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Abstract

We construct new black brane solutions in U(1) gauged N = 2 supergravity with a general

cubic prepotential, which have entropy density s ∼ T 1/3 as T → 0 and thus satisfy the

Nernst Law. By using the real formulation of special geometry, we are able to obtain

analytical solutions in closed form as functions of two parameters, the temperature T and

the chemical potential µ. Our solutions interpolate between hyperscaling violating Lifshitz

geometries with (z, θ) = (0, 2) at the horizon and (z, θ) = (1,−1) at infinity. In the

zero temperature limit, where the entropy density goes to zero, we recover the extremal

Nernst branes of Barisch et al, and the parameters of the near horizon geometry change to

(z, θ) = (3, 1).
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1 Introduction

One of the most celebrated successes of string theory is the AdS/CFT correspondence [1]. This

generates a powerful duality between asymptotically AdS gravitational theories and conformal

field theories on the AdS boundary, which is the simplest and best-studied example of the

more general notion of a ‘gauge-gravity duality’. As a strong-weak coupling duality, the cor-

respondence allows for the translation of non-perturbative field theory calculations into more

tractable, perturbative calculations in gravity and vice-versa. This has enabled the exploration

of previously inaccessible regimes of theoretical physics. Indeed, there are many examples of

strongly coupled systems in condensed matter physics and it is hoped that gauge-gravity dual-

ity may allow for a better understanding of these. Significant progress has already been made

in this direction, leading to the development of the AdS/CMT correspondence (see [2, 3] and

references therein). Further recent progress has been to extend the correspondence to space-

times which are not asymptotically-AdS but rather exhibit hyperscaling violating and Lifshitz

(hvLif) behaviour [4, 5], thus extending the dictionary between gravity and condensed matter

systems living on the boundary.

The central idea in gauge/gravity duality is that each state in the bulk has a corresponding

state in the dual field theory. In particular, black objects are dual to thermal ensembles in the
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field theory with the same thermodynamic properties (temperature, entropy, chemical potential,

etc.) as the bulk spacetime [6, 7].

A natural starting point for the correspondence is to look at charged (Reissner-Nordström or

‘RN’) extremal black holes and black branes in AdS [8]. However, like their asymptotically flat

‘cousins’ they have a large non-zero entropy at zero temperature, thus violating the Third Law

of Thermodynamics, which states in its strictest version that the entropy of a system should

vanish in the zero temperature limit [9]. While a non-vanishing entropy for certain classes

of extremal black holes is consistent with microstate counting for the corresponding D-brane

configuration in string theory [10,11], this still begs the question of whether one can find other

gravitational systems which have a zero entropy or entropy density at zero temperature. Apart

from being an interesting question about gravity, such systems are relevant for possible dualities

between gravity and condensed matter systems.

We remark that although ‘Nernst Law’ is in the following used synonymously with ‘Third

Law of Thermodynamics’, Nernst’s original formulation only requires that the difference in

entropy between two equilibrium states related through a change in external parameters goes

to zero at zero temperature. This formulation is equivalent to the ‘process version’ of the

Third Law, which states that zero temperature cannot be reached by any physical process

in a finite number of steps. A process version of the third law of black hole mechanics was

already established in [12]. However, the Nernst version or, equivalently, the process version

of the Third Law does not imply by itself the slightly stronger version of the Third Law, due

to Planck, which states that the entropy itself goes to zero at zero temperature. This stricter

version corresponds to systems with a unique ground state, and thus is the generic situation in

condensed matter, although there is an extended debate about possible exceptions in specific

systems, see for example [2, 3, 13,14].

In the following we will be concerned with the explicit construction of families of gravita-

tional solutions which have zero entropy (or entropy density) in the extremal limit. Following

conventions in the literature, we will refer to the Third Law in its stricter, Planckian, version

as the Nernst Law.

Extremal brane solutions with vanishing entropy density at zero temperature have recently

been studied for a variety of bulk theories [14–19] and could have important applications in

extending the dictionary between condensed matter and gravity. They have been dubbed

‘Nernst branes’ in [19], and it is believed that the corresponding non-extremal solutions exist and

satisfy the Nernst Law, that is, these non-extremal solutions have a finite entropy which goes to

zero when the temperature goes to zero while external parameters are kept fixed. Finding such

non-extremal solutions is important, since extremal Nernst branes are not completely regular

solutions. While all curvature invariants remain finite at the horizon, tidal forces become infinite

and scalar fields take infinite values, which suggests a breakdown of the underlying effective
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field theory [2,19]. A first step in addressing this issue is to find non-extremal solutions, which

can then be studied in the near extremal limit. In this context it is clearly desirable to have

completely explicit, analytical solutions. However most results in the literature have to rely on

a mixture of analytical and numerical methods. Of course tidal forces may still get very large

at the horizon when one approaches the extremal limit [20], but analytical solutions will enable

one to identify the region in parameter space where the solution can be trusted and possibly

be mapped to condensed matter systems.

The second step in controlling the near horizon low temperature behaviour is to embed

the theory under consideration into a UV-complete theory, for which string theory and its

non-perturbative extension M-theory are arguably the best candidates. In the low-energy limit

the relevant stringy gravitational backgrounds can be described in terms of supergravity. We

will be working in a set-up which can be described by N = 2 U(1) gauged supergravity with

an arbitrary number of vector multiplets. Theories with N = 2 supersymmetry are natural

generalisations of the Einstein-Maxwell-Scalar theories underlying dilatonic black hole and black

brane solutions which have been studied extensively as potential duals of strongly coupled

electron systems [2, 3]. They have the advantage that one can often find exact, analytical

answers, despite the fact that the couplings are not fixed by the matter content (as is the case for

N ≥ 4 supersymmetry), but depend on arbitrary functions of the scalar fields, which are subject

to quantum and stringy corrections. While we do not discuss the string theory or M-theory

embedding explicitly, note that such theories arise through heterotic flux compactifications on

K3×T 2 and type-II flux compactifications on Calabi-Yau three-folds. We will not need to choose

a specific model, and only assume that the vector multiplet couplings take the most general form

that arises when working to leading order in the Regge parameter α′, and within the validity

of string perturbation theory. In other words, we only assume that the prepotential, which

encodes the vector multiplet couplings, is of the so-called very special type reviewed below. By

working in a gauged supergravity theory obtainable by flux compactification from string theory

we will have the option to further address the issues related to singularities in the extremal limit

at a later stage. For BPS black holes with vanishing entropy it is known that the inclusion of

stringy higher curvature corrections in supergravity [21,22] leads to regular solutions with finite

entropy [23], and the entropy function formalism demonstrates that this mechanism is robust

and does not depend on supersymmetry and details of the higher curvature corrections [24].

We refer to [2,3,14] for a further discussion of the possible implications of quantum and string

corrections to the zero temperature behaviour and the ‘fate’ of the Nernst Law.

Within the framework of four-dimensional N = 2 U(1) gauged supergravity coupled to

vector multiplets, extremal Nernst branes have previously been constructed in [19] using a

first-order rewriting of the equations of motion, and by considering a specific model: the so-

called STU-model. However a similar rewriting for their non-extremal counterparts has so far
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proven elusive, and the only known examples [25] have been constructed by deforming the metric

of the corresponding five-dimensional extremal solution [26] and imposing suitable consistency

conditions. In this paper we are able to provide a systematic construction of non-extremal

Nernst branes by directly solving the second-order equations of motion. Moreover, our results

will not only apply to a particular model, but to all models where the prepotential is of the

very special type. This gain in generality and systematics should help to expand the AdS/CMT

dictionary considerably in the future.

We now present a brief overview of the results in this paper. We start with a theory of n

N = 2 vector multiplets coupled to U(1) gauged supergravity, with prepotential

F (X) =
f(X1, . . . , Xn)

X0
,

where f is homogeneous of degree three. If f is a homogeneous polynomial of degree three (which

is not required for our methods to apply), then the corresponding theory can be obtained by

dimensional reduction from five dimensions. Moreover, such prepotentials capture perturbative

string effects to leading order in α′ if the model can be embedded into heterotic or type-II string

theory. In this case the supergravity lift to five dimensions becomes a lift from type-II string

theory to M-theory.

Within these models we restrict ourselves to static black brane solutions. Apart from this

we will impose that the scalar fields take purely imaginary values, as for such ‘axion-free’ field

configurations there is a systematic simplification of the equations of motion. Since we impose

stationarity in four dimensions, we can perform a time-like dimensional reduction to obtain

an effective three-dimensional Euclidean theory. The degrees of freedom in three dimensions

can then be repackaged using the real formulation of special geometry developed in [27], which

has been used to construct solutions to both gauged [28–30] and ungauged [31] theories of

supergravity coupled to vector multiplets.

Since our ability to obtain explicit non-extremal solutions depends on using a specific for-

malism, let us briefly summarize the underlying principles without going into technical details.

• Instead of using the physical four-dimensional scalar fields zA, A = 1, . . . , n, we work on

the ‘big moduli space’ parametrized by scalar fields XI , I = 0, . . . , n. The additional

(complex) degree of freedom is compensated for by a local C∗ gauge symmetry. Working

on the big moduli space has the advantage that the number of scalar fields and gauge

fields matches.

• We use the real formulation of special Kähler geometry, which replaces the complex scalars

XI by real scalars qa, a = 0, . . . , 2n+ 1 and which replaces the holomorphic prepotential

F (XI) by a real Hesse potential H(qa). This leads to a simpler, and fully covariant,

behaviour of all relevant quantities under electric-magnetic duality.
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• Upon dimensional reduction, the Kaluza-Klein scalar φ is absorbed into the real scalars

qa, which results in the ‘radial’ direction of the big moduli space becoming a physical

(rather than gauge) degree of freedom.

We postpone fixing the remaining U(1) ⊂ C∗ gauge symmetry to preserve electric-

magnetic duality. The resulting three-dimensional theory depends on 4n+ 5 real scalars

qa, q̂a, φ̃, subject to one local gauge symmetry, where q̂a are dual to the four-dimensional

gauge fields and φ̃ is dual to the Kaluza-Klein vector. While qa, q̂a are vectors under

electric-magnetic duality, φ̃ is a scalar.

• We impose an ansatz which corresponds, from the four-dimensional point of view, to a

static solution with purely imaginary scalar fields. This determines φ̃ and half of the fields

qa, q̂a in terms of the remaining fields, and also fixes the residual U(1) gauge symmetry. By

abuse of notation, we denote the remaining independent fields by qa, q̂a (with a restricted

range of a, depending on the precise version of the ansatz).

• When we now proceed to solve the time-reduced three-dimensional equations of motion,

their particular structure allows us to obtain solutions in closed form.

We remark that while some of the above ingredients are well known to people working

on N = 2 supergravity, it is critical that these elements are put together into a systematic

structure. The key element that we use and preserve is electric-magnetic duality, which acts

on the fields by symplectic transformations.1 Our choice of variables, which all transform as

symplectic tensors, leads to the simplifications and systematics that we exploit. We observe

that this works despite the fact that the electric-magnetic duality group is broken to a discrete

subgroup thereof by the presence of gauging (a scalar potential), and despite the fact that our

ansatz restricts us from the full symplectic group to a subgroup.

Solving the three-dimensional equations of motion directly results in an instanton solution

depending on a number of integration constants, which are a priori undetermined. However,

in order that this solution lifts to a regular black brane in four dimensions we have to impose

suitable regularity conditions. In particular, we require that the four-dimensional solution has

a finite entropy density, which happens to simultaneously ensure that the scalar fields take

finite values on the horizon. For a given set of charges and fluxes, we are then left with a

two-parameter family of black brane solutions parametrised by a temperature T and chemical

potential µ, which can both be freely varied. In the limit of zero temperature, we recover

the extremal Nernst branes of [19]. Therefore we interpret our solutions as non-extremal (or

‘hot’) Nernst branes. Indeed, it turns out that the entropy density goes to zero as T → 0

for fixed charges/fluxes, in agreement with the Nernst Law. Our solutions interpolate between

hyperscaling violating Lifshitz geometries with (z, θ) = (0, 2) at the horizon and (z, θ) = (1,−1)

1We refer the reader to [32,33] for a comprehensive review of electric-magnetic duality in supergravity.
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at infinity, where z is the dynamical critical exponent and where θ is the hyperscaling violating

exponent. In the zero temperature limit the near horizon geometry changes to (z, θ) = (3, 1).

This paper is organised as follows. In Section 2 we review the real formulation of special

geometry as applied to N = 2 U(1) gauged supergravity with both electric and magnetic

fluxes, relegating the more technical details to the appendices. We then reduce this theory over

a time-like direction and determine the equations of motion of the three-dimensional theory for

general static field configurations, before concentrating on the case of purely imaginary field

configurations. In Section 3 we solve the aforementioned equations of motion for the case where

we have a single electric charge and some number of electric fluxes. Having found a solution to

the three-dimensional equations of motion we then lift it back to a four-dimensional solution

and determine the conditions imposed on the various integration constants by regularity, before

carrying out an analysis of the properties of the solution. In Section 4 we apply our method to

the case where we instead switch on a single magnetic charge and a single magnetic flux, whilst

keeping (n − 1) of the electric fluxes. Section 5 contains our conclusions. We also include a

brief initial discussion of our results in the context of holography.

2 N = 2 gauged supergravity and the real formulation of

special geometry

2.1 Lagrangian of N = 2 U(1) gauged supergravity

We begin with the well-known bosonic Lagrangian of N = 2 Fayet-Iliopoulos U(1) ⊂ SU(2)R

gauged supergravity coupled to n vector multiplets. Our conventions follow those of [27,29]2

e−14 L4 = −1

2
Y R(4) − gIJ∂µ̂XI∂µ̂X̄J +

1

4
IIJF Iµ̂ν̂F J|µ̂ν̂ +

1

4
RIJF Iµ̂ν̂ F̃ J|µ̂ν̂ − V

(
X, X̄

)
, (2.1)

where µ̂, ν̂ = 0, . . . , 3 are four-dimensional spacetime indices, and I, J = 0, . . . , n label the

four-dimensional gauge fields: n from the vector multiplets and one, the graviphoton, from

the gravity multiplet. For later convenience we use a formulation of the theory which contains

n+ 1 complex scalar fields XI which are subject to local dilatations and U(1) transformations.

The n physical scalars remaining after gauge fixing can be parametrised as zA = XA/X0,

where A = 1, . . . , n. While the physical scalars zA parametrise a projective special Kähler

(PSK) manifold, the XI parametrise a conic affine special Kähler (CASK) manifold, which is

a complex cone over the PSK manifold. Conversely, the PSK manifold can be obtained as the

Kähler quotient of the CASK manifold with respect to the C∗-action generated by dilatations

and U(1) transformations. In physical terms this quotient amounts to gauge fixing the local C∗

action, as discussed below. All terms in (2.1) except the scalar potential V (X, X̄) are completely

2Note that in e.g. [31], the opposite sign was used for the Einstein-Hilbert term of the corresponding ungauged
theory, which leads to some sign-flips compared to the Einstein equations presented there.
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determined by the holomorphic prepotential F (XI), which is homogeneous of degree 2. Prior

to gauge fixing dilatations, the space-time Ricci scalar, R4, is multiplied by the conformal

compensator

Y = −i(XI F̄I − FIX̄I),

where derivatives of the prepotential are denoted FI = ∂F
∂XI

, etc. The tensor

gIJ = − ∂2

∂XI∂X̄J
log Y,

is the horizontal lift of the physical (PSK) scalar metric to the CASK manifold. It has a

two-dimensional kernel which reflects the fact that the XI only represent n complex physical

degrees of freedom. The vector couplings are given by

NIJ = RIJ + iIIJ = F̄IJ + i
NIKX

KNJLX
L

−XMNMNXN
,

where NIJ = 2ImFIJ .

We now turn to the C∗ gauge fixing. Dilatations are fixed by imposing the D-gauge

− i
(
XI F̄I − FIX̄I

)
= κ−2 , (2.2)

which in particular brings the Einstein-Hilbert term in (2.1) to the standard form − 1
2κ2R4.

Likewise U(1) transformations can be fixed by imposing any condition transverse to the U(1)

action, such as Im
(
X0
)

= 0. However, as discussed in more detail in [27, 31], it is often

advantageous to postpone U(1) gauge fixing until reducing the theory and starting to solve the

resulting equations of motion. In particular, upon imposing the D-gauge (2.2) one has

gIJ∂µ̂X
I∂µ̂X̄J = ḡAB∂µ̂z

A∂µ̂z̄B ,

where ḡAB is the positive definite (PSK) metric of the physical scalars zA. Working with the

scalars XI has the advantage that we retain covariance under symplectic transformations, and

will result in a more convenient form of the equations of motion after reduction. Note that

while the D-gauge removes one real degree of freedom from the XI , the second unphysical

degree of freedom is taken care of by the remaining local U(1) symmetry, see [27] for details.

Geometrically, imposing the D-gauge while keeping the local U(1) symmetry corresponds to

working on a U(1) principal bundle over the PSK manifold.

The four-dimensional Lagrangian (2.1) also includes a scalar potential V (X, X̄), which as

in [19] is given as

V (X, X̄) = N IJ∂IW∂JW̄ − 2κ2|W |2, (2.3)
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with a superpotential of the form

W = 2
(
gIFI − gIXI

)
, (2.4)

where gI , gI parametrize the U(1) gauging. Since superpotentials of the form (2.4) arise in flux

compactifications, we refer to them as magnetic and electric fluxes, respectively. Note that we

have included an explicit factor of κ2 in (2.3) using dimensional analysis. We will use this later

to rewrite the potential in terms of real variables. For reference, we note that the XI have

mass dimension −1 while the flux parameters have dimension −2, so that W has dimension

−3. Since NIJ and, hence, its inverse N IJ are homogeneous of degree 0, they have dimension

0, and V has dimension −4, as required. We also remark that for later convenience we have

re-scaled the flux parameters by a factor of 2 relative to [19]. Moreover, we have not factorized

the flux parameters into a dimensionful coupling and dimensionless parameters, but kept them

dimensionful.

2.2 Reduction to three dimensions

Imposing that the background is stationary, so that all of the fields are independent of time,

we can reduce the four-dimensional action (2.1) over a time-like direction in order to obtain an

effective three-dimensional Euclidean action. We decompose the four-dimensional metric as

ds24 = −eφ (dt+ Vµdx
µ)

2
+ e−φds23, (2.5)

where φ and Vµ are the Kaluza-Klein scalar and vector respectively, and we have left the three-

dimensional part of the metric undetermined for now. Following the procedure for time-like

dimensional reduction outlined in [27], and noting that the scalar potential remains unchanged

throughout the reduction process, one obtains the three-dimensional Lagrangian [29]

e−13 L3 = −1

2
R(3) − H̃ab

(
∂µq

a∂µqb − ∂µq̂a∂µq̂b
)

+
1

2H
V

− 1

H2
(qaΩab∂µq

b)2 +
2

H2
(qaΩab∂µq̂

b)2

− 1

4H2
(∂µφ̃+ 2q̂aΩab∂µq̂

b)2. (2.6)

We have written all of the three-dimensional degrees of freedom using the conventions of the real

formulation of special geometry developed in [27], and afterwards set κ = 1 for the remainder

of the paper. While we give a brief summary here, more details can be found in Appendix B.

The three-dimensional action contains 4n + 5 scalar fields (qa, q̂a, φ̃) which are subject to one

local U(1) symmetry and hence has 4n + 4 independent scalar degrees of freedom. While the

qa combine the four-dimensional scalars zA with the Kaluza-Klein scalar φ, the q̂a contain

the degrees of freedom of the four-dimensional gauge fields, and φ̃ is dual to the Kaluza-Klein
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vector. The constant tensor

Ωab =

(
0 1

−1 0

)

is the symplectic form of the CASK manifold expressed in real variables qa. The tensor H̃ab is

given by

H̃ab =
∂2H̃

∂qa∂qb
, H̃ = −1

2
log(−2H) ,

where the Hesse potential H is related to the prepotential F by the Legendre transformation

given in (A.1).

As shown in the appendices, the scalar potential V is given in terms of the real coordinates

as
1

H
V (q) = −2gagb

[
H̃ab − 4qaqb − 2

(Ωq)a (Ωq)b
H2

]
, (2.7)

where the dual scalars qa are defined by qa = −H̃abq
b.

Substituting this expression into (2.6) the three-dimensional Lagrangian becomes

e−13 L3 = −1

2
R(3) − H̃ab

(
∂µq

a∂µqb − ∂µq̂a∂µq̂b + gagb
)

− 1

H2
(qaΩab∂µq

b)2 +
2

H2
(qaΩab∂µq̂

b)2

+4(gaqa)2 +
2

H2
(qaΩabg

b)2 − 1

4H2
(∂µφ̃+ 2q̂aΩab∂µq̂

b)2. (2.8)

In the following we will restrict ourselves to static solutions, i.e. set Vµ = 0 in (2.5), for

which the final term in (2.8) vanishes [27]. The equations of motion for q̂a are then given by

∇µ
(
H̃ab∂

µq̂b
)

+ 2∇µ
(

1

H2
qbΩba(qcΩcd∂

µq̂d)

)
= 0, (2.9)

whilst those for qa read

∇µ
(
H̃ab∂

µqb
)
− 1

2
∂aH̃bc

(
∂µq

b∂µqc − ∂µq̂b∂µq̂c + gbgc
)

− 1

2
∂a

(
1

H2

)
(qbΩbc∂µq

c)2 +∇µ
(

1

H2
qbΩba(qcΩcd∂

µqd)

)
− 1

H2
Ωab∂µq

b(qcΩcd∂
µqd)

+ ∂a

(
1

H2

)
(qcΩcd∂

µq̂d)2 +
2

H2
Ωab∂µq̂

b(qcΩcd∂
µq̂d)

+ 4H̃abg
b(gcqc) + ∂a

(
1

H2

)
(qbΩbcg

c)2 +
2

H2
Ωabg

b(qcΩcdg
d) = 0. (2.10)

Finally, the three-dimensional Einstein equations are

− 1

2
R(3)µν − H̃ab

(
∂µq

a∂νq
b − ∂µq̂a∂ν q̂b

)
− 1

H2
(qaΩab∂µq

b)(qcΩcd∂νq
d)

+
2

H2
(qaΩab∂µq̂

b)(qcΩcd∂ν q̂
d) + gµν

(
−H̃abg

agb + 4(gaqa)2 +
2

H2
(gaΩabq

b)2
)

= 0. (2.11)
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2.3 Purely imaginary field configurations

We concentrate in this paper on purely imaginary (PI) field configurations, which we define to

be those for which the complex scalars3 zA = Y A/Y 0 are purely imaginary [31]. Moreover, we

restrict ourselves to a class of prepotentials of the form

F (Y ) =
f(Y 1, . . . , Y n)

Y 0
, (2.12)

where the function f is homogeneous of degree three and real-valued when evaluated on real

fields. For the case of ungauged N = 2 supergravity, such models were considered in [31]. Note

that those models with f a cubic polynomial are precisely the ‘very special’ prepotentials for

which the solutions can be uplifted to five dimensions. Since we choose to fix the U(1) gauge by

taking ImY 0 = 0, this is equivalent to setting xA = ReY A to zero. Models obtainable from five

dimensions are invariant under constant shifts xA → xA + CA, and, hence, PI configurations

will be referred to as ‘axion-free’.

For the class of models (2.12) the scalar fields qa take the form [31]

(qa)|PI = (x0, 0, . . . , 0; 0, y1, . . . , yn),

and hence we see that qaΩab∂µq
b = 0. Following [31] we extend the PI condition to the scalars

q̂a by imposing

(∂µq̂
a)|PI =

1

2
(∂µζ

0, 0, . . . , 0; 0, ∂µζ̃1, . . . , ∂µζ̃n),

which sets also qaΩab∂µq̂
b = 0. The quantities ∂µζ

I and ∂µζ̃I encode the four-dimensional field

strengths, see (B.5).

In the same way, we extend the PI condition to the fluxes ga by imposing

(ga)|PI = (g0, 0, . . . , 0; 0, g1, . . . , gn),

which sets qaΩabg
b = 0.

We then find that the equations of motion (2.9)–(2.10) and the three-dimensional Einstein

equations (2.11) simplify to

∇µ
(
H̃ab∂

µq̂b
)

= 0, (2.13)

∇µ
(
H̃ab∂

µqb
)
− 1

2
∂aH̃bc

(
∂µq

b∂µqc − ∂µq̂b∂µq̂c + gbgc
)

+ 4H̃abg
b(gcqc) = 0, (2.14)

and

− 1

2
R(3)µν − H̃ab

(
∂µq

a∂νq
b − ∂µq̂a∂ν q̂b

)
+ gµν

(
−H̃abg

agb + 4(gaqa)2
)

= 0. (2.15)

It turns out to be useful to write the equations of motion in terms of the dual variables qa

3The scalars Y I are rescaled versions of the scalars XI . See (B.1) for the definition.
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and q̂a defined in Appendix B. In terms of these, the equations (2.13)–(2.15) become

∇2q̂a = 0, (2.16)

∇2qa +
1

2
∂aH̃

bc (∂µqb∂
µqc − ∂µq̂b∂µq̂c)−

1

2
∂aH̃bcg

bgc + 4H̃abg
b(gcqc) = 0, (2.17)

and

− 1

2
R(3)µν − H̃ab (∂µqa∂νqb − ∂µq̂a∂ν q̂b) + gµν

(
−H̃abg

agb + 4(gaqa)2
)

= 0. (2.18)

In the next section we will look for solutions of (2.16)–(2.18) which can be lifted to regular

non-extremal black branes in four dimensions.

3 Non-extremal black branes

Our aim in this section is to construct a family of non-extremal black branes in the N = 2

gauged supergravity theory (2.1) with prepotential (2.12). Restricting our attention to the

PI configurations described in Section 2.3, it can be shown that the Hesse potential takes the

form [31]

H = −1

4
(−q0f(q1, . . . , qn))

− 1
2 . (3.1)

For general functions f , the form of the metric H̃ab is fairly complicated [31]. However, since

the field q0 decouples from the rest, we can compute

H̃00 =
1

4q20
, q0 = − 1

4q0
,

and this will be sufficient to find solutions valid for any choice of f . We remark here upon a

slight abuse of notation which we will make throughout the remainder of this paper. Specifically,

we denote by qA with A = 1, . . . , n those scalar fields which are actually the (A + n + 1)’th

components of the vector (qa). The same is true of the components H̃AB of the metric, which

should properly be the (A+ n+ 1, B + n+ 1) components of H̃ab. This notation is convenient

since (q0, qA) are the remaining non-trivial qa-fields within our ansatz.

For simplicity we will concentrate on solutions which are supported by a single electric

charge Q0 and electric fluxes g1, . . . , gn in this section. However, as we will see in Section 4,

the methods introduced in the following can be easily extended to deal also with solutions with

a single magnetic charge switched on and sourced by both electric and magnetic fluxes. The

systematic investigation of dyonic black branes will be carried out in a future publication [34].

12



3.1 Einstein equations

We make a brane-like ansatz for the three-dimensional metric:

ds23 = e4ψdτ2 + e2ψ(dx2 + dy2), (3.2)

where ψ = ψ(τ) is some function to be determined. This form of the metric can always

be obtained from the more commonly used form ds23 = dr2 + e2ψ(dx2 + dy2) by a suitable

redefinition r → τ . We also impose that all fields qa and q̂a depend only on τ . The coordinate

τ has been chosen such that it is an affine parameter for geodesic curves on the scalar target

space parametrized by qa and q̂a. Equivalently, the τ -dependent part of the three-dimensional

Laplace operator is given by ∂2

∂τ2 .

The non-zero components of the Ricci tensor are given by

Rττ = 2ψ̈ − 2ψ̇2, Rxx = Ryy = e−2ψψ̈,

where the dot denotes differentiation with respect to τ . With this choice the three-dimensional

Einstein equations (2.18) become

− H̃abg
agb + 4(qag

a)2 − 1

2
e−4ψψ̈ = 0, (3.3)

for µ = ν 6= τ and

H̃ab
(
q̇aq̇b − ˙̂qa ˙̂qb

)
= ψ̇2 − 1

2
ψ̈, (3.4)

for µ = ν = τ , where we have used (3.3). Equation (3.4) is the Hamiltonian constraint which

needs to be imposed on solutions (qa(τ), q̂a(τ)) of the second order scalar field equations. We

remark that since we have consistently reduced the full field equations, we do not need to

impose this constraint by hand, but have retained it as a field equation following from an

action principle.

3.2 Scalar equations of motion

We now turn to the equations of motion for the fields qa and q̂a. We start with the q̂a equations

of motion, which read simply

¨̂qa = 0,

and can be integrated once to find

˙̂qa = Ka, (3.5)

for some constants Ka, which are proportional to the electric and magnetic charges of the

solution, Ka = (−QI , P I) [31]. The explicit relations between the q̂a and the field strengths

can be found in Appendix B. For the case at hand we only have a single electric charge Q0,
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and so the only non-zero component of ˙̂qa is ˙̂q0 = −Q0.

We turn now to the qa equations of motion (2.17), which become

e−4ψ q̈a +
1

2
∂aH̃

bce−4ψ
(
q̇bq̇c − ˙̂qb ˙̂qc

)
− 1

2
∂aH̃bcg

bgc + 4H̃abg
b(qcg

c) = 0. (3.6)

For the models (2.12) without magnetic flux, g0 = 0, on which we concentrate in this section,

the q0 equation of motion decouples from the others. Indeed, using (3.5) with K0 = −Q0 the

q0 equation of motion becomes

q̈0 −
q̇20 −Q2

0

q0
= 0. (3.7)

This takes precisely the same form as in the ungauged case [31] and can be solved with

q0(τ) = ±− Q0

B0
sinh

(
B0τ +B0

h0
Q0

)
, (3.8)

for some constants B0 and h0. Since the solution (3.8) is invariant under B0 → −B0, we can take

B0 ≥ 0 without loss of generality. It will turn out that B0 acts as a non-extremality parameter

for the full solution. Furthermore, as we will see later explicitly, τ naturally takes values

0 ≤ τ <∞. Thus in order that q0 6= 0 for τ ≥ 0 we will have to require sign(h0) = sign(Q0).

The qA equations of motion, for A = 1, . . . , n, become4

e−4ψ q̈A+
1

2
e−4ψ

n∑
B,C=1

∂AH̃
BC q̇B q̇C −

1

2

n∑
B,C=1

(∂AH̃BC)gBgC + 4

n∑
B=1

H̃ABgB

(
n∑

C=1

qCgC

)
= 0.

(3.9)

Multiplying by qA and summing over A gives

e−4ψ
n∑

A=1

qAq̈A + e−4ψ
n∑

A,B=1

H̃AB q̇Aq̇B +

n∑
A,B=1

H̃AB gAgB − 4

(
n∑

A=1

gAqA

)2

= 0, (3.10)

where we have made use of the homogeneity properties of the metric H̃ab, viz. qa∂aH̃
bc = 2H̃bc

and qa∂aH̃bc = −2H̃bc. One can now compare this equation to (3.3), which for the model at

hand becomes

−
n∑

A,B=1

H̃AB gAgB + 4

(
n∑

A=1

gAqA

)2

− 1

2
e−4ψψ̈ = 0 .

Substituting from this into the last two terms of (3.10) we obtain

n∑
A=1

qAq̈A +

n∑
A,B=1

H̃AB q̇Aq̇B =
1

2
ψ̈. (3.11)

The left-hand side of this equation can be rewritten as a total derivative

n∑
A=1

qAq̈A +

n∑
A,B=1

H̃AB q̇Aq̇B =
d

dτ

(
n∑

A=1

qAq̇A

)
,

4We choose to leave the sum explicit here for convenience.

14



and so we can integrate to find

n∑
A=1

qAq̇A =
1

2
ψ̇ − 1

4
a0, (3.12)

for some integration constant a0, where we have chosen the factor for later convenience. Now,

using the identity ∂aH̃ = H̃abqb [31] one can show furthermore that

dH̃

dτ
= −q0q̇0 −

n∑
A=1

qAq̇A =
q̇0
4q0
−

n∑
A=1

qAq̇A.

Substituting this expression into (3.12) and further integrating gives

−2ψ + a0τ + b0 = 4H̃ − log(−q0) = −2 log
(
−4H · (−q0)1/2

)
,

where we have used the definition of H̃ given in (B.7), and have chosen the definition of the

integration constant b0 for later convenience. Substituting the explicit expression for the Hesse

potential (3.1) we therefore find

log (f(q1, . . . , qn)) = −2ψ + a0τ + b0. (3.13)

Let us now return to the Hamiltonian constraint (3.4) which, upon substituting the expres-

sion (3.8), becomes
n∑

A,B=1

H̃AB q̇Aq̇B = ψ̇2 − 1

2
ψ̈ − 1

4
B2

0 . (3.14)

So far we have the following picture: the equations of motion for the qA are given by the set

of coupled equations (3.9). The solutions qA(τ) of (3.9) should then satisfy the two constraints

(3.13) and (3.14).

We proceed by imposing that the qA are all proportional, which will in turn mean that all of

the physical scalar fields zA are proportional to one another5. Specifically, we set qA(τ) = ξAq(τ)

for some constants ξA. In terms of this ansatz, the constraints (3.14) and (the derivative of)

(3.13) become

3

(
q̇

q

)2

= 4ψ̇2 − 2ψ̈ −B2
0 , 3

(
q̇

q

)
= −2ψ̇ + a0. (3.15)

We have made use here of the homogeneity properties of f and the metric H̃ab, as well as the

identity H̃ab(q)q
aqb = 1 [27] which implies, for the models at hand, that

n∑
A,B=1

H̃AB(ξ)ξAξB =
3

4
.

The two equations (3.15) can be combined into a second-order non-linear differential equa-

5 Of course, it would be interesting for future work to investigate whether solutions can be found, for generic
choices of the flux parameters, where this assumption is relaxed.
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tion for ψ(τ):

ψ̈ − 4

3
ψ̇2 − 2

3
a0ψ̇ +

1

2
B2

0 +
1

6
a20 = 0. (3.16)

Introducing the variable

y ≡ exp

(
−4

3
ψ − 1

3
a0τ

)
,

this becomes

ÿ − ω2y = 0,

for

ω2 =
2

3
B2

0 +
1

3
a20,

and hence can be solved by

exp

(
−4

3
ψ − 1

3
a0τ

)
=
α

ω
sinh (ωτ + ωβ) , (3.17)

where α and β are integration constants, and we have taken ω to be the positive root without

loss of generality. Note that the right hand side should be non-negative for all τ > 0, and

hence we should pick α > 0 and β ≥ 0. The solution (3.17) now determines the function ψ(τ)

appearing in the metric ansatz in terms of some integration constants, which we will fix in

Section 3.3.

We can now use (3.17) to find an expression for q(τ). Indeed, differentiating (3.17) with

respect to τ and substituting into the second equation in (3.15) we obtain

q̇

q
=

1

2
ω coth(ωτ + ωβ) +

1

2
a0.

This can be integrated up to find

q(τ) = Λe
1
2a0τ (sinh(ωτ + ωβ))

1
2 , (3.18)

where Λ is an integration constant. Since we have set all of the qA proportional to each other,

we can therefore write

qA = λAe
1
2a0τ (sinh(ωτ + ωβ))

1
2 ,

for some constants ξA ≡ λA/Λ. Substituting this into (3.9) we find that q1g1 = . . . = qngn, and

that the qA equation of motion is satisfied provided the integration constants λA are related to

the electric fluxes gA via

λA = ± 3

8ngA

(
α3

ω

) 1
2

.

Returning to (3.13) then determines the constant b0 in terms of α and the fluxes gA as

eb0 = ±
(

3α

8n

)3

f

(
1

g1
, . . . ,

1

gn

)
.
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Finally, the Kaluza-Klein scalar φ appearing in the metric ansatz (2.5) is determined in terms

of the qa via the D-gauge condition (B.6) and the explicit form of the Hesse potential (3.1).

To summarise, we find that the scalars qa are given by

q0 = ±− Q0

B0
sinh

(
B0τ +B0

h0
Q0

)
, (3.19)

qA = ± 3

8ngA

(
α3

ω

) 1
2

e
1
2a0τ (sinh(ωτ + ωβ))

1
2 for A = 1, . . . , n, (3.20)

whilst the metric degrees of freedom are given by

e−4ψ =
(α
ω

)3
sinh3(ωτ + ωβ)ea0τ , (3.21)

eφ =
1

2
(−q0)−

1
2 (f(q1, . . . , qn))−

1
2 . (3.22)

The ± signs in (3.19)–(3.20) should be chosen such that the function eφ is well-defined.

3.3 The Nernst brane solution

In this section we want to look at the conditions on the various integration constants which

give rise to regular black brane solutions in four dimensions. In particular, we impose that our

solution has finite entropy density, which is the relevant regularity condition for solutions with

non-compact horizon.

Let us recall the form of the four-dimensional metric in the τ coordinates:

ds24 = −eφdt2 + e−φ+4ψdτ2 + e−φ+2ψ(dx2 + dy2). (3.23)

We will see below that for a suitable choice of integration constants τ = ∞ is an event

horizon, while τ → 0 is the asymptotic regime at infinite distance. The regularity of the

solution within the bulk between horizon and infinity depends on the detailed properties of the

function f . In particular, when evaluating f on the solution, we require that it has neither

zeroes (so that there are in particular no changes of sign of eφ) nor poles. Given the experience

with similar issues for black hole solutions and domain walls, one expects that such solutions

exist for any prepotential arising in string theory upon suitable restriction of the integration

constants [35, 36]. In any case, such questions can only be investigated explicitly on a case-

by-case basis, while we restrict ourselves to questions that can be answered irrespective of the

choice of f .

The position of the event horizon can be found by looking at the value of τ for which the norm

of the Killing vector field k = ∂t vanishes. Since k2 = gtt = −eφ ∼ exp(− 1
2B0τ − 3

4a0τ − 3
4ωτ)

as τ → ∞, we can identify the horizon with the limiting value τ → ∞ provided a0 ≥ 0. If

a0 < 0 then the position of the horizon will change depending on the relative magnitudes of

|a0| and B0, and so we will take a0 ≥ 0 in what follows.
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The area of the horizon is given by

ˆ
dxdy e−φ+2ψ

∣∣
τ→∞ ,

which is divergent since the x and y coordinates are non-compact. However, we can still define

a finite entropy density s provided the factor e−φ+2ψ
∣∣
τ→∞ remains finite. From the expressions

(3.21)–(3.22) one can show that in this limit we have

e−φ+2ψ
∣∣
τ→∞ ∼ exp

(
1

2
B0τ +

1

4
a0τ −

3

4
ωτ

)
.

In order that this be finite and non-zero at the horizon we therefore require

1

2
B0 +

1

4
a0 =

3

4
ω,

which turns out to be equivalent to fixing a0 = B0. Note that in this case we likewise have

ω = B0.

We still at this stage have four integration constants h0, B0, α, β which are a priori yet to be

determined. However, note that we can always absorb β into a shift of τ and a redefinition of

the constants α and h0. Indeed, it will be useful to set β = 0 at this stage so that the asymptotic

region of the solution is at τ = 0. Moreover, we see that in the extremal B0 → 0 limit, the

expression (3.17) becomes e−4/3ψ = ατ . Hence, we can scale τ to set α = 1, matching the

conventions of the extremal Nernst brane of [19]. We are therefore left with a two-parameter

family of solutions to the three-dimensional equations of motion, parametrised by B0 and h0,

which we will interpret in terms of thermodynamic quantities in Section 3.4.

Before moving on to study properties of the solution, we summarise the results so far: the

scalars qa and q̂a are given by

q0 = ±− Q0

B0
sinh

(
B0τ +B0

h0
Q0

)
, (3.24)

qA = ± 3

8ngA
B
− 1

2
0 e

1
2B0τ (sinh(B0τ))

1
2 for A = 1, . . . , n, (3.25)

˙̂q0 = −Q0, (3.26)

whilst the metric degrees of freedom are given by

e−4ψ =
1

B3
0

sinh3(B0τ)eB0τ , (3.27)

eφ =
1

2
(−q0)−

1
2 (f(q1, . . . , qn))−

1
2 . (3.28)

The physical scalar fields zA = Y A/Y 0 can be determined from the expressions

Y A = − i
2
eφqA, Y 0 = − 1

4q0
,
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which were obtained in [31], see Appendix B. We find

zA = −i
( −q0q2A
f(q1, . . . , qn)

) 1
2

. (3.29)

Note that for B0 6= 0, q0 and qA all behave as exp(B0τ) when τ → ∞. We will show in the

following section that this implies that the physical scalar fields take finite values on the horizon

for B0 6= 0.

3.4 Properties of the Nernst brane solution

We now turn to an analysis of various properties of the solution obtained in Section 3.3, post-

poning a fuller discussion to Section 5.

A coordinate change

It is convenient to introduce the radial coordinate ρ via

e−2B0τ = 1− 2B0

ρ
≡W (ρ).

With this definition, the asymptotic region is situated at ρ → ∞, while the horizon is at

ρ = 2B0. In terms of ρ, we find the expressions

q0 = ± H0

W 1/2
, and qA = ± 3

8ngA
(ρW )−1/2 for A = 1, . . . , n,

where we have introduced the function6

H0(ρ) = −
[
Q0

B0
sinh

(
B0h0
Q0

)
+
Q0e

−B0h0
Q0

ρ

]
.

The physical scalar fields zA(ρ) then take the form

zA = −i
(
± 8n

3g2A
f

(
1

g1
, . . . ,

1

gn

)−1
ρ1/2H0

) 1
2

.

Hence, for h0 6= 0 we find the asymptotic behaviour zA ∼ ρ1/4, whilst for h0 = 0 we find

zA ∼ ρ−1/4.

The four-dimensional line element (3.23) becomes

ds24 = −H− 1
2Wρ

3
4 dt2 +H 1

2 ρ−
7
4
dρ2

W
+H 1

2 ρ
3
4 (dx2 + dy2), (3.30)

6We follow the sign conventions of [31]. See in particular Section 5.3.1 for a comparison of conventions for
the STU -model.
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where we have found it convenient to define

H(ρ) ≡ ±4

(
3

8n

)3

f

(
1

g1
, . . . ,

1

gn

)
H0(ρ).

From this form of the metric, it is clear that the limit B0 → 0 can be achieved simply by setting

W = 1 and

H0|ext = −
(
h0 +

Q0

ρ

)
.

In this case we reproduce the extremal Nernst brane solutions of [19], albeit in different coor-

dinates. This identifies B0 as a parameter encoding the non-extremality of the solution.

For h0 = 0, the harmonic function for both the extremal and non-extremal solutions becomes

H0(ρ) = −Q0/ρ. The line element (3.30) then becomes

ds24|h0=0 = −Z− 1
2Wρ

5
4 dt2 + Z

1
2 ρ−

9
4
dρ2

W
+ Z

1
2 ρ

1
4 (dx2 + dy2), (3.31)

where we have defined

Z ≡ ±4

(
3

8n

)3

Q0f

(
1

g1
, . . . ,

1

gn

)
,

with the sign chosen such that Z is positive. The corresponding extremal solution can be

obtained by setting the ‘blackening factor’ W = 1 in (3.31).

Near-horizon behaviour

To investigate the near-horizon behaviour of the line element (3.30), we define r2 ≡ ρ − 2B0

and zoom in on the region r ≈ 0. We then find that for B0 6= 0 the near-horizon metric looks

like

ds24 = −
(
Ze

B0h0
Q0

)−1/2
(2B0)1/4r2dt2 + 4

(
Ze

B0h0
Q0

)1/2
(2B0)−5/4dr2

+
(
Ze

B0h0
Q0

)1/2
(2B0)1/4(dx2 + dy2), (3.32)

which is the product of a two-dimensional Rindler spacetime with two-dimensional flat space.

We also include, for comparison, the near-horizon behaviour of the extremal solution which,

after putting ρ = R−4, becomes

ds24|Ext =
1

R

[
− 1

R4
Z−

1
2 dt2 + 16Z

1
2 dR2 + Z

1
2 (dx2 + dy2)

]
. (3.33)

By Wick rotating to Euclidean time t→ tE = it in (3.32) and enforcing regularity of the tE

circle we can read off the temperature

4πTH = Z−1/2(2B0)3/4e−
B0h0
2Q0 . (3.34)
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We can also read off from (3.32) the entropy density of the solution, which is given by

s = Z1/2(2B0)1/4e
B0h0
2Q0 . (3.35)

Note that from (3.34) and (3.35) we can eliminate the integration constant B0 in terms of the

thermodynamic quantities s and TH via.

B0 = 2πsTH . (3.36)

Asymptotic behaviour

We now turn to a consideration of the asymptotic ρ→∞ properties of the line element (3.30),

which for h0 6= 0 becomes

ds24|asymp = H(∞)
1
2 ρ

1
4

[
− 1

H(∞)
ρ

1
2 dt2 +

dρ2

ρ2
+ ρ

1
2 (dx2 + dy2)

]
.

Note that this is the same for both the extremal and non-extremal solutions. Making the

coordinate change ρ = R−4 then brings this to the form

ds24|asymp =
1

R3

[
−H(∞)−

1
2 dt2 + 16H(∞)

1
2 dR2 +H(∞)

1
2 (dx2 + dy2)

]
, (3.37)

which is conformally AdS4 with boundary at R = 0.

For the case h0 = 0, the asymptotic limit corresponds simply to W → 1 in (3.31), from

which we find the asymptotic line element (3.33), after a suitable coordinate redefinition.

Chemical potential

The gauge field strength F 0
τt is determined from the scalar field q̂0 via (B.5):

Ȧ0
t = 2 ˙̂q0 = 2H̃00 ˙̂q0 = −Q0

2q20
.

Substituting in the expression (3.24) and integrating with respect to τ gives

At(τ) =
1

2

(
B0

Q0

)[
coth

(
B0τ +

B0h0
Q0

)
− 1

]
, (3.38)

where we have chosen the integration constant such that At(∞) = 0, i.e. that the gauge fields

vanish on the horizon7. The chemical potential µ is then given by the asymptotic value of At,

µ ≡ At(0) =
1

2

(
B0

Q0

)[
coth

(
B0h0
Q0

)
− 1

]
, (3.39)

which diverges as h0 → 0. Note that in the extremal limit B0 → 0 with h0 6= 0 we get

µext = 1/(2h0).

7See e.g. [2] for motivation for this condition.

21



TH

s

d
c
b
aμ=0.1

μ=0.25

μ=1

μ=10,000

s

TH0

Figure 1: Mathematica plot of (3.40), showing how entropy density s varies with temperature
TH for various values of the chemical potential µ, and with Q0 and Z fixed.

Thermodynamics and the Nernst Law

We are now in a position to relate the integration constants B0 and h0 appearing in our solution

to the thermodynamic quantities s, TH and µ. In particular, we can rearrange (3.39) to find

e
2B0h0
Q0 = 1 +

B0

Q0µ
= 1 +

2πsTH
Q0µ

,

where we have used (3.36). Returning to (3.35) we then find an equation determining the

entropy density as a function of the electric charge Q0, fluxes g1, . . . , gn, temperature TH and

chemical potential µ of the black brane:

s3 = 4πZ2TH

(
1 +

2πsTH
Q0µ

)
. (3.40)

One consequence of (3.40) is that, if we keep Z, Q0 and µ fixed and send TH → 0, we see that

s→ 0, which is precisely the strict (Planckian) formulation of the third law of thermodynamics

[9]. This identifies the solution constructed in Section 3.3 as a non-extremal (‘hot’) Nernst

brane.

We can further analyse (3.40) by looking at the dimensionless ratio TH/µ. When TH/µ

is small, the second term in (3.40) becomes negligible, and we find that the entropy density

behaves as s ∼ T 1/3
H . On the other hand, when TH/µ becomes large, the second term in (3.40)

dominates, and we find the behaviour s ∼ TH .

In Figure 1 we plot equation (3.40) for various values of µ, keeping Q0 and Z fixed. This

shows a) the Nernst Law behaviour s→ 0 as TH → 0, and b) the crossover from the behaviour

s ∼ T 1/3
H to s ∼ TH .
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4 A magnetic black brane

We now turn our attention to a simple reformulation of the procedure in Section 3 which for a

certain class of prepotentials allows us to construct non-extremal black branes carrying magnetic

charge. We will here simply present the supergravity solution, and leave a fuller discussion of

the thermodynamics of magnetically-charged black branes for future work.

In particular, we are interested in prepotentials for which one of the fields Y 1, . . . , Y n de-

couples from the others. Without loss of generality, we can assume that Y 1 decouples, and

consider prepotentials of the form

F (Y ) =

(
Y 1

Y 0

)
f̃(Y 2, . . . , Y n),

where the function f̃ is homogeneous of degree 2. This class is particularly interesting from

the perspective of embedding the model into string theory as it contains the tree-level heterotic

prepotentials, which are linear in the heterotic dilaton Y 1/Y 0. We consider black brane so-

lutions which are supported by a single magnetic charge P 1, a magnetic flux g0, and electric

fluxes g2, . . . , gn.

In this case we see that the equations of motion can be solved in precisely the same way

as in Section 3, with the field q1 and magnetic charge P 1 playing the role of q0 and Q0 in the

preceding section. In particular, we have

q1(τ) = ±P
1

B0
sinh

(
B0τ +B0

h1

P 1

)
,

whilst q0 and q2, . . . , qn take the same form as (3.20) after replacing g1 with g0 in the obvious

place. Moreover, the function ψ remains unchanged and, since

eφ =
1

2
(−q0q1f̃(q2, . . . , qn))−

1
2 ,

is symmetric in q0 and q1, we find that the line element takes the same form as in Section 3.

Looking at the near-horizon behaviour we again find that regularity of the solution imposes the

same relation between the integration constants, a0 = B0, as before. The entropy density is

therefore

s = Z1/2(2B0)1/4e
B0h

1

2P1 ,

whilst the temperature of the solution is given by

4πTH = Z−1/2(2B0)3/4e−
B0h

1

2P1 .
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5 Discussion and conclusions

In this paper we have provided a new technique for the construction of non-extremal black brane

solutions to large classes of N = 2 U(1) gauged supergravity models, utilising the techniques

of time-like dimensional reduction followed by a rewriting of the effective three-dimensional

degrees of freedom through the real formulation of special geometry. In Section 3 we explicitly

constructed a family of non-extremal black branes supported by a single electric charge and

an arbitrary number of electric fluxes. This family of branes has an entropy density behaving

as s ∼ T 1/3 for T → 0, which therefore vanishes at T = 0, where we recover the extremal

Nernst brane solutions of [19]. We anticipate that such non-extremal Nernst branes will have

interesting applications in the context of holography, where they could prove useful in describing

dual field theory configurations at finite temperature and chemical potential which satisfy the

Nernst Law.

One issue with regards to a holographic interpretation is that our solutions do not fit nat-

urally into the framework of AdS/CMT, since they do not asymptote to AdS4, but rather

conformal AdS4, as seen in (3.37). Hence, the stress tensor of the dual field theory in the

UV would not be scale invariant. However, in recent years much progress has been made in

understanding the holographic description of such ‘hyperscaling violating’ theories, as well as

the more general class of hyperscaling violating Lifshitz (hvLif) theories [4,5,37], which we now

review.

Consider spacetime geometries of the form (we use the conventions of [4])

ds2d+2 = r−
2(d−θ)
d

(
−r−2(z−1)dt2 + dr2 + dx2i

)
, (5.1)

where i = 1, . . . , d label the spatial directions on the boundary, z is the ‘dynamical critical’

(Lifshitz) exponent, and θ is the ‘hyperscaling violating’ exponent8. Note that for z = 1, θ = 0

one recovers the metric on AdSd+2.

By looking at the near-horizon and boundary behaviour of our solutions, we see that the

Nernst brane interpolates between two hvLif geometries (5.1) with d = 2. There are four cases

of interest, corresponding to whether h0 and B0 are zero or non-zero:

• h0 = 0, B0 = 0: The solution becomes globally hvLif (3.33) with (z, θ) = (3, 1). It has

zero temperature and infinite chemical potential.

• h0 = 0, B0 6= 0: The solution (3.31) has finite temperature and infinite chemical potential,

and interpolates between a near-horizon Rindler geometry (3.32), with (z, θ) = (0, 2), and

an asymptotic hvLif geometry with (z, θ) = (3, 1).

• h0 6= 0, B0 = 0: The solution has zero temperature and a finite chemical potential.

8We refer the reader to e.g. [4,5,37] for further details. For recent results on hvLif-like solutions in supergravity,
see [38,39].
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It interpolates between a hvLif geometry with (z, θ) = (3, 1) at the horizon, and the

conformal AdS4 geometry (3.37) with (z, θ) = (1,−1) at infinity. This is the Nernst

brane solution of [19].

• h0 6= 0, B0 6= 0: The solution (3.30) has finite temperature and chemical potential,

and interpolates between a near-horizon Rindler geometry with (z, θ) = (0, 2) and the

conformal AdS4 geometry with (z, θ) = (1,−1) at infinity.

Note that all of these values are consistent with the constraints imposed by the Null Energy

Condition [4]. We have therefore found, analytically, a family of solutions which interpolate

between two hvLif geometries. This family is parametrised by the two integration constants

B0 and h0, or equivalently by the temperature T and chemical potential µ of the solution,

both of which can be freely varied. Both parameters have a distinct effect on the near horizon

and asymptotic forms of the solution: while the extremal or zero temperature limit B0 → 0

changes the near horizon solution from (z, θ) = (0, 2) to (z, θ) = (3, 1), the infinite chemical

potential limit h0 → 0 changes the geometry at infinity from (z, θ) = (1,−1) to (z, θ) = (3, 1).

If both limits are performed we obtain a global hvLif solution with (z, θ) = (3, 1) which we

interpret as the ground state of the given charge sector. Note that like any Lifshitz solution

different from AdS it is not geodesically complete, and that the scalars are non-constant and

run off to zero or infinity in the asymptotic regions. However, a similar behaviour can occur

for domain wall solutions in gauged supergravity which, for lack of more symmetric solutions,

are interpreted as ground states. Sometimes this interpretation can be further justified by an

embedding into string theory or M-theory, see for example [40]. While we leave studying the

string theory embedding of our solutions for future work, we remark that the interpretation is

consistent with a limit where the temperature is zero and the chemical potential infinite.

Since so far solutions interpolating between hvLif geometries have only been found by relying

on a mixture of analytical and numerical methods, we have made a significant step forward, and

expect that the techniques used and described in this paper will be useful in making further

progress. While we leave searching for a concrete holographic dual of the bulk geometries

presented in this paper to future work, we can already make some interesting observations

which shed some light on the properties which such a putative dual theory might possess.

Let us first consider the extremal (B0 = 0) solution with h0 = 0. Since this is the grav-

itational ground state solution with (z, θ) = (3, 1), zero temperature and infinite chemical

potential, we expect it to be dual to the ground state of a (2+1)-dimensional QFT with hyper-

scaling exponent θ = 1 and Lifshitz exponent z = 3. We remark that the specific value θ = 1

for a QFT in d = 2 space dimensions seems to be required for the description of states with

hidden Fermi surfaces, although a three-loop calculation gives z = 3
2 rather than z = 3 [5].

Now consider turning on some finite temperature T > 0 on the field theory side. By a simple

scaling argument, one can argue [5] that the entropy density of the thermal state is related to
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the temperature as s ∼ T d−θ
z = T 1/3. We therefore expect that the non-extremal Nernst brane

with h0 = 0 in (3.31) provides us with the relevant gravity dual to the (2+1)-dimensional QFT

with θ = 1 and z = 3 at finite temperature. Indeed, taking µ→∞ in the relation (3.40) we see

that the entropy density of the brane solution is related to the temperature as s ∼ T 1/3 which

is the expected behaviour from the field theory arguments, and therefore consistent with our

tentative interpretation.

We now move on to consider what happens at finite chemical potential µ < ∞, which

corresponds to h0 6= 0. In this case, the extremal Nernst brane interpolates between a hvLif

geometry with (z, θ) = (3, 1) at the horizon, and a hvLif with (z, θ) = (1,−1) at infinity, which

is conformal to AdS4. One possible interpretation is as an RG flow between two QFTs: one

with hyperscaling exponent θ = −1 in the UV; and one with hyperscaling exponent θ = 1 and

Lifshitz exponent z = 3 in the IR. As the gravity solution is smooth, and we do not seem to

have a natural candidate for an order parameter identifying a phase transition, we think that

the more likely interpretation is that the UV ‘phase’ and the IR ‘phase’ are related by smooth

crossover. For the IR theory we expect that the entropy scales like s ∼ T
d−θ
z = T

1
3 , which

agrees with the behaviour of the Nernst brane solution for low temperature T
µ � 1. Adding

temperature changes the near horizon geometry, but leaves the asymptotic geometry at infinity

unchanged, which is consistent with interpreting these configurations as thermal states. We

therefore expect that the IR behaviour is correctly described by the Nernst brane solution, which

in turn predicts a scaling s ∼ T of the entropy for high temperatures, T
µ � 1. This however

does not agree with the expected scaling of our tentative UV theory with (z, θ) = (1,−1),

which predicts s ∼ T 3. We also note that the asymptotic UV geometry, while conformal to

AdS4, cannot be interpreted as an alternative ground state of our supergravity theory, because

it is not, when taken as a global geometry, part of our family of solutions. Moreover, the

physical scalar fields zA ∼ ρ1/4 run off to infinity in the UV region, which indicates strong

coupling or decompactification. Taken together this suggests that the description in terms of

our four-dimensional gauged supergravity theory is incomplete in the UV, and that further

degrees of freedom become relevant. If we accept that the UV geometry correctly captures the

thermodynamic behaviour then the corresponding UV theory should have a scaling behaviour

s ∼ T 3 (z = 1, θ = −1, d = 2). The resulting tentative phase diagram is shown in Figure 2.

The above mentioned analogy with domain walls together with the runaway behaviour of

the scalars suggests to interpret the UV behaviour as a decompactification limit and to embed

the four-dimensional supergravity theory into a higher dimensional theory. Since the class of

prepotentials that we have considered in this paper includes those ‘very special’ prepotentials

for which the theory can be uplifted to five dimensions, the most obvious embedding is into

five-dimensional supergravity. There are grounds to believe [37] that the dimensional reduction

of theories admitting AdSD vacua would admit vacua with some nontrivial hvLif behaviour.
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s ∼ T 3 in far UV

s ∼ T
1
3

s ∼ T

µ

T
H

1

Figure 2: The holographic phase diagram for our family of Nernst brane solutions in terms of
horizon temperature, TH , and chemical potential, µ, which shows a smooth crossover between
the two scaling regimes. We have also indicated that we anticipate a different scaling behaviour
in the far UV where we don’t expect that our supergravity solution accurately describes the
tentative dual theory.

Therefore we expect that by lifting our solutions to five dimensions we will obtain new asymp-

totically AdS5 finite temperature solutions in N = 2 gauged supergravity which still satisfy the

Nernst Law9. We will expand on this point in [41], and remark that an asymptotic AdS5 leads

to a scaling of the entropy s ∼ T
d−θ
z = T 3, (z = 1, θ = 0, d = 3), which is consistent with our

proposed UV theory.

We should also point out that there are issues with the interpretation of our solutions if

the temperature is strictly zero, since the Nernst brane solution has infinite tidal forces and

run-away behaviour of the scalars at the horizon in the extremal limit. This again indicates a

breakdown of the effective description, and strictly speaking the supergravity solution should

only be trusted at low but finite temperature. Thus, as in the similar case of the holographic

interpretation of hyperscaling violating solutions of Einstein-Maxwell-Dilaton theories [4], the

Nernst brane solution is not a valid description of its (tentative) dual over the full range of the

energy (radial coordinate) from the UV (infinity) to the IR (horizon), but only over a finite

9Although examples of such asymptotically AdS5 hot Nernst solutions were constructed in [25], their solutions
do not reduce to the finite temperature solutions presented here.
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interval outside the horizon. We leave it to future work to characterize the range of validity more

quantitatively, and to identify the necessary completions in the UV and IR using a string theory

embedding. One possible strategy to further investigate the zero temperature limit is to adapt

formalisms that allow to include higher derivative terms. In N = 2 supergravity a certain class

of higher derivative terms (those encoded in the so-called Weyl multiplet), which are related

to the topological string, lead to a generalization of the framework of special geometry, on

which we relied in the article [21, 22, 42–45]. One could also try to adapt the entropy function

formalism [24], which employs universal properties of near horizon geometries and does not

depend on supersymmetry.

Finally we comment on further possible future directions on the gravity side. Here it would

be interesting to find solutions where other and possibly more charges and fluxes have been

turned on. We expect that our formalism is particularly suited to finding dyonic solutions, due

to its built-in electric-magnetic covariance [34]. For work in this direction it is encouraging

that work on static BPS solutions in U(1) gauged supergravity solutions with symmetric scalar

target spaces has led to the construction of the general dyonic solution [46–49].

We think that the systematic methods and explicit analytical solutions interpolating between

hvLif geometries that we have presented in this paper will help to make progress towards a

classification of solutions in gauged supergravity, and of the hvLif landscape, and to extend and

deepen our understanding of the field theory/gravity dictionary.
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A Scalar potential in the real formulation of special ge-

ometry

In this appendix we review the real formulation of special geometry introduced in [27], based

on the work of [50,51], and extend it to include scalar potentials of the form (2.3), which result

from a flux superpotential (2.4). Starting from the holomorphic formulation, where the complex

scalars XI parametrise a conic affine special Kähler (CASK) manifold, and where all vector

multiplet couplings are encoded in a holomorphic prepotential F (XI), which is homogeneous
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of degree two, one introduces special real coordinates (qa) =
(
xI , yI

)T
, where

XI = xI + iuI , FI(X) = yI + ivI .

Note that FI = ∂F
∂XI

is homogeneous of degree one. In the real formulation all vector multiplet

couplings are encoded in a Hesse potential H(qa), which is homogeneous of degree two, and

which is obtained from the imaginary part of the holomorphic prepotential by a Legendre

transformation, which replaces uI by yI as an independent variable:

H
(
xI , yI

)
= 2 ImF (X (x, y))− 2yIu

I (x, y) =
i

2

(
XI F̄I(X)− FI(X)X̄I

)
. (A.1)

The special real coordinates qa are Darboux coordinates, and the Kähler form on the CASK

manifold is simply

dxI ∧ dyI =
1

2
Ωabdq

a ∧ dqb , Ωab =

(
0 1

−1 0

)
.

It is useful to note that the first derivatives Ha of the Hesse potential are related to the

imaginary parts of XI and FI by

Ha = 2(vI ,−uI)T ,

and provide an alternative, ‘dual’ coordinate system on the CASK manifold.

To obtain the associated projective special Kähler (PSK) manifold, one imposes the D-

gauge −2H = κ−2, together with a condition which fixes a U(1) gauge. If one wants to

preserve symplectic covariance, one postpones fixing a U(1) gauge and retains a local U(1)

gauge invariance. Geometrically this corresponds to working on the total space of a U(1)

principal bundle over the PSK manifold.

In [27] it was shown how to express all couplings appearing in the bosonic part of the vector

multiplet Lagrangian in terms of real coordinates. In particular the CASK metric NIJ =

2ImFIJ is replaced by the Hessian metric

Hab =
∂2H

∂qa∂qb
.

For the purpose of this paper we need to rewrite the scalar potential V (X, X̄) of (2.3),

and the associated flux superpotential W (X) of (2.4), in terms of real coordinates. Using that

Ha = Habq
b by homogeneity, and using the formulae given above, it is straightforward to obtain

W = W (qa) = W (xI , yI) = 2ga
(

Ωab +
i

2
Hab

)
qb = iga (Hab − 2iΩab) q

b, (A.2)

where we have defined (ga) := (gI , gI)
T .
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In order to obtain the potential V as given in (2.3), we must compute the derivatives

∂IW =
∂W

∂XI
=

1

2

(
∂

∂xI
− i ∂

∂uI

)
W.

Since this derivative involves the real coordinates (xI , uI) rather than (qa) = (xI , yI)
T , we

apply the chain rule to W (x, y(x, u)) and compute

∂W

∂xI

∣∣∣∣
u

=
∂W

∂xI

∣∣∣∣
y

+
∂yJ
∂xI

∂W

∂yJ

∣∣∣∣
x

, and
∂W

∂uI

∣∣∣∣
x

=
∂yJ
∂uI

∂W

∂yJ

∣∣∣∣
x

.

After decomposing the second derivatives of the prepotential F into real and imaginary parts

(including a conventional factor of 2) by 2FIJ = RIJ + iNIJ , one can apply the chain rule to

show that
∂yJ
∂xI

=
1

2

(
FIJ + F̄IJ

)
=

1

2
RIJ ,

and read from [27] that
∂yJ
∂uI

= −1

2
NIJ .

Combining this, we find

∂W

∂XI
=

1

2

(
∂W

∂xI
+ FIJ

∂W

∂yJ

)
,

∂W̄

∂X̄I
=

1

2

(
∂W̄

∂xI
+ F̄IJ

∂W̄

∂yJ

)
.

Finally, we can put all of this together to obtain

N IJ∂IW∂JW̄ =
1

4
Wa

(
Hab +

i

2
Ωab
)
W̄b, (A.3)

where (Wa) =
(
∂W
∂xI

, ∂W∂yJ

)T
, Hab is the inverse Hessian metric on the CASK manifold (see [27]),

and Ωab is the inverse of Ωab.

Using (A.2), we have that

Wa = igb (H − 2iΩ)ba , W̄a = −igb (H + 2iΩ)ba . (A.4)

This can be substituted into (A.3), which after simplification becomes

N IJ∂IW∂JW̄ = Habg
agb, (A.5)

where we have used the identity10 HabΩ
bcHcd = −4Ωad [27].

The final expression for the scalar potential given purely in terms of real coordinates then

10This is the standard relation between the metric and Kähler form of a Kähler manifold. The numerical
factor is due to conventional choices.
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comes from (2.3) using (A.2) and (A.5) as follows:

V = gaHabg
b − 2κ2ga (Hac − 2iΩac) q

cgb (Hbd + 2iΩbd) q
d

= gagb
[
Hab − 2κ2HaHb − 8κ2 (Ωq)a (Ωq)b

]
, (A.6)

where we have used homogeneity Ha = Habq
b. Lastly, we substitute the D-gauge condition

−2H = κ−2 into (A.6) to obtain

V = gagb
[
Hab +

HaHb + 4 (Ωq)a (Ωq)b
H

]
. (A.7)

Note that the expression within the square brackets is homogeneous of degree zero. This is

useful in order to rewrite V in terms of rescaled variables after dimensional reduction.

B Adapting the real formulation of special geometry to

dimensional reduction

We shall now define the various terms appearing in the three-dimensional Lagrangian (2.6),

which uses a modified version of the real formulation of special geometry that is adapted

to dimensional reduction. We follow the conventions of [27], to which we refer the reader

for further details. Firstly, the complex scalar fields, XI , appearing in the four-dimensional

Lagrangian (2.1), are replaced by rescaled scalars

Y I := eφ/2XI , (B.1)

where φ is the Kaluza Klein scalar. In the four-dimensional theory parametrised by the XI the

radial direction of the CASK manifold, which is generated by the vector field

ξ = XI ∂

∂XI
+ X̄I ∂

∂X̄I
,

is a gauge degree of freedom. The above rescaling promotes it to a physical degree of freedom,

which is equivalent to the Kaluza-Klein scalar. It turns out that this rescaling leads to a

convenient parametrization of the reduced three-dimensional theory. Rewriting the D-gauge

condition (2.2) in terms of Y I , we obtain

− i
(
Y I F̄I − FI Ȳ I

)
= eφ(Y, Ȳ ), (B.2)

which determines φ in terms of the scalar fields Y I .

Due to the homogeneity properties of the prepotential and Hesse potential, we can obtain

a real parametrization which is based on the rescaled complex scalars Y I . The associated real
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coordinates are defined by the decomposition

Y I = xI + iuI(x, y), FI(Y ) = yI + ivI(x, y),

as

qa :=
(
xI , yI

)T
= Re

(
Y I , FI(Y )

)T
. (B.3)

Furthermore, after reducing to three dimensions it is possible to write the gauge degrees of

freedom using scalar fields as well. In particular, we define

q̂a :=

(
1

2
ζI ,

1

2
ζ̃I

)T
, (B.4)

where ζI are the components of the four-dimensional gauge fields AIµ̂ along the reduction di-

rection, and ζ̃I are the Hodge-duals of the three-dimensional vector parts. Specifically, these

scalars descend from the four-dimensional field strengths as follows:

∂µζ
I := F Iµ0, ∂µζ̃I := GI|µ0, (B.5)

where GI|µ̂ν̂ are defined as

GI|µ̂ν̂ := RIJF J|µ̂ν̂ − IIJ F̃ Jµ̂ν̂ .

We can make further use of Hodge duality to encode the Kaluza-Klein vector degree of freedom

using the scalar field φ̃ [27], although we will not need this here since we deal only with static

configurations.

In terms of rescaled complex scalars Y I and rescaled real variables qa, the relation between

prepotential F (Y I) and Hesse potential H(qa) is

H
(
xI , yI

)
= 2 ImF (Y (x, y))− 2yIu

I (x, y) =
i

2

(
Y I F̄I(Y )− FI(Y )Ȳ I

)
= −1

2
eφ.

We also note that the D-gauge, when expressed in terms of rescaled real scalars, reads

− 2H (qa) = eφ. (B.6)

In the Lagrangian (2.6), we also use the tensor field

H̃ab :=
∂2

∂qa∂qb
H̃, H̃ := −1

2
log (−2H). (B.7)

This tensor can be interpreted as a metric on the CASK manifold, which is related to Hab

by flipping the signature along the radial direction generated by the field ξ, combined with a

conformal transformation which changes the scale transformation qa → λqa, where λ ∈ R>0,

from being a homothety to being an isometry. This follows from the obvious fact that while

Habdq
adqb is homogeneous of degree 2, H̃abdq

adqb is homogeneous of degree 0. Note that the
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metric coefficients Hab and H̃ab are homogeneous of degrees 0 and −2, respectively. Both

tensors are related by

H̃ab =
1

(−2H)

(
Hab −

HaHb

H

)
. (B.8)

It will be convenient for us to introduce a set of dual coordinates with respect to the metric

H̃ab defined by

qa := H̃a :=
∂H̃

∂qa
= −Ha

2H
=
−1

H

(
vI

−uI

)
. (B.9)

One can show that

qa = −H̃abq
b, ∂µqa = H̃ab∂µq

b, (B.10)

where we have used that H̃a is homogeneous of degree −1 for the first identity and the chain

rule for the second.

It is also possible to use this metric to lower the index on ∂µq̂
a to obtain the co-vector field

∂µq̂a := H̃ab∂µq̂
b. (B.11)

Finally, we re-express the scalar potential in terms of variables adapted to dimensional

reduction. Since, as we remarked, the expression in the square brackets of (A.7) is homogeneous

of degree zero, it remains invariant if we rescale the real coordinates qa by eφ/2. To express V

in terms of the tensor H̃ab we use the relation (B.8) to write

V = −2Hgagb
[
H̃ab −

HaHb

H2
− 2

(Ωq)a (Ωq)b
H2

]
. (B.12)

Finally, we use (B.9) to re-write V in terms of the dual coordinates qa, and take into account

that upon dimensional reduction the term −V in the Lagrangian gets multiplet by e−φ = − 1
2H

and obtain
1

2H
V = −gagb

[
H̃ab − 4qaqb − 2

(Ωq)a (Ωq)b
H2

]
. (B.13)
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