGATCTTCGACACATCGACGAAATTCGTGGCAAAAATGTCGTCGACATCGGCGTTGATCTGTCCGAGTTT  

buck A3    ....................................................................................................  

 

 

                   610       620       630       640       650       660       670       680       690       700          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A3    TATACTTCCGTCGAGTGGGATATCCTAGAAGTCCCAGCCGTGCGAAATGAAAAATTTTACACGTGCTGCGACGAGCCCTACCTCGACATCACGTTCAACA  

buck A3    ....................................................................................................  

 

                   710       720       730       740       750       760       770       780       790       800          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A3    TCACCATGAGACGGAAGACTCTATTTTACACCGTCAATCTTATAATACCGTGTATGGGTATCTCGTTTCTCACGGTGTTGGTCTTCTATCTGCCAAGCGA  

buck A3    ....................................................................................................  

 

 

 

 

                    10        20        30        40        50        60        70        80        90       100                   

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A4    GGGCTCGAGGGGGACTAGTGCGTCGGTCATAGTGGAGGAGACAGGGGTCCACGATGCCCCCCATAATAGGGGAAACGTTGCGTGTATGGTTCCTCTCGGC  

buck A4.1  -----------------------------------------------------...............................................  

buck A4.2  -----------------------------------------------------...............................................  

buck A4.3  -----------------------------------------------------...............................................  

buck A4.7  -----------------------------------------------------...............................................  

buck A4.8  -----------------------------------------------------...............................................  

cauc A4    -----------------------------------------------------------------------.............................  
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                   110       120       130       140       150       160       170       180       190       200          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A4    GTTGGTGGTTCACGGTGCTGTCGCTGGCAATCCGGACGCGAAACGCCTTTACGACGACTTGCTTTCTAATTATAACAAACTAGTGCGCCCTGTTGTGAAT  

buck A4.1  .....................................................................C..............................  

buck A4.2  .....................................................................C..............................  

buck A4.3  .....................................................................C..............................  

buck A4.7  ...............................................C.....................C..............................  

buck A4.8  .....................................................................C..............................  

cauc A4    .....................................................................C..............................  

 

                   210       220       230       240       250       260       270       280       290       300          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A4    ACCTCGGACGTGCTACGCGTGTGCATCAAGTTGAAACTCTCCCAGCTCATCGACGTGAATTTGAAGAATCAAATCATGACGACGAATCTATGGGTGGAAC  

buck A4.1  .........................................................................................G..........  

buck A4.2  ..............................................................................G..........G..........  

buck A4.3  ...................................................................................A.....G..........  

buck A4.7  ..............................................C..........................................G..........  

buck A4.8  .........................................................................................G..........  

cauc A4    .........................................................................................G..........  

 

                   310       320       330       340       350       360       370       380       390       400          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A4    AGTCATGGTACGATTACAAGTTACGATGGGAGCCGAAGGAGTACGGAGGAGTTAAAATGTTACACGTGCCATCCGATCACATATGGCGGCCCGATATAGT  

buck A4.1  ..--------------------------------------------------------------------------------------------------  

buck A4.2  ....................C.................................................G.............................  

buck A4.3  ....................C...............................................................................  

buck A4.7  ....................C.................................................G.............................  

buck A4.8  ....................C.................................................G.............................  

cauc A4    ....................C.................................................G.............................  

 

                   410       420       430       440       450       460       470       480       490       500          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A4    CCTCTACAACAACGC-------------------------------GGACGGCAACTTCGAGGTGACCTTGGCCACGAAGGCCACCATCTACCATCAAGG  

buck A4.1  ----------------------------------------------------------------------------------------------------  

buck A4.2  ............----------------------------------------------------------------------------------------  

buck A4.3  ...............-------------------------------............................................C.........  

buck A4.7  ...............CCAGAACCACTAATGTGCTCGCTCGCAGCGC..............................................T.......  

buck A4.8  ............----------------------------------------------------------------------------------------  

cauc A4    ............----------------------------------------------------------------------------------------  
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                   510       520       530       540       550       560       570       580       590       600          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A4    ATTGGTCGAGTGGAAGCCCCCCGCCATTTATAAATCATCCTGCGAGATCGACGTGGAGTACTTCCCATTCGACGAGCAGACCTGTGTCCTCAAGTTCGGT  

buck A4.1  ----------------------------------------------------------------------------------------------------  

buck A4.2  ----------------------------------------------------------------------------------------------------  

buck A4.3  ..................T.................................................................................  

buck A4.7  ....................................................................................................  

buck A4.8  ----------------------------------------------------------------------------------------------------  

cauc A4    ----------------------------------------------------------------------------------------------------  

 

                   610       620       630       640       650       660       670       680       690       700          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A4    TCGTGGACCTATGACGGCTTTAAGGTCGATCTAAGGCATATGGACGAGAAATCGGGAAGCAATGTGGTGGATGTCGGAGTCGACCTCTCCGAATTCTACA  

buck A4.1  ------------------------.......................................................C....................  

buck A4.2  ------------------------............................................................................  

buck A4.3  ..................................................................................G.................  

buck A4.7  ....................................................................................................  

buck A4.8  ------------------------............................................................................  

cauc A4    ------------------------............................................................................  

 

                   710       720       730       740       750       760       770       780       790       800          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A4    TGTCGGTAGAATGGGATATTTTAGAAGTACCTGCAGTGAGAAACGAAAAATTTTACACCTGCTGCGACGAGCCGTACCTGGATATTACATTTAATATAAC  

buck A4.1  A......G.............................AC.............................................................  

buck A4.2  .....................................AC...............G.............................................  

buck A4.3  .....................................AC.............................................................  

buck A4.7  .....................................AC.............................................................  

buck A4.8  .....................................AC.............................................................  

cauc A4    .....................................AC.............................................................  

 

                   810       820       830       840       850       860       870       880       890       900          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A4    AATGCGAAGAAAAACACTTTTCTACACTGTGAACATAATTATTCCGTGTATGGGAATTTCCTTTCTTACGGTACTGACGTTTTATCTACCTAGCGACAGC  

buck A4.1  ....................................................................................................  

buck A4.2  ....................................................................................................  

buck A4.3  ....................................................................................................  

buck A4.7  ...............................................................................................G....  

buck A4.8  ....................................................................................................  

cauc A4    ....................................................................................................  
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                   910       920       930       940       950       960       970       980       990       1000         

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A4    GGGGAAAAGGTCACGCTCTCCATTTCCATTCTCATCAGTCTTCACGTGTTTTTCCTGCTGGTCGTCGAGATCATTCCACCTACGTCGCTGGTCGTGCCGC  

buck A4.1  ...................---------------------------------------------------------------------------------  

buck A4.2  ...................---------------------------------------------------------------------------------  

buck A4.3  ...................---------------------------------------------------------------------------------  

buck A4.7  ...................---------------------------------------------------------------------------------  

buck A4.8  ...................---------------------------------------------------------------------------------  

cauc A4    .....-----------------------------------------------------------------------------------------------  

 

 

 

                    10        20        30        40        50        60        70        80        90       100                   

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A5    GGACAGGCGGTCTCGCGTTTAAGTGGTCCATCAATTCCATGTCGCCTTTGGTCCTGTTCTTTCATTACGGAGTTTTGGCCATCATTTTCGGGAACGGTTT  

buck A5    -----------------------------------------.....C.....................................................  

cauc A5    ----------------------------------------------------------------------------------------------------  

cauc A5.2  --------------------------------------------------------.......G....................................  

 

                   110       120       130       140       150       160       170       180       190       200          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A5    TGGGGATGAACACGAATATAGATTGACGAAATATCTGCTCGATGGATACGACGCCGGTGTACGTCCAGCCGAGAATTCCTCCCAACCCCTGGCGGTCGTC  

buck A5    ....................................................................................................  

cauc A5    ----------------------------------------------------------------------------------------------------  

cauc A5.2  ....................................................................................................  

 

                   210       220       230       240       250       260       270       280       290       300          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A5    TTTGGCCTTTCTCTTCATCACATAATCGACGTGGACGAGAAGAATCAGATACTGACGACGAATTGCTGGGTGACACAGATTTGGACGGACCATCACCTGA  

buck A5    ....................................................................................................  

cauc A5    --------------------------------....................................................................  

cauc A5.2  ....................................................................................................  

 

                   310       320       330       340       350       360       370       380       390       400          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A5    AATGGAACGCCTCGGAGTTCGCGGGGATCCGAGTGATTCGTGTTCCTTACAATCGCGTCTGGAGGCCGGACACGATCCTCTACAACAACGCCGATCCACA  

buck A5    ....................................................................................................  

cauc A5    ....................................................................................................  

cauc A5.2  ....................................................................................................  
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                   410       420       430       440       450       460       470       480       490       500          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A5    GTACAGCTCGGCAGTCATAAATACGAACGTGATAGTGAGTCACACGGGGGAGGTGGTGTGGTTGAGCCATGGGATATTTCGCAGCAGCTGCGACATCGAC  

buck A5    ....................................................................................................  

cauc A5    ....................................................................................................  

cauc A5.2  .........................................................A..........................................  

 

                   510       520       530       540       550       560       570       580       590       600          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A5    GTCGAGTTCTTCCCCTTCGACGAGCAACGCTGTGTGTTGAAATGGGCCTCCTGGACGTACGATGGATACCAATTGGAGTTGGAGAAGCAAAGCGAGCAAG  

buck A5    ....................................................................................................  

cauc A5    ....................................................................................................  

cauc A5.2  ....................................................................................................  

 

                   610       620       630       640       650       660       670       680       690       700          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A5    GAGACGTGAGCAATTATCAAGCGAACGGTGAATTCGACTTGGTCAATTTCTCCGCGAGAAGGAACGTGGAGTATTACTCCTGCTGCCCGGAACCGTATCC  

buck A5    ......................................C........................................T....................  

cauc A5    ......................................C........................................T....................  

cauc A5.2  ......................................C.............................................................  

 

                   710       720       730       740       750       760       770       780       790       800          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A5    GGACATCACTTACGAGATACGATTGCGACGTCGACCGATGTTTTACGTCTTCAATCTGATACTTCCATGCATACTCATCAACAGTGTCGCCCTGTTGGTA  

buck A5    ....................................................................................................  

cauc A5    T.........................................C.....................................--------------------  

cauc A5.2  T.........................................C.........................................................  

 

                   810       820       830       840       850       860       870       880       890       900          

           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A5    TTCTACGTGCCGTCTGAATCGGGGGAAAAAGTCACCCTCGGGATTTCGGCCCTCCTCTCTATGACGGTCTTCCTAATGACTATTCGCGAGTCACTGCCGC  

buck A5    ......................................................----------------------------------------------  

cauc A5    ----------------------------------------------------------------------------------------------------  

cauc A5.2  ...........................-------------------------------------------------------------------------  
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             10        20        30        40        50        60        70        80        90       100                   

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A6  ATGCGCGCAAGTAGTGTATTACAAGCAGAGAGTGATGTGTCATCGTGCGTTATTTTTGGTGTATTATTTGTGTTATTTTCCTTTCTGAGGACACGTACGA  

buck A6  ----------------------------------------------------------------------------------------------------  

 

                 110       120       130       140       150       160       170       180       190       200          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A6  AGCTCCAACCTACTTATTTTCATCATACATACATCATATATGAAAGCCTGTGCGGACGTCACGAGAAACGTTTGTTGAACGAGCTGTTGTCGTCATACAA  

buck A6  ----------------------------------------------------------------------------------------------------  

 

                 210       220       230       240       250       260       270       280       290       300          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A6  CACTCTGGAGCGGCCCGTCGCCAATGAGAGCGAGCCTCTCGAAGTGAAATTTGGCATCACGCTACAGCAGATCATAGATGTGGATGAGAAGAATCAAATA  

buck A6  ----------------------------------------------------------------------------------------------------  

 

                 310       320       330       340       350       360       370       380       390       400          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A6  TTAACTACGAACGCGTGGCTCAAGTTGGAATGGGTGGACTACAACCTCCAATGGAACGAGTCCGAGTACGGAGGTGTAAAGGACCTTCGAATTACACCAA  

buck A6  -------------------------------------------------------TGT.T.A.A....GA...TGA.GTGTC.T.G.-.CG...TTTTTG  

 

                 410       420       430       440       450       460       470       480       490       500          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A6  ACAAGCTCTGGAAGCCAGACATTCTCATGTACAACAGTGCGGATGAGGGTTTCGACGGGACATACCAAACAAACGTGGTAGTCACGCATAACGGCAGTTG  

buck A6  GTGTAT.A.TTGT.TT.----..T..C.T.CTG.GGACA..T.C..A.C.CCAAC.TATTT..TTTC.T..T..A.AC--A...TAT..GGAATGG..G.  

 

                 510       520       530       540       550       560       570       580       590       600          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A6  CCTGTACGTTCCTCCGGGCATCTTCAAGAGCACTTGCAAGATAGACATCACTTGGTTCCCCTTTGACGACCAACACTGTGACATGAAGTTCGGATCCTGG  

buck A6  A..AC.ACC...AAT..A-------.C...TC.GA.T.C.G-..GTG.A.---A.GA..TT-----...ATT....C---.A.CA.GC.CT...AG.CA.  

 

                 610       620       630       640       650       660       670       680       690       700          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A6  ACCTACGACGGCA-ACCAGGTCGACCTCGTGCTCAGCTCGGAGACGGGCGGTGACCTGTCCGACTTTATCACGAATGGAGAATGGTACCTGATCGGAATG  

buck A6  ..A.T.TCAT.T.C.A....................................................................................  

 

                 710       720       730       740       750       760       770       780       790       800          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A6  CCGGGCAAGAAGAACACGATAACGTACCAATGCTGTCCGGAGCCTTACGTCGACGTCACATTCACCATACAGATCCGTAGAAGGACCCTCTACTATTTTT  

buck A6  ....................................................................................................  
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                 810       820       830       840       850       860       870       880       890       900          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A6  TCAACCTGATCGTGCCGTGCGTGCTGATATCGAGCATGGCCCTCCTGGGGTTCACCCTTCCGCCAGATTCCGGGGAGAAGCTCACCTTAGGAGTGACCAT  

buck A6  ................................................................................--------------------  

 

 

 
                          10        20        30        40        50        60        70        80        90       100                   

                 ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A7          ATGAGACGTTGGACTCTCATGGCGGCTATAGCCCTGGCTGCATCGGGGCTGGTAAACGGTGGTTCTCACGAGAAACGGCTGCTAAACGACCTGCTGGATA  

buck A7.1 small  ----------------------------------------------------------------------------------------------------  

buck A7.2 big    ----------------------------------.........................C........................................  

 

                         110       120       130       140       150       160       170       180       190       200          

                 ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A7          CATACAACGTGCTGGAGCGTCCGGTTGGCAATGAGTCCGAGCCCCTCGTGTTGAGCTTTGGCCTTACACTAATGCAAATAATCG-ACGTTGACGAAAAGA  

buck A7.1 small  -----------------------------------------------------------------------------C.GGCT.C.TCGG..........  

buck A7.2 big    ....................................................................................-...............  

 

                         210       220       230       240       250       260       270       280       290       300          

                 ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A7          ACCAATTGCTCATCACGAATCTCTGGTTAAAATTGGAATGGAACGATGTGAACATGAGATGGAATGTGTCAGATTATGGGGGAGTGAGAGACCTCAGGAT  

buck A7.1 small  ....................................................................................................  

buck A7.2 big    ....................................................................................................  

 

                         310       320       330       340       350       360       370       380       390       400          

                 ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A7          CCCACCACACAGACTTTGGAAGCCTGACGTTCTCATGTATAACAGCGCGGACGAAGGGTTCGACGGCACTTATCCGACGAACGTCGTTGTGAAGAACAAT  

buck A7.1 small  ....................................................................................................  

buck A7.2 big    ....................................................................................................  

 

                         410       420       430       440       450       460       470       480       490       500          

                 ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A7          GGGACCTGCTTATACGTGCCGCCCGGCATATTCAAGAGCACTTGCAAGATAGACATTACCTGGTTCCCCTTTGACGATCAACGCTGCGAGATGAAATTCG  

buck A7.1 small  ....................................................................................................  

buck A7.2 big    ....................................................................................................  
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                         510       520       530       540       550       560       570       580       590       600          

                 ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A7          GCTCCTGGACGTACGACGGCTTTCAGTTGGACCTGCAACTGCAAGACGAAGCGGGAGGTGACATCAGCAGTTTCATCACTAACGGCGAGTGGGATCTGTT  

buck A7.1 small  ....................................................................................................  

buck A7.2 big    ....................................................................................................  

 

 

                         610       620       630       640       650       660       670       680       690       700          

                 ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A7          GGGGGTGCCTGGTAAAAGAAACGAAATTTATTACAATTGCTGCCCAGAACCGTATATAGATATAACGTTCGTGGTGATCATCAGAAGGCGAACTCTTTAC  

buck A7.1 small  .........C................................................................................G.........  

buck A7.2 big    .........C................................................................................G.........  

 

                         710       720       730       740       750       760       770       780       790       800          

                 ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A7          TATTTCTTCAACCTGATCGTGCCGTGTGTCCTGATTGCCAGCATGGCCGTTCTGGGATTCACCTTGCCACCCGATTCCGGCGAGAAGCTATCTCTAGGGG  

buck A7.1 small  ..............................................................................................------  

buck A7.2 big    ....................................................................................................  

 

                         810       820       830       840       850       860       870       880       890       900          

                 ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A7          TAACCATCCTCTTGTCCCTCACTGTGTTCCTGAATATGGTGGCCGAGACAATGCCAGCGACTTCGGACGCCGTGCCTCTGCTGGGGACGTACTTCAACTG  

buck A7.1 small  ----------------------------------------------------------------------------------------------------  

buck A7.2 big    A.......--------------------------------------------------------------------------------------------  

 

 

 

 

                  10        20        30        40        50        60        70        80        90       100                   

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A8  TTTATATTTATTAACTTACACTTAAAAATTACTATATAATATTGGCAGATAAACGTATTTTTATTGGGAGTGGTCATTGCCATCTCAACCCTATATAAAT  

buck A8  ----------------------------------------------------------------------------------------------------  

cauc A8  ----------------------------------------------------------------------------------------------------  

 

                 110       120       130       140       150       160       170       180       190       200          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A8  TTGTAAATAATTATGTTTAAAATGCAAATATTGACGCTTGGTGTTCTTTTTAATACTCTTCATATTATATACAGTGTTGCTGGATTGAAAATTTTCGAAG  

buck A8  --------------------------------....................................................................  

cauc A8  ----------------------------------------------------------------------------------------------------  
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                 210       220       230       240       250       260       270       280       290       300          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A8  CAAATCCTGACACAAAGAGACTTTATGATGACTTATTATCGAATTATAATAGACTTATACGACCTGTTATGAACAATACTGAAACCTTGACAGTTCAACT  

buck A8  ....................................................................................................  

cauc A8  ---------------------------------------------------------------------------------------------.GGTGT.  

 

                 310       320       330       340       350       360       370       380       390       400          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A8  CGGTTTAAAATTATCACAATTAATTGAAATGAATTTAAAAAATCAAGTGATGACCACCAATGTCTGGGTAGAACAGAGATGGAATGATTATAAACTAAAA  

buck A8  ....................................................................................................  

cauc A8  .TT.....T.C.-CT...--..T.AT.T.CA.....................................................................  

                 410       420       430       440       450       460       470       480       490       500          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A8  TGGAATCCAGAAGAATACGGTGGCGTGGAAATGCTATATGTACCTTCCGAAAATATTTGGTTACCAGATATTGTTCTATATAATAATGCTGACGGTAATT  

buck A8  ....................................................................................................  

cauc A8  ....................................................................................................  

 

                 510       520       530       540       550       560       570       580       590       600          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A8  ATGAAGTGACGCTTATGACAAAAGCTACATTAAAATATACTGGTGATGTATCTTGGAAACCACCTGCAATTTATAAATCATCTTGTGAAATTAATGTAGA  

buck A8  ....................................................................................................  

cauc A8  ....................................................................................................  

 

                 610       620       630       640       650       660       670       680       690       700          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A8  ATATTTCCCATTCGACGAACAATCGTGTATTATGAAATTCGGTTCATGGACTTATAATGGCGCTCAGGTAGATTTAAAACATATGAAACAAGAAGCTGGT  

buck A8  ....................................................................................................  

cauc A8  ....................................................................................................  

 

                 710       720       730       740       750       760       770       780       790       800          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A8  AGCAATTTAGTTGCAAAAGGAATAGATTTAAGCGATTTCTATTTATCAGTAGAATGGGATATTTTAGAAGTACCAGCATCGAGAAATGAAGAATATTATC  

buck A8  ....................................................................................................  

cauc A8  ....................................................................................................  

 

                 810       820       830       840       850       860       870       880       890       900          

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A8  CATGTTGCACAGAACCCTATTCTGATATCACTTTTAATATTACAATGCGAAGAAAAACATTATTCTATACGGTTAACTTAATAATTCCTTGCGTGGGTAT  

buck A8  ....................................................................................................  
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cauc A8  ....................................................................................................  

                 910       920       930       940       950       960       970       980       990       1000         

         ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel A8  TACATTCCTTACAGTACTTGTATTTTATCTACCAAGTGATTCTGGTGAAAAAGTATCATTATGTTCTTCCATTCTCCTTTCATTGACGGTATTCTTTTTA  

buck A8  ............................................................................T-----------------------  

cauc A8  .............................................-------------------------------------------------------  

 

 

 

 

                               10        20        30        40        50        60        70        80        90       100                   

                      ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B1               GGGGTTGGCCACGGGTGGGACACCGCCTGAAACCTGTCCAAAAAATGCATAATATTTGCTCGAGGCTCGGGCGAATTCTGCTCATCTCCGCCGTTTTCTG  

cauc B1 (head)        ----------------------------------------------------------------------------------------------------  

 

                              110       120       130       140       150       160       170       180       190       200          

                      ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B1               CGTCGGTCTCTGCTCCGAGGATGAGGAAAGATTGGTGCGAGACTTGTTCAGAGGTTACAACAAACTCATTAGACCCGTGCAGAACATGACAGAGAAAGTG  

cauc B1 (head)        -...................................................................................................  

 

                              210       220       230       240       250       260       270       280       290       300          

                      ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B1               CACGTGAATTTTGGCCTCGCTTTCGTGCAATTGATCAACGTGAACGAGAAAAATCAAATTATGAAGTCGAACGTTTGGCTGAGATTCATCTGGACGGATT  

cauc B1 (head)        ....................................................................................................  

 

                              310       320       330       340       350       360       370       380       390       400          

                      ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B1               ATCAGCTGCAATGGGACGAGGCAGACTATGGCGGTATCGGGGTACTTAGATTACCACCCGACAAAGTATGGAAACCTGACATCGTGTTGTTTAACAACGC  

cauc B1 (head)        ....................................................................................................  

 

                              410       420       430       440       450       460       470       480       490       500          

                      ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B1               GGACGGGAACTACGAGGTGCGATACAAGAGCAACGTGCTCATCTATCCGAACGGCGACGTCCTCTGGGTGCCTCCGGCCATCTACCAGAGTTCCTGCACC  

cauc B1 (head)        ........................................................................A...........................  

 

                              510       520       530       540       550       560       570       580       590       600          

                      ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B1               ATCGACGTCACGTACTTCCCGTTCGACCAGCAAACCTGCATCATGAAATTCGGCTCCTGGACGTTCAACGGCGACCAAGTGTCCCTGGCTTTGTACAACA  

cauc B1 (head)        ...........T........C...............................................................................  
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                              610       620       630       640       650       660       670       680       690       700          

                      ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B1               ACAAGAACTTCGTCGATCTGTCCGACTATTGGAAGAGCGGCACCTGGGACATAATCAACGTTCCTGCCTACCTCAACACCTACAAAGGCGACTTTCCAAC  

cauc B1 (head)        ....................................................................................................  

 

                              710       720       730       740       750       760       770       780       790       800          

                      ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B1               CGAGACTGACATCACCTTCTACATAATCATCAGACGAAAAACGTTGTTCTACACGGTGAACCTGATCCTGCCTACCGTGCTCATCTCTTTCCTATGCGTG  

cauc B1 (head)        ....................................G...............................................................  

 

                              810       820       830       840       850       860       870       880       890       900          

                      ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B1               CTCGTGTTCTACCTTCCAGCCGAGGCTGGCGAGAAAGTGACGCTTGGGATCAGTATCCTCCTCTCGTTGGTCGTGTTCCTGTTGTTGGTCAGCAAGATCC  

cauc B1 (head)        .............---------------------------------------------------------------------------------------  

 

 

 

 

                             10        20        30        40        50        60        70        80        90       100                   

                    ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B2             TGTTAAACATGAAGAATATATTCCCCGTTTTATTCGTGATCATTAATGTTTTATTACATGGACAAGTGATCTGTTTTGTTTGCAAAGACATCACAAGCAC  

buck B2 (head)      ----------------------------------------------------------------------------------------------------  

 

                            110       120       130       140       150       160       170       180       190       200          

                    ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B2             TTCTGCACTTTACAGATTGAAACTGTATCTGTTCTGCGATTACGACAGGGACATTATTCCCGAACAAAAAAATGCCACTAAAATCGATTTTGGATTAAGC  

buck B2 (head)      ----------------------------------------------------------------------------------------------------  

 

                            210       220       230       240       250       260       270       280       290       300          

                    ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B2             ATTCAACATTATAACGTTGATGAATATTCGCACACCGTCGATTTCCACGTTATGCTAAAATTGATGTGGGAACAGAGTCACCTCACGTGGAAATCATCCG  

buck B2 (head)      --------------------------------------------------------------------------------------------........  

 

                            310       320       330       340       350       360       370       380       390       400          

                    ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B2             AATTCGATTCTATCAATTCTATTCGCGTAAAGAGTTACGAAATCTGGGTCCCCGATATCGTGATGCACAGCGTAACAAGCGTCGGTATCGATCTTGAGAT  

buck B2 (head)      ....................................................................................................  
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                            410       420       430       440       450       460       470       480       490       500          

                    ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B2             GCCCTCTGTCGAATGCATAGTGTTCAATTCTGGCACTATACTTTGCGTACCGTTCACTACGTATACACCTGTTTGCGAATATGATCACACTTGGTGGCCT  

buck B2 (head)      ....................................................................................................  

 

                            510       520       530       540       550       560       570       580       590       600          

                    ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B2             TACGATATATTGAACTGCACTATACACATTGCCTCGTGGTCCCACGGAAGCAACGAGATTAAATTAAACTCTTTGGATACTGAACAAATTTTAGATGATA  

buck B2 (head)      ....................................................................................................  

 

                            610       620       630       640       650       660       670       680       690       700          

                    ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B2             TGTACAATAATAACACGGAATGGGAGATAGTGCATATGTCTCACAGCGAGAGCACGATAGATTCCAAATTTGGTTTAGGTTTTACCACTGATTTGTTATC  

buck B2 (head)      ....................................................................................................  

 

                            710       720       730       740       750       760       770       780       790       800          

                    ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B2             TTATAATATTCTGCTGAGAAGACATTACTCCATGAACAGTACGACGTATGTGACTTTGACCATAGTATTAATGACCATGACATTGATGACATTATGGTTA  

buck B2 (head)      ....................................................................................................  

 

                            810       820       830       840       850       860       870       880       890       900          

                    ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B2             GAGCCAAGTTCTACGGAGCGTATGATCATAGCAAATCTGAATTTTATTCTGCATCTATTTTGCTTGTTAGATGTGCAATGGAGGATTCCTTTCAATGGAA  

buck B2 (head)      ....................................................................................................  

 

                            910       920       930       940       950       960       970       980       990       1000         

                    ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

Amel B2             TTCAAATGCCAAACTTGATGGTGTTCTATGAGAAATCTCTTGCCCTAGCCGCATTCTCGCTTATGTTGACAAGCATCTTGCGATATTTGCAAGAATTACA  

buck B2 (head)      ......................................................----------------------------------------------  
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9.6 Results from the extra sum of squares test; thiacloprid against forager and 

nurse bees from A. m. ligustica. 

 
Foragers Nurse Global (shared) 

Comparison of Fits 

   Null hypothesis 

  

2 parameters same for all data sets 

Alternative hypothesis 

  

2 parameters different for each data set 

P value 

  

< 0.0001 

Conclusion (alpha = 0.05) 

  

Reject null hypothesis 

Preferred model 

  

2 parameters different for each data set 

F (DFn, DFd) 

  

32.49 (2,46) 

2 parameters different for each data set    

Best-fit values 

   Bottom = 0.0 = 0.0 

 Top = 100.0 = 100.0 

 LogIC50 -0.2642 1.770 

 HillSlope 0.3543 0.5125 

 IC50 0.5442 58.88 
 Span = 100.0 = 100.0 
 Std. Error 

   LogIC50 0.2621 0.2817 

 HillSlope 0.08898 0.1936 

 95% Confidence Intervals 

   LogIC50 -0.8064 to 0.2780 1.187 to 2.353 

 HillSlope 0.1702 to 0.5384 0.1119 to 0.9130 

 IC50 0.1562 to 1.897 15.39 to 225.3 

 Goodness of Fit 

   Degrees of Freedom 23 23 

 R square 0.4538 0.3240 

 Absolute Sum of Squares 4293 11493 
 Sy.x 13.66 22.35 
 Constraints 

   Bottom Bottom = 0.0 Bottom = 0.0 
 Top Top = 100.0 Top = 100.0 

 2 parameters same for all data sets    

Best-fit values 

   Bottom = 0.0 = 0.0 
 Top = 100.0 = 100.0 
 LogIC50 0.9105 0.9105 0.9105 

HillSlope 0.3421 0.3421 0.3421 

IC50 8.138 8.138 8.138 

Span = 100.0 = 100.0 

 Std. Error 

   LogIC50 0.2179 0.2179 0.2179 

HillSlope 0.1117 0.1117 0.1117 

95% Confidence Intervals 

   LogIC50 0.4719 to 1.349 0.4719 to 1.349 0.4719 to 1.349 

HillSlope 0.1173 to 0.5669 0.1173 to 0.5669 0.1173 to 0.5669 

IC50 2.964 to 22.34 2.964 to 22.34 2.964 to 22.34 

Goodness of Fit 

   Degrees of Freedom 

  
48 

R square -0.9664 -0.3310 0.1885 

Absolute Sum of Squares 15455 22629 38084 

Sy.x 

  

28.17 

Constraints 

   Bottom Bottom = 0.0 Bottom = 0.0 

 Top Top = 100.0 Top = 100.0 

 LogIC50 LogIC50 is shared LogIC50 is shared 

 HillSlope HillSlope is shared HillSlope is shared 

 Number of points 

   Analyzed 25 25 
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9.7 Unpaired t-test results for haem content of 3 different honey bee races 

Table Analyzed Data 1 

Column B Caucasian 

vs. vs. 

Column A Buckfast 

Unpaired t test 

 P value 0.0451 

P value summary * 

Significantly different? (P < 0.05) Yes 

One- or two-tailed P value? Two-tailed 

t, df t=2.434 df=7 

How big is the difference? 

 Mean ± SEM of column A 0.0986 ± 0.01703 N=5 

Mean ± SEM of column B 0.1905 ± 0.03693 N=4 

Difference between means 0.0919 ± 0.03775 

95% confidence interval 0.002629 to 0.1812 

R squared 0.4584 

F test to compare variances 

 F,DFn, Dfd 3.762, 3, 4 

P value 0.2331 

P value summary ns 

Significantly different? (P < 0.05) No 

Column C Italian 

vs. vs. 

Column A Buckfast 

Unpaired t test 

 P value 0.0522 

P value summary ns 

Significantly different? (P < 0.05) No 

One- or two-tailed P value? Two-tailed 

t, df t=2.278 df=8 

How big is the difference? 

 Mean ± SEM of column A 0.0986 ± 0.01703 N=5 

Mean ± SEM of column C 0.0554 ± 0.008334 N=5 

Difference between means -0.0432 ± 0.01896 

95% confidence interval -0.08692 to 0.0005241 

R squared 0.3935 

F test to compare variances 

 F,DFn, Dfd 4.176, 4, 4 

P value 0.1951 

P value summary ns 

Significantly different? (P < 0.05) No 

Column C Italian 

vs. vs. 

Column B Caucasian 

Unpaired t test 

 P value 0.0052 

P value summary ** 

Significantly different? (P < 0.05) Yes 

One- or two-tailed P value? Two-tailed 

t, df t=3.999 df=7 

How big is the difference? 

 Mean ± SEM of column B 0.1905 ± 0.03693 N=4 

Mean ± SEM of column C 0.0554 ± 0.008334 N=5 

Difference between means -0.1351 ± 0.03379 

95% confidence interval -0.2150 to -0.05520 

R squared 0.6955 

F test to compare variances 

 F,DFn, Dfd 15.71, 3, 4 

P value 0.0223 

P value summary * 

Significantly different? (P < 0.05) Yes 

 


