Continuity of Quadratic Matings

Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy
by

Liangang Ma

Nov 2015

Acknowledgement

First I want to give thanks to my Ph.D supervisor, Prof Mary Rees, for her offer of the proper Ph.D project and keen guidence during my four years in Liverpool. She provided primitive ideas for the whole project and the discussions with her were very helpful to me. Then I want to thank Prof Lasse Rempe-Gillen's guidence, inspiration and encouragement during my Ph.D time. I am very lucky to be one of the many people who benefit from his bright, knowledgeable mind and generous help in academics. I also want to thank Dr Radhakrishnan Nair, who encouraged me during my reasearch and led me into the field of metric number theory. I enjoy the talks with members in the dynamical group, Dr Toby Hall, Dr Alexandre De Zotti, Dr Poj Lertchoosakul, Dr Alena Jaššová, Ms Nada Alhabib, Mr Stephen Worsley, Mrs Mashael Alhamd, and people in the department, Prof Ke Chen, Dr Anna Pratoussevitch, Dr Oleg Karpenkov, Dr Vladimir Guletskii, Mr Anwar Alameddin, Dr Heather Riely, Miss Katy Gallagher, Mr Shanyun Chu, Miss Weihong Ni, Miss Qiuyue Zhao, Dr Kalyan Banerjee, Dr Joe Palacios Baldeon, Mr Jason Van Zelm, Dr Andrew Monaghan, Dr Graham Rieve, Dr Ashley Brereton, Mrs Shirley Farrell, Dr Stewart Haslinger, Mr Oliver Eivind Anderson. I like communications with the dynamical people from Warwick, Imperial College, Open University, Christian-Albrechts-Universität zu Kiel and Jacobs University Bremen, from whom I learn something in seminars or confrences. I appreciate Prof Gwyneth Stallard and Prof Tan Lei's help in my academic work. Special thanks goes to Dr Yi Zhang, from whom I got lots of useful suggestions, both on my research and my life. At last, I would like to thank Prof Lasse Rempe-Gillen and Prof Shaun Bullett's comments on the thesis, which help to improve it greatly.

Contents

1 Introduction 1
1.1 Some brief history of complex dynamics study 1
1.2 History of the mating construction and the current re- search frontiers 3
2 Basic concepts 7
2.1 Quadratic polynomials 7
2.2 The external rays and lamination models for quadratic polynomials 11
2.3 Thurston equivalence 15
2.4 Thurston equivalence implies semiconjugacy 16
2.5 Thurston's criterion 17
2.6 Tuning 19
2.7 Mating 19
2.8 Tan Lei's Theorem 22
2.9 Recognising matings and the lamination maps up to Thurston equivalence 23
2.10 Identifying the map s_{p} associated with a particular mating 25
2.11 Conjugacy on Julia sets between R and R_{*} on $\operatorname{Per}_{m^{\prime}}(0)$ 27
3 Yoccoz puzzle 32
3.1 The definition 33
3.2 The parameter Yoccoz puzzle 34
3.3 The renormalization theory 35
3.4 Some results proved using Yoccoz puzzles 36
3.5 A convergence result proved using the parameter Yoccoz puzzle 37
4 Main results 38
4.1 The conjectures on one-parameter continuity of 2-matings 38
4.2 Main results on continuity of matings 40
5 Proof of Theorem 3.5.1: convergence of the polynomials Thurston equivalent to the lamination maps s_{p} 43
5.1 Control of the size of limbs of M 43
5.2 Proof of Theorem 3.5.1 44
6 Outline of proof of Theorem 4.2.1: on the particular se- quence of odd denominator rationals 58
7 Parabolic perturbation for critically periodic maps 59
7.1 Estimate the forward iterations 60
7.2 Estimate the backward iterations 66
7.3 Colliding the forward and backward iterations around the parabolic cycle: proof of Theorem 7.0.11 69
8 The critically periodic maps R_{n} are matings 72
8.1 Links between various dynamical planes 72
8.2 An invariant circle for R_{n} 74
9 Recover the odd denominator rational sequence p_{n} from R_{n} 82
10 Bubble rays puzzle partitions and parapuzzle partitions for some 2 -rational maps 89
10.1 Matability of the basilica with non-renormalizable quadratic polynomials 89
10.2 Bubble rays puzzle partitions for f_{-1}, R_{a} and a landing theorem 91
11 Proof of Theorem 4.2.2: continuity of matings between f_{-1} and parameters near an arbitrary non-renormalizable quadratic polynomial following Aspenberg and Yampol- sky 93
12 The case of Fatou components with disjoint closures: proof of Theorem 4.2.5 97
12.1 An example $s_{\frac{3}{7}} \amalg s_{\frac{3}{31}}$ 97
12.2 Notations and outline strategy for the proof of Theorem 4.2.5 99
12.3 Persistent Markov partitions for rational maps near R_{*}. 101
12.4 The case with a bounded minor leaf: proof of Theorem4.2.4 following the Mandelbrot-like family theory104
12.5 Construction and shrinking of the nested sets $B_{n}\left(R_{*}\right)$ on the dynamical plane 105
12.6 Convergence of the nested sets $X B_{n}$ on the parameter plane X 109
12.7 Proof of Theorem 4.2.5 118
13 References 130

1 Introduction

1.1 Some brief history of complex dynamics study

The study of complex dynamics was started by Schröder [Sch], Koenigs [Koe], Böttcher [Bot], Lattès [Lat], Carathéodory [Car], Fatou [Fat1] [Fat2][Fat3], Julia [Jul1] [Jul2] and many others. D. S. Alexander wrote a detailed history about the early research up to Julia [Ale]. After personal computers were introduced into this field, the research came into explosion in the 1980s. There were many exciting results during this period. Douady and Hubbard showed that the Mandelbrot set M is closed, bounded and connected [DH2] [Dou2]. The exterior of M is isomorphic to the exterior of $\overline{\mathbb{D}}$ (the closed unit disc) under a conformal map $\Phi_{M}[\mathrm{DH} 2]$. They also developed the theory of renormalization and polynomial-like mappings to explain the occurrence of Mandelbrot-like sets in various families of rational maps [DH1]. The mating structure was also invented in this article by them. Later on, the theory of captures and tunings was developed. Douady also investigated some continuity and discontinuity problems on Julia sets and filled Julia sets of degree d polynomials under Hausdorff metric [Dou1]. Sullivan [Sul] showed that there are no wandering Fatou domains for rational maps, which answers a question of Fatou and Julia, by introducing the theory of quasiconformal mappings [Ahl] into complex dynamics. Mañé, Sad and Sullivan developed the powerful λ lemma [MSS] to link the geometric properties of the sets in some parameter spaces with those of sets on the dynamical planes. Later on McMullen showed that Mandelbrot-like sets are dense in the bifurcation locus for holomorphic families of any rational maps [McM1]. He also developed Douady and Hubbard's theory of renormalization in [McM2]. At about the same time when the rational dynamics were stud-
ied intensively, the research of holomorphic and meromorphic dynamics, or even some general quasi-conformal dynamics, for example, the exponential maps, $\lambda e^{z}, \lambda \in \mathbb{C} \backslash\{0\}$ and quasi-regular maps, was also in fast development. Higher dimensional complex dynamics also got attentions of many mathematicians in recent decades. It turns out that people want to iterate more and more general functions or function systems now, new phenomenons and patterns are expected on them, of course.

Figure 1: The Mandelbrot set

The main problem considered in this thesis is continuity of matings. Mating is a construction to create a rational map from two polynomials of the same degree. The construction can be considered up to Thurston equivalence (which is a type of homotopy equivalence, see the definition in Section 2.3) or up to topological conjugacies, or even some particular conformal conjugacies. Now we want to put the continuity problem into
context.

1.2 History of the mating construction and the current research frontiers

As mentioned before, matings first appeared in the work of Douady and Hubbard [DH1] in 1985. They are there as a particular example on which their theory of polynomial-like mappings can be applied to show the existence of Mandelbrot-like sets in some rational parameter space. After this people began to ask whether a mating of two arbitrary polynomials exists or not, and if it exists, is the quadratic rational map which is Thurston equivalent to it unique? The existence problem of matings between quadratic hyperbolic polynomials was solved by Tan Lei in her thesis. Mary Rees had an unpublished proof earlier [Ree1]. They confirmed a conjecture of Douady and Hubbard, that the mating of two critically finite quadratic polynomials exists and is unique up to Möbius conjugacies as long as they are not in conjugate limbs of the Mandelbrot set M. In fact it is possible to produce a topological model (from the lamination models for polynomials) for any hyperbolic critically finite rational map which is a mating up to Thurston equivalence, see Definition 2.7.1. This was done in [Ree2] and was extended to other critically finite rational maps which are matings by Shishikura [Shi2]. Using the topological models for matings, the concept can be extended to maps which are not critically finite, so one can consider matings of general hyperbolic quadratic polynomials.

Later on there were results about matings of non-hyperbolic ones, where the mating is defined up to some conformal conjugacies, see Definition 2.7.2. For example, there were results on mating Siegel quadratic polynomials in [YZ] and results on mating non-renormalizable quadratic
polynomials with the so called basilica polynomial in [AY]. The latter result was suggested by J. Luo in his thesis [Luo] in 1995.

The uniqueness usually follows from Thurston's criterion. Thurston's criterion (Theorem 2.1, [Tan1]) gives necessary and sufficient conditions for a critically finite branched covering to be Thurston equivalent to a rational map. Except for some simple examples (those ones having Thurston obstructions [Thu1]), the rational map is unique up to Möbius conjugacies. Levy proved in his thesis that a critically finite degree 2 branched covering map of the sphere is Thurston equivalent to a rational map as long as it does not have Levy cycles [Lev]. There are Lattès examples for which the rational maps of matings are not unique by K . Pilgrim in [Mil2].

Thurston equivalence between a critically finite branched covering and a critically finite rational map implies semiconjugacy under mild adjustment on the definition of the branched covering near its periodic critical points (see Section 2.4). If $f \simeq g$ (we use \simeq to denote Thurston equivalence), where g is a critically finite rational map, f is a critically finite branched covering, then there is a continuous map $\theta: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$, such that

$$
\theta \circ f=g \circ \theta
$$

θ maps critical orbits to critical orbits and is a topological conjugacy near any periodic critical orbit (see for example [Ree2, Section 1.5]).

In 1997 Adam Epstein gave some examples of non-continuous quadratic matings in [Eps], which tells us that in general, the mating structure is not continuous in the parameter space of two variables. As there are two variables in the mating structure, the continuity problem can be considered in one or two variables. Epstein's counterexamples depend on variation of the two variables simultaneously, while the continuity in one
variable has more chance to be true, at least in some special cases as we will show in the thesis.
P. Haïssinsky and Tan Lei proved a continuity result along simple pinching paths of geometrically finite polynomials with connected Julia sets and attracting points [HT]. As a generalization of Cui's techniques of pinching and plumbing [Cui] from geometrically finite rational maps to weakly hyperbolic maps, they can show the continuity of matings with each of the two polynomial variables g_{0}, g_{1} going along two paths with the two endpoints f_{0}, f_{1} being two parabolic parameters. f_{0} and f_{1} are on the boundary of the two hyperbolic components of M containing g_{0}, g_{1}.

Matings of n-polynomials (we use the terminology for polynomials of degree n) for $n \geq 3$ have also been studied, for example, [ST] and [Che]. In [ST], Shishikura and Tan demonstrated that some cubic matings may have Thurston obstructions, although they do not have Levy cycles. In [Che], Chéritat gave a pair of non-matable polynomials without Levy cycles. These results indicate some difference between quadratic matings and higher dimensional matings.

The mating structure shows its power in exploring properties of the parameter slice $\operatorname{Per}_{2}(0)$, see [AY] [Tim2]. Maps on the boundary of the unbounded components of $\mathbb{C} \backslash M_{a}$ (M_{a} is the non-escape locus of $\operatorname{Per}_{2}(0)$, see Section 10) are classified in [Tim1]. D. Dudko [Dud] showed that the non-escape locus M_{a} of $\operatorname{Per}_{2}(0)$ is locally connected, which can "almost" be homeomorphically described as $M \backslash$ the $\frac{1}{2}$-limb. The latter result is a refined conjecture of Ben Wittner [Wit].

There are some generalizations of the notion to more general contexts. For example, one can consider matings between some Fuchsian groups or between certain polynomial maps and Fuchsian groups, see [Bul1] and [Bul2].

The data used to construct a mating is therefore a pair of polynomials (of the same degree). The data can be more combinatorial in the case of quadratic polynomials with connected Julia sets. There are various continuity problems that can be considered. In the thesis we are trying to answer a question of Mary Rees: given a critically finite quadratic polynomial f_{q} associated with some odd denominator rational $q \in(0,1)$, a sequence of critically finite quadratic polynomials $f_{p_{n}}$ associated with odd denominator rationals $p_{n} \in(0,1)$ (the association will be explained in Section 2.2) such that $\lim _{n \rightarrow \infty} p_{n}=p$ is also an odd denominator rational in $(0,1)$, does the sequence

$$
f_{p_{n}} \amalg f_{q}
$$

converges or not in some suitable rational parameter slice up to Möbius conjugacies? If it converges, what does the limit map look like? Note that since all the hyperbolic quadratic polynomials $z^{2}+c$ are in some hyperbolic components with their centers being critically periodic quadratic polynomials [DH2], all the critically periodic quadratic polynomials are encoded by some odd denominator rationals in $(0,1)$ [Thu2]. Combined with Yoccoz's control of size of limbs of M [Hub], our control of size of the mating components on the parameter slice and quasiconformal deformation techniques, we can get more general continuity result on matings of hyperbolic quadratic polynomials parametrised by $z^{2}+c, c \in \mathbb{C}$. We are able to prove the continuity in several sub-cases of the problem in the thesis, and would like to conjecture the continuity holds for the general problem (see Conjecture 4.1.1). There are some by-results obtained in the research for the problem. All the continuity results are collected in Section 4.

2 Basic concepts

In this section the basic concepts and notations used in the thesis will be introduced.

2.1 Quadratic polynomials

Douady and Hubbard had made a comprehensive study of the dynamics of quadratic polynomials and the Mandelbrot set. Up to affine conjugacy, every quadratic polynomial can be written uniquely in the form

$$
f_{c}(z)=z^{2}+c, c \in \mathbb{C} .
$$

Therefore the dynamical study of quadratic polynomials can be restricted to polynomials of this form.

Now we use $J\left(f_{c}\right)$ to represent the Julia set of $f_{c}, K\left(f_{c}\right)$ is the filled Julia set. The Mandelbrot set M is the set $\left\{c: J\left(f_{c}\right)\right.$ is connected $\}$. All polynomials f_{c} for $c \notin M$ are globally quasi-conformally conjugate. A hyperbolic component of M^{o} is a connected component of the set M^{o}. The first results of Douady and Hubbard are that M is closed, bounded and connected. They were also able to show that these hyperbolic components are simply connected, and each such component is characterized by a pair of odd-denominator rationals in $(0,1)$ (refer to Section 2.2 for details of the characterization). The exterior of M is conformally equivalent to the exterior of the unit disc [DH2].

For a degree d polynomial $f(z)=a_{d} z^{d}+\cdots+a_{0}, d>1, a_{d} \neq 0$, we have

Lemma 2.1.1. $J(f)$ is either connected or has infinitely many connected components.

Proof. Considering the super-attractive fixed point at ∞. Change the coordinates by $\frac{1}{z}$, we get

$$
g(z)=\frac{1}{f\left(\frac{1}{z}\right)}=\frac{1}{a_{d} \frac{1}{z_{d}}+\cdots+a_{0}}=\frac{z^{d}}{a_{d}+\cdots+a_{0} z^{d}} .
$$

If $d>1$, then $g^{\prime}(0)=0$ and $g^{(j)}(0)=0$ for $1 \leq j<d$ while $g^{(d)}(0)=$ $\frac{d!}{a_{d}} \neq 0$. This can be proved by induction or by expanding $g(z)$ around 0 as a Taylor series. By Böttcher's Theorem, there exists a conformal map Φ near 0 with $\Phi(0)=0$ such that

$$
\Phi \circ g \circ \Phi^{-1}(z)=z^{d}
$$

Now let $\phi(z)=\frac{1}{\Phi\left(\frac{1}{z}\right)}$, then

$$
\begin{equation*}
\phi \circ f \circ \phi^{-1}(z)=z^{d} \tag{1}
\end{equation*}
$$

near $\infty . \phi(z)$ is defined on some neighbourhood $U \supset\{\infty\}$ with

$$
\phi(U)=D_{r}=\{z:|z|>r>1\} .
$$

If no finite critical value is in U then

$$
f: f^{-1}(U) \backslash\{\infty\} \rightarrow U \backslash\{\infty\}
$$

is a covering map of degree d, we can extend ϕ onto a larger domain $\phi\left(f^{-1}(U)\right)=D_{\frac{1}{r^{d}}}$, then consider whether there is a finite critical value in $f^{-1}(U)$. We can continue this process to extend the domain $\{z:|z|>r>$ $1\}$ to its largest $D_{r_{0}}=\left\{z:|z|>r_{0} \geq 1\right\}$ on which ϕ^{-1} is a conformal map which satisfies (1), until we hit a finite critical value. Let $V=\phi^{-1}\left(D_{r_{0}}\right)$. Let \mathcal{A} denote the super-attractive basin of f containing ∞. We have the following commutative diagram of conformal isomorphisms

$$
\begin{array}{ccc}
V & f & f(V) \\
\uparrow_{\phi^{-1}} & & \phi \downarrow \\
D_{r_{0}} \xrightarrow{z^{d}} & D_{r_{0}^{d}}
\end{array}
$$

Now we claim that there must be at least one critical point of f on ∂V which interrupts the extension of ϕ^{-1} on larger discs. We show this by contradiction. Note that obviously there are no critical points of f in V, or else this would imply that ϕ^{-1} has critical points in $D_{r_{0}}$, which will contradict the fact of the conformality of ϕ^{-1}.

Now suppose that there are no critical points on ∂V. For any point $w_{0} \in \partial D_{r_{0}}$, choose a small neighbourhood W of w_{0} on which $\phi^{-1}: W \rightarrow$ $\phi^{-1}(W)$ is defined as

$$
w \rightarrow f^{-1} \circ \phi^{-1}\left(w^{d}\right) .
$$

Note that on this domain f^{-1} is well defined as there are no critical value on $\partial f(V)$. Then these small neighbourhoods together with $D_{r_{0}}$ form a neighbourhood of $D_{r_{0}}$ on which we can conformally extend ϕ^{-1} to larger open discs $D_{r_{0}^{\prime}}$ with $r_{0}^{\prime}>r_{0}$. This is a contradiction on our maximum assumption on r_{0}. So there must be a critical point of f on ∂V.

Now there are two possibilities. If some finite critical value $c \in f^{-n}(U)$ for some $n \in \mathbb{N}$, then the set $f^{-(n+1)}(\overline{\mathbb{C}} \backslash U)$ has $m \geq 2$ connected components depending on the order of the critical point, $m \in \mathbb{N}$. Inductively, $f^{-(n+j)}(\overline{\mathbb{C}} \backslash U)$ has at least m^{j} connected components, $j \in \mathbb{N}$. So $\cup_{k \geq 0} f^{-k}(U)=\overline{\mathbb{C}} \backslash \cap_{k \geq 0} f^{-k}(\overline{\mathbb{C}} \backslash U)$ is the complement of a set with infinitely many connected components. Consequently the Julia set $J(f)=$ $\partial \cup_{k \geq 0} f^{-k}(U)$ is also a set with infinitely many connected components. If no finite critical value is in $f^{-k}(U)$ for any k, then $\cup_{k \geq 0} f^{-k}(U)$ is simply connected and $J(f)=\partial \cup_{k \geq 0} f^{-k}(U)$ is connected.

Remark 2.1.2. The conclusion holds for all rational maps in fact, See Corollary 4.15 [Mil1] for a proof.

In the degree two case, for each hyperbolic component of M, there is a unique map in it which is critically periodic, often called the center of the hyperbolic component. There is a combinatorial model, called the lamination model [Thu2] to describe the topological dynamics of it. We can associate a pair of odd denominator rationals in $(0,1)$ to each hyperbolic component (therefore to each critically periodic 2-polynomial) where these pairs are all distinct and disjoint, refer to Section 2.2. Every odd denominator rational occurs in one such pair.

This association allows a complete dynamical description for hyperbolic quadratic polynomials and many others, although we are mainly concerned with hyperbolic quadratic polynomials. Moreover, this association gives a conjectural description of the Mandelbrot set, see Theorem 11.7.0b [Thu2]. As far as it is related to hyperbolic components, if f_{n} is a sequence of hyperbolic quadratic polynomials with associated odd denominator rationals p_{n} tending to an odd denominator rational p as $n \rightarrow \infty$, where p is associated with a hyperbolic quadratic polynomial f, then

$$
\lim _{n \rightarrow \infty} f_{n}=f_{0}
$$

where f_{0} is the parabolic map on the boundary of the hyperbolic component containing f, and the multiplier of f_{0}^{k} at the parabolic cycle is 1 (k is period of the attractive cycle of f). This can be deduced from the work of Yoccoz [Yoc] as described by Hubbard in [Hub]. In fact there are many other results of this type contained in [Hub]. Our type of continuity results which relates the Mandelbrot set and its combinatorial model can be compared with many others' results.

2.2 The external rays and lamination models for quadratic polynomials

There is a very explicit description of critically finite quadratic polynomials in the Mandelbrot set using the map $z \rightarrow z^{2}$ on the unit circle and rational numbers in $[0,1]$. Let f_{c} be a critically periodic quadratic polynomial of the form $f_{c}(z)=z^{2}+c$. Then there exists a continuous map $\psi_{c}=\phi^{-1}$ in which ϕ is defined in the proof of Lemma 2.1.1 (the inverse Böttcher coordinate)

$$
\psi_{c}:\{z:|z|>1\} \rightarrow \overline{\mathbb{C}} \backslash K\left(f_{c}\right)
$$

satisfying

$$
\psi_{c}\left(z^{2}\right)=f_{c} \circ \psi_{c}(z) \quad \forall|z|>1 .
$$

ψ_{c} extends from $\{z:|z|>1\}$ to $\{z:|z| \geq 1\}$ if the Julia set $J\left(f_{c}\right)$ is locally connected by Theorem 2.2.5. ψ_{c} is holomorphic on $\{z:|z|>1\}$ and continuous on $\{z:|z| \geq 1\}$. In addition,

$$
\psi_{c}(\{z:|z|=1\})=J\left(f_{c}\right) .
$$

Now define the external ray $\gamma(t)$ of f_{c} with angle $t, t \in[0,1)$ as

$$
\gamma(t)=\psi_{c}\left(\left\{r e^{2 \pi i t}: 1<r<\infty\right\}\right)
$$

For an arbitrary quadratic polynomial (in fact an arbitrary polynomial), there are some well known landing properties about the external rays as following. They are all from [Mil1]. Let $\mathbb{D}=\{z:|z|<1\}, S^{1}=\{z:|z|=$ $1\}$.

Theorem 2.2.1. Every periodic external ray lands at a periodic point which is either repelling or parabolic. If t is rational but not periodic, then the ray of angle t lands at a point which is eventually periodic but not periodic.

Theorem 2.2.2. For almost every point $e^{2 \pi i t}$ of the unit circle S^{1} with respect to Lebesgue measure, the external ray of angle t lands on $J\left(f_{c}\right)$. However, if we fix any particular point $z_{0} \in \partial J\left(f_{c}\right)$, then the set of angles of which the external rays land on z_{0} has Lebesgue measure zero.

Theorem 2.2.3. Every repelling or parabolic periodic point is the landing point of at least one periodic ray.

Theorem 2.2.4. If one periodic ray lands on z_{0}, then only finitely many rays land on z_{0}. These rays are all periodic of the same period (which may be larger than the period of z_{0}).

The following result is a consequence of results of Marie Torhorst and Constantin Carathéodory. It provides us with quite efficient techniques to judge whether a ray lands or not [Mil1].

Theorem 2.2.5. For any given f_{c} with connected Julia set, the following four conditions are equivalent.

- Every external ray $\gamma(t)$ lands on a point $\kappa(t)$ which depends continuously on the angle t.
- The Julia set $J\left(f_{c}\right)$ is locally connected.
- The filled Julia set $K\left(f_{c}\right)$ is locally connected.
- The inverse Böttcher map $\psi_{c}: \mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash K(f)$ extends continuously over the boundary $\partial \mathbb{D}$, and this extended map carries each $e^{2 \pi i t} \in \partial \mathbb{D}$ to $\kappa(t) \in J\left(f_{c}\right)$.

Furthermore, whenever these conditions are satisfied, the resulting map $\kappa: \mathbb{R} \backslash \mathbb{Z} \rightarrow J\left(f_{c}\right)$ satisfies the semiconjugacy identity

$$
\kappa(2 t)=f_{c}(\kappa(t))
$$

and maps the circle $\mathbb{R} \backslash \mathbb{Z}$ onto the Julia set $J\left(f_{c}\right)$.

This makes whether the Julia set of a polynomial is locally connected or not a very important character for $J\left(f_{c}\right)$, and similarly for the Mandelbrot set M. The existence of a quadratic polynomial with non-locally connected Julia set is proved in [Sor]. Milnor gave a way to get a quadratic polynomial with non-locally connected Julia set by tunings in [Mil4]. G. Levin [Levin] gave a class of infinitely renormalizable quadratic polynomials with non-locally connected Julia sets, while the Mandelbrot set is locally connected at such parameters. There is a discussion on the local connectivity of Julia sets of polynomials and rational maps by A. Dezotti and P. Roesch in [DR].

As for the hyperbolic maps, we have [Mil1]
Theorem 2.2.6. If the Julia set of a hyperbolic map is connected, then it is locally connected.

Theorem 2.2.7. If U is a simply connected Fatou component for a hyperbolic map, then the boundary ∂U is locally connected.

Either one of the two theorems implies local connectivity of Julia set of a hyperbolic map in M. Theorem 2.2 .5 guarantees ψ_{c} extends to $\partial \mathbb{D}$ for maps with locally connected Julia sets, which enables us to define the following combinatorial structure for these quadratic polynomials.

Now we introduce the lamination models for quadratic polynomials with locally connected Julia sets. Let

$$
L_{c}=\{l: l \text { is a chord in } \mathbb{D}
$$

in the boundary of the convex hull of $\left.\psi_{c}^{-1}(z), z \in J\left(f_{c}\right)\right\}$.
A chord l is called a leaf of the lamination, while a connected component of $\mathbb{D} \backslash L_{c}$ is called a gap. L_{c} is an invariant lamination. This means that L_{c} is a closed set and L_{c} is forward and backward invariant . Forward invariant means that if l is a chord in L_{c} with end points z_{1} and z_{2}, then the chord joining z_{1}^{2} and z_{2}^{2} is also in L_{c}. We denote this chord by l^{2}. This condition is empty when $z_{1}=-z_{2}$, that is, when $z_{1}^{2}=z_{2}^{2}$. Backward invariant means that if l is a chord in L_{c}, then the two chords l_{1}, l_{2} with $l_{1}^{2}=l_{2}^{2}=l$ are both in L_{c}.

Let μ_{c} be the chord or leaf of L_{c} such that $\psi_{c}\left(\mu_{c}\right)$ is the point of least possible period in the boundary of the Fatou component F_{1} of f_{c} which contains $f_{c}(0)$, and such that μ_{c} is not separated from $\psi_{c}^{-1}\left(\partial F_{1}\right)$ by any other leaf of L_{c}. The end points of μ_{c} are $e^{2 \pi i p}$ and $e^{2 \pi i \bar{p}}$, where p and \bar{p} are both odd denominator rationals in $[0,1]$ of the same period under $x \rightarrow 2 x \bmod 1$, and also of the same period as 0 under f_{c} (the only exception to this is when $c=0$, for which the lamination L_{0} is empty). Now denote the lamination L_{c} by $L_{p}=L_{\bar{p}}$.

The lamination L_{p} then can be used to describe completely the dynamics of f_{c} according to [Thu2]. $\mu_{c}=\mu_{p}\left(\mu_{\bar{p}}\right)$ is the minor leaf of L_{p} $\left(L_{\bar{p}}\right)$. It is the image of the longest leaf in $L_{p}\left(L_{\bar{p}}\right)$.

There is a critically finite branched covering map $s_{p}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ such that

$$
\begin{gathered}
s_{p}(z)=z^{2} \text { for }|z| \geq 1, \\
s_{p}\left(L_{p}\right)=L_{p} .
\end{gathered}
$$

s_{p} maps gaps to gaps. Note that ψ_{c} can be extended to all of $\overline{\mathbb{C}}$ to satisfy

$$
\psi_{c} \circ s_{p}(z)=f_{c} \circ \psi_{c}(z) \quad \forall|z| \geq 1 .
$$

Moreover, s_{p} can be chosen so that ψ_{c} is a homeomorphism on the preimages of each Fatou component. In this way, s_{p} is uniquely determined, up to topological conjugacy for every L_{p}. We can also choose s_{p} such that 0 is the finite critical point and periodic under s_{p}, of the same period as 0 under f_{c}. We call a minor leaf which is not separated from 0 by other minor leaves a minimal minor leaf [Thu2]. More can be found in [Ree2] about the relationship between L_{p}, the lamination map s_{p} and the quadratic critically finite polynomial which is Thurston equivalent to s_{p} (see below).

2.3 Thurston equivalence

Thurston equivalence for critically finite branched coverings is a type of homotopy equivalence. Let

$$
X(f)=\left\{f^{n}(c): c \text { is any critical point of } f, n>0\right\}
$$

be the post-critical set for a $C^{1} \operatorname{map} f: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$.
Definition 2.3.1. Let f and g be two critically finite branched coverings. $X(f)$ and $X(g)$ are the post-critical sets. Then f and g are Thurston equivalent if there are orientation-preserving homeomorphisms χ_{1} and $\chi_{2}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ such that

$$
\begin{gathered}
\chi_{1}(X(f))=X(g), \chi_{2}(X(f))=X(g), \\
\chi_{1} \sim \chi_{2} \text { rel } X(f), \\
\chi_{1} \circ f=g \circ \chi_{2} .
\end{gathered}
$$

We use \sim to denote the isotopy between two homeomorphisms. The branched coverings f_{c} and s_{p} described in Section 2.2 are Thurston equivalent.

While most people are more familiar with this definition, there is another description which is equivalent to this definition. Since we will use it in the following to identify the condition of a critically periodic map being Thurston equivalent to a mating, we also present it here.

Definition 2.3.2. Let f and g be two critically finite branched coverings with post-critical sets $X(f)$ and $X(g)$, then f and g are Thurston equivalent if there exists a homotopy $h_{t}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}, t \in[0,1]$ of critically finite branched coverings, and an orientation preserving homeomorphism φ, such that

$$
\begin{gathered}
h_{0}=\varphi \circ f \circ \varphi^{-1}, \\
h_{1}=g, \\
X\left(h_{t}\right)=X(g) \text { for any } t \in[0,1] .
\end{gathered}
$$

This is denoted as $f \simeq_{\varphi} g$ in [Ree2]. For the equivalence of the two definitions, see Section 1.4, [Ree2].

In the last section, we saw how to obtain two odd denominator rationals $p, \bar{p} \in[0,1]$ from a critically periodic quadratic polynomial f_{c}. Conversely, given any odd denominator rational $p \in[0,1]$, there is a critically periodic quadratic polynomial f_{c} such that $f_{c} \simeq s_{p}$. Moreover, f_{c} is unique if we choose it to be of the form $f_{c}(z)=z^{2}+c$. Thus there is a 2 to 1 map from the set of odd denominator rationals in $[0,1]$ to critically periodic quadratic polynomials of the form $z^{2}+c$, since p and \bar{p} correspond to the same polynomial. We shall show in our Theorem 3.5.1 that this map admits a certain kind of continuity.

2.4 Thurston equivalence implies semiconjugacy

In Definition 2.3.2 for Thurston equivalence between critically finite branched coverings, by Section 4.1 [Ree2], for a critically finite rational map f and
a critically finite branched covering g with $f \simeq_{\varphi} g$, let φ be a topological conjugacy between f and g in neighbourhoods of orbits of critical points of f and g. Then there is a well-defined sequence of homeomorphisms which satisfies

$$
\varphi \circ g^{n}=f^{n} \circ \theta^{(n)}
$$

with $\theta^{(0)}=\varphi$. Moreover,

$$
\lim _{n \rightarrow \infty} \theta^{(n)}=\theta
$$

exists, and satisfies

$$
\theta \circ g=f \circ \theta
$$

which gives a semiconjugacy between the two maps being Thurston equivalent.

For the proof of the convergence of the sequence $\theta^{(n)}$, see P48-49 [Ree2]. θ needs not to be a homeomorphism, but is a surjective map on $\overline{\mathbb{C}} . \theta$ is a homeomorphism from some neighbourhood of the forward orbits of the critical points of f to a neighbourhood of the forward orbits of the critical points of g. There are some particular properties on the map θ when g is a lamination map, see Section 4 in [Ree2]. This sequence of homeomorphisms $\theta^{(n)}$ and the semiconjugacy θ will be used in Section 8 .

2.5 Thurston's criterion

Now we want to introduce Thurston's criterion for judging whether a critically finite branched covering is Thurston equivalent to a rational map, which is closely related with the definition of mating. The following definitions are from [Tan1].

Definition 2.5.1. Let F be a post-critically finite branched covering of degree $d \geq 2$ on $\overline{\mathbb{C}}$.
(1) A simple closed curve γ is non-peripheral if $\gamma \cap X(F)=\emptyset$ and each connected component of $\overline{\mathbb{C}} \backslash \gamma$ contains at least two points of $X(F)$.
(2) A system of curves $\Gamma=\left\{\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right\}$ is called a multicurve, if it consists of simple closed, non-peripheral, disjoint, and non-homotopic (rel $X(F))$ curves.
(3) To each multicurve Γ we associate a non-negative matrix $F_{\Gamma}=$ $\left(f_{i j}\right)_{n \times n}$ by: for $\gamma_{i}, \gamma_{j} \in \Gamma$, if none of the connected components of $F^{-1}\left(\Gamma_{j}\right)$ is homotopic (rel $\left.X(F)\right)$ to γ_{i}, set $f_{i j}=0$; if, say, $\delta_{1 j}, \delta_{2 j}, \cdots, \delta_{k j}$ are the connected components of $F^{-1}\left(\gamma_{j}\right)$ homotopic to γ_{i} rel $X(F)$, set

$$
f_{i j}=\Sigma_{p=1}^{k}\left(1 / \operatorname{deg}\left(F: \delta_{p j} \rightarrow \gamma_{j}\right)\right) .
$$

(4) We denote by $\lambda(\Gamma)$ or $\lambda\left(F_{\Gamma}\right)$ the leading eigenvalue of F_{Γ}. It is well defined since F_{Γ} is a non-negative matrix.
(5) A multicurve Γ is called F-invariant if for each $\gamma_{j} \in \Gamma$, each connected component of $F^{-1}\left(\gamma_{j}\right)$ is either peripheral, or homotopic to a curve of $\gamma(\operatorname{rel} X(F))$.
(6) A F-invariant multicurve Γ is called a Thurston obstruction if $\lambda\left(F_{\Gamma}\right) \geq 1$.

Now we can state Thurston's criterion relying on the former definitions.

Theorem 2.5.2. A post-critically finite branched covering F of degree $d \geq 2$ with hyperbolic orbifold [McM2] is Thurston equivalent to a rational map G if and only if there are no Thurston obstructions for F. Moreover, G is unique up to conjugacy by Möbius transformations.

There is a proof for the theorem in [DH3].

2.6 Tuning

The notion of tuning was also invented by Douady and Hubbard [Dou2] [Dou3]. We only give the definition here by our lamination maps. The tuning of s_{p} by s_{t}, denoted by $s_{p} \vdash s_{t}$, is the branched covering $s_{r},(p, t, r$ are all odd denominator rationals in $(0,1))$ up to Thurston equivalence, where the lamination L_{r} is obtained from L_{p} and L_{t} as follows.

Let G_{p} be the image of the central gap of the lamination $L_{p} . L_{p} \subset L_{r}$ and all leaves of $L_{r} \backslash L_{p}$ are in the grand (forward and backward) orbit of \bar{G}_{p}. Note that $\mu_{p} \in \partial \bar{G}_{p}$ and G_{p} is separated from 0 by μ_{p}. Since L_{r} is invariant, as long as leaves in \bar{G}_{p} are defined, we can get the other leaves by forward and backward iterations of the map $z \rightarrow z^{2}$ on S^{1}. Now we define $L_{r} \cap \bar{G}_{p}$, this is determined by L_{t} as follows. There is a continuous map $\psi: \mathbb{D} \rightarrow G_{p}$, such that

$$
\begin{gathered}
\psi\left(L_{t}\right)=\bar{G}_{p} \cap L_{r}, \\
\psi\left(z^{2}\right)=s_{p}^{m} \circ \psi(z), \\
\psi \circ s_{t}=s_{p}^{m} \circ \psi \text { on } G_{p},
\end{gathered}
$$

in which m is the period of 0 under s_{p}. ψ is a homeomorphism on the gap G_{p}, moreover, ψ^{-1} extends continuously to map \bar{G}_{p} to $\overline{\mathbb{D}}$, map leaves on ∂G_{p} to points.

The notion of tuning is used in [Dev] to compute angles of some rays landing on M.

2.7 Mating

Matings of polynomials give a way to describe the dynamics of some rational maps, and in some cases, to obtain a partial model of some parameter slices. Computer pictures of some rational parameter slices [Tim2] show the appearance of some Mandelbrot-like sets, often with some particular
limbs truncated. This must have been part of the motivation for the study of mating.

Mating can be regarded as a topological structure or as a structure with at least some conformal information. It can in some cases be used more generally than for post-critically finite polynomials. However, this thesis mainly restricts to the case of critically periodic polynomials and the definition of mating used is a topological one, based on the idea of Thurston equivalence. As a critically finite branched covering, up to Thurston equivalence, we can define the mating of any two critically periodic quadratic polynomials. As we are defining the mating up to Thurston equivalence (at least initially), we may start from two critically finite branched coverings instead of polynomials. These covering maps, although themselves not being critically periodic quadratic polynomials, are Thurston equivalent to them.

Now we directly present the definition using the lamination map s_{p} with respect to an odd denominator rational $p \in(0,1)$. Essentially we use formal mating in [Tan1] by Thurston equivalence while the definition of conformal mating in [AY] is a finer version. As mentioned in [YZ], these definitions are presumably equivalent.

Definition 2.7.1. Let p and q be any two odd denominator rationals in $[0,1]$. We define the formal mating of s_{p} with s_{q}, which is denoted by $s_{p} \amalg s_{q}$, to be:

$$
s_{p} \amalg s_{q}(z)=\left\{\begin{array}{lll}
s_{p}(z) & \text { for } & |z| \leq 1 \tag{2}\\
\left(s_{q}\left(z^{-1}\right)\right)^{-1} & \text { for } & |z| \geq 1
\end{array}\right.
$$

Thus $s_{p} \amalg s_{q}$ is a critically periodic branched covering on $\overline{\mathbb{C}}$. Now if there is a rational map R, such that $s_{p} \amalg s_{q}$ is Thurston equivalent to R, then we say s_{p} and s_{q} are matable and call R a mating of s_{p} and s_{q}.

This definition can be generalized to degree $d>2$ laminations. For
degree d polynomials we can still construct invariant laminations for these polynomials. For an invariant lamination L of degree $d \geq 2$, if a leaf $l \in L$ has endpoints z_{1}, z_{2}, then there is a leaf $l^{d} \in L$ with endpoints z_{1}^{d}, z_{2}^{d} unless $z_{1}^{d}=z_{2}^{d}$. The d-preimages of each leaf $l \in L$ are all in L. Each gap G of L has a finite number of preimages which are mapped under branched coverings to G. The sum of the degrees of these maps is d. If L is an invariant lamination of degree d with no critical leaves, all finite sided gaps are mapped forward homeomorphically. Then we can define a critically finite branched covering s_{L} of degree d such that

$$
s_{L}(L)=L, s_{L}(z)=z^{d} \text { on } S^{1} .
$$

If L_{1}, L_{2} are two invariant laminations of degree d, then we can define

$$
s_{L_{1}} \amalg s_{L_{2}}(z)=\left\{\begin{array}{lll}
s_{L_{1}}(z) & \text { for } & |z| \leq 1 \tag{3}\\
\left(s_{L_{2}}\left(z^{-1}\right)\right)^{-1} & \text { for } & |z| \geq 1
\end{array}\right.
$$

Although we mainly work with this definition related with lamination maps, we still want to give the definition in another way as our Theorem 4.2.2 follows this definition. Now we present the following definition of conformal mating relying on external rays to substitute (2) from [AY].

Consider two monic $d \geq 2$ polynomials $f_{1}(z)=z^{d}+\cdots$ and $f_{2}(z)=$ $z^{d}+\cdots$ with locally connected Julia sets. Let

$$
\tilde{\mathbb{C}}=\mathbb{C} \cup\left\{\infty e^{2 \pi i t}: t \in[0,1]\right\}
$$

be the blow up of $\overline{\mathbb{C}}$ at ∞. For each $f_{i}, i=1,2$, define

$$
f_{i}\left(\infty e^{2 \pi i t}\right)=\infty e^{4 \pi i t}
$$

on $\tilde{\mathbb{C}}_{i}$.
Let $\tilde{\mathbb{C}}_{1}=\tilde{\mathbb{C}}_{2}=\tilde{\mathbb{C}}$, let $\tilde{\mathbb{C}}_{1} \cup \tilde{\mathbb{C}}_{2}$ be the disjoint union. Let $\Sigma=$ $\tilde{\mathbb{C}}_{1} \cup \tilde{\mathbb{C}}_{2} / \sim_{\infty}$, where $\infty e^{2 \pi i t_{1}} \sim_{\infty} \infty e^{2 \pi i t_{2}}$ as long as $t_{1}=-t_{2}$ with $t_{i} \in[0,1)$ for $i=1,2$. By restricting on each $\tilde{\mathbb{C}}_{i}$ to be f_{i} we get a well
defined map F on Σ. Recall that in Section 2.2 there exists a continuous $\operatorname{map} \psi_{i}:\{z:|z|>1\} \rightarrow \overline{\mathbb{C}} \backslash K\left(f_{i}\right)$ for $i=1,2$, which is easily extended onto $\{z:|z|>1\} \cup\left\{\infty e^{2 \pi i t}: t \in[0,1]\right\}$. Now define the external ray $\kappa_{i}(t)=\psi_{i}\left(\left\{r e^{2 \pi i t}: 1<r \leq \infty e^{2 \pi i t}\right\}\right)$ of angle t on $\tilde{\mathbb{C}}_{i}$ (hence on Σ) for $i=1,2$. Let $\overline{\kappa_{i}(t)}$ be the closure of the external ray $\kappa_{i}(t)$ of angle t on each $\tilde{\mathbb{C}}_{i}$. Define an equivalent relationship \sim_{κ} on Σ :
$x \sim_{\kappa} y$ as long as there exists a finite sequence of closed external rays $\left.\left\{\kappa_{i_{j}} \overline{(} t_{j}\right): j=1, \cdots, k, i_{j}=1,2\right\}$ such that

$$
\overline{\kappa_{i_{j}}\left(t_{j}\right)} \cap \overline{\kappa_{i_{j+1}}\left(t_{j+1}\right)} \neq \emptyset \text { for } 1 \leq j \leq k-1 \text { and } x \in \overline{\kappa_{i_{1}}\left(t_{1}\right)}, y \in \overline{\kappa_{i_{k}}\left(t_{k}\right)} .
$$

Definition 2.7.2. Now if Σ / \sim_{κ} is a 2-sphere, then we say f_{1} and f_{2} are topologically matable. If there exists a rational map $R: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ and a pair of semiconjugacies $\psi_{i}: K\left(f_{i}\right) \rightarrow \overline{\mathbb{C}}, i=1,2$, such that

$$
R \circ \psi_{i}=\psi_{i} \circ f_{i}
$$

and

$$
\psi_{i} \text { is conformal on } K\left(f_{i}\right)^{o}=\operatorname{int}\left(K\left(f_{i}\right)\right), i=1,2,
$$

then we say f_{1} and f_{2} are conformally matable. R is called a conformal mating of f_{1} and f_{2}, denote this by $R \approx f_{1} \amalg f_{2}$.

There is obviously a relationship that conformally matable \Rightarrow topologically matable.

2.8 Tan Lei's Theorem

Tan Lei's Theorem is derived from a special case of Thurston's Theorem for critically finite branched coverings. Thurston's criterion gives necessary and sufficient conditions for a critically finite branched covering to be Thurston equivalent to a rational map. This theorem can, of course,
be applied to critically finite branched coverings that are matings, and Tan Lei's Theorem [Tan1] (also proved by Mary Rees in her manuscript [Ree1]) adapts this condition to a very simple one. We state it only in the critically periodic case.

Tan Lei's Theorem. let p and q be two odd denominator rationals, then $s_{p} \amalg s_{q}$ is Thurston equivalent to a rational map if and only if μ_{p} and μ_{-q} are not separated from 0 in $\overline{\mathbb{D}}=\{z:|z| \leq 1\}$ by the same minimal minor leaf.

Note that the condition on μ_{p} and μ_{-q} are not separated from 0 in $\overline{\mathbb{D}}$ by the same minimal minor leaf (or say that μ_{p} and μ_{q} are not in conjugate limbs of the lamination model) is equivalent to say that, the polynomials which are Thurston equivalent to s_{p} and s_{q} are not in conjugate limbs of the Mandelbrot set.

2.9 Recognising matings and the lamination maps up to Thurston equivalence

In this section we prove a lemma on recognizing the conditions of a critically periodic branched covering being a mating. We will restrict to the degree 2 case.

Lemma 2.9.1. Let f be a critically periodic branched covering of degree 2. Then f is Thurston equivalent to a mating $s_{p} \amalg s_{q}$ if and only if there exists a closed loop $\gamma \in \overline{\mathbb{C}} \backslash X(f)$ which separates the two critical orbits of f, such that $f^{-1}(\gamma)$ is connected and isotopic to γ in $\overline{\mathbb{C}} \backslash X(f)$ and $f: f^{-1}(\gamma) \rightarrow \gamma$ preserves orientation.

Proof. The idea of the proof is from [Exa], we only give a sketch here.
By the first definition of Thurston equivalence, we can assume $\gamma=$ $f^{-1}(\gamma)=S^{1}$ and $f(z)=z^{2}$ on the unit circle S^{1}, or we can find a map
$g \simeq f$ with these properties. Consider the two maps f^{\triangle} and f_{\triangle} such that

$$
\begin{aligned}
& f^{\triangle}(z)=\left\{\begin{array}{lll}
f(z) & \text { for } & |z| \leq 1 \\
z^{2} & \text { for } & |z| \geq 1
\end{array}\right. \\
& f_{\triangle}(z)=\left\{\begin{array}{lll}
z^{2} & \text { for } & |z| \leq 1 \\
f(z) & \text { for } & |z| \geq 1
\end{array}\right.
\end{aligned}
$$

f^{\triangle} and f_{\triangle} are critically periodic branched coverings with fixed critical points at ∞ for f^{\triangle} and 0 for f_{\triangle}. By a folklore result (known as Levy's Theorem since he considered the problem in his thesis), f^{\triangle} and f_{\triangle} do not have any Thurston obstructions, that is, they satisfy the condition for being Thurston equivalent to rational maps. Since they have fixed critical points of maximum multiplicity (at ∞ and 0), they are Thurston equivalent to quadratic polynomials. So there are odd denominator rationals $p, q \in(0,1)$ such that $f^{\triangle} \simeq s_{p}$ and $f_{\triangle} \simeq s_{q}$. We omit the details but the homotopy f^{t} between s_{p} and f^{\triangle} can be chosen so that $f^{t}(z)=z^{2}$ on S^{1} for all t, so is the homotopy f_{t} between s_{q} and f_{\triangle}. Now the combination of the two homotopies gives a new homotopy \tilde{f}_{t} between f and $s_{p} \amalg s_{q}$:

$$
\tilde{f}_{t}(z)=\left\{\begin{array}{lll}
f^{t}(z) & \text { for } & |z| \leq 1 \\
f_{t}(z) & \text { for } & |z| \geq 1
\end{array}\right.
$$

So $f \simeq s_{p} \amalg s_{q}$ by Definition 2.3.2.
For the other direction, if $f \simeq s_{p} \amalg s_{q}$, then there are orientationpreserving homeomorphisms χ_{1} and $\chi_{2}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ such that

$$
\begin{gathered}
\chi_{1}(X(f))=X\left(s_{p} \amalg s_{q}\right), \chi_{2}(X(f))=X\left(s_{p} \amalg s_{q}\right), \\
\chi_{1} \sim \chi_{2} \operatorname{rel} X(f), \\
\chi_{1} \circ f=\left(s_{p} \amalg s_{q}\right) \circ \chi_{2} .
\end{gathered}
$$

In this case choose the loop $\gamma=\chi_{2}^{-1}\left(S^{1}\right)$, one can check that the requirements on γ in the theorem are satisfied.

The closed loop γ is called an invariant circle for f (of course not unique). We will use this lemma to show the critically periodic maps we get are matings in Section 8.

2.10 Identifying the map s_{p} associated with a particular mating

Suppose we have a degree two critically periodic branched covering f with a periodic critical point c_{1} of period m and an invariant circle γ. We already know that $f \simeq s_{p} \amalg s_{q}$ for some odd denominator rational p by Lemma 2.9.1, with p being periodic of period m under the map $z \rightarrow 2 z$ $\bmod 1$. Then how do we find this p ? One way is to use a sequence of arcs joining $X(f)$ to the invariant circle γ as showing in the following lemma.

Lemma 2.10.1. Let f be as above, and let $p \in(0,1)$ be an odd denominator rational. There exists a family of non-self-intersection arcs ξ_{j} joining $s_{p}^{j}(0)$ with $e^{2 \pi i 2^{j-1} p}$ for $0 \leq j<m$ which is disjoint from $L_{p} \cup S^{1}$ except for the endpoint $e^{2 \pi i 2^{j-1} p}$ (when $j=0$ replace $e^{2 \pi i 2^{-1} p}$ by $e^{2 \pi i 2^{m-1} p}$) such that $\xi_{j+1}=s_{p}\left(\xi_{j}\right)$. There exists a non-self-intersection arc $\xi_{0}^{\prime \prime}$ joining the point $x \in S^{1}$ with 0 where $s_{p}(x)=e^{2 \pi i p}$ but $x \neq e^{2 \pi i 2^{m-1} p}$ and $\xi_{0}^{\prime \prime}$ does not intersect $L_{p} \cup S^{1}$ besides at x. Now suppose there exists an arc ζ_{j} joining $f^{j}\left(c_{1}\right)$ with γ for $0 \leq j<m$ satisfying $\zeta_{j+1}=f\left(\zeta_{j}\right)$. Let $\zeta_{j}^{\prime} \subset f^{-1}\left(\zeta_{j+1}\right)$ be the arc joining $f^{j}\left(c_{1}\right)$ with $f^{-1}(\gamma)$ for $0 \leq j<m-1$ and $\zeta_{m-1}^{\prime} \subset f^{-1}\left(\zeta_{0}\right)$. Let $\zeta_{0}^{\prime \prime}=\left(f^{-1}\left(\zeta_{1}\right) \backslash \zeta_{0}\right) \cup\left\{c_{1}\right\}$. Suppose that there are two orientation-preserving homeomorphisms Θ and Θ^{\prime} such that

$$
\begin{gathered}
\Theta\left(f^{-1}(\gamma)\right)=\gamma, \Theta\left(\zeta_{j}^{\prime}\right)=\zeta_{j} \text { for } 0 \leq j<m, \\
\Theta^{\prime}\left(f^{-1}(\gamma)\right)=S^{1}, \Theta^{\prime}\left(\zeta_{j}^{\prime}\right)=\xi_{j} \text { for } 0 \leq j<m,
\end{gathered}
$$

$$
\Theta^{\prime}\left(\zeta_{0}^{\prime \prime}\right)=\xi_{0}^{\prime \prime} .
$$

Then we have

$$
f \simeq s_{p} \amalg s_{q}
$$

where q is also an odd denominator rational in (0,1).
Proof. Write $\chi_{1}=\Theta^{\prime} \circ \Theta^{-1}$, then $\chi_{1}(\gamma)=S^{1}$. Without loss of generality assume that $s_{p}\left(\xi_{j}\right)=\xi_{j+1}$ for $0 \leq j<m-1, s_{p}\left(\xi_{m-1}\right)=\xi_{0}$. We can also assume that $s_{p}(z)=s_{p}(-z) \forall z \in \mathbb{C}$ and $\xi_{0}^{\prime \prime}=-\xi_{0} . \Theta^{\prime}$ maps critical orbit c_{1} of f to critical orbit of s_{p}. Then there is a homeomorphism χ_{2} of \mathbb{C} such that

$$
\begin{equation*}
\chi_{1} \circ f=s_{p} \circ \chi_{2} \tag{4}
\end{equation*}
$$

Actually there are two such kind of homeomorphisms $z \rightarrow \chi_{2}(z)$ and $z \rightarrow-\chi_{2}(z)$ because $s_{p}(z)=s_{p}(-z)$.

Now $\chi_{1}(\gamma)=S^{1}$, so $\chi_{1} \circ f \circ \chi_{2}^{-1}=s_{p}$. Then

$$
\begin{gathered}
\chi_{2}^{-1}\left(S^{1}\right)=f^{-1} \circ \chi_{1}^{-1} \circ s_{p}\left(S^{1}\right)=f^{-1}(\gamma), \\
\chi_{2}^{-1}\left(\xi_{j}\right) \subset f^{-1} \circ \chi_{1}^{-1} \circ s_{p}\left(\xi_{j}\right)=f^{-1} \circ \chi_{1}^{-1}\left(\xi_{j+1}\right)=f^{-1}\left(\zeta_{j}\right),
\end{gathered}
$$

when $j=m-1$ replace $j+1$ by 0 .
Note that we also have $\chi_{2}^{-1}\left(\xi_{0}^{\prime \prime}\right)=\chi_{2}^{-1}\left(-\xi_{0}\right) \subset f^{-1}\left(\xi_{1}\right)$, so either $\chi_{2}^{-1}\left(\xi_{0}\right)=\zeta_{0}^{\prime}$ or $\chi_{2}^{-1}\left(-\xi_{0}\right)=\zeta_{0}^{\prime}$. Replacing χ_{2} by $-\chi_{2}$ if necessary, we can assume

$$
\chi_{2}^{-1}\left(\xi_{0}\right)=\zeta_{0}^{\prime} .
$$

Then $\chi_{2}^{-1}\left(s_{p}^{-1}\left(\xi_{1}\right) \backslash \xi_{0}\right)=f^{-1}\left(\zeta_{1}\right) \backslash \zeta_{0}^{\prime}$. Now $s_{p}^{-1}\left(\xi_{1}\right)$ separates $\overline{\mathbb{D}}$ into 2 halves and $f^{-1}\left(\zeta_{1}\right)$ separates the disc containing c_{1} bounded by $f^{-1}(\gamma)$ into 2 halves. We know that there exists a homeomorphism Θ^{\prime} which maps ξ_{0} and $s_{p}^{-1}\left(\xi_{1}\right)$ to the same sets as χ_{2}^{-1}. So Θ^{\prime} and χ_{2}^{-1} must also both map ξ_{j} to ζ_{j}^{\prime} for $1 \leq j<m$, in particular

$$
\chi_{2}\left(f^{j}\left(c_{1}\right)\right)=s_{p}^{j}(0)
$$

for $0 \leq j<m$. So $f \simeq s_{p} \amalg h$ for some degree two branched covering h which has a fixed critical point and the other critical point periodic. So h is Thurston equivalent to a critically periodic degree two polynomial (from Levy's Theorem mentioned in section 1.2) and hence $h \simeq s_{q}$ for some odd denominator rational q. Now we get $f \simeq s_{p} \amalg s_{q}$ as required. Figure 2 shows an example of the curves $\gamma, f^{-1}(\gamma), \zeta_{j}, \zeta_{j}^{\prime}, \xi_{j}, \zeta_{0}^{\prime \prime}, \xi_{0}^{\prime \prime}$ with $m=3($ of period 3$)$.

The technique will be used later in Section 9 to recover the mating components.

Figure 2: An example on getting the s_{p} map with $m=3$

2.11 Conjugacy on Julia sets between R and R_{*} on $\operatorname{Per}_{m^{\prime}}(0)$

Now we prove a proposition which will be used in Section 8 on the conjugacy of dynamics between the "center" R of a hyperbolic component and its "root" R_{*} on their Julia sets in the parameter slice $\operatorname{Per}_{m^{\prime}}(0)$.

Proposition 2.11.1. Let R be the critically periodic quadratic rational map with two critical points $c_{1}(R), c_{2}(R)$ of period m and m^{\prime}, let R_{*} be on the boundary of the hyperbolic component of R with one periodic critical point $c_{2}\left(R_{*}\right)$ of period m^{\prime}, with the parabolic periodic point v of period m described in Section 4. $c_{1}\left(R_{*}\right)$ is attracted to v under iterations of R_{*}^{m} (we will simply write these symbols $c_{1}(R), c_{2}(R), c_{1}\left(R_{*}\right), c_{2}\left(R_{*}\right)$ as c_{1}, c_{2} if there is no confusion about which dynamical planes these points are on). Then there is a homeomorphism $\varphi: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$, such that

$$
\varphi(J(R))=J\left(R_{*}\right)
$$

and

$$
\varphi \circ R=R_{*} \circ \varphi \text { on } J(R) .
$$

On dynamics of the hyperbolic map R, because c_{1} is of period m, there is one and only one repelling periodic point x^{\prime} on the boundary of the Fatou component containing $c_{1}(R)$ of period dividing m. As the first step for proving the proposition, we show the following lemma.

Lemma 2.11.2. There exists a flow of homeomorphisms $\varphi_{t}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}, t \in$ $[0, \infty)$, such that $\varphi_{t} \rightarrow \varphi: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ uniformly as $t \rightarrow \infty$. φ is a continuous map which satisfies

$$
\varphi \circ R_{*}=R \circ \varphi
$$

on $J\left(R_{*}\right)$. Moreover, φ is a homeomorphism from $\overline{\mathbb{C}} \backslash J\left(R_{*}\right)$ to $\overline{\mathbb{C}} \backslash J(R)$.
Proof. Let $M_{3}=\left\{v, \ldots, R_{*}^{m-1}(v)\right\}$ be the parabolic cycle. We start with a neighbourhood U_{0} of $\bigcup_{i=0}^{m-1} \bigcup_{k=0}^{\infty} R_{*}^{k m+i}(\alpha) \cup M_{3}$, where α is an arc joining $c_{1}\left(R_{*}\right)$ with $R_{*}^{m}\left(c_{1}\left(R_{*}\right)\right)$. We can choose the neighbourhood U_{0} to satisfy

$$
\bar{U}_{0} \subset R_{*}^{-1}\left(\operatorname{Int}\left(U_{0}\right)\right)
$$

A similar set V_{0} can be chosen on the dynamical plane of R, that is, neighbourhoods of $\bigcup_{i=0}^{m-1} R^{i}(\beta)$, in which β is an arc from $c_{1}(R)$ to x^{\prime}. $R^{m}(\beta)=\beta$ and $\beta \cap J(R)=\left\{x^{\prime}\right\}$. We also require that

$$
\bar{V}_{0} \subset R^{-1}\left(\operatorname{Int}\left(V_{0}\right)\right) .
$$

Now choose a homeomorphism $\varphi_{0}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ isotopic to the identity such that

$$
\varphi_{0}\left(U_{0}\right)=V_{0} .
$$

Then define a homeomorphism $\varphi_{1}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ via the map φ_{0} by

$$
\varphi_{0} \circ R=R_{*} \circ \varphi_{1}
$$

on $\overline{\mathbb{C}} \backslash R_{*}^{-1}\left(U_{0}\right)$. Let $\varphi_{1}=\varphi_{0}$ on U_{0}. Let $\varphi_{t}, t \in[0,1]$ be an isotopy between φ_{0} and φ_{1} which is constant on U_{0}. Define the homeomorphisms $\varphi_{t+n}, t \in[0,1], n \in \mathbb{N}$ inductively by

$$
\begin{equation*}
\varphi_{t+n} \circ R_{*}=R \circ \varphi_{t+n+1} \tag{5}
\end{equation*}
$$

on $\overline{\mathbb{C}} \backslash R_{*}^{-n}\left(U_{0}\right)$, and

$$
\begin{equation*}
\varphi_{t+n}=\varphi_{t+n+1} \tag{6}
\end{equation*}
$$

on $R_{*}^{-n}\left(U_{0}\right)$. Then $\varphi_{t} \circ R_{*}^{n}=R^{n} \circ \varphi_{t+n}$ on $J\left(R_{*}\right)$. So

$$
d\left(\varphi_{t+n+1}(z), \varphi_{t+n}(z)\right)=d\left(S \circ \varphi_{t+1} \circ R_{*}^{n}(z), S \circ \varphi_{t} \circ R_{*}^{n}(z)\right)
$$

where S is a local inverse of R^{n} suitably chosen. R expands uniformly on a neighbourhood of $J(R)$, say the expanding factor is $\frac{1}{\lambda}, 0<\lambda<1$. Then S contracts by the factor λ^{n}. So

$$
d\left(\varphi_{t+n+1}(z), \varphi_{t+n}(z)\right) \leq C \lambda^{n} \sup _{w \in U_{0}} d\left(\varphi_{t}(w), \varphi_{t+1}(w)\right) \leq C_{1} \lambda^{n}
$$

for $t \in[0,1]$ and $z \in R_{*}^{-n}\left(U_{0}\right)$. This forces φ_{t+n} to converge uniformly on $J\left(R_{*}\right)$. In particular, φ_{n} converges uniformly on $J\left(R_{*}\right)$ to a continuous map $\varphi: J\left(R_{*}\right) \rightarrow J(R)$. Convergence on $\overline{\mathbb{C}} \backslash J\left(R_{*}\right)$ is guaranteed by (6), as for any point $z \in \overline{\mathbb{C}} \backslash J\left(R_{*}\right)$, there is some integer n_{0} such that $z \in\left(\overline{\mathbb{C}} \backslash R_{*}^{-n}\left(U_{0}\right)\right)$ for all $n>n_{0}$. This means $\varphi_{t+n}(z)$ will be constant in n for all $t \in[0,1]$ and $n>n_{0}$. Moreover, by (5), set $t=0$ now, let $n \rightarrow \infty$, we get

$$
\begin{equation*}
\varphi \circ R_{*}=R \circ \varphi \tag{7}
\end{equation*}
$$

on $J\left(R_{*}\right)$.
Now we continue to prove Proposition 2.11 .1 by showing that the map φ we get in the last lemma is in fact a homeomorphism on $J\left(R_{*}\right)$.

Proof of Proposition 2.11.1:
Proof. We already have the map $\varphi: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ such that $\varphi \circ R_{*}=R \circ \varphi$ on $J\left(R_{*}\right)$. Now we show that it is injective on $J\left(R_{*}\right)$. First note that $\varphi^{-1}(z)$ is connected for all $z \in \overline{\mathbb{C}}$. To see this, note that

$$
\varphi^{-1}(z)=\bigcap_{\delta_{n}>0} \varphi^{-1}\left\{|w-z| \leq \delta_{n}\right\}
$$

where δ_{n} is any positive sequence with $\lim _{n \rightarrow \infty} \delta_{n}=0$. Since $\varphi_{n} \rightarrow \varphi$ uniformly, by suitable choice of δ_{n},

$$
\varphi_{n}^{-1}\left\{|w-z| \leq \frac{\delta_{n}}{2}\right\} \subset \varphi_{n}^{-1}\left\{|w-z| \leq \delta_{n}\right\} \subset \varphi_{n}^{-1}\left\{|w-z| \leq 2 \delta_{n}\right\} .
$$

By restricting to a subsequence of n, we can assume

$$
\varphi_{n+1}^{-1}\left\{|w-z| \leq 2 \delta_{n+1}\right\} \subset \varphi_{n}^{-1}\left\{|w-z| \leq \frac{\delta_{n}}{2}\right\} .
$$

So $\varphi^{-1}(z)=\bigcap_{\delta_{n}>0} \varphi^{-1}\left\{|w-z| \leq \frac{\delta_{n}}{2}\right\}$, as the intersection of a decreasing sequence of connected sets, is connected.

Suppose $\varphi^{-1}\left(z_{0}\right)$ is not a point for some $z_{0} \in J(R)$. We can assume $\varphi^{-1}\left(z_{0}\right) \subset J\left(R_{*}\right)$ because $\varphi\left(\overline{\mathbb{C}} \backslash J\left(R_{*}\right)\right)=\overline{\mathbb{C}} \backslash J(R)$ and φ is a homeomorphism on $\overline{\mathbb{C}} \backslash J\left(R_{*}\right)$ by Lemma 2.11.2. Let $P\left(R_{*}\right)=\overline{X\left(R_{*}\right)}$, where $X\left(R_{*}\right)$ is the post-critical set. We will show that the lift of a subset of $R_{*}^{n}\left(\varphi^{-1}\left(z_{0}\right)\right)$ to the universal cover of $\overline{\mathbb{C}} \backslash P\left(R_{*}\right)$ has diameter tending to ∞. To achieve this we use the fact that R_{*} is expanding with respect to the Poincaré metric.

Let W be a small neighbourhood of the parabolic cycle such that $\bar{W} \cap J\left(R_{*}\right) \subset R_{*}(W)$, and $\operatorname{diam}\left(\varphi^{-1}\left(z_{0}\right) \backslash W\right) \geq \delta_{0}>0$. The diameter is considered in the Poincaré metric. Now consider the set $R_{*}^{n}\left(\varphi^{-1}\left(z_{0}\right)\right) \backslash W$ for all n and lift it to the universal cover of $\overline{\mathbb{C}} \backslash P\left(R_{*}\right)$. Let \widetilde{A} be the covering space of a set $A, \pi: \overline{\mathbb{C}} \widetilde{\backslash P\left(R_{*}\right)} \rightarrow \overline{\mathbb{C}} \backslash P\left(R_{*}\right)$ be the covering map.

Let X_{n} be a component of $\pi^{-1}\left(R_{*}^{n}\left(\varphi^{-1}\left(z_{0}\right) \backslash W\right)\right)=\pi^{-1}\left(\varphi^{-1}\left(R^{n}\left(z_{0}\right) \backslash\right.\right.$ $W)$) for each n. Now we claim that either X_{n} intersects two components of $\pi^{-1}(W)$ or $\operatorname{diam}\left(X_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. The second possibility is a contradiction because if $\tilde{\varphi}: \overline{\mathbb{C}} \widetilde{\ P\left(R_{*}\right)} \rightarrow \overline{\mathbb{C}} \widetilde{\backslash P(R)}$ is a lift of φ, then $\tilde{\varphi}$ is also a uniform limit of homeomorphisms and $\tilde{\varphi}^{-1}(z)$ has bounded Poincaré diameter for all $z \in \widetilde{\mathbb{C}} \widetilde{(P(R)}$.

The first possibility can not hold for arbitrarily small neighbourhood W of the parabolic cycle. If it does, then we can take limits of $\varphi^{-1}\left(R^{n}\left(z_{0}\right)\right)$ and obtain a point z_{1} such that $\varphi^{-1}\left(z_{1}\right)$ contains two points which are both mapped to the parabolic cycle. But φ is injective on the parabolic cycle, so $R_{*} \circ \varphi^{-1}\left(z_{1}\right)=\varphi^{-1} \circ R\left(z_{1}\right)$ would then be noncontractible or have interior, both of which are impossible.

Now we show that for some $\lambda>1$, either $\operatorname{diam}\left(X_{k+1}\right) \geq \lambda \operatorname{diam}\left(X_{k}\right)$ for any $0 \leq k<n$ or X_{k} intersects two components of $\pi^{-1}(W)$ for some $0 \leq k<n$. Suppose inductively that X_{k-1} does not intersect two compo-
nents of $\pi^{-1}(W)$ for any $1 \leq k \leq n$. If X_{k-1} intersects two components of $\pi^{-1} \circ R_{*}^{-1}(W)$, let \tilde{R}_{*} be the lift of R_{*}, then $X_{k}=\tilde{R}_{*}\left(X_{k-1}\right)$ intersects two components of $\pi^{-1}(W)$, we are done. So suppose X_{k-1} does not intersect two components of $\pi^{-1} \circ R_{*}^{-1}(W)$ for any $1 \leq k \leq n$. Then let $\lambda>1$ be such that

$$
d\left(\tilde{R}_{*}\left(x_{1}\right), \tilde{R}_{*}\left(x_{2}\right)\right) \geq \lambda d\left(x_{1}, x_{2}\right) \forall x_{1}, x_{2} \notin \pi^{-1}(W)
$$

where d denotes the Poincaré metric. Then

$$
\operatorname{diam}\left(\tilde{R}_{*}\left(X_{k-1}\right)\right) \geq \lambda \operatorname{diam}\left(X_{k-1}\right)
$$

i.e.

$$
\operatorname{diam}\left(X_{n}\right) \geq \lambda \operatorname{diam}\left(X_{n-1}\right)
$$

as we expected. So the claim holds in this case.

Remark 2.11.3. By the techniques of pinching and plumbing, Cui and Tan can get global semi-conjugacy between R_{*} and R, which is a conjugacy on their Julia sets, although R_{*} is not J-stable according to [MSS] and [McM2]. One can refer to [CT] for more incisive results.

3 Yoccoz puzzle

The Yoccoz puzzle is a specific example of Markov partitions for complex dynamical systems. A Markov partition is a way to connect the dynamical systems to symbolic ones. The idea is used but not restricted to the study of dynamical systems. For more interesting discussions of the idea of partitions, see [AW] [Sin] [Bow].

In the following we first give the definition of Yoccoz puzzle for a quadratic polynomial $f_{c}(z)$ with connected Julia set $J\left(f_{c}\right)$, then quote some results of J. C. Yoccoz using the Yoccoz puzzle [Yoc] without proof.

3.1 The definition

Let $f_{c}(z)=z^{2}+c$ be a quadratic polynomial with the filled Julia set $K\left(f_{c}\right)$ connected, so the finite critical point will be confined in $K\left(f_{c}\right)$. We know from Böttcher's Theorem that there is a holomorphic change of coordinates $\psi_{c}: \overline{\mathbb{C}} \backslash \mathbb{D} \rightarrow \overline{\mathbb{C}} \backslash K(f)$, such that

$$
f_{c} \circ \psi_{c}=\psi_{c} \circ z^{2}
$$

The map f_{c} has two fixed points. One is of combinatorial rotation number 0 with a unique fixed external ray landing on it. The other one is repelling with combinatorial rotation number $\frac{m_{1}}{m_{2}} \in(0,1), m_{1}, m_{2} \in \mathbb{N}$ if c is out of the main cardioid of M. The latter one is called the α fixed point in [Hub]. Let $\left|\psi_{c}\right|=h_{c}$ be the Green function, $\left\{R_{\theta_{1}}, R_{\theta_{2}}, \cdots, R_{\theta_{q}}\right\}, q \in \mathbb{N}$ be the external rays landing on the α fixed point, in which $\left\{\theta_{1}, \theta_{2}, \cdots, \theta_{q}\right\}$ are the angles. The initial graph Γ_{0} is formed by the potential line $\left\{z: h_{c}(z)=R_{0}>1\right\}=H_{0}$ and part of the truncated rays $R_{\theta_{i}}$ (the part inside $\left.U_{0}=\left\{z: h_{c}(z) \leq R_{0}, R_{0}>1\right\}\right)$. Define $U_{n}=f_{c}^{-1}\left(U_{n-1}\right)$ and $\Gamma_{n}=f_{c}^{-1}\left(\Gamma_{n-1}\right)$. The sequence $U_{0} \supset U_{1} \supset U_{2} \cdots$ together with the graph Γ_{n} are called the puzzle partition of f_{c}. The closure of a component of $U_{n} \backslash \Gamma_{n}$ is called a depth (level) n puzzle piece.

A nested sequence of puzzle pieces

$$
x=\left(X_{0} \supset X_{1} \supset X_{2} \cdots\right)
$$

is called an end of the puzzle. $I(x)=\bigcap_{n} X_{n}(x)$ is called the impression of the end x.

Let $x_{b}=\left(B_{0} \supset B_{1} \supset B_{2} \cdots\right), c \in B_{i} \forall i \in \mathbb{N}$ be the critical value end, $x_{c}=\left(C_{0} \supset C_{1} \supset C_{2} \cdots\right), 0 \in C_{i} \forall i \in \mathbb{N}$ be the critical end. We say the polynomial f_{c} is combinatorially non-recurrent if the orbit of the critical value end x_{b} never enters C_{N} for some $N \in \mathbb{N}$, or else we say f_{c} is combinatorially recurrent.

3.2 The parameter Yoccoz puzzle

Now we define the parameter Yoccoz puzzle (parapuzzle) relying on the Yoccoz puzzle. According to [Hub], for every $\frac{r_{1}}{r_{2}}$ limb of the main cardioid, let $W_{\frac{r_{1}}{r_{2}}}$ be the wake which is bounded by the two rays landing at the parameter

$$
c_{\frac{r_{1}}{r_{2}}}=\frac{e^{2 \pi i \frac{r_{1}}{r_{2}}}}{2}\left(1-\frac{e^{2 \pi i \frac{r_{1}}{r_{2}}}}{2}\right)
$$

on ∂M. For every $c \in W_{\frac{r_{1}}{r_{2}}}$, we have defined the Yoccoz puzzle in the previous subsection. Now we use U_{n}^{c} to denote a level n partition piece of the polynomial $f_{c}=z^{2}+c, \Gamma_{n}^{c}=\partial U_{n}^{c}$.

Definition 3.2.1. The n level parameter Yoccoz puzzle $M U_{n}$ of the $\frac{r_{1}}{r_{2}}$ limb of M in the parameter space is the region

$$
M U_{n}=\left\{c: c \in U_{n}^{c}\right\} .
$$

These regions together with their boundaries

$$
M \Gamma_{n}=\partial M U_{n}=\left\{c: c \in \Gamma_{n}^{c}\right\}
$$

are called the parameter puzzle.
The parapuzzle provides ways to transfer some geometric properties from the dynamical plane to the parameter plane by certain techniques, see Proposition 13.2 [Hub].

3.3 The renormalization theory

The renormalization theory in complex dynamics is closely related with Douady and Hubbard's theory of polynomial-like mappings [DH1].

Definition 3.3.1. Let U^{\prime}, U be open subsets of \mathbb{C} isomorphic to discs, $U^{\prime} \subset U$ is relatively compact in U. A holomorphic map $f: U^{\prime} \rightarrow U$ is called a polynomial-like mapping of degree d if it is proper of degree d.

For a polynomial-like map, we can still define its Julia set $J(f)$ and filled Julia set $K(f)$ as

$$
\begin{gathered}
K(f)=\left\{z \in U^{\prime}: f^{n}(z) \in U^{\prime} \forall n \in \mathbb{N}\right\}, \\
J(f)=\partial K(f) .
\end{gathered}
$$

There are some concrete examples of polynomial-like maps in [DH1] and [McM2].

Now we begin to introduce the notion of renormalization. We focus on a quadratic polynomial f_{c}. Let $f_{c}(z)=z^{2}+c$ be a quadratic polynomial with connected Julia set. We say f_{c}^{n} is quadratic renormalizable $[\mathrm{McM} 2]$ for some positive integer $n>1$ if there are open discs $U^{\prime} \subset U \subset \mathbb{C}$ such that the critical point

$$
0 \in U^{\prime}
$$

and

$$
f_{c}^{n}: U^{\prime} \rightarrow U
$$

is a polynomial-like map of degree 2 with connected Julia set. Note that the choices of U^{\prime}, U may not be unique for f_{c}^{n} to be quadratic renormalizable. If there are infinitely many $n \in \mathbb{N}$ such that f_{c}^{n} is renormalizable (quadratic renormalizable), then we say f_{c} is infinitely renormalizable,
or else we will say f_{c} is finitely renormalizable. Infinitely renormalizable polynomials turn out to have more complicated dynamics than finitely renormalizable ones.

The renormalization theory not only links Julia sets of large scales and smaller scales, but also plays an important role in the local connectivity of the Julia sets and the Mandelbrot set M by the results (e) and (f) in the following [Hub].

3.4 Some results proved using Yoccoz puzzles

The following results related with the puzzle and parapuzzle partitions are from [Yoc]. They are demonstrated in [Hub] by Hubbard.
(a) If f_{c} is not renormalizable, the impression of each end of its puzzle is a point.
(b) If f_{c} is renormalizable, then the ends of its puzzle which are preimages of the critical end have impressions which are homeomorphic to $K\left(f_{c_{1}}\right)$ for some quadratic polynomial $f_{c_{1}}=z^{2}+c_{1}$ with $K\left(f_{c_{1}}\right)$ connected. The impressions of the other ends are points.
(c)For any piece X of the puzzle, the intersection $K\left(f_{c}\right) \cap X$ is connected.
(d)If a polynomial f_{c} is non-recurrent, then all its ends are points. In particular, $K\left(f_{c}\right)$ is locally connected.
(e)If $c \in M$ is not infinitely renormalizable, and does not have an indifferent periodic point, then $K(f)$ is locally connected.
(f)If $c \in M$ is not infinitely renormalizable, then M is locally connected at the point c.

The conclusion (e) is obtained by an enriched puzzle, see [Hub, Section 11]. By comparing the moduli of annuli on the parameter space with moduli of the corresponding annuli on the dynamical plane (see
[Hub, Section 13]), the local connectivity of the Julia set can be transferred to the parameter plane, that is, for a non-infinitely renormalizable parameter $c \in M, c$ has a basis of connected neighbourhoods in M.
D. Schleicher gave a proof on local connectivity of the Multibrot sets at the Misiurewicz points [Schl1] by introducing fibers [Schl2] of compact connected and full sets in \mathbb{C}. The idea of fibers, in Schleicher's words, is to show shrinking of puzzle pieces without using specific puzzles.

The set of infinitely renormalizable parameters at which M is locally connected is dense by Yunping Jiang [Jia].

3.5 A convergence result proved using the parameter Yoccoz puzzle

The following result describes the distribution of the quadratic polynomials Thurston equivalent to the lamination maps s_{p} with odd denominator rationals $p \in(0,1)$. The statement uses lamination language.

Theorem 3.5.1. Let p_{n}, p be odd denominator rationals in $[0,1], n \in \mathbb{N}$. $p_{n} \rightarrow p$ as $n \rightarrow \infty, s_{p_{n}} \simeq f_{c_{n}}(z), s_{p} \simeq f_{c}(z)$, where $s_{p_{n}}, s_{p}$ are degree two critically finite branched coverings associated with the laminations $L_{p_{n}}$, L_{p} (refer to [Ree2]), $f_{c_{n}}(z)=z^{2}+c_{n}$ and $f_{c}(z)=z^{2}+c$ are quadratic polynomials, $c_{n}, c \in \mathbb{C}$. Then

$$
\lim _{n \rightarrow \infty} c_{n}=c^{\prime}
$$

where $c^{\prime} \in M$ is the quadratic parabolic parameter being the root of the wake on the boundary of the hyperbolic component containing c.

The proof is given in Section 5 .
Remark 3.5.2. This result follows directly from many others' results, for example, the local connectivity of M at a parabolic parameter, see
[Yoc], [Tan2] and local connectivity of M at every point on the boundary of a hyperbolic component (Schleicher's proof is for the Multibrot sets), see [Schl1]. But there are still some reasons for us to present our proof here. One is that the proof shows patterns of the convergence of the polynomials with respect to the odd denominator rationals, the other is that there is something new in the proof of local connectivity of M at the primitive parabolic point.

4 Main results

Before giving the main results, we first want to pose a conjecture on continuity of 2-matings (we refer to d as the degree for the notation d matings). Our main results mainly deal with sub-cases of it. As the cases of hyperbolic matings should be dealt differently from the non-hyperbolic cases, we would like to state the conjecture in two cases.

4.1 The conjectures on one-parameter continuity of 2matings

The conjecture on one-parameter continuity of hyperbolic 2-matings:
Conjecture 4.1.1. Let $p_{n} \in(0,1)$ be a sequence of odd denominator rationals such that $\lim _{n \rightarrow \infty} p_{n}=t$, in which $t \in(0,1)$ is a real number. Let $q \in(0,1)$ be an odd denominator rational. Assume furthermore that $\mu_{p_{n}}$ and μ_{q} are not in conjugate limbs of the lamination model of M for any $n \in \mathbb{N}$ and $e^{2 \pi i t}$ and μ_{q} are not in conjugate limbs of the lamination model of M. Let R_{n} be the rational map on some parameter slice $\operatorname{Per}_{m^{\prime}}(0)$ such that $R_{n} \simeq s_{p_{n}} \amalg s_{q}$. Let m^{\prime} be the period of q under the doubling map $x \rightarrow 2 x \bmod \mathbb{Z}$. Then

$$
\lim _{n \rightarrow \infty} R_{n}=R_{t}
$$

with R_{t} being a rational map on the parameter slice $\operatorname{Per}_{m^{\prime}}(0)$ containing R_{n}.

In particular, if t is also an odd denominator rational and μ_{t} and μ_{q} are not in conjugate limbs of the lamination model of M, then R_{t} is the parabolic map on the boundary of the hyperbolic component containing the rational map $R \simeq s_{t} \amalg s_{q}$, with one parabolic cycle corresponding to the orbit of p and one superattractive cycle corresponding to the orbit of q under the doubling map.

All the rational maps R_{n}, R, R_{t} are in the rational parameter space with one of their critical points c_{2} being periodic of the same period with the period of q under the doubling map $x \rightarrow 2 x \bmod \mathbb{Z}$. This parameter slice is denoted by $\operatorname{Per}_{m^{\prime}}(0)$ in [Tim2]. Without special declaration we always stay in this parameter space in the remainder of the thesis for rational maps. As mentioned before, this conjecture, combined with the results of control on sizes of the mating limbs in M_{a} (see explanation for the notation in Section 10) will imply the general continuity result on 2-matings with one parameter fixed. The following continuity conjecture implies Conjecture 4.1.1.
The general one-parameter continuity conjecture on 2-matings:
Conjecture 4.1.2. Let $f_{c^{\prime}}(z)=z^{2}+c^{\prime}$ and $f_{c}(z)=z^{2}+c$ be two conformally matable quadratic polynomials such that $R_{c} \approx f_{c^{\prime}} \amalg f_{c}$ on some parameter slice $\operatorname{Per}_{m^{\prime}}(0)$. Let $c_{n} \in \mathbb{C}$ such that $\lim _{n \rightarrow \infty} c_{n}=c$ and $f_{c_{n}}=z^{2}+c_{n}$ is conformally matable with $f_{c^{\prime}}$ for any $n \in \mathbb{N}, R_{c_{n}} \approx f_{c^{\prime}} \amalg f_{c_{n}}$ on the parameter slice $\operatorname{Per}_{m^{\prime}}(0)$ containing R_{c}. Then

$$
\lim _{n \rightarrow \infty} R_{c_{n}}=R_{c}
$$

This conjecture is quite ambitious, considering the matings between both hyperbolic and non-hyperbolic ones. The matability between non-
hyperbolic ones is not guaranteed, although we do have some positive results [YZ] [AY] on this. Our Theorem 8.2.1 deals with the conjecture in the case c is not renormalizable and $c^{\prime}=-1$ as a corollary of methods from [AY].

4.2 Main results on continuity of matings

The following is a collection of main results on continuity of 2-matings that we get throughout the thesis.

Theorem 4.2.1. Let p and q be odd denominator rationals in $(0,1)$ such that $s_{p} \amalg s_{q}$ is Thurston equivalent to a rational map R, that is, the conditions of Tan Lei's Theorem are satisfied. Let m, m^{\prime} be the period of p, q separately under the doubling map: $x \rightarrow 2 x \bmod 1$. Let $p^{\prime} \in(0,1)$ satisfy $2^{s} p^{\prime}=p \bmod 1$ for some large positive integer s. For some fixed positive integer r large enough, define a sequence of odd denominator rationals

$$
\begin{equation*}
p_{n}=p+\frac{2^{s m}\left(p^{\prime}-p\right)}{2^{(s+r+2 n) m}-1} \tag{8}
\end{equation*}
$$

in $(0,1), n \in \mathbb{N}$. Let $R_{n} \simeq s_{p_{n}} \amalg s_{q}$ be the rational map in the quadratic rational parameter slice $\operatorname{Per}_{m^{\prime}}(0)$ containing R, then

$$
\lim _{n \rightarrow \infty} R_{n}=R_{*}
$$

where R_{*} is a parabolic map on the boundary of the hyperbolic component containing the rational map $R \simeq s_{p} \amalg s_{q}$ described in Section 6 .

This means that for n large enough, we can find degree two critically periodic rational maps which are Thurston equivalent to $s_{p_{n}} \amalg s_{q}$ in an arbitrary small neighbourhood of the parabolic map R_{*}. The geometric significance of the sequence p_{n} in equation (8) is explained in Section 9 .

In order to state the next theorem, we introduce the R_{a} family (refer to [AY]):

$$
\begin{equation*}
R_{a}(z)=\frac{a}{z^{2}+2 z}, \quad a \in \mathbb{C} \tag{9}
\end{equation*}
$$

It is an example of the parameter slice Per $_{2}(0)$.
Theorem 4.2.2. Let $c \in M$ be a parameter outside the $\frac{1}{2}$-limb of M, such that $f_{c}=z^{2}+c$ is non-renormalizable and without non-repelling periodic cycles. Moreover, suppose that the critical point 0 is not in the backward orbit of the α fixed point of f_{c}. Let $c_{n} \in M, n \in \mathbb{N}$ be a sequence of hyperbolic parameters such that $c_{n} \rightarrow c$ as $n \rightarrow \infty$. Then there exist unique $a(c), a\left(c_{n}\right) \in \mathbb{C}$, such that

$$
R_{a(c)} \approx\left(f_{c} \amalg f_{-1}\right), R_{a\left(c_{n}\right)} \approx\left(f_{c_{n}} \amalg f_{-1}\right)
$$

in the R_{a} family. Moreover,

$$
\lim _{n \rightarrow \infty} a\left(c_{n}\right)=a(c)
$$

Remark 4.2.3. The existence of $a(c), a\left(c_{n}\right)$ is guaranteed by AY's Theorem in Section 10.1 and Tan Lei's Theorem in Section 2.8 (in fact Tan Lei's Theorem is for all the critically finite quadratic polynomials, and can be easily extended to hyperbolic ones). The condition that 0 is not in the backward orbit of the α fixed point of f_{c} rules out exactly the intersection of the parameter puzzle pieces $M U_{n}$ with M, and these parameters are countable.

The following theorem deals with the case when all the minor leaves $\mu_{p_{n}}$ are in some small copy of the Mandelbrot set bounded by some minimal minor leaf μ_{r} and all closures of Fatou components of the rational map $R \simeq s_{p} \amalg s_{q}$ are disjoint. Recall that $\mu_{p}\left(\mu_{q}\right)$ is the minor leaf in the lamination $L_{p}\left(L_{q}\right)$, refer to Section 2.2.

Theorem 4.2.4. Let p_{n}, p, r, q all be odd denominator rationals in $(0,1)$, $n \in \mathbb{N}$. Suppose $p_{n} \rightarrow p$ as $n \rightarrow \infty$ such that the minor leaves $\mu_{p_{n}}$ are all in the small copy of the Mandelbrot set bounded by μ_{r}, μ_{p} and μ_{q} are not in conjugate limbs of the lamination model for M, and the closures of Fatou components of $R \simeq s_{p} \amalg s_{q}$ are all disjoint. Let $R_{n} \simeq s_{p_{n}} \amalg s_{q}$, and R_{*} be the parabolic rational map on the boundary of the hyperbolic component containing the rational map $R \simeq s_{p} \amalg s_{q}$ described in Section 6. Then

$$
\lim _{n \rightarrow \infty} R_{n}=R_{*}
$$

The following theorem deals with the case when all closures of Fatou components of the rational map $R \simeq s_{p} \amalg s_{q}$ are disjoint, which includes Theorem 4.2.4 as a special case.

Theorem 4.2.5. Let p_{n}, p, q all be odd denominator rationals in $(0,1)$ such that $\lim _{n \rightarrow \infty} p_{n}=p$ and suppose that μ_{p} and μ_{q} are not in conjugate limbs of the lamination model for M. Let R_{n}, R be the rational maps such that $R_{n} \simeq s_{p_{n}} \amalg s_{q}, R \simeq s_{p} \amalg s_{q}$ and closures of all Fatou components of R are disjoint. Let R_{*} be the rational map on the boundary of the hyperbolic component containing R, with one parabolic cycle (corresponding to p) and one superattractive cycle (corresponding to q). If $\varphi_{*}^{-1}\left(\varphi_{*}(p)\right)$ contains at most three points (refer to Section 12.7 for the map φ_{*}), then

$$
\lim _{n \rightarrow \infty} R_{n}=R_{*} .
$$

We will use the idea of Markov partitions (see Section 12.3) for the rational maps near R_{*} to deal with it, which avoids the parabolic cycle on the boundary of any partition element. According to Lemma 12.3.2 [Ree4], the Markov partitions persists for maps in a small neighbourhood of R_{*} on the parameter slice $\operatorname{Per}_{m^{\prime}}(0)$.

5 Proof of Theorem 3.5.1: convergence of the polynomials Thurston equivalent to the lamination maps s_{p}

In this section, we will show the dependence between odd denominator rationals and the corresponding 2-polynomials assumes some continuity, that is, Theorem 3.5.1.

5.1 Control of the size of limbs of M

Our tool of the proof is centred on Proposition 4.2 [Hub]. Now for a hyperbolic component $V \subset M$, let

$$
\psi_{V}: \overline{\mathbb{D}} \rightarrow \bar{V}
$$

be the interior parametrization by the multipliers. Let

$$
c_{V}=\psi_{V}(1), c_{V, t}=\psi_{V}\left(e^{2 \pi i t}\right), t \in \mathbb{Q} .
$$

There are two external rays of M landing on c_{V}. These two rays together with c_{V} cut the parameter space \mathbb{C} into two parts. Now define the part of \mathbb{C} disjoint from V bounded by the two rays to be a wake $W_{c_{V}}$ of the hyperbolic component V. We call c_{V} the root of the wake, and call the intersection

$$
L_{V, \frac{r_{1}}{r_{2}}}=M \cap W_{c_{V}}, r_{1}, r_{2} \in \mathbb{N}
$$

the $\frac{r_{1}}{r_{2}}$ limb of V. Then (Proposition $\left.4.2[H u b]\right)$
Proposition 5.1.1. (a) Every point of M in the wake of c_{V} is either in V or in one of the limbs of V.
(b) There exists a function $\eta_{V}: \mathbb{N} \rightarrow \mathbb{R}$ with $\eta_{V}\left(r_{2}\right) \rightarrow 0$ as $r_{2} \rightarrow \infty$, such that

$$
\operatorname{diam}\left(L_{V, \frac{r_{1}}{r_{2}}}\right) \leq \eta_{V}\left(r_{2}\right)
$$

The proof uses the Yoccoz inequality, one can refer to P478 [Hub] for the proof.

5.2 Proof of Theorem 3.5.1

As the situation in the satellite case is different from the primitive case, we will prove the theorem separately in the two situations.

Proof. The Satellite Case.

In this case the wake $W_{\mathcal{P}_{p}}$ (see the following explanation) is attached on another hyperbolic component. We prove this by orbit portrait theory, especially, we rely on Theorem 1.2 [Mil2].

We use l_{p} to denote the minor leaf in the lamination L_{p} with one end point $e^{2 \pi i p}, l_{p}^{2}$ to denote the leaf of its image under z^{2} in $\overline{\mathbb{D}}$ and so on. Use $P(p)$ to denote the period of any odd denominator rational p under the doubling map. Then $l_{p}, l_{p}^{2}, \cdots, l_{p}^{P(p)}$ form a repelling cycle of period dividing $P(p)$ after collapsing the leaves and polygon gaps in the lamination L_{p} (the period can even be 1 , in which case $l_{p}, l_{p}^{2}, \cdots, l_{p}^{P(p)}$ form a polygon gap). For convenience of notations, we assume after collapsing leaves and polygon gaps in the lamination $L_{p}, l_{p}, l_{p}^{2}, \cdots, l_{p}^{P(p)}$ form a repelling cycle of period $P(p)$. The argument can be applied to cases of periods dividing $P(p)$. Now denote the points corresponding to $l_{p}, l_{p}^{2}, \cdots, l_{p}^{P(p)}$ after collapsing the leaves and polygon gaps by $z_{1}^{p}, z_{2}^{p}, \cdots, z_{P(p)}^{p}$. Denote the other endpoint of l_{p} by $e^{2 \pi i \bar{p}}$ for $\bar{p} \in(0,1)$. Then the portrait associated with the repelling orbit

$$
\mathcal{O}_{p}=\left\{z_{1}^{p}, z_{2}^{p}, \cdots, z_{P(p)}^{p}\right\}
$$

of f_{c} is

$$
\mathcal{P}_{p}=\left\{\{p, \bar{p}\},\{2 p, 2 \bar{p}\}, \cdots,\left\{2^{P(p)} p, 2^{P(p)} \bar{p}\right\}\right\}
$$

The valence $v_{p}=2$ (number of external rays landing on a point in the repelling cycle). As l_{p} is the minor leaf, we can define the angular width (refer to [Mil2]) of a sector S to be the length of the open arc \mathcal{I}_{S} consisting of all the angles $t \in \mathbb{R} / \mathbb{Z}$ with $\mathcal{R}_{t} \subset S$. Here we use \mathcal{R}_{t} to denote the external ray of angle $t \in[0,1)$. Then the sector bounded by l_{p} will have the least angular width compared with other sectors bounded by $l_{p}^{2}, \cdots, l_{p}^{P(p)}$. $[p, \bar{p}]$ (in the case $p<\bar{p}$) or $[\bar{p}, p]$ (in the case $p>\bar{p}$) is called the characteristic arc of the orbit portrait \mathcal{P}_{p} in [Mil2].

Now by Theorem 1.2 [Mil2], the two corresponding rays $\mathcal{R}_{p}^{M}, \mathcal{R}_{\bar{p}}^{M}$ land on the parabolic parameter c^{\prime} which has a parabolic cycle of the same period $P(p)$ with portrait \mathcal{P}_{p}. Denote the wake cut by the two rays $W_{\mathcal{P}_{p}}$, so c^{\prime} is the root of the wake. Denote the hyperbolic component in $W_{\mathcal{P}_{p}}$ with c^{\prime} on its boundary by U. We will show that c_{n} must tend to c^{\prime} as $n \rightarrow \infty$.

Now following the same process, the repelling periodic orbit

$$
\mathcal{O}_{p_{n}}=\left\{z_{1}^{p_{n}}, z_{2}^{p_{n}}, \cdots, z_{P\left(p_{n}\right)}^{p_{n}}\right\}
$$

of $f_{c_{n}}$ has portrait

$$
\mathcal{P}_{p_{n}}=\left\{\left\{p_{n}, \overline{p_{n}}\right\},\left\{2 p_{n}, 2 \overline{p_{n}}\right\}, \cdots,\left\{2^{P\left(p_{n}\right)} p_{n}, 2^{P\left(p_{n}\right)} \overline{p_{n}}\right\}\right\}
$$

while $\left[p_{n}, \overline{p_{n}}\right]$ (in the case $p_{n}<\overline{p_{n}}$) or $\left[\overline{p_{n}}, p_{n}\right]$ (in the case $p_{n}>\overline{p_{n}}$) is the characteristic arc. The two parameter rays $\mathcal{R}_{p_{n}}^{M}, \mathcal{R}_{\bar{p}_{n}}^{M}$ land at a parabolic parameter which cut a wake $W_{\mathcal{P}_{p_{n}}}$ containing c_{n}. Now consider the relative positions of the minors $l_{p}, l_{p_{n}}$ on the closed unit disc $\overline{\mathbb{D}}$ and the wakes $W_{\mathcal{P}_{p}}, W_{\mathcal{P}_{p_{n}}}$ on M.

There are two possible choices for the relative positions of the sequence p_{n} and the two points p, \bar{p}. Either the sequence p_{n} is between p and \bar{p} or it is not. First we will assume that all p_{n} are between p and \bar{p}. In
the general case we can split the sequence p_{n} into two sub-sequences such that one is between p and \bar{p} while the other is not. Under this assumption $c_{n} \in \bar{U} \cup W_{\mathcal{P}_{p}}$ for all n. We first consider the case $\bar{p}<p$ and p_{n} strictly increases to p.

Whatever the choices are, p_{n} and $\overline{p_{n}}$ both will tend to p as every point in the wake $W_{\mathcal{P}_{p}}$ is either in \bar{U} or in one of the limbs of U (Proposition 5.1.1). The relative positions of all the leaves l_{n} can be quite complicated, though all of them tend to the point $e^{2 \pi i p}$. Figure 3 shows a possible relative positions of the leaves $l_{p_{n}}$ and l_{p} with subscripts $1 \leq n \leq 11$.

Figure 3: A possible relative positions of the leaves $l_{p_{n}}$ and l_{p} with subscripts $1 \leq n \leq 11$ in the case $\bar{p}<p$, in order to draw the arcs clearly length of the minors has been magnified

Note that p_{n} and $\overline{p_{n}}$ are between t_{n} and $\overline{t_{n}}$, where $e^{2 \pi i t_{n}}$ and $e^{2 \pi i t_{n}}$ are the endpoints of a leaf $l_{t_{n}}$ on the boundary of the gap bounded by l_{p} and separated from 0 by l_{p}. So

$$
t_{n} \rightarrow p \text { as } n \rightarrow \infty .
$$

Assuming without loss of generality that

$$
\overline{t_{n}}<p_{n}<t_{n} .
$$

Then $\mathcal{R}_{t_{n}}^{M}$ and $\mathcal{R}_{t_{n}}^{M}$ land on a common point $h_{n} \in \partial M$ such that

$$
h_{n} \rightarrow c^{\prime} \text { as } n \rightarrow \infty .
$$

Now let $W_{\mathcal{P}_{t_{n}}} \cap M=L_{U, t_{n}}$ be the limbs. According to Proposition 5.1.1,

$$
\operatorname{diam}\left(L_{U, t_{n}}\right) \rightarrow 0 \text { as } n \rightarrow \infty,
$$

so it must be the case that the whole limb

$$
L_{U, t_{n}} \rightarrow c^{\prime} \text { as } n \rightarrow \infty
$$

or else h_{n} will not tend to c^{\prime}. Then $c_{n} \rightarrow c^{\prime}$ as $n \rightarrow \infty$ follows from the fact that

$$
c_{n} \in L_{U, t_{n}} .
$$

Figure 4 shows a possible distribution of the wakes and external rays of M corresponding to distributions of $p, \bar{p}, p_{n}, \overline{p_{n}}$ in Figure 3.

Figure 4: A possible distribution of the wakes and external rays of M corresponding to Figure 3 in the case $\bar{p}<p$, in order to draw the arcs clearly area of the wakes have been magnified

Now suppose $\bar{p}>p$ and the sequence $p_{n} \notin[p, \bar{p}]$. Using similar arguments as before, the whole limb

$$
L_{U, p_{n}} \rightarrow c^{\prime},
$$

however, not from interior of $W_{\mathcal{P}_{p}}$, but from exterior of it. Here we denote by U the hyperbolic component attached to c^{\prime} and not contained in the wake $W_{\mathcal{P}_{p}}$ (the former U component is the one in the wake $W_{\mathcal{P}_{p}}$). The following two pictures show a possible relative positions of the leaves
$l_{p_{n}}$ and l_{p} on $\overline{\mathbb{D}}$ with subscripts $1 \leq n \leq 12$ and the corresponding distributions of the wakes and external rays of M.

Figure 5: A possible relative positions of the leaves $l_{p_{n}}$ and l_{p} on $\overline{\mathbb{D}}$ with subscripts $1 \leq n \leq 12$ in the case $\bar{p}>p$, in order to draw the arcs clearly length of the minors have been magnified

Figure 6: A possible distribution of the wakes and external rays corresponding to Figure 5 on M in the case $\bar{p}>p$, in order to draw the arcs clearly area of the wakes have been magnified

Remark 5.2.1. If one does not require p_{n} strictly increase to p, more mixing patterns of relative positions of the leaves and wakes are allowed, however, the convergence still holds.

Proof. The Primitive Case.

In this case the wake $W_{\mathcal{P}_{p}}$ is not attached on another hyperbolic component. We distinguish two cases. First, if every p_{n} is out of the interval
$[\bar{p}, p]$ (by this expression we are assuming $\bar{p}<p$, the case $\bar{p}>p$ is similar), according to the wake description of M near the primitive parabolic parameter c^{\prime} [Mil2, Theorem 1.2] and the control of size of limbs of a hyperbolic component of M [Hub, Proposition 4.2], let U be the hyperbolic component in $W_{\mathcal{P}_{p}}$ which contains c^{\prime} on its boundary, c^{\prime} is the root of the wake $W_{\mathcal{P}_{p}}$, then the convergence of c_{n} goes as the satellite case.

Now the main case to consider is when p_{n} is in $[\bar{p}, p]$, or else split the sequence into two sub sequences, one is out of the interval $[\bar{p}, p]$, the other one is in the interval. In order to deal with convergence in this situation we will need the following definition of extremal length, which is similar to the definition of modulus of annulus. One can refer to P10 [Ahl] for more interesting material of the notion.

For a topological disk X with two assigned opposite edges l, l^{\prime}, let Γ denote the union of arcs in X which connect l with l^{\prime}. For a conformal metric ρ on X, denote the length of an arc $\gamma \in \Gamma$ by $L_{\rho}(\gamma)$, denote the area of X by $A_{\rho}(X)$. Then we call
Definition 5.2.2. $\operatorname{Mod}(X)=\sup _{\rho} \frac{\left(\inf _{\gamma \in \Gamma} L_{\rho}(\gamma)\right)^{2}}{A_{\rho}(X)}$
the modulus of X with two assigned edges l, l^{\prime} (in the cases where the assigned edges are obvious we omit them).

We want to present the Grötzsch inequality here. It relates the modulus of an annulus with its conformal-homotopy embeddings.

Grötzsch inequality 5.2.3. Let E be an open annulus, E_{j} be a (finite or infinite) sequence of open annulus. Let $\varphi_{j}: E_{j} \rightarrow E$ be conformal mappings which are homotopy equivalences, with disjoint images. Then

$$
\sum_{j=0}^{\infty} \operatorname{Mod}\left(E_{j}\right) \leq \operatorname{Mod}(E)
$$

One is recommended to Proposition 5.4 [BH] for a proof.
Now by the construction of the parapuzzle partition introduced in Section 3.2, the two rays of M, \mathcal{R}_{p}^{M} and $\mathcal{R}_{\bar{p}}^{M}$ both land on $c^{\prime} \in \partial M$, the parabolic parameter. Let \mathcal{R}_{p}^{M} and $\mathcal{R}_{\bar{p}}^{M}$ encounter the boundary of the parapuzzle piece $M X_{n}\left(c^{\prime}\right)$ (the level n parapuzzle piece containing the parameter c^{\prime}) at the two points a_{n}, a_{n}^{\prime}. Then

$$
h_{M}\left(a_{n}\right)=h_{M}\left(a_{n}^{\prime}\right)=\frac{R}{2^{n}}, R>1 .
$$

Now we get a nested sequence of sector shaped domains. Every domain is bounded by parts of the two rays $\mathcal{R}_{p}^{M}, \mathcal{R}_{p^{\prime}}^{M}$, say r_{n}, r_{n}^{\prime}, and the arc joining a_{n} and a_{n}^{\prime} as part of the boundary of $M X_{n}\left(c^{\prime}\right)$, denote this arc by l_{n} and denote the closed sector area bounded by r_{n}, r_{n}^{\prime} and l_{n} by $M B_{n} . l_{n}$ is piecewise smooth. Denote the closed topological disc bounded by l_{n}, l_{n+1} and part of $\mathcal{R}_{p}^{M}, \mathcal{R}_{p^{\prime}}^{M}$ by $M C_{n}$. So $M C_{n}$ is the closure of $M B_{n} \backslash M B_{n+1}$. First we prove the following lemma, which will be true for more general nested sequences with piecewise smooth boundaries.

Let $C_{n}(n \geq 0)$ be a sequence of closed topological rectangles with piecewise smooth boundaries such that C_{n} and C_{n+1} share a connected common part l_{n} of boundaries and $C_{i} \cap C_{j}=\emptyset$ for $|i-j| \geq 2$. All the C_{n} lie between two smooth topological arcs I_{+}and I_{-}intersecting each other at x. Let $I_{<}$be the arc connecting the other two endpoints of I_{+}and I_{-}. Let B_{n} be the closure of the set $\cup_{j=n}^{\infty} C_{j}$. Since $\cup_{n=0}^{\infty} C_{n}$ is bounded, then
Lemma 5.2.4. If $\sum_{n=0}^{\infty}\left(\operatorname{Mod}\left(C_{n}\right)\right)=\infty$, then

$$
\operatorname{diam}\left(B_{n}\right) \rightarrow 0
$$

as $n \rightarrow \infty$, and

$$
\cap_{n=0}^{\infty} B_{n}=x
$$

Proof. There is a conformal mapping f from B_{0}^{o} to the upper half disc $D_{+}=\{z:|z|<1\} \cap\{z: \operatorname{Im} z>0\}$. As B_{0} has piecewise smooth boundaries, f extends to the boundary of B_{0} by the smooth Riemann mapping theorem. We require

$$
f(x)=0, f\left(I_{+}\right)=[-1,0], f\left(I_{-}\right)=[0,1]
$$

and

$$
f\left(I_{<}\right)=\{z:|z|=1\} \cap\{z: \operatorname{Im} z>0\} .
$$

Figure 7 shows a sketch of the correspondence between the two structures under f up to $n=4$.

Figure 7: The conformal mapping f

Now we have

$$
\operatorname{Mod}\left(f\left(C_{n}\right)\right)=\operatorname{Mod}\left(C_{n}\right)
$$

because the modulus is preserved under conformal mapping. Denote by

$$
\left.A_{n}=f\left(C_{n}\right) \cup f\left(\bar{C}_{n}\right) \text { (the complex conjugate of } f\left(C_{n}\right)\right),
$$

A_{n} is an annulus. Moreover

$$
\operatorname{Mod}\left(A_{n}\right)=\frac{1}{2} \operatorname{Mod}\left(f\left(C_{n}\right)\right)=\frac{1}{2} \operatorname{Mod}\left(C_{n}\right)
$$

Now if $\sum_{n=1}^{\infty}\left(\operatorname{Mod}\left(C_{n}\right)\right)=\infty$, then

$$
\sum_{n=1}^{\infty}\left(\operatorname{Mod}\left(A_{n}\right)\right)=\infty .
$$

Denote the closed disc bounded by the curve $f\left(l_{n}\right) \bigcup f\left(\bar{l}_{n}\right)$ by B_{n}^{\prime}. According to Proposition 6.1 [Hub],

$$
\operatorname{diam}\left(B_{n}^{\prime}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

and

$$
\cap_{n=1}^{\infty} B_{n}^{\prime}
$$

is a single point, which forces

$$
\operatorname{diam}\left(B_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

and

$$
\cap_{n=1}^{\infty} B_{n}=x .
$$

Remark 5.2.5. This lemma is a sector-shaped evolution of Proposition 6.1 in [Hub]. One can imagine that generalizations to other specific shaped sequences will also be possible and quite useful.

Apply Lemma 5.2.4 to our case with $C_{n}=M C_{n}$ and $B_{n}=M B_{n}$, we see that if $\sum_{n=0}^{\infty} \operatorname{Mod}\left(M C_{n}\right)=\infty$, then

$$
\lim _{n \rightarrow \infty} \operatorname{diam}\left(M B_{n}\right) \rightarrow 0 \text { and } \cap_{n=1}^{\infty}\left(M B_{n}\right)=c^{\prime}
$$

Now we consider the corresponding picture on the dynamical plane. Let $\phi_{c^{\prime}}$ be the Böttcher map of $c^{\prime} . \Phi_{M}: \mathbb{C} \backslash M \longrightarrow \mathbb{C} \backslash \overline{\mathbb{D}}$ is the conformal isomorphism in [DH2]. According to Proposition 12.4 [Hub],

$$
C_{n}=\phi_{c^{\prime}}^{-1} \circ \Phi_{M}\left(M C_{n}\right)
$$

form a new topological disc sequence inside the sector shaped area

$$
B_{0}=\phi_{c^{\prime}}^{-1} \circ \Phi_{M}\left(M B_{0}\right) .
$$

B_{0} still has parts of the two external rays of angle p and \bar{p} as part of its boundary on the dynamical plane of $f_{c^{\prime}}$, the same with the equipotentials. Moreover, $\left(f_{c^{\prime}}\right)^{-k}$ maps C_{n} conformally onto C_{n+k}, where k is the period of critical point of f_{c}. Without loss of generality suppose $\operatorname{Mod}\left(C_{1}\right)>0$, then

$$
\operatorname{Mod}\left(C_{k j+1}\right)=\operatorname{Mod}\left(C_{1}\right)>0, j \in \mathbb{Z}
$$

So we have

$$
\sum_{n=1}^{\infty} \operatorname{Mod}\left(C_{n}\right)=\infty .
$$

Now we want to transfer the divergent results on sums of the modulus from the dynamical plane of $f_{c^{\prime}}$ to the parameter plane. Now consider the situation that c^{\prime} is in $p / q \operatorname{limb}$ of the main cardioid of M. Choose a neighbourhood V of the root of the $\operatorname{limb} M_{p / q}, p, q \in \mathbb{N}^{+}$as small as possible such that c^{\prime} is not in V. We have the following links:

Lemma 5.2.6. There exists a constant $C^{\prime}>0$ depending only on p / q and V, such that for each contributing disc $C_{k j+1}$ on the dynamical plane, the corresponding topological disc $M C_{k j+1}$ sitting on the parameter plane has modulus at least C^{\prime}.

Proof. According to the definition of $M C_{k j+1}$, if we can find a conformal metric μ, such that $L_{\mu}\left(\gamma_{j}\right)$ has lower bounds for any curve γ_{j} in $M C_{k j+1}$ joining $l_{k j+1}$ and $l_{k j+2}, A_{\mu}\left(M C_{k j+1}\right)$ has upper bounds (both bounds do not depend on j), then things are done. To achieve this, use the metric

$$
\mu=\mu_{1}+\mu_{2}
$$

in the proof of Proposition 13.2 [Hub].

$$
\mu_{1}=2^{n+\nu}\left|d \log \Phi_{M}\right|
$$

is a metric on $M C_{n}$ (in fact we only care about the cases $n=k j+1$). Notice that because $\log \circ \Phi_{M}$ maps $M C_{n}$ to a rectangle

$$
\left\{\left(r^{\prime}, \theta\right): \frac{R}{2^{n+1}}<r^{\prime}<\frac{R}{2^{n}}, p<\theta<\bar{p}\right\},
$$

$R>1$, we multiply 2^{n} so that the area (length) of $M C_{k j+1}\left(\gamma_{j}\right)$ can be competitive with the area (length) of $M C_{k j+1}\left(\gamma_{j}\right)$ under μ_{2}.

Choose $r>0$ such that for all $c^{\prime} \in M_{p / q}$, the disc $D_{r}\left(\alpha\left[c^{\prime}\right]\right)$ is contained in $U_{0}\left[c^{\prime}\right]$ and does not intersect the $q-1$ non-critical pieces of depth 1 in the critical piece $C_{0}\left[c^{\prime}\right]$. Then choose $r_{1}<r$ and set

$$
A=\inf _{c \in M_{p} / q \backslash V} \inf _{i=1,2} \inf _{\left\{z \in R_{c}\left(\theta_{i}\right) \cap\left(\mathbb{C} \backslash D_{r_{1}}\right)\right\}} h_{c}(z),
$$

$A>0$. Now if γ_{j} is a curve in $M C_{k j+1}$ joining $l_{k j+1}$ and $l_{k j+2}$ which starts from a potential less than $A, L_{\mu_{1}}\left(\gamma_{j}\right)$ can be quite small, but in this case γ_{j} must cross a small neighbourhood of $l_{k j+1} \cap M$, so we introduce a second measure μ_{2} supported on this region to ensure that $L_{\mu_{2}}\left(\gamma_{j}\right)$ is bounded below in the case that γ_{j} stays in a small neighbourhood of $l_{k j+1} \cap M . \mu_{2}$ is chosen to let $L_{\mu_{2}}\left(\gamma_{j}\right)$ be the length in the usual conformal metric on \mathbb{C} of a path between $\left\{z:|z|=r_{1}\right\}$ and $\{z:|z|=r\}$ for suitable r_{1} and r. We define μ_{2} on each component U (in our case there is in fact only one component) of $F_{i}^{-1}\left(D_{r}\right) \cap M X_{i}\left(c^{\prime}\right)$, where

$$
F_{i}(c)=f_{c}^{i}(c)-\alpha(c), f_{c}=z^{2}+c .
$$

Define μ_{2} on each U to be $d F_{i}$ on the image of s_{U}, a section of a function $\phi_{i}: c \rightarrow \Phi\left(c, F_{i}(c)\right)$, which is an analytic branch of $\log \left(z-\alpha\left[c^{\prime}\right]\right)$.

Now $L_{\mu}\left(\gamma_{j}\right)$ is bounded below from $\inf \left\{A, l_{p / q}, r-r_{1}, \frac{\log R}{2}\right\}$, while $A_{\mu}\left(M C_{k j+1}\right)$ is bounded above by a constant depending only on c^{\prime} from lemma 13.7 and Lemma 13.8 [Hub], and this proves our Lemma.

Remark 5.2.7. This is a corollary of Proposition 13.2 [Hub] by its proof. The crucial point is the selection of the metric μ_{2} to control the modulus of $M C_{k j+1}$. One can refer to the proof of Proposition 13.2 [Hub] for the origin of the metric.

Corollary 5.2.8. $\sum_{n=1}^{\infty} \operatorname{Mod}\left(M C_{n}\right)=\infty$.
Proof. This is from Lemma 5.2.6 because

$$
\operatorname{Mod}\left(M C_{k j+1}\right)>C^{\prime}
$$

for some fixed $C^{\prime}>0$ and all $j \in \mathbb{Z}^{+}$.
By Corollary 5.2.8 and Lemma 5.2.4,

$$
\operatorname{diam}\left(M B_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty,
$$

and

$$
\cap_{n=1}^{\infty}\left(M B_{n}\right)=c^{\prime} .
$$

Now note that

$$
c_{n} \in M B_{N_{n}}
$$

for some $N_{n} \in \mathbb{N}$ and $N_{n} \rightarrow \infty$ as $n \rightarrow \infty$. This completes the proof of $\lim _{n \rightarrow \infty} c_{n}=c^{\prime}$ in the primitive case.

Remark 5.2.9. Now if $r \in[0,1)$ is an arbitrary real number not being an odd denominator rational and the external ray of angle r for M lands on a non-renormalizable parameter $c^{\prime} \in \partial M$, for a sequence of odd denominator rationals p_{n} such that $\lim _{n \rightarrow \infty} p_{n}=r$, by Yoccoz's control of size of Limbs and the orbit portrait theory, convergence of the corresponding critically periodic polynomials $f_{c_{n}}(z)=z^{2}+c_{n}$ Thurston equivalent to $s_{p_{n}}$ still holds (this can also be deduced from Schleicher's theory of triviality of fibers of M at c^{\prime} in [Schl1])

$$
\lim _{n \rightarrow \infty} c_{n}=c^{\prime} .
$$

However, the limit map $f_{c^{\prime}}(z)=z^{2}+c^{\prime}$ is no longer a parabolic map. For example, if r is an even denominator rational, $f_{c^{\prime}}(z)$ will be a Misiurewicz map.

6 Outline of proof of Theorem 4.2.1: on the particular sequence of odd denominator rationals

Suppose that p is of period m, p_{n} is of period m_{n}, q is of period m^{\prime} under the doubling map $z \rightarrow 2 z$ on $\mathbb{R} \backslash \mathbb{Z}$. We know that on the boundary of the hyperbolic component containing R on $\operatorname{Per}_{m^{\prime}}(0)$, there is a unique parabolic map R_{*}, which has the following properties:

- Let v be the point in the parabolic cycle of R_{*} which attracts the critical point c_{1} under iterations of R_{*}^{m}, then $R_{*}^{m}(v)=v$. The period of v divides m.
- R_{*} has two critical points c_{1} and c_{2}, of which c_{1} is attracted to the parabolic cycle while c_{2} is periodic of period m^{\prime}.
- R_{*}^{m} has multiplier 1 at the parabolic fixed point v.

Theorem 4.2.1 is proved in three steps. First we get some particular critically finite quadratic rational maps R_{n} through parabolic perturbations around R_{*} (the techniques are from [DH2]), then we prove these maps are matings by finding invariant circles for them, at last we recover the particular convergent sequence p_{n} from R_{n} in equation (8). Remember that in the whole process we stay in the parameter slice of quadratic rational maps $\operatorname{Per}_{m^{\prime}}(0)$ containing R. One is recommended to [Tim2] for the structure of hyperbolic components on $\operatorname{Per}_{m^{\prime}}(0)$.

7 Parabolic perturbation for critically periodic maps

The technique of parabolic perturbation started from Douady and Hubbard [DH2]. Later Lavaurs [Lav] and Shishikura [Shi3] developed their theory of Écalle cylinders. The theory was then applied or generalised by Lavaurs [Lav], Shishikura [Shi2], P. Haïssinsky [Hai], Tan Lei [Tan2], Buff and Chéritat [BC], Buff, Écalle and Epstein [BEE] to get many beautiful results.

Let $\tau(w)=-1 \backslash w, f$ is a parabolic map of the form $f(z)=z+z^{2}+\ldots$. A perturbed function f_{α} has two new fixed point near 0 , by moving either one of them to 0 , we can assume $f_{\alpha}=e^{2 \pi i \alpha} z+z^{2}+O\left(z^{3}\right)$, where α is a small number close to 0 . Let

$$
F_{\alpha}(w)=\tau^{-1} \circ f \circ \tau(w) .
$$

Denote the critical point attracted by the parabolic point 0 of f by c_{1}, the corresponding critical point of the perturbed map f_{α} by $c_{1}(\alpha)$. The following theorem tells us that one can expect to find a critically periodic map $f_{\alpha_{n}}$ with its critical point $c_{1}\left(\alpha_{n}\right)$ being periodic of period $2 n+r+s\left(n, r, s\right.$ are all in $\left.\mathbb{N}^{+}\right)$.

Theorem 7.0.10. For n large enough, there exist α_{n}, ϵ_{n} depending on n, $n \alpha_{n}=\frac{1}{2}+\epsilon_{n}, \lim _{n \rightarrow \infty} \epsilon_{n}=0$, two positive integers r, s, a point $v_{-s}\left(\alpha_{n}\right) \in$ $f_{\alpha_{n}}^{-s}\left(c_{1}\left(\alpha_{n}\right)\right)$ in the backward orbit of $c_{1}\left(\alpha_{n}\right)$ under $f_{\alpha_{n}}$ and in the domain of the local inverse of $f_{\alpha_{n}}$ defined near 0 with $\operatorname{Arg}\left(v_{-s}\left(\alpha_{n}\right)\right) \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, such that

$$
\begin{equation*}
f_{\alpha_{n}}^{n}\left(f_{\alpha_{n}}^{r}\left(c_{1}\left(\alpha_{n}\right)\right)\right)=f_{\alpha_{n}}^{-n}\left(v_{-s}\left(\alpha_{n}\right)\right) \tag{10}
\end{equation*}
$$

where $f_{\alpha_{n}}^{-1}$ denotes the branch such that $f_{\alpha_{n}}^{-1}(0)=0$ in the formula.
The theorem is proved in terms of $F_{\alpha_{n}}$ in the following theorem. Now use $C_{1}\left(\alpha_{n}\right)$ to denote the corresponding critical point of $F_{\alpha_{n}}$, we have

Theorem 7.0.11. For n large enough, there exist α_{n}, ϵ_{n} depending on n, $n \alpha_{n}=\frac{1}{2}+\epsilon_{n}, \lim _{n \rightarrow \infty} \epsilon_{n}=0$, two positive integers r, s, a point $w_{-s}\left(\alpha_{n}\right) \in$ $F_{\alpha_{n}}^{-s}\left(C_{1}\left(\alpha_{n}\right)\right)$ in the backward orbit of $C_{1}\left(\alpha_{n}\right)$ under $F_{\alpha_{n}}$ and in the domain of the local inverse of $F_{\alpha_{n}}$ defined near ∞ with $\operatorname{Arg}\left(w_{2}\left(\alpha_{n}\right)\right) \in$ $\left[\frac{3 \pi}{4}, \frac{5 \pi}{4}\right]$, such that

$$
\begin{equation*}
F_{\alpha_{n}}^{n}\left(F_{\alpha_{n}}^{r}\left(C_{1}\left(\alpha_{n}\right)\right)\right)=F_{\alpha_{n}}^{-n}\left(w_{-s}\left(\alpha_{n}\right)\right) \tag{11}
\end{equation*}
$$

where $F_{\alpha_{n}}^{-1}$ denotes the branch such that $F_{\alpha_{n}}^{-1}(\infty)=\infty$.
The main idea of the proof is estimating the main terms of the forward and backward orbits of the critical point $C_{1}(\alpha)$ under perturbation, then use the argument principle to collapse them near a small neighbourhood of ∞.

7.1 Estimate the forward iterations

Lemma 7.1.1. For $|w|$ large enough, we have

$$
F_{\alpha}(w)=e^{-2 \pi i \alpha} w+e^{-4 \pi i \alpha}+\frac{A}{w}+\frac{B}{w^{2}}+O\left(\frac{1}{w^{3}}\right) .
$$

Proof. By the definition, $F_{\alpha}(w)=\tau^{-1} \circ f_{\alpha} \circ \tau(w)$, so

$$
\begin{aligned}
F_{\alpha}(w) & =\frac{1}{\frac{e^{2 \pi i \alpha}}{w}-\frac{1}{w^{2}}+O\left(\frac{1}{w^{3}}\right)} \\
& =e^{-2 \pi i \alpha} w\left(\frac{1}{1-\left[\frac{e^{-2 \pi i \alpha}}{w}+O\left(\frac{1}{w^{2}}\right)\right]}\right) \\
& =e^{-2 \pi i \alpha} w\left(1+\frac{e^{-2 \pi i \alpha}}{w}+\frac{A^{\prime}}{w^{2}}+\frac{B^{\prime}}{w^{3}}+O\left(\frac{1}{w^{4}}\right)\right) \\
& =e^{-2 \pi i \alpha} w+e^{-4 \pi i \alpha}+\frac{A}{w}+\frac{B}{w^{2}}+O\left(\frac{1}{w^{3}}\right) .
\end{aligned}
$$

In fact A and B both depend on α but are bounded for small α.
By introducing the transformation τ we map 0 to ∞. The forward orbit of critical point $c_{1}=c_{1}(0)$ of $f=f_{0}$ tends to 0 from the direction of real axis on the left half plane, while on the w plane the modulus of points on the orbit of $C_{1}(\alpha)$ under F_{α} gets successively larger at beginning of the iterations. Long term behaviour is hard to predict, but at the beginning the map tends to have an increase of $e^{-4 \pi i \alpha}$, which approximates 1 when α is close to 0 , just like the Fatou coordinate [Mil1] for the parabolic map.

Because the perturbations that can create super attractive cycles are in the domain $\{\alpha: \operatorname{Arg}(\alpha) \in(-\pi \backslash 4, \pi \backslash 4) \bigcup(3 \pi \backslash 4,5 \pi \backslash 4)\}$, so we assume α in this range in the following.

By Lemma 7.1 .1 we can easily get the following iterating expression:

$$
\begin{align*}
F_{\alpha}^{n}(w)= & e^{-2 \pi i n \alpha} w+e^{-4 \pi i \alpha} \frac{1-e^{-2 \pi i n \alpha}}{1-e^{-2 \pi i \alpha}}+\sum_{j=1}^{n} \frac{e^{-2 \pi i(j-1) \alpha} A}{F_{\alpha}^{n-j}(w)} \\
& +\sum_{j=1}^{n} \frac{e^{-2 \pi i(j-1) \alpha} B}{\left(F_{\alpha}^{n-j}(w)\right)^{2}}+\text { higher order terms. } \tag{12}
\end{align*}
$$

Now let

$$
\begin{gathered}
P=e^{-2 \pi i n \alpha} w, Q=e^{-4 \pi i \alpha} \frac{1-e^{-2 \pi i n \alpha}}{1-e^{-2 \pi i \alpha}} \\
S=\sum_{j=1}^{n} \frac{e^{-2 \pi i(j-1) \alpha} A}{F_{\alpha}^{n-j}(w)}+\sum_{j=1}^{n} \frac{e^{-2 \pi i(j-1) \alpha} B}{\left(F_{\alpha}^{n-j}(w)\right)^{2}}+\text { higher order terms } .
\end{gathered}
$$

We will show that $P+Q$ (more precisely, Q) is the dominant term and S is of less order. We resort to induction to bound S.

Lemma 7.1.2. Denote $w=\operatorname{Re}(w)+i \operatorname{Im}(w)$. There exist three small numbers δ_{1}, δ_{2} and δ_{3} such that for any $\alpha, w \in \mathbb{C}, k \in \mathbb{N}$ (k is not fixed) satisfying $|\alpha|<\delta_{1}, k^{2}|\alpha|<\delta_{2},|w|>\frac{1}{\delta_{3}}$, w has positive real part and $\operatorname{Re}(w) \gg|\operatorname{Im}(w)|$, the following holds:

$$
\begin{equation*}
\left|F_{\alpha}^{l}(w)\right| \geq|w|+\frac{l}{2} \tag{13}
\end{equation*}
$$

for all $l \leq k$.
Proof. For $l=0$, the inequality obviously holds. Now suppose the inequality (13) holds for $l=j^{\prime} \leq k-1$, we want to prove it holds for $j^{\prime}+1 \leq k$.

First, when $n=j^{\prime}+1$,

$$
\begin{aligned}
P+Q= & \left(\cos \left(2 \pi\left(j^{\prime}+1\right) \alpha\right)-i \sin \left(2 \pi\left(j^{\prime}+1\right) \alpha\right)\right)(\operatorname{Re}(w)+i \operatorname{Im}(w)) \\
& +(1+O(\alpha)) \frac{1-\cos \left(2 \pi\left(j^{\prime}+1\right) \alpha\right)+i \sin \left(2 \pi\left(j^{\prime}+1\right) \alpha\right)}{2 \pi i \alpha+O\left(\alpha^{2}\right)} \\
= & \cos \left(2 \pi\left(j^{\prime}+1\right) \alpha\right) \operatorname{Re}(w)+\sin \left(2 \pi\left(j^{\prime}+1\right) \alpha\right) \operatorname{Im}(w) \\
& +\frac{\sin \left(2 \pi\left(j^{\prime}+1\right) \alpha\right)}{2 \pi \alpha}+i \cos \left(2 \pi\left(j^{\prime}+1\right) \alpha\right) \operatorname{Im}(w) \\
& +i\left(-\sin \left(2 \pi\left(j^{\prime}+1\right) \alpha\right) \operatorname{Re}(w)+\frac{\cos \left(2 \pi\left(j^{\prime}+1\right) \alpha\right)-1}{2 \pi \alpha}\right) \\
& +O\left(\alpha^{2}\right) .
\end{aligned}
$$

Choose δ_{1} and δ_{2} small enough, so $k|\alpha|<k^{2}|\alpha|<\delta_{2}$ will be small enough, such that $\sin \left(2 \pi\left(j^{\prime}+1\right) \alpha\right)$ will be close enough to 0 and $\cos \left(2 \pi\left(j^{\prime}+\right.\right.$
$1) \alpha$) will be close enough to 1 . Thus the main terms in the above expression will be

$$
\begin{equation*}
\cos \left(2 \pi\left(j^{\prime}+1\right) \alpha\right) \operatorname{Re}(w)+\frac{\sin \left(2 \pi\left(j^{\prime}+1\right) \alpha\right)}{2 \pi \alpha}+i \cos \left(2 \pi\left(j^{\prime}+1\right) \alpha\right) \operatorname{Im}(w) \tag{14}
\end{equation*}
$$

Note that $\frac{\cos \left(2 \pi\left(j^{\prime}+1\right) \alpha\right)-1}{2 \pi \alpha}$ can be controlled because its first term will be less than $O\left(k^{2}|\alpha|\right)$. Now we deal with the term

$$
S=\sum_{j=1}^{j^{\prime}+1} \frac{e^{-2 \pi i(j-1) \alpha} A}{F_{\alpha}^{j^{\prime}+1-j}(w)}+\sum_{j=1}^{j^{\prime}+1} \frac{e^{-2 \pi i(j-1) \alpha} B}{\left(F_{\alpha}^{j^{\prime}+1-j}(w)\right)^{2}}+\text { higher order terms } .
$$

Suppose now $\left|e^{-2 \pi i(j-1) \alpha}\right|<M$ for all $j-1 \leq k$. By assumption (13) holds for all integers $\leq j^{\prime}$. Choose δ_{3} small enough such that $M A \delta_{3}<\frac{1}{100}$. So the dominant term of S will be controlled by $\frac{j^{\prime}+1}{100}$, whose influence can be easily offset by the term $\frac{\sin \left(2 \pi\left(j^{\prime}+1\right) \alpha\right)}{2 \pi \alpha}$ in $P+Q$ which approximates $j^{\prime}+1$ and is of the same sign (positive) with $\cos \left(2 \pi\left(j^{\prime}+1\right) \alpha\right) R e(w)$ if we choose δ_{1} small enough. In other words, it can contribute to $\left|F_{\alpha}^{j^{\prime}+1}(w)\right|$ of enough amount to make it increase by $\frac{3}{4}\left(j^{\prime}+1\right)$.

By all the analysis just now for $P+Q$ and S we can guarantee that

$$
\left|F_{\alpha}^{j^{\prime}+1}(w)\right|>|w|+\frac{j^{\prime}+1}{2}
$$

for suitable choices of δ_{1}, δ_{2} and δ_{3}. By mathematical induction this proves the lemma.

From now on we will assume $n \alpha_{n}=\frac{1}{2}+\epsilon_{n}$, in which ϵ_{n} is a small complex number depending on n and $\lim _{n \rightarrow \infty} \epsilon_{n}=0$. By this expression we can see that when n is a large integer α_{n} is quite close to $\frac{1}{2 n}$, a real number. So we sometimes will treat it as a small real number, actually all the things hold for small complex number ϵ_{n} with α_{n} substituted by $\left|\alpha_{n}\right|$. Now we show that

Theorem 7.1.3. Let $|w|>\frac{1}{\delta_{3}}, \operatorname{Re}(w) \gg \operatorname{Im}(w)$. For n large enough, ϵ_{n} a small complex number depending on n and $\lim _{n \rightarrow \infty} \epsilon_{n}=0, n \alpha_{n}=\frac{1}{2}+\epsilon_{n}$, then for all $k\left|\alpha_{n}\right|<\frac{3}{4}$, we have

$$
\begin{equation*}
\left|F_{\alpha_{n}}^{k}(w)\right|>\frac{1}{2 \pi} k . \tag{15}
\end{equation*}
$$

This gives us quite efficient technique to bound the R term before. In order to prove this we still need several lemmas.
Lemma 7.1.4. For term $Q=e^{-4 \pi i \alpha_{n}} \frac{1-e^{-2 \pi i k \alpha_{n}}}{1-e^{-2 \pi i \alpha_{n}}}$, choose δ_{1} small enough, we have

$$
\begin{equation*}
|Q|>\frac{\sqrt{2}}{2 \pi} k \tag{16}
\end{equation*}
$$

for all $k\left|\alpha_{n}\right|<\frac{3}{4}$ and $\left|\alpha_{n}\right|<\delta_{1}$.
Proof. In the proof we treat α_{n} as a small real number, all the things are true for small complex numbers close to $\frac{1}{2 n}$. First note that

$$
\begin{aligned}
|Q| & =\left(1+O\left(\alpha_{n}\right)\right) \frac{1-e^{-2 \pi i k \alpha_{n}}}{1-e^{-2 \pi i \alpha_{n}}} \\
& =\left(1+O\left(\alpha_{n}\right)\right) \frac{1-\cos \left(2 \pi k \alpha_{n}\right)+i \sin \left(2 \pi k \alpha_{n}\right)}{2 \pi i \alpha_{n}+O\left(\alpha_{n}^{2}\right)} \\
& =\left(1+O\left(\alpha_{n}\right)\right)\left(1+O\left(\alpha_{n}^{2}\right)\right) \frac{1-\cos \left(2 \pi k \alpha_{n}\right)+i \sin \left(2 \pi k \alpha_{n}\right)}{2 \pi i \alpha_{n}}
\end{aligned}
$$

Let $S=\frac{1-\cos \left(2 \pi k \alpha_{n}\right)+i \sin \left(2 \pi k \alpha_{n}\right)}{2 \pi i \alpha_{n}}$. Now consider the situation in two cases. First assume $k \alpha_{n}<\frac{1}{4}$, then

$$
\begin{equation*}
\frac{\sin \left(2 \pi k \alpha_{n}\right)}{2 \pi \alpha_{n}}>\frac{2}{\pi} \frac{2 \pi k \alpha_{n}}{2 \pi \alpha_{n}}=\frac{2}{\pi} k \tag{17}
\end{equation*}
$$

so obviously (16) holds in this case. When $\frac{1}{4} \leq k \alpha_{n}<\frac{3}{4}$,

$$
\begin{gathered}
|S|=\frac{\sqrt{\left(1-\cos \left(2 \pi k \alpha_{n}\right)\right)^{2}+\left(\sin \left(2 \pi k \alpha_{n}\right)\right)^{2}}}{2 \pi \alpha_{n}}=\frac{\sqrt{2-2 \cos \left(2 \pi k \alpha_{n}\right)}}{2 \pi \alpha_{n}} \\
>\frac{\sqrt{2}}{2 \pi \frac{2}{3 n}}=\frac{3 \sqrt{2}}{4 \pi} n>\frac{\sqrt{2}}{2 \pi} k
\end{gathered}
$$

The last inequality holds because $k<\frac{\frac{3}{4}}{\alpha_{n}}<\frac{\frac{3}{4}}{\frac{1}{2 n}}=\frac{3}{2} n$, so $n>\frac{2}{3} k$.

Now we can use these lemmas to prove Theorem 7.1.3.

Proof of Theorem 7.1.3

Proof. Remember $F_{\alpha_{n}}^{k}(w)=P+Q+S$. First note that (11) holds for all $k^{2} \alpha_{n}<\delta_{2}$ by Lemma 7.1 .2 if we choose n large enough such that $\left|\alpha_{n}\right|<\delta_{1}$. We will use induction to prove the case

$$
J=\left\{k: k^{2} \alpha_{n} \geq \delta_{2} \text { and } k \alpha_{n}<\frac{3}{4}\right\}
$$

Note that all $k \in J$ satisfy $k \geq \sqrt{\frac{\delta_{2}}{\alpha}}>\sqrt{n \delta_{2}}$. Suppose now (15) holds for some $k \in J$ and numbers less than it, we will deduce (15) holds for $k+1 \in J$.

For P, Choose n large enough such that $|P|<M|w|<\frac{\sqrt{2}-1}{4 \pi} \sqrt{n \delta_{2}} \leq$ $\frac{\sqrt{2}-1}{4 \pi}(k+1)$. As for S, choose n large enough (so k large enough because $k>\sqrt{n \delta_{2}}$) such that

$$
\begin{aligned}
& |S|=\left\lvert\, \sum_{j=1}^{k+1} \frac{e^{-2 \pi i(j-1) \alpha_{n}} A}{F_{\alpha_{n}}^{k+1-j}(w)}+\sum_{j=1}^{k+1} \frac{e^{-2 \pi i(j-1) \alpha_{n}} B}{\left(F_{\alpha_{n}}^{k+1-j}(w)\right)^{2}}+\right.\text { higher order terms } \\
& <M A \sum_{j=1}^{k+1} \frac{1}{\frac{1}{2 \pi} j}<2 \pi M A \sum_{j=1}^{k+1} \frac{1}{j}<2 \pi M A(\ln k+a)<\frac{\sqrt{2}-1}{4 \pi}(k+1)
\end{aligned}
$$

In the former inequality we use the approximation $\sum_{j=1}^{k+1} \frac{1}{j}<\ln k+a$ for some fixed number a. In fact it can be shown that the approximation is $\lim _{k \rightarrow \infty} \sum_{j=1}^{k} \frac{1}{j}=\ln k+b$ where b is called the Euler constant.

Recall from Lemma 7.1 .4 that for $k+1 \in J,|Q|>\frac{\sqrt{2}}{2 \pi}(k+1)$, Now

$$
\left|F_{\alpha_{n}}^{k+1}(w)\right|=|P+Q+S|
$$

$$
\begin{aligned}
>|Q|-|P|-|S|>\frac{1}{2 \pi}(k+1) & +\frac{\sqrt{2}-1}{4 \pi}(k+1)-|P|+\frac{\sqrt{2}-1}{4 \pi}(k+1)-|S| \\
& >\frac{1}{2 \pi}(k+1) .
\end{aligned}
$$

So (15) is true for $k+1$. By induction we prove the theorem.

7.2 Estimate the backward iterations

We can deduce completely similar results for $f_{\alpha}^{-1}(z)=e^{-2 \pi i \alpha} z-e^{-6 \pi i \alpha} z^{2}+$ $O\left(z^{3}\right)$ and $F_{\alpha}^{-1}(w)=\tau^{-1} \circ f_{\alpha}^{-1} \circ \tau(w)$. We will not prove them again but will list them in the following.

Lemma 7.2.1. For $|w|$ large enough, we have

$$
\begin{gather*}
F_{\alpha}^{-1}(w)=e^{2 \pi i \alpha} w-e^{-2 \pi i \alpha}+\frac{A}{w}+\frac{B}{w^{2}}+O\left(\frac{1}{w^{3}}\right), \\
F_{\alpha}^{-n}(w)=e^{2 \pi i n \alpha} w-e^{-2 \pi i \alpha} \frac{1-e^{2 \pi i n \alpha}}{1-e^{2 \pi i \alpha}}+\sum_{j=1}^{n} \frac{e^{2 \pi i(j-1) \alpha} A}{F_{\alpha}^{-(n-j)}(w)} \\
+\sum_{j=1}^{n} \frac{e^{2 \pi i(j-1) \alpha} B}{\left(F_{\alpha}^{-(n-j)}(w)\right)^{2}}+\text { higher order terms } . \tag{18}
\end{gather*}
$$

Here $F_{\alpha}^{-1}(w)$ is the certain branch with $F_{\alpha}^{-1}(\infty)=\infty, F_{\alpha}^{-n}(w)$ is the n times iteration of $F_{\alpha}^{-1}(w)$. Without special declaration the following F_{α}^{-1} or F_{α}^{-n} mean the same. Now denote $F_{\alpha}^{-n}(w)=P^{\prime}+Q^{\prime}+S^{\prime}$, in which

$$
\begin{gathered}
P^{\prime}=e^{2 \pi i n \alpha} w, Q^{\prime}=-e^{-2 \pi i \alpha} \frac{1-e^{2 \pi i n \alpha}}{1-e^{2 \pi i \alpha}}, \\
S^{\prime}=\sum_{j=1}^{n} \frac{e^{2 \pi i(j-1) \alpha} A}{F_{\alpha}^{-(n-j)}(w)}+\sum_{j=1}^{n} \frac{e^{2 \pi i(j-1) \alpha} B}{\left(F_{\alpha}^{-(n-j)}(w)\right)^{2}}+\text { higher order terms }
\end{gathered}
$$

Lemma 7.2.2. There exist three small numbers δ_{1}, δ_{2} and δ_{3} such that for any $\alpha, w \in \mathbb{C}, k \in \mathbb{N}$ (k is not fixed) satisfying $|\alpha|<\delta_{1}, k^{2}|\alpha|<$
$\delta_{2},|w|>\frac{1}{\delta_{3}}, w$ has negative real part and $|\operatorname{Re}(w)| \gg|\operatorname{Im}(w)|$, the following holds:

$$
\begin{equation*}
\left|F_{\alpha}^{-l}(w)\right| \geq|w|+\frac{l}{2} \tag{19}
\end{equation*}
$$

for all $l \leq k$.
Lemma 7.2.3. For term $Q^{\prime}=-e^{-2 \pi i \alpha_{n}} \frac{1-e^{2 \pi i n \alpha_{n}}}{1-e^{2 \pi i \alpha_{n}}}$, choose δ_{1} small enough, we have

$$
\left|Q^{\prime}\right|>\frac{\sqrt{2}}{2 \pi} k
$$

for all $k\left|\alpha_{n}\right|<\frac{3}{4}$ and $\left|\alpha_{n}\right|<\delta_{1}$.

Theorem 7.2.4. For n large enough, ϵ_{n} a small complex number depending on n and $\lim _{n \rightarrow \infty} \epsilon_{n}=0$, $n \alpha_{n}=\frac{1}{2}+\epsilon_{n}$, then for all $k\left|\alpha_{n}\right|<\frac{3}{4}$,

$$
\begin{equation*}
\left|F_{\alpha_{n}}^{-k}(w)\right|>\frac{1}{2 \pi} k \tag{20}
\end{equation*}
$$

We use the same collection of symbols $A, B, \delta_{1}, \delta_{2}, \delta_{3}, k, n$ for convenience.

Note that the critical point $c_{1}(0)$ is absorbed by 0 , the parabolic point of f_{0}. We denote the perturbed critical point corresponding to $c_{1}(0)$ by $c_{1}(\alpha)$, denote $C_{1}(\alpha)=\tau\left(c_{1}(\alpha)\right)$. Because $c_{1}(\alpha)$ and $f_{\alpha}(z)$ depend continuously on α, we can suppose that after r-th iterations $\left|f_{\alpha}^{r}\left(c_{1}(\alpha)\right)\right|<$ δ_{3}, in other words, $\left|F_{\alpha}^{r}\left(C_{1}(\alpha)\right)\right|>\frac{1}{\delta_{3}}$. We can also require that

$$
\operatorname{Re}\left(f_{\alpha}^{r}\left(c_{1}(\alpha)\right)\right)<0,\left|\operatorname{Re}\left(f_{\alpha}^{r}\left(c_{1}(\alpha)\right)\right)\right| \gg\left|\operatorname{Im}\left(f_{\alpha}^{r}\left(c_{1}(\alpha)\right)\right)\right|
$$

i.e.

$$
\operatorname{Re}\left(F_{\alpha}^{r}\left(C_{1}(\alpha)\right)\right)>0,\left|\operatorname{Re}\left(F_{\alpha}^{r}\left(C_{1}(\alpha)\right)\right)\right| \gg\left|\operatorname{Im}\left(F_{\alpha}^{r}\left(C_{1}(\alpha)\right)\right)\right|
$$

This is because $f_{0}^{n}\left(c_{1}(0)\right)$ converges to 0 from the direction of the real axis and $c_{1}(\alpha), f_{\alpha}^{r}\left(c_{1}(\alpha)\right)$ depend continuously on α. Then we can use

Theorem 7.1.3 to do analysis of the following iterations on $F_{\alpha}^{r}\left(C_{1}(\alpha)\right)$. Denote $w_{r}(\alpha)=F_{\alpha}^{r}\left(C_{1}(\alpha)\right)$.

The following lemma provides us with preparation to deal with the backward orbit of $F_{\alpha}^{-s}\left(C_{1}(\alpha)\right)$ for some suitable integer s.

Lemma 7.2.5. Given $\delta_{3}>0, \Delta>0$, there exists an integer s, such that if $\left|\alpha_{n}\right|<\delta_{1}$ for some sufficiently small number $\delta_{1}>0$, we have

$$
\begin{aligned}
& \left|f_{\alpha_{n}}^{-s}\left(c_{1}\left(\alpha_{n}\right)\right)\right|<\delta_{3}, \operatorname{Re}\left(f_{\alpha_{n}}^{-s}\left(c_{1}\left(\alpha_{n}\right)\right)\right)>0, \\
& \left|\operatorname{Re}\left(f_{\alpha_{n}}^{-s}\left(c_{1}\left(\alpha_{n}\right)\right)\right)\right|>\Delta\left|\operatorname{Im}\left(f_{\alpha_{n}}^{-s}\left(c_{1}\left(\alpha_{n}\right)\right)\right)\right|,
\end{aligned}
$$

for a suitable point $f_{\alpha_{n}}^{-s}\left(c_{1}\left(\alpha_{n}\right)\right)$ in the backward orbit of $c_{1}\left(\alpha_{n}\right)$, which means that on w plane we have

$$
\begin{aligned}
& \left|F_{\alpha_{n}}^{-s}\left(C_{1}\left(\alpha_{n}\right)\right)\right|>\frac{1}{\delta_{3}}, \operatorname{Re}\left(F_{\alpha_{n}}^{-s}\left(C_{1}\left(\alpha_{n}\right)\right)\right)<0, \\
& \left|\operatorname{Re}\left(F_{\alpha_{n}}^{-s}\left(C_{1}\left(\alpha_{n}\right)\right)\right)\right|>\Delta\left|\operatorname{Im}\left(F_{\alpha_{n}}^{-s}\left(C_{1}\left(\alpha_{n}\right)\right)\right)\right| .
\end{aligned}
$$

The inverse branches here are different from notations before.
Proof. We only prove this on z plane, and first we prove it for $f_{0}(z)=$ $f(z)$, then pass it to $f_{\alpha_{n}}$ by continuity.

By standard parabolic attracting and repelling petals theory [Mil1] for $f(z)$, we can find a repelling petal V (open) which contains part of the boundary (in Julia set of f) of the Fatou component in which all the points are attracted to point 0 . Denote one of the points in this part by a_{1}. Note that 0 is in the Julia set $J(f)$ of $f(z)$, so the backward orbit of 0 is dense in $J(f)$. Then there exists s_{1} and a point $b_{1} \in\left\{f^{-s_{1}}(0)\right\} \subset V$ which is close to a_{1}. Moreover, there exists s_{2} such that $f^{s_{2}}\left(c_{1}\right)$ is close to 0 , so $f^{s_{2}}\left(b_{1}\right)$ will also be close to a_{1}, which means that $f^{-s_{1}+s_{2}}\left(c_{1}\right) \in V$. Then $\lim _{n \rightarrow \infty} f^{-s_{1}+s_{2}-n}\left(c_{1}\right)=0$ and the convergence is from the direction
of the real axis because $f^{s_{2}}\left(b_{1}\right)$ is in the repelling petal. Now choose n_{0} large enough such that

$$
\begin{aligned}
& \left|f^{s_{2}-n_{0}}\left(b_{1}\right)\right|<\delta_{3}, \operatorname{Re}\left(f^{s_{2}-n_{0}}\left(b_{1}\right)\right)>0, \\
& \left|\operatorname{Re}\left(f^{s_{2}-n_{0}}\left(b_{1}\right)\right)\right|>\Delta\left|\operatorname{Im}\left(f^{s_{2}-n_{0}}\left(b_{1}\right)\right)\right| .
\end{aligned}
$$

Now write

$$
f^{-s}\left(c_{1}\right)=f^{s_{2}-n_{0}}\left(b_{1}\right)
$$

in which $s=n_{0}+s_{1}-s_{2}$ for the suitable point $f^{-s}\left(c_{1}\right)$.
By now we have proved the case for $f(z)$. Now because $c_{1}(\alpha)$ and $f_{\alpha}(z)$ depend continuously on α, which means that if we confine α_{n} in a small neighbourhood $\left|\alpha_{n}\right|<\delta_{1}$, we will also get

$$
\begin{aligned}
& \left|f_{\alpha_{n}}^{-s}\left(c_{1}\left(\alpha_{n}\right)\right)\right|<\delta_{3}, \operatorname{Re}\left(f_{\alpha_{n}}^{-s}\left(c_{1}\left(\alpha_{n}\right)\right)\right)>0 \\
& \left|\operatorname{Re}\left(f_{\alpha_{n}}^{-s}\left(c_{1}\left(\alpha_{n}\right)\right)\right)\right|>\Delta\left|\operatorname{Im}\left(f_{\alpha_{n}}^{-s}\left(c_{1}\left(\alpha_{n}\right)\right)\right)\right| .
\end{aligned}
$$

for the suitable point $f_{\alpha_{n}}^{-s}\left(c_{1}\left(\alpha_{n}\right)\right)$ in the backward orbit of $c_{1}\left(\alpha_{n}\right)$.

7.3 Colliding the forward and backward iterations around the parabolic cycle: proof of Theorem 7.0.11

Now denote by $w_{-s}\left(\alpha_{n}\right)=F_{\alpha_{n}}^{-s}\left(C_{1}\left(\alpha_{n}\right)\right)$ in Lemma 7.2.5 such that

$$
\begin{gathered}
\left|w_{-s}\left(\alpha_{n}\right)\right|>\frac{1}{\delta_{3}}, \operatorname{Re}\left(F_{\alpha_{n}}^{-s}\left(C_{1}\left(\alpha_{n}\right)\right)\right)<0, \\
\left|\operatorname{Re}\left(F_{\alpha_{n}}^{-s}\left(C_{1}\left(\alpha_{n}\right)\right)\right)\right|>\Delta\left|\operatorname{Im}\left(F_{\alpha_{n}}^{-s}\left(C_{1}\left(\alpha_{n}\right)\right)\right)\right|
\end{gathered}
$$

for a large number Δ. Recall $w_{r}\left(\alpha_{n}\right)=F_{\alpha_{n}}^{r}\left(C_{1}\left(\alpha_{n}\right)\right)$. Now we are able to prove Theorem 7.0.11.

Proof of Theorem 7.0.11:
Proof. Since $\lim _{n \rightarrow \infty} \epsilon_{n}=0$, choose n large enough such that $\left|n \alpha_{n}\right|=\left\lvert\, \frac{1}{2}+\right.$ $\epsilon_{n} \left\lvert\,<\frac{3}{4}\right.$. Recall that

$$
\begin{aligned}
F_{\alpha_{n}}^{n}(w)= & e^{-2 \pi i n \alpha_{n}} w+e^{-4 \pi i \alpha_{n}} \frac{1-e^{-2 \pi i n \alpha_{n}}}{1-e^{-2 \pi i \alpha_{n}}}+\sum_{j=1}^{n} \frac{e^{-2 \pi i(j-1) \alpha_{n}} A}{F_{\alpha_{n}}^{n-j}(w)} \\
& +\sum_{j=1}^{n} \frac{e^{-2 \pi i(j-1) \alpha_{n}} B}{\left(F_{\alpha_{n}}^{n-j}(w)\right)^{2}}+\text { higher order terms } \\
= & P+Q+S .
\end{aligned}
$$

For r large enough, $w_{r}\left(\alpha_{n}\right)$ has entered our required domain. Now apply Lemma 7.1.4 and Theorem 7.1.3 on $F_{\alpha_{n}}^{n}\left(w_{r}\left(\alpha_{n}\right)\right)$, we have

$$
|P| \leq M\left|w_{r}\left(\alpha_{n}\right)\right|,|Q| \geq \frac{1}{2 \pi} n,|S| \leq 2 \pi M A \sum_{k=1}^{n} \frac{1}{k} \leq \ln n+a .
$$

So when n is large enough Q will dominate the other two terms. Now we give a finer estimate on Q for later use.

$$
\begin{align*}
Q= & \left(1+O\left(\alpha_{n}\right)\right) \frac{1-e^{-2 \pi i n \alpha_{n}}}{2 \pi i \alpha_{n}+O\left(\alpha_{n}^{2}\right)} \\
& =\left(1+O\left(\alpha_{n}\right)\right)\left(1+O\left(\alpha_{n}\right)\right) \frac{1-e^{-2 \pi i n\left(\frac{1}{2}+\epsilon_{n}\right)}}{2 \pi i \alpha_{n}} \tag{21}\\
& \sim \frac{1+e^{-2 \pi i \epsilon_{n}}}{2 \pi i \alpha_{n}} \\
& =\frac{2-2 \pi i \epsilon_{n}+O\left(\epsilon_{n}^{2}\right)}{2 \pi i \alpha_{n}}
\end{align*}
$$

Similar results hold for $F_{\alpha_{n}}^{-n}\left(w_{-s}\left(\alpha_{n}\right)\right), Q^{\prime}$ will also dominate P^{\prime} and S^{\prime},

$$
\begin{equation*}
Q^{\prime} \sim \frac{1+e^{2 \pi i \epsilon_{n}}}{2 \pi i \alpha_{n}}=\frac{2+2 \pi i \epsilon_{n}+O\left(\epsilon_{n}^{2}\right)}{2 \pi i \alpha_{n}} \tag{22}
\end{equation*}
$$

Now consider the equation

$$
F_{\alpha_{n}}^{n}\left(w_{r}\left(\alpha_{n}\right)\right)=F_{\alpha_{n}}^{-n}\left(w_{-s}\left(\alpha_{n}\right)\right),
$$

i.e.

$$
P+Q+S=P^{\prime}+Q^{\prime}+S^{\prime}
$$

with respect to ϵ_{n}. Because $Q-Q^{\prime}$ dominates other terms, according to argument principle, in order to get a solution ϵ_{n} in a small neighbourhood of 0 we only need to consider the equation $Q=Q^{\prime}$. By (21) in Q the term
$\frac{2-2 \pi i \epsilon_{n}}{2 \pi i \alpha_{n}}$ dominates $\frac{O\left(\epsilon_{n}^{2}\right)}{2 \pi i \alpha_{n}}$, while by (22) in $Q^{\prime} \frac{2+2 \pi i \epsilon_{n}}{2 \pi i \alpha_{n}}$ dominates $\frac{O\left(\epsilon_{n}^{2}\right)}{2 \pi i \alpha_{n}}$. Again by argument principle we we only need to consider the following equation:

$$
\frac{2-2 \pi i \epsilon_{n}}{2 \pi i \alpha_{n}}=\frac{2+2 \pi i \epsilon_{n}}{2 \pi i \alpha_{n}}
$$

Obviously this equation has a unique solution 0 . This guarantees a solution ϵ_{n} for $F_{\alpha_{n}}^{n}\left(w_{r}\left(\alpha_{n}\right)\right)=F_{\alpha_{n}}^{-n}\left(w_{-s}\left(\alpha_{n}\right)\right)$ in a small neighbourhood of 0 .

Remark 7.3.1. We can analyse the order of ϵ_{n} by the following equation:

$$
\begin{equation*}
\frac{1+e^{-2 \pi i \epsilon_{n}}}{2 \pi i \alpha_{n}}-\frac{1+e^{2 \pi i \epsilon_{n}}}{2 \pi i \alpha_{n}}+O(\ln n)+c_{1}=0 \tag{23}
\end{equation*}
$$

Note that

$$
\begin{align*}
& \Longleftrightarrow e^{-2 \pi i \epsilon_{n}}-e^{2 \pi i \epsilon_{n}}+2 \pi i \alpha_{n}\left(O(\ln n)+c_{1}\right)=0 \tag{23}\\
& \Longleftrightarrow e^{4 \pi i \epsilon_{n}}-\frac{2 \pi i}{2 n}\left(O(\ln n)+c_{1}\right) e^{2 \pi i \epsilon_{n}}-1=0
\end{align*}
$$

Solve the last equation we get

$$
e^{2 \pi i \epsilon_{n}} \sim \frac{c_{2} \frac{\ln n}{n}+\sqrt{\left(c_{2} \frac{\ln n}{n}\right)^{2}+4}}{2} \sim \frac{c_{2} \frac{\ln n}{n}+2\left(1+\frac{1}{2}\left(\frac{c_{2}}{2} \frac{\ln n}{n}\right)^{2}\right)}{2} \sim
$$

So

$$
\left|\epsilon_{n}\right| \sim \frac{1}{2 \pi i} \ln \left(1+\frac{c_{2}}{2} \frac{\ln n}{n}+O\left(\left(\frac{\ln n}{n}\right)^{2}\right)\right) \sim \frac{1}{2 \pi i} \frac{c_{2}}{2} \frac{\ln n}{n} \sim O\left(\frac{\ln n}{n}\right) .
$$

Considering that $|S| \leq O(\ln n)$, this computation shows that ϵ_{n} is at most of order $\frac{\ln n}{n}$, which coincides with $\lim _{n \rightarrow \infty} \epsilon_{n}=0$.

Now apply Theorem 7.0.10 to R_{*}^{m}. By a Möbius change of coordinate we can assume $v=0$ and $R_{*}^{m}(z)=z+z^{2}+O\left(z^{3}\right)$ around $0 . c_{1}$ is still the
critical point of R_{*} which is attracted to 0 under R_{*}^{m}. Then by 7.0.10, for n large enough, there are two integers r, s, a point $\left|v_{-s m}\left(\alpha_{n}\right)\right|=$ $\left|v_{-s m}\left(R_{n}\right)\right|=\left|R_{n}^{-s m}\left(c_{1}\left(\alpha_{n}\right)\right)\right|<\delta_{3}$ (the subscript of v_{-s} is changed to -sm now in order to coordinate with the times of iterations of R_{n}), such that the critical point $c_{1}\left(\alpha_{n}\right)=c_{1}\left(R_{n}\right)$ of R_{n} (a perturbation of R_{*}) is periodic of period $(r+s+2 n) m$, that is

$$
R_{n}^{n m}\left(R_{n}^{r m}\left(c_{1}\left(\alpha_{n}\right)\right)\right)=R_{n}^{-n m}\left(v_{-s m}\left(\alpha_{n}\right)\right)
$$

where R_{n}^{-m} is the branch $R_{n}^{-m}(0)=0$.

8 The critically periodic maps R_{n} are matings

In this section we show that R_{n} is Thurston equivalent to the mating of two critically periodic degree two covering maps by Lemma 2.9.1. We achieve this by finding an invariant circle for R_{n}. First recall the definition of an invariant circle.

Definition 8.0.2. An invariant circle γ for a critically finite degree two branched covering map, say g, is a simple closed loop which satisfies:

- γ separates the two critical orbits of g.
- $g^{-1}(\gamma)$ is connected.
- $g^{-1}(\gamma)$ is isotopic to γ in $\overline{\mathbb{C}} \backslash X(g)$, in which $X(g)$ means post-critical set of g plus the two critical points.
- $g: g^{-1}(\gamma) \rightarrow \gamma$ preserves orientation.

8.1 Links between various dynamical planes

Let $v_{-s m+1}\left(\alpha_{n}\right)=R_{n}\left(v_{-s m}\left(\alpha_{n}\right)\right)$. Define $v_{-s m}\left(R_{*}\right)=R_{*}^{-s m}\left(c_{1}\right)$ according to continuity with respect to $v_{-s m}\left(\alpha_{n}\right)=R_{n}^{-s m}\left(c_{1}\left(\alpha_{n}\right)\right)$. Let $v_{-s m+1}\left(R_{*}\right)=R_{*}\left(v_{-s m}\left(R_{*}\right)\right)$. Now denote

$$
M_{1}^{(j)}=\left\{R_{*}^{k}\left(v_{-s m+1}\left(R_{*}\right)\right):-j \leq k<\infty\right\}
$$

where R_{*}^{-k} denotes the inverse branch of R_{*}^{k} which preserves the parabolic cycle. If we can find an "invariant circle" for R_{*}, which separates $M_{1}^{(j)}, j \in$ \mathbb{N} large enough and $M_{2}=\left\{R_{*}^{k}\left(c_{2}\left(R_{*}\right)\right): k \in \mathbb{N}\right\}\left(\# M_{2}\right.$ is finite), we can get an invariant circle for R_{n} by continuity. Let $M_{3}=\left\{R_{*}^{i}(0): 0 \leq i \leq\right.$ $m-1\}$ be the parabolic cycle.

By Proposition 2.11.1, there exists a homeomorphism $\varphi: J(R) \rightarrow$ $J\left(R_{*}\right)$ such that

$$
\begin{equation*}
\varphi \circ R=R_{*} \circ \varphi \tag{24}
\end{equation*}
$$

φ can be extended to \mathbb{C} and map Fatou components of R to corresponding Fatou components of R_{*}. In addition, we can guarantee $\varphi \circ R=$ $R_{*} \circ \varphi$ on the complement of the Fatou components containing the forward orbit of $c_{1}(R)$. As for the images of the Fatou components containing the forward orbit of $c_{1}(R)$, we can choose $\varphi\left(R^{i}\left(c_{1}(R)\right)\right)=R_{*}^{i}\left(\varphi\left(c_{1}\right)\right)$ for $0 \leq i \leq m-1$. Write $s_{p, q}=s_{p} \amalg s_{q}$ from now on.

As $s_{p, q}$ is Thurston equivalent to R, according to [Ree2], section 1.5, there is a sequence of homeomorphisms $\theta^{(n)}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \theta^{(n)}=\theta \tag{25}
\end{equation*}
$$

uniformly. The limit continuous map $\theta: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ satisfies

$$
\begin{equation*}
\theta \circ s_{p, q}=R \circ \theta . \tag{26}
\end{equation*}
$$

Moreover, $\theta\left(S^{1}\right)=J(R)$, in fact, $\theta\left(S^{1} \bigcup L_{p} \bigcup L_{q}\right)=J(R)$.
We would like to say more about this sequence $\theta^{(n)} \cdot \theta^{(0)}$ and $\theta^{(1)}$ are the homeomorphisms χ_{1} and χ_{2} in Definition 2.3.1. $\theta^{(0)}$ is an orientationpreserving homeomorphism which sends neighbourhoods of the forward orbits in $X\left(s_{p, q}\right)$, say, $U\left(s_{p, q}\right)$, to neighbourhoods of $X(R)$, say, $U(R)$. Moreover, we have

$$
\begin{gather*}
R^{n} \circ \theta^{(n)}=\theta^{(0)} \circ s_{p, q}^{n}, \tag{27}\\
\theta^{(0)}=\theta^{(n)} \text { on } U\left(s_{p, q}\right), \\
R \circ \theta^{(n+1)}=\theta^{(n)} \circ s_{p, q}, \tag{28}\\
\theta^{(n)}=\theta^{(n+1)} \text { on } s_{p, q}^{-n} U\left(s_{p, q}\right), \\
\theta^{(n)} \sim \theta^{(n+1)} \text { rel } s_{p, q}^{-n} U\left(s_{p, q}\right)
\end{gather*}
$$

for all n. Here we also make restriction on $\theta^{(0)}$ such that $\theta^{(0)}\left(S^{1}\right)$ does not intersect the closure of the Fatou components containing the forward orbits of the critical point $c_{1}(R)$.

Now let $\psi^{(n)}=\varphi \circ \theta^{(n)}, \psi=\varphi \circ \theta$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \psi^{(n)}=\psi \tag{29}
\end{equation*}
$$

uniformly.

8.2 An invariant circle for R_{n}

We know that S^{1} is an invariant circle for $s_{p, q}$, and we have the link ψ between the dynamical planes of $s_{p, q}$ and R_{*}, so we hope $\psi\left(S^{1}\right)$ will preserve some properties of the invariant circle for $s_{p, q}$. However, it is not a simple closed loop as ψ is not injective, so we turn to $\psi^{(n)}\left(S^{1}\right)$. Note that there may be problems around the accumulation points of the forward and backward iterations of c_{1}, that is, the parabolic cycle M_{3}. We will show in the following that given $j^{\prime} \in \mathbb{N}$, for n large enough, $\psi^{(n)}\left(S^{1}\right)$ not only separates $M_{1}^{\left(j^{\prime}\right)}=\left\{R_{*}^{k}\left(v_{-s m+1}\left(R_{*}\right)\right):-j^{\prime} \leq k<\infty\right\}$ and M_{2}, but also can be isotoped away from a small neighbourhood of the parabolic cycle M_{3}.

Theorem 8.2.1. Given a small real number $\epsilon>0$, for n large enough, $\psi^{(n)}\left(S^{1}\right)$ is isotopic to a simple closed curve γ in $\overline{\mathbb{C}} \backslash\left(M_{2} \cup M_{1}^{(n-s m)}\right)$. γ is disjoint from the ϵ-neighbourhood of M_{3} and separates M_{2} from $M_{1}^{(n-s m)}=\left\{R_{*}^{j}\left(v_{-s m+1}\left(R_{*}\right)\right):-(n-s m) \leq j<\infty\right\}$. Moreover, $R_{*}^{-1}(\gamma)$ is connected and isotopic to γ in $\overline{\mathbb{C}} \backslash\left(M_{2} \cup M_{1}^{(n-s m)}\right)$.

Proof. Define $v_{-s m+1}\left(s_{p, q}\right)=\left(\psi^{(n)}\right)^{-1}\left(v_{-s m+1}\left(R_{*}\right)\right)$ for any $n \geq s m-$ 1. Define $v_{-s m+1}(R)=\theta\left(v_{-s m+1}\left(s_{p, q}\right)\right)$. Note that $\theta\left(v_{-s m+1}\left(s_{p, q}\right)\right)=$ $\theta^{(l)}\left(v_{-s m+1}\left(s_{p, q}\right)\right)=\theta^{(s m-1)}\left(v_{-s m+1}\left(s_{p, q}\right)\right)$ for all $l \geq s m-1$ because $\theta^{(l)}=\theta^{(l+1)}$ on $\left(s_{p} \amalg s_{q}\right)^{-l} U\left(s_{p, q}\right)$ and $v_{-s m+1}\left(s_{p, q}\right) \in s_{p, q}^{-l}\left(U\left(s_{p, q}\right)\right)$ for $l \geq s m-1$. Taking limits we have $v_{-s m+1}\left(R_{*}\right)=\psi\left(v_{-s m+1}\left(s_{p, q}\right)\right)$. We also have

$$
\psi\left(v_{-s m+1}\left(s_{p, q}\right)\right)=\psi^{(n)}\left(v_{-s m+1}\left(s_{p, q}\right)\right)=\psi^{(s m-1)}\left(v_{-s m+1}\left(s_{p, q}\right)\right)
$$

for all $n \geq s m-1$. The iterations of $v_{-s m+1}\left(s_{p, q}\right)$ under $s_{p, q}^{-m}$ converge to a point u_{p} on the leaf μ_{p} in the lamination L_{p} from some fixed orientation. $s_{p, q}^{-m}$ is the particular backward branch which preserves the leaf μ_{p}. Without specific declaration we always mean this branch by using the symbol $s_{p, q}^{-m}$. Similarly, on the dynamical plane of R_{*}, $R_{*}^{s m-1}\left(c_{1}\left(R_{*}\right)\right)=v_{-s m+1}\left(R_{*}\right)$. The backward iterations of $v_{-s m+1}\left(R_{*}\right)$ under R_{*}^{-m} (where this denotes the local inverse of R_{*}^{m} fixing its parabolic point) converge to $R_{*}(0)$ from some fixed orientation, which denotes the local inverse of R_{*}^{m} fixing the parabolic point. In the following we will not distinguish literally but simply write the symbols $v_{-s m}, v_{-s m+1}, c_{1}, c_{2}$ if there is no confusion about which dynamical planes these points are on.

Now consider two sequences of $k+1$ points. The first is on the dynamical plane of $s_{p, q}$,

$$
s_{p, q}^{-k m}\left(v_{-s m+1}\right), \cdots, s_{p, q}^{-2 m}\left(v_{-s m+1}\right), s_{p, q}^{-m}\left(v_{-s m+1}\right), v_{-s m+1}
$$

Connect $s_{p, q}^{-j m}\left(v_{-s m+1}\right)$ with $s_{p, q}^{-(j-1) m}\left(v_{-s m+1}\right)$ by a straight line ξ_{j} inside the open unit disc D for $1 \leq j \leq k . \xi_{j}$ will approximate some fixed direction as j becomes large because $s_{p, q}^{-j m}\left(v_{-s m+1}\right)$ converge to u_{p} from this fixed direction. Connect u_{p} with $s_{p, q}^{-k m}\left(v_{-s m+1}\right)$ by a straight line ξ^{\prime} inside D. Now consider another sequence of $k+1$ points on dynamical plane of R_{*},

$$
R_{*}^{-k m}\left(v_{-s m+1}\right), \cdots, R_{*}^{-2 m}\left(v_{-s m+1}\right), R_{*}^{-m}\left(v_{-s m+1}\right), v_{-s m+1} .
$$

Connect $R_{*}^{-j m}\left(v_{-s m+1}\right)$ with $R_{*}^{-(j-1) m}\left(v_{-s m+1}\right)$ by a straight line segment, say, ζ_{j} for $1 \leq j \leq k$. These line segments will also be close to some fixed direction for large j because $R_{*}^{-j m}\left(v_{-s m+1}\right)$ converge to $R_{*}(0)$ from this direction. Connect $R_{*}(0)$ with $R_{*}^{-k m}\left(v_{-s m+1}\right)$ by a straight line segment $\zeta^{\prime} . R_{*}^{-j m}$ are the particular $j m$ backward iterations preserving the parabolic cycle M_{3}.

Note that if $v_{-s m+1}$ is sufficiently close to u_{p}, that is, if s is sufficiently large, $\psi\left(v_{-s m+1}\left(s_{p, q}\right)\right)=v_{-s m+1}\left(R_{*}\right)$ is within some small neighbourhood of $R_{*}(0)=\psi\left(\mu_{p}\right)$, that is, within the domain of the branch R_{*}^{-1} preserving M_{3}. We can guarantee that $\zeta_{j} \sim R_{*}^{m}\left(\zeta_{j+1}\right)$ for all $1 \leq j \leq k$. Since $\psi\left(\mu_{p}\right)=R_{*}(0)$ and ψ is continuous, it follows that

$$
\psi\left(s_{p, q}^{-j m}\left(v_{-s m+1}\left(s_{p, q}\right)\right)\right)=R_{*}^{-j m}\left(v_{-s m+1}\left(R_{*}\right)\right),
$$

which implies

$$
\psi^{(n)}\left(s_{p, q}^{-j m}\left(v_{-s m+1}\left(s_{p, q}\right)\right)=R_{*}^{-j m}\left(v_{-s m+1}\left(R_{*}\right)\right)\right.
$$

for any $n \geq j m+s m-1$. To get the last equality, one can show by induction that

$$
\theta^{(n)}\left(s_{p, q}^{-j m}\left(v_{-s m+1}\left(s_{p, q}\right)\right)\right)=R^{-j m}\left(v_{-s m+1}(R)\right)
$$

for any $n \geq j m+s m-1$, then both sides compose with φ.
Denote by $\psi^{(n)}\left(\xi_{j}\right)=\sigma_{j}, 1 \leq j \leq k, \psi^{(n)}\left(\xi^{\prime}\right)=\sigma^{\prime}$. The former equality shows that $\sigma_{j}\left(\xi^{\prime}\right)$ has same endpoints with $\zeta_{j}\left(\sigma^{\prime}\right)$ on dynamical plane of R_{*}. We claim that they are in fact isotopic to each other in $\overline{\mathbb{C}} \backslash$ $R_{*}^{-n}\left(X\left(f_{*}\right)\right)$ for any $n \geq j m+s m-1$. This is proved in Proposition 8.2.2 below. In fact we prove more than this.

Now we continue to prove our theorem. As S^{1} does not intersect any $\xi_{j}, \psi^{(n)}\left(S^{1}\right)$ does not intersect σ_{j}, by the isotopy this means $\psi^{(n)}\left(S^{1}\right)$ does not intersect the sequence ζ_{j}. As k can be any large enough integer, this shows that all the points $R_{*}^{-j m}\left(v_{-s m+1}\right), j \in \mathbb{N}$ are in the same domain of the two domains separated by $\psi^{(n)}\left(S^{1}\right)$.

For points converging to $R_{*}(0)$ from the other direction, that is, $R_{*}^{j m+1}\left(c_{1}\right), j \in \mathbb{N}$, remember that we require $\theta^{(0)}\left(S^{1}\right)$ does not intersect the closure of the Fatou components containing the forward orbits of the critical point $c_{1}(R)$, so $\psi^{(0)}\left(S^{1}\right)=\varphi \circ \theta^{(0)}\left(S^{1}\right)$ does not intersect the closure of the Fatou components containing $R_{*}^{j}\left(c_{1}\right), j \in \mathbb{N}$. So by $(27), \psi^{(n)}\left(S^{1}\right)$ will avoid the Fatou components containing $R_{*}^{j}\left(c_{1}\right)$ for all n, then $\psi^{(n)}\left(S^{1}\right)$ separates $M_{1}^{(n-s m)}$ and M_{2} for n large enough. It is a simple closed loop quite close to $J\left(R_{*}\right)$ according to (28). The part of $\psi^{(n)}\left(S^{1}\right)$ around the parabolic cycle M_{3} is confined in the cusp area formed by the boundary of the Fatou component of R_{*} containing $R_{*}^{j}\left(c_{1}\right), j \in \mathbb{N}$.

Now for a small $\epsilon>0$, choose a homeomorphism $\chi: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$, $\chi=I d$ outside a small neighbourhood U of M_{3} (this neighbourhood U should contain ϵ neighbourhood of M_{3}), such that $\chi \circ \psi^{(n)}\left(S^{1}\right)$ is out of ϵ-neighbourhood of M_{3} and $\chi \circ \psi^{(n)}\left(S^{1}\right)$ still separates $M_{1}^{(n-s m)}$ and M_{2}. Now denote $\chi \circ \psi^{(n)}\left(S^{1}\right)=\gamma$. Since $\gamma \sim \psi^{(n)}\left(S^{1}\right)$, so $R_{*}^{-1}(\gamma) \sim$ $R_{*}^{-1}\left(\psi^{(n)}\left(S^{1}\right)\right)=\psi^{(n+1)}\left(S^{1}\right)$, so $\gamma \sim R_{*}^{-1}(\gamma)$ and they both separate
$M_{1}^{(n-s m)}$ from M_{2}. All the isotopies are in $\overline{\mathbb{C}} \backslash\left(M_{1}^{n-s m} \cup M_{2}\right)$.

Proposition 8.2.2. $\sigma_{j}=\psi^{(n)}\left(\xi_{j}\right)$ is isotopic to $\zeta_{j}, \sigma^{\prime}=\psi^{(n)}\left(\xi^{\prime}\right)$ is isotopic to ζ^{\prime} for $n \geq j m+s m-1,1 \leq j \leq k$ in $\overline{\mathbb{C}} \backslash\left(M_{1}^{(n-s m)} \cup M_{2} \cup\right.$ $\left.\left\{R_{*}(0)\right\}\right)$ according to the notations before.

Proof. We have said in Section 2.2, the definition of the lamination map s_{p}, that it is defined up to topological conjugacy. However, in order to prove the isotopy in this set $\overline{\mathbb{C}} \backslash\left(M_{2} \cup M_{1}^{(n-s m)} \cup\left\{R_{*}(0)\right\}\right)$, we need to make sure that all $\psi^{(n)}$ map the point u_{p} to $R_{*}(0)$ as ψ. To achieve this we require all the points in the leaf μ_{p} are fixed under s_{p}^{m}. Choose $\theta^{(0)}$ to map u_{p} to the point of period m on the boundary of the attractive basin of $R\left(c_{1}\right)$ (we use the same notation c_{1} to denote the critical point of R corresponding to the c_{1} critical point of R_{*}). Now define

$$
Y\left(s_{p, q}\right)=\left\{s_{p, q}^{i}(0): i \geq 0\right\} \cup\left\{s_{p, q}^{i}(\infty): i \geq 0\right\} \cup\left\{s_{p, q}^{i}\left(u_{p}\right): i \geq 0\right\} .
$$

In addition to satisfy (27) and (28), we can assure that

$$
\theta^{(i+1)} \sim \theta^{(i)} \text { rel } Y\left(s_{p, q}\right) \text { for all } i \geq 1 .
$$

To do this we choose $\theta^{(0)}$ such that $\psi^{(0)}\left(u_{p}\right)=\varphi \circ \theta^{(0)}\left(u_{p}\right)=R_{*}(0)$, so $\psi^{(n)}\left(u_{p}\right)=\varphi \circ \theta^{(n)}\left(u_{p}\right)=R_{*}(0)$ for all n. First we show that

$$
R_{*}^{m}\left(\sigma_{j}\right) \sim \sigma_{j-1}
$$

in $\overline{\mathbb{C}} \backslash\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)=\overline{\mathbb{C}} \backslash\left(\left\{R_{*}^{j}\left(v_{-s m+1}\right):-(n-s m) \leq j<\right.\right.$ $\left.\infty\} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)$.

According to (28), we have $\theta^{(n)} \circ s_{p, q}^{m}=R^{m} \circ \theta^{(n+m)}$. Composing both sides on the left by φ, we get

$$
\psi^{(n)} \circ s_{p, q}^{m}=\varphi \circ R^{m} \circ \theta^{(n+m)} .
$$

As $\varphi \circ R^{m}=R_{*}^{m} \circ \varphi$ outside the Fatou components containing the forward orbit of $c_{1}(R)$, so

$$
\psi^{(n)} \circ s_{p, q}^{m}\left(\xi_{j}\right)=R_{*}^{m} \circ \psi^{(n+m)}\left(\xi_{j}\right) .
$$

Note that $s_{p, q}^{m}\left(\xi_{j}\right) \sim \xi_{j-1}$, and $\psi^{(n)}\left(\xi_{j}\right) \sim \psi^{(n+m)}\left(\xi_{j}\right)$ because $\psi^{(n)} \sim$ $\psi^{(n+k)}$ rel $s_{p, q}^{-n}\left(X\left(s_{p, q}\right)\right)$ for any $k \geq 0$. Then

$$
\begin{gathered}
R_{*}^{m}\left(\sigma_{j}\right)=R_{*}^{m}\left(\psi^{(n)}\left(\xi_{j}\right)\right) \sim R_{*}^{m}\left(\psi^{(n+m)}\left(\xi_{j}\right)\right)=\psi^{(n)} \circ\left(s_{p, q}\right)^{m}\left(\xi_{j}\right) \sim \\
\psi^{(n)}\left(\xi_{j-1}\right)=\sigma_{j-1} .
\end{gathered}
$$

All the isotopies are in $\overline{\mathbb{C}} \backslash\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)$.
Now choose ϵ_{1} such that $\zeta_{i} \cap\left\{z:\left|z-R_{*}(0)\right|<\epsilon_{1}\right\}=\emptyset, i=1,2$. Then choose an integer n_{1} such that $\psi^{(n)}\left(\xi_{j}\right) \subset\left\{z:\left|z-R_{*}(0)\right|<\epsilon_{1}\right\}$ for all $j \leq n_{1}$, choose $\epsilon_{2}<\epsilon_{1}$ such that

$$
\psi^{(n)}\left(\xi^{\prime}\right)=\sigma^{\prime} \subset\left\{z:\left|z-R_{*}(0)\right|<\epsilon_{2}\right\}
$$

for n large enough. Theses can be done because $\lim _{n \rightarrow \infty} \psi^{(n)}=\psi$ uniformly. Then choose $n_{1}<n_{2}<k m+s m-1$ such that for all $j m+s m-1 \leq n_{2}$,

$$
\psi^{(n)}\left(\xi_{j}\right) \cap\left\{z:\left|z-R_{*}(0)\right| \leq \epsilon_{2}\right\}=\emptyset .
$$

We know that $\psi^{(n)}\left(\xi_{j}\right)=\sigma_{j}$ has the same endpoints with ζ_{j}, so for $n_{1}<j m+s m-1 \leq n_{2}, \sigma_{j}$ and ζ_{j} both lie in the annulus $\left\{z: \epsilon_{1}<\right.$ $\left.\left|z-R_{*}(0)\right|<\epsilon_{2}\right\}$. Then they must be isotopic to each other in $\overline{\mathbb{C}} \backslash$ $\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)$. If this is not true, consider the first non-trivial intersection of σ_{j} with some ζ_{i} for $i m+s m-1 \leq n_{1}$. Because $R_{*}^{m}\left(\sigma_{j}\right) \sim$ σ_{j-1}, and $R_{*}^{m}\left(\sigma_{j}\right)$ is a translation of σ_{j} inside a small neighbourhood of the parabolic cycle, so σ_{j} will have more intersections with σ_{j-1} besides the endpoint. This is impossible because ξ_{j} only has one intersection with ξ_{j-1} (the end point) and $\psi^{(n)}$ are all homeomorphisms. Figure 3
shows the only possible picture for σ_{j} and two impossible pictures of σ_{j} which have been excluded by our proof. Now we have proved $\sigma_{j} \sim \zeta_{j}$ in $\overline{\mathbb{C}} \backslash\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)$ for $n_{1} \leq j m+s m-1 \leq n_{2}$.

Figure 8: Possible and impossible pictures for σ_{j}

Now for $j \leq k$ and $j m+s m-1>n_{2}$, suppose $j^{\prime}<j$ is an integer such that $\left(j-j^{\prime}\right) m+s m-1 \leq n_{1}$. Since

$$
\begin{gathered}
R_{*}^{-j^{\prime} m}\left(\sigma_{j-j^{\prime}}\right) \sim \sigma_{j} \text { in } \overline{\mathbb{C}} \backslash R_{*}^{-j^{\prime} m}\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right), \\
R_{*}^{-j^{\prime} m}\left(\zeta_{j-j^{\prime}}\right) \sim \zeta_{j} \text { in } \overline{\mathbb{C}} \backslash R_{*}^{-j^{\prime} m}\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right), \\
\sigma_{j-j^{\prime}} \sim \zeta_{j-j^{\prime}} \text { in } \overline{\mathbb{C}} \backslash\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)
\end{gathered}
$$

and $R_{*}^{-j^{\prime} m}\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right) \supset\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)$, so $\sigma_{j} \sim \zeta_{j}$ in $\overline{\mathbb{C}} \backslash\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)$ for $j m+s m-1>n_{2}$. Now for j such that $j m+s m-1<n_{1}$, suppose $j^{\prime \prime}$ is a positive integer such that $n_{1} \leq\left(j^{\prime \prime}+j\right) m+s m-1 \leq n_{2}$. Since

$$
\begin{gathered}
\sigma_{j^{\prime \prime}+j} \sim \zeta_{j^{\prime \prime}+j} \text { in } \overline{\mathbb{C}} \backslash\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right), \\
R_{*}^{j^{\prime \prime} m}\left(\sigma_{j^{\prime \prime}+j}\right) \sim \sigma_{j} \text { in } \overline{\mathbb{C}} \backslash R_{*}^{j^{\prime \prime} m}\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right), \\
R_{*}^{j^{\prime \prime} m}\left(\zeta_{j^{\prime \prime}+j}\right) \sim \zeta_{j} \text { in } \overline{\mathbb{C}} \backslash R_{*}^{j^{\prime \prime} m}\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)
\end{gathered}
$$

and $R_{*}^{j^{\prime \prime} m}\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right) \subset M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}$, so

$$
\begin{gathered}
\sigma_{j} \sim \zeta_{j} \text { in } \\
\overline{\mathbb{C}} \backslash R_{*}^{j^{\prime \prime} m}\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)=\overline{\mathbb{C}} \backslash\left(M_{1}^{\left(n-s m-j^{\prime \prime} m\right)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right) .
\end{gathered}
$$

However, for n large enough and $j m+s m-1<n_{1}$, we will have

$$
\begin{aligned}
& \sigma_{j} \cap\left\{R_{*}^{-(n-s m-i)}\left(v_{-s m+1}\right): 0 \leq i \leq j^{\prime \prime} m\right\}=\emptyset \\
& \zeta_{j} \cap\left\{R_{*}^{-(n-s m-i)}\left(v_{-s m+1}\right): 0 \leq i \leq j^{\prime \prime} m\right\}=\emptyset
\end{aligned}
$$

So in fact $\sigma_{j} \sim \zeta_{j}$ in $\overline{\mathbb{C}} \backslash\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)$ for $j m+s m-1<n_{1}$.
At last, we show that $\psi^{(n)}\left(\xi^{\prime}\right)=\sigma^{\prime}$ is isotopic to ζ^{\prime} in $\overline{\mathbb{C}} \backslash\left(M_{1}^{(n-s m)} \cup\right.$ $\left.M_{2} \cup\left\{R_{*}(0)\right\}\right)$ for $j m+s m-1>n_{1}$. This is because $\psi^{(n)}\left(\xi^{\prime}\right)$ is out of the Fatou components containing the parabolic cycle M_{3}, and $\psi^{(n)}\left(\xi^{\prime}\right)$ does not intersect $\psi^{(n)}\left(\xi_{j}\right)=\sigma_{j}$ except for the end point of $\psi^{(n)}\left(\xi_{k}\right)=\sigma_{k}$. Remember $\psi^{(n)}\left(\xi^{\prime}\right)=\sigma^{\prime} \subset\left\{z:\left|z-R_{*}(0)\right|<\epsilon_{2}\right\}$, and we have proved that $\sigma_{j} \sim \zeta_{j}$ in $\overline{\mathbb{C}} \backslash\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)$ for $1 \leq j \leq k$, so the only possibility is that $\sigma^{\prime} \sim \zeta^{\prime}$ in $\overline{\mathbb{C}} \backslash\left(M_{1}^{(n-s m)} \cup M_{2} \cup\left\{R_{*}(0)\right\}\right)$.

We have got a simple closed loop γ, now we prove that it can serve as an invariant circle for R_{n} by the virtue of Theorem 8.2.1.

Corollary 8.2.3. R_{n} is a mating, moreover,

$$
\begin{equation*}
R_{n} \simeq s_{p_{n}^{\prime}} \amalg s_{q^{\prime}} \tag{30}
\end{equation*}
$$

where p_{n}^{\prime} and q^{\prime} are odd denominator rationals in $(0,1)$.

Proof. We prove this by showing that γ is an invariant circle for R_{n}, which satisfies all the four requirements at the beginning of this section. First, γ separates $M_{1}^{\left(n^{\prime}-s m\right)}$ (in the superscript the symbol n is changed to n^{\prime} now in order to avoid confusion with the subscript n in R_{n}) and M_{2}. Secondly, $R_{*}^{-1}(\gamma)$ is connected. Thirdly, $R_{*}^{-1}(\gamma)$ is isotopic to γ in $\overline{\mathbb{C}} \backslash\left(M_{1}^{\left(n^{\prime}-s m\right)} \cup M_{2}\right)$. These are all from Theorem 8.2.1. At last, R_{*} : $R_{*}^{-1}(\gamma) \rightarrow \gamma$ preserves orientation because it does so near the parabolic cycle. Recall the process of perturbation of R_{*} to get R_{n}. By continuity, $\left\{R_{n}^{j}\left(c_{1}\left(R_{n}\right)\right): j \in \mathbb{N}\right\} \cup\left\{R_{n}^{j}\left(c_{2}\left(R_{n}\right)\right): j \in \mathbb{N}\right\}$ is close to $M_{1}^{\left(n_{0}-s m\right)} \cup M_{2}$
for a finite number n_{0}. So if α_{n} is small enough, γ is isotopic to $R_{n}^{-1}(\gamma)$ in $\overline{\mathbb{C}} \backslash X\left(R_{n}\right)$ and both of them separate $\left\{R_{n}^{j}\left(c_{1}\left(R_{n}\right)\right): j \in \mathbb{N}\right\}$ from $\left\{R_{n}^{j}\left(c_{2}\left(R_{n}\right)\right): j \in \mathbb{N}\right\}$. Now we can conclude that γ is an invariant circle for R_{n} if n^{\prime} is large enough (the critical orbit $\left\{R_{n}^{j}\left(c_{1}\left(R_{n}\right)\right): j \in \mathbb{N}\right\}$ is finite). So according to Lemma 2.9.1, R_{n} is Thurston equivalent to a mating of two critically periodic degree two coverings, say, $s_{p_{n}^{\prime}}$ and $s_{q^{\prime}}$, which are again Thurston equivalent to two critically periodic degree two polynomials separately. p_{n}^{\prime} and q^{\prime} are both odd denominator rationals in $(0,1)$.

9 Recover the odd denominator rational sequence p_{n} from R_{n}

In this section we prove Theorem 4.2.1. The basic idea is, given p, q, we already get a sequence of critically periodic maps $R_{n} \simeq s_{p_{n}^{\prime}} \amalg s_{q^{\prime}}$ around R_{*}, where R_{*} is on the boundary of the hyperbolic component containing $R \simeq s_{p} \amalg s_{q}$. It is obvious that $q^{\prime}=q$ because the dynamics around finite critical orbit M_{2} of R_{*} is inherited completely from s_{q}, and the perturbation is on $M_{1}^{(\infty)}$ which does not affect M_{2}. Now there is a reason that we can expect $p_{n}^{\prime}=p_{n}$ for a certain choice of p_{n} tending to p considering R_{n}. We recover p_{n} from R_{n} by Lemma 2.10.1.

Now we have three planes, two of which are dynamical planes of s_{p} and $s_{p_{n}}$. There are lamination descriptions on their dynamics. The third one is the dynamical plane of R_{*}, on which we depend to get R_{n}. Recall in the last section there is a map $\psi: S^{1} \rightarrow J\left(R_{*}\right)$ such that $\psi \circ z^{2}=R_{*} \circ \psi$ $\left(s_{p, q}=z^{2}\right.$ on $\left.S^{1}\right)$. Recall that $\psi\left(e^{2 \pi i p}\right)=\psi\left(e^{2 \pi i \bar{p}}\right)=R_{*}(0)$. The orbit of 0 , as critical point of s_{p}, corresponds to the orbit of $e^{2 \pi i p}$ under z^{2} on S^{1}, because $s_{p_{n}}(0)$ is in the closed gap containing $e^{2 \pi i p}$ on its boundary

Figure 9: Links between dynamical planes of $s_{\frac{1}{7}}$ and R_{*} through ψ with assumed positions of p^{\prime}, p_{n}
for any odd denominator rational p. Figure 9 gives an example of $p=\frac{1}{7}$ with $m=3$. Only parts of the laminations and Fatou components are shown.

Recall $p \in(0,1)$ is of period m under the doubling map, that is, $2^{m} p=$ $p \bmod \mathbb{Z}$. Similar to the process of colliding the backward and forward iterations of c_{1} in the δ_{3} neighbourhood of 0 around the parabolic cycle of R_{*}, for $s \in \mathbb{N}$ large enough choose p^{\prime} close to $p, p^{\prime}<p$, such that $2^{s m} p^{\prime}=p$ $\bmod \mathbb{Z}, v_{-s m+1}\left(s_{p, q}\right) \in s_{p, q}^{-(s m-1)}(0)$ is in the closed gap containing $e^{2 \pi i p^{\prime}}$ on its boundary. Since $\left|v_{-s m}\left(R_{*}\right)\right|=\left|v_{-s m}\left(R_{*}\right)-0\right|<\delta_{3}, R_{*}$ is conformal
around a small neighbourhood of the parabolic cycle M_{3}, we can assume

$$
\left|v_{-s m+1}\left(R_{*}\right)-R_{*}(0)\right|=\left|R_{*}\left(v_{-s m}\left(R_{*}\right)\right)-R_{*}(0)\right|<\delta_{3} .
$$

$\psi\left(e^{2 \pi i p^{\prime}}\right)$ is on the boundary of the Fatou component containing $v_{-s m+1}\left(R_{*}\right)$. $r \in \mathbb{N}$ is large enough such that $\left|R_{*}^{r m}\left(c_{1}\right)\right|<\delta_{3}$.

Since $c_{1}\left(R_{n}\right)$ as critical point of R_{n} has period $(s+r+2 n) m$, so we expect p_{n} is of period $(s+r+2 n) m$. Because $p_{n} \rightarrow p$ and p^{\prime} is close to p, we want

$$
\bar{\delta}_{n}=2^{(r+2 n) m}\left(p_{n}-p\right)-\left(p^{\prime}-p\right) \bmod \mathbb{Z}
$$

being quite small. Apply $2^{s m}$ to both sides gives

$$
2^{s m} \bar{\delta}_{n}=p_{n}-2^{s m} p^{\prime}=p_{n}-p \bmod \mathbb{Z} .
$$

Choose $\bar{\delta}_{n}=\frac{p_{n}-p}{2^{s m}}$, we have

$$
2^{(r+2 n) m}\left(p_{n}-p\right)=p^{\prime}-p+\frac{p_{n}-p}{2^{s m}} \bmod \mathbb{Z}
$$

Choose $p_{n}-p=\frac{p^{\prime}-p}{2^{(r+2 n) m}-2^{-s m}}=\frac{2^{s m}\left(p^{\prime}-p\right)}{2^{(s+r+2 n) m}-1} \bmod \mathbb{Z}$, then let

$$
p_{n}=p+\frac{2^{s m}\left(p^{\prime}-p\right)}{2^{(s+r+2 n) m}-1} .
$$

For the above sequence of odd-denominator rationals p and p_{n} in $(0,1), n \in \mathbb{N}$, parameters s, p^{\prime}, r, m are all determined by p, now we are ready to prove our Main Theorem by Lemma 2.10.1.

Proof of the Main Theorem:
Proof. We know that for critically periodic maps, the pattern of their critical orbits determines the dynamics completely up to topological conjugacy. We will prove that, 0 , the critical point of $s_{p_{n}}$, has exactly the same pattern under $s_{p_{n}}$ as c_{1}, the critical point of R_{n}, under R_{n}. This
resemblance enables us to construct the arcs ξ_{j} and ζ_{j} in Lemma 2.10.1 and the two orientation preserving homeomorphisms Θ and Θ^{\prime}. From this we can show $p_{n}^{\prime}=p_{n}$.

First note that $R_{*}^{-j}\left(c_{1}\right)$ are completely determined by $2^{-j-1} p$ for $0 \leq$ $j \leq s m$, by assigning $R_{*}^{-j}\left(c_{1}\right)$ the j-th backward iteration of c_{1} in the Fatou component containing $\psi\left(e^{2 \pi i 2^{-j-1} p}\right)$ on its boundary. Remember that we choose p^{\prime} near p such that $2^{s m} p^{\prime}=p \bmod \mathbb{Z}$. As $s_{p_{n}}(0)$ is in the gap containing $e^{2 \pi i p_{n}}$ on its boundary, every iteration (forward and backward) of 0 is related to an iteration of $e^{2 \pi i p_{n}}$ under z^{2} on S^{1}, so in fact we will prove that $e^{2 \pi i p_{n}}$ behaves the same under z^{2} as c_{1} under R_{n}. An important feature of $R_{n}\left(c_{1}\right)$ under iterations of R_{n} is that $R_{n}^{1-s m-k m}\left(c_{1}\right), k \in \mathbb{N}$ and $R_{n}^{1+(r+k) m}\left(c_{1}\right), k \in \mathbb{N}$ approach $R_{*}(0)$ along the two fixed directions as k goes to n, then collide with each other when $k=n$ around $R_{*}(0)$. In the following we will see that for some integer $a_{k}, e^{2 \pi i 2^{-s m-k m}\left(p_{n}+a_{k}\right)}$ and $e^{2 \pi i 2^{(r+k) m} p_{n}}$ also approach some point from two fixed directions on S^{1}.

Now we begin to construct the ordered arcs and the two homeomorphisms Θ and Θ^{\prime} required in Lemma 2.10.1. We assume $p^{\prime}<p$ from now on, the case $p^{\prime}>p$ is similar.

First, backward iterate p_{n} for $s m$ times, choose $2^{-s m}\left(p_{n}+a_{0}\right)=$ $2^{-s m}\left(p+p_{n}-p+a_{0}\right)=p^{\prime}+\frac{p_{n}-p}{2^{s m}}$ close to p^{\prime} on S^{1} for some $a_{0} \in \mathbb{Z}$, then continue to backward iterate $2^{-s m} p_{n}$ for $k m$ times,

$$
\begin{gathered}
2^{-s m-k m}\left(p_{n}+a_{k}\right)=2^{-k m}\left(p^{\prime}+a_{k}+\frac{p_{n}-p}{2^{s m}}\right)= \\
=p+\frac{p^{\prime}-p}{2^{-k m}\left(p+a_{k}+p^{\prime}-p\right)+\frac{p_{n}-p}{2^{s m+k m}}+\frac{p_{n}-p}{2^{s m+k m}}=p+\frac{p^{\prime}-p}{2^{k m}}+\frac{p^{\prime}-p}{2^{k m}\left(2^{(s+r+2 n) m}-1\right)}=} \\
p+\frac{2^{(s+r+2 n) m}\left(p^{\prime}-p\right)}{2^{k m}\left(2^{(s+r+2 n) m}-1\right)}
\end{gathered}
$$

where $a_{k} \in \mathbb{Z}$ is chosen so that $2^{-k m}\left(p+a_{k}\right)=p$. Since $p^{\prime}-p<0$, it is a sequence gradually increasing to $p+\frac{2^{(s+r+n) m}\left(p^{\prime}-p\right)}{2^{(s+r+2 n) m}-1}$ as k goes to n. Draw an arc $\beta_{1-s m-k m}$ in each gap which joins $s_{p_{n}}^{1-s m-k m}(0)$ with $e^{2 \pi i 2^{-s m-k m}\left(p_{n}+a_{k}\right)}, 0 \leq k \leq n$, such that $\beta_{1-s m-k m}=s_{p_{n}}^{m}\left(\beta_{1-s m-(k+1) m}\right)$, $0 \leq k \leq n-1$. Then push forward this group of arcs to other $m-1$ groups $\left\{\beta_{1-s m-k m+j}: 0 \leq k \leq n\right\}$ for $0<j<m$ by $s_{p_{n}}^{j}$, that is, define $\beta_{1-s m-k m+j}=s_{p_{n}}^{j}\left(\beta_{1-s m-k m}\right)$ for $0 \leq k \leq n$ and $0<j<m$.

Now forward iterate $2^{r m} p_{n}$ for $k m$ times, we get

$$
\begin{gathered}
2^{(r+k) m} p_{n}=2^{(r+k) m}\left(p+p_{n}-p\right)=p+2^{(r+k) m}\left(p_{n}-p\right)= \\
p+\frac{2^{(r+k+s) m}\left(p^{\prime}-p\right)}{2^{(s+r+2 n) m}-1} \bmod \mathbb{Z}
\end{gathered}
$$

The sequence gradually decreases to $p+\frac{2^{(s+r+n) m}\left(p^{\prime}-p\right)}{2^{(s+r+2 n) m}-1}$ as k goes to n. When $k=n$, the two sequences collide with each other around p, considering that $n \in \mathbb{N}$ is a quite large integer. Note that we have already got an arc in the gap containing $s_{p_{n}}^{1-s m-n m}(0)=s_{p_{n}}^{(r+n) m+1}(0)$ (with $e^{2 \pi i 2^{-s m-n m} p_{n}}=e^{2 \pi i 2^{(r+n) m} p_{n}}$ on its boundary). Now denote $\beta_{(r+n) m+1}=$ $\beta_{1-s m-n m}$. Draw an arc $\beta_{(k+r) m+1}$ in each corresponding gap joining $s_{p_{n}}^{(k+r) m+1}(0)$ with $e^{2 \pi i 2^{(k+r) m} p_{n}}, 0 \leq k \leq n$, such that $\beta_{(k+r+1) m+1}=$ $s_{p_{n}}^{m}\left(\beta_{(k+r) m+1}\right), 0 \leq k \leq n-1$. Then push forward this group of arcs to other $m-1$ groups $\left\{\beta_{(k+r) m+1+j}: 0 \leq k \leq n-1\right\}, 0<j<m$ by $s_{p_{n}}^{j}$, that is, $\beta_{(k+r) m+1+j}=s_{p_{n}}^{j}\left(\beta_{(k+r) m+1}\right)$.

Draw the other $\operatorname{arcs} \beta_{j_{-}}\left(\beta_{j_{+}}\right)$for $1-s \leq j_{-} \leq 0\left(0 \leq j_{+} \leq r m\right)$ such that $\beta_{j_{-}+1}=s_{p_{n}}\left(\beta_{j_{-}}\right)\left(\beta_{j_{+}+1}=s_{p_{n}}\left(\beta_{j_{+}}\right)\right)$. Note that the arc β_{0} deduced from $\beta_{j_{-}}$will be the same one as deduced from $\beta_{j_{+}}$because $\beta_{(r+n) m+1}=\beta_{1-s m-n m}$.

Now construct the corresponding arcs on the dynamical plane of R_{n} following similar process. Let z_{p} be the point $\psi^{(l)}\left(e^{2 \pi i p}\right)$ for l being an
integer large enough under the isotopy in Theorem 8.2.1 on γ. First draw arcs $\eta_{1-s m-k m}^{\prime}$ joining $R_{n}^{1-s m-k m}\left(c_{1}\right)$ with points $z_{-s-k m}$ around the point $R_{n}^{-1}\left(z_{p}\right)$ on $R_{n}^{-1}(\gamma)$ in the region $D_{R_{n}^{-1}(\gamma)}$ bounded by $R_{n}^{-1}(\gamma)$. We require these arcs do not intersect each other and the sequence of points $z_{-s m-k m}$ is of the same cyclic order as $e^{2 \pi i 2^{-s m-k m} p_{n}}$ on S^{1}. To achieve this, we can first draw arcs in the corresponding Fatou components (corresponding to gaps of the L_{p} lamination) on the dynamical plane of R_{*} joining $R_{*}^{1-s m-k m}\left(c_{1}\right)$ with $\psi\left(e^{2 \pi i p}\right)$, then isotope it to an arc joining $R_{n}^{1-s m-k m}\left(c_{1}\right)$ with a point $z_{-s-k m}$. This arc will be close to the first because $R_{n} \rightarrow R_{*}$ as $n \rightarrow \infty$. Push forward the group of arcs to other $m-1$ groups $\left\{\eta_{1-s m-k m+j}^{\prime}: 0 \leq k \leq n\right\}$, $0<j<m$ by R_{n}^{j}, that is, define $\eta_{1-s m-k m+j}^{\prime}=R_{n}^{j}\left(\eta_{1-s m-k m}^{\prime}\right)$ for $0 \leq k \leq n$ and $0<j<m$. Let $\eta_{(r+n) m+1}^{\prime}=\eta_{1-s m-n m}^{\prime}$, draw arcs $\eta_{(r+k) m+1}^{\prime}$ in $D_{R_{n}^{-1}(\gamma)}$ joining $R_{n}^{(r+k) m+1}\left(c_{1}\right)$ with points $z_{(r+k) m}$ around the point $R_{n}^{-1}\left(z_{p}\right)$ by the same isotopy method. Again make sure these arcs do not intersect each other and the arcs already existing. The sequence of points $z_{(r+k) m}$ should be of the same cyclic order on $R_{n}^{-1}(\gamma)$ as $e^{2 \pi i 2^{(k+r) m} p_{n}}$ on S^{1}. Push forward the group of arcs to other $m-1$ groups $\left\{\eta_{(r+k) m+1+j}^{\prime}: 0 \leq k \leq n\right\}, 0<j<m$ by R_{n}^{j}, that is, define $\eta_{(r+k) m+1+j}^{\prime}=R_{n}^{j}\left(\eta_{(r+k) m+1}^{\prime}\right)$ for $0 \leq k \leq n$ and $0<j<m$. Choose the other arcs $\eta_{j_{-}}^{\prime}$ and $\eta_{j_{+}}^{\prime}$ for $1-s m \leq j_{-} \leq 0$ and $0 \leq j_{+} \leq r m$ suitably such that all the endpoints $\left\{z_{j}: 1-s m-n m \leq j \leq(n+r) m+1\right\}$ of these arcs $\left\{\eta_{j+1}^{\prime}:-s m-n m \leq j \leq(n+r) m\right\}$ are of the same cyclic order as $\left\{e^{2 \pi i 2^{j} p_{n}}: 1-s m-n m \leq j \leq(n+r) m+1\right\}$ on S^{1}.

By these choices of the arcs η_{j}^{\prime} we can get an orientation preserving homeomorphism Θ^{\prime}, such that

$$
\Theta^{\prime}\left(R_{n}^{-1}(\gamma)\right)=S^{1},
$$

$$
\begin{gathered}
\Theta^{\prime}\left(\eta_{0}^{\prime \prime}\right)=\beta_{0}^{\prime \prime} \\
\Theta^{\prime}\left(\eta_{j}^{\prime}\right)=\beta_{j}, 1-s m-n m \leq j \leq(n+r) m+1,
\end{gathered}
$$

where $\beta_{0}^{\prime \prime}=\left\{s_{p_{n}}^{-1}\left(\beta_{1}\right) \backslash \beta_{0}\right\} \cup\{0\}, \eta_{0}^{\prime \prime}=\left\{R_{n}^{-1}\left(\eta_{1}^{\prime}\right) \backslash \eta_{0}^{\prime}\right\} \cup\left\{c_{1}\right\}$. Now let $\eta_{j+1}=R_{n}\left(\eta_{j}^{\prime}\right)$ for $-s m-n m \leq j \leq(n+r) m$. There is an orientation preserving homeomorphism Θ which is isotopic to the identity, such that

$$
\begin{gathered}
\Theta\left(R_{n}^{-1}(\gamma)\right)=\gamma \\
\Theta\left(\eta_{j}^{\prime}\right)=\eta_{j}, 1-s m-n m \leq j \leq(n+r) m+1 .
\end{gathered}
$$

This is because the map $R_{n}: R_{n}^{-1}(\gamma) \rightarrow \gamma$ satisfies the four properties of an invariant circle (refer to Definition 8.0.2). The order of the sequence z_{j} is preserved on $R_{n}^{-1}(\gamma)$.

Now apply Lemma 2.10 .1 with the family of arcs $\xi_{j}, \zeta_{j}, \zeta_{j}^{\prime}, \xi_{0}^{\prime \prime}, \zeta_{0}^{\prime \prime}$ substituted by the family $\beta_{j}, \eta_{j}, \eta_{j}^{\prime}, \beta_{0}^{\prime \prime}, \eta_{0}^{\prime \prime}$, we see that for this particular sequence $p_{n}, R_{n} \simeq s_{p_{n}} \amalg s_{q}$.

Remark 9.0.4. The proof relies heavily on comparing traces of critical points on the two dynamical planes of $s_{p_{n}}$ and R_{n}, for which the links comes from the bridge between the dynamical planes of s_{p} and R_{*}. The techniques of perturbation confine our result to be limited, and these will have to be modified if we are to get more general results.

Remark 9.0.5. For $R_{*}^{m}(z)=z+z^{n}+\ldots, n \geq 3$, that is, parabolic maps with more than 2 petals, one can get critically periodic maps by perturbing R_{*} from any two attracting and repelling directions. There are many choices before the backward and forward orbits converge to the parabolic cycle from some fixed direction. Every choice offers us a different critically periodic map. By a similar process one can show that these maps
are also matings, so the continuity result is true for the cases that, R_{*}^{m} has more than 2 petals.

10 Bubble rays puzzle partitions and parapuzzle partitions for some 2-rational maps

10.1 Matability of the basilica with non-renormalizable quadratic polynomials

When dealing with 2-rational maps, one hopes that the Yoccoz puzzle method for 2-polynomials can be transplanted into the 2-rational maps case. Luo [Luo] first proposed this idea in his thesis. Then M. Aspenberg and M. Yampolsky carried this idea out to the family

$$
R_{a}=\frac{a}{z^{2}+2 z}
$$

to show the conformal matability of the basilica polynomial f_{-1} with an arbitrarily non-renormalizable parameter c not in the $\frac{1}{2}$-limb of M $[\mathrm{AY}]$. The following picture from $[\mathrm{AY}]$ shows structure of the hyperbolic components on the parameter space R_{a}. The black area is the mating components M_{a}, which is called the non-escape locus in [Dud]. This and subsequent figures from $[\mathrm{AY}]$ are reproduced with kind permission of the authors.

Figure 10: The parameter space for the R_{a} family. The picture is from [AY].

Aspenberg and Yampolsky showed the following theorem (Main Theorem $[A Y])$:

AY's Theorem. For a non-renormalizable parameter c not in the $\frac{1}{2}$ limb of M such that $f_{c}(z)=z^{2}+c$ does not have a non-repelling periodic orbit, f_{c} and $f_{-1}=z^{2}-1$ are conformally matable, and their mating is unique up to Möbius changes of coordinates.

By certain adaptation, the method should work for f_{-1} substituted by a starlike map and c being a finitely renormalizable quadratic polynomial [DH1] with only repelling periodic cycles not in the $\frac{1}{2}$-limb of M. In the following section we gradually introduce the notions of their bubble rays method.

10.2 Bubble rays puzzle partitions for f_{-1}, R_{a} and a landing theorem

Note that on the dynamical plane of the 2-rational maps R_{a}, we no longer have the external rays. As a substitute, we use the so called bubble rays. We first define it for f_{-1}, then define it similarly for R_{a}. Now let B_{0} and B_{-1} be the corresponding Fatou components of f_{-1} containing 0 and -1 .

Definition 10.2.1. A bubble of the filled Julia set $K\left(f_{-1}\right)$ is a Fatou component F of the filled Julia set. The generation of a bubble F is the smallest non-negative integer $n=G e n(F)$ for which $f_{-1}^{n}(F)=B_{0}$. The center of a bubble F is the preimage $f_{-1}^{-G e n(F)}(0) \cap F$.

Definition 10.2.2. A bubble ray \mathcal{B} of f_{-1} is a collection of bubbles $\cup_{k=0}^{\infty} F_{k}$ with $\operatorname{Gen}\left(F_{k}\right)<\operatorname{Gen}\left(F_{k+1}\right)$ such that for each k the intersection $\bar{F}_{k} \cap F_{k+1}^{-}=\left\{x_{k}\right\}$ is a single point.

Note that this concept is well-defined due to the following lemma [AY].
Lemma 10.2.3. For two different bubbles F_{b} and F_{c} of f_{-1} such that neither of them is the attracting basin of ∞, then one of the following holds

- $\bar{F}_{b} \cap \bar{F}_{c}=\emptyset$.
- $\bar{F}_{b} \cap \bar{F}_{c}$ is a single point, which is a pre-fixed point for f_{-1}.

Now analogously we define bubbles and bubble rays for R_{a}. Let A_{∞} be the Fatou component of R_{a} containing ∞.

Definition 10.2.4. A bubble F of R_{a} is a Fatou component in the set $\cup_{k=0}^{\infty} R_{a}^{-k}\left(A_{\infty}\right)$. The generation of a bubble F is the smallest non-negative $n=\operatorname{Gen}(F)$ for which $R_{a}^{n}(F)=A_{\infty}$. The center of a bubble F is the preimage $R_{a}^{-\operatorname{Gen}(F)}(\infty) \cap F$.

Definition 10.2.5. A bubble ray \mathcal{B} of R_{a} is a collection of bubbles $\cup_{k=0}^{\infty} F_{k}$ with $\operatorname{Gen}\left(F_{k}\right)<\operatorname{Gen}\left(F_{k+1}\right)$ such that for each k the intersection $\bar{F}_{k} \cap F_{k+1}^{-}=\left\{x_{k}\right\}$ is a single point.

There are similar properties for the Fatou components of R_{a} as Lemma 10.2.3 to guarantee the well definition of bubble rays for R_{a}.

As the place of external rays is taken by bubble rays now, we can reconstruct lots of similar structures compared with 2-polynomials for the 2-rational maps R_{a}. There are all kinds of landing lemmas in [AY] for these bubble rays. One can define the angles for a bubble ray \mathcal{B} of f_{-1} being inverse of the angles of the external rays which land at the point of $J\left(f_{-1}\right)$ where \mathcal{B} lands. Then through a conjugacy between bubble rays for f_{-1} and R_{a} one can define angles of bubble rays for R_{a}. One can also define orbit portraits for these bubble rays and characteristic arcs for the orbit portraits as in [Mil2]. There are several landing Lemmas in Chapter $6[\mathrm{AY}]$ for f_{-1} and R_{a} to guarantee the well definition of angles above. For more details, see Chapter 4 and 6 of [AY].

Having the definitions of bubble rays on the dynamical planes, now we can define parabubbles (or called capture components) and parabubble rays on the parameter space of the family $R_{a}=\frac{a}{z^{2}+2 z}$. These parabubble rays also cut out similar wake structures as for M. We present them in the following theorem (Proposition 6.10 and Lemma 6.11 of [AY]).

Theorem 10.2.6. Let a_{0} be such that $R_{a_{0}}$ has a parabolic fixed point z_{0} with eigenvalue $R_{a_{0}}^{\prime}\left(z_{0}\right)=e^{2 \pi i \frac{p}{q}},(p, q)=1$. Denote $\mathcal{O}=\left\{\left\{\theta_{1}, \ldots, \theta_{q}\right\}\right\}$ the orbit portrait for the bubble rays landing at z_{0}, and let $I=[t-, t+]$ be its characteristic arc. Then the corresponding parabubble rays with angles $t+$ and t - land on a_{0}. They cut out an open set in the complex plane, called the bubble wake $W=W(t-, t+)$ such that $a \in W$ if and only if
R_{a} exhibits the repelling orbit portrait $\mathcal{O}=\mathcal{O}(t-, t+)$.
The following wake picture is from [AY].

Figure 11: The parameter wake $W\left(\frac{1}{7}, \frac{2}{7}\right)$. The picture is from [AY].

11 Proof of Theorem 4.2.2: continuity of matings between f_{-1} and parameters near an arbitrary non-renormalizable quadratic polynomial following Aspenberg and Yampolsky

In this section we prove Theorem 4.2.2 on continuity of conformal matings from [AY]'s existence theory of the corresponding conformal matings.

First we give a notion originating in [AY]. It measures the difference between two dynamical systems with puzzle partitions. Since we have defined Yoccoz puzzle for quadratic polynomials and bubble rays puzzle
for the R_{a} family, we will present the definition on the maps $\left\{f_{c}=z^{2}+c\right.$: $c \in M\} \cup\left\{R_{a}: a \in \mathbb{C}\right\}$.

Definition 11.0.7. For two maps F and G in $\left\{f_{c}=z^{2}+c: c \in M\right\} \cup$ $\left\{R_{a}: a \in \mathbb{C}\right\}$, we say they have the same combinatorics of puzzle up to depth n, if there exists an orientation preserving continuous surjection $\psi: \mathbb{C} \rightarrow \mathbb{C}$, such that

- ψ maps distinct puzzle pieces P_{k}^{i} of depth $k \leq n$ of F homeomorphically to distinct puzzle pieces Q_{k}^{j} of G.
- ψ maps the critical piece of depth $k \leq n$ of F to the critical piece of depth $k \leq n$ of G.
- ψ respects the dynamics, that is,

$$
P_{k-1}^{i}=F\left(P_{k}^{j}\right) \text { if and only if } \psi\left(P_{k-1}^{i}\right)=G\left(\psi\left(P_{k}^{j}\right)\right) .
$$

When $F, G \in\left\{f_{c}=z^{2}+c: c \in M\right\}$ or $F, G \in\left\{R_{a}: a \in \mathbb{C}\right\}$, the map $\psi: \mathbb{C} \rightarrow \mathbb{C}$ can be chosen to be a homeomorphism on \mathbb{C}.

In order to prove the theorem we still need a lemma which shows us that the puzzle partitions vary continuously with respect to parameters in M.

Lemma 11.0.8. For any $n_{1} \in \mathbb{N}$, there exists $N\left(n_{1}\right) \in \mathbb{N}$, such that for $n>N\left(n_{1}\right), f_{c_{n}}$ has the same combinatorics of puzzle up to depth n_{1} with f_{c}, moreover, c_{n} (critical value of $f_{c_{n}}$) and $c\left(\right.$ critical value of f_{c}) stay in some particular puzzle piece of depth n_{1}.

Proof. We will prove stronger results by mathematical induction, that is, we will prove that, for any $n_{1} \in \mathbb{N}$, there exists $\delta_{n_{1}}>0$, such that for all the quadratic polynomials $f_{c^{\prime}}=z^{2}+c^{\prime}$ with parameters $c^{\prime} \in D_{c}^{\delta_{n_{1}}} \cap M$
(we use the symbol $D_{c}^{\delta_{n_{1}}}$ to denote the disc centred on c with radius $\delta_{n_{1}}$), f_{c} has the same combinatorics of puzzle up to depth n_{1} with $f_{c^{\prime}}$ and the critical value c, c^{\prime} of f_{c} and $f_{c^{\prime}}$ stay in some particular puzzle piece of depth n_{1}.

The base step follows from Theorem 1.2 [Mil2], that is, there is a wake (containing c) in which all the maps in it has a repelling fixed point with orbit portrait given by the the orbit portrait of the α fixed point of f_{c}.

Assume when $n_{1}=n$ the result holds, that is, there exists $\delta_{n}>0$, such that for all maps $f_{c^{\prime}}=z^{2}+c^{\prime}$ with $c^{\prime} \in D_{c}^{\delta_{n}} \cap M, f_{c}$ has the same combinatorics of puzzle up to depth n as $f_{c^{\prime}}, c^{\prime}$ stays in some particular puzzle piece of depth n. By definition, there exists an orientation preserving homeomorphism $\psi_{c^{\prime}}^{n}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$, such that:
(a) $\psi_{c^{\prime}}^{n}$ maps distinct puzzle pieces $P_{k}^{i, c}$ of depth $k \leq n$ of f_{c} to corresponding puzzle pieces $P_{k}^{i, c^{\prime}}$ of depth $k \leq n$ of f_{c}^{\prime}. Here we number the finitely many puzzle pieces $P_{k}^{i, c}$ of f_{c} of depth k by integer $i \in \mathbb{N}$, and do the same thing with $f_{c^{\prime}}$.
(b) for all $k \leq n$, we have $\psi_{c^{\prime}}^{n}$ maps depth k critical puzzle piece of f_{c} to depth k critical puzzle piece of $f_{c^{\prime}}$.
(c) $\psi_{c^{\prime}}^{n}$ respects the dynamics, that is,

$$
P_{k-1}^{i, c}=f_{c}\left(P_{k}^{i, c}\right) \text { if and only if } \psi_{c^{\prime}}^{n}\left(P_{k-1}^{i, c}\right)=f_{c^{\prime}}\left(P_{k}^{i, c}\right) \text { for } k \leq n .
$$

For the $n_{1}=n+1$ case, we make a finer restriction on $\psi_{c^{\prime}}^{n}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ to co-ordinate the puzzle pieces of depth $n+1$. Denote the α fixed point of f_{c} by α_{c}. α_{c} is used to form the base Yoccoz puzzle partition of f_{c}. Note that unless for some integer $l, f_{c}^{l}(0) \in \cup_{k=0}^{\infty} f_{c}^{-k}\left(\alpha_{c}\right), c$ will always stay in the interior of the puzzle pieces of any depth. Suppose this is not the case, and consider the set $f_{c}^{-1}\left\{\cup_{k=0}^{n} f_{c}^{-k}\left(\alpha_{c}\right)\right\}$ together with the external rays landing on them. Label these points as $\alpha_{n+1, c}^{i}, 1 \leq i \leq n_{2}$.

Now choose $\delta_{n+1}<\delta_{n}$, such that for any map $f_{c^{\prime}}$ with $c^{\prime} \in D_{c}^{\delta_{n+1}}, \alpha_{n+1, c^{\prime}}^{i}$ $\left(1 \leq i \leq n_{2}\right)$ stays in the corresponding puzzle piece $\psi_{c^{\prime}}^{n}\left(P_{n}^{c}\left(\alpha_{n+1, c}^{i}\right)\right)$, in which $P_{n}^{c}\left(\alpha_{n+1, c}^{i}\right)$ denotes the depth n puzzle piece of f_{c} containing $\alpha_{n+1, c}^{i}$. Furthermore, one should guarantee δ_{n+1} small enough such that c^{\prime} stays in the corresponding puzzle piece which varies continuously from $P_{n+1}^{c}(c)$ (depth $n+1$ puzzle piece of f_{c} containing $\left.c\right)$. This can be done because by assumption $c \in\left(P_{n+1}^{c}(c)\right)^{o}$ (interior of $P_{n+1}^{c}(c)$).

Now we only need to consider the map $\psi_{c^{\prime}}^{n}$ on $P_{n}^{c}\left(\alpha_{n+1, c}^{i}\right)$ (depth n puzzle piece of f_{c} containing the point $\left.\alpha_{n+1, c}^{i}\right)$. Modify $\psi_{c^{\prime}}^{n}$ on $P_{n}^{c}\left(\alpha_{n+1, c}^{i}\right)$ to get a new map $\psi_{c^{\prime}}^{n+1}$, such that for any $c^{\prime} \in D_{c}^{\delta_{n+1}}, \psi_{c^{\prime}}^{n+1}$ satisfies (a), (b) and (c) for $k \leq n+1$. This can be done because according to Lemma 2.1 [Mil2], the cyclic order of external rays landing on some point is preserved by the $\operatorname{map} f_{c^{\prime}}^{-1}$. Now the lemma follows by induction.

Now we can prove Theorem 4.2.2 by virtue of Lemma 11.0.8.

Proof. We use the Yoccoz puzzle for quadratic polynomials f_{c} and $f_{c_{n}}$ in [Hub] and bubble rays puzzle for $R_{a\left(c_{n}\right)}$ and $R_{a(c)}$ in [AY]. Notice from Chapter $9[\mathrm{AY}]$ that f_{c} has the same combinatorics of the puzzle up to depth ∞ with $R_{a(c)}, f_{c_{n}}$ has the same combinatorics of the puzzle up to depth ∞ with $R_{a\left(c_{n}\right)}$, while both critical points stay in some particular puzzle pieces. We use the same notation $\Delta_{n}^{c}, n \in \mathbb{N}$ as in $[\mathrm{AY}]$ to denote the depth n parameter puzzle piece on the a plane in which all the maps have the same combinatorics of puzzle up to depth n with f_{c} (refer to Proposition 7.11 , [AY]). That is,
$\Delta_{n}^{c}=\left\{R_{a}: R_{a}\right.$ has the same combinatorics of puzzle up to depth n and $-a$ is contained in the particular puzzle piece of depth n which varies
isotopically from the depth n puzzle piece of $R_{a(c)}$ containing its critical

$$
\text { point }-a(c)\} \text {. }
$$

Now by Lemma 11.0.8, for any $n_{1} \in \mathbb{N}$, there exists $N\left(n_{1}\right)$ large enough such that for $n>N\left(n_{1}\right), f_{c_{n}}$ has the same combinatorics of puzzle up to depth n_{1} with f_{c} and the critical points stay in the particular puzzle pieces as $\lim _{n \rightarrow \infty} c_{n} \rightarrow c$. Then $R_{a\left(c_{n}\right)} \in \Delta_{n_{1}}^{c}$. Now let $n_{1} \rightarrow \infty$, then

$$
\operatorname{diam}\left(\Delta_{n_{1}}\right) \rightarrow 0
$$

by Theorem 9.1 [AY]. It follows that $\lim _{n \rightarrow \infty} R_{a\left(c_{n}\right)}=R_{a(c)}$.

12 The case of Fatou components with disjoint closures: proof of Theorem 4.2.5

12.1 An example $s_{\frac{3}{7}} \amalg s_{\frac{3}{31}}$

Now consider the case when all the Fatou components of R have disjoint closures, e.g. $p=\frac{3}{7}, q=\frac{3}{31}$. We first show that

Lemma 12.1.1. Closures of Fatou components of the map $R \simeq s_{\frac{3}{7}} \amalg s_{\frac{3}{31}}$ are pairwise disjoint.

We need Lemma 3.3 from [Ree3] presented as the following lemma in our proof.

Lemma 12.1.2. Let f be of quadratic rational hyperbolic type IV (means f has two critically periodic points with disjoint orbits), then one of the following occurs.
(1) f is Möbius conjugate to a critically periodic polynomial.
(2) The closure of any Fatou component is a closed topological disc. The closures of any two Fatou components U_{1} and U_{2} of f intersect in at most one point. If \bar{U}_{1} and $\overline{U_{2}}$ do intersect at x, and U_{1} and U_{2} are
both periodic, then x is periodic with period $\max \left(m_{1}, m_{2}\right)$, where m_{i} is the minimum period of points on ∂U_{i} under f.

Proof of Lemma 12.1.1:

Proof. First, observe the orbit of the minor leaves (we use $[r, s], r, s \in \mathbb{Q}$ to represent the leaf with endpoints $e^{2 \pi i r}$ and $e^{2 \pi i s}$ on S^{1}) in the two laminations:

$$
\begin{aligned}
& s_{\frac{3}{7}}:\left[\frac{3}{7}, \frac{4}{7}\right] \rightarrow\left[\frac{6}{7}, \frac{1}{7}\right] \rightarrow\left[\frac{2}{7}, \frac{5}{7}\right], \\
& s_{\frac{3}{31}}:\left[\frac{3}{31}, \frac{4}{31}\right] \rightarrow\left[\frac{6}{31}, \frac{8}{31}\right] \rightarrow\left[\frac{12}{31}, \frac{16}{31}\right] \rightarrow\left[\frac{24}{31}, \frac{1}{31}\right] \rightarrow\left[\frac{17}{31}, \frac{2}{31}\right] .
\end{aligned}
$$

Notice that by Lemma $12.1 .2, m_{1}=1$ or $3, m_{2}=1$ or 5 in this case. If two Fatou components U_{i} of $R \simeq s_{\frac{3}{7}} \amalg s_{\frac{3}{31}}$ do intersect, in case $m_{1}=1$ this means $\partial U_{1} \cap R\left(\partial U_{1}\right) \cap R^{2}\left(\partial U_{1}\right)$ is a single fixed point and every other point in ∂U_{1} has period divisible by an integer ≥ 3. Similarly in case $m_{2}=1, \partial U_{2} \cap R\left(\partial U_{2}\right) \cap R^{2}\left(\partial U_{2}\right) \cap R^{3}\left(\partial U_{2}\right)$ is a single fixed point and every other point in ∂U_{2} has period divisible by an integer ≥ 5. So the possible intersection between ∂U_{1} and ∂U_{2} is a fixed point and this would have to be the equivalent class of $\left[\frac{3}{7}, \frac{4}{7}\right]$ and $\left[\frac{3}{31}, \frac{4}{31}\right]$. They would have to be joined by finitely many leaves. In the combination of the two laminations $L_{\frac{3}{7}}$ and $L_{\frac{3}{31}}^{-1}$, two leaves can intersect only if they have a common endpoint. Both endpoints of a leaf have the same period, so $\left[\frac{3}{7}, \frac{4}{7}\right]$ and $\left[\frac{3}{31}, \frac{4}{31}\right]$ can not be joined by finitely many leaves because these leaves have endpoints of different periods. So the closures of Fatou components are all disjoint.

12.2 Notations and outline strategy for the proof of Theorem 4.2.5

In this section we will prove Conjecture 4.1.1 in the case when all Fatou components of R_{*} (or equivalently of R) have disjoint closures, that is, Theorem 4.2.5. There is currently an extra hypothesis in our Lemma 12.7.4 on $\varphi_{*}^{-1}\left(\varphi_{*}(p)\right)$, quite mild, or a technical problem, which could hopefully be removed later on. We use the idea of Markov partitions for R_{n} and R_{*}, which do not have the parabolic cycle on the boundary of any partition element.

Let $M_{x_{*}}$ be the copy of the Mandelbrot set containing x_{*} as its cusp. There is a corresponding combinatorial copy of the Mandelbrot set in the unit disc bounded by μ_{p}. If $\mu_{p_{n}}$ is in this combinatorial copy of the Mandelbrot set for all n, then $R_{n} \in M_{x_{*}}$. Let L_{p} be the invariant lamination with minor leaf μ_{p}. Let G_{p} be the minor gap which is the gap bounded from 0 by μ_{p} with μ_{p} on its boundary. $s_{p_{n}}$ is a tuning of s_{p} if $L_{p_{n}} \supset L_{p}$, which means $\mu_{p_{n}} \subset \bar{G}_{p}, G_{p_{n}} \subset G_{p}$. All leaves of $L_{p_{n}} \backslash L_{p}$ are in the orbit of \bar{G}_{p}. This means that there is $t_{n} \in \mathbb{Q}$ and a lamination $L_{t_{n}}$ whose minor leaf is $\mu_{t_{n}}$ with an endpoint $e^{2 \pi i t_{n}}$. There is a continuous $\operatorname{map} \psi: \overline{\mathbb{D}} \rightarrow G_{p}$, such that

$$
\begin{gathered}
\psi\left(L_{t_{n}}\right)=\bar{G}_{p} \bigcap L_{p_{n}}, \\
\psi\left(z^{2}\right)=s_{p}^{m} \circ \psi(z), \\
\psi \circ s_{t_{n}}=s_{p}^{m} \circ \psi \text { on } G .
\end{gathered}
$$

ψ is a homeomorphism on G_{p}. Moreover, ψ^{-1} extends continuously to map \bar{G}_{p} to $\overline{\mathbb{D}}$, map leaves on ∂G_{p} to points. Then $R_{n} \rightarrow R_{*}$ as $n \rightarrow \infty$ by the theory of polynomial-like mappings because $s_{p_{n}} \simeq s_{p} \vdash s_{t_{n}}$ where $t_{n} \rightarrow 0$ as $n \rightarrow \infty$.

The tuning case, that is, Theorem 4.2.4 is proved in Section 12.4. Let
ϕ_{n} be a semiconjugacy between $s_{p_{n}} \amalg s_{q}$ and R_{n} by Section 2.4, that is,

$$
\phi_{n} \circ\left(s_{p_{n}} \amalg s_{q}\right)=R_{n} \circ \phi_{n} .
$$

Let ϕ, ϕ_{*} be semiconjugacies such that

$$
\begin{gather*}
\phi \circ\left(s_{p} \amalg s_{q}\right)=R \circ \phi, \\
\phi_{*} \circ\left(s_{p} \amalg s_{q}\right)=R_{*} \circ \phi_{*} . \tag{31}
\end{gather*}
$$

ϕ_{*} exists by Proposition 2.11.1. $\phi_{*}\left(S^{1}\right)=J\left(R_{*}\right) . \phi\left(e^{2 \pi i p}\right)$ is in the interior of a set of $\mathcal{P}_{0}(R)$ (the initial partition pieces for $\left.R\right) . \phi_{*}\left(e^{2 \pi i p}\right)$ is in the interior of a set of $\mathcal{P}_{0}\left(R_{*}\right)$, so for n large enough, $\phi\left(e^{2 \pi i p_{n}}\right)$ and $\phi_{*}\left(e^{2 \pi i p_{n}}\right)$ are both in the interior of some sets of $\mathcal{P}_{0}(R)$ and $\mathcal{P}_{0}\left(R_{*}\right)$.

Now let

$$
\begin{aligned}
\mathcal{P}_{n}\left(R_{*}\right)=\bigvee_{i=0}^{n} R_{*}^{-i}\left(\mathcal{P}_{0}\left(R_{*}\right)\right) & =\left\{\bigcap_{i=0}^{n} P_{j_{i}}: P_{j_{i}} \in R_{*}^{-i}(P), P \in \mathcal{P}_{0}\left(R_{*}\right)\right\}, \\
\mathcal{P}_{n}(R) & =\bigvee_{i=0}^{n} R^{-i}\left(\mathcal{P}_{0}(R)\right) .
\end{aligned}
$$

Some of the ends of partitions in $\bigvee_{i=0}^{\infty} R_{*}^{-i}\left(P_{0}\left(R_{*}\right)\right)$ do not shrink to points. For example there is a sequence $\left\{P_{n}\right\}$ with $P_{n} \in \mathcal{P}_{n}\left(R_{*}\right)$ such that as $n \rightarrow \infty, P_{n}$ tends to the Fatou component with $\phi_{*}\left(e^{2 \pi i p}\right)$ on its boundary. Here P_{n} is the set in $\mathcal{P}_{n}\left(R_{*}\right)$ which contains the Fatou component with $\phi_{*}\left(e^{2 \pi i p}\right)$ on its boundary.

In the following Section 12.5 we will construct a sequence of closed nested topological discs $B_{n}\left(R_{*}\right), n \in \mathbb{N}$, with $\phi_{*}\left(e^{2 \pi i p}\right)$ on their boundaries. None of these discs is a single partition piece in \mathcal{P}_{n}, but they will be constructed with boundaries in the union of the boundary of U_{*} and of the graph $\cup_{n} G_{n}$. They are closures of the union of some partition pieces of level greater than some integer N. Here, G_{n} is the graph such that the
partition pieces in \mathcal{P}_{n} are the closures of components of $\overline{\mathbb{C}} \backslash G_{n}$. We can show that the sequence $B_{n}\left(R_{*}\right)$ shrinks to the point $\phi_{*}\left(e^{2 \pi i p}\right)$ as $n \rightarrow \infty$ by Lemma 5.2.4. Then we transfer the shrinking from the dynamical plane of R_{*} to some induced nested sets $M B_{n}$ on the parameter plane by some method. At last we show the rational map $R_{n} \simeq s_{p_{n}} \amalg s_{q}$ is in some set $M B_{N_{n}}$ such that $N_{n} \rightarrow \infty$ as $n \rightarrow \infty$. This is the idea of the whole proof.

12.3 Persistent Markov partitions for rational maps near R_{*}

Now denote by v the point in the parabolic cycle of R_{*} of period m such that

$$
\lim _{n \rightarrow \infty} R_{*}^{m n+1}\left(c_{1}\right)=v
$$

and hence $R_{*}^{m}(v)=v$. Using the partition introduced in the last section, one can see that the nested partition pieces of all levels containing v tend to the Fatou component U_{*} with v on its boundary. The set in the intersection of all levels of dynamical partitions containing $R_{*}\left(c_{1}\right)$ is a copy of the Mandelbrot set by the theory of polynomial-like mappings [DH1], as we shall see in Section 12.4.

The base partition graph

$$
G_{0}\left(R_{x}\right)=\bigcup_{P \in \mathcal{P}_{0}\left(R_{x}\right)} \partial P
$$

varies continuously to $G_{0}\left(R_{*}\right)$ in a neighbourhood of R_{*} according to Lemma 12.3.2. For each $n, G_{n}\left(R_{x}\right)$ varies continuously to $G_{n}\left(R_{*}\right)$ in a neighbourhood of R_{*}. These neighbourhoods are getting smaller and smaller as $n \rightarrow \infty$.

Let X be the parameter slice $\operatorname{Per}_{m^{\prime}}(0)$ containing the parameter x_{*} which parametrizes the rational map R_{*}. One can take the example of
the parameter a-plane in [AY] as a special example for $\operatorname{Per}_{2}(0)$. Now we quote two results (Corollary 1.2 and Lemma 2.1) from [Ree4] which will be used to form our base partition $\mathcal{P}_{0}\left(R_{*}\right)$ and persistent partitions $\mathcal{P}_{0}\left(R_{x}\right)$ for x in a small neighbourhood of x_{*} on X.

Theorem 12.3.1. Let $f: \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}$ be a rational map with connected Julia set J, such that the forward orbit of each critical point is attracted to an attractive or parabolic periodic orbit, the closure of any Fatou component is a closed topological disc, and all of these are disjoint. Then there exists a graph $G \subset \overline{\mathbb{C}}$ such that the following hold.

- $G \subset f^{-1}(G)$.
- G does not intersect the closure of any Fatou component.
- All components of $\overline{\mathbb{C}} \backslash G$ are topological discs.
- Any component of $\overline{\mathbb{C}} \backslash G$ contains at most one periodic Fatou component of f.
- The boundary of any component of $\overline{\mathbb{C}} \backslash G$ is a quasi-circle.

In particular, the set of closures of components of $\overline{\mathbb{C}} \backslash G$ is a Markov partition for f.

By this theorem the closures of components of $\overline{\mathbb{C}} \backslash G$ gives the foundation level partition of a Markov partition for R_{*}, which we call \mathcal{P}_{0}. The condition on rational maps with disjoint closures of Fatou components for existence of the Markov partitions imposes a restriction on our result. The Markov partition persists for nearby maps R_{x} by the following lemma (Lemma 2.1 [Ree4]).

Lemma 12.3.2. Let f be a rational map. Let $G \subset \overline{\mathbb{C}}$ be a graph, and U a connected closed neighbourhood of G such that the following hold.

- $G \subset f^{-1}(G)$.
- U is disjoint from the set of critical values of f.
- U contains the component of $f^{-1}(U)$ containing G, and, for some $N>0, U^{o}$ contains the component of $f^{-N}(U)$ containing G.

Then for all g sufficiently close to f in the uniform topology, the properties above hold with g replacing f and a graph $G(g)$ isotopic to the graph $G=G(f)$ above, varying continuously with g.

In particular, these properties hold for nearby g, if f is a rational map such that the forward orbit of every critical point is attracted to an attractive or parabolic periodic orbit, the closures of any two periodic Fatou components are disjoint, and G is a graph with the properties above, which is also disjoint from the closure of any periodic Fatou component.

Let U_{*} be the Fatou component containing $R_{*}\left(c_{1}\left(R_{*}\right)\right)$ on its boundary. Now write

$$
W_{i}=W_{i}\left(R_{*}\right)
$$

for the set in $\mathcal{P}_{i}=\mathcal{P}_{i}\left(R_{*}\right)$ which contains U_{*}. Thus $W_{i+1}\left(R_{*}\right) \subset W_{i}\left(R_{*}\right)$ and $W_{i+j}\left(R_{*}\right)$ is a component of $R_{*}^{-j m}\left(W_{i}\left(R_{*}\right)\right)$. Now we introduce part of Corollary 1.2 of [Ree4], by perturbing the graph G of [Ree4] near U_{*} to a different graph in $\cup_{n \geq 0} R_{*}^{-n}(G)$, if necessary.

Let $X W_{i}$ be the set of parameters x such that $\partial G_{i}\left(R_{x}\right)$ varies isotopically for nearby maps and $R_{x}\left(c_{1}(x)\right) \in W_{i}\left(R_{x}\right)$. Thus, $x_{*} \in X W_{i}$ for all i, and there is a homeomorphism

$$
h_{x}^{i}: G_{i}\left(R_{*}\right) \cup\left\{R_{*}\left(c_{1}\left(R_{*}\right)\right)\right\} \rightarrow G_{i}\left(R_{x}\right) \cup\left\{R_{x}\left(c_{1}\left(R_{x}\right)\right)\right\}
$$

for $x \in X W_{i}$, which satisfies

$$
h_{x}^{i} \circ R_{*}=R_{x} \circ h_{x}^{i}
$$

on $G_{i}\left(R_{*}\right)$.
Theorem 12.3.3. (from Theorem 3.2 of [Ree4])

$$
x \rightarrow h_{x}^{-i}\left(R_{x}\left(c_{1}\left(R_{x}\right)\right)\right)
$$

is a homeomorphism from $\partial X W_{i}$ to $W_{i}\left(R_{*}\right)$. Consequently $X W_{i}$ is a closed topological disc for all i, and $X W_{i+1} \subset \operatorname{int}\left(X W_{i}\right)$.

As a consequence of the theorem, $\cap_{i \geq 0} X W_{i}$ is a compact set.

12.4 The case with a bounded minor leaf: proof of Theorem 4.2.4 following the Mandelbrot-like family theory

When all the minor leaves are in a small copy of the Mandelbrot set, that is, the quadratic polynomials $f_{n} \simeq s_{p_{n}}$ are all tunings and R_{*} has Fatou components of disjoint closures, we can deal with the continuity problem by Douady and Hubbard's theory of Mandelbrot-like families [DH1].

Proof of Theorem 4.2.4:

Proof. Note that

$$
\left(R_{*}^{m}, \operatorname{int}\left(W_{m}\left(R_{*}\right)\right), \operatorname{int}\left(W_{0}\left(R_{*}\right)\right)\right)
$$

is a polynomial-like mapping in the sense of [DH1], that is,

$$
W_{m}\left(R_{*}\right) \subset \operatorname{int}\left(W_{0}\left(R_{*}\right)\right)
$$

and

$$
R_{*}^{m}: W_{m}\left(R_{*}\right) \rightarrow W_{0}\left(R_{*}\right)
$$

is a degree two branched covering. For $x \in X W_{m}$,

$$
\left(R_{x}^{m}, \operatorname{int}\left(W_{m}\left(R_{x}\right)\right), \operatorname{int}\left(W_{0}\left(R_{x}\right)\right)\right)
$$

is also a polynomial-like mapping. The Mandelbrot-like set $M R_{*}$ is $\cap_{i \geq 0} X W_{i}$, which is compact by Theorem 12.3.3. The map

$$
\chi: \operatorname{int}\left(X W_{m}\right) \rightarrow \mathbb{C}
$$

in [DH1] is continuous by Proposition 14 of [DH1] and holomorphic over M, by Theorem 4 of [DH1]. By construction, this map χ is such that, if $R_{x} \simeq s_{r} \amalg s_{q}$ for some tuning s_{r} of s_{p}, then $x \in M R_{*}$ and $\chi(x)=c$ where $f_{c} \simeq s_{r}, f_{c}(z)=z^{2}+c$. As commented in Section 4 of [DH1], if $M R_{*}$ is compact, then $\chi: M R_{*} \rightarrow M$ is a ramified cover of some degree. But χ is injective restricted to the critically periodic maps in $M R_{*}$, because these are precisely those maps R_{x} with $R_{x} \simeq s_{r} \amalg s_{q}$ for an odd denominator rational r such that s_{r} is a tuning of s_{p}. So χ is of degree one on $M R_{*}$ and a homeomorphism from $M R_{*}$ to M. Now let $\lim _{n \rightarrow \infty} p_{n}=p$ with $s_{p_{n}}$ being a tuning of s_{p}. Let $f_{n} \simeq s_{p_{n}}$ where $f_{n} \rightarrow f_{*}$ as $n \rightarrow \infty$, in which f_{*} is the parabolic map on the boundary of the hyperbolic component containing $f \simeq s_{p}$ with its parabolic point of the least possible period. Then

$$
R_{n}=\chi^{-1}\left(f_{n}\right) \rightarrow \chi^{-1}\left(f_{*}\right)=R_{*}
$$

as $n \rightarrow \infty$.

12.5 Construction and shrinking of the nested sets $B_{n}\left(R_{*}\right)$ on the dynamical plane

First consider the Fatou component U_{*} of R_{*}. We distinguish elements of the graph $G\left(R_{*}\right)=\cup_{n} G_{n}\left(R_{*}\right)$ by lateral or vertical ones as the following. There are arcs on the graph which are parts of some closed loop in $G\left(R_{*}\right)$ enclosing U_{*} at some level j. We call them the (level j) lateral edges of the graph $G\left(R_{*}\right)$. Denote the collection of them by Γ_{L}. Denote the set of $\mathcal{P}_{0}\left(R_{*}\right)$ containing U_{*} by $P_{0}\left(R_{*}\right)$. The edges which are not part of any
closed loop enclosing U_{*} at any level are called the vertical edges. Denote the collection by Γ_{V}.

Notice that there is a homeomorphism $\phi: S^{1} \rightarrow \partial U_{*}$ such that

$$
\phi\left(z^{2}\right)=R_{*}^{m} \circ \phi(z) .
$$

Choose some periodic points on S^{1} near 1, for example, $e^{ \pm \frac{2 \pi i}{99}}$. We claim that (this statement is for the particular number $\frac{1}{99}$, in fact it works for any odd denominator rational number)

Lemma 12.5.1. There are arcs γ_{+}and γ_{-}composed of edges in $\Gamma_{L} \cup \Gamma_{V}$, such that

$$
\gamma_{ \pm} \subset \bigcup_{n} G_{n}\left(R_{*}\right), \gamma_{+} \subset R_{*}^{99 m}\left(\gamma_{+}\right), \gamma_{-} \subset R_{*}^{99 m}\left(\gamma_{-}\right),
$$

γ_{+}lands on $\phi\left(e^{\frac{2 \pi i}{99}}\right)$ while γ_{-}lands on $\phi\left(e^{-\frac{2 \pi i}{99}}\right)$.
Proof. First, choose a vertex $y_{0,+}$ on some edge in Γ_{L}. Let $\omega_{j}, j \geq 0$ be the closed loop composed of edges in Γ_{L} of $G_{j m}$ surrounding U_{*}. $\omega_{0}=\partial P_{0}\left(R_{*}\right) . \quad R_{*}^{m}\left(\omega_{j+1}\right)=\omega_{j}$ and the map $R_{*}^{m}: \omega_{j+1} \rightarrow \omega_{j}$ is a covering map of degree 2. ω_{j+1} separates ∂U_{*} from ω_{j}.

Now choose a vertical edge $\alpha_{0,+}$ between ω_{0} and ω_{1} in the repelling petal of v without loss of generality. $R_{*}^{-j m}\left(\alpha_{0,+}\right)$ has 2^{j} components joining ω_{j} to ω_{j+1}. Define the arc

$$
\beta_{0,+} \subset\left(\cup_{j=0}^{98} R_{*}^{-j m}\left(\alpha_{0,+}\right)\right) \cup\left(\cup_{j=0}^{98} \omega_{j}\right)
$$

according to the following rules. First observe the orbit of $e^{\frac{2 \pi i}{99}}$ under the doubling map (we omit $e^{\frac{2 \pi i}{99}}$ as there will be no ambiguity):

$$
\begin{aligned}
& 1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow 32 \rightarrow 64 \rightarrow 29 \rightarrow 58 \rightarrow 17 \rightarrow 34 \rightarrow 68 \rightarrow \\
& 37 \rightarrow 74 \rightarrow 49 \rightarrow 98 \rightarrow 97 \rightarrow 95 \rightarrow 91 \rightarrow 83 \rightarrow 67 \rightarrow 35 \rightarrow 70 \rightarrow 41 \rightarrow \\
& 82 \rightarrow 65 \rightarrow 31 \rightarrow 62 \rightarrow 25 \rightarrow 50 \rightarrow 1 .
\end{aligned}
$$

Join $\alpha_{0,+}$ with the sets $R_{*}^{-j m}\left(\alpha_{0,+}\right)$ according to the orbit of $e^{\frac{2 \pi i}{99}}$ under the doubling map. Note that $R_{*}^{-m}\left(\alpha_{0,+}\right)$ splits the region between ω_{1} and ω_{2} into 2 parts, and $R_{*}^{-j m}\left(\alpha_{0,+}\right)$ splits the region between ω_{j} and ω_{j+1} into 2^{j} parts. The 2^{j} components of $R_{*}^{-j m}\left(\alpha_{0,+}\right)$ between ω_{j} and ω_{j+1} are ordered in the same way as the points $e^{2 \pi i \frac{k}{2 j}}, 0 \leq k<2^{j}$ on S^{1}, so choose $\alpha_{j,+}$ to be the component of $R_{*}^{-99 j m}\left(\alpha_{0,+}\right)$ which corresponds to the nearest point of $\frac{k}{2^{j}}$ with respect to $\frac{2^{99-j}}{99} \bmod 1$ for $0 \leq k<2^{j}$. Let $\beta_{0,+} \subset\left(\cup_{j=0}^{98} \alpha_{j,+}\right) \cup\left(\cup_{j=0}^{98} \omega_{j}\right)$ and $\beta_{0,+}$ joins $y_{0,+}$ and a point $y_{1,+} \in$ $R_{*}^{-99 m}\left(y_{0,+}\right)$. Then inductively define $\beta_{j+1,+}$ to be the component of $R_{*}^{-99 m}\left(\beta_{j,+}\right)$ which shares an endpoint with $\beta_{j,+}$ for $j \geq 0$. Repeat this process infinitely many times. Now let

$$
\gamma_{+}=\cup_{j=0}^{\infty} \beta_{j,+},
$$

where $\beta_{j,+} \subset \cup_{j=0}^{98} G_{j+k}\left(R_{*}\right)$ and $R_{*}^{99 m}\left(\beta_{j+1,+}\right)=\beta_{j,+}$. We claim that $\operatorname{diam}\left(\beta_{j,+}\right) \rightarrow 0$ as $j \rightarrow \infty$ because since $\beta_{j,+}$ is bounded away from the critical orbits, it is contained in a small open set W on which $\left\{R_{*}^{-k m}: k \in\right.$ $\mathbb{N}\}$ is a normal family when j is large enough. $\operatorname{So} \operatorname{diam}\left(R_{*}^{-k m}(W)\right) \rightarrow 0$ as $k \rightarrow \infty$, which implies $\lim _{j \rightarrow \infty} \operatorname{diam}\left(\beta_{j,+}\right)=0$. Since any accumulation point is fixed by $R_{*}^{99 m}$, they must accumulate on a single periodic point, which is $\phi\left(e^{\frac{2 \pi i}{99}}\right)$. The arc

$$
\gamma_{-}=\cup_{j=0}^{\infty} \beta_{j,-}
$$

lands on $\phi\left(e^{-\frac{2 \pi i}{99}}\right)$ where $\beta_{j,-} \subset \cup_{j=0}^{98} G_{j+k}\left(R_{*}\right)$ and $R_{*}^{99 m}\left(\beta_{j+1,-}\right)=\beta_{j,-}$ is constructed similarly with $\beta_{j,+}$. So $\beta_{j+1, \pm}$ is determined by $\beta_{j, \pm}$. Denote the two endpoints of $\beta_{j, \pm}$ by $y_{j, \pm}$ and $y_{j+1, \pm}$. All the $\beta_{j, \pm}$ are determined by $\beta_{0, \pm}$.

Now we begin to construct the nested sequence of closed topological discs $B_{j}\left(R_{*}\right)$. From now on suppose v is a primitive parabolic point which has exactly one attracting petal and one repelling petal for simplicity.

As we mainly care about the dynamics near the parabolic point, and the Fatou component U_{*} is the limit of all levels of the partition pieces which contains it, we can suppose both γ_{+}and γ_{-}are in the $\epsilon-$ neighbourhood of the parabolic point $v, \beta_{j,+}$ and $\beta_{j,-}$ are on the same level of the graph.

In order to construct the sequence, denote the shorter arc on ∂U_{*} joining $\phi\left(e^{\frac{2 \pi i}{99}}\right)$ and $\phi\left(e^{-\frac{2 \pi i}{99}}\right)$ by $\gamma_{0,<}$. It is an arc containing the parabolic point v in its interior. Write $\gamma_{j,<}=R_{*}^{-j m}\left(\gamma_{0,<}\right), j \in \mathbb{N}$, and choose R_{*}^{-m} the inverse branch such that $R_{*}^{-m}(v)=v$ (in the following without special declaration we always mean this branch by $\left.R_{*}^{-m}\right)$. Obviously the two points $\phi\left(e^{\frac{2 \pi i}{99}}\right)$ and $\phi\left(e^{-\frac{2 \pi i}{99}}\right)$ converge to v from two sides under iterations of R_{*}^{-m}, so $\gamma_{j,<}$ contains v in its interior for all $j \in \mathbb{N}$. Denote the shorter arc on ω_{0} joining the two end points of $\beta_{0,+}$ and $\beta_{0,-}$ on ω_{0} by $\gamma_{0,>}$. Now consider the dynamics of R_{*}^{-m} in the topological disc $B_{0}\left(R_{*}\right)$ bounded by $\gamma_{+}, \gamma_{-}, \gamma_{0,<}$ and $\gamma_{0,>}$. Suppose $B_{0}\left(R_{*}\right)$ is in the ϵ-neighbourhood of v. Then let

$$
\begin{equation*}
B_{j+1}\left(R_{*}\right)=R_{*}^{-(j+1) m}\left(B_{0}\left(R_{*}\right)\right) \subset R_{*}^{-j m}\left(B_{0}\left(R_{*}\right)\right)=B_{j}\left(R_{*}\right) \tag{32}
\end{equation*}
$$

for $j \in \mathbb{N}$.
Now we want to use Lemma 5.2.4 to show the shrinking of the sequence $B_{n}\left(R_{*}\right)$ to the point v. For the nested sequence $B_{j+1}\left(R_{*}\right) \subset B_{j}\left(R_{*}\right), j \in$ \mathbb{N}, apply Lemma 5.2 .4 by letting $B_{n}=B_{n}\left(R_{*}\right), C_{n}=C_{n}\left(R_{*}\right)$ be the closure of the set $B_{n}\left(R_{*}\right) \backslash B_{n+1}\left(R_{*}\right), n \in \mathbb{N}$. Both $C_{n}\left(R_{*}\right)$ and $B_{n}\left(R_{*}\right)$ are unions of some partition pieces whose levels are greater than some integer N, moreover,

$$
C_{n+1}\left(R_{*}\right)=R_{*}^{-m}\left(C_{n}\left(R_{*}\right)\right), n \in \mathbb{N}, n \geq 1
$$

Then $\operatorname{Mod}\left(C_{n}\left(R_{*}\right)\right)=c>0$ is a constant, which implies

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{Mod}\left(C_{n}\left(R_{*}\right)\right)=\infty \tag{33}
\end{equation*}
$$

So $B_{n}\left(R_{*}\right)$ converges to v by Lemma 5.2.4.

12.6 Convergence of the nested sets $X B_{n}$ on the parameter plane X

Now apply Lemma 12.3 .2 to $f=R_{*}$. Following partitions on the dynamical planes we define partitions on the parameter plane X (in fact only in a small neighbourhood of R_{*} is enough for us). Denote by x_{*} the parameter corresponding to the map R_{*}, and by x the parameter corresponding to the map R_{x} on the parameter plane X. What we do is similar to the definition of the partitions of parameter space of the $\frac{p}{q}$ limb of M in Part III, [Hub]. By the persistent property of the Markov partitions for maps near R_{*}, for a depth n partition piece $P_{n, x_{*}}^{j}, n, j \in \mathbb{N}$, there is a corresponding one $P_{n, x}^{j}$ for R_{x} depending continuously on x by lemma 12.3.2. Now define

$$
X P_{n, x_{*}}^{j}=\left\{x \in X: R_{x}\left(c_{1}(x)\right) \in P_{n, x}^{j}\right\}
$$

and

$$
\partial X P_{n, x_{*}}^{j}=\left\{x \in X: R_{x}\left(c_{1}(x)\right) \in \partial P_{n, x}^{j}\right\}
$$

$\cup_{n, j \in \mathbb{N}} X P_{n, x_{*}}^{j}$ and $\cup_{n, j \in \mathbb{N}} \partial X P_{n, x_{*}}^{j}$ form a partition in a neighbourhood of x_{*} on X plane.

In order to show the convergence on the X plane, we construct a nested sequence of topological discs $X B_{n}$. As the Markov partitions
persist for maps near R_{*}, the curve γ_{+}corresponds to a curve $\gamma_{+, x}$ depending continuously on x in a neighbourhood of x_{*}. For simplicity we still denote this curve by γ_{+}if there are no ambiguity, so for γ_{-}and $\gamma_{0,>}$. Now let

$$
\begin{gathered}
X \gamma_{j,+}=\left\{x \in X: R_{x}\left(c_{1}(x)\right) \in R_{x}^{-j m}\left(\gamma_{+}\right)=\gamma_{j,+}\right\}, j \in \mathbb{N}, \\
X \gamma_{j,-}=\left\{x \in X: R_{x}\left(c_{1}(x)\right) \in R_{x}^{-j m}\left(\gamma_{-}\right)=\gamma_{j,-}\right\}, j \in \mathbb{N}, \\
X \gamma_{j,>}=\left\{x \in X: R_{x}\left(c_{1}(x)\right) \in R_{x}^{-j m}\left(\gamma_{0,>}\right)=\gamma_{j,>}\right\}, j \in \mathbb{N} .
\end{gathered}
$$

Denote by M_{x} the closure of the mating components on X, then $X \gamma_{j,+}$ is a ray landing on a point $x_{j,+} \in M_{x}$. By the theory of polynomial-like mappings in [DH1] as explained in Section 12.4, there is a homeomorphism

$$
\Phi_{x_{*}}: M \rightarrow M_{x_{*}}
$$

where $x_{*} \in M_{x_{*}} \subset M_{x}$ and the homeomorphism has the following properties.

- $\Phi_{x_{*}}$ maps hyperbolic components to hyperbolic components.
- $\Phi_{x_{*}}$ maps critically finite maps to critically finite maps.
- $\Phi_{x_{*}}$ maps parabolic maps to parabolic maps. Moreover, If $R_{x_{1}} \simeq$ $\left(s_{p} \vdash s_{r_{1}}\right) \amalg s_{q}, s_{r_{1}} \simeq f_{a_{1}}(z)=z^{2}+a_{1}$, then

$$
\Phi_{x_{*}}\left(a_{1}\right)=x_{1} .
$$

$x_{j, \pm}$ are the images of the endpoints of the ray of argument $\pm \frac{2 \pi}{2^{j} 99}$ under $\Phi_{x_{*}}$. Yoccoz showed that there are only finitely many limbs of M with diameters greater than a fixed number ϵ. Let $t_{j, \pm}$ be the roots of the limbs containing the endpoints of the rays of argument $\pm \frac{2 \pi}{2^{j 99}}$, let

$$
\Phi_{x_{*}}\left(t_{j,+}\right)=x_{j,+}^{\prime}, \Phi_{x_{*}}\left(t_{j,-}\right)=x_{j,-}^{\prime}
$$

C. Peterson and P. Roesch (Theorem $4.21[\mathrm{PR}]$) showed (there is also an unpublished proof by Johannes Riedl in his Ph.D thesis [Rie]) that there is an arc in M joining $t_{j,+}$ and the endpoint of the ray of argument $\frac{2 \pi}{2^{j} 99}$. Similarly, there is an arc in M joining $t_{j,-}$ and the endpoint of the ray of argument $-\frac{2 \pi}{2^{j} 99}$. By Yoccoz's result diameters of these rays $\rightarrow 0$ as $j \rightarrow \infty$.

Now define $X \gamma_{j,+}^{\prime}$ and $X \gamma_{j,-}^{\prime}$ to be the images of these arcs under $\Phi_{x_{*}}$. Thus $X \gamma_{j,+}^{\prime}$ is an arc in $M_{x_{*}}$ joining $x_{j,+}$ and $x_{j,+}^{\prime}, X \gamma_{j,-}^{\prime}$ is an arc in $M_{x_{*}}$ joining $x_{j,-}$ and $x_{j,-}^{\prime}$. Define $X \gamma_{j}^{\prime \prime}$ to be the image under $\Phi_{x_{*}}$ of the arc on the boundary of the main cardioid between $t_{j,+}$ and $t_{j,-}$. Since $\Phi_{x_{*}}$ is a homeomorphism, the diameters of $X \gamma_{j,+}^{\prime}, X \gamma_{j,-}^{\prime}$ and $X \gamma_{j}^{\prime \prime}$ tend to 0 as $j \rightarrow \infty$, so

$$
\lim _{j \rightarrow \infty} \operatorname{diam}\left(X \gamma_{j,+}^{\prime} \cup X \gamma_{j,-}^{\prime} \cup X \gamma_{j}^{\prime \prime}\right)=0
$$

Figure 12 shows positions of the j and $j+1$-th parameter curves mentioned above.

Figure 12: The parameter curves on X plane

Now we have

Theorem 12.6.1. $\lim _{j \rightarrow \infty} \operatorname{diam}\left(X \gamma_{j,+} \cup X \gamma_{j,-} \cup X \gamma_{j,>}\right)=0$
To show the theorem we first show that

Lemma 12.6.2. Given $c>0$, there exists $K=K_{c}$, such that the following holds. Let $A \subset \mathbb{C}$ be an annulus of modulus $>c$. Then there is a closed loop $\gamma \subset A$ which is homotopic to A, such that if for $x \in \gamma, r_{x}$ denotes the radius of the largest disc centred at x and contained in A, then

$$
\frac{r_{x}}{\operatorname{diam}(\gamma)} \geq K
$$

for any $x \in \gamma$.
Proof. We use the Koebe distortion theorem. This theorem says that if $f: \mathbb{D} \rightarrow \mathbb{C}$ is holomorphic and injective, then

$$
\frac{1-r}{(1+r)^{3}} \leq \frac{\left|f^{\prime}(z)\right|}{\left|f^{\prime}(0)\right|} \leq \frac{1+r}{(1-r)^{3}} \forall|z| \leq r
$$

and

$$
\left(\frac{1-r}{1+r}\right)^{4} \leq \frac{\left|f^{\prime}(z)\right|}{\left|f^{\prime}(w)\right|} \leq\left(\frac{1+r}{1-r}\right)^{4} \forall|z|,|w| \leq r .
$$

In particular, we can apply this to our case with $r=\frac{1}{2}$. Now suppose that $A \subset \mathbb{C}$ has modulus $c>0$. The round annulus $\left\{z: 1<|z|<e^{2 \pi c}\right\}$ is conformally equivalent to A. The holomorphic map

$$
F:\left\{z: 1<|z|<e^{2 \pi c}\right\} \rightarrow A
$$

is uniquely determined up to composition with a rotation $z \rightarrow e^{i \theta} z$. Let $\gamma_{0}=\left\{z:|z|=\frac{1+e^{2 \pi c}}{2}\right\}$, let $\gamma=F\left(\gamma_{0}\right)$. Apply the Koebe distortion theorem to discs D centred on γ_{0} and of radius $\frac{e^{2 \pi c}-1}{2}=r_{c}$ with $f=\left.F\right|_{D}$. f is univalent on the disc of radius r_{c} with centre $z_{D} \in \gamma_{0}$. It follows that

$$
\left(\frac{1-r}{1+r}\right)^{4} \leq \frac{\left|f^{\prime}(z)\right|}{\left|f^{\prime}(w)\right|} \leq\left(\frac{1+r}{1-r}\right)^{4}
$$

for any $\left|z-z_{D}\right| \leq \lambda r_{c},\left|w-z_{D}\right| \leq \lambda r_{c}$.
We can cover γ_{0} by discs of radius r_{c} such that the distance between centres of consecutive discs is $\leq \frac{r_{c}}{3} . \quad \gamma_{0}$ has radius $r_{c}+1$ and length $2 \pi\left(r_{c}+1\right)$. So if N is the first integer $\geq \frac{2 \pi\left(r_{c}+1\right)}{r_{c}}$, then γ_{0} can be covered by N discs with centres on γ_{0} of radius r_{c} and with consecutive centres of distance $\leq \frac{r_{c}}{3}$. Then every point in γ_{0} is in one of these discs centred on γ_{0} of radius r_{c} with distance $\leq \frac{r_{c}}{3}$ from the center. So for any $z \in \gamma_{0}$, there exists D_{i} with center z_{i} such that

$$
\left|z-z_{i}\right| \leq \frac{r_{c}}{3}
$$

and

$$
\left\{w:|w-z| \leq \frac{r_{c}}{3}\right\} \subset\left\{z:\left|z-z_{i}\right| \leq \frac{2 r_{c}}{3}\right\}
$$

So $\left\{w:|w-z| \leq \frac{r_{c}}{3}, z \in \gamma_{0}\right\} \subset \cup_{i=1}^{N}\left\{w:\left|w-z_{i}\right| \leq \frac{2 r_{c}}{3}\right\}$. Then for any $w_{1}, w_{2} \in \cup_{i=1}^{N}\left\{w:\left|w-z_{i}\right| \leq \frac{2 r_{c}}{3}\right\}$, we have

$$
\left|z_{i}-z_{i+1}\right| \leq \frac{r_{c}}{3}, \frac{1}{3^{4}} \leq \frac{\left|F^{\prime}\left(z_{i}\right)\right|}{\left|F^{\prime}\left(z_{i+1}\right)\right|} \leq 3^{4} .
$$

So for all $1 \leq i \leq j \leq N$ we have

$$
\left(\frac{3}{2}\right)^{-4|j-i|} \leq \frac{\left|F^{\prime}\left(z_{i}\right)\right|}{\left|F^{\prime}\left(z_{i+1}\right)\right|} \leq\left(\frac{3}{2}\right)^{4|j-i|} .
$$

Then for any $w_{1} \in D_{i}$ and $w_{2} \in D_{j}$ with $\left|w_{1}-z_{i}\right| \leq \frac{2 r_{c}}{3},\left|w_{2}-z_{j}\right| \leq \frac{2 r_{c}}{3}$, we have

$$
3^{-4|j-i|-8} \leq \frac{\left|F^{\prime}\left(w_{1}\right)\right|}{\left|F^{\prime}\left(w_{2}\right)\right|} \leq 3^{4|j-i|+8} .
$$

In particular this is true for all $w_{1}, w_{2} \in\left\{w:|w-z| \leq \frac{r_{c}}{3}\right.$ for some $\left.z \in \gamma_{0}\right\}$. Then we get the constant K_{c}.

Now we continue to prove 12.6.1.
Proof of Theorem 12.6.1:
Proof. First, $x_{j,+} \rightarrow x_{*}$ and $x_{j,-} \rightarrow x_{*}$ as $j \rightarrow \infty$. This is because the endpoints of the rays of arguments $\pm \frac{2 \pi}{2^{j} 99}$ tend to the parameter x_{*} as $j \rightarrow \infty$ (by Yoccoz's result), apply the homeomorphism $\Phi_{x_{*}}$, it suffices to shows that

$$
\operatorname{Mod}\left(X B_{j} \backslash\left(X \gamma_{j+1,+} \cup X \gamma_{j+1,-} \cup X \gamma_{j+1,>}\right)\right)
$$

is bounded from 0 for all j. Now let γ be the closed loop in Lemma 12.6.2, let A be the annulus $X B_{j} \backslash\left(X \gamma_{j+1,+} \cup X \gamma_{j+1,-} \cup X \gamma_{j+1,>}\right)$. Then

$$
\begin{gathered}
\operatorname{diam}(\gamma) \geq \\
\operatorname{diam}\left(X \gamma_{j+1,+} \cup X \gamma_{j+1,-} \cup X \gamma_{j+1,>}\right)-\operatorname{Max}\left\{\left|x_{j+1,-}-x_{*}\right|,\left|x_{j+1,+}-x_{*}\right|\right\} .
\end{gathered}
$$

For at least one $x \in \gamma, r_{x} \leq\left|x_{j,+}-x_{j+1,+}\right|$, so the theorem follows.

Now we get a nested sequence of closed topological discs $X B_{j}, j \geq 0$ bounded by

$$
X \gamma_{j,+} \cup X \gamma_{j,-} \cup X \gamma_{j,>} \cup X \gamma_{j,+}^{\prime} \cup X \gamma_{j,-}^{\prime} \cup X \gamma_{j}^{\prime \prime}
$$

Let $X C_{j}$ be the closure of $X B_{j} \backslash X B_{j+1}$. For all $x \in \operatorname{int}\left(X B_{j}\right)$, $\gamma_{j,+} \cup \gamma_{j,-} \cup \gamma_{j,>}$ varies holomorphically with x, for all $x \in \operatorname{int}\left(X B_{j+1}\right)$, $\gamma_{j+1,+} \cup \gamma_{j+1,-} \cup \gamma_{j+1,>}$ varies holomorphically with x. Now we prove

Theorem 12.6.3. The modulus

$$
\operatorname{Mod}\left(\overline{\mathbb{C}} \backslash\left(\gamma_{j,+} \cup \gamma_{j,-} \cup \gamma_{j,>} \cup \gamma_{j+1,+} \cup \gamma_{j+1,-} \cup \gamma_{j+1,>}\right)\right)
$$

is bounded from 0, and it follows immediately that
$\operatorname{Mod}\left(X B_{j} \backslash\left(X \gamma_{j,+} \cup X \gamma_{j,-} \cup X \gamma_{j,>} \cup X \gamma_{j+1,+} \cup X \gamma_{j+1,-} \cup X \gamma_{j+1,>}\right)\right)>$

$$
C>0
$$

for some constant C.

Proof. Let

$$
\begin{gathered}
\gamma_{j,+}(x) \cup \gamma_{j,-}(x) \cup \gamma_{j,>}(x) \cup \gamma_{j+1,+}(x) \cup \gamma_{j+1,-}(x) \cup \gamma_{j+1,>}(x)=\Gamma_{j}(x) \\
X \gamma_{j,+} \cup X \gamma_{j,-} \cup X \gamma_{j,>} \cup X \gamma_{j+1,+} \cup X \gamma_{j+1,-} \cup X \gamma_{j+1,>}=X \Gamma_{j}
\end{gathered}
$$

First we construct a map

$$
\varphi: U \backslash \Gamma_{j}\left(x_{*}\right) \rightarrow X B_{j} \backslash X \Gamma_{j}
$$

s.t. $U \backslash \Gamma_{j}\left(x_{*}\right)$ has modulus bounded from 0 for some topological disc U.

Note that

$$
\Gamma_{j}\left(x_{*}\right)=\gamma_{j,+} \cup \gamma_{j,-} \cup \gamma_{j,>} \cup \gamma_{j+1,+} \cup \gamma_{j+1,-} \cup \gamma_{j+1,>}
$$

We will make φ of bounded distortion. Note that

$$
h_{j}^{x}: \Gamma_{j}\left(x_{*}\right) \rightarrow \Gamma_{j}(x)
$$

varies holomorphically with respect to x.
We are going to show that there is an injective quasi-conformal map

$$
H_{j}: X B_{j} \backslash X B_{j+1} \rightarrow B_{j}\left(x_{*}\right) \backslash B_{j+1}\left(x_{*}\right)
$$

with bounded distortion K on their interiors. The closure of $B_{j}\left(x_{*}\right)$ \} $B_{j+1}\left(x_{*}\right)$ has modulus bounded from 0 . Note that

$$
h_{j}^{x}: B_{j}\left(x_{*}\right) \backslash B_{j+1}\left(x_{*}\right) \rightarrow B_{j}(x) \backslash B_{j+1}(x), x \notin X B_{j+1}
$$

is $q-c$ of distortion k_{1}. Moreover the family h_{j}^{x} depend holomorphically on $x . h_{j}^{x}$ are defined inductively by

$$
\begin{equation*}
R_{x}^{j m} \circ h_{j}^{x}=h_{0}^{x} \circ R_{x}^{j m} \tag{34}
\end{equation*}
$$

where

$$
h_{0}^{x}: B_{0}\left(x_{*}\right) \backslash B_{1}\left(x_{*}\right) \rightarrow B_{0}(x) \backslash B_{1}(x)
$$

is a $q-c$ map of bounded distortion. h_{0}^{x} conjugates $\partial B_{0}\left(x_{*}\right)$ to $\partial B_{0}(x)$ for $x \in X B_{0}$. By equation (34), h_{j}^{x} conjugates $\partial B_{j}\left(x_{*}\right)$ to $\partial B_{j}(x)$ for $x \in X B_{j}$.

Now let

$$
\begin{equation*}
H_{j}(x)=\left(h_{j}^{x}\right)^{-1}\left(R_{x}\left(c_{1}(x)\right)\right) \tag{35}
\end{equation*}
$$

One can see from (34) that all h_{j}^{x} have the same distortion for $j \geq 0$ as $R_{x}^{j m}$ is holomorphic. $H_{j}(x)$ satisfies

$$
\begin{equation*}
\left|\frac{\bar{\partial} H_{j}}{\partial H_{j}}\right|(x)=\left|\frac{\bar{\partial} h_{j}}{\partial h_{j}}\right|\left(R_{x}\left(c_{1}(x)\right)\right) \tag{36}
\end{equation*}
$$

To see this, let $F(x), G(x)$ be any two complex function with $x=$ $x_{1}+i x_{2}$, we need to compute $\partial(F \circ G(x))$ and $\bar{\partial}(F \circ G(x))$. In order to do this, write

$$
F=u\left(x_{1}, x_{2}\right)+i v\left(x_{1}, x_{2}\right), D F=\left(\begin{array}{ll}
u_{x_{1}} & u_{x_{2}} \\
v_{x_{1}} & v_{x_{2}}
\end{array}\right) .
$$

Then

$$
\partial F(x)=\frac{1}{2}\left(F_{x_{1}}-i F_{x_{2}}\right)=\frac{1}{2}\left(u_{x_{1}}-v_{x_{2}}+i\left(v_{x_{1}}+u_{x_{2}}\right)\right)
$$

identifies with the matrix

$$
\frac{1}{2}\left(\begin{array}{ll}
u_{x_{1}}+v_{x_{2}} & u_{x_{2}}-v_{x_{1}} \\
v_{x_{1}}-u_{x_{2}} & u_{x_{1}}+v_{x_{2}}
\end{array}\right) .
$$

Similarly, $\bar{\partial} F(x)=\frac{1}{2}\left(F_{x_{1}}+i F_{x_{2}}\right)=\frac{1}{2}\left(u_{x_{1}}+v_{x_{2}}+i\left(v_{x_{1}}-u_{x_{2}}\right)\right)$
identifies with the matrix

$$
\frac{1}{2}\left(\begin{array}{cc}
u_{x_{1}}-v_{x_{2}} & -u_{x_{2}}-v_{x_{1}} \\
v_{x_{2}}+u_{x_{1}} & u_{x_{1}}-v_{x_{2}}
\end{array}\right)
$$

The map $z \rightarrow \bar{z}$ identifies with

$$
J=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

so $D F=\partial F+\bar{\partial} F J$. From this we can work out that

$$
\begin{gathered}
D \partial(F \circ G)=\partial F(G(z)) \partial G(z)+\bar{\partial} F(G(z)) J \bar{\partial} G(z) J \\
D \bar{\partial}(F \circ G)=\partial F(G(z)) \bar{\partial} G(z) J+\bar{\partial} F(G(z)) J \partial G(z) J
\end{gathered}
$$

Then by (35), $H_{j} \circ\left(h_{j}^{x}\right)=R_{x}^{m}\left(c_{1}(x)\right)$, so

$$
\begin{aligned}
& \bar{\partial} H_{j} J \partial h_{j}^{x}+\partial H_{j} \bar{\partial} h_{j}^{x} J=0, \\
& \bar{\partial} H_{j} J \partial h_{j}^{x} J+\partial H_{j} \bar{\partial} h_{j}^{x}=0,
\end{aligned}
$$

so

$$
\begin{equation*}
\frac{\bar{\partial} H_{j}}{\partial H_{j}}=-\frac{\bar{\partial} h_{j}^{x}}{J \partial h_{j}^{x} J} \tag{37}
\end{equation*}
$$

By taking modulus both sides one gets (36). So in order to bound $\left\|H_{j}\right\|=$ $\left|\frac{\bar{\partial} H_{j}(x)}{\partial H_{j}(x)}\right|$, we only need to bound $\left|\frac{\bar{\partial} h_{0}}{\partial h_{0}}\right|$. The distortion of

$$
h_{0}^{x}: B_{0}\left(x_{*}\right) \backslash B_{1}\left(x_{*}\right) \rightarrow B_{0}(x) \backslash B_{1}(x)
$$

is bounded. In fact the distortion of

$$
h_{0}^{x}:\left(\mathbb{C}, \Gamma_{0}\left(x_{*}\right)\right) \rightarrow\left(\mathbb{C}, \Gamma_{0}(x)\right)
$$

is bounded, so the theorem follows.

Combining Theorem 12.6.1, Theorem 12.6.3 and Lemma 5.2.4 we have Theorem 12.6.4. The whole set $X B_{j}$ shrinks to x_{*} as $j \rightarrow \infty$, that is

$$
\lim _{j \rightarrow \infty} \operatorname{diam}\left(X B_{j}\right)=0
$$

Now define

$$
H(x): X B_{0} \rightarrow B_{0}\left(x_{*}\right)
$$

by $H(x)=H_{j}(x)$ for $x \in X B_{j} \backslash X B_{j+1}$ for later use.

12.7 Proof of Theorem 4.2.5

We write S_{m} for the two-valued local inverse of R_{*}^{m} on P_{0} with $S_{m}\left(P_{0}\right) \subset$ P_{0}. We identify the unit circle with \mathbb{R} / \mathbb{Z} and with the unit interval $[0,1] /(0 \sim 1)$ with 0 and 1 identified. We write

$$
T(x)=2 x \bmod 1
$$

for $x \in[0,1] /(0 \sim 1)$. We assume that the closures of Fatou components of R_{*} are disjoint (which implies that the same is true for R). p is of period m under T. We write $L=L_{p} \cup L_{q}^{-1}$ and \sim_{L} for the associated equivalence class on S^{1}. We write T_{m} for the local degree one inverse of T^{m}, defined in a neighbourhood of p, with $T_{m}(p)=p$.

Since $R \simeq s_{p} \amalg s_{q}$, there is a continuous map

$$
\varphi_{*}:[0,1] /(0 \sim 1) \rightarrow J\left(R_{*}\right)
$$

where $J\left(R_{*}\right)$ denotes the Julia set of R_{*}, such that

$$
\varphi_{*} \circ T(x)=R_{*} \circ \varphi_{*}(x) \forall x \in[0,1] /(0 \sim 1)
$$

Considering (31), we have

$$
\varphi_{*}(x)=\phi_{*}\left(e^{2 \pi i x}\right) \forall x \in[0,1] /(0 \sim 1)
$$

Let p_{n} be a sequence of odd denominator rationals with $\lim _{n \rightarrow \infty} p_{n}=$ p. Let R_{n} be the sequence of rational maps (uniquely determined up to Möbius conjugacies) with $R_{n} \simeq s_{p_{n}} \amalg s_{q}$ which are parametrised by parameters on the X plane. Recall that we aim to show that $R_{n} \rightarrow R_{*}$ as $n \rightarrow \infty$ (assuming some suitable Möbius conjugacies of R_{n}). We assume that $s_{p_{n}}$ is not a tuning of s_{p} for any n by Theorem 4.2.4.

Now let Q_{0} be the union of the components of $\varphi_{*}^{-1}\left(P_{0}\right)$ which intersect $\varphi_{*}^{-1}\left(\partial U_{*}\right)$. We have $Q_{0} \subset(0,1)$. Assuming P_{0} is a sufficiently small neighbourhood of U_{*}, Q_{0} is a neighbourhood of $p \in(0,1)$. By the assumptions on the size of P_{0}, Q_{0} is disjoint from $T^{i}\left(Q_{0}\right)$ for $0<i<m$, and $\left.T_{m}\right|_{Q_{0}}$ is of degree two. We write I_{0} for the component of Q_{0} containing p, so that I_{0} is a closed interval with p in its interior. The set $\varphi_{*}^{-1}\left(\varphi_{*}(p)\right)$ is a finite subset of S^{1}, which is the \sim_{L}-equivalence class of p Let $I_{0, j}$ (for $1 \leq j \leq k$ for some $k \geq 2$) be the components of $\varphi_{*}^{-1}\left(P_{0}\right)$ which contain the points of $\varphi_{*}^{-1}\left(\varphi_{*}(p)\right)$. We can number them so that there is a leaf of $L_{p} \cup L_{q}^{-1}$ connecting the points of $\varphi_{*}^{-1}\left(\varphi_{*}(p)\right)$ in $I_{0, j}$ and $I_{0, j+1}$ for each $1 \leq j<k$. Then $I_{0}=I_{0, j_{0}}$ for some $1 \leq j_{0} \leq k$. The intervals are lined up in this way because the Fatou components of R_{*} have disjoint closures, and for the same reason the points of $\varphi_{*}^{-1}\left(\varphi_{*}(p)\right)$ all have the same period as the set itself.

Since P_{0} is a set in the Markov partition for R_{*}, we have that for any j, any component of $T^{-i}\left(\cup_{j=1}^{k} I_{0, j}\right)$ is either contained in $\cup_{j=1}^{k} I_{0, j}$ or has interior disjoint from $\cup_{j=1}^{k} I_{0, j}$. Again, by assuming P_{0} sufficiently small, we can assume that $\left.T_{m}\right|_{\cup_{j=1}^{k} I_{0, j}}$ is a homeomorphism, and write T_{m} for the local inverse of T^{m} with $T_{m}\left(\varphi_{*}^{-1}\left(\varphi_{*}(p)\right)\right)=\varphi_{*}^{-1}\left(\varphi_{*}(p)\right)$.

Discarding the first part of the sequence if necessary, we can assume that $p_{n} \in T_{m}\left(I_{0}\right)$ for all n, which implies that $\varphi_{*}\left(p_{n}\right)=S_{m}\left(P_{0}\right)$ for all n.

Now $s_{p_{n}}$ not being a tuning of s_{p} is equivalent to p_{n} not being in the closure of the minor gap of L_{p}, and also to $\varphi_{*}\left(p_{n}\right)$ not being in ∂U_{*}. This means that there is a least $N_{n} \geq 1$ such that

$$
\varphi_{*}\left(p_{n}\right) \in S_{m}^{N_{n}}\left(P_{0}\right), \varphi_{*}\left(p_{n}\right) \notin S_{m}^{N_{n}+1}\left(P_{0}\right)
$$

Obviously N_{n} depends on n and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} N_{n}=\infty \tag{38}
\end{equation*}
$$

By definition, $\varphi_{*}\left(p_{n}\right) \in S_{m}^{j}\left(P_{0}\right)$ for $0 \leq j \leq N_{n}$, and $p_{n} \notin T_{m}^{N_{n}+1}\left(I_{0}\right)$.
Lemma 12.7.1. $p_{n} \in T_{m}^{j}\left(I_{0}\right)$ for $0 \leq j \leq N_{n}$.
Proof. By assumption we have $p_{n} \in T_{m}\left(I_{0}\right)$, considering the case $j=1$. Now we prove the general case $j \leq N_{n}$ by induction on j. So suppose that $1 \leq j<N_{n}$ and $p_{n} \in T_{m}^{j}\left(I_{0}\right)$ but $p_{n} \notin T_{m}^{j+1}\left(I_{0}\right)$. From $\varphi_{*}\left(p_{n}\right) \in$ $S_{m}^{j+1}\left(P_{0}\right)$ we deduce that $p_{n} \in T^{-m}\left(T_{m}^{j}\left(I_{0}\right)\right) \cap Q_{0} \subset T^{-m}\left(I_{0}\right) \cap Q_{0}$. But $T^{-m}\left(I_{0}\right) \cap Q_{0}$ has exactly two components, and from the assumption that $\left.T_{m}\right|_{I_{0}}$ is a homeomorphism, the component which is not $T_{m}\left(I_{0}\right)$ is disjoint from I_{0}. So we have a contradiction and hence $p_{n} \in T_{m}^{j+1}\left(I_{0}\right)$, as required.

Now write $P_{1}=P_{1}\left(x_{*}\right)$ for the set in $\mathcal{P}_{m\left(N_{n}+1\right)}$ which contains $\varphi_{*}\left(p_{n}\right)$. There is an even integer $i_{1} \geq 0$ such that

$$
\varphi_{*}^{-1}\left(S_{m}^{i_{1}}\left(P_{0}\right)\right) \subset \varphi_{*}^{-1}\left(P_{0}\right)
$$

and

$$
\varphi_{*}^{-1}\left(\varphi_{*}\left(\cup_{j=1}^{t} T_{m}^{i_{1} / 2}\left(I_{0, j}\right)\right)\right) \subset \cup_{j=1}^{t} I_{0, j} .
$$

Lemma 12.7.2. If i_{1} is sufficiently large, then there is $i_{1}^{\prime} \leq i_{1} / 4$ such that for any set $P \in \mathcal{P}_{i_{1}}\left(R_{*}\right)$ which intersects $T_{m}^{2 i_{1}^{\prime}}\left(\varphi_{*}\left(I_{0}\right)\right), P \neq S_{m}^{i_{1}}\left(P_{0}\right)$, we have

$$
\varphi_{*}^{-1}(P) \subset \varphi_{*}^{-1}\left(\varphi_{*}\left(T_{m}^{i_{1}^{\prime}}\left(I_{0}\right)\right)\right) \subset \cup_{j=1}^{k} I_{0, j} .
$$

Proof. Given $\epsilon>0$, we can choose N and t_{1} such that all but N sets in the partition $\mathcal{P}_{t_{1}}\left(R_{*}\right)$ have diameters $<\epsilon$, and those that are not of diameter $<\epsilon$ are within ϵ neighbourhoods of the Fatou components. Then we can choose i_{1}^{\prime} so that any set of $\mathcal{P}_{t_{1}}\left(R_{*}\right)$, apart from the one containing U_{*}, which intersects $T_{m}^{i_{1}^{\prime}}\left(\varphi_{*}\left(I_{0}\right)\right)$, is of diameter $<\epsilon$. Then we can choose ϵ so that any point w within 2ϵ neighbourhood of $\varphi_{*}(p)$ has $\varphi_{*}^{-1}(w) \subset \cup_{j=1}^{k} I_{0, j}$. Finally, we choose $i_{1}>4 i_{1}^{\prime}$.

We assume from now on (as we may do, for p_{n} sufficiently close to p) that $N_{n}>i_{1}$. We write

$$
\begin{aligned}
P_{1}^{\prime} & =S_{m}^{N_{n}-i_{1}}\left(P_{0}\right), \\
I_{1, j} & =T_{m}^{N_{n}-i_{1}}\left(I_{0, j}\right) .
\end{aligned}
$$

Then by Lemma 12.7.1 and 12.7.2 we have

$$
\begin{equation*}
\varphi_{*}^{-1}\left(P_{1}\right) \subset \varphi_{*}^{-1}\left(\varphi_{*}\left(I_{1, j_{0}}\right)\right) \subset \bigcup_{j=1}^{k} I_{1, j} \subset \varphi_{*}^{-1}\left(P_{1}^{\prime}\right), \tag{39}
\end{equation*}
$$

and of course $P_{1} \subset P_{1}^{\prime}$.
There are subsets $X P_{1}$ and $X P_{1}^{\prime}$ on the parameter space X, such that for $x \in X P_{1}^{\prime}$, the sets $\partial P_{1}(x)$ and $\partial P_{1}^{\prime}(x)$ vary holomorphically and $R_{x}\left(c_{1}(x)\right) \in P_{1}^{\prime}(x)$ for $x \in X P_{1}^{\prime}$, while

$$
X P_{1}=\left\{x \in X P_{1}^{\prime}: R_{x}\left(c_{1}(x)\right) \in P_{1}(x)\right\} .
$$

Thus $I_{1, j}$ contains a point of $\varphi_{*}^{-1}\left(\varphi_{*}(p)\right)$ for each $1 \leq j \leq k$. Let $k_{1}>i_{1} m_{1}$ be the least integer for which $R_{*}^{k_{1}}\left(\varphi_{*}\left(p_{n}\right)\right) \in P_{1}$, and write $S_{k_{1}}$ for the local inverse of $R_{*}^{k_{1}}$ which maps $R_{*}^{k_{1}}\left(\varphi_{*}\left(p_{n}\right)\right)$ to $\varphi_{*}\left(p_{n}\right)$. Then $S_{k_{1}}\left(P_{1}\right) \subset S_{k_{1}}\left(P_{1}^{\prime}\right) \subset P_{1}$ and $\cap_{i \geq 0} S_{k_{1}}^{i}\left(P_{1}\right)$ contains a single point of period k_{1}. Moreover, since $R_{*}^{i}\left(\varphi_{*}\left(p_{n}\right)\right) \notin P_{1}$ for $i_{1} m<i<k_{1}$ and $R_{*}^{i}\left(S_{k_{1}}\left(P_{1}^{\prime}\right)\right)$ is a set in $\mathcal{P}_{m\left(N_{n}-i_{1}\right)+k_{1}-i}$, we have

$$
\begin{equation*}
R_{*}^{i}\left(S_{k_{1}}\left(P_{1}^{\prime}\right)\right) \cap P_{1}^{\prime}=\emptyset \text { for } i_{1} m<i<k_{1} . \tag{40}
\end{equation*}
$$

Since $P_{1} \subset S_{m}^{N_{n}}\left(P_{0}\right) \backslash S_{m}^{N_{n}+1}\left(P_{0}\right)$, we also have

$$
\begin{equation*}
R_{*}^{j}\left(P_{1}\right) \cap P_{1}=\emptyset \text { for } 0<j \leq i_{1} m, \tag{41}
\end{equation*}
$$

and hence

$$
\begin{equation*}
R_{*}^{i}\left(S_{k_{1}}\left(P_{1}^{\prime}\right)\right) \cap P_{1}=\emptyset \text { for } 0<i \leq i_{1} m \tag{42}
\end{equation*}
$$

So

$$
\cap_{i \geq 0} S_{k_{1}}^{i}\left(P_{1}\right)=\cap_{i \geq 0} S_{k_{1}}^{i}\left(P_{1}^{\prime}\right)=\left\{z_{1}\right\}
$$

for a point z_{1} of period k_{1} under R_{*}.
Let $T_{k_{1}}$ be the local inverse of $T^{k_{1}}$ defined on $\cup_{j=1}^{k} I_{1, j} \subset \varphi_{*}^{-1}\left(P_{1}^{\prime}\right)$ such that $T_{k_{1}}\left(T^{k_{1}}\left(p_{n}\right)\right)=p_{n}$ and extend $T_{k_{1}}$ to map the union of leaves of $L_{p} \cup L_{q}^{-1}$ connecting points of $\varphi_{*}^{-1}\left(\varphi_{*}\left(T^{k_{1}}\left(p_{n}\right)\right)\right)$ to the union of leaves of $L_{p} \cup L_{q}^{-1}$ connecting points of $\varphi_{*}^{-1}\left(\varphi_{*}\left(p_{n}\right)\right)$.

Lemma 12.7.3.

$$
\begin{equation*}
\varphi_{*} \circ T_{k_{1}}=S_{k_{1}} \circ \varphi_{*} \text { on } \cup_{j=1}^{k} I_{1, j}, \tag{43}
\end{equation*}
$$

and $\varphi_{*}^{-1}\left(z_{1}\right) \subset \cup_{j=1}^{k} I_{1, j}$ is a finite set satisfying

$$
\begin{equation*}
T^{k_{1}}\left(\varphi_{*}^{-1}\left(z_{1}\right)\right)=\varphi_{*}^{-1}\left(z_{1}\right), T^{i}\left(\varphi_{*}^{-1}\left(z_{1}\right)\right) \cap \varphi_{*}^{-1}\left(z_{1}\right)=\emptyset \text { for } 0<i<k_{1} \tag{44}
\end{equation*}
$$

Moreover, if $y \in \varphi_{*}^{-1}\left(z_{1}\right)$ and $p^{\prime} \in \varphi_{*}^{-1}\left(\varphi_{*}(p)\right)$ with y, p^{\prime} in $I_{1, j}$ for some j, then $T^{i}(y)$ is not between p^{\prime} and y in $I_{1, j}$ for any $0<i<k_{1}$.

Proof. (43) follows directly from $\varphi_{*} \circ T=R_{*} \circ \varphi_{*}$ and $T_{k_{1}}\left(T^{k_{1}}\left(p_{n}\right)\right)=p_{n}$. (44) follows from (42). From (40) we obtain

$$
\begin{equation*}
T^{i}\left(\cup_{j=1}^{k} I_{1, j}\right) \cap \cup_{j=1}^{k} I_{1, j}=\emptyset \text { for } m i_{1}<i<k_{1}, \tag{45}
\end{equation*}
$$

so $T^{i}(y) \notin I_{1, j}$ for $i_{1} m<i<k_{1}$. But for $0<i \leq i_{1} m, T^{i}(y) \notin I_{1, j}$ unless $m \mid i$. For $i=l m$ for some $0<l \leq i_{1}, T^{i}(y)-p^{\prime}=2^{l m}\left(y-p^{\prime}\right)$ and $T^{i}(y)$ is not between p^{\prime} and y.

Now $\varphi_{*}^{-1}\left(z_{1}\right)$ has one point in each of the intervals $T_{k_{1}}\left(I_{1, j}\right)$, and one of these intervals $T_{k_{1}}\left(I_{1, j}\right)$ contains p_{n}, which is contained in $I_{1, j_{0}}$, the same interval which contains p. We write y_{1} for the point of $\varphi_{*}^{-1}\left(z_{1}\right)$ in $T_{k_{1}}\left(I_{1, j_{1}}\right)$. Thus we have $y_{1} \in I_{1, j_{0}}$.

Lemma 12.7.4. Suppose that $\varphi_{*}^{-1}\left(\varphi_{*}(p)\right)$ contains at most three points, then y_{1} either has period k_{1} or period $2 k_{1}$, and is not separated in $I_{1, j_{0}}$ from p by any point in its forward orbit.

Proof. The number of points in $\varphi_{*}^{-1}\left(\varphi_{*}(p)\right)$ is k, since precisely one point of $\varphi_{*}^{-1}\left(\varphi_{*}(p)\right)$ is contained in each of the intervals $I_{1, j}$ for $1 \leq j \leq k$. We also have $I_{1, j} \subset I_{0, j}$. So $k \leq 3$ by assumption. If $k=1$ the result is immediate, because then $\varphi_{*}^{-1}\left(z_{1}\right)=\cap_{i \geq 0} T_{k_{1}}^{i}\left(I_{1,1}\right)$ is the single point y_{1}.

Now suppose that $k=2$. We can assume without loss of generality that $j_{0}=1$. If $T_{k_{1}}\left(I_{1,1}\right) \subset I_{1,1}$ then $\cap_{i \geq 0} T_{k_{1}}^{i}\left(I_{1,1}\right)=\left\{y_{1}\right\} \in \varphi_{*}^{-1}\left(z_{1}\right)$ is of period k_{1} and the proof is finished by Lemma 12.7.3. If this is not true then $T_{k_{1}}\left(I_{1,1}\right) \subset I_{1,2}, T_{k_{1}}\left(I_{1,2}\right) \subset I_{1,1}$ and $\cap_{i \geq 0} T_{k_{1}}^{i}\left(I_{1} \cup I_{2}\right)$ contains two points, one in each of the intervals $I_{1,1}$ and $I_{1,2}$, in the same periodic orbit of period $2 k_{1}$. We write y_{1} for the point in the orbit in $I_{1,1}$. Then

$$
T_{k_{1}}^{2}\left(I_{1,1}\right) \subset T_{k_{1}}\left(I_{1,2}\right) \subset I_{1,1}
$$

and

$$
T_{k_{1}}^{2}\left(I_{1,2}\right) \subset T_{k_{1}}\left(I_{1,1}\right) \subset I_{1,2} .
$$

By Lemma 12.7.3, $T^{i}\left(y_{1}\right)$ does not separate p from y_{1} for $0<i<k_{1}$, and $T_{k_{1}}\left(y_{1}\right) \in I_{1,2}$. Then $T^{i}\left(I_{1,1}\right) \cap T^{j}\left(I_{1,2}\right)=\emptyset$ for all $0 \leq i, j \leq i_{1} m$ and $T^{i}\left(T_{k_{1}}\left(I_{2}\right)\right) \cap I_{1,1}=\emptyset$ for $m i_{1} \leq i<k_{1}$, that is,

$$
T^{i}\left(T_{k_{1}}^{2}\left(I_{1,1}\right)\right) \cap I_{1,1}=\emptyset \text { for } k_{1}<i<2 k_{1} .
$$

So the Lemma is proved in the case $k=2$.
Now suppose that $k=3$. If $T_{k_{1}}\left(I_{1, j_{0}}\right) \subset I_{1, j_{0}}$, then $\cap_{i \geq 0} T_{k_{1}}^{i}\left(I_{1, j_{0}}\right)=$ $\left\{y_{1}\right\}$ is a point of period k_{1} and the proof is finished as before. If $T_{k_{1}}\left(I_{1, j_{0}}\right) \cap I_{1, j_{0}}=\emptyset$ and $j_{1}=j_{0} \pm 1$ then we must have $T_{k_{1}}\left(I_{j_{0}}\right) \subset I_{j_{1}}$ and the proof can proceed as before. If $j_{1}=j_{0} \pm 2$ then we can assume without loss of generality that $j_{0}=1$, then any leaf of $L_{p} \cup L_{q}^{-1}$ between $T_{k_{1}}\left(I_{1,3}\right)$ and $T_{k_{1}}\left(I_{1,2}\right)$ must be short and we have $T_{k_{1}}\left(I_{1,2} \cup I_{1,3}\right) \subset I_{1,1}$, and hence $T_{k_{1}}\left(I_{1,1}\right) \subset I_{1,1} \cup I_{1,2}$. Then we obtain a point y_{1} of period k_{1} or $2 k_{1}$ as in the case $k=2$, depending on whether $T_{k_{1}}\left(I_{1,1}\right) \subset I_{1,1}$ or $T_{k_{1}}\left(I_{1,1}\right) \subset I_{1,2}$.

If p_{n} is in the combinatorial copy of the Mandelbrot set, then $\mu_{p_{n}} \subset$ \bar{G}_{p}. Now suppose $\mu_{p_{n}} \nsubseteq \bar{G}_{p}$, that is, $s_{p_{n}}$ is not a tuning of s_{p}. We want to show that $R_{n} \in X P_{1} \subset X B_{N_{n}}$ for $N_{n} \in \mathbb{N}$. This will suffice to show the convergence of R_{n} because $X B_{j} \rightarrow x_{*}$ as $j \rightarrow \infty$.

Now we claim that

Theorem 12.7.5. $\varphi_{*}\left(p_{n}\right) \in P_{1}\left(x_{*}\right)$ implies $R_{n} \in X P_{1} \subset X B_{N_{n}}$.
Proof. We consider the set $X P_{1}$. The local inverse $S_{k_{1}, x}$ of $R_{x}^{k_{1}}$ is 2 valued for $x \in X P_{1}$ because $R_{x}\left(c_{1}\right) \in P_{1}$, but

$$
R_{x}^{i} \circ S_{k_{1}, x}\left(P_{1}\right) \cap P_{1}=\emptyset
$$

for $0<i<k_{1}$. So $S_{k_{1}, x}\left(P_{1}\right)$ varies continuously for $x \in X P_{1}$. So $X\left(S_{k_{1}, x}\left(P_{1}\right)\right)=\left\{x \in X: R_{x}\left(c_{1}(x)\right) \in S_{k_{1}, x}\left(P_{1}\right)\right\}$ is well defined.

There is a map $H_{x, y}: \partial P_{1}(x) \rightarrow \partial P_{1}(y)$ which extends to a conjugacy between $\cup_{i \geq 0} R_{x}^{i}\left(\partial P_{1}(x)\right)$ and $\cup_{i \geq 0} R_{y}^{i}\left(\partial P_{1}(y)\right)$ for any $x, y \in X P_{1}$. Then

$$
y \rightarrow H_{x, y}\left(R_{y}^{k_{1}+1}\left(c_{1}\right)\right)
$$

maps $\partial X\left(S_{k_{1}, x}\left(P_{1}\right)\right)$ to $\partial P_{1}(x)$ and is of degree 1 . So

$$
y \rightarrow H_{x, y}\left(R_{y}^{k_{1}+1}\left(c_{1}\right)\right)-H_{x, y}\left(R_{y}\left(c_{1}\right)\right)
$$

is of degree 1 . Then there must be $x_{1} \in X\left(S_{k_{1}, x}\left(P_{1}\right)\right)$ such that

$$
R_{x_{1}}^{k_{1}+1}\left(c_{1}\right)=R_{x_{1}}\left(c_{1}\right)
$$

i.e.

$$
R_{x_{1}}^{k_{1}}\left(c_{1}\right)=c_{1}
$$

for some $x_{1} \in X\left(S_{k_{1}, x}\left(P_{1}\right)\right) \subset X P_{1}$.
First suppose y_{1} is of period k_{1}. Let $\gamma=\gamma_{2} * \gamma_{1}$ be a path from $s_{p}(0)$ to $e^{2 \pi i y_{1}}$, in which γ_{1} is a path from $s_{p}(0)$ to $e^{2 \pi i p}$ in the gap of L_{p} containing $s_{p}(0)$ apart from the endpoint $e^{2 \pi i p}, \gamma_{2}$ is a path on S^{1} from $e^{2 \pi i p}$ to $e^{2 \pi i y_{1}}$. Let ζ_{1} be a path in the gap of of $L_{y_{1}}$ from the periodic pre-image of $e^{2 \pi i y_{1}}$ to 0 . Then we have

$$
\begin{equation*}
s_{y_{1}} \amalg s_{q} \simeq \sigma_{\zeta_{1}}^{-1} \circ \sigma_{\gamma} \circ\left(s_{p} \amalg s_{q}\right) . \tag{46}
\end{equation*}
$$

This works because $\left(\sigma_{\gamma} \circ s_{p}\right)^{-1}\left(L_{y_{1}}\right) \supset L_{y_{1}}$ up to isotopy. The path γ does not cross any leaf in the forward orbit of the minor leaf $\mu_{y_{1}}$ of $L_{y_{1}}$.

There is a path ω in $X P_{1}^{\prime}$ from x_{*} to x_{1} because $X P_{1}^{\prime}$ is a connected open set. This path can be chosen so that there is a conjugacy between $\left(R_{x}, \cup_{0 \leq i} R_{x}^{i}\left(S_{k_{1}, x}\left(\partial P_{1}(x)\right)\right)\right)$ and $\left(R_{*}, \cup_{0 \leq i} R_{x_{*}}^{i}\left(S_{k_{1}, x_{*}}\left(\partial P_{1}\left(x_{*}\right)\right)\right)\right)$ for all x
in this path. Denote this conjugacy by h_{x} because it extends the original conjugacy $h_{x}^{j}=h_{x}^{N_{n}} . \omega(0)=x_{*}, \omega(1)=x_{1}, h_{\omega(0)}=I d$.
$\alpha(t)=h_{\omega(t)}^{-1}\left(R_{\omega(t)}\left(c_{1}(\omega(t))\right)\right)$ is a path in the dynamical plane of R_{*} with one endpoint at $R_{*}\left(c_{1}\left(x_{*}\right)\right)$ and the other at $\varphi_{x_{*}}\left(e^{2 \pi i y_{1}}\right)$. Let $\beta(t)=$ $h_{\omega(t)}^{-1}\left(c_{1}(\omega(t))\right)$, then

$$
\begin{equation*}
R_{x_{1}} \simeq \sigma_{\beta}^{-1} \circ \sigma_{\alpha} \circ R_{*} . \tag{47}
\end{equation*}
$$

We want α to be homotopic to $\varphi_{x_{*}}(\gamma)$ and β to be isotopic to $\varphi_{x_{*}}\left(\zeta_{1}\right)$. This means we want that $\varphi_{x_{*}}^{-1}\left(P_{1}^{\prime}\left(x_{*}\right)\right)$ contains the arc $S_{p, y_{1}}$ on S^{1} between $e^{2 \pi i p}$ and $e^{2 \pi i y_{1}}$, which is implied by $\varphi_{x_{*}}\left(I_{1, j_{0}}\right) \subset P_{1}^{\prime}\left(x_{*}\right)$. This follows from (39). Then

$$
\begin{equation*}
R_{x_{1}} \simeq \sigma_{\zeta_{1}}^{-1} \circ \sigma_{\gamma} \circ\left(s_{p} \amalg s_{q}\right) . \tag{48}
\end{equation*}
$$

In order to get this, by $(21)(46)(47)$, we only need to show

$$
\begin{equation*}
\sigma_{\beta}^{-1} \circ \sigma_{\alpha} \circ R_{*} \simeq \sigma_{\zeta_{1}}^{-1} \circ \sigma_{\gamma} \circ\left(s_{p} \amalg s_{q}\right) . \tag{49}
\end{equation*}
$$

To get this, recall that by [Ree1], $\varphi_{x_{*}}$ is the limit of a sequence of homeomorphisms $\varphi_{k}, k \in \mathbb{N}$. We can choose the sequence φ_{k} so that φ_{k} fixes $e^{2 \pi i p}$ and $e^{2 \pi i y_{1}}$ for all sufficiently large k given n. So if α is homotopic to $\varphi_{x_{*}}(\gamma)$ rel endpoints and β is isotopic to $\varphi_{x_{*}}\left(\zeta_{1}\right)$ rel endpoints, then α is homotopic to $\varphi_{k}(\gamma)$ rel endpoints and β is isotopic to $\varphi_{k}\left(\zeta_{1}\right)$ rel endpoints for all sufficiently large k. Then

$$
\begin{aligned}
& \varphi_{k} \circ \sigma_{\zeta_{1}}^{-1} \circ \sigma_{\gamma} \circ\left(s_{p} \amalg s_{q}\right) \circ \varphi_{k}^{-1} \\
= & \left(\varphi_{k} \circ \sigma_{\zeta_{1}}^{-1} \circ \sigma_{\gamma} \circ \varphi_{k}^{-1}\right) \circ \varphi_{k} \circ\left(s_{p} \amalg s_{q}\right) \circ \varphi_{k}^{-1} \\
= & \sigma_{\varphi_{k}\left(\zeta_{1}\right)}^{-1} \circ \sigma_{\varphi_{k}(\gamma)} \circ\left(\varphi_{k} \circ\left(s_{p} \amalg s_{q}\right) \circ \varphi_{k}^{-1}\right) \\
\simeq & \sigma_{\beta}^{-1} \circ \sigma_{\alpha} \circ R_{*} .
\end{aligned}
$$

The last equivalence holds because for k large enough, $\varphi_{k} \circ\left(s_{p} \amalg s_{q}\right) \circ \varphi_{k}^{-1}$ is uniformly close to $\left(R_{*} \circ \varphi_{k}\right) \circ \varphi_{k}^{-1}=R_{*}$.

If y_{1} has period $2 k_{1}$, then replace $R_{x_{1}}$ by the tuning of period 2 that is in the copy $M_{x_{1}}$ of the Mandelbrot set, still call the map $R_{x_{1}}$ and again we have

$$
R_{x_{1}} \simeq s_{y_{1}} \amalg s_{q} .
$$

Now similar to the process of Lemma 12.7.4, if $y_{1} \neq p_{n}$, then we have to continue the construction with points y_{i} and parameters x_{i} for $1 \leq i \leq l$ until some integer $l \in \mathbb{N}$ with $p_{n}=y_{l}$ and

$$
\begin{equation*}
s_{y_{i}} \amalg s_{q} \simeq R_{x_{i}} \tag{50}
\end{equation*}
$$

with $x_{j} \in X P_{j}^{\prime} \subset X P_{1}^{\prime}$ for $1 \leq j \leq l$. As before, Thurston equivalence implies semiconjugacy, we will have $\varphi_{j}: S^{1} \rightarrow J\left(R_{x_{j}}\right)$ with

$$
\begin{equation*}
\varphi_{j} \circ\left(s_{y_{j}} \amalg s_{q}\right)=R_{x_{j}} \circ \varphi_{j} \tag{51}
\end{equation*}
$$

on S^{1}. For $i>2$, we might also need w_{i} and t_{i} such that $R_{w_{i}}$ is a tuning of $R_{x_{i}}$ and $s_{t_{i}}$ is a tuning of $s_{y_{i}}$ with $R_{w_{i}} \simeq s_{t_{i}} \amalg s_{q}$. We will have that $R_{x_{i+1}}$ is not a tuning of $R_{x_{i}}$ and $w_{i} \neq t_{i+1}$ for $i \leq l-2$, but $w_{l-1}=x_{l}$ and $t_{l-1}=y_{l}$ are possible.

Now define $x_{0}=w_{0}=x_{*}$. We will construct integers k_{j} for $0 \leq j \leq l$ with $k_{0}=m$ and r_{i} for $1 \leq j \leq l$, with $k_{j}>r_{j} k_{j+1}$ for $1 \leq j \leq l$. We define

$$
n_{j}=N_{n} m+r_{2} k_{1}+\cdots+r_{j} k_{j-1} \text { for } 1 \leq j \leq l .
$$

For $x=x_{j}$ and $x=w_{j}$ we will have sets

$$
\begin{aligned}
& P_{t}^{\prime}\left(R_{x}\right) \in \mathcal{P}_{n_{t}-i_{1} m}\left(R_{x}\right) \text { for } 1 \leq t \leq j+1, \\
& P_{t}\left(R_{x}\right) \in \mathcal{P}_{n_{t}+k_{t}}\left(R_{x}\right) \text { for } 0 \leq t \leq j+1 .
\end{aligned}
$$

and $R_{x}\left(c_{1}(x)\right) \in P_{j}\left(R_{x}\right)$. The notation will make sense because $G_{t}\left(x_{j}\right) \cup$ $\left\{R_{x_{j}}\left(c_{1}\right), R_{x_{j}}\left(c_{2}\right)\right\}$ and $G_{t}\left(w_{j}\right) \cup\left\{R_{w_{j}}\left(c_{1}\right), R_{w_{j}}\left(c_{2}\right)\right\}$ will be isotopic for all
$t \geq 0$, and $G_{t}\left(x_{j}\right) \cup\left\{R_{x_{j}}\left(c_{2}\right)\right\}$ and $G_{t}\left(x_{j+1}\right) \cup\left\{R_{w_{j}}\left(c_{2}\right)\right\}$ will be isotopic for all $t \leq n_{j+1}+k_{j+1}$, but this isotopy does not extend to map $R_{x_{j}}\left(c_{2}\right)$ to $R_{x_{j-1}}\left(c_{2}\right)$. We also assume inductively that we have a sequence of decreasing intervals $I_{t} \in S^{1}$ for $0 \leq t \leq j$ with

$$
y_{j} \in I_{j}
$$

and

$$
\begin{equation*}
\varphi_{j}^{-1}\left(P_{t}\left(R_{x_{j}}\right)\right) \subset \varphi_{j}^{-1}\left(\varphi_{j}\left(I_{t}\right)\right) \subset P_{t}^{\prime}\left(R_{x_{j}}\right) \tag{52}
\end{equation*}
$$

for $1 \leq t \leq j$. We will always have

$$
R_{x}\left(c_{2}\right) \in P_{j+1}^{\prime}\left(R_{x}\right) \subset P_{j}\left(R_{x}\right) \subset P_{j}^{\prime}\left(R_{x}\right) .
$$

There is a two-valued local inverse $T_{k_{j}}$ defined on $\varphi^{-1}\left(\varphi_{j}\left(I_{j}\right)\right)$ for $j \geq 1$ with

$$
T_{k_{j}}\left(\varphi^{-1}\left(\varphi_{j}\left(I_{j}\right)\right)\right) \subset \varphi^{-1}\left(\varphi_{j}\left(I_{j}\right)\right)
$$

Inductively, $P_{j}\left(R_{x_{j}}\right)$ is contained in a component of $R_{x_{j}}^{-k_{j}}\left(P_{j}^{\prime}\left(R_{x_{j}}\right)\right)$ such that $R_{x_{j}}^{n}\left(c_{1}\right) \notin P_{j}^{\prime}\left(R_{x_{j}}\right)$ for $0<n<k_{j}$ but $R_{x_{j}}^{k_{j}}\left(c_{1}\right) \in P_{j}\left(R_{x_{j}}\right) \subset P_{j}^{\prime}\left(R_{x_{j}}\right)$. Also, $\varphi_{j}\left(y_{j}\right) \in P_{j}\left(R_{x_{j}}\right)$ and $\varphi_{j}\left(p_{n}\right) \in P_{j}\left(R_{x_{j}}\right)$. We then define $S_{k_{j}, x}$ for $x=x_{j-1}$ and $x=x_{j}$, to be the two-valued local inverse of $R_{x}^{k_{j}}$ which maps $P_{j}^{\prime}\left(R_{x}\right)$ to a set containing $P_{j}\left(R_{x}\right)$. For $x=x_{j}, R_{x}\left(c_{1}\right) \in$ $S_{k_{j}, x}^{t}\left(P_{j}^{\prime}\left(R_{x}\right)\right)$ for all $t \geq 0$ and hence $S_{k_{j}, x}$ is two-valued on $S_{k_{j}}^{t}\left(P_{j}^{\prime}\left(R_{x}\right)\right)$ for all $t \geq 0$ (while for $x=x_{j-1}$, this is only true for $t=0$). We then define r_{j+1} to be the largest integer, which is ≥ 1, with $\varphi_{j}\left(p_{n}\right) \in$ $S_{k_{j}, x}^{r_{j+1}}\left(P_{j}^{\prime}\left(R_{x}\right)\right)$. Then define

$$
P_{j+1}^{\prime}\left(R_{x}\right)=S_{k_{j}, x}^{r_{j+1}}\left(P_{j}^{\prime}\left(R_{x}\right)\right)
$$

and

$$
I_{j+1}^{\prime \prime}=T_{k_{j}}^{r_{j+1}}\left(I_{j}\right)
$$

for some two-valued local inverse $T_{k_{j}}$ of $T^{k_{j}}$. Let I_{j+1}^{\prime} be the union of $I_{j+1}^{\prime \prime}$ and any complementary components between two components of $I_{j+1}^{\prime \prime}$ in the same component of I_{j}. It follows from the inductive hypothesis that $P_{j}^{\prime}\left(R_{x}\right) \in \mathcal{P}_{n_{j}-i_{1} m}$ (which is true for $j=1$) that $P_{j+1}^{\prime}\left(R_{x}\right) \in$ $\mathcal{P}_{n_{j}+1-i_{1} m}\left(R_{x}\right)$. Then we define k_{j+1} to be the least integer $t>0$ such that $R_{x_{j}}^{t}\left(\varphi_{j}\left(p_{n}\right)\right) \in P_{j+1}^{\prime}\left(R_{x_{j}}\right)$. Define $P_{j+1}\left(R_{x_{j}}\right)$ to be the set in $\mathcal{P}_{n_{j+1}+k_{j+1}}\left(R_{x_{j}}\right)$ which contains $\varphi_{j}\left(p_{n}\right)$. It is also the component of $R_{x_{j}}^{\left(1-r_{j+1}\right) k_{j}-k_{j+1}}\left(P_{j}\left(R_{x_{j}}\right)\right)$ which contains $\varphi_{j}\left(p_{n}\right)$ and is contained in a component $P_{j+1}^{\prime \prime}\left(R_{x_{j}}\right)$ of $R_{x_{j}}^{-k_{j+1}}\left(P_{j+1}^{\prime}\left(R_{x_{j}}\right)\right)$.

We also have a periodic point $z_{j+1} \in P_{j+1}\left(R_{x_{j}}\right)$ of period k_{j+1} under $R_{x_{j}}$, and thus $z_{j+1} \in \varphi_{j}\left(I_{j+1}^{\prime}\right)$, and there is $y_{j+1} \in I_{j+1}^{\prime}$ with $\varphi_{j+1}\left(y_{j+1}\right)=z_{j+1}$. For $j \geq 1, y_{j+1}$ might not be in the same component of I_{j+1}^{\prime} as y_{j}. But every component of $\varphi_{j}\left(I_{j+1}^{\prime}\right)$ intersects $\partial U_{*}\left(R_{x_{j}}\right)$ in a non-empty open set. So there is some t_{j}, which is periodic under T in the same component of I_{j+1} as y_{j+1}, with $\varphi_{j}\left(t_{j}\right) \in \partial U_{*}\left(R_{x_{j}}\right)$ periodic under $R_{x_{j}}$. We write I_{j+1} for this component of I_{j+1}^{\prime}. Of course, $s_{t_{j}}$ is a tuning of $s_{y_{j}}$, and there is $w_{j} \in X P_{j}$ such that $R_{w_{j}}$ is a tuning round c_{1} of $R_{x_{j}}$ and $R_{w_{j}} \simeq s_{t_{j}} \amalg s_{q}$. Then (52) follows from the definitions and from (39).

We then have a connected set $X P_{j+1}^{\prime}$ containing x_{j} such that $P_{j+1}^{\prime}(x) \supset$ $P_{j+1}^{\prime \prime}(x) \supset P_{j+1}(x)$ are defined for all $x \in X P_{j+1}^{\prime}$, with $R_{x}\left(c_{1}\right) \in P_{j+1}^{\prime}\left(R_{x}\right)$ for all $x \in X P_{j+1}^{\prime}$. We also have sets

$$
\begin{aligned}
& X P_{j+1}^{\prime \prime}=\left\{x \in X P_{j+1}^{\prime}: R_{x}\left(c_{1}\right) \in P_{j+1}^{\prime \prime}\left(R_{x}\right)\right\}, \\
& X P_{j+1}=\left\{x \in X P_{j+1}^{\prime}: R_{x}\left(c_{1}\right) \in P_{j+1}\left(R_{x}\right)\right\},
\end{aligned}
$$

and

$$
X P_{j+1} \subset X P_{j+1}^{\prime \prime} \subset X P_{j+1}^{\prime}
$$

on the parameter plane X. Then as in the case $j=0$ we can find $x_{j+1} \in X P_{j+1}$ such that $c_{1}\left(x_{j+1}\right)$ is of period k_{j+1} under $R_{x_{j+1}}$ and we get (50), using the fact that y_{j+1} and t_{j} are both in the same component I_{j+1} of I_{j+1}^{\prime}. We also get y_{j+1} of period k_{j+1} or $2 k_{j+1}$. By similar process as the $j=1$ case, we can deduce that $R_{x_{j+1}} \simeq s_{y_{j+1}} \amalg s_{q}$ or $R_{x_{j+1}^{\prime}} \simeq s_{y_{j+1}} \amalg s_{q}$ where $R_{x_{j+1}^{\prime}}$ is a period two tuning of $R_{x_{j+1}}$.

Finally we get a parameter $y_{l}=p_{n}$ and $x_{l} \in X B_{N_{n}}$ after l steps such that

$$
\begin{equation*}
R_{x_{l}} \simeq s_{y_{l}} \amalg s_{q}=s_{p_{n}} \amalg s_{q} . \tag{53}
\end{equation*}
$$

Now considering (38), Theorem 4.2.5 follows as a corollary of Theorem 12.7.5 and 12.6.4.

13 References

[Ahl] L. Ahlfors, Lectures on Quasiconformal Mappings, D. Van Nostrand Co., 1966
[Ale] D. S. Alexander, A History of Complex Dynamics from Schröder to Fatou and Julia, Vieweg, Braunschweig, 1994
[AW] R. L. Adler and B. Weiss, Entropy, a complete metric invariant for automorphisms of the torus, Proceedings of the National Academy of Science, vol. 57 (1967), pp. 1573-1576
[AY] M. Aspenberg and M. Yampolsky, Mating Non-renormalizable quadratic polynomials, Commun. Math. Phys. 287, 1-40(2009)
[BC] Xavier Buff and Arnaud Chéritat, Quadratic Julia sets with positive area, Annals of Mathematics 176 (2012), 673-746
[BEE] Xavier Buff, Jean Écalle and Adam Epstein, Limits of degenerate parabolic quadratic rational maps, Geom. Funct. Anal. Vol. 23 (2013) 42-95
[BH] B. Branner and J. Hubbard, The iteration of cubic polynomials Part II: Patterns and parapatterns, Acta Math., 169:3-4 (1992), 229-325
[Bot] L. E. Böttcher, The principal laws of convergence of iterates and their application to analysis (Russian), Izv. Kazan. Fiz.-Mat. Obshch. 14, 155-234 (1904)
[Bow] R. Bowen, Markov Partitions for Axiom A Diffeomorphisms, American Journal of Mathematics, Vol. 92, No. 3 (Jul., 1970), pp. 725-747
[Bul1] S. Bullett, A Combination Theorem for Covering Correspondences and an Application to Mating Polynomial Maps with Kleinian Groups, Conform. Geom. Dyn., 4(2000),75-96
[Bul2] S. Bullett, Matings in holomorphic dynamics, Geometry of Riemann Surfaces, edited by Frederick P Gardiner, Gabino GonzalezDiez and Christos Kourouniotis, London Mathematical Society Lecture Notes No. 368, Cambridge University Press (January 2010), 88-119
[Car] C. Carathéodory, Über die Begrenzung einfach zusämmenhiingender Gebiete, Math. Ann. 73, 323-370 (1913). (Gesam. Math. Schr., v. 4.)
[Che] Arnaud Chéritat, Tan Lei and Shishikura's example of non-mateable degree 3 polynomials without a Levy cycle, http://arxiv.org/pdf/1202.4188v1.pdf
[CT] Guizhen Cui, Lei Tan, Hyperbolic-parabolic deformations of rational maps, http://arxiv.org/abs/1501.01385, 2015
[Cui] Guizhen Cui, Dynamics of rational maps, topology, deformation and bifurcation, preprint, May 2002
[Dev] R. Devaney, The complex dynamics of quadratic polynomials, Proceedings of Symposia in Applied Mathematics, Volume 49, 1994
[DH1] A. Douady and J. Hubbard, On the dynamics of polynomial-like mappings. Ann. Sci. Éc. Norm. Sup. 18(1985), 287-344
[DH2] A. Douady and J. Hubbard, Exploring the Mandelbrot set. The Orsay Notes. http://www.math.cornell.edu/~hubbard/ OrsayEnglish.pdf
[DH3] A. Douady and J. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993), 263297
[Dou1] A. Douady, Does a Julia set depend continuously on the polynomial?, Complex dynamical systems (Cincinnati, OH, 1994) Proc. Sympos. Appl. Math., vol. 49, Amer. Math. Soc., Providence, RI, 1994, pp. 91-138
[Dou2] A. Douady, Systèmes dynamiques holomorphes, Seminar Bourbaki, Astérisque, 105-106 (1983) 39-63
[Dou3] A. Douady, Chirurgie sur les applications holomorphes, In Proceedings of the International Congress of Mathematicians, pages 724738. American Math. Soc., 1986
[DR] A. Dezotti, P. Roesch, On (non) local-connectivity of some Julia sets, Frontiers in Complex Dynamics: In Celebration of John Milnor's 80th Birthday, Edited by Araceli Bonifant, Misha Lyubich, and Scott Sutherland, 2012
[Dud] D. Dudko, Matings with laminations, http://arxiv.org/abs/1112.4780, 2011
[Eps] A. Epstein, Counter examples to the quadratic mating conjecture, manuscript, 1997
[Exa] F. Exall, Rational maps represented by both rabbit and aeroplane matings, Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy (2010)
[Fat1] P. Fatou, Sur les solutions uniformes de certaines équations fonctionnelles, C. R. Acad. Sci. Paris 143, 546-548 (1906)
[Fat2] P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France, Paris 47, 161-271, and 48, 33-94, 208-314 (1919-20)
[Fat3] P. Fatou, Sur i'itération des fonctions transcendantes entières, Acta Math. 47, 337-370 (1926)
[Hai] Peter Haïssinsky, Chirurgie parabolique, C. R. Acad. Sci. Paris Sr. I Math. 327 (1998), 195-198
[HT] Peter Haïssinsky, Lei Tan, Convergence of pinching deformations and matings of geometrically finite polynomials, Fund. Math. 181(2004), 143-188
[Hub] J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J. C. Yoccoz, Topological methods in modern mathematics, 467-551, Publish or Perish, Houston, TX, 1993
[Jia] Yunping Jiang, Local connectivity of the Mandelbrot set at certain infinitely renormalizable points, http://arxiv.org/abs/math/9508212, 1995
[Jul1] G. Julia, Memoire sur l'itération des fonctions rationnelles, J. Math. Pure Appl, 8, 47-245 (1918)
[Jul2] G. Julia, Sur quelques problèmes relatifs à l'itération des fractions rationnelles, C. R. Acad. Sci. 168, 147-149 (1919)
[Koe] G. Koenigs, Recherches sur les intégrales de certaines équations fonctionelles, Ann. Sci. École Norm. Sup. Paris (3^{e} ser.) 1, supplém., 1-41 (1884)
[Lat] S. Lattès, Sur l'itération des substitutions rationelles et les fonctions de Poincaré, C. R. Acad. Sci. Paris 16, 26-28 (1918)
[Lev] Silvio Levy, Critically Finite Rational Maps (PhD thesis), Princeton, 1985
[Levin] G. Levin, Rigidity and Non-local Connectivity of Julia Sets of Some Quadratic Polynomials, Communications in Mathematical Physics, June 2011, Volume 304, Issue 2, pp 295-328
[Luo] Jiaqi Luo, Combinatorics and holomorphic dynamics: Captures, matings, Newtons method, Thesis, Cornell University, 1995
[McM1] C. McMullen, The Mandelbrot set is universal, The Mandelbrot Set, Theme and Variations, ed. T. Lei, 118. Cambridge U.K.: Cambridge Univ. Press. Revised 2007
[McM2] C. McMullen, Complex Dynamics and Renormalization, Ann. Math. Studies 135, Princeton U. Press, Princeton, NJ
[Mil1] J. Milnor, Dynamics in One Complex Variable, Annals of mathematics studies; no. 160 (2006)
[Mil2] J. Milnor, Periodic orbits, external rays, and the Mandelbrot set: An expository account, Asterisque 261 (1999)
[Mil3] J. Milnor, Pasting together Julia sets, Exp. Math.,Volume 13, Number 1 (2004), 55-92
[Mil4] J. Milnor, Non Locally-Connected Julia Sets constructed by iterated tuning, http://www.math.stonybrook.edu/~jack/tune-b. pdf, 2006
[MSS] R. Mañé, P. Sad, D. Sullivan, On the dynamics of rational maps. Ann. Sci. École Norm. Sup. (4) 16(1983), no. 2, 193-217
[PR] Carsten L. Petersen, Pascale Roesch, The Yoccoz Combinatorial Analytic Invariant, Fields Institute Communications, Volume 53, 2008
[Ree1] S. M. Rees, Realization of matings of polynomials as rational maps of degree two, manuscript, 1986
[Ree2] S. M. Rees, A partial description of parameter space of rational maps of degree two: Part I , Acta Math., 168(1992), 11-87
[Ree3] S. M. Rees, Persistent Markov partitions and hyperbolic components of rational maps, manuscript
[Ree4] S. M. Rees, Persistent Markov partitions for rational maps, http://arxiv.org/pdf/1306.6166v2.pdf
[Rie] J. Riedl, Arcs in Multibrot Sets, Locally Connected Julia Sets and Their Construction by Quasiconformal Surgery (PhD thesis dissertation), 2000
[Roe] P. Roesch, Holomorphic motions and parapuzzles, The Mandelbrot set, Theme and variations, London Math. Soc. Lecture Note Ser., 274, (2000)
[Sch] E. Schröder, Ueber iterirte Functionen, Math. Ann. 3, 296-322 (1871)
[Schl1] D. Schleicher, On Fibers and Local Connectivity of Mandelbrot and Multibrot Sets, http://arxiv.org/abs/math/9902155, 1999
[Sch12] D. Schleicher, On Fibers and Local Connectivity of Compact Sets in \mathbb{C}, http://arxiv.org/abs/math/9902154, 1999
[Shi1] M. Shishikura, Bifurcation of parabolic fixed points, The Mandelbrot set, Theme and variations, London Math. Soc. 274, 2000
[Shi2] M. Shishikura, On a theorem of M. Rees for matings of polynomials, London Math. Soc. Lecture Note Ser., 274. CMP 2000:14
[Shi3] M. Shishikura, The Hausdorff Dimension of the Boundary of the Mandelbrot Set and Julia Sets, Annals of Mathematics, Second Series, Vol. 147, No. 2(Mar., 1998), pp.225-267
[Sin] Ya. G. Sinai, Markov partitions and C-diffeomorphisms, Func. Anal. and 'its Appl., vol. 2 (1968), no. 1, pp. 64-89
[Slo] Z. Slodkowski, Natural extensions of holomorphic motions, J. Geom. Anal. 7(1997), no. 4, 637-651
[Sor] D. Sorensen, Infinitely renormalizable quadratic polynomials, with non-locally connected Julia set, The Journal of Geometric Analysis, March 2000, Volume 10, Issue 1, pp 169-206
[ST] Mitsuhiro Shishikura and Lei Tan, A family of cubic rational maps and matings of cubic polynomials, Experiment. Math., 9(1):29-53, 2000
[Sul] D. Sullivan, Quasiconformal homeomorphisms and dynamics I: Solution of the Fatou-Julia problem on wandering domains, Ann. Math. 122, 401-418, 1985
[Tan1] Tan Lei, Matings of quadratic polynomials, Ergodic Theory and Dynamical Systems, 12, pp 589-620, 1992
[Tan2] Tan Lei, Local properties of the Mandelbrot set at parabolic points, The Mandelbrot Set, Theme and Variations, London Math. Soc. 274, pp. 133-160, 2000
[Thu1] W. P. Thurston, The combinatorics of iterated rational maps, Preprint, Princeton University, Princeton, USA (1985)
[Thu2] W. P. Thurston, On the geometry and dynamics of iterated rational maps, Complex Dynamics, Families and Friends, Edited by Dierk Schleicher with the help of Nikita Selinger, A K Peters/CRC Press 2009, Pages 3-130
[Tim1] V. Timorin, External boundary of M_{2}, Fields Institute Communications Volume 53: Holomorphic Dynamics and Renormalization, A Volume in Honour of John Milnors 75th Birthday
[Tim2] V. Timorin, Parameter slices of quadratic rational functions, http://math.jacobs-university.de/timorin/perk/perk.html
[Wit] Ben Wittner, On the bifurcation loci of rational maps of degree two, PhD Thesis, Cornell University, 1988
[Yoc] J. C. Yoccoz, Sur la connectivité locale de M, unpublished, 1989
[YZ] M. Yampolsky, S. Zakeri, Mating Siegel quadratic polynomials, J. Amer. Math. Soc. 14(2001), no. 1, 25-78

