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ABSTRACT 

 

This thesis presents the findings of a research study investigating the energy-

absorbing characteristics of the foam sandwich cores reinforced with aluminium, 

steel and carbon fibre-reinforced polymer (CFRP) cylindrical tubes under quasi-static 

and dynamic loading conditions. Initial testing focused on establishing the influence 

of the length and inner diameter to thickness ratio (D/t) of the tubes on their specific 

energy absorption (SEA) characteristics. Following this, individual aluminium, steel 

and CFRP tubes were embedded in a range of foams with varying densities and the 

SEA was determined. The effect of increasing the number of tubes on the energy-

absorbing response was also studied. In addition, preliminary blast tests were 

conducted on a limited number of sandwich panels. It has been shown that the 

stiffness of the foam does not significantly enhance the energy-absorbing behaviour 

of the metal tubes, suggesting that the density of the foam should be as low as 

possible, whilst maintaining the structural integrity of the part. Tests on the CFRP 

tube-reinforced foams have shown that the tubes absorb greater levels of energy with 

increasing foam density, due to increased levels of fragmentation. Values of SEA as 

high as 86 kJ/kg can be achieved using a low density foam in conjunction with dense 

packing of tubes. The SEA values of these structures compare very favourably with 

data from tests on a wide range of honeycombs, foams and foldcore structures. The 

crushing responses of the structures were predicted using the finite element method 

Abaqus and the predictions of the load–displacement responses and the associated 

failure modes are compared to experimental results. It is proposed that these models 

can be used for further parametric studies to assist in designing and optimising the 

structural behaviour of tube-reinforced sandwich structures. 
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CHAPTER 1  

INTRODUCTION 

This chapter contains a brief introduction to the research project and an overview of 

composite materials along with their applications. The rationale behind the need for 

an efficient and lightweight energy-absorbing structure will be presented. 

Additionally, the motivation, objectives of the research and significance of the study 

are discussed. The chapter closes with an overview of the thesis.  
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1.1 Overview 

In recent years, there has been a growing interest in the research of sandwich 

structures, particularly in enhancing the energy-absorbing ability of lightweight 

structures. This is related to the increasing demand for developing better performing 

transportation systems that are more fuel efficient, without compromising passenger 

safety. This work presents contributions towards the development of lightweight 

tube-reinforced foam structures. Tube-reinforced foam is a material system whereby 

a metal or composite tube is inserted into a foam panel with a view to enhancing the 

energy absorption capabilities of the structure. The process of discovering tube-

reinforced foam structures was achieved through extensive experimental testing and 

knowledge gathered from previous investigations. This study assesses the specific 

energy absorption (SEA) and the corresponding failure modes by executing a range 

of tests based on several parameters.  

 

1.2 Light-weighting Technologies and Demands 

These days, the need to travel has greatly increased the number of vehicles on the 

road. This increase is evident in virtually every transportation sector and 

consequently, accidents have become one of the major causes of death worldwide 

resulting in great economic loss to society. Typically, crash events involving a motor 

vehicle lead to a range of human injuries of varying severity. According to the annual 

road fatalities report by the UK Department of Transport [1], car occupants are at the 

greatest risk of road death compared to other road users, as shown in Figure 1.1. The 

majority of fatalities result from frontal impact car accidents followed by side 

impacts in second place.  
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In 2013, it was reported that 1,713 people in Great Britain were killed in road traffic 

accidents. Although road deaths have fallen every year since 2004 (with the 

exception of 2.8% increase in 2011), there is still a need to lower overall fatal 

accident rates [1]. Thus, improving vehicle safety is a key strategy used to overcome 

this significant problem. The main challenge is to employ materials and designs with 

the primary focus of dissipating high levels of crash energy in a controlled manner.  

 

 

Figure 1.1 Number of fatalities resulting from road accidents in Great Britain [1]. 

 

Typically, metals are used in the passenger vehicles to deform in a progressive 

folding manner through a series of crumple zones designed to form upon impact, as 

shown in Figure 1.2. The outer parts of the vehicle absorb most of the energy which 

results in the deformation of the cabin area being limited. Here, the energy from the 

crash is transferred into the vehicle, rather than being transmitted to the occupants. 

This process of deformation in the vehicle will indirectly slow down the accident, 

thus lowering the impact experienced by the occupants.  
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As there are trends toward the use of composite materials in vehicle construction, 

manufacturers have to ensure that composite structures are capable of absorbing 

impact during an accident. In contrast to the folding deformation of metals, 

compression of most composites results in brittle failure [2]. Hamouda et al. [3] 

concluded that composite tubes are capable of absorbing more energy, since the 

specific energy was found to be about four times greater than metals. Composite 

materials absorb large amounts of energy by progressive crushing, which involves 

extensive localised microfracture and deformation in a crush zone which propagates 

through the structure.  

 

Figure 1.2 Deformation in the frontal and rear of a vehicle [4]. 

 

Performance and economy are the main concerns of manufacturers in designing a 

vehicle. A dramatic rise in fuel price in the UK of more than 70% from the year 2000 

to 2011 has encouraged manufacturers to build highly efficient vehicles [5]. Figure 

1.3 shows the trend in the average petrol and diesel prices in the UK from the year of 

2000 to 2011. In addition, global energy consumption and greenhouse gas emissions 

have been impacted significantly by the transport sector. Based on the International 

Energy Agency (IEA), approximately 26% of the global energy production was 

consumed by the transport sector in 2001. Furthermore, the transport sector also 

consumed nearly 58% of the global oil production. One way to reduce energy 

consumption and the CO2 emissions caused by the transport sector is through 
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reduction in the weight of vehicle [6]. Composite materials are very attractive, as 

they offer great potential for weight saving, while improving the performance of a 

structure. Weight saving in vehicles is crucial, as it helps to reduce fuel consumption, 

which reflects in the overall long-term cost. In the aircraft industry, composite 

materials have been rapidly replacing conventional metallic materials, even though 

they are more costly. Carbon composites, used as a replacement of metals for the 

aircraft floor have contributed to a 20% weight reduction, which is significant in the 

aircraft industry [7].   

 

Figure 1.3 Fuel price in UK (average petrol/diesel), 2000-2011 [5]. 
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1.3 Composite Materials 

Composite materials are widely known for having the property of a high-strength to 

weight ratio compared to other conventional materials. The relative ease of 

combination of strong fibres surrounded by a weaker matrix material serves specific 

purposes and exhibits desirable properties. Their unique properties and adaptability 

to different conditions offer the possibility of new solutions to challenging 

engineering problems.  

Apart from easy availability of raw materials, the flexibility in design and processing 

make composite materials the desirable choice for various applications. In general, 

the principal fibre materials are glass, carbon, aramid or Kevlar, boron and silicon 

[7]. Figure 1.4 shows the principle composition of composite materials. Depending 

on its application, the fibres are selected and the matrix holds them aligned in the 

important stressed directions, enabling the composite to withstand compression, 

flexural and shear forces as well as tensile loads. 

Research and development are extensively being carried out to improve the 

efficiency, cost and reliability of composite materials, as they possess superior 

specific energy absorption properties and have been widely used for many purposes. 

Applications in various market sectors include aircraft, marine, automotive, 

construction and sports equipment as well as other markets [2], [8]. Advances in the 

production of high quality composite materials have resulted in better mechanical 

properties, durability and damage tolerance performance.  

 



Chapter 1                            Introduction  

7 

 

 

Figure 1.4 Principle composition of composite materials [9]. 

 

Components of a composite structure can be described as follows: 

(a) Fibre reinforcements - Fibre reinforcements have high-stiffness and low-

density. Their main function is to carry loads along their longitudinal 

directions. Carbon and glass are used extensively in polymer composites. 

(b) Matrix - The functions of the matrix are to transfer stresses between the fibre 

reinforcements and to protect the fibres from any mechanical or 

environmental damage. The popular resin matrices are epoxy, polyester, 

polyurethane, and vinyl ester. 

(c) Cores - The core material is generally a low-strength material with a high 

thickness. Commonly used core materials are polymer foams, woods and 

honeycombs. The core is bonded to the top and bottom skins to construct a 

sandwich structure. 

(d) Laminates - Laminates are composite materials that are stacked in different 

layers/ plies of fabric reinforcement material to give them the specific 

character of a composite to perform a specific function. Composite fabric 

configurations are continuous fibre, plain woven or twill woven.  
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1.4 Application of Composite Materials 

Composite materials are well known and have been around for over 50 years, with 

dramatic growth in the composites market observed in sectors such as aircraft, 

automotive, marine, wind energy and construction. The percentage of application in 

various industries is shown in Figure 1.5. Manufacturers in many industries are 

becoming increasingly interested in composite materials, as they are useful in all 

areas from simple to complex applications.  

 

Figure 1.5 Application of composite materials in various industries [9]. 

 

A wide range of components in both military and civilian aircraft are made of 

composite materials, due mainly to their high-strength, high-stiffness and low-

density characteristics. In addition, more modern aircraft are built using these 

lightweight materials since they offer greater flexibility as the materials can be 

tailored according to design requirements. The material can be designed to have a 

favourable coefficient of thermal expansion, to achieve a very high degree of 

dimensional stability, in order to withstand severe environmental conditions [10].  

Commonly, the fibres used for composite materials are carbon, aramid and glass 

which are embedded in an epoxy resin with a high curing temperature of about 

180°C. Carbon fibre reinforced polymer is used for elevated temperature 

applications. Over the years, composite materials have become one of the standard 
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materials in aircraft applications for the fuselage, engine, wings, tails, fairings, 

landing gear doors, floor panels, fan ducts and so on. For example, the latest Boeing 

787, which is 20% more fuel efficient than similarly-sized aircraft, uses 50% of 

composite materials in its construction, for improved performance and reduced direct 

operating costs [11].   

 

Figure 1.6 Materials distribution for the Boeing 787 [11]. 

 

Previously, the benefits of the low-weight and high-strength of advanced composites 

were not of great interest to general automotive applications, due to the high raw 

material costs when compared to existing materials. However, recent pressure for the 

production of fuel efficient vehicles, with lower emissions levels, means that 

composite materials have become the favourable option for the automotive industry. 

Automotive manufacturers are continuously developing composite automotive 

structures for hood covers, bumpers, driveshafts, suspension arms, filament wound 

fuel tanks and so on. The majority of automotive applications involve glass 

reinforced polymers, as they are promising materials for weight reduction, given the 

relatively low-cost of the fibre, as well as the fast cycle time and ability to facilitate 

parts integration. Carbon fibre-reinforced composites are another option but they are 
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rarely considered to be acceptable in the automotive market, due to the extra cost in 

materials and in the manufacturing techniques. In the automotive sports industry, 

composite materials have been widely used in Formula 1 (F1) cars, where the 

resulting improvements to performance and safety issues are significant. Often in F1 

accidents, the lives of drivers have been saved due to the enormous amount of impact 

energy the composite body can absorb [10]. 

The last decade has seen an increased use of composites in applications outside of 

the aircraft industry. The advanced development of composite materials can be seen 

in the marine industry, high-speed trains, underground trains, buildings and 

biomaterial in medical sectors. Sporting goods, such as bicycles, tennis and squash 

rackets as well as golf shafts are some of the major applications for composite 

materials. Interestingly, musical instruments such as guitars and violins are also 

made using composite materials, due to their superior quality and strength when 

compared to traditional wood and their very attractive lacquer finish. Other benefits 

associated with composites include their ability to cope with extreme environments, 

their reliability, maintainability, life cycle costs and service life extension [12]. 

             

 (a)                     (b) 

Figure 1.7 Composite applications in (a) bicycles and (b) musical instruments [12]. 
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1.5 Motivation of the Research Work 

With the increasing drive to develop high-speed and energy-efficient transport 

systems, there is an ever-growing need to protect occupants against extreme loading 

conditions, such as those associated with sudden deceleration or external impact. 

There have been many attempts to develop crashworthy structures, which are usually 

based on the introduction of either metallic or composite tubular structures at 

strategic locations within the design. The majority of studies published to date have 

focused primarily on metal or composite tubes and the use of foam as a filler in 

tubular energy-absorbing structures. Therefore, the aim of this research is to 

undertake an experimental and finite element investigation into the response of tube-

reinforced foam structures subjected to axial compression loading. 

  

1.6 Research Objectives 

The primary objective of this research is to study the energy-absorbing 

characteristics of novel tube-reinforced sandwich structures. This research considers 

the influence of several parameters and concerns the failure behaviour of tube-

reinforced foam structures. 

Details of the objectives of this study can be summarised as follows:  

i. To design and manufacture tube-reinforced foam structures. 

ii. To investigate the mechanical performance of tube-reinforced foam structures 

subjected to quasi-static, dynamic and blast loading.  

iii. To gain an in-depth understanding of the crushing response by examining the 

failure mechanisms in each structure.   
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iv. To compare the energy absorption capability of tube-reinforced foam 

structures with the current widely used sandwich structures.  

v. To develop finite element models of tube-reinforced sandwich structures by 

proposing suitable constitutive models. 

vi. To validate these finite element models using experimental results. 

 

1.7 Significance of the Study 

The outcomes of this research have wider significance and implications: 

i. The use of tube-reinforced foam structures as energy-absorbers is innovative 

and this thesis contributes new knowledge for their design and use in 

sandwich applications. 

ii. This study will be highly beneficial to applications in various engineering 

fields, particularly those that are related to energy-absorbing structures where 

safety and enhanced levels of protection are among the main interests. 

iii. Deeper understanding of the relative effects of geometry, material and 

loading parameters on the tube-reinforced foam response make it possible to 

build lightweight energy-absorbing structures.  

iv. The comprehensive resulting data generated from this research can be 

adopted for developing design guidelines for the use of tube-reinforced foam 

structures as efficient energy-absorber devices. 
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1.8 Thesis Outline 

At the beginning of each chapter, an overview of the topic will be given. A summary, 

if relevant, will be presented at the end of each chapter to highlight the main 

findings. This thesis consists of six chapters as follows: 

 

Chapter 1: Introduction; this chapter presents the significance of the research, as 

well as underlining its main objectives for accomplishing the benefits of this study. 

Chapter 2: Literature Review; this chapter gives an overview of the experimental 

work, theoretical analysis and numerical modelling relevant to the topic. Attention is 

focused on material response under quasi-static and dynamic loading. 

Chapter 3: Experimental Procedure; this chapter describes the specimen 

preparation and experimental testing (tensile test, burn-off test, quasi-static test, low-

velocity impact test and blast test) conducted in this research.  

Chapter 4: Results and Discussion of the Experimental Work; this chapter 

presents and discusses the results obtained following tests on energy-absorbing 

structures. 

Chapter 5: Finite Element Modelling; this chapter presents the construction and 

constitutive models for the energy-absorbing structures. Numerical prediction values 

are validated and compared with experimental results.  

Chapter 6: Conclusions and Recommendations; this chapter summarises the 

overall findings and observations based on the research performed. In closing, 

recommendations of possible future work will also be given.  

 

 



 

 

 

 

 

 

 

 

CHAPTER 2  

LITERATURE REVIEW 

This chapter presents an overview of past and recent publications on the research and 

development of the subject area related to this thesis. First, the crashworthiness and 

energy absorption concept will be introduced. The second part reviews energy-

absorbing structures with a special emphasis on experimental and numerical crushing 

responses and the associated techniques. This is followed by a discussion of the 

crushing characteristics of composite materials, triggering effects and the failure 

modes involved. The chapter closes with concluding comments on the main findings 

of these studies and their link to the subject matter of this thesis.  
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2.1 Crashworthiness 

The transportation industry is clearly enormous encompassing the automotive, 

aircraft, train and ship industries. However, with the development of these industries, 

traffic accidents today are among the leading causes of death, particularly in highly 

industrialised countries. A car accident is a road traffic incident which usually 

involves at least one road vehicle being in a collision, which may result in property 

damage, injury and even death in serious situations. The Transportation Research 

Initiative at the University of Michigan [13] 2014 reported that the estimated world 

average is 18 fatalities from a vehicle accident per 100,000 individuals. The country 

with the highest rate reported was Namibia (45 fatalities per 100,000).  

This has increased the need to research and develop energy-absorbing structures with 

the objective of minimising injury. In recent years, there has been an increased drive 

to develop high speed, energy-efficient transport systems. One of the most important 

aspects to be improved in crashworthiness is the ability to absorb the impact energy 

during a crash. Future structures must be designed to ensure light weight, high 

stiffness and strength without disregard for an impact damage tolerance and 

crashworthiness design for safety [14].  

Many safety features have been developed, including front and side airbags, seat 

belts and anti-lock braking systems (ABS) to minimise injuries to the occupant from 

a collision. In addition, journal publications and international conferences on 

crashworthiness such as the International Journal of Impact Engineering, Thin-

Walled Structures and Journal of Sandwich Structures were formed to provide 

scientists and engineers with a platform to explore, discuss and present their research 

in the field of structural crashworthiness [15].  
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In a crash analysis, the basic concepts of structural crashworthiness and impact 

mechanics need to be fully understood and extensively explored prior to developing 

efficient energy-absorbing systems. In theory, crashworthiness is a measure of the 

ability of a structure to absorb impact energy in a controlled manner. Thereby, it 

ensures that vehicle can absorb the majority of the crash energy and minimises the 

impact experienced by occupants, thus ensuring survival of the occupants [14].  

The assessment of crashworthiness is determined by conducting a series of tests and 

numerical methods [15]. As an example in Figure 2.1, the crashworthiness of an 

aircraft fuselage structure is assessed by a vertical drop test on to solid ground. The 

lower part of the fuselage should absorb energy by sustaining the crush force and 

bringing the passenger compartment to rest with a minimum change in deceleration 

[16]. Commonly, severe head injuries have been the main cause of death in accidents 

[17]. Rapid changes in deceleration that could cause brain injuries should be avoided. 

The structure that lessens the effect of the impact is known as the energy-absorbing 

structure [15]. 

  

Figure 2.1 Crashworthiness of an aircraft fuselage structure is assessed by a vertical 

drop test on to solid ground [16]. 
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2.2 Concept of Energy Absorption  

2.2.1 Energy and Work 

The energy of a body or a system refers to its capacity to do work and overcome 

resistance. In the context of crashworthiness, a structure with high energy will be 

able to deform extensively in order to dissipate the force. The kinetic energy or crush 

energy, 𝐸𝑐𝑟𝑢𝑠ℎ, which is the energy of the motion of a body, is expressed by the 

following relationship [18]:   

𝐸𝑐𝑟𝑢𝑠ℎ =
1

2
𝑚𝑣2 

(2.1) 

 

where 𝑚 and 𝑣 are the mass and velocity of the body respectively. The Law of 

Conservation of Energy states that the energy within a body or a system cannot be 

created or destroyed, and it may be transferred from one form to another, but the total 

amount of energy never changes. Hence, the transfer of energy from one body to the 

other is termed as work. In a collision, a force does work, 𝑊𝑐𝑟𝑢𝑠ℎ, on a body, where a 

component of the body will be displaced in the direction of force. As illustrated in 

Figure 2.2, the product of the force, 𝐹𝑐𝑟𝑢𝑠ℎ, exerted and the distance travelled, 𝐿𝑐𝑟𝑢𝑠ℎ, 

is equal to the energy transmitted to a system and can be expressed by: 

𝑊𝑐𝑟𝑢𝑠ℎ = 𝐹𝑐𝑟𝑢𝑠ℎ. 𝐿𝑐𝑟𝑢𝑠ℎ (2.2) 

 

where, from Newton’s Second Law of motion, the acceleration, 𝑎 is related to the 

mass, 𝑚, and the crush force, 𝐹𝑐𝑟𝑢𝑠ℎ which is given by: 

𝐹𝑐𝑟𝑢𝑠ℎ = 𝑚. 𝑎 (2.3) 

 

The ideal energy absorber is defined as: 

𝐸𝑐𝑟𝑢𝑠ℎ = 𝑊𝑐𝑟𝑢𝑠ℎ = 𝑚. 𝑎. 𝐿𝑐𝑟𝑢𝑠ℎ (2.4) 
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Figure 2.2 Energy and work of the crushing force [19]. 

 

An ideal energy-absorbing structure transforms all of the work input to work output. 

As the safety of occupants is the primary concern in crashworthiness, it is desirable 

to maximise the efficiency in the designing of energy-absorbing structures [20]. 

Efficiency is defined as the ratio of the work input into a system to the useful work 

output [19]: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒

𝐸𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑒𝑑
 

(2.5) 

 

2.2.2 Load-displacement Curves 

The energy absorption capability of a component can be analysed by conducting a 

compression test [21]. Quasi-static load-displacement curves are commonly studied 

to characterise the performance of a particular energy-absorbing structure. This test 

provides an indication of an actual response during the course of the crushing 

process. The crushing load and the estimation of the energy-absorbing capacity can 

be deduced from the load-displacement curves [22].  
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The experimental set-up for conducting quasi-static tests is usually simpler and easier 

to control than that for dynamic testing and enables clearer information about the 

failure mechanism. For that reason, the majority of previous studies aimed at 

understanding energy absorption capability start with a quasi-static test. The 

experimental arrangements of quasi-static and dynamic testing are presented in detail 

in Chapter 3. 

Data obtained from the axial crushing of a structure is used to plot load-displacement 

curves, as shown in Figure 2.3. The first phase of a typical load-displacement curve 

starts with a rapid increase in load until it reaches a peak load. A slight drop in load 

will occur, this is followed by a sustained crushing zone. A sustained crush load will 

be observed as the material is continuously compressed until it reaches a point where 

the curve begins to rise up. This point is identified as the compaction or densification 

point, when sustained crushing is completed [23], [24].  

 

Figure 2.3 Typical load-displacement regions of a specimen tested under quasi-static 

compression [25]. 
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The curve consists of a linear, a transition, a crushing and a compaction region, as 

shown in Figure 2.3. Laurin [25] in his study of energy absorption in sandwich 

panels with a composite-reinforced foam core, indicated the key points on graphs to 

show the point of initial damage, the maximum stress and the point of compaction. 

Commonly, specimens are compressed to about 80% of their original thickness [25]. 

 

2.2.3 Total Energy Absorbed 

The area under the load-displacement curve following a compression test on a 

structure represents the total energy absorbed, 𝐸𝐴 during progressive crushing is 

calculated up to the point before compaction occurs. The area under the load-

displacement curve as shown in Figure 2.4 is given by [26]: 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑, 𝐸𝐴 =  ∫ 𝑃 𝑑𝑆
𝑆𝑏

0

 
(2.6) 

 

where 𝑃 is the applied load and 𝑑𝑆 is the incremental displacement during the 

crushing process. This calculation includes the energy at the initial stage of the 

crushing process. It is possible to obtain a more characteristic property of progressive 

crushing by considering the calculation to start at the point 𝑆𝑖. The equation can be 

expressed as: 

𝐸𝐴 =  ∫ 𝑃 𝑑𝑆  =  �̅�(𝑆𝑏  − 𝑆𝑖)
𝑆𝑏

𝑆𝑖

 
(2.7) 

     

where �̅� is the mean crush load, while 𝑆𝑏 and 𝑆𝑖 are the crush displacement as 

indicated in Figure 2.4.  
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2.2.4 Specific Energy Absorption 

The specific energy absorption parameter in kJ/kg unit is generally used to compare 

the results between different studies when lightweight design is the priority [16]. 

Higher SEA value indicates better efficiency in absorbing energy relative to weight. 

However, it is important that weight-saving does not comprise safety or structural 

performance. The specific energy absorption (SEA) of a structure is determined from 

the energy under the load-displacement curve (Figure 2.4) up to the densification 

point and the initial mass of the specimen, which is given by [26]: 

𝑆𝐸𝐴 =  
𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑, 𝐸𝐴

𝑀𝑎𝑠𝑠, 𝑚
=

∫ 𝑃 𝑑𝑆

𝑚
 

(2.8) 

 

where 𝑃 is the applied load, 𝑑𝑆 is the incremental displacement during the crushing 

process and 𝑚 is the mass of the material. 

 

Figure 2.4 A load-displacement graph indicating the mean crush load and the energy 

absorption [26]. 
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2.2.5 Ideal Energy Absorber and Efficiency 

An ideal energy-absorbing structure collapses plastically over a long and flat plateau 

force,  𝐹𝑝𝑙, producing the maximum area under the curve that is close to an ideal 

square wave [27], as shown in Figure 2.5. In designing an energy-absorbing 

structure, the plateau force level is purposely chosen to be lower than the force that 

can cause injury to the occupants.  

 

Figure 2.5 An ideal square wave load-displacement characteristic for an energy 

absorber structure [28]. 

 

Typically, energy absorbers have a characteristic maximum initial peak force value, 

𝑃𝑚𝑎𝑥, that drops abruptly to the mean crush force value, �̅�, as shown in Figure 2.4. 

The larger the difference between 𝑃𝑚𝑎𝑥 and �̅�, the greater the sudden increase in 

acceleration. This can potentially cause severe impact injuries to the occupants. The 

crush force efficiency, 𝜂, is defined as the mean crush force, �̅�, divided by the initial 

peak force, 𝑃𝑚𝑎𝑥 , and is given by: 

𝜂 =  
�̅� 

𝑃𝑚𝑎𝑥
 

(2.9) 
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where, for an ideal energy-absorbing structure, the crush force efficiency is 𝜂 = 1. 

Another parameter that determines whether a structure is an ideal energy absorber is 

the ability of the structure to deform as compactly as possible following 

compression. The larger value of displacement, 𝑢∗, is desired to maximise the area 

under the graph. The stroke efficiency, 𝑆𝐸, is a measure of the total crush length 

relative to the original length, 𝐿, and is given as [29]: 

𝑆𝐸 =  
𝑢∗ 

𝐿
 

(2.10) 

 

In the case where the space available is limited for energy to be absorbed, the stroke 

efficiency is a useful measure. Clearly, crashworthiness of an energy absorber is 

maximised by ensuring that the difference between the peak force and the plateau 

force is at a minimum, allowing the structure to deform over as much of its length as 

possible. The aim of engineers is to produce an energy-absorbing structure that is 

close to an ideal square wave form [30], [31]. 

 

2.3 Energy-absorbing Structures 

An energy absorber is a structure which transfers part or all of the kinetic energy into 

another form of energy. The energy converted can either be reversible, such as in the 

case of compressible fluids, or it can be irreversible, such as plastic dissipation of 

energy related to permanent deformation of the solid structure [32]. In this thesis, the 

main focus of the research is on the irreversible energy absorber associated with a 

collapsible system. Various types of irreversible energy-absorbing structures are used 

in engineering applications. The structures are made mostly from metal materials, 

nevertheless recent energy-absorbing structures are made of composite materials, 
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plastic, wood, natural fibres and many more potential materials that are still under 

development. Generally, those collapsible energy absorber structures in evidence in 

the literature are associated with one of the following categories [21], [33]:  

a) cellular solids (polymeric foams, metallic foams, honeycombs) 

b) thin-walled tubes (metals, composites) 

Figure 2.6 shows the typical energy-absorbing structures in each category. Solid 

structures do not perform well in absorbing energy, due to their inefficient 

deformation manner and their weight. Hence, cellular solids and thin-walled tubes 

structures are commonly used, as these structures exhibit good energy-absorption 

characteristics [33]. Gibson and Ashby [21] defined cellular solids as a structure 

constructed as an interconnected network of solid struts or plates which form the 

edges and faces of cells. One of the distinct features of cellular solids is the 

outstanding strength and stiffness to weight ratio.  

Thin-walled tubes subjected to axial crushing have been extensively employed as 

vehicle structural parts. They are specially designed to undergo controlled plastic 

deformation in the event of an accident. This is to prevent the passenger area from 

being deformed, therefore protecting the passengers. Thin-walled tubes are 

considered to be one of the most efficient energy absorbers as these tubes are 

lightweight, easy to fabricate, low cost and stable during crushing [34]. Typically, 

metal thin-walled tubes, such as aluminium, titanium and steel deform by extensive 

progressive folding [29], [35]–[37]. Whereas, fibre-reinforced composite tubes 

absorb energy by brittle fracture, fragmentation and lamina bending [33]. This 

section presents a comprehensive review of energy-absorbing structures found in the 

literature that are pertinent to this research. 
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                          (a)                                  (b)                                 (c)                

                           

 (d)                                  (e)                                 (f) 

 

Figure 2.6 Typical energy-absorbing structures (a) polymeric foam [16], (b) metallic 

foam [38], (c) aluminium honeycomb [39], (d) circular aluminium tube [40], (e) 

square steel tube [34] and (f) carbon fibre/epoxy circular tube [41]. 

 

2.3.1 Sandwich Structures 

Often, when bending stresses and super light-weight construction are the major 

concern in design, thin laminates are combined with a light weight core [42]. This is 

known as a sandwich structure, as shown in Figure 2.7. There are two basic 

principles in the construction of a sandwich structure. The first component consists 

of a thick core that is made of a light weight material or a structure with good 

properties under compression. The core can be in the form of a foam, a honeycomb, 

a functional core, wood or various types of lattice [9].  

The second component is the stiff and strong skin on both sides, which protect the 

core. The core is bonded together with both of the skins using an adhesive. Sandwich 

panels imitate a solid I-beam structure, but at only a small fraction of the weight. It is 
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generally associated with low-weight and is a highly efficient structure for resisting 

bending and buckling. This has resulted in the growing popularity of sandwich 

panels, since they reduce weight and save fuel [32].  

Sandwich panels are more efficient in absorbing energy compared to composite 

laminates [43]. The impact resistance of sandwich panels increases as the core 

thickness is increased [43]. Numerous energy-absorbing cellular core structures are 

used, either on their own or in a sandwich structure with face sheets for crash or blast 

loading conditions [16]. Gibson and Ashby [21] stated that foam materials have a 

unique characteristic, whereby they can deform extensively while sustaining low 

levels of stress before reaching the densification region.  

 

 

Figure 2.7 Construction of a sandwich structure [9]. 

  

Foam materials can be divided into two groups namely opened-cell and closed-cell, 

as shown in Figure 2.8. The construction of opened-cell foams consists of a single 

cell which is connected by beam-type edges such that only fluid can flow through the 

cells. Whereas, the cell walls of closed-cell foams are fully bounded, which obstructs 

fluid from flowing between the cells [21]. Both morphologies require space in the 
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cells to allow the foam to be compressible. The trapped air inside of the closed-cell 

foam causes bending, buckling and stretching of the cell walls, in order to absorb the 

impact energy. Closed-cell polymer foams are particularly useful in buoyancy 

applications due to their low density [21]. For opened-cell foams, the energy 

absorbed is dependent entirely on the mechanical properties of the foam [44]. 

                           

                               (a)                                                          (b) 

Figure 2.8 The microstructures of (a) closed-cell and (b) opened-cell foams [45]. 

 

Polymeric foam is considered as an ideal energy absorber in a wide range of 

engineering applications where high energy absorption coupled with the low-weight 

characteristic is desired [14]. In addition, polymeric foams offer design flexibility as 

they can be easily shaped into a complex geometric, are capable of absorbing energy 

in any loading direction and are relatively cheap [21].  

The most common polymers used for closed-cell foams are polystyrene (PS), 

polyvinylchloride (PVC), polyurethanes (PU) and polypropylene (PP). The opened-

cell foams, which are generally soft and lightweight, are usually made of 

polyurethanes (PU) [46], [47]. Generally, closed-cell PVC foams are used as core 

materials for the manufacture of high-performance sandwich structures [48]. Lim et 

al. [47] studied the compressive behaviour of linear and crosslinked PVC foams. 
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They observed that linear foams have a similar cell size, but thicker cell walls as the 

density increases. In contrast, the denser crosslinked foams have a finer cell size 

distribution. Lim and his co-workers reported that the compressive properties of 

crosslinked foams are generally superior to their linear counterparts. The energy 

absorption of linear and crosslinked PVC foams increases with increasing foam 

density and is proportional to strain-rate [47]–[49].  

           

(a)                                                                  (b) 

Figure 2.9 Composite strip reinforced foam core (a) fabrication of core pieces from 

reinforced foam brick and (b) crushed specimens [25]. 

 

There have been several attempts [25], [50], [51] focused on the use of strips and 

pins in core materials with the aim of improving energy absorption. Laurin and 

Vizzini [25] added carbon/epoxy strips as reinforcements in a foam core. The cores 

were alternated with pre-preg layers, vacuum bagged and machined into individual 

panels, as shown in Figure 2.9(a). Despite the fact that they observed an increase in 

the sustained load, energy absorption was not maximised since the failure mode of 

the reinforcing strips did not occur in a controlled manner, due to buckling. 

Many of the previous efforts [52]–[54] involving incorporation of reinforcements 

into sandwich cores have concentrated on edgewise compressive loading. This is 
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particularly for the impact resistance of sandwich panels to prevent the occurrence of 

buckling and skin debonding. Vaidya et al. [52] embedded titanium, pultruded 

glass/epoxy rods and steel Z-pins to reinforce foam cores. The rods penetrated into 

skins during curing process. It was found that the transverse stiffness was increased 

compared to unreinforced foam, due to the buckling of the pins.  

Raju and Tomblin [53] investigated the energy absorption characteristics of stitched 

sandwich panels focusing on edgewise loading. The incorporation of stitches in the 

sandwich panels increased the energy absorption capability of the structure in the 

through-the-thickness direction. Since the energy absorption improved only slightly, 

it is not feasible for commercial use due to the impractical manufacturing techniques 

associated with incorporating the reinforcement to the core.  

Found et al. [55] performed quasi-static compression tests to investigate the energy 

absorption properties of a polyurethane foam sandwich panel with four fibre-

reinforced plastic tubular inserts incorporated within the core by resin transfer 

moulding technique. They reported that by ensuring progressive brittle failure of the 

structure, higher specific energy absorption values were obtained. As a result of 

variations in the fibre distribution within the inserts, the sandwich tended to collapse 

in a catastrophic failure mode, leading to lower SEA values. Found and his 

coworkers also noted that a less labour intensive design of the structure would be 

preferable, given the fabrication process was rather difficult.  
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2.3.2 Metal Tubes 

There have been many attempts to develop crashworthy structures, most of which are 

usually based on the introduction of metallic tubular structures at strategic locations 

within the design. It is now well established that, if designed and used correctly, 

tube-like structures are capable of absorbing significant energy when loaded in an 

axial direction [34].  

Research has shown that parameters, such as material properties, the geometry of the 

cross-section of tube, the diameter to thickness ratio and the loading conditions can 

affect the energy-absorbing capability of a metallic tube [56], [57]. It has been shown 

that thin-walled circular tubes frequently collapse in an axisymmetric mode (also 

known as a concertina mode) and non-axisymmetric modes (known as a mixed or a 

diamond mode) [40], [56]. Alexander [56] pioneered the development of theoretical 

methods to predict the mean collapse load for circular tubes failing in a concertina 

collapse mode. The expression for the mean crush load, 𝑃𝑎𝑣, is given as [56]: 

𝑃𝑎𝑣 = 6𝑌𝑡(𝐷𝑡)1/2 (2.11) 

where 𝑡 is the tube thickness, 𝐷 represents the mean tube diameter and 𝑌 is the yield 

strength of the material. This equation can be used to predict the mean crushing load 

for materials with values of D/t below thirty [32]. During crushing of a metallic tube, 

energy is primarily absorbed through irreversible plastic deformation mechanisms 

that dominate the progressive buckling process [58]. 

Abramowicz and Jones [40] conducted a series of crushing tests on steel circular 

cylindrical shells loaded either statically or dynamically.  They investigated [37] the 

transition of the axially crushed tubes from the Euler (global) bending mode to the 

progressive buckling mode. It was found that the transition point depends on tube 
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length, cross-section, material type, strain-hardening, strain-rate and end conditions. 

Abramowicz and Jones [40] improved the above expression and described the 

average crushing load of concertina deformation mode, 𝑃𝑎𝑣, by: 

𝑃𝑎𝑣 = 𝑌𝑡(6𝐷𝑡)1/2 + 3.44𝑡 (2.12) 

Reid [58] studied the plastic deformation mechanisms in axially-compressed metal 

tubes used as impact energy absorbers. He showed that a fundamental parameter is 

the ductility of the material, which permits large plastic strains to be generated and 

large geometry changes to be achieved without global failure. The experimental 

works by Reid were found to be in a good agreement with the predictions using 

Equation (2.12).  

 

Figure 2.10 Crushed tube specimens exhibiting concertina (left) and diamond (centre 

and right) deformation modes [40]. 

 

Andrew et al. [59] categorised the axial crushing of circular tubes under quasi-static 

loading into seven different groups, i. euler bending, ii. simultaneous axisymmetric 

concertina, iii. concertina starting from one end of the tube, iv. non-axisymmetric 

diamond, v. simultaneous 2-lobe diamond, vi. concertina and 2-lobe; concertina 

followed by diamond and vii. tilting of tube axis. The concertina and diamond 

deformation modes are shown in Figure 2.10. 
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Andrew et al. [59] showed that thick circular tubes with a small D/t buckle in the 

axisymmetric concertina mode whereas thin circular tubes, with a high value of D/t, 

buckles in the non-axisymmetric diamond mode of deformation. As for tubes that 

tend to undergo this diamond fold mode of deformation, increasing the D/t ratio will 

result in an increase in the number of lobes. It was also found that the concertina 

mode shows a higher specific energy absorption than the diamond failure mode due 

to the greater degree of plastic deformation [59]. In contrast, Euler buckling, 

frequently associated with catastrophic failure, is the least efficient in absorbing 

energy [34], [37]. 

Jones [57] developed an energy-absorbing effectiveness factor, which was used to 

study the behaviour of thin-walled structural sections with different shapes, made 

from various ductile materials and subjected to static and dynamic axial loading. It 

was observed that a circular shape is the most efficient geometry, findings that agree 

with those of other researchers [60]–[63].  

Hsu and Jones [35] conducted quasi-static and dynamic axial crushing tests on 

circular thin-walled sections based on a 304 stainless steel, a 6063-T6 aluminium 

alloy, and mild steel. It was found that although the stainless steel tubes absorbed the 

greatest level of energy, they are the least efficient in terms of the energy absorption 

effectiveness factor. Their results showed that aluminium tubes are the most efficient 

of the three materials in terms of the energy absorption effectiveness factor. 

Guillow et al. [64] conducted quasi-static axial compressive tests on thin-walled 

circular aluminium (6060-T5) tubes, with a range of diameter to thickness, D/t ratios. 

The average crush force was non-dimensionalised and was plotted against the 

logarithm of D/t. It was found that test results for axisymmetric, non-symmetric and 
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mixed failure modes all lay on a single curve, yielding a simple empirical 

relationship based on the tube geometry. Similarly, Gupta and Venkatesh [65] 

investigated the influence of D/t ratio (mean diameter to thickness) on the energy 

absorbing characteristics of circular aluminium tubes at both quasi-static and 

dynamic impact rates of loading. Their results showed that the mean collapse load 

and initial peak load increased with decreasing values of D/t. 

Davies and Magee [66] studied strain-rate effects in a 6061-T6 aluminium and 

concluded that the aluminium alloy exhibited a minimal strain-rate sensitivity in the 

range between 1.6x10
-4

 and 833 s
-1

. Hsu and Jones [67] also showed that the yield 

stress and the ultimate tensile strength of aluminium 6063-T6 are rate-insensitive in 

the range of 5×10
−4

s
−1

 to 118s
−1

, this being consistent with the findings of Davies 

and Magee. The dynamic low velocity impact response is classified for speeds of 

those up to 10 m/s [68].  

Langseth and Hooperstad [69] studied the static and dynamic performance of square 

thin-walled aluminium extrusions. Their results showed that the mean load under 

dynamic loading was higher than static loading, due to vibrations of impact rig 

structure, as the aluminium alloy was recognised as strain-rate insensitive in the 

range of strain-rate tested. Langseth and Hooperstad [69] stated that inertial effects 

are caused by vibrations of impactor during the folding process and also due to 

vibrations of platen fixed to the load cell. Increasing the mass of impactor will only 

increase the axial deformation without causing any significant changes in the force-

displacement curve [36]. A cut-off frequency of 2.5 kHz was used to normalise the 

inertial effect in the dynamic test results [36]. As inertial effects within the device are 

relatively unimportant and the material is rate-insensitive, the dynamic kinetic energy 

is considered to be converted in a quasi-static deformation mode [69], [70]. 
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Many researchers [58], [71]–[75] investigated foam–filled tube structures under axial 

crushing. Seitzberger et al. [74] studied the crushing characteristics of axially 

compressed steel tubes filled with aluminium foam. Their results showed that filling 

square tubes in this way improved their energy absorption efficiency. Aluminium 

foam was found to be enhancing thin-walled steel tube as the interaction between 

tube and aluminium foam changes the deformation mode of the steel tube [74]. 

Extensive experimental work [72], [76] was also undertaken to study the axial 

deformation behaviour of triggered, circular AA6060 aluminium extrusions filled 

with aluminium foam under both quasi-static and dynamic loading conditions. The 

crushing force increases as a result of the direct compressive strength of foam and 

interaction between the foam and tube wall. Design formulae for the prediction of the 

average force, the maximum force and the effective crushing distance were proposed.  

Contradictory remarks have been made on the weight saving effectiveness of the foam 

filling technique. Kavi et al. [75] studied the energy absorption behaviour of a foam-

filled thin-walled circular aluminium tube. It was shown that although foam filling 

resulted in a higher level of energy absorption than the sum of the energy absorptions 

of the tube alone and foam alone, it is less effective in increasing the specific energy 

absorption than simply increasing the thickness of the tube walls. Lampinen and 

Jeryan [73] investigated the effectiveness of polyurethane foam in energy-absorbing 

structures. They identified that below a certain tube wall thickness, inserting foam into 

a tube tends to increase the weight well above that of the original structure, therefore 

increasing the thickness of the tube is more effective [58], [73]. Foam filling is 

principally of benefit in tube sections made from high density, low strength materials 

such as mild steel [77].  
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Recent studies have investigated thin-walled tubes containing various metal cellular 

structures [78]. These studies explored the behaviour of both square [79] and circular 

[80] aluminium cross-sections. The work has shown that cellular structures can be 

more effective than filling the same tubes with aluminium foam, due to the 

difference in the collapse modes [79]. However, some researchers [81] have 

observed the contradicting behaviour for square tubes, which is likely to be due to 

the plethora of variables in these problems.  

A number of researchers [36], [74], [82], [81] have investigated the axial crushing 

behaviour of metal tubes using numerical techniques and reported that the boundary 

conditions in numerical modelling influence the resulting crushing response. It is 

sufficient to construct only one quarter of the tube with symmetrical boundary 

conditions is applied to the model [74]. Galib and Limam [36] conducted both 

experimental and numerical studies on the crush behaviour of circular aluminium 

tubes subjected to axial compressive loading. They used a self-contact interface to 

prevent inter-penetration between adjacent folds of the tube surfaces in their models. 

They included initial imperfections to model the buckling deformation characteristics 

during the axisymmetric mode of deformation.  

Further, Yan et. al [82] stated that the effect of varying the friction coefficient is 

insignificant, since energy absorption due to friction is a small part of the total 

energy. They calibrated the hardening data using uniaxial compressive test curves to 

model the isotropic elastic-plastic behaviour of the tube [81], [82]. The mesh 

convergence test is important in performing a finite element analysis of thin-walled 

tube, since various parameters, such as mesh size, element formulation and the 

number of elements through thickness, can affect the output [83].  
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Chen and Wierzbicki [81] investigated the axial crushing behaviour of single-cell, 

multi-cell and foam-filled thin-walled columns both analytically and numerically. 

They indicated that the SEA can be optimised by varying parameters, such as the 

sectional width, wall thickness and foam density. A theoretical solution for the mean 

crushing force of multi-cell sections was shown to be in good agreement with the 

numerical predictions.  

 

Figure 2.11 Geometry and dimensions of multi-cell thin-walled tubes with triangular, 

square, hexagonal and octagonal sections [78]. 
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2.3.3 Composite Tubes 

The superior energy-absorption and crashworthiness properties of composite 

materials has, in recent years, attracted the attention of a range of sectors, including 

those associated with the automotive and aerospace industries. In 2011, Lamborghini 

Aventador LP700-4 was the first production car to implement a 

fully carbon fibre monocoque design to absorb the crash energy [84].  Extensive 

testing on various types of tubular structure have shown that composite materials can 

offer extremely higher values of specific energy absorption (SEA) than metallic 

structures [2], [20], [22], [29], [31], [41], [85]–[90].  

In a detailed review of energy-absorption in composite structures, Jacob et al. [2] 

determined that only 0.66 kg of a high-performance thermoplastic matrix composite 

is required to absorb the energy of a 1000 kg car travelling at 15.5 m/s (35 mph). 

Published values for the SEA of widely-used composites, such as carbon fibre 

reinforced epoxy, generally fall in the range 50 to 80 kJ/kg [22], [31],but can be as 

high as 110 kJ/kg [41].  

A number of workers have investigated the influence of tube geometry on energy 

absorption [29], [88], [89]. Thornton and Edwards concluded that for a given fibre 

stacking sequence, glass, carbon and Kevlar fibre reinforced circular tubes out-

perform their square and rectangular counterparts [88]. The corner sections 

contributed to higher crush load per unit mass compared to flat section in an 

approximately 3:1 ratio. The specific energy absorption was found to increase as 

rectangular < square < round [20], [91], [92]. 
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Mamalis et al. [89] studied the crushing characteristics of a range of glass fibre 

reinforced composite structures with circular, square and conical cross-sections. 

They found that circular tubes offered the highest values of energy-absorption, with 

the crashworthiness of conical structures decreasing with increasing cone angle. It is 

now well documented that, when loaded in compression, composite cylinders fail in 

a splaying mode involving a multiplicity of failure modes such as delamination, fibre 

fracture, matrix cracking and fibre buckling [2], [22], [86], [90].  

Farley [90] investigated the influence of specimen size on the energy-absorbing 

capability of carbon and Kevlar reinforced epoxy cylindrical tubes and observed that 

the ratio of the inner diameter of the tube to that of its thickness, (D/t), greatly 

influences the specific crushing stress (SCS) of the tube. An interesting result as 

shown in Figure 2.12 indicates that the value of SCS for carbon epoxy increased by 

approximately 180% as the value of D/t decreased from 120 to 3.8. This increase in 

crushing response at lower values of D/t was attributed to a reduction in interlaminar 

cracking. Here, it was argued that the buckling load of the fibre bundles increases 

with a reduction in the number and length of these interlaminar cracks [90]. The 

standard deviation, s𝑑, which quantifies the amount of variation of a set of data from 

the mean value as shown in Figure 2.12 is given [93]:  

s𝑑 = √
∑( 𝑥 − 𝑥 ̅)2

𝑛 − 1
 

(2.13) 

where 𝑥 is each value in the data set, 𝑥 ̅ represents the sample mean and 𝑛 is the 

number of values in the data set. 
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Figure 2.12 The effects of the D/t ratio on the energy absorption of carbon epoxy 

tubes [90]. 

 

Fairfull [94] investigated the effects of tube dimensions with diameter ranging from 

16 to 50 mm on the specific energy of glass cloth epoxy tubes. It was also found that 

the values of specific energy absorption were influenced by the tube wall thickness 

and diameter, where the specific energy absorption increased with decreasing tube 

diameter. The mean load and SEA were found to be independent of the tube length. 

Several studies have focused on the influence of strain-rate on the energy-absorbing 

capacity of composite tubes, with the results of these studies being somewhat 

contradictory [31], [95], [96]. For example, Schmueser and Wickliffe [95] reported 

reductions in energy absorption of up to 30% following impact tests on carbon, glass 

and Kevlar fibre tubes based on a [0
o
, +/-45

o
] configuration. In contrast, Thornton  

[31] observed very little change in the SEA of such tubes over a wide range of 

loading rates. Fibre reinforced polymer tube structures are capable of absorbing 
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significant energy under dynamic loading conditions, given that the tube is triggered 

to facilitate progressive crushing process by ensuring global failure modes do not 

occur [20]. Mamalis and his co-workers [97] concluded that dynamic crushing of 

circular fibreglass tubes dissipated less energy than quasi-static crushing.  

The specific energy absorption of composite tubes is related to the fibre and resin 

type. Thornton et al. [20] found that carbon is better than glass fibre in absorbing 

energy, since the decrease in density of the fibre leads to higher specific energy 

absorption capability [14].  The fibre form such as, unidirectional continuous fibre 

and chopped random fibre, also has an influence on the specific energy absorption 

[20]. A number of investigators [22], [29], [88], [90], [95]  have observed that carbon 

and glass fibre reinforced thermoset tubes undergo progressive crushing in splaying 

and fragmentation modes. Whereas, Kevlar fibre reinforced thermoset tubes which 

are more ductile, deform by progressive folding mode [20], [27], [98].  

Hamada et al. [41] conducted axial compressive tests to investigate the energy 

absorption performance of carbon/epoxy and carbon/PEEK composite tubes made 

from unidirectional pre-preg materials. They found that due to the higher 

interlaminar fracture toughness of the thermoplastic PEEK, the energy absorption of 

carbon/PEEK (180 kJ/kg) was approximately three times more than a carbon/epoxy 

tube (53 kJ/kg). Additionally, the fibre orientation was found to represent an 

important parameter in Mode I interlaminar fracture testing [99], [100]. Mahdi and 

his co-workers [100] investigated different fibre orientations (0
o
, 15

o
, 30

o
, 45

o
, 60

o
 

and 75
o
) for E-glass woven fabric and epoxy resin produced using a wrapping 

process. They observed that tubes with fibre orientations of 15
o
/75

o
 and 75

o
/15

o
 are 

the most efficient in absorbing energy.  
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The fabrication of composites using a wrapping method produces high specific 

energy absorption characteristics compared to those produced using the wet layup 

process [14]. As for the type of resin for the glass fibre systems, the specific energy 

absorption tends to increase in the order of phenolic < polyester < epoxy resin [20]. 

Farley and Jones [101] concluded that in terms of energy absorption, the effect of 

matrix stiffness is insignificant for materials that crush in a brittle mode or by 

transverse shearing. Conversely, the matrix stiffness can significantly affect materials 

that collapse by lamina bending. 

A number of researchers [20], [28], [77], [102] have investigated the effect of foam-

filled fibre reinforced polymer tubes on the energy absorption. As the crushing mode 

of low-density with high-strength FRP composite tubes are generally stable, the 

presence of foam was found to be not weight effective [20]. Palanivelu et. al [102] 

identified the effect of polyurethane foam–filled glass/polyester tubes based on nine 

different shapes with 1 and 2 mm wall thicknesses. They found that the foam 

provided additional wall support and allowing the tubes to crush progressively, as the 

tubes would fail catastrophically without foam filling. This was beneficial most 

notably for square and hexagonal shapes with a 1 mm wall thickness. However, in 

the case of composite tubes which crush progressively without foam filling, a 

reduction in the specific energy absorption was observed. This is related to 

suppression of circumferential delamination failure and subsequent fibre fracturing. 

Consequently, the foam caused a higher peak force for each composite tube [102].   

There is a need for reliable finite element models of composite materials in 

crashworthiness design, given that experimental testing is time-consuming and rather 

costly. Current numerical codes for metallic materials are well understood and 

capable of predicting the large plastic deformations and the crushing responses by 
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applying elastic-plastic material models [81], [82]. However, difficulty of 

reproducing complex composite failure mechanisms causes the computational 

models of composites are much more challenging than simulating conventional 

metallic materials [98], [103]–[105].  

Generally, finite element models for crushing of composite materials can be 

classified into two main groups [106], these being micro-mechanical and macro-

mechanical, as shown in Figure 2.13. The micro-mechanical [107], [108] finite 

element models focus on a very detailed crushing process by adapting an excessively 

fine solid 3-D mesh to accurately reproduce the matrix crack propagation 

phenomenon [106]. As the default Abaqus interface is limited, the material model 

needs to be defined using VUMAT (a routine that describes a custom material model 

in Abaqus/Explicit) to compute damage independently for the fibres and matrix 

[108], [109].  Due to the complexity of the model, this analysis involves a very high 

number of elements, hence longer model run-times and larger disk space 

requirements. It is recognised that the computational effort is very high for the 

construction of composite laminates using solid elements for each ply and is not a 

viable option for engineering crash analysis. The micro-mechanical approach is 

usually used in the case where the study of a single crack growth is the main 

attention [106]. 
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Figure 2.13 Classification of composite crushing numerical models [106]. 

 

The second category, the macro-mechanical technique involves a simpler approach, 

consisting of single or stacked shell elements. The single shell layer is useful in the 

case where only load and energy prediction are required, since this approach is 

incapable of modelling the interlaminar collapse mode. The Hashin failure criteria 

can be employed in this modelling technique. However as it is limited to plane-stress 

formulae, the Hashin failure criteria is not available for 3D solid elements [110], 

[111]. The single shell layer model combined with a soft parameter calibration is an 

attractive modelling method due to its simplicity and computational effectiveness.  

Alternatively, add-on application to the commercially available software, such as 

CZONE Model in Abaqus, allows modelling of the crushing zone. Nevertheless, 

CZONE is only applicable for materials that crush and continuously sustain a 

resistive force in the crush region. For that reason, only limited materials can be 

modelled accurately using the CZONE add-on [111], [112]. 
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Stacked shell models consist of distinct layers of shell elements attached together 

using cohesive elements between the layers to represent the matrix phase properties. 

The stacked shell model offers a better physical representation, however, the 

computational time increases as the number of shell layers stacked together is 

increased. At present, a limited number [106], [113]–[115] of finite element studies 

using the Abaqus code are available in the literature, on the subject of the progressive 

crushing of composite tubes. Bussadori et al. [106] presents FE models using stacked 

shell and crushing zone techniques in order to simulate the crushing of CFRP tubes. 

The first approach had significantly underestimated the results, which is due to the 

inability of the model to reproduce the collapse mechanisms. The crushing zone 

technique does not attempt to replicate the complex crushing phenomena as the 

element is eroded from the model when it reaches the maximum allowed value. This 

technique was able to produce the desired results and the computational time was 

found to be at least three times better than the stacked shell model.  

Palanivelu et al. [113] attempts to simulate circular and square pultruded 

glass/polyester tubes subjected to axial crushing. It was found that the FE models 

were not able to predict the axial cracking throughout the crushing process. A further 

investigation [114] conducted emphasises on the importance of considering the pre-

defined seam elements to achieve appropriate deformation patterns. Among other 

findings, Palanivelu et al. remarks that it is very important to fully understand the 

failure patterns before implementing the design architecture of an energy-absorbing 

structure in the FE models. The general conclusion of these studies is that the 

predictive model is reasonably successful, although an accurate numerical prediction 

remains challenging. Therefore, numerical studies help to gain an insight into the 

overall response but experimental testing is still required. 
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2.4 Failure Mechanisms of Composite Tubes 

Numerous parameters including the initial peak load, the sustain crushing load and 

the stroke displacement are considered in typical crashworthiness designs [25]. The 

energy absorption capability of a structure is characterised by the area under load-

displacement curve, which is heavily dependent on the failure mechanisms. The 

modes of failure which can be divided into catastrophic failure and progressive 

failure, are described in detail here. This section will be followed by an explanation 

of the trigger mechanisms and characteristic types of progressive crushing mode in 

composite tubes. 

 

2.4.1 Catastrophic and Progressive Failure  

An efficient design for an energy-absorbing structure needs to avoid any catastrophic 

failure modes [104]. This is due to the fact that during catastrophic failure, a sudden 

increase in load occurs in a short period of time, this is then followed by a rapid drop 

to a low-post failure load. Hence, in a vehicle crash event, catastrophic failure will 

cause greater impact to passengers as the structure will absorb much less energy.  

Figure 2.14 shows a comparison between typical load-displacement curves for 

catastrophic and progressive crushing of a composite profile. Catastrophic failure is 

characterised by mid-plane fracture [116] or longitudinal cracking [102]. Even 

though the structure can be designed to take the load associated with catastrophic 

failure, it is likely to be much heavier than a structure designed to react to load 

associated with a progressive crushing. Given that the area under the load-

displacement curve represents the absorbed energy, it is desirable to design a 

structure that will collapse progressively [104]. 
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Figure 2.14 Comparison between catastrophic and progressive failure [117]. 

 

Many researchers [2], [20], [22], [31], [88], [90], [101] have studied the energy 

absorption capability of composite materials. The general conclusion of these 

investigations is that composite materials can be efficient energy-absorbing 

materials, even though they exhibit very different crushing modes to those of 

metallic materials. Figure 2.15 shows typical load–displacement curves obtained 

from crushing of composite and aluminium circular tubes. Previous experimental 

tests have shown that metallic materials progressively absorb impact energy by 

forming folds, whereas composites absorb energy by undergoing fracture and 

delamination [22]. 

However, Farley [90] and Beardmore [27] reported that ductile composite tubes such 

as those based on Kevlar will crush in a similar mode to metallic tubes. They 

observed that when a tube fails by progressive crushing, it exhibits a larger area 

under the load-displacement curve, thus giving a higher level of energy absorption. 

Progressive crushing will also yield lower values of the ratio of peak load to mean 

crush load, compared to structures that fail catastrophically.  
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                            (a)                       (b) 

Figure 2.15 Typical load–displacement curves obtained from crushing of (a) a 

composite and (b) aluminium circular tubes [22].  

 

2.4.2 Trigger Mechanism in Composite Tubes 

Progressive crushing in composite tubes can be achieved using a proper trigger 

mechanism. No chamfering will be needed on metallic tubes because the tubes will 

not fail catastrophically as observed with composite tubes [101]. The function of the 

trigger is to act as a stress concentrator to initiate failure of the structure. The most 

widely used method for triggering is chamfering one end of the composite tube [2], 

[22], [31], [88], [104], [118]. Chamfer angles between 30
o
 to 45

o
 are recommended 

to initiate stable crushing [119].  

In a study on the effects of chamfer angle on energy absorption, a smaller drop after 

peak load and insignificant increase in specific energy absorption were observed in 

tubes with a 35
o
 chamfer compared to those with a 45

o
 chamfer [120]. Palanivelu et 

al. [118] tested composite tube with a chamfer of 45
o
 and a tulip pattern with an 

included angle of 60
o
 between the edges, as shown in Figure 2.16. They reported that 

the tulip pattern absorbed less energy compared to the 45
o
 chamfer around the edge 

of the circular tube as the 45
o
 chamfer triggers a uniform circumferential 

delamination and continuous axial cracks within the tubes. In both cases, crushing 
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could be initiated without causing catastrophic failure. Local failure will occur in 

composite tubes where small interlaminar and intralaminar cracks are formed, since 

load is applied to the edge of the crushing initiator. The length of cracks produced 

will determine the resulting crushing mode of the material.  

 

     (a)                                        (b)  

Figure 2.16 Composite tube specimen triggering method (a) a 45
o
 chamfer (b) a tulip 

pattern with an included angle of 60
o
 between the edges [118]. 

 

In some cases, such as for ductile and certain brittle fibre reinforced composite 

materials, the load applied to the crushing initiator will cause the material to deform 

plastically and fail in a local buckling mode. Progressive crushing of a tube is 

dependent on the fibre and matrix properties and the geometrical structure of the tube 

[20]. For thin-walled tubes, a lower load is required to cause the wall to buckle, thus 

the tube will start to buckle before the onset of progressive crushing. While in thick-

walled tubes with diameter to wall thickness ratios of the order of unity, the 

interlaminar cracks do not spread across the crushing initiator. As a result, the stress 

concentration in circumferential direction increases, reaching the material strength, 

thereby causing those tubes to fail. Hence, it is quite challenging to initiate 

progressive crushing for very thin or thick-walled tubes [104].  
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2.4.3 Characteristics Types of Progressive Crushing Modes 

Four kinds of progressive crushing were reported by Farley and Jones [101], these 

being a transverse shearing or fragmentation mode, a lamina bending or splaying 

mode, a brittle fracturing and local buckling also known as progressive folding. 

These crushing modes are very useful in designing a structure to decelerate an object, 

particularly during an impact event or a crash. Both ductile and brittle fibre 

reinforced composites exhibited the local buckling modes, however, only brittle fibre 

reinforced composites can crush in transverse shearing and lamina bending modes. 

Generally, the combination of shearing and lamina bending crushing modes will 

result in brittle fracturing. In this section, each mode will be described and further 

discussed.  

 

2.4.3.1 Transverse Shearing or Fragmentation Mode 

The transverse shearing or fragmentation mode can be identified by a wedge-shaped 

laminate cross-section. When a composite tube is crushed, it produces one or 

multiple short interlaminar and longitudinal cracks that form partial lamina bundles. 

Farley and Jones [101] stated that tubes that crush in a transverse shearing mode 

have a high stiffness and a low failure strain. This failure mode is only exhibited by 

tubes that are fabricated using brittle fibres. The compression loads results in an 

uneven load transfer to the composite tube, which form scalloped surface as the tube 

is crushed, as shown in Figure 2.17. In a composite tube, the number, location and 

length of the cracks are dependent on the tube geometry and material properties. The 

process of fragmentation exhibits longitudinal and interlaminar cracks lengths, which 

are less than the thickness of the laminate [104].  



Chapter 2                   Literature Review  

50 

 

The lamina bundles behave as columns in resisting the load applied. As the crushing 

load is applied to a tube surface, the interlaminar cracks propagate until wedge-

shaped cross section is formed, as shown in Figure 2.17. The main contributors to the 

energy absorption mechanism in this failure mode are the interlaminar crack growth 

and fracture of lamina bundles. Interlaminar crack growth is determined by the 

mechanical properties of the matrix, fibre orientation of the laminate and the failure 

strain of fibres oriented in the circumferential direction [103]. 

 

2.4.3.2 Lamina Bending or Splaying Mode  

The lamina bending or splaying mode is characterised by very long interlaminar and 

intralaminar cracks. The lamina bundles will not fracture as it undergoes bending 

deformation. During this failure mode, the structure absorbs energy mainly as the 

growth of matrix cracks. In addition, the crushing of composite tube also creates 

friction as the lamina bundles bend. The bending of lamina generates friction 

between adjacent lamina bundles and as it slides along the face of the loading surface 

[103].  

In the lamina bending mode, mechanisms that determine the crushing processes in a 

structure are interlaminar, intralaminar and frictional effects. Crack growth is similar 

to the transverse shearing mode but the length of the crack is greater in the lamina 

bending mode, as shown in Figure 2.17. The level of friction between the composite 

surface and the loading surface, and among the adjacent lamina, can be a function of 

crushing speed. Thus, energy absorption will also be influenced by the variations in 

the crushing speed [121]. 
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(a)                                                    (b) 

Figure 2.17 (a) Fragmentation and (b) splaying crushing modes [104]. 

 

2.4.3.3 Brittle Fracturing Mode   

The brittle fracturing crushing mode occurs from the combination of the transverse 

shearing mode and lamina bending mode. Previous researchers [8], [30], [92], [102], 

[103] have noted that this crushing mode is observed mainly in brittle fibre tubes. 

Formation of interlaminar, longitudinal cracks and scalloped crushing surface in 

brittle fracturing mode are shown in Figure 2.18. The main energy absorption 

mechanism is by fracturing of lamina bundles. The crushing efficiency is greatly 

influenced by the length of fractured lamina bundles, where shorter fractured lamina 

will result in higher efficiency of energy absorption [2]. 

Lamina bundles in brittle fracturing mode experience some bending, where the 

lamina bundles usually fracture at the end of the tube. The fracture results in the load 

to redistribute within the specimen. Again, the crack growth and lamina bundles 

fracture will be repeated until the end of crushing process. The brittle mode of 

fracture is controlled by two mechanisms, these being the strength of the matrix 



Chapter 2                   Literature Review  

52 

 

material and the tensile strength of the lamina bundles. The interlaminar and 

intralaminar growths are functions of matrix material strength while fracture of the 

lamina bundles is controlled by the tensile strength of the lamina bundles [103].  

 

2.4.3.4 Local Buckling 

Local buckling or progressive folding mode is characterised by the formation of local 

buckles, as shown in Figure 2.18. This mode which is similar to the deformation of 

ductile metals, can be exhibited by both brittle and ductile fibre reinforced composite 

tubes. The plastic deformation mechanism within the fibre and matrix control the 

crushing process for local buckling mode [2].  

Ductile fibre reinforced composite materials such as Kevlar, respond to crushing by 

deforming plastically. Fibres splitting can also occur along the tension side of the 

buckled fibres and local delamination among plies can take place. Ductile fibre 

reinforced composites remain in one piece following the crushing process and 

thereby exhibit post-crushing integrity. This is the result of the deformation of fibre 

and matrix plastically without fracturing and fibre splitting [103].  

There are several conditions in order for brittle fibre reinforced composite tubes to 

exhibit the local buckling crushing mode [101]:  

i. The interlaminar stresses are below the strength of the matrix material. 

ii. The matrix has a higher failure strain than the reinforcing fibre. 

iii. The matrix demonstrates plastic deformation when subjected to high stress. 
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Brittle fibres do not exhibit a plastic strain response. However if the matrix material 

has a higher failure strain, it will reduces or avoids the interlaminar cracks from 

forming during the crushing process. As a result, the composite tube may fail in a 

catastrophic mode or crushing in a local buckling mode as interlaminar cracks are 

eliminated. Usually, the local interlaminar cracks do not spread to the neighbouring 

buckles [103].  

 

         

                               (a)                                                      (b) 

Figure 2.18 (a) Brittle fracturing and (b) buckling failure modes [104]. 

 

 

 

 

 

 

 



Chapter 2                   Literature Review  

54 

 

2.5 Summary 

This chapter has presented a review of past and current research work relevant to this 

thesis. The first part discussed crashworthiness and energy absorption concepts. This 

was followed by an overview of energy-absorbing structures, such as sandwich 

panels, metal tubes and composite tubes. The responses of these structures under 

compression and the development of numerical modelling techniques have been 

reviewed. This research proposes two energy-absorbing structures for use in 

sandwich construction, which are based on metallic and composite tube-reinforced 

polymer foams.  

The majority of studies published up to date have focused primarily on “thin-walled” 

metal tubes and the use of foam as a filler in tubular energy-absorbing structures 

which are of particular interest for the protection of motor vehicles. However, the 

specific energy absorption (SEA) of circular metal tubes reveals that the SEA 

increases as the diameter to thickness (D/t) ratio decreases. Thus, “thick-walled” 

metal tubes are more efficient than “thin-walled” ones; though at the expense of 

higher mean crushing loads, unless the tube diameter is decreased.  

This observation leads to the suggestion that small diameter “thick-walled” metal 

tubes would be an ideal component to improve the response of an energy-absorbing 

reinforced foam system. Foam has been selected as the substrate (rather than 

honeycombs), since it is very easy to introduce circular holes into a foam and a foam 

substrate fully surrounds and supports the tube, which is not the case for a 

honeycomb-type structure.  

Given that the SEA of a composite tube increases significantly with reducing D/t 

ratio, it is likely that structures based on an array of small composite tubes in a low 
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density foam could represent an attractive option in the search for new, lightweight 

energy-absorbing structures. Since they are based on simple cylindrical composite 

tubes that are widely available in the market place, tube-reinforced sandwich 

structures should offer a number of potential benefits, including a relative ease of 

fabrication of complex and curved structures, superior energy-absorbing 

characteristics and a relatively low cost. Such structures could also offer other 

attractive characteristics, such as an ability to control the crushing load during 

compression, e.g. through the use of embedded tubes of different length, as well as 

the possibility to produce curved core geometries for more complex structures.  

The first part of the experimental investigation is focused on the potential offered by 

lightweight foam panels reinforced with aluminium and steel cylinders. This is 

followed by an investigation of composite tube-reinforced foams. Initial attention 

focuses on establishing the influence of the length as well as the diameter to 

thickness ratio of the tubes on their specific energy absorption characteristics. The 

tubes were then embedded in a range of polymer foams to investigate the influence 

of foam stiffness on the SEA of the tubes and the resulting failure modes. It is the 

purpose of this study to obtain information for the design of energy-absorbing 

systems which are constructed with multiple tubes embedded in a foam panel.  

Following an initial study to characterise the quasi-static and dynamic behaviour of 

the individual tubes and simple tube/foam configurations, a limited number of blast 

tests are conducted on tube-reinforced foams. An experimental investigation and 

finite element models analysis are carried out to understand the response of the 

structures under compression loading. Finally, the properties of these energy 

absorbers structures are compared with those offered by other types of core material. 



 

 

 

 

 

 

 

 

CHAPTER 3  

EXPERIMENTAL PROCEDURE 

In this chapter, details of the experiments conducted during the course of this 

research programme will be presented. A variety of mechanical testing and 

experimental techniques are used to investigate the energy-absorbing characteristics 

of tube-reinforced foam structures. The first part of this chapter describes the 

materials used. It is then followed by the specimen preparation process for the 

various parameters investigated. The experimental arrangement adopted, including 

quasi-static tensile tests, burn-off tests, quasi-static compression tests, dynamic crush 

tests and blast tests will be outlined.  
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3.1 Materials Investigated 

In this section, the core materials and the reinforcing tube materials are initially 

described. The core materials considered in this research programme are PVC and 

polystyrene foam. As for the benchmark materials, aluminium honeycomb, 

aluminium foam and polypropylene honeycomb have been selected. The type of 

tubes examined were extruded aluminium, cold-finished seamless mild steel and 

carbon fibre reinforced polymer (CFRP).  

 

3.1.1 The Core Materials 

Five types of crosslinked PVC foams of various densities were used during the 

course of the research. The foams were manufactured and supplied in the form of flat 

panels by Alcan Airex AG where foam densities were differentiated by its colour. 

Table 3.1 gives a summary of the mechanical properties for density of the foams with 

densities from 40 to 250 kg/m
3
 investigated in this study.  

 

 

Figure 3.1 The polystyrene and crosslinked PVC (C70) foams. 

 

P1 
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P3 

P4 
P5 
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It is very useful in lightweight applications due to the high stiffness and strength to 

weight ratios. The fine surface of the foam enables an excellent bond between the 

skin and core in forming a sandwich structure. In terms of applications for thermal 

insulation, closed-cell foams have the lowest values of thermal conductivity of any 

conventional non-vacuum insulation [21].  

Expanded polystyrene was selected as a lower density core material in this study. 

Polystyrene is a versatile material which provides a unique combination of 

mechanical properties, light weight, excellent insulation and is also cost effective. 

Table 3.2 lists the relevant material properties from the manufacturer’s data sheet. 

The white polystyrene foams were supplied in the form of rectangular flat panels 

with dimensions of 400 x 530 x 20 mm and a density of 15 kg/m
3
.  

Properties C70.40            

(P2) 

C70.55         

(P3) 

C70.75 

(P4) 

C70.130 

(P5) 

C70.200 

(P6) 

Density [kg/m
3
] 40 60 80 130 200 

Thickness [mm] 20 20 20 20 20 

Compressive strength [MPa] 0.45 0.90 1.45 3.0 5.2 

Compressive modulus [MPa] 41 69 104 170 280 

Shear strength [MPa] 0.45 0.85 1.2 2.4 3.5 

Shear modulus [MPa] 13 22 30 54 75 

Thermal conductivity [W/mK] 0.031 0.031 0.033 0.039 0.048 

Colour 
Light 

green 
Yellow Green Blue Brown 

 

Table 3.1 Material properties of the PVC foams [122]. 
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Properties 
EPS70  

(P1) 

Density [kg/m
3
] 15 

Thickness [mm] 20 

Compressive strength [MPa] 0.08 

Bending strength [MPa] 0.12 

Thermal conductivity [W/mK] 0.038 

Colour White 

 

Table 3.2 Material properties for the polystyrene foam [123]. 

 

The performance of the proposed novel structures was evaluated by comparing them 

to some of the cores which are used in a wide variety of applications. For this 

purpose, aluminium honeycomb, aluminium foam and polypropylene honeycomb 

have been selected as benchmark materials. The aluminium honeycomb panels 

investigated in this study were supplied ready-made in sheet form with a thickness of 

20 mm by Hexcel Composites. The relative density of the honeycomb used is 40 

kg/m
3
 and the thickness of the aluminium foils is 0.064 mm. These hexagonal cell 

configuration honeycombs consist of a cell size of 7 mm. The panels were produced 

by expanding stacks of aluminium foils which were bonded by lines of adhesive 

printed on the surface at regular intervals [21]. A honeycomb structure offers a 

material with minimal density due to the hollow cells and relative high stiffness to 

weight ratio [124]. 

The second benchmark material examined here was based on aluminium foams 

supplied by the Shinko Wire Company. These commercially-available aluminium 

porous foams sold under the trade name of Alporas, have a nominal density of 313 
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kg/m
3
 and an average cell size of approximately 4 mm. A process called batch 

casting was used to prepare the aluminium foams. This was done by adding calcium 

(Ca) to the molten aluminium, to act as a thickening agent and titanium hydride 

(TiH2) was used as a blowing agent [125]. 

Two densities (40 kg/m
3
 and 80 kg/m

3
) of polypropylene honeycomb were used to 

benchmark the novel core structures. The polypropylene (PP) honeycomb structures 

were supplied by EconCore N.V. in form of panels of 15 mm thickness. The 

compression strength and modulus for the density of 80 kg/m
3
 are 1.2 MPa and 40 

MPa respectively [126]. Both densities of the lightweight honeycomb have a cell size 

of 9.6 mm. 

 

                       (a)                                                                   (b)                                       

 

                                                          (c) 

 

Figure 3.2 The benchmark materials (a) aluminium honeycomb, (b) aluminium foam 

and (c) polypropylene honeycomb. 
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3.1.2 Metal Tubes 

3.1.2.1 Aluminium Tubes 

The initial stage of this study focused on evaluating the energy absorption 

capabilities of circular aluminium tubes. The aluminium tubes used were based on an 

aluminium alloy 6063-T6 and were supplied by Aluminium Warehouse Ltd. The 

extruded aluminium alloy (6063 grade) tubes are commonly referred to as an 

architectural alloy are mostly used for architecture structures and constructions, such 

as piping system, window frames and signage frames. The notation T6 indicates the 

temper or heat treatment of the alloy, which defines the subsequent mechanical 

properties.  

The aluminium tubes were firstly extruded and the profiles were then air or water-

cooled. As the temper T6 was applied, the tubes were aged for 8 hours at a 

temperature of 177
o
C before being cut into certain length [36]. The alloy 

composition and mechanical properties of this material are represented in Tables 3.3 

and 3.4 respectively. Five different sizes of tubing, with outer diameters ranging 

from 12.62 mm to 25.40 mm, were investigated. The thickness of the extruded 

aluminium tubes provided was varied between 1.68 mm and 1.82 mm. The 

aluminium tubes specimens were supplied in lengths of 1 metre and were cut to the 

desired length using diamond grit band saw blade. 
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Component Weight [%] 

Al Max 97.5 

Cr Max 0.1 

Cu Max 0.1 

Fe Max 0.35 

Mg 0.45 – 0.9 

Mn Max 0.1 

Si 0.2 – 0.6 

Ti Max 0.1 

Zn Max 0.1 

 

Table 3.3 Typical chemical composition for aluminium alloy 6063-T6 [127]. 

 

Properties Aluminium Tube 

Density [kg/m
3
] 2700 

Modulus of elasticity [GPa] 68.9 

Tensile yield strength [MPa] 214 

Ultimate tensile strength [MPa] 241 

Elongation at break [%] 12 

Shear modulus [GPa] 25.8 

Shear strength [MPa] 152 

Melting point [
o
C] 616 – 654  

Thermal conductivity [W/mK] 200 

 

Table 3.4 Typical mechanical properties for aluminium alloy 6063-T6 [127]. 
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3.1.2.2 Steel Tubes 

The cold-finished seamless steel tubes used in the experimental testing program were 

manufactured by Benteler Group. Seamless tubes were chosen for its equal load-

bearing capability in the compressive stress direction compared to welded tubes. The 

alloy composition and some important mechanical properties of the material, as 

provided by supplier, are shown in Tables 3.5 and 3.6 respectively.   

The primary process, known as cold pilgering, involved reducing the size a number 

of times until the profile gradually reaches the exact specifications. The first 

reduction will typically elongate the tube by factors of greater than eight. Following 

this procedure, the tube (with compliance to EN 10305-4 with a grade E235) was 

then drawn through a die, which is smaller than the diameter of the tube. In order to 

fit the draw bench die, the end of each tube was machined. This process gives the 

tube a more uniform diameter with a tolerance of ±0.08 mm [128].  

Here, five different sizes of tubing were considered, with outer diameters ranging 

from approximately 12.62 mm to 25.60 mm. The tubes were supplied in one batch 

consisting of 3 metre long sections for each diameter. The steel tube thickness was 

16 SWG, where the same thickness of 1.68 mm was obtained by measuring the tube 

wall of all five tubes. Test specimens were cut to the required length depending on 

the experimental need, using diamond grit band saw blade. 
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Component Weight [%] 

C Max 0.17 

Si Max 0.35 

Mn Max 1.20 

P Max 0.025 

S Max 0.015 

 

Table 3.5 The chemical composition for cold-finished seamless steel tubes [128]. 

 

Properties Steel Tube 

Density [kg/m
3
] 7900 

Modulus of elasticity [GPa] 200 

Tensile yield strength [MPa] Min 235 

Ultimate tensile strength [MPa] 340 – 480 

Elongation at break [%] 25 

 

Table 3.6 The mechanical properties for cold-finished seamless steel tubes [128]. 

 

3.1.3 Carbon Fibre Reinforced Polymer Composite Tubes 

The commercially-available composite tubes used in this investigation were supplied 

by Easy Composites Ltd. The tubes, with a fibre weight fraction of approximately 

60%, were produced using a roll-wrapping procedure. This was done by firstly 

placing a layer of carbon pre-preg layer around a mandrel in order to form the inside 

diameter of the tubing. The mandrel was covered by a spray-on chemical release 

agent as this leaves a clean finish on the inside of the tube, making it easier to release 

the tube after curing [129].  
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The first carbon pre-preg layer was cut to the correct width to wrap the mandrel and 

the following layers were measured and cut equal to the circumference of the 

previous layer. They were based on five plies, consisting of three layers of T700 

unidirectional pre-preg carbon fibre reinforced epoxy oriented at 0
o
 and two layers of 

unidirectional E-Glass oriented at 90
o
, as shown in Figure 3.3(b). 

                                            

            (a)                                              (b) 

Figure 3.3 The carbon fibre reinforced polymer (a) ribbed appearance tube finish as a 

result of using the heat shrinkable tape and (b) the pre-preg layers.  

 

After the five layers of pre-preg were placed on the mandrel, the composite materials 

were then wrapped using a heat-shrinkable tape. The mandrel was rotated to and the 

tape was spiral wrapped around the composites starting from one end to the other by 

overlapping 50% of the tape as it was progressed along the tube. The heat-shrinkable 

tape provided pressure on the outer surface of the tube which maintained the 

consistency and quality throughout the tube. Next, the whole assembly was oven-

cured as per the manufacturer’s recommendations. The heat-shrinkable tape was then 

removed and the tube was slid from the mandrel [129]. The ribbed appearance of the 

resulting tube was due to the tape, Figure 3.3(a).  

(1) 0
o
 Carbon fibre 

(3) 0
o
 Carbon fibre 

(5) 0
o
 Carbon fibre 

(2) 90
o
 Glass fibre 

(4) 90
o
 Glass fibre 
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The glass fibre layer was combined with carbon fibre ply to provide a high 

performance material at a lower cost. The fibres were embedded in an epoxy resin 

suited for use at temperatures up to 180
o
C. The multi-axial orientation resulted in 

excellent properties in both bending and compression crushing, making it suitable for 

typical heavy duty applications.  

Properties CFRP Tube 

Density [kg/m
3
] 1600 

Modulus of elasticity 0
o 
[GPa] 90 

Modulus of elasticity 90
o 
[GPa] 19 

In-plane Shear Modulus [GPa] 4.6 

Major Poisson's Ratio 0.14 

Ultimate tensile strength 0
o
 [MPa] 750 

Ultimate compressive strength 0
o
 [MPa] 600 

Ultimate tensile strength 90
o
 [MPa] 400 

Ultimate compressive strength 90
o
 [MPa] 350 

 

Table 3.7 The mechanical properties of the carbon reinforced polymer tubes [129]. 

 

When the tube is compressed, the load is predominantly carried by the unidirectional 

carbon fibres. Six different sizes of tubing were considered, with outer diameters 

ranging from approximately 10.2 mm to 63.60 mm. The tolerances of the inner and 

outer diameters were ±0.2 mm and ±0.3 mm respectively. The tubes were supplied in 

one metre lengths for each diameter and were cut as per the experimental 

requirements using a wet diamond grit band saw blade.  
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3.2 Test Specimens and Configurations 

The preceding literature review has highlighted the fact that most of the previous 

studies have focused on the energy absorption behaviour of tube as an individual 

component. In order to study the capabilities of tube-reinforced foams for use in 

sandwich structures, a number of design parameters have been used to explore the 

effect on the crashworthiness characteristics.  

In the initial part of this section, the test specimens and configurations for 

determining the mechanical properties of the core materials and tubes are described. 

The next part describes the experimental arrangements of tubes with different lengths 

and diameters. Following this, small diameter tubes were embedded in a range of 

foam densities. The configuration for multi-tube embedded in foams is explained in 

detail. Finally, a limited number of blast tests are conducted on the tube-reinforced 

foam structures.  

The basic procedures employed in obtaining consistent and reliable results for this 

research are as follows:  

i. Prior to testing, the weight and dimensions of specimens were measured. 

ii. All of the metal tubes were cut to a desired length and ground at both ends 

using a lathe to ensure that they were parallel. 

iii. All of the CFRP tubes were cut to the desired length and ground at one end in 

order to introduce a forty-five degree chamfer for triggering the crushing 

process, as shown in Figure 3.4. 

iv. In all cases, an interference fit of not more than 0.2 mm was ensured between 

the tubes and foams. 
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v. Three identical samples were tested for each case, and the average values 

were used for data analysis. 

vi. The crushing force versus crushing displacement response was recorded for 

each sample. 

vii. All of the tests were carried out under standard laboratory conditions of 23 ± 

2
o
C and 50% ± for relative humidity. 

viii. During the crushing process, the mode of failure in each tube was 

investigated and the images of the axial quasi-static crushing process were 

captured. The photographs of the final crushed samples were also taken for 

comparison. 

 

                                   

Figure 3.4 Photograph of a chamfered tube and a cross-section showing the chamfer 

angle of 45
o 
at one end of the tube. 

 

 

 

 

45
o
 Chamfer 
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3.2.1 Mechanical Properties 

The mechanical properties of the core materials, metals and composite tubes were 

obtained before conducting further investigation. These material properties are 

essential in order to predict the behaviour of the structures under axial loading via 

finite element computational models. The first part of this section examines the 

compressive properties of the foam core materials by conducting quasi-static 

compression tests. Here, five different densities of foam, ranging from 15.6 to 224 

kg/m
3
, aluminium honeycomb, aluminium foam and polypropylene honeycomb, 

were prepared and cut to blocks with dimensions of 50 mm square. Following this, 

the samples were tested at quasi-static rates according to the procedure outlined in 

Section 3.3.3. The energy absorbed by each of the core materials was determined by 

calculating the area under load-displacement curve.  

The properties of the metal and CFRP tubes, having diameters of approximately 12 

mm, were investigated by conducting standard tensile tests. Details of the tensile 

testing procedure are given in Section 3.3.1. The load-displacement output from 

these tests were analysed and converted to product engineering stress-strain curves. 

From these curves, the compressive or tensile Young’s modulus, yield stress and 

ultimate stress were determined. Burn-off tests were carried out for all composite 

tubes to obtain the weight fraction of reinforcement and matrix for each diameter. 

Samples having a length of 20 mm were cut from composite tubes with diameters of 

10.16, 12.70, 29.40, 40.90, 50.42 and 63.60 mm. Section 3.3.2. outlines the 

procedures used for the burn-off tests and the calculation of the weight fractions of 

the composite tubes.  
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3.2.2 The Effect of the Tube Length on SEA 

Attention initially focused on establishing the influence of the geometry of the 

individual metal and composite tubes on their resulting energy-absorbing 

characteristics. The influence of the tube length was investigated through a series of 

compression tests on aluminium, steel and composite tubes with diameters of 

approximately 12 mm and lengths of 15, 20, 25, 30 and 40 mm. In order to maintain 

a nominal constant strain-rate, the crosshead displacement rate was scaled according 

to the length of the tube. The relationship is given by, 

ε̇ = V/L (3.1) 

 

where 𝜀̇ is the nominal constant strain-rate, 𝑉 is the crosshead displacement rate and  

𝐿 represents the axial length of the tube. For example, tests on the 15 mm long tubes 

were conducted at a crosshead displacement rate of 0.75 mm/minute, whereas the 40 

mm long tubes were tested at 2 mm/minute.  

 

3.2.3 The Effect of the Tube Diameter on SEA 

The effect of varying the ratio of the inner diameter of the tube to its thickness, D/t, 

on energy absorption was then investigated by conducting compression tests on a 

range of individual metal and composite tubes. Prior to testing, each of the tubes was 

cut to a length of 20 mm and measurements of the outer diameter, mean inner 

diameter, thickness, D/t values and mass were taken. The outer diameters and 

thicknesses of tubes considered in this study are summarised in Table 3.8. 
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Aluminium tubes Steel tubes Composite tubes 

Outer 

diameter,  

Do [mm] 

Thickness,  

t [mm] 

Outer 

diameter, 

Do [mm] 

Thickness,  

t [mm] 

Outer 

diameter, 

Do (mm) 

Thickness,  

t (mm) 

12.62 1.75 12.62 1.68 10.20 1.23 

16.00 1.82 15.78 1.68 12.70 1.35 

19.10 1.75 19.05 1.68 29.40 1.56 

22.40 1.70 22.22 1.68 40.90 1.68 

25.40 1.68 25.40 1.68 50.40 1.68 

- - - - 63.60 1.84 

 

Table 3.8 Summary of the dimensions of the 20 mm long aluminium, steel and 

composite tubes. 

 

Five different sizes of tubing were investigated for the aluminium and steel tubes, 

with outer diameters ranging from approximately 12.62 to 25.40 mm. The values of 

D/t for the aluminium tubes ranged from 5.2 to 13.1, while the D/t values for steel 

tubes ranged from 5.5 to 13.1. For the composite tubes, six sizes of CFRP cylinder 

were investigated, the outer diameters of which varied from approximately 10.2 mm 

to 63.6 mm. The corresponding values of the ratio of D/t ranged from approximately 

6.3 to 32.6. As mentioned in Section 3.2, a 45
o
 chamfer was introduced at one end 

of each of the composite tubes. Here, the chamfered end was placed on the platen 

facing upwards, forcing failure to start from the top. Following the quasi-static 

crushing process, these tests were then repeated at dynamic rates of loading using a 

drop-weight impact tower. 
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3.2.4 The Effect of the Foam Density on SEA for Systems with Embedded Tubes 

Individual tubes based on the smallest diameter of the aluminium, steel and 

composite cylinders were embedded into polymer foams with densities ranging from 

15.6 to 224 kg/m
3
. Details of the basic mechanical properties of the six foams are 

given in Tables 3.1 and 3.2. In preparation for these tests, a hole with the same 

diameter as the tube was drilled into a 50 mm square block of thickness 20 mm and 

either a steel, aluminium or composite tube with a length of 20 mm, was inserted into 

the hole, as shown in Figure 3.5. The dimensions of the structure are presented in 

Figure 3.6. The tube/foam combinations were subsequently loaded in compression at 

a crosshead displacement rate of 1 mm/minute.  

           

                            (a)                    (b) 

Figure 3.5 Tube partially inserted into a 50 x 50 mm P2 foam block. For clarity, the 

tube has not been fully inserted for (a) aluminium and (b) composite tube. 

 

The tests on the reinforced foam blocks were repeated at dynamic rates of loading 

using the drop-weight impact tower as indicated in Section 3.3.4. In this case, a 60 

mm square steel plate was fixed to the instrumented carriage to load the 50 mm 

square samples. During the impact test, the force was again measured using the 

piezoelectric load-cell. The displacement data were recorded using the high speed 

video camera. 
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3.2.5 Test on Multi-tube Foams 

In this series of tests, the main objective was to study the effect of increasing the 

planar density of metal and composite tubes on the energy-absorbing response of 

these structures. Tests were conducted on three densities of foam, these being P1 

(15.6 kg/m
3
), P4 (90.4 kg/m

3
) and P6 (224 kg/m

3
). Here, between one and five tubes 

were embedded in square blocks of 20 mm thick foam, the dimensions are as shown 

in Figure 3.6. In the case of the composite tubes, the tubes were positioned 

alternately with chamfer facing both upwards and downwards in each of the foam 

panels to minimise the interaction between tubes. The samples were tested at quasi-

static rates as outlined in Section 3.3.3.  

 

 

(a) 

 

 

(b) 

Figure 3.6 The positioning of the (a) metal and (b) composite tubes in the multi-tube 

samples of 20 mm thickness. 
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3.2.6  Blast Tests on Tubes Reinforced Foam Panels 

Blast tests were conducted on 20 mm thick, 105 mm square P3 foam blocks with a 

density of 56 kg/m
3
. Nine holes with diameters similar to the tubes were drilled into 

each foam sample. The CFRP, aluminium and steel tubes, with diameters of 

approximately 12.7 mm, were inserted into them to yield the reinforced array shown 

in Figure 3.7(a). As before, in order to minimise interaction between the CFRP tubes 

during the crush process, the tubes were positioned alternately facing upwards and 

downwards. A total of 15 blast tests were carried out on four types of structure, 

including the plain P3 foam, an array of nine CFRP tubes embedded in the P3 foam, 

an array of nine aluminium tubes embedded in the P3 foam and nine steel tubes 

embedded in the P3 foam. 

           

     (a)                                                             (b) 

Figure 3.7 (a) Photograph of the aluminium tube-reinforced foam structure and (b) 

the dimensions of the test specimen. 
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3.3 Test Method 

3.3.1 Tensile Tests on Tube Materials 

Tensile tests were carried out in accordance with BS EN 10002-1:2001, Materials 

Tensile Testing [130]. The shape of the test piece for tensile testing on tube specimen 

can be either a length of a tube or a strip cut from in the longitudinal or transverse 

direction from a section of the wall tube. In this study, a length of tube was selected 

as the shape for tensile test and determination of dimensions were based on the tube 

diameter and thickness, and this is represented in Figure 3.8. Before attaching the 

specimen to the machine, three readings of the outer diameter and thickness were 

taken and the average values were calculated. These values are important in 

computing the initial cross-sectional area of the tube before the tube is tested under 

tensile loading.  

A steel rod of 30 mm long with the outer diameter that is approximately the same as 

the inner diameter of tube specimens was inserted at both ends of a tube to assist the 

gripping process. These steel rods act as reinforcement to the tube by preventing the 

tube from deforming due to the force from the grips. The specimen was then gripped 

at both ends by serrated wedges grips. The test specimen was aligned to avoid a 

bending force on the specimen. Next, an extensometer as shown in Figure 3.9 was 

attached to the specimen and was set to a gauge length of 50 mm. A mechanical clip-

on extensometer was attached to the sample with the purpose of measuring strain. 

The free length of the samples was 80 mm and the crosshead displacement rate was 

0.5 mm/minute up to 1% strain, then 1 mm/minute to 3% strain and 2 mm/min until 

fracture.  
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Figure 3.8 Test piece comprising a length of tube for tensile testing.  

 

     

Figure 3.9 Steel rod was inserted into the grip ends of the tensile tube specimen. For 

clarity, the rod has not been fully inserted. 

 

Total length, Lt = 170 mm 

Gripped ends 

Gauge length, Lo = 50 mm 

Thickness, t 

Cross-sectional 

area, Ao 

Outer 

diameter, Do 

Tensile tube 

specimen 

Steel rod 

Clip-on 

Extensometer 
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The tests were carried out using a Universal Testing Machine Instron 4505 and the 

force data were measured by a 100 kN load cell. For each of the test configurations, 

at least three specimens were tested. The raw data were used to plot engineering 

stress-strain curves and used to determine the mechanical properties of the materials. 

The tensile engineering stress which is defined as the ratio of applied tensile force 

and cross section area was calculated using: 

𝜎𝑡 =  
𝐹

𝐴∘
 

(3.2) 

where σt is the tensile engineering stress [MPa], F is the applied tensile force [N] and 

Ao is the original cross-sectional area of the specimen [m
2
].  

 

 

Figure 3.10 Properties obtained from the engineering stress-strain curve [67]. 

 

 

 

0.2% offset line 

E = Gradient 

σ0.2 = Intersection point 

 

UTS = Maximum strength 
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The tensile engineering strain which is defined as deformation of a solid due to 

tensile stress was calculated by applying: 

𝜀𝑡 =  
𝑑𝐿

𝐿∘
 

(3.3) 

where, εt represents the tensile engineering strain which is unitless, dL is the change 

of length [m] and 𝐿∘ is the original length [m]. Young’s modulus, or elastic modulus, 

is a measure of the stiffness of a material, thus, it is one of the most important 

properties in engineering structural design. The unit of Young’s modulus, E, is N/m
2
 

[Pa] but since metal materials are generally very stiff, it is commonly expressed in 

terms of GPa [131]. This value can be calculated from the slope of a tensile stress-

strain curve: 

𝐸 =
𝜎𝑡

𝜀𝑡
 (3.4) 

The yield (proof) strength, σ0.2, was determined from the stress-strain diagram by 

drawing a line parallel to the straight portion of the elastic region and at an offset of 

0.2 % strain. The parallel line was extended to a point at which this line intersects the 

curve giving the proof strength. The ultimate tensile strength, UTS, can be obtained 

directly by reading the maximum stress value. 
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3.3.2 Burn-Off Tests 

‘Burn-off’ tests were carried out on all of the composite tube specimens to determine 

the fibre and resin volume fractions. The detailed experimental procedure follows 

ASTM D2584, the Standard Test Method for Ignition Loss of Cured Reinforced 

Resins [132]. Three identical samples were repeated for each of the CFRP tube 

diameters to yield the average results. Initially, the mass of an empty crucible was 

recorded. A 20 mm unchamfered CFRP tube specimen was placed in the crucible 

and the total mass was determined.  The crucible containing the sample was placed in 

a furnace which was then heated to a temperature up to 560°C and maintained at that 

temperature for forty five minutes.  

Following this step, only the reinforcement material was left in the crucible with no 

visible resin remaining. The crucible was taken out of the furnace and left to cool to 

room temperature in a desiccator. The mass of sample together with crucible was 

recorded to the nearest 0.01 g. Using this information, the mass of the sample after 

the burn-off test was calculated by subtracting the mass of the crucible. 

Nomenclature for burn-off test are as follows [10]:  

mc    Mass of crucible [g] 

mc+s    Mass of crucible + sample [g] 

ms    Mass of sample before burn-off mc+s - mc [g] 

mc+f    Mass of crucible + fibre residue after burn-off [g] 

 mf    Mass of fibre mc+f - mc [g] 

mm    Mass of matrix mc+s- mc+f  [g] 

ρf    Fibre density [kg/m
3
] 
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ρm    Matrix density [kg/m
3
] 

Wm    Weight fraction of matrix 

Wf    Weight fraction of fibre 

Vm    Volume fraction of matrix 

Vf    Volume fraction of fibre 

Hence, with the obtained mass of fibre and matrix, the weight fractions of each 

sample were calculated using [10]: 

Wf =
mf

ms
 

(3.5) 

The weight fraction is expressed by: 

1 iW
 

(3.6) 

where Wi is the weight fraction of the constituent i. The weight fraction of the 

composite comprising the fibres and matrix can be described as: 

1 mf WW
 

                                   or      
fm WW 1  

 

The volume fraction is represented by: 

1 iV  (3.7) 

where, Vi is the volume fraction of the constituent i. The volume fraction of the 

composite containing fibre and matrix can be described as: 

1 mf VV
 

                                  or       
fm VV 1  
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3.3.3 Quasi-static Tests 

A series of compression axial quasi-static tests were conducted using conventional 

testing machine at a constant crosshead displacement rate. Each of the specimens 

with height of 20 mm was tested a constant crosshead speed of 1.0 mm/minute using 

a Universal Testing Machine Instron 4505 with a 100 kN load cell. The static test 

setup is as shown in Figure 3.11. For higher forces of up to 250 kN, a Dartec 

Universal Testing Machine was used, the test machine is shown in Figure 3.12. For 

this purpose, compression test was carried out in accordance to BS ISO 844:2001, 

Compression Test for Rigid Materials [133]. For each of the test configurations, at 

least three specimens were tested.  

A specimen was placed on the lower platen and axially crushed between parallel 

steel flat platens. The crosshead was then lowered until the surface of the upper 

platen was in contact with the specimen. The quasi-static tests were continued 

beyond the starting point of densification of the specimen [35] or up to the 

bottoming-out displacement for tube materials [34]. For analysis purposes, the modes 

of failure were observed and photographs of the deformation process were taken 

throughout the tests. The force-displacement data were used to determine the energy 

absorption and specific energy absorption characteristics of the materials. The 

compressive engineering stress-strain curves were also plotted in order to determine 

the mechanical properties of the materials. The compressive engineering stress was 

calculated using Equation (3.2) and the compressive engineering strain was 

calculated using Equation (3.3). 
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Figure 3.11 A specimen under compression loading using the Universal Testing 

Machine Instron 4505.   

 

 

Figure 3.12 Dartec Universal Testing Machine was used for static loading up to 250 

kN. 
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controller 
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In an actual event of a crash, a structure dissipates energy through several mediums 

during the crush process. As many materials used in crashworthy structures are made 

of rate-sensitive materials, the energy absorption characteristics of these materials 

will depend on the crush speed [2]. Therefore, it is not sufficient to interpret data 

based solely on quasi-static testing when selecting materials for a crashworthy 

structure. Nevertheless, information from quasi-static testing can be used in 

preliminary design and selection before the sample is crushed dynamically. Since an 

impact test requires expensive equipment, such as a high-speed video camera, high 

frequency data loggers and load cells, data from quasi-static tests can be used in 

predicting the failure modes and the energy absorption characteristics of a sample to 

prevent potential damage of equipment. 
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3.3.4 Dynamic Loading Tests 

The impact tests were undertaken using the drop-weight impact rig shown 

schematically in Figure 3.13(a). The energy was transferred by a free falling mass to 

the specimens, which were loaded axially. The mass and height of the impactor were 

adjusted to obtain the desired impact energy, 𝐸, based on test requirements. This can 

be calculated using the expression,  

𝐸 = 𝑚𝑔ℎ (3.8) 

where, 𝑚 is the mass in kg, 𝑔 is the gravitational constant (9.81 m/s
2
) and ℎ is the 

height in metre. Prior to testing, the test specimens were placed on the impact plate 

and positioned parallel to the direction of the impactor as shown in Figure 3.13(b). 

Initially, a flat rectangular impactor, with dimensions of 120 mm x 80 mm was raised 

to a predefined level depending upon the velocity and impact energy. The movement 

of the impactor was guided by two greased steel rails with a ±0.5 mm clearance. 

Therefore, the contact between the impactor and rails was assumed to be frictionless. 

The impactor was released once the entire test configuration was ready. The dynamic 

compression tests were stopped when the specimens had been completely crushed 

and bottomed-out [35]. Load data were collected from piezoelectric load cell while 

the high speed video camera recorded the displacement during crushing. A load cell 

mounted beneath the impact plate measured the voltage-time histories during the 

impact event. The Kistler type 9363A load cell, with measuring range of 120 kN, 

was connected to a charge amplifier using an insulated co-axial cable. 
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                     (a)                                  (b) 

Figure 3.13 Drop-weight impact test (a) schematic diagram of the set-up and  

(b) the specimen and the load cell. 
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Figure 3.14 The drop-weight test facility at the University of Liverpool and details of 

the high speed video camera. 
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During an impact event, the mechanical force was recorded by a pressure sensor in 

the load cell and converted to an electrical signal. Since the electrical signal is in 

order of millivolts, amplification of the signal was undertaken by a charge amplifier. 

A digitiser device was used to convert the analog signals into digital signals and 

these were recorded using a computer. Finally, the force (in Newtons) readings were 

obtained by converting the voltage using a scaling factor of 12,000 N/V which was 

found by conducting a static calibration on the Instron Machine [134].  

The motion of the impactor was captured using a high speed video MotionPro X4, 

model no. X4CU-U-4 with a standard F/0.95-50 mm lens positioned in front of the 

impact rig, as shown in Figure 3.14. For all impact tests, the frequency of the high 

speed video was set to 10,000 frames per second. Before conducting the test, a target 

with a 15 mm scale was placed on the surface of impactor to enable the high speed 

video to track the motion.  

The video file was captured and processed using MotionPro software, Version 

2.30.0. This video file was then analysed and calibrated using the 15 mm scale and 

the motion analysis software, ProAnalyst, to produce the displacement data. The data 

from the piezoelectric load cell were filtered using the Impressions software package. 

A further analysis using Mathlab 2012a software was required to calibrate the force 

data to the displacement data.  
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3.3.5 Blast Tests 

A limited number of blast tests were undertaken on a ballistic pendulum at the 

University of Cape Town, in the Blast Impact and Survivability Research Unit 

(BISRU). These tests were undertaken to evaluate the dynamic response of a more 

representative component (i.e. one with a greater number of tubes) subjected to one 

of the most severe forms of loading (blast). The blast tube arrangement, as shown in 

Figure 3.15(a), was used to generate a uniform loading condition on the tubes 

reinforced foam panels [135]. Here, tests were conducted on CFRP, aluminium and 

steel tubes reinforced 20 mm thick, 105 mm square P3 foam blocks with a density of 

56 kg/m
3
. The 20 mm thick foam squares were fixed using a double-sided adhesive 

tape, to a larger thick steel plate, which in turn was bolted to a ballistic pendulum. A 

steel plate with dimensions similar to those of the foam block was attached to the 

front of the core using the double-sided adhesive tape. The front steel plate was then 

positioned fully covering the inner end of the blast tube to prevent the blast wave 

from escaping.  

Blast loading was applied to the specimens by detonating 33 mm diameter discs of 

PE4 explosive attached to the centre of a 100 mm square, 12 mm thickness 

polystyrene panel [136]. This panel was then fixed to the outer end of the blast tube 

to provide a stand-off distance of 150 mm from the front steel plate, Figure 3.15(b). 

The detonator with one gram of PE4 explosive, was positioned to the centre of the 33 

mm diameter discs. The impulse was varied by increasing the mass of PE4 explosive. 

The impulse was determined from the measured swing of the pendulum using a 

method that was employed by Theobald and Nurick [137]. The final thickness was 

measured across the tube-reinforced foam panels to determine the average 

deformation. 
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 (a)  

 

 

(b) 

Figure 3.15 (a) Photograph of the ballistic pendulum used for conducting the blast 

tests and (b) schematic of the detonator and blast tube arrangement. 
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3.4 Summary 

This chapter has presented the experimental details on metal tube and composite 

tube-reinforced foam structures. Firstly, it covers the preparation and configuration 

of the test specimens for various mechanical tests of the core materials, metal and 

composite tubes. This is followed by the detailed experimental set-up for various 

tests on quasi-static tension, resin burn-off, quasi-static compression, low-velocity 

impact and blast. 
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CHAPTER 4  

RESULTS AND DISCUSSION  

In this chapter, the experimental results obtained will be presented and discussed. 

Firstly, the mechanical response of each materials used were characterised through a 

series of compression and tensile tests. Subsequently, the influence of varying 

several parameters on the energy-absorbing metal and composite tube-reinforced 

foam structures is presented. This will be followed by a discussion based on the 

observations made from a series of blast tests on the metal and composite tube-

reinforced foam structures. Finally, a comparison of the specific energy absorption 

(SEA) properties of the tube-reinforced foam structures with other energy absorbing 

core structures is presented. 
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4.1 Compressive Behaviour of Foam Materials 

This section investigates the mechanical properties of the foam materials by 

conducting quasi-static compression tests on 6 different densities, ranging from 15.6 

to 224 kg/m
3
. The specimen size was 50 x 50 mm

2
 with a thickness of 20 mm. Tests 

were undertaken at a crosshead displacement rate of 1 mm/min and the crushing 

process was interrupted when the crosshead had travelled at least 15 mm. All tests 

were performed at room temperature, i.e. 23
o
C.  

Details of the material properties of the foams, including the density, compressive 

yield stress, compressive modulus and sustained crushing stress are summarised in 

Table 4.1. From the test results, the sustained crushing stress of the foams was found 

to increase with increasing foam density. These findings agree with those of Lim et 

al. [47] and Thomas et al. [48].  

 

Foam test ID  
Density  

[kg/m
3
] 

Compressive 

yield stress [MPa] 

Compressive 

modulus 

[MPa] 

Sustained 

crushing stress 

[MPa] 

P1 15.6 0.08 6 0.12 

P2 38.3 0.45 37 0.47 

P3 56.0 0.70 69 0.74 

P4 90.4 1.29 97 1.43 

P5 128.0 2.34 160 2.44 

P6 224.0 4.19 280 4.13 

 

Table 4.1 Summary of the mechanical properties of the foam materials. 
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Figure 4.1 shows a typical load-displacement curve following quasi-static testing on 

the P3 foam with a density of 56.0 kg/m
3
. The data obtained from load-displacement 

curve were used to develop a stress-strain curve by utilising the equations discussed 

in the previous chapter.  

A typical stress-strain curve following quasi-static test on the P3 foam with a density 

of 56.0 kg/m
3
 is shown in Figure 4.2. There are three distinct phases during the 

compression process. Initially, a linear-elastic region occurs up to approximately 5% 

before collapse occurs. This obeys the Hooke’s law, where the strain is directly 

proportional to the stress applied. Next, the crushing process is followed by an 

almost constant stress, forming the plateau stress region. Finally, the densification 

region starts at the point where the force increases rapidly with little deformation. 

This figure shows that foam material offer unique characteristics, whereby they can 

deform extensively while sustaining low levels of stress, before reaching the 

densification region [21]. 

The deformation process of the closed-cell foams in the linear region is related to the 

stretching of the cell faces [21]. The gradient of initial linear region of the diagram 

was used to calculate the compressive modulus of elasticity. The compressive yield 

stress is determined at the highest stress point at the end of the elastic region. After 

initial collapse, the plateau region starts and the magnitude of stress is related to the 

density of the foam [47]. The constant collapse process in the foam cells results in a 

sustained crushing load with increasing strain. The plateau state is the most 

interesting characteristic, as the majority of the energy is absorbed in this region.  
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Figure 4.1 A typical load-displacement curve following a quasi-static test on P3 foam 

with a density of 56.0 kg/m
3
. 

 

 

Figure 4.2 A typical stress-strain trace following a quasi-static test on P3 foam with a 

density of 56.0 kg/m
3
. 
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Finally, the plateau region gradually ends as stiffening occurs when the cell walls 

collapse and started to interact with the neighbouring cell walls of the foam. This 

continuous interaction condition results in a rapidly increasing strain. In the figure, it 

can be seen that an increase in density will also increase the compressive modulus, 

the compressive stress and the sustained crushing stress. For an example, an increase 

in density from 56 to 128 kg/m
3
 resulted in 300 percent increase in the compressive 

yield stress (0.7 to 2.34 MPa). The values obtained from experimental testing are 

similar to the mechanical properties supplied by the manufacturer [122], [123], as 

presented previously in Chapter 3.   
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4.2 Metal Tube-reinforced Foam Structures 

4.2.1 Tensile Tests on the Aluminium and Steel Tubes 

This section presents the mechanical properties of the aluminium and steel tubes 

before undertaking any further mechanical testing. The engineering stress-strain 

curves were obtained by conducting standard tensile testing on the aluminium and 

metal tubes. Figure 4.3 compares the quasi-static engineering tensile stress-strain 

curves for the aluminium and steel materials. From the figure, it can be seen that the 

mild steel has an ultimate tensile strength of almost twice that of aluminium, while 

its yield stress is only about one-quarter higher than that of aluminium. The results 

obtained from the stress-strain curves, such as the tensile strength, tensile modulus 

and yield strength, are compiled in Table 4.2.  

 

Figure 4.3 Engineering stress-strain curves following tensile tests on 12.62 mm 

diameter (a) aluminium (D/t = 5.21) and (b) steel (D/t = 5.51) tubes. 
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Material 
Circular aluminium 

tube 

Circular steel 

tube 

Outer diameter, Do [mm] 12.62 12.62 

Thickness, t [mm] 1.75 1.68 

Density [kg/m
3
] 2543 7966 

Tensile strength [MPa] 237 399 

Tensile modulus [GPa] 70.4 200 

0.2% Yield stress [MPa] 218 277 

 

Table 4.2 Summary of the mechanical properties of the circular aluminium and steel 

tubes. 

 

It is apparent that the steel tested is more ductile than the aluminium, with the 

engineering strains being 34% and 9% respectively. This behaviour is related to the 

fracture of the tubes as shown in Figure 4.4. The point of final fracture of the 

samples gives an indication of the level of ductility [67]. For both materials, fracture 

occurred approximately at the middle of the total gauge length and the location of the 

fracture surface was observed to be perpendicular to the tensile axis.  

A visual inspection of the cross-section of the steel tube specimen after tensile failure 

reveals that it experienced significant necking prior to fracture. This resulted in a cup 

and cone fracture appearance, as shown in Figure 4.4(b). In contrast, the cross-

section of the aluminium tube in Figure 4.4(a) shows little necking deformation and 

sharp edges, indicating that the material has undergone less plastic deformation 

during the tensile test [131].  
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(a)                 (b) 

Figure 4.4 Photographs following tensile tests on (a) the aluminium and (b) the steel 

tubes. 

 

4.2.2 The Effect of the Length of the Aluminium and Steel Tubes on SEA 

Initially, the influence of tube length on the energy-absorbing characteristics of the 

individual metal tubes was investigated through a series of tests on the aluminium 

and steel tubes with lengths of 15, 20, 25, 30 and 40 mm. Table 4.2 summarises the 

mechanical properties of the steel and aluminium samples following tensile loading 

on samples with an outer diameter of 12.62 mm.  

Figure 4.5 shows typical load-displacement traces following static compression tests 

on the two types of metal tubing. All traces respond in a linear elastic manner, before 

yielding occurs at a force of approximately 15 kN. The ensuing response of the 15 

mm long aluminium alloy sample differs significantly from that of its longer 

counterparts, Figure 4.5(a). Here, the slope of the post-yield region of the force-

displacement trace of the sample is much higher than that associated with the longer 

samples, an affect associated with the greater level of constraint applied by the 

loading platens.  
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           (a)  

 

           (b)  

Figure 4.5 Typical load-displacement traces following tests on tubes of different 

length  (a) 12.62 mm outside diameter ,  t=1.75mm (D/t = 5.21) aluminium alloy (b) 

12.62 mm outside diameter, t =1.68mm (D/t = 5.51) steel. 
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During the latter stages of the test, the measured force begins to increase rapidly as 

the specimen is flattened between the platens (known as bottoming-out). The 20 mm 

and 25 mm long samples exhibit a slight drop in slope prior to a subsequent rapid 

increase and a relatively smooth trace up to high strains. Increasing the tube length to 

30 mm and 40 mm resulted in a distinct change in response, with the load magnitude 

dropping after the sample yielded. This behaviour was associated with buckling 

failure, or the formation of wrinkles, in the tube and will be discussed in further 

detail below.  

There are distinct differences between the load-displacements traces for the 

individual steel samples, Figure 4.5(b). All curves exhibit a similar slope during 

initial elastic loading. Following initial yield, the trace for the 15 mm sample rises to 

a maximum of approximately 35 kN before dropping rapidly during the latter stages 

of the test. The 20 mm long sample offers the highest peak load, approximately 37 

kN and subsequently rising sharply as the sample is crushed. The remaining, longer 

samples all display a series of distinct peaks as well-defined wrinkles appear in the 

tubes during the compression process.  

Figure 4.6 shows photos of the aluminium and steel tubes following testing. The 

shortest aluminium sample has clearly been compressed into a simple ring structure. 

Closer examination of the sample highlights the presence of small vertical cracks on 

the outer surface of the test sample. This form of localised failure is associated with 

the presence of large circumferential tensile stresses during the collapse process. The 

post-yield load-displacement trace for this specimen was relatively smooth as 

discussed previously.  
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(i) 15 mm 

 

 

 
(i) 15 mm 

 

 

 
(ii) 20 mm 

 

 

 
(ii) 20 mm 

 

 

 
 

(iii) 25 mm 

 

 

 
(iii) 25 mm 

 

 

 
(iv) 30 mm 

 

 

 
(iv) 30 mm 

 

 

 
 

(v) 40 mm 

 

 

(a) 

 

 
(v) 40 mm 

 

 

(b) 

 

Figure 4.6 Photographs of failed samples (a) Aluminium 12.62 mm (D/t = 5.21) and 

(b) Steel 12.62 mm (D/t = 5.51). The initial tube lengths are indicated on each figure. 

5 mm 5 mm 
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The 20 mm long aluminium sample exhibits two distinct bulges as well as the 

previously-discussed tensile cracking. The 25 mm long sample is similar in 

appearance to that of the 20 mm long specimen and once again there is a small 

instability in the load-displacement trace at an intermediate displacement.  

In contrast, the 30 mm aluminium sample exhibits a more complex buckling and 

cracking mode and lacks the axial symmetry observed in the previous samples. The 

load-displacement traces for this sample was relatively smooth up approximately 16 

mm, at which point two small load-drops are apparent. Finally failure in the 40 mm 

long sample is complex, being associated with a more global buckling-type of 

failure. The load-displacement trace for this sample exhibited a significant drop in 

force at higher displacements, due to this global mode of buckling failure.  

Failure in the steel tubes occurred in a more controlled manner with formation of 

distinct bulges for all specimen lengths. The deformation is categorised as concertina 

mode by Andrews et al. [59]. As before, the shortest sample was compressed to a 

ring-like structure. In this case, the failure process did not involve the initiation of the 

microcracking process observed in the aluminium samples.  

Failure in the 20 and 25 mm long samples involved the formation of two wrinkles, 

whereas the longest sample exhibited three distinct bulges following testing. Clearly, 

the above photographs highlight the importance of the wrinkling mechanism in the 

energy-absorbing process within these steel tubes. The formation of wrinkles in 

axially-crushed metal tubes is discussed in [34] for thin-walled tubes.  

 

 



Chapter 4                                                      Results and Discussion 

102 

 

The axial length of a tube which is available for the development of wrinkles is L, 

which when divided by 2l, gives the number (n) of wrinkles (and any partly formed 

wrinkles) when the tube is fully crushed to the bottoming-out displacement [34]:  

𝑛 =
𝐿

1.905√𝐷𝑚𝑡
=

1

1.905
(

𝐿

𝐷𝑚
) (

𝐷𝑚

𝑡
)

1
2
 

 

(4.1) 

 

or,  

𝑛 =
𝐿

1.76√𝐷𝑚𝑡
=

1

1.76
(

𝐿

𝐷𝑚
) (

𝐷𝑚

𝑡
)

1
2
 

 

(4.2) 

 

where Dm is the mean tube diameter and the actual circumferential strain is used, 

instead of a mean value and where 2l is the axial length of a tube necessary for the 

development of a complete wrinkle and is valid for 10 ≤ Dm/t ≤ 60, approximately.  

This equation suggests that the number of wrinkles in the tube should scale with the 

length of the tube and should be independent of the material properties (i.e. identical 

steel and aluminium tubes should respond in a similar fashion).  

The photographic evidence suggests that the number of wrinkles does indeed 

increase with tube length, although testing of a greater number of tubes is required to 

fully establish this. In terms of the influence of material properties, the steel and 

aluminium tubes behave in a similar fashion for small values of L, however this 

breaks down for the longer aluminium tubes where global buckling and fracture 

appear to become the predominant failure mechanisms. 
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Figure 4.7 The influence of tube length on the energy-absorbing characteristics of the 

12.62 mm outside diameter (D/t = 5.21) aluminium and 12.62 mm outside diameter 

(D/t = 5.51) steel tubes. 

 

Figure 4.7 shows the variation of the specific energy absorption with tube length. 

The initial outer diameters of the aluminium and steel tubes were 12.62 mm (D/t = 

5.21) and 12.62 mm (D/t=5.51), respectively. An examination of the figure indicates 

that the aluminium alloy clearly out-performs its steel counterpart. For example, the 

average value of SEA for the aluminium tube is almost fifty percent greater than that 

measured on a comparable steel tube. From the figure, it is clear that the value of 

SEA do not vary significantly with tube length. Indeed, it is anticipated that the SEA 

will remain constant for sufficiently long thin-walled tubes which deform in a ductile 

manner without any fracture. Finally, it is interesting to note that the level of scatter 

is much lower in those samples that fail in a controlled manner (i.e. all of the steel 

samples and the three shortest aluminium tubes) than in those that fail due to global 

buckling or fracture.  
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4.2.3  The Effect of the Diameter of the Aluminium and Steel Tubes on SEA 

The effect of varying the ratio of the inner diameter of the metal tubes to its 

thickness, D/t, on energy absorption was investigated by conducting compression 

tests, details of which are given in Tables 4.3 and 4.4. Here, five different sizes of 

tubing were considered, with outer diameters ranging from approximately 12.6 mm 

to 25.4 mm. The values of D/t for the tubes ranged from 5.2 to 13.1 for the 

aluminium alloy tubes and 5.5 to 13.1 for the steel tubes.  

Figure 4.8 shows typical load-displacement traces following compression tests on 20 

mm long aluminium and steel tubes having different D/t ratios. From the two graphs, 

it is clear that varying this ratio has a significant effect on the mechanical response of 

the tubes. For example, the load-displacement traces for the tubes with the lowest D/t 

ratio show a steady increase until a constant plateau value is achieved. Increase in the 

D/t ratio results in a trace that exhibits a maximum load before reducing rapidly with 

increasing crosshead displacement. The displacement at peak load clearly increases 

as the D/t ratio is increased and these effects are more pronounced in the steel tubes 

than in their aluminium counterparts. Interestingly, the trace for the steel tube with 

the largest D/t ratio rises almost linearly to a peak value before dropping rapidly. 

Figure 4.9 shows the variation of SEA with the tube D/t ratio for both the aluminium 

and steel tubes. Here, it is clear that the energy-absorbing capability of the tubes 

decreases rapidly with increasing D/t.  For example, the SEA of the aluminium tubes 

decreases from 70.0 to 52.9 kJ/kg (a reduction of 25%) and that of the steel from 

41.5 to 24.1 kJ/kg (a reduction of 42%). As before, the aluminium tubes outperform 

their steel counterparts with the relative difference between the two increasing with 

D/t. Indeed, the value of SEA for the largest aluminium tubes was more than 220% 

that of the largest steel tube. 
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Tube ID 

Outer  

diameter, 

Do [mm] 

Mean 

diameter, 

Dm [mm] 

Inside 

diameter,  

D [mm] 

Thickness, 

t [mm] 

D/t 

ratio 

SEA quasi-

static 

[kJ/kg] 

SEA 

dynamic 

[kJ/kg]  

TAL12 12.62 10.87 9.12 1.75 5.21 70.07 71.76 

TAL16 16.00 14.18 12.36 1.82 6.79 63.47 64.63 

TAL19 19.10 17.35 15.60 1.75 8.91 58.28 60.06 

TAL22 22.40 20.70 19.00 1.70 11.18 56.08 56.65 

TAL25 25.40 23.72 22.04 1.68 13.12 52.96 53.53 

 

Table 4.3 Summary of the geometrical and specific energy absorbing characteristics 

of the 20 mm long aluminium tubes. 

 

  

Tube ID 

Outer  

diameter, 

Do [mm] 

Mean 

diameter, 

Dm [mm] 

Inside 

diameter,  

D [mm] 

Thickness, 

t [mm] 

D/t 

ratio 

SEA quasi-

static 

[kJ/kg] 

SEA 

dynamic 

[kJ/kg] 

TST12 12.62 10.94 9.26 1.68 5.51 41.46 45.73 

TST16 15.78 14.10 12.42 1.68 7.39 36.94 39.82 

TST19 19.05 17.37 15.69 1.68 9.34 31.22 34.73 

TST22 22.22 20.54 18.86 1.68 11.23 27.97 31.33 

TST25 25.40 23.72 22.04 1.68 13.12 24.12 26.50 

 

Table 4.4 Summary of the geometrical and specific energy absorbing characteristics 

of the 20 mm long steel tubes. 
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         (a) 

 

        (b) 

 

Figure 4.8 Load-displacement traces following crush tests on 20 mm long tubes with 

different values of D/t (a) aluminium (b) steel. 
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As mentioned previously, the specific energy absorption capacity of the tubes was 

determined from the area under the load-displacement trace up to the point at which 

the force begins to increase rapidly (the bottoming-out displacement) [35]. The SEA 

can also be predicted by considering the samples as thin-walled tubes. The quasi-

static mean axial crushing force of a thin-walled cylindrical tube, 𝑃𝑚, can be 

approximated by [34]: 

𝑃𝑚 = 𝐾𝑡𝜎𝑜(𝑡𝐷𝑚)
1
2 

(4.3)  

 

where, 

 

𝐾 =
2𝜋

3
2

3
1
4√2

= 5.984 

 

 

 

and Dm is the mean tube diameter.  

For simplicity, by assuming that the effective crushing displacement is taken as 

0.75L, where L is the initial tube length, then the work done by this force up to the 

bottoming-out displacement is approximately 𝑃𝑚 × 0.75𝐿. 

Thus, the specific energy absorption is given as: 

𝑆𝐸𝐴 =
𝑃𝑚 × 0.75𝐿

𝑀
 

(4.4) 

 

where, the tube mass is 𝑀 = 𝜋𝐷𝑚𝑡𝐿𝜌, for a thin-walled tube, giving:   

SEA = k (
σo

ρ
) (

t

Dm
)

1
2

  
(4.5) 

 

where , 

𝑘 =
0.75𝐾

𝜋
= 1.428 
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This equation indicates that the SEA decreases as the ratio Dm/t (and D/t) increases 

for given values of o andρas indicated in Figure 4.9. The equation also suggests 

that the SEA should be independent of tube length, as indicated by the experimental 

results in Figure 4.7 suggesting that the assumption regarding the effective crushing 

length, based on thin-walled tubes, might not be reasonable for the thicker tubes 

studied here. 

 

Figure 4.9 Variation of the quasi-static values of SEA with D/t ratio for 20 mm long 

aluminium and steel tubes. 

 

Figure 4.10 shows images of crushed 20 mm long aluminium and steel tubes based 

on a range of initial D/t ratios. It is clear that the tubes with the lowest values of D/t 

exhibit distinct wrinkles, whereas samples with larger values of D/t tend to display a 

single bulge. The exception to this observation is the aluminium tube with a D/t 

value of 13.12, which appears to exhibit and large and a small wrinkle.  
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Indeed, Equations (4.1) and (4.2) suggest that the number of wrinkles should 

decrease as the tube diameter increases. For example the value of n for the smallest 

steel tube is 2.45 (i.e. two wrinkles), whereas that for its largest counterpart is 1.66 

(one wrinkle).  

The dynamic energy-absorbing characteristics of the aluminium and steel tubes were 

assessed through a series of drop-weight impact tests on the tubes. Figure 4.11 shows 

the variation of SEA with the tube D/t ratio under dynamic loading conditions. The 

trends in the experimental data are similar to those observed following the quasi-

static tests on the tubes (Figure 4.9). Once again, the SEA reduces as the D/t ratio 

increases. The dynamic values of SEA for the aluminium tubes are very similar to 

the quasi-static data, highlighting a lack of any rate-sensitivity in this material 

system. In contrast, the steel tubes exhibit a distinct rate-sensitivity, with the dynamic 

enhancement factor (dynamic SEA divided by the quasi-static value) being 

approximately 10%. 

It is evident from Equation (4.5) that the SEA is proportional to the flow stress, o . 

This equation is based on simple models proposed elsewhere in the literature for 

thinner tubes and shows that the SEA decreases with D/t, but is independent of L. 

Thus, the SEA will increase if the material is strain-rate sensitive. The material 

strain-rate properties of steel can be significant and a large number of articles have 

been published which reveal that the enhancement at smaller strains is much larger 

than that at large strains [34]. On the other hand, the material strain-rate properties 

for aluminium alloys are generally much less than those for steel and, in fact, are 

often taken as strain-rate insensitive, at least for strain-rates up to about 1000 sec
-1

 

[34].  
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Figure 4.10 Photos of failed 20 mm long aluminium and steel tubes with different 

initial D/t values. 
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Figure 4.11 Variation of dynamic SEA with D/t ratio for the 20 mm long aluminium 

and steel tubes.   
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4.2.4 The Effect of the Foam Density on SEA for Systems with Embedded Tubes 

Individual tubes were then embedded into foams with densities ranging from 15.6 to 

224 kg/m
3
. Details of the aluminium and steel tube-reinforced foam systems are 

given in Tables 4.5 and 4.6 respectively. Figure 4.12 shows a typical load-

displacement trace for a compression test on an aluminium tube + foam combination. 

In this figure, a trace following a test on a 12.62 mm outer diameter aluminium tube 

embedded in a 38.3 kg/m
3
 density foam is shown. Also included in the figure are the 

load-displacement traces for an individual tube as well as that for a polymer foam 

sample of similar volume to that of the combined tube + foam specimen. As 

expected, the aluminium tube dominates the response of the embedded foam. The 

performance of the reinforced foam is roughly equal to that of the sum of the 

individual foam and tube. 

 

Figure 4.12 Load-displacement curves following tests on the 20 mm long aluminium 

tube (diameter = 12.62 mm, D/t = 5.21), the 38.3 kg/m
3
 foam and the tube + foam 

combination. 
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Tube Embedded 

foam ID 

Foam Density 

[kg/m
3
] 

Foam Modulus 

[MPa] 

Quasi-static SEA of 

tube [kJ/kg] 

Dynamic SEA 

of tube [kJ/kg] 

TAL12 0 (no foam) 0 (no foam) 70.1 71.8 

T1ALP1 15.6 6 70.6 71.1 

T1ALP2 38.3 37 68.4 71.1 

T1ALP3 56.0 69 68.6 69.4 

T1ALP4 90.4 97 69.1 70.1 

T1ALP5 128.0 160 69.4 71.5 

T1ALP6 224.0 280 69.5 71.5 

 

Table 4.5 Summary of the SEA values  following tests on the 20 mm long aluminium 

tubes (diameter = 12.62 mm, D/t = 5.21) with foam densities. 

 

Tube Embedded 

foam ID 

Foam Density 

[kg/m
3
] 

Foam Modulus 

[MPa] 

Quasi-static SEA of 

tube [kJ/kg] 

Dynamic SEA 

of tube [kJ/kg] 

TST12 0 (no foam) 0 (no foam) 41.5 45.7 

T1STP1 15.6 6 41.8 45.5 

T1STP2 38.3 37 41.2 45.3 

T1STP3 56.0 69 43.1 46.3 

T1STP4 90.4 97 43.9 48.1 

T1STP5 128.0 160 42.3 46.3 

T1STP6 224.0 280 40.2 44.8 

 

Table 4.6 Summary of the SEA values following tests on the 20 mm long steel tubes 

(diameter = 12.62 mm, D/t = 5.51) with foam densities. 
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There is no evidence of any enhancement in the response of the aluminium tube 

associated with the small degree of additional support due to the presence of the low 

density foam. Figure 4.13 shows the aluminium and steel tubes following removal 

from the foam. A comparison of these images with those shown previously in Figure 

4.6 indicates that the modes of deformation and failure are similar in both the 

individual tubes and those that have been removed from the foam, indicating that the 

foam does not modify the response of the tube. This evidence supports the view that 

the foam merely acts as a support for the metal tubes and its density should be as low 

as possible. 

          

(a) 

 

               

(b) 

 

Figure 4.13 Photos of compressed (a) aluminium (diameter = 12.62 mm, D/t = 5.21) 

and (b) steel (diameter = 12.62 mm, D/t = 5.51) tubes following compression testing 

in the 38.3 kg/m
3
 foam. 

 

5 mm 
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Figure 4.14 Variation of SEA at quasi-static rates of loading with foam modulus for 

the 20 mm long aluminium (diameter = 12.62 mm, D/t = 5.21) and steel (diameter = 

12.62 mm, D/t = 5.51) tubes.  

 

Tests were then undertaken on foams with nominal densities ranging between 15.6 

and 224 kg/m
3
. The energy absorbed by the embedded tubes was estimated by 

determining the energy under the load-displacement trace for the foam on its own 

and then subtracting this value from the energy under the load-displacement trace of 

the tube + foam combination. The energy was then normalised by the mass of the 

metal tube to yield an equivalent SEA value.  

The resulting estimations for SEA for the two types of tubing are shown as a function 

of foam modulus in Figure 4.14. Also included in each figure are the values 

associated with the tests on the plain tubes (i.e. those not embedded in a foam). 

These data points are shown as being embedded in a foam having a modulus of zero.  
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From the figure, it is clear that the values of SEA of both the aluminium and steel 

tubes do not vary with foam modulus, indicating the foam serves only to maintain the 

tubes in place and not to modify or enhance their performance.  

Figure 4.15 shows typical load-displacement traces following impact tests on the 

tube/38.3 kg/m
3
 foam combination as well as the individual constituents (i.e. the tube 

and the unreinforced 38.3 kg/m
3
 foam). Clearly, the response of the tube and the tube 

plus foam combination are oscillatory, due to ringing in the load cell following 

impact of the steel impactor on the stiff aluminium tube. It is clear that the tube is 

responsible for absorbing most of the energy in these reinforced structures.  

As before, the energy absorbed by the metal tube was estimated by removing the 

energy absorbed by the foam (as determined from the dynamic compression test on 

the plain foam) and these values are presented as a function of foam modulus in 

Figure 4.16. The figure also includes the quasi-static data presented earlier as well as 

the SEA values for unsupported tubes (i.e without foam).  

Again, it is clear that the properties of the foam do not have any effect on the energy 

absorbing behaviour of the metal tubes. This suggests that a simple rule of mixtures 

approach could be used to predict the energy-absorbing capability of foams 

reinforced with a multitude of metal tubes. In addition, there is a lack of rate-

sensitivity in the response of the aluminium tubes, given that the dynamic values of 

SEA are almost identical to those measured at quasi-static rates. However, closer 

inspection of the steel values indicates that the dynamic values are higher than their 

quasi-static counterparts highlighting a rate-sensitive response.  
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Figure 4.15 Dynamic load-displacement traces for the 20 mm long aluminium (Do = 

12.62 mm, D/t = 5.21) tube, foam (density = 38.3 kg/m
3
) and foam+aluminium tube. 

 

Figure 4.16 The variation of quasi-static and dynamic SEA with foam density for the 

20 mm long aluminium (Do = 12.62 mm, D/t = 5.21) and steel (Do = 12.62 mm, D/t = 

5.51) tubes. 
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4.2.5 Tests on the Metal Multi-tube Foams 

This section investigates the effect of increasing the planar density of metal tubes on 

the quasi-static energy-absorbing response of these reinforced foam structures. Here, 

between one and five 12.6 mm diameter metal tubes were embedded into 20 mm 

thick, 60 mm square foam blocks with densities of 15.6, 90.4 and 224 kg/m
3
. Details 

of the total density and SEA are given in Tables 4.7 and 4.8.  

No of tubes 

in foam 

Density [kg/m
3
] SEA [kJ/kg]  

P1 P4 P6 P1 P4 P6 

1 51.6 126.3 220.8 57.5 29.9 26.3 

2 93.5 166.7 256.9 60.2 39.2 32.9 

3 135.4 206.9 311.1 62.1 43.6 35.9 

4 177.2 248.6 347.2 63.1 46.9 40.5 

5 219.1 286.1 384.7 65.3 50.3 42.6 

 

Table 4.7 Summary of the total density for the aluminium tubes plus foam and the 

specific energy absorption of the samples. 

 

No of tubes 

in foam 

Density [kg/m
3
] SEA [kJ/kg]  

P1 P4 P6 P1 P4 P6 

1 133.3 212.5 305.6 42.5 30.2 26.7 

2 256.9 338.9 429.2 42.1 32.1 31.3 

3 380.6 463.9 551.4 41.1 34.5 32.9 

4 505.6 586.1 677.8 41.7 35.5 34.0 

5 627.8 716.7 794.4 41.5 37.1 34.4 

 

Table 4.8 Summary of the total density for the steel tubes plus foam and the specific 

energy absorption of the samples. 
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Figure 4.17 shows the variation of SEA with core density (the density of the core 

was based on the foam and metal combined). Included in the figure are the values 

associated with the tests on the 12.6 mm diameter single tubes, presented previously 

in Figure 4.9. The resulting SEA values were calculated based on the total mass of 

the test samples, that is, no attempt was made to remove the contribution associated 

with the foam.  

Figure 4.17(a) shows that the SEA of the aluminium-P1 foam (density = 15.6 kg/m
3
) 

system increases slightly from 58 to 65 kJ/kg as the number of tubes is increased 

from one to five. Similar trends are apparent in the 224 kg/m
3
 foam, where 

increasing the number of tubes serves to increase the SEA from 26 to 43 kJ/kg. It is 

interesting to note that the SEA of the P1 structure containing five tubes for both 

metals is similar to that of the plain tube, suggesting that the response of the metal 

tubes completely masks that of the foam.  

It is anticipated that increasing the number of metal tubes in the foams serves to 

increase the overall SEA of the structure. However, this is true for all of the samples 

tested except for those steel tubes in P1 foam, Figure 4.17(b). The SEA value 

regardless any number of steel tubes in P1 foam was observed to be almost similar to 

the SEA of individual steel tubes tested. This is related to the much lower density of 

the foam that has insignificant effect to the total SEA of the structures. A closer 

inspection of the aluminium and steel tubes following removal from the foam multi-

tube foams structures shows that the buckling response is similar to that of individual 

tubes as previously shown in Figure 4.13. The experimental evidence suggests that 

the foam does not modify the response of the tube and that that a simple rule of 

mixtures approach could be used to estimate the energy-absorbing capability of 

foams reinforced with a multitude of metal tubes.  



Chapter 4                                                      Results and Discussion 

120 

 

 

(a) 

 

(b) 

Figure 4.17 Variation of the quasi-static SEA with total tube plus foam density for 

the 20 mm long (a) aluminium (diameter = 12.62 mm, D/t = 5.21) and (b) steel 

(diameter = 12.62 mm, D/t = 5.51) tubes.  
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4.3 CFRP Tube-reinforced Foam Structures 

4.3.1 Resin Burn-off Tests on the CFRP Tubes 

A burn-off test is a common test to identify the volume fraction of individual 

constituent of a composite material. The composite materials investigated in this 

research were based on readily-available tubes supplied by Easy Composite Ltd. Six 

different sizes of tubing were investigated, with outer diameters ranging from 

approximately 10.2 mm to 63.6 mm and values of the ratio of internal diameter to 

thickness (D/t) ranging from 6.3 to 32.6. The tubes were based on a unidirectional 

T700 carbon fibre-reinforced epoxy wrapped with unidirectional E-glass fibres and 

produced using a roll-wrapping procedure [129]. 

The weight fraction of fibres in the composite tubes was determined by burning off 

the resin in a furnace at a temperature of 560
o
C [138]. A total of 18 samples were 

tested and analysed to determine the fibre weight fraction values of the composite.   

Figure 4.18 shows photographs the before and after resin burn-off of a 12.7 mm 

specimen. After the burning process, the resin was completely removed from 

composite specimen and the remaining fibres are apparent. It is clear that the carbon 

fibres are unidirectional and oriented along the 0
o
 direction while the glass fibres are 

oriented at 90
o
.  

                                         

                              (a)                        (b) 

Figure 4.18 Specimen with diameter of 12.7 mm CFRP tubes (a) before and (b) 

following resin burn-off in a furnace. 
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Table 4.9 gives a summary of the CFRP tubes following burn-off tests. From this 

test, parameters such as the weight fraction, 𝑊, volume of the sample, 𝑣𝑠, volume 

fraction, 𝑉, density, 𝜌𝑠, and longitudinal modulus, 𝐸1, were determined. For 

example, by considering the CF12A sample, the weight fraction of the carbon fibre, 

glass fibre and epoxy resin matrix are given by [10]: 

1 = 𝑊𝑓𝑐 +  𝑊𝑓𝑔 + 𝑊𝑚 

 

(4.6) 

 

𝑊𝑓𝑐 =
𝑚𝑓𝑐

𝑚𝑠
=

0.65

1.60
= 0.40 

 

 

𝑊𝑓𝑔 =
𝑚𝑓𝑔

𝑚𝑠
=

0.38

1.60
= 0.24 

 

 

𝑊𝑚 =
𝑚𝑚

𝑚𝑠
=

0.57

1.60
= 0.36 

 

 

∴    𝑊𝑓 =  𝑊𝑓𝑐 + 𝑊𝑓𝑔 = 0.40 + 0.24 = 0.64 

 

 

 

The results presented in Table 4.9 show that the fibre weight fraction varied from 

0.58 to 0.65 across the range of tube diameters with the average being 0.62. Such 

variations in the fibre weight fraction are linked to difficulties in accurately wrapping 

the fibres during the manufacturing process. 
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Table 4.9 Summary of the CFRP tubes with various diameters following burn-off tests. 

Outer 

diameter, 

Do [mm] 

Sample 

ID 

Mass 

sample, ms  

[g] 

Mass 

Fibre, mf  

[g] 

Mass carbon 

fibre, mfc   

[g] 

Mass glass 

fibre, mfg  

[g] 

Mass 

Matrix, mm [g] 

Fibre weight 

fraction, Wf 

Longitudinal 

modulus, E1 

[GPa] 

Predicted 

density 

[g/cm
3
] 

10.20 

CF10A 1.00 0.59 0.37 0.22 0.41 0.59 82.73 1.50 

CF10B 0.99 0.57 0.36 0.21 0.42 0.58 80.14 1.49 

CF10C 0.94 0.54 0.34 0.20 0.40 0.57 79.88 1.49 

Average 0.98 0.57 0.36 0.21 0.41 0.58 80.91 1.50 

12.70 

CF12A 1.60 1.03 0.65 0.38 0.57 0.64 92.95 1.56 

CF12B 1.60 1.04 0.66 0.38 0.56 0.65 94.18 1.56 

CF12C 1.49 0.95 0.65 0.30 0.54 0.64 96.22 1.54 

Average 1.56 1.01 0.65 0.36 0.56 0.64 94.45 1.55 

29.40 

CF29A 4.44 2.62 1.65 0.97 1.82 0.59 82.75 1.50 

CF29B 4.27 2.59 1.63 0.96 1.68 0.61 85.80 1.52 

CF29C 4.30 2.66 1.68 0.98 1.64 0.62 88.08 1.53 

Average 4.34 2.62 1.65 0.97 1.71 0.61 85.54 1.52 

40.90 

CF40A 5.71 3.94 2.48 1.46 1.77 0.69 102.33 1.61 

CF40B 5.85 3.75 2.36 1.39 2.10 0.64 92.41 1.55 

CF40C 6.37 3.92 2.47 1.45 2.45 0.62 87.47 1.53 

Average 5.98 3.87 2.44 1.43 2.11 0.65 94.07 1.56 

50.40 

CF50A 7.61 4.79 3.02 1.77 2.82 0.63 90.16 1.54 

CF50B 7.50 4.67 2.77 1.90 2.83 0.62 85.85 1.55 

CF50C 7.73 4.79 2.89 1.90 2.94 0.62 86.12 1.54 

Average 7.61 4.75 2.89 1.86 2.86 0.62 87.37 1.54 

63.60 

CF63A 11.33 6.77 4.27 2.50 4.56 0.60 84.12 1.51 

CF63B 11.50 7.00 4.41 2.59 4.50 0.61 86.20 1.52 

CF63C 11.52 7.16 4.56 2.60 4.36 0.62 89.19 1.53 

Average 11.45 6.98 4.41 2.56 4.47 0.61 86.51 1.52 

Average 0.62 88.14 1.53 
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The volume of a sample is related to the density of the constituents, as listed in Table 

4.10. The volume for the CF12A sample can be determined by: 

𝑣𝑠 = 𝑣𝑓𝑐 +  𝑣𝑓𝑔 + 𝑣𝑚 

 

(4.7) 

 

𝑣𝑓𝑐 =
𝑚𝑓𝑐

𝜌𝑓𝑐
=

0.65

1.80
= 0.36 𝑐𝑚3 

 

 

𝑣𝑓𝑔 =
𝑚𝑓𝑔

𝜌𝑓𝑔
=

0.38

2.56
= 0.15 𝑐𝑚3 

 

 

𝑣𝑚 =
𝑚𝑚

𝜌𝑚
=

0.57

1.10
= 0.52 𝑐𝑚3 

 

 

∴    𝑣𝑠 = 1.03 𝑐𝑚3  
 

 

Volume fraction which refers to the fibre content is given by: 

1 = 𝑉𝑓𝑐 +  𝑉𝑓𝑔 + 𝑉𝑚 

 

(4.8) 

 

𝑉𝑓𝑐 =
𝑣𝑓𝑐

𝑣𝑠
=

0.36

1.03
= 0.35 

 

 

𝑉𝑓𝑔 =
𝑣𝑓𝑔

𝑣𝑠
=

0.15

1.03
= 0.14 

 

 

𝑉𝑚 =
𝑣𝑚

𝑣𝑠
=

0.52

1.03
= 0.50 

 

 

The density of the sample is obtained from the relationship: 

𝜌𝑠 = 𝜌𝑓𝑐𝑉𝑓𝑐 + 𝜌𝑓𝑔 𝑉𝑓𝑔 + 𝜌𝑚𝑉𝑚 

 

(4.9) 

 

𝜌𝑠 = (1.80)(0.35) + (2.56)(0.14) + (1.10)(0.50) 
 

 

∴    𝜌𝑠 = 1.56 𝑔/𝑐𝑚3 
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The carbon fibres that are stronger and stiffer dominate the longitudinal properties of 

the tube. By assuming a perfect bond between fibres and matrix, the longitudinal 

strains are equal throughout the length of the tube. The longitudinal modulus is given 

by: 

𝐸1 = 𝐸1𝑓𝑐𝑉𝑓𝑐 + 𝐸1𝑓𝑔 𝑉𝑓𝑔 + 𝐸1𝑚𝑉𝑚 

 

(4.10) 

𝐸1 = (230)(0.35) + (72.40)(0.14) + (3.50)(0.50) 
 

 

∴    𝐸1 = 92.95 𝐺𝑃𝑎 
 

 

The relation presented above is known as a rule of mixtures for the longitudinal 

modulus associated with the moduli of the constituents and volume fractions. The 

density and longitudinal modulus values provide a comparison between the 

analytical values and those supplied by the manufacturer. Verification of these values 

is important and useful when undertaking finite element modelling.  

 

Property  Carbon fibre 

T700 [139] 

E-glass fibre     

[10], [140] 

Epoxy resin 

[141] 

CFRP tube 

[129] 

E1 [GPa] 230 72.4 3.5 90 

E2,E3 [GPa] 19 72.4 3.5 19 

G12,G13 [GPa] 27.6 30.2 1.29 4.6 

G23 [GPa] 7.04 30.2 1.29 4.6 

v12, v13 0.2 0.2 0.35 0.14 

v23 0.35 0.2 0.35 0.14 

Density [g/cm
3
] 1.80 2.56 1.10 1.60 

 

Table 4.10 The elastic properties of the tube constituents and the CFRP tube 

properties as provided by the manufacturer. 
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By referring to Tables 4.9 and 4.10, the average predicted density (1.53 g/cm
3
) was 

found to be very close to the value given by the supplier (1.60 g/cm
3
). While the 

average calculated longitudinal modulus (88.14 GPa) differs only by 2% from the 

given value (90GPa). In this case, some of the differences were related to 

uncertainties in the measurements and imperfections caused during manufacturing 

process. Another aspect may also be due to the nature of variations in the 

microstructure within the tube constituents. Nevertheless, the predictions from the 

rule of mixtures are considered reliable and in a good agreement with the expected 

values. This indicates that the mechanical properties are valid for the finite element 

analysis in Chapter 5. 
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4.3.2 Tensile Tests on the CFRP Tubes 

CFRP tubes with an outer diameter of 12.7 mm were tested under tensile loading. 

Generally, grips are clamped onto the flat ends of a specimen and a tensile force is 

applied through shear at the specimen grip surfaces, generating tensile stresses within 

the specimen [131]. The greatest challenge in conducting a tensile test on a 

composite tube is to grip the specimen without generating high stress concentrations 

that can cause the tube to fracture at the grip. Hence, a steel rod was inserted into the 

tube ends to prevent the tube from breaking, due to the clamping force applied.  

 

Figure 4.19 Stress-strain curve following a tensile test on a 12.7 mm diameter (D/t = 

7.4) CFRP tube. (The figure includes the stress-strain curve for aluminium and steel). 

 

 

 

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35 40 45

E
n
g
in

ee
ri

n
g
 s

tr
es

s 
(M

P
a)

 

Engineering strain (%) 

Steel 

Aluminium 

CFRP 



Chapter 4                                                      Results and Discussion 

128 

 

The stress-strain curve for the CFRP tube is shown in Figure 4.19 and the related 

data are summarised in Table 4.11. For comparison purposes, the stress-strain curves 

for the aluminium and steel are also included in the figure. The stress-strain curve for 

the carbon fibre-reinforced polymer was virtually linear. The stress increased steeply 

up to approximately 700 MPa and fracture occurred. This is a characterisation of 

brittle materials due to the fact that abrupt rupture occurs without any visible 

indication [18]. The elongation at rupture was approximately 0.5%. This is relatively 

very small compared to aluminium and steel, which fractured at strains of 

approximately 15% and 40% respectively. In this case, the CFRP is inherently brittle 

and exhibits extremely low ductility, whereas the steel material, which is the most 

ductile material, offers the highest strain to failure. 

 

Material Circular CFRP tube 

Outer diameter, Do [mm] 12.7 mm 

Thickness, t [mm] 1.35 mm 

Density [kg/m
3
] 1590 kg/m

3
 

Tensile strength [MPa] 691 

Tensile modulus [GPa] 87 

 

Table 4.11 Summary of the mechanical properties of the circular CFRP tube. 
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The tensile test results show that the CFRP material offers a superior tensile strength 

(691 MPa) than the aluminium and steel. The tensile strength of the CFRP is 

approximately 3.5 and 1.5 times greater than the aluminium and steel materials 

respectively. As for the tensile modulus, the value obtained from the test on the 

CFRP tube is 87 GPa. The CFRP tube is the lightest, a density of about 40% lower 

than the aluminium and 80% lower than the steel. The properties obtained from 

tensile tests were compared to the previous values calculated using the rule of 

mixtures. Agreement between the analytically-predicted (Table 4.9) and the 

measured (Table 4.11) values for the CFRP samples are generally good. 
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4.3.3 The Effect of the Length of the CFRP Tubes on SEA 

The primary aim of this research study was to investigate the specific energy 

absorbing characteristics of the CFRP tube-reinforced foams as shown in Figure 

4.28. However, prior to testing the reinforced foams, attention focused on 

establishing the influence tube length of individual CFRP tubes on their resulting 

energy absorbing characteristics. The influence of tube length was investigated by 

conducting compression tests on 10.2 mm and 12.7 mm diameter CFRP tubes with 

lengths of 15, 20, 25, 30 and 40 mm.  

Figure 4.20 shows typical load-displacement traces following static compression 

tests on the 10.2 and 12.7 diameters of CFRP tubing. All traces in the 10.2 mm and 

12.7 mm diameters of CFRP tubes respond in an initial linear elastic manner before 

failure occurs at forces of approximately 7 and 11 kN respectively. Beyond the initial 

failure point, constant crushing can be observed for both diameters, at average forces 

of 6 kN for the 10.2 mm diameter and 10 kN for the 12.7 mm tube diameter. This 

behaviour was associated with progressive crushing in the tube and will be discussed 

in further detail in the next part. It is clear that when the diameter of the structure is 

increased from 10.2 to 12.7 mm, the stable crushing force increased by 

approximately 60%.  

In general, the crush length increased with increasing tube length from 15 to 40 mm. 

The crushing process proceeds in a stable manner up to approximately 70% of the 

total tube length, before the onset of densification [25]. Prior to densification of the 

structure, final collapse of the tube wall was indicated by an abrupt drop in force that 

was observed in all samples.  
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 (a) 

 

    (b) 

Figure 4.20 Load displacement traces following quasi-static tests on (a) 10.2 mm 

diameter (D/t = 6.3) and (b) 12.7 mm diameter (D/t = 7.4) CFRP tubes of different 

length. 
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Figure 4.21 shows photos of the remnants of the composite tubes following quasi-

static tests on different lengths of 12.7 mm diameter tubes. All lengths of the 12.7 

mm diameter tube failed in delamination along its mid-plane by forming outwards 

and inwards fronds. The CFRP tubes have been clearly compressed by longitudinal 

splitting mode, leaving long fibre strands of similar length to that of the original tube.  

Closer examination of the samples in Figure 4.21 highlights the presence of residual 

debris. The unidirectional carbon fibres are supported by the hoop glass fibres that 

determined the bending radius of the unidirectional carbon fibres during crushing 

process. A small bending radius yields a greater bending stresses, which leads to an 

increase in the number of fractures in the composite layers [105]. More debris can be 

observed in Figure 4.21(c) compared to Figure 4.21(a) as the crushing process was 

longer which produced additional fractures. Clearly, the photographs highlight the 

importance of progressive crushing mechanism in the energy-absorbing process 

within the CFRP tubes.   

 

       

                  (a)                           (b)                       (c) 

Figure 4.21 Remnants of the composite tubes following quasi-static tests on 12.7 mm 

(D/t = 7.4) CFRP tubes of (a) 15 mm, (b) 30 mm and (c) 40 mm long.  
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Figure 4.22 shows the variation of the specific energy absorption of 10.2 mm and 

12.7 mm diameter CFRP tubes with lengths of 10, 20, 25, 30 and 40 mm. An 

examination on the figure indicates that the smaller tube clearly out-performs its 

larger diameter counterpart by approximately 8%. Interestingly, even though the 

stable crushing force of the 12.7 mm diameter tube is higher by 60% compared to the 

10.2 mm diameter, the SEA of the smaller tube was found to be higher than its larger 

diameter. The data indicate that the variation of the specific energy absorption of the 

tubes with tube length is roughly constant for both tube diameters. This suggests that 

the tube length has an insignificant effect on the CFRP tubes tested, an observation 

that agrees with the findings of Fairfull [94]. The evidence agrees with the 

observations evident in Figure 4.21, where the remnants of the composite tubes 

showing similar crushing mode with longer strands and more debris as the tube 

length is increased from 15 to 40 mm.  

 

Figure 4.22 SEA of 10.2 mm and 12.7 mm diameter CFRP tubes with length of 10, 

20, 25, 30 and 40 mm. 
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4.3.4 The Effect of the Diameter of the CFRP Tubes on SEA 

This study focused on investigating the crush behaviour of the individual composite 

tubes and assessing the influence of the tube diameter to thickness (D/t ratio) on their 

energy-absorbing capability, details are given in Table 4.12. Here, six different sizes 

of tubing were considered, with outer diameters ranging from approximately 10.2 

mm to 63.6 mm. The values of D/t ranged from 6.3 to 32.6 for the composite tubes.  

Tube ID 

Outer 

dia., Do 

[mm] 

Inner 

dia., D 

[mm] 

Thickness, 

t [mm] 
D/t 

Mass,  

m [g] 

Fibre 

weight 

fraction 

SEA 

static 

[kJ/kg] 

SEA 

dynamic 

[kJ/kg] 

TCF10 10.20 7.74 1.23 6.3 0.95 0.58 93.3 88.2 

TCF12 12.70 10.00 1.35 7.4 1.50 0.64 89.2 79.0 

TCF29 29.40 26.28 1.56 16.9 3.90 0.61 81.4 67.1 

TCF40 40.90 37.54 1.68 22.4 5.20 0.65 76.7 58.9 

TCF50 50.40 47.04 1.68 28.0 6.50 0.62 58.5 51.9 

TCF63 63.60 59.92 1.84 32.6 9.90 0.61 48.1 42.7 

 

Table 4.12 Summary of the geometrical and specific energy absorbing characteristics 

of 20 mm long CFRP tubes. 

 

Figure 4.23(a) shows typical load-displacement traces for tubes with diameters of 

10.2, 12.7 and 29.4 mm (D/t values between 6.3 and 16.9) under quasi-static loading. 

All three traces exhibit similar characteristics, with failure occurring in a stable 

manner at an approximately constant force. The largest diameter tube displays an 

initial, albeit broad, peak in spite of the fact that it contained a trigger mechanism.  
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         (a) 

    

         (b) 

Figure 4.23 Typical load-displacement traces following crush tests on tubes with 

different values of D/t (a) quasi-static test (b) dynamic test. 
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(a) 10.2 mm 

 

 

(b) 12.7 mm 

 

    

(c) 29.4 mm 

 

 

(d) 63.6 mm 

 

Figure 4.24 The quasi-static crushing process in tubes with diameters of (a) 10.2 (D/t 

= 6.3) , (b) 12.7 (D/t = 7.4) and (c) 63.6 mm (D/t = 32.6). 
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Figure 4.24 shows photos of the crushing process in the tubes. An examination of the 

10.2 mm and 12.7 mm diameter tubes highlights the presence of a distinct crush 

front, in which the fibres splay outwards against the moving platen. Closer inspection 

of the lower platen suggested that the failure process generated a significant number 

of small fragments, suggesting that a large number of fibres had been fractured 

during the crush process. In contrast, the larger diameter tube failed in a delamination 

mode, with the composite fracturing vertically in an interlaminar mode along its mid-

thickness. 

Figure 4.25(a) shows the remnants of the test samples following these quasi-static 

tests. An examination of the figure highlights very different failure modes in the 

three specimens. The smallest tube was reduced to fine particles and fragments, with 

there being little or no evidence of the original unidirectional structure. The 12.7 mm 

diameter tube failed in delamination along its mid-plane as well as in a longitudinal 

splitting mode, leaving long fibre strands of similar length to that of the original tube. 

In addition, a limited amount of residual powder was in evidence following failure.  

Finally, fracture of the large 63.6 mm tube resulted in the formation of relatively 

large plate-shaped structures, with there being little evidence of the aforementioned 

residual dust on the lower platen. Closer examination of the test indicated that these 

platelets formed as a result of the downward propagation of large planes of 

delamination during compression. During failure, the innermost layers of composite 

collapsed inwards, whilst the outer layers fractured and fell onto the steel platen. A 

comparison of the three images in Figure 4.25 clearly gives qualitative evidence for 

the higher specific energy absorption of the smaller diameter tubes.  

 



Chapter 4                                                      Results and Discussion 

138 

 

 

                              

         

     10.2 mm (D/t = 6.3)                 12.7 mm (D/t = 7.4)                63.6 mm (D/t = 32.6) 

   (i)                 (ii)                 (iii) 

  (a) 

 

      10.2 mm (D/t = 6.3)                 12.7 mm (D/t = 7.4)               63.6 mm (D/t = 32.6) 

     (i)                  (ii)                   (iii) 

    (b) 

Figure 4.25 Remnants of the composite tubes following (a) testing at 1mm/minute 

(b) testing at 5 m/s. 
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Figure 4.26 shows the variation of SEA with D/t for the six tube diameter tested here. 

From the figure, it is clear that the SEA of the composite tubes increases with 

decreasing D/t, an observation that agrees with the findings of Farley [90]. For 

example, the value of SEA passes from approximately 50 kJ/kg for a D/t ratio of 32.6 

to 93.3 kJ/kg when D/t equals 6.3. A comparison of Figures 4.25 and 4.26 indicates 

that those tubes that fragment into very small particles absorb significantly more 

energy than those that fail in a macroscopic manner. Farley conducted static crushing 

tests on CFRP tubes with values of D/t between 3.8 and 120 and observed increasing 

values of SEA with decreasing D/t [90]. 

This increase in energy absorption was related to a reduction in interlaminar cracking 

in the crushed region of the tube and a non-linear increase in the force required to 

buckle a ply. In early work on energy-absorption in metal tubes, Alexander [56] 

observed that failure occurred as a result of local wrinkling or buckling of the tube 

walls. It was shown that the mean crushing force Pm, associated with this type of 

failure is related to D, t and the materials flow stress, , through: 

𝑃𝑚 = 2(𝜋𝑡)3/2 (
𝐷

2
)1/2 𝜎0/31/4 

(4.11) 

 

Assuming that this force acts over the length of crush, it can be shown that the SEA 

of such a tube is proportional to (t/D)
1/2

. Clearly, composite tubes do not fail in the 

same way as do their metal counterparts. However, it is likely that failure in both 

types of material involves local buckling (either of the metal walls or the composite 

plies) and therefore this equation highlights a geometrical dependency that may be 

more broadly applicable.  
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Figure 4.26 The variation of the specific energy absorption of the composite tubes at 

quasi-static and dynamic rates with diameter to thickness ratio. 

 

Figure 4.23(b) shows typical load-displacement traces following dynamic tests on the 

composite tubes. A comparison of the load-displacement traces in Figures 4.23(a) 

and (b) indicates that the average crush loads are lower at dynamic rates of loading, 

which in turn is indicative of a lower energy absorption. The resulting values of SEA 

are compared with the quasi-static data in Figure 4.26. Here, it is indeed clear that 

the dynamic values of energy absorption are lower than the quasi-static data 

suggesting a pronounced rate-sensitivity. The figure indicates that differences 

between the quasi-static and dynamic values are greatest at intermediate values of 

D/t, possibly as a result of a change in failure mechanism with increasing rate.  
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The trends in Figure 4.26 agree with the findings reported by Schmueser and 

Wickliffe [95], who observed sizeable reductions in SEA at dynamic rates of 

loading. Figure 4.25(b) shows the composite tubes after impact testing. A 

comparison of the two sets of specimens does not highlight any significant 

differences between the samples, although the qualitative evidence does suggest that 

there are larger fragments in the dynamically-loaded samples. Given that 

delamination-type failure has been observed in the intermediate and larger diameter 

tubes, the reduction in SEA may be associated with a drop in the Mode I interlaminar 

fracture toughness of the composite at higher rates. 
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4.3.5 The Effect of the Foam Density on SEA for Systems with Embedded Tubes 

The next stage of this research study investigated the behaviour of the composite 

tubes when embedded in a foam core. Single 20 mm long tubes, with a diameter of 

10.2 mm, were inserted in 20 mm thick foams with densities ranging from 15.6 

kg/m
3 

to 224 kg/m
3
. The energy absorbed by the embedded tubes was estimated by 

subtracting the energy value from the foam as previously discussed in Section 4.2.4. 

Table 4.13 summarises the results in terms of quasi-static and dynamic specific 

energy absorption. 

Tube Embedded 

foam ID 

Foam Modulus 

[MPa] 

Foam Density 

[kg/m
3
] 

Quasi-static SEA 

of tube [kJ/kg] 

Dynamic SEA 

of tube [kJ/kg] 

TCF10 0 (no foam) 0 (no foam) 93.3 88.2 

T1CFP1 6 15.6 93.2 90.6 

T1CFP3 69 56.0 106.0 100.3 

T1CFP4 97 90.4 107.3 99.6 

T1CFP5 160 128.0 120.5 105.4 

T1CFP6 280 224.0 155.8 133.0 

 

Table 4.13 Summary of the specific energy absorption of the 10.2 mm (D/t = 6.3) 

diameter tubes with the energy absorbed by the foam removed. 

 

Figure 4.27(a) shows typical load-displacement traces following quasi-static tests on 

the tube-reinforced P3 foam (density of 56 kg/m
3
). Also included in the figure are the 

corresponding traces for the plain tube and the equivalent unreinforced foam. An 

examination of the figure indicates that the stabilised crushing load for the tube-foam 

system is approximately 9.2 kN, suggesting that the reinforced foam structure offers 

a response that is slightly higher than the sum its individual components (6.25 kN for 
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the tube and 1.8 kN for the foam). This difference became more pronounced as the 

foam density increased. For example, the 224 kg/m
3
 system exhibited an average 

force that was approximately 10 kN higher than the sum of its individual 

components, as shown in Figure 4.27(b).  

Figure 4.28 shows the corresponding hybrid structures following testing. A closer 

inspection on the P3 foam in Figure 4.28(a)ii shows a slight lateral fracture around 

the perimeter of the tube, whereas this was not observed in the denser P6 foam. Here, 

the composite has been crushed without spreading laterally beyond its initial 

diameter. A comparison of Figures 4.28(a)ii and 4.24(a) suggests that the foam 

serves to constrain the splaying process, possibly resulting in greater levels of 

crushing within the embedded tube. Indeed, subsequent removal of the tube from the 

core indicated that the composite had been reduced to an even finer particle size as 

the foam density increased.  

Given that the composite is likely to be principal energy-absorbing material in these 

bi-material systems (particularly at low foam densities) the SEA of the embedded 

tubes was estimated by removing the energy absorbed by the foam from the 

combined tube/foam trace. Here, it was assumed that the foam absorbed an amount 

of energy equivalent to that of a block containing the same volume of material. 
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(a) 

 

 (b) 

Figure 4.27 Load-displacement traces following quasi-static tests on the tube-

reinforced structures (tube diameter = 10.2 mm) on the (a) P3 structures (foam 

density = 56 kg/m
3
) and (b) P6 structures (foam density = 224 kg/m

3
). 
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                    (i)                       (ii)          (iii) 

     (a) 

 

 

      

                    (i)                        (ii)           (iii) 

       (b) 

Figure 4.28 (i) An untested foam-tube sample (ii) the sample following testing (iii) 

the remnants of the 10.2 mm (D/t = 6.3) tube following testing on 10.2 mm tube-

foam combination of (a) P3 foam (foam density = 56.0 kg/m
3
) and (b) P4 foam 

(foam density = 224 kg/m
3
). 
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Figure 4.29 shows the variation of the resulting estimates for the SEA of the 

individual tubes as a function of foam modulus. Included in the figure is the value 

associated with crushing the plain, unsupported tube (i.e. corresponding to the case 

where the foam modulus equals zero). From the figure, it is clear that increasing the 

density of the foam results in a greater absorption of energy within the individual 

tubes. The data suggest a linear relationship between SEA and modulus, with the 

energy absorption value associated with the tube reaching approximately 155 kJ/kg 

in the highest density foam. 

Figure 4.30 shows the load-displacement traces following impact tests on the 56 

kg/m
3
 system. Here, the force for the tube + foam rises steadily to a maximum of 10 

kN before oscillating around a value of approximately 9 kN. Such oscillatory 

behaviour is likely to be due to dynamic effects in the load cell and drop-weight 

carriage, as well as instabilities in the fracture process (possibly in the previously-

reported delamination mode of failure). The load-displacement trace for the plain 

foam is slightly higher than its quasi-static counterpart, due to rate effects in the 

polymer. The average SEA of the tube in this tube-foam combination was found to 

be approximately 100 kJ/kg, this being slightly lower (6%) to its quasi-static value 

reported in Table 4.13.  

Figure 4.29 includes the SEA values resulting from the dynamic tests on the tube-

foam hybrids. As before, the contribution of the foam has been removed in order to 

establish the SEA of the individual tubes. Once again the contribution of the tube 

increases with foam modulus, although the effect of foam density is less than that 

observed following the quasi-static tests. It is interesting to note that the difference 

between the quasi-static and dynamic values increases with foam density. 



Chapter 4                                                      Results and Discussion 

147 

 

 

Figure 4.29 The variation of the specific energy absorption of the 10.2 mm diameter 

tubes with foam density. 

 

 

Figure 4.30 Load-displacement traces following tests on the tube-reinforced 

structures (tube diameter = 10.2 mm) following dynamic-tests on the 56 kg/m
3
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4.3.6 Tests on the CFRP Multi-tube Foams 

The next stage of this investigation focused on studying the effect of increasing the 

planar density of the tubes on the energy-absorbing response of these structures. 

Here, between two and five 10.2 mm diameter tubes were embedded in 50 mm 

square blocks of 20 mm thick foam. Table 4.14 lists the measured total density and 

calculated SEA results of the crushing tests. The resulting SEA values were 

calculated based on the total mass of the test samples (i.e. no attempt was made to 

remove the contribution of the foam).  

No of tubes 

in foam 

Density [kg/m
3
] SEA [kJ/kg] 

P1 P4 P6 P1 P4 P6 

1 34.0 106.5 235.7 54.0 27.6 21.9 

2 52.5 122.5 247.5 66.8 41.4 33.1 

3 71.0 138.6 259.2 76.1 51.5 42.3 

4 89.5 154.7 270.9 78.9 58.7 49.5 

5 107.8 170.7 282.7 86.1 66.4 60.1 

 

Table 4.14 Summary of the total density for the CFRP tubes plus foam and the 

specific energy absorption of the samples. 

 

Figure 4.31 shows the variation of SEA with core density (the density of the core 

was based on the foam and composite combined). Included in the figure are the 

values associated with the tests on the single tubes, presented previously in Figure 

4.29. As expected, increasing the number of tubes in the foams serves to increase the 

overall SEA of the structure. For example, the SEA of the P1 (density = 15.6 kg/m
3
) 

system increases from 54 to 86 kJ/kg as the number of tubes in the 50 mm square 

blocks is increased from one to five.  
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Figure 4.31 Specific energy absorption values for the tube-reinforced foams as a 

function of core density (including the contribution of the tubes). 

 

Similar trends are apparent in the 224 kg/m
3
 foams where increasing the tube density 

leads to significant increases in SEA. It is interesting to note that the SEA of the five 

tube-P1 foam structure is similar to that of the plain tube, suggesting that the 

contribution of the foam is negligible. It is believed that lower foam densities would 

be required to achieve a similar condition in the two, three and four tube systems. For 

example, consider the data points associated with the three tube systems. If the 

trendline that passes through these points is extended to lower densities (see figure), 

it appears that a (core + foam) density of approximately 50 kg/m
3
 would yield a 

value of energy absorption similar to that of an individual tube. As mentioned 

previously, the highest SEA recorded during these tests is approximately 86 kJ/kg, 
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recorded on the five tube/P1 foam structure and this value will be compared with 

data from tests on other core materials in the final part of this chapter. 

Figure 4.32 shows the crushed multi-tube foam structures consisting of two and four 

number of tubes. It is interesting to note that the interaction between the 

neighbouring tubes during the crushing process was minimised by placing the 

chamfered ends alternately facing up and down. A closer inspection of the composite 

tubes following removal from the foam multi-tube foams structures shows that the 

crushing response are similar to that of tubes as previously discussed in Section 

4.3.5. This suggests that the neighbouring tubes do not affect the response of the 

tubes in the foams reinforced with a multitude of composite tubes.  

 

                    

Figure 4.32 Composite tubes embedded in the P4 foam following compression tests. 
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4.4 Blast Tests on the Tube-reinforced Foam Structures 

Preliminary blast tests were conducted on a limited number of sandwich panels based 

on 105 x 105 mm of 20 mm thick plain P3 foam (density = 56 kg/m
3
) and P3 foam 

reinforced with nine tubes of the CFRP, aluminium and steel. The explosive (PE4) 

mass used and blast results are presented in Table 4.15. The number of blast tests 

conducted was limited due to inadequate amount of the explosive material. The 

explosive mass of PE4 consists of the mass of explosive directly applied to the 

explosive disc plus the mass of explosive applied to the detonator.  

Sample 
Sandwich Panel 

ID 

Explosive mass, 

PE4 [g] 
Impulse [Ns] 

Approximate 

Crush Level [%] 

P3 foam only P3P1 10+1 20.7 85 

P3P2 15+1 26.6 85 

P3P3 20+1 31.4 85 

P3 foam + 

CFRP tubes 

P3CF1 10+1 21.4 30 

P3CF2 15+1 34.4 55 

P3CF3 20+1 37.9 60 

P3CF4 25+1 41.3 68 

P3CF5 30+1 46.4 70 

P3 foam + 

Aluminium 

tubes 

P3AL1 10+1 23.1 4 

P3AL2 30+1 46.7 25 

P3AL3 40+1 61.9 50 

P3AL4 50+1 71.2 52 

P3 foam + Steel 

tubes 

P3ST1 10+1 21.5 1 

P3ST2 30+1 52.9 5 

P3ST3 40+1 78.4 12 

          Table 4.15 Summary of the blast conditions on the sandwich panels. 
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The level of crush in the foam, CFRP, aluminium and steel structures was plotted 

against the blast impulse as shown in Figure 4.33. The approximate crush level was 

determined from the average deformation of the tubes and foam sample [142]. 

Clearly, the crush level shows a linear relationship up to the densification where the 

points reach a plateau for all materials except for steel. Up to the highest impulse 

tested (78.4 Ns), the maximum deformation of steel tubes is approximately 12%. 

Figure 4.34 shows the top surface and cross-section view of the CFRP and 

aluminium tubes-reinforced foam sample subjected to blast impulse of 41.3 and 71.2 

Ns respectively. It is worth reiterating that five of the CFRP tubes were facing 

upwards and four downwards, as shown in Figure 4.34(a). An inspection of the panel 

clearly illustrates that the five upwards facing tubes CFRP tubes have undergone 

crushing of approximately 68% during the failure process. Observation of the sample 

shows that the CFRP tubes failed by localised crushing of the chamfered ends and 

lateral splaying. This evidence indicates that the tubes have failed in a similar 

manner to that observed following quasi-static tests. An examination of the cross-

section indicates that the downward facing tubes have also failed in crushing. 

Increasing the impulse to 46.4 Ns for the CFRP sample resulted in approximately 

similar crushing level as before but with more extensive damage of the foam.  

The aluminium tubes which failed by buckling mode were observed to deformed 

approximately 52%, Figure 4.34(b). The cross-section images show that the most of 

the deformation occurred at the tubes closer to the outer edges. This could be due to 

the force concentration at the edges inside of the blast tube. Similar failure modes 

were also observed in the remaining panels subjected to different levels of applied 

impulse. Hence, this evidence suggests that composite and metal tube-reinforced 

foams do offer potential for use in blast-resistant designs. 
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Figure 4.33 The variation of the crush level with the applied blast impulse. 

 

 
 

 

  
(a)                                                            (b) 

Figure 4.34 The top and cross-sectional views of blast-loaded specimens of (a) 

CFRP-foam (Impulse = 41.3 Ns) and (b) aluminium-foam (Impulse = 71.2 Ns) 

structures. 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
ru

sh
 L

ev
el

 (
%

) 

Impulse (Ns) 

P3 foam only
P3 foam + CFRP tubes
P3 foam + Aluminium tubes
P3 foam + Steel tubes



Chapter 4                                                      Results and Discussion 

154 

 

4.5 Comparison with other Energy-absorbing Cores 

Quasi-static compression tests were carried out on commonly used energy absorber 

structures to benchmark the energy absorbing performance of the systems tested 

here. The relative performance of the tube-reinforced foams investigated during the 

course of this study was assessed by undertaking additional tests on a 20 mm thick 

aluminium honeycomb structure (wall to wall distance of the honeycomb core was 7 

mm) with a density of 40 kg/m
3
, a 20 mm thick aluminium foam with a nominal 

density of 313 kg/m
3
, a polypropylene (PP) honeycomb (wall to wall distance 8 mm) 

with a density of 40 kg/m
3
 and 80 kg/m

3
. These tests were undertaken at a crosshead 

displacement rate of 1 mm/minute and continued until the measured strain exceeded 

the densification threshold. 

A typical load-displacement curve for an aluminium honeycomb tested at a quasi-

static loading rate is shown in Figure 4.35. In this figure, the general response of the 

load–displacement is in agreement with those described by previous researchers [21], 

[39], [143], [144]. Initially, the load increases rapidly in the elastic region, which 

reflects the stiffness of the aluminium material, as the displacement increases. The 

load reaches a peak at approximately 3.2 kN and drops abruptly to a value of about 2 

kN. This is followed by oscillatory crushing at a nearly constant value as the 

displacement increases. The peak load is termed the bare compressive strength and 

the plateau stress is known as the crush strength of aluminium honeycomb [143]. The 

plateau region suggests that the aluminium honeycomb is absorbing energy by 

propagation of localised folding of cell walls as the displacement increases [21]. As 

the crushing proceeds, the honeycomb acts as a solid material and the load increases 

sharply due to densification of the structure. The specific energy absorption 

determined up to densification for aluminium honeycomb is 16.4 kJ/kg. 
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Figure 4.35 A load-displacement curve for the aluminium honeycomb following 

quasi-static testing. 

 

 

Figure 4.36 A load-displacement curve for an aluminium foam with a density of 313 

kg/m
3
 following quasi-static testing. 
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The typical load-displacement curve for an aluminium foam with a density of 313 

kg/m
3
 under quasi-static loading is presented in Figure 4.36. The load-displacement 

curve consists of three distinct regions. Firstly, the load increased in the elastic 

region until the aluminium foam reached a peak force at approximately 4.2 kN. 

Then, the material continued to crush in the plateau region by collapsing of cell walls 

up to densification point. Beyond this point, densification was completed and force 

increased continuously with increasing displacement. The specific energy absorption 

computed from load-displacement curve of this structure is 4.98 kg/m
3
.  

 

Figure 4.37 Quasi-static load-displacement traces for polypropylene honeycombs 

with densities of 40kg/m
3
 and 80 kg/m

3
. 

 

The load-displacement responses of the 40 and 80 kg/m
3
 polypropylene honeycombs 

at a quasi-static loading rate are shown in Figure 4.37. For both 40 and 80kg/m
3
 PP 

honeycombs, the structure exhibits an initial linear response before reaching a peak 

load of approximately 0.4 and 1.4 kN respectively.  
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After this point, a large drop was observed due to cell wall collapse through bending 

and local buckling. Following this, the load continued to increase gradually which is 

related to compaction of the folded cell walls.  

In Figure 4.37, it is clear that the denser structure of the polypropylene honeycomb 

exhibits a higher peak load and plateau load. It was found that when the density of 

the structure is increased from 40 to 80 kg/m
3
, the peak load and the plateau stress 

increases by approximately 250% and 200% respectively. In terms of specific energy 

absorption, the 80 kg/m
3
 (5.2 kJ/kg) density of PP honeycomb exhibits about 70% 

higher than 40kg/m
3
 (3.1 kJ/kg) density structure. The experimental data obtained 

from the quasi-static tests on the aluminium honeycomb, aluminium foam and 

polypropylene honeycomb structures are summarised in Table 4.16. 

The resulting values of SEA are compared with that for a 50 mm square, 20 mm 

thick P1 foam (density = 15.6 kg/m
3
) containing five CFRP, aluminium and steel 

tubes. Also included in the table are published data following tests on various 

aluminium, polypropylene and Nomex honeycombs, a number of polymer and 

aluminium foams, a variety of folded (origami-type) composite cores as well as other 

types of core material [16], [145]–[150].  

An examination of Table 4.16 shows that the value of SEA measured here on the 40 

kg/m
3
 aluminium honeycomb (16.4 kJ/kg) is significantly higher than those 

measured on the aluminium foam (4.98 kJ/kg) and on a polypropylene honeycomb 

(3.1 kJ/kg). It should be noted, however, that the aluminium honeycomb suffered the 

disadvantage in that it exhibited a large initial force peak prior to initial collapse of 

the cell walls.  
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Heimbs [16] reported SEA values for a range of honeycombs, foams and other types 

of lightweight core. Quoted values for honeycomb-type structures varied from 

approximately 9 to 45 kJ/kg. Values for polymer foams varied from approximately 

1.5 kJ/kg for a polyethylene system (density = 69 kg/m
3
) to 18 kJ/kg for a high 

density PMI foam. Additionally Heimbs quoted data from tests on a number of 

carbon (Figure 4.38(a)) and Kevlar-based foldcore structures, where energy 

absorption values between 2 and 22.5 kJ/kg were noted [16].  

 

            

(a)                                                         (b) 

Figure 4.38 Energy-absorber structures of (a) carbon foldcore [16] and (b) composite 

chiral unit [145]. 

 

Airoldi et al. [145] manufactured and tested chiral honeycomb structures based on a 

(0
o
,+-45

o
) carbon fibre-reinforced plastic and reported values as high as 96.5 kJ/kg, 

as shown in Figure 4.38(b). Observation of the chiral structures during failure 

identified the development of a progressive crushing mode similar to that observed 

here during tests on plain composite tubes. Although these values for SEA are clearly 

impressive, it is likely that the cost associated with producing these elegant, if 

somewhat complex structures, would be significant, potentially outweighing their 

attractive energy-absorbing characteristics. 
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Tarlochan and co-workers [148] developed a concept in which woven glass 

fibre/epoxy composite tubes were embedded within larger composite tubes and held 

in place using an expanded polystyrene foam. Although not a core material in the 

conventional sense, these systems offered attractive energy-absorbing characteristics, 

with values of SEA ranging from 17.7 to 32.6 kJ/kg.  

In a parallel study Tarlochan and Ramesh [149] grouped up to six quadrilateral glass 

or carbon/epoxy composite tubes with foam centres to form what was termed a 

nested design. The primary mode of failure in these structures was progressive 

crushing, resulting in values of SEA of up to 47.1 kJ/kg for an optimised carbon fibre 

system. Tao and Zhao [147] manufactured a range of syntactic foams based on an 

aluminium matrix and obtained values as high as 50 kJ/kg. However, these relatively 

high values are somewhat negated by the high density of these core materials (in 

excess of 1600 kg/m
3
).  

The evidence from the tests conducted here and the review of many systems in the 

literature highlights the greater performance of the tube-reinforced foams 

investigated here, particularly of the P1 foam (15.6 kg/m
3
) containing five CFRP 

tubes system. Here, approximately 1.3 kg of a composite tube-foam structure is 

required to absorb the energy of a 1000 kg car travelling at 15.5 m/s (35 mph). 

Clearly, selecting a low density foam (15.6 kg/m
3
) and positioning the tubes in close 

proximity has yielded a lightweight material with a very high value of SEA. Indeed, 

it is likely that this impressive value of SEA could be further improved by employing 

an optimised fibre stacking sequence and/or by using a tougher thermoplastic matrix, 

such as carbon fibre-reinforced PEEK. 
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Material Density [kg/m
3
] SEA [kJ/kg] Reference 

Five CFRP tubes in  P1 foam  107.8 86.1 Section 4.3.6 

Five aluminium tubes in  P1 foam  219.1 65.3 Section 4.2.5 

Five steel tubes in  P1 foam  627.8 41.5 Section 4.2.5 

Aluminium honeycomb 

40 16.4 Section 4.5 

27 - 192 9 - 45 [16] 

Polypropylene honeycomb 

40 3.1 

Section 4.5 

80 5.2 

Aluminium foam 

313 4.98 Section 4.5 

270 5.5 [146] 

Carbon foldcore 103 - 114 4.5 - 22.5 [16] 

Kevlar foldcore 48 - 113 2 - 7.5 [16] 

Nomex honeycomb 29 -  48 8 -18 [16] 

PMI foam 52 - 160 11 - 18 [16] 

PVC foam 70-250 11 - 12.5 [16] 

Chiral CFRP honeycomb n/a 96.5 [145] 

Concentric GFRP tubes supported by 

PS foam 
n/a 17.7 - 32.6 [148] 

Aluminium matrix syntactic foam 1640 50.6 [147] 

Carbon fibre composite sandwich 

panels with a with pyramidal truss 

cores. 

20 - 35 0.75 – 8.0 [150] 

 

Table 4.16 Comparison of the SEA values of the best-performing tube-reinforced 

foam with those of other types of core material. 
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4.6 Summary 

Chapter 4 presented the experimental results and discussion for metal and composite 

tube-reinforced foam structures. Initially, the mechanical properties of the foam and 

tubes were characterised by performing compression and tensile tests. The weight 

fraction of the composite tubes was determined by conducting resin burn-off test. 

The general summary of the influence of the parameters on the metal and composite 

tube-reinforced foam structures is divided into metal and composite tube-reinforced 

foam structures.  

The energy-absorbing characteristics of foams reinforced with relatively thick metal 

tubes have been investigated at quasi-static and dynamic rates of loading. Initial tests 

on the plain aluminium and steel tubes have shown that the specific energy 

absorption (SEA) is virtually independent of tube length (up to a value of L/D = 2) 

and the SEA increases as decreasing values of D/t (inner diameter to thickness).  

Tubes with low values of D/t were embedded in a range of polymer foams with a 

view to developing lightweight energy-absorbing structures. The results show that 

the foam does not modify the energy-absorbing capability of the embedded tubes and 

the aluminium-based systems offer superior properties to the steel-based materials. 

Given that the metal tubes absorb much greater levels of energy than the foams in 

which they are embedded, the density of the latter should be set as low as possible, 

ensuring that the metal reinforcements are held in place during the loading process.  

A tube-reinforced sandwich core structure has been developed in which chamfered 

CFRP tubes are embedded in low density core materials. Initial tests on plain 

composite tubes have shown that their specific energy absorption characteristics are 
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independent of tube length. As before, the SEA increases with decreasing inner 

diameter to thickness (D/t) ratio.  

Here, significant changes in failure modes have been observed, with larger diameter 

tubes failing in delamination and smaller tubes failed in a combination of splaying 

and fragmentation modes. This principle has then been applied to develop reinforced 

foams based on low D/t tubes. Compression tests on these modified foams have 

shown that the composite tubes absorb greater levels of energy with increasing foam 

density, again due to increased levels of fragmentation. Varying the planar density of 

the tubular arrangement in a foam has shown that values of SEA as high as 86 kJ/kg 

can be achieved using a low density foam in conjunction with dense packing of 

tubes.  

The observation on samples following blast tests highlighted similar failure modes to 

those observed in compression suggest that tube-reinforced foams represent an 

attractive option for use in dynamically-loaded structures. The SEA values of these 

structures compare very favourably with data from tests on a wide range of 

honeycombs, foams and foldcore structures. 
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CHAPTER 5  

FINITE ELEMENT MODELLING 

The finite element (FE) theories and techniques considered in modelling the response 

of individual tubes and tube-reinforced foam structures subjected to compression 

loading are presented. The FE modelling results are verified and compared with the 

experimental results previously presented in Chapter 4. A summary is presented at 

the end of this chapter to highlight the main findings. 
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5.1 Constitutive Models 

Numerical models were developed to simulate the mechanical response of the 

individual tubes, as well as the tubes embedded in foams subjected to compression 

loading. Here, four materials are considered, these being the aluminium alloy, mild 

steel, composite tube and polymer foam. The aluminium and steel tubes exhibited 

similar buckling modes when loaded in compression. The composite tubes exhibit 

fibre and matrix fracturing modes, whereas the foams are deformed and compacted 

during compression. Given these different responses, different constitutive models 

are required to predict their respective behaviour. The material models described 

below were implemented in Abaqus/Explicit and the predictions of the load-

displacement responses and the associated failure modes were compared to 

experimental results. 

 

5.1.1 Metal Tubes 

An isotropic elastic-plastic material model was employed to simulate the mechanical 

response of the metallic tubes [151]. The total strain-rate, 𝜀̇, can be decomposed into 

an elastic component, 𝜀̇𝑒𝑙, and a plastic component, 𝜀̇𝑝𝑙, such that: 

𝜀̇ = 𝜀̇𝑒𝑙 + 𝜀̇𝑝𝑙     (5.1) 

The rate-dependent material is assumed to obey a uniaxial plastic flow rule and the 

relationship of the equivalent plastic strain-rate, 𝜀̅̇𝑝𝑙, is given as: 

𝜀̅̇𝑝𝑙 = ℎ(�̅�, 𝜀 ̅𝑝𝑙)     (5.2) 

where h represents the strain-hardening function, 𝜎 is the equivalent stress and 𝜀̅𝑝𝑙 is 

the equivalent plastic strain.  
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Temperature is not considered here as both testing and modelling are conducted at an 

ambient condition. The uniaxial plastic strain, 𝜀𝑝𝑙, which is based on recoverable 

elastic strain, can be calculated using the following equation: 

𝜀𝑝𝑙 =  𝜀𝑡𝑜𝑡𝑎𝑙 −
𝜎𝑡𝑜𝑡𝑎𝑙

𝐸
    𝜎𝑡𝑜𝑡𝑎𝑙 >  𝜎𝑜 

(5.3) 

where 𝜎𝑡𝑜𝑡𝑎𝑙 is any stress level exceeding the initial yielding point, 𝜀𝑡𝑜𝑡𝑎𝑙 is the total 

strain corresponding to 𝜎𝑡𝑜𝑡𝑎𝑙, E is modulus of elasticity and 𝜎𝑜 is the initial yield 

stress. For the aluminium alloy and steel materials used in this research, the isotropic 

hardening data were determined using data from the uniaxial tensile tests presented 

in Chapter 4. The mechanical and elastic properties determined from these 

engineering stress-strain curves are presented in Table 5.1. Note that since there is a 

slight (6%) difference in the value of density measured experimentally to the density 

provided by the manufacturer, this may affect the simulation result. However, the 

sensitivity studies showed that the simulations are not sensitive to the slightly varied 

densities used. 

The rate-dependent hardening curves in the static relation, are given by: 

𝜎(𝜀̅𝑝𝑙, 𝜀 ̅̇𝑝𝑙) = 𝜎𝑜(𝜀̅𝑝𝑙)𝑅(𝜀̅̇𝑝𝑙)   (5.4) 

where 𝜎𝑜 is the static yield stress and 𝑅 is a stress ratio (𝑅 = 𝜎/𝜎𝑜). In the quasi-

static case, 𝑅 = 1 at 𝜀̅̇𝑝𝑙= 0 and 𝜎 = 𝜎𝑜. The ductile damage model is based on the 

equivalent fracture strain as a failure criterion.  

The initiation of damage in a ductile metal is due to the growth and nucleation of 

voids, which assumes that the equivalent plastic strain at the onset of damage, 𝜀�̅�
𝑝𝑙

, is 

a function of stress triaxiality and equivalent plastic strain-rate [151], [152]: 
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𝜀�̅�
𝑝𝑙(𝜂 , �̇�

𝑝𝑙
) 

(5.5) 

where 𝜀̅̇𝑝𝑙  is the equivalent plastic strain-rate, 𝜂 is the material stress triaxiality 

(𝜂 = −
𝑝

𝜎
), 𝑝 is the pressure stress and  𝜎 is the equivalent stress.  

The material is predicted to undergo ductile failure when the following is satisfied: 

𝜔𝐷 = ∫
𝑑𝜀

𝑝𝑙

𝜀𝐷
𝑝𝑙

(𝜂 , �̇�
𝑝𝑙

)

𝜀𝐷
𝑝𝑙

0

 = 1 

(5.6) 

where 𝜔𝐷 is defined as a state (damage) variable which increases with plastic 

deformation. The damage variable will affect all stiffness components, which gives 

degraded stress components as (1 − 𝜔𝐷)�̅� (𝜎 is the equivalent or undamaged stress 

tensor). The accumulation of damage is based on its incremental form, Δ 𝜔𝐷, which 

can be expressed as: 

Δ𝜔𝐷 =  
 𝛥𝜀

𝑝𝑙

𝜀�̅�
𝑝𝑙  (𝜂, �̇�

𝑝𝑙
)

≥ 0 

(5.7) 

The process of manufacturing metal tubes by extrusion leads to some form of “minor 

defect” or geometric imperfections in the finished product. This may have an effect 

on the deformation response of the metal tube, despite the fact that percentage of 

these imperfections is very small. Hence, a geometrical imperfection pattern was 

introduced in the “perfect” cylindrical model in order to trigger a buckling response 

before the critical load associated with failure of the material is reached.  
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The geometrical imperfection pattern, or buckling modes, were obtained from the 

initial *Buckle Linear Perturbation step executed within Abaqus/Standard [151]. 

Abaqus/Explicit [151] was then used to perform a further postbuckling analysis to 

account for the complex interactions introduced during progressive failure relating to 

the buckling collapse of the tube wall. Here, the predicted buckling modes were 

applied to the numerical model by introducing a geometrical imperfection through 

the tube wall, which is given by: 

∆𝑥𝑖 = ∑ 𝜔𝑖𝜙𝑖

𝑀

𝑖=1

    

(5.8) 

where 𝜙𝑖 represents the 𝑖th mode shape and 𝜔𝑖 is the related scale factor.  Variations 

in the thicknesses of the tubes (from measurements) were used to perturb the mesh 

and the scale factor, which reflects the imperfection, being set to 5% of the tube 

thickness. An imperfection was then introduced to a tube geometry by including the 

*Imperfection parameter in the Keywords Editor. The appropriate time step in this 

analysis was set to 0.1 seconds, which was ascertained through a series of numerical 

studies conducted with different durations, until dynamic effects were insignificant 

[36].  
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Property Aluminium alloy  Mild steel 

Density, ρ [kg/m
3
] 2543 7966 

Young’s modulus, E [GPa] 70.4 200 

Poisson’s ratio, υ 0.33 0.33 

Plasticity properties 

Yield stress 

[MPa] 
Plastic strain 

Yield stress 

[MPa] 

Plastic 

strain 

220 0 278 0 

264 0.01 300 0.01 

273 0.02 305 0.02 

277 0.03 345 0.04 

281 0.04 385 0.06 

286 0.06 425 0.10 

288 0.07 462 0.16 

289 0.08 480 0.24 

 

Table 5.1 Summary of the material properties of the aluminium and steel tubes. 
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5.1.2 Composite Tubes 

Modelling the failure behaviour of composite materials is a very complex process 

due to factors such as the variation of fibres and matrices materials, types of ply for 

instance unidirectional or fabrics and orientation ply angle [114]. Thus, currently 

there are no universally accepted material constitutive models for crash simulations 

of composite materials. A comprehensive literature review on the classification of 

composite crushing models is explained in Chapter 2. 

Layer Material Thickness [mm] Orientation 

1
st
 layer Carbon fibre/epoxy 0.27 0

o
 

2
nd

 layer Glass fibre/epoxy 0.27 90
o
 

3
rd

 layer Carbon fibre/epoxy 0.27 0
o
 

4
th
 layer Glass fibre/epoxy 0.27 90

o
 

5
th
 layer Carbon fibre/epoxy 0.27 0

o
 

 

Table 5.2 Layup sequence of the composite tube. 

 

In this study, the composite tubes are based on five plies, consisting of three layers of 

T700 unidirectional pre-preg carbon fibre reinforced epoxy, oriented at 0
o
 and two 

layers of unidirectional E-glass oriented at 90
o
, as indicated in Table 5.2. As such, 

the tubes response differently subjected to the loading direction applied. With 

reference to this information, it is required to model discrete layers of carbon and 

glass fibre pre-preg in order to simulate the overall response of the composite tube 

subjected to axial crushing. Table 5.3 presents the elastic properties for carbon 

fibre/epoxy and glass fibre/epoxy composite used in the FE analysis. 
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The composite tubes were modelled as orthotropic elastic with Hashin’s failure 

criteria for the unidirectional laminates [153]. The failure model is related to brittle 

properties which degraded by micro-cracking. A key assumption here is that the 

material properties were based on carbon and glass pre-preg laminates, where the 

fibre and resin constituents were not considered separately.  

Symbol 
Carbon 

fibre/epoxy 

Glass 

fibre/epoxy 
Parameters 

𝜌 [kg/m
3
] 1550 1970 Density 

𝐸1 [GPa] 147 41 Young’s modulus in longitudinal direction 

𝐸2 [GPa] 10.3 10.4 Young’s modulus in transverse direction 

𝐸3 [GPa] 10.3 10.4 Young’s modulus in thickness direction 

𝐺12 [GPa] 7.0 4.3 In-plane shear modulus 

𝐺13 [GPa] 7.0 4.3 Out-of-plane shear modulus  

𝐺23 [GPa] 3.7 3.5 Out-of-plane shear modulus 

𝜐12 0.27 0.28 Major in-plane Poisson’s ratio 

𝜐13 0.27 0.28 Out-of-plane Poisson’s ratio 

𝜐23 0.54 0.50 Out-of-plane Poisson’s ratio 

 

Table 5.3 Summary of the elasticity properties of the carbon [150], [10] and glass 

fibre/epoxy materials [10]. 

 

The Hashin’s damage model [153] consists of interaction of more than one stress 

components in evaluating failure modes. Hashin’s damage initiation assumes that the 

response of the undamaged material is linearly elastic with the point stress 

calculations involving four failure modes. The failure modes are (i) fibre rupture in 

tension, (ii) fibre buckling and kinking in compression, (iii) matrix cracking under 
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transverse tension and shearing and (iv) matrix crushing under transverse 

compression and shearing. By considering �̂�11, �̂�22 and �̂�12 as the longitudinal, 

transverse and shear effective stresses, Hashin’s damage initiation criteria take the 

general form as follows [153]: 

(a) Tensile fibre failure for (�̂�11 ≥ 0): 

 

𝐹𝑓
𝑡 = (

�̂�11

𝑋𝑇
)

2

+ 𝛼 (
�̂�12

𝑆𝐿
)

2

, 𝑑𝑓 = 1 
(5.9) 

 

(b) Compressive fibre failure for (�̂�11 < 0): 

 

𝐹𝑓
𝑐 = (

�̂�11

𝑋𝐶
)

2

, 𝑑𝑓 = 1 
(5.10) 

 

 

(c) Tensile matrix failure for (�̂�22 ≥  0): 

 

 

𝐹𝑚
𝑡 = (

�̂�22

𝑌𝑇
)

2

+ (
�̂�12

𝑆𝐿
)

2

, 𝑑𝑚 = 1 
(5.11) 

 

 

(d) Compressive matrix failure for (�̂�22 < 0): 

 

𝐹𝑚
𝑐 = (

�̂�22

2𝑆𝑇
)

2

+ [(
𝑌𝐶

2𝑆𝑇
)

2

− 1]
�̂�22

𝑌𝐶
+ (

�̂�12

𝑆𝐿
)

2

, 𝑑𝑚 = 1 

 

(5.12) 

 

where, 𝑋𝑇 and 𝑋𝐶  denote the tensile and compressive strength components in 

longitudinal direction by superscripts T and C, respectively. Similarly, 𝑌𝑇and 𝑌𝐶  

denote the tensile and compressive strengths in transverse direction, 𝑆𝐿 𝑎𝑛𝑑 𝑆𝑇 are 

the longitudinal and transverse shear strengths. Table 5.4 gives a summary of the 

damage initiation data for carbon/epoxy and glass fibre/epoxy. In Equation (5.9), 𝛼 is 

a coefficient that determines shear stress contribution to the fibre tensile initiation 

criterion. In this case, 𝛼 = 1 as the shear stress contribution was taken into account. 
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Symbol 
Carbon 

fibre/epoxy 

Glass 

fibre/epoxy 
Parameters 

𝑋𝑇 [MPa] 2280 1140 Longitudinal tensile strength 

𝑋𝐶  [MPa] 1725 620 Longitudinal compressive strength 

𝑌𝑇 [MPa] 57 39 Transverse tensile strength 

𝑌𝐶 [MPa] 228 128 Transverse compressive strength 

𝑆𝑇 [MPa] 76 89 Transverse shear strength  

𝑆𝐿 [MPa] 76 89 Longitudinal shear strength 

𝐺𝑓𝑡
𝐶  [kJ/m

2
] 91 50 Fibre tension 

𝐺𝑓𝑐
𝐶  [kJ/m

2
] 79 45 Fibre compression 

𝐺𝑚𝑡
𝐶  [kJ/m

2
] 91 50 Matrix tension 

𝐺𝑚𝑐
𝐶  [kJ/m

2
] 79 45 Matrix compression 

 

Table 5.4 Summary of the damage initiation and fracture energy data of the carbon 

and glass fibre/epoxy materials [10], [154], [155]. 

 

Once the damage criteria are satisfied within all of the element integration points, a 

failed element was removed from the mesh and the element status in field output 

variable was set from one to zero. At this point, the stress of the element contributes 

no resistance to the model stiffness in the subsequent deformation. For a shell model, 

element deletion can occur from both tensile and compressive damage. In contrast, 

element deletion for solid model is only possible as a result of fibre tensile damage 

[151]. A linear damage evolution law was specified in terms of fracture energy per 

unit area in the numerical model. Table 5.4 presents the fracture energies for fibre 

and matrix failure mode. 
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5.1.3 Foams 

The foams were modelled using isotropic linear elasticity and crushable foam 

plasticity to describe their elasto-plastic behaviour. The response of the foams was 

characterised by conducting compressive tests on blocks with dimensions of 50 x 50 

x 20 mm
3
 and the elastic properties of foam materials are presented in Table 5.5. The 

material input data required in the elastic region are the Young’s modulus and the 

Poisson’s ratio, where the latter was assumed to be 0.32 for all of the foams since the 

sensitivity studies showed that the simulations are not sensitive to Poisson’s ratios in 

the range from 0.25 to 0.35. The yield surface for a closed-cell foam material, as 

described by Deshpande and Fleck [156], is given as: 

𝜙 ≡  
1

[1 + (
𝛼
3)

2

]
[𝜎2 +  𝛼2𝜎𝑚

2 ] − 𝜎𝑦
2  ≤ 0 

(5.13) 

where 𝜎 is the equivalent stress, 𝜎𝑦 is the uniaxial yield strength of the foam in 

tension or compression and 𝜎𝑚 is the mean stress. The term α defines the shape of 

the yield surface, which is given by: 

𝛼 =
3𝑘

√(3𝑘𝑡 + 𝑘)(3 − 𝑘)
 

(5.14) 

where k and 𝑘𝑡 are related to the ratios of the initial uniaxial yield stress in 

compression, 𝜎𝑐
𝑜, and the hydrostatic tensile yield stress, 𝑝𝑡, to the hydrostatic 

compressive yield stress, 𝑝𝑐
𝑜, respectively. The uniaxial yield strength in hydrostatic 

compression, 𝑝𝑐, describes the growth of the size of the yield surface and is defined 

as: 
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𝑝𝑐(𝜀𝑣𝑜𝑙
𝑝𝑙 ) ≡  

𝜎𝑐(𝜀𝑎𝑥𝑖𝑎𝑙
𝑣𝑜𝑙 ) [ 𝜎𝑐(𝜀𝑎𝑥𝑖𝑎𝑙

𝑝𝑙 ) (
1

𝛼2 +
1
9) +  

𝑝𝑡

3 ]

𝑝𝑡 +
𝜎𝑐(𝜀𝑎𝑥𝑖𝑎𝑙

𝑝𝑙 )
3

 

(5.15) 

where 𝜀𝑣𝑜𝑙
𝑝𝑙

 is the plastic volumetric strain in the volumetric hardening model, which 

is set to be equal to the uniaxial compressive plastic strain, 𝜀𝑎𝑥𝑖𝑎𝑙
𝑝𝑙

, 𝜎𝑐 is the uniaxial 

compressive stress in the strain hardening stage. Hence, the term 𝑝𝑐 can be 

determined by conducting compression tests on the foam. It is assumed that the 

response of a rate-dependent solid follows a uniaxial flow rule, as given in Equation 

(5.2) and rate-dependent hardening curves is as in Equation (5.4) for the foam 

material. Damage development in the foam material was modelled by implementing 

both the ductile damage and the shear damage criteria with the similar form shown in 

Equation (5.5) available in Abaqus [151]. Table 5.6 presents the yield stress and 

plastic strain of foam with various densities. 

Foam ID  
Foam density  

[kg/m
3
] 

Foam modulus 

[MPa] 
Poisson ratio  

P1 15.6 6 0.32 

P2 38.3 37 0.32 

P3 56.0 69 0.32 

P4 90.4 97 0.32 

P5 128.0 160 0.32 

P6 224.0 280 0.32 

 

Table 5.5 Elastic properties of foam with various densities. 
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Table 5.6 Material properties of foam with various densities. 

P1 

Yield stress [MPa] 0.0197 0.0566 0.095 0.1100 0.1500 0.1700 0.1900 0.2000 

Plastic strain 0 0.16 0.40 0.50 0.62 0.72 0.78 0.86 

P2 
Yield stress [MPa] 0.4981 0.5024 0.5109 0.5131 0.5152 0.5194 0.5727 0.6350 

Plastic strain 0 0.16 0.40 0.50 0.62 0.72 0.80 0.86 

P3 
Yield stress [MPa] 0.7116 0.7177 0.7299 0.7329 0.7360 0.7421 0.8181 0.9072 

Plastic strain 0 0.16 0.40 0.50 0.62 0.72 0.80 0.86 

P4 
Yield stress [MPa] 1.3291 1.3405 1.3632 1.3689 1.3746 1.3859 1.5279 1.6756 

Plastic strain 0 0.16 0.40 0.50 0.62 0.72 0.80 0.86 

P5 
Yield stress [MPa] 2.3422 2.3671 2.4034 2.4109 2.4202 2.4480 2.6909 2.9505 

Plastic strain 0 0.16 0.40 0.50 0.62 0.72 0.80 0.86 

P6 
Yield stress [MPa] 4.7904 4.8314 4.9133 5.0500 5.1607 5.4033 5.7364 6.1909 

Plastic strain 0 0.16 0.40 0.50 0.62 0.72 0.80 0.86 
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5.2 Geometrical Model and Contact Conditions 

Due to geometrical symmetry, quarter models of each metal tube were constructed 

by applying suitable boundary conditions along each edge of the model in the x-axis 

and z-axis directions, as shown in Figure 5.1(a). This approach serves to reduce 

computational time and has been used by previous researchers when modelling the 

crushing response of square and circular cross-sections of steel tubes [74].  

In the first stage of the modelling process, three tube diameters were simulated and 

validated against the experimental results, as shown in Tables 5.8 and 5.9. The tubes 

were modelled using 8-noded solid elements with reduced integration. Two 40 mm 

square plates with thicknesses of 1 mm, to represent the upper and lower platens, 

were defined as 3-D discrete rigid bodies, as shown in Figure 5.2. The axial crushing 

process was modelled by displacing the top plate downwards in the y-direction 

(Figure 5.2) with the bottom plate being held stationary. The top and bottom ends of 

the tube were allowed to deform freely in all directions.  

 

                                  

                           (a)                                                    (b) 

Figure 5.1 (a) A quarter model of a tube and (b) the cross-sectional view (shown this 

way simply for clarity) of a 12.62 mm metal tube in a foam block. Note that a small 

gap of 0.1 mm has been introduced between the tube and the foam. 
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In a subsequent part of this research program, one metal tube, with a diameter 12.62 

mm, was inserted into a number of foams based on different densities, details of 

which are given in Tables 5.10 and 5.11. The foam materials were modelled using 8-

noded solid elements with reduced integration. A small gap of 0.1 mm (Figure 

5.1(b)) was introduced between the tube and the foam to avoid convergence 

problems.  

Figure 5.2 shows the contact condition for crushing of the metallic tubes. Due to the 

observed folding action of the tube, a frictional contact constraint was added to both 

the interior and exterior surfaces in order to prevent the tube wall from penetrating 

into itself [74]. In order to model the metal tubes embedded in the foams, a further 

contact condition between the tube and the foam has to be considered. A coefficient 

of friction of 0.1 [157] was used between the tube and the rigid platens to achieve 

satisfactory agreement with the experimental results.  

 

 

 

Figure 5.2 Loading and boundary conditions adopted in the finite element model. 

 

The composite tubes were modelled by a single layer of 4-noded, reduced integration 

shell elements (S4R) consisting of one element through the tube thickness. Quarter 
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models of each composite tube were constructed by applying boundary conditions 

along x-axis and z-axis edges, similar to the metal tube models. Two 40 mm square 

upper and lower platens were defined as 3-D discrete rigid bodies and the tube model 

was assembled in between the platens. As before, the axial crushing process was 

simulated by moving the top plate downwards in the y-direction and the bottom plate 

being held stationary. The top and bottom ends of the composite tube were allowed 

to deform freely in all directions.  

             

                  (a)                                                               (b) 

Figure 5.3 (a) A local cylindrical coordinate system for the composite tubes and (b) 

detailed view of the chamfer zone. 

 

Here, the material properties of the carbon and glass fibres in principal directions 

were defined by introducing a discrete cylindrical coordinate system for circular 

tubes. Figure 5.3(a) shows the definition of direction-1 and direction-2, which were 

oriented along the tube length and around the section of the tube respectively. Also 

shown in this figure is the normal direction which was defined in the thickness 

direction of the tube.  

Chamfer zone 

t 
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In order to trigger crushing process, forty five degree chamfer was modelled by 

reducing the thickness of the trigger zone as shown in Figure 5.3(b). The modelling 

technique adopted for composite tubes in Abaqus was based on composite layup for 

conventional shell elements. Figure 5.4 shows the composite layup for a tube with 

outer diameter of 10.2 mm. It was assumed that the thickness of each individual layer 

is 0.27 mm as the total thickness of the tube is 1.35 mm. The corresponding material 

section and its orientation were assigned to the shell elements. The tube consists of a 

total of five carbon and glass fibre pre-preg layers oriented in direction-1 (0
o
) and 

direction-2 (90
o
) respectively. In modelling the CFRP tubes, the number and 

orientation of layers defined in the material model are the key features as these 

factors have a great influence on the results.  

Two different friction coefficients were implemented in order to model the contact 

during the crushing process. A coefficient of friction of 0.3 was used for the contact 

friction between the tube and rigid platens. The second contact coefficient value for 

self-contact of the deformed tube was set to 0.65. These values were chosen based on 

contact coefficients employed in previous literature [106]. In order to validate the 

modelling and its approaches, the simulation results of chamfered tubes were 

compared with the experimental data. 

                   

Figure 5.4 Composite layup for a CFRP tube with outer diameter of 10.2 mm.  
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5.3 Results and Discussion of the Metallic Tubes 

5.3.1 Mesh Sensitivity Analysis 

A mesh sensitivity analysis was performed using a model of an aluminium tube 

specimen with a diameter of 12.62 mm and a length of 20 mm. The finite element 

model was meshed using four different mesh sizes, these being 2 mm (coarse), 1 mm 

(medium), 0.8 mm (fine) and 0.5 mm (very fine). Another parameter that contributes 

to the overall number of elements within the model is the number of elements 

through the thickness of the tube. Results are shown in Table 5.7.  

Here, six models were studied, with each containing 100, 150, 600, 900, 2400 and 

4800 elements. Figure 5.5(a) summarises the findings of this mesh sensitivity 

analysis, where the relationships between the number of elements and the predicted 

specific energy absorption, bottoming-out displacement and CPU time are shown. 

 

Number of 

Elements 

Mesh 

size 

(mm) 

Elements 

through 

tube 

thickness 

CPU 

time 

(hour) 

Densification 

point 
SEA (kJ/kg) 

Number 

of axial 

lobes 

Experiment - - - 11.03 70.07 2 

100 2  2 0.18 14.58 101.28 1 

150 2  3 0.22 14.24 77.59 1 

600 1 3 0.75 10.97 70.89 2 

900 0.8 3 1.13 10.94 69.79 2 

2400 0.5 3 3.62 10.97 70.52 2 

4800 0.5  6 8.42 10.98 70.13 2 

 

Table 5.7 Details of mesh sensitivity analysis. 
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(a) 

 

 

    

   (b)                           (c)                               (d)                               (e)  

 

Figure 5.5 (a) Mesh-sensitivity analysis showing the number of elements required for 

convergence of the FE model for an aluminium tube of diameter 12.62 mm. 

Deformed shapes of tubes based on (b) 100 elements (mesh = 2mm), (c) 150 

elements (mesh = 2mm), (d) 600 elements (mesh = 1 mm) and (e) 4800 elements 

(mesh = 0.5 mm). 
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Clearly, the CPU time increases as the number of elements is increased. However, 

the bottoming-out displacement and the specific energy absorption values are very 

sensitive to the number of axial lobes. The symmetrical deformation modes of the 

models are shown in Figure 5.5, where Figure 5.5(b) and 5(c) indicate one lobe, 

whilst Figure 5.5(d) and 5(e) show two axial lobes. It is clear that a coarse mesh size 

of 2 mm (100 or 150 elements) is not suitable for this case, as the tubes were unable 

to form the two axial lobes observed experimentally. This resulted in errors in the 

predicted specific energy absorption of up to 45% (for the model with 100 elements).  

Based on this observation, it is evident that increasing the number of elements from 

600 to 4800 does not have a significant effect on the deformation shape, suggesting 

that mesh sizes in the range of 0.5 to 1 mm are appropriate for simulation. In the 

present study, 600 elements are used, since this value corresponds to the threshold at 

which the SEA and the force associated to bottoming-out tend to a constant value 

(see Figure 5.5(a)). Additionally, an element size of 1 mm was deemed to be 

appropriate, since it produces sufficiently accurate results in a short CPU time (45 

minutes in the present case).  
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5.3.2 Influence of the D/t on SEA 

The FE models were validated against the experimental data relating to the smallest, 

the largest and one of the intermediate-sized tube diameters, as given in Tables 5.8 

and 5.9. Figure 5.6(a) compares the quasi-static experimental load-displacement 

curves for the 12.62 mm diameter aluminium and steel tubes with the predictions 

offered by the FE models. From the figure, it is evident that the load-displacement 

curves for the tubes show a steady increase in load until they reach the peak value. 

This is followed by a region of almost constant load, before the final bottoming-out 

of the sample at higher displacements. It should be noted that since perfect contact 

between the tube and the platens was assumed in all cases, the FE predictions slightly 

over-estimate the measured stiffness. Beyond the elastic region, it is clear that the FE 

predictions are in good agreement with the experimental results for both types of 

tube.  

The predicted dynamic load-displacement curves for the 12.62 mm diameter 

aluminium and steel tubes are compared with their experimental counterparts in 

Figure 5.6(b). An examination of the numerical curves indicates that they are in close 

agreement with the experimental results for both types of tube. The FE models 

predict a smoother response than that associated with the test samples, since the latter 

exhibit an oscillatory response. This is due to ringing effects in the load-cell 

following impact of the steel impactor on the stiff metal tube [158]. Despite this, the 

level of agreement between the experimental and FE predicted SEA values are very 

good. 
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Tube ID 

Outer 

diameter, 

Do (mm) 

Inner 

diameter, 

D (mm) 

Thickness, 

t (mm) 
D/t 

SEA 

experimental 

(kJ/kg) 

SEA 

numerical 

(kJ/kg) 

FE/Exp 

difference 

(%) 

TAL6 6.50 3.14 1.68 1.87 - 86.22 - 

TAL9 9.53 6.17 1.68 3.67 - 77.11 - 

TAL12 12.62 9.12 1.75 5.21 70.07 70.89 + 1.2 

TAL16 16.00 12.36 1.82 6.79 63.47 57.96 - 8.7 

TAL19 19.10 15.60 1.75 8.91 58.28 - - 

TAL22 22.40 19.00 1.70 11.18 56.08 - - 

TAL25 25.40 22.04 1.68 13.12 52.96 48.08 - 9.2 

TAL38 38.10 34.74 1.68 20.68 - 37.21 - 

 

Table 5.8 Comparison of the quasi-static experimental and numerical SEA 

characteristics of 20 mm long individual aluminium tubes. 

 

Tube ID 

Outer 

diameter, 

Do (mm) 

Inner 

diameter,

D (mm) 

Thickness, 

t (mm) 
D/t 

SEA 

experiment 

(kJ/kg) 

SEA 

numerical 

(kJ/kg) 

FE/Exp 

difference 

(%) 

TST6 6.50 3.14 1.68 1.87 - 57.02 - 

TST9 9.53 6.17 1.68 3.67 - 43.65 - 

TST12 12.62 9.26 1.68 5.51 41.46 40.75 - 1.7 

TST16 15.78 12.42 1.68 7.39 36.94 33.50 - 9.3 

TST19 19.05 15.69 1.68 9.34 31.22 - - 

TST22 22.22 18.86 1.68 11.23 27.97 - - 

TST25 25.40 22.04 1.68 13.12 24.12 21.78 - 9.7 

TST38 38.10 34.74 1.68 20.68 - 17.18 - 

 

Table 5.9 Comparison of the quasi-static experimental and numerical SEA 

characteristics of 20 mm long individual steel tubes. 



Chapter 5                                                             Finite Element Modelling 

185 

 

 

               (a) 

 

             (b) 

Figure 5.6 Experimental and numerical force-displacement traces for 20 mm long 

12.62 mm diameter aluminium (D/t = 5.21) and steel (D/t = 5.51) tubes following (a) 

quasi-static and (b) dynamic loading. 
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The evidence in Figure 5.6 suggests that strain-rate effects are not significant for the 

aluminium. In contrast, an enhancement of approximately 10% is observed for the 

steel tubes, when tested under dynamic loading conditions. This evidence suggests 

that strain-rate effects are not significant for the aluminium alloy over the range of 

loading conditions tested here, whereas these findings indicate that it is important to 

define the strain-rate for accurate numerical modelling of the steel tubes.  

Figure 5.7 shows the variation of SEA with inner diameter/thickness, D/t, for both 

the aluminium and steel tubes, where the dotted lines in the figure correspond to the 

FE predictions. From the figure, it is clear that the energy-absorbing capability of the 

tubes decreases rapidly with increasing D/t. The figure shows that the FE models 

yield predictions that are very similar (less than 10%) to the experimental values. 

This indicates that the models accurately predict the key aspects of the crushing 

response of these simple tubes. 

 

Figure 5.7 The variation of SEA with D/t for 20 mm long aluminium and steel tubes. 
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Figure 5.8 shows images obtained following experimental testing and FE modelling 

of the aluminium and steel tubes for a range of initial D/t values. It is clear that the 

deformation modes have been accurately predicted for all tube diameters, with 

buckling producing a ring shape, or what is often known as a concertina mode of 

collapse. These figures demonstrate that there is a very high level of agreement 

between the predicted and observed failure modes in the two types of tube. 

 

  

 

  

(i) 12.62 mm (D/t = 5.21)  (i) 12.62 mm (D/t = 5.51) 

  

 

  

(ii) 16.00 mm (D/t = 6.79)  (ii) 15.78 mm (D/t = 7.39) 

  

 

  

(iii) 25.40 mm (D/t = 13.12)  (iii) 25.40 mm (D/t = 13.12) 

(a)    (b) 

Figure 5.8 Comparison of the photographs and FE simulations of 20 mm long metal 

tubes with different diameters following quasi-static compression for (a) aluminium 

and (b) steel tubes. 
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In the next stage of this research investigation, the FE models were used to further 

investigate the effect of varying the diameter to thickness ratio of the aluminium and 

steel tubes. Figure 5.9 shows the predicted load-displacement curves for steel tubes 

with diameters of 9.53 mm (D/t = 3.85) and 38.10 mm (D/t = 21.37). Also included 

in the figure are the corresponding deformation modes for both types of tube. The FE 

simulations predict that compression of the smaller tube will generate two wrinkles 

and that the larger diameter tube will exhibit a single wrinkle. This agrees well with 

findings reported by Jones [34], where it was observed that the number of wrinkles in 

a steel tube decreases with increasing tube diameter. 

 

                               

                              (a)                                                       (b) 

Figure 5.9 Predicted quasi-static load-displacement traces for 20 mm long steel tubes  

(a) 9.53 mm diameter (D/t = 3.85) and (b) 38.10 mm diameter (D/t = 21.37). 
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5.3.3 Influence of the Foam Density on SEA 

This part of the study considered the effect of embedding single metal tubes in a 

polymeric foam, details are given in Tables 5.10 and 5.11. Figure 5.10 shows 

experimental and predicted load-displacement curves following compression tests on 

the aluminium and steel tubes embedded in a P6 foam with a density of 224 kg/m
3
. 

Also included in the figure are the load-displacement curves for the individual tube, 

as well as that for a foam sample having a similar volume to that of the combined 

tube + foam specimen. Generally, agreement between the experimental results and 

the FE data is very good, with all of the main features being captured by the model, 

including similar values of initial stiffness, peak load, plateau stress and bottoming-

out displacement.  

In both the experimental and FE models, it is clear that the metal tubes dominate the 

response by absorbing most of the energy in these reinforced structures. At low and 

intermediate foam densities, the performance of the reinforced foam is roughly equal 

to that of the sum of the individual foam and tube in terms of SEA. In contrast, there 

is a small degree (<5%) of additional support due to the presence of the foam with a 

relatively high density, such as 224 kg/m
3
 as shown in Figure 5.10(b). This suggests 

that the presence of the foam may modify the collapse behaviour of the tube. 

Figure 5.11 shows the predicted cross-sections of the aluminium and steel tubes 

embedded in a P6 foam following compression testing at quasi-static rates of 

loading. Given that an imperfection was introduced along the longitudinal axis of the 

tube, it is possible that the tube could penetrate into the foam. This was prevented by 

introducing a small gap between the tube and the foam in FE models, as shown in 

Figure 5.1(b). 
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Sample ID 

Foam 

density 

(kg/m
3
) 

Foam 

modulus 

(MPa) 

SEA 

experimental  

(kJ/kg) 

SEA 

numerical 

(kJ/kg) 

FE/exp 

difference 

(%) 

TAL12 0 0 70.07 70.89 + 1.2 

T1ALP1 15.6 6 70.58 71.11 + 0.8 

T1ALP2 38.3 37 68.43 71.49 + 4.5 

T1ALP3 56.0 69 68.56 70.74 + 3.2 

T1ALP4 90.4 97 69.15 70.76 + 2.3 

T1ALP5 128.0 160 69.42 67.58 - 2.6 

T1ALP6 224.0 280 69.50 70.40 + 1.3 

 

Table 5.10 Summary of the quasi-static experimental and numerical values of SEA 

for individual 20 mm long aluminium tubes in foams of different density. 

 

Sample ID 

Foam 

density 

(kg/m
3
) 

Foam 

modulus 

(MPa) 

SEA 

experimental 

(kJ/kg) 

SEA 

numerical 

(kJ/kg) 

FE/Exp 

difference 

(%) 

TST12 0 0 41.5 40.7 - 1.7 

T1STP1 15.6 6 41.8 40.7 - 2.5 

T1STP2 38.3 37 41.2 40.3 - 2.1 

T1STP3 56.0 69 43.1 42.5 - 1.4 

T1STP4 90.4 97 43.9 44.3 + 1.0 

T1STP5 128.0 160 42.3 41.3 - 2.5 

T1STP6 224.0 280 40.2 43.1 + 7.3 

 

Table 5.11 Summary of the quasi-static experimental and numerical values of SEA 

for individual 20 mm long steel tubes in foams of different density. 
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          (a) 

 

          (b) 

Figure 5.10 Experimental and numerical quasi-static load-displacement traces 

following tests on a 20 mm long, 12.62 mm diameter (a) aluminium tube (D/t = 5.21) 

and (b) steel tube (D/t = 5.51) in a foam with a density of 224 kg/m
3
. 
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A comparison of these images with those shown previously in Figures 5.8(a)i and 

(b)i indicates that the modes of deformation and failure are similar for both the plain 

and embedded tubes. This suggests that the foam does not significantly modify the 

response of the tube and suggests that the former merely acts as a substrate to secure 

the position of the tubes. The density of the foam should therefore be as low as 

possible, whilst serving to hold the tubes in the required locations during loading.  

  

(a)                (b) 

Figure 5.11 Cross-sections of the deformed shapes of 20 mm long tubes (Do= 12.62 

mm) embedded in a P6 foam (224 kg/m
3
) (a) aluminium tube (D/t = 5.21) and (b) 

steel tube (D/t = 5.51). 

 

The experimental results and the FE predictions for the SEA of the tubes under 

quasi-static loading are given as a function of foam modulus in Figure 5.12. Here, the 

energy absorbed by the individual metal tube was estimated by removing the 

contribution associated with the foam [158]. The resulting value of energy was then 

divided by the mass of the metal tube to yield an effective SEA value for the tube on 

its own. Also included in the figure are the values resulting from the previously-

reported tests on the individual metal tubes, that is, those tubes that were not 

embedded in a foam. These particular points are shown on the y-axis of the figure. 

From the figure, it is evident that the values of SEA for both types of tube do not 
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vary with foam modulus. Additionally, it is clear that the FE models accurately 

predict the SEA values of these embedded tubes, with the greatest error being 

approximately 8%. These results support the conclusion that the foam functions only 

to maintain the tubes in place during loading and that it does not significantly modify 

or improve their performance.  

 

Figure 5.12 The variation of the quasi-static experimental and FE values of SEA for 

aluminium and steel tubes. The contribution of the foam has been removed. 

 

Figure 5.13 compares the variation of the quasi-static and dynamic (experimental) 

values of SEA with foam density for the two types of tubes. Once again, the 

contribution of the foam has been removed in order to yield effective SEA values for 

the individual tubes. As before, the properties of the foam do not have a significant 

effect on the energy-absorbing characteristics of the metal tube. Here, it is evident 

that the SEA values exhibited by the aluminium tubes at dynamic rates are almost 

identical to their corresponding quasi-static values, indicating that there is a lack of 
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rate-sensitivity in the response of this material. In contrast, the steel tubes exhibit a 

small level of rate-sensitivity (approximately 10%) reflecting the trends observed 

previously in Figure 5.6. FE models were developed to predict the response of the 

aluminium and steel tubes embedded in foam at impact rates of loading. Figure 5.14 

shows typical load-displacement curves (experimental and predicted) following 

impact tests on aluminium and steel tubes embedded in a P2 (38.3 kg/m
3
) foam. Also 

included are the responses of the individual constituents, that is, the tube and the 

foam. Despite some small oscillations in the FE prediction during the later stages of 

the load-displacement curve, the predicted SEA values are again in a good agreement 

with the experimental results, where the average differences between the predicted 

and measured values for the aluminium and steel are approximately 4 and 7 % 

respectively. 

 

Figure 5.13 The variation of the experimentally-determined quasi-static and dynamic 

values of SEA with foam density. Aluminium (outside diameter = 12.62 mm, D/t = 

5.21) and steel (outside diameter = 12.62 mm, D/t = 5.51). 
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           (a) 

 

            (b) 

Figure 5.14 Predicted and measured dynamic load-displacement traces for the metal 

tubes, a low density foam (38.3 kg/m
3
) and the combined tube plus foam: (a) 

Aluminium (Do = 12.62 mm, D/t = 5.21) and (b) steel (Do = 12.62 mm, D/t = 5.51). 
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The FE investigation continues with a study on the effect of increasing the number of 

tubes on the quasi-static energy-absorbing response of these reinforced foam 

structures. Here, between one and five 12.6 mm diameter metal tubes were 

embedded into 20 mm thick, 60 mm square foam blocks, details of which are given 

in Tables 5.12 and 5.13. 

Figure 5.15 shows a series of measured and predicted load-displacement curves for 

multi-tube systems embedded in a P6 foam with a density of 224 kg/m
3
. As before, 

the FE models over-estimate the initial stiffness in almost all cases, most particularly 

for the case of the aluminium systems. However, it can be seen that the overall trends 

in both the experimental and FE predictions are generally similar. Any differences 

between the experimental data and the model may, in part, be due to the fact that the 

buckling resistance of the tubes is very sensitive to the presence of imperfections 

within them.  

The resulting SEA values were calculated based on the total mass of the test samples, 

that is, no attempt was made to remove the contribution associated with the foam. As 

expected, increasing the number of tubes in a foam sample serves to increase the 

overall SEA of the structure. For example, the SEA of the aluminium-P1 (density = 

15.6 kg/m
3
) system increases from 58 to 65 kJ/kg as the number of tubes is increased 

from one to five. Similar trends are apparent in the P6 (224 kg/m
3
) foam, where 

increasing the number of tubes serves to increase the SEA from 26 to 43 kJ/kg. A 

closer inspection of Figure 5.16 shows that the buckling response of the multiple 

tubes embedded in the foam is similar to that of individual tubes, Figure 5.8(a)i and 

(b)i. It is interesting to note that the SEA of the P1 structure containing five tubes is 

similar to that of the plain tube, suggesting that the response of the metal tubes 

completely masks that of the foam.  
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No of 

tubes in 

foam 

SEA experimental 

[kJ/kg] 

SEA numerical 

[kJ/kg] 

FE/Exp difference [%] 

15.6 

kg/m
3
 

90.4 

kg/m
3
 

224.0 

kg/m
3
 

15.6 

kg/m
3
 

90.4 

kg/m
3
 

224.0 

kg/m
3
 

15.6 

kg/m
3
 

90.4 

kg/m
3
 

224.0 

kg/m
3
 

1 57.5 29.9 26.3 58.7 29.2 25.3 + 2.1 - 2.2 - 4.0 

2 60.2 39.2 32.9 67.0 41.0 33.3 + 11.3 + 4.6 + 1.3 

3 62.1 43.6 35.9 68.0 47.0 37.0 + 9.7 + 7.7 + 3.0 

4 63.1 46.9 40.5 70.2 52.3 42.3 + 11.2 + 11.4 + 4.4 

5 65.3 50.3 42.6 69.5 56.0 46.4 + 6.5 + 11.3 + 9.0 

 

Table 5.12 Summary of the SEA values (experimental and numerical) for foams 

containing between 1 and 5 aluminium tubes. 

 

No of 

tubes in 

foam 

SEA experiment 

[kJ/kg] 

SEA numerical 

[kJ/kg] 

FE/Exp difference [%] 

15.6 

kg/m
3
 

90.4 

kg/m
3
 

224.0 

kg/m
3
 

15.6 

kg/m
3
 

90.4 

kg/m
3
 

224.0 

kg/m
3
 

15.6 

kg/m
3
 

90.4 

kg/m
3
 

224.0 

kg/m
3
 

1 42.5 30.2 26.7 40.6 28.2 25.8 - 4.3 - 6.7 + 3.5 

2 42.1 32.1 31.3 40.6 33.4 30.2 - 3.4 + 4.2 - 3.4 

3 41.1 34.5 32.9 42.1 34.8 33.5 + 2.2 + 1.0 + 1.7 

4 41.7 35.5 34.0 41.1 35.7 34.8 + 1.4 + 0.6 + 2.2 

5 41.5 37.1 34.4 41.2 36.2 35.4 - 0.6 - 2.3 + 3.0 

 

Table 5.13 Summary of the SEA values (experimental and numerical) for foams 

containing between 1 and 5 steel tubes. 
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(a) 

 

 

(b) 

Figure 5.15 Predicted and measured force-displacement traces for increasing 

numbers of 12.62 mm diameter metal tubes in a P6 foam with a density of 224 kg/m
3
 

(a) aluminium tubes (D/t = 5.21) and (b) steel tubes (D/t = 5.51). 
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(i) 

 
(i) 

 
(ii) 

 
(ii) 

 
(iii) 

 
(iii) 

 
(iv) 

 
(iv) 

(a)                                                               (b)  

Figure 5.16 Cross-sections of deformed foam samples based on increasing numbers 

of tubes in a P6 (224 kg/m
3
) foam (a) aluminium tubes (D/t = 5.21) and (b) steel 

tubes (D/t = 5.51). 

 



Chapter 5                                                             Finite Element Modelling 

200 

 

5.4 Results and Discussion of the CFRP Tubes 

5.4.1 Mesh Sensitivity Analysis 

A mesh sensitivity analysis was performed using a model of a CFRP tube specimen 

with an outer diameter of 10.20 mm and a length of 20 mm. For verification 

purposes, the CFRP tubes previously subjected to quasi-static loading are used to 

validate the current FE models. The finite element model was meshed using four 

different mesh sizes, these being 2 mm (coarse), 1 mm (medium), 0.6 mm (fine) and 

0.4 mm (very fine). Here, four models were studied, with each containing 56, 132, 

340 and 800 elements. Results are shown in Table 5.14. 

 Figure 5.17(a) summarises the findings of the mesh sensitivity analysis, which 

comprises the relationships between the number of elements, predicted specific 

energy absorption and total CPU time. The reasonable number of elements was also 

indicated in the figure. As anticipated, the CPU time increases as the number of 

elements is increased. Similarly, the predicted SEA increases gradually as the 

number of elements increases and remains almost constant as it approaches the 

experimental value. 

Number of 

Elements 

Mesh size 

[mm] 

CPU time 

[hour] 

SEA             

[kJ/kg] 

FE/exp 

difference [%] 

Experiment - - 93.3 - 

56 2.0 0.23 71.0 -23.9 

132 1.0 0.50 79.8 -14.5 

340 0.6 2.83 89.7 -3.9 

800 0.4 5.37 90.2 -3.3 

 

Table 5.14 Details of mesh sensitivity analysis. 
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(a) 

                                        

        (b)                            (c)                              (d)                                (e)  

 

Figure 5.17 (a) Mesh-sensitivity analysis showing the number of elements required 

for convergence of the FE model for a CFRP tube of 10.2 mm diameter. Deformed 

shapes of tubes based on (b) 56 elements (mesh = 2 mm), (c) 132 elements (mesh = 1 

mm), (d) 340 elements (mesh = 0.6 mm) and (e) 800 elements (mesh = 0.4 mm). 
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The deformations of the models with different number of elements are shown in 

Figures 5.17(b), (c), (d) and (e). All models show the occurrence of element deletion, 

where the element deletion condition is satisfied at all of the section points of an 

element. However, splaying mode can only be observed in models with finer mesh 

sizes of 0.4 and 0.6 mm (Figures 5.17(d) and (e)). In the finer mesh models, the 

splaying characteristic offers resistance to their subsequent deformation. 

The load-displacement curves in Figure 5.18(a) show that the models with larger 

mesh sizes exhibit a higher fluctuation trend as compared to the models with finer 

mesh sizes in Figure 5.18(b). Consequently, the models with larger mesh sizes of 2 

and 1 mm resulted in substantial errors of 23.9 and 14.5% respectively. This shows 

that finite element predictions involving composite fracture mechanisms are sensitive 

to the mesh size selected. It should be noted that since perfect contact between the 

tube and the platens was assumed in all cases, the FE predictions slightly over-

estimate the measured stiffness. 

Figure 5.18(b) shows that the model with 0.4 mm is less fluctuated as compared to 

the 0.6 mm model with minor errors of 3.9 and 3.3% respectively. In terms of 

practicality, the mesh size of 0.6 mm (2.83 hour) is used as it has a more reasonable 

runtime with almost half the duration of that 0.4 mm (5.37 hour) model. Although 

the predictions of both models are only with minor errors, model with 0.6 mm (2.83 

hour) has a shorter runtime than model 0.4 mm (5.37 hour). Therefore, model 0.6 

mm is deemed to be more appropriate because of its close agreement with the 

experimental results and shorter runtime. 
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      (a) 

 

          (b) 

Figure 5.18 Experimental and numerical force-displacement traces for 20 mm long 

10.2 mm diameter CFRP tube mesh sizes of (a) 1 mm, 2 mm, (b) 0.4 mm and 0.6 

mm following quasi-static loading.   
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5.4.2 Influence of the D/t on SEA 

Table 5.15 gives a summary of the experimental and numerical SEA characteristics 

of 20 mm long individual CFRP tubes. From the table, it is clear that the energy-

absorbing capability of the tubes decreases rapidly with increasing D/t. For example, 

the SEA decreases by 48% from 93.3 to 48.1 kJ/kg over the range of values of D/t 

considered here. The table shows that the FE models yield predictions that are very 

close to the experimental values with difference of less than 8%. 

Tube 

ID 

Outer 

diameter, 

Do [mm] 

Inner 

diameter, 

D [mm] 

Thickness, t 

[mm] 
D/t 

SEA 

experimental 

[kJ/kg] 

SEA FE 

[kJ/kg] 

FE/Exp 

difference 

[%] 

TCF10 10.20 7.74 1.23 6.3 93.3 89.7 -3.9 

TCF12 12.70 10.00 1.35 7.4 89.2 90.7 +1.7 

TCF29 29.40 26.28 1.56 16.9 81.4 - - 

TCF40 40.90 37.54 1.68 22.4 76.7 - - 

TCF50 50.40 47.04 1.68 28.0 58.5 - - 

TCF63 63.60 59.92 1.84 32.6 48.1 51.7 +7.5 

 

Table 5.15 Comparison of the quasi-static experimental and numerical SEA 

characteristics of 20 mm long individual aluminium tubes. 

 

Figure 5.19 compares the experimental load-displacement traces for the 10.2, 12.7 

and 63.3 mm diameter CFRP tubes with the predictions offered by the FE models. It 

is evident that all traces exhibit similar characteristics, with force rising to a 

maximum before dropping slightly and failure occurring in a stable manner at an 

approximately constant force. The exception to this observation is the largest 

diameter tube (Do = 63.3 mm) with a D/t value of 32.6. Initially, the trace displays a 

linear response up to a peak load of approximately 65 kN. This is followed by a 
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substantial drop to approximately 30 kN before reaching a region of almost constant 

load. Again, as perfect contact between the tube and the platens was assumed in all 

cases, the FE predictions over-estimate the measured stiffness. 

Figures 5.20 and 5.21 show images obtained following experimental testing and FE 

modelling of the CFRP tubes for a range of initial D/t values. The presence of a 

distinct crush front, in which the fibre splay outwards against the moving platen, can 

be observed in the experimental and FE images of 10.2 mm and 12.7 mm diameter 

tubes. Closer inspection of the lower platen in the experimental images of 10.2 mm 

and 12.7 mm diameter tubes suggested that the failure process generated a significant 

number of small fragments. However, the presence of fractured small fragments in 

FE models is immensely minimal, as the detached elements were removed from the 

model to avoid premature termination of the analysis. Finally, fracture of the large 

63.6 mm tube resulted in the formation of relatively large plate-shaped structures, 

with there being little evidence of the aforementioned residual dust on the lower 

platen. It is clear that the numerical deformation modes correlate reasonably well for 

the large 63.6 mm tube.  
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          (a) 

 

 

             (b) 

Figure 5.19 Experimental and numerical force-displacement traces for 20 mm long 

CFRP tubes of (a) 10.2 mm, 12.7 mm and (b) 63.6 mm diameters following quasi-

static loading. 
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(a) 

 

              

  (b) 

 

    

  (c) 

 

 

Figure 5.20 Comparison of the photographs and FE simulations of 20 mm long 

CFRP tubes of (a) 10.2 mm (b) 12.7 mm and (c) 63.6 mm diameters following quasi-

static loading. 
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10.2 mm (D/t = 6.3)                 12.7 mm (D/t = 7.4)                63.6 mm (D/t = 32.6) 

                    (i)                     (ii)                        (iii) 

  (a) 

 
 

 

10.2 mm (D/t = 6.3)                 12.7 mm (D/t = 7.4)                63.6 mm (D/t = 32.6) 

   (i)                 (ii)                    (iii) 

(b)      

Figure 5.21 Remnants of the composite tubes following quasi-static tests (a) 

experiment (b) FE models. 
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5.4.3 Influence of the Foam Density on SEA 

In this section, the numerical study is focused on the effect of embedding single 10.2 

mm CFRP tubes in five foams, as given in Table 5.16. Figure 5.22 shows typical 

experimental and predicted load-displacement traces following compression tests on 

the CFRP tubes embedded in a foam with a density of 224 kg/m
3
. Also included in 

the figure are the load-displacement traces for the individual tube, as well as that for 

a foam sample having a similar volume to that of the combined tube+foam specimen.  

Tube embedded 

foam ID 

Foam 

modulus 

[MPa] 

Foam 

density 

[kg/m
3
] 

Experimental 

SEA [kJ/kg] 

SEA FE  

[kJ/kg] 

FE/Exp 

difference 

[%] 

TCF10 0 (no foam) 0 (no foam) 93.3 89.7 -3.9 

T1CFP1 6 15.6 93.2 90.2 -3.2 

T1CFP3 69 56.0 106.0 90.6 -14.5 

T1CFP4 97 90.4 107.3 91.0 -15.2 

T1CFP5 160 128.0 120.5 90.8 -24.6 

T1CFP6 280 224.0 155.8 91.1 -41.5 

 

Table 5.16 Summary of the experimental and numerical SEA of the individual 10.2 

mm (D/t = 6.3) diameter tubes with the energy absorbed by the foam removed. 

 

In Figure 5.22, the experimental results show that the tube-foam system offers a 

response that is higher (approximately 10 kN) than the sum of its individual 

components. Closer inspection of the experimental remnants of the composite tube in 

Figure 4.28 indicated that the composite had been reduced to smaller fragments than 

the plain composite in Figure 4.25(a)i. This increased level of constraint appears to 

lead to increased level of fragmentation and greater energy absorption. 
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Figure 5.22 Experimental and numerical quasi-static load-displacement traces 

following tests on 20 mm long, 10.2 mm diameter CFRP tube in a foam with a 

density of 224 kg/m
3
. 

 

 

                                                                                                               

       (a)                                                       (b) 

Figure 5.23 (a) The tube-foam sample following testing (foam density = 224 kg/m
3
) 

and the remnants of the 10.2 mm (D/t = 6.3) tube following testing on 10.2 mm tube-

foam combination. (b) The cross-sectional view of the corresponding FE model. 
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Figure 5.22 also shows that the FE model is able to exhibit similar general trend as 

the experimental tube-foam results, with all of the main features including initial 

stiffness, peak load and plateau stress being captured. However, the stabilised 

crushing load in the FE model was underestimated by 41.5%, indicating that the 

foam in the FE model was not able to provide constraint condition to the CFRP tube.  

The major issue in the FE models of tube-foam is related to the element deletion as 

the damage criteria are satisfied at all of the section points of an element. Yet, it is 

necessary to delete the failed shell element to simulate progressive crushing and 

avoid element distortions that will lead to convergence issue [42]. For that reason, 

the model output does not correspond to the experimental structures, as in reality, the 

failed sample produces large amount of small fragments and fine debris. In Figure 

5.23(b), the absence of the detached fragments leads to a highly reduced amount of 

frictional interaction with the platens and the structure, thus resulted in a lower 

specific energy absorption in the FE model.  

Figure 5.24 compares the experimental results and the FE predictions for the SEA of 

the tubes under quasi-static loading as a function of foam modulus. Here, the 

contribution of the foam has been removed in order to yield effective SEA values for 

the individual CFRP tubes. Included in the figure is the value of unsupported plain 

CFRP tube (i.e. corresponding to the case where the foam modulus equals zero). The 

experimental results show that the SEA of the individual tubes increases with 

increasing density of the foam, with the SEA reaching approximately 155 kJ/kg in 

the highest density foam. In contrast, the SEA of the FE models remains at 

approximately 90 kJ/kg, indicating that the predicted SEA do not vary with foam 

modulus. Studying the results closely, however, does reveal that the prediction of 

CFRP tube-reinforced lowest density foam (15.6 kg/m
3
), correlates reasonably well 
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with the experimental results (underestimation of approximately 3.2%). It is 

proposed that these models can be used for further parametric studies to assist in 

designing and optimising the structural behaviour of lightweight energy-absorbing 

sandwich structures, especially in relation to the foam density of less than 130 kg/m
3
. 

 

 

Figure 5.24 The variation of the quasi-static experimental and FE values of SEA for 

the 10.2 mm diameter CFRP tubes. The contribution of the foam has been removed.  
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5.5 Summary 

Finite element models have been developed to investigate the response of individual 

tubes and tube-reinforced foam structures subjected to axial crushing. The metallic 

tubes were simulated by employing an isotropic elastic-plastic material model. 

Whereas, the technique adopted for composite tubes was based on composite layup 

for shell elements with Hashin’s failure criteria. Result data from tests on individual 

aluminium, steel and CFRP tubes show that the energy-absorbing capability of the 

tubes decreases with increasing D/t. Overall, the predicted SEA and deformations of 

these structures corresponded closely with the experimental observations, supporting 

the view that the model accurately predicts the response of these individual tubes.  

The experimental and FE results show that the foam in metal tube-foam systems does 

not significantly modify or enhance the performance of the metal tubes. Further 

experimental and FE simulation investigation of the effect of increasing the number 

of tubes also suggests that the contribution of the foam does not significantly 

enhance the performance of the reinforced foam. This leads to a conclusion that the 

density of the foam should be low, whilst being sufficient to maintain the precise 

positioning of tube within the foam. Compression tests on CFRP tube-foam have 

shown that the composite tubes absorb greater levels of energy with increasing foam 

density, due to increased levels of fragmentation. The high complexity of simulating 

the fragments in the FE models resulted in a lower specific energy absorption, as the 

density of foam is increased. Since the effect of foam is insignificant in the CFRP 

tube-reinforced lowest density P1 foam (15.6 kg/m
3
), the prediction correlates 

reasonably well with the experimental results. It is proposed that these models can be 

used for further parametric studies to assist in designing and optimising the structural 

behaviour of lightweight energy-absorbing sandwich structures. 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

In this final chapter, the major findings of this research are summarised. Following 

this, recommendations for future work will also be given. 
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6.1 Conclusions 

This research project has been carried out to investigate the energy-absorbing 

characteristics of aluminium, steel and composite tube-reinforced foam structures as 

core materials in sandwich applications. Initially, the mechanical properties of each 

material used was characterised through a series of compression and tensile tests. 

Following this, a range of quasi-static and dynamic tests have been conducted to 

understand the influence of varying key parameters on the specific energy absorption 

(SEA) and corresponding failure modes in the structures. In addition, preliminary 

blast tests were conducted on a limited number of sandwich panels. This research has 

also developed finite element models that are capable of predicting the crushing 

response of the individual tubes and tube-reinforced foam structures.  

The literature review has highlighted the fact that the majority of studies published to 

date have focused primarily on the energy absorption behaviour of tubes as 

individual components and the use of foams as fillers in tubular energy-absorbing 

structures. These findings have led to the development of energy-absorbing sandwich 

structures which are based on metallic and composite tube-reinforced polymer 

foams.  

Through an extensive test programme, the influence of tube length, inner diameter to 

thickness ratio, foam density and the response of multi-tube systems have been 

studied. From the investigations, it is clear that the values of the SEA of the metallic 

and composite tubes do not vary significantly with tube length. This evidence 

indicates that such structures could also offer attractive characteristics through the 

use of embedded tubes of different length. It has been shown that the specific energy 

absorption of the aluminium, steel and composite cylindrical tubes increases 
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significantly with reducing inner diameter to thickness (D/t) ratio. Closer 

examination of the samples highlighted the fact that the metal tubes, with the lowest 

values of D/t, exhibit distinct wrinkles, whereas samples with larger values of D/t 

tend to display a single bulge. The energy-absorbing characteristics of the aluminium 

tubes have been shown to be superior to those of their steel counterparts. Significant 

changes in composite failure modes have been observed, with larger diameter tubes 

failing in delamination and smaller tubes failing in a combination of splaying and 

fragmentation modes. As anticipated, the composite tubes offer superior energy-

absorbing properties to the metal materials. 

Following these initial studies, structures based on an array of small tubes embedded 

in a foam were developed as they represent an attractive option in the search for new, 

lightweight energy-absorbing sandwich structures. The crush test results of single 

tube-reinforced foam structures showed that the foam does not significantly modify 

the energy-absorbing capability of the embedded metal tubes. On the contrary, the 

composite tubes absorbed greater levels of energy with increasing foam density, due 

to increased levels of fragmentation. Varying the planar density of the aluminium 

and steel tubes in a low density foam have yielded SEA values of 65 and 41 kJ/kg 

respectively. Interestingly, a high SEA value of 86 kJ/kg was achieved using a low 

density foam in conjunction with dense packing of composite tubes. It has been 

shown that the performance of these structures compares well with other energy-

absorbing structures. The observation of samples following blast tests highlighted 

similar failure modes to those observed in compression, suggesting that composite 

and metal tube-reinforced foams represent an attractive option for use in 

dynamically-loaded structures.  
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From the literature review, it was noted that finite element (FE) technique for 

metallic materials are well understood and it is now possible to generate models with 

a good level of accuracy. However, modelling the failure behaviour of composite 

materials remains as a very complex process, due to the fact that this material crushes 

in a combination of numerous fracture mechanisms. Thus, currently there are no 

universally-accepted material constitutive models for crash simulations of composite 

materials.  

Finite element models have been developed to predict the compressive properties of 

tube-reinforced foams under conditions of axial crushing. The response of the 

metallic tubes was simulated by employing an isotropic elastic-plastic material of a 

solid 3-D model. Whereas, the technique adopted for composite tubes was based on 

composite layup using conventional shell elements with Hashin’s failure criteria. A 

mesh sensitivity analysis was performed in this investigation which generated a 

range of reasonable mesh sizes for use in the FE models. Overall, the predicted SEA 

and deformations of individual tubes corresponded closely with the experimental 

observations, supporting the view that the model accurately predicts the response of 

these tubes.  

The FE results show that the foam in metal tube-foam systems does not significantly 

enhance the performance of the metal tubes. Simulation results of composite tube-

reinforced foam structures underestimated the SEA as the density of foam was 

increased. These difficulties arise due to the high complexity associated with 

producing fragments in the FE models. As the effect of foam is insignificant in the 

lowest density reinforced foam, the prediction correlates reasonably well with the 

experimental results, considering the complicated nature of the fracture process.  
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The evidence from the tests conducted here and the review of many systems in the 

literature highlights the greater performance of the tube-reinforced foam structures 

investigated. These energy-absorbing structures are based on simple cylindrical tubes 

and foams that are widely available in the market. Thus, the tube-reinforced foam 

structures offer a number of potential benefits, including a lower labour 

intensiveness, a relative ease of fabrication of complex and curved structures, 

superior energy-absorbing characteristics and a relatively low cost. These structures 

offer considerable potential for use as core materials in sandwich applications. It is 

proposed that the FE models developed could be used for further parametric studies 

to assist in designing and optimising the structural behaviour of lightweight tube-

reinforced foam structures. 

 

6.2 Recommendations for Future Work  

From the above conclusions, it can be seen that this comprehensive study has 

contributed to a deeper understanding of the development of tube-reinforced foam 

systems. However, there is still much research that could be explored to build on the 

results achieved in this work. The following points address the areas which could be 

further investigated and highlights important aspects that should be considered in 

conducting future research work.  

 Higher specific energy absorption could be achieved by developing a design 

that allows the CFRP tube embedded in a low density foam structure to crush 

into finer particles. 

 It would be interesting to further study the influence of embedded tube 

arrangement in foam structures.  
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 The value of SEA could be further improved by employing an optimised fibre 

stacking sequence. 

 It would be valuable to investigate the characteristics of the structures 

subjected to oblique loading and localised impact condition. 

 An intensive investigation of the blast-response of these tube-reinforced foam 

systems with a view to developing lightweight structures for use under 

conditions of extreme loading would be useful for future development. 

 The blast rig could be improved to include devices (i.e. pressure/displacement 

sensors) that will be able to produce measurements that are useful for the 

energy-absorbing investigations. 

 Modelling the complex fracture mechanisms of composite materials is a very 

challenging task. Therefore, in-depth understanding is needed before 

developing the numerical models.  

 The FE models of tube-foam structures could be improved using a 3-D user 

defined subroutine UMAT to minimise the dynamic effect caused by using 

the explicit approach and to further reduce the fluctuation in the load-

displacement response.  
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