
ONE HUNDRED YEARS OF COMPLEX DYNAMICS

MARY REES

The subject of Complex Dynamics, that is, the behaviour of orbits of

holomorphic functions, emerged in the papers produced, independently, by

Fatou and Julia, almost 100 years ago. Although the subject of Dynami-

cal Systems did not then have a name, the dynamical properties found for

holomorphic systems, even in these early researches, were so striking, so

unusually comprehensive, and yet so varied, that these systems still attract

widespread fascination, 100 years later. The first distinctive feature of iter-

ation of a single holomorphic map f is the partition of either the complex

plane or the Riemann sphere into two sets which are totally invariant under

f : the Julia set — closed, nonempty, perfect, with dynamics which might

loosely be called chaotic — and its complement — open, possibly empty,

but, if non-empty, then with dynamics which were completely classified by

the two pioneering researchers, modulo a few simply stated open questions.

Before the subject re-emerged into prominence in the 1980’s, the Julia set

was alternately called the Fatou set, but Paul Blanchard introduced the idea

of calling its complement the Fatou set, and this was immediately universally

accepted.

Probably the main reason for the remarkable rise in interest in complex

dynamics, about thirty-five years ago, was the parallel with the subject of

Kleinian groups, and hence with the whole subject of hyperbolic geome-

try. A Kleinian group acting on the Riemann sphere is a dynamical system,

with the sphere splitting into two disjoint invariant subsets, with the limit

set and its complement, the domain of discontinuity, having exactly similar

properties to the Julia and Fatou sets. Dennis Sullivan realised that a par-

allel of a result of Ahlfors [4] solved an outstanding open problem posed by

Fatou: whether the Fatou set (in modern parlance) contains any wander-

ing components. I.N. Baker, who worked on transcendental dynamics from

the 1950’s onwards, had shown that wandering domains are indeed possible

in the transcendental setting [11]. Ahlfors had shown that the domain of

discontinuity of a finitely generated Kleinian group has only finitely many

orbits, and also bounded the number of orbits, by using an argument on

dimension using the Measurable Riemann Mapping Theorem [23, 5]. The

Fatou set, as it is now called, is analogous to the domain of discontinuity, as,
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on this set, the family of iterates of the holomorphic function is equicontinu-

ous, in the locally compact topology. Sullivan adapted the argument to solve

Fatou’s conjecture in the negative [145], and in the process introduced the

technique of quasi-conformal deformation into the subject of iteration of a

single holomorphic function. The tool was immediately employed by Douady

and Hubbard [48, 47] in their groundbreaking work on the dynamics of qua-

dratic polynomials. It was also used a few years later by Shishikura [139] to

solve another longstanding open problem of Fatou: obtaining a sharp bound

on the number and type of periodic orbits in the Fatou domain, in terms

of the degree of the map, or, more accurately, the number of critical values.

On a somewhat different tack, Michel Herman, using his work on Arnold’s

Conjecture for circle diffeomorphisms (which won the Salem prize), found

examples of the missing type of periodic Fatou domain: annuli on which

the return map is holomorphically conjugate to an irrational rotation [64].

These domains, the possibility of whose existence had been raised by Fatou,

are now known, naturally, as Herman rings.

Dennis Sullivan also formulated the Dictionary [145], which translated

results and conjectures between the dynamics of holomorphic functions and

of Kleinian groups. Of course the “No wandering domains” result was one

instance of this. But perhaps the most interesting feature of the dictionary,

as Sullivan pointed out, was that key results on one side were parallelled by

unsolved conjectures on the other – and this happened in both directions.

A very important example of such a parallel concerns hyperbolic and sta-

ble maps and groups. Stability and hyperbolicity are both very important

concepts in dynamics in general. A dynamical system is stable if all systems

in a sufficiently small neighbourhood of it — with respect to some suitable

topology on which the definition naturally depends — are topologically con-

jugate to the original. For holomorphic functions, J-stability rather than

stability is considered, that is, maps f for which there exist neighbourhoods

Ug of the Julia set of g with g−1(Ug) ⊂ Ug, and continuously varying home-

omorphisms ϕg : Uf → Ug such that ϕg ◦ f = g ◦ ϕg on f−1(Uf ). This is

simply to take account of the critical points of the holomorphic map, for

which the dynamics might vary. The definition of hyperbolicity for invert-

ible dynamical systems, which in a fairly general form is Smale’s Axiom A

[144], is rather long, and will not be given here. But the idea is to carry over

to diffeomorphisms properties of hyperbolic linear maps . A linear map is

hyperbolic if it has no eigenvalues on the unit circle. For diffeomorphisms,

the sums of eigenspaces for eigenvalues of module < 1 (or > 1) translate to

invariant stable (or unstable) foliations. Hyperbolic systems are quite easily

shown to be stable, but the converse was not so clear in the 1960’s, when,

the question was raised as to whether stability and hyperbolicity might be
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equivalent, and also whether the resulting open set was dense. All of these

are true for circle diffeomorphisms. It was realised early that stable sys-

tems are not dense in the C1 space of invertible dynamical systems [143] in

dimension three or more. The example was strengthened, in dimension 4,

to show non-density of Axiom A. Newhouse showed that Axiom A is not

dense in dimension two or greater in the Cr topology for r ≥ 2. As for the

equivalence of the concepts, in the early 1980’s Mañé proved that C1-stable

diffeomorphisms are hyperbolic [101].

The definition of hyperbolicity, for iteration of a rational function, is

much simpler than the definition for diffeomorphisms. Because of the clas-

sical theory of complex dynamics, a rational function can be defined to be

hyperbolic if and only if every critical point is attracted to an attractive

periodic orbit. For Kleinian groups, the concept of hyperbolicity translates

into compactness of a certain manifold (or orbifold) with boundary. This

is the quotient of the union of three-dimensional hyperbolic space and the

domain of discontinuity on the bounding Riemann sphere by the action of

the group. Hyperbolic Kleinian groups are sometimes just called “good

groups”, and hyperbolicity is generally considered to be “good” behaviour.

When Sullivan raised the question in the context of holomorphic dynamics,

not long afterwards, he succeeded in proving that stable Kleinian groups

are hyperbolic [146]. The corresponding question for any complex variety

of rational maps is still unanswered. In the other column of the dictionary,

Mañé, Sad and Sullivan [102] showed that stable maps are dense in families

of rational maps, with some simply described and well-understood excep-

tions. At the time, over thirty years ago, the opposite column for Kleinian

groups was quite unknown, that is, whether the “good” finitely generated

Kleinian groups are dense. As a result of the breakthroughs of recent years,

when virtually all outstanding problems concerning hyperbolic manifolds —

and, indeed, three-dimensional manifolds in general —- have been solved,

density of good groups is also known [26].

Topological density of hyperbolicity for a parameter space, if true, is

one way which might help towards a global understanding of dynamical

variation within the parameter space. One can also consider the measur-

able setting, replacing hyperbolicity by non-uniform hyperbolicity, a concept

which has been a very important guiding force in dynamics since the 1970’s.

Non-uniform hyperbolicity is more easily defined in one real or complex

dimension for smooth or holomorphic maps by requiring non-uniform ex-

ponential growth of derivatives (fn)′(x) for almost every x. Pesin theory,

developed for the invertible setting of non-uniform hyperbolicity, where the

definition also parallels the definition of hyperbolicity, with “almost every-

where” replacing “everywhere”, showed that the property implied strong
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ergodicity properties, including Bernoulli [117]. The hope was, then, that

these properties might hold on a positive measure proportion of parameter

space In the invertible case, the original theory developed by Pesin in the

1970’s hypothesised a smooth invariant probability measure. Subsequently

this condition was expanded to include a larger class of measures known as

Sinai-Bowen-Ruelle (SBR) measures, and in general dynamics more, and

significant, progress, has been made when the non-uniform hyperbolicity

has been concentrated on a strange attractor which is a proper subset of the

underlying manifold, probably of zero measure ([15, 16] for two important,

relatively early results in a huge literature). Work in one dimension started

this development. Jakobson proved, also in the 1970’s, that a positive mea-

sure proportion of the logistic family (the real quadratic family) supported

an absolutely continuous invariant measure [71]. The proof did not give

non-uniform hyperbolicity on this positive measure set, but a later proof by

Benedicks and Carleson did [14]. A corresponding result for the family of

rational maps of any degree was proved in [124]. There have been extensive

studies of the conditions needed for non-uniform hyperbolicity [121]. Per-

haps the most comprehensive result for the logistic family. or indeed, for any

family so far, was obtained by M. Lyubich in “Almost every real quadratic

map is either regular or stochastic” [97].

The Lai Sang Young formula [158] relating Hausdorff dimension, entropy

and Lyapunov exponents for measures gave rise to considerable develop-

ment in dynamics, including complex dynamics. Significant impetus was

also given to complex dynamics by Makarov’s theorem from classical com-

plex analysis, on the Hausdorff dimension of harmonic measure of planar

domains, and a sharp bound on the Hausdorff measure gauge function [100].

Both these results had impact in work by Przytycki, Urbanski and Zdunik

[122, 123] which connected the harmonic measure to Gibbs measures for

some self-similar domains, where even the constant in the gauge function

was computed. But Manning’s results bounding by 1 Hausdorff dimension

of the measure of maximal entropy on the Julia set of any polynomial [103]

predated Makarov’s result.
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The Mandelbrot set [46]

The family of complex quadratic polynomials is the most famous family

of complex dynamical systems. This is effectively a family parametrized

by C, because, up to affine conjugation, any quadratic polynomial is of the

form fc(z) = z2 + c for some c ∈ C. For c sufficiently large, including

any c with |c| > 2, fc is hyperbolic, with the orbit of the finite critical

point 0 attracted to infinity, and the Julia set is a Cantor set. All these

maps are topologically conjugate, in the same hyperbolic component (that

is, a connected component in the open set of hyperbolic maps). Attention

then focuses on the complement, the Mandelbrot set M , which first drew

widespread attention with the pictures of Benoit Mandelbrot. Pictures of the

Mandelbrot set are very familiar and have passed into the popular domain.

(The set also emerged, at about the same time, in a study of discrete Kleinian

groups by Brooks and Mattelski [27].) This creature has a central heart-

shaped region M0, with countably many limbs emanating from roots on the

boundary of M0. Mathematically, M0 is the set of c for which fc has a

non-repelling fixed point, which is easily computed as the set of c for which

|1−
√

1− 4c| ≤ 1. Getting a correct mathematical description of the rest of

the Mandelbrot set is not so simple. Computer pictures can be misleading,

and on this basis, Mandelbrot initially conjectured that M is disconnected.

Douady and Hubbard showed that this was not the case and in fact that M is

cellular, that is, the complement in C∪{∞} is biholomorphic to an open disc.

They did this by producing the uniformising map Φ from the complement

of M to the complement of the unit disc. In an interlacing formula between

dynamical and parameter plane which is typical of dynamical studies, Φ(c) =

ϕ−1c (c) for the conjugacy ϕc (suitably normalised) satisfying ϕc ◦f0 = fc ◦ϕc
in a neighbourhood of ∞ whose image contains the critical value c of fc,

if c /∈ M . This approach gives a lot more information, which has been

a guiding force to research in the subsequent decades. The extraordinary



6 MARY REES

detail obtained by Douady and Hubbard followed from their results that

Φ−1 has limits along rays in {z : |z| > 1} of rational argument, and so does

ϕc for c ∈ M (and for all c, if the rays are suitably interpreted, since in

this case the rays are no longer in the set {z : |z| > 1}). The endpoint

of any ray of rational argument for ϕc is a non-attracting periodic point

of fc, and hence in its Julia set. The limit along any such ray for Φ−1 is

a parabolic parameter value c, that is, there is a point z of some period

m under fc such that the multiplier (fmc )′(z) is of the form e2πiω for ω

real and rational. Endpoints of rays for ϕc might coincide, and similarly

for Φ−1. Douady and Hubbard described all possible coincidences. This

description provides a topological model for the Mandelbrot set, which is

homeomorphic to M if M is locally connected, and also describes the map fc
up to topological conjugacy whenever the Julia set J(fc) is locally connected.

Also, if M is locally connected then hyperbolic maps are dense. The work of

Douady and Hubbard was given a very illuminating reinterpretation by W.

Thurston [153] in terms of laminations on the unit disc: quadratic invariant

laminations and the so-called quadratic minor lamination. The question of

whether M is locally connected is still unanswered, and is regarded as one

of the most important open questions in Complex Dynamics. It is known

as the MLC Conjecture.

Julia set of the “rabbit polynomial” with dynamical rays landing at the α

fixed point [99]

The α fixed point featured prominently in the exposition of Douady and

Hubbard. The equation z2+c = z has two solutions, except when c = 1
4 (the

cusp of M0) when there is just one, the parabolic fixed point of f1/4. The

endpoint of the ray of argument 0 has to be a fixed point. The other fixed

point is the α fixed point, and clearly must be repelling, for c /∈ M0. Less

obviously, for c ∈M \M0, the α fixed point is the endpoint of a finite num-

ber of rays of rational argument which are cyclically permuted with some

rotation p/q, and the rotation determines which limb of M contains c. The
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root of the limb is the parabolic parameter in ∂M0 for which the multiplier

of the α fixed point is e2πi(p/q). This follows from the Yoccoz inequality, [68]

which estimates the size of limbs in terms of the rotation number, using

two different interpretations of modulus of a torus, in an intriguing parallel

in method and statement with the Jorgensen inequality for Kleinian groups

[74]. Almost all of the work on the Mandelbrot set in the last thirty years

has involved using the Yoccoz puzzle, where, similarly, key methodology is to

find bounds on moduli of annuli in terms of other annuli which are defined

combinatorially. The Yoccoz puzzle is a sequence of successively finer parti-

tions of successively smaller neighbourhoods of the Julia set, defined for fc
for each c, where the level zero partition is constant on each limb, simply

using the α fixed point as boundary, to separate the Julia set into pieces.

The finer partitions are made by pulling back the level zero partition under

iterates of fc. There are, correspondingly, successively finer partitions of the

parameter space. This forms the Yoccoz parapuzzle. The sets in the zero

level partition are simply M0 and the limbs of M . The sets in the n’th level

partition of the parapuzzle are the sets on which the n’th level dynamical

partition remains topologically the same. Yoccoz used annuli defined by

combinatorially by the puzzle to prove local connectivity of the Julia set of

any non-renormalizable map fc ( a result which can be extended to maps

which are not infinitely renormalizable by using extensions of the Yoccoz

puzzle) and local connectivity of M at any non-renormalizable point. There

is a very useful re-working of part of the proof by Shishikura which was

exposed by Roesch [135]. Other results followed. Shishikura and Lyubich

independently proved measure zero of the Julia set at non-renormalizable

points (probably both unpublished). Douady and Hubbard had produced

examples showing that the Julia set of a quadratic polynomial need not

be locally connected. More, and more detailed, examples were given by

Levin [90]. But it is conjectured, and widely believed, that the Mandelbrot

set is locally connected – and this would be true if the annulus estimates

using the Yoccoz parapuzzle could be extended to the infinitely renormaliz-

able case. The most persistent and successful efforts at extension, probably

still ongoing, were made by Jeremy Kahn in collaboration with Lyubich,

Avila and others, in a series of papers [76, 77, 78, 79], see also Lyubich

and Yampolsky [98]. This extension of methods was probably instrumental

in progress in density of hyperbolicity and rigidity results in other families

of real polynomials [86], although other results for real polynomials came

earlier [28, 85, 91, 92, 93, 94].

The study of renormalizable maps in the quadratic family has been a

very important part of the development of complex dynamics. Such maps

include those with Siegel discs, and Cremer points. A Siegel disc is a periodic
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Fatou domain on which the return map is holomorphically conjugate to an

irrational rotation. Siegel discs occur for polynomials, but Herman rings,

mentioned earlier, do not. A Cremer point is a periodic point with multiplier

e2πiω, for irrational ω, which is not within a Siegel disc, whose existence was

proved by Cremer [43, 108]. The other periodic types of periodic Fatou

domain are attractive domains, which contain an attractive periodic point,

and parabolic domains, which contain a periodic point on the boundary, for

which the multiplier is a root of unity. The nature of the continued fraction

expansion of ω was shown by Yoccoz [157, 104] to determine whether the

corresponding periodic point is in a Siegel disc or is a Cremer point: it

was shown that a necessary and sufficient condition for a Siegel disk is that

ω is a Bryuno number. (A conjecture in that paper was recently proved

by Cheraghi and Chéritat [37].) In another result concerning the type of

the number, M.Herman had proved [65] that if ω satisfies a Diophantine

condition then any periodic orbit of Siegel domain boundaries contains a

critical point. In contrast, he showed [66] that there are Siegel domains

for quadratic polynomials with boundaries which are quasi-circles (that is,

images of round circles under quasi-conformal homeomorphisms) with no

critical point in the forward orbit. Buff and Chéritat built on this [29] to

show that for each integer n there are quadratic maps with Siegel discs

with boundaries which are Cn but not Cn+1, with no critical point on the

boundary. They also showed, with Avila [7], that there is a dense set of

parameter values for which the boundary of the Siegel disc is a Jordan curve.

As for Cremer points, Perez- Marco made pioneering studies of the dynamics

in these cases, introducing hedgehogs by name and concept [114, 115, 116].

Later results on Siegel and Cremer parameters used deep study of para-

bolic parameters, that is, parameters for which the map has a parabolic do-

main. Dynamics within parabolic domains are studied using a simple change

of coordinate called the Fatou coordinate [108]. Techniques for studying dy-

namics near parabolic points have been very substantially refined in recent

decades, perhaps starting with the “Tour de Valse” argument in the Orsay

notes [48] used to show landing of periodic rays. Adam Epstein developed

a refined index theory for parabolic points and used this to prove that all

but one hyperbolic component in the family of hyperbolic quadratic maps

are precompact [51]. A significant refinement was developed by Shishikura

[140] to show that the Julia sets of some quadratic polynomials, obtained

by taking fast-increasing sequences of parabolic parameters (and therefore

including some Cremer parameters), have Hausdorff dimension two, and,

correspondingly, the boundary of the Mandelbrot set has Hausdorff dimen-

sion two. In contrast, C. Petersen proved that the Julia set of a quadratic

polynomial with Siegel disc for ω of bounded type is locally connected and
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of Lebesgue measure zero. McMullen [107] subsequently proved that the

Julia set has Hausdorff dimension less than two and proved some results on

“space filling” of the Siegel disc under “renormalization” (where this refers

to the type of renormalizations used for circle maps, rather than for polyno-

mials). Petersen and Zakeri [120] proved that, for almost all ω the Julia set

of e2πiωz + z2 has zero Lebesgue measure. Buff and Chéritat’s production

of examples of Siegel and Cremer parameters, and also of infinitely renor-

malizable parameters, with positive measure Julia sets, had input from the

above works, from earlier joint work [30, 31], from Inou-Shishikura’s work on

renormalisation of parabolic maps [70], and, in particular, from Chéritat’s

work on parabolic implosion [40, 38, 39]. In a commonly arising situation in

mathematics, although there was no direct communication, these results on

positive measure were obtained at about the same time that zero measure

was proved in the other column of the dictionary. As a corollary [36] of the

proof that a three-dimensional hyperbolic manifolds with finitely generated

fundamental group (which is a Kleinian group) is tame [2, 33], it was shown

that the limit set of the Kleinian group has zero measure: confirmation of

the famous Ahlfors Conjecture [3].

Renormalization of maps probably first emerged in dynamics with uni-

modal interval maps in the work of Feigenbaum [54, 55, 56]. Renormalization

simply means restricting to a subset of the dynamical plane and considering

the return map to that set, usually in the case when some iterate of the map

sends this set to itself. The case when this return map or renormalization

bears a resemblance to the original map on the whole dynamical plane is of

particular interest.

The original focus of attention was the period doubling map, represented

in quadratic polynomials by the Feigenbaum parameter value for which the

returns of 2n’th iterates of the map to successively smaller sets are the same

modulo topological conjugacy – with bounded distortion, as was eventually

proved. Feigenbaum noticed that successive period doubling parameters in

the quadratic family appeared to form a geometric progression in the limit.

He postulated, initially for unimodal maps, the existence of a map which was

fixed under renormalization, with the renormalizing map on an appropriate

space of maps having a smooth codimension one stable manifold through

the fixed map, and an unstable manifold of dimension one. A computer-

assisted proof was provided by O. Lanford [87, 88], in part joint with Collet

and Eckmann [42] but never, it seems, published in full. Shorter proofs with

more analytic input were then given by Lanford [89] and by M. Campanino,

H. Epstein and D. Ruelle [34, 35]. Sullivan proved bounded distortion at all

scales of the postcritical set for the Feigenbaum parameter polynomial and

for other quadratic-like maps [147].
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Intense effort has been devoted to obtaining distortion bounds under

renormalization in the quadratic family, not just for real polynomials, but

complex as well. Obtaining such bounds is probably the key to proving

MLC. There have been notable successes in this direction, and involving

such bounds. McMullen’s book on renormalization [105] proved the non-

existence of line-fields on the Julia sets of real quadratic polynomials: not

quite enough to prove density of hyperbolicity in the real family as the re-

sults of [102] do not apply in this setting. But the study of renormalizable

maps did play a part in the proofs of density of hyperbolicity in the real qua-

dratic family, independently, by Graczyk-Swiatek [58, 59], and by Lyubich

[95, 96]. The complex bounds obtained for the real quadratic family, that is,

bounds on distortion of successive renormalizations, obtained by bounds on

moduli of suitable annuli, imply that the Julia set of the Feigenbaum poly-

nomial is locally connected [67] and of measure zero, and similarly for other

bounded infinite renormalizations in the real quadratic family [72, 105].

In the dictionary between complex dynamics and hyperbolic geometry, in-

finitely renormalisable polynomials are generally regarded as the analogue of

hyperbolic manifolds fibering over the circle [106], and the distortion bounds

which have been sought were motivated in part by the proofs of the exis-

tence of hyperbolic manifolds fibering over the circle [151, 112]. Another

important strand of work initiated in the 1980’s, with fundamental con-

nections to hyperbolic geometry, and, in particular, with W.P.Thurston’s

transforming results in that field, was Thurston’s theorem for postcritically

finite branched coverings of the sphere [152, 50]. This theorem gives a neces-

sary and sufficient condition, in terms of a natural linear transformation on

vector spaces generated by multicurves, sets of disjoint closed simple loops,

for a postcritically finite branched coverings to be homotopy equivalent, in

the appropriate sense (which has always been known as Thurston equiva-

lence) to a rational map — which is then unique up to Möbius conjugacy.

The statement of the result can be described as a geometrization theorem,

the type of theorem with which Thurston transformed three dimensional

topology. It is reminiscent of Thurston’s hyperbolization theorems: in par-

ticular the existence of a hyperbolic manifold in the homeomorphism class

of any compact Haken manifold [150]. Such a manifold is unique up to hy-

perbolic isometry, due to Mostow’s Rigidity Theorem. There are parallels

in the proofs also, as, in both proofs, Thurston uses an iteration on Te-

ichmüller space which turns out to have a fixed point. So topological types

of three-manifolds are replaced by postcritically finite rational maps.

Thurston’s theorem for branched coverings, and the proof, opened many

avenues. The result indicated a classification of all postcritically finite

branched coverings of the sphere, which have come to be known as Thurston
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maps, and there has been extensive work on these and on extensions to them

[60, 61, 62, 20]. Checking the necessary and sufficient conditions for a map

to be Thurston equivalent to a rational map is nontrivial. A simple neces-

sary and sufficient condition for matings [47] of quadratic polynomials was

conjectured by Douady and proved by Tan Lei [149] (with a more general re-

sult in [126]). Thurston’s theorem has been generalised in a number of ways.

Some hyperbolic components do not contain postcritically finite maps and

yet there should be a characterization of those branched coverings which

are homotopy equivalent, in the appropriate sense, to hyperbolic rational

maps. This was achieved independently, by Zhang Gaofei and and Jiang,

Yunping [73] and by Cui Guizhen and Tan Lei [45]. In another direction,

[127] considered some cases of generalizations of the original theorem, where

just some critical points are constrained. The resulting topological spaces

turn out to have very rich topology, usually with infinitely generated fun-

damental groups, and naturally described up to homotopy equivalence as a

union of infinitely many topological spaces with a clearly defined geometric

structure, glued together. The component topological spaces are usually

either parameter spaces of rational maps, or Thurston equivalence classes of

postcritically finite branched coverings or products of these. It was hoped

that this would lead to a complete description of variation of dynamics in

some parameter spaces of rational maps but so far this has proved difficult

even in the first cases [128]. A version of Thurston’s Theorem for exponen-

tial maps was proved in [69]. In a completely different vein, the concept of

monodromy group of a postcritically finite quadratic polynomial was devel-

oped [13], which connected with the large field of recurrent, contracting self-

similar groups. The proof of Thurston’s theorem was developed by Adam

Epstein [52] in a way which gave rise to a new concept of index of parabolic

fixed points, with a number of applications, including a refinement of the

Fatou-Shishikura inequality of [139].

Although the flavour of Thurston’s result looks primarily topological and

geometric, there is also a connection with a theme which is common in dy-

namics although, perhaps, not always very explicitly stated: homotopy type

determines dynamics up to semiconjugacy. Some results of this type are folk-

lore. A self-map f of the circle of degree d, where |d| > 1, is semiconjugate

to z 7→ zd, that is, there is a continuous map ϕ : S1 → S1 (of degree 1) such

that ϕ(f(z)) = (ϕ(z))d for all z ∈ S1. There are results of this type by John

Franks for toral automorphisms of hyperbolic type [57] (originally from his

thesis). In the case of a Thurston map f which is Thurston equivalent to a

rational map g, and where f satisfies some mild local conditions near critical

orbits, there is a continuous map ϕ : S2 → S2 such that ϕ ◦ f = g ◦ ϕ. This

can be developed to describe f up to topological conjugacy [125]. While
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this is of use, one would hope for more: to find a useful description of all

possible Thurston equivalence classes of postcritically finite maps in a way

which also gives information about their positions in parameter space. Such

a description is provided in the case of quadratic polynomials by Thurston’s

lamination models [153]. The dynamics of any quadratic polynomial with

locally connected Julia set is described up to topological conjugacy by the

corresponding invariant laminations. Even if the Julia set is not locally con-

nected, the corresponding lamination usually gives some information. The

invariant lamination is described by its minor leaf. In the postcritically finite

case — when the endpoints of the minor leaf have rational arguments — the

minor leaf describes the Thurston homotopy type. But the Quadratic Minor

Lamination as Thurston calls it, whose leaves are minor leaves, provides a

model for the Mandelbrot set which is conjecturally homeomorphic to it.

It is an obvious strategy to look for an analogue of this beautifully de-

tailed and complete description in other families of holomorphic maps. Fam-

ilies which have been considered, in different ways, include: polynomials of

higher degree; quadratic rational maps; Newton’s method maps, especially

the rational maps used in Newton’s method for finding zeros of polynomi-

als; an families of transcendental maps, with the prime example being the

exponential family. Many different considerations come into play. In some

cases, such as unicritical polynomials (with a single finite critical point) the

conjectural description of the Mandelbrot set applies pretty directly. For

cubic polynomials in the complement of the connectedness locus, Branner

and Hubbard [24, 25] showed that the theory for quadratic polynomials,

together with an adaptation of the Yoccoz puzzle again give a complete de-

scription modulo MLC. For polynomials of degree d for d > 2, the theory

of invariant laminations still applies: very effectively [81] (where the first

definitions given of laminations might be a little different from Thurston’s

original one) but there are extra dimensions which cause significant prob-

lems (see [63] for example), which have yet to be solved. For parameter

space is higher dimensional: of complex dimension 2d − 2. It is possible

to consider slices of parameter space of complex dimension one, and this

has yielded interesting information. See [82], for example, for a study near

infinity in the parameter space. Study of the whole connectedness locus was

soon seen to present significant problems, but significant advances have been

made [18, 19], in part by a detailed study of the main cuboid, which is the

model for the closure of the principal hyperbolic component, with a fixed

Fatou domain mapped to itself with degree 3. As for parameter spaces of

rational maps: the monotonic character of variation of dynamics which is

a feature of polynomial parameter spaces is completely lost, and complete

models have to be built with that in mind. At least, that is my view, but
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probably not universally held, and there were indications that W. Thurston,

among others, thought monotonic character could be preserved in his final

years before his death in 2012.

Leaving global parameter spaces aside, I believe there is scope for substan-

tial development of local study of parameter spaces. An interesting study

near a type B (bitransitive) hyperbolic component of rational maps, using

regluing, was made by Timorin [155]. So far as I know, all applications of

generalization of the Yoccoz parapuzzle have essentially been within com-

plex dynamics but there is a general principle involved which suggests that

there might even be considerably wider application on a local level. Yoccoz

himself pointed out that his puzzle methods did not transfer directly even

to unicritical polynomials of degree > 2. After a gap of some years, there

were a number of notable achievements on this front [8, 28]. The methods

have been applied to real polynomials of any degree [85, 86], and to entire

functions [131].

The Yoccoz puzzle for a limb of the Mandelbrot set is an example of a

sequence of Markov partitions, generated by taking the backward orbit of a

single Markov partition, which persists over the entire limb. Markov parti-

tions are ubiquitous in dynamics, where their use in some form goes back

nearly a century. Their use has been directed to the analysis of single dy-

namical systems. Much of the key development was done by Rufus Bowen

in the 1970’s [21, 22]. (He died in 1978, at the age of 31.) His work concen-

trates on the case of invertible dynamical systems, including the existence

for hyperbolic invertible dynamical systems. These were the main focus of

dynamics research at the time. But the definition of Markov partitions for

non-invertible dynamical systems, and the results for these, principally for

expanding maps and contracting iterated function systems, are generally

easier, and even stronger than for invertible systems. What makes the Yoc-

coz puzzle especially attractive is the simple description of the sets in it,

and the persistence over limbs, which gives rise to the parapuzzle for each

limb. This means that information can be obtained about, not just single

dynamical systems, but the variation of dynamics across each limb.

There has been substantial work on extending methods to other dynamical

systems. Significant work on maps of the interval, not confined to complex

dynamics, predates Yoccoz’ work. Natural partitions for maps of intervals

are given by the sets on which a map is monotone – which is a finite partition

for smooth maps with finitely many critical points. While these partitions

are not usually Markov, simply giving rise to symbolic dynamics in general,

they generate Markov partitions for the important class of postcritically

finite maps, and also give rise to natural puzzles and parapuzzles. Perhaps

the best known development was the Milnor-Thurston Kneading Theory for
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maps of the interval, principally for unimodal maps [109]. In the domain

of complex dynamics, early extensions of Yoccoz’ work were achieved by

Roesch to the family of Newton cubics, and she also extended the use to

other specific families [132, 133, 134, 136, 137, 138, 119]. Aspenberg and

Yampolsky [6] (see also [154]) used an analogue of the Yoccoz puzzle to

study the family of quadratic polynomials with a critical point of period 2

— where all hyperbolic maps are known to be either matings or Wittner

captures. The basic idea appeared, quite non-rigorously, in the 1995 Cornell

thesis of Jiaqi Luo. In work intended for further development, I consider a

construction, which works only locally, but still in an open neighbourhood

of the closure of a hyperbolic component, under fairly general conditions, in

[129]. My impression is that it could indeed be possible to give a model for

parameter space locally using such a construction.

As indicated at the beginning of this article, a strong motivation for study-

ing complex dynamics is as a microcosm. I have concentrated on one variable

and on rational dynamics, as I have no expertise in complex dynamics in

several variables, nor of transcendental holomorphic functions, and also for

reasons of space. Nor have I said anything about dynamics of rational maps

over non-Archimedean fields in place of the complex numbers [83, 84]. All

of these these areas have expanded enormously in recent decades. Such an

expansion cannot be simply due to mathematicians’ inclination to gener-

alise. Dynamical features which are hugely important in general dynamics,

and which do not arise in rational complex dynamics, do arise for these.

With holomorphic functions in higher dimensions, hyperbolicity can have a

nature much more representative of the general picture, with both expand-

ing and contracting directions. At the very least, this has increased the

pool of examples which have the potential to to exhibit strange hyperbolic

attractors. With transcendental holomorphic dynamics also the variety of

non-uniformly hyperbolic behaviour is greater, with the possibility of infin-

itely many attractive basins (or sinks). In both cases, also, there are strong

links with other areas of complex analysis: with potential theory and clas-

sical function theory respectively, mirroring the cross-fertilisation between

complex dynamics of rational functions and Kleinian groups, and hence with

hyperbolic geometry. With the growth of the subject of complex dynamics,

the links with adjacent areas have strengthened and have become increas-

ingly intricate, and the big questions in dynamics remain. It would have

been impossible to predict these developments 100 years ago. It is also im-

possible to predict the impetus of complex dynamics over the next century,

but the narrative is likely to continue for a while yet.

I am grateful to my colleague Lasse Rempe-Gillen for reading a large part

of this article, and for his suggestions and comments.
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