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Abstract

In a nutshell, this thesis studies discrete-time Markov decision processes

(MDPs) on Borel Spaces, with possibly unbounded costs, and both ex-

pected (discounted) total cost and long-run expected average cost crite-

ria.

In Chapter 2, we systematically investigate a constrained absorbing

MDP with expected total cost criterion and possibly unbounded (from

both above and below) cost functions. We apply the convex analytic

approach to derive the optimality and duality results, along with the

existence of an optimal finite mixing policy. We also provide mild condi-

tions under which a general constrained MDP model with state-action-

dependent discount factors can be equivalently transformed into an ab-

sorbing MDP model. Chapter 3 treats a more constrained absorbing

MDP, as compared with that in Chapter 2. The dynamic programming

approach is applied to a reformulated unconstrained MDP model and the

optimality results are obtained. In addition, the correspondence between

policies in the original model and the reformulated one is illustrated.

In Chapter 4, we attempt to extend the dynamic programming ap-

proach for standard MDPs with expected total cost criterion to the case,

where the (iterated) coherent risk measure of the cost is taken as the

performance measure to be minimized. The cost function under our

consideration is allowed to be unbounded from the below, and possibly

arbitrarily unbounded from the above. Under a fairly weak version of

continuity-compactness conditions, we derive the optimality results for

both the finite and infinite horizon cases, and establish value iteration

as well as policy iteration algorithms. The standard MDP and the iter-

ated conditional value-at-risk of the cost function are illustrated as two
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examples.

Chapter 5 and 6 tackle MDPs with long-run expected average cost

criterion. In Chapter 5, we consider a constrained MDP with possibly un-

bounded (from both above and below) cost functions. Under Lyapunov-

like conditions, we show the sufficiency of stable policies to the concerned

constrained problem. Furthermore, we introduce the corresponding space

of performance vectors and manage to characterize each of its extreme

points with a deterministic stationary policy. Finally, the existence of

an optimal finite mixing policy is justified. Chapter 6 concerns an un-

constrained MDP with the cost functions unbounded from the below

and possibly arbitrarily unbounded from the above. We provide a de-

tailed discussion on the issue of sufficient policies in the denumerable

case, establish the average cost optimality inequality (ACOI) and show

the existence of an optimal deterministic stationary policy.

In Chapter 7, an inventory-production system is taken as an example

of real-world applications to illustrate the main results in Chapter 2 and

5.

ii



Acknowledgement

I would like to express my sincere gratitude to my primary supervisor, Dr.

Yi Zhang, for his invaluable suggestions and consistent support during

my research. I would also like to thank my secondary supervisor, Dr.

Alexey Piunovskiy, for his active arrangement of a series of seminars,

which indeed broadened my horizon and helped me better understand

topics in related areas. I am grateful to the financial support offered by

Department of Mathematical Science over the past four years. Finally, I

am indebted to my parents and anonymous friends, without whom this

thesis is unlikely to come into being.

iii



Notations

2 end of a proof

:= equality of definition

R the set of real numbers

K the set of feasible state-action pairs

δx(·) a dirac measure concentrated on the point x

1{·} the indicator function

UH the set of history-dependent policies

UM the set of (randomized) Markov policies

US the set of (randomized) stationary policies

UDS the set of deterministic stationary policies

B(S) Borel σ-algebra of subsets of S

B(S) the space of measurable bounded functions on S

C(S) the space of continuous bounded functions on S

Bw(S) the space of w-bounded measurable functions on S

M(S) the space of finite measures on B(S)

Mw(S) the space of w-bounded finite measures on B(S)

P(S) the space of probability measures on S

M the model of a Markov decision process
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Chapter 1

General Introduction

1.1 Introduction

The thesis deals with discrete-time Markov decision processes, which are

frequently and will be referred to as MDPs for short throughout the

dissertation, in Borel spaces, with unbounded costs. The criteria to be

optimized are expected total cost and long-run expected average cost.

Incidentally, a MDP model with discounted expected total cost criterion

is regarded as the special case of the one with (undiscounted) expected

total cost criterion. These problems form an important class of stochastic

control problems with various applications to telecommunication, inven-

tory management, finance and so on.

Roughly speaking, the thesis can be divided into two parts, where the

first half consists of Chapter 2, 3 and 4 with the objective of minimizing

expected total cost, and the other half is made up of Chapter 5 and 6

with the objective of minimizing long-run expected average cost. Either

part concerns both constrained and unconstrained problems. It is worth

mentioning that Chapter 4 introduces a new concept called risk measures,

which makes it possible for one to consider a risk-sensitive MDP. In the

remainder of this section, we give a general introduction of standard

MDPs with expected total cost criterion, the interplay between a risk-

sensitive MDP model and the notion of iterated coherent risk measures,

MDPs with long-run expected average cost criterion, and at last some
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contributions we make to the current literature.

Standard MDPs with the objective of minimizing the expected total

cost have been intensively studied at least since the 1950s partially due to

the fact that the theory can be technically subtle and involving (especially

when the state space is a general Borel space) and partially for its rich

and various applications. The results on the general theory of MDPs, i.e.,

the existence of optimal policies and the establishment of the optimality

equations, etc., can be found, e.g., in the monographs and textbooks

[8, 47, 50, 75], and the applications of MDPs to finance and insurance

are well demonstrated in [8].

In regard to a constrained MDP model, there are three main ap-

proaches to deal with it. The most popular and easiest way is direct

method or convex-analytic approach (see [2, 20, 34, 72]), which rewrites

the original controlled problem as a linear one over the set of occupation

measures. The main techniques used by this approach are convex analysis

and Lagrange multipliers. The second similar approach widely adopted is

called linear programming (see [2, 47, 48, 50]). It combines together the

primal functional and source of constraints to form both the primal lin-

ear program (PLP) and the corresponding dual linear problem (DLP). In

addition to (primal) optimality results obtained via the convex-analytic

approach, the duality results are derived under proper conditions as well.

Finally, as the same with an unconstrained model, the popular dynamic

programming approach is employed; see [65]. However, this approach

does not automatically fit well with constrained models and is thus fairly

restrictive in its applications. On the other hand, it possesses the ad-

vantage that the previous two approaches do not enjoy. To be specific,

it allows one to characterize the optimal policy explicitly whenever the

initial distribution is given. In connection with the material presented

in this dissertation, direct method is adopted in Chapter 2 and 5; lin-

ear programming is used in Chapter 2; dynamic programming approach is

employed in Chapter 3, in which we consider a more constrained problem.

For the concerned problem in Chapter 2, to the best of our knowledge,

the constrained absorbing MDP model in Borel spaces, with unbounded

(from both above and below) cost functions and total cost criterion, is
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not yet investigated in the current literature. The recent advances in this

topic include [2, 26, 60] and [50, Chap.9], where [50, 60] consider an un-

constrained absorbing MDP model and follow the dynamic programming

approach, [2] studies a constrained absorbing MDP model on a count-

able state space, and [26] treats a constrained absorbing MDP model

in Borel spaces but with cost functions bounded from one side. There-

fore, it is natural that we investigate systematically such an absorbing

MDP model, which is of interest in its own right. To this end, we follow

the convex analytic approach, which is well demonstrated in [18, 72] for

different models.

It is well known that a standard discounted MDP model can be equiv-

alently viewed as an undiscounted MDP model. The same assertion also

holds if we consider a non-standard and more general discounted MDP

model with a state-action-dependent factor. Should the transformed

undiscounted model be absorbing, the results for the discounted MDP

model would immediately follow from those of the absorbing MDP model.

In the present work we provide reasonably verifiable conditions, which,

on the one hand, guarantee the transformed undiscounted model to be

absorbing, and on the other hand, also allow the state-action-dependent

discount factor not necessarily separated from one. To the best of our

knowledge, there is only limited literature on discounted MDP models

with non-constant discount factors, see [42, 85], both of which consider

an unconstrained model, and follow the dynamic programming approach.

Chapter 3 concerns a more constrained absorbing MDP model, which

can be seen as a natural extension of the one treated in Chapter 2 and

[65]. Technically, the more constrained problem is automatically raised if

we allow the cost functions to be unbounded from below (of course, con-

trolled by a weight function), see the reformulation in Chapter 3. With

a similar reformulation introduced by [65], the establishment of corre-

sponding optimality equation and an optimal deterministic stationary

policies is shown by the main optimality results derived in Chapter 4,

where a risk-sensitive MDP model is under our consideration.

In view of the form of the concerned problem, constraints are re-

quired to be satisfied for expected total cost over the infinite horizon.
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In contrast, constraints are further required to be satisfied over every

finite horizon in addition to the infinite case in Chapter 2. In terms

of methods applied to deal with corresponding problems, the dynamic

programming approach is employed here as distinct from convex analytic

approach in Chapter 2. To implement dynamic programming approach

to constrained problems, the values of all constrained functionals up to

every time step is recorded by a specific vector, which is in turn incorpo-

rated into the definition of new cost function. Indeed, the idea is similar

to the penalty function method. It is worth mentioning that the model

considered here differs from that in the above reference in two respects.

Firstly, the costs are not necessarily lower-bounded, but rather controlled

by a weight function so as to allow unboundedness from both the above

and below. Secondly, the criterion under investigation is to minimize

total expected cost, where [65] considers a discounted total cost prob-

lem. As is mentioned in Remark 2.1(b) and Section 2.6, the latter issue

can be in some way addressed by reformulating a discounted MDP as a

transient one. Finally, we mention that it is allowed to consider a denu-

merable model and a Borel but finite one, where the technicality problem

remains unresolved in the more general Borel case.

The material presented in Chapter 4 is from [23]. As compared with

the standard MDP, where the decision makers are risk neutral, i.e., the

expectation of the cost function is the only performance measure, the

more recent development is in the direction of incorporating into the

MDP model the concept of risk measures. One popular way of doing so

is to consider the expected value of the risk measure of the total cost, see

[22, 61], where an entropy risk mapping (also known as the exponential

utility) is to be minimized; see also [7, 15], where other risk measures are

considered. Under some conditions such problems can be transformed

to equivalent standard MDPs, see [9]. Instead of considering the risk

of the aggregated cost, another way of incorporating risk measures in

MDPs is to consider the aggregated (or say iterated) risk; see [70, 82,

90]. This is also what Chapter 4 attempts to do. We point out that

for a multistage problem, it is demonstrated in [70] (see also [69]) that

optimizing with respect to the expected risk measure (or say utility) is
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subject to limitations in representing a rational decision making, which

can be overcome by optimizing with respect to the aggregated (iterated)

risk. Both [69, 70] briefly consider finite horizon problems in finite or

countable spaces.In Chapter 4, we focus on the coherent risk measures,

whose definition is given in Section 4.2 below. The axiomatic definitions

of coherent risk measures are first given in [5], and one popular example

of coherent risk measures is the conditional value-at-risk; see [71, 77,

78], Example 4.2 and the appendix below. A single stage optimization

problem of the conditional value-at-risk is considered in [77], see also [78].

One of the contributions in Chapter 4 is to allow cost functions be-

ing defined in a more relaxed way. As far as applications are concerned,

the reason for considering +∞-valued cost functions in economics is ex-

plained in [62, 63], where examples involving a +∞-valued utility func-

tion popular in economics are presented, see e.g., Example 2 of [62] or

Example 4 of [63], where some relevant references in the economics liter-

ature can be also found.

In Chapter 5, in addition to the conventional optimality results, we

study the existence of a mixing optimal policy to a constrained average

optimality problem. One way of establishing such a result is through

characterizing the extreme points of the space of occupation or stable

measures with those generated by deterministic stationary policies. In

particular, [3, 2] considered the characterization of extreme points of sta-

ble measures (state-action frequencies) with respect to an average prob-

lem under the unichainedness assumption and moment-like conditions in

the denumerable case; [20] improved the above results by removing the

moment-like conditions, but instead applying one of the geometric re-

sults, i.e., Dubin’s Lemma (see [30, Main result]). [72] studied the space

of occupation measures with respect to discounted problems when the

state space is a general Borel space, whereas [26] investigated an absorb-

ing problem with total cost criterion and show the same result by the

similar reasoning applied in [72]. It should be pointed out that among

the above literature, especially [20], there is no straightforward way of

extending the obtained results from the denumerable case to the general

Borel one. Owing to this difficulty, we show the existence of an mixing
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optimal policy, instead by studying the geometric properties of the space

of performance vectors.

The study of the space of performance vectors was initiated by [33,

34] as compared with the space of occupation or stable measures [3,

18, 20]. The merit of this object lies in that the space of performance

vectors is indeed a finite-dimensional Euclidean space, which is more

convenient to deal with and enjoys more well-established results than the

space of measures does. Besides, it should be mentioned that the space

of performance vectors is more powerful in dealing with multi-objective

problems. Indeed, our proof of the main results in Chapter 5 follows

in a similar manner as in [34] by recursively constructing sub-models so

as to reducing the dimension of the space of performance vectors. The

difference lies in that [34] considered a weighted discounted problem,

whereas the average optimality problem is considered by us.

In the present work, we attempt to show that the occupation measure

optimal to the concerned problem can be represented by convex combi-

nation of at most M +1 occupation measures, each of which is generated

by a deterministic stationary policy, where M denotes the number of con-

straints. It should be emphasized that the problem studied in Chapter

5 differs from that in [41, 43], which focused on the space of randomized

strategies in the appropriate topology. They seem to resemble each other,

but indeed turns out to be two distinctive problems. The difference is

roughly explained in [72, p.89]. Concretely, mixing policies randomize

only before the first step by randomly selecting a specific deterministic

policy, which is implemented throughout the evolution of the process. In

contrast, randomized policies considered in [41, 43] randomize at each

step as the process evolves. In addition, it should be mentioned that

the problem considered here is essentially different from the sequence

of articles initiated by [53] aiming at finding a “minimum pair” (γ, π̂).

In comparison, here we consider an average optimal problem with the

initial distribution γ being fixed. As explained in [53, Remark 2.2], the

approach adopted in the above reference can be in some sense extended

to the present problem by imposing certain type of ergodic hypothesis.

However, as will be seen in Assumption 5.3 and 5.4, the property of er-
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godicity will be imposed merely on the class of deterministic stationary

polices rather than “stable policies” introduced in [53]. The objective

of seeking for an optimal mixing policy implies the intrinsic necessity of

restriction to the family of deterministic stationary polices, essentially as

distinct from [53].

Chapter 6 treats an unconstrained average optimality problem under

the strong continuity-compactness condition. A detailed summary of the

early development of the theory of MDPs with average cost criterion can

be found in [4]. We only show a sketched and selected version. Derman

[27] first showed the existence of a global optimal deterministic stationary

policy in the case of finite state and action space. One of the tricky points

regarding average problems lies in that even an epsilon-optimal policy

may not exist if either the state or action space is infinite; see [6, 79, 80],

[31, Chap.7] and [32, Sect.5] for counter-examples. A milestone of the

theory of average problems was the vanishing discount factor approach

established by Blackwell [14]. He observed that there is a close relation-

ship between discount and average problems, i.e., the latter one can be

viewed as an approximation of a series of discount problems as the dis-

count factors increase to 1. If the cost function is bounded, Derman [28]

studied the average cost optimality equation (ACOE), which provides

the optimal value function as a constant and induces the optimal deter-

ministic stationary policy. Hordijk [57] extended the results in [28] from

countable-state-finite-action case to countable-state-compact-action one.

Sennott [87, 88] considered problems with cost functions bounded from

the below. One can apply the well-celebrated Abelian (Tauberian) Theo-

rem (see Theorem C.1) and the conventional diagonal argument to estab-

lish the average cost optimality inequality (ACOI). Again, She showed

there exists an optimal deterministic stationary policy. Cavazos-Cadena

[21] provided an important example to illustrate that the ACOE fails to

hold whereas ACOI holds. [46] and [86] considered the general Borel state

space, and studied the conditions under which the “relative difference”

is bounded. Another direction along which the theory of MDPs with

average criterion developed is the convex analytic approach having been

introduced previously. He relaxed the assumption of uniform ergodicity
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on the class of deterministic stationary polices when implementing van-

ishing discount factor approach, and investigated “stable policies” only

requiring positive Harris recurrence under the assumption of unichained-

ness. [50] and [44] considered the w-bounded cost functions, where w is

a weight function, under strong continuity-compactness conditions.

To the best of our knowledge, we first consider an MDP with average

criterion and one-sided w-bounded cost functions, and provide verifiable

conditions for the establishement of optimality results. Our methods

combine both the vanishing discount factor approach and imposing the

functional ergodic property on negative part of the cost. We give a de-

tailed discussion on the notion of sufficiency of stationary policies in the

denumerable case, which indeed requires moment-like conditions. The

ACOI is established and the existence of an optimal deterministic sta-

tionary policy to the concerned problem is justified. Finally, we provide

an illustrative example in the denumerable case.

In Chapter 7, an inventory-production problem is considered as an

example of applications to illustrate the main results obtained in Chapter

2 and 5. Moreover, some of the preliminary, well-known and frequently

referred results are collected in the appendix for the convenience of the

readers.

Having said the above, the main contributions of this dissertation

together with the closely related literature can be summarized as follows:

• For a constrained absorbing MDP model in Borel spaces with pos-

sibly unbounded (from both above and below) cost functions and

total cost criteria, we derive the optimality and duality results,

together with the existence of an optimal mixing policy. The ob-

tained results to various extent, complement [60] and [50, Chap.9]

by considering constrained models, and [2] by considering models

in Borel spaces, [72] by studying models with undiscounted total

cost criteria, and [26] by considering unbounded (both from above

and below) cost functions and undertaking the underlying duality

analysis.

• We provide mild conditions to guarantee that a constrained dis-
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counted MDP model in Borel spaces with a state-action-dependent

discount factor possibly not separated from one to be equivalently

transformed into an absorbing MDP model. The obtained results

complement [65, 85] by considering constrained models with state-

action-dependent discount factors.

• We consider a more constrained absorbing MDP model (defined

in Chapter 3) in both denumerable and Borel spaces with cost

functions possibly unbounded from the below and arbitrarily un-

bounded from the above, derive the optimality results, establish

the existence of a randomized Markov policy. The obtained results

differ from [65] by considering a problem in the more constrained

context with total cost criterion, and allowing the cost functions

unbounded from the below.

• We establish the optimality equation for the reformulated more

constrained problem, the existence of an optimal deterministic sta-

tionary policy to the problem in the reformulated model, and the

correspondence between policies of the original problem and the

reformulated one.

• For a MDP in Borel state and action spaces, where the aggre-

gated coherent risk measure is minimized, we establish the opti-

mality equation as well as the value iteration and policy iteration

algorithms, and prove the existence of an optimal deterministic sta-

tionary policy under quite general conditions. The obtained results

complement but differ from the article [90] at least in the following

aspects. Firstly, we allow more general cost functions into consid-

eration, that is, the growth (in both directions) of the cost function

must be bounded by a specific weight function in [90], whereas the

cost here, not only being allowed to be unbounded from the both

directions, can be arbitrarily unbounded from the above, and possi-

bly +∞-valued (also cf. [82] where the bounded cost is considered).

Note that when one studies constrained MDP problems using the

penalty cost method, the +∞-valued cost function appears auto-
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matically; see [65] and the material in Chapter 3. Secondly, the

analysis in [90] is based on a contraction argument, whereas here

we follow a (weakly) monotone convergence argument. On the

other hand, more general (not necessarily coherent) risk measures

are covered in [90].

• For a constrained MDP model in Borel spaces with possibly un-

bounded (from both above and below) cost functions and long-run

expected average criterion, we show that any extreme point of the

space of performance vectors corresponding to stable measures can

be generated by a deterministic stationary policy, establish the ex-

istence of an optimal mixing policy to the constrained problem over

no more than M+1 deterministic stationary policies (M is number

of constraints). The obtained results complement [20] by consider-

ing a general Borel space, differ from [72] and [3] by studying the

long-run average cost criterion.

• For an unconstrained average optimality problem, we provide ver-

ifiable conditions for the sufficiency of stationary policies in the

denumerable case, complementing [3] by considering cost functions

unbounded from both directions without a common weight func-

tion, and thus rewrite the original problem as a linear one over the

space of invariant measures.

• We establish the average cost optimal inequality (ACOI) and the

existence of an optimal deterministic stationary policy for an aver-

age optimality problem in Borel spaces, extending all the current

literature, e.g., [44, 46, 47, 49, 50, 86, 87, 88, 96], by allowing cost

functions unbounded from the below while keeping their positive

part not necessarily bounded by a prescribed weight function.
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1.2 Preliminaries

1.2.1 Markov decision processes

This subsection is devoted to the background knowledge in regard to an

MDP model. The material in this section is quite standard and we refer

the reader to the books [47, 50] for greater details.

A model of Markov Decision Processes (MDP) M is defined be a

five-tuple

{S,A, (A(x) : x ∈ S) , Q(dy|x, a), c(x, a)} (1.1)

consisting of

• a Borel space S endowed with Borel σ-algebra B(S) is called the

state space and elements of which are viewed as states;

• a Borel space A endowed with Borel σ-algebra B(A) is called the

action space and elements of which are viewed as actions;

• A(·) is a set-valued mapping which assigns to each x ∈ S the

nonempty set of admissible actions A(x) ∈ B(A). It is assumed

that graph A(·), denoted by K := {(x, a); x ∈ S, a ∈ A(x)}, is a

product Borel-measurable subset of S × A and contains the graph

of a measurable function f : S → A;

• Q(dy|x, a) is a stochastic kernel from K to S, which is called the

transition probability or the transition law. Q(dy|x, a) can be

viewed as a Borel-measurable function from K to [0, 1] for each

ΓS ∈ B(S), and Q(·|x, a) as a probability measure on (S,B(S)) for

each (x, a) ∈ K;

• The one-stage cost function c(x, a) is a Borel-measurable function

from K to [−∞,+∞].

Remark 1.1 (a) The assumption of the existence of a measurable se-

lector contained in the graph K ensures the existence of at least one de-

terministic stationary policy, and is also a standing one throughout the
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dissertation.

(b) Unless specified otherwise, we use the term “measurability” instead

of “Borel measurability” throughout.

(c) In subsequent chapters, the definition of cost functions will vary from

case to case, and could sometimes be more restrictive than the aforemen-

tioned one; moreover, the Model M is best understood as a prototype, so

that more components are allowed to be introduced for specific problems,

and we shall mention the corresponding modifications.

For every t = 0, 1, 2, . . . , let Ht denote the space of admissible trajec-

tories up to time t. To put it precisely, H0 := S, and Ht := K × Ht−1

when t ≥ 1.

Generally speaking, an MDP is a discrete-time Markov decision pro-

cess. At each time step, an action is selected by the decision maker based

on possibly all the past information. Depending on the current state and

action, some costs are incurred and the transition probability, i.e., the

conditional distribution of the state for the next time step, is determined.

A policy is defined as a sequence of actions to be taken at each time step,

and it can be categorized as follows.

• A history-dependent policy π is a sequence of stochastic kernels

(πt(da|ht))t=0,1,2,... concentrated on A(xt), i.e.,

πt(A(xt)|ht) = 1 (1.2)

where ht = (x0, a0, . . . , xt−1, at−1, xt) is the observed history up to

time t;

• The policy is called (randomized) Markov if the stochastic kernels

πt only depend on the current state and time so that we may write

πt(da|ht) = πt(da|xt);

• The policy is called (randomized) stationary if the stochastic ker-

nels πt only depend on the current state so that we can write

πt(da|x0, a0, . . . , xt−1, at−1, xt) = π(da|xt), which is often referred

to as ϕ throughout the dissertation;
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• The policy is called deterministic stationary, if for a stationary

policy there exists a measurable mapping f : S → A, f(x) ∈
A(x),∀ x ∈ S such that the stochastic kernel can be written as

π(da|x) = δf(x)(da), where δx(·) denotes the dirac measure concen-

trated on x ∈ S.

We denote by UH (respectively, UM , US, UDS) the class of history-

dependent (respectively, randomized Markov, randomized stationary, de-

terministic stationary) policies. It is obvious that UDS ⊆ US ⊆ UM ⊆
UH 6= ∅.

Let (Ω,F) be the canonical measurable space where Ω := (S × A)∞

denotes the space of trajectories over infinite horizon and F is its product

measurable σ-algebra.

Let π ∈ UH be an arbitrary policy and γ ∈ P(S) an initial dis-

tribution, where P(S) denotes the space of probability measures on

S equipped with the usual weak topology. Then, by the well-known

Ionescu-Tulcea Theorem (see [47, Prop.C.10 and Rem.11]), there ex-

ists a unique probability measure P π
γ constructed on the canonical space

(Ω,F), which is concentrated on H∞ := K∞ by (1.2), that is, P π
γ (H∞) =

1. Furthermore, for every ΓS ∈ B(S), ΓA ∈ B(A), and ht ∈ Ht,

t = 0, 1, 2, . . . ,

P π
γ (x0 ∈ ΓS) = γ(ΓS),

P π
γ (at ∈ ΓA|ht) = πt(ΓA|ht),

P π
γ (xt+1 ∈ ΓS|ht, at) = Q(ΓS|xt, at)

Formally, the controlled stochastic process (xt)t=0,1,2,... on the proba-

bility triple (Ω,F , P π
γ ) is called a discrete-time Markov decision process

(MDP), which is also known as a Markov control process.

The corresponding expectation is denoted by Eπ
γ . When γ(dx) is con-

centrated at a point, say x ∈ S, we use the simplified notations P π
x and

Eπ
x .

Let ϕ ∈ US (respectively, f ∈ UDS) be an arbitrary randomized
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stationary (respectively, deterministic stationary) policy, and c(x, a) and

Q(dy|x, a) be the cost function and stochastic kernels coming from (1.1),

we define, for each x ∈ S,

c(x, ϕ) :=

∫
A

c(x, a)ϕ(da|x) (1.3)

and

Qϕ(ΓS|x) := Q(ΓS|x, ϕ) =

∫
A

Q(ΓS|x, a)ϕ(da|x) ∀ ΓS ∈ B(S).

In particular, for the specified deterministic stationary policy (measur-

able selector) f , (1.3) and (1.4) reduce to

c(x, f) := c(x, f(x)) and Qf (ΓS|x) := Q(ΓS|x, f) = Q(ΓS|x, f(x))

Note that each of the above functions are measurable on S.

Proposition 1.1 If ϕ ∈ US is a randomized stationary policy, then

(xt)t=0,1,2,... is a homogeneous Markov chain with Qϕ(dy|x) being the

stochastic transition kernel, that is, for each ΓS ∈ B(S) and t = 0, 1, 2, . . . ,

Pϕ
x (xt+1 ∈ ΓS|x0, . . . , xt) = Pϕ

x (xt+1 ∈ ΓS|xt)

= Qϕ(ΓS|xt)

One of the consequences of the above proposition is that the t-stage

transition probabilities can be denoted by Qt
ϕ(dy|x), t = 0, 1, 2, . . ., that

is

Qt
ϕ(ΓS|x) := Pϕ

x (xt ∈ ΓS) ∀ x ∈ S, ΓS ∈ B(S),

with Q1
ϕ(ΓS|x) := Qϕ(ΓS|x) and Q0

ϕ(ΓS|x) := 1{x∈ΓS}, where 1{} stands

for the indicator function. That is, we can write Qt
ϕ(dy|x) recursively as

Qt
ϕ(ΓS|x) =

∫
S

Qϕ(ΓS|y)Qt−1
ϕ (dy|x)

=

∫
S

Qt−1
ϕ (ΓS|y)Qϕ(dy|x)
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Given an initial distribution γ ∈ P(S), the objectives of our concern

in this dissertation are to minimize the discounted expected total cost ,

i.e.,

Vdiscount(π, γ) := Eπ
γ

[
∞∑
t=0

αtc(xt, at)

]
→ min

π∈UH
,

the expected total cost, i.e.,

Vtotal(π, γ) := Eπ
γ

[
∞∑
t=0

c(xt, at)

]
→ min

π∈UH
,

and the long-run expected average cost, i.e.,

Vaverage(π, γ) := lim
n→∞

1

n
Eπ
γ

[
n−1∑
t=0

c(xt, at)

]
→ min

π∈UH

respectively, provided each of the above is well defined in some sense.

If no initial distribution is fixed (excluding the dirac measure δx(·) as

well), the objectives to be minimized are represented by

Vdiscount(π, x) := Eπ
x

[
∞∑
t=0

αtc(xt, at)

]
→ min

π∈UH

for the discounted expected total cost,

Vtotal(π, x) := Eπ
x

[
∞∑
t=0

c(xt, at)

]
→ min

π∈UH

for the expected total cost, and

Vaverage(π, x) := lim
n→∞

1

n
Eπ
x

[
n−1∑
t=0

c(xt, at)

]
→ min

π∈UH

for the long-run expected average cost, respectively.

Let Vcriterion(π, γ) denote any of Vdiscount(π, γ), Vtotal(π, γ) and Vaverage(π, γ),

and accordingly, Vcriterion(π, x) denote any of Vdiscount(π, x), Vtotal(π, x)

and Vaverage(π, x), We formally define the optimal policies for the con-

cerned problems.
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Definition 1.1 (a) A policy π∗ ∈ UH is called optimal for the problem

with a given initial distribution γ ∈ P(S)

Vcriterion(π, γ)→ min
π∈UH

if

Vcriterion(π∗, γ) ≤ Vcriterion(π, γ)

for each policy π ∈ UH ;

(b) A policy π∗ ∈ UH is called optimal for the problem

Vcriterion(π, x)→ min
π∈UH

if

Vcriterion(π∗, x) ≤ Vcriterion(π, x)

for each policy π ∈ UH and for each initial state x ∈ S.

We finish this subsection with a useful result, which is often referred

to as Derman-Strauch Lemma (see [29] for the original version) in the

literature.

Lemma 1.1 Let γ ∈ P(S) be an arbitrarily fixed initial distribution. For

each policy π = (πt)t=0,1,2,... ∈ UH , there is a (randomized) Markov policy

πM = (πMt )t=0,1,2,... ∈ UM such that

P π
γ (xt ∈ ΓS, at ∈ ΓA) = P πM

γ (xt ∈ ΓS, at ∈ ΓA) ∀ ΓS ∈ B(S), ΓA ∈ B(A)

for each t = 0, 1, 2, . . . . Here for each t = 0, 1, 2, . . . , one can obtain πMt

as the stochastic kernel from S to A such that

P π
γ (xt ∈ dx, at ∈ da) = P π

γ (xt ∈ dx)πMt (da|x) (1.4)

The Derman-Strauch Lemma states that given an initial distribution

γ ∈ P(S), and for each history-dependent policy π, there exists a Markov
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policy πM such that

Eπ
γ

[
n−1∑
t=0

c(xt, at)

]
= EπM

γ

[
n−1∑
t=0

c(xt, at)

]

for each n = 1, 2, . . . , and

Eπ
γ

[
∞∑
t=0

c(xt, at)

]
= EπM

γ

[
∞∑
t=0

c(xt, at)

]
.

It is standard to fix an initial distribution γ ∈ P(S) when dealing

with constrained MDPs, and the Derman-Strauch Lemma asserts that

we can always restrict our attention to the class of Markov policies UM .

The same argument remains valid even in the more constrained context,

which is introduced and studied in Chapter 3.

1.2.2 Weighted-norm spaces

Let S be a Borel space, and B(S) be the space of real-valued measurable

bounded functions f on S, with the supremum norm

‖f‖ := sup
x∈S
|f(x)|.

We denote by C(S) the subspace of B(S) consisting of all continuous

measurable functions on S.

We assume that w(·) : S → [1,+∞) is a given measurable function,

and often referred to as a weight function. For each real-valued measur-

able function f on S, we define its w-norm as

‖f‖w := sup
x∈S

|f(x)|
w(x)

,

note that w(·) ≡ 1 makes w-norm reduce the supremum norm.

We define

Bw(S) := {f(·) : f(·) defined on S is measurable, and ‖f‖w <∞} ,
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and accordingly, denote by Cw(S) the subspace of Bw(S) consisting of

all continuous measurable functions on S.

Let M(S) be the space of finite measures on S such that

sup
µ∈M(S)

µ(S) <∞.

We equip M(S) with the usual weak topology generated by all the ele-

ments in B(S), denoted by τusual(M(S)), which is metrizable. Note that

the space of probability measures, denoted by P(S), is a subset ofM(S)

with P (S) = 1 for each P ∈ P(S). Let Mw(S) be the space of finite

measures on S, where w is the prescribed weight function, such that

sup
µ∈Mw(S)

∫
S

w(x)µ(dx) <∞.

Note that Mw(S) is a subset of M(S) because of w(·) ≥ 1.

In the sequel, we assume that the weight function w is continuous on

S. Indeed, there exists a one-to-one correspondence betweenMw(S) and

M(S). For each µ ∈Mw(S), one can define µ̃ ∈M(S) by

µ̃(dx) := µ(dx)w(x), (1.5)

and for each µ̃ ∈M(S), one can reproduce µ ∈Mw(S) by

µ(dx) :=
µ̃(dx)

w(x)
. (1.6)

This correspondence defines the topology τ(Mw(S)) on Mw(S) as the

image of τusual(M(S)).Now (Mw(S), τ(Mw(S))) and (M(S), τusual(M(S)))

are homeomorphic. The convergence in τ(Mw(S)) is called the w-weak

convergence, and is denoted by
w→ . Since τusual(M(S)) is metrizable,

τ(Mw(S)) is metrizable, too, and µn
w→ µ as n → ∞, where µn, µ ∈

Mw(S), if and only if limn→∞
∫
S
f(x)µn(dx) =

∫
S
f(x)µ(dx) for each

f ∈ Cw(S).

We summarize the above discussions in the following remark for future

reference.
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Remark 1.2 The topology τ(Mw(S)) on Mw(S) is metrizable, and it

is indeed the weak topology on Mw(S) generated by Cw(S).
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Chapter 2

Constrained absorbing MDP

with total cost criterion

2.1 Introduction

This chapter is organized as follows: Section 2.2 is about a constrained

absorbing MDP model. We present the properties of occupation mea-

sures, show the closedness and compactness of the space of occupation

measures in a proper topology in Section 2.3. In Section 2.4 and 2.5, we

reformulate the original problem as a primal linear program (PLP) in the

space of occupation measures, derive the existence of a stationary opti-

mal policy, and prove the absence of the duality gap between the PLP

and its dual linear program (DLP). Section 2.6 is about a (non-standard)

discounted MDP model, where we firstly present some conditions that

guarantee the (non-standard) discounted MDP model to be equivalently

transformed into an absorbing MDP model.

2.2 Problem formulation and assumptions

A constrained MDP model in Borel spaces with total cost criteria is a

7-tuple

{S,A,A(x), Q(dy|x, a), c0(x, a), (cn(x, a), dn)n=1,...,N , γ(dy)},
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In addition to the first five components introduced in Chapter 1.3.1,

we make the following remarks. c0(x, a) is a measurable function in K
representing the key cost function. cn(x, a) are measurable functions

on K, and dn ∈ R, where N is the number of constraints, representing

the sources of constraints. γ(dy) is a probability measure on (S,B(S))

representing a predetermined initial distribution.

In this chapter we are concerned with an absorbing MDP model,

which is defined similarly to [50, Def.9.6.1] as follows.

Definition 2.1 A constrained MDP model in Borel spaces with total cost

criteria is called absorbing if the following conditions are satisfied.

(a) The state space can be written as S = S
⋃
{∆S}, where S is a Borel

space, and ∆S is an isolated point. The action space can be written as

A = A
⋃
{∆A}, where A is a Borel space, and ∆A is an isolated point.

Furthermore, A(∆S) := {∆A}, and ∀ x ∈ S, A(x) ⊆ A.

(b) Q({∆S}|∆S,∆A) = 1 and ∀ x ∈ S, a ∈ A(x), Q({∆S}|x, a) = 1 −
Q(S|x, a).

(c) ∀ n = 0, . . . , N, cn(∆S,∆A) = 0.

(d) There exists a constant k ≥ 0 and a measurable function w on S :

w(x) ≥ 1 on S, w(∆S) = 0 such that

sup
π∈UH ,x∈S

∑∞
t=0 E

π
x [w(xt)]

w(x)
≤ k.

We define the measurable set K := K
⋂

(S×A).

Remark 2.1 (a) On the one hand, the absorbing MDP model in the

sense of Definition 2.1 is a special case of the one considered in [26]

(see Sec.2 therein). However, the presence of the “weight” function w

in Definition 2.1 allows one to consider the cost functions cn(x, a), n =

0, 1, . . . , N unbounded from both above and below (see Chapter 1), which

is not covered in [26]. On the other hand, it is also a special case of

the transient MDP model defined in [50, Def.9.6.1], where the authors

consider only an unconstrained problem.

(b) In our absorbing model we consider only a single absorbing point ∆S.

There are two reasons. Firstly, one can transform a discounted MDP
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model with a state-action-dependent discounted factor into an absorbing

model by adding to the original state space an absorbing point. Secondly,

an absorbing set can often be compressively viewed and treated as an

absorbing point.

(c) In what follows, the fixed function w(·) comes from Definition 2.1.

(d) A constrained MDP model with total cost criteria is absorbing if it

holds that ∫
S

w(y)Q(dy|x, a) ≤ βw(x) + bl(x),∀ x ∈ S,

where 0 ≤ β < 1 and b ≥ 0 are two constants, l(·) is a measurable

function on S such that l(∆S) = 0, 0 ≤ l(x) ≤ 1 on S, and there exists a

constant 0 < l̂ < 1 satisfying Eπ
x [l(xt)] ≤ l̂t,∀ t = 0, 1, . . . , π ∈ UH . This

follows from the reasoning presented in [50, Ex.9.6.7]. We also remind

the reader of the fact that this condition can be satisfied only if Q(dy|x, a)

is substochastic, see [50, p.55].

Below in this chapter the MDP model under our consideration is absorb-

ing in the sense of Definition 2.1.

Assumption 2.1 (a) There exists a constant ĉ ≥ 0 such that

sup
a∈A(x)

|cn(x, a)| ≤ ĉw(x), n = 0, 1, . . . , N.

(b)
∫
S
w(x)γ(dx) < ∞, and γ({∆S}) = 0, where γ(dx) is the initial

distribution.

(c) ∀ u ∈ Bw(S), it holds that supx∈S
supa∈A(x)|

∫
SQ(dy|x,a)u(y)|
w(x)

<∞.

Assumption 2.1(c) is needed for technical reasons. Assumption 2.1(a,b)

ensures the following optimization problem of our interest to be well

defined in the sense that all the expected total costs are finite (see also
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[50, Prop.9.6.4]):

W0(π) := Eπ
γ

[
∞∑
t=0

c0(xt, at)

]
→ min

π∈UH
(2.1)

s.t.

Wn(π) := Eπ
γ

[
∞∑
t=0

cn(xt, at)

]
≤ dn, n = 1, 2, . . . , N.

We denote by U feasible := {π ∈ UH : Wn(π) ≤ dn, n = 1, . . . , N} the set

of feasible policies for Problem (2.1).

Remark 2.2 It is a standing assumption in this chapter that U feasible 6=
∅.

In this chapter we are interested in the existence of an optimal so-

lution (together with its form) to Problem (2.1). For this purpose, it is

convenient to rewrite Problem (2.1) as a linear program over the space of

occupation measures (that is, we follow the convex analytic approach),

which are introduced in the next section.

2.3 Properties of occupation measures

For an absorbing MDP model (see Definition 2.1) we define under As-

sumption 2.1(b) the occupation measures in a similar way to [50, (9.4.4)].

Definition 2.2 The occupation measure νπ(dx×da) of a policy π ∈ UH

for an absorbing MDP model is a measure on B(S×A) defined by

νπ(ΓS × ΓA) :=
∞∑
t=0

P π
γ (xt ∈ ΓS, at ∈ ΓA), ∀ ΓS ∈ B(S),ΓA ∈ B(A).(2.2)

The projection (or marginal) of νπ(·) on S is written as νπ(·×A), and the

space of occupation measures is denoted by D. It is evident that under

Assumption 2.1(b) every occupation measure is finite and D is uniformly
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bounded. Indeed,

sup
νπ∈D

νπ(S×A) ≤ sup
π∈UH

∞∑
t=0

Eπ
γ [w(xt)]

= sup
π∈UH

∞∑
t=0

∫
S

γ(dx)Eπ
x [w(xt)] ≤ k

∫
S

γ(dx)w(x) <∞. (2.3)

It is also easy to understand that every occupation measure is concen-

trated on K (see [50, Rem.9.4.2(b)] or [31, Thm.1, p.88]). Moreover, the

occupation measures defined by Definition 2.2 are essentially the same

as those defined by [26, (2.2)].

The next proposition is from [26], and we sketch its proof immediately

after the statement.

Proposition 2.1 For an absorbing MDP model, suppose Assumption

2.1(b,c) is satisfied. Then the following assertions hold.

(a) ∀ ϕ ∈ US, νϕ(ΓS ×ΓA) =
∫

ΓS
νϕ(dx×A)ϕ(ΓA|x), ∀ ΓS ∈ B(S),ΓA ∈

B(A).

(b) ∀ π ∈ UH , ∃ ϕ ∈ US : νπ(ΓS × ΓA) =
∫

ΓS
νπ(dx × A)ϕ(ΓA|x) =

νϕ(ΓS × ΓA),∀ ΓS ∈ B(S),ΓA ∈ B(A). Furthermore, given such a ϕ ∈
US, a policy ϕ′ ∈ US generates νϕ if and only if ∀ ΓA ∈ B(A), ϕ(ΓA|x) =

ϕ′(ΓA|x) νϕ(· × A)-a.s.

(c) A finite measure ν(dx × da) on S × A concentrated on K is an

occupation measure for a policy π if and only if∫
S×A

ν(dx× da)w(x) <∞, (2.4)

and

ν(ΓS × A) = γ(ΓS) +

∫
S×A

Q(ΓS|y, a)ν(dy × da), (2.5)

for each ΓS ∈ B(S).

(d) D is convex.

(e) If ν ∈ D is an extreme point, then there exists a deterministic sta-

tionary policy f ∈ UDS such that ν(dx× da) = νf (dx× da).
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Proof. (a) We have the following observation

Pϕ
γ (xt ∈ ΓS, at ∈ ΓA) = Eϕ

γ 1{xt∈ΓS ,at∈ΓA}

= Eϕ
γE

ϕ
γ

[
1{xt∈ΓS ,at∈ΓA}|xt

]
=

∫
ΓS

Pϕ
γ (at ∈ ΓA|xt = x)Pϕ

γ (xt ∈ dx)

=

∫
ΓS

∫
ΓA

ϕ(da|x)Pϕ
γ (xt ∈ dx)

The second equality comes from the tower property of conditional ex-

pectation, and the last line follows from the canonical construction of a

MDP along with the fact that ϕ ∈ US. Taking summation on both sides

of the above equality with respect to t over 0 to ∞ justifies part (a).

(c) We first show the easier “only if” part. Observe that (2.4) is a

direct consequence of (2.3). (2.5) holds true due to the following calcu-

lation,

ν̂π(ΓS) =
∞∑
t=0

P π
γ (xt ∈ dx)

= P π
γ (x0 ∈ ΓS) +

∞∑
t=1

P π
γ (xt ∈ ΓS)

= γ(ΓS) +
∞∑
t=1

Eπ
γ [P π

γ (xt ∈ ΓS|xt−1, at−1)]

= γ(ΓS) +
∞∑
t=1

∫
S×A

P π
γ (xt ∈ ΓS|y, a)P π

γ (xt−1 ∈ dy, at−1 ∈ da)

= γ(ΓS) +

∫
S×A

Q(ΓS|y, a)νπ(dy, da)

which coincides with the expression of (2.5).

The “if” part involves slightly more complications. Let ν(dx×da) be

a finite measure that satisfies both (2.4) and (2.5), which is allowed to be

disintegrated as ν(dx× da) = ν(dx× A)ϕ(da|x) (see [47, Prop.D.8(a)]).

For the obtained stationary policy ϕ ∈ US, we generate the corresponding

occupation measure νϕ and complete our proof by showing that ν and

νϕ agree with each other.
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Let u ∈ Bw(S × A) be an arbitrary function with u(∆S,∆A) = 0,

and define Jϕu (x) := Eϕ
x [
∑∞

t=0 u(xt, at)]. It is easy to show that Jϕu (x) ∈
Bw(S) by Definition 2.1(d), and is a solution of the following equation

h(x) =

∫
A

[
u(x, a) +

∫
S

h(y)Q(dy|x, a)

]
ϕ(da|x)

= u(x, ϕ) +

∫
S

h(y)Q(dy|x, ϕ) ∀ x ∈ S. (2.6)

With the above observation in mind, we have∫
S×A

u(x, a)ν(dx× da)

=

∫
S×A

Jϕu (x)ν(dx× da)−
∫
S×A

∫
S

Jϕu (y)Q(dy|x, a)ν(dx× da)

=

∫
S

Jϕu (x)γ(dx) +

∫
S

Jϕu (x)

∫
S×A

Q(dx|y, a)ν(dy, da)

−
∫
S×A

∫
S

Jϕu (y)Q(dy|x, a)ν(dx× da)

= Eϕ
γ [
∞∑
t=0

u(xt, at)]

=

∫
S×A

u(x, a)νϕ(dx× da)

The first equality comes from taking expectation on both sides of (2.6)

with respect to ν(dx × A) with h being replaced by Jϕu , and∫
S
Jϕu (y)Q(dy|x, a) ∈ Bw(S) is due to Assumption 2.1(c).

Part (d) is trivial. Parts (b,e) come from [26, Lem.4.2, Lem.4.7],

whose proofs are similar to those of [72, Lem.25, Thm.19], where As-

sumption 2.1(c) is needed, see [72, p.308]. 2

Remark 2.3 Since ν ∈ D is concentrated on K, there is no loss of

generality that below we regard occupation measures ν as measures on K.

Notations such as
∫
S×A f(x, a)ν(dx × da), which are still in use, should

be accordingly understood.

Assumption 2.2 (a) The function w(x) is continuous on S.

(b) For any bounded continuous function u ∈ C(S),
∫
S
u(x)Q(dx|y, a) is

continuous in (y, a) ∈ K.
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(c) There exists a moment (see Appendix B.1) v(x, a) on K satisfying

sup
ν∈D

∫
K

v(x, a)w(x)ν(dx× da) <∞.

Assumption 2.2 and Assumption 2.3 formulated below are “compactness-

continuity” conditions, which, in various forms, are commonly assumed

to derive optimality results. In particular, our condition is similar to

those imposed in [73] and [47, Con.5.7.4]. See more discussions on this

in Remark 2.4 below.

The definition below follows the material presented in Chapter 1 un-

der Assumption 2.2(a).

Let M(K) be the set of finite measures on K such that

sup
M∈M(K)

M(K) <∞.

We equip M(K) with the usual weak topology generated by the set of

bounded continuous functions on K, denoted by τusual(M(K)), which is

metrizable (see [74, 95]). We call a measurable function f(x, a) on K

w-bounded if

sup
x∈S

supa∈A(x) |f(x, a)|
w(x)

<∞,

and the set of such functions is denoted by Bw(K). Let Mw(K) denote

the set of finite measures on K such that

sup
M∈Mw(K)

∫
K

M(dx× da)w(x) <∞.

Now we reveal some topological properties ofD as a subset ofMw(K).

Theorem 2.1 For an absorbing MDP model, suppose Assumption 2.1(b,c)

and Assumption 2.2(a,b) are satisfied. Then the following assertions

hold.

(a) D is a closed subset of the topological space (Mw(K), τ(Mw(K))).

(b) If in addition Assumption 2.2(c) is also satisfied, then D is compact

in (Mw(K), τ(Mw(K))).

27



Proof. (a) According to Remark 1.2, it suffices to consider the conver-

gence of sequences. So we take a sequence of elements νn ∈ D and

ν ∈ Mw(K) such that νn
w→ ν. Below we prove that ν ∈ D. To this

end, by Proposition 2.1(c) we only need verify the validities of (2.4) and

(2.5). Inequality (2.4) obviously holds because of the second inequality

in (2.3) and
∫
S×Aw(x)ν(dx × da) = limn→∞

∫
S×Aw(x)νn(dx × da) by

the supposition. It remains to verify the validity of (2.5) as follows. Let

us define a measure on S by ν̃(dx) := γ(dx) +
∫
K
Q(dx|y, a)ν(dy × da).

Then on the one hand, νn(dx × A) → ν̃(dx) in the corresponding usual

weak topology, which is metrizable (see [74, 95]). Indeed, for any fixed

bounded continuous function u(x) on S we have

lim
n→∞

∫
S×A

u(x)νn(dx× da)

=

∫
S

u(x)γ(dx) + lim
n→∞

∫
S

u(x)

∫
K

Q(dx|y, a)νn(dy × da)

=

∫
S

u(x)γ(dx) + lim
n→∞

∫
K

∫
S

u(x)Q(dx|y, a)νn(dy × da)

=

∫
S

u(x)γ(dx) +

∫
K

∫
S

u(x)Q(dx|y, a)ν(dy × da) =

∫
S

u(x)ν̃(dx),

where the first equality is by Proposition 2.1(c), and the third equality

follows from Assumption 2.2(b). On the other hand, νn(dx × A) →
ν(dx×A) simply because νn(dx×A)

w→ ν(dx×A) in the corresponding w-

weak topology, and the w-weak topology is at least as strong as the usual

weak topology (see [40, Exer.7, p.127]). From this and the uniqueness

of the usual weak limit, we conclude ν(· ×A) = ν̃(·), i.e., (2.5) holds for

ν(· × A), as required.

(b) By part (a) of this theorem, it suffices to prove that D is precom-

pact in the topology (Mw(K), τ(Mw(K))). In accordance with Remark

1.2, this is the same as to prove that D̃ is precompact in the topol-

ogy (M(K), τusual(M(K))), where D̃ is the image of D via (1.5), and in

correspondence the elements of D (respectively, D̃) are denoted by ν (re-

spectively, ν̃). It can be very easily verified based on Definition B.1 that

if there is a moment v(x, a) on K such that supṽ∈D̃
∫
K
v(x, a)ν̃(dx×da) <

∞, then the family D̃ is tight (see also [47, Prop.E.8], where this simple
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observation is formulated for a more restrictive case). Hence, Assumption

2.2(c) implies the existence of such a moment v(x, a) and thus the tight-

ness of the family D̃. The tightness together with that D̃ is uniformly

bounded in the sense of (2.3) means that D̃ is precompact because of

Prohorov’s theorem, see Theorem B.1. Thus the proof is completed. 2

We remark on Assumption 2.2(c) and Theorem 2.1 as follows.

Remark 2.4 (a) Assumption 2.2(c) is satisfied if ∀ x ∈ S, A(x) ≡ A,

and the spaces A and S are both compact. In this case, we may take

v(x, a) ≡ 1 as a moment (see Definition B.1(a)). This is the assumption

imposed in [72].

(b) According to [47, Rem.5.7.5] and (2.3), Assumption 2.2(c) also holds

if the following are met:

(i) S and A are σ-compact.

(ii) The multifunction x→ A(x) is compact-valued and upper semi-

continuous, i.e., for any F closed in A, {x ∈ S : A(x)
⋂
F 6= ∅} is closed

in S (see the appendix attached or [47, Appendix D] for more details).

(iii) There exists a nonnegative measurable function w′(x) on S such

that

(1) The requirement of Definition 2.1 and Assumption 2.1(b) are

also satisfied with the function w(x) being replaced by w(x)w′(x).

(2) ∀ ε ≥ 0, ∃ a compact set Sε ⊆ S : w′(x) ≥ ε, ∀ x /∈ Sε.
In this case, the function w′ is a desired moment.

(c) In case w(x) ≡ 1 on S, (Mw(K), τ(Mw(K))) and (M(K), τusual(M(K)))

coincide. Then by [26, Lem.4.8], the statement of Theorem 2.1(b) also

holds if we replace Assumption 2.2(c) with the condition (b,ii) formulated

above in this remark. Indeed, Assumption 2.2(c) is only needed to prove

Theorem 2.1(b), which in turn is only used in the proof of Theorem 2.2(a)

below. Therefore, in case we can take w(x) ≡ 1 on S, Assumption 2.2(c)

can be simply replaced everywhere with the condition (b,ii) formulated

above in this remark.

(d) Assumption 2.2(c) is stronger than the compactness of A(x),∀ x ∈ S,

as observed in [73, Lem.3.10].
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2.4 Optimality results

For the concerned absorbing MDP model, suppose Assumption 2.1(a,b)

is satisfied. Then Problem (2.1) can be rewritten in the form of a well-

defined linear program as follows:∫
K

c0(x, a)ν(dx× da)→ min
ν

(2.7)

s.t. ∫
K

cn(x, a)ν(dx× da) ≤ dn, n = 1, 2, . . . , N,

ν ∈ D.

That is why we are interested in the properties of occupation measures

as presented in the above.

Assumption 2.3 The functions cn(x, a), n = 0, 1, . . . , N are all lower

semicontinuous on K.

This assumption together with Assumption 2.2 validates the generalized

Weierstrass’ theorem, which leads to the existence of an optimal solution

to Problem (2.7), see the proof of Theorem 2.2(a) below.

Assumption 2.4 (a) There exists a policy π̂ such that the inequalities

in Problem (2.1) are all strict, i.e., Wn(π̂) < dn, n = 1, 2, . . . , N.

(b) The functions cn(x, a), n = 1, 2, . . . , N are all continuous on K.

Assumption 2.4(a) is known as Slater’s condition, which validates Khun

Tucker’s theorem stated in the proof of part (b) of the next theorem.

Theorem 2.2 For an absorbing MDP model, suppose Assumption 2.1,

Assumption 2.2 and Assumption 2.3 are satisfied. Then the following

assertions hold.

(a) Problem (2.7) is solvable, and there is a stationary optimal policy to

Problem (2.1).

(b) If in addition Assumption 2.4 is also satisfied, then there exist con-

stants λ∗n, n = 1, 2, . . . , N+1 and occupation measures ν∗n, n = 1, . . . , N+

1 such that λ∗n ≥ 0,
∑N+1

n=1 λ
∗
n = 1, ν∗n, n = 1, 2, . . . , N+1 are generated by
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deterministic stationary policies, say fn, and the occupation measure de-

fined by νOpt :=
∑N+1

n=1 λ
∗
nν
∗
n solves Problem (2.7). Here N is the number

of constraints (inequalities) in Problem (2.7).

Proof. (a) Firstly, we prove a preliminary result under the conditions of

this theorem.

Preliminary result: ∀ n = 0, 1, . . . , N, ∃ a sequence of w-bounded

continuous functions cmn (x, a),m = 1, 2, · · · : ∀ (x, a) ∈ K, cmn (x, a) ↑
cn(x, a) as m ↑ ∞. Moreover, ∀ n = 0, 1, . . . , N, ∃ R ≥ 0 : |cmn (x, a)| ≤
Rw(x), ∀ m = 1, 2, . . . .

Proof. Throughout this proof, let n = 0, 1, . . . , N be arbitrarily fixed.

For the first assertion, we argue as follows. Since cn(x, a) is w-

bounded and lower semicontinuous on K, and w(x) is continuous on

S (and thus on K), we have that the function cn(x, a) := cn(x,a)
w(x)

is

bounded and lower semicontinuous on K. Then by Proposition A.1 or

[72, Thm.A1.14] one can take a sequence of bounded continuous func-

tions cmn (x, a),m = 1, 2, . . . such that cmn (x, a) ↑ cn(x, a) as m ↑ ∞, i.e.,

cmn (x, a)w(x) ↑ cn(x, a) as m ↑ ∞. Let us define

cmn (x, a) := cmn (x, a)w(x), ∀ m = 1, 2, . . . ,

which is the desired sequence.

Now since cn(x, a) and c1
n(x, a) are both w-bounded, there exists

Rn ≥ 0 : sup
a∈A(x)

|cn(x, a)| ≤ Rnw(x), sup
a∈A(x)

|c1
n(x, a)| ≤ Rnw(x),∀ x ∈ S.

The fact that ∀ (x, a) ∈ K, cmn (x, a) ↑ cn(x, a) as m → ∞ implies that

∀ m = 1, 2, . . . ,

|cmn (x, a)| ≤ max{|cn(x, a)|, |c1
n(x, a)|}

≤ max{ sup
a∈A(x)

|cn(x, a)|, sup
a∈A(x)

|c1
n(x, a)|} ≤ Rnw(x).

Since n = 0, 1, . . . , N and m = 1, 2, . . . are both arbitrarily fixed, it

remains to take R := maxn=0,...,N(Rn) for the second assertion. 2 Note

that the above preliminary result also holds for measurable functions on
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S that are bounded in the w-norm form the below.

Consider the space of feasible occupation measures defined by

Dfeasible :=

{
ν ∈ D :

∫
K

cn(x, a)ν(dx× da) ≤ dn, n = 1, . . . , N

}
.

Firstly, let us prove thatDfeasible is w-weakly compact inD.With Remark

1.2 in mind, suppose νj
w→ ν as j →∞, where νj ∈ Dfeasible, and ν ∈ D.

By Lebesgue’s dominated convergence theorem, the preliminary result

just established in the above and using the notations therein, we have

that ∀ n = 1, 2, . . . , N,∫
K

ν(dx× da)cn(x, a) =

∫
K

ν(dx× da) lim
m→∞

cmn (x, a)

= lim
m→∞

∫
K

ν(dx× da)cmn (x, a)

= lim
m→∞

lim
j→∞

∫
K

νj(dx× da)cmn (x, a) ≤ dn,

i.e., ν ∈ Dfeasible. Therefore, Dfeasible is w-weakly closed in D. This and

Theorem 2.1(b) imply that Dfeasible is w-weakly compact in D.
Secondly, let us prove that the functional on D defined by Dfeasible 3

ν :→
∫
K
c0(x, a)ν(dx× da) is lower semicontinuous on Dfeasible equipped

with the w-weak topology. But an argument similar to the one used

above would result in that
{
ν ∈ Dfeasible :

∫
K
c0(x, a)ν(dx× da) ≤ r

}
is

w-weakly closed ∀ r ∈ R, which is equivalent to the lower semicontinuity

(in the w-weak topology) of
∫
K
c0(x, a)ν(dx× da), see [1, p.43].

Now Problem (2.7) is solvable by the generalized Weierstrass’ theorem

(see [1, Thm.2.43]). The last statement of this theorem follows from this

and Proposition 2.1. 2

(b) We firstly recall from [72, Thm.A2.1] a version of Kuhn Tucker’s

theorem, then present some preliminary results, and finally give the main

proof of this part of the theorem.
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Khun Tucker’s theorem: For linear program (2.7), we define the Lagrange

function L(ν, ~Y ) on D × (R0
+)N by

L(ν, ~Y ) :=

∫
K

c0(x, a)ν(dx× da) +
N∑
n=1

Yn

(∫
K

cn(x, a)ν(dx× da)− dn
)
,

where and also in the sequel, we often use the generic notation ~Y =

(Y1, Y2, . . . , YN), and the primal functional G(~Y ) on RN by

G(~Y ) := inf

{∫
K

c0(x, a)ν(dx× da) : ν ∈ D∫
K
cn(x, a)ν(dx× da)− dn ≤ Yn, n = 1, 2, . . . , N

}
.

Then an occupation measure νOpt solves Problem (2.7) if and only if there

exists a ~Y ∗ = (Y ∗1 , Y
∗

2 , . . . , Y
∗
N) ∈ (R0

+)N such that∫
K

cn(x, a)νOpt(dx× da)− dn ≤ 0,∀ n = 1, 2, . . . , N, (2.8)

L(νOpt, ~Y ∗) = inf
ν∈D

L(ν, ~Y ∗) (2.9)

and

N∑
n=1

Y ∗n

(∫
K

cn(x, a)νOpt(dx× da)− dn
)

= 0. (2.10)

Indeed, under Assumption 2.1(a,b), G(~Y ) > −∞, G(~0) < ∞. These

two facts about G(·) together with Slater’s condition (i.e., Assumption

2.4(a)) satisfy the condition of [72, Thm.A2.1] (see also [72, p.298-299]

for more details), from which we infer for the result formulated above.

Preliminary observation 1: The set D~Y ∗ := {ν ∈ D : L(ν, ~Y ∗) =

infν∈D L(ν, ~Y ∗)} is non-empty and convex.

Indeed, by part (a) of this theorem and the aforementioned Kuhn

Tucker’s theorem, there exists ν∗ ∈ D and ~Y ∗ = (Y ∗1 , Y
∗

2 , . . . , Y
∗
N) ∈
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(R0
+)N such that∫

K

cn(x, a)ν∗(dx× da)− dn ≤ 0, n = 1, 2, . . . , N,

L(ν∗, ~Y ∗) = inf
ν∈D

L(ν, ~Y ∗),

N∑
n=1

Y ∗n

(∫
K

cn(x, a)ν∗(dx× da)− dn
)

= 0.

Hence, D~Y ∗ is nonempty. Its convexity is obvious.

Remark 2.5 Below in this proof ~Y ∗ and ν∗ come from Preliminary ob-

servation 1 and are fixed.

Preliminary observation 2: If ν is an extreme point of D~Y ∗ , then it is

also an extreme point of D.
Indeed, if ν = λν1 + (1 − λ)ν2, where λ ∈ (0, 1), ν1, ν2 ∈ D, then

L(ν, ~Y ∗) = infν∈D L(ν, ~Y ∗) = λL(ν1, ~Y
∗) + (1 − λ)L(ν2, ~Y

∗) because of

the linearity of the Lagrange function L(·, ~Y ∗). However, this further

leads to that ν1, ν2 ∈ D~Y ∗ . Since ν is an extreme point of D~Y ∗ , it must

be that ν1 = ν2. Hence, ν is also an extreme point of D.

Preliminary observation 3: The set D~Y ∗ ⊆ D is w-weakly compact.

Since D is w-weakly compact (see Theorem 2.1), it suffices to show

that D~Y ∗ is w-weakly closed in D. We observe that the function L(·, ~Y ∗)
is (w-weakly) lower semicontinuous in D, which follows from the lower

semicontinuity of the functions cn(x, a), n = 0, 1, . . . , N . Now consider

a sequence of νl ∈ D~Y ∗ and ν ∈ D such that νl
w→ ν. Then by the

(w-weak) lower semicontinuity of L(·, ~Y ∗) and [1, Lem.2.42], we have

infν∈D L(ν, ~Y ∗) ≤ L(ν, ~Y ∗) ≤ liml→∞ L(νl, ~Y
∗) = infν∈D L(ν, ~Y ∗), i.e.,

ν ∈ D~Y ∗ . Thus, D~Y ∗ is w-weakly closed in D.

Preliminary observation 4: Define the mapping Z : D~Y ∗ → RN by

Z(ν) :=

(∫
K

c1(x, a)ν(dx× da),

∫
K

c2(x, a)ν(dx× da), . . . ,∫
K

cN(x, a)ν(dx× da)

)
.
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Then the non-empty set Q := {Z(ν) : ν ∈ D~Y ∗} is convex compact in

RN .

It is evident that Z(·) is (w-weakly) continuous on D~Y ∗ (see Assump-

tion 2.4(b)). Now the compactness of Q follows from the (w-weak) conti-

nuity of Z(·), the (w-weak) compactness of D~Y ∗ (see Preliminary obser-

vation 3) and [1, Thm.2.34], while the convexity of Q is because of the

linearity of Z(·).
Main proof of part (b) of the theorem: By Krein-Milman’s theorem

(see Theorem C.2) and Preliminary observation 4, the set Q is the convex

hull of its extreme points, which together with Carathéodory’s convex-

ity theorem (see Theorem C.3), implies that every point in Q can be

represented as a convex combination of N+1 extreme points of Q. Thus,

Z(ν∗) =
N+1∑
n=1

λ∗ngn, (2.11)

where ν∗ solves Problem (2.1) and is defined earlier in this proof, ∀ n =

1, 2, . . . , N + 1, λ∗n ∈ [0, 1],
∑N+1

n=1 λ
∗
n = 1, and gn is an extreme point

of Q. The mapping Z from D~Y ∗ onto Q is (w-weakly) continuous and

linear, and the sets D~Y ∗ and Q are both convex compact (see Preliminary

observations 1,3,4), so that by [67, Chap.XI,T13], ∀ n = 1, 2, . . . , N + 1,

∃ an extreme point ν∗n of D~Y ∗ satisfying

gn = Z(ν∗n). (2.12)

Now we claim that νOpt :=
∑N+1

n=1 λ
∗
nν
∗
n is the required solution to Problem

(2.1). Indeed, according to the linearity of Z(·), (2.11) and (2.12), we

have Z(νOpt) = Z(ν∗), which further implies that (2.8) and (2.10) are

satisfied (see the definition of Z(·) in Preliminary observation 4 and the

definition of ~Y ∗ in Preliminary observation 1). The validity of (2.9)

follows from the convexity of D~Y ∗ and νOpt ∈ D~Y ∗ .

Finally, since ν∗n, n = 1, 2, . . . , N + 1 are extreme points of D~Y ∗ and

thus extreme points of D (see Preliminary observation 2), it only re-

mains to apply Proposition 2.1 for the existence of the corresponding

deterministic stationary policies fn generating ν∗n, i.e., νfn = ν∗n, n =
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1, 2, . . . , N + 1. 2

Part (b) of the above theorem means that there exists an optimal

mixing policy (in the sense of [2]) on the set of deterministic stationary

policies (fn)n=1,2,...,N+1. Generally speaking, the class of deterministic sta-

tionary policies is not sufficient for constrained problems, see [39, Ex.1].

On the other hand, when the problem is unconstrained, i.e., N = 0,

one can show the existence of an optimal deterministic stationary policy,

based on the dynamic programming approach as done in [50, Chap.9],

and some of their results are formulated in Lemma 2.1 below. Never-

theless, the presented convex analytic approach in this chapter is more

powerful in dealing with constrained problems.

2.5 Duality results

Problem (2.7) is often referred to as the PLP of the underlying absorbing

MDP model. In the sequel, under Assumption 2.1, Assumption 2.2(a,b)

we formulate its DLP, and under some further conditions we prove the

absence of the duality gap.

Following [50, Chap.12], we need the following objects:

• two dual pairs (X ,Y) and (Z,V),

• a (weakly) continuous linear mapping from X to Z,

• a positive cone Co in X and its dual cone Co∗ in Y ,

• two fixed points, namely B ∈ Z and C ∈ Y .

Below we denote by M±
w(K) the set of signed measures on K with a

finite w-norm, i.e., ∀ M ∈ M±
w(K), we have

∫
K
w(x)|M |(dx× da) <∞,

where |M | denotes the total variation of M. Similarly, M±
w(S) denotes

the set of signed measures on S with a finite w-norm.

Two dual pairs (X ,Y) and (Z,V) : We consider the following four
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linear spaces defined by

X := M±
w(K)× RN

= {X = (ν, b1, . . . , bN) : ν ∈M±
w(K), bn ∈ R, n = 1, 2, . . . , N},

Y := Bw(K)× RN

= {Y = (f, e1, . . . , eN) : f ∈ Bw(K), en ∈ R, n = 1, 2, . . . , N},

Z := M±
w(S)× RN

= {Z = (z0, k1, . . . , kN) : z0 ∈M±
w(S), kn ∈ R, n = 1, 2, . . . , N},

V := Bw(S)× RN

= {V = (v′, j′1, . . . , j
′
N) : v′ ∈ Bw(S), j′n ∈ R, n = 1, 2, . . . , N}.

With the bilinear forms

〈X, Y 〉 :=

∫
K

f(x, a)ν(dx× da) +
N∑
n=1

enbn

and

〈Z, V 〉 :=

∫
S

v′(x)z0(dx) +
N∑
n=1

knj
′
n,

we finally have the promised two dual pairs, namely (X ,Y) and (Z,V).

Remark 2.6 (a) We equip X with the weak topology generated by all

elements of Y when viewed as linear functionals on X through 〈·, Y 〉.
We denote this weak topology by τ(X ,Y). By similarly understanding the

notation of τ(Y ,X ) and so on, we have four topological linear spaces:

(X , τ(X ,Y)), (Y , τ(Y ,X )), (Z, τ(Z,V)) and (V , τ(V ,Z)). These weak

topologies are compatible with the underlying bilinear forms (see [1, p.211-

215]).

(b) Evidently,Mw(K) (defined earlier) is closed in (M±
w(K), τ(M±

w(K))),

where τ(M±
w(K)) denotes the weak topology on K generated by the set

of all w-bounded continuous functions on K. Under Assumption 2.1(b,c)

and Assumption 2.2(a,b), D is closed in (M±
w(K), τ(M±

w(K))) because

of Theorem 2.1(a) and the aforementioned observation.

A continuous linear mapping from (X , τ(X ,Y)) to (Z, τ(Z,V)):
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Consider a linear mapping from X to Z, namely U , defined by ∀ X =

(ν, β1, β2, . . . , βN) ∈ X , U ◦ X = Z = (z0, k1, k2, . . . , kN), where ∀ ΓS ∈
B(S),

z0(ΓS) = ν̂(ΓS)−
∫
K

Q(ΓS|y, a)ν(dy × da)

with ν̂ denoting the projection of ν on S, and ∀ n = 1, . . . , N, kn =∫
K
cn(x, a)ν(dx × da) + bn. Its adjoint mapping, namely U∗, is defined

by ∀ V = (v′, j′1, j
′
2, . . . , j

′
N) ∈ V , U∗ ◦ V = Y = (f, e1, e2, . . . , eN) ∈ Y ,

where

f(x, a) = v′(x)−
∫
S

v′(y)Q(dy|x, a) +
N∑
n=1

j′ncn(x, a),

and en = j′n,∀ n = 1, . . . , N. Indeed, the relation 〈U ◦X, V 〉 = 〈X,U∗◦V 〉
can be directly verified. Now one can infer from [50, Prop.12.2.5] for

that U is the required continuous linear mapping from (X , τ(X ,Y)) to

(Z, τ(Z,V)).

A positive cone Co in X and its dual cone Co∗ in Y: We fix

the following positive cone in X , namely Co = {(ν, b1, . . . , bN) : ν(dx ×
da) ≥ 0, bn ≥ 0, n = 1, . . . , N}. Evidently, its dual cone is given by

Co∗ = {(f, e1, . . . , eN) : f(x, a) ≥ 0, en ≥ 0, n = 1, . . . , N}.
Two fixed points, namely B ∈ Z and C ∈ Y: We take B :=

(γ, d1, . . . , dN) and C := (c0, 0, . . . , 0).

Now we may rewrite Problem (2.7) as

〈X,C〉 → min
X∈X

s.t.

U ◦X = B;X ∈ Co.

Its DLP, by the materials presented in [50, Chap.12], is

〈B, V 〉 → max
V ∈V

s.t.

C − U∗ ◦ V ∈ Co∗,
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which can be explicitly written out as follows:

∫
v′(x)γ(dx) +

N∑
n=1

dnj
′
n → max

(v′,j′1,...,j
′
N )∈V

s.t.

c0(x, a)− v′(x) +

∫
S

v′(y)Q(dy|x, a)−
N∑
n=1

j′ncn(x, a) ≥ 0;

−j′n ≥ 0, n = 1, 2, . . . N.

After the change of variables through jn := −j′n and v(x) := v′(x) −∑N
n=1 dnjn, the above DLP takes the following more familiar form:∫

S

γ(dx)v(x)→ max
(v,j1,...,jN )

(2.13)

s.t.

c0(x, a) +
N∑
n=1

jn (cn(x, a)− dn)− v(x) +

∫
S

v(y)Q(dy|x, a) ≥ 0;

jn ≥ 0, n = 1, . . . , N ;

v ∈ Bw(S).

Below we denote by inf(PLP ) and sup(DLP ) the values of the PLP

and DLP, respectively.

Assumption 2.5 (a) ∀ x ∈ S, A(x) is compact.

(b) ∀ x ∈ S, n = 0, 1, . . . , N, cn(x, a) is lower semicontinuous in a ∈
A(x).

(c) ∀ x ∈ S,
∫
S
u(y)Q(dy|x, a) is continuous in A(x), where u(·) is any

bounded measurable function on S.

(d) ∀ x ∈ S,
∫
S
w(y)Q(dy|x, a) is continuous in A(x).

Assumption 2.5 validates [50, Thm.9.6.10] about the dynamic program-

ming approach for unconstrained problems, which we do not intend to

investigate in detail in this chapter. In any case, the statement of [50,

Thm.9.6.10] is quoted together with its direct consequences (see Lemma

2.1 below) and needed in the proof of Theorem 2.3 below.
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Theorem 2.3 Suppose Assumption 2.1, Assumption 2.2(a,b) and As-

sumption 2.5 are satisfied. Then the following assertions hold.

(a)

−∞ < sup(DLP (2.13)) ≤ inf(PLP (2.7)) <∞.

Moreover, if X is feasible for PLP (2.7), V is feasible for DLP (2.13),

and 〈X,U∗ ◦ V 〉 = 0, then X is optimal for PLP (2.7) and V is optimal

for DLP (2.13).

(b) If in addition Assumption 2.4 is satisfied, and c0(x, a) is continuous

on K, then

−∞ < sup(DLP (2.13)) = inf(PLP (2.7)) <∞.

The following lemma facilitates the proof of Theorem 2.3, and we

only sketch its proof below.

Lemma 2.1 For an absorbing MDP model, suppose Assumption 2.1 and

Assumption 2.5 are satisfied. Let c(x, a) := c0(x, a) +
∑N

n=1 jn(cn(x, a)−
dn), where jn ≥ 0 and dn ∈ R are arbitrarily fixed. Then the following

assertions hold.

(a) There is a unique solution in Bw(S) to the following optimality equa-

tion

v∗(x) = inf
a∈A(x)

{
c(x, a) +

∫
S

v∗(y)Q(dy|x, a)

}
, x ∈ S.

Moreover, this solution v∗(x) is the optimal value of the unconstrained

problem

Eπ
x

[
∞∑
t=0

c(xt, at)

]
→ min

π∈UH
.

(b) Let v∗(·) be the solution coming from part (a). Then
∫
S
γ(dx)v∗(x) is

the optimal value of the unconstrained problem

Eπ
γ

[
∞∑
t=0

c(xt, at)

]
→ min

π∈UH
.

(c) Let v∗(·) be the solution coming from part (a). Then it solves the
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following linear program∫
S

γ(dx)v(x)→ max
v

(2.14)

s.t.

c(x, a)− v(x) +

∫
S

v(y)Q(dy|x, a) ≥ 0,∀ (x, a) ∈ K;

v ∈ Bw(S).

Sketched proof. (a) This part follows from [50, Thm.9.6.10].

(b) By Proposition 2.1, it is sufficient to be restricted to the class

of stationary policies. Therefore, in this proof we always assume ϕ ∈
US. The proof now follows from the simple observation that for any

measurable function u on S such that u(∆S) = 0 and supx∈S
|u(x)|
w(x)

<∞,
we have ∀ m = 1, 2, . . . ,

Eϕ
γ [u(xm)] =

∫
S

γ(dx)u(x)

+Eϕ
γ

[
m−1∑
t=0

{∫
S

u(y)

∫
A

Q(dy|xt, a)ϕ(da|xt)− u(xt)

}]
. (2.15)

Indeed, one only needs add to the both sides of (2.15) Eϕ
γ [
∑m

t=0 c(xt, at)],

and pass to the limit m → ∞, and use the facts that v∗ ∈ Bw(S) (see

part (a)) and Eϕ
γ [u(xm)] → 0 as m → ∞. Incidentally, equation (2.15)

is just a simple version of Dynkin’s formula.

(c) We start this proof with the observation that v∗ is obviously fea-

sible for Problem (2.14). It follows from (2.15) that for any ϕ ∈ US, if

u ∈ Bw(S) and

u(x) ≤
∫
A

ϕ(da|x)c(x, a) +

∫
S

∫
A

ϕ(da|x)Q(dy|x, a)u(y), ∀ x ∈ S,

then u(x) ≤ Eϕ
x [
∑∞

t=0 c(xt, at)] . From this we infer that for any feasible

solution v to Problem (2.14), it holds that v(x) ≤ Eϕ
x [
∑∞

t=0 c(xt, at)] ,

where ϕ ∈ US can be arbitrarily fixed. Now let us arbitrarily fix such

a feasible solution v, and suppose
∫
S
γ(dx)v(x) >

∫
S
γ(dx)v∗(x). Then

there exists some x̂ ∈ S and constant ε > 0 such that v∗(x̂) < v(x̂) −
ε. Hence, v∗(x̂) < Eϕ

x̂ [
∑∞

t=0 c(xt, at)] − ε, where ϕ ∈ US can be any
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stationary policy. However, this is against part (a) of this theorem, as

desired. 2

Proof of Theorem 2.3.(a) This part follows from Lemma 2.1 and [47,

Thm.6.2.4].

(b) According to Assumption 2.4, Theorem 2.1(a), Remark 2.6(b),

Proposition 2.1(d), the fact of c0(x, a) being continuous on K and [76,

Ex.1”, p.45], we have that [76, Thm.17(a)] is valid. As a result,

inf(PLP (2.7)) = sup
jn≥0,n=1,2,...,N

inf
ν∈D

{∫
K

c(x, a)ν(dx× da)

}
, (2.16)

where c(x, a) = c0(x, a) +
∑N

n=1 jn(cn(x, a)− dn) as defined in the state-

ment of Lemma 2.1 above. Having fixed jn ≥ 0, n = 1, 2, . . . , N, the

problem of ∫
K

c(x, a)ν(dx× da)→ min
ν∈D

(2.17)

takes the same form as PLP (2.7): it is just an unconstrained case. Its

DLP takes the form of DLP (2.13):∫
S

γ(dx)v(x)→ max
v∈Bw(S)

(2.18)

s.t. c(x, a)− v(x) +

∫
S

v(y)Q(dy|x, a) ≥ 0.

By Lemma 2.1 we have

inf(PLP (2.17)) =

∫
S

γ(dx)v∗(x)

= sup(DLP (2.18)) = sup
v∈Bw(S)

∫
S

γ(dx)v(x)

(s.t. the constraints in (2.14) with fixed jn ≥ 0), where v∗(·) is the

optimality function coming from Lemma 2.1(a). Now on the one hand,

taking supj1≥0,j2≥0,...,jN≥0 to the both sides of the above equalities yields

sup
j1≥0,j2≥0,...,jN≥0

inf(PLP (2.17)) = sup(DLP (2.13)).
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On the other hand, we have

inf(PLP (2.7)) = sup
j1≥0,j2≥0,...,jN≥0

inf(PLP (2.17))

because of (2.16). Thus,

sup(DLP (2.13)) = inf(PLP (2.7)).

The fact that both the quantities are finite is easily seen. 2

Part (a) of this theorem says that the weak duality and the comple-

mentary slackness hold, while part (b) shows the absence of the duality

gap.

2.6 A discounted MDP model with a state-

action-dependent discount factor

The constrained discounted MDP model under our consideration is the

following 8-tuple

{S,A, A(x), Q̂(dy|x, a), ĉ0(x, a), (ĉn(x, a), dn)n=1,...,N , γ(dy), β(x, a)},

where the state and action spaces S,A are arbitrary non-empty Borel

spaces, and 0 ≤ β(x, a) < 1 is a measurable function defined on K,

representing the state-action-dependent discount factor, and all the other

primitives are understood similarly to previously.

Having fixed a policy π and constructed the probability measure P̂ π
γ in

the canonical way, where P̂ π
γ signifies the underlying transition probabil-

ity to be Q̂(dy|x, a), the discounted problem (assumed to be well defined
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for this moment) reads

V0(π, γ) := Êπ
γ

[
∞∑
t=0

t−1∏
m=0

β(xm, am)ĉ0(xt, at)

]
→ min

π∈UH
(2.19)

s.t.

Vn(π, γ) := Êπ
γ

[
∞∑
t=0

t−1∏
m=0

β(xm, am)ĉn(xt, at)

]
≤ dn, n = 1, 2, . . . , N.

As before, it is our standing assumption that UFeasible 6= ∅, and UH

denotes the set of history-dependent policies.

As pointed out in [2, 50, 91], a standard discounted MDP model can

be reformulated as an undiscounted one with total cost criteria

{S,A,A(x), Q(dy|x, a), c0(x, a), (cn(x, a), dn)n=1,...,N , γ(dy)}.

This also holds when the discount factor is state-action-dependent. In-

deed, one may introduce an isolated point ∆S and enlarge the state

space from S to S := S
⋃
{∆S}, and correspondingly enlarge the ac-

tion space from A to A := A
⋃
{∆A} where ∆A is the newly intro-

duced isolated point corresponding to ∆S, i.e., A(∆S) := {∆A} and

A(x) ⊆ A,∀ x 6= ∆S. The transition probabilities Q(dy|x, a) and the

cost functions cn(x, a), n = 0, 1, . . . , N of the transformed undiscounted

MDP model with total cost criteria are given by

Q(dy \ {∆S}|x, a) := β(x, a)Q̂(dy|x, a),

Q({∆S}|x, a) = 1− β(x, a), cn(x, a) := ĉn(x, a),∀ (x, a) ∈ K;

Q({∆S}|∆S,∆A) := 1, cn(∆S,∆A) := 0.

The equivalence between the discounted and the transformed undis-

counted models should be clear from the canonical construction and

the form of performance functionals. Otherwise, a formal proof could

be obtained by applying the same reasoning as in the proofs of [91,

Lem.2,Thm.3] with some obvious notational complications.

It is clear that the policies for the original discounted model and those

for the transformed model essentially characterize each other, see [91], so
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that without leading to confusion we use the same notation for both.

In order to apply the results derived in the previous section to ana-

lyze the underlying non-standard discounted MDP model, we need some

conditions to guarantee the transformed model to be absorbing.

Assumption 2.6 There exists a constant 0 ≤ β̂ < 1 satisfying

sup(x,a)∈K β(x, a) < β̂ and a measurable function w on S : w(x) ≥ 1

on S and w(∆S) = 0 such that the following holds.

(a)
∫
S
w(y)Q̂(dy|x, a) ≤ 1

β̂
w(x), ∀ x ∈ S.

(b) supx∈S
supa∈A(x) |ĉn(x,a)|

w(x)
<∞, ∀ n = 0, 1, . . . , N.

(c)
∫
S
w(x)γ(dx) <∞.

It is a simple observation that under Assumption 2.6, the inequality

presented in Remark 2.1(d) is satisfied with b = 0 = l(x),∀ x ∈ S,

β =
sup(x,a)∈K β(x,a)

β̂
. Consequently, the transformed model is absorbing.

Moreover, under Assumption 2.6 Problem (2.19) is well defined.

Assumption 2.7 (a) The function β(·) on S defined by

β(y) := supa∈A(y) β(y, a) on S and β(∆S) := 0 is measurable.

(b) There exists a constant 0 ≤ δ < 1 such that
∫
S
β(y)Q̂(dy|x, a) ≤

δ, ∀ (x, a) ∈ K.

(c) The functions ĉn(x, a), n = 0, 1, . . . , N are all bounded on K.

Assumption 2.7(a) is satisfied if A(x) is compact and β(x, a) is upper

semicontinuous in a ∈ A(x) ∀ x ∈ S because of [50, Prop.D.5(c)], or if

β(x, a) is a-independent, in which case by slightly abusing the notation

we use β(x) for β(x, a).

Under Assumption 2.7, the transformed model is absorbing. Indeed,

the inequality in Remark 2.1(d) is satisfied with w(x) ≡ 1 on S, β = 0,

b = 1, l̂ = δ and l(x) = β(x), because of∫
S

1 ·Q(dy|x, a) ≤ sup
a∈A(x)

β(x, a) = β(x),
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∫
S

β(y)Q(dy|x, a) =

∫
S

sup
a∈A(y)

β(y, a)Q(dy|x, a)

≤ β(x, a)δ ≤ δ sup
a∈A(x)

β(x, a) = δβ(x),

Eπ
x

[
β(xt)

]
= Eπ

x

[
Eπ
x

[
β(xt+1)|x0, a0, . . . , xt, at

]]
= Eπ

x

[∫
S

β(y)Q(dy|xt, at)
]

≤ δEπ
x

[
β(xt)

]
and a simple inductive argument.

Remark 2.7 On the one hand, the discounted MDP model with a state-

action-dependent discount factor appears more general than the standard

one (with a constant discount factor) prevailingly considered in the liter-

ature such as [2, 50, 72, 75]. On the other hand, it is easily seen that

the requirement for the discount factor β(x, a) to be separated from one,

as in Assumption 2.6, is essentially the same as requiring the under-

lying dynamic programming operator to be contracting, which validates

the reasoning in [50, Chap.8]. Hence, a discounted MDP model with

such a state-action-dependent discount factor is essentially the same as

a discounted model with a constant discount factor. Another variant of

the discounted MDP model, which allows a randomized discount factor, is

considered in [42]. However, it is treated in the same way as for the stan-

dard discounted model after using the trick of enlarging the state space.

The constrained discounted MDP model in Borel spaces with unbounded

cost functions and a state-action-dependent discount factor not separated

from one seems to be still underdeveloped (but see [85]).
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Chapter 3

More constrained absorbing

MDP with total cost criterion

3.1 Introduction

This chapter is organized as follows: Section 3.2 is about a more con-

strained MDP model, its reformulation as an unconstrained one and the

relationship between two policies in each model; Section 3.3 is devoted to

the dynamic programming setting , the optimality results and its proof.

3.2 Problem formulation and assumptions

A more constrained MDP model M in Borel spaces with total cost cri-

terion is a 7-tuple

{S,A,A(x), Q(dy|x, a), c0(x, a), (cn(x, a), dn)n=1,...,N , γ(dy)},

All the components are understood identically to those in Chapter 2.

Again, we are concerned with a MDP model which is absorbing in the

sense of Definition 2.1.

Under Assumption 2.1 and 2.2, the more constrained problem of our
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interest is defined as follows,

W0(π) := Eπ
γ

[
∞∑
t=0

c0(xt, at)

]
→ min

π
(3.1)

s.t.

Wn(π) := sup
T≥1

Eπ
γ

[
T−1∑
t=0

cn(xt, at)

]
≤ dn, n = 1, 2, . . . , N.

In order to facilitate our analysis, M is reformulated into an equiva-

lent deterministic model M̃, denoted by

{S̃, Ã, (Ã(P ), P ∈ Pw(S)), (H(ã),V( ~W, ã)), C(P, ~W, ã)}

where,

• S̃ := Pw(S)×RN , recall that S := S
⋃
{∆S} and ∆S is an isolated

point;

• Ã := Pw(K), recall that A := A
⋃
{∆A}, ∆A is an isolated point,

K := {(x, a) ∈ S × A : x ∈ S, a ∈ A(x)};

• Ã(P ) := {ã ∈ Ã | ã(dx× A) = P (dx)}, where P ∈ Pw(S);

• Pt+1(ΓS) = H(ãt)(ΓS) :=
∫
S×A ãt(dy×da)Q(ΓS|y, a) ∀ ΓS ∈ B(S)

Pt+1(∆S) = H(ãt)(∆S) :=
∫
S×A ãt(dy × da)Q(∆S|y, a) + Pt(∆S)

• W n
t+1 = V(W n

t , ãt) := W n
t +
∫
S×A cn(x, a)ãt(dx×da) n = 1, 2, . . . , N.

• C(Pt, ~Wt, ãt) :=

{ ∫
S×A c0(x, a)ãt(dx× da) when ~Wt ≤ ~d

+∞ otherwise

The new state is a probability measure on the original state space S

along with an N -dimensional real-valued vector, and the new action is a

probability measure on the graph K. Note that these measures are finite

in the w-norm, where w(·) comes from Definition 2.1(d). As mentioned

in Remark 2.1(b), the absorbing set ∆S can be compressively treated

as a singleton {∆S}, so is ∆A as {∆A}. The admissible action space is

a measurable subset of Ã for any P ∈ Pw(S) , for each of which the

projection coincides with P . Because of w(∆S) = 0, Pw(S) ⊆ Pw(S),
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and Pw(K) ⊆ Pw(K). By the above definitions, the new policy is a se-

quence of newly defined admissible actions, i.e., π̃ = (ãt)t=0,1,2,.... Note

that only deterministic (Markov) policies are considered. Main conse-

quences of the reformulation are embodied in two respects. Firstly, M̃ is

essentially a deterministic model in the sense that the trajectory of the

process is determined whenever the initial state (a probability measure)

and a policy π̃ is given. In particular, we have transition functions H and

V based on the transition kernel Q(dy|x, a), which in turn corresponds

to each part of S̃ respectively. Denote by ~Wt := (W 1
t ,W

2
t , . . . ,W

N
t )

and ~d := (d1, d2, . . . , dN) two real-valued vectors, and ~Wt ≤ ~d is under-

stood in the sense of componentwise. Secondly, M̃ is an unconstrained

model, where the source of constraints in the model M is incorporated

into the structure of the new cost function C(·, ·) incorporates. C(·, ·)
is defined similarly to the penalty function (see [65]), and keeps track of

accumulated costs, which enables us to determine whether each of the

constraints is satisfied up to every time step. To be specific, C(·, ·) penal-

izes the violation of any constraint with +∞ cost immediately after its

occurrence, otherwise computes the expected value of cost with respect

to c0 as usual when all the constraints are satisfied. The new initial state

is a probability measure P0 ∈ Pw(S) concentrated on S along with an

N -dimensional vector ~W0. Accordingly, the weight function is modified

as w̃(P, ~W ) :=
∫
S
w(x)P (dx) for every P ∈ Pw(S).

Before we proceed with the statement of our main result, it is nec-

essary to reveal and reassure some topological properties of new state

and action space. In fact, S̃ and Ã are Borel spaces. Firstly, a Borel

space adjoining an isolated point is Borel. Secondly, the space of proba-

bility measures on a Borel space is Borel (see [12, Cor.7.25.1]). Thirdly,

the space of probability measures on an arbitrary Borel space is home-

omorphic to the space of probability measures on the same space with

finite w-norm (see the paragraph prior to Remark 1.2 and [73] for more

detail). Next, N -dimensional Euclidean space is Polish, and is Borel as

well. Finally, the product space of two Borel spaces is Borel.

Within the context of the reformulated model M̃, Problem (3.1) can
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be rewritten in an integrated and neat form as follows,

J(π̃, (P0, ~W0)) :=
∞∑
t=0

C(Pt, ~Wt, ãt)→ min
π̃

(3.2)

Note that Problem (3.2) is well defined in view of [8, Thm.B.1.1]. Specif-

ically, for each P0 ∈ Pw(S), we have

sup
π̃

[
∞∑
t=0

C−(Pt, ~Wt, ãt)

]
= sup

π∈UH
Eπ
P0

[
∞∑
t=0

(∫
S×A

c0(x, a)ãt(dx× da)

)−]

≤ sup
π∈UH

∫
S

Eπ
y

[
∞∑
t=0

ĉw(xt)

]
P0(dy)

= ĉk

∫
S

w(y)P0(dy) = ĉkw̃(P0, ~W0) <∞ (3.3)

by noticing Definition 2.1(d).

In view of (3.2) we can see that the performance functional pro-

duces the value of +∞ only for infeasible policies. For feasible ones,

it is an easy observation that there exists a one-to-one correspondence

between deterministic (Markov) policies π̃ = (ãt)t=0,1,2,... and Markov

policies πM = (πMt )t=0,1,2,... for the model M:

π̃ ↔ πM : ãt(dx× da) = πMt (da|x)Pt(dx) (3.4)

By the well-known Derman-Strauch Lemma (see Lemma 1.1, or [29] for

the original version), the class of randomized Markov policies is sufficient

for optimality problems with total cost criterion whenever the initial

distribution is fixed. The connection between Problem (3.1) and Problem

(3.2) is illustrated as follows: if there exists a deterministic optimal policy

π̃ = (πt)t=0,1,2,... to Problem (3.2), then the optimal value of Problem (3.1)

is equal to J(π̃, (γ,~0)), where ~0 = (0, 0, . . . , 0) is the N -dimensional null

vector, and the optimal Markov policy to Problem (3.1) can be uniquely

determined by the relation in (3.4). Here and below, we shall concentrate

on Problem (3.2) and M̃ instead of (3.1). The main advantage is that

this reformulation makes it possible not only to establish the optimality

equation, but to characterize the optimal Markov policies explicitly which
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will be revealed in the next section.

3.3 Main statements and proofs

We define the operator in the context of M̃ as

Lu(P, ~W ) := C(P, ~W, ã) + u(H(ã),V( ~W, ã)), (3.5)

and the corresponding optimality operator as

Tu(P, ~W ) := inf
ã∈Ã(P )

{C(P, ~W, ã) + u(H(ã),V( ~W, ã))}. (3.6)

Let

Jn(π̃, (P0, ~W0)) :=
n∑
t=0

C(Pt, ~Wt, ãt)

and

Jn((P0, ~W0)) := inf
π̃
Jn(π̃, (P0, ~W0))

be (n+1)-stage value function with respect to π̃, and (n+1)-stage optimal

value function respectively.

An extra set of assumptions is needed to fit the new model.

Assumption 3.1 (a) The functions cn(x, a), n = 0, 1, 2, . . . , N are all

continuous on K;

(b) The state-action space K is compact, or the state space S is denu-

merable;

(c)
∫
S
w(y)Q(dy|x, a) is continuous in (x, a) ∈ K.

Theorem 3.1 (a) Under Assumption 2.1, Assumption 2.2(a,b), Assump-

tion 3.1,

J∞(P, ~W ) := inf
π̃
J(π̃, (P, ~W )) = lim

n→∞
Jn((P, ~W ))

is lower semicontinuous, is the minimum solution to the optimality equa-

tion

u(P, ~W ) = Tu(P, ~W ) (3.7)
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out of the class of lower semicontinuous functions bounded by w̃(P, ~W )

from the below. In addition, a measurable mapping f ∗ from S̃ to Ã

attaining the infimum in the right hand side of (3.7) corresponds to an

optimal deterministic stationary policy.

(b) J∞(γ,~0) is the optimal value of Problem (3.1), and the above optimal

policy f ∗ defines a randomized Markov policy for Problem (3.1).

Proof. First of all, we make a series of preliminary observations, which

as a whole form a version of compactness-continuity conditions.

Observation 1: C(P, ~W, ã) is lower semicontinuous on S̃ × Ã.

Recall the definition of C(P, ~W, ã),

C(P, ~W, ã) :=

{ ∫
S×A c0(x, a)ã(dx× da) if ~W ≤ ~d

∞ otherwise

We set aside ~W for a while, and focus on the other two arguments.

Let (Pi, ãi) be an arbitrary sequence of pairs that converges to some point

(P, ã) in the w-weak topology where Pi, P ∈ Pw(S), and ãi, ã ∈ Pw(K)

for each i = 1, 2, . . . . Note that Pi and P are projections of ãi and ã

respectively since all the actions are admissible. In view of Assumption

2.1(a) and 3.1(a), c0 ∈ Cw(K). That is, C(P, ~W, ã) is continuous in

Pw(S) × Pw(K) (see Remark 1.2). Indeed, ~W plays the same role of an

indicator function, which maintains the value of C(P, ~W, ã) calculated

by the integration when ~W ≤ ~d. Thus, an easy observation gives that

limi→∞C(Pi, ~Wi, ãi) ≥ C(P, ~W, ã), for an arbitrary sequence ~Wi → ~W

in the sense of componentwise.

Observation 2: For any continuous and w̃-bounded function u on

S̃, u′(P, ~W, ã) := u(H(ã),V( ~W, ã)) is continuous on S̃ × Ã and also w̃-

bounded.

It suffices to investigate the continuity of two transition functions
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H(ã) and V( ~W, ã) in ã. Recall the definitions,

H(ã)(ΓS) :=

∫
S×A

ã(dy × da)Q(ΓS|y, a) S ∈ B(S) (3.8)

H(ã)(∆S) :=

∫
S×A

ãt(dy × da)Q(∆S|y, a) + Pt(∆S) (3.9)

V(W n, ã) := W n +

∫
S×A

cn(x, a)ã(dx× da) (3.10)

For (3.8) and (3.9), let (ãi) be a sequence that converges to ã in the

w-weak topology where ãi, ã ∈ Ã(P ) for each i = 1, 2, . . . . We have

lim
i→∞

∫
S

g(x)Pt(ãi)(dx) = lim
i→∞

∫
S

g(x)

∫
S×A

ãi(dy × da)Q(dx|y, a)

= lim
i→∞

∫
S×A

∫
S

g(x)Q(dx|y, a)ãi(dy × da)

= lim
i→∞

∫
S×A

g′(x, a)ãi(dy × da)

=

∫
S×A

g′(x, a)ã(dy × da) (3.11)

where g(·) ∈ Cw(S). g′(y, a) :=
∫
S
g(x)Q(dx|y, a) belongs to Cw(K)

because of Assumption 2.2(b) and 3.1(c) and Lemma A.1. The proof

for (3.10) follows in a similar manner by Assumption 2.1(a), Assumption

3.1(a) and the fact that the continuity of composition of two continuous

functions preserves.

Note that H(ã) ∈ Pw(S) for each P ∈ Pw(S) by (3.11) with g(·)
being replaced with w(·). So the w̃-boundedness of u′(·, ·) is justified.

Observation 3: The set-valued mapping P → Ã(P ) is upper semicon-

tinuous.

By upper semicontinuity of set-valued mapping Ã(P ), we refer to that

for a sequence (Pi) that converges to P in the w-weak topology and arbi-

trarily chosen elements ãi ∈ Ã(Pi), there exists a limit point ã ∈ Ã(P ) for

the sequence (ãi); see Definition A.2(a). In view of Assumption 3.1(b), if

S is denumerable, the continuity issue is automatically addressed. Oth-
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erwise, note that ãi ∈ Ã(Pi) ⊆ Pw(K). By Assumption 3.1(b) and [12,

Prop.7.22], P(K) is compact in the usual weak topology, so is Pw(K)

in the w-weak topology (see (1.5) and (1.6)). Therefore,
⋃
i{ãi} is rel-

atively w-compact in Pw(K). That is, there exists a subsequence (ãik)

that converges to some point ã ∈ Pw(K) in the w-weak topology.

Let g ∈ Cw(S) be an arbitrary function. On the one hand, we have

lim
k→∞

∫
S×A

g(x)ãik(dx× da) = lim
k→∞

∫
S

g(x)Pik(dx) =

∫
S

g(x)P (dx)

which follows from Pi
w→ P in w-weak topology. On the other hand,

lim
k→∞

∫
S×A

g(x)ãik(dx× da) =

∫
S×A

g(x)ã(dx× da) =

∫
S

g(x)ã(dx× A)

as ãik
w→ ã. Thus, P (dx) = ã(dx× A), i.e., ã ∈ Ã(P ).

Observation 4: Ã(P ) is w-weakly compact in Pw(K) for each P ∈
Pw(S).

It would be convenient to formulate an auxiliary model M̂ which is

viewed as a special case of M.

• Ŝ := S × {0, 1};

• Â := A
⋃
{∆Â};

• Â((x, 0)) := A(x),∀ x ∈ S; Â((x, 1)) := ∆Â,∀ x ∈ S;

• Q̂((dy, 1)|(x, 0), a) := Q(dy|x, a),∀ a ∈ A(x);

Q̂((dy, 1)|(x, 1),∆Â) := δx(dy);

• the initial distribution is (P0, 0), where P0(dx) is a probability mea-

sure on S.

For the sake of simplicity, we denote by S0 := S×{0}, S1 := S×{1}.
S0 and S1 can be viewed and treated as two versions of the original state

space S, which are understood in the same way below. From the above

formulation, S1 = {(x, 1) : x ∈ S} is an absorbing set, thus further
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compressively treated as an absorbing point. Obviously, M̂ satisfies Def-

inition 2.1(a,b). Definition 2.1(c) is skipped as the cost is irrelevant to

this model. For Definition 2.1(d), the weight function is modified as

ŵ(x, i) =


w(x) when x ∈ S, i = 0

1 when x ∈ ∆S, i = 0

0 when i = 1

(3.12)

Then the left hand side of Definition 2.1(d) is equal to 1. Note that

the corresponding process automatically enters the cemetery S1 after the

first movement when the initial state is in S0, and we are not concerned

with the evolution afterwards. As a consequence, it suffices to consider

the one-step policy taking the form π = (π0, π1, . . . ), where π0(da|x) is a

stochastic kernel from S to A such that π0(A(x)|x) = 1, and π1, π2, . . .

are arbitrarily selected. Accordingly, the policy π̂ = (π̂0, π̂1, . . . ) cor-

responding to M̂ is defined as π̂0(da|(x, 0)) := π0(da|x),∀ x ∈ S, and

π̂n(da|(x, 1)) := δ∆Â
((x, 1)),∀ x ∈ S, n = 1, 2, . . . . Note that under this

formulation, only the first element of two polices defined above corre-

sponds to each other. By canonical construction there exists a unique

probability measure P̂ π̂
γ on the space of trajectories, (x̂0, â0, x̂1, â1, . . .).

One can write the explicit form of its occupation measure according to

Definition 2.2,

ν̂ π̂(ΓS0 × ΓA) =
∞∑
t=0

P̂ π̂
P0

(x̂t ∈ ΓS0 , ât ∈ ΓA)

= P̂ π̂
P0

(x̂0 ∈ ΓS0 , â0 ∈ ΓA)

=

∫
ΓS0

P̂ π
x (â0 ∈ ΓA)P0(dx)

=

∫
ΓS0

∫
ΓA

π0(da|x)P0(dx)

where ΓS0 × ΓA ∈ B(S0 × A), and P0 ∈ Pw(S).

It is interesting to note that the occupation measure associated with

the model M̂ given the initial distribution P0(·) coincides with the ad-

missible action space in the model M̃ given the same measure P0(·).
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That is, D̂ = Ã(P0), where D̂ denotes the space of occupation mea-

sures for the model M̂. Therefore, Theorem 2.1(b) is applicable if all

the conditions remains satisfied for the model M̂ as well. Clearly, As-

sumption 2.1(b) and 2.2(a) hold directly from the definition of ŵ(x, i);

see (3.12). Assumption 2.1(c) and 2.2(b) are satisfied again by noting

that the corresponding process is certain to enter the cemetery S0 im-

mediately after the first step, meaning that
∫
S0
u(y)Q(dy|(x, 0), â) ≡ 0.

Assumption 2.2(c) directly follows with the newly defined moment func-

tion v̂((∆S, 0),∆A) := 0 and v̂((x, 0), a) := v(x, a),∀x ∈ S, a ∈ A.

With the above four observations in mind, we continue to verify re-

maining assumptions presented in Chapter 4. First of all, it is a simple

observation that

R(P, ~W ),ã(v(·)) := v(H(ã),V( ~W, ã))

is a coherent risk measure in accordance with Definition 4.1. Let H be

the family of extended real-valued function v(P, ~W ) on S̃ such that

sup
(P, ~W )∈S̃

v−(P, ~W )

w̃(P, ~W )
<∞.

Assumption 4.1 is automatically satisfied, since only deterministic Markov

policies are under our consideration. Part (a) of Assumption 4.2 follows

from (3.3), and part (b) is not needed by the assertion in Remark 4.2(b).

Note that the following relation holds for each initial state (respec-

tively, predetermined probability measure) for the model M̃ (respec-

tively, M),

sup
π̃

∞∑
t=m+1

C−(Pt, ~Wt, ãt) ≤ ĉ sup
π̃

∞∑
t=m+1

∫
S

w(y)Pt(dy) (3.13)

= ĉ sup
πM∈UM

∞∑
t=m+1

∫
S

w(y)P πM

P0
(xt ∈ dy)

= ĉ sup
πM∈UM

EπM

P0

[
∞∑

t=m+1

w(xt)

]

56



Thus, we define

δm(P0, ~W0) := ĉ sup
πM∈UM

EπM

P0

[
∞∑

t=m+1

w(xt)

]
.

Observe that δm(·) satisfies Assumption 4.3(a) because of Definition 2.1(d).

Suppose πM = (πM0 , π
M
1 , . . . ) is an arbitrary randomized Markov policy,

define the corresponding one-stage shifted policy by πM
′
:= (π0, π

M
0 , π

M
1 , . . .),

where ã0(dx× da) = π0(da|x)P0(dx)

R(P0, ~W0),ã0
(δm(·)) = δm(H(ã0),V( ~W0, ã0))

≤ sup
π̃

∞∑
t=m+1

∫
K

c0(y, a)ãt(dy × da)

≤ ĉ sup
π̃

∞∑
t=m+1

∫
S

w(y)Pt(dy)

= ĉ sup
πM∈UM

EπM

H(ã0)

[
∞∑

t=m+1

w(xt)

]

= ĉ sup
πM′∈UM

EπM
′

P0

[
∞∑

t=m+2

w(xt)

]
= δm+1(P0, ~W0).

So, Cm ≡ 1 validates Assumption 4.3(b). Part (c) follows from (3.13)

and the definition of δm(·), whereas part (d) is satisfied by the fact

δ−1(P0, ~W0) ≤ ĉkw̃(P0). The verification of Assumption 4.4 is trivial.

Part (a) of Assumption 4.5 is a direct consequence of Observation 1-4

(see the discussion in [36]), whereas part (b) follows from Observation 2

and Definition 2.1.

All the statements in part (a) of Theorem 3.3, analogous to Theorem

4.1, should follow.

Denote by ã∗t := f ∗(Pt) for t = 0, 1, 2, . . . the induced optimal deter-

ministic stationary policy for Problem (3.2). Obviously, one can disinte-

grate it in the same way as in (3.4),

ã∗t (dx× da) = Pt(dx)πM
∗

t (da|x) t = 0, 1, 2, . . .
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where πM
∗

= (πM
∗

t )t=0,1,2,... corresponds to a randomized Markov policy

for Problem (3.1). 2

Remark 3.1 (a) The value iteration and policy iteration algorithm are

established in the statement of Theorem 3.1, see Remark 4.2 for details.

This facilitates the determination of the optimal value, as well as approx-

imating or obtaining an optimal stationary policy for Problem (3.1).

(b) On the one hand, the establishment of an optimal randomized Markov

policy for Problem (3.1) does make sense due to the more constrained

setup in the formulation of Problem (3.1). On the other hand, the refor-

mulation ofM into M̃ makes it possible to deduce an optimal randomized

Markov policy πM
∗

for Problem (3.1), whenever an optimal deterministic

stationary policy f ∗ for Problem (3.2) is obtained. As illustrated in [65],

the latter fact is one of the advantages and aims of applying dynamic

programming approach to constrained MDPs.

(c) In addition, we observe that the converse statement of the last part

in Theorem 3.1 remains valid. That is, if f ∗ is an optimal deterministic

stationary policy to Problem 3.2, then

J∞(P, ~W ) = C(P, ~W, f ∗(P )) + J∞(H(f ∗(P )),V( ~W, f ∗(P ))).

Actually, a deterministic stationary policy satisfying the above equation

is called a conserving policy. Briefly, a deterministic stationary policy is

optimal to Problem 3.2 if and only if it is conserving. As a consequence,

3.7 is enough to characterize all the optimal policies to Problem 3.1.
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Chapter 4

MDP with Iterated Coherent

Risk Measures

4.1 Introduction

This section attempts to extend the dynamic programming for standard

Markov decision processes (MDPs) with the expected total cost criterion

to the case, where the (iterated) coherent risk measure of the cost is

taken as the performance measure to be minimized.

This chapter is organized as follows. We introduce the notion of

coherent risk measures, present the assumptions and state the optimal

control problem in Section 4.2. Section 4.3 is about the optimality results

together with its proof. Section 4.4 consists of the standard MDP and the

MDP with iterated conditional value-at-risk as two illustrative examples.

4.2 Problem formulation and assumptions

In order to describe the concerned MDP model, we present some nota-

tions and definitions first.

As is seen in Chapter 1, the standard MDP model is made up of the

five-tuple

{S,A, (A(x), x ∈ S), Q(dy|x, a), c(x, a)}.

We attempt to redefine one of its element, i.e., Q(dy|x, a), to obtain
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our new model. In what follows, for any function u(·) and constant u,

u+ := max{u, 0} and u− := max{0,−u}. We also regard ∞ and −∞ as

constants.

Let H be a linear subspace of the space of all the extended real-valued

measurable functions on S, and contains all the real constants.

Definition 4.1 A mapping R(·) from H to R := [−∞,∞] is called a

sublinear expectation if the following conditions are satisfied;

(a) R(v(·)) ≤ R(u(·)) for each v ≤ u with u, v ∈ H (here and below the

inequality v ≤ u is understood in the pointwise sense);

(b) R(c) = c for each constant c ∈ R;

(c) R(v(·) + u(·)) ≤ R(v(·)) +R(u(·)) for each u, v ∈ H; and

(d) λR(v(·)) = R(λv(·)) for each v ∈ H and λ ∈ (0,∞).

Throughout this chapter we put R(∞) :=∞, R(−∞) := −∞,∞−∞ :=

∞ and 0 · ±∞ := 0. Item (c) above is called the sublinearity of R(·),
following from which we further have for each u, v ∈ H,

R(u(·)− v(·)) ≥ R(u(·))−R(v(·)) (4.1)

if R(v(·)) <∞.
It is easy to see that the sublinear expectation R is convex in the sense

of R(λv(·) + (1 − λ)u(·)) ≤ λR(v(·)) + (1 − λ)R(u(·)) for each u, v ∈ H
and λ ∈ [0, 1]; and is translation invariant in the sense of R(v(·) + c) =

R(v(·)) + c for each v ∈ H and c ∈ R. Thus, in consistency with [90] we

call a sublinear expectation R a coherent risk measure throughout the

rest of this chapter.

A coherent risk measure Rx,a(·) parameterized by (x, a) ∈ K is called

a risk mapping (cf. [90]) if for each fixed (x, a) ∈ K, Rx,a(·) is a coherent

risk measure; and for each v ∈ H, Rx,a(v(·)) is measurable in (x, a) ∈ K.
The MDP model under consideration is characterized by the following

primitives {S,A, (A(x), x ∈ S), Rx,a(·), c(x, a)}, for which we define the

(Markov) policy as follows.
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Definition 4.2 A policy π = (πn)n=0,1,... is a sequence of stochastic

kernels πn(da|x) on B(A) given x ∈ S such that for each x ∈ S and

n = 0, 1, 2, . . . , πn(A(x)|x) = 1. A policy is called (randomized) station-

ary if the stochastic kernels πn are independent of n. A stationary policy

is called deterministic stationary if there is a measurable mapping f from

S to A whose graph is contained in K such that, slightly but convention-

ally abusing the notation, the stochastic kernel π defining the policy can

be written as π(da|x) = 1{f(x)∈da}, where 1{·} stands for the indicator

function.

Assumption 4.1 There exists a subset H ⊂ H, which contains all the

real constants and is closed under addition and nonnegative scalar multi-

plication (i.e., λv ∈ H for each v ∈ H and λ ∈ [0,∞)), such that the func-

tions
∫
A
c(·, a)π(da|·) ∈ H and

∫
A
R·,a(v(·))π(da|·) ∈ H for each v ∈ H

and stochastic kernel π from S to B(A) satisfying π(A(x)|x) = 1 for each

x ∈ S. Furthermore, for each u, v ∈ H, it holds that min{u, v} ∈ H.

Throughout this chapter, all the assumptions, once introduced, are sup-

posed to hold always without explicit indications. We define the operator

Lv(x, a) := c(x, a) + βRx,a(v(·))

for each v ∈ H, where and in the sequel β ∈ (0, 1] represents the dis-

count factor. Note that β = 1 is also included so that the undiscounted

problem is taken into consideration in the present setting. For notational

convenience, let us denote

Rx,π(v(·)) :=

∫
A

Rx,a(v(·))π(da|x),

c(x, π) :=

∫
A

c(x, a)π(da|x), and

Lπv(x) := c(x, π) + βRx,π(v(·))

for each stochastic kernel π from S to B(A) such that π(A(x)|x) = 1 for

each x ∈ S.
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For each fixed policy π = (πn) and n ≥ −1, we define

Jn(x, π) := Lπ0Lπ1 . . . Lπn(0)

= c(x, π0) + βRx,π0(c(·, π1) + βR·,π1(c(·, π2)

+βR·,π2(· · ·+ βR·,πn−1(c(·, πn)) . . . ), (4.2)

where if n = −1, Lπ0Lπ1 . . . Lπn(0) := 0.

We impose the following before we state the optimal control problem

under consideration.

Assumption 4.2 (a) limn→∞ Jn(·, π) =: J∞(·, π) exists under each pol-

icy π;

(b) For each x ∈ S, if J∞(x, π) = ∞ for all π, then there exists some n

such that infπ Jn(x, π) =∞.

Assumption 4.2(a) automatically holds if the cost function is nonnegative

due to the monotone convergence, or more generally, under Assumption

4.3 imposed below by Lemma C.1. When Rx,a(v(·)) :=
∫
S
v(y)Q(dy|x, a),

the model described above becomes the standard MDP, for which, when

β = 1, Assumption 4.2(a) is satisfied if e.g.,

sup
π
Eπ
x

[
∞∑
t=0

max{−c(xt, at), 0}

]
<∞

for each x ∈ S, see Theorem A.3 of [56] or Remark 3.1(b) of [51]. Here

Eπ
x is taken with respect to the strategic measure P π

x on the space of

trajectories (x0, a0, x1, a1, . . . ) constructed in the canonical way, and xt

and at are the controlled and controlling processes [47, 50]. The previous

inequality holds when e.g., the underlying model is absorbing and the

negative part of the cost satisfies certain growth conditions, see Chapter

7 of [2] and Section 8 of [51].

Assumption 4.2(b) is not needed if the multifunction A(·) is compact-

valued, see Remark 4.2 below.

Then the concerned optimal control problem reads

J∞(x, π)→ min
π
, (4.3)
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to which a policy π∗ is called optimal if J∞(x, π∗) = infπ J∞(x, π) for

each x ∈ S.

Assumption 4.3 For each m ≥ −1, there exists a nonnegative real-

valued upper semicontinuous function δm ∈ H such that for each x ∈
S, (a) δm(x) ↓ 0 as m → ∞; (b) Rx,a(δm(·)) ≤ Cmδm+1(x) for some

sequence of constants Cm ∈ [0,∞) satisfying supm β
m(
∏m−2

i=−1Ci) < ∞
and Cmδm+1(x)→ 0 as m→∞ for each x ∈ S; (c) 1

δm(x) ≥ sup
π=(πn)

βm+1Rx,π0(R·,π1 . . . R·,πm(c−(·, πm+1) + βR·,πm+1(c−(·, πm+2)

+ · · ·+ βR·,πn−1(c−(·, πn) + . . . ) . . . );

and (d) for each convergent sequence vn → v with −δ−1 ≤ vn ∈ H, it

holds that v ∈ H.

Here and below the convergence of a sequence of functions is understood

in the pointwise sense.

It now follows from (4.2) and (4.1) that for each −1 ≤ m ≤ n

Jn(x, π) ≥ c(x, π0) + βRx,π0(c(·, π1) + · · ·+ βR·,πm−1(c(·, πm)

−βR·,πm(c−(·, πm+1) + βR·,πm+1(c−(·, πm+2) + . . .

+βR·,πn−1(c−(·, πn)) . . . )

≥ Lπ0Lπ1 . . . Lπm(0)

−βm+1Rx,π0(R·,π1 . . . R·,πm(c−(·, πm+1)

+βR·,πm+1(c−(·, πm+2) + · · ·+ βR·,πn−1(c−(·, πn)) . . . )

= Jm(x, π)− βm+1Rx,π0(R·,π1 . . . R·,πm(c−(·, πm+1)

+βR·,πm+1(c−(·, πm+2) + . . .

+βR·,πn−1(c−(·, πn)) . . . ), (4.4)

1If m = −1 in the next inequality, the term on the right hand side reads
supπ=(πn){c

−(x, π0) + βRx,π0(c
−(·, π1) + · · ·+ βR·,πn−1(c

−(·, πn) + . . . ) . . . )}.
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where if m = n,

Rx,π0(R·,π1 . . . R·,πm(c−(·, πm+1)

+βR·,πm+1(c−(·, πm+2) + · · ·+ βR·,πn−1(c−(·, πn)) . . . ) := 0.

Assumption 4.4 For each sequence −δ−1 ≤ vn ∈ H such that vn ↑ v ∈
H as n ↑ ∞, Rx,a(vn(·)) ↑ Rx,a(v(·)) for each (x, a) ∈ K.

We now impose the last assumption for the optimality result below.

Assumption 4.5 (a) The cost function c is K-inf-compact, i.e., c is

lower semicontinuous on K, and for each S 3 xn → x ∈ S and an ∈
A(xn) such that c(xn, an) is bounded from the above with respect to n, the

sequence (an) has a limit point a ∈ A(x).

(b) For each lower semicontinuous function v ∈ H, Rx,a(v(·)) is lower

semicontinuous in (x, a) ∈ K, and there exists some lower semicontin-

uous function on S, say uv(x) > −∞ such that uv(x) ≤ Rx,a(v(·)) for

each x ∈ S and a ∈ A(x).

The concept of K-inf-compactness comes from [37]. Assumption 4.5 is an

extension of the (weak) continuity-compactness condition widely imposed

to obtain the optimality results for the standard MDPs. However, as

compared with the literature, we point out that with the help of the

recent extension of the Berge’s theorem in [37] quoted as Lemma A.3 in

the appendix, the standard requirement for the multi-function A(·) to

be compact-valued has been removed, and in fact, the condition on the

upper semicontinuity of A(·) has also been relaxed given that additional

properties are possessed by the cost function. We also refer the interested

reader to [66] for another extension of a related Berge’s theorem, which

the authors apply to showing the continuity of the value function and the

deterministic stationary optimal policy of a standard discounted MDP.
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4.3 Main statements and proofs

Let us define the operator T by

Tv(x) := inf
a∈A(x)

{c(x, a) + βRx,a(v(·))}

for each v ∈ H and x ∈ S, and consider the function Jn given by that for

each x ∈ S,

J−1(x) := 0, and

Jn(x) := inf
π
Jn(x, π)

for each n = 0, 1, 2, . . . .

Lemma 4.1 For each lower semicontinuous v ∈ H, T v(·) ∈ H is lower

semicontinuous on S, and there exists a measurable mapping f from S

to A such that f(x) ∈ A(x), and Tv(x) = Lfv(x) for each x ∈ S.

Proof. Let some lower semicontinuous function v ∈ H be fixed. Then

c(x, a)+βRx,a(v(·)) is lower semicontinuous in (x, a) ∈ K by Assumption

4.5. Now consider an arbitrarily fixed sequence S 3 xn → x ∈ S, and

an ∈ A(xn) such that (c(xn, an) + βRxn,an(v(·))) is bounded from the

above. Under Assumption 4.5(b), we have

inf
(y,z)∈{(xn,an),n=1,2,... }

βRy,z(v(·)) ≥ inf
y∈{xn,n=1,2,... }

⋃
{x}

uv(y) > −∞,

where the last inequality is due to the lower semicontinuity of the function

uv and the compactness of the set {xn, n = 1, 2, . . . }
⋃
{x}. It follows that

the sequence (c(xn, an)) is bounded from the above. This and the K-inf-

compactness of the function c asserts that the sequence (an) admits a

limit point a ∈ A(x). Hence, the function defined by c(x, a) +βRx,a(v(·))
is K-inf-compact. One can refer to Lemma A.3 for the statement. 2

Remark 4.1 In the proof of Lemma 4.1, we have established the fol-

lowing useful fact; for each lower semicontinuous v ∈ H, Lv(x, a) is

K-inf-compact (under Assumption 4.5).
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Lemma 4.2 For each n ≥ −1, Jn ∈ H is lower semicontinuous on S,

satisfying Jn+1(x) = TJn(x) for each x ∈ S. Furthermore, there exists

some measurable mapping fn+1 from S to A such that fn+1(x) ∈ A(x)

and Jn+1(x) = Lfn+1Jn(x) = Jn+1(x, π∗) with π∗ = (fn+1, fn, . . . , f0) for

each x ∈ S.

Proof. Since J−1(x, π) := 0 for each π, and the function c is K-inf-

compact, we see, according to Lemma A.3, the statement holds for the

case of n = −1. Suppose the statement is true for n ≤ k. Let us con-

sider the case of n = k + 1. By the inductive supposition, Jk is lower

semicontinuous and belongs to H, so that by Lemma 4.1, Jk+1 is lower

semicontinuous on S and belongs to H, and there exists a measurable

mapping fk+2 such that TJk+1(x) = Lfk+2
Jk+1(x). This, under Assump-

tion 4.1, implies that TJk+1 belongs to H and is lower semicontinuous

on S by Lemma 4.1. Consider, for the finite horizon problem, the policy

π∗ = (fk+2, . . . , f0) given by the measurable selectors taking the corre-

sponding infimums. To complete the inductive argument, it remains to

show that Jk+2(x) = TJk+1(x) = Jk+2(x, π∗). Indeed, for any policy π =

(πn), by definition, Jk+2(x, π) = Lπ0Lπ1 . . . Lπk+2
0 ≥ Lπ0Lfk+1

. . . Lf00 =

Lπ0Jk+1(x) ≥ TJk+1(x) = Lfk+2
Jk+1(x) = Jk+2(x, π∗). Since the policy π

is arbitrarily fixed, we conclude Jk+2(x) = TJk+1(x) = Jk+2(x, π∗). The

proof is completed by induction. 2

Lemma 4.3 limn→∞ Jn(x) =: J(x) exists, belongs to H, and is lower

semicontinuous. In addition, limn→∞ LJn(x, a) = LJ(x, a) exists and is

K-inf-compact in (x, a) ∈ K.

Proof. The first part of the statement follows from Assumption 4.3,

Lemma 4.2 and Lemma C.1, recalling (4.4), which leads to Jn ≥ Jm− δm
if m ≤ n. We prove the second part by adopting the reasoning in the

proof of Lemma 7.1.5 of [8]. Define gm(x) := infn≥m Jn(x) for each

x ∈ S. Note that gm ∈ H for each m. According to (4.4), Assumption

4.3 and the monotonicity of Rx,a(·), we obtain gm(x) ≤ Jm(x) ≤ gm(x) +

δm(x) and Lgm(x, a) ≤ LJm(x, a) ≤ Lgm(x, a) + Cmδm+1(x) for each

x ∈ S and a ∈ A(x). Thus, J(x) = limm→∞ Jm(x) = limm→∞ gm(x) and
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limm→∞ LJm(x, a) = limm→∞ Lgm(x, a) exist due to the fact that gm and

L are nondecreasing. On the other hand, under Assumptions 4.3 and

4.4, we have limm→∞ Lgm(x, a) = L(limm→∞ gm)(x, a) = LJ(x, a). Thus,

we see LJm(x, a) → LJ(x, a). That LJ is K-inf-compact is a result of

Remark 4.1 and the first part of this statement. 2

Now, we are in position to state our main optimality results in the

infinite horizon case.

Theorem 4.1 J∞(x) := infπ J∞(x, π) = limn→∞ Jn(x) belongs to H, is

lower semicontinuous on S, and is the minimal solution out of the class

of lower semicontinuous v ∈ H such that v ≥ −δ−1 to the optimality

equation

J(x) = inf
a∈A(x)

{c(x, a) + βRx,a(J(·))} ∀ x ∈ S.

Moreover, any (and there exists at least one) measurable mapping f ∗

attaining the infimum in the optimality equation defines a deterministic

stationary optimal policy to problem (4.3),

Proof. Let us define for each n = −1, 0, 1, 2, . . . ,∞, and x ∈ S

A∗n(x) := {a∗ ∈ A(x) : LJn(x, a∗) = TJn(x)}, (4.5)

and consider the topological upper limit of the sequence (A∗n(x)) defined

as

LsA∗n(x) := {a ∈ A(x) : ∃an ∈ A∗n(x), n = 1, 2, · · · : an → a}. (4.6)

Let us arbitrarily fix some x ∈ S. By Lemma 4.2, A∗n(x) 6= ∅ for each

n = −1, 0, . . . . So let us arbitrarily take an ∈ A∗n(x) for each n. Note

that, for each −1 ≤ m ≤ n,

LJm(x, an) ≤ TJn(x) + Cmδm+1(x), (4.7)

where we recall that δm+1 is nonnegative and real-valued under Assump-

tion 4.3. If Jn+1(x) = TJn(x) =∞ for some n, then by (4.4) and Assump-
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tion 4.3, Jn(x) = ∞ for each big enough n. This and Lemma A.3 imply

A∗n(x) = A(x) for all big enough n. Consequently, LsA∗n(x) = A(x) 6= ∅
as desired. Suppose now that Jk(x) < ∞ for all k. Then Assump-

tion 4.2(b) implies that J(x) < ∞ since J(x) ≤ J∞(x), which fol-

lows from that J(x) = limn→∞ Jn(x) ≤ limn→∞ Jn(x, π) = J∞(x, π) for

each π. Moreover, it follows from (4.7) that c(x, an) = LJ−1(x, an) ≤
sup{J0(x), J1(x), J2(x), . . . , J(x)} + C−1δ0(x) < ∞, where the last in-

equality is further by the compactness of the set {J0(x), J1(x), . . . , J(x)}
(recalling Lemma 4.3). Hence, the sequence (c(x, an)) is bounded from

the above. Since c is K-inf-compact, it follows from Lemma A.3 that the

sequence (an) admits a limit point, and thus LsA∗n(x) 6= ∅ as required.

Having established that LsA∗n(x) 6= ∅ and keeping in mind (4.7), the

proof of Theorem A.1.5 of [8] can be repeated in a word-by-word manner

(from the second half of the sixth line in that proof on up to its end) to

show that LsA∗n(x) ⊂ A∗(x) := {a∗ ∈ A(x) : LJ(x, a∗) = TJ(x)}, and

lim
n→∞

inf
a∈A(x)

LJn(x, a) = inf
a∈A(x)

lim
n→∞

LJn(x, a),

i.e.,

J(x) = TJ(x)

by Lemma 4.3. By Remark 4.1, there is some measurable mapping f ∗

from S to A such that f ∗(x) ∈ A(x) for each x ∈ S, satisfying TJ(x) =

Lf∗J(x) = Lmf∗J(x) for each x ∈ S and m ≥ 1. By (4.1) and Assumption

4.3, we see

J(x) = Lmf∗J(x) ≥ Lmf∗(0− δ−1)(x) ≥ Lmf∗0− βm(
m−2∏
i=−1

Ci)δm−1(x)

= Jm−1(x, f)− βm(
m−2∏
i=−1

Ci)δm−1(x). (4.8)

Passing to the limit as m→∞ on the both sides of the previous inequal-

ity leads to J(x) ≥ J∞(x, f ∗) ≥ J∞(x) under Assumptions 4.2 and 4.3.

On the other hand, it always holds that J(x) ≤ J∞(x) as explained earlier
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in this proof. Hence, J(x) = J∞(x) = J∞(x, f ∗), and the deterministic

stationary policy f ∗ is optimal.

For the minimality of J∞ as a solution to the optimality equation,

let us consider any solution to the optimality equation v ∈ H, which is

lower semicontinuous and satisfies v ≥ −δ−1. Then by Remark 4.1, there

exists a measurable mapping fv from S to A such that Tv = Lfvv(x).

The reasoning of (4.8) can be repeated with f being replaced with fv, J

being replaced with v for v(x) ≥ J∞(x) for each x ∈ S. 2

Remark 4.2 (Value iteration and policy iteration algorithms) (a)

According to Lemma 4.2, Jn+1(x) = TJn(x). Thus, the first line in The-

orem 4.1 gives the value iteration algorithm for problem (4.3).

(b) If the multifunction A(·) is compact-valued, the statement of Theo-

rem 4.1 remains true without requiring Assumption 4.2(b). Indeed, in

this case, LsA∗n(x) defined by (4.6), as a subset of A(x) is automatically

nonempty. In addition, for each n, let the measurable mapping f ∗n be

such that f ∗n(x) ∈ A∗n(x) for each x ∈ S, where A∗n(x) is defined by (4.5).

Then
⋃
n{f ∗n(x)} ⊂ A(x) is relatively compact. Thus, by Lemma 4 of [84],

there is a measurable mapping f ∗ satisfying f ∗(x) ∈ LsA∗n(x) ⊂ A∗∞(x)

for each x ∈ S, where LsA∗n(x) and A∗∞(x) are as in (4.5) and (4.6). In

fact, inspecting the proof of Theorem 4.1 reveals that this mapping f ∗,

regarded as a deterministic stationary policy, is indeed optimal, which

leads to a policy iteration algorithm for Problem (4.3).

4.4 Illustrative examples

We illustrate the obtained results with two examples, where for simplicity

we let A(x) be compact. Note that the MDP models in both examples

may not be covered by [90] since the cost functions in both examples can

be arbitrarily unbounded from the above and can take the value of +∞.

Example 4.1 (Standard MDP)

Let H be the space of all the extended real-valued measurable functions

on S. Suppose Rx,a(v(·)) =
∫
S
v(y)Q(dy|x, a) for each (x, a) ∈ K, where
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Q(dy|x, a) is a stochastic kernel from K to B(S). It is straightforward to

verify that Rx,a satisfies the conditions in Definition 4.1, and Problem

(4.3) is reduced to the total cost criterion for the standard MDP. Sup-

pose there exists some continuous (real-valued) function w(x) ≥ 1 on S

such that the K-inf-compact cost function satisfies c−(x, a) ≤ Cw(x)

for each x ∈ S, a ∈ A(x), and
∫
S
w(y)Q(dy|x, a) ≤ αw(x) for each

x ∈ S, a ∈ A(x) with α satisfying αβ < 1. Furthermore, for each

bounded continuous function f on S,
∫
S
f(y)Q(dy|x, a), is continuous

on K, and so is
∫
S
w(y)Q(dy|x, a). Then one can take H as the space of

extended real-valued measurable functions u on S satisfying u− ≤ Cuw

for some real constant Cu, δm(x) = C(αβ)m+1

1−αβ w(x) and Cm = 1
β

for each

m = −1, 0, 1, . . . , and uv(x) = − supy∈S
v−(y)
w(y)

αw(x) for each v ∈ H. Then

all the optimality results obtained in this chapter apply.

By the way, the condition of
∫
S
w(y)Q(dy|x, a) ≤ αw(x) coincides

with Assumption 8.3.2(b) of [50], and examples of MDPs satisfying this

condition can be found in Section 8.6 in [50]. In general, this condition

can be satisfied by both transient and recurrent (cf. Theorem 7.3.10

[50]) Markov chains (induced by stationary policies). On the other hand,

it cannot be satisfied if α < 1, unless Q(dy|x, a) is substochastic [50].

Assume this is the case. Then one can complement it by adjoining an

isolated cemetery point x∞ to the state space. Under each stationary

policy, this results in a (time-homogeneous) Markov chain in the state

space S
⋃
{x∞}. Any subset Γ ∈ B(S) such that supx∈Γw(x) < ∞ is

transient for this Markov chain, see Remark 8.7 of [51].

Example 4.2 (MDP with iterated conditional value-at-risk)

For the sake of completeness, we include the definitions of conditional

value-at-risk and value-at-risk of a random loss or cost based on the

tutorial [83]; see also [10, 71, 77, 78].

In line with [83], let X be a random variable, representing the loss

with the distribution function given by FX(x) = P (X ≤ x). Let z ∈ (0, 1)

be the fixed confidence level. The value-at-risk of X is defined by the
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left continuous inverse of FX

V aRz(X) := min{x : FX(x) ≥ z}.

It is known that V aRz(X) is not convex in X (and thus not a coherent

risk measure), which makes it mathematically less tractable. In com-

parison, the conditional value-at-risk CV aRz(X), introduced in [77], is

a coherent risk measure, see also [71, 78], and a single stage problem of

optimizing a portfolio of financial instruments is solved with the objec-

tive of minimizing the conditional value-at-risk in [77]. In greater detail,

the conditional value-at-risk of X is defined as the value of the problem

[71]

CV aRz(X) := inf
u∈R

{
u+

1

1− z
E [max{X − u, 0}]

}
.

Under some conditions on the distribution function FX , it holds that

CV aRz(X) = E [X|X ≥ V aRz(X)] ,

see [71, 78] for more properties of CV aRz(X). Intuitively, CV aRz(X) ≤
L ensures that the average of (1− z)% highest losses does not exceed L

so that the conditional value-at-risk measures the outcomes that hurt the

most, see p.283 of [83], where the comparisons between the concepts of

value-at-risk and conditional value-at-risk from the practitioner’s view-

point can be also found.

Let H be the space of all the extended real-valued measurable func-

tions. Suppose Q(dy|x, a) is a given stochastic kernel from K to B(S).

Then the conditional value-at-risk at level z ∈ (0, 1) for each v ∈ H is

defined as

CV aRx,a(v) := Rx,a(v(·))

:= inf
u∈R

{
u+

1

1− z

∫
S

max{v(y)− u, 0}Q(dy|x, a)

}
.(4.9)
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The reasoning in the proof of parts (i, ii, iv) of Proposition 2 in [71]

can be easily adjusted to show that CV aRx,a satisfies the conditions in

Definition 4.1. Indeed, it directly follows from the definitions of CV aRx,a

that parts (a,b,d) of Definition 4.1 are satisfied. For completeness, we

verify part (c) of Definition 4.1 as follows: for each v1, v2 ∈ H,

CV aRx,a(v1 + v2)

= inf
u∈R

{
u+

1

1− z

∫
S

max{v1(y) + v2(y)− u, 0}Q(dy|x, a)

}
= inf

u1,u2∈R

{
u1 + u2 +

1

1− z

∫
S

max{v1(y) + v2(y)− u1 − u2, 0}Q(dy|x, a)

}
≤ u1 + u2 +

1

1− z

∫
S

max{v1(y) + v2(y)− u1 − u2, 0}Q(dy|x, a)

= u1 + u2 +
1

1− z

∫
S

max{(v1(y)− u1) + (v2(y)− u2), 0}Q(dy|x, a)

≤ u1 + u2 +
1

1− z

{∫
S

max{v1(y)− u1, 0}Q(dy|x, a)

+

∫
S

max{v2(y)− u2, 0}Q(dy|x, a)

}
,

where u1, u2 ∈ R are arbitrary. Taking the infimum with respect to

u1, u2 ∈ R on the both sides of the above and using Lemma 3.2 of [56]

show that part (c) of Definition 4.1 is satisfied.

Suppose the cost function c is nonnegative and K-inf-compact. Then

one can let H be the space of all extended real-valued nonnegative mea-

surable functions bounded from below by 0, δm(x) = 0 for each x ∈ S,

and Cm = 1 for each m = −1, 0, 1, . . . , uv(x) = 0 for each x ∈ S and

v ∈ H. Furthermore, we assume that the transition probability Q(dy|x, a)

is continuous in the sense that for each ΓS ∈ B(S), Q(ΓS|x, a) is contin-

uous in (x, a) ∈ K.
For this example, all the aforementioned optimality results in this

chapter are applicable. Now we give the detailed verifications for the less

transparent Assumption 4.4 and Assumption 4.5(b) as follows.
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For Assumption 4.4, note that for each v ∈ H, one can write (4.9) as

CV aRx,a(v) = inf
u∈[0,∞]

{
u+

1

1− z

∫
S

max{v(y)− u, 0}Q(dy|x, a)

}
:= inf

u∈[0,∞]
f(u, x, a),

where we put f(∞, x, a) :=∞. Keeping in mind the convention of ∞−
∞ := ∞ and using the Fatou’s lemma [81], one can see that for each

x ∈ S, a ∈ A(x) and v ∈ H, f(u, x, a) is lower semicontinuous in u with

u from the compactified set [0,∞]. Thus, for each vn ∈ H that increases

(pointwise) to v ∈ H, one can refer to Proposition 10.1 of [85] for that

lim
n→∞

CV aRx,a(vn)

= inf
u∈[0,∞]

lim
n→∞

{
u+

1

1− z

∫
S

max{vn(y)− u, 0}Q(dy|x, a)

}
= inf

u∈[0,∞)
lim
n→∞

{
u+

1

1− z

∫
S

max{vn(y)− u, 0}Q(dy|x, a)

}
= inf

u∈[0,∞)

{
u+

1

1− z

∫
S

max{v(y)− u, 0}Q(dy|x, a)

}
= CV aRx,a(v),

where the second to the last equality is by the monotone convergence

theorem. Thus, Assumption 4.4 is satisfied.

For Assumption 4.5(b), by using the generalized Fatou’s lemma (see

[81] and Theorem 4.1 of [38]), which is valid because of the continuity

of the transition probability Q(dy|x, a), we see that f(u, x, a) is lower

semicontinuous on [0,∞]×K for each lower semicontinuous v ∈ H, which

by Lemma A.3 leads to the lower semicontinuity of CV aRx,a(v) on K (the

conditions of Lemma A.3 are satisfied because of the compactness of the

constant multifunction u → [0,∞]). Thus, Assumption 4.5(b) is also

verified.

Remark 4.3 We point out that (4.2) and (4.9) define the iterated con-

ditional value-at-risk, which was introduced in [45] under the name of

iterated conditional tail expectation, where its application to an equity-

linked insurance contract with maturity and death benefit guarantees is
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demonstrated, see also Section 3.3 of [70] for further arguments for the

use of the iterated conditional value-at-risk as the performance measure.

We underline that Example 4.2, which allows the cost to be arbitrar-

ily unbounded from above, cannot be covered by [90], which imposes the

condition that the growth of the cost must be bounded by some weight

function of Lyapunov type, and thus, in particular, does not cover the

+∞-valued utility (or say cost) function with wide economic applications

as considered in Example 2 of [62] and Example 4 of [63]. In this connec-

tion, Example 4.2 illustrates the economic applications of the optimality

results of the present chapter that are not covered by [90].
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Chapter 5

Optimality of mixing policies

for Constrained MDP with

average criterion

5.1 Introduction

This chapter is organized as follows. Section 5.2 is about the descrip-

tion of the MDP model and problem formulation. We present both the

maximization and minimization result for the unconstrained model in

Section 5.3; We introduce the notion of stable policies and stable mea-

sures, show the compactness and closedness of the space of performance

vectors, prove the sufficiency of stable policies for the constrained prob-

lem; Section 5.5 is about the characterization of extreme points in the

space of performance vectors within the class of deterministic stationary

policies; Section 5.6 is devoted to the optimality results and the existence

of a mixing optimal policy to the constrained problem.
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5.2 Problem formulation and assumptions

The constrained MDP is characterized similarly to that in Chapter 2, so

we simplify the notations and present only basic components

{S,A, (A(x), x ∈ S), Q(dy|x, a), c0(x, a), (ci(x, a), di)i=1,...,M , γ(dy)}.

In this chapter, we are interested in another popular criterion, with

the objective of minimizing long-run expected average cost. In order to

have our problem well defined, the following assumption is introduced at

the first place,

Assumption 5.1 There exist a continuous function w(·) ≥ 1, a bounded

measurable (possible constant) function b(·) ≥ 0, and nonnegative con-

stants ĉ and β, with β < 1, such that for every x ∈ S:

(a) supa∈A(x) |ci(x, a)| ≤ ĉw(x),∀x ∈ S, i = 0, 1, . . . ,M ;

(b)
∫
S
w2(y)Q(dy|x, a) is continuous in a ∈ A(x),∀x ∈ S;

(c) supa∈A(x)

∫
S
w2(y)Q(dy|x, a) ≤ βw2(x) + b(x),∀x ∈ S;

(d)
∫
S
w2(x)γ(dx) < +∞, for the initial distribution γ(·).

Assumption 5.1 is of conventional Lyapunov type, where w2 is viewed

as the weight function in Assumption 5.1(b,c,d) and w is in use in As-

sumption 5.1(a). Here and below, Bw2(S) denotes the Banach Space of

all measurable functions on S bounded in the w2-norm, and Cw2(S) de-

notes the subspace of Bw2(S) consisting of all the continuous functions.

Accordingly, denote byMw2(S) the subspace of finite measures inM(S)

satisfying ∫
S

w2(y)M(dy) <∞, ∀M ∈M(S).

All the above notations follows the definition presented in Chapter 1.

Assumption 5.1(a,c,d) ensures the following optimization problem of

our interest to be well defined, in the sense that each of long-run expected
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average costs is finite:

V0(π, γ) := lim
n→∞

1

n
Eπ
γ [
n−1∑
t=0

c0(xt, at)] −→ min
π∈UH

(5.1)

s.t.

Vi(π, γ) := lim
n→∞

1

n
Eπ
γ [
n−1∑
t=0

ci(xt, at)] ≤ di i = 1, 2, . . . ,M

We denote by U feasible := {π ∈ UH : Vi(π, γ) ≤ di, i = 1, . . . ,M} the set

of feasible policies for Problem (5.1).

Remark 5.1 It is a standing assumption in this chapter that U feasible 6=
∅ in order to avoid the concerned problem being trivial.

Recall the definition K := {(x, a) ∈ S × A : x ∈ S, a ∈ A(x)}, which

is the graph of the set-valued mapping A(·) on S.

Assumption 5.2 (a) ci(x, a) is continuous in (x, a) ∈ K, ∀ i = 0, 1, . . . ,M ;

(b) There is a nonnegative moment (or strictly unbounded function) v(x, a)

such that |v(x, a)| ≤ v̂w(x) for some constant v̂ > 0 in x ∈ S, a ∈ A(x);

(c) A(x) is compact-valued, ∀x ∈ S;

(d)
∫
S
u(y)Q(dy|x, a) is continuous in a ∈ A(x) ,∀ x ∈ S, u ∈ B(S);

(e)
∫
S
u(y)Q(dy|x, a) is continuous in (x, a) ∈ K, ∀ u ∈ C(S), where

C(S) denotes the space of continuous bounded real-valued functions on

S.

Assumption 5.2(a,c,d,e) constitutes a version of continuity-compactness

conditions, in various forms, commonly imposed in the study of MDPs.

Conditions of this type ensure the measurability of optimal value func-

tions as well as the existence of at least one optimal deterministic sta-

tionary policy (of course, a measurable selector). The latter objective is

achieved by means of measurable selection theorem or Berge’s minimum

theorem; see Lemma A.2, or [59, Prop.3.3,p.83] and [11, Thm.2,p.116].

Indeed, the present version is a mixture of both weak (W) and strong (S)

continuity-compactness conditions based on the definitions from Schäl

[85]. Although only minimization problem is under consideration in the
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present chapter, we assume cost functions to be jointly continuous in

both arguments. The reason for this setup will be revealed latter.

For notational convenience, we introduce t-step transition kernel

Qt
f (ΓS|x) for each ΓS ∈ B(S) associated with a deterministic policy

f ∈ UDS for future reference.

Qt
f (ΓS|x) := Qt(ΓS|x, f) = P f

x (xt ∈ ΓS) (5.2)

For t = 0, (5.2) is reduced to

Q0
f (ΓS|x) = δx(ΓS) = 1{x∈ΓS} (5.3)

Observe that Assumption 5.1(c) implies∫
S

w2(y)Qf (dy|x) ≤ βw2(x) + b(x) ∀ f ∈ UDS, x ∈ S. (5.4)

Thus, multiplying by w2(x)
−1

one can see that the family of stochastic

kernels {Qf , f ∈ F} possess a uniformly bounded w2-norm. Explicitly,

the w2-norm of Qf , i.e.,

‖Qf‖w2 := sup
x∈S

w2(x)
−1
∫
S

w2(y)Qf (dy|x) (5.5)

satisfies

‖Qf‖w2 ≤ β + ‖b‖w2 , (5.6)

alternatively,

‖Qf‖w2 ≤ β + ‖b‖, (5.7)

where ‖b‖ := supx∈S |b(x)| is the sup-norm of b(·) as in Assumption 5.1

b(·) is assumed to be a bounded function. Likewise, according to the

material presented in Chapter 1.3.1, all the aforementioned properties

remain satisfied when Qf (ΓS|x) is replaced by Qϕ(ΓS|x) with the follow-
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ing definition

Qt
ϕ(ΓS|x) := Qt(ΓS|x, ϕ) =

∫
A

Qt(ΓS|x, a)ϕ(da|x), (5.8)

where ϕ ∈ US is an arbitrary randomized stationary policy.

Definition 5.1 A probability measure µ(dx) on S is called an invariant

probability measure (i.p.m.) for a Markov chain Q(dy|x), if for each

ΓS ∈ B(S)

µ(ΓS) =

∫
S

Q(ΓS|x)µ(dx).

We introduce our next general assumption immediately followed by

its consequence.

Assumption 5.3 For any deterministic stationary policy f ∈ UDS, the

Markov Chain Qf (dy|x) is w2-geometrically ergodic, i.e., there exists a

unique i.p.m. µf on S such that ‖Qt
f −µf‖w2 ≤ Rρt, ∀t = 0, 1, . . ., where

R ≥ 0 and 0 < ρ < 1 are constants independent of f .

In particular, Assumption 5.3 implies that Qf (dy|x) is positive Harris

recurrent, and µf is the corresponding unique i.p.m. which belongs to the

space Mw2(S). To see the latter fact, we have for each t > 0,∫
S

w2(y)µf (dy) ≤
∫
S

w2(y)|µf (dy)−Qt(dy|x)|+
∫
S

w2(y)Qt(dy|x)

≤ Rρtw2(x) + βtw2(x) +
1− βt

1− β
‖b‖.

Letting t→∞ leads to

‖µf‖w2 :=

∫
S

w2(y)µf (dy) ≤ ‖b‖
1− β

<∞. (5.9)

Note that the above inequality holds uniformly for all f ∈ UDS. Here,

we emphasize that in general (5.9) need not hold for all stable policies.
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5.3 Optimality of unconstrained models

This section concerns the average optimality problems for unconstrained

model associated with any ci(x, a) when i = 0, 1, . . . ,M . We show the

existence of optimal deterministic stationary policies for both maximiza-

tion and minimization problems by referring to [44, Thm.4.1]. This is

essential for the derivation of further results in the remaining sections.

We remind the readers that the subscript i of c(x, a) is omitted in this

section, as all the cost functions ci(x, a) ∈ Cw(K), i = 0, 1, . . . ,M , can

be equally treated in view of Assumption 5.2.

Formally, for each x ∈ S the unconstrained problem under our con-

sideration in this section is defined as

V (π, x) := lim
n→∞

1

n
Eπ
x

[
n−1∑
t=0

c(xt, at)

]
→ min

π∈UH
(5.10)

V (π, x) = lim
n→∞

1

n
Eπ
x

[
n−1∑
t=0

c(xt, at)

]
→ max

π∈UH
(5.11)

Lemma 5.1 For the unconstrained problem associated with any cost func-

tion c(x, a), under Assumption 5.1, 5.2 and 5.3, there exist deterministic

stationary policies f ∗, g∗ ∈ UDS such that V (f ∗, x) = infπ V (π, x) =: ρ∗,

and V (g∗, x) = supπ V (π, x) =: ρ∗ for each x ∈ S respectively. Take the

minimization problem as an example, there exists a triplet (ρ∗, h0, f
∗)

which satisfies the average-cost optimal inequality (ACOI), namely,

ρ∗ + h0(x) ≥ min
a∈A(x)

{
c(x, a) +

∫
S

h0(y)Q(dy|x, a)

}
(5.12)

= c(x, f ∗) +

∫
S

h0(y)Q(dy|x, f ∗) ∀ x ∈ S.

Moreover, ρ∗ = infπ V (π, x) for all x ∈ S, and indeed any measurable

selector f ∈ F realizing the minimum of (5.12) defines an optimal deter-

ministic stationary policy for Problem (5.10).

Proof. We implement the vanishing discount factor approach, which is
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commonly employed in dealing with average optimality problems. Firstly,

we show that for any discount factor 0 < α < 1 and initial state x ∈ S,

the value function for the discounted problem

Eπ
x

[
∞∑
t=0

αtc(xt, at)

]
→ min

π∈UH
(5.13)

is indeed uniformly bounded over all policies.

For every policy π ∈ UH and initial state x ∈ S, we have

Jα(π, x) := Eπ
x

[
∞∑
t=0

αtc(xt, at)

]

≤ Eπ
x

[
∞∑
t=0

αtĉw2(xt)

]

< ĉ
∞∑
t=0

αt
[
1 +

‖b‖
1− β

]
w2(x)

=
b̂

1− α
w2(x) < +∞. (5.14)

where b̂ := ĉ
[
1 + ‖b‖

1−β

]
.

The second to the last line holds by the following inequality which

is obtained by successive iteration of Assumption 5.1(c) and will be fre-

quently referred to in the sequel,

Eπ
x [w2(xt)] ≤ βtw2(x) +

1− βt

1− β
‖b‖ <

[
1 +

‖b‖
1− β

]
w2(x) (5.15)

Let z ∈ S be arbitrarily fixed. For every 0 < α < 1 we consider the

relative difference

hα(x) := J∗α(x)− J∗α(z)

where J∗α(x) := infπ∈UH Jα(π, x) denotes the corresponding optimal value

function for each x ∈ S.

It is well known that the class in search for an optimal policy for

Problem (5.13) associated with Lyapunov-like conditions, e.g., Assump-

tion 5.1, can be reduced to the subclass of deterministic stationary poli-

cies (see [50, Thm.8.3.6]). Therefore, we need only consider UDS in the
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following discussion.

For each deterministic stationary policy f ∈ UDS and x ∈ S,

∣∣Ef
x [c(xt, f)]− Ef

z [c(xt, f)]
∣∣

≤
∣∣∣∣Ef

x [c(xt, f)]−
∫
S

c(y, f)µf (dy)

∣∣∣∣+

∣∣∣∣Ef
z [c(xt, f)]−

∫
S

c(y, f)µf (dy)

∣∣∣∣
≤ ĉ

(∣∣∣∣Ef
x [w(xt)]−

∫
S

w(y)µf (dy)

∣∣∣∣+

∣∣∣∣Ef
z [w(xt)]−

∫
S

w(y)µf (dy)

∣∣∣∣)
≤ ĉ

(∫
S

w2(y)
∣∣Qt

f (dy|x)− µf (dy)
∣∣+

∫
S

w2(y)
∣∣Qt

f (dy|z)− µf (dy)
∣∣)

≤ ĉRρt[1 + w2(z)]w2(x), (5.16)

thus,

|Jα(f∞, x)− Jα(f∞, z)| ≤
∞∑
t=0

∣∣Ef
x [c(xt, at)]− Ef

z [c(xt, at)]
∣∣

≤ ĉR(1− ρ)−1[1 + w2(z)]w2(x).

Furthermore,

|hα(x)| ≤ sup
UDS
|Jα(f∞, x)− Jα(f∞, z)|.

As a result, for each 0 < α < 1, |hα(x)| ≤ h0(x), where

ĉR(1− ρ)−1[1 + w2(z)]w2(x) =: h0(x) ∈ Bw2(S).

Note that h0(x) is independent of the discount factor α.

In view of [44, Thm.4.1(b)], all the conditions are now verified, which

validates the stated result for minimization problem as required.

As far as the corresponding maximization problem is concerned, we

observe that it can be easily treated as a minimization problem with re-

spect to −c(x, a). The same reasoning is applicable and similar results

should follow. In a nutshell, there exists at least one deterministic opti-

mal policy for either the maximization or minimization average problem

in the unconstrained case for any cost function c(·, ·). 2

Remark 5.2 Note that each of cost functions ci(x, a) belongs to Cw(K),
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which is in turn an element of Cw2(K) by the fact that Cw(K) ⊆ Cw2(K)

due to w(·) ≥ 1. Indeed, the weight function in the context of this chapter

is w2 compared with that in [44] or other literature.

5.4 Stable policies, stable measures and the

space of performance vectors

We draw our attention back to the the constrained Problem (5.1). The

main objective of this section is to show that, with the help of Assumption

5.2, the search for optimal policies for the concerned problem can be

reduced to the so-called stable policies. We further introduce the space

of stable measures and the corresponding space of performance vectors.

In addition, we justify the compactness and convexity of the space of

performance vectors.

Accordingly, we define the notion of stable measures for future refer-

ence,

Definition 5.2 A probability measure µ(dx × da) on K is called stable

if

(a) ∫
K
w(x)µ(dx× da) <∞;

(b) for each measurable set ΓS ∈ B(S),

µ(ΓS × A) =

∫
K
Q(ΓS|x, a)µ(dx× da).

Given a probability measure µ(dx× da) concentrated on K, one can

represent it in terms of its projection (or, marginal) µ(dx × A) as the

following form

µ(dx× da) = µ(dx× A)ϕµ(da|x),

where ϕµ is a stochastic kernel being unique (in the sense of µ(dx × A)

almost everywhere) which induces a randomized stationary policy. With
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this fact in mind, Definition 5.2(b) can be viewed as

µ(ΓS×A) =

∫
K
Q(ΓS|x, a)µ(dx×da)ϕµ(da|x) =

∫
S

Q(ΓS|x, ϕµ)µ(dx×A),

meaning µ(dx×A) is an i.p.m. for the Markov chain Qϕµ(dy|x) in consis-

tency with Definition 5.1. We called such a randomized stationary policy

a stable policy. The space of stable measures is denoted by D ⊆ Pw(S).

In view of Assumption 5.3, each deterministic stationary policy f ∈ UDS

is a stable policy with µf being its unique i.p.m..

Assumption 5.4 For any stable measure µ(dx × da) and the predeter-

mined initial distribution γ(dx), we have the following relation

lim
n→∞

1

n
Eϕµ

γ

[
n−1∑
t=0

ci(xt, at)

]
=

∫
S

ci(x, ϕ
µ)µ(dx×A) =

∫
K
ci(x, a)µ(dx×da)

for every Markov chain Qϕµ(dy|x) with respect to which µ(dx×A) is its

i.p.m., where µ(dx× da) = ϕµ(da|x)µ(dx× A), and i = 0, 1, . . . ,M.

Assumption 5.4 is similar to the traditional unichained assumption,

which asserts that the controlled process is positive Harris recurrent un-

der each stationary policy. In the present setting, Assumption 5.4 is

satisfied if the unichained assumption holds for the class of stable poli-

cies. In particular, in the finite-state-finite-action case, Assumption 5.4

is automatically justified. In the denumerable-state-compact-action case,

the conditions under which the above representation holds under the

unichained assumption are provided in [3] which reveals the intrinsic ne-

cessity of uniform integrability of expected occupation measures (see the

definition below in (5.18)) or one-sided boundedness of cost functions.

More discussions will be given in the next chapter in the denumerable

case, which essentially extends the results obtained in [3].

Lemma 5.2 Under Assumptions 5.1, 5.2 and 5.4, for each π ∈ U feasible

for Problem (5.1), there exists a stable policy ϕ ∈ U stable that performs

as well as π.
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Proof. Note that from Remark 5.1, we can arbitrarily select and fix some

policy π ∈ U feasible with V0(π, γ) < ∞. Indeed, V0(π, γ) < ∞ for every

π ∈ UH . From [50, Lem.10.4.1] and Assumption 5.1(c), we have

Eπ
γ [c0(xt, at)] ≤ Eπ

γ [ĉw2(xt)]

≤ ĉ

∫
S

Eπ
y [w2(xt)]γ(dy) ≤ b̂

∫
S

w2(y)γ(dy) <∞,

where b̂ comes from (5.14). Then,

V0(π, γ) = lim
n→∞

1

n
Eπ
γ

[
n−1∑
t=0

c0(xt, at)

]
≤ b̂

∫
S

w2(y)γ(dy) <∞ (5.17)

For notational ease, we denote by µπγ,n the n-stage occupation measure

associated with (π, γ), that is,

µπγ,n(Γ) :=
1

n

n−1∑
t=0

P π
γ ((xt, at) ∈ Γ) ∀ Γ ∈ B(S × A). (5.18)

Accordingly, Problem (5.1) is rewritten in the following form

V0(π, γ) := lim
n→∞

∫
K
c0(x, a)µπγ,n(dx× da)→ min

π

s.t.

Vi(π, γ) := lim
n→∞

∫
K
ci(x, a)µπγ,n(dx× da) ≤ di i = 1, 2, . . . ,M

By replacing c0(xt, at) with v(xt, at)w(xt) in (5.17), for any given ε >

0, there exists a positive integer N(ε) such that,

sup
n≥N(ε)

∫
v(x, a)w(x)µπγ,n(dx× da) (5.19)

≤ v̂‖b‖
1− β

∫
S

w2(y)γ(dy) + ε <∞. (5.20)

For each µπγ,n, a new measure is defined by

µ̃πγ,n(dx× da) := µπγ,n(dx× da)w(x) (5.21)
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Note that µπγ,n ∈ Pw2(S × A) ⊆ Pw(S × A) because

∫
S×A

w2(x)µπγ,n(dx× da) =
1

n
Eπ
γ

[
n−1∑
t=0

w2(xt)

]

≤
(

1 +
‖b‖

1− β

)∫
S

w2(x)γ(dx)

from which it is observed that µ̃πγ,n ∈Mw(S ×A) ⊆M(S ×A). By [47,

Prop.E.8] and Prohorov’s Theorem (see Theorem B.1), there exists a sub-

sequence (µ̃πγ,nk) such that µ̃πγ,nk → µ̃∗ for some µ̃∗ ∈M(S×A). It follows

from (5.21) and Remark 1.2 that there is a corresponding subsequence

(µπγ,nk) such that µπγ,nk
w→ µ∗. Since c0 is w-bounded and continuous on

K, By Corollary A.2(b) we have∫
c0(x, a)µ∗(dx× da) = lim

k→∞

∫
c0(x, a)µπγ,nk(dx× da)

≤ lim
n→∞

∫
c0(x, a)µπγ,n(dx× da)

= V0(π, γ) <∞. (5.22)

Next we show that µ∗ is indeed a stable measure. Obviously, Defini-

tion 5.2(a) is satisfied, so we focus on part (b) of it. As usual, µ∗(dx ×
da) = µ∗(dx × A)ϕ∗(da|x). For any u ∈ Bw(S), define the function

Tu ∈ Bw(K) as

Tu(x, a) :=

∫
S

u(y)Q(dy|x, a)− u(x).

Similarly to (2.15), a version of Dynkin’s formula in the discrete-time

case with respect to the prefixed π = (πt)t=0,1,2,... takes the following

form

Eπ
γ [u(xn)] =

∫
S

u(x)γ(dx)

+Eπ
γ

[
n∑
t=1

{∫
K
u(y)Q(dy|xt−1, a)πt−1(da|ht−1)− u(xt−1)

}]

=

∫
S

u(x)γ(dx) + Eπ
γ

[
n−1∑
t=0

Tu(xt, at)

]
(5.23)
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Multiplying 1
n

on both sides of (5.23), rearranging the terms yields

1

n

{
Eπ
γ [u(xn)]−

∫
S

u(x)γ(dx)

}
(5.24)

=
1

n
Eπ
γ

[
n−1∑
t=0

Tu(xt, at)

]
=

∫
K
Tu(x, a)µπγ,n(dx× da) (5.25)

Replacing n with nk when we derive µ∗, and letting k → ∞ in (5.24)

leads to ∫
K
Tu(x, a)µ∗(dx× da) = 0,

by Assumption 5.1(d) and (5.15), which justifies part (b) of Definition

5.2.

According to Assumption 5.4, we have

lim
n→∞

∫
K
c0(x, a)µϕ

∗

γ,n(dx× da) =

∫
K
c0(x, a)µ∗(dx× da)

=

∫
S

c0(x, ϕ∗)µ∗(dx× A)

which together with (5.22) shows that the performance of the stable

policy ϕ∗ is at least as good as that of the prefixed policy π.

Meanwhile, all the constraints remain to be satisfied with the newly

obtained stable policy ϕ∗ by similar reasoning in the treatment of c0.

Explicitly,

lim
n→∞

∫
K
ci(x, a)µϕ

∗

γ,n(dx× da) =

∫
K
ci(x, a)µ∗(dx× da)

= lim
k→∞

∫
K
ci(x, a)µϕ

∗

γ,nk
(dx× da)

≤ lim
n→∞

∫
K
ci(x, a)µπγ,n(dx× da)

= Vi(π, γ) ≤ di

∀ i = 1, 2, . . . ,M , as required. 2

The proof appears similar to that of [53, Lem.3.5], in which the con-

vergence is in the usual weak topology, whereas we are dealing with
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w-weak topology here. The main consequence of Lemma 5.2 is that the

space of stable policies is sufficient to solve Problem (5.1). Here and

below, we shall consider only the space of stable policies, denoted by

U stable, whose definition is in consistency with the paragraph following

Definition 5.2.

Another consequence of Lemma 5.2 is that Problem (5.1) can be

rewritten in the form of a well-defined linear program as follows,∫
K
c0(x, a)µ(dx× da)→ min

µ
(5.26)

s.t. ∫
K
cn(x, a)µ(dx× da) ≤ dn, n = 1, 2, . . . ,M,

µ ∈ D.

From now on, we shall focus on Problem (5.26) instead of Problem (5.1)

under Assumption 5.1, 5.2 and 5.4.

The space of performance vectors is introduced as follows.

Definition 5.3 The space of performance vectors corresponding to a spe-

cific class of policies U is a subset of RM+1, defined as

V (U, γ) := {(V0(π, γ), V1(π, γ), . . . , VM(π, γ)) ;π ∈ U} .

Define the linear mapping Z : D → RM+1 by

Z(µ) :=

(∫
c0(x, a)µ(dx× da),

∫
c1(x, a)µ(dx× da),

. . . ,

∫
cM(x, a)µ(dx× da)

)
, (5.27)

where µ ∈ D.

It follows from Assumption 5.4 that the space of performance vectors

on the class of stable policies can be viewed as the complete image of Z
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on the space of stable measures D, which takes the following form,

V (U stable, γ) =

{(∫
K
c0(x, a)µ(dx× da), . . . ,∫

K
cM(x, a)µ(dx× da)

)
;µ ∈ D

}
.

V (U stable, γ) is the main object and also the key tool that we are going

to investigate in the remainder of this chapter. Some of its topological

properties are revealed and proved in the following lemma.

Lemma 5.3 Under Assumption 5.1, 5.2 and 5.4, the space of perfor-

mance vectors V (U stable, γ) is compact and convex.

Proof. We firstly show that the space of stable measures D is compact

in Pw(K). We investigate the following functional,∫
K
v(x, a)w(x)µϕ(dx× da) =

∫
S

v(x, ϕ)w(x)µϕ(dx× A)

≤ v̂

∫
w2(x)µϕ(dx× A) <∞

which is justified by (5.19) as

lim
n→∞

∫
K
v(x, a)w(x)µπγ,n(dx× da) <∞

for every π ∈ UH .

The set D̃, as the image of D via (1.5), is tight by Assumption 5.2(b)

and [47, Prop.E.8] again, and is thus precompact by Prohorov’s Theorem.

The remainder is to show the closedness of D in Pw(K). Let (µn) ∈ D
be a sequence of stable measures that converges to µ ∈ Pw(K) in w-weak

topology. First, It is trivial that the corresponding family of projections
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µn(dx× A)
w→ µ(dx× A). Let g ∈ Cw(S), we have∫

S

g(y)µ(dy × A) = lim
n→∞

∫
S

g(y)µn(dy × A)

= lim
n→∞

∫
S

g(y)

∫
K
Q(dy|x, a)µn(dx× da)

= lim
n→∞

∫
K

(∫
S

g(y)Q(dy|x, a)

)
µn(dx× da)

=

∫
K

(∫
S

g(y)Q(dy|x, a)

)
µ(dx× da)

The second to the last equality follows from Assumption 5.1(b), 5.2(e)

and Lemma A.1, which asserts that
∫
S
g(y)Q(dy|x, a) ∈ Cw(K) . By [12,

Prop.7.18] and the fact that w-weak topology is at least as strong as the

usual weak topology. Therefore, D is w-weakly compact in Pw(K).

It is obvious that the linear mapping Z coming from (5.27) is (w-

weakly) continuous on D (see Assumption 5.1 and 5.2(a)), which in turn

demonstrates the compactness of V (Ustable, γ).

The convexity is clear from the definition of stable measures and the

linearity of Z. 2

5.5 Extreme points of the space of perfor-

mance vectors

We have already shown the compactness and convexity of the space of

performance vectors V (U stable, γ), which further ensures the existence of

its extreme points. The main objective of this section is their character-

ization. To this end, we introduce one last assumption, and derive the

corresponding result which is important in its own right, and meanwhile

critical to the existence of optimal mixing policies shown in the next

section.

Definition 5.4 We call a Markov chain Q(dy|x) λ-irreducible if there

exists a measure λ on B(S) such that, for ΓS ∈ B(S), whenever λ(ΓS) >

0, we have

P (τΓS <∞|x0 = x) = 1 ∀ x ∈ ΓS,
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where τΓS := min{n ≥ 1 : xn ∈ ΓS}.

Assumption 5.5 There exists a σ-finite measure λ on B(S) with respect

to which Qf is λ-irreducible for each deterministic stationary policy f ∈
UDS. In addition, λ is non-trivial in the sense of λ(S) > 0.

Assumption 5.5 is called the uniform λ-irreducibility condition, which

is commonly imposed to establish the average cost optimality equation

(ACOE). We quote the above result coming from [50, Thm.10.3.6] in the

following lemma. Note that subscript i of ci(x, a) is again omitted in line

with what is presented in Lemma 5.1.

Lemma 5.4 Under Assumption 5.1, 5.2, 5.3 and 5.5, consider any cost

function c(x, a) and the minimization problem (5.10) as in Lemma 5.1,

there exists a constant ρ∗ and a measurable function h∗ ∈ Bw2(S) such

that the following average cost optimality equation hold.

ρ∗ + h∗(x) = min
a∈A(x)

{
c(x, a) +

∫
S

h∗(y)Q(dy|x, a)

}
∀ x ∈ S, (5.28)

where ρ∗ = infπ∈UH V (π, x) is the optimal value of Problem (5.10). More-

over, there exists a measurable selector f∗ ∈ F realizing the minimum of

(5.28), which in turn induces an optimal deterministic stationary policy

for Problem (5.10).

As pointed out in [50], f∗ ∈ UDS from Lemma 5.4 is called a canonical

policy, which is certain to be optimal. However, the converse need not

hold; that is, an optimal policy does not necessarily corresponds to a

measurable function such that (5.28) holds for each x ∈ S.

Theorem 5.1 Under Assumption 5.1, 5.2, 5.3, 5.4 and 5.5, for each

extreme point of V (U stable, γ) denoted by ~uex = (uex0 , u
ex
1 , . . . , u

ex
M), there

exists a corresponding deterministic stationary (stable) policy f ex ∈ UDS

generating ~uex, i.e.,

~uex = V (f ex, γ) = (V0(f ex, γ), V1(f ex, γ), . . . , VM(f ex, γ))
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Proof. By Lemma 5.3, the existence of extreme points of V (U stable, γ)

is automatically justified. Suppose ~uex = (uex0 , u
ex
1 , . . . , u

ex
M) is an ex-

treme point of of V (U stable, γ). Note that ~uex belongs to the boundary

of V (U stable, γ); otherwise, there is an open ball centered at ~uex which is

a subset of V (U stable, γ), such that ~uex can be represented by the convex

combination of arbitrary two of its interior points.

Below we prove the statement by inductive argument. To start with,

an auxiliary model

M0 = {S,A,A0(x), Q, (ci)i=0,1,...,M , γ}

is formulated, where A0(x) ≡ A(x) for each x ∈ S. Note that M0 is

identical to M without constraints. According to [13, Prop.2.4.1], there

exists a supporting hyperplane H1 :=
∑M

m=0 r
1
mum = r1 of V (U stable, γ)

at ~uex, such that either
∑M

m=0 r
1
mum ≤ r1, or

∑M
m=0 r

1
mum ≥ r1 for each

~u = (u0, u1, . . . , uM) ∈ V (U stable, γ). Here, r1, r1
0, . . . , r

1
M are some real

constants that at least one of them is nonzero. By linearity of integra-

tion, we formulate an equivalent maximization or minimization problem

associated with the cost function c~r1(x, a) :=
∑M

m=0 r
1
mcm(x, a). What we

aim is to construct a sub-model so that the space of performance vectors

of it coincides with the exposed set V (U stable, γ)∩H1; see more discussion

about concepts in convex analysis in [93].

Without loss of generality, we consider the minimization problem, i.e.,∫
K
c~r1(x, a)µ(dx× da)→ min

µ∈D

The sub-model is constructed by refining admissible action spaces on

the original state space. Under Assumption 5.5 and by Lemma 5.4, the

ACOE is established as follows,

r1 + h~r1(x) = min
a∈A0(x)

{
c~r1(x, a) +

∫
S

h~r1(y)Q(dy|x, a)

}
∀ x ∈ S (5.29)
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for which we denote by

R(x, a) := c~r1(x, a) +

∫
S

h~r1(y)Q(dy|x, a)

for future reference. For each x ∈ S, define

L(x) :=

{
a ∈ A0(x) : r1 + h~r1(x) = c~r1(x, a) +

∫
S

h~r1(y)Q(dy|x, a)

}
The new admissible action space is defined by A1(x) := L(x) for each

x ∈ S.
Finally, the promised sub-model

M1 := {S,A,A1(x), Q, (ci)i=0,1,...,M , γ}

is obtained, with respect to which we make the following six observations.

Observation 1: A1(x) ⊆ A0(x) is nonempty and compact for each

x ∈ S.

Indeed, A1(x) is closed because R(x, ·) is a continuous function on

A0(x) by Assumption 5.2(a,d). A1(·) is non-empty due to Lemma A.2(a),

and the compactness of A1(x) follows from the fact that A0(x) is compact.

Observation 2: The graph

K1 := {(x, a);x ∈ S, a ∈ A1(x)} ⊆ K

is a product measurable subset of S × A and contains the graph of a

measurable selector from S to A.

Suppose G ⊆ A is an arbitrary closed set, we consider the complete

preimage

A−1
1 [G] := {x ∈ S;A1(x)

⋂
G 6= ∅}.
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Observe that

A−1
1 [G] =

{
x ∈ S; inf

a∈A(x)
⋂
G
R(x, a) = r1 + h~r1(x)

}
(5.30)

The set-valued mapping A0(x) is measurable by the definition and

Proposition A.2. Note that A0(x)
⋂
G =: Ã(x) is a measurable set-

valued mapping as well (cf. [54, Prop.2.4, Thm.4.1]). Further by [54,

Prop.2.2], the domain of Ã(x)

Dom(Ã) := {x ∈ S; Ã(x) 6= ∅}

is measurable. Therefore,

E :=

{
x ∈ Dom(Ã); inf

a∈Ã(x)
R(x, a) = r1 + h~r1(x)

}

is measurable since infa∈Ã(x) R(x, a) is a measurable function on Dom(Ã)

by Lemma A.2(a). Suppose there is x ∈ S\Dom(Ã). We have

inf
a∈Ã(x)

R(x, a) =∞ > r1 + h~r1(x),

which contradicts with the fact that h~r1 ∈ Bw2(S). Thus, A−1
1 [G] = E is

measurable, which in turn validates the measurability of A1(x) together

with its graph

K1 := {(x, a);x ∈ S, a ∈ A1(x)}.

Moreover, Lemma A.2(a) ensures the existence of a measurable function

g from S to A.

Note that the above two observations ensuresM1 is legally formulated

in the sense that all of its components satisfies all the definitions in

Chapter 1.

Observation 3: Assumption 5.2(b) remains to be satisfied, i.e., v(·, ·)
is a moment with respect to the graph K1.
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Suppose (Kn) is a non-decreasing sequence of compact subsets of K
that converges to it. Define K1

n := Kn ∩ K1. Apparently, (K1
n) are non-

decreasing and converges to K1, since K1 ⊆ K. Next,

K1\K1
n = K1 ∩K1

n
C

= K1 ∩ (KC
n ∪K1C) = K1 ∩KC

n ⊆ K\Kn.

Thus,

lim
n→∞

inf
(x,a)∈K1\K1

n

v(x, a) ≥ lim
n→∞

inf
(x,a)∈KCn

v(x, a) =∞,

which validates that v(·, ·) remains a moment with respect to K1.

The above observation ensures the sufficiency of stable policies for

the original Problem (5.1) by the same reasoning presented in Lemma

5.2. Accordingly, the space of stable measures reduces to

D1 := {µ ∈ D; µ(dx× da) = ϕ(da|x)µϕ(dx× A),

ϕ(A1(x)|x) = 1,∀ x ∈ S}

and the space of performance vectors of the sub-model M1 is defined

accordingly by

V1(U stable, γ) :=

{(∫
K
c0(x, a)µ(dx× da), . . . ,∫

K
cM(x, a)µ(dx× da)

)
;µ ∈ D1

}
, (5.31)

both of which are convex and compact (with respect to (Mw(K), τ(Mw(K)))

and (M + 1)-th Euclidean topology, respectively).

Observation 4: V1(U stable, γ) coincides with the exposed subset

V (U stable, γ)
⋂
H1.

We show this fact by the bilateral inclusion.

Suppose ~u = (u0, u1, . . . , uM) ∈ V1(U stable, γ), there is µ1 ∈ D1 such

that ~u = Z(µ1). To be explicit,

(u0, . . . , uM) =

(∫
K
c0(x, a)µ1(dx× da), . . . ,

∫
K
cM(x, a)µ1(dx× da)

)
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Since D1 ⊆ D, ~u ∈ V (U stable, γ). By the definition of A1(x), we have

r1 + h~r1(x) = c~r1(x, a) +

∫
S

h~r1(y)Q(dy|x, a) ∀ x ∈ S, a ∈ A1(x).

Replacing a ∈ A1(x) with the stationary policy ϕ1 leads to

r1 + h~r1(x) = c~r1(x, ϕ1) +

∫
S

h~r1(y)Q(dy|x, ϕ1) ∀ x ∈ S, (5.32)

where ϕ1 comes from the disintegration

µ1(dx× da) = ϕ1(da|x) · µ1(dx× A).

Taking integration on both sides of (5.32) with respect to the µ1(dx×A)

yields

r1 +

∫
S

h~r1(x)µ1(dx× A)

=

∫
S

{
c~r1(x, ϕ1) +

∫
S

h~r1(y)Q(dy|x, ϕ1)

}
µ1(dx× A). (5.33)

Then,

M∑
m=0

r1
mum =

∫
K

M∑
m=0

cm(x, a)µ1(dx× da) =

∫
K
c~r1(x, a)µ1(dx× da) = r1

where the last equality holds because of (5.33) by Definition 5.1. Thus,

~u ∈ H1 as well.

Conversely, assume ~u = (u0, u1, . . . , uM) ∈ V (U stable, γ)
⋂
H1. That

is, there exists µ ∈ D, such that ~u = Z(µ) and
∫
K c

~r
1(x, a)µ(dx×da) = r1.

This implies that µ solves the following linear problem∫
K
c~r1(x, a)µ(dx× da)→ min

µ∈D

Again, µ(dx× da) = µ(dx× A) · ϕµ(da|x). Recall the definition

R(x, a) := c~r1(x, a) +

∫
S

h~r1(y)Q(dy|x, a).
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Integrating on both sides of the ACOE, i.e., (5.29), with respect to µ

gives ∫
S

min
A0(x)

R(x, a)µ(dx× A) = r1 +

∫
S

h~r1(y)µ(dy × A)

=

∫
K
c~r1(x, a)µ(dx× da) +

∫
S

h~r1(y)

∫
K
Q(dy|x, a)µ(dx× da)

=

∫
S

(∫
A

c~r1(x, a)ϕµ(da|x)

)
µ(dx× A)

+

∫
S

(∫
A

∫
S

h~r1(y)Q(dy|x, a)ϕµ(da|x)

)
µ(dx× A)

=

∫
S

R(x, ϕµ)µ(dx× A)

Thus, there exists a measurable set S~rϕµ ⊆ S with µ(S~rϕµ) = 1, such that

ϕµ(L(x)|x) = 1 for each x ∈ S~rϕµ . As a consequence, we define a policy

taking the following form

ϕ̂(da|x) :=

ϕ(da|x) x ∈ S~rϕµ

f̂(x) x ∈ S\S~rϕµ

where f̂(x) ∈ L(x) is an arbitrarily selected measurable selector; so the

obtained ϕ̂µ(da|x) is an admissible policy for the sub-modelM1. Further

observe that µ(dx× da) = µ(dx× A) · ϕµ(da|x) = µ(dx× A) · ϕ̂µ(da|x),

which leads to µ ∈ D1. Note that for each η̂ ∈ V (U stable, γ)
⋂
H1, one can

always find a corresponding measurable S~rϕη ⊆ S (of course depending

on ϕη) and carry out the same procedure to obtain a policy concentrated

on A1(x). To conclude, V1(U stable, γ) = V (U stable, γ)
⋂
H1.

Observation 5: Each element ~u = (u0, u1, . . . , uM) ∈ V1(U stable, γ) can

be uniquely determined by (u0, u1, . . . , uM−1).

Indeed, this is a direct consequence of Observation 4. For each

~u = (u0, u1, . . . , uM) ∈ V1(U stable, γ), we have ~u = (u0, u1, . . . , uM) ∈
V (U stable, γ)

⋂
H1 ⊆ H1. Thus, one can always identify the location of ~u
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even if the value uk is missing for some k = 0, 1, . . . ,M , since

uk =
r1 −

∑M
m 6=k r

1
mum

r1
k

.

In practice, one may simply get rid of any coordinate representing V1(U stable, γ).

Without loss of generality, we choose to drop the coordinate with the

largest index, namely (M + 1)-th. As a consequence, the space of per-

formance vectors corresponding to M1 can be represented as

V 1(U stable, γ) :=

{(∫
c0(x, a)µ(dx× da), . . . ,∫

cM−1(x, a)µ(dx× da)

)
;µ ∈ D1

}
(5.34)

Compare (5.31) and (5.34) to see the implication of the above observa-

tion.

Observation 6: ~uex1 = (uex0 , u
ex
1 , . . . , u

ex
M−1), the projection of u∗ on the

(M + 1)-th coordinate, is an extreme point of V 1(U stable, γ)

Observation 4 and [13, Prop.3.3.1] directly yields the stated result.

The remainder is to carry out the above procedure in the recursive

way. For example, if we have the sub-model

Mk = {S,A,Ak(x), Q, (ci)i=0,1,...,M−k+1, γ}

and the corresponding the space of performance vectors

V k(U stable, γ) :=

{(∫
K
c0(x, a)µ(dx× da), . . . ,∫

K
cM−k(x, a)µ̂(dx× da)

)
; µ̂ ∈ Dk

}

One can draw a supporting hyperplane Hk+1 :
∑M−k

m=0 r
k+1
m um = rk+1

at ~uexk = (uex0 , u
ex
1 , . . . , u

ex
M−k). Note that Hk+1 could be unique; see [13,

p.183]. Likewise, we consider the minimization problem associated with

c~rk+1(x, a) :=
∑M−k+1

m=0 rk+1
m cm(x, a) with the optimal value rk+1. There is
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a measurable function h~rk+1 ∈ Bw2(S), which satisfies the corresponding

ACOE

rk+1 + h~rk+1(x)

= min
Ak(x)

{
c~rk+1(x, a) +

∫
S

h~rk+1(y)Q(dy|x, a)

}
∀ x ∈ S. (5.35)

Similarly, the refinement of admissible action space is defined by

Lk+1(x) :=
{
a ∈ Ak(x); rk+1 + h~rk+1(x)

= c~rk+1(x, a) +

∫
S

h~rk+1(y)Q(dy|x, a)

}
and consequently, the new admissible action space is defined byAk+1(x) :=

Lk+1(x) for each x ∈ S.

We obtain the sub-model

Mk+1 := {S,A,Ak+1(x), Q, (ci)i=0,1,...,M−k},

which is well defined by the same reasoning as previously. The space of

stable measures takes the form

Dk+1 := {µ ∈ Dk; µ(dx× da) = ϕ(da|x)µϕ(dx),

and ϕ(Ak+1(x)|x) = 1 for each x ∈ S}

and the new performance space is defined accordingly,

Vk+1(U stable, γ) :=

{(∫
K
c0(x, a)µ(dx× da), . . . ,∫

K
cM−k(x, a)µ(dx× da)

)
;µ ∈ Dk+1

}
Again by the similar reasoning, we obtain that

Vk+1(U stable, γ) = V k(U stable, γ)
⋂

Hk+1.
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Then, we project Vk+1(U stable, γ) onto (M − k + 1)-th coordinate, and

obtain

V k+1(U stable, γ) :=

{(∫
K
c0(x, a)µ(dx× da), . . . ,∫

K
cM−k−1(x, a)µ(dx× da)

)
;µ ∈ Dk+1

}
Note that ~uexk+1 = (uex0 , u

ex
1 , . . . , u

ex
M−k−1), the projection of uexk onto (M −

k + 1)-th coordinate, is still the extreme point of V k+1(U stable, γ).

With the above sequence of steps being conducted M times, we obtain

the one-dimensional compact-convex performance space

V M(U stable, γ) =

{∫
K
c0(x, a)µ(dx× da);µ ∈ DM

}
which is indeed a bounded interval in the space of real numbers. Denote

by vmax and vmin the end points respectively. With slight abuse of nota-

tions, either ~uexM = uex0 = vmax or uex0 = vmin. By Lemma 5.1, there exists

a corresponding deterministic stationary policy f ex such that either vmax

and vmin is attained, i.e., uex0 = V0(f ex, γ). 2

Corollary 5.1 Under the same set of assumptions imposed in Theorem

5.1, Let

V (UDS, γ) :=
{

(V0(π, γ), V1(π, γ), . . . , VM(π, γ)) ;π ∈ UDS
}

be the space of performance vectors generated by the set of determin-

istic stationary policies. Then conv(V (UDS, γ)) = V (U stable, γ), where

conv(V (UDS, γ)) denotes the convex hull of V (UDS, γ).

Proof. By Lemma 5.3, Theorem 5.1 and Krein-Milman’s Theorem (see

Theorem C.2), it is direct to observe that V (U stable, γ) ⊆ conv(V (UDS, γ)).

The reverse inclusion follows from Carathéodory’s theorem (see Theorem

C.3) and the convexity of V (U stable, γ). 2
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5.6 Existence of optimal mixing policies

For the source of constraints (dm)m=1,...,M and for each m = 0, 1, . . . ,M ,

define the closed half-plane in RM+1 by

Qm := {~u = (u0, u1, . . . , uM) ∈ Rk;um ≤ dm},

and the hyperplane by

Lm := {~u = (u0, u1, . . . , uM) ∈ Rk;um = dm}.

Further denote Proj0(~u) := u0 for any ~u = (u0, u1, . . . , uM) ∈ RM+1

as the projection on the first coordinate.

The next auxiliary lemma comes from the main theorem and (5.7) of

[30].

Lemma 5.5 Let Λ ⊆ {1, 2, . . . ,M + 1} be an index set (possibly empty)

with the cardinal number being denoted by card(Λ). For a given compact

and convex set H ⊆ RM+1, the following two results holds.

(a) Any extreme point of the set H
⋂(⋂

m∈Λ Lm
)

can be expressed by the

convex combination of no more than card(Λ) + 1 extreme points of H;

(b) Any extreme point of the set H
⋂(⋂

m/∈Λ Qm\Lm
)

is an extreme point

of H, where we adopt the convention that an intersection over the empty

index set is the universal set.

Theorem 5.2 Under Assumption 5.1, 5.2 and 5.4, the following state-

ments hold:

(a) Problem (5.26) is solvable, and further there exists a stable policy

ϕopt optimal to Problem (5.1);

(b) If in addition Assumption 5.3 and 5.5 are also satisfied, there ex-

ist constants λ∗m,m = 1, 2, . . . ,M + 1 and stable measures µ∗m,m =

1, . . . ,M+1 such that λ∗n ≥ 0,
∑M+1

m=1 λ
∗
m = 1, and µ∗m,m = 1, 2, . . . ,M+

1 are generated by deterministic stationary policies, say f ∗m, and the sta-

ble measure defined by µ∗ :=
∑M+1

m=1 λ
∗
mµ
∗
m solves the Problem (5.26).

101



Proof. (a) The space of feasible performance vectors for Problem (5.1) is

defined by

V feasible := {~u = (u0, . . . , uM) ∈ V (U stable, γ) : um ≤ dm,m = 1, . . . ,M}

= V (U stable, γ)
⋂(

M⋂
m=1

Qm

)

It can be observed that V feasible is nonempty, compact and convex.

Thus, the space of the projection of V feasible, defined by

Proj0(V feasible) := {u0 ∈ R : ~u = (u0, u1, . . . , uM) ∈ V feasible},

is nonempty, compact and convex as well, so is V feasible
⋂
L0, where

L0 = {~u = (u0, u1, . . . , uM) ∈ RM+1;u0 = inf
~u∈V feasible

Proj0(~u)}.

Therefore, there exists an extreme point ~uex = (uex0 , u
ex
1 , . . . , u

ex
M) of

V feasible such that

uex0 = inf
~u∈V feasible

Proj0(~u).

Denote by µopt such that Z(µOpt) = ~uex, and µopt = ϕopt ·µopt. Then ϕopt

is an optimal policy for Problem (5.1).

(b) Let Λ := {1 ≤ m ≤M : uexm = dm}, we have

~uex ∈ V (U stable, γ)
⋂ (⋂

m∈Λ

Lm

)⋂(⋂
m/∈Λ

Qm\Lm

)

⊆ V (U stable, γ)
⋂(

M⋂
m=1

Qm

)

Since the ~uex is an extreme point of V feasible, it is also an extreme point

of

V (U stable, γ)
⋂(⋂

m∈Λ

Lm

)⋂(⋂
m/∈Λ

Qm\Lm

)
.

By Lemma 5.5(b), ~uex is an extreme point of V (U stable, γ)
⋂(⋂

m∈Λ Lm
)
,

where the cardinal number of Λ can not exceed M . It further follows from
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Lemma 5.5(a) that there exist extreme points ~uexm , m = 1, 2, . . . ,M + 1,

of V (U stable, γ) and nonnegative constants λ∗m, m = 1, 2, . . . ,M + 1, such

that
∑M+1

m=1 λ
∗
m = 1 and ~uex =

∑M+1
m=0 λ

∗
m~u

ex
m . Denote by µ∗m ∈ D, m =

1, 2, . . . ,M + 1, the preimage of ~uexm , m = 1, 2, . . . ,M + 1, under the

linear mapping Z coming from (5.27), and further define a measure µ∗ :=∑M+1
m=1 λ

∗
mµ
∗
m. µ∗ is an optimal solution to Problem (5.1) as Z(µ∗) = ~uex,

and µ∗ ∈ D because of the convexity of D. Note that by applying

Theorem 5.1, there exists fm, m = 1, 2, . . . ,M + 1 such that

Z(µ∗m) = ~uexm = (V0(fm, γ), V1(fm, γ), . . . , VM(fm, γ))

for m = 1, 2, . . . ,M + 1.

Finally, ϕ∗ corresponding to µ∗ is the promised optimal mixing policy

optimal for Problem (5.1). 2
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Chapter 6

Average optimality of an

MDP with the general cost

function

6.1 Introduction

This chapter is organized as follows. Section 6.2 is a description of the

model and the average optimality problem. We introduce a set of as-

sumptions about sufficiency to the concerned problem along with some

discussions in the denumerable case. Section 6.4 is devoted to the main

optimality result together with its proof. Section 6.5 involves an illustra-

tive example.

6.2 Problem formulation and preliminaries

We solve this problem by using vanishing discount approach under the

condition that there exists a class of sufficient policies inducing corre-

sponding processes that possess some ergodic properties. In connection

with formulations in related literature (cf. [36], [46], [47], [50], [86], [87],

[88]), the cost defined in this chapter is allowed to be unbounded from

the below while keeping its positive part to be arbitrarily unbounded. As

a consequence, we deal with the positive and negative parts of the cost
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separately.

As usual, a standard MDP is characterized with the following primi-

tives,

{S,A, (A(x), x ∈ S), Q(dy|x, a), c(x, a)}

Let B−w(S) denotes the space of measurable functions on S, each

of which the negative part is bounded by w(·). A strong version of

compactness-continuity conditions is imposed,

Assumption 6.1 (a) c(x, a) is lower semi-continuous in a ∈ A(x), for

each x ∈ S;

(b) A(x) is compact-valued for each x ∈ S;

(c)
∫
S
u(y)Q(dy|x, a) is continuous in a ∈ A(x) ∀x ∈ S, u ∈ B(S).

For an arbitrary policy π ∈ UH , we define the value function and opti-

mal value function for a discount (total) problem over n-stage horizon

respectively by

Jnα(π, x) := Eπ
x [
n−1∑
t=0

αtc(xt, at)]

J∗nα (x) := inf
π
Jnα(π, x)

Jn(π, x) := V n
1 (π, x) = Eπ

x [
n−1∑
t=0

c(xt, at)]

and those over the infinite horizon by

Jα(π, x) := Eπ
x [
∞∑
t=0

αtc(xt, at)]

J∗α(x) := inf
π
Jα(π, x)

The positive and negative parts of c(x, a) are defined by

c+(x, a) := max{0, c(x, a)}, c−(x, a) := max{0,−c(x, a)}

Accordingly, we have similar presentations of problems associated with
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positive and negative parts of the cost function,

J (+)
α (π, x) := Eπ

x [
∞∑
t=0

αtc+(xt, at)]

J∗(+)
α (x) := inf

π
J (+)
α (π, x)

J (−)
α (π, x) := Eπ

x [
∞∑
t=0

αtc−(xt, at)]

J∗(−)
α (x) := sup

π
J (−)
α (π, x)

Note that, c−(x, a) is upper semicontinuous in a ∈ A(x) for each x ∈ S,

for which we investigate the maximization problem associated with it.

The average cost optimal problem of our interest in this chapter takes

the following form,

V (π, x) := lim
n→∞

1

n
Jn(π, x) −→ min

π∈UH
(6.1)

To have our average and auxiliary discounted problems well defined,

negative part of the cost function is assumed to be controlled by a weight

function, which satisfies Lyapunov-like condition.

Assumption 6.2 There exists a continuous weight function w(·) ≥ 1 on

S, a bounded measurable function (possible constant) function b(·), and

nonnegative constants ĉ and β, with β < 1, such that,

(a) c−(x, a) ≤ ĉw(x), for each x ∈ S and a ∈ A(x);

(b) a→
∫
S
w(y)Q(dy|x, a) is continuous in a ∈ A(x), for each x ∈ S;

(c) supA(x)

∫
S
w(y)Q(dy|x, a) ≤ βw(x) + b(x), for each x ∈ S.

It is worth mentioning that Assumption 6.2 is quite standard in the

study of so-called negative dynamic programming problem with total cost

criterion first examined by Strauch in [94]. Actually, Assumption 6.2(a,c)

are sufficient for the following two general conditions with 0 < α < 1 to

hold,

δ(x) := sup
π
Eπ
x [
∞∑
t=0

αtc−(xt, at)] <∞ (6.2)
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lim
n→∞

sup
π
Eπ
x [
∞∑
t=n

αtc−(xt, at)] = 0 (6.3)

both of which, along with Assumption 6.1, validate Structure Assumption

in [8, p.199]. Therefore, standard optimality results, i.e., the establish-

ment of optimality equation and existence of an optimal deterministic

stationary policy, follow accordingly. We quote them for future reference

in the following lemma.

Lemma 6.1 Let 0 < α < 1 be an arbitrarily fixed discount factor. Under

Assumption 6.1 and 6.2, J
∗(−)
α (x) is the maximum solution out of the

class u ∈ Bw(S) to the optimality equation

u(x) = sup
a∈A(x)

{
c−(x, a) + α

∫
S

u(y)Q(dy|x, a)

}
∀ x ∈ S.

Moreover, there exists a measurable mapping fα that attains the supre-

mum in the right hand side, i.e.,

J∗(−)
α (x) = c−(x, fα) + α

∫
S

J∗(−)
α (y)Q(dy|x, fα) ∀ x ∈ S.

In addition, fα induces a deterministic stationary policy which is optimal

(not necessarily unique) to the discounted problem

Eπ
x [
∞∑
t=0

αtc−(xt, at)]→ max
π

Proof. see [8, 85]. 2

6.3 Sufficient policies and discussions in the

denumerable case

At first, we formally define the notion of sufficiency with respect to our

concerned average optimal problem.

Definition 6.1 A family of policies U suff is called sufficient for Problem

(6.1), if and only if for any policy π ∈ UH , there exists a corresponding
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policy π̂ ∈ U suff such that

V (π̂, x) ≤ V (π, x) ∀ x ∈ S.

A set of new assumptions below is imposed, on the one hand, to

avoid Problem (6.1) being trivial, and on the other hand, to assume

some ergodic properties on the mixture of the dynamics and negative

part of the cost.

Assumption 6.3 (a)There is a sufficient class of policies U suff for Prob-

lem (6.1) such that the following two assertions are satisfied:

(i) There exist a policy π̂ ∈ U suff and a state z ∈ S that satisfy

V (π̂, z) <∞.

(ii) For each policy π̂ ∈ U suff and each state x ∈ S,

lim
n→∞

1

n
Eπ̂
x [
n−1∑
t=0

c−(xt, at)]

exists and is finite.

(b) For every deterministic stationary policy f ∈ UDS, there exists a

unique probability measure µf on S such that

‖Qt
f − µf‖w ≤ Rρt ∀ t = 0, 1, · · ·

where R > 0 and 0 < ρ < 1 are constants independent of f ∈ UDS.

Note that Assumption 6.3(a,i) is equivalent to the statement that

there exists a policy π ∈ UH such that

V (π, z) <∞,

which should be clear from the definition of a sufficient policy. In com-

parison, Assumption 6.3(a,ii) is more subtle, and seems ambiguous and

restrictive at first sight. In practice, the restriction to a subclass of suf-

ficient policies is necessary. Otherwise, there could be policies such that
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Assumption 6.3(a,ii) fails to hold whenever the action is relevant to either

negative part of the cost or the dynamics (the corresponding transition

kernel); see Example 6.1. This sort of setting is too restrictive to make it

meaningful to allow for negative part of the cost being unbounded. Note

that sufficiency does not have to guarantee the existence of an optimal

policy, but instead narrow the search for optimal policies to a smaller

scale. As is seen in Chapter 5, the family of stable policies is an example

of sufficient class of policies to Problem (5.1). The issue of sufficiency is

discussed in greater detail in the present setting.

Example 6.1

Let S = {0, 1, 2, . . .} be a countable state space, and A = {0, 1} be a finite

action spaces, and A(i) ≡ A. Set Q(i + 1|i, 1) = 1, and Q(0|i, 0) = 1,

∀ i ≥ 1, whereas Q(1|0, 1) = 1, Q(0|0, 0) = 1, c(i, a) = Ci, where C

is a positive constant. Note that the selected a is only related to the

dynamics Q.

We choose a policy π = (πn) as πnk = 0, where (nk) is a subsequence

defined as nk = k2+3k
2
− 1, k = 1, 2, . . . , and otherwise πt = 1. The

trajectory of the controlled process xt under the specified policy π is

ht = (0, 1, 0, 1, 2, 0, 1, 2, 3, 0, . . . ). We can see

lim
n→∞

1

n
Eπ

0

[
n−1∑
t=0

c(xt, at)

]
= lim

k→∞

1

nk + 2
Eπ

0

[
nk+1∑
t=0

c(xt, at)

]

= lim
k→∞

2

k2 + 3k + 2

k∑
l=1

l(l + 1)

2

= lim
k→∞

2

k2 + 3k + 2

k(k + 1)(k + 2)

6

= lim
k→∞

k

3
=∞

which violates Assumption 6.2(a,ii). Indeed, the policy can be selected

in a simpler way.

The state space S is assumed to be denumerable throughout the re-

mainder of this section. A set of assumptions is introduced as follows,
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Assumption 6.4 (a) There is a moment (strictly unbounded function)

w′(·) on S such that for every policy π ∈ UH ,

lim
n→∞

∫
K
w′(x)w(x)µπγ,n(dx× da) <∞, (6.4)

where the sequence of occupation measures µπγ,n(dx × da) stems from

(5.18);

(b) The state space S forms a single positive recurrent class for every

stationary policy ϕ ∈ US;

(c) There exits a finite set C ⊂ S such that

sup
a∈A(i)

∑
j∈S

w(j)Q(j|i, a) ≤ βw(i) + b(i)1{i∈C} (6.5)

Note that Assumption 6.4(c) is more restrictive than Assumption

6.2(c). The purpose of this modification is to provide sufficient conditions

for Assumption 6.3(b), which will be revealed later.

Lemma 6.2 (a) Under Assumption 6.2(c) and Assumption 6.4(b) for

each stationary policy ϕ ∈ US,

Eϕ
i [
τ i−1∑
t=0

w(xt)] <∞ (6.6)

∑
i∈S

w(i)µϕ(i) <∞ (6.7)

holds, where

τ i := inf{n ≥ 1 : x0 = i, xν 6= i, 1 ≤ ν ≤ n− 1, xn = i}

(ϕ is omitted for simplicity) denotes the first return time to a prefixed

state i ∈ S when starting from the same state, and µϕ(i) stands for the

unique i.p.m. of the Markov chain Qϕ(j|i);

(b) if, in addition, Assumption 6.2(c) is replaced with Assumption 6.4(c),

Assumption 6.3(b) holds.
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Proof. (a) Firstly, we arbitrarily select and fix a stationary policy ϕ. Let

us put

p
(n)
ij = Qn(j|i, ϕ) := Pϕ

i (xn = j)

and

kp
(n)
ij := Pϕ

0 (xn = j, xν 6= k, 0 < ν < n)

denote the n-step transition probability, and the n-step transition prob-

ability with a taboo state k ∈ S for any i, j ∈ S respectively (see [24,

§9] for greater details regarding “taboo probabilities”). Assume that τ i

follows the distribution f
(n)
ii (or equivalently, ip

(n)
ii ). Note that all the

notations τ i, f
(n)
ii , p

(n)
ij and kp

(n)
ij correspond to the Markov chain Qϕ(j|i),

and the prefixed stationary policy ϕ is omitted for the sake of simplicity.

For (6.6), we fix an arbitrary state 0 ∈ S, and denote by (τ 0
k )k=0,1,2,...

the increasing infinite sequence (τ 0
0 := 0 and τ 0

1 = τ 0) of all values of

n ≥ 1 for which xn = 0, and by

η0
k := τ 0

k − τ 0
k−1

the k-th return time to 0 ∈ S. From [24, §13], it is observed that (η0
k) is

a sequence of independent random variables with common distribution

f
(n)
00 . Thus, it suffices to consider the first cycle letting x0 = 0. Moreover,

τ 0
1 is simplified as τ 0 and ‖b‖ := supi∈S b(i) is simplified as b in the sequel.

Eϕ
0

[
τ0−1∑
t=0

w(xt)

]
=

∞∑
n=1

Eϕ
0

[
n−1∑
t=0

w(xt)|τ 0 = n

]
f

(n)
00

=
∞∑
n=2

{
w(0) + Eϕ

0

[
n−1∑
t=1

w(xt)|τ 0 = n

]}
f

(n)
00

= w(0) +
∞∑
n=2

n−1∑
t=1

∑
j 6=0

w(j)Pϕ
0 (xt = j|τ 0 = n)f

(n)
00

= w(0) +
∞∑
t=1

∞∑
n=t+1

∑
j 6=0

w(j)Pϕ
0 (xt = j, τ 0 = n)

= w(0) +
∞∑
t=1

∞∑
n=t+1

∑
j 6=0

w(j)0p
(n−t)
j0 0p

(t)
0j
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= w(0) +
∑
j 6=0

w(j)
∞∑
t=1

0p
(t)
0j

∞∑
n=1

0p
(n)
j0

= w(0)
∞∑
t=1

0p
(t)
00 +

∑
j 6=0

w(j)
∞∑
t=1

0p
(t)
0j

=
∑
j∈S

w(j)0p
∗
0j

=
∞∑
t=1

∑
j∈S

w(j)0p
(t)
0j

where 0p
∗
0j :=

∑∞
t=1 0p

(t)
0j is finite and 0p

∗
j0 :=

∑∞
n=1 0p

(n)
j0 = 1 by Assump-

tion 6.4(b) and the Corollary to [24, Thm.9.6]. The fifth equality, noting

that t < n, comes from the following relation where the Markov property

is in use,

Pϕ
0 (xt = j, τ 0 = n)

= Pϕ
0 (xt = j, (xν 6= 0, 0 < ν < n), xn = 0)

= Pϕ
0 (xn = 0, (xν 6= 0, t < ν < n)|xt = j, (xν 6= 0, 0 < ν < t))

·Pϕ
0 (xt = j, (xν 6= 0, 0 < ν < t))

= Pϕ
j (xn−t = j, (xν 6= 0, 0 < ν < n− t)) · P0(xt = j, (xν 6= 0, 0 < ν < t))

= 0p
(n−t)
j0 · 0p

(t)
0j

All the interchanges of order of summations are justified due to non-

negativity of all the terms by Tonelli’s Theorem (cf. [1, Thm.11.28]).

Note that the above representation is identical to what appears in [24,

Thm.14.5], but instead without extra restrictions on the convergence of

the concerned series, again owing to nonnegativity.

We extract the term
∑

j∈S w(j)0p
(n)
0j , which is denoted by An, and

take a look at it,

∑
j∈S

w(j)0p
(n)
0j =

∑
j∈S

w(j)
∑
k 6=0

pkj · 0p
(n−1)
0k

=
∑
k 6=0

0p
(n−1)
0k

∑
j∈S

w(j)pkj
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≤
∑
k∈S

0p
(n−1)
0k (βw(k) + b)− 0p

(n−1)
00 (βw(0) + b)

= β
∑
k∈S

w(k)0p
(n−1)
0k + b

∞∑
ν=n−1

f
(ν)
00 − f

(n−1)
00 (βw(0) + b)

where
∑

k∈S 0p
(n−1)
0k =

∑∞
ν=n−1 f

(ν)
00 by [24, Thm.9.6], which gives the

following recursive formula,

An ≤ βAn−1 + b

∞∑
ν=n−1

f
(ν)
00 − f

(n−1)
00 (βw(0) + b).

Based on the above inequality together with the initial condition

A1 ≤ βw(0) + b,

the explicit form of the bound of An can be expressed as

An ≤
n−1∑
t=0

βt

[
b

∞∑
ν=n−t−1

f
(ν)
00 − bf

(n−t−1)
00 − f (n−t)

00 w(0)

]
+ f

(n)
00 w(0) + βnw(0).

Then,

Eϕ
0 [
τ0−1∑
t=0

w(xt)] =
∞∑
n=1

An

≤
∞∑
n=1

f
(n)
00 w(0) +

∞∑
n=1

βnw(0)

+
∞∑
t=0

∞∑
n=t+1

[
bβt

∞∑
ν=n−t−1

f
(ν)
00 − βtbf

(n−t−1)
00 − βtf (n−t)

00 w(0)

]

= w(0) +
β

1− β
w(0)

+
∞∑
t=0

[
bβt

∞∑
ν=0

ν+t+1∑
n=t+1

f
(ν)
00 − bβt − w(0)βt

]

= w(0) +
β

1− β
w(0)

+
∞∑
t=0

[
bβt

∞∑
ν=0

(ν + 1)f
(ν)
00 − bβt − w(0)βt

]
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= w(0) +
β

1− β
w(0) +

bm00 − w(0)

1− β

=
b m00

1− β
<∞

where state 0 ∈ S can be replaced by any state i ∈ S, and

mii :=
∞∑
n=1

nf
(n)
ii <∞

holds for every state i ∈ S by Assumption 6.4(b). (6.6) is justified.

(6.7) follows from [24, Thm.9.6 & Thm.9.7] with a bit computation

that

∑
j∈S

w(j)µϕ(j) =
∑
j∈S

w(j)
ip
∗
ij

mii

=
b mii

1− β
1

mii

=
b

1− β
<∞,

which completes the proof of part (a).

(b) can be directly derived from [92, Thm.1] or [58, (2.3) & Prop.2.4]

by noting that C is finite and β < 1. 2

Now we are in position to proceed with our discussion of the remaining

statements in Assumption 6.3, and incidentally, show that the whole

family of stationary policies is a sufficient class for Problem (6.1).

Lemma 6.3 Under Assumption 6.1, 6.2 and 6.4, the following asser-

tions hold:

(a) For each stationary policy ϕ ∈ US and each state x ∈ S, the following

representation holds,

lim
n→∞

∫
K
c(y, a)µϕx,n(dy × da) =

∫
K
c(y, a)µϕx(dy × da); (6.8)

(b) The whole family of stationary policies US forms the promised suffi-

cient class for Problem (6.1);

(c) Assumption 6.3(a,ii) is valid.
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Proof. (a) In view of the proof of Lemma 2.3 in [3], if we fix a station-

ary policy ϕ, Lemma 6.2 (specifically, the validity of (6.6) and (6.7)) is

sufficient for (6.8) to hold.

(b) It is easy to deduce from Assumption 6.4(a) that the sequence

of occupation measures (µπx,n) is tight for every π ∈ UH , which yields

the existence of a subsequence such that µπx,ni
w→ µπ

∗
x (recall that “

w→”

stands for convergence in the w-weak topology).By Assumption 6.2(a)

and Corollary A.2(b), we have∫
S

c(y, a)µϕx(dy × da) ≤ lim
i→∞

∫
S

c(y, a)µπx,ni(dy × da)

≤ lim
n→∞

∫
S

c(y, a)µπx,n(dy × da) <∞

as required. So part (b) follows further from part (a).

(c) This is an immediate consequence of Lemma 6.2(a) and [24, Thm.15.2

& Thm.15.3]. 2

6.4 Main statements and proofs

We start with an important auxiliary result to implement vanishing dis-

count factor approach in the sequel.

Lemma 6.4 Under Assumption 6.2 and 6.3(a), −∞ < limα↑1(1−α)J∗α(z) ≤
limα↑1(1− α)J∗α(z) <∞.

Proof.

lim
α↑1

(1− α)Jα(π̂, z)

≤ lim
α↑1

(1− α)Eπ̂
z [
∞∑
t=0

αtc+(xt, at)]− lim
α↑1

(1− α)Eπ̂
z [
∞∑
t=0

αtc−(xt, at)]

≤ lim
n→∞

1

n
Eπ̂
z [
n−1∑
t=0

c+(xt, at)]− lim
n→∞

1

n
Eπ̂
z [
n−1∑
t=0

c−(xt, at)]

= lim
n→∞

1

n
Eπ̂
z [
n−1∑
t=0

c+(xt, at)]− lim
n→∞

1

n
Eπ̂
z [
n−1∑
t=0

c−(xt, at)]
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= lim
n→∞

1

n
Eπ̂
z [
n−1∑
t=0

c(xt, at)]

= V (π̂, z)

The second inequality holds by virtue of Abelian (Taubarian) Theorem

(see Theorem C.1), and the first equality comes from (ii) of Assumption

6.3(a). Taking infimum over all policies on the left hand side leads to

lim
α↑1

(1− α)J∗α(z) ≤ V (π̂, z) <∞.

For the other part of the statement, we observe

(1− α)Jα(π, z) ≥ −(1− α)J (−)
α (π, z),

thus,

(1− α)J∗α(z) ≥ −(1− α) sup
π
J (−)
α (π, z).

A direct implementation of Lemma 6.1 yields the existence of a deter-

ministic stationary policy fα such that,

sup
π
J (−)
α (π, z) = J (−)

α (fα, z).

Moreover, we have the following,

J (−)
α (fα, z)

= Efα
z

[
∞∑
t=0

αtc−(xt, at)

]

≤ ĉ

∞∑
t=0

αtEfα
z [w(xt)]

≤ ĉ

∞∑
t=0

αt
[∣∣∣∣∫

S

w(y)Qt
fα(dy|z)−

∫
S

w(y)µf0(dy)

∣∣∣∣+

∫
S

w(y)µfα(dy)

]
≤ ĉ

∞∑
t=0

αt
[
Rρtw(z) +

∫
S

w(y)µfα(dy)

]
= ĉ

[
Rw(z)

1− ρα
+

1

1− α

∫
S

w(y)µfα(dy)

]
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which further follows from Assumption 6.3(b). Recall (5.9) in Chapter 5

we have,

‖µfα‖w :=

∫
S

w(y)µfα(dy) ≤ ‖b‖
1− β

<∞

Therefore,

lim
α↑1

(1− α) sup
π
J (−)
α (π, z)

≤ lim
α↑1

ĉ

[
1− α
1− αρ

Rw(z) +
‖b‖

1− β

]
=

ĉ‖b‖
1− β

<∞

To summarize,

−ĉ
[
‖b‖

1− β

]
≤ lim

α↑1
(1− α)J∗α(z) ≤ lim

α↑1
(1− α)J∗α(z) ≤ V (π̂, z).

as desired. 2

Generally, Lemma 6.4 asserts that (1 − α)J∗α(z) is bounded as α in-

creases to 1, which in turn ensures the existence of a subsequence that

converges to some limit point. To simplify notations, we introduce the

following,

hα(x) := J∗α(x)− J∗α(z) (6.9)

hα(x) is called relative difference or differential discounted value function

(see [4] for details), which is introduced to facilitate the presentation of

next assumption. Loosely speaking, the positive part of cost can take

values more freely, so we use conditions of the type Condition (B) in

[86], which together with Assumption 6.3 is claimed to be equivalent to

Assumption 5.4.1 in [47].

Assumption 6.5 There exists a constant 0 < α0 < 1 such that

sup
α0≤α<1

(
J∗(+)
α (x)− inf

x∈S
J∗(+)
α (x)

)
<∞ x ∈ S
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Combined with Assumptions 6.2 and 6.3(b), the boundedness of hα(x)

viewed as a function of α for each fixed x ∈ S is established and elabo-

rated in the following corollary with a sketched proof.

Corollary 6.1 There exist two nonnegative real-valued functions u1(x)

(measurable) and u2(x), such that −u1(x) ≤ hα(x) ≤ u2(x) for all x ∈ S
and α0 ≤ α < 1. In addition, u1(x) ∈ Bw(S).

Proof. For the positive part, it can be seen from [47, Thm.5.4.6] that

there is a constant N ≥ 0 and a nonnegative real-valued (not necessarily

measurable) function d(·) on S such that −N ≤ h+
α (x) ≤ d(x) for every

x ∈ S and α ∈ [α0, 1), where α0 stems from Assumption 6.5. The result

in regard to its negative part follows directly from Lemma 6.1 and [50,

Lem.10.4.2] under Assumption 6.3(b). That is,

|h−α (x)| ≤ ĉR

(1− ρ)
[1 + w(z)]w(x).

To conclude,

u1(x) := N +
ĉR

(1− ρ)
[1 + w(z)]w(x)

and

u2(x) := d(x) +
ĉR

(1− ρ)
[1 + w(z)]w(x)

are the two promised bounding functions, where, in particular, u1 ∈
Bw(S). 2

Corollary 6.1 further implies that J∗α(x) is finite-valued for α0 ≤ α <

1. Refer to Lemma 6.4 and (6.9) to see this fact. Select and fix an

increasing sequence of discount factors (αn) that converges to 1 such

that

ρ∗ := lim
n→∞

(1− αn)J∗αn(z) = lim
α↑1

(1− α)J∗α(z) (6.10)

where ρ∗ is claimed to be a real constant by referring to Lemma 6.4. In

view of Corollary 6.1, we are able to extend (6.10) to each state x ∈ S.
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Corollary 6.2 From Lemma 6.4 and Corollary 6.1, for any state x ∈ S
and prefixed sequence (αn), we have limn→∞(1− αn)J∗αn(x) = ρ∗.

Proof.

|(1− αn)J∗αn(x)− ρ∗|

≤ (1− αn)|hαn(x)|+ |(1− αn)J∗αn(z)− ρ∗|

≤ (1− αn) max{u1(x), u2(x)}+ |(1− αn)J∗αn(z)− ρ∗|

→ 0 as n→∞

as required. 2

Furthermore, we obtain

ρ∗ = lim
n→∞

(1− αn)J∗αn(x) ≤ lim
α↑1

(1− α)J∗α(x) ≤ V (π̂, x),

where π̂ ∈ U suff . Taking infimum over UH on the right hand side along

with the sufficiency of U suff for Problem (6.1) yields

ρ∗ ≤ inf
π∈Usuff

V (π, x) = inf
π∈UH

V (π, x) ∀ x ∈ S. (6.11)

In doing so, the optimality equation for the discounted problem can be

expressed in terms of J∗αn(z) and hαn(x), that is,

(1− αn)J∗αn(z) + hαn(x)

= min
a∈A(x)

{
c(x, a) + αn

∫
S

hαn(y)Q(dy|x, a)

}
∀ x ∈ S. (6.12)

Theorem 6.1 Under Assumptions 6.1, 6.2, 6.3 and 6.5, there exists a

constant ρ∗ and a real-valued measurable function h∗(x) ∈ B−w(S) such

that the average cost optimal inequality (ACOI) is satisfied, i.e.,

ρ∗ + h∗(x) ≥ min
a∈A(x)

{
c(x, a) +

∫
S

h∗(y)Q(dy|x, a)

}
∀ x ∈ S

Moreover, there is a measurable selector f ∗ that attains the minimum

in the right hand side of the ACOI, which is turn induces an optimal

deterministic stationary policy f ∗ to Problem (6.1).
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Proof. We define

h∗(x) := lim
n→∞

hαn(x) = lim
n→∞

inf
k≥n

hαk(x) =: lim
n→∞

gαn(x). (6.13)

Note that, gαn(x) ≤ hαn(x) by definition and (gαn) form a nondecreasing

sequence of real-valued measurable functions that converges to h∗(x) in

the pointwise sense. From Corollary 6.1, −u1(x) ≤ h∗(x) (also, gαn(x)) ≤
u2(x), ∀x ∈ S, 0 < α < 1. Pass to the lower limit n→∞ on both sides

of (6.12), we obtain,

ρ∗ + h∗(x) = lim
n→∞

min
a∈A(x)

{
c(x, a) + αn

∫
S

hαn(y)Q(dy|x, a)

}
≥ lim

n→∞
min
a∈A(x)

{
c(x, a) + αn

∫
S

gαn(y)Q(dy|x, a)

}
= lim

n→∞
min
a∈A(x)

{
c(x, a) + αn

∫
S

gαn(y)Q(dy|x, a))

}
= lim

i→∞

{
c(x, ani(x)) + αni

∫
S

gαni (y)Q(dy|x, ani(x))

}
≥ c(x, a∗(x)) +

∫
S

h∗(y)Q(dy|x, a∗(x))

≥ min
a∈A(x)

{
c(x, a) +

∫
S

h∗(y)Q(dy|x, a)

}
The replacement of the lower limit with the ordinary limit in the third

line is due to the monotonicity of gαn(·). The existence of a subsequence

(ani(x)) that converges to a∗(x) in the fourth line follows from Assump-

tion 6.1(b). At last, the second to the last inequality follows by applying

Assumption 6.1(a,c), Corollary 6.1 and the extended Fatou’s Lemma (see

[50, Lem.8.3.7(b)]).

By [47, App.D.6], there exists a measurable selector f ∗ attaining the

infimum, which reads

ρ∗ + h∗(x) ≥ c(x, f ∗) +

∫
S

h∗(y)Q(dy|x, f ∗)

Iterating itself leads to

nρ∗ + h∗(x) ≥ Jn(f ∗, x) +

∫
S

h∗(y)Qn(dy|x, f ∗) (6.14)
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Indeed, by Assumption 6.2 and Corollary 6.1 we have

lim
n→∞

1

n

∫
S

h∗(y)Qn(dy|x, f ∗)

≤ lim
n→∞

1

n

∫
S

u1(y)Qn(dy|x, f ∗)

≤ k lim
n→∞

1

n

∫
S

w(y)Qn(dy|x, f ∗) = 0.

for some nonnegative constant k. Dividing by n and then passing to the

upper limit n → ∞ on both sides of (6.14) leads to ρ∗ ≥ V (f ∗, x) ≥
infπ V (π, x), which together with (6.11) yields V (f ∗, x) = infπ V (π, x) =

ρ∗ <∞. That is, ρ∗ is the optimal value of Problem (6.1) and f ∗ is the

promised optimal deterministic stationary policy. 2

6.5 An illustrative example

As is shown Section 6.3, a denumerable model is illustrated as an exam-

ple. S = N0 = 0, 1, 2, . . . and A = [0,+∞) are state and action spaces.

The admissible action space is defined as A(i) = [0, i], ∀ i = 1, 2, . . . and

A(0) = [a0, b0], where 0 < a0 < b0 < 1, which is compact-valued for every

i ∈ S. The evolution of the process is only controllable at state 0 ∈ S,

which is characterized as follows

Q(0|0, a) = a, Q(i|0, a) = (1− a)pi

Q(0|i, a) = 1 ∀ i = 1, 2, . . .

where (pi) is the prefixed probability mass function, and a ∈ [a0, b0].

The positive part of cost is free of control, whereas the negative part is

controlled by a weight function.

Formally, we put

c+(i) = ki

c−(i, a) = mi +B(a)

W (i) = Cri C > 0, r > 1
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where (ki) is a nondecreasing and sequence of non-negative real con-

stants, mi is an arbitrary sequence of nonnegative constants, and B(a)

is a nonnegative continuous function in a ∈ A, such that

sup
a∈A(i)

c−(i, a) ≤
√
W (i) (6.15)

A specific assumption is introduced for this example.

Assumption 6.6 Both of the following two series,
∑

i 6=0 pir
i and∑

i 6=0 piki, converge.

Within the present setting under the above assumption, negative part

of the cost is polynomially bounded and the positive part, which is cer-

tain to depend on the explicit form of ki, is allowed to be arbitrarily un-

bounded. Note that the generalization promised in Chapter 6 is achieved

and justified by this setting. Next let us show that W (i) satisfies Assump-

tion 6.2(d),

∑
i 6=0

W (i)Q(i|0, a) = aC + (1− a)C
∑
i 6=0

pir
i ≤ βC + b

W (0) = C ≤ βCri + b i = 1, 2, . . .

By inspecting Assumption 6.6, it is not difficult to select 0 < β < 1 and

b > 0 so that both of these two inequalities are satisfied. In addition,

both w(·) :=
√
W (·) and w′(·) := w(·), in accordance with the defini-

tions in Assumption 6.2 and 6.4, satisfy Assumption 6.2(c), with the same

constants β and b as well as r > 1. Therefore, Assumption 6.4(a) is sat-

isfied. Assumption 6.1 and the remainder of Assumption 6.2 are justified

in a straightforward manner. Assumption 6.5 follows from the following

reasoning. The model of positive part of the cost functions induces a

negative programming problem with the discounted expected total cost

criterion, the optimality equation is eligible for the determination of the
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optimal value function, i.e.,

V0 = k0 + αa∗V0 + α(1− a∗)
∞∑
i=1

piVi

Vi = ki + αV0 i = 1, 2, . . .

where a∗ = f ∗(0) is the promised optimal deterministic stationary policy.

We solve the above system of equations, and obtain

V0 =
k0 + α(1− a∗)

∑∞
i=1 piki

1− αa∗ − α2(1− a∗)

which is finite by Assumption 6.6. It is a direct observation that (Vi) is

nondecreasing for i ≥ 1 due to the monotonicity of (ki). Therefore, Vi is

finite for each state i and

min
i
V (i) = min{V0, V1}.

Two possible cases are discussed respectively. If V0 < V1,

Vi − V0 = (Vi − V1) + (V1 − V0) = ki − k1 + (V1 − V0) i = 2, 3, . . . ;(6.16)

otherwise,

Vi − V1 = ki − k1 i = 2, 3, . . . .

Therefore, in either case we need only examine the boundedness of V1−V0

as a function of the discount factor α ∈ (0, 1]. Concretely,

lim
α↑1

(V1 − V0) = lim
α↑1

(k1 − (1− α)V0)

= k1 − lim
α↑1

(1− α)k0 + α(1− α)(1− a∗)
∑∞

i=1 piki
1− αa∗ − α2(1− a∗)

= k1 −
1

2− a∗
k0 −

1− a∗

2− a∗
∞∑
i=1

piki > −∞ and < +∞

where the last line follows from L’Hôpital’s rule. Thus, Assumption 6.5

is justified.
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As has been discussed in Chapter 6.3, Assumption 6.4(b,c) and As-

sumption 6.3(a,i) will be verified in the sequel. It is worth mentioning

that for each f ∈ UDS (indeed, for each ϕ ∈ US), the corresponding

Markov chain Qf (respectively, Qϕ) is positive recurrent and aperiodic,

or equivalently, ergodic. So, Assumption 6.4(b) is satisfied. For the sake

of brevity, we shall consider only deterministic stationary policies UDS

below. As a consequence, there exists a unique i.p.m. µf (i) which is in-

deed a limiting distribution. This fact along with W (·) being a moment

function satisfying (6.4) yields the sufficiency of stationary polices, or

equivalently, Lemma 6.3(b). Let us evaluate the following expectation

for any f ∈ UDS provided that 0 ∈ S is the initial state.

Ef
0 [
τ0−1∑
t=1

c−(xt, f)] ≤ Ef
0 [
τ0−1∑
t=0

W (xt)]

≤ (1− f(0))C
∞∑
j=1

pjr
j <∞ (6.17)

Incidentally, the same expectation with respect to the positive part of

cost is computed,

Ef
0 [
τ0−1∑
t=1

c+(xt)] ≤ (1− f(0))
∞∑
j=1

pjkj <∞ (6.18)

again by Assumption 6.6. Thus, Assumption 6.3(a,ii) is justified be re-

ferring to [24, Thm.15.3]. In particular, one can derive the explicit form

the i.p.m. for the Markov chain Qf , where f(0) = a, taking the form

µf (0) =
1

2− a
;

µf (i) =
1− a
2− a

pi ∀i = 1, 2, . . .

where a ∈ [a0, b0]. In this case, Assumption 6.3(a,i) can be shown to

be satisfied for every stationary policy by (6.17), (6.18) and again [24,
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Thm.15.3]. That is, we have the following,

lim
n→∞

∞∑
j=1

c(j, f)µ̂ni,f (j) =
∞∑
j=1

c(j, f)µf (j) <∞

Finally, Assumption 6.3(b) is verified by [50, Prop.10.2.5]. In particular,

la(i) = 1− a

ν(i) = pi, i = 0, 1, 2, . . .

Note that everything except p0 comes from the primitives of our model.

A simple computation yields,{
p0 ≤ a0

1−a0
when a0 ≤ 1/2

p0 ≤ 1 when a0 > 1/2

which justify all the definitions and conditions required in [50, Prop.10.2.5].

Therefore, the corresponding optimality result follows.
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Chapter 7

An inventory-production

system

7.1 Introduction

In this chapter we present an inventory-production system to illustrate

main results in Chapter 2 and 5 (Theorem 2.2, 5.1 and 5.2). We follow

the notations in Chapter 2 for consistency.

We consider a S−valued controlled processes (xt) of the form

xt+1 = F (xt, at, zt), t = 0, 1, . . . , (7.1)

and always suppose the following assumption.

Assumption 7.1 (a) The so-called disturbance sequence (zt) are com-

posed of independent and identically distributed (i.i.d.) random variables

with values in a Borel Space Z, and (zt) is independent of the initial dis-

tribution γ. The common distribution of zt is denoted by G;

(b) F : K× Z → S is a given measurable function, where K ⊂ S×A is

the graph of admissible action space A(·) defined in Chapter 1.

Let π ∈ UH be an arbitrary control policy. By Assumption 7.1(a),

the variables (xt, at) and zt are independent for each t = 0, 1, . . . . Then

the transition kernel Q is given by
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Q(ΓS|x, a) = Prob(xt+1 ∈ ΓS|xt = x, at = a)

=

∫
Z

1{F (x,a,z)∈ΓS}G(dz) (7.2)

for every ΓS ∈ B(S), (x, a) ∈ K, and t = 0, 1, . . . . Moreover, for every

measurable function u ∈ B(S), we have

u′(x, a) : =

∫
S

u(dy)Q(dy|x, a) = E[u(xt+1)|xt = x, at = a]

=

∫
Z

u[F (x, a, z)]G(dz). (7.3)

7.2 An inventory-production system

The state variable xt, the control action at, and the disturbance zt, for

every t = 0, 1, . . . , have the following practical meanings:

• xt denotes the inventory level at the beginning of period t;

• at stands for the amount of products ordered (or produced imme-

diately) at the beginning of period t;

• zt represents the amount of sales during the period t.

Setting the conventional notation c+(x, a) := max{c(x, a), 0}, the in-

ventory level is assumed to evolve in the following way

xt+1 = (xt + at − zt)+, t = 0, 1, . . . , (7.4)

given the initial inventory level x0. The state space is thereby S :=

[0,+∞), while the production variable at takes value in a compact inter-

val A := [0, θ], for some given constant θ > 0, irrespective of the present

value, meaning that the admissible action space A(x) satisfy A(x) = A

for every x ∈ S.
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In addition, we suppose that the sales process (zt) satisfies Assump-

tion 7.1 with Z := [0,+∞), so that zt is non-negative for each t, and

possesses a common distribution G with the following properties:

• G has a continuous bounded density g, i.e., G(dz) = g(z)dz;

• G has finite mean value z, i.e., z := E(z0) =
∫∞

0
zG(dz) <∞.

To complete the description of the control model

M := {S,A, (A(x), x ∈ S), Q, c0, c1, γ},

where Q is given by (7.2) and (7.4), we shall consider a primary cost

function c0 that represents a net cost of the form

production cost + maintenance (or holding) cost − sales revenue

given by

c0(x, a) := p · a+m · (x+ a)− s · E[min(x+ a, z0)] (7.5)

and a secondary cost function c1 that stands for a pure cost of the form

production cost + maintenance cost

given by

c1(x, a) := p · a+m · (x+ a) (7.6)

where in both definitions, p,m, and s are positive constants. The unit

production p and the unit maintenance cost m do not exceed the unit

sale price, that is,

p,m ≤ s. (7.7)
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7.2.1 The absorbing model

In this subsection, we present a discount model to illustrate Theorem

2.2 in Chapter 2. As is shown in [50, 91], there is a close relationship

between a discount model and a transient model. Indeed, the former can

be viewed and treated as a special case of the latter one. We state a

simplified version of such a relation below, and one can get insight into

more subtle discussion in the above references. We modify Assumption

2.1(c) so that the weight function w(·) meets Lyapunov-like condition

which will be specified below.

Suppose we have a discounted model

M1 := {S,A, (A(x), x ∈ S), Q, c0, c1, γ},

define the corresponding objective function as

J(π, x) := Eπ
x

∞∑
t=0

αtc(xt, at)

We attempt to transform it into an absorbing model in the following

manner. Firstly, we adjoin two isolated points,4S and4A to the original

state and action space, S and A, respectively. That is, we have two

enlarged spaces that take the form

S := S ∪4S, A := A ∪4A

Accordingly, the admissible action space is modified as

Ã(x) := A(x) ∀x ∈ S, Ã(4S) := 4A

Consequently, the transition kernel is modified as

Q̃(y|x, a) := αQ(y|x, a) ∀x ∈ S, y ∈ S;

Q̃(4S|x, a) := 1− α ∀x ∈ S;

Q̃(4S|4S, a) := 1,
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and the cost functions as

c̃0 (and, c̃1)(4S,4A) := 0, c̃0 (and, c̃1)(x, a) := c(x, a) ∀ x ∈ S.

In doing so, we obtain an enlarged model

M̃1 := {S,A, (Ã(x), x ∈ S), Q̃, c̃0, c̃1, γ}.

Let P̃ π̃
x and Ẽπ̃

x be the induced probability measure and expectation op-

erator for a given policy π in M and initial state x ∈ S. Finally, let

J̃(π̃, x) := Ẽπ̃
x

∞∑
t=0

c̃(xt, at). (7.8)

This objective function is well defined under the condition that the fol-

lowing Lyapunov-like inequality (7.9) holds,

sup
a∈A(x)

∫
S

w̃(y)Q(dy|x, a) ≤ βw̃(x) + b ∀ x ∈ S (7.9)

where 0 < β < 1/α, and b is a real constant, and w̃(x) := w(x) for every

x ∈ S and w̃(4S) = 0.

The thing is to show the equivalence between M1 and M̃1 in the

sense that for each π with respect to M1 there is π̃ with respect to M̃1

such that

J(π, x) = J̃(π̃, x)

Clearly, the two policies characterize each other, which has been ex-

plained in Chapter 2. Consequently, M̃1 satisfies Definition 2.1.

With this observation in mind, we are ready to continue our discussion

of the inventory-production problem by focusing on M̃1. Next, we verify

Assumption 2.1, 2.2 and 2.4.

Firstly, we observe that

E[min(x+ a, z0)] = (x+ a)[1−G(x+ a)] +

∫ x+a

0

zG(dz), (7.10)

which implies that both c0(x, a) and c1(x, a) are continuous in (x, a) ∈ K
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since G(·) has a continuous and bounded density function. Assumption

2.3 and 2.4(b) are validated. On the other hand,

u′(x, a) =

∫ ∞
0

u[(x+ a− z)+]g(z)dz

= u(0)[1−G(x+ a)] +

∫ x+a

0

u(x+ a− z)g(z)dz. (7.11)

Thus, an elementary change of variable in the latter integral yields

u′(x, a) = u(0)[1−G(x+ a)] +

∫ x+a

0

u(z)g(x+ a− z)dz (7.12)

and so we see that u′(x, a) is continuous in (x, a) ∈ K for each measurable

function u ∈ B(S). This implies that Assumption 2.2(b) is satisfied.

We move on to the determination of a proper weight function w. To

this end, let us consider the moment generating function ψ of θ − z0,

ψ(r) := E[er(θ−z0)], ∀ r ≥ 0. (7.13)

As ψ(0) = 1 and ψ is continuous, for each ε > 0 there is a positive

number r̂ such that

ψ(r̂) ≤ 1 + ε. (7.14)

Define

W (x) := k · er̂(x+2z̄), x ∈ S. (7.15)

Then, substituting u with W in (7.11) yields

W ′(x, a) = W (0)[1−G(x+ a)] +W (x)

∫ x+a

0

er̂(a−z)G(dz), (7.16)

so that, since 1−G(x+ a) ≤ 1 and r̂(a− z) ≤ r̂(θ− z) for all a ∈ A, we

obtain

W ′(x, a) ≤ W (0) + ψ(r̂)W (x) ≤ βW (x) + b ∀x ∈ S, (7.17)
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with

β := 1 + ε and b := W (0) (7.18)

On the other hand, a direct computation using (7.7) and (7.10) shows

that supa∈A |c0(x, a)| ≤ s(x+ l0z̄), and supa∈A |c1(x, a)| ≤ s(x+ l1z̄), for

every x ∈ S, where l0 and l1 are some constants. We can always find

such constants as they depend merely on θ and z̄. Define

w(x) = w′(x) =
√
W (x) =

√
k · e

r̄
2

(x+2ẑ), (7.19)

therefore,

sup
a∈A
|c0(x, a)| ≤ k0 · w(x) (7.20)

sup
a∈A
|c1(x, a)| ≤ k1 · w(x) (7.21)

for some constants k0 and k1 sufficiently large. Thus, w(·) is continuous

in x ∈ S, and Assumption 2.1(a) and 2.2(a) are satisfied. The initial

distribution γ(·) is defined to be a probability measure on S such that∫
W (y)γ(dy) < ∞ which naturally validates Assumption 2.1(b). Con-

sider a stationary policy f0(x) ≡ 0, ∀ x ∈ S, so that

J1(f0, γ) = Ef0
γ [

∞∑
t=0

αtc1(xt, at)]

≤
∫
S

Ef0
x [

∞∑
t=0

k1α
tw(xt)]γ(dx)

=
k1

1− α

[∫
S

w(x)γ(dx) +
b

1− β

]
<∞

Assumption 2.4(a) is satisfied if d1 > V1(f0, γ). We refer the readers

to Remark 2.1(b) for a sufficient condition for Assumption 2.2(c). In

particular, (i) and (ii) of Remark 2.1(b) are trivial. For part (iii), it is

the case that W (x) = w(x)w′(x) has been verified by (7.17) whereas w(x)

132



itself is not. By the same reasoning in the treatment of W (x) we obtain

w′(x, a) = w(0)[1−G(x+ a)] + w(x)

∫ x+a

0

w
r̂
2

(a−z)G(dz)

≤ w(0) + w(x)
√
ψ(r̂)

≤ w(0) + w(x)ψ(r̂)

The second line follows from Jensen’s inequality and that
√
· is a con-

cave function. Part (iii) immediately follows from the fact that Pw(S) ⊆
PW (S) and the same argument when W (·) is replaced by w(·). Inciden-

tally, Assumption 2.1(c) is shown to be satisfied. Note that ε is allowed to

be chosen arbitrarily close to 0, which indicates that we are always able

to find a β that corresponds to any discount factor α such that β < 1/a.

7.2.2 The average model

This subsection is devoted to illustrating Theorem 5.1 and Theorem 5.2.

The model M with Lyapunov-like condition (7.9) is maintained, and in

addition, z̄ := E(z0), θ < z̄. The extra assumption states that the ex-

pected demand z̄ should exceed the maximum allowed production. This

is slightly more restrictive than what is imposed in the previous exam-

ple, where no relation between z̄ and θ is specified. In contrast to the

constant β in (7.9) which takes the value 1 + ε greater than 1, we will

show that β can possibly be smaller than 1 within our new setting.

Let ψ(r) := Eer(θ−z0), r ≥ 0, be the moment generating function of

θ− z0. Due to that ψ(0) = 1 and ψ′(0) = E(θ− z0) = θ− z̄ < 0, there is

a positive number r∗ such that ψ(r∗) < 1. Therefore, the newly-defined

weight function takes the form,

W (x) := er∗(x+2z̄), x ∈ S, (7.22)

we see that w2(·) := W (·) satisfies (7.16) and (7.17) with r̂ being replaced

by r∗. In particular, (7.17) becomes

W ′(x, a) ≤ βW (x) + b x ∈ S, a ∈ A (7.23)
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with

β := ψ(r∗) < 1, and b := W (0) (7.24)

The verification of the set of assumptions are quite similar to what has

been done in the previous case. We pick out those who are different

from, or additional to the previous and provide a simple discussion. For

Assumption 5.2(b), the moment function takes the following form,

v(x, a) :=
√
W (x), ∀x ∈ S, a ∈ A.

Assumption 5.2(d) follows from the aforementioned argument which states

that
∫
S
u(y)Q(dy|x, a) is continuous in (x, a) ∈ K for every u ∈ C(S).

This leads to the conclusion that both Assumption 5.2(d,e) are met. As-

sumption 5.3 and 5.4 are verified by the same argument as in [50, Exp

10.9.3] with f ∈ UDS being replaced with or extended to ϕ ∈ US. The

resulting process is a homogeneous Markov chain by Proposition 1.1.

Briefly, the process Qϕ(dy|x) is positive Harris recurrent for every sta-

tionary policy ϕ. Consequently, the above two assumptions follow from

individual ergodic theorem (see [52, Thm.2.3.4]). Assumption 5.5 follows

exactly the same as in [50, Exp 10.9.3], which puts an end to our work.

To conclude, all assumptions in Chapter 5 are satisfied so that Theorem

5.1 and 5.2 hold.
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Chapter 8

Conclusion

In this chapter we briefly summarize the material presented in this dis-

sertation.

Chapter 2 tackles the constrained absorbing MDP model in Borel

spaces with possibly unbounded (from both the above and below) cost

functions, and the constrained discounted MDP model with a state-

action-dependent discount factor not necessarily separated from one. The

latter problem is addressed as a specific example of the former, along

with the observation of an equivalence between a discounted model and

an absorbing one. Incidentally, we present some topological properties

of occupation measures in a proper topology. In addition, duality results

are derived by the linear programming approach.

In Chapter 3 we propose a similar problem, but in a more constrained

context than that in Chapter 2. To the best of our knowledge, such a

problem has not been studied before, partly because of the lack of related

techniques. Nevertheless, it could be resolved by a variant of dynamic

programming approach similarly to [65]. The original model is reformu-

lated into an unconstrained one, and corresponding optimality results are

derived with the same method obtained in Chapter 4 which deals with

standard MDP models. In addition, the correspondence between policies

in two models is shown. It should be emphasized that only optimal ran-

domized Markov policies are justified, as distinct from the sufficiency of

randomized stationary policies for the traditional constrained problems,

which is deemed to be an open problem.
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In Chapter 4 we are concerned with a risk-sensitive MDP, i.e., at-

tempting to incorporate the notion of risk measures into the standard

MDP model. The risk aggregating method applied in the present work

is iterated coherent risk measure. Again, we allow our cost functions to

be defined in a fairly relaxed way. To be specific, the positive part is ar-

bitrarily unbounded, whereas the negative part is controlled by a weight

function. In this chapter, optimality results for either the finite or in-

finite horizon are obtained using dynamic programming approach under

an extension of Berge’s Theorem.

Chapter 5 and 6 concern the average MDP problem with unbounded

cost functions. In Chapter 5, we study a constrained MDP model formu-

lated similarly to what is considered in Chapter 2. The main difference

resides in that the process of our interest here exhibit some ergodic be-

haviours, as compared with an absorbing model in the former case. Under

mild conditions, we establish the existence of optimal mixing policies and

characterize the extreme points of the space of performance vectors, by

considering a sufficient class of stable policies. In Chapter 6, we turn back

to a unconstrained model allowing cost functions to be unbounded below,

and letting its positive part be arbitrarily unbounded. A discussion of

sufficiency in the denumerable case is provided. We establish the average

cost optimality inequality (ACOI) and the optimal deterministic station-

ary policy as well. The extension of Chapter 6.3 to the general Borel

state space remains an open problem, as the definitions of irreducibility

and ergodicity are quite different from those in the denumerable case.
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Appendix A

Semicontinuous functions,

set-valued mappings and

measurable selectors

Let S and A be two Borel spaces. A set-valued mapping (also known

as a multifunction, or a correspondence) A(·) from S to A is a function

such that A(x) is a nonempty subset of A for each x ∈ S. The graph of

the set-valued mapping A(·) is the subset of S × A defined as

K := {(x, a) ∈ S × A : x ∈ S, a ∈ A(x)}.

Definition A.1 (a) A measurable function g on S is lower semicontin-

uous, if for each x ∈ S, and each sequence S 3 xn → x ∈ S,

lim
n→∞

g(xn) ≥ g(x);

(b) A measurable function g on K is K-inf-compact, if g is lower semi-

continuous on K, and for each S 3 xn → x ∈ S and an ∈ A(xn) such

that c(xn, an) is bounded from the above with respect to n, the sequence

(an) admits a limit point a ∈ A(x).

The following proposition is a standing one, and can be viewed as

a way of characterizing lower semicontinuous functions, also known as

Baire functions, and consequently, is often referred to as Baire’s theorem.
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Proposition A.1 A measurable function g on S is lower semicontinu-

ous and bounded below, if and only if there exists a sequence of continuous

and bounded functions gn ∈ C(S) such that gn ↑ g in the pointwise sense.

Proof. See [12, §7.5]. 2

Corollary A.1 Given a continuous weight function w ≥ 1 on S, a mea-

surable function g on S is lower semicontinuous and bounded from the

below in the w-norm, if and only if there exists a sequence of continuous

and w-bounded functions gn ∈ Cw(S) such that gn ↑ g in the pointwise

sense.

The following result is a natural consequence of Proposition A.1 and

Corollary A.1, thus whose proof is omitted.

Corollary A.2 (a) Suppose a sequence of finite measures µn ∈ M(S)

converges to some µ ∈ M(S) in the usual weak topology, denoted by

µn → µ, and g is a lower semicontinuous function on S and bounded

from the below, then

lim
n→∞

∫
S

g(x)µn(dx) ≥
∫
S

g(x)µn(dx);

(b) Given a continuous weight function wge1 on S, suppose a sequence

of finite measures µn ∈ Mw(S) converges to some µ ∈ Mw(S) in the

w-weak topology, denoted by µn
w→ µ, and g is a lower semicontinuous

function on S and bounded from the below in the w-norm, then

lim
n→∞

∫
S

g(x)µn(dx) ≥
∫
S

g(x)µn(dx).

Lemma A.1 Let w ≥ 1 be a continuous weight function on S, and

Q(dy|x, a) be a stochastic kernel on B(S) × K, then the following two

statements are equivalent:

(a)
∫
S
g(y)Q(dy|x, a) is lower semicontinuous in (x, a) ∈ K for each lower

semicontinuous function g on S, which is bounded from the below in the

w-norm.

(b)
∫
S
w(y)Q(dy|x, a) is continuous in (x, a) ∈ K, and

∫
S
g(y)Q(dy|x, a)

is continuous in (x, a) ∈ K and bounded for each g ∈ C(S).
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Proof. See [8, Lem.2.4.7]. 2

Definition A.2 (a) A set-valued mapping A(·) from S to A is called

measurable, if A−1(ΓA) is a Borel subset of S for every open set ΓA ⊆ A;

(b) A set-valued mapping A(·) from S to A is called upper semicontinous,

if for each S ∈ xn → x ∈ S and an ∈ A(xn), the sequence (an) admits a

limit point in A(x).

Proposition A.2 Let A(·) be a compact-valued set-valued mapping from

S to A. The following two assertions are equivalent:

(a) A(·) is measurable;

(b) K, the graph of the set-valued mapping A(·), is a Borel subset of

S × A.

Proof. See [55] and [85]. 2

Given a set-valued mapping A(·) from S to A, a measurable function

f : S → A such that f(x) ∈ A(x) for each x ∈ S is called a measurable

selector for the set-valued mapping A(·). Moreover, g : K→ R is a given

measurable function and

g∗(x) := inf
a∈A(x)

g(x, a), ∀ x ∈ S.

If g(x, ·) attains its minimum at some point in A(x), we use “min” instead

of “inf”.

The following lemma is a version of measurable selection theorem,

which is vital to justify the existence of an optimal deterministic station-

ary policy.

Lemma A.2 Suppose that the given set-valued mapping A(·) is measur-

able and compact-valued. The following two assertions hold.

(a) If g(x, ·) is lower semicontinuous on A(·) for each x ∈ S, then there

exists a measurable selector f ∗ such that

g(x, f ∗(x)) = g∗(x) = min
a∈A(x)

g(x, a) ∀ x ∈ S, (A.1)

and g∗ is measurable on S;
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(b) If A(·) is upper semicontinuous and g(·, ·) is lower semicontinuous

and bounded from the below on K, then there exists f ∗ for which (A.1)

holds, and g∗ is lower semicontinuous and bounded from the below on S.

Proof. See [55] and [85]. 2

Lemma A.3 For any K-inf-compact (extended real-valued) function g

on K, there is a measurable mapping f ∗ from S to A satisfying f ∗(x) ∈
A(x) and

g(x, f ∗(x)) = inf
a∈A(x)

g(x, a).

Moreover, infa∈A(x) g(x, a) is lower semicontinuous on S, and

A∗g(x) := {b ∈ A(x) : g(x, b) = inf
a∈A(x)

g(x, a)}

is compact if infa∈A(x) g(x, a) <∞, and A∗g(x) = A(x) if infa∈A(x) g(x, a) =

∞.

Proof. See [37]. 2
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Appendix B

Prohorov’s theorem

The following well-known definitions come from [1, 47].

Definition B.1 A nonnegative measurable function v(x) on a Borel space

S is called a moment (or strictly unbounded function) if there exists a

nondecreasing sequence of compact subsets Sn ↑ S, n = 1, 2, . . . such that

limn→∞ infx∈SCn v(x) = ∞. Here we adopt the convention that the infi-

mum taken over the empty set is ∞.

Definition B.2 (a) A family G of finite measures on a Borel space S

is called tight if ∀ ε > 0, there exists a compact subset Sε ⊆ S : ∀ µ ∈
G, µ(SCε ) < ε.

(b) A set S0 is called relatively compact (or, precompact) in a Borel space

S, where S0 ⊆ S, if for any sequence (bn), bn ∈ S0, n = 1, 2, . . . , there

exists a subsequence (bnk) such that bnk converges to some point b∗ ∈ S
in a proper topology. If b∗ ∈ S0, S0 is called compact in the prescribed

topology.

The following result is celebrated Prohorov’s theorem, although the

original statement concerns the space of probability measures P(S).

Theorem B.1 Let G be a family of finite measures on a Borel space S.

The following assertion holds.

(a) If G is tight, then it is relatively compact in M(S) in the usual weak

topology;
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(b) Suppose that S is separable and complete. If G is relatively compact

in M(S) in the usual topology, then it is tight.

Proof. See [16, Thm.8.6.2]. 2
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Appendix C

Miscellaneous

The following result is the well-celebrated Tauberian (Abelian) theorem.

Theorem C.1 Let (ut)t=0,1,2,... is a sequence of nonnegative real num-

bers. Then

lim
n→∞

1

n

n−1∑
t=0

ut ≤ lim
α↑1

(1− α)
n−1∑
t=0

αtut ≤ lim
α↑1

(1− α)
n−1∑
t=0

αtut ≤ lim
n→∞

1

n

n−1∑
t=0

ut

Proof. See [89, ThmA.4.2]. 2

The following two results are referred as Krein-Milman theorem and

Caratheódory convexity theorem respectively in various literature.

Theorem C.2 Let S be a compact and convex subset of the n-dimensional

Euclidean space Rn, where n is a natural number. Then, S is equal to

the convex hull of its extreme points.

Proof. See [13, Prop.3.3.1(c)], or [1, Thm.7.68]. 2

Theorem C.3 Let S be a nonempty subset of the n-dimensional Eu-

clidean space Rn, where n is a natural number. Then every vector in the

convex hull of S can be represented by a convex combination of no more

than n+ 1 vectors in S.

Proof. See [13, Prop.1.3.1(b)], or [1, Thm.5.32]. 2

The following lemma justifies the convergence of a sequence of weakly

monotone functions.
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Lemma C.1 Suppose vn(·) ≥ vm(·)−σm(·) for each n ≥ m, where vk are

(extended real-valued) measurable function on a Borel space S, and the

nonnegative real-valued functions σm on S satisfy σm(x)→ 0 as m→∞,
then limn→∞ vn exists. If vk are lower semicontinuous, and σk are upper

semicontinuous, then limn→∞ vn is also lower semicontinuous.

Proof. See the proof of Lemma A.1.4(c) of [8], which applies to the case

of extended real-valued functions. See also Proposition 10.1 of [85]. 2

Obviously, σm ≡ 0 satisfies the conditions needed in Lemma C.1,

which reduces to the conventional monotone convergence theorem.
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[41] González-Hernández and Hernández-Lerma, O.: Extreme points of

sets of randomized strategies in constrained optimization and control

problems. SIAM J. Optim. 15 (2005) 1085-1104.
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[62] Jaśkiewicz, A. and Nowak, A.: Discounted dynamic programming

with unbounded returns: application to economic models. J. Math.

Anal. Appl., 378 (2011) 450-562.
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