
Continuity of Quadratic Matings

Thesis submitted in accordance with the requirements of the University

of Liverpool for the degree of Doctor of Philosophy

by

Liangang Ma

Nov 2015





Acknowledgement

First I want to give thanks to my Ph.D supervisor, Prof Mary Rees, for

her offer of the proper Ph.D project and keen guidence during my four

years in Liverpool. She provided primitive ideas for the whole project

and the discussions with her were very helpful to me. Then I want to

thank Prof Lasse Rempe-Gillen’s guidence, inspiration and encourage-

ment during my Ph.D time. I am very lucky to be one of the many

people who benefit from his bright, knowledgeable mind and generous

help in academics. I also want to thank Dr Radhakrishnan Nair, who

encouraged me during my reasearch and led me into the field of metric

number theory. I enjoy the talks with members in the dynamical group,

Dr Toby Hall, Dr Alexandre De Zotti, Dr Poj Lertchoosakul, Dr Alena
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1 Introduction

1.1 Some brief history of complex dynamics study

The study of complex dynamics was started by Schröder [Sch], Koenigs

[Koe], Böttcher [Bot], Lattès [Lat], Carathéodory [Car], Fatou [Fat1]

[Fat2][Fat3], Julia [Jul1] [Jul2] and many others. D. S. Alexander wrote

a detailed history about the early research up to Julia [Ale]. After per-

sonal computers were introduced into this field, the research came into

explosion in the 1980s. There were many exciting results during this pe-

riod. Douady and Hubbard showed that the Mandelbrot set M is closed,

bounded and connected [DH2] [Dou2]. The exterior of M is isomorphic to

the exterior of D̄ (the closed unit disc) under a conformal map ΦM [DH2].

They also developed the theory of renormalization and polynomial-like

mappings to explain the occurrence of Mandelbrot-like sets in various

families of rational maps [DH1]. The mating structure was also invented

in this article by them. Later on, the theory of captures and tunings

was developed. Douady also investigated some continuity and disconti-

nuity problems on Julia sets and filled Julia sets of degree d polynomials

under Hausdorff metric [Dou1]. Sullivan [Sul] showed that there are no

wandering Fatou domains for rational maps, which answers a question

of Fatou and Julia, by introducing the theory of quasiconformal map-

pings [Ahl] into complex dynamics. Mañé, Sad and Sullivan developed

the powerful λ lemma [MSS] to link the geometric properties of the sets

in some parameter spaces with those of sets on the dynamical planes.

Later on McMullen showed that Mandelbrot-like sets are dense in the

bifurcation locus for holomorphic families of any rational maps [McM1].

He also developed Douady and Hubbard’s theory of renormalization in

[McM2]. At about the same time when the rational dynamics were stud-
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ied intensively, the research of holomorphic and meromorphic dynamics,

or even some general quasi-conformal dynamics, for example, the expo-

nential maps, λez, λ ∈ C \ {0} and quasi-regular maps, was also in fast

development. Higher dimensional complex dynamics also got attentions

of many mathematicians in recent decades. It turns out that people want

to iterate more and more general functions or function systems now, new

phenomenons and patterns are expected on them, of course.

Figure 1: The Mandelbrot set

The main problem considered in this thesis is continuity of matings.

Mating is a construction to create a rational map from two polynomials

of the same degree. The construction can be considered up to Thurston

equivalence (which is a type of homotopy equivalence, see the definition

in Section 2.3) or up to topological conjugacies, or even some particular

conformal conjugacies. Now we want to put the continuity problem into
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context.

1.2 History of the mating construction and the current
research frontiers

As mentioned before, matings first appeared in the work of Douady and

Hubbard [DH1] in 1985. They are there as a particular example on which

their theory of polynomial-like mappings can be applied to show the ex-

istence of Mandelbrot-like sets in some rational parameter space. After

this people began to ask whether a mating of two arbitrary polynomi-

als exists or not, and if it exists, is the quadratic rational map which

is Thurston equivalent to it unique? The existence problem of matings

between quadratic hyperbolic polynomials was solved by Tan Lei in her

thesis. Mary Rees had an unpublished proof earlier [Ree1]. They con-

firmed a conjecture of Douady and Hubbard, that the mating of two

critically finite quadratic polynomials exists and is unique up to Möbius

conjugacies as long as they are not in conjugate limbs of the Mandelbrot

set M . In fact it is possible to produce a topological model (from the

lamination models for polynomials) for any hyperbolic critically finite ra-

tional map which is a mating up to Thurston equivalence, see Definition

2.7.1. This was done in [Ree2] and was extended to other critically finite

rational maps which are matings by Shishikura [Shi2]. Using the topo-

logical models for matings, the concept can be extended to maps which

are not critically finite, so one can consider matings of general hyperbolic

quadratic polynomials.

Later on there were results about matings of non-hyperbolic ones,

where the mating is defined up to some conformal conjugacies, see Defi-

nition 2.7.2. For example, there were results on mating Siegel quadratic

polynomials in [YZ] and results on mating non-renormalizable quadratic
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polynomials with the so called basilica polynomial in [AY]. The latter

result was suggested by J. Luo in his thesis [Luo] in 1995.

The uniqueness usually follows from Thurston’s criterion. Thurston’s

criterion (Theorem 2.1, [Tan1]) gives necessary and sufficient conditions

for a critically finite branched covering to be Thurston equivalent to

a rational map. Except for some simple examples (those ones having

Thurston obstructions [Thu1]), the rational map is unique up to Möbius

conjugacies. Levy proved in his thesis that a critically finite degree 2

branched covering map of the sphere is Thurston equivalent to a rational

map as long as it does not have Levy cycles [Lev]. There are Lattès

examples for which the rational maps of matings are not unique by K.

Pilgrim in [Mil2].

Thurston equivalence between a critically finite branched covering and

a critically finite rational map implies semiconjugacy under mild adjust-

ment on the definition of the branched covering near its periodic critical

points (see Section 2.4). If f ' g (we use ' to denote Thurston equiv-

alence), where g is a critically finite rational map, f is a critically finite

branched covering, then there is a continuous map θ : C̄→ C̄, such that

θ ◦ f = g ◦ θ.

θ maps critical orbits to critical orbits and is a topological conjugacy

near any periodic critical orbit (see for example [Ree2, Section 1.5]).

In 1997 Adam Epstein gave some examples of non-continuous quadratic

matings in [Eps], which tells us that in general, the mating structure is

not continuous in the parameter space of two variables. As there are two

variables in the mating structure, the continuity problem can be con-

sidered in one or two variables. Epstein’s counterexamples depend on

variation of the two variables simultaneously, while the continuity in one
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variable has more chance to be true, at least in some special cases as we

will show in the thesis.

P. Häıssinsky and Tan Lei proved a continuity result along simple

pinching paths of geometrically finite polynomials with connected Julia

sets and attracting points [HT]. As a generalization of Cui’s techniques

of pinching and plumbing [Cui] from geometrically finite rational maps

to weakly hyperbolic maps, they can show the continuity of matings with

each of the two polynomial variables g0, g1 going along two paths with the

two endpoints f0, f1 being two parabolic parameters. f0 and f1 are on

the boundary of the two hyperbolic components of M containing g0, g1.

Matings of n-polynomials (we use the terminology for polynomials of

degree n) for n ≥ 3 have also been studied, for example, [ST] and [Che].

In [ST], Shishikura and Tan demonstrated that some cubic matings may

have Thurston obstructions, although they do not have Levy cycles. In

[Che], Chéritat gave a pair of non-matable polynomials without Levy

cycles. These results indicate some difference between quadratic matings

and higher dimensional matings.

The mating structure shows its power in exploring properties of the

parameter slice Per2(0), see [AY] [Tim2]. Maps on the boundary of the

unbounded components of C\Ma (Ma is the non-escape locus of Per2(0),

see Section 10) are classified in [Tim1]. D. Dudko [Dud] showed that the

non-escape locus Ma of Per2(0) is locally connected, which can ”almost”

be homeomorphically described as M\ the 1
2 -limb. The latter result is a

refined conjecture of Ben Wittner [Wit].

There are some generalizations of the notion to more general contexts.

For example, one can consider matings between some Fuchsian groups

or between certain polynomial maps and Fuchsian groups, see [Bul1] and

[Bul2].
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The data used to construct a mating is therefore a pair of polynomials

(of the same degree). The data can be more combinatorial in the case

of quadratic polynomials with connected Julia sets. There are various

continuity problems that can be considered. In the thesis we are trying

to answer a question of Mary Rees: given a critically finite quadratic

polynomial fq associated with some odd denominator rational q ∈ (0, 1),

a sequence of critically finite quadratic polynomials fpn associated with

odd denominator rationals pn ∈ (0, 1) (the association will be explained

in Section 2.2) such that lim
n→∞

pn = p is also an odd denominator rational

in (0, 1), does the sequence

fpn q fq

converges or not in some suitable rational parameter slice up to Möbius

conjugacies? If it converges, what does the limit map look like? Note

that since all the hyperbolic quadratic polynomials z2 +c are in some hy-

perbolic components with their centers being critically periodic quadratic

polynomials [DH2], all the critically periodic quadratic polynomials are

encoded by some odd denominator rationals in (0, 1) [Thu2]. Combined

with Yoccoz’s control of size of limbs of M [Hub], our control of size of

the mating components on the parameter slice and quasiconformal defor-

mation techniques, we can get more general continuity result on matings

of hyperbolic quadratic polynomials parametrised by z2 + c, c ∈ C. We

are able to prove the continuity in several sub-cases of the problem in the

thesis, and would like to conjecture the continuity holds for the general

problem (see Conjecture 4.1.1). There are some by-results obtained in

the research for the problem. All the continuity results are collected in

Section 4.
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2 Basic concepts

In this section the basic concepts and notations used in the thesis will be

introduced.

2.1 Quadratic polynomials

Douady and Hubbard had made a comprehensive study of the dynamics

of quadratic polynomials and the Mandelbrot set. Up to affine conjugacy,

every quadratic polynomial can be written uniquely in the form

fc(z) = z2 + c, c ∈ C.

Therefore the dynamical study of quadratic polynomials can be restricted

to polynomials of this form.

Now we use J(fc) to represent the Julia set of fc, K(fc) is the filled

Julia set. The Mandelbrot set M is the set {c : J(fc) is connected}. All

polynomials fc for c /∈ M are globally quasi-conformally conjugate. A

hyperbolic component of Mo is a connected component of the set Mo.

The first results of Douady and Hubbard are that M is closed, bounded

and connected. They were also able to show that these hyperbolic com-

ponents are simply connected, and each such component is characterized

by a pair of odd-denominator rationals in (0, 1) (refer to Section 2.2 for

details of the characterization). The exterior of M is conformally equiv-

alent to the exterior of the unit disc [DH2].

For a degree d polynomial f(z) = adz
d + · · · + a0, d > 1, ad 6= 0, we

have

Lemma 2.1.1. J(f) is either connected or has infinitely many connected

components.
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Proof. Considering the super-attractive fixed point at ∞. Change the

coordinates by 1
z , we get

g(z) = 1
f( 1

z
)

=
1

ad
1
zd

+ · · ·+ a0
=

zd

ad + · · ·+ a0zd
.

If d > 1, then g′(0) = 0 and g(j)(0) = 0 for 1 ≤ j < d while g(d)(0) =

d!
ad
6= 0. This can be proved by induction or by expanding g(z) around 0

as a Taylor series. By Böttcher’s Theorem, there exists a conformal map

Φ near 0 with Φ(0) = 0 such that

Φ ◦ g ◦ Φ−1(z) = zd

Now let φ(z) = 1
Φ( 1

z
)
, then

φ ◦ f ◦ φ−1(z) = zd (1)

near ∞. φ(z) is defined on some neighbourhood U ⊃ {∞} with

φ(U) = Dr = {z : |z| > r > 1}.

If no finite critical value is in U then

f : f−1(U) \ {∞} → U \ {∞}

is a covering map of degree d, we can extend φ onto a larger domain

φ(f−1(U)) = D 1

rd
, then consider whether there is a finite critical value in

f−1(U). We can continue this process to extend the domain {z : |z| > r >

1} to its largest Dr0 = {z : |z| > r0 ≥ 1} on which φ−1 is a conformal map

which satisfies (1), until we hit a finite critical value. Let V = φ−1(Dr0).

Let A denote the super-attractive basin of f containing ∞. We have the

following commutative diagram of conformal isomorphisms

V
f−−−−→ f(V )xφ−1 φ

y
Dr0

zd−−−−→ Drd0
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Now we claim that there must be at least one critical point of f on

∂V which interrupts the extension of φ−1 on larger discs. We show this

by contradiction. Note that obviously there are no critical points of f

in V , or else this would imply that φ−1 has critical points in Dr0 , which

will contradict the fact of the conformality of φ−1.

Now suppose that there are no critical points on ∂V . For any point

w0 ∈ ∂Dr0 , choose a small neighbourhood W of w0 on which φ−1 : W →

φ−1(W ) is defined as

w → f−1 ◦ φ−1(wd).

Note that on this domain f−1 is well defined as there are no critical

value on ∂f(V ). Then these small neighbourhoods together with Dr0

form a neighbourhood of Dr0 on which we can conformally extend φ−1

to larger open discs Dr′0 with r′0 > r0. This is a contradiction on our

maximum assumption on r0. So there must be a critical point of f on

∂V .

Now there are two possibilities. If some finite critical value c ∈ f−n(U)

for some n ∈ N, then the set f−(n+1)(C̄ \ U) has m ≥ 2 connected com-

ponents depending on the order of the critical point, m ∈ N. Induc-

tively, f−(n+j)(C̄ \ U) has at least mj connected components, j ∈ N. So

∪k≥0f
−k(U) = C̄ \ ∩k≥0f

−k(C̄ \ U) is the complement of a set with in-

finitely many connected components. Consequently the Julia set J(f) =

∂∪k≥0f
−k(U) is also a set with infinitely many connected components. If

no finite critical value is in f−k(U) for any k, then ∪k≥0f
−k(U) is simply

connected and J(f) = ∂ ∪k≥0 f
−k(U) is connected.

Remark 2.1.2. The conclusion holds for all rational maps in fact, See

Corollary 4.15 [Mil1] for a proof.
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In the degree two case, for each hyperbolic component of M , there

is a unique map in it which is critically periodic, often called the center

of the hyperbolic component. There is a combinatorial model, called

the lamination model [Thu2] to describe the topological dynamics of it.

We can associate a pair of odd denominator rationals in (0, 1) to each

hyperbolic component (therefore to each critically periodic 2-polynomial)

where these pairs are all distinct and disjoint, refer to Section 2.2. Every

odd denominator rational occurs in one such pair.

This association allows a complete dynamical description for hyper-

bolic quadratic polynomials and many others, although we are mainly

concerned with hyperbolic quadratic polynomials. Moreover, this associ-

ation gives a conjectural description of the Mandelbrot set, see Theorem

11.7.0b [Thu2]. As far as it is related to hyperbolic components, if fn

is a sequence of hyperbolic quadratic polynomials with associated odd

denominator rationals pn tending to an odd denominator rational p as

n→∞, where p is associated with a hyperbolic quadratic polynomial f ,

then

lim
n→∞

fn = f0,

where f0 is the parabolic map on the boundary of the hyperbolic com-

ponent containing f , and the multiplier of fk0 at the parabolic cycle is 1

(k is period of the attractive cycle of f). This can be deduced from the

work of Yoccoz [Yoc] as described by Hubbard in [Hub]. In fact there are

many other results of this type contained in [Hub]. Our type of continu-

ity results which relates the Mandelbrot set and its combinatorial model

can be compared with many others’ results.
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2.2 The external rays and lamination models for quadratic
polynomials

There is a very explicit description of critically finite quadratic polyno-

mials in the Mandelbrot set using the map z → z2 on the unit circle

and rational numbers in [0, 1]. Let fc be a critically periodic quadratic

polynomial of the form fc(z) = z2 + c. Then there exists a continuous

map ψc = φ−1 in which φ is defined in the proof of Lemma 2.1.1 (the

inverse Böttcher coordinate)

ψc : {z : |z| > 1} → C̄ \K(fc)

satisfying

ψc(z
2) = fc ◦ ψc(z) ∀ |z| > 1.

ψc extends from {z : |z| > 1} to {z : |z| ≥ 1} if the Julia set J(fc) is

locally connected by Theorem 2.2.5. ψc is holomorphic on {z : |z| > 1}

and continuous on {z : |z| ≥ 1}. In addition,

ψc({z : |z| = 1}) = J(fc).

Now define the external ray γ(t) of fc with angle t, t ∈ [0, 1) as

γ(t) = ψc({re2πit : 1 < r <∞}).

For an arbitrary quadratic polynomial (in fact an arbitrary polynomial),

there are some well known landing properties about the external rays as

following. They are all from [Mil1]. Let D = {z : |z| < 1}, S1 = {z : |z| =

1}.

Theorem 2.2.1. Every periodic external ray lands at a periodic point

which is either repelling or parabolic. If t is rational but not periodic,

then the ray of angle t lands at a point which is eventually periodic but

not periodic.
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Theorem 2.2.2. For almost every point e2πit of the unit circle S1 with

respect to Lebesgue measure, the external ray of angle t lands on J(fc).

However, if we fix any particular point z0 ∈ ∂J(fc), then the set of angles

of which the external rays land on z0 has Lebesgue measure zero.

Theorem 2.2.3. Every repelling or parabolic periodic point is the landing

point of at least one periodic ray.

Theorem 2.2.4. If one periodic ray lands on z0, then only finitely many

rays land on z0. These rays are all periodic of the same period (which

may be larger than the period of z0).

The following result is a consequence of results of Marie Torhorst and

Constantin Carathéodory. It provides us with quite efficient techniques

to judge whether a ray lands or not [Mil1].

Theorem 2.2.5. For any given fc with connected Julia set, the following

four conditions are equivalent.

• Every external ray γ(t) lands on a point κ(t) which depends contin-

uously on the angle t.

• The Julia set J(fc) is locally connected.

• The filled Julia set K(fc) is locally connected.

• The inverse Böttcher map ψc : C \ D̄ → C \K(f) extends contin-

uously over the boundary ∂D, and this extended map carries each

e2πit ∈ ∂D to κ(t) ∈ J(fc).
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Furthermore, whenever these conditions are satisfied, the resulting

map κ : R\Z→ J(fc) satisfies the semiconjugacy identity

κ(2t) = fc(κ(t))

and maps the circle R\Z onto the Julia set J(fc).

This makes whether the Julia set of a polynomial is locally con-

nected or not a very important character for J(fc), and similarly for

the Mandelbrot set M . The existence of a quadratic polynomial with

non-locally connected Julia set is proved in [Sor]. Milnor gave a way to

get a quadratic polynomial with non-locally connected Julia set by tun-

ings in [Mil4]. G. Levin [Levin] gave a class of infinitely renormalizable

quadratic polynomials with non-locally connected Julia sets, while the

Mandelbrot set is locally connected at such parameters. There is a dis-

cussion on the local connectivity of Julia sets of polynomials and rational

maps by A. Dezotti and P. Roesch in [DR].

As for the hyperbolic maps, we have [Mil1]

Theorem 2.2.6. If the Julia set of a hyperbolic map is connected, then

it is locally connected.

Theorem 2.2.7. If U is a simply connected Fatou component for a hy-

perbolic map, then the boundary ∂U is locally connected.

Either one of the two theorems implies local connectivity of Julia set

of a hyperbolic map in M . Theorem 2.2.5 guarantees ψc extends to ∂D

for maps with locally connected Julia sets, which enables us to define the

following combinatorial structure for these quadratic polynomials.

Now we introduce the lamination models for quadratic polynomials

with locally connected Julia sets. Let
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Lc = {l : l is a chord in D

in the boundary of the convex hull of ψ−1
c (z), z ∈ J(fc)}.

A chord l is called a leaf of the lamination, while a connected component

of D \Lc is called a gap. Lc is an invariant lamination. This means that

Lc is a closed set and Lc is forward and backward invariant . Forward

invariant means that if l is a chord in Lc with end points z1 and z2, then

the chord joining z2
1 and z2

2 is also in Lc. We denote this chord by l2.

This condition is empty when z1 = −z2, that is, when z2
1 = z2

2 . Backward

invariant means that if l is a chord in Lc, then the two chords l1, l2 with

l21 = l22 = l are both in Lc.

Let µc be the chord or leaf of Lc such that ψc(µc) is the point of least

possible period in the boundary of the Fatou component F1 of fc which

contains fc(0), and such that µc is not separated from ψ−1
c (∂F1) by any

other leaf of Lc. The end points of µc are e2πip and e2πip̄, where p and

p̄ are both odd denominator rationals in [0, 1] of the same period under

x → 2x mod 1, and also of the same period as 0 under fc (the only

exception to this is when c = 0, for which the lamination L0 is empty).

Now denote the lamination Lc by Lp = Lp̄.

The lamination Lp then can be used to describe completely the dy-

namics of fc according to [Thu2]. µc = µp (µp̄) is the minor leaf of Lp

(Lp̄). It is the image of the longest leaf in Lp (Lp̄).

There is a critically finite branched covering map sp : C̄ → C̄ such

that

sp(z) = z2 for |z| ≥ 1,

sp(Lp) = Lp.

sp maps gaps to gaps. Note that ψc can be extended to all of C̄ to satisfy

ψc ◦ sp(z) = fc ◦ ψc(z) ∀ |z| ≥ 1.
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Moreover, sp can be chosen so that ψc is a homeomorphism on the pre-

images of each Fatou component. In this way, sp is uniquely determined,

up to topological conjugacy for every Lp. We can also choose sp such

that 0 is the finite critical point and periodic under sp, of the same

period as 0 under fc. We call a minor leaf which is not separated from 0

by other minor leaves a minimal minor leaf [Thu2]. More can be found

in [Ree2] about the relationship between Lp, the lamination map sp and

the quadratic critically finite polynomial which is Thurston equivalent to

sp (see below).

2.3 Thurston equivalence

Thurston equivalence for critically finite branched coverings is a type of

homotopy equivalence. Let

X(f) = {fn(c) : c is any critical point of f , n > 0}

be the post-critical set for a C1 map f : C̄→ C̄.

Definition 2.3.1. Let f and g be two critically finite branched coverings.

X(f) and X(g) are the post-critical sets. Then f and g are Thurston

equivalent if there are orientation-preserving homeomorphisms χ1 and

χ2 : C̄→ C̄ such that

χ1(X(f)) = X(g), χ2(X(f)) = X(g),

χ1 ∼ χ2 rel X(f),

χ1 ◦ f = g ◦ χ2.

We use ∼ to denote the isotopy between two homeomorphisms. The

branched coverings fc and sp described in Section 2.2 are Thurston equiv-

alent.
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While most people are more familiar with this definition, there is

another description which is equivalent to this definition. Since we will

use it in the following to identify the condition of a critically periodic

map being Thurston equivalent to a mating, we also present it here.

Definition 2.3.2. Let f and g be two critically finite branched cover-

ings with post-critical sets X(f) and X(g), then f and g are Thurston

equivalent if there exists a homotopy ht : C̄ → C̄, t ∈ [0, 1] of critically

finite branched coverings, and an orientation preserving homeomorphism

ϕ, such that

h0 = ϕ ◦ f ◦ ϕ−1,

h1 = g,

X(ht) = X(g) for any t ∈ [0, 1].

This is denoted as f 'ϕ g in [Ree2]. For the equivalence of the two

definitions, see Section 1.4, [Ree2].

In the last section, we saw how to obtain two odd denominator ra-

tionals p, p̄ ∈ [0, 1] from a critically periodic quadratic polynomial fc.

Conversely, given any odd denominator rational p ∈ [0, 1], there is a crit-

ically periodic quadratic polynomial fc such that fc ' sp. Moreover, fc

is unique if we choose it to be of the form fc(z) = z2 + c. Thus there

is a 2 to 1 map from the set of odd denominator rationals in [0, 1] to

critically periodic quadratic polynomials of the form z2 + c, since p and p̄

correspond to the same polynomial. We shall show in our Theorem 3.5.1

that this map admits a certain kind of continuity.

2.4 Thurston equivalence implies semiconjugacy

In Definition 2.3.2 for Thurston equivalence between critically finite branched

coverings, by Section 4.1 [Ree2], for a critically finite rational map f and
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a critically finite branched covering g with f 'ϕ g, let ϕ be a topological

conjugacy between f and g in neighbourhoods of orbits of critical points

of f and g. Then there is a well-defined sequence of homeomorphisms

which satisfies

ϕ ◦ gn = fn ◦ θ(n)

with θ(0) = ϕ. Moreover,

lim
n→∞

θ(n) = θ

exists, and satisfies

θ ◦ g = f ◦ θ

which gives a semiconjugacy between the two maps being Thurston equiv-

alent.

For the proof of the convergence of the sequence θ(n), see P48-49

[Ree2]. θ needs not to be a homeomorphism, but is a surjective map on

C̄. θ is a homeomorphism from some neighbourhood of the forward orbits

of the critical points of f to a neighbourhood of the forward orbits of the

critical points of g. There are some particular properties on the map θ

when g is a lamination map, see Section 4 in [Ree2]. This sequence of

homeomorphisms θ(n) and the semiconjugacy θ will be used in Section 8.

2.5 Thurston’s criterion

Now we want to introduce Thurston’s criterion for judging whether a

critically finite branched covering is Thurston equivalent to a rational

map, which is closely related with the definition of mating. The following

definitions are from [Tan1].

Definition 2.5.1. Let F be a post-critically finite branched covering of

degree d ≥ 2 on C̄.
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(1) A simple closed curve γ is non-peripheral if γ ∩ X(F ) = ∅ and

each connected component of C̄ \ γ contains at least two points of X(F ).

(2) A system of curves Γ = {γ1, γ2, · · · , γn} is called a multicurve, if

it consists of simple closed, non-peripheral, disjoint, and non-homotopic

(rel X(F )) curves.

(3) To each multicurve Γ we associate a non-negative matrix FΓ =

(fij)n×n by: for γi, γj ∈ Γ, if none of the connected components of

F−1(Γj) is homotopic (rel X(F )) to γi, set fij = 0; if, say, δ1j , δ2j , · · · , δkj
are the connected components of F−1(γj) homotopic to γi rel X(F ), set

fij = Σk
p=1(1/deg(F : δpj → γj)).

(4) We denote by λ(Γ) or λ(FΓ) the leading eigenvalue of FΓ. It is

well defined since FΓ is a non-negative matrix.

(5) A multicurve Γ is called F-invariant if for each γj ∈ Γ, each

connected component of F−1(γj) is either peripheral, or homotopic to a

curve of γ (rel X(F)).

(6) A F-invariant multicurve Γ is called a Thurston obstruction if

λ(FΓ) ≥ 1.

Now we can state Thurston’s criterion relying on the former defini-

tions.

Theorem 2.5.2. A post-critically finite branched covering F of degree

d ≥ 2 with hyperbolic orbifold [McM2] is Thurston equivalent to a rational

map G if and only if there are no Thurston obstructions for F . Moreover,

G is unique up to conjugacy by Möbius transformations.

There is a proof for the theorem in [DH3].
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2.6 Tuning

The notion of tuning was also invented by Douady and Hubbard [Dou2]

[Dou3]. We only give the definition here by our lamination maps. The

tuning of sp by st, denoted by sp ` st, is the branched covering sr, (p, t, r

are all odd denominator rationals in (0,1)) up to Thurston equivalence,

where the lamination Lr is obtained from Lp and Lt as follows.

Let Gp be the image of the central gap of the lamination Lp. Lp ⊂ Lr
and all leaves of Lr \ Lp are in the grand (forward and backward) orbit

of Ḡp. Note that µp ∈ ∂Ḡp and Gp is separated from 0 by µp. Since Lr is

invariant, as long as leaves in Ḡp are defined, we can get the other leaves

by forward and backward iterations of the map z → z2 on S1. Now we

define Lr ∩ Ḡp, this is determined by Lt as follows. There is a continuous

map ψ : D→ Gp, such that

ψ(Lt) = Ḡp ∩ Lr,

ψ(z2) = smp ◦ ψ(z),

ψ ◦ st = smp ◦ ψ on Gp,

in which m is the period of 0 under sp. ψ is a homeomorphism on the

gap Gp, moreover, ψ−1 extends continuously to map Ḡp to D̄, map leaves

on ∂Gp to points.

The notion of tuning is used in [Dev] to compute angles of some rays

landing on M .

2.7 Mating

Matings of polynomials give a way to describe the dynamics of some ratio-

nal maps, and in some cases, to obtain a partial model of some parameter

slices. Computer pictures of some rational parameter slices [Tim2] show

the appearance of some Mandelbrot-like sets, often with some particular
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limbs truncated. This must have been part of the motivation for the

study of mating.

Mating can be regarded as a topological structure or as a structure

with at least some conformal information. It can in some cases be used

more generally than for post-critically finite polynomials. However, this

thesis mainly restricts to the case of critically periodic polynomials and

the definition of mating used is a topological one, based on the idea of

Thurston equivalence. As a critically finite branched covering, up to

Thurston equivalence, we can define the mating of any two critically

periodic quadratic polynomials. As we are defining the mating up to

Thurston equivalence (at least initially), we may start from two critically

finite branched coverings instead of polynomials. These covering maps,

although themselves not being critically periodic quadratic polynomials,

are Thurston equivalent to them.

Now we directly present the definition using the lamination map sp

with respect to an odd denominator rational p ∈ (0, 1). Essentially we

use formal mating in [Tan1] by Thurston equivalence while the definition

of conformal mating in [AY] is a finer version. As mentioned in [YZ],

these definitions are presumably equivalent.

Definition 2.7.1. Let p and q be any two odd denominator rationals in

[0, 1]. We define the formal mating of sp with sq, which is denoted by

sp q sq, to be:

sp q sq(z) =

{
sp(z) for |z| ≤ 1
(sq(z

−1))−1 for |z| ≥ 1
(2)

Thus sp q sq is a critically periodic branched covering on C̄. Now if

there is a rational map R, such that sp q sq is Thurston equivalent to R,

then we say sp and sq are matable and call R a mating of sp and sq.

This definition can be generalized to degree d > 2 laminations. For
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degree d polynomials we can still construct invariant laminations for these

polynomials. For an invariant lamination L of degree d ≥ 2, if a leaf

l ∈ L has endpoints z1, z2, then there is a leaf ld ∈ L with endpoints

zd1 , z
d
2 unless zd1 = zd2 . The d-preimages of each leaf l ∈ L are all in L.

Each gap G of L has a finite number of preimages which are mapped

under branched coverings to G. The sum of the degrees of these maps is

d. If L is an invariant lamination of degree d with no critical leaves, all

finite sided gaps are mapped forward homeomorphically. Then we can

define a critically finite branched covering sL of degree d such that

sL(L) = L, sL(z) = zd on S1.

If L1, L2 are two invariant laminations of degree d, then we can define

sL1
q sL2

(z) =

{
sL1

(z) for |z| ≤ 1
(sL2

(z−1))−1 for |z| ≥ 1
(3)

Although we mainly work with this definition related with lamination

maps, we still want to give the definition in another way as our Theorem

4.2.2 follows this definition. Now we present the following definition of

conformal mating relying on external rays to substitute (2) from [AY].

Consider two monic d ≥ 2 polynomials f1(z) = zd + · · · and f2(z) =

zd + · · · with locally connected Julia sets. Let

C̃ = C ∪ {∞e2πit : t ∈ [0, 1]}

be the blow up of C̄ at ∞. For each fi, i = 1, 2, define

fi(∞e2πit) =∞e4πit

on C̃i.

Let C̃1 = C̃2 = C̃, let C̃1 ·∪ C̃2 be the disjoint union. Let Σ =

C̃1 ·∪ C̃2/ ∼∞, where ∞e2πit1 ∼∞ ∞e2πit2 as long as t1 = −t2 with

ti ∈ [0, 1) for i = 1, 2. By restricting on each C̃i to be fi we get a well
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defined map F on Σ. Recall that in Section 2.2 there exists a continuous

map ψi : {z : |z| > 1} → C̄ \K(fi) for i = 1, 2, which is easily extended

onto {z : |z| > 1} ∪ {∞e2πit : t ∈ [0, 1]}. Now define the external ray

κi(t) = ψi({re2πit : 1 < r ≤ ∞e2πit}) of angle t on C̃i (hence on Σ) for

i = 1, 2. Let κi(t) be the closure of the external ray κi(t) of angle t on

each C̃i. Define an equivalent relationship ∼κ on Σ:

x ∼κ y as long as there exists a finite sequence of closed external rays

{ ¯κij (tj) : j = 1, · · · , k, ij = 1, 2} such that

κij (tj) ∩ κij+1
(tj+1) 6= ∅ for 1 ≤ j ≤ k − 1 and x ∈ κi1(t1), y ∈ κik(tk).

Definition 2.7.2. Now if Σ/ ∼κ is a 2-sphere, then we say f1 and f2

are topologically matable. If there exists a rational map R : C̄ → C̄ and

a pair of semiconjugacies ψi : K(fi)→ C̄, i = 1, 2, such that

R ◦ ψi = ψi ◦ fi

and

ψi is conformal on K(fi)
o = int(K(fi)), i = 1, 2,

then we say f1 and f2 are conformally matable. R is called a conformal

mating of f1 and f2, denote this by R ≈ f1 q f2.

There is obviously a relationship that conformally matable ⇒ topo-

logically matable.

2.8 Tan Lei’s Theorem

Tan Lei’s Theorem is derived from a special case of Thurston’s Theorem

for critically finite branched coverings. Thurston’s criterion gives neces-

sary and sufficient conditions for a critically finite branched covering to

be Thurston equivalent to a rational map. This theorem can, of course,
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be applied to critically finite branched coverings that are matings, and

Tan Lei’s Theorem [Tan1] (also proved by Mary Rees in her manuscript

[Ree1]) adapts this condition to a very simple one. We state it only in

the critically periodic case.

Tan Lei’s Theorem. let p and q be two odd denominator rationals, then

sp q sq is Thurston equivalent to a rational map if and only if µp and

µ−q are not separated from 0 in D̄ = {z : |z| ≤ 1} by the same minimal

minor leaf.

Note that the condition on µp and µ−q are not separated from 0 in D̄ by

the same minimal minor leaf (or say that µp and µq are not in conjugate

limbs of the lamination model) is equivalent to say that, the polynomials

which are Thurston equivalent to sp and sq are not in conjugate limbs of

the Mandelbrot set.

2.9 Recognising matings and the lamination maps up to
Thurston equivalence

In this section we prove a lemma on recognizing the conditions of a

critically periodic branched covering being a mating. We will restrict to

the degree 2 case.

Lemma 2.9.1. Let f be a critically periodic branched covering of degree

2. Then f is Thurston equivalent to a mating spq sq if and only if there

exists a closed loop γ ∈ C̄ \X(f) which separates the two critical orbits

of f , such that f−1(γ) is connected and isotopic to γ in C̄ \ X(f) and

f : f−1(γ)→ γ preserves orientation.

Proof. The idea of the proof is from [Exa], we only give a sketch here.

By the first definition of Thurston equivalence, we can assume γ =

f−1(γ) = S1 and f(z) = z2 on the unit circle S1, or we can find a map
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g ' f with these properties. Consider the two maps f4 and f4 such

that

f4(z) =

{
f(z) for |z| ≤ 1
z2 for |z| ≥ 1,

f4(z) =

{
z2 for |z| ≤ 1
f(z) for |z| ≥ 1.

f4 and f4 are critically periodic branched coverings with fixed critical

points at ∞ for f4 and 0 for f4. By a folklore result (known as Levy’s

Theorem since he considered the problem in his thesis), f4 and f4 do

not have any Thurston obstructions, that is, they satisfy the condition

for being Thurston equivalent to rational maps. Since they have fixed

critical points of maximum multiplicity (at ∞ and 0), they are Thurston

equivalent to quadratic polynomials. So there are odd denominator ra-

tionals p, q ∈ (0, 1) such that f4 ' sp and f4 ' sq. We omit the

details but the homotopy f t between sp and f4 can be chosen so that

f t(z) = z2 on S1 for all t, so is the homotopy ft between sq and f4. Now

the combination of the two homotopies gives a new homotopy f̃t between

f and sp q sq:

f̃t(z) =

{
f t(z) for |z| ≤ 1
ft(z) for |z| ≥ 1

So f ' sp q sq by Definition 2.3.2.

For the other direction, if f ' sp q sq, then there are orientation-

preserving homeomorphisms χ1 and χ2 : C̄→ C̄ such that

χ1(X(f)) = X(sp q sq), χ2(X(f)) = X(sp q sq),

χ1 ∼ χ2 rel X(f),

χ1 ◦ f = (sp q sq) ◦ χ2.
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In this case choose the loop γ = χ−1
2 (S1), one can check that the

requirements on γ in the theorem are satisfied.

The closed loop γ is called an invariant circle for f (of course not

unique). We will use this lemma to show the critically periodic maps we

get are matings in Section 8.

2.10 Identifying the map sp associated with a particular
mating

Suppose we have a degree two critically periodic branched covering f

with a periodic critical point c1 of period m and an invariant circle γ.

We already know that f ' spqsq for some odd denominator rational p by

Lemma 2.9.1, with p being periodic of period m under the map z → 2z

mod 1. Then how do we find this p? One way is to use a sequence of arcs

joining X(f) to the invariant circle γ as showing in the following lemma.

Lemma 2.10.1. Let f be as above, and let p ∈ (0, 1) be an odd de-

nominator rational. There exists a family of non-self-intersection arcs ξj

joining sjp(0) with e2πi2j−1p for 0 ≤ j < m which is disjoint from Lp ∪ S1

except for the endpoint e2πi2j−1p (when j = 0 replace e2πi2−1p by e2πi2m−1p)

such that ξj+1 = sp(ξj). There exists a non-self-intersection arc ξ′′0 join-

ing the point x ∈ S1 with 0 where sp(x) = e2πip but x 6= e2πi2m−1p and

ξ′′0 does not intersect Lp ∪ S1 besides at x. Now suppose there exists an

arc ζj joining f j(c1) with γ for 0 ≤ j < m satisfying ζj+1 = f(ζj). Let

ζ ′j ⊂ f−1(ζj+1) be the arc joining f j(c1) with f−1(γ) for 0 ≤ j < m − 1

and ζ ′m−1 ⊂ f−1(ζ0). Let ζ ′′0 = (f−1(ζ1) \ ζ0) ∪ {c1}. Suppose that there

are two orientation-preserving homeomorphisms Θ and Θ′ such that

Θ(f−1(γ)) = γ, Θ(ζ ′j) = ζj for 0 ≤ j < m,

Θ′(f−1(γ)) = S1, Θ′(ζ ′j) = ξj for 0 ≤ j < m,
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Θ′(ζ ′′0 ) = ξ′′0 .

Then we have

f ' sp q sq

where q is also an odd denominator rational in (0, 1).

Proof. Write χ1 = Θ′ ◦Θ−1, then χ1(γ) = S1. Without loss of generality

assume that sp(ξj) = ξj+1 for 0 ≤ j < m − 1, sp(ξm−1) = ξ0. We can

also assume that sp(z) = sp(−z) ∀ z ∈ C and ξ′′0 = −ξ0. Θ′ maps critical

orbit c1 of f to critical orbit of sp. Then there is a homeomorphism χ2

of C such that

χ1 ◦ f = sp ◦ χ2 (4)

Actually there are two such kind of homeomorphisms z → χ2(z) and

z → −χ2(z) because sp(z) = sp(−z).

Now χ1(γ) = S1, so χ1 ◦ f ◦ χ−1
2 = sp. Then

χ−1
2 (S1) = f−1 ◦ χ−1

1 ◦ sp(S1) = f−1(γ),

χ−1
2 (ξj) ⊂ f−1 ◦ χ−1

1 ◦ sp(ξj) = f−1 ◦ χ−1
1 (ξj+1) = f−1(ζj),

when j = m− 1 replace j + 1 by 0.

Note that we also have χ−1
2 (ξ′′0 ) = χ−1

2 (−ξ0) ⊂ f−1(ξ1), so either

χ−1
2 (ξ0) = ζ ′0 or χ−1

2 (−ξ0) = ζ ′0. Replacing χ2 by −χ2 if necessary, we

can assume

χ−1
2 (ξ0) = ζ ′0.

Then χ−1
2 (s−1

p (ξ1) \ ξ0) = f−1(ζ1) \ ζ ′0. Now s−1
p (ξ1) separates D̄ into 2

halves and f−1(ζ1) separates the disc containing c1 bounded by f−1(γ)

into 2 halves. We know that there exists a homeomorphism Θ′ which

maps ξ0 and s−1
p (ξ1) to the same sets as χ−1

2 . So Θ′ and χ−1
2 must also

both map ξj to ζ ′j for 1 ≤ j < m, in particular
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χ2(f j(c1)) = sjp(0)

for 0 ≤ j < m. So f ' sp q h for some degree two branched covering h

which has a fixed critical point and the other critical point periodic. So

h is Thurston equivalent to a critically periodic degree two polynomial

(from Levy’s Theorem mentioned in section 1.2) and hence h ' sq for

some odd denominator rational q. Now we get f ' sp q sq as required.

Figure 2 shows an example of the curves γ, f−1(γ), ζj , ζ
′
j , ξj , ζ

′′
0 , ξ

′′
0

with m = 3 (of period 3).

The technique will be used later in Section 9 to recover the mating

components.

c1
0

γ

f−1(γ)

ζ0

ζ ′0

ζ ′′0

−→

S1

ξ0

ξ′′0

x

ζ1

ζ ′1

ζ2

ζ ′2

ξ1

ξ2

Figure 2: An example on getting the sp map with m = 3

2.11 Conjugacy on Julia sets between R and R∗ on Perm′(0)

Now we prove a proposition which will be used in Section 8 on the con-

jugacy of dynamics between the ”center” R of a hyperbolic component

and its ”root” R∗ on their Julia sets in the parameter slice Perm′(0).
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Proposition 2.11.1. Let R be the critically periodic quadratic rational

map with two critical points c1(R), c2(R) of period m and m′, let R∗ be on

the boundary of the hyperbolic component of R with one periodic critical

point c2(R∗) of period m′, with the parabolic periodic point v of period m

described in Section 4. c1(R∗) is attracted to v under iterations of Rm∗

(we will simply write these symbols c1(R), c2(R), c1(R∗), c2(R∗) as c1, c2

if there is no confusion about which dynamical planes these points are

on). Then there is a homeomorphism ϕ : C̄→ C̄, such that

ϕ(J(R)) = J(R∗)

and

ϕ ◦R = R∗ ◦ ϕ on J(R).

On dynamics of the hyperbolic map R, because c1 is of period m,

there is one and only one repelling periodic point x′ on the boundary of

the Fatou component containing c1(R) of period dividing m. As the first

step for proving the proposition, we show the following lemma.

Lemma 2.11.2. There exists a flow of homeomorphisms ϕt : C̄→ C̄, t ∈

[0,∞), such that ϕt → ϕ : C̄→ C̄ uniformly as t→∞. ϕ is a continuous

map which satisfies

ϕ ◦R∗ = R ◦ ϕ

on J(R∗). Moreover, ϕ is a homeomorphism from C̄\J(R∗) to C̄\J(R).

Proof. Let M3 = {v, ..., Rm−1
∗ (v)} be the parabolic cycle. We start with

a neighbourhood U0 of

m−1⋃
i=0

∞⋃
k=0

Rkm+i
∗ (α)∪M3, where α is an arc joining

c1(R∗) with Rm∗ (c1(R∗)). We can choose the neighbourhood U0 to satisfy

Ū0 ⊂ R−1
∗ (Int(U0))
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A similar set V0 can be chosen on the dynamical plane of R, that is,

neighbourhoods of

m−1⋃
i=0

Ri(β), in which β is an arc from c1(R) to x′.

Rm(β) = β and β ∩ J(R) = {x′}. We also require that

V̄0 ⊂ R−1(Int(V0)).

Now choose a homeomorphism ϕ0 : C̄ → C̄ isotopic to the identity such

that

ϕ0(U0) = V0.

Then define a homeomorphism ϕ1 : C̄→ C̄ via the map ϕ0 by

ϕ0 ◦R = R∗ ◦ ϕ1

on C̄ \ R−1
∗ (U0). Let ϕ1 = ϕ0 on U0. Let ϕt, t ∈ [0, 1] be an isotopy

between ϕ0 and ϕ1 which is constant on U0. Define the homeomorphisms

ϕt+n, t ∈ [0, 1], n ∈ N inductively by

ϕt+n ◦R∗ = R ◦ ϕt+n+1 (5)

on C̄ \R−n∗ (U0), and

ϕt+n = ϕt+n+1 (6)

on R−n∗ (U0). Then ϕt ◦Rn∗ = Rn ◦ ϕt+n on J(R∗). So

d(ϕt+n+1(z), ϕt+n(z)) = d(S ◦ ϕt+1 ◦Rn∗ (z), S ◦ ϕt ◦Rn∗ (z))

where S is a local inverse of Rn suitably chosen. R expands uniformly

on a neighbourhood of J(R), say the expanding factor is 1
λ , 0 < λ < 1.

Then S contracts by the factor λn. So

d(ϕt+n+1(z), ϕt+n(z)) ≤ Cλn sup
w∈U0

d(ϕt(w), ϕt+1(w)) ≤ C1λ
n
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for t ∈ [0, 1] and z ∈ R−n∗ (U0). This forces ϕt+n to converge uniformly on

J(R∗). In particular, ϕn converges uniformly on J(R∗) to a continuous

map ϕ : J(R∗) → J(R). Convergence on C̄ \ J(R∗) is guaranteed by

(6), as for any point z ∈ C̄ \ J(R∗), there is some integer n0 such that

z ∈ (C̄ \ R−n∗ (U0)) for all n > n0. This means ϕt+n(z) will be constant

in n for all t ∈ [0, 1] and n > n0. Moreover, by (5) , set t = 0 now, let

n→∞, we get

ϕ ◦R∗ = R ◦ ϕ (7)

on J(R∗).

Now we continue to prove Proposition 2.11.1 by showing that the map

ϕ we get in the last lemma is in fact a homeomorphism on J(R∗).

Proof of Proposition 2.11.1:

Proof. We already have the map ϕ : C̄ → C̄ such that ϕ ◦ R∗ = R ◦ ϕ

on J(R∗). Now we show that it is injective on J(R∗). First note that

ϕ−1(z) is connected for all z ∈ C̄. To see this, note that

ϕ−1(z) =
⋂
δn>0

ϕ−1{|w − z| ≤ δn}

where δn is any positive sequence with lim
n→∞

δn = 0. Since ϕn → ϕ

uniformly, by suitable choice of δn,

ϕ−1
n {|w − z| ≤ δn

2 } ⊂ ϕ
−1
n {|w − z| ≤ δn} ⊂ ϕ−1

n {|w − z| ≤ 2δn}.

By restricting to a subsequence of n, we can assume

ϕ−1
n+1{|w − z| ≤ 2δn+1} ⊂ ϕ−1

n {|w − z| ≤ δn
2 }.

So ϕ−1(z) =
⋂
δn>0

ϕ−1{|w − z| ≤ δn
2
}, as the intersection of a decreasing

sequence of connected sets, is connected.
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Suppose ϕ−1(z0) is not a point for some z0 ∈ J(R). We can assume

ϕ−1(z0) ⊂ J(R∗) because ϕ(C̄ \ J(R∗)) = C̄ \ J(R) and ϕ is a homeo-

morphism on C̄ \ J(R∗) by Lemma 2.11.2. Let P (R∗) = X(R∗), where

X(R∗) is the post-critical set. We will show that the lift of a subset of

Rn∗ (ϕ
−1(z0)) to the universal cover of C̄ \P (R∗) has diameter tending to

∞. To achieve this we use the fact that R∗ is expanding with respect to

the Poincaré metric.

Let W be a small neighbourhood of the parabolic cycle such that

W ∩J(R∗) ⊂ R∗(W ), and diam(ϕ−1(z0) \W ) ≥ δ0 > 0. The diameter is

considered in the Poincaré metric. Now consider the set Rn∗ (ϕ
−1(z0))\W

for all n and lift it to the universal cover of C̄ \ P (R∗). Let Ã be the

covering space of a set A, π : ˜C̄ \ P (R∗) → C̄ \ P (R∗) be the covering

map.

Let Xn be a component of π−1(Rn∗ (ϕ
−1(z0)\W )) = π−1(ϕ−1(Rn(z0)\

W )) for each n. Now we claim that either Xn intersects two components

of π−1(W ) or diam(Xn) → ∞ as n → ∞. The second possibility is a

contradiction because if ϕ̃ : ˜C̄ \ P (R∗) → ˜C̄ \ P (R) is a lift of ϕ, then

ϕ̃ is also a uniform limit of homeomorphisms and ϕ̃−1(z) has bounded

Poincaré diameter for all z ∈ ˜C̄ \ P (R).

The first possibility can not hold for arbitrarily small neighbour-

hood W of the parabolic cycle. If it does, then we can take limits of

ϕ−1(Rn(z0)) and obtain a point z1 such that ϕ−1(z1) contains two points

which are both mapped to the parabolic cycle. But ϕ is injective on

the parabolic cycle, so R∗ ◦ ϕ−1(z1) = ϕ−1 ◦ R(z1) would then be non-

contractible or have interior, both of which are impossible.

Now we show that for some λ > 1, either diam(Xk+1) ≥ λdiam(Xk)

for any 0 ≤ k < n or Xk intersects two components of π−1(W ) for some

0 ≤ k < n. Suppose inductively that Xk−1 does not intersect two compo-
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nents of π−1(W ) for any 1 ≤ k ≤ n. If Xk−1 intersects two components

of π−1 ◦R−1
∗ (W ), let R̃∗ be the lift of R∗, then Xk = R̃∗(Xk−1) intersects

two components of π−1(W ), we are done. So suppose Xk−1 does not

intersect two components of π−1 ◦ R−1
∗ (W ) for any 1 ≤ k ≤ n. Then let

λ > 1 be such that

d(R̃∗(x1), R̃∗(x2)) ≥ λd(x1, x2) ∀ x1, x2 /∈ π−1(W )

where d denotes the Poincaré metric. Then

diam(R̃∗(Xk−1)) ≥ λdiam(Xk−1)

i.e.

diam(Xn) ≥ λdiam(Xn−1)

as we expected. So the claim holds in this case.

Remark 2.11.3. By the techniques of pinching and plumbing, Cui and

Tan can get global semi-conjugacy between R∗ and R, which is a conju-

gacy on their Julia sets, although R∗ is not J-stable according to [MSS]

and [McM2]. One can refer to [CT] for more incisive results.

3 Yoccoz puzzle

The Yoccoz puzzle is a specific example of Markov partitions for complex

dynamical systems. A Markov partition is a way to connect the dynam-

ical systems to symbolic ones. The idea is used but not restricted to the

study of dynamical systems. For more interesting discussions of the idea

of partitions, see [AW] [Sin] [Bow].
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In the following we first give the definition of Yoccoz puzzle for a

quadratic polynomial fc(z) with connected Julia set J(fc), then quote

some results of J. C. Yoccoz using the Yoccoz puzzle [Yoc] without proof.

3.1 The definition

Let fc(z) = z2 + c be a quadratic polynomial with the filled Julia set

K(fc) connected, so the finite critical point will be confined in K(fc).

We know from Böttcher’s Theorem that there is a holomorphic change

of coordinates ψc : C̄ \ D→ C̄ \K(f), such that

fc ◦ ψc = ψc ◦ z2.

The map fc has two fixed points. One is of combinatorial rotation

number 0 with a unique fixed external ray landing on it. The other one is

repelling with combinatorial rotation number m1

m2
∈ (0, 1),m1,m2 ∈ N if c

is out of the main cardioid of M . The latter one is called the α fixed point

in [Hub]. Let |ψc| = hc be the Green function, {Rθ1 , Rθ2 , · · · , Rθq}, q ∈ N

be the external rays landing on the α fixed point, in which {θ1, θ2, · · · , θq}

are the angles. The initial graph Γ0 is formed by the potential line

{z : hc(z) = R0 > 1} = H0 and part of the truncated rays Rθi (the

part inside U0 = {z : hc(z) ≤ R0, R0 > 1}). Define Un = f−1
c (Un−1)

and Γn = f−1
c (Γn−1). The sequence U0 ⊃ U1 ⊃ U2 · · · together with the

graph Γn are called the puzzle partition of fc. The closure of a component

of Un \ Γn is called a depth (level) n puzzle piece.

A nested sequence of puzzle pieces

x = (X0 ⊃ X1 ⊃ X2 · · · )

is called an end of the puzzle. I(x) =
⋂
n

Xn(x) is called the impression

of the end x.
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Let xb = (B0 ⊃ B1 ⊃ B2 · · · ), c ∈ Bi ∀ i ∈ N be the critical value

end, xc = (C0 ⊃ C1 ⊃ C2 · · · ), 0 ∈ Ci ∀ i ∈ N be the critical end. We

say the polynomial fc is combinatorially non-recurrent if the orbit of the

critical value end xb never enters CN for some N ∈ N, or else we say fc

is combinatorially recurrent.

3.2 The parameter Yoccoz puzzle

Now we define the parameter Yoccoz puzzle (parapuzzle) relying on the

Yoccoz puzzle. According to [Hub], for every r1
r2

limb of the main cardioid,

let W r1
r2

be the wake which is bounded by the two rays landing at the

parameter

c r1
r2

=
e

2πi
r1
r2

2
(1−

e
2πi

r1
r2

2
)

on ∂M . For every c ∈ W r1
r2

, we have defined the Yoccoz puzzle in the

previous subsection. Now we use U cn to denote a level n partition piece

of the polynomial fc = z2 + c, Γcn = ∂U cn.

Definition 3.2.1. The n level parameter Yoccoz puzzle MUn of the r1
r2

limb of M in the parameter space is the region

MUn = {c : c ∈ U cn}.

These regions together with their boundaries

MΓn = ∂MUn = {c : c ∈ Γcn}

are called the parameter puzzle.

The parapuzzle provides ways to transfer some geometric properties

from the dynamical plane to the parameter plane by certain techniques,

see Proposition 13.2 [Hub].
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3.3 The renormalization theory

The renormalization theory in complex dynamics is closely related with

Douady and Hubbard’s theory of polynomial-like mappings [DH1].

Definition 3.3.1. Let U ′, U be open subsets of C isomorphic to discs,

U ′ ⊂ U is relatively compact in U . A holomorphic map f : U ′ → U is

called a polynomial-like mapping of degree d if it is proper of degree d.

For a polynomial-like map, we can still define its Julia set J(f) and

filled Julia set K(f) as

K(f) = {z ∈ U ′ : fn(z) ∈ U ′ ∀ n ∈ N},

J(f) = ∂K(f).

There are some concrete examples of polynomial-like maps in [DH1]

and [McM2].

Now we begin to introduce the notion of renormalization. We focus on

a quadratic polynomial fc. Let fc(z) = z2 + c be a quadratic polynomial

with connected Julia set. We say fnc is quadratic renormalizable [McM2]

for some positive integer n > 1 if there are open discs U ′ ⊂ U ⊂ C such

that the critical point

0 ∈ U ′

and

fnc : U ′ → U

is a polynomial-like map of degree 2 with connected Julia set. Note that

the choices of U ′, U may not be unique for fnc to be quadratic renormal-

izable. If there are infinitely many n ∈ N such that fnc is renormalizable

(quadratic renormalizable), then we say fc is infinitely renormalizable,

35



or else we will say fc is finitely renormalizable. Infinitely renormalizable

polynomials turn out to have more complicated dynamics than finitely

renormalizable ones.

The renormalization theory not only links Julia sets of large scales and

smaller scales, but also plays an important role in the local connectivity

of the Julia sets and the Mandelbrot set M by the results (e) and (f) in

the following [Hub].

3.4 Some results proved using Yoccoz puzzles

The following results related with the puzzle and parapuzzle partitions

are from [Yoc]. They are demonstrated in [Hub] by Hubbard.

(a) If fc is not renormalizable, the impression of each end of its puzzle

is a point.

(b) If fc is renormalizable, then the ends of its puzzle which are preim-

ages of the critical end have impressions which are homeomorphic to

K(fc1) for some quadratic polynomial fc1 = z2 + c1 with K(fc1) con-

nected. The impressions of the other ends are points.

(c)For any piece X of the puzzle, the intersection K(fc) ∩X is con-

nected.

(d)If a polynomial fc is non-recurrent, then all its ends are points. In

particular, K(fc) is locally connected.

(e)If c ∈ M is not infinitely renormalizable, and does not have an

indifferent periodic point, then K(f) is locally connected.

(f)If c ∈ M is not infinitely renormalizable, then M is locally con-

nected at the point c.

The conclusion (e) is obtained by an enriched puzzle, see [Hub, Sec-

tion 11]. By comparing the moduli of annuli on the parameter space

with moduli of the corresponding annuli on the dynamical plane (see
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[Hub, Section 13]), the local connectivity of the Julia set can be trans-

ferred to the parameter plane, that is, for a non-infinitely renormalizable

parameter c ∈M , c has a basis of connected neighbourhoods in M .

D. Schleicher gave a proof on local connectivity of the Multibrot sets

at the Misiurewicz points [Schl1] by introducing fibers [Schl2] of compact

connected and full sets in C. The idea of fibers, in Schleicher’s words, is

to show shrinking of puzzle pieces without using specific puzzles.

The set of infinitely renormalizable parameters at which M is locally

connected is dense by Yunping Jiang [Jia].

3.5 A convergence result proved using the parameter Yoc-
coz puzzle

The following result describes the distribution of the quadratic polynomi-

als Thurston equivalent to the lamination maps sp with odd denominator

rationals p ∈ (0, 1). The statement uses lamination language.

Theorem 3.5.1. Let pn, p be odd denominator rationals in [0, 1], n ∈ N.

pn → p as n→∞, spn ' fcn(z), sp ' fc(z), where spn, sp are degree two

critically finite branched coverings associated with the laminations Lpn,

Lp (refer to [Ree2]), fcn(z) = z2 + cn and fc(z) = z2 + c are quadratic

polynomials, cn, c ∈ C. Then

lim
n→∞

cn = c′

where c′ ∈ M is the quadratic parabolic parameter being the root of the

wake on the boundary of the hyperbolic component containing c.

The proof is given in Section 5.

Remark 3.5.2. This result follows directly from many others’ results,

for example, the local connectivity of M at a parabolic parameter, see
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[Yoc], [Tan2] and local connectivity of M at every point on the boundary

of a hyperbolic component (Schleicher’s proof is for the Multibrot sets),

see [Schl1]. But there are still some reasons for us to present our proof

here. One is that the proof shows patterns of the convergence of the

polynomials with respect to the odd denominator rationals, the other is

that there is something new in the proof of local connectivity of M at the

primitive parabolic point.

4 Main results

Before giving the main results, we first want to pose a conjecture on

continuity of 2-matings (we refer to d as the degree for the notation d-

matings). Our main results mainly deal with sub-cases of it. As the cases

of hyperbolic matings should be dealt differently from the non-hyperbolic

cases, we would like to state the conjecture in two cases.

4.1 The conjectures on one-parameter continuity of 2-
matings

The conjecture on one-parameter continuity of hyperbolic 2-matings:

Conjecture 4.1.1. Let pn ∈ (0, 1) be a sequence of odd denominator

rationals such that lim
n→∞

pn = t, in which t ∈ (0, 1) is a real number. Let

q ∈ (0, 1) be an odd denominator rational. Assume furthermore that µpn

and µq are not in conjugate limbs of the lamination model of M for any

n ∈ N and e2πit and µq are not in conjugate limbs of the lamination model

of M . Let Rn be the rational map on some parameter slice Perm′(0) such

that Rn ' spn q sq. Let m′ be the period of q under the doubling map

x→ 2x mod Z. Then

lim
n→∞

Rn = Rt
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with Rt being a rational map on the parameter slice Perm′(0) containing

Rn.

In particular, if t is also an odd denominator rational and µt and µq

are not in conjugate limbs of the lamination model of M , then Rt is the

parabolic map on the boundary of the hyperbolic component containing

the rational map R ' st q sq, with one parabolic cycle corresponding to

the orbit of p and one superattractive cycle corresponding to the orbit of

q under the doubling map.

All the rational maps Rn, R,Rt are in the rational parameter space

with one of their critical points c2 being periodic of the same period with

the period of q under the doubling map x→ 2x mod Z. This parameter

slice is denoted by Perm′(0) in [Tim2]. Without special declaration we

always stay in this parameter space in the remainder of the thesis for

rational maps. As mentioned before, this conjecture, combined with the

results of control on sizes of the mating limbs in Ma (see explanation for

the notation in Section 10) will imply the general continuity result on

2-matings with one parameter fixed. The following continuity conjecture

implies Conjecture 4.1.1.

The general one-parameter continuity conjecture on 2-matings:

Conjecture 4.1.2. Let fc′(z) = z2 + c′ and fc(z) = z2 + c be two

conformally matable quadratic polynomials such that Rc ≈ fc′ q fc on

some parameter slice Perm′(0). Let cn ∈ C such that lim
n→∞

cn = c and

fcn = z2+cn is conformally matable with fc′ for any n ∈ N, Rcn ≈ fc′qfcn
on the parameter slice Perm′(0) containing Rc. Then

lim
n→∞

Rcn = Rc.

This conjecture is quite ambitious, considering the matings between

both hyperbolic and non-hyperbolic ones. The matability between non-

39



hyperbolic ones is not guaranteed, although we do have some positive

results [YZ] [AY] on this. Our Theorem 8.2.1 deals with the conjecture

in the case c is not renormalizable and c′ = −1 as a corollary of methods

from [AY].

4.2 Main results on continuity of matings

The following is a collection of main results on continuity of 2-matings

that we get throughout the thesis.

Theorem 4.2.1. Let p and q be odd denominator rationals in (0, 1)

such that spq sq is Thurston equivalent to a rational map R, that is, the

conditions of Tan Lei’s Theorem are satisfied. Let m,m′ be the period of

p, q separately under the doubling map: x → 2x mod 1. Let p′ ∈ (0, 1)

satisfy 2sp′ = p mod 1 for some large positive integer s. For some fixed

positive integer r large enough, define a sequence of odd denominator

rationals

pn = p+
2sm(p′ − p)

2(s+r+2n)m − 1
(8)

in (0, 1), n ∈ N. Let Rn ' spn q sq be the rational map in the quadratic

rational parameter slice Perm′(0) containing R, then

lim
n→∞

Rn = R∗

where R∗ is a parabolic map on the boundary of the hyperbolic component

containing the rational map R ' sp q sq described in Section 6.

This means that for n large enough, we can find degree two critically

periodic rational maps which are Thurston equivalent to spn q sq in an

arbitrary small neighbourhood of the parabolic map R∗. The geometric

significance of the sequence pn in equation (8) is explained in Section 9.
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In order to state the next theorem, we introduce the Ra family (refer

to [AY]):

Ra(z) =
a

z2 + 2z
, a ∈ C. (9)

It is an example of the parameter slice Per2(0).

Theorem 4.2.2. Let c ∈ M be a parameter outside the 1
2 -limb of M ,

such that fc = z2 + c is non-renormalizable and without non-repelling

periodic cycles. Moreover, suppose that the critical point 0 is not in the

backward orbit of the α fixed point of fc. Let cn ∈M,n ∈ N be a sequence

of hyperbolic parameters such that cn → c as n → ∞. Then there exist

unique a(c), a(cn) ∈ C, such that

Ra(c) ≈ (fc q f−1), Ra(cn) ≈ (fcn q f−1)

in the Ra family. Moreover,

lim
n→∞

a(cn) = a(c).

Remark 4.2.3. The existence of a(c), a(cn) is guaranteed by AY’s The-

orem in Section 10.1 and Tan Lei’s Theorem in Section 2.8 (in fact Tan

Lei’s Theorem is for all the critically finite quadratic polynomials, and

can be easily extended to hyperbolic ones). The condition that 0 is not in

the backward orbit of the α fixed point of fc rules out exactly the intersec-

tion of the parameter puzzle pieces MUn with M , and these parameters

are countable.

The following theorem deals with the case when all the minor leaves

µpn are in some small copy of the Mandelbrot set bounded by some

minimal minor leaf µr and all closures of Fatou components of the rational

map R ' spq sq are disjoint. Recall that µp (µq) is the minor leaf in the

lamination Lp (Lq), refer to Section 2.2.
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Theorem 4.2.4. Let pn, p, r, q all be odd denominator rationals in (0, 1),

n ∈ N. Suppose pn → p as n → ∞ such that the minor leaves µpn are

all in the small copy of the Mandelbrot set bounded by µr, µp and µq are

not in conjugate limbs of the lamination model for M , and the closures

of Fatou components of R ' sp q sq are all disjoint. Let Rn ' spn q sq,

and R∗ be the parabolic rational map on the boundary of the hyperbolic

component containing the rational map R ' sp q sq described in Section

6. Then

lim
n→∞

Rn = R∗.

The following theorem deals with the case when all closures of Fatou

components of the rational map R ' sp q sq are disjoint, which includes

Theorem 4.2.4 as a special case.

Theorem 4.2.5. Let pn, p, q all be odd denominator rationals in (0, 1)

such that lim
n→∞

pn = p and suppose that µp and µq are not in conjugate

limbs of the lamination model for M . Let Rn, R be the rational maps such

that Rn ' spn q sq, R ' sp q sq and closures of all Fatou components

of R are disjoint. Let R∗ be the rational map on the boundary of the hy-

perbolic component containing R, with one parabolic cycle (corresponding

to p) and one superattractive cycle (corresponding to q). If ϕ−1
∗ (ϕ∗(p))

contains at most three points (refer to Section 12.7 for the map ϕ∗), then

lim
n→∞

Rn = R∗.

We will use the idea of Markov partitions (see Section 12.3) for the

rational maps near R∗ to deal with it, which avoids the parabolic cycle

on the boundary of any partition element. According to Lemma 12.3.2

[Ree4], the Markov partitions persists for maps in a small neighbourhood

of R∗ on the parameter slice Perm′(0).
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5 Proof of Theorem 3.5.1: convergence of the
polynomials Thurston equivalent to the lami-
nation maps sp

In this section, we will show the dependence between odd denominator

rationals and the corresponding 2-polynomials assumes some continuity,

that is, Theorem 3.5.1.

5.1 Control of the size of limbs of M

Our tool of the proof is centred on Proposition 4.2 [Hub]. Now for a

hyperbolic component V ⊂M , let

ψV : D̄→ V̄

be the interior parametrization by the multipliers. Let

cV = ψV (1), cV,t = ψV (e2πit), t ∈ Q.

There are two external rays of M landing on cV . These two rays together

with cV cut the parameter space C into two parts. Now define the part

of C disjoint from V bounded by the two rays to be a wake WcV of the

hyperbolic component V . We call cV the root of the wake, and call the

intersection

LV, r1
r2

= M ∩WcV , r1, r2 ∈ N

the r1
r2

limb of V . Then (Proposition 4.2 [Hub])

Proposition 5.1.1. (a) Every point of M in the wake of cV is either in

V or in one of the limbs of V .

(b) There exists a function ηV : N → R with ηV (r2) → 0 as r2 → ∞,

such that

diam(LV, r1
r2

) ≤ ηV (r2).
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The proof uses the Yoccoz inequality, one can refer to P478 [Hub] for

the proof.

5.2 Proof of Theorem 3.5.1

As the situation in the satellite case is different from the primitive case,

we will prove the theorem separately in the two situations.

Proof. The Satellite Case.

In this case the wake WPp (see the following explanation) is attached

on another hyperbolic component. We prove this by orbit portrait theory,

especially, we rely on Theorem 1.2 [Mil2].

We use lp to denote the minor leaf in the lamination Lp with one end

point e2πip, l2p to denote the leaf of its image under z2 in D̄ and so on. Use

P (p) to denote the period of any odd denominator rational p under the

doubling map. Then lp, l
2
p, · · · , l

P (p)
p form a repelling cycle of period di-

viding P (p) after collapsing the leaves and polygon gaps in the lamination

Lp (the period can even be 1, in which case lp, l
2
p, · · · , l

P (p)
p form a polygon

gap). For convenience of notations, we assume after collapsing leaves and

polygon gaps in the lamination Lp, lp, l
2
p, · · · , l

P (p)
p form a repelling cycle

of period P (p). The argument can be applied to cases of periods divid-

ing P (p). Now denote the points corresponding to lp, l
2
p, · · · , l

P (p)
p after

collapsing the leaves and polygon gaps by zp1 , z
p
2 , · · · , z

p
P (p). Denote the

other endpoint of lp by e2πip̄ for p̄ ∈ (0, 1). Then the portrait associated

with the repelling orbit

Op = {zp1 , z
p
2 , · · · , z

p
P (p)}

of fc is

Pp = {{p, p̄}, {2p, 2p̄}, · · · , {2P (p)p, 2P (p)p̄}}.
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The valence υp = 2 (number of external rays landing on a point in

the repelling cycle). As lp is the minor leaf, we can define the angular

width (refer to [Mil2]) of a sector S to be the length of the open arc IS
consisting of all the angles t ∈ R/Z with Rt ⊂ S. Here we use Rt to

denote the external ray of angle t ∈ [0, 1). Then the sector bounded by lp

will have the least angular width compared with other sectors bounded

by l2p, · · · , l
P (p)
p . [p, p̄] (in the case p < p̄) or [p̄, p] (in the case p > p̄) is

called the characteristic arc of the orbit portrait Pp in [Mil2].

Now by Theorem 1.2 [Mil2], the two corresponding rays RMp , RMp̄
land on the parabolic parameter c′ which has a parabolic cycle of the

same period P (p) with portrait Pp. Denote the wake cut by the two rays

WPp , so c′ is the root of the wake. Denote the hyperbolic component in

WPp with c′ on its boundary by U . We will show that cn must tend to

c′ as n→∞.

Now following the same process, the repelling periodic orbit

Opn = {zpn1 , zpn2 , · · · , zpnP (pn)}

of fcn has portrait

Ppn = {{pn, p̄n}, {2pn, 2p̄n}, · · · , {2P (pn)pn, 2
P (pn)p̄n}}

while [pn, p̄n] (in the case pn < p̄n) or [p̄n, pn] (in the case pn > p̄n)

is the characteristic arc. The two parameter rays RMpn , RMp̄n land at a

parabolic parameter which cut a wake WPpn containing cn. Now consider

the relative positions of the minors lp, lpn on the closed unit disc D̄ and

the wakes WPp , WPpn on M .

There are two possible choices for the relative positions of the sequence

pn and the two points p, p̄. Either the sequence pn is between p and p̄

or it is not. First we will assume that all pn are between p and p̄. In
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the general case we can split the sequence pn into two sub-sequences such

that one is between p and p̄ while the other is not. Under this assumption

cn ∈ Ū ∪WPp for all n. We first consider the case p̄ < p and pn strictly

increases to p.

Whatever the choices are, pn and p̄n both will tend to p as every point

in the wake WPp is either in Ū or in one of the limbs of U (Proposition

5.1.1). The relative positions of all the leaves ln can be quite complicated,

though all of them tend to the point e2πip, Figure 3 shows a possible

relative positions of the leaves lpn and lp with subscripts 1 ≤ n ≤ 11.

p̄

p

p̄1

p1

p2

p̄2

p̄4

p4 p̄3

p3

p6

p̄6
p5

p̄5

p̄7
p7p̄8

p8

p11 p̄11

p9
p̄9

p̄10
p10

Figure 3: A possible relative positions of the leaves lpn and lp with subscripts
1 ≤ n ≤ 11 in the case p̄ < p, in order to draw the arcs clearly length of the
minors has been magnified
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Note that pn and p̄n are between tn and t̄n, where e2πitn and e2πit̄n

are the endpoints of a leaf ltn on the boundary of the gap bounded by lp

and separated from 0 by lp. So

tn → p as n→∞.

Assuming without loss of generality that

t̄n < pn < tn.

Then RMtn and RMt̄n land on a common point hn ∈ ∂M such that

hn → c′ as n→∞.

Now let WPtn ∩M = LU,tn be the limbs. According to Proposition

5.1.1,

diam(LU,tn)→ 0 as n→∞,

so it must be the case that the whole limb

LU,tn → c′ as n→∞

or else hn will not tend to c′. Then cn → c′ as n → ∞ follows from the

fact that

cn ∈ LU,tn .

Figure 4 shows a possible distribution of the wakes and external rays

of M corresponding to distributions of p, p̄, pn, p̄n in Figure 3.
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Figure 4: A possible distribution of the wakes and external rays of M corre-
sponding to Figure 3 in the case p̄ < p, in order to draw the arcs clearly area of
the wakes have been magnified

Now suppose p̄ > p and the sequence pn /∈ [p, p̄]. Using similar argu-

ments as before, the whole limb

LU,pn → c′,

however, not from interior of WPp , but from exterior of it. Here we denote

by U the hyperbolic component attached to c′ and not contained in the

wake WPp (the former U component is the one in the wake WPp). The

following two pictures show a possible relative positions of the leaves
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lpn and lp on D̄ with subscripts 1 ≤ n ≤ 12 and the corresponding

distributions of the wakes and external rays of M .

p̄

p

p1

p̄1

p̄2

p2

p3

p̄3

p4

p̄4

p5

p̄5

p̄8p8

p̄7p7

p6p̄6

p̄12

p12

p9 p̄9

p10
p̄10

p11p̄11

Figure 5: A possible relative positions of the leaves lpn and lp on D̄ with sub-
scripts 1 ≤ n ≤ 12 in the case p̄ > p, in order to draw the arcs clearly length of
the minors have been magnified
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Figure 6: A possible distribution of the wakes and external rays corresponding
to Figure 5 on M in the case p̄ > p, in order to draw the arcs clearly area of the
wakes have been magnified

Remark 5.2.1. If one does not require pn strictly increase to p, more

mixing patterns of relative positions of the leaves and wakes are allowed,

however, the convergence still holds.

Proof. The Primitive Case.

In this case the wake WPp is not attached on another hyperbolic com-

ponent. We distinguish two cases. First, if every pn is out of the interval
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[p̄, p] (by this expression we are assuming p̄ < p, the case p̄ > p is simi-

lar), according to the wake description of M near the primitive parabolic

parameter c′ [Mil2, Theorem 1.2] and the control of size of limbs of a hy-

perbolic component of M [Hub, Proposition 4.2], let U be the hyperbolic

component in WPp which contains c′ on its boundary, c′ is the root of

the wake WPp , then the convergence of cn goes as the satellite case.

Now the main case to consider is when pn is in [p̄, p], or else split the

sequence into two sub sequences, one is out of the interval [p̄, p], the other

one is in the interval. In order to deal with convergence in this situation

we will need the following definition of extremal length, which is similar

to the definition of modulus of annulus. One can refer to P10 [Ahl] for

more interesting material of the notion.

For a topological disk X with two assigned opposite edges l, l′, let Γ

denote the union of arcs in X which connect l with l′. For a conformal

metric ρ on X, denote the length of an arc γ ∈ Γ by Lρ(γ), denote the

area of X by Aρ(X). Then we call

Definition 5.2.2. Mod(X) = sup
ρ

(
inf
γ∈Γ

Lρ(γ)
)2

Aρ(X)

the modulus of X with two assigned edges l, l′ (in the cases where the

assigned edges are obvious we omit them).

We want to present the Grötzsch inequality here. It relates the mod-

ulus of an annulus with its conformal-homotopy embeddings.

Grötzsch inequality 5.2.3. Let E be an open annulus, Ej be a (finite

or infinite) sequence of open annulus. Let ϕj : Ej → E be conformal

mappings which are homotopy equivalences, with disjoint images. Then∑∞
j=0Mod(Ej) ≤Mod(E)
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One is recommended to Proposition 5.4 [BH] for a proof.

Now by the construction of the parapuzzle partition introduced in

Section 3.2, the two rays of M , RMp and RMp̄ both land on c′ ∈ ∂M , the

parabolic parameter. Let RMp and RMp̄ encounter the boundary of the

parapuzzle piece MXn(c′) (the level n parapuzzle piece containing the

parameter c′) at the two points an, a
′
n. Then

hM (an) = hM (a′n) =
R

2n
, R > 1.

Now we get a nested sequence of sector shaped domains. Every do-

main is bounded by parts of the two rays RMp , RMp′ , say rn, r′n, and

the arc joining an and a′n as part of the boundary of MXn(c′) , denote

this arc by ln and denote the closed sector area bounded by rn, r′n and

ln by MBn. ln is piecewise smooth. Denote the closed topological disc

bounded by ln, ln+1 and part ofRMp ,RMp′ by MCn. So MCn is the closure

of MBn\MBn+1. First we prove the following lemma, which will be true

for more general nested sequences with piecewise smooth boundaries.

Let Cn (n ≥ 0) be a sequence of closed topological rectangles with

piecewise smooth boundaries such that Cn and Cn+1 share a connected

common part ln of boundaries and Ci ∩ Cj = ∅ for |i − j| ≥ 2. All the

Cn lie between two smooth topological arcs I+ and I− intersecting each

other at x. Let I< be the arc connecting the other two endpoints of

I+ and I−. Let Bn be the closure of the set ∪∞j=nCj . Since ∪∞n=0Cn is

bounded, then

Lemma 5.2.4. If

∞∑
n=0

(Mod(Cn)) =∞, then

diam(Bn)→ 0

as n→∞, and
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∩∞n=0Bn = x.

Proof. There is a conformal mapping f from Bo
0 to the upper half disc

D+ = {z : |z| < 1} ∩ {z : Im z > 0}. As B0 has piecewise smooth

boundaries, f extends to the boundary of B0 by the smooth Riemann

mapping theorem. We require

f(x) = 0, f(I+) = [−1, 0], f(I−) = [0, 1]

and

f(I<) = {z : |z| = 1} ∩ {z : Im z > 0}.

Figure 7 shows a sketch of the correspondence between the two struc-

tures under f up to n = 4.

RM
p′

>−→
f

c′

a1

a2

a3

a4

a′1

a′2

a′3

a′4

l1l2l3l4

RM
p

0−1 1

∧

Figure 7: The conformal mapping f

Now we have

Mod(f(Cn)) = Mod(Cn)
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because the modulus is preserved under conformal mapping. Denote by

An = f(Cn) ∪ ¯f(Cn) (the complex conjugate of f(Cn)),

An is an annulus. Moreover

Mod(An) = 1
2Mod(f(Cn)) = 1

2Mod(Cn).

Now if

∞∑
n=1

(Mod(Cn)) =∞, then

∞∑
n=1

(Mod(An)) =∞.

Denote the closed disc bounded by the curve f(ln)
⋃ ¯f(ln) by B′n. Ac-

cording to Proposition 6.1 [Hub],

diam(B′n)→ 0 as n→∞

and

∩∞n=1B
′
n

is a single point, which forces

diam(Bn)→ 0 as n→∞

and

∩∞n=1Bn = x.

Remark 5.2.5. This lemma is a sector-shaped evolution of Proposi-

tion 6.1 in [Hub]. One can imagine that generalizations to other specific

shaped sequences will also be possible and quite useful.

Apply Lemma 5.2.4 to our case with Cn = MCn and Bn = MBn, we

see that if

∞∑
n=0

Mod(MCn) =∞, then
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lim
n→∞

diam(MBn)→ 0 and ∩∞n=1(MBn) = c′.

Now we consider the corresponding picture on the dynamical plane.

Let φc′ be the Böttcher map of c′. ΦM : C\M −→ C\ D̄ is the conformal

isomorphism in [DH2]. According to Proposition 12.4 [Hub],

Cn = φ−1
c′ ◦ ΦM (MCn)

form a new topological disc sequence inside the sector shaped area

B0 = φ−1
c′ ◦ ΦM (MB0).

B0 still has parts of the two external rays of angle p and p̄ as part of its

boundary on the dynamical plane of fc′ , the same with the equipotentials.

Moreover, (fc′)
−k maps Cn conformally onto Cn+k, where k is the period

of critical point of fc. Without loss of generality suppose Mod(C1) > 0,

then

Mod(Ckj+1) = Mod(C1) > 0, j ∈ Z.

So we have
∞∑
n=1

Mod(Cn) =∞.

Now we want to transfer the divergent results on sums of the modulus

from the dynamical plane of fc′ to the parameter plane. Now consider

the situation that c′ is in p/q limb of the main cardioid of M . Choose

a neighbourhood V of the root of the limb Mp/q, p, q ∈ N+ as small as

possible such that c′ is not in V . We have the following links:

Lemma 5.2.6. There exists a constant C ′ > 0 depending only on p/q

and V , such that for each contributing disc Ckj+1 on the dynamical plane,

the corresponding topological disc MCkj+1 sitting on the parameter plane

has modulus at least C ′.
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Proof. According to the definition of MCkj+1, if we can find a conformal

metric µ, such that Lµ(γj) has lower bounds for any curve γj in MCkj+1

joining lkj+1 and lkj+2, Aµ(MCkj+1) has upper bounds (both bounds do

not depend on j), then things are done. To achieve this, use the metric

µ = µ1 + µ2

in the proof of Proposition 13.2 [Hub].

µ1 = 2n+ν |d log ΦM |

is a metric on MCn (in fact we only care about the cases n = kj + 1).

Notice that because log ◦ΦM maps MCn to a rectangle

{(r′, θ) :
R

2n+1
< r′ <

R

2n
, p < θ < p̄},

R > 1, we multiply 2n so that the area (length) of MCkj+1 (γj) can be

competitive with the area (length) of MCkj+1 (γj) under µ2.

Choose r > 0 such that for all c′ ∈Mp/q, the discDr(α[c′]) is contained

in U0[c′] and does not intersect the q− 1 non-critical pieces of depth 1 in

the critical piece C0[c′]. Then choose r1 < r and set

A = inf
c∈Mp/q\V

inf
i=1,2

inf
{z∈Rc(θi)

⋂
(C\Dr1 )}

hc(z),

A > 0. Now if γj is a curve in MCkj+1 joining lkj+1 and lkj+2 which

starts from a potential less than A, Lµ1
(γj) can be quite small, but in this

case γj must cross a small neighbourhood of lkj+1

⋂
M , so we introduce

a second measure µ2 supported on this region to ensure that Lµ2
(γj)

is bounded below in the case that γj stays in a small neighbourhood of

lkj+1∩M . µ2 is chosen to let Lµ2
(γj) be the length in the usual conformal

metric on C of a path between {z : |z| = r1} and {z : |z| = r} for suitable

r1 and r. We define µ2 on each component U (in our case there is in fact

only one component) of F−1
i (Dr) ∩MXi(c

′), where
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Fi(c) = f ic(c)− α(c), fc = z2 + c.

Define µ2 on each U to be dFi on the image of sU , a section of a function

φi : c→ Φ(c, Fi(c)), which is an analytic branch of log(z − α[c′]).

Now Lµ(γj) is bounded below from inf{A, lp/q, r − r1,
logR

2 }, while

Aµ(MCkj+1) is bounded above by a constant depending only on c′ from

lemma 13.7 and Lemma 13.8 [Hub], and this proves our Lemma.

Remark 5.2.7. This is a corollary of Proposition 13.2 [Hub] by its proof.

The crucial point is the selection of the metric µ2 to control the modulus

of MCkj+1. One can refer to the proof of Proposition 13.2 [Hub] for the

origin of the metric.

Corollary 5.2.8.

∞∑
n=1

Mod(MCn) =∞.

Proof. This is from Lemma 5.2.6 because

Mod(MCkj+1) > C ′

for some fixed C ′ > 0 and all j ∈ Z+.

By Corollary 5.2.8 and Lemma 5.2.4,

diam(MBn)→ 0 as n→∞,

and

∩∞n=1(MBn) = c′.

Now note that

cn ∈MBNn

for some Nn ∈ N and Nn → ∞ as n → ∞. This completes the proof of

lim
n→∞

cn = c′ in the primitive case.
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Remark 5.2.9. Now if r ∈ [0, 1) is an arbitrary real number not being

an odd denominator rational and the external ray of angle r for M lands

on a non-renormalizable parameter c′ ∈ ∂M , for a sequence of odd de-

nominator rationals pn such that lim
n→∞

pn = r, by Yoccoz’s control of size

of Limbs and the orbit portrait theory, convergence of the corresponding

critically periodic polynomials fcn(z) = z2+cn Thurston equivalent to spn

still holds (this can also be deduced from Schleicher’s theory of triviality

of fibers of M at c′ in [Schl1])

lim
n→∞

cn = c′.

However, the limit map fc′(z) = z2 + c′ is no longer a parabolic

map. For example, if r is an even denominator rational, fc′(z) will be a

Misiurewicz map.

6 Outline of proof of Theorem 4.2.1: on the par-
ticular sequence of odd denominator rationals

Suppose that p is of period m, pn is of period mn, q is of period m′ under

the doubling map z → 2z on R\Z. We know that on the boundary of

the hyperbolic component containing R on Perm′(0), there is a unique

parabolic map R∗, which has the following properties:

• Let v be the point in the parabolic cycle of R∗ which attracts the

critical point c1 under iterations of Rm∗ , then Rm∗ (v) = v. The

period of v divides m.

• R∗ has two critical points c1 and c2, of which c1 is attracted to the

parabolic cycle while c2 is periodic of period m′.

• Rm∗ has multiplier 1 at the parabolic fixed point v.
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Theorem 4.2.1 is proved in three steps. First we get some particular

critically finite quadratic rational maps Rn through parabolic perturba-

tions around R∗ (the techniques are from [DH2]), then we prove these

maps are matings by finding invariant circles for them, at last we recover

the particular convergent sequence pn from Rn in equation (8). Remem-

ber that in the whole process we stay in the parameter slice of quadratic

rational maps Perm′(0) containing R. One is recommended to [Tim2]

for the structure of hyperbolic components on Perm′(0).

7 Parabolic perturbation for critically periodic
maps

The technique of parabolic perturbation started from Douady and Hub-

bard [DH2]. Later Lavaurs [Lav] and Shishikura [Shi3] developed their

theory of Écalle cylinders. The theory was then applied or generalised by

Lavaurs [Lav], Shishikura [Shi2], P. Häıssinsky [Hai], Tan Lei [Tan2], Buff

and Chéritat [BC], Buff, Écalle and Epstein [BEE] to get many beautiful

results.

Let τ(w) = −1\w, f is a parabolic map of the form f(z) = z+ z2 + ...

. A perturbed function fα has two new fixed point near 0, by moving

either one of them to 0, we can assume fα = e2πiαz + z2 +O(z3), where

α is a small number close to 0. Let

Fα(w) = τ−1 ◦ f ◦ τ(w).

Denote the critical point attracted by the parabolic point 0 of f by

c1, the corresponding critical point of the perturbed map fα by c1(α).

The following theorem tells us that one can expect to find a critically

periodic map fαn with its critical point c1(αn) being periodic of period

2n+ r + s (n, r, s are all in N+).
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Theorem 7.0.10. For n large enough, there exist αn, εn depending on

n, nαn = 1
2 +εn, lim

n→∞
εn = 0, two positive integers r, s, a point v−s(αn) ∈

f−sαn (c1(αn)) in the backward orbit of c1(αn) under fαn and in the domain

of the local inverse of fαn defined near 0 with Arg(v−s(αn)) ∈ [−π
4 ,

π
4 ],

such that

fnαn(f rαn(c1(αn))) = f−nαn (v−s(αn)) (10)

where f−1
αn denotes the branch such that f−1

αn (0) = 0 in the formula.

The theorem is proved in terms of Fαn in the following theorem. Now

use C1(αn) to denote the corresponding critical point of Fαn , we have

Theorem 7.0.11. For n large enough, there exist αn, εn depending on n,

nαn = 1
2 + εn, lim

n→∞
εn = 0, two positive integers r, s, a point w−s(αn) ∈

F−sαn (C1(αn)) in the backward orbit of C1(αn) under Fαn and in the do-

main of the local inverse of Fαn defined near ∞ with Arg(w2(αn)) ∈

[3π
4 ,

5π
4 ], such that

Fnαn(F rαn(C1(αn))) = F−nαn (w−s(αn)) (11)

where F−1
αn denotes the branch such that F−1

αn (∞) =∞.

The main idea of the proof is estimating the main terms of the forward

and backward orbits of the critical point C1(α) under perturbation, then

use the argument principle to collapse them near a small neighbourhood

of ∞.

7.1 Estimate the forward iterations

Lemma 7.1.1. For |w| large enough, we have

Fα(w) = e−2πiαw + e−4πiα + A
w + B

w2 +O( 1
w3 ).
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Proof. By the definition, Fα(w) = τ−1 ◦ fα ◦ τ(w), so

Fα(w) =
1

e2πiα

w
−

1

w2
+O(

1

w3
)

= e−2πiαw

 1

1−
[
e−2πiα

w
+O(

1

w2
)

]


= e−2πiαw(1 +
e−2πiα

w
+
A′

w2
+
B′

w3
+O(

1

w4
))

= e−2πiαw + e−4πiα +
A

w
+
B

w2
+O(

1

w3
).

In fact A and B both depend on α but are bounded for small α.

By introducing the transformation τ we map 0 to ∞. The forward

orbit of critical point c1 = c1(0) of f = f0 tends to 0 from the direction of

real axis on the left half plane, while on the w plane the modulus of points

on the orbit of C1(α) under Fα gets successively larger at beginning of the

iterations. Long term behaviour is hard to predict, but at the beginning

the map tends to have an increase of e−4πiα, which approximates 1 when

α is close to 0, just like the Fatou coordinate [Mil1] for the parabolic

map.

Because the perturbations that can create super attractive cycles are

in the domain {α : Arg(α) ∈ (−π\4, π\4)
⋃

(3π\4, 5π\4)}, so we assume

α in this range in the following.

By Lemma 7.1.1 we can easily get the following iterating expression:

Fnα (w) = e−2πinαw + e−4πiα 1− e−2πinα

1− e−2πiα
+

n∑
j=1

e−2πi(j−1)αA

Fn−jα (w)

+

n∑
j=1

e−2πi(j−1)αB

(Fn−jα (w))2
+ higher order terms.

(12)

Now let
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P = e−2πinαw, Q = e−4πiα 1− e−2πinα

1− e−2πiα
,

S =

n∑
j=1

e−2πi(j−1)αA

Fn−jα (w)
+

n∑
j=1

e−2πi(j−1)αB

(Fn−jα (w))2
+ higher order terms.

We will show that P + Q (more precisely, Q) is the dominant term

and S is of less order. We resort to induction to bound S.

Lemma 7.1.2. Denote w = Re(w) + iIm(w). There exist three small

numbers δ1, δ2 and δ3 such that for any α,w ∈ C, k ∈ N (k is not fixed)

satisfying |α| < δ1, k2|α| < δ2, |w| > 1
δ3

,w has positive real part and

Re(w)� |Im(w)|, the following holds:

|F lα(w)| ≥ |w|+ l

2
(13)

for all l ≤ k.

Proof. For l = 0, the inequality obviously holds. Now suppose the in-

equality (13) holds for l = j′ ≤ k − 1, we want to prove it holds for

j′ + 1 ≤ k.

First, when n = j′ + 1,

P +Q = (cos(2π(j′ + 1)α)− i sin(2π(j′ + 1)α)) (Re(w) + iIm(w))

+ (1 +O(α))
1− cos(2π(j′ + 1)α) + i sin(2π(j′ + 1)α)

2πiα+O(α2)
= cos(2π(j′ + 1)α)Re(w) + sin(2π(j′ + 1)α)Im(w)

+
sin(2π(j′ + 1)α)

2πα
+ i cos(2π(j′ + 1)α)Im(w)

+i

(
− sin(2π(j′ + 1)α)Re(w) +

cos(2π(j′ + 1)α)− 1

2πα

)
+O(α2).

Choose δ1 and δ2 small enough, so k|α| < k2|α| < δ2 will be small

enough, such that sin(2π(j′+1)α) will be close enough to 0 and cos(2π(j′+
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1)α) will be close enough to 1. Thus the main terms in the above expres-

sion will be

cos(2π(j′+1)α)Re(w)+
sin(2π(j′ + 1)α)

2πα
+i cos(2π(j′+1)α)Im(w) (14)

Note that
cos(2π(j′ + 1)α)− 1

2πα
can be controlled because its first term

will be less than O(k2|α|). Now we deal with the term

S =

j′+1∑
j=1

e−2πi(j−1)αA

F j
′+1−j
α (w)

+

j′+1∑
j=1

e−2πi(j−1)αB

(F j
′+1−j
α (w))2

+ higher order terms.

Suppose now |e−2πi(j−1)α| < M for all j − 1 ≤ k. By assumption (13)

holds for all integers≤ j′. Choose δ3 small enough such thatMAδ3 <
1

100 .

So the dominant term of S will be controlled by j′+1
100 , whose influence can

be easily offset by the term
sin(2π(j′ + 1)α)

2πα
in P+Q which approximates

j′+ 1 and is of the same sign (positive) with cos(2π(j′+ 1)α)Re(w) if we

choose δ1 small enough. In other words, it can contribute to |F j
′+1
α (w)|

of enough amount to make it increase by 3
4(j′ + 1).

By all the analysis just now for P +Q and S we can guarantee that

|F j
′+1
α (w)| > |w|+ j′+1

2

for suitable choices of δ1, δ2 and δ3. By mathematical induction this

proves the lemma.

From now on we will assume nαn = 1
2 + εn, in which εn is a small

complex number depending on n and lim
n→∞

εn = 0. By this expression

we can see that when n is a large integer αn is quite close to 1
2n , a real

number. So we sometimes will treat it as a small real number, actually

all the things hold for small complex number εn with αn substituted by

|αn|. Now we show that
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Theorem 7.1.3. Let |w| > 1
δ3
, Re(w)� Im(w). For n large enough, εn

a small complex number depending on n and lim
n→∞

εn = 0, nαn = 1
2 + εn,

then for all k|αn| < 3
4 , we have

|F kαn(w)| > 1

2π
k. (15)

This gives us quite efficient technique to bound the R term before. In

order to prove this we still need several lemmas.

Lemma 7.1.4. For term Q = e−4πiαn
1− e−2πikαn

1− e−2πiαn
, choose δ1 small

enough, we have

|Q| >
√

2

2π
k (16)

for all k|αn| < 3
4 and |αn| < δ1.

Proof. In the proof we treat αn as a small real number, all the things are

true for small complex numbers close to 1
2n . First note that

|Q| = (1 +O(αn))
1− e−2πikαn

1− e−2πiαn

= (1 +O(αn))
1− cos(2πkαn) + i sin(2πkαn)

2πiαn +O(α2
n)

= (1 +O(αn))(1 +O(α2
n))

1− cos(2πkαn) + i sin(2πkαn)

2πiαn
.

Let S =
1− cos(2πkαn) + i sin(2πkαn)

2πiαn
. Now consider the situation

in two cases. First assume kαn <
1

4
, then

sin(2πkαn)

2παn
>

2

π

2πkαn

2παn
=

2

π
k, (17)

so obviously (16) holds in this case. When 1
4 ≤ kαn <

3
4 ,

|S| =
√

(1− cos(2πkαn))2 + (sin(2πkαn))2

2παn
=

√
2− 2 cos(2πkαn)

2παn

>

√
2

2π 2
3n

=
3
√

2

4π
n >

√
2

2π
k
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The last inequality holds because k <
3
4

αn
<

3
4
1

2n

= 3
2n, so n > 2

3k.

Now we can use these lemmas to prove Theorem 7.1.3.

Proof of Theorem 7.1.3

Proof. Remember F kαn(w) = P + Q + S. First note that (11) holds for

all k2αn < δ2 by Lemma 7.1.2 if we choose n large enough such that

|αn| < δ1. We will use induction to prove the case

J = {k : k2αn ≥ δ2 and kαn <
3
4}.

Note that all k ∈ J satisfy k ≥
√

δ2
α >

√
nδ2. Suppose now (15) holds

for some k ∈ J and numbers less than it, we will deduce (15) holds for

k + 1 ∈ J .

For P , Choose n large enough such that |P | < M |w| <
√

2−1
4π

√
nδ2 ≤

√
2−1
4π (k+ 1). As for S, choose n large enough (so k large enough because

k >
√
nδ2) such that

|S| = |
k+1∑
j=1

e−2πi(j−1)αnA

F k+1−j
αn (w)

+

k+1∑
j=1

e−2πi(j−1)αnB

(F k+1−j
αn (w))2

+ higher order terms

< MA

k+1∑
j=1

1
1

2π j
< 2πMA

k+1∑
j=1

1

j
< 2πMA(ln k + a) <

√
2− 1

4π
(k + 1).

In the former inequality we use the approximation

k+1∑
j=1

1

j
< ln k + a

for some fixed number a. In fact it can be shown that the approximation

is lim
k→∞

k∑
j=1

1

j
= ln k + b where b is called the Euler constant.

Recall from Lemma 7.1.4 that for k + 1 ∈ J , |Q| >
√

2
2π (k + 1), Now

|F k+1
αn (w)| = |P +Q+ S|
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> |Q|− |P |− |S| >
1

2π
(k+ 1) +

√
2− 1

4π
(k+ 1)−|P |+

√
2− 1

4π
(k+ 1)−|S|

> 1
2π (k + 1).

So (15) is true for k + 1. By induction we prove the theorem.

7.2 Estimate the backward iterations

We can deduce completely similar results for f−1
α (z) = e−2πiαz−e−6πiαz2+

O(z3) and F−1
α (w) = τ−1 ◦f−1

α ◦ τ(w). We will not prove them again but

will list them in the following.

Lemma 7.2.1. For |w| large enough, we have

F−1
α (w) = e2πiαw − e−2πiα + A

w + B
w2 +O( 1

w3 ),

F−nα (w) = e2πinαw − e−2πiα 1− e2πinα

1− e2πiα
+

n∑
j=1

e2πi(j−1)αA

F
−(n−j)
α (w)

+

n∑
j=1

e2πi(j−1)αB

(F
−(n−j)
α (w))2

+ higher order terms.

(18)

Here F−1
α (w) is the certain branch with F−1

α (∞) =∞, F−nα (w) is the

n times iteration of F−1
α (w). Without special declaration the following

F−1
α or F−nα mean the same. Now denote F−nα (w) = P ′ + Q′ + S′, in

which

P ′ = e2πinαw, Q′ = −e−2πiα 1− e2πinα

1− e2πiα
,

S′ =

n∑
j=1

e2πi(j−1)αA

F
−(n−j)
α (w)

+

n∑
j=1

e2πi(j−1)αB

(F
−(n−j)
α (w))2

+ higher order terms

Lemma 7.2.2. There exist three small numbers δ1, δ2 and δ3 such that

for any α,w ∈ C, k ∈ N (k is not fixed) satisfying |α| < δ1,k2|α| <
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δ2,|w| > 1
δ3

,w has negative real part and |Re(w)| � |Im(w)|, the following

holds:

|F−lα (w)| ≥ |w|+ l

2
(19)

for all l ≤ k.

Lemma 7.2.3. For term Q′ = −e−2πiαn
1− e2πinαn

1− e2πiαn
, choose δ1 small

enough, we have

|Q′| >
√

2
2π k

for all k|αn| < 3
4 and |αn| < δ1.

Theorem 7.2.4. For n large enough, εn a small complex number de-

pending on n and lim
n→∞

εn = 0, nαn = 1
2 + εn, then for all k|αn| < 3

4 ,

|F−kαn (w)| > 1

2π
k. (20)

We use the same collection of symbols A,B, δ1, δ2, δ3, k, n for conve-

nience.

Note that the critical point c1(0) is absorbed by 0, the parabolic point

of f0. We denote the perturbed critical point corresponding to c1(0)

by c1(α), denote C1(α) = τ(c1(α)). Because c1(α) and fα(z) depend

continuously on α, we can suppose that after r-th iterations |f rα(c1(α))| <

δ3, in other words, |F rα(C1(α))| > 1
δ3

. We can also require that

Re(f rα(c1(α))) < 0, |Re(f rα(c1(α)))| � |Im(f rα(c1(α)))|,

i.e.

Re(F rα(C1(α))) > 0, |Re(F rα(C1(α)))| � |Im(F rα(C1(α)))|.

This is because fn0 (c1(0)) converges to 0 from the direction of the real

axis and c1(α), f rα(c1(α)) depend continuously on α. Then we can use
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Theorem 7.1.3 to do analysis of the following iterations on F rα(C1(α)).

Denote wr(α) = F rα(C1(α)).

The following lemma provides us with preparation to deal with the

backward orbit of F−sα (C1(α)) for some suitable integer s.

Lemma 7.2.5. Given δ3 > 0,∆ > 0, there exists an integer s, such that

if |αn| < δ1 for some sufficiently small number δ1 > 0, we have

|f−sαn (c1(αn))| < δ3, Re(f−sαn (c1(αn))) > 0,

|Re(f−sαn (c1(αn)))| > ∆|Im(f−sαn (c1(αn)))|,

for a suitable point f−sαn (c1(αn)) in the backward orbit of c1(αn), which

means that on w plane we have

|F−sαn (C1(αn))| > 1
δ3

, Re(F−sαn (C1(αn))) < 0,

|Re(F−sαn (C1(αn)))| > ∆|Im(F−sαn (C1(αn)))|.

The inverse branches here are different from notations before.

Proof. We only prove this on z plane, and first we prove it for f0(z) =

f(z), then pass it to fαn by continuity.

By standard parabolic attracting and repelling petals theory [Mil1]

for f(z), we can find a repelling petal V (open) which contains part of

the boundary (in Julia set of f) of the Fatou component in which all the

points are attracted to point 0. Denote one of the points in this part by

a1. Note that 0 is in the Julia set J(f) of f(z), so the backward orbit of

0 is dense in J(f). Then there exists s1 and a point b1 ∈ {f−s1(0)} ⊂ V

which is close to a1. Moreover, there exists s2 such that fs2(c1) is close to

0, so fs2(b1) will also be close to a1, which means that f−s1+s2(c1) ∈ V .

Then lim
n→∞

f−s1+s2−n(c1) = 0 and the convergence is from the direction
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of the real axis because fs2(b1) is in the repelling petal. Now choose n0

large enough such that

|fs2−n0(b1)| < δ3, Re(fs2−n0(b1)) > 0,

|Re(fs2−n0(b1))| > ∆|Im(fs2−n0(b1))|.

Now write

f−s(c1) = fs2−n0(b1)

in which s = n0 + s1 − s2 for the suitable point f−s(c1).

By now we have proved the case for f(z). Now because c1(α) and

fα(z) depend continuously on α, which means that if we confine αn in a

small neighbourhood |αn| < δ1, we will also get

|f−sαn (c1(αn))| < δ3, Re(f−sαn (c1(αn))) > 0,

|Re(f−sαn (c1(αn)))| > ∆|Im(f−sαn (c1(αn)))|.

for the suitable point f−sαn (c1(αn)) in the backward orbit of c1(αn).

7.3 Colliding the forward and backward iterations around
the parabolic cycle: proof of Theorem 7.0.11

Now denote by w−s(αn) = F−sαn (C1(αn)) in Lemma 7.2.5 such that

|w−s(αn)| > 1
δ3

, Re(F−sαn (C1(αn))) < 0,

|Re(F−sαn (C1(αn)))| > ∆|Im(F−sαn (C1(αn)))|

for a large number ∆. Recall wr(αn) = F rαn(C1(αn)). Now we are able

to prove Theorem 7.0.11.

Proof of Theorem 7.0.11:

Proof. Since lim
n→∞

εn = 0, choose n large enough such that |nαn| = |12 +

εn| < 3
4 . Recall that
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Fnαn(w) = e−2πinαnw + e−4πiαn
1− e−2πinαn

1− e−2πiαn
+

n∑
j=1

e−2πi(j−1)αnA

Fn−jαn (w)

+

n∑
j=1

e−2πi(j−1)αnB

(Fn−jαn (w))2
+ higher order terms

= P +Q+ S.

For r large enough, wr(αn) has entered our required domain. Now

apply Lemma 7.1.4 and Theorem 7.1.3 on Fnαn(wr(αn)), we have

|P | ≤M |wr(αn)|, |Q| ≥ 1
2πn, |S| ≤ 2πMA

n∑
k=1

1

k
≤ lnn+ a.

So when n is large enough Q will dominate the other two terms. Now we

give a finer estimate on Q for later use.

Q = (1 +O(αn))
1− e−2πinαn

2πiαn +O(α2
n)

= (1 +O(αn))(1 +O(αn))
1− e−2πin( 1

2
+εn)

2πiαn

∼
1 + e−2πiεn

2πiαn

=
2− 2πiεn +O(ε2n)

2πiαn

(21)

Similar results hold for F−nαn (w−s(αn)), Q′ will also dominate P ′ and S′,

Q′ ∼
1 + e2πiεn

2πiαn
=

2 + 2πiεn +O(ε2n)

2πiαn
(22)

Now consider the equation

Fnαn(wr(αn)) = F−nαn (w−s(αn)),

i.e.

P +Q+ S = P ′ +Q′ + S′

with respect to εn. Because Q−Q′ dominates other terms, according to

argument principle, in order to get a solution εn in a small neighbourhood

of 0 we only need to consider the equation Q = Q′. By (21) in Q the term
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2− 2πiεn

2πiαn
dominates

O(ε2n)

2πiαn
, while by (22) in Q′

2 + 2πiεn

2πiαn
dominates

O(ε2n)

2πiαn
. Again by argument principle we we only need to consider the

following equation:

2− 2πiεn

2πiαn
=

2 + 2πiεn

2πiαn

Obviously this equation has a unique solution 0. This guarantees a

solution εn for Fnαn(wr(αn)) = F−nαn (w−s(αn)) in a small neighbourhood

of 0.

Remark 7.3.1. We can analyse the order of εn by the following equation:

1 + e−2πiεn

2πiαn
−

1 + e2πiεn

2πiαn
+O(lnn) + c1 = 0 (23)

Note that

(23) ⇐⇒ e−2πiεn − e2πiεn + 2πiαn(O(lnn) + c1) = 0

⇐⇒ e4πiεn −
2πi

2n
(O(lnn) + c1)e2πiεn − 1 = 0

Solve the last equation we get

e2πiεn ∼
c2

lnn
n +

√
(c2

lnn
n )2 + 4

2
∼
c2

lnn
n + 2(1 + 1

2( c22
lnn
n )2)

2
∼

1 +
c2

2

lnn

n
+O((

lnn

n
)2).

So

|εn| ∼
1

2πi
ln(1 +

c2

2

lnn

n
+O((

lnn

n
)2)) ∼

1

2πi

c2

2

lnn

n
∼ O(

lnn

n
).

Considering that |S| ≤ O(lnn), this computation shows that εn is at

most of order
lnn

n
, which coincides with lim

n→∞
εn = 0.

Now apply Theorem 7.0.10 to Rm∗ . By a Möbius change of coordinate

we can assume v = 0 and Rm∗ (z) = z+z2 +O(z3) around 0. c1 is still the
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critical point of R∗ which is attracted to 0 under Rm∗ . Then by 7.0.10,

for n large enough, there are two integers r, s, a point |v−sm(αn)| =

|v−sm(Rn)| = |R−smn (c1(αn))| < δ3 (the subscript of v−s is changed to

−sm now in order to coordinate with the times of iterations of Rn), such

that the critical point c1(αn) = c1(Rn) of Rn (a perturbation of R∗) is

periodic of period (r + s+ 2n)m, that is

Rnmn (Rrmn (c1(αn))) = R−nmn (v−sm(αn))

where R−mn is the branch R−mn (0) = 0.

8 The critically periodic maps Rn are matings

In this section we show that Rn is Thurston equivalent to the mating

of two critically periodic degree two covering maps by Lemma 2.9.1.

We achieve this by finding an invariant circle for Rn. First recall the

definition of an invariant circle.

Definition 8.0.2. An invariant circle γ for a critically finite degree two

branched covering map, say g, is a simple closed loop which satisfies:

• γ separates the two critical orbits of g.

• g−1(γ) is connected.

• g−1(γ) is isotopic to γ in C̄\X(g), in which X(g) means post-critical

set of g plus the two critical points.

• g : g−1(γ)→ γ preserves orientation.

8.1 Links between various dynamical planes

Let v−sm+1(αn) = Rn(v−sm(αn)). Define v−sm(R∗) = R−sm∗ (c1) ac-

cording to continuity with respect to v−sm(αn) = R−smn (c1(αn)). Let

v−sm+1(R∗) = R∗(v−sm(R∗)). Now denote
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M
(j)
1 = {Rk∗(v−sm+1(R∗)) : −j ≤ k <∞}

where R−k∗ denotes the inverse branch of Rk∗ which preserves the parabolic

cycle. If we can find an ”invariant circle” forR∗, which separatesM
(j)
1 , j ∈

N large enough and M2 = {Rk∗(c2(R∗)) : k ∈ N} (#M2 is finite), we can

get an invariant circle for Rn by continuity. Let M3 = {Ri∗(0) : 0 ≤ i ≤

m− 1} be the parabolic cycle.

By Proposition 2.11.1, there exists a homeomorphism ϕ : J(R) →

J(R∗) such that

ϕ ◦R = R∗ ◦ ϕ (24)

ϕ can be extended to C and map Fatou components of R to corre-

sponding Fatou components of R∗. In addition, we can guarantee ϕ◦R =

R∗◦ϕ on the complement of the Fatou components containing the forward

orbit of c1(R). As for the images of the Fatou components containing

the forward orbit of c1(R), we can choose ϕ(Ri(c1(R))) = Ri∗(ϕ(c1)) for

0 ≤ i ≤ m− 1. Write sp,q = sp q sq from now on.

As sp,q is Thurston equivalent to R, according to [Ree2], section 1.5,

there is a sequence of homeomorphisms θ(n) : C̄→ C̄, such that

lim
n→∞

θ(n) = θ (25)

uniformly. The limit continuous map θ : C̄→ C̄ satisfies

θ ◦ sp,q = R ◦ θ. (26)

Moreover, θ(S1) = J(R), in fact, θ(S1
⋃
Lp
⋃
Lq) = J(R).

We would like to say more about this sequence θ(n). θ(0) and θ(1) are

the homeomorphisms χ1 and χ2 in Definition 2.3.1. θ(0) is an orientation-

preserving homeomorphism which sends neighbourhoods of the forward

orbits in X(sp,q), say, U(sp,q), to neighbourhoods of X(R), say, U(R).

Moreover, we have
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Rn ◦ θ(n) = θ(0) ◦ snp,q, (27)

θ(0) = θ(n) on U(sp,q),

R ◦ θ(n+1) = θ(n) ◦ sp,q, (28)

θ(n) = θ(n+1) on s−np,qU(sp,q),

θ(n) ∼ θ(n+1) rel s−np,qU(sp,q)

for all n. Here we also make restriction on θ(0) such that θ(0)(S1) does

not intersect the closure of the Fatou components containing the forward

orbits of the critical point c1(R).

Now let ψ(n) = ϕ ◦ θ(n), ψ = ϕ ◦ θ. Then

lim
n→∞

ψ(n) = ψ (29)

uniformly.

8.2 An invariant circle for Rn

We know that S1 is an invariant circle for sp,q, and we have the link

ψ between the dynamical planes of sp,q and R∗, so we hope ψ(S1) will

preserve some properties of the invariant circle for sp,q. However, it is

not a simple closed loop as ψ is not injective, so we turn to ψ(n)(S1).

Note that there may be problems around the accumulation points of the

forward and backward iterations of c1, that is, the parabolic cycle M3.

We will show in the following that given j′ ∈ N, for n large enough,

ψ(n)(S1) not only separates M
(j′)
1 = {Rk∗(v−sm+1(R∗)) : −j′ ≤ k < ∞}

and M2, but also can be isotoped away from a small neighbourhood of

the parabolic cycle M3.
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Theorem 8.2.1. Given a small real number ε > 0, for n large enough,

ψ(n)(S1) is isotopic to a simple closed curve γ in C̄ \ (M2 ∪M (n−sm)
1 ).

γ is disjoint from the ε-neighbourhood of M3 and separates M2 from

M
(n−sm)
1 = {Rj∗(v−sm+1(R∗)) : −(n− sm) ≤ j <∞}. Moreover, R−1

∗ (γ)

is connected and isotopic to γ in C̄ \ (M2 ∪M (n−sm)
1 ).

Proof. Define v−sm+1(sp,q) = (ψ(n))−1(v−sm+1(R∗)) for any n ≥ sm −

1. Define v−sm+1(R) = θ(v−sm+1(sp,q)). Note that θ(v−sm+1(sp,q)) =

θ(l)(v−sm+1(sp,q)) = θ(sm−1)(v−sm+1(sp,q)) for all l ≥ sm − 1 because

θ(l) = θ(l+1) on (sp q sq)−lU(sp,q) and v−sm+1(sp,q) ∈ s−lp,q(U(sp,q)) for

l ≥ sm − 1. Taking limits we have v−sm+1(R∗) = ψ(v−sm+1(sp,q)). We

also have

ψ(v−sm+1(sp,q)) = ψ(n)(v−sm+1(sp,q)) = ψ(sm−1)(v−sm+1(sp,q))

for all n ≥ sm − 1. The iterations of v−sm+1(sp,q) under s−mp,q con-

verge to a point up on the leaf µp in the lamination Lp from some

fixed orientation. s−mp,q is the particular backward branch which pre-

serves the leaf µp. Without specific declaration we always mean this

branch by using the symbol s−mp,q . Similarly, on the dynamical plane of R∗,

Rsm−1
∗ (c1(R∗)) = v−sm+1(R∗). The backward iterations of v−sm+1(R∗)

under R−m∗ (where this denotes the local inverse of Rm∗ fixing its parabolic

point) converge to R∗(0) from some fixed orientation, which denotes the

local inverse of Rm∗ fixing the parabolic point. In the following we will

not distinguish literally but simply write the symbols v−sm, v−sm+1, c1, c2

if there is no confusion about which dynamical planes these points are

on.

Now consider two sequences of k + 1 points. The first is on the dy-

namical plane of sp,q,
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s−kmp,q (v−sm+1), · · · , s−2m
p,q (v−sm+1), s−mp,q (v−sm+1), v−sm+1.

Connect s−jmp,q (v−sm+1) with s
−(j−1)m
p,q (v−sm+1) by a straight line ξj

inside the open unit disc D for 1 ≤ j ≤ k. ξj will approximate some fixed

direction as j becomes large because s−jmp,q (v−sm+1) converge to up from

this fixed direction. Connect up with s−kmp,q (v−sm+1) by a straight line ξ′

inside D. Now consider another sequence of k + 1 points on dynamical

plane of R∗,

R−km∗ (v−sm+1), · · · , R−2m
∗ (v−sm+1), R−m∗ (v−sm+1), v−sm+1.

Connect R−jm∗ (v−sm+1) with R
−(j−1)m
∗ (v−sm+1) by a straight line seg-

ment, say, ζj for 1 ≤ j ≤ k. These line segments will also be close to

some fixed direction for large j because R−jm∗ (v−sm+1) converge to R∗(0)

from this direction. Connect R∗(0) with R−km∗ (v−sm+1) by a straight line

segment ζ ′. R−jm∗ are the particular jm backward iterations preserving

the parabolic cycle M3.

Note that if v−sm+1 is sufficiently close to up, that is, if s is sufficiently

large, ψ(v−sm+1(sp,q)) = v−sm+1(R∗) is within some small neighbour-

hood of R∗(0) = ψ(µp), that is, within the domain of the branch R−1
∗

preserving M3. We can guarantee that ζj ∼ Rm∗ (ζj+1) for all 1 ≤ j ≤ k.

Since ψ(µp) = R∗(0) and ψ is continuous, it follows that

ψ(s−jmp,q (v−sm+1(sp,q))) = R−jm∗ (v−sm+1(R∗)),

which implies

ψ(n)(s−jmp,q (v−sm+1(sp,q)) = R−jm∗ (v−sm+1(R∗))

for any n ≥ jm + sm − 1. To get the last equality, one can show by

induction that

θ(n)(s−jmp,q (v−sm+1(sp,q))) = R−jm(v−sm+1(R))
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for any n ≥ jm+ sm− 1, then both sides compose with ϕ.

Denote by ψ(n)(ξj) = σj , 1 ≤ j ≤ k, ψ(n)(ξ′) = σ′. The former equality

shows that σj (ξ′) has same endpoints with ζj (σ′) on dynamical plane

of R∗. We claim that they are in fact isotopic to each other in C̄ \

R−n∗ (X(f∗)) for any n ≥ jm + sm − 1. This is proved in Proposition

8.2.2 below. In fact we prove more than this.

Now we continue to prove our theorem. As S1 does not intersect any

ξj , ψ
(n)(S1) does not intersect σj , by the isotopy this means ψ(n)(S1) does

not intersect the sequence ζj . As k can be any large enough integer, this

shows that all the points R−jm∗ (v−sm+1), j ∈ N are in the same domain

of the two domains separated by ψ(n)(S1).

For points converging to R∗(0) from the other direction, that is,

Rjm+1
∗ (c1), j ∈ N, remember that we require θ(0)(S1) does not inter-

sect the closure of the Fatou components containing the forward orbits

of the critical point c1(R), so ψ(0)(S1) = ϕ ◦ θ(0)(S1) does not inter-

sect the closure of the Fatou components containing Rj∗(c1), j ∈ N. So

by (27), ψ(n)(S1) will avoid the Fatou components containing Rj∗(c1)

for all n, then ψ(n)(S1) separates M
(n−sm)
1 and M2 for n large enough.

It is a simple closed loop quite close to J(R∗) according to (28). The

part of ψ(n)(S1) around the parabolic cycle M3 is confined in the cusp

area formed by the boundary of the Fatou component of R∗ containing

Rj∗(c1), j ∈ N.

Now for a small ε > 0, choose a homeomorphism χ : C̄ → C̄,

χ = Id outside a small neighbourhood U of M3 (this neighbourhood

U should contain ε neighbourhood of M3), such that χ ◦ ψ(n)(S1) is out

of ε-neighbourhood of M3 and χ ◦ ψ(n)(S1) still separates M
(n−sm)
1 and

M2. Now denote χ ◦ ψ(n)(S1) = γ. Since γ ∼ ψ(n)(S1), so R−1
∗ (γ) ∼

R−1
∗ (ψ(n)(S1)) = ψ(n+1)(S1), so γ ∼ R−1

∗ (γ) and they both separate
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M
(n−sm)
1 from M2. All the isotopies are in C̄ \ (Mn−sm

1 ∪M2).

Proposition 8.2.2. σj = ψ(n)(ξj) is isotopic to ζj, σ
′ = ψ(n)(ξ′) is

isotopic to ζ ′ for n ≥ jm + sm − 1, 1 ≤ j ≤ k in C̄ \ (M
(n−sm)
1 ∪M2 ∪

{R∗(0)}) according to the notations before.

Proof. We have said in Section 2.2, the definition of the lamination map

sp, that it is defined up to topological conjugacy. However, in order to

prove the isotopy in this set C̄ \ (M2 ∪M (n−sm)
1 ∪ {R∗(0)}) , we need to

make sure that all ψ(n) map the point up to R∗(0) as ψ. To achieve this

we require all the points in the leaf µp are fixed under smp . Choose θ(0)

to map up to the point of period m on the boundary of the attractive

basin of R(c1) (we use the same notation c1 to denote the critical point

of R corresponding to the c1 critical point of R∗). Now define

Y (sp,q) = {sip,q(0) : i ≥ 0} ∪ {sip,q(∞) : i ≥ 0} ∪ {sip,q(up) : i ≥ 0}.

In addition to satisfy (27) and (28), we can assure that

θ(i+1) ∼ θ(i) rel Y (sp,q) for all i ≥ 1.

To do this we choose θ(0) such that ψ(0)(up) = ϕ ◦ θ(0)(up) = R∗(0), so

ψ(n)(up) = ϕ ◦ θ(n)(up) = R∗(0) for all n. First we show that

Rm∗ (σj) ∼ σj−1

in C̄ \ (M
(n−sm)
1 ∪M2 ∪{R∗(0)}) = C̄ \ ({Rj∗(v−sm+1) : −(n− sm) ≤ j <

∞} ∪M2 ∪ {R∗(0)}).

According to (28), we have θ(n) ◦smp,q = Rm ◦θ(n+m). Composing both

sides on the left by ϕ, we get

ψ(n) ◦ smp,q = ϕ ◦Rm ◦ θ(n+m).
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As ϕ ◦ Rm = Rm∗ ◦ ϕ outside the Fatou components containing the

forward orbit of c1(R), so

ψ(n) ◦ smp,q(ξj) = Rm∗ ◦ ψ(n+m)(ξj).

Note that smp,q(ξj) ∼ ξj−1, and ψ(n)(ξj) ∼ ψ(n+m)(ξj) because ψ(n) ∼

ψ(n+k) rel s−np,q (X(sp,q)) for any k ≥ 0. Then

Rm∗ (σj) = Rm∗ (ψ(n)(ξj)) ∼ Rm∗ (ψ(n+m)(ξj)) = ψ(n) ◦ (sp,q)
m(ξj) ∼

ψ(n)(ξj−1) = σj−1.

All the isotopies are in C̄ \ (M
(n−sm)
1 ∪M2 ∪ {R∗(0)}).

Now choose ε1 such that ζi ∩{z : |z−R∗(0)| < ε1} = ∅, i = 1, 2. Then

choose an integer n1 such that ψ(n)(ξj) ⊂ {z : |z − R∗(0)| < ε1} for all

j ≤ n1, choose ε2 < ε1 such that

ψ(n)(ξ′) = σ′ ⊂ {z : |z −R∗(0)| < ε2}

for n large enough. Theses can be done because lim
n→∞

ψ(n) = ψ uniformly.

Then choose n1 < n2 < km+ sm− 1 such that for all jm+ sm− 1 ≤ n2,

ψ(n)(ξj) ∩ {z : |z −R∗(0)| ≤ ε2} = ∅.

We know that ψ(n)(ξj) = σj has the same endpoints with ζj , so for

n1 < jm + sm − 1 ≤ n2, σj and ζj both lie in the annulus {z : ε1 <

|z − R∗(0)| < ε2}. Then they must be isotopic to each other in C̄ \

(M
(n−sm)
1 ∪M2∪{R∗(0)}). If this is not true, consider the first non-trivial

intersection of σj with some ζi for im+ sm− 1 ≤ n1. Because Rm∗ (σj) ∼

σj−1, and Rm∗ (σj) is a translation of σj inside a small neighbourhood of

the parabolic cycle, so σj will have more intersections with σj−1 besides

the endpoint. This is impossible because ξj only has one intersection

with ξj−1 (the end point) and ψ(n) are all homeomorphisms. Figure 3
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shows the only possible picture for σj and two impossible pictures of σj

which have been excluded by our proof. Now we have proved σj ∼ ζj in

C̄ \ (M
(n−sm)
1 ∪M2 ∪ {R∗(0)}) for n1 ≤ jm+ sm− 1 ≤ n2.

σj σj−1

ζj ζj−1

σj
σj

ζj
ζj

ζj−1
ζj−1

σj−1

× ×
√

σj−1

Figure 8: Possible and impossible pictures for σj

Now for j ≤ k and jm + sm − 1 > n2, suppose j′ < j is an integer

such that (j − j′)m+ sm− 1 ≤ n1. Since

R−j
′m

∗ (σj−j′) ∼ σj in C̄ \R−j
′m

∗ (M
(n−sm)
1 ∪M2 ∪ {R∗(0)}),

R−j
′m

∗ (ζj−j′) ∼ ζj in C̄ \R−j
′m

∗ (M
(n−sm)
1 ∪M2 ∪ {R∗(0)}),

σj−j′ ∼ ζj−j′ in C̄ \ (M
(n−sm)
1 ∪M2 ∪ {R∗(0)})

and R−j
′m

∗ (M
(n−sm)
1 ∪M2 ∪ {R∗(0)}) ⊃ (M

(n−sm)
1 ∪M2 ∪ {R∗(0)}), so

σj ∼ ζj in C̄ \ (M
(n−sm)
1 ∪M2 ∪{R∗(0)}) for jm+ sm− 1 > n2. Now for

j such that jm+ sm− 1 < n1, suppose j′′ is a positive integer such that

n1 ≤ (j′′ + j)m+ sm− 1 ≤ n2. Since

σj′′+j ∼ ζj′′+j in C̄ \ (M
(n−sm)
1 ∪M2 ∪ {R∗(0)}),

Rj
′′m
∗ (σj′′+j) ∼ σj in C̄ \Rj

′′m
∗ (M

(n−sm)
1 ∪M2 ∪ {R∗(0)}),

Rj
′′m
∗ (ζj′′+j) ∼ ζj in C̄ \Rj

′′m
∗ (M

(n−sm)
1 ∪M2 ∪ {R∗(0)})

and Rj
′′m
∗ (M

(n−sm)
1 ∪M2 ∪ {R∗(0)}) ⊂M (n−sm)

1 ∪M2 ∪ {R∗(0)}, so

σj ∼ ζj in

C̄\Rj
′′m
∗ (M

(n−sm)
1 ∪M2∪{R∗(0)}) = C̄\(M

(n−sm−j′′m)
1 ∪M2∪{R∗(0)}).
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However, for n large enough and jm+ sm− 1 < n1, we will have

σj ∩ {R−(n−sm−i)
∗ (v−sm+1) : 0 ≤ i ≤ j′′m} = ∅,

ζj ∩ {R−(n−sm−i)
∗ (v−sm+1) : 0 ≤ i ≤ j′′m} = ∅.

So in fact σj ∼ ζj in C̄\ (M
(n−sm)
1 ∪M2∪{R∗(0)}) for jm+sm−1 < n1.

At last, we show that ψ(n)(ξ′) = σ′ is isotopic to ζ ′ in C̄ \ (M
(n−sm)
1 ∪

M2∪{R∗(0)}) for jm+sm−1 > n1. This is because ψ(n)(ξ′) is out of the

Fatou components containing the parabolic cycle M3, and ψ(n)(ξ′) does

not intersect ψ(n)(ξj) = σj except for the end point of ψ(n)(ξk) = σk.

Remember ψ(n)(ξ′) = σ′ ⊂ {z : |z − R∗(0)| < ε2}, and we have proved

that σj ∼ ζj in C̄ \ (M
(n−sm)
1 ∪M2 ∪ {R∗(0)}) for 1 ≤ j ≤ k, so the only

possibility is that σ′ ∼ ζ ′ in C̄ \ (M
(n−sm)
1 ∪M2 ∪ {R∗(0)}).

We have got a simple closed loop γ, now we prove that it can serve

as an invariant circle for Rn by the virtue of Theorem 8.2.1.

Corollary 8.2.3. Rn is a mating, moreover,

Rn ' sp′n q sq′ (30)

where p′n and q′ are odd denominator rationals in (0, 1).

Proof. We prove this by showing that γ is an invariant circle for Rn,

which satisfies all the four requirements at the beginning of this section.

First, γ separates M
(n′−sm)
1 (in the superscript the symbol n is changed

to n′ now in order to avoid confusion with the subscript n in Rn) and

M2. Secondly, R−1
∗ (γ) is connected. Thirdly, R−1

∗ (γ) is isotopic to γ in

C̄ \ (M
(n′−sm)
1 ∪M2). These are all from Theorem 8.2.1. At last, R∗ :

R−1
∗ (γ) → γ preserves orientation because it does so near the parabolic

cycle. Recall the process of perturbation of R∗ to get Rn. By continuity,

{Rjn(c1(Rn)) : j ∈ N} ∪ {Rjn(c2(Rn)) : j ∈ N} is close to M
(n0−sm)
1 ∪M2
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for a finite number n0. So if αn is small enough, γ is isotopic to R−1
n (γ)

in C̄ \ X(Rn) and both of them separate {Rjn(c1(Rn)) : j ∈ N} from

{Rjn(c2(Rn)) : j ∈ N}. Now we can conclude that γ is an invariant circle

for Rn if n′ is large enough (the critical orbit {Rjn(c1(Rn)) : j ∈ N} is

finite). So according to Lemma 2.9.1, Rn is Thurston equivalent to a

mating of two critically periodic degree two coverings, say, sp′n and sq′ ,

which are again Thurston equivalent to two critically periodic degree two

polynomials separately. p′n and q′ are both odd denominator rationals in

(0, 1).

9 Recover the odd denominator rational sequence
pn from Rn

In this section we prove Theorem 4.2.1. The basic idea is, given p, q,

we already get a sequence of critically periodic maps Rn ' sp′n q sq′

around R∗, where R∗ is on the boundary of the hyperbolic component

containing R ' sp q sq. It is obvious that q′ = q because the dynamics

around finite critical orbit M2 of R∗ is inherited completely from sq, and

the perturbation is on M
(∞)
1 which does not affect M2. Now there is a

reason that we can expect p′n = pn for a certain choice of pn tending to

p considering Rn. We recover pn from Rn by Lemma 2.10.1.

Now we have three planes, two of which are dynamical planes of sp

and spn . There are lamination descriptions on their dynamics. The third

one is the dynamical plane of R∗, on which we depend to get Rn. Recall

in the last section there is a map ψ : S1 → J(R∗) such that ψ◦z2 = R∗◦ψ

(sp,q = z2 on S1). Recall that ψ(e2πip) = ψ(e2πip̄) = R∗(0). The orbit

of 0, as critical point of sp, corresponds to the orbit of e2πip under z2 on

S1, because spn(0) is in the closed gap containing e2πip on its boundary
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p = 1
7pn
p′

2
7

4
7

sp(0)

ψ
−→

c1

R∗(c1)

R2
∗(c1)

Figure 9: Links between dynamical planes of s 1
7

and R∗ through ψ with assumed

positions of p′, pn

for any odd denominator rational p. Figure 9 gives an example of p = 1
7

with m = 3. Only parts of the laminations and Fatou components are

shown.

Recall p ∈ (0, 1) is of period m under the doubling map, that is, 2mp =

p mod Z. Similar to the process of colliding the backward and forward

iterations of c1 in the δ3 neighbourhood of 0 around the parabolic cycle of

R∗, for s ∈ N large enough choose p′ close to p, p′ < p, such that 2smp′ = p

mod Z, v−sm+1(sp,q) ∈ s−(sm−1)
p,q (0) is in the closed gap containing e2πip′

on its boundary. Since |v−sm(R∗)| = |v−sm(R∗)−0| < δ3, R∗ is conformal

83



around a small neighbourhood of the parabolic cycle M3, we can assume

|v−sm+1(R∗)−R∗(0)| = |R∗(v−sm(R∗))−R∗(0)| < δ3.

ψ(e2πip′) is on the boundary of the Fatou component containing v−sm+1(R∗).

r ∈ N is large enough such that |Rrm∗ (c1)| < δ3.

Since c1(Rn) as critical point of Rn has period (s + r + 2n)m, so we

expect pn is of period (s+ r + 2n)m. Because pn → p and p′ is close to

p, we want

δ̄n = 2(r+2n)m(pn − p)− (p′ − p) mod Z

being quite small. Apply 2sm to both sides gives

2smδ̄n = pn − 2smp′ = pn − p mod Z.

Choose δ̄n =
pn − p

2sm
, we have

2(r+2n)m(pn − p) = p′ − p+
pn − p

2sm
mod Z.

Choose pn − p =
p′ − p

2(r+2n)m − 2−sm
=

2sm(p′ − p)
2(s+r+2n)m − 1

mod Z, then let

pn = p+
2sm(p′ − p)

2(s+r+2n)m − 1
.

For the above sequence of odd-denominator rationals p and pn in

(0, 1), n ∈ N, parameters s, p′, r,m are all determined by p, now we are

ready to prove our Main Theorem by Lemma 2.10.1.

Proof of the Main Theorem:

Proof. We know that for critically periodic maps, the pattern of their

critical orbits determines the dynamics completely up to topological con-

jugacy. We will prove that, 0, the critical point of spn , has exactly the

same pattern under spn as c1, the critical point of Rn, under Rn. This
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resemblance enables us to construct the arcs ξj and ζj in Lemma 2.10.1

and the two orientation preserving homeomorphisms Θ and Θ′. From

this we can show p′n = pn.

First note that R−j∗ (c1) are completely determined by 2−j−1p for 0 ≤

j ≤ sm, by assigning R−j∗ (c1) the j-th backward iteration of c1 in the

Fatou component containing ψ(e2πi2−j−1p) on its boundary. Remember

that we choose p′ near p such that 2smp′ = p mod Z. As spn(0) is

in the gap containing e2πipn on its boundary, every iteration (forward

and backward) of 0 is related to an iteration of e2πipn under z2 on S1,

so in fact we will prove that e2πipn behaves the same under z2 as c1

under Rn. An important feature of Rn(c1) under iterations of Rn is that

R1−sm−km
n (c1), k ∈ N and R

1+(r+k)m
n (c1), k ∈ N approach R∗(0) along

the two fixed directions as k goes to n, then collide with each other when

k = n around R∗(0). In the following we will see that for some integer

ak, e
2πi2−sm−km(pn+ak) and e2πi2(r+k)mpn also approach some point from

two fixed directions on S1.

Now we begin to construct the ordered arcs and the two homeomor-

phisms Θ and Θ′ required in Lemma 2.10.1. We assume p′ < p from now

on, the case p′ > p is similar.

First, backward iterate pn for sm times, choose 2−sm(pn + a0) =

2−sm(p + pn − p + a0) = p′ +
pn − p

2sm
close to p′ on S1 for some a0 ∈ Z,

then continue to backward iterate 2−smpn for km times,

2−sm−km(pn + ak) = 2−km(p′ + ak +
pn − p

2sm
) =

2−km(p+ ak + p′ − p) +
pn − p

2sm+km

= p+
p′ − p
2km

+
pn − p

2sm+km
= p+

p′ − p
2km

+
p′ − p

2km(2(s+r+2n)m − 1)
=

p+
2(s+r+2n)m(p′ − p)

2km(2(s+r+2n)m − 1)
.

85



where ak ∈ Z is chosen so that 2−km(p + ak) = p. Since p′ − p < 0,

it is a sequence gradually increasing to p +
2(s+r+n)m(p′ − p)

2(s+r+2n)m − 1
as k goes

to n. Draw an arc β1−sm−km in each gap which joins s1−sm−km
pn (0) with

e2πi2−sm−km(pn+ak), 0 ≤ k ≤ n, such that β1−sm−km = smpn(β1−sm−(k+1)m),

0 ≤ k ≤ n − 1. Then push forward this group of arcs to other m − 1

groups {β1−sm−km+j : 0 ≤ k ≤ n} for 0 < j < m by sjpn , that is, define

β1−sm−km+j = sjpn(β1−sm−km) for 0 ≤ k ≤ n and 0 < j < m.

Now forward iterate 2rmpn for km times, we get

2(r+k)mpn = 2(r+k)m(p+ pn − p) = p+ 2(r+k)m(pn − p) =

p+
2(r+k+s)m(p′ − p)
2(s+r+2n)m − 1

mod Z.

The sequence gradually decreases to p +
2(s+r+n)m(p′ − p)

2(s+r+2n)m − 1
as k goes

to n. When k = n, the two sequences collide with each other around p,

considering that n ∈ N is a quite large integer. Note that we have al-

ready got an arc in the gap containing s1−sm−nm
pn (0) = s

(r+n)m+1
pn (0) (with

e2πi2−sm−nmpn = e2πi2(r+n)mpn on its boundary). Now denote β(r+n)m+1 =

β1−sm−nm. Draw an arc β(k+r)m+1 in each corresponding gap joining

s
(k+r)m+1
pn (0) with e2πi2(k+r)mpn , 0 ≤ k ≤ n, such that β(k+r+1)m+1 =

smpn(β(k+r)m+1), 0 ≤ k ≤ n− 1. Then push forward this group of arcs to

other m − 1 groups {β(k+r)m+1+j : 0 ≤ k ≤ n − 1}, 0 < j < m by sjpn ,

that is, β(k+r)m+1+j = sjpn(β(k+r)m+1).

Draw the other arcs βj− (βj+) for 1 − s ≤ j− ≤ 0 (0 ≤ j+ ≤ rm)

such that βj−+1 = spn(βj−) (βj++1 = spn(βj+)). Note that the arc β0

deduced from βj− will be the same one as deduced from βj+ because

β(r+n)m+1 = β1−sm−nm.

Now construct the corresponding arcs on the dynamical plane of Rn

following similar process. Let zp be the point ψ(l)(e2πip) for l being an
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integer large enough under the isotopy in Theorem 8.2.1 on γ. First

draw arcs η′1−sm−km joining R1−sm−km
n (c1) with points z−s−km around

the point R−1
n (zp) on R−1

n (γ) in the region DR−1
n (γ) bounded by R−1

n (γ).

We require these arcs do not intersect each other and the sequence of

points z−sm−km is of the same cyclic order as e2πi2−sm−kmpn on S1. To

achieve this, we can first draw arcs in the corresponding Fatou com-

ponents (corresponding to gaps of the Lp lamination) on the dynam-

ical plane of R∗ joining R1−sm−km
∗ (c1) with ψ(e2πip), then isotope it

to an arc joining R1−sm−km
n (c1) with a point z−s−km. This arc will

be close to the first because Rn → R∗ as n → ∞. Push forward

the group of arcs to other m − 1 groups {η′1−sm−km+j : 0 ≤ k ≤ n},

0 < j < m by Rjn, that is, define η′1−sm−km+j = Rjn(η′1−sm−km) for

0 ≤ k ≤ n and 0 < j < m. Let η′(r+n)m+1 = η′1−sm−nm, draw arcs

η′(r+k)m+1 in DR−1
n (γ) joining R

(r+k)m+1
n (c1) with points z(r+k)m around

the point R−1
n (zp) by the same isotopy method. Again make sure these

arcs do not intersect each other and the arcs already existing. The se-

quence of points z(r+k)m should be of the same cyclic order on R−1
n (γ)

as e2πi2(k+r)mpn on S1. Push forward the group of arcs to other m − 1

groups {η′(r+k)m+1+j : 0 ≤ k ≤ n}, 0 < j < m by Rjn, that is, define

η′(r+k)m+1+j = Rjn(η′(r+k)m+1) for 0 ≤ k ≤ n and 0 < j < m. Choose the

other arcs η′j− and η′j+ for 1 − sm ≤ j− ≤ 0 and 0 ≤ j+ ≤ rm suitably

such that all the endpoints {zj : 1 − sm − nm ≤ j ≤ (n + r)m + 1} of

these arcs {η′j+1 : −sm − nm ≤ j ≤ (n + r)m} are of the same cyclic

order as {e2πi2jpn : 1− sm− nm ≤ j ≤ (n+ r)m+ 1} on S1.

By these choices of the arcs η′j we can get an orientation preserving

homeomorphism Θ′, such that

Θ′(R−1
n (γ)) = S1,
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Θ′(η′′0) = β′′0 ,

Θ′(η′j) = βj , 1− sm− nm ≤ j ≤ (n+ r)m+ 1,

where β′′0 = {s−1
pn (β1) \ β0} ∪ {0}, η′′0 = {R−1

n (η′1) \ η′0} ∪ {c1}. Now let

ηj+1 = Rn(η′j) for −sm − nm ≤ j ≤ (n + r)m. There is an orientation

preserving homeomorphism Θ which is isotopic to the identity, such that

Θ(R−1
n (γ)) = γ,

Θ(η′j) = ηj , 1− sm− nm ≤ j ≤ (n+ r)m+ 1.

This is because the map Rn : R−1
n (γ)→ γ satisfies the four properties

of an invariant circle (refer to Definition 8.0.2). The order of the sequence

zj is preserved on R−1
n (γ).

Now apply Lemma 2.10.1 with the family of arcs ξj , ζj , ζ
′
j , ξ
′′
0 , ζ
′′
0 sub-

stituted by the family βj , ηj , η
′
j , β
′′
0 , η
′′
0 , we see that for this particular

sequence pn, Rn ' spn q sq.

Remark 9.0.4. The proof relies heavily on comparing traces of critical

points on the two dynamical planes of spn and Rn, for which the links

comes from the bridge between the dynamical planes of sp and R∗. The

techniques of perturbation confine our result to be limited, and these will

have to be modified if we are to get more general results.

Remark 9.0.5. For Rm∗ (z) = z+ zn + ..., n ≥ 3, that is, parabolic maps

with more than 2 petals, one can get critically periodic maps by perturb-

ing R∗ from any two attracting and repelling directions. There are many

choices before the backward and forward orbits converge to the parabolic

cycle from some fixed direction. Every choice offers us a different criti-

cally periodic map. By a similar process one can show that these maps
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are also matings, so the continuity result is true for the cases that, Rm∗

has more than 2 petals.

10 Bubble rays puzzle partitions and parapuzzle
partitions for some 2-rational maps

10.1 Matability of the basilica with non-renormalizable
quadratic polynomials

When dealing with 2-rational maps, one hopes that the Yoccoz puzzle

method for 2-polynomials can be transplanted into the 2-rational maps

case. Luo [Luo] first proposed this idea in his thesis. Then M. Aspenberg

and M. Yampolsky carried this idea out to the family

Ra =
a

z2 + 2z

to show the conformal matability of the basilica polynomial f−1 with

an arbitrarily non-renormalizable parameter c not in the 1
2 -limb of M

[AY]. The following picture from [AY] shows structure of the hyperbolic

components on the parameter space Ra. The black area is the mating

components Ma, which is called the non-escape locus in [Dud]. This and

subsequent figures from [AY] are reproduced with kind permission of the

authors.
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Figure 10: The parameter space for the Ra family. The picture is from [AY].

Aspenberg and Yampolsky showed the following theorem (Main The-

orem [AY]):

AY’s Theorem. For a non-renormalizable parameter c not in the 1
2 -

limb of M such that fc(z) = z2 + c does not have a non-repelling periodic

orbit, fc and f−1 = z2 − 1 are conformally matable, and their mating is

unique up to Möbius changes of coordinates.

By certain adaptation, the method should work for f−1 substituted by

a starlike map and c being a finitely renormalizable quadratic polynomial

[DH1] with only repelling periodic cycles not in the 1
2 -limb of M . In the

following section we gradually introduce the notions of their bubble rays

method.
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10.2 Bubble rays puzzle partitions for f−1, Ra and a land-
ing theorem

Note that on the dynamical plane of the 2-rational maps Ra, we no longer

have the external rays. As a substitute, we use the so called bubble rays.

We first define it for f−1, then define it similarly for Ra. Now let B0 and

B−1 be the corresponding Fatou components of f−1 containing 0 and −1.

Definition 10.2.1. A bubble of the filled Julia set K(f−1) is a Fatou

component F of the filled Julia set. The generation of a bubble F is the

smallest non-negative integer n = Gen(F ) for which fn−1(F ) = B0. The

center of a bubble F is the preimage f
−Gen(F )
−1 (0) ∩ F .

Definition 10.2.2. A bubble ray B of f−1 is a collection of bubbles

∪∞k=0Fk with Gen(Fk) < Gen(Fk+1) such that for each k the intersec-

tion F̄k ∩ ¯Fk+1 = {xk} is a single point.

Note that this concept is well-defined due to the following lemma [AY].

Lemma 10.2.3. For two different bubbles Fb and Fc of f−1 such that

neither of them is the attracting basin of ∞, then one of the following

holds

• F̄b ∩ F̄c = ∅.

• F̄b ∩ F̄c is a single point, which is a pre-fixed point for f−1.

Now analogously we define bubbles and bubble rays for Ra. Let A∞

be the Fatou component of Ra containing ∞.

Definition 10.2.4. A bubble F of Ra is a Fatou component in the set

∪∞k=0R
−k
a (A∞). The generation of a bubble F is the smallest non-negative

n = Gen(F ) for which Rna(F ) = A∞. The center of a bubble F is the

preimage R
−Gen(F )
a (∞) ∩ F .
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Definition 10.2.5. A bubble ray B of Ra is a collection of bubbles

∪∞k=0Fk with Gen(Fk) < Gen(Fk+1) such that for each k the intersec-

tion F̄k ∩ ¯Fk+1 = {xk} is a single point.

There are similar properties for the Fatou components ofRa as Lemma

10.2.3 to guarantee the well definition of bubble rays for Ra.

As the place of external rays is taken by bubble rays now, we can

reconstruct lots of similar structures compared with 2-polynomials for

the 2-rational maps Ra. There are all kinds of landing lemmas in [AY]

for these bubble rays. One can define the angles for a bubble ray B of f−1

being inverse of the angles of the external rays which land at the point of

J(f−1) where B lands. Then through a conjugacy between bubble rays

for f−1 and Ra one can define angles of bubble rays for Ra. One can

also define orbit portraits for these bubble rays and characteristic arcs

for the orbit portraits as in [Mil2]. There are several landing Lemmas in

Chapter 6 [AY] for f−1 and Ra to guarantee the well definition of angles

above. For more details, see Chapter 4 and 6 of [AY].

Having the definitions of bubble rays on the dynamical planes, now we

can define parabubbles (or called capture components) and parabubble

rays on the parameter space of the family Ra = a
z2+2z . These parabubble

rays also cut out similar wake structures as for M . We present them in

the following theorem (Proposition 6.10 and Lemma 6.11 of [AY]).

Theorem 10.2.6. Let a0 be such that Ra0
has a parabolic fixed point z0

with eigenvalue R′a0
(z0) = e2πi p

q , (p, q) = 1. Denote O = {{θ1, ..., θq}} the

orbit portrait for the bubble rays landing at z0, and let I = [t−, t+] be its

characteristic arc. Then the corresponding parabubble rays with angles

t+ and t− land on a0. They cut out an open set in the complex plane,

called the bubble wake W = W (t−, t+) such that a ∈ W if and only if
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Ra exhibits the repelling orbit portrait O = O(t−, t+).

The following wake picture is from [AY].

Figure 11: The parameter wake W ( 1
7 ,

2
7 ). The picture is from [AY].

11 Proof of Theorem 4.2.2: continuity of mat-
ings between f−1 and parameters near an ar-
bitrary non-renormalizable quadratic poly-
nomial following Aspenberg and Yampolsky

In this section we prove Theorem 4.2.2 on continuity of conformal matings

from [AY]’s existence theory of the corresponding conformal matings.

First we give a notion originating in [AY]. It measures the difference

between two dynamical systems with puzzle partitions. Since we have

defined Yoccoz puzzle for quadratic polynomials and bubble rays puzzle
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for the Ra family, we will present the definition on the maps {fc = z2 +c :

c ∈M} ∪ {Ra : a ∈ C}.

Definition 11.0.7. For two maps F and G in {fc = z2 + c : c ∈ M} ∪

{Ra : a ∈ C}, we say they have the same combinatorics of puzzle up to

depth n, if there exists an orientation preserving continuous surjection

ψ : C→ C, such that

• ψ maps distinct puzzle pieces P ik of depth k ≤ n of F homeomor-

phically to distinct puzzle pieces Qjk of G.

• ψ maps the critical piece of depth k ≤ n of F to the critical piece of

depth k ≤ n of G.

• ψ respects the dynamics, that is,

P ik−1 = F (P jk ) if and only if ψ(P ik−1) = G(ψ(P jk )).

When F,G ∈ {fc = z2 + c : c ∈ M} or F,G ∈ {Ra : a ∈ C}, the map

ψ : C→ C can be chosen to be a homeomorphism on C.

In order to prove the theorem we still need a lemma which shows us

that the puzzle partitions vary continuously with respect to parameters

in M .

Lemma 11.0.8. For any n1 ∈ N, there exists N(n1) ∈ N, such that for

n > N(n1), fcn has the same combinatorics of puzzle up to depth n1 with

fc, moreover, cn (critical value of fcn) and c (critical value of fc) stay in

some particular puzzle piece of depth n1.

Proof. We will prove stronger results by mathematical induction, that is,

we will prove that, for any n1 ∈ N, there exists δn1
> 0, such that for all

the quadratic polynomials fc′ = z2 + c′ with parameters c′ ∈ Dδn1
c ∩M
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(we use the symbol D
δn1
c to denote the disc centred on c with radius δn1

),

fc has the same combinatorics of puzzle up to depth n1 with fc′ and the

critical value c, c′ of fc and fc′ stay in some particular puzzle piece of

depth n1.

The base step follows from Theorem 1.2 [Mil2], that is, there is a wake

(containing c) in which all the maps in it has a repelling fixed point with

orbit portrait given by the the orbit portrait of the α fixed point of fc.

Assume when n1 = n the result holds, that is, there exists δn > 0,

such that for all maps fc′ = z2 + c′ with c′ ∈ Dδn
c ∩M , fc has the same

combinatorics of puzzle up to depth n as fc′ , c
′ stays in some particu-

lar puzzle piece of depth n. By definition, there exists an orientation

preserving homeomorphism ψnc′ : C̄→ C̄, such that:

(a) ψnc′ maps distinct puzzle pieces P i,ck of depth k ≤ n of fc to corre-

sponding puzzle pieces P i,c
′

k of depth k ≤ n of f ′c. Here we number the

finitely many puzzle pieces P i,ck of fc of depth k by integer i ∈ N, and do

the same thing with fc′ .

(b) for all k ≤ n, we have ψnc′ maps depth k critical puzzle piece of fc

to depth k critical puzzle piece of fc′ .

(c) ψnc′ respects the dynamics, that is,

P i,ck−1 = fc(P
i,c
k ) if and only if ψnc′(P

i,c
k−1) = fc′(P

i,c
k ) for k ≤ n.

For the n1 = n + 1 case, we make a finer restriction on ψnc′ : C̄ → C̄

to co-ordinate the puzzle pieces of depth n+ 1. Denote the α fixed point

of fc by αc. αc is used to form the base Yoccoz puzzle partition of fc.

Note that unless for some integer l, f lc(0) ∈ ∪∞k=0f
−k
c (αc), c will always

stay in the interior of the puzzle pieces of any depth. Suppose this is

not the case, and consider the set f−1
c {∪nk=0f

−k
c (αc)} together with the

external rays landing on them. Label these points as αin+1,c, 1 ≤ i ≤ n2.
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Now choose δn+1 < δn, such that for any map fc′ with c′ ∈ Dδn+1
c , αin+1,c′

(1 ≤ i ≤ n2) stays in the corresponding puzzle piece ψnc′(P
c
n(αin+1,c)),

in which P cn(αin+1,c) denotes the depth n puzzle piece of fc containing

αin+1,c. Furthermore, one should guarantee δn+1 small enough such that

c′ stays in the corresponding puzzle piece which varies continuously from

P cn+1(c) (depth n+ 1 puzzle piece of fc containing c). This can be done

because by assumption c ∈ (P cn+1(c))o (interior of P cn+1(c)).

Now we only need to consider the map ψnc′ on P cn(αin+1,c) (depth n

puzzle piece of fc containing the point αin+1,c). Modify ψnc′ on P cn(αin+1,c)

to get a new map ψn+1
c′ , such that for any c′ ∈ D

δn+1
c , ψn+1

c′ satisfies

(a), (b) and (c) for k ≤ n + 1. This can be done because according to

Lemma 2.1 [Mil2], the cyclic order of external rays landing on some point

is preserved by the map f−1
c′ . Now the lemma follows by induction.

Now we can prove Theorem 4.2.2 by virtue of Lemma 11.0.8.

Proof. We use the Yoccoz puzzle for quadratic polynomials fc and fcn in

[Hub] and bubble rays puzzle for Ra(cn) and Ra(c) in [AY]. Notice from

Chapter 9 [AY] that fc has the same combinatorics of the puzzle up to

depth ∞ with Ra(c), fcn has the same combinatorics of the puzzle up to

depth ∞ with Ra(cn), while both critical points stay in some particular

puzzle pieces. We use the same notation ∆c
n, n ∈ N as in [AY] to denote

the depth n parameter puzzle piece on the a plane in which all the maps

have the same combinatorics of puzzle up to depth n with fc (refer to

Proposition 7.11 , [AY]). That is,

∆c
n = {Ra : Ra has the same combinatorics of puzzle up to depth n and

−a is contained in the particular puzzle piece of depth n which varies
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isotopically from the depth n puzzle piece of Ra(c) containing its critical

point −a(c)}.

Now by Lemma 11.0.8, for any n1 ∈ N, there exists N(n1) large

enough such that for n > N(n1), fcn has the same combinatorics of puzzle

up to depth n1 with fc and the critical points stay in the particular puzzle

pieces as lim
n→∞

cn → c. Then Ra(cn) ∈ ∆c
n1

. Now let n1 →∞, then

diam(∆n1
)→ 0

by Theorem 9.1 [AY]. It follows that lim
n→∞

Ra(cn) = Ra(c).

12 The case of Fatou components with disjoint
closures: proof of Theorem 4.2.5

12.1 An example s 3
7
q s 3

31

Now consider the case when all the Fatou components of R have disjoint

closures, e.g. p = 3
7 , q = 3

31 . We first show that

Lemma 12.1.1. Closures of Fatou components of the map R ' s 3

7
q s 3

31

are pairwise disjoint.

We need Lemma 3.3 from [Ree3] presented as the following lemma in

our proof.

Lemma 12.1.2. Let f be of quadratic rational hyperbolic type IV (means

f has two critically periodic points with disjoint orbits), then one of the

following occurs.

(1) f is Möbius conjugate to a critically periodic polynomial.

(2) The closure of any Fatou component is a closed topological disc.

The closures of any two Fatou components U1 and U2 of f intersect in

at most one point. If Ū1 and Ū2 do intersect at x, and U1 and U2 are
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both periodic, then x is periodic with period max(m1,m2), where mi is

the minimum period of points on ∂Ui under f .

Proof of Lemma 12.1.1:

Proof. First, observe the orbit of the minor leaves (we use [r, s], r, s ∈ Q

to represent the leaf with endpoints e2πir and e2πis on S1) in the two

laminations:

s 3

7
: [3

7 ,
4
7 ]→ [6

7 ,
1
7 ]→ [2

7 ,
5
7 ],

s 3

31
: [ 3

31 ,
4
31 ]→ [ 6

31 ,
8
31 ]→ [12

31 ,
16
31 ]→ [24

31 ,
1
31 ]→ [17

31 ,
2
31 ].

Notice that by Lemma 12.1.2, m1 = 1 or 3, m2 = 1 or 5 in this case.

If two Fatou components Ui of R ' s 3

7
q s 3

31
do intersect, in case m1 = 1

this means ∂U1 ∩ R(∂U1) ∩ R2(∂U1) is a single fixed point and every

other point in ∂U1 has period divisible by an integer ≥ 3. Similarly in

case m2 = 1, ∂U2 ∩ R(∂U2) ∩ R2(∂U2) ∩ R3(∂U2) is a single fixed point

and every other point in ∂U2 has period divisible by an integer ≥ 5.

So the possible intersection between ∂U1 and ∂U2 is a fixed point and

this would have to be the equivalent class of [3
7 ,

4
7 ] and [ 3

31 ,
4
31 ]. They

would have to be joined by finitely many leaves. In the combination of

the two laminations L 3

7
and L−1

3

31

, two leaves can intersect only if they

have a common endpoint. Both endpoints of a leaf have the same period,

so [3
7 ,

4
7 ] and [ 3

31 ,
4
31 ] can not be joined by finitely many leaves because

these leaves have endpoints of different periods. So the closures of Fatou

components are all disjoint.
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12.2 Notations and outline strategy for the proof of The-
orem 4.2.5

In this section we will prove Conjecture 4.1.1 in the case when all Fatou

components of R∗ (or equivalently of R) have disjoint closures, that is,

Theorem 4.2.5. There is currently an extra hypothesis in our Lemma

12.7.4 on ϕ−1
∗ (ϕ∗(p)), quite mild, or a technical problem, which could

hopefully be removed later on. We use the idea of Markov partitions for

Rn and R∗, which do not have the parabolic cycle on the boundary of

any partition element.

Let Mx∗ be the copy of the Mandelbrot set containing x∗ as its cusp.

There is a corresponding combinatorial copy of the Mandelbrot set in

the unit disc bounded by µp. If µpn is in this combinatorial copy of

the Mandelbrot set for all n, then Rn ∈ Mx∗ . Let Lp be the invariant

lamination with minor leaf µp. Let Gp be the minor gap which is the gap

bounded from 0 by µp with µp on its boundary. spn is a tuning of sp if

Lpn ⊃ Lp, which means µpn ⊂ Ḡp, Gpn ⊂ Gp. All leaves of Lpn \ Lp are

in the orbit of Ḡp. This means that there is tn ∈ Q and a lamination Ltn

whose minor leaf is µtn with an endpoint e2πitn . There is a continuous

map ψ : D̄→ Gp, such that

ψ(Ltn) = Ḡp
⋂
Lpn ,

ψ(z2) = smp ◦ ψ(z),

ψ ◦ stn = smp ◦ ψ on G.

ψ is a homeomorphism on Gp. Moreover, ψ−1 extends continuously

to map Ḡp to D̄, map leaves on ∂Gp to points. Then Rn → R∗ as n→∞

by the theory of polynomial-like mappings because spn ' sp ` stn where

tn → 0 as n→∞.

The tuning case, that is, Theorem 4.2.4 is proved in Section 12.4. Let
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φn be a semiconjugacy between spn q sq and Rn by Section 2.4, that is,

φn ◦ (spn q sq) = Rn ◦ φn.

Let φ, φ∗ be semiconjugacies such that

φ ◦ (sp q sq) = R ◦ φ,

φ∗ ◦ (sp q sq) = R∗ ◦ φ∗. (31)

φ∗ exists by Proposition 2.11.1. φ∗(S
1) = J(R∗). φ(e2πip) is in the

interior of a set of P0(R) (the initial partition pieces for R). φ∗(e
2πip)

is in the interior of a set of P0(R∗), so for n large enough, φ(e2πipn) and

φ∗(e
2πipn) are both in the interior of some sets of P0(R) and P0(R∗).

Now let

Pn(R∗) =

n∨
i=0

R−i∗ (P0(R∗)) = {∩ni=0Pji : Pji ∈ R−i∗ (P ), P ∈ P0(R∗)},

Pn(R) =

n∨
i=0

R−i(P0(R)).

Some of the ends of partitions in

∞∨
i=0

R−i∗ (P0(R∗)) do not shrink to

points. For example there is a sequence {Pn} with Pn ∈ Pn(R∗) such

that as n → ∞, Pn tends to the Fatou component with φ∗(e
2πip) on

its boundary. Here Pn is the set in Pn(R∗) which contains the Fatou

component with φ∗(e
2πip) on its boundary.

In the following Section 12.5 we will construct a sequence of closed

nested topological discs Bn(R∗), n ∈ N, with φ∗(e
2πip) on their bound-

aries. None of these discs is a single partition piece in Pn, but they will

be constructed with boundaries in the union of the boundary of U∗ and of

the graph ∪nGn. They are closures of the union of some partition pieces

of level greater than some integer N . Here, Gn is the graph such that the
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partition pieces in Pn are the closures of components of C̄ \Gn. We can

show that the sequence Bn(R∗) shrinks to the point φ∗(e
2πip) as n→∞

by Lemma 5.2.4. Then we transfer the shrinking from the dynamical

plane of R∗ to some induced nested sets MBn on the parameter plane

by some method. At last we show the rational map Rn ' spn q sq is in

some set MBNn such that Nn → ∞ as n → ∞. This is the idea of the

whole proof.

12.3 Persistent Markov partitions for rational maps near
R∗

Now denote by v the point in the parabolic cycle of R∗ of period m such

that

lim
n→∞

Rmn+1
∗ (c1) = v

and hence Rm∗ (v) = v. Using the partition introduced in the last section,

one can see that the nested partition pieces of all levels containing v

tend to the Fatou component U∗ with v on its boundary. The set in the

intersection of all levels of dynamical partitions containing R∗(c1) is a

copy of the Mandelbrot set by the theory of polynomial-like mappings

[DH1], as we shall see in Section 12.4.

The base partition graph

G0(Rx) =
⋃

P∈P0(Rx)

∂P

varies continuously to G0(R∗) in a neighbourhood of R∗ according to

Lemma 12.3.2. For each n, Gn(Rx) varies continuously to Gn(R∗) in

a neighbourhood of R∗. These neighbourhoods are getting smaller and

smaller as n→∞.

Let X be the parameter slice Perm′(0) containing the parameter x∗

which parametrizes the rational map R∗. One can take the example of
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the parameter a-plane in [AY] as a special example for Per2(0). Now

we quote two results (Corollary 1.2 and Lemma 2.1) from [Ree4] which

will be used to form our base partition P0(R∗) and persistent partitions

P0(Rx) for x in a small neighbourhood of x∗ on X.

Theorem 12.3.1. Let f : C̄ −→ C̄ be a rational map with connected

Julia set J , such that the forward orbit of each critical point is attracted

to an attractive or parabolic periodic orbit, the closure of any Fatou com-

ponent is a closed topological disc, and all of these are disjoint. Then

there exists a graph G ⊂ C̄ such that the following hold.

• G ⊂ f−1(G).

• G does not intersect the closure of any Fatou component.

• All components of C̄ \G are topological discs.

• Any component of C̄ \G contains at most one periodic Fatou com-

ponent of f .

• The boundary of any component of C̄ \G is a quasi-circle.

In particular, the set of closures of components of C̄ \ G is a Markov

partition for f .

By this theorem the closures of components of C̄\G gives the founda-

tion level partition of a Markov partition for R∗, which we call P0. The

condition on rational maps with disjoint closures of Fatou components

for existence of the Markov partitions imposes a restriction on our re-

sult. The Markov partition persists for nearby maps Rx by the following

lemma (Lemma 2.1 [Ree4]).

Lemma 12.3.2. Let f be a rational map. Let G ⊂ C̄ be a graph, and U

a connected closed neighbourhood of G such that the following hold.
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• G ⊂ f−1(G).

• U is disjoint from the set of critical values of f .

• U contains the component of f−1(U) containing G, and, for some

N > 0, Uo contains the component of f−N (U) containing G.

Then for all g sufficiently close to f in the uniform topology, the

properties above hold with g replacing f and a graph G(g) isotopic to the

graph G = G(f) above, varying continuously with g.

In particular, these properties hold for nearby g, if f is a rational

map such that the forward orbit of every critical point is attracted to

an attractive or parabolic periodic orbit, the closures of any two periodic

Fatou components are disjoint, and G is a graph with the properties above,

which is also disjoint from the closure of any periodic Fatou component.

Let U∗ be the Fatou component containing R∗(c1(R∗)) on its bound-

ary. Now write

Wi = Wi(R∗)

for the set in Pi = Pi(R∗) which contains U∗. Thus Wi+1(R∗) ⊂Wi(R∗)

and Wi+j(R∗) is a component of R−jm∗ (Wi(R∗)). Now we introduce part

of Corollary 1.2 of [Ree4], by perturbing the graph G of [Ree4] near U∗

to a different graph in ∪n≥0R
−n
∗ (G), if necessary.

Let XWi be the set of parameters x such that ∂Gi(Rx) varies isotopi-

cally for nearby maps and Rx(c1(x)) ∈ Wi(Rx). Thus, x∗ ∈ XWi for all

i, and there is a homeomorphism

hix : Gi(R∗) ∪ {R∗(c1(R∗))} → Gi(Rx) ∪ {Rx(c1(Rx))}

for x ∈ XWi, which satisfies

hix ◦R∗ = Rx ◦ hix
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on Gi(R∗).

Theorem 12.3.3. (from Theorem 3.2 of [Ree4])

x→ h−ix (Rx(c1(Rx)))

is a homeomorphism from ∂XWi to Wi(R∗). Consequently XWi is a

closed topological disc for all i, and XWi+1 ⊂ int(XWi).

As a consequence of the theorem, ∩i≥0XWi is a compact set.

12.4 The case with a bounded minor leaf: proof of Theo-
rem 4.2.4 following the Mandelbrot-like family the-
ory

When all the minor leaves are in a small copy of the Mandelbrot set, that

is, the quadratic polynomials fn ' spn are all tunings and R∗ has Fatou

components of disjoint closures, we can deal with the continuity problem

by Douady and Hubbard’s theory of Mandelbrot-like families [DH1].

Proof of Theorem 4.2.4:

Proof. Note that

(Rm∗ , int(Wm(R∗)), int(W0(R∗)))

is a polynomial-like mapping in the sense of [DH1], that is,

Wm(R∗) ⊂ int(W0(R∗))

and

Rm∗ : Wm(R∗)→W0(R∗)

is a degree two branched covering. For x ∈ XWm,

(Rmx , int(Wm(Rx)), int(W0(Rx)))
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is also a polynomial-like mapping. The Mandelbrot-like set MR∗ is

∩i≥0XWi, which is compact by Theorem 12.3.3. The map

χ : int(XWm)→ C

in [DH1] is continuous by Proposition 14 of [DH1] and holomorphic over

M , by Theorem 4 of [DH1]. By construction, this map χ is such that, if

Rx ' srqsq for some tuning sr of sp, then x ∈MR∗ and χ(x) = c where

fc ' sr, fc(z) = z2 + c. As commented in Section 4 of [DH1], if MR∗ is

compact, then χ : MR∗ →M is a ramified cover of some degree. But χ is

injective restricted to the critically periodic maps in MR∗ , because these

are precisely those maps Rx with Rx ' sr q sq for an odd denominator

rational r such that sr is a tuning of sp. So χ is of degree one on MR∗

and a homeomorphism from MR∗ to M . Now let lim
n→∞

pn = p with spn

being a tuning of sp. Let fn ' spn where fn → f∗ as n → ∞, in which

f∗ is the parabolic map on the boundary of the hyperbolic component

containing f ' sp with its parabolic point of the least possible period.

Then

Rn = χ−1(fn)→ χ−1(f∗) = R∗

as n→∞.

12.5 Construction and shrinking of the nested sets Bn(R∗)
on the dynamical plane

First consider the Fatou component U∗ of R∗. We distinguish elements of

the graph G(R∗) = ∪nGn(R∗) by lateral or vertical ones as the following.

There are arcs on the graph which are parts of some closed loop in G(R∗)

enclosing U∗ at some level j. We call them the (level j) lateral edges of

the graph G(R∗). Denote the collection of them by ΓL. Denote the set

of P0(R∗) containing U∗ by P0(R∗). The edges which are not part of any
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closed loop enclosing U∗ at any level are called the vertical edges. Denote

the collection by ΓV .

Notice that there is a homeomorphism φ : S1 → ∂U∗ such that

φ(z2) = Rm∗ ◦ φ(z).

Choose some periodic points on S1 near 1, for example, e±
2πi

99 . We

claim that (this statement is for the particular number 1
99 , in fact it works

for any odd denominator rational number)

Lemma 12.5.1. There are arcs γ+ and γ− composed of edges in ΓL∪ΓV ,

such that

γ± ⊂
⋃
n

Gn(R∗), γ+ ⊂ R99m
∗ (γ+), γ− ⊂ R99m

∗ (γ−),

γ+ lands on φ(e
2πi

99 ) while γ− lands on φ(e−
2πi

99 ).

Proof. First, choose a vertex y0,+ on some edge in ΓL. Let ωj , j ≥ 0

be the closed loop composed of edges in ΓL of Gjm surrounding U∗.

ω0 = ∂P0(R∗). Rm∗ (ωj+1) = ωj and the map Rm∗ : ωj+1 → ωj is a

covering map of degree 2. ωj+1 separates ∂U∗ from ωj .

Now choose a vertical edge α0,+ between ω0 and ω1 in the repelling

petal of v without loss of generality. R−jm∗ (α0,+) has 2j components

joining ωj to ωj+1. Define the arc

β0,+ ⊂ (∪98
j=0R

−jm
∗ (α0,+)) ∪ (∪98

j=0ωj)

according to the following rules. First observe the orbit of e
2πi

99 under the

doubling map (we omit e
2πi

99 as there will be no ambiguity):

1 → 2 → 4 → 8 → 16 → 32 → 64 → 29 → 58 → 17 → 34 → 68 →

37 → 74 → 49 → 98 → 97 → 95 → 91 → 83 → 67 → 35 → 70 → 41 →

82→ 65→ 31→ 62→ 25→ 50→ 1.
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Join α0,+ with the sets R−jm∗ (α0,+) according to the orbit of e
2πi

99

under the doubling map. Note that R−m∗ (α0,+) splits the region between

ω1 and ω2 into 2 parts, and R−jm∗ (α0,+) splits the region between ωj and

ωj+1 into 2j parts. The 2j components of R−jm∗ (α0,+) between ωj and

ωj+1 are ordered in the same way as the points e2πi k
2j , 0 ≤ k < 2j on S1,

so choose αj,+ to be the component of R−99jm
∗ (α0,+) which corresponds

to the nearest point of k
2j with respect to 299−j

99 mod 1 for 0 ≤ k < 2j .

Let β0,+ ⊂ (∪98
j=0αj,+) ∪ (∪98

j=0ωj) and β0,+ joins y0,+ and a point y1,+ ∈

R−99m
∗ (y0,+). Then inductively define βj+1,+ to be the component of

R−99m
∗ (βj,+) which shares an endpoint with βj,+ for j ≥ 0. Repeat this

process infinitely many times. Now let

γ+ = ∪∞j=0βj,+,

where βj,+ ⊂ ∪98
j=0Gj+k(R∗) and R99m

∗ (βj+1,+) = βj,+. We claim that

diam(βj,+)→ 0 as j →∞ because since βj,+ is bounded away from the

critical orbits, it is contained in a small open set W on which {R−km∗ : k ∈

N} is a normal family when j is large enough. So diam(R−km∗ (W ))→ 0

as k → ∞, which implies lim
j→∞

diam(βj,+) = 0. Since any accumulation

point is fixed by R99m
∗ , they must accumulate on a single periodic point,

which is φ(e
2πi

99 ). The arc

γ− = ∪∞j=0βj,−

lands on φ(e−
2πi

99 ) where βj,− ⊂ ∪98
j=0Gj+k(R∗) and R99m

∗ (βj+1,−) = βj,−

is constructed similarly with βj,+. So βj+1,± is determined by βj,±. De-

note the two endpoints of βj,± by yj,± and yj+1,±. All the βj,± are

determined by β0,±.
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Now we begin to construct the nested sequence of closed topological

discs Bj(R∗). From now on suppose v is a primitive parabolic point which

has exactly one attracting petal and one repelling petal for simplicity.

As we mainly care about the dynamics near the parabolic point,

and the Fatou component U∗ is the limit of all levels of the partition

pieces which contains it, we can suppose both γ+ and γ− are in the ε-

neighbourhood of the parabolic point v, βj,+ and βj,− are on the same

level of the graph.

In order to construct the sequence, denote the shorter arc on ∂U∗

joining φ(e
2πi

99 ) and φ(e−
2πi

99 ) by γ0,<. It is an arc containing the parabolic

point v in its interior. Write γj,< = R−jm∗ (γ0,<), j ∈ N, and choose R−m∗

the inverse branch such that R−m∗ (v) = v (in the following without special

declaration we always mean this branch by R−m∗ ). Obviously the two

points φ(e
2πi

99 ) and φ(e−
2πi

99 ) converge to v from two sides under iterations

of R−m∗ , so γj,< contains v in its interior for all j ∈ N. Denote the shorter

arc on ω0 joining the two end points of β0,+ and β0,− on ω0 by γ0,>. Now

consider the dynamics of R−m∗ in the topological disc B0(R∗) bounded

by γ+, γ−, γ0,< and γ0,>. Suppose B0(R∗) is in the ε-neighbourhood of

v. Then let

Bj+1(R∗) = R
−(j+1)m
∗ (B0(R∗)) ⊂ R−jm∗ (B0(R∗)) = Bj(R∗) (32)

for j ∈ N.

Now we want to use Lemma 5.2.4 to show the shrinking of the sequence

Bn(R∗) to the point v. For the nested sequence Bj+1(R∗) ⊂ Bj(R∗), j ∈

N, apply Lemma 5.2.4 by letting Bn = Bn(R∗), Cn = Cn(R∗) be the

closure of the set Bn(R∗) \ Bn+1(R∗), n ∈ N. Both Cn(R∗) and Bn(R∗)

are unions of some partition pieces whose levels are greater than some

integer N , moreover,
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Cn+1(R∗) = R−m∗ (Cn(R∗)), n ∈ N, n ≥ 1.

Then Mod(Cn(R∗)) = c > 0 is a constant, which implies

∞∑
n=0

Mod(Cn(R∗)) =∞. (33)

So Bn(R∗) converges to v by Lemma 5.2.4.

12.6 Convergence of the nested sets XBn on the parameter
plane X

Now apply Lemma 12.3.2 to f = R∗. Following partitions on the dy-

namical planes we define partitions on the parameter plane X (in fact

only in a small neighbourhood of R∗ is enough for us). Denote by x∗

the parameter corresponding to the map R∗, and by x the parameter

corresponding to the map Rx on the parameter plane X. What we do

is similar to the definition of the partitions of parameter space of the p
q

limb of M in Part III, [Hub]. By the persistent property of the Markov

partitions for maps near R∗, for a depth n partition piece P jn,x∗ , n, j ∈ N,

there is a corresponding one P jn,x for Rx depending continuously on x by

lemma 12.3.2. Now define

XP jn,x∗ = {x ∈ X : Rx(c1(x)) ∈ P jn,x},

and

∂XP jn,x∗ = {x ∈ X : Rx(c1(x)) ∈ ∂P jn,x}.

∪n,j∈NXP jn,x∗ and ∪n,j∈N∂XP jn,x∗ form a partition in a neighbourhood of

x∗ on X plane.

In order to show the convergence on the X plane, we construct a

nested sequence of topological discs XBn. As the Markov partitions
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persist for maps near R∗, the curve γ+ corresponds to a curve γ+,x de-

pending continuously on x in a neighbourhood of x∗. For simplicity we

still denote this curve by γ+ if there are no ambiguity, so for γ− and γ0,>.

Now let

Xγj,+ = {x ∈ X : Rx(c1(x)) ∈ R−jmx (γ+) = γj,+}, j ∈ N,

Xγj,− = {x ∈ X : Rx(c1(x)) ∈ R−jmx (γ−) = γj,−}, j ∈ N,

Xγj,> = {x ∈ X : Rx(c1(x)) ∈ R−jmx (γ0,>) = γj,>}, j ∈ N.

Denote by Mx the closure of the mating components on X, then Xγj,+

is a ray landing on a point xj,+ ∈ Mx. By the theory of polynomial-like

mappings in [DH1] as explained in Section 12.4, there is a homeomor-

phism

Φx∗ : M →Mx∗

where x∗ ∈ Mx∗ ⊂ Mx and the homeomorphism has the following prop-

erties.

• Φx∗ maps hyperbolic components to hyperbolic components.

• Φx∗ maps critically finite maps to critically finite maps.

• Φx∗ maps parabolic maps to parabolic maps. Moreover, If Rx1
'

(sp ` sr1)q sq, sr1 ' fa1
(z) = z2 + a1, then

Φx∗(a1) = x1.

xj,± are the images of the endpoints of the ray of argument ± 2π
2j99 under

Φx∗ . Yoccoz showed that there are only finitely many limbs of M with

diameters greater than a fixed number ε. Let tj,± be the roots of the

limbs containing the endpoints of the rays of argument ± 2π
2j99 , let
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Φx∗(tj,+) = x′j,+, Φx∗(tj,−) = x′j,−.

C. Peterson and P. Roesch (Theorem 4.21 [PR]) showed (there is also

an unpublished proof by Johannes Riedl in his Ph.D thesis [Rie]) that

there is an arc in M joining tj,+ and the endpoint of the ray of argument

2π
2j99 . Similarly, there is an arc in M joining tj,− and the endpoint of the

ray of argument − 2π
2j99 . By Yoccoz’s result diameters of these rays → 0

as j →∞.

Now define Xγ′j,+ and Xγ′j,− to be the images of these arcs under Φx∗ .

Thus Xγ′j,+ is an arc in Mx∗ joining xj,+ and x′j,+, Xγ′j,− is an arc in

Mx∗ joining xj,− and x′j,−. Define Xγ′′j to be the image under Φx∗ of the

arc on the boundary of the main cardioid between tj,+ and tj,−. Since

Φx∗ is a homeomorphism, the diameters of Xγ′j,+, Xγ′j,− and Xγ′′j tend

to 0 as j →∞, so

lim
j→∞

diam(Xγ′j,+ ∪Xγ′j,− ∪Xγ′′j ) = 0.

Figure 12 shows positions of the j and j + 1-th parameter curves

mentioned above.
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Xγj+1,+

Xγj+1,−

x∗

x′j+1,+

x′j,+

xj,+

x′j+1,− xj+1,−

x′j,−

xj,−

Xγ′j+1,−

Xγ′j+1,+

Xγ′j,−

Xγ′j,+

Xγj,+

Xγj,−

Xγj+1,> Xγj,>

xj+1,+

Figure 12: The parameter curves on X plane

Now we have

Theorem 12.6.1. lim
j→∞

diam(Xγj,+ ∪Xγj,− ∪Xγj,>) = 0

To show the theorem we first show that

Lemma 12.6.2. Given c > 0, there exists K = Kc, such that the fol-

lowing holds. Let A ⊂ C be an annulus of modulus > c. Then there is

a closed loop γ ⊂ A which is homotopic to A, such that if for x ∈ γ, rx

denotes the radius of the largest disc centred at x and contained in A,

then
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rx

diam(γ)
≥ K

for any x ∈ γ.

Proof. We use the Koebe distortion theorem. This theorem says that if

f : D→ C is holomorphic and injective, then

1−r
(1+r)3 ≤

|f ′(z)|
|f ′(0)| ≤

1+r
(1−r)3 ∀|z| ≤ r

and

(1−r
1+r )4 ≤ |f ′(z)|

|f ′(w)| ≤ (1+r
1−r )4 ∀|z|, |w| ≤ r.

In particular, we can apply this to our case with r = 1
2 . Now suppose

that A ⊂ C has modulus c > 0. The round annulus {z : 1 < |z| < e2πc}

is conformally equivalent to A. The holomorphic map

F : {z : 1 < |z| < e2πc} → A

is uniquely determined up to composition with a rotation z → eiθz.

Let γ0 = {z : |z| = 1+e2πc

2 }, let γ = F (γ0). Apply the Koebe distortion

theorem to discs D centred on γ0 and of radius e2πc−1
2 = rc with f = F |D.

f is univalent on the disc of radius rc with centre zD ∈ γ0. It follows that

(1−r
1+r )4 ≤ |f ′(z)|

|f ′(w)| ≤ (1+r
1−r )4

for any |z − zD| ≤ λrc, |w − zD| ≤ λrc.

We can cover γ0 by discs of radius rc such that the distance between

centres of consecutive discs is ≤ rc
3 . γ0 has radius rc + 1 and length

2π(rc + 1). So if N is the first integer ≥ 2π(rc+1)
rc

, then γ0 can be covered

by N discs with centres on γ0 of radius rc and with consecutive centres

of distance ≤ rc
3 . Then every point in γ0 is in one of these discs centred

on γ0 of radius rc with distance ≤ rc
3 from the center. So for any z ∈ γ0,

there exists Di with center zi such that
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|z − zi| ≤ rc
3

and

{w : |w − z| ≤ rc
3 } ⊂ {z : |z − zi| ≤ 2rc

3 }.

So {w : |w − z| ≤ rc
3 , z ∈ γ0} ⊂ ∪Ni=1{w : |w − zi| ≤

2rc
3
}. Then for any

w1, w2 ∈ ∪Ni=1{w : |w − zi| ≤
2rc
3
}, we have

|zi − zi+1| ≤
rc

3
,

1

34
≤
|F ′(zi)|
|F ′(zi+1)|

≤ 34.

So for all 1 ≤ i ≤ j ≤ N we have

(
3

2
)−4|j−i| ≤

|F ′(zi)|
|F ′(zi+1)|

≤ (
3

2
)4|j−i|.

Then for any w1 ∈ Di and w2 ∈ Dj with |w1 − zi| ≤ 2rc
3 , |w2 − zj | ≤ 2rc

3 ,

we have

3−4|j−i|−8 ≤
|F ′(w1)|
|F ′(w2)|

≤ 34|j−i|+8.

In particular this is true for all w1, w2 ∈ {w : |w − z| ≤ rc
3 for some

z ∈ γ0}. Then we get the constant Kc.

Now we continue to prove 12.6.1.

Proof of Theorem 12.6.1:

Proof. First, xj,+ → x∗ and xj,− → x∗ as j → ∞. This is because the

endpoints of the rays of arguments ± 2π
2j99 tend to the parameter x∗ as

j → ∞ (by Yoccoz’s result), apply the homeomorphism Φx∗ , it suffices

to shows that

Mod(XBj \ (Xγj+1,+ ∪Xγj+1,− ∪Xγj+1,>))

is bounded from 0 for all j. Now let γ be the closed loop in Lemma

12.6.2, let A be the annulus XBj \ (Xγj+1,+∪Xγj+1,−∪Xγj+1,>). Then
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diam(γ) ≥

diam(Xγj+1,+∪Xγj+1,−∪Xγj+1,>)−Max{|xj+1,−−x∗|, |xj+1,+−x∗|}.

For at least one x ∈ γ, rx ≤ |xj,+−xj+1,+|, so the theorem follows.

Now we get a nested sequence of closed topological discs XBj , j ≥ 0

bounded by

Xγj,+ ∪Xγj,− ∪Xγj,> ∪Xγj,+′ ∪Xγj,−′ ∪Xγj ′′.

Let XCj be the closure of XBj \ XBj+1. For all x ∈ int(XBj),

γj,+ ∪ γj,− ∪ γj,> varies holomorphically with x, for all x ∈ int(XBj+1),

γj+1,+ ∪ γj+1,− ∪ γj+1,> varies holomorphically with x. Now we prove

Theorem 12.6.3. The modulus

Mod(C̄ \ (γj,+ ∪ γj,− ∪ γj,> ∪ γj+1,+ ∪ γj+1,− ∪ γj+1,>))

is bounded from 0, and it follows immediately that

Mod(XBj \ (Xγj,+ ∪Xγj,− ∪Xγj,> ∪Xγj+1,+ ∪Xγj+1,− ∪Xγj+1,>)) >

C > 0

for some constant C.

Proof. Let

γj,+(x) ∪ γj,−(x) ∪ γj,>(x) ∪ γj+1,+(x) ∪ γj+1,−(x) ∪ γj+1,>(x) = Γj(x),

Xγj,+ ∪Xγj,− ∪Xγj,> ∪Xγj+1,+ ∪Xγj+1,− ∪Xγj+1,> = XΓj .

First we construct a map

ϕ : U \ Γj(x∗)→ XBj \XΓj

s.t. U \Γj(x∗) has modulus bounded from 0 for some topological disc U .

Note that
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Γj(x∗) = γj,+ ∪ γj,− ∪ γj,> ∪ γj+1,+ ∪ γj+1,− ∪ γj+1,>.

We will make ϕ of bounded distortion. Note that

hxj : Γj(x∗)→ Γj(x)

varies holomorphically with respect to x.

We are going to show that there is an injective quasi-conformal map

Hj : XBj \XBj+1 → Bj(x∗) \Bj+1(x∗)

with bounded distortion K on their interiors. The closure of Bj(x∗) \

Bj+1(x∗) has modulus bounded from 0. Note that

hxj : Bj(x∗) \Bj+1(x∗)→ Bj(x) \Bj+1(x), x /∈ XBj+1

is q− c of distortion k1. Moreover the family hxj depend holomorphically

on x. hxj are defined inductively by

Rjmx ◦ hxj = hx0 ◦Rjmx (34)

where

hx0 : B0(x∗) \B1(x∗)→ B0(x) \B1(x)

is a q-c map of bounded distortion. hx0 conjugates ∂B0(x∗) to ∂B0(x)

for x ∈ XB0. By equation (34), hxj conjugates ∂Bj(x∗) to ∂Bj(x) for

x ∈ XBj .

Now let

Hj(x) = (hxj )−1(Rx(c1(x))). (35)

One can see from (34) that all hxj have the same distortion for j ≥ 0

as Rjmx is holomorphic. Hj(x) satisfies

| ∂̄Hj

∂Hj
|(x) = | ∂̄hj

∂hj
|(Rx(c1(x))). (36)
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To see this, let F (x), G(x) be any two complex function with x =

x1 + ix2, we need to compute ∂(F ◦G(x)) and ∂̄(F ◦G(x)). In order to

do this, write

F = u(x1, x2) + iv(x1, x2), DF =

(
ux1

ux2

vx1
vx2

)
.

Then

∂F (x) = 1
2(Fx1

− iFx2
) = 1

2(ux1
− vx2

+ i(vx1
+ ux2

))

identifies with the matrix

1
2

(
ux1

+ vx2
ux2
− vx1

vx1
− ux2

ux1
+ vx2

)
.

Similarly, ∂̄F (x) = 1
2(Fx1

+ iFx2
) = 1

2(ux1
+ vx2

+ i(vx1
− ux2

))

identifies with the matrix

1
2

(
ux1
− vx2

−ux2
− vx1

vx2
+ ux1

ux1
− vx2

)
.

The map z → z̄ identifies with

J =

(
1 0
0 −1

)
,

so DF = ∂F + ∂̄FJ . From this we can work out that

D∂(F ◦G) = ∂F (G(z))∂G(z) + ∂̄F (G(z))J∂̄G(z)J ,

D∂̄(F ◦G) = ∂F (G(z))∂̄G(z)J + ∂̄F (G(z))J∂G(z)J .

Then by (35), Hj ◦ (hxj ) = Rmx (c1(x)), so

∂̄HjJ∂h
x
j + ∂Hj ∂̄h

x
j J = 0,

∂̄HjJ∂h
x
j J + ∂Hj ∂̄h

x
j = 0,

so

∂̄Hj

∂Hj
= −

∂̄hxj
J∂hxj J

. (37)
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By taking modulus both sides one gets (36). So in order to bound ||Hj || =

| ∂̄Hj(x)
∂Hj(x) |, we only need to bound | ∂̄h0

∂h0
|. The distortion of

hx0 : B0(x∗) \B1(x∗)→ B0(x) \B1(x)

is bounded. In fact the distortion of

hx0 : (C,Γ0(x∗))→ (C,Γ0(x))

is bounded, so the theorem follows.

Combining Theorem 12.6.1, Theorem 12.6.3 and Lemma 5.2.4 we have

Theorem 12.6.4. The whole set XBj shrinks to x∗ as j →∞, that is

lim
j→∞

diam(XBj) = 0.

Now define

H(x) : XB0 → B0(x∗)

by H(x) = Hj(x) for x ∈ XBj \XBj+1 for later use.

12.7 Proof of Theorem 4.2.5

We write Sm for the two-valued local inverse of Rm∗ on P0 with Sm(P0) ⊂

P0. We identify the unit circle with R/Z and with the unit interval

[0, 1]/(0 ∼ 1) with 0 and 1 identified. We write

T (x) = 2x mod 1

for x ∈ [0, 1]/(0 ∼ 1). We assume that the closures of Fatou components

of R∗ are disjoint (which implies that the same is true for R). p is of

period m under T . We write L = Lp ∪ L−1
q and ∼L for the associated

equivalence class on S1. We write Tm for the local degree one inverse of

Tm, defined in a neighbourhood of p, with Tm(p) = p.
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Since R ' sp q sq, there is a continuous map

ϕ∗ : [0, 1]/(0 ∼ 1)→ J(R∗),

where J(R∗) denotes the Julia set of R∗, such that

ϕ∗ ◦ T (x) = R∗ ◦ ϕ∗(x) ∀x ∈ [0, 1]/(0 ∼ 1).

Considering (31), we have

ϕ∗(x) = φ∗(e
2πix) ∀x ∈ [0, 1]/(0 ∼ 1).

Let pn be a sequence of odd denominator rationals with lim
n→∞

pn =

p. Let Rn be the sequence of rational maps (uniquely determined up

to Möbius conjugacies) with Rn ' spn q sq which are parametrised by

parameters on the X plane. Recall that we aim to show that Rn → R∗ as

n→∞ (assuming some suitable Möbius conjugacies of Rn). We assume

that spn is not a tuning of sp for any n by Theorem 4.2.4.

Now let Q0 be the union of the components of ϕ−1
∗ (P0) which inter-

sect ϕ−1
∗ (∂U∗). We have Q0 ⊂ (0, 1). Assuming P0 is a sufficiently small

neighbourhood of U∗, Q0 is a neighbourhood of p ∈ (0, 1). By the as-

sumptions on the size of P0, Q0 is disjoint from T i(Q0) for 0 < i < m,

and Tm|Q0
is of degree two. We write I0 for the component of Q0 con-

taining p, so that I0 is a closed interval with p in its interior. The set

ϕ−1
∗ (ϕ∗(p)) is a finite subset of S1, which is the ∼L-equivalence class of

p. Let I0,j ( for 1 ≤ j ≤ k for some k ≥ 2) be the components of ϕ−1
∗ (P0)

which contain the points of ϕ−1
∗ (ϕ∗(p)). We can number them so that

there is a leaf of Lp∪L−1
q connecting the points of ϕ−1

∗ (ϕ∗(p)) in I0,j and

I0,j+1 for each 1 ≤ j < k. Then I0 = I0,j0 for some 1 ≤ j0 ≤ k. The

intervals are lined up in this way because the Fatou components of R∗

have disjoint closures, and for the same reason the points of ϕ−1
∗ (ϕ∗(p))

all have the same period as the set itself.
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Since P0 is a set in the Markov partition for R∗, we have that for any

j, any component of T−i(∪kj=1I0,j) is either contained in ∪kj=1I0,j or has

interior disjoint from ∪kj=1I0,j . Again, by assuming P0 sufficiently small,

we can assume that Tm|∪kj=1I0,j
is a homeomorphism, and write Tm for

the local inverse of Tm with Tm(ϕ−1
∗ (ϕ∗(p))) = ϕ−1

∗ (ϕ∗(p)).

Discarding the first part of the sequence if necessary, we can assume

that pn ∈ Tm(I0) for all n, which implies that ϕ∗(pn) = Sm(P0)for all n.

Now spn not being a tuning of sp is equivalent to pn not being in the

closure of the minor gap of Lp, and also to ϕ∗(pn) not being in ∂U∗. This

means that there is a least Nn ≥ 1 such that

ϕ∗(pn) ∈ SNnm (P0), ϕ∗(pn) /∈ SNn+1
m (P0).

Obviously Nn depends on n and

lim
n→∞

Nn =∞. (38)

By definition, ϕ∗(pn) ∈ Sjm(P0) for 0 ≤ j ≤ Nn, and pn /∈ TNn+1
m (I0).

Lemma 12.7.1. pn ∈ T jm(I0) for 0 ≤ j ≤ Nn.

Proof. By assumption we have pn ∈ Tm(I0), considering the case j = 1.

Now we prove the general case j ≤ Nn by induction on j. So suppose

that 1 ≤ j < Nn and pn ∈ T jm(I0) but pn /∈ T j+1
m (I0). From ϕ∗(pn) ∈

Sj+1
m (P0) we deduce that pn ∈ T−m(T jm(I0)) ∩Q0 ⊂ T−m(I0) ∩Q0. But

T−m(I0) ∩ Q0 has exactly two components, and from the assumption

that Tm|I0 is a homeomorphism, the component which is not Tm(I0) is

disjoint from I0. So we have a contradiction and hence pn ∈ T j+1
m (I0), as

required.

Now write P1 = P1(x∗) for the set in Pm(Nn+1) which contains ϕ∗(pn).

There is an even integer i1 ≥ 0 such that
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ϕ−1
∗ (Si1m(P0)) ⊂ ϕ−1

∗ (P0)

and

ϕ−1
∗ (ϕ∗(∪tj=1T

i1/2
m (I0,j))) ⊂ ∪tj=1I0,j .

Lemma 12.7.2. If i1 is sufficiently large, then there is i′1 ≤ i1/4 such

that for any set P ∈ Pi1(R∗) which intersects T
2i′1
m (ϕ∗(I0)), P 6= Si1m(P0),

we have

ϕ−1
∗ (P ) ⊂ ϕ−1

∗ (ϕ∗(T
i′1
m (I0))) ⊂ ∪kj=1I0,j.

Proof. Given ε > 0, we can choose N and t1 such that all but N sets

in the partition Pt1(R∗) have diameters < ε, and those that are not of

diameter < ε are within ε neighbourhoods of the Fatou components.

Then we can choose i′1 so that any set of Pt1(R∗), apart from the one

containing U∗, which intersects T
i′1
m (ϕ∗(I0)), is of diameter < ε. Then we

can choose ε so that any point w within 2ε neighbourhood of ϕ∗(p) has

ϕ−1
∗ (w) ⊂ ∪kj=1I0,j . Finally, we choose i1 > 4i′1.

We assume from now on (as we may do, for pn sufficiently close to p)

that Nn > i1. We write

P ′1 = SNn−i1m (P0),

I1,j = TNn−i1m (I0,j).

Then by Lemma 12.7.1 and 12.7.2 we have

ϕ−1
∗ (P1) ⊂ ϕ−1

∗ (ϕ∗(I1,j0)) ⊂
k⋃
j=1

I1,j ⊂ ϕ−1
∗ (P ′1), (39)

and of course P1 ⊂ P ′1.

There are subsets XP1 and XP ′1 on the parameter space X, such

that for x ∈ XP ′1, the sets ∂P1(x) and ∂P ′1(x) vary holomorphically and

Rx(c1(x)) ∈ P ′1(x) for x ∈ XP ′1, while
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XP1 = {x ∈ XP ′1 : Rx(c1(x)) ∈ P1(x)}.

Thus I1,j contains a point of ϕ−1
∗ (ϕ∗(p)) for each 1 ≤ j ≤ k. Let

k1 > i1m1 be the least integer for which Rk1∗ (ϕ∗(pn)) ∈ P1, and write

Sk1 for the local inverse of Rk1∗ which maps Rk1∗ (ϕ∗(pn)) to ϕ∗(pn). Then

Sk1(P1) ⊂ Sk1(P ′1) ⊂ P1 and ∩i≥0S
i
k1

(P1) contains a single point of period

k1. Moreover, since Ri∗(ϕ∗(pn)) /∈ P1 for i1m < i < k1 and Ri∗(Sk1(P
′
1))

is a set in Pm(Nn−i1)+k1−i, we have

Ri∗(Sk1(P
′
1)) ∩ P ′1 = ∅ for i1m < i < k1. (40)

Since P1 ⊂ SNnm (P0) \ SNn+1
m (P0), we also have

Rj∗(P1) ∩ P1 = ∅ for 0 < j ≤ i1m, (41)

and hence

Ri∗(Sk1(P
′
1)) ∩ P1 = ∅ for 0 < i ≤ i1m. (42)

So

∩i≥0S
i
k1

(P1) = ∩i≥0S
i
k1

(P ′1) = {z1}

for a point z1 of period k1 under R∗.

Let Tk1 be the local inverse of T k1 defined on ∪kj=1I1,j ⊂ ϕ−1
∗ (P ′1) such

that Tk1(T
k1(pn)) = pn and extend Tk1 to map the union of leaves of

Lp ∪L−1
q connecting points of ϕ−1

∗ (ϕ∗(T
k1(pn))) to the union of leaves of

Lp ∪ L−1
q connecting points of ϕ−1

∗ (ϕ∗(pn)).

Lemma 12.7.3.

ϕ∗ ◦ Tk1 = Sk1 ◦ ϕ∗ on ∪kj=1 I1,j , (43)

and ϕ−1
∗ (z1) ⊂ ∪kj=1I1,j is a finite set satisfying

T k1(ϕ−1
∗ (z1)) = ϕ−1

∗ (z1), T i(ϕ−1
∗ (z1))∩ϕ−1

∗ (z1) = ∅ for 0 < i < k1. (44)
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Moreover, if y ∈ ϕ−1
∗ (z1) and p′ ∈ ϕ−1

∗ (ϕ∗(p)) with y, p′ in I1,j for some

j, then T i(y) is not between p′ and y in I1,j for any 0 < i < k1.

Proof. (43) follows directly from ϕ∗ ◦T = R∗ ◦ϕ∗ and Tk1(T
k1(pn)) = pn.

(44) follows from (42). From (40) we obtain

T i(∪kj=1I1,j) ∩ ∪kj=1I1,j = ∅ for mi1 < i < k1, (45)

so T i(y) /∈ I1,j for i1m < i < k1. But for 0 < i ≤ i1m, T i(y) /∈ I1,j unless

m|i. For i = lm for some 0 < l ≤ i1, T i(y)− p′ = 2lm(y − p′) and T i(y)

is not between p′ and y.

Now ϕ−1
∗ (z1) has one point in each of the intervals Tk1(I1,j), and one

of these intervals Tk1(I1,j) contains pn, which is contained in I1,j0 , the

same interval which contains p. We write y1 for the point of ϕ−1
∗ (z1) in

Tk1(I1,j1). Thus we have y1 ∈ I1,j0 .

Lemma 12.7.4. Suppose that ϕ−1
∗ (ϕ∗(p)) contains at most three points,

then y1 either has period k1 or period 2k1, and is not separated in I1,j0

from p by any point in its forward orbit.

Proof. The number of points in ϕ−1
∗ (ϕ∗(p)) is k, since precisely one point

of ϕ−1
∗ (ϕ∗(p)) is contained in each of the intervals I1,j for 1 ≤ j ≤ k. We

also have I1,j ⊂ I0,j . So k ≤ 3 by assumption. If k = 1 the result is

immediate, because then ϕ−1
∗ (z1) = ∩i≥0T

i
k1

(I1,1) is the single point y1.

Now suppose that k = 2. We can assume without loss of generality

that j0 = 1. If Tk1(I1,1) ⊂ I1,1 then ∩i≥0T
i
k1

(I1,1) = {y1} ∈ ϕ−1
∗ (z1) is

of period k1 and the proof is finished by Lemma 12.7.3. If this is not

true then Tk1(I1,1) ⊂ I1,2, Tk1(I1,2) ⊂ I1,1 and ∩i≥0T
i
k1

(I1 ∪ I2) contains

two points, one in each of the intervals I1,1 and I1,2, in the same periodic

orbit of period 2k1. We write y1 for the point in the orbit in I1,1. Then
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T 2
k1

(I1,1) ⊂ Tk1(I1,2) ⊂ I1,1

and

T 2
k1

(I1,2) ⊂ Tk1(I1,1) ⊂ I1,2.

By Lemma 12.7.3, T i(y1) does not separate p from y1 for 0 < i < k1,

and Tk1(y1) ∈ I1,2. Then T i(I1,1)∩T j(I1,2) = ∅ for all 0 ≤ i, j ≤ i1m and

T i(Tk1(I2)) ∩ I1,1 = ∅ for mi1 ≤ i < k1, that is,

T i(T 2
k1

(I1,1)) ∩ I1,1 = ∅ for k1 < i < 2k1.

So the Lemma is proved in the case k = 2.

Now suppose that k = 3. If Tk1(I1,j0) ⊂ I1,j0 , then ∩i≥0T
i
k1

(I1,j0) =

{y1} is a point of period k1 and the proof is finished as before. If

Tk1(I1,j0) ∩ I1,j0 = ∅ and j1 = j0 ± 1 then we must have Tk1(Ij0) ⊂ Ij1

and the proof can proceed as before. If j1 = j0 ± 2 then we can assume

without loss of generality that j0 = 1, then any leaf of Lp ∪L−1
q between

Tk1(I1,3) and Tk1(I1,2) must be short and we have Tk1(I1,2 ∪ I1,3) ⊂ I1,1,

and hence Tk1(I1,1) ⊂ I1,1 ∪ I1,2. Then we obtain a point y1 of period

k1 or 2k1 as in the case k = 2, depending on whether Tk1(I1,1) ⊂ I1,1 or

Tk1(I1,1) ⊂ I1,2.

If pn is in the combinatorial copy of the Mandelbrot set, then µpn ⊂

Ḡp. Now suppose µpn * Ḡp, that is, spn is not a tuning of sp. We want

to show that Rn ∈ XP1 ⊂ XBNn for Nn ∈ N. This will suffice to show

the convergence of Rn because XBj → x∗ as j →∞.

Now we claim that

Theorem 12.7.5. ϕ∗(pn) ∈ P1(x∗) implies Rn ∈ XP1 ⊂ XBNn.

Proof. We consider the set XP1. The local inverse Sk1,x of Rk1x is 2 valued

for x ∈ XP1 because Rx(c1) ∈ P1, but
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Rix ◦ Sk1,x(P1) ∩ P1 = ∅

for 0 < i < k1. So Sk1,x(P1) varies continuously for x ∈ XP1. So

X(Sk1,x(P1)) = {x ∈ X : Rx(c1(x)) ∈ Sk1,x(P1)} is well defined.

There is a map Hx,y : ∂P1(x)→ ∂P1(y) which extends to a conjugacy

between ∪i≥0R
i
x(∂P1(x)) and ∪i≥0R

i
y(∂P1(y)) for any x, y ∈ XP1. Then

y → Hx,y(R
k1+1
y (c1))

maps ∂X(Sk1,x(P1)) to ∂P1(x) and is of degree 1. So

y → Hx,y(R
k1+1
y (c1))−Hx,y(Ry(c1))

is of degree 1. Then there must be x1 ∈ X(Sk1,x(P1)) such that

Rk1+1
x1

(c1) = Rx1
(c1)

i.e.

Rk1x1
(c1) = c1

for some x1 ∈ X(Sk1,x(P1)) ⊂ XP1.

First suppose y1 is of period k1. Let γ = γ2 ∗ γ1 be a path from

sp(0) to e2πiy1 , in which γ1 is a path from sp(0) to e2πip in the gap of Lp

containing sp(0) apart from the endpoint e2πip, γ2 is a path on S1 from

e2πip to e2πiy1 . Let ζ1 be a path in the gap of of Ly1 from the periodic

pre-image of e2πiy1 to 0. Then we have

sy1 q sq ' σ−1
ζ1
◦ σγ ◦ (sp q sq). (46)

This works because (σγ ◦ sp)−1(Ly1) ⊃ Ly1 up to isotopy. The path γ

does not cross any leaf in the forward orbit of the minor leaf µy1 of Ly1 .

There is a path ω in XP ′1 from x∗ to x1 because XP ′1 is a connected

open set. This path can be chosen so that there is a conjugacy between

(Rx,∪0≤iR
i
x(Sk1,x(∂P1(x)))) and (R∗,∪0≤iR

i
x∗(Sk1,x∗(∂P1(x∗)))) for all x
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in this path. Denote this conjugacy by hx because it extends the original

conjugacy hjx = hNnx . ω(0) = x∗, ω(1) = x1, hω(0) = Id.

α(t) = h−1
ω(t)(Rω(t)(c1(ω(t)))) is a path in the dynamical plane of R∗

with one endpoint at R∗(c1(x∗)) and the other at ϕx∗(e
2πiy1). Let β(t) =

h−1
ω(t)(c1(ω(t))), then

Rx1
' σ−1

β ◦ σα ◦R∗. (47)

We want α to be homotopic to ϕx∗(γ) and β to be isotopic to ϕx∗(ζ1).

This means we want that ϕ−1
x∗ (P ′1(x∗)) contains the arc Sp,y1 on S1 be-

tween e2πip and e2πiy1 , which is implied by ϕx∗(I1,j0) ⊂ P ′1(x∗). This

follows from (39). Then

Rx1
' σ−1

ζ1
◦ σγ ◦ (sp q sq). (48)

In order to get this, by (21)(46)(47), we only need to show

σ−1
β ◦ σα ◦R∗ ' σ

−1
ζ1
◦ σγ ◦ (sp q sq). (49)

To get this, recall that by [Ree1], ϕx∗ is the limit of a sequence of

homeomorphisms ϕk, k ∈ N. We can choose the sequence ϕk so that

ϕk fixes e2πip and e2πiy1 for all sufficiently large k given n. So if α

is homotopic to ϕx∗(γ) rel endpoints and β is isotopic to ϕx∗(ζ1) rel

endpoints, then α is homotopic to ϕk(γ) rel endpoints and β is isotopic

to ϕk(ζ1) rel endpoints for all sufficiently large k. Then

ϕk ◦ σ−1
ζ1
◦ σγ ◦ (sp q sq) ◦ ϕ−1

k

= (ϕk ◦ σ−1
ζ1
◦ σγ ◦ ϕ−1

k ) ◦ ϕk ◦ (sp q sq) ◦ ϕ−1
k

= σ−1
ϕk(ζ1) ◦ σϕk(γ) ◦ (ϕk ◦ (sp q sq) ◦ ϕ−1

k )

' σ−1
β ◦ σα ◦R∗.

The last equivalence holds because for k large enough, ϕk ◦ (spqsq)◦ϕ−1
k

is uniformly close to (R∗ ◦ ϕk) ◦ ϕ−1
k = R∗.
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If y1 has period 2k1, then replace Rx1
by the tuning of period 2 that is

in the copy Mx1
of the Mandelbrot set, still call the map Rx1

and again

we have

Rx1
' sy1 q sq.

Now similar to the process of Lemma 12.7.4, if y1 6= pn, then we

have to continue the construction with points yi and parameters xi for

1 ≤ i ≤ l until some integer l ∈ N with pn = yl and

syi q sq ' Rxi (50)

with xj ∈ XP ′j ⊂ XP ′1 for 1 ≤ j ≤ l. As before, Thurston equivalence

implies semiconjugacy, we will have ϕj : S1 → J(Rxj ) with

ϕj ◦ (syj q sq) = Rxj ◦ ϕj (51)

on S1. For i > 2, we might also need wi and ti such that Rwi is a tuning

of Rxi and sti is a tuning of syi with Rwi ' sti q sq. We will have that

Rxi+1
is not a tuning of Rxi and wi 6= ti+1 for i ≤ l − 2, but wl−1 = xl

and tl−1 = yl are possible.

Now define x0 = w0 = x∗. We will construct integers kj for 0 ≤ j ≤ l

with k0 = m and ri for 1 ≤ j ≤ l, with kj > rjkj+1 for 1 ≤ j ≤ l. We

define

nj = Nnm+ r2k1 + · · ·+ rjkj−1 for 1 ≤ j ≤ l.

For x = xj and x = wj we will have sets

P ′t(Rx) ∈ Pnt−i1m(Rx) for 1 ≤ t ≤ j + 1,

Pt(Rx) ∈ Pnt+kt(Rx) for 0 ≤ t ≤ j + 1.

and Rx(c1(x)) ∈ Pj(Rx). The notation will make sense because Gt(xj)∪

{Rxj (c1), Rxj (c2)} and Gt(wj)∪{Rwj (c1), Rwj (c2)} will be isotopic for all
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t ≥ 0, and Gt(xj) ∪ {Rxj (c2)} and Gt(xj+1) ∪ {Rwj (c2)} will be isotopic

for all t ≤ nj+1 + kj+1, but this isotopy does not extend to map Rxj (c2)

to Rxj−1
(c2). We also assume inductively that we have a sequence of

decreasing intervals It ∈ S1 for 0 ≤ t ≤ j with

yj ∈ Ij

and

ϕ−1
j (Pt(Rxj )) ⊂ ϕ−1

j (ϕj(It)) ⊂ P ′t(Rxj ) (52)

for 1 ≤ t ≤ j. We will always have

Rx(c2) ∈ P ′j+1(Rx) ⊂ Pj(Rx) ⊂ P ′j(Rx).

There is a two-valued local inverse Tkj defined on ϕ−1(ϕj(Ij)) for j ≥ 1

with

Tkj (ϕ
−1(ϕj(Ij))) ⊂ ϕ−1(ϕj(Ij)).

Inductively, Pj(Rxj ) is contained in a component of R
−kj
xj (P ′j(Rxj )) such

that Rnxj (c1) /∈ P ′j(Rxj ) for 0 < n < kj but R
kj
xj (c1) ∈ Pj(Rxj ) ⊂ P ′j(Rxj ).

Also, ϕj(yj) ∈ Pj(Rxj ) and ϕj(pn) ∈ Pj(Rxj ). We then define Skj ,x

for x = xj−1 and x = xj , to be the two-valued local inverse of R
kj
x

which maps P ′j(Rx) to a set containing Pj(Rx). For x = xj , Rx(c1) ∈

Stkj ,x(P ′j(Rx)) for all t ≥ 0 and hence Skj ,x is two-valued on Stkj (P
′
j(Rx))

for all t ≥ 0 (while for x = xj−1, this is only true for t = 0). We

then define rj+1 to be the largest integer, which is ≥ 1, with ϕj(pn) ∈

S
rj+1

kj ,x
(P ′j(Rx)). Then define

P ′j+1(Rx) = S
rj+1

kj ,x
(P ′j(Rx))

and

I ′′j+1 = T
rj+1

kj
(Ij)
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for some two-valued local inverse Tkj of T kj . Let I ′j+1 be the union of

I ′′j+1 and any complementary components between two components of

I ′′j+1 in the same component of Ij . It follows from the inductive hypothe-

sis that P ′j(Rx) ∈ Pnj−i1m (which is true for j = 1) that P ′j+1(Rx) ∈

Pnj+1−i1m(Rx). Then we define kj+1 to be the least integer t > 0

such that Rtxj (ϕj(pn)) ∈ P ′j+1(Rxj ). Define Pj+1(Rxj ) to be the set

in Pnj+1+kj+1
(Rxj ) which contains ϕj(pn). It is also the component of

R
(1−rj+1)kj−kj+1
xj (Pj(Rxj )) which contains ϕj(pn) and is contained in a

component P ′′j+1(Rxj ) of R
−kj+1
xj (P ′j+1(Rxj )).

We also have a periodic point zj+1 ∈ Pj+1(Rxj ) of period kj+1 un-

der Rxj , and thus zj+1 ∈ ϕj(I
′
j+1), and there is yj+1 ∈ I ′j+1 with

ϕj+1(yj+1) = zj+1. For j ≥ 1, yj+1 might not be in the same component

of I ′j+1 as yj . But every component of ϕj(I
′
j+1) intersects ∂U∗(Rxj ) in

a non-empty open set. So there is some tj , which is periodic under T

in the same component of Ij+1 as yj+1, with ϕj(tj) ∈ ∂U∗(Rxj ) periodic

under Rxj . We write Ij+1 for this component of I ′j+1. Of course, stj is

a tuning of syj , and there is wj ∈ XPj such that Rwj is a tuning round

c1 of Rxj and Rwj ' stj q sq. Then (52) follows from the definitions and

from (39).

We then have a connected setXP ′j+1 containing xj such that P ′j+1(x) ⊃

P ′′j+1(x) ⊃ Pj+1(x) are defined for all x ∈ XP ′j+1, withRx(c1) ∈ P ′j+1(Rx)

for all x ∈ XP ′j+1. We also have sets

XP ′′j+1 = {x ∈ XP ′j+1 : Rx(c1) ∈ P ′′j+1(Rx)},

XPj+1 = {x ∈ XP ′j+1 : Rx(c1) ∈ Pj+1(Rx)},

and

XPj+1 ⊂ XP ′′j+1 ⊂ XP ′j+1
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on the parameter plane X. Then as in the case j = 0 we can find

xj+1 ∈ XPj+1 such that c1(xj+1) is of period kj+1 under Rxj+1
and we

get (50), using the fact that yj+1 and tj are both in the same component

Ij+1 of I ′j+1. We also get yj+1 of period kj+1 or 2kj+1. By similar

process as the j = 1 case, we can deduce that Rxj+1
' syj+1

q sq or

Rx′j+1
' syj+1

q sq where Rx′j+1
is a period two tuning of Rxj+1

.

Finally we get a parameter yl = pn and xl ∈ XBNn after l steps such

that

Rxl ' syl q sq = spn q sq. (53)

Now considering (38), Theorem 4.2.5 follows as a corollary of Theorem

12.7.5 and 12.6.4.
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