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Abstract

We design and analyze deterministic truthful approximation mechanisms for multi-unit
Combinatorial Auctions with only a constant number of distinct goods, each in arbitrary
limited supply. Prospective buyers (bidders) have preferences over multisets of items, i.e.
for more than one unit per distinct good. Our objective is to determine allocations of
multisets that maximize the Social Welfare. Despite the recent theoretical advances on
the design of truthful Combinatorial Auctions (for several distinct goods) and multi-unit
auctions (for a single good), results for the combined setting are much scarser. Our main
results are for multi-minded and submodular bidders. In the first setting each bidder
has a positive value for being allocated one multiset from a prespecified demand set of
alternatives. In the second setting each bidder is associated to a submodular valuation
function that defines his value for the multiset he is allocated.

For multi-minded bidders we design a truthful FPTAS that fully optimizes the Social
Welfare, while violating the supply constraints on goods within factor (1+ ε) for any fixed
ε > 0 (i.e., the approximation applies to the constraints and not to the Social Welfare).
This result is best possible, in that full optimization is impossible without violating the
supply constraints. It also improves significantly upon a related result of Grandoni et al.
[SODA 2010]. For submodular bidders we extend a general technique by Dobzinski and
Nisan [JAIR, 2010] for multi-unit auctions, to the case of multiple distinct goods. We use
this extension to obtain a PTAS that approximates the optimum Social Welfare within
factor (1 + ε) for any fixed ε > 0, without violating the supply constraints. This result is
best possible as well. Our allocation algorithms are Maximum-in-Range and yield truthful
mechanisms when paired with Vickrey-Clarke-Groves payments.
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1 Introduction

In this paper we study the design and analysis of truthful multi-unit Combinatorial Auctions,
for a constant number of distinct goods, each in limited supply. Arguably, the most widespread
modern application of this general setting is the allocation of radio spectrum licences [14]; each
such license is for the use of a specific frequency band of electromagnetic spectrum, within
a certain geographic area. In the design of such “Spectrum Auctions”, licenses for the same
area are considered as identical units of a single good (the area), while the number of distinct
geographic areas is, of course, bounded by a constant.

More formally, we consider the problem of auctioning (allocating) “in one go” multiple
units of each out of a constant number of distinct goods, to prospective buyers with private
multi-demand combinatorial valuation functions, so as to maximize the Social Welfare. A
multi-demand buyer in this setting may have distinct positive values for distinct multisets of
goods, i.e., for each such multiset they may demand more than one unit per good. Our aim
is to devise deterministic truthful auction mechanisms, wherein every bidder finds it to his
best interest to reveal his value truthfully for each multiset of items (i.e., truthful report of
valuation functions is a dominant strategy). Additionally, we are interested in mechanisms
that can compute an approximately efficient allocation in polynomial time. This problem
generalizes simultaneously Combinatorial Auctions of multiple goods and Multi-Unit Auctions
of a single good to the multi-unit and combinatorial setting.

Mechanism Design for Combinatorial Auctions of multiple heterogeneous goods (each in
unitary supply) has received a significant attention in recent years, since the work of [12]
(see [13] for the complete version), due to their various applications, especially in online
trading systems over the internet. A mechanism elicits bids from interested buyers, so as
to determine an assignment of bundles to them and payments in such a way, that it is to
each bidder’s best interest to reveal his valuation function truthfully to the mechanism. This
line of research was initiated by Nisan and Ronen in their seminal paper [17]. The related
problem of auctioning multiple – say s – units of a single good to multi-demand bidders
has already been considered by Vickrey in his seminal paper [20]. For bidders with sub-
modular private valuation functions, Vickrey gave an extension of his celebrated single-item
Second-Price Auction mechanism, that retains truthful revelation of valuation functions as
a (weakly) dominant strategy for bidders and fully optimizes the Social Welfare. The only
drawback of this mechanism is that it is computationally efficient only for a few (constant
number of) units, in that the allocation algorithm must process Θ(s) bids, whereas because
s is an input number, it should process a number of bids bounded by a polynomial of log s.
Polynomial-time approximation mechanisms for multi-unit auctions were designed relatively
recently [15, 16, 6, 21]. In particular, Vöcking designed and analyzed very recently a random-
ized universally truthful polynomial-time approximation scheme, for bidders with unrestricted
valuation functions [21].

Results for the more general setting of multi-unit Combinatorial Auctions are much scarcer
[1, 7]. It is exactly this setting we consider here, with a constant number of distinct goods,
as in [7]; in particular, for a number of cases of such auctions we analyze Maximum-in-Range
(MiR) allocation algorithms [18], that can be paired with the Vickrey-Clarke-Groves payment
rule, so as to yield truthful mechanisms.
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1.1 Contribution

Our main results concern multi-unit Combinatorial Auctions with a constant number of dis-
tinct goods for two broad classes of bidders, as specified by their associated valuation func-
tions:

1. Multi-Minded Bidders: in this setting each bidder is associated with a demand set of
alternative multisets (the multiple minds). Each bidder’s valuation function assigns a
(possibly distinct) positive value for every alternative in the demand set (and at least
as much for the value of every superset of the alternative) and zero elsewhere.

2. Submodular Bidders: in this setting the value of each bidder for a particular multiset
of items is given by a submodular valuation function.

For multi-minded bidders we design and analyze in Section 4 a truthful FPTAS1, that fully
optimizes the Social Welfare in polynomial time, while violating the supply constraints on the
goods by a factor at most (1 + ε), for any fixed ε > 0. The violation of the supply constraints
has a practical as well as a theoretical justification. On one hand it is conceivable that, in
certain environments, a slight augmentation of supply can be economically viable, for the sake
of better solutions (e.g., auctioneers with well supplied stocks can easily handle occurrences of
modest overselling). On the other hand, we note that a relaxation of the supply constraints is
necessary for obtaining an FPTAS, as the problem is otherwise strongly NP-hard, for m ≥ 2
goods (please see the related discussion in Section 4). This result significantly improves on
a FPTAS given in [7], which approximates the Social Welfare and the supply constraints
within factor2 (1 + ε), and only when bidders are single-parameter (i.e. associate the same
positive value with each multiset from their demand set) and do not overbid their demands.
Technically, the FPTAS in [7] is based on the design of monotone algorithms [10, 2] and, as
such, it needs the assumption of no-overbidding on the demands (cf. discussion therein).

In Section 5 we revisit the general technique introduced by Dobzinski and Nisan in [6]
for multi-unit auction Mechanism Design and generalize it to multiple distinct goods, each
in limited supply. We discuss how this generalization yields a truthful PTAS immediately
for multi-minded bidders, that does not violate the supply constraints and approximates the
Social Welfare within factor (1+ε), for any fixed ε > 0. Subsequently, we use the technique to
design a truthful PTAS for bidders with submodular valuation functions, assuming that the
values (bids) are accessed through value queries by the algorithm. Prior to this result, no time-
efficient deterministic truthful mechanism was known for submodular bidders, even for a single
good. Interestingly, the direct extension of the technique of [6] for multiple distinct goods
does not yield a factor 2 approximation mechanism for general valuation functions accessed by
value queries, as was the case for a single good in [6]; we show that an appropriate extension
of a more dedicated treatment of this case from [6] yields a 2-approximation (Section 6).

The assumption of a constant number m = O(1) of distinct goods is important, for oth-
erwise our problems become Combinatorial Auctions, thus, hard to approximate within less
than O(

√
m) [13]. Regarding the generalization of the Dobzinski-Nisan technique, existence

of a FPTAS for multi-minded bidders and one good is excluded by a result from [6], unless

1Fully Polynomial Time Approximation Scheme.
2In the context of Social Welfare maximization, by “approximation within factor ρ ≥ 1” (or, equivalently,

“ρ-approximation”, for ρ ≥ 1) we mean recovering at least a fraction ρ−1 of the welfare of an optimum
allocation. We only switch temporarily to using ρ < 1 in Section 5, for technical convenience.
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P = NP. Finally, as shown in [6, 19] regarding general valuation functions, no deterministic
MiR algorithm achieves better than 2-approximation – even for a single good – with commu-
nication complexity o(s), where s is the supply of this good. These lower bounds imply that
our results are best possible.

2 Related Work

Mechanism Design for multi-unit auctions was initiated already by the celebrated work of
Vickrey [20], where he extended his famous mechanism for the case of multiple units, when
bidders have symmetric submodular valuation functions [11]. This mechanism is however
not computationally efficient with respect to the number of available units, as we already
discussed. It requires that bidders place a marginal bid per additional unit they wish to
receive and the allocation algorithm processes all these marginal bids. The design of multi-
unit mechanisms with polynomially bounded running time in log s, the number of units, was
first considered in [16]. In this work, Mu’alem and Nisan designed a truthful 2-approximation
mechanism for single-minded bidders, when their single preference on the number of units
is known to the mechanism (i.e., is not part of the bidders’ private information). The only
private datum is the non-zero value of the bidders for their single preference on the number of
units that they wish to be allocated. Briest, Krysta and Vöecking gave later a FPTAS in [2]
for the more general case where the bidders’ single preference is also private information.

Dobzinski and Nisan in [5, 6] analyzed a general scheme for designing MiR polynomial-
time truthful approximation mechanisms. This resulted in a PTAS for the case of k-minded
bidders, a 2-approximation for general valuation functions that are accessed (by the allocation
algorithm) through value queries, and a 3

4 -approximation for symmetric subadditive valuation
functions. Dobzinski and Dughmi gave a truthful in expectation FPTAS for multi-minded
bidders in [4]. Very recently, Vöcking gave a universally truthful randomized PTAS for
general valuation functions accessed by value queries [21] (in contrast, all of our mechanisms
are deterministic). For the multi-unit combinatorial setting (i.e., with more than one distinct
goods) the known results concern mainly bidders that have demands for a single unit from
each good (see e.g. [13, 2]). In contrast, we consider a constant number of goods, but multi-
demand bidders. Bartal, Gonen and Nisan [1] proved approximation and competitiveness
results for multi-unit Combinatorial Auctions with multi-demand bidders, where the bidders’
demands on numbers of units are upper and lower bounded. The approximation guarantees
depend on these bounds.

The study of a constant number of goods, each in arbitrary limited supply, was initiated
by Grandoni et al. in [7]. The authors utilized methods from multi-objective optimiza-
tion (approximate Pareto curves and Langrangian relaxation) to design and analyze truthful
polynomial-time approximation schemes for a variety of settings. In particular, they devised
truthful FPTASs that approximate both the objective function (Social Welfare or Cost) of
multi-capacitated versions of problems within factor (1 + ε), while violating the capacity con-
straints by a factor (1 + ε) (capacity here corresponds to limited supply of each out of a few
distinct goods). Problems considered in [7] include multi-unit auctions, minimum spanning
tree, shortest path, maximum (perfect) matching and matroid intersection; for a subclass of
these problems a truthful PTAS is also analyzed, that does not violate any of the capacity
constraints.
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3 Definitions

Let [m] = {1, . . . ,m} be a set of m goods, where m is assumed to be a fixed constant. There
are s` ∈ N units (copies) of good ` ∈ [m] available. A multiset of goods is denoted by a vector
x = (x(1), x(2), . . . , x(m)), where x(`) is the number of units of good ` ∈ [m], ` = 1, . . . ,m.
The set of all multisets is denoted by U = ×m`=1{0, 1, . . . , s`}. Let N = [n] = {1, . . . , n} be
the set of n agents (prospective buyers/bidders). Every bidder i ∈ [n] has a private valuation
function

vi : U 7→ R+,

so that vi(x) for any x ∈ U denotes the maximum monetary amount that i is willing to
pay for x ∈ U , referred to as his value for x. The valuation functions are normalized, i.e.
vi(0, . . . , 0) = 0 and assumed to be monotone non-decreasing: for any two multisets x ≤ y
where “≤” holds component-wise, we assume vi(x) ≤ vi(y).

A mechanism is an allocation method A and a payment rule p. The allocation method
elicits the bidders’ bids b = (b1, . . . , bn) for their valuation functions and determines an
allocation x(b) = A(b), so that xi(b) ∈ U is the multiset of goods allocated to bidder i. The
payment rule determines a vector p(b), where pi(b) is the payment of bidder i. Every bidder
i bids so as to maximize his quasi-linear utility, defined as:

ui(b) = vi(xi(b))− pi(b).

We study truthful mechanisms (A, p) wherein each bidder i maximizes his utility by reporting
his valuation function truthfully, i.e., by bidding bi = vi, independently of the other bidders’
reports, b−i:

Definition 1 A mechanism (A, p) is truthful if, for every bidder i and bidding profile b−i, it
satisfies ui(vi,b−i) ≥ ui(v′i,b−i), for every v′i.

We will drop notation b and will use only x for an allocation output by A, since we analyze
truthful mechanisms. Our objective function is the Social Welfare of the output allocation x,
which we aim at maximizing:

SW (x) =
∑
i

vi(xi),

Our mechanisms use VCG payments and Maximum-in-Range (MiR) [18] allocation algo-
rithms:

Definition 2 [18] An algorithm choosing its output from the set A of all possible allocations
is MiR, if it fully optimizes the Social Welfare over a subset R ⊆ A of allocations.

Nisan and Ronen [18] identified MiR allocation algorithms as the sole device that, along with
VCG payments, yields truthful mechanisms for Combinatorial Auctions.

4 Multi-Minded Bidders

In this section we consider multi-minded bidders; every such bidder i ∈ [n] is associated with
a collection of multisets Di ⊆ U , referred to as his demand-set. We assume that he values
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each d ∈ Di, an amount vi(d) > 0. For every other multiset d ∈ U \ Di we define:

vi(d) =

 max
e∈Di

{
vi(e)

∣∣∣e ≤ d
}

if such e ∈ Di exists

0 otherwise.

Naturally, vi(∅) = 0. Consequently, in this setting, the valuation function of a bidder i
can be compactly expressed as the collection (vi(d),d)d∈Di

. As in related literature, we
assume therefore that an algorithm expects in input bids of this form, rather than (an oracle
representing) the entire valuation function. We say that a bidder i is a winner of the auction, if
he is assigned exactly one of his alternatives fromDi (or a superset of one of these alternatives);
this corresponds to the XOR-bidding language in Combinatorial Auctions [11].

We design a (1, 1 + ε, 1 + ε, . . . , 1 + ε)-approximation FPTAS, that maximizes the Social
Welfare and may violate the supply constraints on goods by a factor at most (1 + ε), for any
fixed ε > 0. This will be the allocation algorithm of our mechanism. We will show that it is
MiR, thus can be paired with VCG payments to yield a truthful mechanism.

In light of turning it into a truthful mechanism, we use notation of actual valuation
functions in its definition. The approach is reminiscent of the one that yields the FPTAS
for the well-known one-dimensional knapsack problem. Fix any ε > 0. First, remove all the
alternatives d ∈ Di for any i ∈ [n] and ` = 1, . . . ,m, such that d(`) > s` (if all alternatives
of some bidder i are removed, remove i). Henceforth, we use the same notation, U , [n], Di,
etc., for the remaining alternatives and bidders. The demands of the alternatives d ∈ Di are
rounded so that for any good ` ∈ [m], we have d′(`) = bn·d(`)

εs`
c, for any agent i ∈ [n]. The

new supply for good ` becomes now s′` = dnε e.
We define the dynamic programming table V(i, Y1, . . . Ym) for i = 1, . . . , n and Y` ∈

{0, 1, 2, . . . , s′`} for any ` ∈ [m]. The cell V(i, Y1, . . . , Ym) stores the maximum welfare, i.e.,∑
j vj(xj), of an allocation x, whose rounded version x′ = (bn·xj(`)

εs`
c)j,` uses alternatives of

the bidders in {1, 2, . . . , i}, and has total demand w.r.t. good ` = 1, . . . ,m which is precisely
Y`, i.e.,

∑
i x
′
i(`) = Y`.

To compute the entries of table V, we observe that, the problem V(1, Y1, . . . Ym) for
any collection of Y`’s such that: (Y1, . . . , Ym) ∈ {0, 1, . . . , dnε e}

m, is easy to solve. For
each such entry V(1, Y1, . . . Ym) we check if bidder 1 has an alternative d ∈ D1 such that
d′(`) = Y`, for all ` ∈ [m]. If yes, let d be an alternative of maximum valuation; we as-
sign V(1, Y1, . . . , Ym) = v1(d) and build an auxiliary table A[1, Y1, . . . Ym] which we set in
this case to {(1,d)}. Otherwise, if bidder 1 does not have any such alternative, we assign
V(1, Y1, . . . Ym) = 0 and A[1, Y1, . . . Ym] = {(1, ∅)}. To define V(i + 1, Y1, . . . , Ym), consider
bidder i+ 1 and his alternatives d = (d(1), . . . , d(m)) ∈ Di+1; let now

νi+1 = max
d∈Di+1

{
vi+1(d) + V

(
i, Y1 − d′(1), ..., Ym − d′(m)

) ∣∣∣d′ ≤ Y
}

(1)

where, for all i, we set V(i, Y1, . . . Ym) = −∞ and, accordingly, A[i, Y1, . . . Ym] = ∅, if at least
one of the Yi’s is negative. Consequently:

V(i+ 1, Y1, . . . , Ym) = max
{
νi+1,V(i, Y1, . . . Ym)

}
.

Accordingly, if νi+1 ≤ V(i, Y1, . . . Ym), we set:

A[i+ 1, Y1, . . . , Ym] = A[i, Y1, . . . , Ym] ∪ {(i+ 1, ∅)},
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otherwise:

A[i+ 1, Y1, . . . , Ym] = A[i, Y1 − d′(1), . . . , Ym − d′(m)] ∪ {(i+ 1,d)},

where d is an alternative in Di+1 maximizing (1). Finally, we inspect all the solutions from
entries V(n, Y1, . . . , Ym) for all vectors (Y1, . . . , Ym) ∈ {0, 1, . . . , dnε e}

m, take one which maxi-
mizes the Social Welfare and output the solution given by the corresponding entry of the A
table.

The size of table V is n(dnε e+1)m and we need time roughly O(maxi |Di|+m) to compute
one entry of the table, so the overall time of the algorithm leads to an FPTAS. The optimality
with respect to the sum of values is easy to verify; for any feasible solution x to the original
problem, we have for each good ` = 1, . . . ,m:

∑
i xi(`) ≤ s`, or, equivalently,

∑
i
xi(`)·n
ε·s` ≤

n
ε

thus
∑

i

⌊
xi(`)·n
ε·s`

⌋
≤ s′` =

⌈
n
ε

⌉
. So, the feasibility of x is preserved in the rounded problem.

Because, the dynamic programming algorithm will inspect all feasible solutions to the rounded
problem, also an optimum solution to the original problem will be detected.

We argue that the supply constraints s`, ` = 1, . . . ,m, are violated by at most a factor
of 1 + 2ε. Fix any good ` ∈ {1, . . . ,m} and let x be the output allocation. Now we have∑

i

⌊
n·xi(`)
ε·s`

⌋
≤ s′` = dnε e, and because:

∑
i

n · xi(`)
ε · s`

≤
∑
i

⌊
n · xi(`)
ε · s`

⌋
+ |{i|xi ∈ Di}|

≤
⌈n
ε

⌉
+ n ≤ n

ε
+ 1 + n,

so finally
∑

i xi(`) ≤ (1+2ε)s`. Note that the algorithm is exact, in that it grants every bidder
a multiset from his demand set (or none). Assuming m = O(1) is essential for the result, even
in presence of the supply constraints’ relaxation. A proof of this claim is given at the end of
this section. The truthfulness of the FPTAS, denoted by A below, follows from the fact that
it optimizes over a fixed range of solutions.

Theorem 1 There exists a truthful FPTAS for the multi-unit combinatorial auction problem
with a fixed number of goods, when bidders have private multi-minded valuation functions,
defined, for each bidder, over a (private) collection of multisets of goods. The approximation
guarantee is (1, 1 + ε, . . . , 1 + ε), i.e., only the supplies of the goods may be violated.

Proof. To prove the theorem we show that A is MiR with range R = {x|∃b : A(b) = x}.
That is, for any allocation x ∈ R and bid vector b, we show SW (A(b),b) ≥ SW (x,b),

where for a bid vector b =
(

(bi(d),d)d∈Di

)
i∈N

and an allocation x ∈ R, we let SW (x,b) be

the Social Welfare of allocation x, evaluated according to the bid vector b, i.e., SW (x,b) =∑
i bi(x).

Fix allocation x and bid vector b =
(

(bi(d),d)d∈Di

)
i∈N

; by definition of range, there

exists a bid vector b̄, with b̄ =
(

(b̄i(d̄), d̄)d̄∈D̄i

)
i∈N

such that A(b̄) = x. Let xi(`), for

bidder i and ` = 1, . . . ,m, denote the variable indicating how many copies of item `, the
allocation x grants to bidder i. Note that because x = A(b̄) and A grants only demanded
alternatives (by its exactness), there exists a demand d̄i ∈ D̄i∪{∅} such that, for ` = 1, . . . ,m,
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xi(`) = d̄i(`). Since x is output of A, by definition of A we have that for any ` = 1, . . . ,m,∑
i

⌊
n·d̄i(`)
ε·s`

⌋
≤
⌈
n
ε

⌉
.

Now let C be the set of bidders such that b = (bC ,b−C) and b̄ = (b̄C ,b−C), that is,
b and b̄ only differ in the bids of bidders in the set C. For all bidders i ∈ C we assume
that their true valuation function is bi. Any such bidder i evaluates the alternative xi = d̄i
granted to him by allocation x as some ei ∈ Di ∪ {∅}. That is, vi(d̄i) = vi(ei). Assume, for
the sake of contradiction, that SW (x,b) > SW (A(b),b), i.e.:∑

i∈C
bi(ei) +

∑
j 6∈C

bj(x) >
∑
i∈C

bi(A(b)) +
∑
j 6∈C

bj(A(b)). (2)

Since d̄i(`) ≥ ei(`) for ` = 1, . . . ,m and i ∈ C, then by setting ei = d̄i for i 6∈ C, we obtain:

∑
i

⌊
n · ei(`)
ε · s`

⌋
≤
∑
i

⌊
n · d̄i(`)
ε · s`

⌋
≤
⌈n
ε

⌉
,

for ` = 1, . . . ,m. Then the solution which grants to bidder i the alternative ei ∈ Di ∪ {∅}
is considered by algorithm A on input b. This solution has Social Welfare SW (x,b) and
therefore (2) is in contradiction with the definition of A. 2

A related result from [2] is a truthful FPTAS for a single good in limited (not violated) supply;
this cannot be generalized for our setting of more than one supply constraints.

A note on hardness Note that this problem is strongly NP-hard when we do not allow
to violate supply constraints and m ≥ 2 [3]. Also the assumption that m is a fixed constant
is necessary. Otherwise the problem is equivalent to multi-unit Combinatorial Auctions and
is hard to approximate within m1/2−ε for any ε > 0 [13]. This claim is true even if we allow
for solutions to violate the capacities. In particular:

Proposition 1 In a multi-unit combinatorial auction with m distinct goods, it is NP-hard
to approximate the Social Welfare within factor better than m−1/2, even if we allow a multi-
plicative (1 + ε)-relaxation of the supply constraints, for any ε < 1.

Proof. The argument is as follows: it is known that it is hard to approximate the maximum
independent set problem in a graph G = (V,E) within a factor m1/2−ε for any ε > 0, where
|E| = m [8]. By using a reduction from [13], we reduce this problem to our problem by having
the set of goods [m] = E and the set of single-minded bidders V ; each bidder’s u ∈ V set
contains all edges adjacent to u in graph G and each bidder’s valuation for his set is 1. Now
if we allow to violate the capacity (of 1) of each good by a factor of 1 + ε, where ε < 1, then a
feasible solution to the relaxed problem is an independent set in graph G. Thus the relaxed
problem is equivalent to the maximum independent set problem in G. 2

4.1 Multi-Dimensional Knapsack

We discuss an application of our FPTAS, in relation to the multi-dimensional Knapsack
problem [3]. Suppose we are given a multi-dimensional knapsack with a constant number of
compartments m and compartment ` = 1, 2, . . . ,m has capacity s`. An object di ∈ U has
dimensions (di(0), di(1), . . . , di(m)) and corresponds to a single agent i, where di(0) = vi.

8



This multiple knapsack problem corresponds to a single-parameter version of the problem
we treated above. (It is worth mentioning that for this version with unique valuation for
all the demand sets, our FPTAS from Section 4 can be shown to be monotone [10, 2] when
one carefully fixes some tie-breaking rule.) Now, we can further generalize this problem
by adding an additional constant number of cost functions and budgets, say di(`), s`, ` =
m + 1,m + 2, . . . ,m′, for each di ∈ U , where m′ > m is a fixed constant, and we may
assume any “capacity” or “covering” constraints in {≥,≤} for each ` = m + 1, . . . ,m′. For
such a generalized scenario we can follow the approach similar to our approach in Section 4
and obtain a truthful FPTAS which gives a (1, 1 + ε, . . . , 1 + ε)-approximation (violation
of constraints is needed for the reason mentioned above). The issue of monotonicity of the
algorithm is similar to the case of Combinatorial Auctions.

5 The Generalized Dobzinski-Nisan Method

We discuss here a direct generalization of a method designed by Dobzinski and Nisan in [6],
for truthful single-good multi-unit auction mechanisms. We will use the method’s general-
ization for multiple goods in the next subsection, to obtain a truthful PTAS for bidders with
submodular valuation functions (over multisets). Let A be a polynomial-time MiR allocation
algorithm for t = O(1) bidders and s` units from each good ` = 1, . . . ,m, with complexity
A(t, s), s = (s1, . . . , sm), and approximation ratio α ≤ 1. Then, one may use algorithm A as
a routine within the procedure of Figure 1, to obtain a polynomial-time MiR algorithm for
n bidders, with approximation ratio (α− m

t+1).
The procedure executes algorithm A on every subset of at most t bidders for any t = O(1)

and for every combination of certain pre-specified quantities of the goods. For each output
allocation it considers the rest of the bidders and allocates optimally to them an integral
number of bundles from each good. The main result shown in [6] for a single good can be
also shown for m goods:

Theorem 2 Let A be a Maximum-in-Range algorithm, with complexity A(t, (s1, . . . , sm)) for
t bidders and at most s` units from each good ` = 1, . . . ,m. There exists a range of allocations,
R, such that the Dobzinski-Nisan Method runs in poly(log s1, . . . , log sm, n,A(t, (s1, . . . , sm)))
time, for every t = O(1), and outputs an allocation with value at least (α − m

t+1) times the
optimum Social Welfare.

The proof is a direct extension of the proof given in [6] for a single good. Consider the
MiR algorithm A, to be used within the Dobzinski-Nisan method; it executes in polynomial
time for t = O(1) bidders and m distinct goods, each in limited supply s`, ` ∈ [m]. Let
RA,t,m denote the range of this algorithm. It is straightforward to verify that the method
outputs allocations that are “(R, t, χ1, . . . , χm)-round”, whereR = RA,t,m, given the following
definition (generalized appropriately from [6]), for “round” allocations:

Definition 3 An allocation is (R, t, χ1, . . . , χm)-round if:

• R is a set of allocations and in each x ∈ R at most t bidders are allocated non-empty
bundles. The bidders are allocated together up to s` − χ` units from each good ` =
1, . . . ,m.

9



1. for ` = 1, . . . ,m do:

(a) define u` := (1 + 1
2n)

(b) define L` :=
{

0, 1, bu`c, bu2
`c, . . . , u

blogu`
s`c

` , s`

}
2. for every subset T ⊆ N of bidders, |T | ≤ t, do:

1. for every (χ1, . . . , χm) ∈
(
×m`=1L`

)
do:

1 Run A with s` − χ` units from each good ` ∈ [m] and bidders in T .

2 Split the remaining χ` units from each good ` ∈ [m] into ≤ 2n2 bundles
(per good), each of max

{
b χ`

2n2 c, 1
}

units.

3 Find the optimal allocation of the equi-sized bundles among bidders N \ T .

3. Return the best allocation found.

Figure 1: The Dobzinski-Nisan Method for multiple goods.

• There exists a set T of bidders, |T | ≤ t, such that they are all allocated according to
some allocation in R.

• Each bidder i ∈ N \ T receives an exact multiple of max
{
b χ`

2n2 c, 1
}

units from good `
and:

∑
i∈N\T xi(`) ≤ n ·max

{
b χ`

2n2 c, 1
}

, for ` = 1, . . . ,m

Then the range of the method is the subset of all allocations that are (RA,t,m, κ, χ1, . . . , χm)-
round, such that (χ1, . . . , χm) ∈ (×m`=1L`) and κ ≤ t. Call the range of the method Rc. We
show that it approximates the socially optimum allocation within factor (α− m

t+1).

Lemma 1 Let x∗ = (x∗1, . . . ,x
∗
n) be a socially optimum allocation. There exists an allocation

x ∈ Rc with SW (x) ≥ (α− m
t+1) · SW (x∗).

Proof. Without loss of generality (because of monotonicity of valuation functions), assume
that all units of all goods are allocated in x∗ and that v1(x∗1) ≥ v2(x∗2) ≥ · · · ≥ vn(x∗n). For
every good ` = 1, . . . ,m choose the largest value χ` ∈ L` so that s` − χ` ≥

∑t
i=1 vi(x

∗
i ).

When executed on bidders on the subset of bidders T = {1, . . . , t} with s` − χ` units from
good ` = 1, . . . ,m, algorithm A outputs an allocation (x1, . . . ,xt) such that

∑t
i=1 vi(xi) ≥

α
∑t

i=1 vi(x
∗
i ).

Now consider for each good ` = 1, . . . ,m the a bidder j` ∈ {t+1, . . . , n} with the maximum
number of units in x∗ from this good. Define r` =

∑n
i=t+1 xi(`). Then x∗j`(`) ≥

r`
n . By

definition of r` and χ` for each good `, we have r` ≥ χ`. Also, because χ` was chosen to have
the largest possible value, it must be χ` ≥ r`

u`
≥ r` − r`

2n . For every bidder i ≥ t + 1 with
i 6= j` for ` = 1, . . . ,m, we round up his allocation with respect to good ` to a multiple of
max

{
b χ`

2n2 c, 1
}

. The extra units for each good ` we take from bidders j` who may not obtain
any unit of the good. Observe that we may need to add at most n · χ`

2n2 ≤ χ`
2n extra units from

each good `, that we take from bidder j`, who has at least r`
n ≥

χ`
n units.

Thus, for all bidders except for j`, ` = 1, . . . ,m we increased the units of goods they
obtain. Because j` ≥ t + 1 and v1(x1) ≥ · · · ≥ vn(xn), we have vj`(x

∗
j`

) ≤ 1
t+1

∑t
i=1 vi(x

∗
i )
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and vi(xi) ≥ vi(x∗i ) for i 6= j`, ` = 1, . . .m. Then:

SW (x) =
∑
i

vi(xi) ≥ α
t∑
i=1

vi(x
∗
i ) +

∑
i≥t+1

vi(xi)

≥ α
t∑
i=1

vi(x
∗
i ) +

∑
i≥t+1

vi(x
∗
i )−

m∑
`=1

vi(x
∗
j`

)

=

(
α− m

t+ 1

) t∑
i=1

vi(x
∗
i ) +

∑
i≥t+1

vi(x
∗
i ) ≥

(
α− m

t+ 1

)
SW (x∗)

which concludes the proof. 2

The lemma completes the proof of Theorem 2.
Let us explain how to find an optimal allocation of single-good bundles (i.e. bundles of

identical units) for each good to bidders in N \ T , in step 2.1.3 of the algorithm (Figure 1).
We use a dynamic programming. By re-indexing the bidders appropriately, assume that
T = {n− t+ 1, . . . , n}, thus N \ T = {1, . . . , n− t}. For every i = 1, . . . , n− t and for every

q = (q1, . . . , qm) ∈
(
×mi=1[2n2]

)
, define V(i,q) = V(i, (q1, . . . , qm)) to be the maximum value

of welfare that can be obtained by allocating at most q` equi-sized bundles (of units) from
each good ` = 1, . . . ,m to bidders 1, . . . , i. Each entry V(i,q) of the dynamic programming
table can be computed using:

V(i,q) = max
q′≤q

(
vi(q

′ · b) + V(i− 1,q− q′)
)
,

where q′ ≤ q is taken component-wise; i.e. maximization occurs over all vectors q′ such that
q′(`) ≤ q(`) for each ` = 1, . . . ,m. Note that q′ · b denotes the inner product.

Simple application: k-Minded Bidders The Dobzinski-Nisan method for multiple dis-
tinct goods can be applied immediately in the setting of (multi-parameter) k-minded bidders,
to yield a PTAS while respecting fully the supply constraints of the goods. For m = O(1)
goods and for any constant number of t bidders the optimum assignment can be found ex-
haustively in polynomial time in log s`, ` = 1, . . . , s, and m. In particular, there are exactly
O(kt) cases to be examined exhaustively, so that the optimum is found. Plugging this algo-
rithm in the procedure of Figure 1, yields a PTAS that, contrary to the developments of the
previous section, approximates the optimum Social Welfare within factor (1 + ε) and respects
the supply constraints.

5.1 Submodular Valuation Functions

We consider submodular valuation functions over multisets in U , as defined in [9]:

Definition 4 For any ` = 1, . . . ,m let e` be the unary vector with e`(`) = 1 and e`(j) = 0, for
j 6= `. Let x and y denote two multisets from U , so that x ≤ y, where “≤” holds component-
wise. Then, a non-decreasing function v : U 7→ R+ is submodular if v(x + e`) − v(x) ≥
v(y + e`)− v(y).
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We assume that these valuation functions, being exponentially large to describe, are ac-
cessed by the algorithm through value queries; i.e., for any value that the algorithm needs to
process as input, it asks for it from the corresponding bidder, for the particular corresponding
multiset.

We will design the MiR approximation algorithm A, needed by the method. The range we
consider for this setting is an extension of the one considered by Dobzinski and Nisan in [6].
For any ε > 0, define δ = 1 + ε; we will be assigning to bidders unit bundles of each good
` ∈ [k], that have cardinality equal to an integral power of δ. For every good ` ∈ [k], one of the
n bidders (possibly a different bidder per good) will always obtain the remaining units of the
specific good. We show that optimization over this range provides a good approximation of
the unrestricted optimum Social Welfare; also, optimizing over this range yields an FPTAS for
a constant number n of bidders. This, used within the generalized Dobzinksi-Nisan method
will yield a PTAS for any number of bidders.

Lemma 2 An optimum assignment within the defined range, recovers at least a factor
(

2−ε
2+2ε

)m
of the socially optimum welfare.

Proof. Let x∗ = (x∗1, . . . ,x
∗
n) denote the welfare maximizing assignment. We will round

iteratively – for a particular good ` ∈ [m] in each iteration – the assignment of units to each
bidder in x∗, to an integral power of δ. Let x[`] be the assignment after rounding with respect
to the `-th good. The final assignment x ≡ x[m] will approximate the welfare of x[0] ≡ x∗.

In the beginning of `-th iteration we process the assignment x[`−1], by rounding the assign-

ment of unit bundles of good `. Assume w.l.o.g. that x
[`−1]
1 (`) ≥ x

[`−1]
2 (`) ≥ · · · ≥ x

[`−1]
n (`).

Also w.l.o.g., we assume that every bidder except for bidder 1 receives an integral power of δ
units of good `; bidder 1 receives the remaining units. Let the set of bidders be partitioned
as N = O ∪ E where O contains the odd indices of bidders and E the even ones. We will
consider two cases:∑

i∈O
vi

(
x

[`−1]
i

)
≥
∑
i∈E

vi

(
x

[`−1]
i

)
and

∑
i∈O

vi

(
x

[`−1]
i

)
<
∑
i∈E

vi

(
x

[`−1]
i

)
. (3)

For the first case, for every i ∈ O\{1} we will round x
[`−1]
i (`) up to the closest integral power

of δ, while obtaining the extra units to do so by rounding x
[`−1]
i−1 (`), i − 1 ∈ E down to the

nearest appropriately chosen integral power of δ. We obtain x
[`]
i (`) ≤ δ · x[`−1]

i (`) and:

x̂
[`−1]
i−1 (`) = x

[`−1]
i−1 (`)− (δ − 1)x

[`−1]
i (`) ≥ x[`−1]

i−1 (`)− (δ − 1)x
[`−1]
i−1 (`)

thus, x̂
[`−1]
i−1 (`) ≥ (2− δ)x[`−1]

i−1 (`). To ensure that for bidder i− 1 we obtain an integral power

of δ, we may need to divide x̂
[`−1]
i−1 (`) at most by δ, thus: x

[`]
i−1(`) ≥ 1

δ x̂
[`−1]
i−1 (`) = 2−δ

δ x
[`−1]
i−1 (`).
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The welfare of the emerging assignment x[`] is:

SW
(
x[`]
)

=
∑
i∈N

vi

(
x

[`]
i

)
=
∑
i∈O

vi

(
x

[`]
i

)
+
∑
i∈E

vi

(
x

[`]
i

)
≥
∑
i∈O

vi

(
x

[`−1]
i

)
+

2− δ
δ

∑
i∈E

vi

(
x

[`]
i

)
=
∑
i∈O

vi

(
x

[`−1]
i

)
+

2− δ
δ

(
SW

(
x[`−1]

)
−
∑
i∈O

vi

(
x

[`−1]
i

))

=
2δ − 2

δ

∑
i∈O

vi

(
x

[`−1]
i

)
+

2− δ
δ

SW
(
x[`−1]

)
≥ δ − 1

δ
SW

(
x[`−1]

)
+

2− δ
δ

SW
(
x[`−1]

)
=

1

1 + ε
SW

(
x[`−1]

)
The second line follows by submodularity; for any ` ∈ [m], we have x

[`]
i−1(`) ≥ 2−δ

δ x
[`−1]
i−1 (`), so

vi−1

(
x

[`]
i−1

)
≥ 2−δ

δ vi

(
x

[`−1]
i−1

)
.

Consider now the second case in (3), where
∑

i∈O vi

(
x

[`−1]
i

)
<
∑

i∈E vi

(
x

[`−1]
i

)
. For

i ∈ E \ {2} we round up x
[`−1]
i (`) to the closest integral power of δ; the extra units for

this we will obtain from i − 1 ∈ O, by rounding x
[`−1]
i (`) down to an appropriately chosen

closest integral power of δ. x
[`−1]
2 (`) will be rounded down to closest integral power of δ

(contrary to the rest of x
[`−1]
i (`), i ∈ E), i.e., x

[`]
2 (`) ≥ 1

δx
[`−1]
2 (`). For i ∈ E \ {2} it will be

x
[`]
i (`) ≤ δ · x[`−1]

i (`) and then we take:

x
[`]
i−1(`) ≥ 1

δ

(
x

[`−1]
i−1 (`)− (δ − 1)x

[`−1]
i (`)

)
≥ 2− δ

δ
x

[`−1]
i−1 (`) (4)

Then, for the Social Welfare of x[`] we have:

SW
(
x[`]
)

=
∑
i∈N

vi

(
x

[`]
i

)
=
∑
i∈O

vi

(
x

[`]
i

)
+
∑
i∈E

vi

(
x

[`]
i

)
≥ 2− δ

δ

∑
i∈O

vi

(
x

[`−1]
i

)
+

1

δ
v2

(
x

[`−1]
2

)
+

∑
i∈E\{2}

vi

(
x

[`]
i

)

=
2− δ
δ

(
SW

(
x[`−1]

)
−
∑
i∈E

vi

(
x

[`−1]
i

))
+

1

δ
v2

(
x

[`−1]
2

)
+

∑
i∈E\{2}

vi

(
x

[`−1]
i

)
=

2δ − 2

δ

∑
i∈E\{2}

vi

(
x

[`−1]
i

)
+
δ − 1

δ
v2

(
x

[`−1]
2

)
+

2− δ
δ

SW
(
x[`−1]

)
≥ δ − 1

2δ
SW

(
x[`−1]

)
+

2− δ
δ

SW
(
x[`−1]

)
=

2− ε
2 + 2ε

SW
(
x[`−1]

)
The second line of this derivation is again due to submodularity: the factors on the sum over

odd-indexed bidders and on v2(x
[`−1]
2 ) follow by (4) and because x

[`]
2 (`) ≥ 1

δx
[`−1]
2 (`) Thus, for

any ε > 0, there is an assignment within the described range that approximates the optimum

Social Welfare within factor
(

2−ε
2+2ε

)p
·
(

1
1+ε

)q
, for some integers p, q, such that p + q = m

The result follows by 1
1+ε ≥

2−ε
2+2ε . 2
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We obtain the following (intermediate) result:

Theorem 3 For multi-unit combinatorial auctions with n submodular bidders, n = O(1),
and m = O(1) distinct goods, each good ` ∈ [m] available in an arbitrary supply, there exists
a truthful deterministic FPTAS for any ε ≤ 1, that approximates the optimum Social Welfare
within factor (1 + ε).

Proof. For any fixed ε > 0 we can search the specified range exhaustively in polynomial
time; to find the allocation with maximum Social Welfare, we have to try O(logδ s`) cases for
each of n − 1 bidders, given a fixed bidder for assigning the remaining units. Thus the time
required for trying all possible bundle assignments of a specific good ` and for all possible
choices of a “remainders” bidder is O

(
n(logδ s`)

n−1
)
. Because for every fixed allocation of

a specific good we need to try all possible allocations for the remaining m − 1 goods, the
overall complexity is in total O

(
nm(logδ max` s`)

(n−1)m
)
, which is polynomially bounded for

constant m and n. Also notice that, for ε ≤ 1 we obtain a FPTAS, because:

logδ max
`
s` = (log2(1 + ε))−1 · (log2 max

`
s`)

and log−1
2 (1 + ε) ≤ ε−1. 2

Using Theorem 3 within the general Dobzinski-Nisan method, we obtain:

Corollary 1 There exists a truthful PTAS for multi-unit combinatorial auctions with con-
stant number of distinct goods and submodular valuation functions.

6 General Valuation Functions

Interestingly, the direct generalization of the Dobzinski-Nisan method for a constant num-
ber of multiple goods, does not immediately yield, for general valuation functions, a result
comparable to the one shown in [6] for a single good; for m = 1 a truthful 2-approximation
mechanism was obtained (and this factor was shown to be optimal). When m = 1, the rele-
vant MiR algorithm A involved in Theorem 2 solves optimally the case of t = 1 bidder, by
allocating all units of all goods to him. The monotonicity of the valuation functions guaran-
tees that this allocation is optimal for t = 1 bidder. The factor 2 approximation follows. For
m > 1 goods however, Theorem 2 appears to require a different algorithm A (for, possibly,
t > 1 bidders), to yield a comparable result. Instead, 2-approximation for the case of general
valuation functions accessed by value queries can be obtained, by simple modification of the
direct approach that was given in [6], for general valuation functions. The modification is
small, but we include it here for completeness.

We describe from scratch a MiR allocation algorithm. The algorithm splits for every good
the number of units into n2 equi-sized bundles of size b` = b s`

n2 c; it also creates a single extra
bundle containing the remaining units r`, so that n2 · b` + r` = s`. The algorithm allocates
optimally whole bundles of units from each good to the n bidders.

First we show that this range approximates by a factor 2 the optimum Social Welfare. Let
x∗ = (x∗1, . . . ,x

∗
n) denote the socially optimum allocation. We start with x∗ and produce an

allocation x in the range within which the algorithm optimizes, that approximates SW (x∗)
within factor 2. Assume w.l.o.g. that all items are allocated in x∗ (by the monotonicity of
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valuation functions) and, for each good ` = 1, . . . ,m, let j` = arg maxi xi(`). Then x∗j`(`) ≥
s`
n .

Let L = {j1, . . . , j`}. We consider two cases here.

Either:
m∑
`=1

vj`(x
∗
j`

) ≥
∑
i 6∈L

vi(x
∗
i ), or:

m∑
`=1

vj`(x
∗
j`

) <
∑
i 6∈L

vi(x
∗
i ).

The summation of all vj`(x
∗
j`

) makes the difference of this proof from the one in [6].

In the first case simply allocating all unit bundles to bidders in L yields a 1
2 approximation

of SW (x∗); this allocation is examined by the MiR algorithm. In the second case we round up
– separately for each good ` – the allocation of bidders i 6∈ L to the nearest multiple of b`. The
units needed for this purpose we find for each good ` from the corresponding bidder j` who
may not obtain any unit in x. This is possible because we add at most n · s`

n2 = s`
n ≤ x∗j`(`)

units in total by this rounding. This way we make up an allocation x that gives all unit
bundles for each good to bidders in N \ L; this allocation is also examined by the MiR
algorithm. Thus, there exists a solution within the range that approximates SW (x∗) within
factor 2.

To complete our analysis, we show how to compute a MiR allocation for the described
range, using dynamic programming. Let r = (r1, . . . , rm) denote the vector of amounts that
correspond to bundles of “remainders” per good as described above. Given L ⊆ 2{1,...,m}

we denote by r[L] the projection of r on indices in L; the remaining coordinates are set to
0. Let b = (b1, . . . , bm). For any subset L ∈ 2{1,...,m}, define VL(i,q), q = (q1, . . . , qm)
as the maximum welfare achievable when allocating at most q` unit-bundles for each good
` = 1, . . . ,m among bidders 1, . . . , i and the “remainders” bundle for each of the goods ` ∈ L.
We compute each VL(i,q) as follows:

VL(i,q) = max
L′⊆L

max
q′1≤q1,...,q′m≤qm

{
vi
(
q · b + r[L′]

)
+ VL\L′(i− 1,q− q′)

}
Because m = O(1), the entries of the dynamic programming table can be computed in
polynomial time. Thus:

Theorem 4 There exists a truthful polynomial-time mechanism for multi-unit Combinatorial
Auctions with a constant number of distinct goods and general valuation functions that, using
value queries, approximates the welfare of a socially optimum assignment within factor 2.

7 Conclusions

In this paper we analyzed deterministic mechanisms for multi-unit Combinatorial Auctions
with a constant number of distinct goods, each in limited supply. We analyzed in particular
Maximum-in-Range allocation algorithms [18] for optimizing the Social Welfare in this multi-
unit combinatorial setting that, paired with VCG payments, yield truthful auctions. Our main
results include (i) a truthful FPTAS for multi-minded bidders, that approximates the supply
constraints within factor (1+ε) and optimizes the Social Welfare; (ii) a deterministic truthful
PTAS for submodular bidders, that approximates the Social Welfare within factor (1 + ε)
without violating the supply constraints. For achieving (ii), we used a direct generalization of
a single-good multi-unit allocation method proposed by Dobzinski and Nisan in [6]. Finally, we
showed how to treat unrestricted valuation functions in our setting, by adjusting appropriately
an analysis from [6]. All of the discussed developments are best possible in terms of time-
efficient approximation, as follows by relevant hardness results.
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