
Development of Beam Instrumentation for

Exotic Particle Beams

Thesis submitted in accordance with the requirements of the

University of Liverpool

for the degree of Doctor in Philosophy by

Alejandro Garcia Sosa

June 2015



Abstract

Modern nuclear physics makes extensive use of exotic particle beams created using ac-

celerators, such as unstable ion isotopes and antiprotons. These give access to a wide

range of fundamental studies that are at the cutting edge of science. The commission-

ing and operation of these accelerators require powerful beam diagnostic devices that

are specially adapted to these unusual, and often very faint, beams.

The work leading to this thesis, focuses on the development of the beam diagnos-

tic system of the future superconducting linear accelerator at the High Intensity and

Energy Isotope Separator On-Line Device (HIE-ISOLDE), which shall deliver stable

and unstable isotope beams ranging from Helium to Radium at beam energies between

0.3 and 10 MeV/u and intensities from few particles per second up to 1 nA. The main

elements of the diagnostics system are a Faraday cup for the measurement of the ab-

solute beam current, a scanning blade with a V-shaped slit, which together with the

Faraday cup allows one to measure the transverse beam profiles and the beam posi-

tion, a silicon detector for energy spectroscopy and time of flight measurements, plus

a set of collimators and attenuating or stripping foils. The performance of the beam

instrumentation will impact directly on the operation of the facility, therefore a lot of

care has been put to identify the performance requirements and ensure that the de-

sign fulfills the needs. The techniques used by the systems studied during this work

are widely used, but had to be adapted to the special design of the superconducting

HIE-ISOLDE Radioactive EXperiment (REX) linac. In particular the compactness of

the accelerator, and as a consequence of the diagnostic devices, required pushing the

understanding of the physics behind the techniques in order to overcome limitations

in the design parameters usually considered unbreakable. For this realistic models of

all devices had to be developed that allowed detailed numerical studies. This new set

of diagnostics for the HIE-ISOLDE REX linac is the most compact in the facility, and

has been tested extensively in a wide range of ion beams.

In addition to the HIE-ISOLDE work, a Secondary Emission Monitor (SEM) was

tested at the Antiproton Decelerator (AD) facility using a 300 keV antiproton beam, to-

gether with other detector groups in the AEgIS collaboration such as nuclear emulsions,
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the MIMOTERA and the 3D pixel detector. In the frame of this thesis, a performance

comparison among these detector technologies is done with the aim to identify an ideal

set of diagnostics for the AD and for other similar antiproton facilities.

This thesis first presents the models developed as well as the results of the numerical

simulations, then the design of the prototypes and the experimental results obtained

with beams in antiproton and ion accelerator facilities. All devices and techniques part

of this R&D are characterized in detail, their performance and limitations described

and options for further improvements indicated.
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Chapter 1

Introduction

In this chapter an overview of the facilities where the research activities of this work took

place is presented, showing their evolution through history and their future prospects.

1.1 Heavy Ion Facilities

1.1.1 ISOLDE

The Isotope On-Line DEvice (ISOLDE) facility at the European Organization for Nu-

clear Research (CERN) produces a wide range of exotic nuclides ranging from light

isotopes like 6He up to heavy ions such as 229Rn [1]. These isotopes are used for

different experiments in the fields of nuclear, atomic and solid-state physics, materials

sciences and life sciences, such as ISOLTRAP [2] or MISTRAL [3]. The ISOLDE facility

is connected to the 1.4 GeV Proton-Synchrotron Booster (PSB) at CERN, and is op-

erated by the ISOLDE Collaboration, whose members are Belgium, CERN, Denmark,

Finland, France, Germany, Greece, India, Ireland, Italy, Norway, Romania, Spain, Swe-

den and the UK.

Originally, ISOLDE was developed around the 600 MeV Proton Synchro-Cyclotron

back in 1964. 1967 marked the start of the first experiments in the facility. ISOLDE

experienced several upgrades until it was finally moved to the PSB in 1992. As in other

existing Radioactive Ion Beam (RIB) facilities, ISOLDE offers a wide variety of ra-

dioactive isotopes, but the installation of the post-accelerator Radioactive EXperiment

at ISOLDE (REX-ISOLDE) in 2002 has opened new fields of research with RIBs of

higher energies [4]. In this sense, ISOLDE is complementary to other European RIB

accelerators such as the Système de Production d’Ions Radioactifs Accélérés en Ligne

- System for Producing Online Accelerated Radioactive Ions (SPIRAL) at the Grand

Accélérateur National d’Ions Lourds - Large Heavy Ion National Accelerator (GANIL)

in France, and the GSI Helmholtz Centre for Heavy Ion Research (GSI) in Darmstadt,

Germany. It provides a wider range of intense ion beams compared to the Holifield
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Radioactive Ion Beam Facility (HRIBF) at Oak Ridge, USA and the Isotope Separator

and ACcelerator (ISAC) in TRIUMF, Canada [4].

At ISOLDE radioactive isotopes are produced via nuclear reactions such as spalla-

tion, fission or fragmentation in one of the two target stations available. Targets are

prepared on site with suitable porous materials. Because of the issues with handling

Uranium (highly flammable, even at room temperature), other target materials includ-

ing UCX , Ti, etc are used instead. The target is bombarded with the high intensity, 1.4

GeV proton beam from the PS-Booster at CERN, with average proton currents of up

to 2 µA [5]. Multistage laser ionization of selected chemical elements allows for precise

selection and in some cases can provide a beam prepared in a particular isomeric state

[6]. This production device is coupled to two powerful mass separators; the General

Purpose Separator (GPS) and the High Resolution Separator (HRS), from which high

intensity radioactive ion beams are extracted with high isotopic and often isobaric pu-

rity [4].

Figure 1.1: Layout of the ISOLDE facility. Image taken from [4].

A layout of the ISOLDE facility is presented in Fig. 1.1. ISOLDE has two on-

line isotope separators with independent target-ion extraction systems that deliver 60

2



keV mass-selected RIBs. The GPS comprises one bending magnet and an electro-

static switch-yard allowing the simultaneous extraction of three mass-separated RIBs,

although simultaneous extraction has not yet been implemented. The HRS comprises

two bending magnets with an advanced beam-optical system for higher order correc-

tions resulting in a mass resolving power ( m
∆m) of 5000 [7]. In addition, an off-line

mass separator, i.e. not connected to the PSB beam line, is available for tests and cal-

ibrations. Both on-line separators are connected to a common beam-line system which

feeds the experimental stations for nuclear spectroscopy and nuclear orientation, laser

spectroscopy, mass measurements, solid state and surface studies.

The large variety of species available at ISOLDE makes possible a wide range of

experiments regarding atomic and nuclear properties of nuclei far from beta-stability.

Research also takes place in related fields like astrophysics and weak-interaction physics.

Solid-state physics and biomedical studies are an important part of the scientific pro-

gramme as well. More than 600 isotopes with half-lives down to milliseconds of almost

70 elements (2 ≤ Z ≤ 88) have been produced at intensities ranging from 10−1 to 1011

atoms per second [8, 9].

At ISOLDE, selected beams coming from any of the two separators mentioned

above can be steered to the low-energy experimental area, or to high-energy experi-

ments through REX-ISOLDE, a post-accelerator of up to 3 MeV/u.

1.1.2 REX-ISOLDE

At present, research on nuclear structure far from stability is at the forefront in the

field of nuclear physics since such nuclei allow for the amplification and isolation of

particular aspects of nuclear interactions [10]. The installation of the REX-ISOLDE

post-accelerator has widened the fields of research with radioactive ion beams of higher

energies, specifically light-medium mass nuclei for reaction studies with energies up to

3 MeV/u. Ions up to mass A=140 can be accelerated in REX with a total efficiency

between 1-10% [11]. The operation of the REX post-accelerator started in 2002, and

today REX provides RIBs of up to 34 elements and 108 isotopes, see Appendix B, with

beam energies ranging from 0.3 to 3 MeV/u for ions with a mass-to-charge ratio of

A/q ≤4.5 [12, 13].

REX is used to accelerate the low-energy ISOLDE ion beams. The radioactive

singly-charged ions from the separators are first accumulated, bunched and cooled in

a Penning trap, REXTRAP. This trap stores the ions for up to 20 ms and then 10 µs

bunches are transferred to an Electron Beam Ion Source (EBIS), where the ions are

3



charge bred to a mass-to-charge ratio below 4.5. Finally, the ions are injected into the

LINear particle ACcelerator (LINAC) via an achromatic separator, which separates the

ions according to their mass-to-charge ratio, or A/q. More information about the EBIS

can be found in [14].

Figure 1.2: Layout of the REX-ISOLDE LINAC. Image taken from [4].

The REX LINAC, shown in Fig. 1.2, consists of a Radio Frequency Quadrupole

(RFQ), which accelerates ions from 5 to 300 keV/u, a rebuncher [15], an Interdigital

H-type Structure (IHS) that boosts the energy to 1.2 MeV/u, three 7-gap resonators

(2.21 MeV/u) and a 9-gap resonator1 that allows the beam energy to reach up to 3

MeV/u [11, 12]. The Interdigital H-type structure is an efficient drift-tube structure

with special beam dynamics. After an initial accelerating section with a 0◦-synchronous

particle structure the ions drift through a magnetic quadrupole triplet lens for trans-

verse focusing. Then the particles are rebunched using a negative synchronous phase

(φs ≈ 30◦) in the first three gaps behind the quadrupole triplet, followed by a second

accelerating section with φs ≈ 0◦ [16].

The original REX-ISOLDE post-accelerator, which was developed by the ISOLDE

collaboration, had two main objectives. The first was to demonstrate a new concept

for bunching, charge-breeding and post-accelerating single-charged, low-energy ions in

1The 9-gap resonator operates at twice the Radio Frequency (RF) of the other cavities, that is
202.56 MHz
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an efficient way. Second, to study the structure of neutron-rich Na, Mg, K and Ca

isotopes in the vicinity of the closed neutron shells N = 20 and N = 28 by Coulomb

excitation and neutron transfer reactions with a highly efficient γ and particle-detector

array MINIBALL [17]. The design is supported by well established techniques, but

represents a new way of combining these structures [16]. Since 2003, the machine is

fully operational and is now fully integrated in the ISOLDE facility, providing a wider

range of RIBs than initially considered in the original design. REX is regularly used

for accelerating isotopes with masses up to A>200 for experiments in nuclear physics,

astrophysics and solid-state physics. Reviews of the machine performance can be found

in [11].

1.1.3 HIE-ISOLDE

The High Intensity and Energy ISOLDE (HIE-ISOLDE) upgrade is based upon three

major fronts: higher energies, improvements in beam quality and flexibility, and higher

beam intensities [18]. This requires developments in target-ion sources, radioisotope

selection and improvements in charge-breeding, as well as the increase of the proton

beam current by replacing the injector for the PS Booster, LINAC4 [19].

In order to fully benefit from the increase in beam energy by a factor 3 and the

increase in intensity of the proton beam by a factor 2, a design study of an improved

and redesigned target module and front-end has been created. This enhancement, com-

bined with upgrades in the Resonant Ionization Laser Ion Source (RILIS) [6], cooler

and buncher (ISCOOL) [20] and the RFQ will lead to increased RIB intensities of up

to an order of magnitude [21].

The most significant element of the energy upgrade will come from replacing most

of the existing REX post-accelerator by a superconducting LINAC whose parameters

are summarized in Table 1.1.

This 16-metre long superconducting LINAC, presented in Fig. 1.3, comprises two

cryomodules with 6 low-β cavities (geometric β0=6.3%) and four cryomodules with 5

high-β cavities (geometric β0=10.3%), for a total of 32 superconducting Nb-sputtered

quarter-wave resonators. The low-β cavities are 0.9 m tall and 0.195 m diameter,

whereas the high-β cavities are 0.9 m tall and 0.3 m diameter. These cavities provide

a 6 MV/m accelerating gradient which will allow all ISOLDE beams to be accelerated

over a wide range of energies from well below the Coulomb barrier to significantly above

it, facilitating a broad programme of nuclear structure and nuclear astrophysics studies

using different types of nuclear reactions [12, 21].
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Table 1.1: Parameters of the HIE-ISOLDE LINAC.
Parameter Value

Mass to Charge Ratio A/q 2.5 to 4.5
Input Kinetic Energy 1.2 MeV/u
Output Kinetic Energy (A/q=4.5) 0.3-10 MeV/u
RF Frequency 101.28 MHz
RF Period 9.87 ns
Beam Pulse Length 50-500 µs
Energy Spread FWHM at Injection 0.9 %
Bunch Length at Injection 0.2 ns
Beam Transmission 95 %
Pilot Beam Intensity 1 pA - 1 nA
Radioactive Beam Intensity pps - pA

Figure 1.3: Layout of the HIE-ISOLDE Linac. Image taken from [4].
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In the first stage of the HIE-ISOLDE upgrade, REX will be extended with the

addition of two low-β cryomodules during 2015 and will provide a maximum energy of

5.5 MeV/u, reaching the Coulomb barrier threshold for a wide range of nuclei. At the

end of the HIE upgrade, REX will be equipped with 6 cryomodules providing beam

energies up to 10 MeV/u.

HIE-REX will deliver ion beams to 2 high-energy experimental stations using two

90◦ beamlines. The MINIBALL gamma array will be installed in the first station, while

temporary experiments will be installed in the second beamline. There is space foreseen

for possible extensions such as a third beam line or an ion storage ring.

1.1.4 TRIUMF

The TRI-University Meson Facility (TRIUMF) was founded in 1968 by a consortium

of Canadian universities (Simon Fraser University, the University of British Columbia

(UBC), and the University of Victoria) in order to satisfy research needs very difficult

to provide by a single university [22]. The University of Alberta joined the TRIUMF

consortium shortly after. There are currently over 15 different member and associate

member universities from across Canada in the consortium that governs TRIUMF, and

has allowed it to evolve into a national laboratory while still maintaining strong ties to

the research programs of the Canadian universities. The science program has expanded

from nuclear physics to include particle physics, molecular and materials science, and

nuclear medicine. At present, TRIUMF provides infrastructure and tools for research

that are too large and complex for a single university to build, operate, or maintain [23].

The facility’s proton driver machine is the H− Cyclotron. In operation since 1974,

this six-sector variable energy cyclotron is able to deliver simultaneously up to 4 proton

beams with energies between 70-520 MeV, and currents up to 300 µA [24], a factor 3

above the original goal of 100 µA at 500 MeV [25, 26]. The cyclotron is 18 m in diam-

eter, and today maintains a 90% availability for about 6000 hours annually.

Beam line 1A (BL1A) can deliver 180 to 500 MeV protons to two target stations.

The beam power ranges from 50 to 75 kW. The first target, T1, services three experi-

mental channels, one of which is used for detector tests for the Tokai to Kamioka (T2K)

experiment [27]. The second target, T2, services two muon experimental channels [28].

Downstream of T2 is a 500 MeV facility used to produce strontium isotopes for medical-

imaging generators as well as the Thermal Neutron Facility (TNF)[29]. Beam line 1B

(BL1B) separates off Beam line 1 (BL1) (see Fig. 1.4) at the edge of the cyclotron vault
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and provides international users with the Proton Irradiation Facility (PIF) [30] that

is used for radiation testing of electronic circuits. Beam Line 2A (BL2A) is capable

of providing 475 to 500 MeV proton beams at up to 50 kW to the ISAC target facil-

ity that produces rare-isotope ion beams for Canadian and international experiments.

Beam Line 2C (BL2C) is used for the Proton Therapy (PT) programme to treat eye

melanomas [31]. This beam line also has the flexibility to provide protons of lower

energy for PIF users. The energy range in BL2C is 70 to 120 MeV. Beam line 4 (BL4)

in its present configuration can deliver protons of energy from 180 to 500 MeV, albeit

at only 5 kW and was last used as a production facility in 2000 for the parity violation

experiment [32].

Figure 1.4: Layout of the beam lines coming out of the cyclotron at TRIUMF. Image
taken from [22].

ISAC

The ISAC facility at TRIUMF receives up to 100 µA of beam current from the pro-

ton cyclotron to produce radioactive ion beams using the Isotope Separation On-Line

(ISOL) method. The ISAC-I facility comprises two target stations, a mass separator

[33], an Off-Line Ion Source (OLIS) [34, 35] and the beam delivery lines to the low en-

ergy experimental area and to a normal conducting LINAC composed of a 4-rod RFQ

and an IHS Drift Tube LINAC operating in Continuous Waveform (CW) mode. ISAC-I

can provide ion beams of A ≤30 with an energy range from 0.153 to 1.53 MeV/u [26].

The ISAC-I LINAC delivers ion beams to the Detector of Recoils And Gamma-rays Of

Nuclear reactions (DRAGON) [36] and the TRIUMF UK Detector Array(TUDA) [37]

experiments.

The ISAC-II facility comprises a 40 MV superconducting LINAC inside a concrete

accelerator vault, an RF room, a cryogenic plant and the high-energy experimental
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hall which hosts the ElectroMagnetic Mass Analyser (EMMA) [38], TRIUMF-ISAC

Gamma-Ray Escape Suppressed Spectrometer (TIGRESS) [39] and the HEavy-ion Re-

action Array for the Characterization of Light Excited Systems (HERACLES) [40]

experiments. The ISAC-II superconducting LINAC, in operation since 2006, extends

the capability of the room temperature LINAC in ISAC-I and is composed of 40 bulk-

niobium quarter-wave resonators in a total of eight cryomodules. The ISAC-II LINAC

was installed in two phases. The Phase-I Linac, completed in 2009, consists of 8 low-

β cavities (β=5.7%) and 12 medium-β cavities (β=7.1%) housed in five cryomodules

(SCB1-5), with four cavities resonating at 106.1 MHz in each cryomodule. Phase-II,

completed in 2011, adds twenty more cavities with a high-β of 11%, resonating at 141.44

MHz and housed in three cryomodules. There are six cavities in SCC1 and SCC2 and

eight cavities in SCC3 [41]. All LINACs in ISAC operate in CW mode to make full us-

age of the beam intensity available. A layout of the LINAC facility is shown in Fig. 1.5.

Figure 1.5: Layout of the ISAC I and II halls. Image taken from [42].
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1.2 Antiproton Facilities

1.2.1 Antiproton Decelerator

In 1997, a project to convert the Antiproton Collector (AC) into an Antiproton Deceler-

ator (AD) was approved. The AD at CERN is a facility dedicated to experiments with

low energy antiprotons. In operation since 2000 [43, 44], the AD target is bombarded

with the high-energy proton beam (26 GeV/c) from the PS as a source to produce an-

tiprotons from a water-cooled iridium target. In a typical deceleration cycle, as shown

in Fig. 1.6, antiprotons are injected at 3.5 GeV/c into the AD, filling its large accep-

tance (200 π µm in both planes and 3% in ∆p/p). After injection bunches are very

short and have a large momentum spread. By means of bunch rotation cavities, the

momentum spread is reduced and the bunches become longer. This 90◦ rotation in

longitudinal phase space is done in order to fit the beam momentum spread to the lon-

gitudinal acceptance of the stochastic cooling system. Stochastic and electron cooling

follows in two steps each in order to compensate the adiabatic beam blow-up due to

deceleration. The p̄ beam is cooled for 20 s within 1 π mm mrad, decelerated down to 2

GeV/c, cooled again for 15 s, and decelerated down to 0.3 MeV/c. In the last stage of

the cycle the beam is electron cooled for 6 s, decelerated down to 0.1 GeV/c and cooled

again for 1 s. Then the beam is bunched and extracted with an emittance suitable for

AD experiments (typical requirements are ε < 1π mm mrad and bunch length <170

ns) [45]. The whole cycle takes around 100 seconds.

Figure 1.6: AD deceleration cycle. Image taken from [46].

One of the main experiments in the AD is the production of antihydrogen with
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the aim to produce antimatter atoms with an energy low enough such that they can

be trapped in a magnetic field. The ALPHA [47] and Antihydrogen TRAP (ATRAP)

[48] experiments use a set of thin metal degraders to slow the AD beam to a few keV

whereas Atomic Spectroscopy And Collisions Using Slow Antiprotons (ASACUSA) [49]

achieves ultra-slow antiprotons (10 eV - 10 keV) with a combination of RFQ decelera-

tion plus an electromagnetic trap. Still, collecting large numbers and high densities of

antiprotons with the present AD remains a challenging issue.

Both the effectiveness and the availability for additional experiments at this unique

facility would drastically increase, if the antiproton beam of 5 MeV kinetic energy

would be reduced by an additional decelerator to something in the realm of 100 keV

[50]. The Extra Low ENergy Antiproton (ELENA) ring, first discussed in 1982 for the

Low-Energy Antiproton Ring (LEAR), is now being constructed inside the AD ring.

This allows the use of the existing experimental areas and makes the beam lines from

the AD to ELENA and from ELENA to the experiments reasonably short. The main

beam parameters at ELENA are presented in Table 1.2.

Table 1.2: Main beam parameters at the ELENA ring.

Momentum range (MeV/c) 100 - 13.7

Energy range (MeV) 5.3 - 0.1

Circumference (m) 30.4

Intensity of injected beam (p̄pp) 3×107

Intensity of ejected beam (p̄pp) 1.8×107

Number of extracted bunches 3 or 4

Emittances (H/V) at 100 keV (π·mm·mrad) [95%] 6/4

∆p/p before extraction (bunched beam cooling), [95%] 2·10−3

Bunch length at 100 keV, (m/ns) 1.3/300

Vacuum level (Torr) 3×10−12

ELENA will slow antiprotons down to under 1/50 of the current AD energy, improv-

ing the antiproton trapping efficiency by a factor of 10-100. ELENA will allow to serve

up to four experiments in parallel. At the AD, antiprotons have to be slowed down

by passing them through a series of foils, a process that results in the loss of some

99.9% of the antiprotons extracted from the AD before they reach the experiments.

Commissioning of ELENA is scheduled for 2015 with the installation and setting-up of

the electrostatic beam lines a year later [51]. The layout of the AD, the future ELENA

ring and the experimental areas can be seen in Fig. 1.7.
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Figure 1.7: Layout of AD, ELENA and experimental areas. Image taken from [52].
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1.2.2 The AEḡIS Experiment

The main goal of the Antimatter Experiment: Gravity, Interferometry, Spectroscopy

(AEḡIS) experiment is a first direct measurement of the Earth’s gravitational accelera-

tion on the simplest form of electrically neutral antimatter, i.e., antihydrogen [53, 54].

It is estimated that the detection of 103 antihydrogen atoms is required to determine

the gravitational acceleration with a precision of 1% [55]. A schematic drawing of the

set-up is shown in Fig. 1.8.

Figure 1.8: 3D Schematic of the AEḡIS experiment shows antihydrogen formation and
post-acceleration regions towards the Moiré deflectometer and detector. Image taken
from [56].

In order to create antihydrogen, about 107 p̄ are delivered to the experiment by

the AD every 100 seconds. A set of degrader foils placed along the p̄ path reduce their

kinetic energy from 5.3 MeV to 300 keV. Antiprotons are then captured in a Malmberg-

Penning trap mounted in a horizontal cryostat inside the bore of a 5 T superconducting

magnet (see Fig. 1.9) and cooled by electron cooling down to a few eV in a cryostat

at about 4 K. The p̄ cloud is radially compressed by sideband cooling [57, 58] and

transferred into the antihydrogen formation trap, mounted in a colder region inside a

1 T magnet, where antiprotons are cooled down to 100 mK by a dilution refrigerator.

By accumulating several AD shots an average of about 105 cold antiprotons ready for

recombination are expected once the construction of AEḡIS is complete [54]. A layout

of AEḡIS is shown in Fig. 1.9.

In parallel, approximately 108 positrons coming from a Na (Surko-type) source are

accumulated and transferred from the accumulator to a dedicated trap mounted inside

the same magnetic field as the antiproton catching trap. Here, the bunch is compressed
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Figure 1.9: Layout of the AEḡIS experiment. Image taken from [59].

Figure 1.10: Principle of antihydrogen production at AEḡIS. Image taken from [56].
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and accelerated towards a nanoporous target material where ground state positronium

(Ps) is produced. The positronium cloud coming from the target is excited by two laser

pulses into a selected Rydberg state, and in this way 106 excited positronium atoms can

be obtained. Cold (100 mK) antihydrogen atoms will be produced in a charge-exchange

reaction during the time in which the Rydberg Ps atoms traverse the antiproton cloud.

The expected number of Rydberg antihydrogen atoms is in the range of 100-1000 per

cycle [54]. The resulting antihydrogen atoms are finally accelerated (Fig. 1.10) by

means of inhomogeneous electric fields towards a deflectometer and detector. The ac-

celeration of neutral antihydrogen is possible due to the electric force experienced by

the antihydrogen atoms which, although neutral, have an electric dipole moment which

is affected when exposed to an electric-field gradient. If the excited atoms are moving

in a region where the amplitude of the electric field is changing, their internal energy

changes and thus, to conserve the total energy, they are accelerated or decelerated.

This effect is called Stark acceleration [60, 61].

The gravitational acceleration of antihydrogen will be measured using the Moiré

deflectometer, a set of two identical transmission gratings and a spatially resolving

emulsion detector behind. The Moiré deflectometer allows to measure the vertical de-

flection of the antihydrogen beam flying horizontally with a velocity of a few 100 m/s

for a path length of about 1 metre. The small deflection of a few tens of µm can be

measured with this technique [62].
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Chapter 2

REX-ISOLDE Beam Diagnostics

In this chapter the status of the beam diagnostics system of REX-ISOLDE up to its

upgrade is detailed along with its performance limits. The main diagnostics devices

commonly used in REX operation include Faraday Cups (FCs), beam profile monitors

and an emittance meter.

In addition, two types of devices were tested at REX as part of a R&D effort on

beam diagnostics. The first one is a Passivated Implanted Planar Silicon (PIPS) silicon

detector for energy spectroscopy and time of flight measurements. The second is a PIN

photodiode which was also investigated to test its ability as a beam diagnostics device

for monitoring the time structure of the beam.

2.1 Introduction

In the REX-ISOLDE post-accelerator, it is necessary to monitor the beam parameters

after every accelerating structure. The beam diagnostics system of the REX-ISOLDE

LINAC was originally developed by the University of Leuven [63], and later modified

by CERN. This system is designed to operate in the energy (0.3 - 2.85 MeV/u) and in-

tensity (pps - nA) ranges of REX-ISOLDE. All the beam diagnostic devices of REX are

located in dedicated diagnostic boxes throughout the machine. This facilitates mainte-

nance in a LINAC with modular design, comprised of different accelerating structures

in sections, while allowing the beam parameters to be measured at different locations

along the machine, as presented in Fig. 2.1.

Each of the seven diagnostic boxes contains:

• Collimator wheel

• Faraday cup

• Beam profiler (Aluminium foil + Micro-Channel Plate (MCP))
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Figure 2.1: Schematic of the REX-ISOLDE post-accelerator showing the location of
the different Diagnostic Boxes (DBs). Dotted lines mark the different sections in the
machine indicated by sector valves.

Figure 2.2: Carbon stripping foils installed in a wheel of a REX-ISOLDE diagnostic
box.

2.2 Collimators

Attached to a stepper motor inside vacuum, these collimator wheels have 10 preset

positions and contain circular collimators of 1, 3, 5 and 15 mm hole diameters, 1, 3 and

5 mm wide vertical slits, as well as three positions occupied by either stripping foils or

copper attenuator foils, depending on the location in the machine, see Figs. 2.2 and 2.3.

Evaporated carbon stripping foils of two different thicknesses (25 and 50 µg/cm2)

from ACF-Metals [64] and a Diamond-Like Carbon (DLC) foil with a thickness of 4

µg/cm2 from the Technical University of Munich (TUM) were installed upstream of
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Figure 2.3: Picture of a collimator wheel and Faraday cup inside DB5.

the bending dipole magnet in DB5, see Fig. 2.1 [65].

Fig. 2.2 shows the foils mounted on the collimator wheel, which in turn is installed

upstream of the Faraday cup inside the diagnostic box, as shown in Fig. 2.3. The de-

sired foil is exposed to the beam by turning the collimator wheel to its pre-set position.

Two kinds of perforated copper foils were used in REX-ISOLDE for beam intensity

attenuation. Their main characteristics are:

1. Foil thickness: 15 µm.

2. Hole diameter: 50 µm and 35 µm.

3. Hole spacing: 0.2 - 5 mm.

4. Transmission factor per foil: 0.1 and 0.01%.

These foils, presented in Figs. 2.4 and 2.5 were located upstream and downstream

of the RFQ. By setting a combination of attenuator foils before and after the RFQ,

the operator can attenuate the beam down to 10−5 of the intensity of the incident beam.

2.3 Beam Intensity

Since the intensities available in REX-ISOLDE are too low (≤1 nA) for standard elec-

tromagnetic detectors like beam current transformers, the most appropriate method to
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Figure 2.4: From left to right: Perforated copper foils of different transmission factors
(0.1 and 0.01%) and two horizontal slits (3 and 1 mm), manually operated in DB2,
upstream of the RFQ.

Figure 2.5: Up to 6 perforated copper foils can be installed in this wheel, along with
circular collimators of 1, 3, 5 and 15 mm diameter, being remotely operated in DB3,
downstream of the RFQ.
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measure beam intensity is by using a Faraday cup, which is a beam diagnostics device

that measures the electric charge of a particle beam. More details of the working prin-

ciple of a Faraday Cup (FC) are presented in Chapter 4.

The REX-ISOLDE Faraday cup, as shown in Fig. 2.6, is 58 mm long and has an

aperture of 26 mm. It is made of stainless steel and has cylindrical parts made out of

VESPEL [66] as electric insulators. The 32 mm long bias ring is biased to -60 V during

standard operation. Pneumatic actuators are used for moving the cup in and out of

the beam path. Its position is monitored by two micro-switches on IN/OUT mode.

Figure 2.6: Left: Cross section of the REX-ISOLDE Faraday cup. Right: Picture of
the REX-ISOLDE Faraday cup.

The readout of the beam intensity signal is generally acquired by a picoammeter and

an Analog to Digital Converter (ADC) as front end electronics (bandwidth ≤1 Hz and

integration times of 0.2-1 s), and then transmitted via PROFIBUS to a Programmable

Logic Controller (PLC) which is regularly monitored from a PC in the control room.

The range of the picoammeter can be set to auto or chosen manually from a range of

values (200 pA, 200 µA, 500 µA, 1 mA, 2 mA, 5 mA or 10 mA). The integration time

can be set to 0.2, 0.5 or 1 second.

2.4 Secondary Emission Beam Profile Measurement

This system is designed to obtain transverse profiles of the ion beam and to monitor

the beam position with a spatial resolution of ≤1 mm.

Shown in Fig. 2.7, the profile monitor is based on Secondary Electron Emission

(SEE) produced by the beam impinging on an aluminium plate at a 45◦ angle. The

secondary electrons produced on the plate’s surface are accelerated by the electric field

set between the plate and the grid towards an MCP, where the electrons are multiplied
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and impinge on a phosphor screen to produce photons with wavelengths λ in the range

of 350< λ <700 nm [67] which are then recorded by a Charge-Coupled Device (CCD)

camera. The intensity of light is proportional to the number of electrons hitting the

screen, which is proportional (with gain 105) to the number of ions hitting on a partic-

ular spot in the plate. In this way, a 2D image of the beam profile can be recorded by

the CCD camera.

Figure 2.7: Working principle of the SEE beam profiler at REX. Image taken from [68].

The image readout is monitored from the control room, where parameters like the

MCP, foil and acceleration grid bias voltages can be set. An image of the beam profiler

application is shown in Fig. 2.8. Beam size can be monitored with this system with a

spatial resolution better than 1 mm [63], while the typical REX beam size is 5 mm (1 σ).

2.5 Transverse Emittance

In order to measure transverse beam emittance, the Neue Technologien Gelnhausen

(NTG) Emittance meter [69] is used both at REX and other ISOLDE locations. This

device uses a “slit-grid” scanning method, illustrated in Fig. 2.9, where a moving blade

with two slits (horizontal and vertical) scans through the beam while a wire-grid sys-

tem reads the transverse profiles of the beamlets downstream. It is deployed around

the facility to measure emittance where needed. The device is shown in Fig. 2.10.

It includes highly sensitive current measurement electronics, consisting of 32 low-noise

integrating amplifiers with Field-Effect Transistor (FET) operational amplifiers, switch-

able integrating capacitors and low leakage FET [70]. On each emittance plane, only

30 amplifier channels are used, leaving the remaining two as spare. Due to the very low
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Figure 2.8: Screenshot of the application monitoring the beam profiler at REX.

Figure 2.9: Working principle of a slit-grid emittance meter.
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Figure 2.10: REX-ISOLDE NTG Emittance meter.

noise and low input leakage current, measurements in the pA range are possible. The

scanning blade is made from tantalum, with two slits of 0.2 mm width. The wire-grid

system consists of a square frame holding 30 tungsten wires on each plane. The wire

diameter is 0.2 mm and the wire spacing is 2 mm. This spacing allows measurements

of beam sizes up to 60 mm. Both the slits and the grid can be moved in steps of 25 µm

by stepping motors. A measurement example of transverse beam emittance in ISOLDE

is shown in Fig. 2.11. The main limitations of this device are its small data memory,

the lack of open source access for data analysis and a poor user interface. It would be

very useful to integrate it in the main control system, after a complete refurbishment

of its hardware and software.

2.6 Silicon Detectors

Passivated implanted planar silicon detectors provided by Canberra were previously

tested at REX-ISOLDE for energy spectroscopy and Time of Flight (ToF) measure-

ments as part of an R&D effort for HIE-ISOLDE [71] with the aim to study their

ability to achieve fast cavity phase tuning in the HIE-ISOLDE LINAC and to obtain

beam energy measurements in order to compare with the spectrometer magnet method.

Two kind of Silicon detectors were tested in REX, the first with 300 µm thickness,

50 mm2 active area and 29 pF capacitance [71]. The second was 500 µm, 25 mm2 ac-

tive area and 11 pF capacitance. The detectors were installed in DB5 in REX-ISOLDE

(Fig. 2.12), before the switch-yard dipole magnet [4]. The detector was tested with
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Figure 2.11: Emittance measurement with a 2.8 nA beam of Ar+2 at ISOLDE. The
ε95%=2.77 π·mm·mrad, while the εRMS=1.93 π·mm·mrad. The integration time is one
second. Image taken from [69].
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stable ion beam at energies in the range of 0.3 - 2.82 MeV/u. The achieved energy

resolution was 1.4% - 0.5% rms in the measured energy range. This is adequate for an

accurate cavity phase-up. The achieved timing resolution is better than 200 ps rms,

which is also adequate for a ToF phase-up procedure if a beam chopper is incorporated

in the LINAC and the bunch spacing is increased accordingly [72, 71]. PIPS detectors

have ion-implanted contacts to form thin junction that allow good alpha resolution, and

leakage currents are typically much less than that of Silicon Surface Barrier detectors

and Diffused Junction detectors. More details will be explained in chapter 5.

Figure 2.12: PIPS detector installed in REX DB5. Image taken from [71].

Figure 2.13: PIN photodiode installed in REX DB7.
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2.7 Silicon PIN Photodiode

A silicon PIN photodiode S3590-08 from Hamamatsu [73] was tested in the REX-

ISOLDE LINAC in order to test its capacity as a future beam diagnostics tool to

measure beam energy and intensity at REX-ISOLDE. As shown in Fig. 2.13, it was

installed in the diagnostic box DB7 of REX-ISOLDE, see Fig. 2.1. Connected to a

A1422 1 channel CAEN preamplifier [74], and installed facing the aluminium plate of

the beam profiler. In this way, the scintillating light coming from the beam hitting the

aluminium plate is collected by the photodiode.

Figure 2.14: Time structure of the pulses from ISOLDE, the Penning trap, EBIS and
REX. Image taken from [13].

The photodiode was tested using a pilot beam from the EBIS, i.e., a mixture of
20Ne, 16O, 12C and 40Ar with a beam energy of 1.2 MeV/u and a beam intensity of 7.3

pA, while the mass-to-charge ratio was A/q=4. The pulse of the photodiode signal was

observed using a scope to change width while changing the EBIS ramping time. The

EBIS trigger pulse is a 3.2 V TTL signal that can be varied in time from 10 to 910 µs.
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The pulses on the photodiode ranged in the scope from 625 to 1500 µs, as they result

from the sum of the ramping time plus the extraction time of the EBIS, also known as

the charge breeding time, as shown in Fig. 2.14.

The photodiode signal (Vmax) also changes with beam current (IFC). A constant

EBIS pulse width of 110 µs was set and then the beam current was changed gradually

obtaining the results shown in Fig. 2.15.

Figure 2.15: Photodiode signal as a function of beam current.

The photodiode signal changes with beam energy too. Fixing the beam current

to 7.3 pA and switching the IHS cavity on/off two data points could be measured as

shown in Fig. 2.16.

These measurements are preliminary and incomplete due to beam downtime. How-

ever, these tests indicate that the PIN photodiode is responsive to the time structure

of the EBIS pulse under the given conditions in the machine. The signal-to-noise ratio

appeared sufficient to identify the changes in beam pulse distribution even for relatively

low-intensity beams. Further tests are needed to characterize the performance of the

photodiode accurately, but these preliminary tests indicate that the PIN photodiode

could be used as a possible operators’ tool for slow extraction optimization.
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Figure 2.16: Photodiode signal as a function of beam energy.

2.8 Chapter Summary

The beam diagnostics system of REX-ISOLDE provides a comprehensive set of tools

for operators in order to measure beam intensity and monitor transverse beam profile

and emittance. All of these diagnostic tools need to be redesigned or replaced in the

context of the HIE-ISOLDE linac, as explained in the following chapter. The previous

work by [72] on the PIPS detector for beam energy and ToF paved the way for the

R&D effort on beam diagnostics to be continued as part of this PhD thesis.
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Chapter 3

HIE-REX Beam Diagnostics

In this chapter the design requirements and performance limits of the beam diagnostics

system of HIE-REX are detailed, as well as a summary of the different devices foreseen,

showing the research and development involved in the process. Taking the instrumen-

tation requirements as a starting point, the work focused mainly on the Faraday cup

and the slit scanner as priority tools for beam diagnostics, then on the development of

the PIPS detector system.

3.1 Instrumentation Requirements

In the HIE-REX superconducting LINAC beam parameters such as beam current,

transverse beam profile, beam position and transverse emittance need to be measured

by the beam diagnostics system, each with a specific accuracy, as required from beam

dynamics studies [75].

Beam current measurements are essential in order to measure and optimize trans-

mission and set up the beam. For stable pilot beams, beam currents in HIE-REX

range from 1-1,000 pA. Beam currents need to be measured with an absolute accuracy

of 1%. Faraday cups were selected for this purpose, as these allow measuring abso-

lute beam intensities in this range. The diameter of the Faraday cup will be 30 mm

to cover the full beam aperture, as the maximum beam size in the LINAC is 5 mm (1σ).

For transverse beam profile measurements, an accuracy of 10% on the beam size

measurement is required for the minimum beam size (1σ= 1 mm). The profiles will

be acquired by sampling the beam current that goes through a slit into the Faraday

cup downstream, therefore registering the beamlet current as a function of the position

of the slit. From the mean of the beam profile distribution, the position of the beam

will be extracted. The typical beam sizes in HIE-REX will be 1 - 5 mm (1σ). The

main challenges that were raised with the HIE-ISOLDE upgrade lie in the confined
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longitudinal space available for beam diagnostics of just 58 mm, as explained in the

next section, and the addition of new devices to the diagnostics box such as the silicon

detector and the slit scanner combined with the demanding performance requirements

[75].

Figure 3.1: Layout of the intercryomodule region in HIE-ISOLDE. Image by E. Urrutia
(personal communication, May 22, 2014.

3.2 The Diagnostics Box and the Intercryomodule Chal-
lenge

In all of the intercryomodule regions there will be a diagnostics box, two vacuum valves

and a steerer magnet as shown in Fig. 3.1. These intercryomodule regions have been

designed 320 mm long each to optimize beam acceleration and minimize the debunch-

ing of the beam between acceleration stages. In order to properly set up the beam,

current, profile and position measurements are necessary to ensure a correct transport

of the beam, hence the need for diagnostic devices in every intercryomodule region. The

diagnostic boxes share space with the other elements such that only 58 mm in longitu-

dinal space are available for the diagnostic devices. The longitudinal space available for

diagnostics in the HIE-REX LINAC has been reduced by almost a factor 5 compared

to the REX LINAC. The space constraint poses a serious challenge for the design of
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the Faraday cup and its integration with all other devices.

The purpose-built diagnostics box for the HIE-REX LINAC is machined from a

bulk piece of stainless steel (AISI 316L) [76] in an octagonal shape. It has a modular

design as shown in Fig. 3.2, with one vacuum port and five ports to house various

detectors, collimators and stripping foils [77]. The octagonal box has metal surfaces

with drilled holes to install laser alignment equipment on top and a mechanical support

on the bottom. The main beam diagnostics system for which the box was developed

lies in the Faraday cup and the slit scanner system, which are detailed in the following

sections. There are two working planes to insert different devices on the beam path.

The slit scanner, slits and collimators move along the first plane, which is upstream

of the second plane of movement, reserved for the Faraday cup and the PIPS Si detector.

Figure 3.2: Left: layout of the HIE-ISOLDE diagnostic box showing the linear-motion
actuators. Right: Detail of the DB as seen from the back. (a) Vertical collimator slits;
(b) slit scanner; (c) Vacuum port; (d) Blade of stripping foils; (e) Faraday cup; (f)
PIPS Si detector. Image by W. Andreazza (personal communication, June 2, 2013).

For stable beams a Faraday cup is the baseline solution to measure beam intensity.

An unusual design of short Faraday cup is required because of the limited longitudinal

space available between cryomodules. In this short Faraday cup design, particular care

has to be taken in biasing the repeller ring to prevent the escape of the secondary

electrons and to be able to reliably measure all the beam charge. The Faraday cup has

to be mounted on a movable support in order to allow its insertion and extraction from

the beam path. The Faraday cup necessarily needs to be “in beam” at the same time as

either the slit scanner or the collimator blades, in order to measure beam profiles in the

slit scanner and centre the beam with the different collimators. An initial mechanical
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Figure 3.3: Original 3D design of the HIE-ISOLDE Faraday cup. Image by P. Noguera
(personal communication, Feb 24, 2012).

design of this Faraday cup, as shown in Fig. 3.3, was built at Added Value Solutions

(AVS) [78] with input from the Beam Instrumentation group (BI) at CERN prior to

the start of this PhD study.

The slit scanner together with the Faraday cup forms the beam profile monitor.

The slit scanner consists of a stainless steel blade with horizontal and vertical slits

mounted on a shaft and moved using a linear motion actuator (MDC BLM-133-6-03

MP 660012-200) which is coupled to a stepper motor (P21NRXD-LNF-NS-00) [79].

The slit scanner is located 5 mm upstream of the Faraday cup, moving in a plane in

front of the cup and scanning through the beam, as shown in Fig. 3.4. Using an inside

vacuum guiding design, the slit scanner was supported by metallic skids with a DI-

CRONITE coating [80], which glided tightly along grooves inside the box. The stroke

of the slit scanner was 152 mm.

The scanning blade must be installed at 45◦ with respect to the floor plane in order

for the V-shaped slits to measure the horizontal and vertical beam profile with a single

blade scan. The location of the Faraday cup in the diagnostics box is irrelevant for

measurements, but in the initial design (see Fig. 3.2) it was foreseen to be installed

in the port opposite to the slit scanner, because of the guiding skids of the scanning

blade. With this system, the transverse beam profile can be extracted by sampling

the beam current using the Faraday cup behind the slit scanner, so the value of the

measured current is recorded as a function of the slit position. From the mean of that

profile distribution the beam position is easily measured with a resolution given by the

slit width and the step size.
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Figure 3.4: Illustration of the Beam Profile Monitor principle. Modified image taken
from [75].

As a requirement, an accuracy of 10% is needed on the beam size measurement

for all (1-5 mm 1σ) possible beam sizes and normal setup beam currents. This means

that the expected slit width must be around 0.5-1 mm, but this parameter needed to

be studied and optimized. From the point of view of the range of particles in matter,

the blade thickness is not a constraint as the ion beam is stopped in much less than 1

mm of steel or aluminium, however, for mechanical reasons it was manufactured 1 mm

thick. The resolution in the position of the slits is required to be better than 100 µm in

order to have sufficient resolution on a transverse beam profile of a minimum size beam.

3.2.1 Effect of Slit Width on Beam Profiles

Calculations were done using MATLAB in order to study the influence of the slit width

on the profile measurements. A gaussian beam with an intensity of 50 pA and a beam

size of σ= 1 mm was scanned with a slit width ranging from 0.5 to 1.5 mm. The

normalized beam current of the resulting beamlets as a function of the slit position

is presented in Fig. 3.5. The difference between the Full Width at Half Maximum

(FWHM) of the original beam and the FWHM of the profile reconstructed from the

beamlets is defined as ∆FWHM. As shown in Fig. 3.5, there is little or no distortion

on the profiles measured with a slit width ≤ σ (∆FWHM<10%), while the profile is

significantly distorted with a slit width larger than σ. This is in the most critical case

(minimum beam size), and the effect in the case of a beam size of σ=5 mm is negligible

for the slit width range mentioned above.

The slit width also has an effect on how much beam current is transmitted down-
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Figure 3.5: Normalized intensity of a σ=1 mm beam as a function of slit position with
different values of slit width as parameters. The coloured lines represent the different
slit widths.

Figure 3.6: Effect of the slit width on the beamlet intensity measured from a 50 pA
σ=1 mm gaussian beam. The coloured lines at the bottom represent the different slit
widths.
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stream. Using the same gaussian beam as above, the result of a calculation showing

the profiles reconstructed from the beamlets measured with different slit widths is pre-

sented in Fig. 3.6. In principle, to measure the beam profile with a 10% error on

the beam size some sensitivity is needed on the beam tails (S/N ratio in the beam

centre must be at least 100). As the typical noise of the picoammeters used in these

FCs has an amplitude of 0.2 pA, the beam intensity in the centre must be at least 20 pA.

A summary of the effects of different slit widths on beam transmission and on

∆FWHM is shown in Table 3.1. For these two reasons the optimum slit width in this

particular machine would be 1 mm. This value is a compromise between measuring a

beam profile with little distortion with respect to the original beam but also allowing

enough beam intensity to be transmitted to the FC in order to have a good S/N ratio.

Table 3.1: Effect of the slit width of the slit scanner on the measured beam transmission
and beam size.

Parameter/Slitwidth (mm) 0.2 0.5 1 2 4

σ=1 mm
∆FWHM (%) 0.33 1.39 4.57 17.31 74.64

Beam Transmission at centre (%) 7.9 19.74 38.28 68.27 95.45

σ=5 mm
∆FWHM (%) 0 0 0 0.86 2.56

Beam Transmission at centre (%) 1.60 3.99 7.97 15.85 31.09

3.2.2 Slit Scanner Actuator Tests

A stress test of the slit scanner system was performed on the prototype of short diag-

nostic box at CERN with the aim to assess the robustness of the guiding system and

also to identify possible metallic dust production issues because of the moving blade

that could contaminate the cavities in the LINAC. The test was performed at a vacuum

pressure of 5.5×10−5 mbar. In this test setup, the scanning blade was left moving au-

tomatically at full stroke in and out continuously, with a thermocouple monitoring the

temperature of the stepper motor. During the first cycles IN/OUT, the temperature

readout from the thermocouple was between 40 and 60 ◦C. The maximum operational

temperature quoted for that stepper motor is 90 ◦C. During the IN/OUT movement

cycles, the speed of the slit scanner was set to 7 mm/s, a convenient value that will be

used in machine operations in order to measure beam profiles in less than a minute.

After 24 hours of test, or 1,340 cycles, the slit scanner jammed inside the box and

the test had to be aborted. After a thorough inspection of every component it was

found that the mechanical tolerances between the slit scanner and the grooves in the

box were too tight, and the DICRONITE coating may have worn out, jamming the slit
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scanner inside the box.

It was decided to change the guiding system completely and aim for an out-of-

vacuum guiding system with the scanning blade moving freely inside vacuum, without

any rails or support skids. Given the relatively large lever arm between the actuator

flange and the slit position, tests needed to be carried out to fulfil the 100 µm require-

ment with the new guiding system.

The proposed solution for this problem was a linear actuator based on two parallel

guiding metal rods and an endless screw with a ball-bearing feedthrough connected to

a stepper motor, as shown in Fig. 3.7. The screw pitch is 1 mm and the full stroke of

the mechanism is 138.7 mm. The start/stop positions are software controlled, with a

limit switch used as safety interlock.

An acceptance test for this guiding system was done at AVS. The linear actuator

with the slit scanner was installed in the short diagnostic box prototype. The control

unit for the stepper motor including the limit switches was provided by AVS for this

test. A thermocouple was connected to the outside of the stepper motor to monitor

its temperature with a multimeter. Two glass view ports were mounted on the beam

ports of the diagnostics box. A high intensity illuminator (Edmund MI-150) and a

CCD camera (IDS UI-2210SE) were installed on each side of the box on independent

supports and mechanically detached from the support of the box. A 2 mm thin Polyte-

trafluoroethylene (PTFE) teflon screen was placed in front of the illuminator in order

to illuminate the viewport homogeneously. A high-vacuum pumping group (rough-

ing+turbo pumps) was connected to a port on one side. A picture of the experimental

setup is shown in Fig. 3.8 [81].

A special scanning blade was built for this test. A picture of the scanning blade

used is presented in Fig. 3.9. The blade has two slits 0.2 mm wide at 45◦ from the

movement axis, with six holes of 0.1 mm in diameter spaced 20 mm apart. The purpose

of the holes is to track their transverse position as the blade moves IN/OUT.

The experimental procedure consisted of tracking the transverse position of the

drilled holes labelled 1 to 6 (being 1 the first and 6 the last holes to be scanned when

moving the blade IN) while moving the scanning blade. When the scanning blade

crossed the beam aperture the light passing through the drilled holes (or the slits) was

recorded by the CCD camera, whose axis was also tilted 45◦ in order to easily track

the motion perpendicular to the blade movement. By analysing the size and position

of the light spots frame by frame, the displacements of the blade due to mechanical
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Figure 3.7: Left: AVS out of vacuum guiding system for the slit scanner. Top right:
Thermocouple attached to stepper motor for temperature monitoring. Bottom right:
Limit switches. Image taken from [81].
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Figure 3.8: Experimental setup at AVS for the acceptance test of the slit scanner
system. Image taken from [81].

Figure 3.9: Picture of the scanning blade. Notice the almost imperceptible holes on
the blade. Image taken from [81].
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vibrations and due to the lever arm were determined. The shortest exposure time of

the camera was 100 µs, and the frame rate was 37.6 Frames Per Second (FPS). The

size of the frames is 640x480 pixels with 8 bits grey scale. The test was carried out

under high vacuum conditions, at a vacuum level of 2×10−6 mbar. One of the frames

taken is shown in Fig. 3.10, where the shape of one slit and a hole are visible. On the

right side of the figure, a small area around the hole identified on the left is isolated and

magnified. The profiles of the light intensity in the horizontal and vertical directions

are fitted, and from these the position and size of the spot are determined.

Figure 3.10: Left: Camera frame showing the light passing through a slit and a hole.
Right: Horizontal and vertical profiles of the light passing through the hole. Image
taken from [81].

The calibration of the camera pixel scale was done by measuring the steps needed to

centre the different holes in the camera. The obtained value is δscale=43.42 pixels/mm.

This δscale compared to the pixel size (9.9 µm) results in a 0.43 conversion factor. δscale

is the value used for all the data presented below. After the scale calibration a series

of tests, which are detailed below, were carried out.

Continuous full movement of the blade in both directions (OUT→IN and IN→OUT),

tracking the position of the six holes at 5 and 10 mm/s. With this test the maximum

excursion (peak to peak) of the movement of a hole in the direction perpendicular to

the blade movement can be determined. The results are presented in Fig. 3.11. The

maximum excursion for each hole in the direction perpendicular to the blade movement

is less than 20 µm. The same test was performed at 5 mm/s, and the results are shown

in Fig. 3.12. The maximum excursion for each hole is of the order of 20 µm, and it

appears to be independent of the blade speed [81]. The presence of small offsets in

the graphs are systematic and probably due to the finite accuracy in the drilling of the

holes on the blade. The offsets do not influence the results on the overall amplitudes in

the position of the slit in the vertical axis, and therefore were not considered as relevant
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in the analysis.

Figure 3.11: Tracking of the hole positions in the camera reference system at 10 mm/s.
Image taken from [81].

The next test consisted of moving the blade in a small range (6 mm) in both direc-

tions with the hole centred in the camera image, with 1 second pause at each end for 15

cycles. The aim of the test was to assess the repeatability of the blade position during

several scans at 5 and 10 mm/s. The results are presented in Figs. 3.13 and 3.14. The

accuracy in the positioning of the scanning blade is of the order of 1 µm, which might

as well be influenced at this level by the uncertainties introduced by other possible

effects on the experimental set-up, such as vibrations of the camera support, resolution

of the acquired images and level of detection of the optical recognition software.

Then the test was repeated, this time moving the blade in both directions starting

with hole 1 centred on the camera up to hole 6, for a total stroke of 100 mm during 15

cycles. This is a repetitive measurement but with a longer stroke. The blade positioning

in the direction of the movement changed less than 5 µm between the first and last cycle.

Another test consisted of moving the full stroke of the blade (138.7 mm) touch-

ing both limit switches, without resetting the home position for 10 consecutive cycles.

This test was done to measure the accuracy in the position of the blade using the limit

switches as reference. The blade speed was 10 mm/s. The repeatability in the position

had a standard deviation of 3 counts for each limit switch. This translates into a stan-

dard deviation in distance of σ= 2 µm.
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Figure 3.12: Tracking of the hole positions in the camera reference system at 5 mm/s.
Image taken from [81].

Figure 3.13: Tracking of hole 1 moving the slit 6 mm back and forth at 10 mm/s. Top
& bottom are zooms of the central plot. Image taken from [81].
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Figure 3.14: Tracking of hole 6 moving the slit 6 mm back and forth at 5 mm/s. Top
& bottom are zooms of the central plot. Image taken from [81].

In order to check that the motor was not losing steps along its movement, a test

was done starting from the OUT position and moving the blade fully IN in steps of 7

mm until the forward limit switch was reached, then moving back to the OUT position

in a single movement. This sequence was done 10 times. The standard deviation on

the number of counts during the 10 cycles was of a few counts (out of a total of 277,000

for the full stroke), which indicates that the loss of counts was not a concern.

A stress test of the slit scanner system was done moving the actuator at full stroke

for 100 cycles, with 1 second pause between motions. The temperature of the stepper

motor was monitored during the test and did not rise above 30 ◦C. A general inspection

of the device was done in order to check for signs of wear or any issues related with the

design and implementation of the mechanical system. No significant issues were found.

3.2.3 Conclusions

The proposed mechanical design for the slit scanner actuator of the HIE-ISOLDE short

boxes is a solid solution that has been thoroughly tested using a HIE-DB prototype.

The repeatability on the positioning of the blade is required to be better than 100 µm,

according to specifications, in order not to worsen the resolution for the beam profile

measurements. The repeatability in the position of the blade measured indirectly by

tracking six holes drilled on it is better than 20 µm, a value that clearly fulfils the
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specifications. The chosen stepper motor can provide the needed torque and move the

slit at the reference speed of 10 mm/s without problems. The system is quoted to be

Ultra-High Vacuum (UHV) compatible. A preliminary stress test of the system was

performed, where 100 continuous cycles were done at full stroke without any issues

observed.

The design of the system with two guiding rods and the moving force applied di-

rectly on the centre of the actuator is a reliable solution. The design with two parallel

metal rods provides a smooth and accurate guiding of the blade throughout its full

stroke. The use of a ball bearing and the endless screw to reduce the friction in the

conversion from rotational to linear motion is a good solution, increasing the smooth-

ness of the blade movement. The screw pitch of 1 mm is adequate and, together with

the stepper motor, provides sufficient resolution when positioning the blade. Limit

switches are placed correctly and allow a full stroke of 138.7 mm which covers the com-

plete scanning range for both slits, i.e., the acquisition of vertical and horizontal profiles.

3.3 PIPS Detector

A PIPS detector will be used for longitudinal beam profile measurements. These in-

clude:

• Energy spread of the beam, with a resolution of <1% (2σ).

• Bunch length, with a resolution of <100 ps.

Absolute beam energy measurements are a requirement in the machine, and this

could be achieved with a ToF detection system, should a chopper be introduced in

HIE-ISOLDE.

Measuring the relative beam energy is also very important for the phase-up of the

superconducting cavities. The synchronous phase of the RF cavities is set relative to

the phase at which the average beam energy is maximized by tracking the beam energy

sinusoidal modulation as a function of RF phase. At REX this was done using the

dipole magnet at the end of the LINAC, proving to be a robust and reliable procedure

but very time-consuming and difficult to automate. As the number of accelerating cav-

ities used to post-accelerate ions at ISOLDE will increase from 5 to 34, an automatic

application for tuning the cavity phases is required. Silicon detectors are likely the best

solid-state-detector solution in terms of spectroscopy and timing performance for this

particular application. More details are presented in chapter 5.
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3.4 Collimators & Stripping Foils

A number of supplementary fixed position apertures are required in the machine in order

to be able to reproducibly define the beam position in one or both planes when tuning

the accelerator, to clean beam halo produced by off-axis or off-momentum particles,

or to measure the energy spread in the dispersive section when a thin vertical slit is

placed at the entrance of the dipole magnet. These apertures should be able to stay

“in beam” together with the Faraday cup. The collimator blades can be 1 mm thick

steel or another metal, depending on mechanical and vacuum constraints [75]. There

are two types of collimator blades, each with 4 apertures:

⇒Type 1

• 2.5 mm diameter circular hole, for quick centring of the beam

• 5 mm diameter circular hole, for tight collimation of the beam

• 10 mm diameter circular hole, for tight collimation setting up of low energy beams

• 20 mm diameter circular hole, for loose collimation of low energy beams

⇒Type 2

• 2 mm vertical slit, for tight position definition for energy scans

• 5 mm vertical slit, for loose position definition for energy scans

• 10 mm vertical slit, for loose position definition for energy scans

• 15 mm vertical slit, for loose position definition for energy scans

A schematic of these collimators is shown in Fig. 3.15.

Figure 3.15: Schematics of the different collimator blades type 1 (Left) and type 2
(Right). Image taken from [75].

In addition, lightweight carbon stripping foils with varying thickness in the range of

tens or hundreds of µg/cm2 are needed for beam charge-state cleaning. These will be
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installed upstream of the dipole magnets. Support frames with three 30 mm diameter

circular aperture are foreseen [75]. The foils are required to be ”in beam” together

with the Faraday cup, so that the beam intensity transmitted through the foil can be

measured immediately downstream.

3.5 Emittance Meter

The main emittance measurement device for HIE-REX will be the NTG emittance me-

ter, see Fig. 2.10, which will be installed at the end of the baseline. Nevertheless, two

of the short diagnostic boxes mentioned above could also be used as a complementary

method. If installed in the centre of the long drift in the High-Energy Beam Transfer

lines (HEBT) between doublets, there are sufficient quadrupoles upstream to match the

beam to a range of parameters at this position. The future resolution of this device will

be limited by the slit width chosen for the two slit scanners involved and the distance

between them. This system also needs a minimum beam intensity in order to acquire

enough signal, which is discussed in Chapter 4.

3.6 Chapter Summary

The Beam diagnostics system for the HIE-REX LINAC consists of reliable instruments

with a robust design that have been thoroughly tested. The purpose-built diagnostics

box fits in the longitudinal space available in the intercryomodule region, while housing

all the different devices required for the operation of HIE-ISOLDE. The diagnostics

box with its modular design allows an easy installation/removal of any device in the

side ports. A Faraday cup was developed and tested as a suitable diagnostics device to

measure the range of beam intensities of the HIE-ISOLDE LINAC. The Faraday cup

will operate together with the slit scanner in order to measure transverse beam profiles

in the challenging space available for diagnostics. With this scanning technique, hori-

zontal and vertical beam profiles can be acquired with an accuracy of 10% on the beam

size, and the position of the beam can be extracted from the mean of the distribution

of the acquired profiles. PIPS detectors will be used for longitudinal beam profile mea-

surements, which include energy spread and bunch length. They will be measured with

a resolution of <1% (2σ) and <100 ps respectively, as specified from beam dynamics

studies [75]. Additionally, other devices such as collimators and stripping foils will help

setting up the accelerator, cleaning beam halo or changing the charge-state of the ion

beam. In order to measure transverse emittance, the previous NTG emittance meter

will be used by default, while the option of using two short diagnostic boxes with the

two slit scanners and a Faraday cup is also feasible, as discussed in Chapter 4. The im-
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plementation of this beam diagnostic system was made possible due to a comprehensive

R&D program and collaboration with industry partners. Thanks to productive discus-

sions with key people involved in the project, awareness of the importance of beam

diagnostics was raised, resulting in more longitudinal space in the boxes downstream

of the LINAC and more time allocated for beam tests.
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Chapter 4

Faraday Cup

This chapter details the development of the HIE-ISOLDE FC and represents the bulk of

the experimental work of this thesis. It introduces the Faraday cup as a general device

for beam intensity measurements for later comparison between the different prototypes

proposed. The design aspects section covers the specific requirements that the HIE-

ISOLDE FC must satisfy. Experimental results with ion beams are presented in each

prototype section, where the improvement in the FC readout of prototype 3 is shown.

At the end of the chapter, a study of the collection efficiency of these FCs is detailed

together with results from particle tracking and electrostatic simulations.

4.1 Motivation

A Faraday cup is very simple in concept. A metal cup is placed under vacuum condi-

tions to intercept a charged-particle beam, and doing so the charge of each particle is

stopped in the metal. It is important to note that when measuring electric currents,

any charge escaping from the cup will induce measurement errors. These errors in the

current measurement are reduced with the addition of a bias ring or repeller to the cup,

as shown in Fig. 4.1. The ring reduces the probability of escape for secondary electrons

that are released upon ion impact. Some Faraday cups may have a weak magnetic field

perpendicular to the beam axis to prevent secondary electrons from leaving the Fara-

day cup [82], and they may operate with a slight positive bias on the metal cup to

collect secondary electrons. The detection threshold of a Faraday cup depends on the

sensitivity of the ammeter in the circuit that it is connected to and the level of noise

present. The current passes through a resistor and the voltage difference is measured.

The cup is an element in a circuit; the current flow through the circuit can be very

accurately measured and it is directly proportional to the number of particles that

have been intercepted by the Faraday cup. For instance, a current of 1.6 nA in the

circuit corresponds to the arrival of 109 single-charged ions per second at the Faraday

cup. Because the detection is based solely on charge, Faraday cups exhibit no mass
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discrimination, which could be an advantage in other experiments. In addition, ions of

higher charge states produce a correspondingly larger signal.

Faraday cups have been in operation for decades [83]. Although they are beam

destructive, these simple and reliable instruments provide absolute beam current mea-

surements which are very valuable in linear accelerators. Optimising the design of a

Faraday cup so that a specific beam type can be monitored efficiently is challenging.

Faraday cups for low-intensity, low-energy beams have previously been studied [84, 85].

For this particular machine, i.e., the HIE-ISOLDE LINAC, the challenges in terms of

the Faraday cup are mainly the compact longitudinal space available for the FC, only

16 mm long, the measurement of relatively low ion beam intensities of only 1 to 1,000

pA, and its integration when working with all other devices in the same box, i.e. the

slit scanner, collimators, etc.

Figure 4.1: Operating principle of a Faraday cup.

In a simplified model, we can consider a collector of a Faraday cup of a given length

l and diameter d = 2r. Let β be the angle defined by the edge of the cup and the axis

perpendicular to the collector. With this geometry, we have

cosβ =
l√

l2 + r2
=

1√
1 + (r/l)2

(0 < β < π/2). (4.1)

In this simplified model, it is assumed that secondary electrons are emitted from

the central axis of the collector and their trajectories are well approximated by straight

lines. This is only valid for electrons without the presence of an electromagnetic field.

If there is no electrostatic potential present, all secondary electrons emitted in an angle

between 0 and β will escape the cup, while all those electrons emitted at an angle above

β will hit some part of the the cup and will be collected. In this way we can define the
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solid angle of captured electrons ΩC as

ΩC = 2π(cosβ) =
2π√

1 + (r/l)2
(0 < β < π/2). (4.2)

For a current of secondary electrons IB that are emitted isotropically, we will observe

a current of electrons IC collected after hitting the walls of the cup,

IC
IB

=
ΩC

2π
=

1√
1 + (r/l)2

= cosβ (0 < β < π/2) (4.3)

and therefore the current of lost electrons IL can be calculated by the following expres-

sion,
IL
IB

= 1− 1√
1 + (r/l)2

= 1− cosβ (0 < β < π/2). (4.4)

Thus, eqs. 4.3 and 4.4 lead to Fig. 4.2.

Figure 4.2: Fraction of captured and lost electrons as a function of r/l. Insert in the
figure represents the same plot at a larger scale.

This implies that, just taking into account the geometry of a Faraday cup, the r/l

ratio has a strong effect on the efficiency in capturing electric charges.

The objective of a Faraday cup is to stop all charged particles from the incoming

particle beam and to fully contain the subsequent electromagnetic particle emission

so that the charge absorbed directly corresponds to the charge in the incident beam.

However, in practice this is not straightforward and there are a number of sources of

current losses that can result in false measurements and need to be taken into account

for the design of a FC. These include penetration losses, electron escape losses and
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leakage current sources.

In order to estimate an adequate thickness of the collector electrode to avoid pene-

tration losses, simulations were carried out using Stopping and Range of Ions in Matter

(SRIM) [86]. The most critical beam conditions were simulated, these being alpha par-

ticles at 10 MeV/u, as helium ions are sometimes found in the rest gas of the EBIS. In

the simulations performed, alpha particles impinged perpendicular to a stainless steel

target, and the observed result is that ions are implanted up to a maximum of 255 µm

with a longitudinal straggling of 10 µm. This value is much smaller than the 2.5 mm

required by mechanical considerations.

In electron escape losses, two phenomena can be distinguished in the case of a

FC for ions: Backscattered electron losses are related to electrons bound to the ion

nuclei which are released with relatively high energy (5 keV) upon impact with the

FC. These electrons require a very high voltage to be collected in the FC, therefore

the backscattered electrons emitted inside the angle cone defined by the FC aperture

are very likely to escape. Secondary Electron Emission is the second phenomenon to

take into account in electron escape losses. Low-energy (<20 eV) secondary electrons

are emitted in the surface of the FC collector, which could escape from the FC if no

potential barrier is present. An important aspect must be taken into account when

choosing a proper material for the collector of a Faraday cup. The secondary electron

emission yield γ, defined as the average number of electrons released from a target sur-

face per incident particle, changes with the target material. While the dependance of γ

on the target material (Z2) is difficult to determine quantitatively, γ is proportional to

the atomic number of the projectile Z1 [87] for the projectiles and energies present at

REX-ISOLDE. It is important to note that this Faraday cup is designed for use with

stable ion beams only. If used with a beam of radioactive ions, activation problems will

appear, which would be another source of charged particle losses.

The energy spectra of secondary electrons emitted from a solid target being hit by

charged particles are very complicated because many different collision processes are

involved prior to low-energy secondary electron emission [88]. Regarding the angular

distribution of secondary electrons, previous studies suggest that the electron emission

angle depends on the energy of the incident particle, being this related to the interac-

tion time between the incident particle and the target atoms [89].
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Figure 4.3: Schematics of the Faraday cups discussed in this paper. (a) REX-ISOLDE
FC; (b) Prototype 1; (c) Prototype 2; (d) Prototype 3.

Table 4.1: Geometric parameters of REX and HIE collector plates
Faraday cup r (mm) l (mm) r/l 1-cosβ β (degrees)

REX-ISOLDE FC 14.8 32.0 0.46 0.907 24.7

Prototype 1 15.0 0.5 30 0.033 88.1

Prototype 2 14.0 0.5 28 0.036 87.9

Prototype 3 15.0 1.0 15 0.066 86.2

4.2 Design Aspects

Four different Faraday cups are discussed in this chapter. Their cross sections are

presented in Fig. 4.3 and their geometric parameters are presented in Table 4.1.

The first is the standard FC used at REX-ISOLDE and the other three are compact

FCs designed and developed in the form of this PhD thesis for the HIE-ISOLDE LINAC.

The short Faraday cup design posed a challenge due to the space restrictions in

the intercryomodule region where it will operate. In the 58 mm long diagnostic box a

maximum of 16 mm of longitudinal space is available for the Faraday cup, with a beam

aperture of 30 mm. The Faraday cup for HIE-ISOLDE is required to operate with

stable ion beams for energies between 0.3 - 10 MeV/u and intensities between 1-103 pA

[77]. It will be used to:

1. Measure absolute beam intensity.

2. Measure transverse beam profiles using a slit scanner directly in front of the cup.

3. Extract the horizontal and vertical beam position from the beam profile.

There is no need for active cooling of this Faraday cup since the maximum beam

power deposited in the cup, which is when the pilot beam is used, is negligible at <0.2

W in this LINAC.
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4.3 Prototype 1

The first attempt to design a Faraday cup for the HIE-ISOLDE LINAC was motivated

by the design of the FC used at REX-ISOLDE, but simply reducing every element to fit

in the 14 mm long space available inside the compact diagnostics box. The mechanical

design of Prototype 1 was done between the Beam Instrumentation group at CERN

and Added Value Solutions, an external contractor, prior to the start of this PhD work.

The exterior of Prototype 1 was made of Aluminium 6082; The collector cup, guard

ring and repeller ring were made of AISI 316L stainless steel, and the isolator parts

were made of Vespel SP-1.

Numerical simulations were done for all prototypes in order to assess the design

of the cups, analysing the electrostatic potential distribution and secondary electron

emission. CST Particle Studio [90] was used to study the electrostatic fields and par-

ticle tracking in these cups. The electrostatic potential in the central axis of the FC

varies according to the length and radius of the cup, so the electrostatic potential is

maximum close to the repeller ring and has minimum effect in the centre which is the

beam axis, provided that the cup is well centred on the beam.

Figure 4.4: Electrostatic potential distribution in the REX-ISOLDE Faraday cup.

In Figs. 4.4 and 4.5 the electrostatic potential distribution along the cross section

of the REX-ISOLDE and Prototype 1 Faraday cups is shown using a bias of -60 V

for comparison. The minimum electrostatic barrier in the center of the REX-ISOLDE

Faraday cup is -34 V, much higher than that of Prototype 1 which is just -5 V. In

addition to a higher electrostatic barrier in the cup’s centre, the geometric design of
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the REX-ISOLDE Faraday cup, i.e., its deep collector relative to its aperture, allows

for a much smaller solid angle for particles to escape, as discussed previously.

Figure 4.5: Electrostatic potential distribution in Prototype 1.

In the case of Prototype 1 its short length of only 14 mm and large escaping angle

of 176◦ would require a further increase in bias voltage to maintain the same collection

efficiency as the REX-ISOLDE Faraday cup. The results of the electrostatic simulations

indicate that for a repeller voltage of -60 V, Prototype 1 shows an electrostatic potential

in the centre of the cup almost seven times lower than that of the REX-ISOLDE

Faraday cup. In order for Prototype 1 to show the same electrostatic potential in the

centre as that of the REX-ISOLDE Faraday cup, its repeller needs to be biased at

-400 V, as shown in Table 4.2. The potential in the centre of a Faraday cup increases

proportionally to the bias voltage supplied to the repeller ring. Whether both Faraday

cups can measure a similar beam intensity having the same electrostatic potential in the

centre is the subject of the tests carried out in the next section. It is important to note

that when using the slit scanner in front of this Faraday cup for profile measurements,

the presence of this metal plane connected to ground reduces the electrostatic potential

in the central axis by almost a factor of 2 and thus the collection efficiency of the cup

could be negatively affected.

4.3.1 Experimental Setup and Results

Prototype 1 was installed downstream of a REX-ISOLDE Faraday cup inside diagnos-

tics box DB6 in the L20 beamline of the REX-ISOLDE LINAC, see Fig. 2.1. The aim

of this test was to compare the beam intensity measured by Prototype 1 taking the
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Table 4.2: Electrostatic potential on the central axis of Prototype 1 as a function of
repeller ring voltage.

Repeller ring voltage (V) Electrostatic potential at centre (V)

-7 -0.6
-15 -1.2
-30 -2.5
-45 -3.7
-60 -4.0
-100 -8.3
-200 -16.5
-300 -24.8
-400 -33.0
-500 -41.4

REX-ISOLDE Faraday cup as a reference. A picture of the set-up is presented in Fig.

4.6.

Figure 4.6: Prototype 1 (Left) and REX-ISOLDE FC (Right) FCs ready for experi-
mental tests inside DB6.

The stable beam available at REX-ISOLDE is a mixture of ions with an A/q=4,

from least to most abundant: He+,O4+,C3+,Ne5+. The typical beam energies in this

LINAC are shown in Table 4.3.

The beam energies used were E/A= 0.3, 1.2, 2.21 and 2.85 MeV/u. Tests were done

with a centred beam using the maximum aperture available, i.e., a circular collimator

54



Table 4.3: Maximum output energies of the different cavities of the REX-ISOLDE
LINAC.

Element: RFQ IHS 7GAP 9GAP

Energy (MeV/u) 0.3 1.2 2.2 2.85

of 15 mm diameter inside diagnostics box DB6. Using an HV power supply to bias

the repeller ring through the feedthroughs on the box, and a picoammeter for signal

readout, the beam intensity as a function of the negative repeller voltage was measured.

Once the measurements were completed with Prototype 1, all cabling was switched

to the REX FC and the measurements repeated, therefore making sure that the data

series were taken with the same electronics in order to avoid offset discrepancies be-

tween different picoammeters, that is, the different intensity value recorded by a given

picoammeter when no beam is present).

Figure 4.7: Prototype 1 normalised beam intensity as a function of bias voltage for
different beam energies. Measurement of REX-ISOLDE Faraday cup at 2.85 MeV/u
added for comparison.

In Fig. 4.7 the beam intensity measured by Prototype 1 is plotted as a function

of the repeller voltage at the different energies measured. All curves are normalised

to facilitate the comparison by a reference intensity value, which is the beam intensity

measured by the REX FC at -60 V. At low negative voltages, on the left side of the plot,

the FCs measure a beam intensity value much higher than the nominal beam current,

due to the escape of secondary electrons generated on the surface of the Faraday cups.
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As the picoammeter registers positive current, the escape of electrons, or negatively-

charged particles is seen as an increase in the positive current registered. It can be seen

that the beam intensity measured by the REX FC reaches a region of stable values,

or plateau, fairly quickly at around -60 V, whereas Prototype 1 does not reach it even

at -200 V. Furthermore, the value measured by Prototype 1 is between 50-75% higher

than that of REX FC. This is due to electrons escaping the cup, in part because of

the geometric design of Prototype 1, that is, its shallow collector electrode of 0.5 mm,

its 1.5 mm thin repeller ring and its big aperture compared to the total length of the

cup. No error bars were included in this analysis since the systematic error produced

by the fluctuating nominal beam intensity of the LINAC is significantly larger than the

statistical error produced by the picoammeter, our measurement instrument, which has

a resolution of around 50 fA.

In an attempt to improve the signal readout from Prototype 1 compared to the

REX FC, a set of tungsten wires 50 µm in diameter were soldered to the bias ring

of Prototype 1 forming a square with 10 mm side through which the beam could go

through. This 4-wire grid would increase the electrostatic potential across the aperture

of the FC, especially around the centre of the cup. Unfortunately, beam tests with this

bias ring were unsuccessful because of the fragility of the soldered joints during the

processes of pumping and venting of the diagnostics box.

Once the results were analysed, the design was modified to improve the current

measured by Prototype 1. This involved a complete modification of the inside parts of

the cup, removing the guard ring, some insulators, changing the collector material to

aluminium, reducing the aperture from 30 to 28 mm and also extending the repeller

ring to 7.5 mm. This new prototype is Prototype 2, shown in Fig. 4.3(c).

4.4 Prototype 2

The potential distribution of this prototype biased at -60 V is shown in Fig. 4.8 using

the electrostatic solver feature of CST. The extension of the repeller’s length by 6 mm

is very useful in order to increase the potential on the central axis by more than a factor

4. The guard ring has been removed in this prototype in order to allow more space for

the repeller at the risk of introducing a possible leakage current from the repeller ring

to the collector. The material of the collector was changed to Aluminium, which has

a lower atomic number than steel and would therefore yield fewer secondary electron

emission upon ion impact. The diameter has been reduced in this prototype to 28 mm,

see Fig. 4.3, in order to avoid electron emission in the repeller ring upon the impact of

grazing ions.
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Figure 4.8: Electrostatic potential distribution in Prototype 2.

4.4.1 Experimental Setup and Results

Prototype 2 was installed in the REX-ISOLDE LINAC in the same manner as the

former prototype. Tests were carried out at the same beam energies as above (0.3, 1.20

and 2.85 MeV/u) except 2.21 MeV/u, with the aim to compare the beam intensities

measured by the Prototype 2 FC and that of the REX-ISOLDE Faraday cup.

As shown in Fig. 4.9, Prototype 2 measures similar beam intensities compared to

the REX FC, with a maximum signal difference in the plateau region of 15% higher

than that of REX. This represents a major improvement in performance compared to

Prototype 1, which showed differences in beam intensity of 50 to 75% higher. Moreover,

the signal of the REX FC reaches a plateau faster than Prototype 2 at all energies,

and it maintains a stable beam intensity value between -50 and -500 V. In the case

of Prototype 2 at 0.3 MeV/u, a downward trend in the signal beyond -200 V might

indicate a full capture of the secondary electrons emitted in those conditions of beam

energy, projectile, target material and design of FC. Going forward in the direction of

making the repeller ring longer without significantly increasing the total cup length,

Prototype 3 was built.
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Figure 4.9: Normalized beam intensity measured by Prototype 2 as a function of bias
voltage for different beam energies. Measurement of REX-ISOLDE Faraday cup at 2.85
MeV/u added for comparison.

4.4.2 Beam Profile Measurements with Prototype 2

Transverse beam profile measurements were done using the prototype of short diag-

nostic box installed in REX. Inside the box, the Faraday cup (Prototype 2) and the

original slit scanner, with in-vacuum guiding, were set up for tests. The slit width of

the scanning blade is 200 µm. After delivering a pilot beam from REX at 2.85 MeV/u

up to the position of the diagnostic box, an acquisition routine started taking hori-

zontal and vertical profile scans. The main aim of the test was to study whether the

movement of the scanning blade produced any noise in the FC readings, changing the

beam intensity and FC bias voltage. The blade speed was set to a minimum of 0.79

mm/s and a maximum of 1.00 mm/s. These scans had a 120 mm stroke in one contin-

uous motion IN or OUT. The readout of the FC was done with a Keithley ammeter,

adjusting the range manually to 2 pA, 200 pA or 2 nA according to the beam intensity

measured. The results are presented in Figs. 4.10-4.15.

A series of scans was done without beam to measure the electronic noise level ob-

served, which was ≤0.7 pA peak-to-peak. Moving the scanning blade in front of the

FC did not affect the measured noise level. Another beam profile scan was measured

at very low beam intensity, of only 17.8 pA, with steps of 0.5 mm and 1 second pause
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Figure 4.10: Horizontal and Vertical beam profiles of a REX pilot beam at 29.3 pA.

Figure 4.11: Horizontal and Vertical beam profiles of a REX pilot beam at 46.8 pA.
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Figure 4.12: Horizontal and Vertical beam profiles of a REX pilot beam at 250 pA.

Figure 4.13: Horizontal and Vertical beam profiles of a REX pilot beam at 360 pA.
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Figure 4.14: Horizontal and Vertical beam profiles of a REX pilot beam at 540 pA.

Figure 4.15: Horizontal and Vertical beam profiles of a REX pilot beam at 710 pA.
Notice the stronger tails at this high current.
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Figure 4.16: Horizontal and Vertical beam profiles of a REX pilot beam at 17.8 pA
taken with 0.5 mm steps and 1 second pause in between.

between steps for a better current readout in each step. The range of the picoammeter

was set to 20 pA. Fig. 4.16 shows that the signal-to-noise ratio was sufficient to measure

transverse beam profiles even at this extremely low beam intensity.

4.5 Prototype 3

This prototype, as shown in Fig. 4.3, has a 1 mm flat aluminium collector electrode

and a 12 mm long repeller ring spaced only 1 mm apart. Its aperture is 30 mm in

diameter. According to results from the electrostatic simulations done in CST, Fig.

4.17 shows that this extended repeller ring allows for a minimum voltage in the beam

axis of -37 V when biasing the ring at -60 V.

4.5.1 Experimental Setup and Results

Using ion beams from the ISAC-II facility at TRIUMF, as REX-ISOLDE was in a long

shutdown period in 2013, the REX and Prototype 3 FCs were tested to compare and

characterize their performance. The beam energies used were E/A= 1.5, 2.87 and 5.5

MeV/u, with beam intensities in the range of 100 - 4,000 pA. Different ion beams were

successfully delivered from the Off-Line Ion Source (OLIS) [91] including 34S7+, 4He+

and 20Ne5+. The beam species used in these tests along with their beam energies and
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Figure 4.17: Electrostatic potential distribution in the third prototype of the HIE Short
FC.

63



Table 4.4: Beam species with energies per nucleon and intensities delivered to the FCs
at ISAC-II in TRIUMF for tests.

Species E/A (MeV/u) Ibeam(pA) Notes
34S+7 5.5 5, 230, 4000 Surface produced
4He+ 1.5, 2.87, 5.45 117, 350, 400, 3000
20Ne+5 1.5, 2.87, 5.5 210, 500, 700, 1100, 1200, 2500

intensities are summarized in Table 4.4.

On 08/August/2013, the cups tested were the REX-ISOLDE Faraday cup and Pro-

totype 3 using a beam of 34S7+. Since this particular beam showed large fluctuations

in intensity over a few minutes, and the hall probe of one of the dipole magnets was

not working properly, causing difficulties delivering the beam to the diagnostics sta-

tion, data acquired during this beam run were unsatisfactory and unreliable. However,

familiarization with the ISAC-II machine, control displays and other troubleshooting

was highly valuable for further tests. As there was a hardware limitation on the bias

voltage that can be applied to the FCs between -60 and -350 V, a NIM HV power

supply module was used to manually bias the FCs to voltages lower than -60 V.

On 23/August/2013, the REX and Prototype 3 FCs were tested using a beam of
4He+. In order to determine possible systematic errors in the measurements coming

either from the signal processing modules or from leakage currents flowing between the

bias ring and the collector, the readout of the cups without beam, or Ino beam, was

registered. No dependence on Ino beam with voltages between 0 and -350 V was ob-

served, therefore the influence of leakage currents was neglected. The beam intensity

values measured without beam, the offset, were determined and subtracted from the

data measured with beam. In all cases, the offset was lower than 0.5% of the measured

beam intensity values.

In Fig. 4.18 the beam intensity measured by Prototype 3 is plotted as a function of

the voltage in its bias ring, for different beam energies. it can be seen that the readout

from Prototype 3 agrees very well with that of the REX FC, which is 42 mm longer

in total. The same normalization as above was applied in these tests, so the current

measured by the REX FC at -60 V is the reference value normalizing the plot. The

signal from Prototype 3 reaches a plateau fairly quickly and between -60 and -350 V

these FCs measure practically the same beam current for all energies.

On 14/September/2013, the REX and Prototype 3 FCs were tested with a 20Ne5+

beam with energies of 1.5, 2.87 and 5.5 MeV/u. 20Ne5+ is a very good isotope for tests

since it is the main component of the pilot beam used at ISOLDE for beam tuning and
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Figure 4.18: Prototype 3 normalized beam intensity as a function of bias voltage for
different beam energies.

is therefore the most important test to validate Prototype 3. The same behaviour can

be seen using the 20Ne5+ beam at the same energies per nucleon, as shown in Fig. 4.19.

For bias ring voltages between -60 and -350 V, the beam intensity measured by the

cups remains constant, indicating an efficient capture of the ions in the particle beam as

well as secondary electrons. No evident performance differences were observed among

the two FCs. This behaviour was observed for all beam energies and intensities.

Instability of beam current in these tests depended heavily on the isotope and type

of beam delivered from OLIS and also the SC cavities of ISAC-II had an effect on current

stability, maybe due to small RF phase variations in the cavities of the ISAC-II LINAC.

The beam intensity values measured by the REX and Prototype 3 FCs consistently

agree with respect to one another with a ±10% deviation using 34S7+, 4He+ and 20Ne+5

beams at energies ranging from 1.5 to 5.5 MeV/u. Although the geometric design of

the Prototype 3 FC is different to what is used in standard cups, this difference did

not influence the results significantly in these tests. In particular, the performance

of Prototype 3 FC is consistent in all the tests mentioned above. These results are

attributed to an extended repeller ring in Prototype 3 compared to Prototype 1, which

greatly increases the electrostatic barrier in the central axis of the FC, thus containing

effectively the secondary electrons.
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Figure 4.19: Prototype 3 normalized beam intensity vs bias voltage for different beam
energies.

It would be interesting to characterize in future works the response of these FCs in

an extended energy range (0.3 MeV/u < E/A < 10 MeV/u) in order to fully study the

range of projectiles and energies that will be present at the ISOLDE facility once the

HIE-ISOLDE upgrade is complete.

4.6 Particle Tracking Simulations

Particle tracking simulations using CST were run to study the probability of losing

electrons on the different Faraday cup prototypes when electron emission occurs at

different repeller voltages, electron energies and electron emission angles from a beam-

sized surface centred on the collector electrode.

Electron loss probability was defined as the percentage of secondary electrons escap-

ing the collector electrode over the total amount of secondary electrons emitted from

the collector surface. In all simulations, 104 electrons were emitted simultaneously from

a circular surface source of 3 mm in diameter facing the aperture of the Faraday cup

and placed on the centre of the collector, which is precisely a critical area for the escape

of electrons. In CST Particle Studio it is not possible to simulate ion-induced electron

emission, hence the use of the electron source in the cup.
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The electron collection probability ξ of a Faraday cup in these simulations can be

written as

ξ =
H −N − S

N
× 100, (4.5)

with H the total number of electron hits in the cup’s collector, N the number of electrons

emitted from the source and S the number of secondary electrons produced in the

simulation. From that, the electron loss probability η is simply

η = 1− ξ. (4.6)

the electron loss probability values for each Faraday cup prototype were obtained by

counting the number of electrons that do not return to the collector electrode and di-

viding this by the total number of electrons emitted. This was performed for different

configurations, sweeping the electron emission energy from 0 to 500 eV and the repeller

ring voltage from 0 to -500 V for three electron emission angle cones of 0◦, 45◦ and

90◦ with respect to the surface normal. Electrons are emitted in random angles within

that cone in an isotropic fashion.

4.6.1 Prototype 1

In the case of Prototype 1, as shown in the top plot of Fig. 4.20, for secondary elec-

trons with an emission angle cone of 0◦ and emission energies below 10 eV, secondary

electrons are efficiently captured with bias voltages >-50 V. However, for emission en-

ergies above 60 eV, the loss probability is 100% regardless of bias voltage in the repeller

ring, for the voltage range considered. This means that no electrons are captured in

these conditions. The loss probability is very sensitive to bias voltage, decaying rapidly

to 0% for emission energies below 60 eV. This is directly related to the ability of the

secondary electrons to surpass the potential barrier in the centre of the cup for a given

kinetic energy. For instance, the potential barrier in the centre of this cup biasing the

repeller at -200 V reaches -16.5 V. This value represents an electrostatic barrier close

to matching the kinetic energy of secondary electrons with an energy of 20 eV. Hence

increasing the bias voltage a little over -200 V rapidly decreases the loss probability, as

the electrostatic barrier is insurmountable for secondary electrons with a kinetic energy

of 20 eV.

With an emission angle cone of 45◦, secondary electrons are emitted anisotropically

inside that emission cone. The central plot in Fig. 4.20 shows a similar behaviour than

the plot on top, but with a more spread sensitivity to bias voltage.

On the bottom plot of Fig. 4.20, secondary electrons emitted in this prototype with

an emission angle cone of 90◦ show the same pattern as above, but in this case the loss

67



probability decreases more gradually with bias voltage. For electrons with a kinetic

energy of 20 eV, some 70% are lost with a bias voltage of -100 V, while only 10% are

lost at a voltage of -200 V. The normal component of the electrons velocity is relevant

for their escape. Therefore the larger their angle of emission with respect to the central

axis, the lower the loss probability will be for that particular electron, as a result of a

smaller normal component of the electron’s velocity. Notice that the area of the three

plots with 0% loss probability does not appear to be affected by the electron emission

angle.

Figure 4.20: Electron loss probability of Prototype 1 at different emission energies,
repeller ring voltages and maximum emission angle cones of 0◦, 45◦ and 90◦.
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4.6.2 Prototype 2

The design of Prototype 2 represents a major improvement in the capture of secondary

electrons in the collector. As shown in Fig. 4.21, all electrons emitted at 20 eV would

be captured in the collector at voltages >-100 V for all emission angles. The vertical

axis is now plotted from 0 to 500 eV to better appreciate the variations in loss proba-

bility for this Faraday cup.

For an emission angle cone of 0◦, see top plot of Fig. 4.21, with this design of

Faraday cup all electrons emitted with a kinetic energy ≥300 eV are lost regardless

of bias voltage, in the voltage range considered. With this angle of emission, exactly

as in the previous prototype, the electron loss probability appears to be very sensitive

to bias voltage, changing from 100% or total loss of electrons to 0% or total capture

within a variation of 100 V or less to the repeller ring voltage.

In the case of a 45◦ emission angle cone, the variation in electron loss probability

from 100% to 0% becomes more gradual as the emission energy increases. The bumps

that appear in the case of a 0% emission angle no longer appear in this plot. These

bumps are attributed to secondary emission in other metal parts of the Faraday cup

when the initial electrons are repelled towards the collector at a certain voltage thresh-

old depending on emission energy. In this 45◦ emission angle the bumps are smoothed

and hidden because not all secondary electrons are emitted perpendicular to the col-

lector’s surface.

In the case of a 90◦ emission angle, distortions in the general behaviour may be due

to secondary electron emission in other metal parts of the FC such as the repeller ring.

This increases the variable S in equation 4.5, which increases the electron collection

probability ξ. As a result, the loss probability η is lowered.

4.6.3 Prototype 3

The simulation results for Prototype 3, shown in Fig. 4.22, indicate an improved elec-

tron collection probability at lower voltages compared to Prototype 2, for all emission

angle cones. The design of Prototype 3 also shows 0% loss probability when biasing

the repeller ring at -500 V in the case of electrons with an emission energy up to 300 eV.

In the case of an emission angle cone of 45◦, see the central plot in Fig. 4.22, as

occurs in previous prototypes, the variation of loss probability is more gradual than

with a 0◦ angle cone, increasing with the emission energy of the electrons.
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Figure 4.21: Electron loss probability of Prototype 2 at different emission energies,
repeller ring voltages and maximum emission angles of 0◦, 45◦ and 90◦.

70



With an emission angle cone of 90◦, Prototype 3 shows a very similar behaviour to

Prototype 2, but with an increased area of 0% loss probability. Moreover, the area rep-

resenting 100% loss probability for Prototypes 2 and 3 at this emission cone is severely

reduced compared to other emission cones. The ”valley” that appears in the plots of 90◦

emission cones for Prototypes 2 and 3 represent an area where electrons have roughly

the same kinetic energy as the electrostatic barrier, and therefore approximately half of

them escape and the other half return to the collector, depending on their initial angle

of emission and point of origin in the collector.

Prototype 3 has a 12 mm long repeller ring and covers the full 30 mm beam aper-

ture. The thickness of the collector electrode, insulator and back of the FC body is

1 mm. As shown in Fig. 4.17, biasing the repeller ring at -60 V results in a voltage

in the cup’s centre of -37 V, well beyond the typical energy peak of ion-induced sec-

ondary electron emission, which is <20 eV [92]. Of course, the energy of the secondary

electrons emitted does not follow a uniform distribution, and the shape of this energy

spectrum is the most important unknown in order to quantify exactly how many sec-

ondary electrons escape or are captured in the Faraday cup.

Having computed the values of η for those ranges of electron emission energy, re-

peller voltage and emission cones, one would like to translate those into intensity mea-

sured by the Faraday cup to compare with the experimental data.

Beam intensity can be expressed as

Ibeam =
dNi

dt
· Z+ · e, (4.7)

with Ni the number of ions that arrive at the Faraday cup during the time t, Z+ the

charge state of the ion and e the elementary electric charge. As γ is the electron yield

per incident ion, the beam intensity measured by the Faraday cup is

IFC =
dNi

dt
· Z+ · e− dNi

dt
· γ · e · ξ, (4.8)

therefore the ratio between the intensity measured by the FC and the real intensity is

IFC
Ibeam

= 1− γ

Z+
· ξ. (4.9)

However, knowing precisely the total ion-induced electron emission for this par-

ticular target-projectile combination at the beam energies available in REX is not

straightforward. Very few studies exist about ion-induced electron emission for this

particular projectile-target combination and energy range. A previous study suggests

that ion-induced electrons are emitted inside an escape cone with a maximum angle
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Figure 4.22: Loss probability of Prototype 3 at different emission energies, repeller ring
voltages and maximum emission angles of 0◦, 45◦ and 90◦.
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θmax with respect to the surface normal [93]

cos θmax =

√
W

Ei
(Ei ≥W ), (4.10)

with Ei the electron energy and W the energy barrier height which can be written for

metal conductors as

W = EF + e0φ, (4.11)

with EF the Fermi energy and e0φ the metal’s work function and the surface potential

φ [93].

About the shape of the energy emission spectra, it is common to find a broad peak

at very low energies, of a few eV, and then the yield falls off towards higher electron

energies. For illustration, Fig. 4.23 shows the case of an aluminium target bombarded

with ions at 0.5 MeV [94].

Figure 4.23: The energy distribution curves for impact of H+, He+ and Ar+ at 0.5
MeV. The original data points are displayed for He+ impact. Image taken from [94].

Taking all of this into account, it is difficult to quantify how many electrons are

escaping the Faraday cups, and what their emission energies are exactly. A complete

theoretical model that explains how ion-induced electrons are emitted for this particu-

lar projectile-target combination and energy range is missing in order to fully explain

the differences in beam intensity measured by the prototype cups and the REX cup

observed at a voltage between -60 and -500 V in the experimental plots of normalized
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intensity of Figs. 4.7 and 4.9.

4.7 Chapter Summary

A compact Faraday cup has been developed at CERN to measure low-energy, low-

intensity ion beams and, when used together with the slit scanner, it is able to measure

transverse beam profile and beam position. This is the main beam instrumentation

system for the HIE-ISOLDE project. An extension of the repeller ring in the longitudi-

nal direction from 1.5 to 12 mm has shown to eliminate the loss of secondary electrons

from the Faraday cup even for relatively low bias voltages of around -60 V. All pro-

totypes discussed in this chapter have been built and tested using ion beams with a

mass-to-charge ratio A/q ≤ 4.5. The minimum beam intensity measured by a FC is

related to the sensitivity of the ammeter it is connected to, which in our case it was

around 50 fA, while the level of electronic noise observed was ≤0.7 pA peak-to-peak.

Error bars were not included in the data analysis since the systematic error produced

by the fluctuating nominal beam intensity of the LINACs was significantly larger than

the statistical error produced by the picoammeter, the measurement instrument.

The outcome of the research effort on the short Faraday cup prototype for HIE-

ISOLDE can be summarized as an improvement in the beam current readout matching

the readout of other standard FCs used regularly at ion facilities within 10% on average

at different beam intensities and energy ranges of the LINACs. The development of

the Prototype 3 Faraday cup involved several experimental tests with ion beams as

well as numerical simulations in order to satisfy the challenging space requirements

of the HIE-ISOLDE superconducting LINAC and its wide variety of ion beams. The

Faraday cup is the keystone of the beam diagnostics system of HIE-ISOLDE in order

for operators and users to monitor the beam.
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Chapter 5

PIPS Detector

In this chapter the working principle of PIPS detectors is detailed along with a sum-

mary of the main parameters that limit their performance. The different types of silicon

detectors used in this work and their technical specifications are described, as well as

a description of the data acquisition electronics for energy and timing measurements.

Experimental tests with two PIPS detectors were performed with the aim to acquire

an absolute time of flight measurement in REX-ISOLDE. Energy spectroscopy and

timing measurements for the stable beams of REX-ISOLDE obtained with Si detectors

are presented in this chapter. By using an alpha source as a calibration reference, the

absolute beam energy of the ions in the pilot beam with a mass-to-charge ratio of A/q

= 4 was measured in the energy range 1 MeV < E < 8 MeV. The ToF of the particles

in the beam at an energy range of 2.18 MeV/u < E/A < 2.27 MeV/u was determined

by time stamping the arrival time in identical Si detectors in two diagnostic boxes sep-

arated by 7.7 m. The results obtained with these two techniques are compared with

the values obtained using a spectrometer magnet .

5.1 Motivation

The longitudinal beam profiles, i.e. the energy spread and bunch length are essential

parameters to be measured at REX in order for the operators to accelerate the beam

efficiently through the different accelerating structures and deliver beam to the exper-

iments. The beam energy in HIE-REX ranges from 0.3 to 10 MeV/u. An absolute

energy measurement would allow operators to efficiently deliver beam to the users. In

a LINAC, acceleration of the beam in the MeV range is done with RF resonant cav-

ities. The phase of the RF power fed to each cavity is set to make sure the beam is

efficiently accelerated in a stable way. The standard procedure of tuning the RF phase

relies on relative measurements of the average beam energy downstream of the cavity.

The synchronous RF phase is set relative to the RF phase at which the average beam

energy is maximized by tracking its sinusoidal modulation as a function of RF phase
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[72]. Measuring the relative beam energy is therefore important for the HIE-REX su-

perconducting LINAC.

At REX, absolute beam energy was measured using the XBEN.MD120 bending

magnet at the end of the LINAC as a spectrometer, see Fig. 2.1. This was done using

two vertical slits, one upstream and one downstream of the dipole, and a Faraday cup at

the exit of the dipole. With this technique, the average beam energy is measured using

the dispersion developed in the spectrometer magnet, which is calibrated taking the

nominal output beam energy from the RFQ, which is 0.3 MeV/u±1.5 % FWHM. The

beam intensity measured by the Faraday cup is recorded as a function of the magnetic

field in the spectrometer magnet. The change in dipole field is approximately propor-

tional to the change in beam energy. Such a procedure is robust and reliable but it is

time consuming, as it takes more than 5 minutes to do a magnetic field scan because the

intensity must be changed gradually. The number of cavities used to post-accelerate

ions at ISOLDE will increase from 5 to 34 with the HIE-ISOLDE upgrade, motivating

the development of a faster, and eventually automated, solution for tuning the phases

of the superconducting cavities. Absolute energy measurements can also be achieved

with a ToF detection system. For this purpose, solid-state detectors, namely PIPS de-

tectors were tested. They were installed in diagnostic boxes downstream of the LINAC.

Usage of PIPS detectors for beam diagnostics purposes has already been studied in

view of using them after the last HIE-ISOLDE superconducting cryomodule. The ex-

perimental set-up, data acquisition and analysis of the present work is based on [71, 72].

There are however two main new contributions with respect to the previous work:

• The channels to energy conversion scale used for energy spectroscopy was ob-

tained using a calibration source as a reference which emitted alpha particles

at four different energies. Hence the absolute energy of the projectiles could be

measured and compared to the results from the spectrometer magnet.

• The time of arrival of the particles with respect to the master-clock of the cavities

RF system was measured at two different locations (DB4 and DB5) with the aim

of obtaining an absolute ToF measurement.

Timing measurements are also important, as ToF can be used to derive the absolute

beam energy, provided the distance between detectors is known with the required accu-

racy. In addition, the knowledge of the time structure of the beam during transmission

and delivery is important for the operation of the machine. The timing resolution of

76



the ToF system is <200 ps, corresponding to an energy resolution better than 1%,

according to previous tests [71, 72].

5.2 Principle of Operation

When a particle impinges in the detector medium, it deposits energy until it is stopped

and electron-hole pairs are created in this process. The average energy necessary in

order to create an electron-hole pair in silicon is around 3.6 eV [95], therefore assuming

a 20Ne5+ ion at 2 MeV/u, this would create around 1.1×107 electron-hole pairs per ion.

These charges can then be collected and measured by means of an electric field applied

between two electrodes on the opposite faces of the material layer.

At the PN junction of the silicon, due to the electron-hole diffusion on each side of

the semiconductor material, a depletion layer free of carriers is created. By biasing the

detector with a reverse bias this depleted region is widened, and this forms the sensitive

volume of the detector [96]. Free electrons in the detector created by charged particles

traversing the material are collected by one of the electrodes. As a consequence, inte-

grating the charged collected by the electrodes generates an electric pulse in the circuit

connected to the detector. Fabrication details of PIPS detectors are shown in Fig. 5.1.

Figure 5.1: Fabrication process of a PIPS detector. Modified image taken from [96].

Electrical contacts to the electrodes are done via standard co-axial connectors, gen-

erally BNC or Microdot [97]. The main parameters affecting the performance of this

detector are the thickness of the depletion region, the amount of leakage current, its

surface area, energy resolution and breakdown voltage [96].
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The thickness of the depletion layer free of carriers is dependent on the bias voltage

applied and the resistivity of the detector material, which in turn depends on the con-

centration of dopants. The need for a thick depletion layer or large sensitive volume,

in our case, is not due to the range of the ions in the detector. A thick depletion

layer is needed because the two electrodes create a parasitic capacitance over the layer.

Therefore the thicker the sensitive volume, the smaller the capacitance value and the

less electronic noise will be produced by the detector. The quoted capacitance for this

detector is 29 pF [97].

Silicon detectors have small leakage currents, typically between 1 and 10 nA/cm2

for PIPS detectors [96]. Leakage currents are a source of electronic noise, and should

be minimized in a high-performance detector.

The surface area of the sensitive volume of the PIPS that is exposed to the par-

ticle beam affects performance in a positive and a negative aspect. A large surface

area allows for a higher counting efficiency. However, a large area also means a large

parasitic capacitance value, which reduces the resolution. PIPS detectors with surface

areas of 25 mm2, or 5.6 mm diameter, and 50 mm2, or 8 mm diameter were tested in

REX-ISOLDE.

Energy resolution in a PIPS is determined mainly by the active area, capacitance

and leakage current of the detector, by the statistical nature of the conversion of ra-

diation energy into electrical charge, by the charge collection process itself and by the

noise in the electronic components. The energy resolution for the partially depleted

detectors used in REX-ISOLDE is 11 keV in Full Width at Half Maximum (FWHM)

[97].

The breakdown voltage refers to the maximum reverse bias that can be applied to

the PIPS detector. A high bias voltage is preferred as it maximizes the thickness of

the depletion layer and ensures an optimal collection of charge carriers. Nevertheless,

reaching the breakdown voltage value incurs in the risk of destroying the detector. If

resolution is not of high concern, the PIPS detector should be operated at the recom-

mended bias voltage or below. Typical operating voltages are 40 V for 100 µm, 60 V

for 300 µm, 100 V for 500 µm and 350 V for 1000 µm thick detectors.

5.3 Technical Considerations

Two types of PIPS detectors have been tested in this PhD thesis. The first one is the

Partially Depleted (PD) PIPS, which is widely used in α-spectroscopy. The second
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detector is a modified PD detector dubbed Timing (TM) PIPS, with better timing

performance thanks to an increased (20 nm) aluminium front electrode layer. This

increased conductive layer has a negative impact on energy resolution of about 4 keV

in FWHM [97] as more beam energy is deposited in this dead layer. Time resolutions

of the order of 140 ps (FWHM) can be achieved by this detector [97]. The energy

resolutions of different PIPS detector types are presented in Table 5.1.

Table 5.1: Performance of Partially Depleted PIPS detectors according to area and
thickness.

Thickness 100 µm 300 µm 500 µm

Resolution
keV
(FWHM)

Active Area: 25 mm2 50 mm2 25 mm2 50 mm2 25 mm2 50 mm2

α 12 12 11 11 10 11

β 6 6 5 5 4 5

Since single particles produce measurable electrical pulses, this kind of detector can

be used for particle counting. Every event can be recorded and in this way very low

currents (a few pps) can be measured. The count rate needs to be sufficiently low (kHz

level) to avoid detector damage and the occurrence of multiple events (pile-up).

Figure 5.2: Silicon detector data acquisition set-up.
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5.4 Data Acquisition Electronics

The data acquisition electronics for the silicon detector used in this experiment is de-

picted in Fig. 5.2. The voltage bias for both detectors was supplied by a Mesytec

MHV-4 power supply. The silicon detector is connected to the preamplifier through

a vacuum compatible, 30 cm, 93 Ωm BNC to Microdot Male-Male coaxial cable (Ref.

CA 30 - BNC-M / M-M).

In a first step, the electric charge generated by an impinging particle is integrated

by a charge-sensitive preamplifier, model Canberra 2003BT with a charge-sensitivity

of 0.45 V/pC and converted into an output potential. This translates to a scale of

20 mV/MeV for silicon detectors at room temperature. The noise contribution of the

preamplifier is 2 keV FWHM. Any capacitance added to the input of the preamplifier

will further increase the electronic noise and degrade the energy resolution of the de-

tection system. The capacitance is best reduced by using a cable as short as possible

between the detector and preamplifier. The circuit schematic of the preamplifier is

shown in Fig. 5.3. The first stage acts as an operational integrator which produces an

output potential proportional to the integrated charge on the capacitor C. The timing

output is derived from the integrator error signal through a pulse shaping network.

Figure 5.3: Circuit of the 2003BT charge-sensitive preamplifier. Modified image taken
from [97]

The energy output signal is a positive exponential pulse with a fast rise time (tr <12

ns at Cdet= 0 pF) and a 250 µs exponential decay constant [72]. The Caen N968

spectroscopy amplifier acts as a shaper for the energy signal, reducing its long decay

tail in order to avoid pile-up detection, see Fig. 5.4. The pulse is converted from an

exponential to a Gaussian of 0.5 to 10 µs width suitable for single-particle counting.

The time constant of the pulse-shaping filter in the amplifier, which is the shaping time,

can be selected from 0.5, 1, 2, 3, 6 and 10 µs. Then the amplifier output is processed
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by a Caen V1785N peak-sensing ADC for pulse-height analysis and acquisition of the

energy spectra.

Figure 5.4: From top to bottom: Energy output of the 2003BT preamplifier, output of
the N968 Spectroscopy Amplifier and busy output. Modified image taken from [98].

The timing output is a negative rectangular pulse of constant amplitude ∼150 mV,

and width proportional to the rise time of the energy output with a very short fall time

of less than 3 ns [72].

The distribution of the particles’ arrival time is measured versus a reference signal

obtained from the RF system. The Caen V1290N Time-to-Digital Converter (TDC)

was selected for this purpose, as it allows recording the “time stamp” of multiple events.

This Versa Module Eurocard bus (VME) board has a time resolution, or Least Signifi-

cant Bit (LSB) of 25 ps, while the full range is 52 µs. In order to get a timing spectrum

of the beam, two channels are active during the time measurements: the particle tim-

ing signal and the RF reference signal, see Fig. 5.2. The time stamps of detection

events for both channels are acquired and hence the time interval between the particle

arrival and the RF reference signal is calculated through a LabVIEW routine [99]. The

maximum rate of a periodic signal that can be accepted by one channel without losing

hits has been previously estimated around 7 MHz [72]. Therefore the RF frequency of

101.28 MHz is divided by a factor 14 using the frequency divider, characterized by a

114 MHz maximum input frequency. This 7.23 MHz signal synchronized with the RF

can be used as a reference in the TDC. In addition to this, the reference signal and the

particle signal need to be converted into the NIM standard because of the technical

requirements of the TDC input. The timing pulse was adapted using a LeCroy 4608C

discriminator, which comprises an adjustable amplitude threshold of -5 mV to 1 V, an

adjustable output width from 4.5 ns to >100 ns, rise times and fall times better than

2 ns, and a maximum rate of 150 MHz [100].
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In the TDC V1290N, the data acquisition mode can be set to Continuous Storage

Mode or to Trigger Matching Mode [72]. In Continuous Storage Mode the data are

loaded into the output buffer of the module. When working in Trigger Matching Mode,

the TDC organizes the data in ”events” with respect to an arbitrary external trigger

signal. A time acquisition window is defined with respect to the trigger signal, there-

fore only the events that are inside this acquisition window are forwarded to the output

buffer in a First In First Out (FIFO) readout scheme. The Trigger Matching Mode

is suitable in this context because of the pulsed beam at HIE-ISOLDE and the very

low average count rate of beam particles necessary for the PIPS, of less than 1 kHz [72].

The structure of the macro pulse of the beam in HIE-ISOLDE is dominated by

the low duty cycle of the LINAC, i.e., the ratio of the RF pulse duration to the EBIS

period), which has a maximum value of only 10%. Therefore, the continuous storage

mode would predominantly acquire the RF reference signal with respect to the mea-

sured particle signals, recording empty acquisition windows at times. The most efficient

TDC acquisition mode in this particular set-up consists of triggering on the particle

signal itself in the so-called Trigger Matching Mode, such that a short acquisition win-

dow is set around the detection event to include the divided RF reference signal at the

same time. The final timing measurement is obtained off-line in a Matlab or Python

routine calculating the time interval between the trailing edges of the detection event

and the closest RF reference signal detected before it [72].

It is worthwhile to mention that all the connections related with this time acquisi-

tion system have been done with cables of similar length and type for both detectors, in

order to avoid the introduction of a differential delay in the arrival time of the signals

to the TDC.

5.5 Range of Projectiles in the Detector

Using Stopping and Range of Ions in Matter (SRIM) [86], the range in silicon for differ-

ent ions available in REX and HIE-REX were compared. The results are summarized

in Table 5.2. For ions lighter than 12C above 5.5 MeV/u, the range in silicon exceeds

300 µm therefore a thicker detector would be necessary in that case.

Radial straggling of the ions inside the detector with respect to the point of impact

is less than 5 µm in all cases, so this effect is irrelevant in measurements.

82



Table 5.2: Range of ion species in silicon at characteristic HIE-REX energies as calcu-
lated with SRIM.

Output Energy (MeV/u)

Ion Species 0.3 1.21 2.21 2.85 5.5 10
4He 4.18 µm 23.13 µm 57.22 µm 86.03 µm 255.31 µm 712.21 µm
12C 3.80 µm 13.98 µm 27.61 µm 37.88 µm 94.63 µm 245.35 µm
16O 3.94 µm 13.25 µm 25.06 µm 33.67 µm 79.29 µm 195.20 µm
20Ne 4.31 µm 13.15 µm 23.52 µm 30.92 µm 69.01 µm 162.89 µm
40Ar 5.30 µm 14.06 µm 23.46 µm 29.88 µm 60.86 µm 130.10 µm
238U 10.69 µm 24.78 µm 35.23 µm 41.20 µm 64.30 µm 103.84 µm

5.6 Radiation Damage

Radiation damage from beam exposure needs to be considered in order to maximize the

lifetime of the silicon detector. The radiation damage of the detector is directly related

to the integrated dose, which depends on the beam intensity impinging in the detector

and the total exposure time. Typical symptoms of radiation damage in a detector are

higher leakage current/noise, peak broadening and sometimes double peaks. Estimates

of radiation damage in Si detectors quote threshold values for noise increase of 1010

protons/cm2 and 109 α-particles/cm2 [101]. Therefore for a 50 mm2 PIPS detector

bombarded with α-particles at 1 kHz counting rate, we can expect to see damage ef-

fects after 555.5 hours of use.

Beam intensity should be reduced as much as possible in order to reduce radia-

tion damage, but the acquisition rate should be high enough in order to acquire data

reasonably fast. A common approach used to reduce the beam intensity is to scatter

the beam off a tilted gold foil into the the detector located away from the beam axis

[102, 103, 104]. Such systems are typically used either where the average beam current

is high (mA level) or when the integrated radiation dose gives serious cause for concern

for the longevity of the silicon detector. However, such systems result in poor energy

resolution caused by the scattering processes. In these tests with the PIPS detectors the

ion beam was attenuated with copper foils and directly intercepted. Radiation damage

issues are not a high concern at REX and HIE-REX because of the low average beam

current of less than 1 nA, due in part to the fact that the maximum duty cycle of the

LINAC is only 10%. However, regardless of whether the beam is directly or indirectly

detected, or whether the beam is continuous or pulsed, the peak beam intensity must

be in the kHz level such that single-particle detection is possible [71].
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5.7 Experiments with Ions

5.7.1 Experimental Setup and Results

In January 2013, a beam run for machine development concerning the silicon detector

monitor was scheduled at REX-ISOLDE. The aim was to replicate previous measure-

ments [71], but this time with two PIPS detectors in order to obtain an absolute ToF

measurement. Both detectors were PIPS of the timing series TMPD50-16-300RM. The

detectors were installed in the pneumatic actuators of the beam profiler in diagnostic

boxes DB4 inside the LINAC vault and in DB5, upstream of the bending magnet and

downstream of the last accelerating cavity of REX in the long drift section of the REX

LINAC, see Fig. 2.1. The detectors were separated by a distance of 7,666.8 ±0.5 mm

[105]. Canberra 2003BT preamplifiers were directly connected to the feedthrough of

each diagnostic box in order to be connected as close as possible to the silicon detectors.

From the preamplifiers, basically the same electronics as in previous measurements [71]

were kept.

Figure 5.5: Installation of the silicon detector and the α-source in DB5. Using the
pneumatic actuator of the FC, the source could be positioned facing the detector.

Energy Spectroscopy

Energy spectroscopy measurements of the REX beam were performed using the energy

signal of the 2003BT preamplifier. A radioactive α-source was attached to the back

of the Faraday cup in DB5, as shown in Fig. 5.5, such that it was directly facing the

silicon detector as long as both devices are IN or OUT of the beam path. The source

contains 148Gd, 239Pu, 241Am and 244Cm. The last calibrated activity was 4× 1 kBq.

According to [106], these elements emit alpha particles at the energies summarized in

Table 5.4. The most intense alpha peaks of these isotopes were used for the calibration
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of the channel/energy relation of the ADC Multichannel Analyser (MCA). The channel

corresponding to the maximum of each peak was calculated, and the points for the

channels/energy relationship enumerated in table 5.3 were obtained. From the data,

the following linear relationship between energy and channels for the calibration of the

MCA can be obtained:

E(keV ) = 2.0360× Channel− 74.8 (5.1)

Table 5.3: Channels vs Energy for the peaks of the alpha source, obtained from the
spectrum of Fig. 5.6.

Channel 〈Eα〉 (keV)

1600 3182.7
2569 5156.6
2731 5485.6
2888 5804.8

The calibration of the energy scale of the MCA was done using as reference alpha

particles with energies between 3 and 6 MeV. To have a good peak resolution and also

to restrict the analysis to the well calibrated region of the MCA scale of 12 bits, or

4096 channels, only projectiles with energies not higher than 8 MeV were considered.

Using the stable beam of REX-ISOLDE with a mass-to-charge ratio of A/q = 4, and

beam energies of E/A = 0.3 MeV/u and E/A = 1.87 MeV/u, beam was delivered for

energy spectroscopy measurements. The energy of the beam was also measured using

the bending magnet as a spectrometer, placing two vertical slits 3 mm wide in DB5 and

DB7. For the energy measurement using the dipole bending magnet and the Faraday

cup in DB7, the stable beam intensity was '10 pA.

An initial measurement was done without beam to check the visibility of alphas in

the detector and to calibrate the energy scale. The results are shown in Fig. 5.6. The

uncertainty in the determination of the channel corresponding to the maximum yield,

i.e. the position of the peak in channels, introduced by the fitting procedure depending

on the selected function and the achieved convergence is less than one channel. In terms

of absolute energy, that value corresponds to roughly 1 keV and therefore is negligible

as compared to other possible sources of error measuring the energy of the particles.

The energy resolution of the calibration α-source coming from the broadening of the

energy peaks due to the energy lost by the alpha nuclei in their path while leaving the

source has not been taken into account in this experimental set-up as this is not a high

precision energy calibration, nevertheless this value was assumed to be very small in

this type of intensity-calibrated α-sources with very well defined energy peaks.

From the Gaussian fitting of the alpha peaks, the obtained energy resolution is
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Table 5.4: Alpha particle energies and relative intensities [106] for the isotopes present
in the alpha source used.

Source Eα (keV) Iα (% branch)
148Gd 3182.68 100

239Pu
5156.59 73.3
5144.3 15.1
5105.8 11.5

241Am
5544.5 0.36
5485.56 85.1
5442.8 13.3

244Cm
5804.77 76.4
5762.16 23.6

Figure 5.6: Energy spectrum of the α source.
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worse than the value quoted by Canberra, of 16 keV FWHM [97], mainly due to a

higher electronic noise contribution measured in the system. In addition, the quality

of the alpha source and its position with respect to the detector may also influence

the final resolution, as related to the energy losses of the alpha particles in the source

itself and to angular effects in the detector’s entrance window. Although not directly in

front of the PIPS, the α-source was present inside the box while doing measurements,

so this could have influenced the measured energy spectrum of the beam somehow in

the energy range close to that of the alphas.

In order to operate the Si detectors for energy spectroscopy and ToF measurements,

the detection of individual particles is required and therefore the beam intensity needed

to be reduced to levels of a few hundred particles per second. Moreover, as in this set-up

the beam hits the detector directly, the particle rate into the detector had to be kept

under control in order to prevent their damage or destruction by excessive radiation.

During this work, the beam intensity was reduced by placing attenuator foils upstream

of the LINAC in DB2 and DB3, see Fig. 2.1, with transmission factors of 1% and

0.01%, respectively. Although the attenuation system with foils allowed the scheduled

measurements to be performed, the attenuation factors obtained during consecutive

measurements showed a low reproducibility, and most of the times the adjustment of

the faint beam intensities was done by a trial and error approach. The main limitation

of the beam attenuation system with foils lies in its non-systematic attenuation nature.

This could be related to damage of the foils due to beam exposure, or to the slightly

different relative positions of the two foils whenever they are placed on the beam path.

The energy scan measured with the dipole bending magnet is presented in Fig. 5.7

and the full energy spectrum obtained of the REX-ISOLDE beam and the α-source is

presented in Fig. 5.8. The predominant ion species in the beam is 12C3+, followed by
20Ne5+, 4He+ and 16O4+. The main parameters obtained from these measurements are

summarized in Table 5.5.

Table 5.5: Energy spectrum of the REX-ISOLDE beam (A/q=4, E/A=0.3 MeV/u)
using two different methods.

Method Particle 〈E〉(MeV) 〈E/A〉(MeV/u) FWHM (%)

PIPS Si detector

20Ne5+ 5.716 0.286 3.7
16O4+ 4.602 0.288 3.3
12C3+ 3.480 0.290 3.7
4He+ 1.168 0.292 9.3

Spectrometer magnet REX pilot beam 0.300 1.5

For all the peaks obtained using the PIPS detector, the mean energy per nucleon is
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Figure 5.7: Energy scan of the REX-ISOLDE beam measured using the bending dipole
magnet (A/q=4, E/A= 0.3 MeV/u).

Figure 5.8: Energy spectrum of the REX-ISOLDE beam measured with the Si detector
and calibrated with an α source. A/q=4, E/A=0.3 MeV/u.
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lower than the value obtained from the spectrometer magnet method. The reasons for

these discrepancies could be due to:

• An incorrect estimation of the calibration constant value for the bending mag-

net. The calibration constant is determined experimentally every year using as a

reference the output beam energy of the RFQ beam as E/A = 0.3 MeV/u with

a beam of A/q = 4. This value is measured within 1.5 % FWHM, according to

the information registered in the REX-ISOLDE logbook [107].

• Energy loss of the projectiles in the entrance window (dead layer) of the Si de-

tector. An estimation of the full energy loss problem in the entrance window has

been performed for the beam particles at different energies and is presented in

Appendix A. The effect of the energy loss of the particles in the entrance window

is not negligible, in particular for the lowest energies considered in this work.

However, it should be taken into account that as the energy calibration of the

scale has been performed using as reference the energy deposited by alpha parti-

cles in the active zone of the detector, the overall effect in the determination of

the projectile energy is much smaller.

• A dependence of the detector efficiency with the projectiles’ charge. The conver-

sion efficiency of the energy deposited in the detector to electron-holes pairs (di-

rectly related with the charge pulse that is sent to the preamplifier) is not similar

for all ions, and this might introduce a systematic deviation in the determination

of the absolute energy for projectiles of different masses. More information about

this effect, called “pulse height defect”, can be found in [108, 109].

The width of the 4He+ peak acquired with the silicon detector appears to be much

larger, as shown in Fig. 5.9, and in all cases the width is larger than that obtained with

the bending magnet. It is interesting to point out that the relative energy resolution of

the Si detectors appears to increase with the absolute energy of the detected particle.

Time of Flight

After the energy measurements, arrival time data were taken with the two detectors,

first in DB4 and then the same process was repeated in DB5. The beam intensity was

measured at 1.6 pA in DB5 before attenuation. Then beam attenuators were placed

in DB2 and DB3 with transmission factors of 1% and 0.01%, respectively. The repeti-

tion rate in the LINAC was slowed to 20 Hz. With such settings, the acquisition rate

measured with the scope for the silicon detector was around 3 Hz. The beam energy in

these measurements was varied gradually between 2.18 and 2.27 MeV/u, by changing

the amplitude of the RF in the last 7-gap resonator, 7GAP3. This small change in
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Figure 5.9: Energy per nucleon for the different components of the REX beam (E/A =
0.3 MeV/u) acquired using the Energy signal of the Si detector. Bottom plot: magnetic
field scan of the REX beam (A/q = 4) using the dipole bending magnet.
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beam energy was done to make sure the arrival time of the particles is measured with

respect to the same bunch.

The time of flight measurements involved the use of two Si detectors, installed

in DB4 and DB5. The detector placed in DB4, inside the concrete vault, together

with its preamplifier were highly sensitive to electromagnetic background, probably X

rays, when the 9-gap cavity was on. This background could not be shielded, and as

a consequence the maximum energy that could be used with the ToF technique was

the output beam energy of all the REX-ISOLDE cavities except the 9-gap, i.e. 2.2

MeV/u. On the other hand, the use of very low energy beams is restricted due to

the de-bunching of the beam that destroys its time structure, making it impossible to

work in that range. A series of measurements was done at beam energies around E/A

= 2.2 MeV/u, and a test was done to decrease the ToF as the accelerating voltage

applied to the last 7-gap cavity was increased. Unfortunately, for that set of energies

the results of the energy scan with the dipole magnet were affected by a failure present

in the collimator wheel of DB7, downstream of the bender. As a consequence, the final

comparison of the energies obtained with the bending magnet and the Si detectors was

not done in optimum conditions. On the last day, a measurement of the time of flight

for particles with E/A = 2.26 MeV/u could be performed, and the comparison with the

results of the energy scan with the bender was possible as the problem in the collimator

of DB7 had been solved.

Figure 5.10: Timing spectrum of the REX beam. A/q = 4, E/A = 2.18 MeV/u beam.
Detector installed in DB5.
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The TDC receives hits in two channels: one took the adapted pulse coming from

the arrival time of particles into the detector, and the other from the master clock of

the RF system. The time of arrival of the hits was recorded using a digital counter with

a resolution or Least Significant Bit (LSB) = 24.41 ps and processed off-line to produce

histograms of the time difference between the particle arrival time to the detector and

the RF clock divided by 14, i.e., TRFdivided= 14×9.87 ns = 138.18 ns. One example of

such a time spectrum is shown in Fig. 5.10. 14 bunches can be identified corresponding

to the particle arrival time with respect to the divided RF pulse, which is the reference

signal given by the master-oscillator of the LINAC [72]. It is worth making a brief

comment about the bin size of the CAEN TDC V1290N. When data from the timing

measurements was first analysed, a systematic deviation was found between the time

measured by the TDC and the time produced with a pulse generator. This had been

attributed to a possible error in the scale of the TDC. The results presented in the

following tables for the ToF analysis were corrected for this issue, therefore times were

computed as tcorrected
TDC = Kcorrection×tTDC. The LSB of the TDC is actually 24.41 ps and

not the value stated in the CAEN manual, which is LSB 25 ps. The correct way to

calculate the LSB is to consider that the clock frequency is 40 MHz, and that each clock

period of 25 ns corresponds to the digitized value of 210LSB = 1024 LSB, therefore 1

LSB = 25 ns / 1024 bits = 24.41 ps. Taking that relation into account, the correction

factor is Kcorrection=1000
1024=0.977.

In Fig. 5.11 the data of Fig. 5.10 is shown, but in this case the time values have

been overlapped to the first two periods to account for the periodicity on the arrival

time of the particles, that is TRF= 9.87 ns. Note that the width of the bins in this

histogram is smaller than in the one displayed in Fig. 5.10. A fit was performed on

the two bunches histograms similar to the displayed in Fig. 5.11 for all the acquired

spectra. The fitting function chosen was the sum of five Gaussian distributions, all

of them with the same height and width, and with a time separation between them

equal to the RF period of 9.87 ns. The central Gaussian distribution was fitted to

the first particles bunch, i.e., the one with the peak present between t=0 and t=10

ns. An example of the result of this fit is shown in Fig. 5.11. The position of the

Gaussian peak, ∆tParticletoRF , was taken as the reference for the time of arrival of the

particle with respect to the RF pulse. The standard deviation of the fitted peak, ∆t,

represents a convolution of the time resolution of the system and the dispersion on the

arrival time of the particles to the detector, which is the bunch length. The numerical

values included in the legend of the figure should be read as ∆tParticletoRF −∆t. More

examples of the two bunches histogram are shown in Fig. 5.12. Note that the spec-

trum of particles arriving to diagnostics box DB4, located just upstream of the LINAC,

exhibits double peaks. This might be an indication of a certain time structure of the
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Figure 5.11: Timing spectrum overlapped in two RF periods. A/q = 4, E/A = 2.18
MeV/u beam. Detector installed in DB5. Solid line: fit to the data with five Gaussian
distribution (see text for details). Dotted line: Gaussian distribution corresponding to
the first peak. The time difference between the particle hit and the RF pulse was 6.51
ns. The bunch length (1 σ) of the distribution was 2.51 ns.

particles inside the bunches, also called bunch filamentation. In addition, the shape

of the spectra is influenced by how finely the data are binned and by the settings in

the electronics set-up, such as discriminator thresholds, etc. The bunch length is also

considerably lower in DB4 than in DB5, as expected due to the increased de-bunching

of the beam for projectiles travelling longer distances drifting from the RF cavities.

Performing the data analysis described above on the acquired spectra, the values

for the ToF presented in table 5.6 were calculated. In all cases, at least two spectra

were acquired with the same beam conditions, in order to determine the time resolution

of the system, which is of the order of 0.15 ns.

Absolute ToF Between Detectors

Using the average ToF values from table 5.6, the difference in time of arrival of the

particles to the two detectors can be calculated as:

(∆tDB5−DB4
Part )modTRF = (∆tDB5

Part−RF −∆tDB4
Part−RF )modTRF (5.2)

Note that ∆tDB5−DB4
Part does not depend on the reference start time given by the RF

master-clock signal, as the terms including the RF clock cancel out. For the determi-
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Figure 5.12: Timing spectrum of the REX beam (E/A= 2.18 MeV/u, A/q=4).

Table 5.6: Results of the ToF spectra analysis.
7GAP3
pickup
voltage
(mV)

Beam
Energy

(MeV/u)

Diagnostics
box location

∆̄tPart−RF
(ns)

σ∆t

(ns)

1334 2.18±0.05
DB4 4.15 0.20
DB5 6.67 0.16

1467 2.21±0.05
DB4 3.06 0.10
DB5 3.38 0.06

1601 2.24±0.05
DB4 2.3 0.02
DB5 9.31 0.05

1735 2.27±0.05
DB4 1.43 0.01
DB5 6.32 0.10
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nation of the particles ToF there is one unknown parameter, which is the number of

complete RF periods that have passed during the flight of the particles (N). Thus,

(∆tDB5−DB4
Part ) = (∆tDB5

Part−RF −∆tDB4
Part−RF )modTRF +N · TRF (5.3)

Table 5.7: Final results from the ToF spectra analysis.
7GAP3
pickup
voltage
(mV)

E/Amagnet

(MeV/u)
(∆tDB5−DB4

Part )mod TRF

(ns)
Number
of periods
N

∆tDB5−DB4
Part

(ns)
E/AToF

(MeV/u)

1334 2.18±0.05 2.5 38 377.7 2.16±0.07
1467 2.21±0.05 0.3 38 375.5 2.18±0.07
1601 2.24±0.05 7.0 37 372.3 2.22±0.07
1735 2.27±0.05 4.9 37 370.2 2.25±0.07

Due to the periodic structure of the beam, N cannot be deduced experimentally

with these conditions. However, it can be estimated using the energy of the particles

obtained with the spectrometer magnet method as a reference. The final results of the

absolute ToF measurements with the Si detectors as a function of the 7GAP3 pick-up

voltage are summarized in table 5.7. Due to the wrong collimating set-up when tak-

ing the energy measurement using the bending magnets, the results of E/Abender can

only be taken as a rough estimate, and a quantitative comparison with the ToF values

cannot be done. However, the results presented in table 5.7 for the E/A measure-

ments measured with the dipole magnet and with the ToF system show a qualitative

agreement. Regarding the width of the fitted Gaussian distributions to the timing

spectra, the bunch length (1 σ) in DB4 changes from ∼0.6 ns at E/A = 2.27 MeV/u,

to ∼1.2 ns at E/A = 2.21 MeV/u. These values include also the experimental dis-

persion introduced in the detection and processing of the signal for both the RF and

particle hits. For the detector placed in DB5, we have a bunch length of ∼1.7 ns at

E/A = 2.27 MeV/u, and ∼2.5 ns at E/A = 2.21 MeV/u. It might be useful to com-

pare these values with the expected bunch length calculated with beam optics methods.

5.8 Cavity Phase-up

An RF cavity phase-up on the last 7-gap resonator of REX-ISOLDE to demonstrate

the ToF principle was already achieved [71]. At 101.28 MHz, the bunch spacing is only

9.87 ns, making it challenging to differentiate between bunches arriving at the PIPS

detector. This measurement was possible by slowly varying the RF phase such that the

bunch being tracked never moved more than half of 9.87 ns in arrival time and could

always be identified. Such a measurement is time-consuming because small steps in
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RF phase are required, however, the ToF principle was validated and is a viable option

for phasing the cavities should a beam chopper be incorporated into the HIE-REX

machine which would enable differentiation between bunches arriving at the monitor.

The independent measurements made in the time and energy domains can be used to

validate one another. From measurements of the change in beam energy as a function

of RF phase it is possible to calculate the change in time of flight as a function of RF

phase with the drift distance between the last accelerating cavity and the detector as

a known parameter.

The aforementioned bunch spacing of roughly 10 ns is too short to allow experiments

making use of ToF techniques. For this purpose a pre-buncher/chopper system has been

proposed for the HIE-ISOLDE project in order to allow 100 ns bunch spacing while

maintaining high transmission and full background suppression between bunches. This

implies the installation of a pre-buncher operating at one tenth of the base frequency

upstream of the RFQ and a beam chopper line. The extra space necessary for this

system is obtained by shifting the superconducting LINAC by one cryomodule length

as shown in Figure 5.13. A Multi-Harmonic Buncher (MHB) could be placed before the

RFQ at REX to increase the bunch spacing of post-accelerated beams in HIE-ISOLDE,

as shown in Fig. 5.14.

Figure 5.13: Schematic of the existing (top) and upgrade layout (bottom) with 10 MHz
bunching system. Image taken from [110].

96



Figure 5.14: Schematic of the pre-buncher concept in longitudinal phase space along
with the RFQ and beam chopper for HIE-ISOLDE. Image taken from [111].

Operating at a sub-harmonic frequency of 10.128 MHz, i.e., one tenth of the fun-

damental frequency of the RFQ, transmissions as high as 80% can be achieved in the

main bunches separated by 98.7 ns [111]. It would be desirable for some REX-ISOLDE

users to make particle identification employing ToF techniques, and in order to allow

this, less than 1% of the beam should be populating the satellite bunches outside of the

main pulses spaced at 98.7 ns. The optimal effective voltage for a drift length of 1.4

m between the pre-buncher and the RFQ was calculated to be Veff = 0.8 kV, without

any deterioration in the simulated nominal rms longitudinal emittance of εrms = 0.28

ns keV/u [112].

Figure 5.15: Working principle of the beam chopper system for the HIE-ISOLDE
LINAC. Image taken from [110].

A beam chopper is needed in order to remove the ∼15% of beam populating the

101.28 MHz satellite bunches. The principle of the beam chopper is shown in Fig.

5.15. The feasibility of cleanly separating the main 10.128 MHz bunches from the

101.28 MHz satellite bunches with a travelling-wave type chopper at HIE-ISOLDE has
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been investigated in [110] using a simple model comprising a chain of 20 synchronised

capacitors pulsed at a voltage of 1.2 kV. Even with a relatively large transverse aper-

ture of 30 mm it appears feasible to remove the satellite bunches spaced at 75 mm

without significantly perturbing the main bunch. A required deflection of 4 mrad for

beams with A/q = 4.5 and the mechanical length of the system can be kept under 0.5

m. The deflection imparted on the main pulse is estimated to be 1% of that received

by the discarded satellite bunches and the transverse emittance growth of the beam is

small if the rise/fall times are kept below 5 ns [110].

5.9 Chapter Summary

Absolute particle energy and time of flight measurements were done using Si detectors

at REX-ISOLDE, using the stable beam with a mass-to-charge ratio of A/q = 4. Si

detectors are not considered to be radiation hard, therefore irradiation with a non-

attenuated beam with an intensity I ≥0.1 pA should be avoided as this could result

in destruction of the detector. For single particle counting/identification as required

by these methods, the suggested particle rate is ≤10 kHz. A series of attenuating foils

with a total transmission factor of ∼104 are required in order to obtain this value at

REX.

By measuring the energy spectrum, the peaks corresponding to the different com-

ponents of the particle beam can be clearly identified. Measurements of the relative

beam mass composition can be achieved with this method. The channels to energy

scale is calibrated using α-sources. The relationship between the ADC channels and

the deposited energy follows a linear behaviour. Standard α-sources emit particles in

the energy range of 3 to 6 MeV. Using light ions as projectiles, an independent method

for determining the energy per nucleon of REX-ISOLDE beams can be performed with

the PIPS detectors, as shown in this chapter. That method can be applied for cross-

checking the calibration accuracy of the dipole magnet method that is normally used to

determine the beam energy. The mean energy per nucleon obtained with the Si detec-

tor is about 3% to 5% lower than the result from the dipole magnet method for a beam

with E/A = 0.3 MeV/u, A/q = 4. The peak corresponding to 4He+ ions from a beam

with E/A = 1.87 MeV/u was also acquired, and its mean E/A value was measured to

be 1% lower compared to the result of the spectrometer magnet.

Using two PIPS detectors installed at different positions on the REX beam line,

the ToF of the beam particles was determined. As a consequence of the periodic time

structure of the beam bunches with an RF period of TRF = 9.87 ns, the total integer

number N of RF periods during the particles’ flight between the two detectors cannot
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be determined. However, N can be estimated if the energy per nucleon is known with

an accuracy of the order of ∼1%. That value can be obtained for example with the

spectrometer magnet method. The data analysis involves the acquisition of at least two

time histograms using a TDC, and a fitting routine to those histograms. The detection

chain of both detectors should be as similar as possible to prevent the introduction

of time delays that will affect directly the time of flight calculation. From the fitting

of the time histograms, one can extract the mean time of flight of the particles and

information about the bunch length. The achieved resolution for each time of flight

measurement with the present set-up is of the order of 0.15 ns, which is the difference

between spectra acquired with the same beam conditions. The ToF results for a beam

with E/A = 2.26 MeV/u gave an E/A value 2.3% lower than that obtained with the en-

ergy scan performed with the bending magnet. The applicability of the ToF technique

at different E/A values is heavily dependent on the distance between the two detectors.

For very low energies, overlapping of different bunches by de-bunching the beam can be

critical if the distance between detectors is large. On the other hand, the resolution of

the system increases for longer times of flight, and therefore longer distances between

the detectors. The determination of N, the total integer number of RF periods during

the flight, is critical for the implementation of this technique when no beam chopper or

a particular time structure of the beam pulses is present. The requirements concerning

the estimation of N with an independent technique increase with N, and therefore with

the distance of separation between the two detectors. The detector of DB4 inside the

LINAC’s concrete vault was severely affected by background, probably originated by

X-rays impinging on the detector itself or its preamplifier, when the 9-gap cavity was

on. A noise-rejection system must be implemented should any installation of this kind

of detectors be foreseen in a high-radiation environment.

The ToF procedure is time-consuming and not suitable for a quick and automated

procedure, however it is required for absolute beam energy measurements since the

dipole method is not calibrated. Nonetheless, it is considered a viable option for phas-

ing the RF cavities should the bunch spacing be increased with the addition of a beam

chopper in the HIE-ISOLDE upgrade.
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Chapter 6

Beam Instrumentation for
Low-energy Antiprotons

Beam diagnostics for antiproton beams at low energies are required for essentially all

experiments at the AD, but they will be particularly important for the future ELENA

ring and its 100 keV beam lines to the different experiments, in order to provide the

experiments with antiproton beams of the desired characteristics [113]. The biggest

challenge for the beam instrumentation system of ELENA is to measure all the param-

eters of a very low intensity antiproton beam of less than 4·107 antiprotons/s. Many

monitors have been successfully developed and operated at the AD, but beam profile

monitoring remains a challenge. A dedicated beam instrumentation and detector test

stand has been recently set up at the AEḡIS experiment in the AD. Located down-

stream of AEḡIS, it allows for parasitic use of the antiproton beam at different energies

for testing and calibration of different detectors.

With the aim to explore and validate different candidate technologies for future

low-energy beam lines, as well as for the downstream antihydrogen detector in the

AEḡIS experiment, measurements were carried out by different research groups within

the AEḡIS collaboration using silicon detectors, nuclear emulsions and the purpose-

built Secondary Emission Monitor (SEM) provided as part of this thesis. The SEM

is a beam-destructive device developed to suit the needs of the future Ultralow-energy

Storage Ring (USR), and its use to monitor 200 keV protons has already been tested

at INFN-LNS [114].

The main reasons behind the test of this SEM were first to try measuring a beam

profile of the p̄ beam if possible; second, compare different configurations of the device.

Another important aim was to examine the sensitivity of the device to pions or other

secondary products of the p− p̄ annihilation.

In this chapter, the results of a series of tests taken with the SEM at the AEḡIS
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experiment in December 2012 before the first Long Shutdown (LS-1) at CERN are

presented, exposing the monitor for the proton tests in [114] to a 300 keV beam of

antiprotons. A summary of the different detector types involved in the beam run is

given with regard to a possible future permanent use at the low-energy beam line of

AEḡIS, summarizing their main achievements and comparing advantages and disad-

vantages of each detector. An option configuration is given, recommending a whole set

of diagnostics to fully characterize low-energy p̄ beams.

For the purpose of testing the different detectors discussed in this chapter with the

Figure 6.1: Schematic of the detector chamber installed at the end of the AEḡIS appa-
ratus. Modified image taken from [59].

antiproton beam at AEḡIS, a six-way cross was installed at the very end of the AEḡIS

main apparatus, as shown in Fig. 6.1. The chamber was connected to AEḡIS with a

gate valve. The vacuum level in the chamber was ∼10−6 mbar. While passing through

the AEḡIS apparatus, the antiprotons lose energy from 5.3 MeV to 100 keV first through

two aluminium degraders, one fixed and one mobile, then a silicon beam counter and

another fixed aluminum degrader, as shown in Fig. 6.1. What follows is a description

and summary of the measurements obtained from the different detectors in the AEḡIS

collaboration obtained while using this detector chamber.

6.1 Secondary Emission Monitor

6.1.1 Working Principle

The SEM consists of a metallic foil biased to a negative potential, a grounded metallic

mesh, a two-stage MCP stacked in chevron configuration with a phosphor screen, and

a CCD camera.

In a first configuration, the primary particle beam goes through the mesh at an
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angle of 45◦ and produces secondary electrons in the 10 eV range from the surface of

the foil. These secondary electrons are accelerated by the negative potential on the foil

and fly through the mesh towards the beam imaging system. When the electrons reach

the MCPs, an electron cascade occurs, resulting in an increased electron output, with

typical gains of 106, which will eventually hit the phosphor screen, producing visible

light that is finally registered by the CCD camera. The monitoring of antiproton beams

with electron multiplier MCPs has already been demonstrated [115, 116].

This 45◦ orientation preserves the beam aspect ratio as seen by the camera. A

Figure 6.2: Working principle of a foil-based secondary emission monitor.

schematic showing the working principle of the SEM in this configuration is presented

in Fig. 6.2. Here, only the negatively charged particles generated at the foil reach the

surface of the MCP placed at a certain distance, because the direction of the 2·105V/m

electric field present between the foil and the mesh will only accelerate the negatively

charged particles towards the MCPs. The limitations of the device are that such a high

electric field could severely distort the response of the monitor for keV energy beams,

as the electrostatic kick of this field on a keV particle could displace the image seen in

the monitor away from the reference trajectory. These distortions can reach 0.6 mm

in the case of a 300 keV antiproton beam, and as much as 8 mm for a 20 keV beam

[114]. However, this is not a concern for high-energy or heavy-ion applications [114].

The range of antiprotons in aluminium is 4.5 µm at 300 keV and approximately 0.8

µm at 20 keV [117], therefore by using a 200 µm aluminium foil this is a destructive

beam monitor.

A different configuration of the monitor is possible removing the foil and mesh

part, allowing the primary beam to hit the MCP directly. In that case, the monitor
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consists of the two-stage MCP together with the phosphor screen all in one stack. The

MCP-phosphor device is placed at 45◦ with respect to the beam, and then a CCD

camera monitors the light coming from the back of the phosphor screen. A schematic

showing the working principle of the SEM in this configuration is presented in Fig.

6.3. Extensive numerical studies into the effect of the voltage settings were previously

carried out in the work of [114].

Figure 6.3: Working principle of a MCP-based secondary emission monitor.

6.1.2 Experimental Setup

The aim of testing this monitor at the AEḡIS experiment was to test its capability as

a beam profile monitor with a 300 keV p̄ beam, compare the two configurations of the

device and examine its sensitivity to pions or other secondary products of the p − p̄
annihilation.

The experimental detector chamber was installed downstream of the 1 T magnet,

at the end of the AEḡIS line in the AD Hall at CERN. The monitor is mounted inside

a ConFlat (CF) 6-way cross vacuum vessel, which was a shared detector chamber for

different detector groups such as MIMOTERA and the 3D Pixel sensor during the

December 2012 antiproton beam run. Inside this vacuum vessel, the monitor can be

installed either in the foil-based or in the direct MCP configuration and it can be moved

in and out of the beam path with a pneumatic actuator. A comparison of both settings

is shown in Fig 6.4.

The equipment used in this experimental test is the following:

• Vacuum vessel CF 6-way cross spherical body 2xDN160 4xDN100

• 200 µm thick UHV clean aluminium foil
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Figure 6.4: View of the two configurations of the monitor: (a) With foil and mesh. (b)
MCPs placed directly in the beam path. Image taken from [118].

• Nickel mesh with 80 lines per inch, or 3 wires per mm approx., each wire being

25 µm thick. This accounts for a transmission factor of 85%.

• 2x MCP 50-15 from TOPAG [119], with a channel bias angle of 8◦ and a gain at

1100 V of 104.

• P-43 phosphor screen from Proxivision, with an active diameter of 42 mm and a

phosphor layer thickness of 4µm.

• CCD Camera DCU223C with C-mount lens MVL5WA and USB 2.0 IN/OUT

Trigger cable from Thorlabs [120].

A 3-channel HV power supply (19” THQ from ISEG [121]) is used to supply volt-

ages to the MCP, phosphor and foil. Two D Power Source (DPS) series modules with

an exchangeable polarity and 5 kV SHV output connectors can supply up to 3 kV/4

mA and 5 kV/2mA to the MCP and the phosphor screen, respectively. Peak-to-peak

ripple and noise for DPS modules are typically less than 2 mV and 7 mV maximum.

A single C Power Source (CPS) module with a fixed polarity and 16 kV LEMO out-

put connector can supply up to -10 kV/1mA to the foil, as the mesh is connected to

ground. Peak-to-peak ripple and noise for the CPS modules is typically less than 200

mV and 500 mV maximum. The chevron type MCP can be supplied with a maximum
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of 2 kV and no more than 1 kV should be applied to a single microchannel plate. In

order to apply the correct voltages with a single HV power supply and to vary them for

both MCPs at the same time, a custom-made voltage divider was used. It incorporates

two micro-ammeters in series with the power supply to monitor current flow across the

MCPs, two digital voltmeters to read the voltage divided between the microchannel

plates and two current limiting resistors to help prevent damage to the MCPs in the

event of a HV breakdown within the internal detector assembly. More technical details

of the voltage divider can be found in [114].

For the interface between air and vacuum, four 5 kV SHV feedthroughs and one 10

kV SHV feedthrough were welded to the actuator flange. The first three feedthroughs

supply voltage to the front, middle and rear of the MCP assembly, the fourth 5 kV

SHV is used for the phosphor screen, whereas the 10 kV SHV is used for the foil. The

two-stage MCP and phosphor assembly is stacked in a sandwich with metal rings placed

between the components as shown in Fig. 6.5.

Kapton insulated wires rated up to 5 kV were soldered to the contact rings. For the

Figure 6.5: schematic of the MCP-phosphor screen assembly. Image taken from [122].

foil, a stiffer Kapton insulated wire rated up to 10 kV was used.

Prior to the run, leakage current measurements of each MCP were taken ramping up

the voltage, to check their resistance. Then the trigger of the camera was adjusted to

take shots synchronously with the p̄ beam, which delivered one shot every 110 s. Once

the device was in place the background of the camera was checked and an alpha source

was installed inside the chamber facing directly the MCPs, to check the sensitivity of

the monitor. When the vacuum reached the working level of 10−7 mbar alpha particles

were clearly identified in the SEM, and finally some calibration adjustments were done

before antiproton measurements. Once the alpha source was removed, vacuum pump-

ing resumed to begin the measurements with the first configuration.
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6.1.3 Results

Once the nuclear emulsion tests were complete (see section 6.2), the detector chamber

was vented to remove the nuclear emulsions detector and replace it by one of the silicon

detector prototypes. Once the detector chamber was sealed again, pumping resumed

and SEM measurements continued. Later on, the results from the emulsion tests con-

firmed that indeed very few antiprotons reached the end of the line, approximately only

0.4 p̄ /mm2/shot. The duration of the p̄ pulse from the AD is 200 ns at extraction.

Note that the AD intensity of 3·107 p̄/pulse gives a flux after the beam degrader foil of

about 107 [123].

Figure 6.6: Layout of the AEḡIS experiment. Modified image taken from [59].

This particle beam consisted mostly of the higher energy p̄ and because the beam

focus at the degrader is at the entrance of the 5 T magnet, this beam will continue in

a slightly divergent manner through the 5 T magnet and the 1 T magnet downstream.

For reference, the AEḡIS set-up is shown in Fig. 6.6.

During the first p̄ shots, biasing was optimized for the MCPs (gain) and phosphor

screen (luminescence), and the exposure time of the camera was tuned reaching the

following nominal settings:

• MCP stack biased at +1.95 kV

• Phosphor screen biased at +4.75 kV

• Camera exposure time between 2 and 10 ms
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MCP Stand-alone Configuration

In this configuration, the two-stage MCP is tilted at 45◦ with respect to the beam,

together with the phosphor screen stacked right behind it, and this stack is also at 45◦

with respect to the camera, as shown in Fig. 6.7. This 45◦ orientation preserves the

beam aspect ratio as seen from the camera.

Figure 6.7: Drawing of the detector chamber with the SEM monitor in MCP stand-
alone configuration. The camera is installed outside vacuum, facing the phosphor screen
of the monitor through a view port.

In this initial part of the test, traces of antiproton annihilations were observed, as

well as evidence of other particles. It was possible to switch between measuring only the

annihilation products or measuring all the beam by opening/closing the gate vacuum

valve immediately upstream of the detector chamber. Antiprotons were annihilated in

the closed gate valve, whereas some annihilation products such as pions can make it

through to the detector. Some example images are shown in Figs 6.8 and 6.9.

In these pictures, the magnets’ B-field was off, the beam degrader foil was in and

the Faraday cup was out of the beam path. All these devices are located upstream

of the detector chamber. In all these images a dark spot is always appearing. This

corresponds to damage in the MCPs due to vacuum discharges. The red circle in the
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Figure 6.8: Antiproton annihilation traces in the SEM when the antiproton beam hits
the MCPs directly. The red circle represents the ”centre of mass” of the beam captured
in the image.

Figure 6.9: Secondary particle traces hitting the MCPs with the gate valve closed (No
antiprotons). The red circle represents the ”centre of mass” of the beam captured in
the image.
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images represents the calculated ”centre of mass” of the beam image.

Figure 6.10: Antiproton annihilation trace obtained with the SEM in the MCP stand-
alone configuration.

More examples of p̄ annihilations in this configuration of the SEM can be seen in

Figs. 6.10 and 6.11.

From the experimental data, after background substraction and superimposition of

20 consecutive images for statistics, annihilation events can be clearly seen when the

MCP/Phosphor is exposed directly to the antiproton beam of the AD, as shown in

Fig. 6.12. The 1 T and 5 T magnets were not ready to work back then, therefore

the antiproton beam was severely defocused in this beam run and perhaps was larger

than the 42 mm of the active diameter in the phosphor screen. It was unclear if the

antiproton beam being monitored by the SEM was the core of the beam or the tail of it.

Foil-based SEM Configuration

In this second configuration, the foil+mesh assembly is put in front of the MCP/phosphor

stack, at a distance of 52 mm. This distance is a compromise between the spatial res-

olution and the maximum beam diameter that can be observed. With this assembly,

it is ensured that a beam as large as 20 mm in diameter can be monitored. The thin

foil of the assembly was connected to channel 3 of the power supply and biased to -9

kV to allow all electrons produced in the foil to accelerate past the mesh towards the
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Figure 6.11: Antiproton annihilation trace obtained with the SEM in the MCP stand-
alone configuration.

Figure 6.12: Antiproton beam detected by the SEM in the MCP stand-alone configu-
ration. Scale in 8-bit grayscale palette.
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MCPs. According to previous simulation studies, the spatial resolution of the monitor

when the foil is biased to -9 kV is around 2 mm FWHM [114]. The concept of this

configuration can be seen in Fig. 6.13.

Figure 6.13: Drawing of the detector chamber with the SEM monitor in the foil-based
configuration. The camera is installed outside vacuum, facing the phosphor screen of
the monitor through a view port.

In Fig. 6.14, an image of the p̄ beam with the foil-mesh assembly is presented.

Damage in the SEM is visible as in the previous configuration. In this foil-based

configuration, the average intensity of the recorded images is lower than in the previ-

ous configuration, as expected due to a more indirect measurement method using the

secondary electrons generated in the foil. From the experimental data, after superim-

position of consecutive images for statistics, secondary particles can be seen when the

foil-based SEM is exposed to the antiproton beam of AEḡIS, as shown in Fig. 6.15. The

maximum pixel intensity recorded by the SEM in this configuration is approximately

half of the intensity recorded in the previous MCP stand-alone configuration.

Although the antiproton beam from the AD was successfully monitored with both

configurations of the SEM, the beam conditions were insufficient in order to measure

beam profiles. The p̄ beam was blown-up after the 1 T magnet, likely covering all the
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Figure 6.14: Image superimposition of 12 pictures showing secondary particles detected
with the foil-mesh assembly. Foil voltage= -9 kV. The red cross represents the ”centre
of mass” of the beam captured in the image.

Figure 6.15: Antiproton beam detected by the SEM in the foil-based configuration.
Scale in 8-bit grayscale palette.
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Figure 6.16: Antiproton annihilation products detected by the SEM in the foil-based
configuration with the gate valve closed. Scale in 8-bit grayscale palette.

active area of the detector and the beam was particularly difficult to steer on axis. In

future measurements, it would be interesting to measure in the same location of AEḡIS

but with the 1 T and 5 T magnets switched on to prevent the antiproton beam from

blowing up. Another possibility would be to install the SEM in a waist location of the

AD lattice according to its beam optics to have a smaller beam size that would allow

easier detection with the SEM.

The advantage of the SEM is that it can easily be inserted in the beam path to

measure transverse beam profile, and the intensity of the image can be easily tuned by

biasing the MCPs or the phosphor screen. Its main limitations are its relatively large

volume, its increased complexity compared to other detectors and a cost two orders of

magnitude higher than the nuclear emulsion detector. With these features, the SEM

seems an ideal detector for beam steering into experimental stations in low-energy an-

tiproton facilities such as the ELENA ring.

6.2 Nuclear Emulsions

A schematic showing a vertex detector proposed for the AEḡIS experiment is shown

in Fig. 6.17. The vertex detector is made of nuclear emulsions. This detector will be

used to measure the vertical deflection of the antihydrogen atoms on the gravitational

field of the Earth at AEḡIS. A time of flight detector is needed downstream to measure

the velocities of the antihydrogen atoms, and to record the approximate position of the
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Figure 6.17: Schematics of the vertex detector (Nuclear emulsions) and the ToF detec-
tor. Image taken from [124].

annihilation vertex. The thin window in the detector chamber, a 2 µm titanium foil,

limits the position resolution due to multiple scattering, but is needed to separate the

ultra-high vacuum part, at a level of 10−9 mbar, from the outer vacuum region, at 10−6

mbar, containing the emulsion films. This is a novel application of emulsion films [125]

and the first time that nuclear emulsions are used in a vacuum environment.

The emulsion detector is composed of two sensitive emulsion layers coated with a

substrate on the inner side, as presented in Fig. 6.18. A protective gelatin layer 1 µm

thick covers the outer surfaces. The detection units are silver bromide crystals 0.2 µm

in diameter homogeneously distributed in the gel, which upon excitation by a charged

particle, show filaments of Ag atoms. These images are then digitized with an optical

microscope. Using a PC, a tracking algorithm searches the digitized images for aligned

sequences of grain clusters. A linear fit is then performed to define the position and

angle of the microtrack which crosses the emulsion layer. Due to distortions along the

particle trajectory, the microtrack cannot be used directly. Instead, a search is made

for a matching microtrack in the opposite layer and the annihilation track is defined

by the straight line joining points A and B, see Fig. 6.18.

The average energy of the antiprotons reaching the nuclear emulsions detector at

the end of AEḡIS was around 100 keV, which corresponds to a range of ∼1 µm in the

emulsion detector. Therefore, the antiprotons were annihilated at the surface of the

emulsion detector. The annihilation detector was installed in a small vacuum cham-

ber shown on the left of Fig. 6.19. The chamber had an inner diameter of 100 mm

and the distance from the gate valve to the detector was 114 mm. The emulsion films

114



Figure 6.18: Schematic of the nuclear emulsions detector. Modified image taken from
[62].

Figure 6.19: Left: vacuum chamber containing the nuclear emulsions detector. Right:
beam line set-up. Secondary particles, mainly pions, are generated by antiprotons an-
nihilating in the upstream part of AEḡIS or directly in the emulsion detector. Modified
image taken from [62].
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were held by a stainless steel frame known to be chemically compatible with emulsions.

The detector chamber was closed with a gate valve located upstream for mounting and

dismounting without breaking the AEḡIS vacuum, and to protect the films from light

exposure.

Emulsion detectors can measure the vertical precision on the measured annihilation

vertex of antihydrogen atoms in the AEḡIS experiment with a precision around 1 µm,

which is an order of magnitude better than the position sensitive detector originally

proposed in the AEḡIS design study [53, 54]. Vertex resolutions in the range of 1 µm

have been obtained which, when combined with the time of flight measurements, lead

to an order of magnitude reduction of the data taking time originally foreseen to reach

the goal of 1% uncertainty in ∆g
g [62].

Among the advantages of nuclear emulsions as position sensitive detectors are their

high position resolution, relatively low cost of a few hundred pounds, possibility to

make large size detectors if required, no need for in-vacuum connections for voltage

or readout and their 3D directional measurements. The two main disadvantages of

nuclear emulsions are their lack of timing information on the events detected and their

offline nature. The nuclear emulsions need to be removed from the detector chamber

and readout of the events must be done with a microscope connected to a PC, which

is time consuming, as this process may take up to 48 hours.

6.3 Silicon Detectors

According to the AEḡIS design report, the position sensitive detector that will be used

to measure the gravitational acceleration for antihydrogen at AEḡIS is composed of an

active silicon detector, where annihilations take place, followed by an emulsion detec-

tor. The silicon detector is required to provide online measurements of the antiproton

annihilations, as well as the time of flight information needed to calculate the effect

of gravity on antihydrogen. This kind of antiproton annihilations on a silicon detector

has been observed only once, in an experiment which has made use of antiprotons with

a momentum of 608 MeV/c in a non-segmented detector [126].

In AEḡIS, the silicon detector will act as the annihilation surface. As the kinetic

energy of antihydrogen atoms in AEḡIS, of the order of 100 mK, will be insufficient to

detect their signal, antihydrogen will be indirectly detected through the detection of

its annihilation products. The silicon detector will also act as a separation membrane

between the ultra-high vacuum region of the antihydrogen trap and the high vacuum

region where the emulsion detector will be located, exactly as the Ti foil in these tests

shown in Fig. 6.19. The maximum active thickness of the silicon detector must be
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50 µm in order to minimize the scattering of the annihilation products to be detected

downstream in the emulsion detector. In addition, in order to avoid the black body

radiation from the silicon detector increasing the thermal velocity of the incoming an-

tihydrogen, the whole detector assembly will be kept at cryogenic conditions, with a

T ≤77 K.

Several different silicon detector technologies have been tested in the antiproton

beam run of December 2012, before the first long shutdown at CERN. Among them, a

3D pixel sensor and the Minimum Ionizing MOnolithic active pixel sensor for the TERA

foundation (MIMOTERA) detector, a type of ultra-thin pixel sensor [127]. These de-

tectors allow for the first ever study of annihilation of low-energy antiprotons on silicon.

Antiproton annihilations were identified using the 3D pixel detector. Extensive amounts

of data were acquired and compared with simulation results [59].

6.3.1 MIMOTERA

The MIMOTERA is characterized by its large area, of 17x17 mm2, low granularity

with each square pixel being 153 µm in size, and a dynamic range of over 3 orders of

magnitude. The MIMOTERA has been designed to be virtually unaffected by cross-

talk, due to the presence of multiple readout diodes for each pixel of the detector [59].

Figure 6.20: The MIMOTERA mounted on its PCB. The active area of the detector is
17.136×17.136 mm2. Image taken from [59].
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The MIMOTERA mounted on its PCB board is shown in Fig. 6.20. The epitaxial

layer is only 14 µm thick and has an entrance window of about 100 nm [127]. This is

possible by using a thin Si wafer and back-thinning it. The sensor consists of 112×112

= 12,544 pixels, each with a size of 153×153 µm2. This leads to an active area of

17×17 mm2, which is divided into four sub-arrays of 28×112 pixels that are read out

in parallel. The clock rate for the readout for a single pixel can be set in LabView as

2.5, 5, 10, and 20 MHz [127]. At the maximum setting the readout of one sub-array

therefore takes 50 ns×(112+2)×(28+2)= 170 µs. As the four sub-arrays are read out

in parallel, this is identical to the readout time for one frame of the whole detector. In

the following measurements a clock rate of 2.5 MHz per pixel has been chosen, which

leads to an integration time of 1.4 ms [127].

Figure 6.21: Layout of a MIMOTERA pixel and charge collection scheme. Image
courtesy of N. Pacifico.

The design of a single pixel of the MIMOTERA detector makes it a unique device.

Each of the pixels consists of 2×81 diodes, 5×5 µm2 each, building two independent

readout matrices. This architecture makes MIMOTERA a detector with no dead time:

while matrix A is collecting the generated charge carriers, the charges stored in the

diodes of matrix B are read out, the diodes are reset, afterwards the process is in-

verted. Hence, no signal charges get lost during the readout and the detector is free

of dead time [127]. A layout of a single pixel of the MIMOTERA and the readout

schematic are shown in Fig. 6.21.

The small thickness of the active region of the MIMOTERA detector allows to col-

lect more than 98% of the generated charge carriers. The single pixel noise level was

measured by the MIMOTERA group to be 30.3 keV [59].

A sample raw frame of experimental data taken with the MIMOTERA is shown
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Figure 6.22: Schematic of the experimental set-up. The centre of the Si detector is
mounted 40 mm off axis and 430 mm from the AEḡIS device. Modified image taken
from [59].

in Fig. 6.23. Antiprotons impinging or annihilating in the detector were identified by

clusters of neighbouring pixels. Only signals exceeding 150 keV, or 5 standard devi-

ations of the noise level, were considered. The aluminium foils covering the detector

were used to study the energy loss of antiprotons in silicon. Some in-plane tracks were

also observed with the MIMOTERA detector, i.e., antiproton annihilation tracks de-

veloping in the plane of the active region of the detector. Annihilation products were

identified calculating the range and dE
dx for the most important species produced in

antiproton annihilations.

Figure 6.23: Sample of a raw triggered frame after applying a noise cut of 150 keV and
excluding one-pixel clusters. Around 60% of the detector was covered with aluminium
foils with a thickness of 3, 6 and 9 µm. Image taken from [59].

The MIMOTERA detector was used to measure annihilations of low-energy an-

tiproton beams for the first time. This is an important milestone and the first step

on the way to designing a position sensitive detector for measuring the gravitational
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acceleration for antihydrogen. These results allow the identification of methods to de-

termine the position of the annihilation vertex, both by position extrapolation from

antiproton tracks and centre of mass methods. It also serves as the basis for simula-

tions and design of the first prototype antihydrogen silicon detector for AEḡIS. More

detailed results from this antiproton beam run in AEḡIS by the MIMOTERA group

were published in [59].

The main advantages of the MIMOTERA as a particle detector include its large

active area and pixel resolution, and its lack of dead time which makes it an ideal

detector to acquire timing information of particle events. The MIMOTERA detector

is not suitable for absolute beam energy measurements when working alone due to its

thin active layer of only 14 µm, but it is well suited as a time-of-flight detector which

could be used in pairs to measure absolute beam energy in many particle accelerators,

not just antiproton machines, if the drift distance to each detector is known accurately.

The main limit of the MIMOTERA detector is its position resolution. When used

with low-energy antiproton beams, the position resolution of the MIMOTERA detector

is approximately 20 pixels, which corresponds to ±3 mm [127].

6.3.2 3D Pixel Sensor (CNM 55)

While the small thickness and the relatively low granularity of the MIMOTERA detec-

tor, only 153 µm of pixel pitch, was important to determine the typical energy range

of the clusters and thus the needed dynamic range of the final detector, it is highly de-

sirable to study the particle tracks in more detail to better understand the achievable

resolution of the annihilation point. For this reason, a thicker pixelated detector was

tested by the AEḡIS collaboration.

Pixel detectors with cylindrical electrodes that penetrate the silicon substrate, so-

called 3D detectors, offer advantages over standard planar sensors in terms of radiation

hardness, since the electrode distance is decoupled from the thickness of the active

volume of the detector. The 3D pixel sensor (CNM 55)[129], shown in Fig. 6.24, was

installed in the chamber after the MIMOTERA measurements. The installation was

done in the same way as for the MIMOTERA detector, providing similar beam con-

ditions as in the MIMOTERA beam run. This 3D pixel sensor and the readout ASIC

[130] were originally designed for the B Layer [131] currently being installed at the

ATLAS [132] experiment at CERN, optimised for looking at high energy particles from

events occurring every 25 ns. This technology offered interesting features relevant for

this application. The sensor consists of 80 columns x 336 rows = 26,880 cells [133]. The
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Figure 6.24: CNM 55 3D Pixel sensor mounted on a single chip card. The whole system
is mounted on a flange before being installed in the six-way-cross CF vacuum chamber.
Image taken from [128].

pixel size is 250×50 µm2 and the electrodes have a diameter of 10 µm. The thickness of

the active volume is 230 µm and its passivation layer is ∼3 µm thick and composed of

three layers of material: 1.5 µm Al, 0.8 µm doped polysilicon and 1.150 µm thermally

oxidized silicon, one on top of the other.

Figure 6.25: Schematic view of the 3D pixels illustrating the electrodes in the CNM
55 sensor. Each pixel consists of two readout electrodes, shown in red, and six ohmic
electrodes, shown in blue. Image taken from [128].

A schematic view of the architecture of the pixels is given in Fig. 6.25. The volume

within the dashed lines represents a single 3D pixel consisting of two readout n-columns

surrounded by six ohmic p-columns. The 3D design of the electrodes results in a higher

average electric field between the electrodes and a shorter collection path, which is the

reason for a larger signal to noise ratio than the one for the planar pixel technology. The

USBpix hardware, used for the readout, is based on a multi-purpose IO-board, called

S3MultiIO, with a USB 2.0 interface to a PC and an adapter card which connects
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the S3MultiIO to the Single Chip Adapter Card (SCC), where the FE and the sensor

are mounted [134]. The S3MultiIO system contains a programmable Xilinx XC3S1000

FG320 4C FPGA, which provides and handles all signals going to the FE chip. More

details about the architecture of the pixels can be found in [128].

Figure 6.26: Sample frame of the 3D sensor with two fitted proton tracks coming
from an antiproton annihilation. Annihilation tracks as these shown here are used to
reconstruct the annihilation point. Image taken from [128].

Tests of the 3D pixel sensor provided valuable material for further analysis of an-

tiproton annihilations in silicon, in particular of the annihilation prongs. As the two

detectors were installed in the same position in the vacuum chamber, the energy dis-

tributions for the incoming antiprotons were very similar. A raw frame showing the

acquisiton of antiprotons is shown in Fig. 6.26. When compared to a typical acquisition

frame of the MIMOTERA detector tested, more and longer tracks can be observed, as a

result of the thicker active volume. Antiproton annihilation tracks are more likely to be

observed due to the higher geometrical acceptance for annihilation products travelling

at angles different from that of normal incidence.

Cluster energy is lower than what was observed with the MIMOTERA detector.

This is due to a thicker passivation region, which is more likely to stop heavy fragments

that would produce high energy deposits, and also due to saturation of the single chan-

nel amplifiers. The measured charge is thus expected to be lower than the charge

effectively deposited in the bulk of the detector in some cases.

When travelling through the 3D pixel sensor, antiproton annihilation prongs pro-

duce tracks from a few mm up to 1.5 cm long. The annihilation point can therefore be

reconstructed by fitting the tracks and the error on the annihilation point calculated.
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The position resolution achieved with the CNM 55 sensor is 56.5 µm on the X axis,

with a pixel size of 250 µm, and 24.3 µm on the Y axis, with a pixel size of 50 µm [128].

The resolution on the position could be further improved by using weighted fitting

algorithms accounting for the charge of the pixels composing the tracks. However, a

sensible application of such algorithm would require no saturated pixels composing the

annihilation tracks. Future work with this detector includes a better tracking algorithm

for antiproton annihilations and improved cluster analysis.

6.4 Optimizing Instrumentation for Low-energy Antipro-
ton Beams

ELENA and the future beamlines at other facilities like FLAIR will require a full set

of beam instrumentation devices. The measurements presented in this section allow

comparing and defining a full set of instruments to diagnose low-energy antiprotons.

This section will discuss which of the previously discussed diagnostics devices and which

locations are best suited for a permanent installation on the LNE02 low-energy beam

line and the subsequent AEḡIS experiment in order to fulfil its goals. The ELENA ring

will provide 100 keV antiproton beams to several different experimental beam lines, as

shown in Fig. 6.27.

Figure 6.27: A sketch showing the layout of the different beamlines at the ELENA ring.
Modified image taken from [50].

Beam line LNE02 will be 6.9 m long and comprise the following electrostatic ele-

ments: 1 bending dipole, 7 matching quadrupoles, 3 FODO quadrupoles and 4 dual-

plane correctors [50]. Figure 6.28 shows the optics for the LNE02 line. After the strong
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bend, two doublets and a triplet will be installed for beam matching into the experi-

ment. A drift space of around 1 m before the AEḡIS experiment is foreseen.

Figure 6.28: The optics and beam sizes of the LNE02 beam line. Proposed locations
for beam profile monitors are circled in blue. Image taken from [50].

In order to adequately measure transverse beam profile and beam size, beam profile

monitors could be installed in beam line LNE02. Suggested locations for beam profile

monitors in this beam line are presented in Fig. 6.28. A first monitor could ideally be

located before the bending element, in the area between metres 2 and 3 of the LNE02

beam line where the beam size in the horizontal plane matches that of the vertical

plane. A suitable location for a second beam profile monitor could be just after the two

dual-plane correctors towards the end of the line, where the beam size in both planes

is relatively large, with σx±10 mm and σy±5 mm. This would ensure a proper beam

monitoring before final steering into the AEḡIS experiment. The SEM could accom-

plish this task. With its 42 mm active area, it can easily be inserted in and out of the

beam path to monitor the beam. If enough space is available for the SEM, it could

be used in the foil based configuration, which would extend the lifetime of the MCPs

and phosphor screen, as these would not be directly exposed to the beam. The SEM is

an on-line beam profile monitor capable of monitoring the antiproton beam delivered

from the AD facility into the AEḡIS experiment, with a beam energy ranging from 100

keV to 5.3 MeV and intensities of around 3·107 antiprotons in single bunches 120 ns

long and delivered every 100 s. As antiprotons will be extracted at 100 keV from the

ELENA ring [50], the SEM is a good candidate to monitor the low-energy antiproton
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beam delivered by the ELENA ring.

Ideally, a permanent antihydrogen detector for the AEḡIS experiment should detect

the annihilation points with high position resolution and also give timing information

of the events. A nuclear emulsions detector such as the one discussed earlier in the

chapter could fulfil this mission with the highest position resolution of all the detec-

tors mentioned, i.e., 1µm. Instead of the 2 µm titanium foil required to separate the

ultra-high vacuum part from the outer vacuum region, a thin Si detector such as the

MIMOTERA could be used as an entrance window for the nuclear emulsions detector.

This would keep the nuclear emulsions in place and at the same time provide timing

information of the arriving antihydrogen atoms. This would be at the cost of limiting

the position resolution on the annihilation point to some extent due to scattering.

6.5 Chapter Summary

Several antiproton detector technologies were successfully tested by different research

groups in a dedicated detector chamber in AEḡIS during the antiproton beam run of

December 2012. In the work leading to this thesis, the low-energy antiproton beam as

well as single annihilation events were detected using two different configurations of the

SEM. For the first time, the stand-alone MCP configuration was successfully tested,

showing clearer beam images, but introducing background from antiproton annihila-

tion products, mostly pions. The SEM offers charge differentiation when used in the

foil based configuration and it is expected to exhibit a longer lifetime compared to the

MCP stand-alone configuration, as the MCP and phosphor screen are not exposed to

the beam directly. Among its main disadvantages, the SEM is relatively larger than the

other diagnostic devices and it also has an increased electric and mechanical complexity

with its multi-channel power supply. The electric field in the detector can influence the

particle beam, creating distortions in the beam position anywhere from 0.6 mm to 8

mm for a 300 keV and 20 keV antiproton beam, respectively.

The SEM was the only on-line beam imaging monitor in the latest AEḡIS run and

the only one sensitive enough for the initial low-intensity beam steering necessary to

commission the detectors from the other groups. These measurements were destructive

for all detector technologies and configurations. The SEM is therefore an important

beam imaging monitor for antiproton facilities, providing support to the delivery of

beam to the experiments.

The AEḡIS collaboration measured promising results with the nuclear emulsions

detector for its use as a future annihilation detector. Data of antiproton annihilations
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are taken off-line and the antiproton annihilation vertex can be measured with a pre-

cision of 1 µm, much better than the 56.5 µm obtained with the 3D silicon detector

tested. It was the first time that this nuclear emulsion technology was used in a vacuum

application. The main advantages of nuclear emulsions as position sensitive detectors

are their high position resolution, relatively low cost of a few hundred pounds, possi-

bility to make large size detectors if required, no need for in-vacuum connections for

voltage or readout and their 3D directional measurements. Its main drawback is the

lack of timing information of the events and its slow readout speed, requiring up to

48 hours to complete the data readout. Overall, the nuclear emulsions detector is a

suitable candidate for the future position sensitive antihydrogen detector in AEḡIS.

Two types of silicon pixel detectors with different electrode geometries were tested

by the AEḡIS collaboration to study antiproton annihilations in silicon and to charac-

terize their performance as future permanent detectors in the AEḡIS experiment. The

singular architecture of the MIMOTERA detector makes it a detector with essentially

no dead time. This makes it an ideal detector to gather the necessary time of flight

information to calculate the gravitational acceleration of antihydrogen in the AEḡIS

experiment. Due to its small thickness and low granularity, the MIMOTERA detector

is suitable for analyses on the deposited energy in the form of energy clusters. The

main disadvantage of the MIMOTERA detector is its very thin active layer, which

limits the detector’s capability to measure absolute beam energy, and the fact that its

single-channel amplifiers tend to saturate easily.

Data taken by the 3D silicon detector group showed a good position resolution on

the annihilation point of 56.5 µm on the X axis and 24.3 µm on the Y axis, and a

detailed study of the various tracks produced by the annihilation prongs. Identification

of tracks from annihilation prongs is possible up to 2.9 mm in the case of MIMOTERA

and up to 15 mm long in the case of the 3D pixel sensor. Their main results were

published in [59] for the MIMOTERA and in [128] for the 3D pixel sensor.

Taking advantage of the experimental results from all detector groups, I have com-

bined my findings from the analysis of all detector performances to instrument the

LNE02 low-energy beamline leading to the AEḡIS experiment as an example of perma-

nent installation of beam instrumentation devices for this part of the facility.
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Chapter 7

Conclusions

In the framework of this PhD thesis, a series of beam instrumentation devices have been

studied and characterized for their permanent use in different accelerator facilities. At

the ISOLDE facility, a series of purpose-built diagnostic boxes will house all the devices

required to successfully monitor the beams to be delivered in the future HIE-ISOLDE

superconducting LINAC.

In Chapter 1, an overview of the different accelerator facilities related to this re-

search work is given. Regarding ion facilities, a brief history of the ISOLDE facility and

its achievements is presented, in addition to a description of the REX-ISOLDE post-

accelerator and a detailed summary of the main elements of the upgrade of ISOLDE,

the HIE-ISOLDE project. In order to introduce the reader to the series of tests carried

out with instruments monitoring antiproton beams, a description of the AD facility and

the AEḡIS experiment is given, including the AD beam cycle, antihydrogen production

scheme of AEḡIS and the future addition of the ELENA ring. Table 1.2 summarizes

the main beam parameters at the ELENA ring.

Chapter 2 presents the status of the beam diagnostics system at REX-ISOLDE

along with its performance limits. The system comprises a set of collimator wheels,

the REX-ISOLDE Faraday cup, the REX-ISOLDE beam profile monitor and the NTG

emittance meter. In addition, tests carried out with the PIPS Si detector to be used

at the HIE-ISOLDE Linac and a study of a PIN photodiode as a possible diagnostics

tool for the time structure of the beam are presented.

preliminary measurements indicate that the PIN photodiode is responsive to the

time structure of the EBIS pulse under the given conditions in the machine. The

signal-to-noise ratio appeared to be sufficient to identify the changes in beam pulse

distribution even for relatively low-intensity beams. Further tests are needed in order

to characterize the performance of the photodiode accurately, but these preliminary
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tests indicate that the PIN photodiode could be used as a possible tool in operations

to monitor the EBIS pulse.

In Chapter 3, the beam diagnostics system for HIE-ISOLDE is presented. The in-

strumentation requirements of the HIE-ISOLDE superconducting Linac are presented,

and the space constraint between cryomodules is shown as a challenge to be overcome

by the diagnostics box and its devices. The working principle of the beam profile mon-

itor using a Faraday cup and the slitscanner is shown in Fig. 3.4.

Section 3.2.1 studies the effect of the slit width of the slitscanner on the beam

profiles. Table 3.1 summarizes the effect of slit width on ∆FWHM and on beam trans-

mission. According to the calculations shown, the most favourable slit width for the

HIE-ISOLDE slitscanners would be 1 mm. This value is a compromise between mea-

suring a beam profile with little distortion with respect to the original beam and it also

allows enough beam intensity to be transmitted to the Faraday cup.

Stress tests on the slitscanner were performed to assess the robustness and precision

of the slitscanner. It was made clear that the initial design of the system, guiding the

blade on rails with DICRONITE coating, was not satisfactory as it led to jamming

of the system under high vacuum conditions. Subsequent tests with the alternative

solution, guiding the scanning blade from the outside using a high-precision actuator

from AVS proved to be successful. The tests done with the optical test bench used to

assess the motion of this new motion actuator showed a maximum excursion for each

hole in the direction perpendicular to the blade movement of less than 20 µm. This

result was obtained with the scanning blade moving at 5 and 10 mm/s.

A stress test of the slit scanner system was performed moving the actuator at full

stroke for 100 cycles, with 1 second pause between each full stroke. The temperature of

the stepper motor was monitored during the test and did not rise above 30 ◦C. A gen-

eral inspection of the device was done in order to check for signs of wear or any issues

related with the design and implementation of the mechanical system. No significant

issues were found.

Chapter 4 represents the major priority for the HIE-ISOLDE beam instrumenta-

tion system, the development of a short Faraday cup to monitor stable ion beams. A

new design of short Faraday cup was required because of the limited longitudinal space

available between cryomodules. Starting from a brief geometric model that highlights

the importance of an adequate radius-to-aperture ratio, the three prototypes of Fara-

day cup developed and tested for this project are compared with the standard Faraday
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cup from REX-ISOLDE. In the final prototype, Prototype 3, the repeller ring was

designed 12 mm thick, increasing the collection efficiency of the cup and measuring

beam intensity values that match within 10%, on average, those measured by a longer

Faraday cup such as the REX-ISOLDE Faraday cup at different beam intensities and

energy ranges. The Prototype 3 Faraday cup is the result of an intensive R&D program

involving several experimental tests and numerical simulations in order to satisfy the

challenging space requirements of the HIE-ISOLDE superconducting LINAC.

Profile scans done with the slitscanner without beam were performed and the elec-

tronic noise observed in the Faraday cup, of ≤0.7 pA peak-to-peak, does not appear to

be related to the motion of the scanning blade. A transverse beam profile was measured

successfully at the very low beam intensity of 17.8 pA.

Numerical simulations to analyse the collection efficiency of the different prototype

Faraday cups showed that Prototype 3 reaches full collection efficiency of electrons at

much lower bias voltages compared to the previous prototypes despite its compact de-

sign. This was a major achievement to ensure an adequate monitoring of the beam

intensity in HIE-ISOLDE.

Chapter 5 describes the experimental tests done using two PIPS Si detectors with

the aim to acquire an absolute time of flight measurement downstream of the REX-

ISOLDE Linac. The absolute beam energy of the ions in the pilot beam with a mass-

to-charge ratio of A/q = 4 was measured in the energy range 1 MeV < E < 8 MeV.

The ToF of the particles in the beam at an energy range of 2.18 MeV/u < E/A <

2.27 MeV/u was determined by time stamping the arrival time in identical Si detectors

installed in two separate diagnostic boxes.

The energy spectrum of the REX-ISOLDE pilot beam achieved with the PIPS sili-

con detector and calibrated with a triple-α source is shown in Fig. 5.8. The suggested

rate of particle arrivals to the detector is ≤10 kHz. A series of attenuating foils (trans-

mission factor ∼104) is required in order to obtain this value at REX. The resolution

achieved for the beam energy determination using the Si detector was worse than 3%

FWHM in the ion species studied. This energy resolution is lower than the one typi-

cally obtained with the bending magnet for particle beams with E/A = 0.3 MeV/u, of

1.5% FWHM.

An absolute ToF measurement was done measuring the relative ToF at two differ-

ent PIPS detectors in separate boxes located 7.7 m from each other. The final results

of the absolute ToF measurements with the Si detectors as a function of the 7GAP3
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pick-up voltage are summarized in Table 5.7. The measurement of beam energy with

the ToF technique is heavily dependent on the distance between detectors. At very

low energies, overlapping of particle bunches can be critical if the distance between

detectors is large. This procedure is considered a viable option for phasing the RF

cavities should the bunch spacing be increased with the addition of a beam chopper in

the HIE-ISOLDE upgrade.

As discussed in Chapter 5, the PIPS silicon detector presents a satisfactory perfor-

mance and is a suitable detector for energy and timing measurements in HIE-ISOLDE,

but it lacks radiation-hardness. In this aspect, other technologies have previously been

studied at REX-ISOLDE, like Chemical Vapour Deposition (CVD) diamond for en-

ergy and intensity measurements [135]. The main advantages of CVD diamond are

its high radiation tolerance, low detector capacitance and high charge mobility. Nev-

ertheless, previous results with single and polycrystalline CVD diamond detectors at

REX-ISOLDE showed decreased counting efficiency in the range of 102-107 pps (12C4+

ions) over a relatively short period of time and unstable leakage current that changed

from tens of pA to a few nA [135]. The energy resolution of this system (0.6%) is

similar to that of the PIPS detector.

Another possible technology to be developed is inorganic scintillators due to their

intrinsic radiation hardness. A commercially available inorganic scintillator crystal like

YAP:Ce provides a high light yield (21000 photons/MeV), fast rising time (1 ns) and

short decay time (30 ns) which, coupled to a photomultiplier tube or to an avalanche

photodiode [136, 137] could result in a reliable monitor for counting RIBs in a heavy ion

facility like HIE-ISOLDE. The use of a YAP:Ce inorganic scintillator as an ion detector

has been successfully tested for α spectroscopy [138]. These low-intensity diagnostic

tools are very compact devices that can easily fit in the tight space available in typically

crowded diagnostic boxes of a superconducting LINAC.

Several VME modules have been investigated in order to improve the energy and

timing data acquisition chains for the PIPS silicon detector. It would be desirable to

avoid all NIM modules in order to control all the acquisition parameters directly from a

PC. In this sense, a Caen 724 Digitizer could provide high-resolution (14-bit, 100 MHz)

energy spectra and can be programmed remotely through 16 LVDS inputs/outputs. It

can be self-triggered, triggered with an external signal or by software command. The

digitizer is provided with FPGAs that can run Digital Pulse Processing (DPP) and

Pulse Height Analysis (PHA), continuously acquiring data in a circular memory buffer.

This digitizer would simplify the energy chain even further, as it would be directly

connected to the Si detector preamplifier, getting rid of the N968 shaping amplifier and
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the gating through the TTL-NIM level adapter, allowing at the same time to set all

the acquisition parameters remotely.

Chapter 6 relates to the tests of different detector technologies using the antiproton

beam available at AEḡIS. At the Antiproton Decelerator hall, the AEḡIS experiment

offered new possibilities to test several candidate technologies to monitor low-energy

antiproton beams and study detector resolutions and limitations with regards to a per-

manent installation of these devices. My main contribution focused on testing the SEM

in its two possible configurations. Transverse beam profiles could not be measured due

to the beam conditions present at that time. However, the MCP directly hit, tested for

the first time with an antiproton beam, allowed identification of antiproton annihilation

traces, while the foil-based SEM yielded images more difficult to analyse because this

configuration monitors the antiproton beam in an indirect way. Images taken opening

and closing a gate valve upstream of the SEM confirmed the presence of pions and

other secondary particles from the antiproton annihilations in both configurations of

the monitor. The SEM was the only on-line monitor in the latest AEḡIS beam run and

it was key for the initial low-intensity beam steering. Within the AEḡIS collaboration,

a nuclear emulsions detector, an ultra-thin pixel Si detector and a 3D pixel Si detector

were tested. These measurements at the Antiproton Decelerator (AD) were beam de-

structive for all detectors and their configurations.

In addition, a summary of the experimental results from all detector groups in

combination with my findings from the analysis of all detector performances is used

to instrument the LNE02 low-energy beamline leading to the AEḡIS experiment as an

example of permanent installation of beam instrumentation devices for this part of the

facility.

As an alternative measurement instrument for antiprotons it would be desirable

to install, for instance, a segmented, ultra-thin diamond detector for beam position,

profile, intensity and timing measurements at the AD hall or a combination of different

Si detector technologies to obtain full information about the antiproton beam. Further

research and development efforts in testing these detector technologies are needed in

this direction.
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Appendix A

Energy loss of ions at the
entrance window of the Si
detectors

The PIPS Si detectors used in this work were a special series adapted for timing mea-

surements. The special feature for such adaptation is the addition of a 20 nm aluminium

layer implanted at the entrance window. That extra thickness increases the energy loss

of the ions in the entrance window (<50 nm) [97] of the detector given by the ion-

implanted contacts. The energy deposited by the ions in the entrance window was

considered as that produced in an equivalent layer of 70 nm of Si (ρSi = 2.3 g
cm3 ). This

is a very good approximation and it will give a maximum value for the energy loss

in the entrance window of the detector (∆Ewindow). As this energy is deposited in a

non-sensitive region of the detector, it introduces a systematic error for the energy spec-

troscopy studies (i.e. the detected energy is less than the projectile energy). In table

A.1 the energy loss values calculated with SRIM 2012 [86] for a 70 nm Si thick entrance

window are presented for the different projectile types and energies used in this work.

The influence of these undetected energy losses on the projectiles energy measurement

is of the order of 2% for the lowest energies and decreases with the projectile energy.

It should be noted that the quoted values for the energy loss in the entrance window

should not be added directly to the mean energy results from the energy spectrometry

measurements, as the calibration for the energy scale was done with alpha particles

that also lose energy in the entrance window.
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Table A.1: Energy loss at the entrance window of the SRIM Si detector (TM series),
calculated as an equivalent thickness of 70 nm, using SRIM 2012 stopping power tables
[86].

Particle Atomic mass E/AIN (MeV/u) ∆E (keV/u) E/AOUT (MeV/u) ∆Ewindow/E (%)

He 4 0.30 5.0 0.295 1.7
C 12 0.30 6.9 0.293 2.3
O 16 0.30 7.3 0.293 2.4
Ne 20 0.30 6.9 0.293 2.3

He 4 1.87 1.9 1.868 0.1
C 12 1.87 5.0 1.865 0.3
O 16 1.87 5.8 1.864 0.3
Ne 20 1.87 6.6 1.863 0.35

He 4 2.27 1.7 2.268 0.1
C 12 2.27 4.6 2.265 0.25
O 16 2.27 5.4 2.265 0.3
Ne 20 2.27 6.1 2.264 0.3
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Appendix B

Table of ion beams delivered at
REX-ISOLDE
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Table B.1: List of ion beams delivered at REX-ISOLDE. (Didier Voulot, private com-
munication).

Year Ion species A Z Charge state Half life E/A (MeV/u) Breeding time (ms) REX yield (p/s)
2001 Na 25 11 6 59.6 s 2.00 15
2001 Na 26 11 7 1.07 s 2.00 15
2002 Li 9 3 2 178.3 ms 2.35 8
2002 Na 24 11 7 14.96 h 2.30 15
2002 Na 25 11 6 59.6 s 2.30 15
2002 Na 26 11 7 1.07 s 2.30 15
2002 Na 27 11 7 304 ms 2.30 15
2002 Na 28 11 9 30.5 ms 2.30 15
2002 Na 29 11 8 44.9 ms 2.30 15
2002 Mg 30 12 7 335 ms 2.30 14
2002 Sm 153 63 30 46.27 h 0.30 30
2003 Li 9 3 2 178.3 ms 2.20 8
2003 Mg 30 12 7 335 ms 2.25 18
2003 Mg 32 12 9 120 ms 2.25 18
2003 Zn 74 30 18 96 s 2.25 38
2003 Zn 76 30 18 5.6 s 2.25 38
2003 Kr 88 36 21 2.84 h 2.25 18
2003 Eu 156 62 30 15.2 d 0.30 38

2004 Li 9 3 2 178.3 ms 2.60 6 1.9×105

2004 Li 11 3 3 8.5 ms 2.90 6

2004 F 17 9 5 64.8 s 2.55 8 1.5×102

2004 Mg 28 12 9 20.9 h 2.15 16 2.8×106

2004 Mg 30 12 7 335 ms 2.70 16 8×105

2004 Mg 32 12 9 120 ms 2.85 16 1.1×104

2004 Zn 74 30 20 96 s 2.90 78
2004 Zn 76 30 20 5.6 s 2.90 78
2004 Zn 78 30 21 1.47 s 2.90 78
2004 Se 70 34 17 41.1 min 2.85 6
2004 Cd 122 48 30 5.5 s 2.85 148
2004 Cd 124 48 30 1.29 s 2.85 148
2004 Cd 126 48 31 510 ms 2.85 148

2004 Sn 110 50 27 4.11 h 2.80 98 2×107

2004 Pm 148 87 30 5.37 d 0.30 38

2005 Li 9 3 2 178.3 ms 2.76 3.5 7×105

2005 Be 11 4 3 13.8 s 2.24 10 1×105

2005 Be 11 4 3 13.8 s 2.24 18

2005 Ni 68 28 19 29 s 2.83 98 1.1×106

2005 Cu 68 29 19 30 s 2.83 98 1.8×106

2005 Cu 69 29 20 3 min 2.83 98 1.9×105

2005 Cu 70 29 19 5 s 2.83 98 4.9×105

2005 Se 70 34 19 41.1 min 2.85 58 7×103

2005 Kr 88 36 21 2.84 h 2.19 70 5.7×106

2005 Kr 92 36 22 1.84 s 2.19 98 3.1×106

2005 In 108 49 30 58 min 2.83 198 5.6×106

2005 Sn 108 50 30 10.3 min 2.83 198 5.2×106

2005 Xe 138 54 34 14.1 min 2.84 198 4.9×106

2005 Xe 140 54 34 13.6 s 2.84 198 2.3×106

2005 Xe 142 54 34 1.24 s 2.84 198 1.9×106

2006 Li 8 3 3 840.3 ms 3.15 18 1.7×105

2006 Be 10 4 3 1.6×106 years 2.93 15 8.8×106

2006 Be 11 4 4 13.8 s 2.92 25 1.8×105

2006 Mg 29 12 9 1.3 s 2.75 28 2.1×105

2006 Mg 31 12 9 230 ms 2.75 28 1.9×104

2006 Cu 67 29 19 61.9 h 2.99 68 3×106

2006 Cu 69 29 20 3 min 2.97 98 2.5×106

2006 Cu 71 29 20 19.5 s 2.95 98 1.7×106

2006 Cu 73 29 19 3.9 s 2.88 68 1.1×106

2006 Zn 80 30 21 537 ms 2.79 78 3×103

2006 Ga 73 31 19 4.86 h 2.88 68
2006 Cd 124 48 30 1.29 s 2.86 248

2006 Cd 126 48 31 510 ms 2.85 248 1.1×104

2006 Sn 106 50 26 2.1 min 2.85 67 1.5×105

2006 Sn 108 50 26 10.3 min 2.85 67 6.9×106

2006 Xe 138 54 34 14.1 min 2.85 330 7×106

2006 Xe 144 54 34 1.15 s 2.70 198 2.3×104

2007 F 17 9 5 64.8 s 2.60 18 7.8×103

2007 Mg 30 12 7 335 ms 2.86 14
2007 Mg 30 12 7 335 ms 2.27 15
2007 Mg 30 12 7 335 ms 1.91 15
2007 Mg 30 12 7 335 ms 1.56 15

2007 Mg 31 12 9 230 ms 2.99 28.5 9×103

2007 Sr 96 38 23 1 s 2.87 120 2×104

2007 Ba 140 56 33 12.75 d 2.84 171 9.9×106

2007 Ba 142 56 33 10.7 min 2.84 168 7.6×105

2007 Ba 148 56 35 610 ms 2.84 230

2007 Hg 184 80 43 30.6 s 2.85 170 4×103

2007 Hg 186 80 43 1.4 min 2.85 170 4×105

2007 Hg 188 80 44 3.25 min 2.85 170 9.4×105

2008 C 9 6 3 126.5 ms 2.89 3.5
2008 C 10 7 3 19.3 s 2.89 3.5

2008 Mg 30 12 7 335 ms 2.85 8.0 4×104

2008 Mn/Fe 61 25 21 710 ms 2.90 298 4×105

2008 Mn/Fe 62 25 21 625 ms 2.90 298
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Year Ion species A Z Charge state Half life E/A (MeV/u) Breeding time (ms) REX yield (p/s)

2008 Cu 70 29 19 2.92 65 7×106

2008 Cd 100 48 24 49.1 s 2.88 59

2008 Cd 102 48 25 5.5 min 2.88 69 1×106

2008 Cd 104 48 25 57.7 min 2.88 69 4×106

2008 Hg 182 80 44 10.8 s 2.85 200 2.6×103

2008 Hg 184 80 44 30.6 s 2.85 200 6.8×104

2008 Hg 186 80 44 1.4 min 2.85 200 2×105

2008 Hg 188 80 45 3.25 min 2.85 200 3.5×105

2008 Rn 202 86 47 9.85 s 2.80 200 3×104

2008 Rn 204 86 47 1.24 min 2.80 200 1×105

2009 Be 11 4 3 13.8 s 2.85 20 6×104

2009 Na 29 11 7 44.9 ms 2.85 13 4×104

2009 Na 30 11 7 48 ms 2.85 13 5×103

2009 Mn/Fe 62 25 21/15 625 ms 2.85 298/28.5 6.2×104

2009 Ni 66 28 16 54.6 h 2.90 28.5 5×106

2009 Ni 68 28 16 29 s 2.89 28.5 4×104

2009 Kr 72 36 22

2009 Kr 94 36 22 200 ms 2.85 48.5 1.7×105

2009 Kr 96 36 22 80 ms 2.85 48.5

2009 Sn 107 50 26 4.11 h 2.85 59 4×105

2009 Sn 109 50 26 18.0 min 2.85 59 8.4×106

2009 Xe 138 54 33 14.4 min 2.87 160 6×106

2009 Po 200 84 48 12.5 h 2.85 250 2×106

2010 Be 11 4 3 13.8 s 2.83 17.3 3.5×106

2010 C 9 6 4 126.5 ms 2.87 8.0

2010 Ar 44 18 13 11.87 min 2.16 59 1.9×105

2010 Zn 78 30 20 1.47 s 2.82 59 3×105

2010 Kr 72 36 17 17 s 2.82 24.4

2010 Kr 92 36 22 1.84 s 2.84 63.8 1×106

2010 Kr 94 36 22 0.2 s 2.84 63.8

2010 Kr 96 36 23 80 ms 2.84 63.8 3×103

2010 Rb 93 37 22 5.8 s 2.84 71 1.4×106

2010 Rb 95 37 23 377 ms 2.84 79 2×106

2010 Rb 97 37 23 170 ms 2.84 79 5×105

2010 Rb 99 37 23 50.3 ms 2.84 69

2010 Pb 192 82 45 3.5 min 2.84 230 2.4×106

2010 Rn 202 86 47 9.85 s 2.84 129 1.4×103

2010 Ra 224 88 52 3.66 d 2.78 355 8.4×104

2011 Pb 186 82 44 4.8 s 2.84 248

2011 Pb 188 82 44 25.5 s 2.84 248 2×105

2011 Pb 190 82 44 1.2 min 2.84 248

2011 Pb 194 82 45 12 min 2.84 248 1.3×106

2011 Pb 196 82 46 36.4 min 2.84 248 6.8×105

2011 Pb 198 82 46 2.4 h 2.84 248

2011 Nd 140 60 34 3.37 d 2.83 97 2.4×105

2011 Kr 96 36 23 2.82 58

2011 Cd 128 48 30 0.30 s 2.82 118 3.1×105

2011 Cd 126 48 30 0.51 s 2.82 118 2.5×105

2011 Rn 220 86 52 55.6 s 2.82 398 3.1×105

2011 Rn 208 86 50 24.4 min 2.82 398

2011 Na 26 11 6 1.07 s 2.82 12.0 5×105

2011 Na 30 11 7 48 ms 2.82 15.0
2011 Kr 72 36 17 17 s 2.85 33.5

2011 Ra 224 88 52 3.66 d 2.82 396 7.2×105

2011 Ni 66 28 17 54.6 h 2.60 3.7×106

2011 Sr 98 38 26 653 ms 2.82 158
2011 Zn 72 30 20 46.5 h 2.70 68

2011 Zn 72 30 20 46.5 h 2.94 88 6.9×106

2011 Zn 74 30 20 96 s 2.94 88 1.9×106

2011 Zn 76 30 20 5.6 s 2.94 88 2×106

2012 Cd 123 48 29 2.1 s 2.84 168
2012 Kr 72 36 17 17 s 2.85 31

2012 Sm 140 62 34 14.8 min 2.85 147 1.3×105

2012 Sm 142 62 34 72.4 min 2.85 147 2.8×105

2012 Be 12 4 4 23.6 ms 2.85
2012 Li 8 3 3 840.3 ms

2012 Na 21 11 8 22.48 s 3.05 6.3×106

2012 Mg 30 12 8 335 ms 2.89 18.7 7.8×105

2012 He 6 2 2 806.7 ms

2012 Rn 210 86 51 2.4 h 2.85 396 2.2×105

2012 Rn 212 86 51 24 min 2.85 1.5×105

2012 Rn 221 86 53 25 min 2.85 4×103

2012 Po 196 84 48 5.8 s 8.7×104

2012 Po 198 84 48
2012 Po 200 84 48
2012 Po 202 84 49
2012 K 48 19 11
2012 Zn 72 30 20 46.5 h

2012 Rb 98 37 23 114 ms 2.85 73.7 7.3×104

2012 Ar 35 18 1.78 s

2012 Ti 44 22 13 60.4 years 2.10 40 1.4×106

2012 Ti 44 22 13 60.4 years 1.95 40 6.1×105
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J Bremer, RS Brusa, et al. Prospects for measuring the gravitational free-fall of

antihydrogen with emulsion detectors. Journal of Instrumentation, 8(08):P08013,

2013.

[63] P Van den Bergh, Marc Huyse, K Krouglov, Piet Van Duppen, and L Weissman.

The REX-ISOLDE beam diagnostic system. In The CAARI 2000: Sixteenth in-

ternational conference on the application of accelerators in research and industry,

pages 235–238. American Institute of Physics, 2001.

[64] ACF Metals. http://www.techexpo.com/WWW/acf-metals/ <Accesssed: 31

July 2014>.

145

http://aegis.web.cern.ch/aegis/home.html
http://www.techexpo.com/WWW/acf-metals/


[65] O Kester, T Sieber, S Emhofer, F Ames, K Reisinger, P Reiter, PG Thirolf,

R Lutter, D Habs, BH Wolf, et al. Accelerated radioactive beams from REX-

ISOLDE. Nuclear Instruments and Methods in Physics Research Section B: Beam

Interactions with Materials and Atoms, 204:20–30, 2003.

[66] Vespel parts and shapes, DUPONT products. http://www.dupont.com/

products-and-services/plastics-polymers-resins/parts-shapes/

brands/vespel-polyimide.html <Accesssed: 31 July 2014>.

[67] Hamamatsu Image Intensifiers. http://www.hamamatsu.com/resources/pdf/

etd/II_TII0004E02.pdf <Accesssed: 31 July 2014>.

[68] GJ Focker. CERN ISOLDE and REX Beam Instrumentation. Proc. of DITANET

Workshop on low current, low energy beam diagnostics, Hirschberg, Germany,

page 7, 2009.
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tector. Image taken from [56]. . . . . . . . . . . . . . . . . . . . . . . . . 13
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