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Isolated reception plates provide an engineering approach to quantify the structure-borne sound power
input from machinery through the measurement of the spatial-average velocity level and structural
reverberation times. For applications in building acoustics there are practical and economic reasons to
consider using coupled reception plates formed by solid heavyweight walls or floors that are structurally
coupled to other building elements. This paper uses transient and steady-state statistical energy analysis
to investigate how the errors depend upon the building structure to which the coupled reception plate is
connected. It is shown that the problem is twofold. Firstly, in the low- and mid-frequency ranges, the
steady-state velocity level on the coupled reception plate is increased by energy returning from other
coupled plates. Secondly, the structural decays on the coupled reception plate have significant curvature
due to returning energy; hence short evaluation ranges are needed to minimise the error when determin-
ing the total loss factor. This leads to a problematic situation where the coupled reception plate appears
to give the correct answer due to the error in the energy cancelling out the error in the total loss factor.
The latter error can be minimised using short evaluation ranges for the structural reverberation time.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The prediction of sound and vibration in heavyweight buildings
is commonly tackled using Statistical Energy Analysis (SEA) or SEA-
based models [1]. For machinery that directly excites the building
structure, these models require knowledge of the structure-borne
sound power input from the machine into a building element such
as a wall or floor. A practical engineering solution to quantify this
power input in frequency bands is to use an isolated reception
plate in the laboratory [2,3]. This requires measurements in one-
third octave bands or octave bands to determine (a) the spatial-
average velocity levels on the reception plate due to excitation
from the machine, and (b) the structural reverberation times of
the reception plate in order to calculate the total loss factors. The
reception plate is usually isolated from any supporting structure
using resilient material so that structural coupling is negligible.
This ensures that the plate response is unaffected by energy
returning to it from any other structure to which it is coupled.

In heavyweight buildings a machine acting as a source of struc-
ture-borne sound will usually be connected to a receiving element
such as a brick/block wall, or a concrete floor. For many rigidly
connected or resiliently mounted machines in heavyweight build-
ings the magnitude of the receiver mobility tends to be much lower
than the source mobility, and the mass of the machine rarely has a
significant effect on the vibration response of the wall or floor. This
has led to a laboratory measurement standard, EN 15657-1 [4],
which uses an isolated reception plate formed from concrete. The
approach using an isolated reception plate is also incorporated into
an informative annex in EN 12354-5 [5] which uses an SEA-based
model to calculate sound pressure levels due to service equipment
in a building.

Rather than use an isolated reception plate in the laboratory,
there are economic and space-saving reasons to consider using a
heavyweight wall or floor that is structurally coupled to other
building elements to form a coupled reception plate. For example,
using a concrete floor that forms part of a reverberation chamber,
or a wall/floor that forms part of a source or receiving room in a
transmission suite. This would allow test laboratories to make
use of existing facilities to quantify the structure-borne sound
power input in a highly-controlled environment. However, with
laboratory installations it is not always possible to reproduce the
mechanical fixings and operating conditions that exist in situ.
Hence field measurement of the structure-borne sound power in-
put is potentially useful for survey grade measurements as well
as for diagnostics and noise control in existing or similar buildings.
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This could make use of coupled reception plates formed by walls or
floors in a heavyweight building where the machinery has already
been installed.

Recent research [6] by the authors has focussed on the errors
that occur in the estimate of the total loss factor from decay mea-
surements on heavyweight building elements, and the subsequent
errors in laboratory measurements of airborne and impact sound
insulation as well as structural coupling parameters such as the
vibration reduction index or the coupling loss factor. This work
used Transient Statistical Energy Analysis (TSEA) to assess the ef-
fect of different evaluation ranges when calculating the structural
reverberation time. TSEA models were validated by good agree-
ment with decay curves measured on concrete/masonry walls
and floors in a large building. This resulted in a proposal for an
evaluation procedure to determine structural reverberation times
that (a) maximises the part of the early decay which can be used
in the evaluation range and (b) identifies when a structural decay
curve is, and is not, significantly affected by energy returning from
the rest of the structure. The potential exists to use a similar ap-
proach with coupled reception plates and this is considered here
in the present paper.

This paper focuses on coupled reception plates in heavyweight
buildings and the systematic errors that can occur due to energy
returning to this reception plate from the connected structure.
SEA and TSEA are used to investigate how these errors depend
upon the building structure to which the coupled reception plate
is connected. The aim is to quantify the errors and give insight into
their origin in order to identify potential solutions that could min-
imise the errors that occur with coupled reception plates.

2. Quantifying structure-borne sound power using a reception
plate

The aim of measurements with an isolated or coupled reception
plate is to quantify the structure-borne sound power input from a
machine. It is primarily intended for machines that have a vibra-
tional output which can be considered stationary over time. The
reception plate method requires measurement of (a) the temporal
and spatial average mean-square bending wave velocity over the
plate surface and (b) the spatial-average structural reverberation
time of the plate. The structure-borne sound power input, Win,
can then be determined according to

W in ¼ xgE ¼ xgmhv2i ð1Þ

where E is the bending wave energy (J), m is the mass (kg) of the
reception plate, hv2i is the temporal and spatial average mean-
square bending wave velocity (m2 s�2) and g is the total loss factor
(dimensionless) determined from the structural reverberation time
given by

g ¼ 6ln10
2pfTs;X

ð2Þ

where Ts,X is the structural reverberation time (s) calculated using
an evaluation range of X dB.

For an isolated reception plate that is formed from 100 mm
thick concrete, laboratory measurements on building machinery
indicate that errors up to 5 dB can occur in the low-frequency
range where modal overlap and mode counts are low, but that er-
rors are typically only ±2 dB in the mid- and high-frequency ranges
[2].

These errors can be attributed to the inherent measurement
uncertainty and the assumptions made in the reception plate
method. In terms of measurement uncertainties it is reasonable
to assume that the largest components will be due to the spatial
variation in vibration over the plate surface (this affects the esti-
mate of spatial-average velocity levels) and errors in the evaluation
of the structural decay curves (this affects the total loss factors).
The two assumptions which tend not to be satisfied and can poten-
tially increase the error are (1) high modal overlap, which rarely
occurs due to low damping and/or low mode counts in the fre-
quency bands of interest and (2) significant variation in the driv-
ing-point mobility over the plate surface.

This paper is concerned with investigating and quantifying sys-
tematic errors due to the use of a coupled, rather than an isolated
reception plate. For this reason, numerical experiments are carried
out with transient and steady-state SEA as this avoids the afore-
mentioned measurement uncertainties and gives much greater in-
sight into the nature of the problem. For this reason it relies on
previous validations of SEA [1] and TSEA [6] with measurements
in heavyweight buildings.
3. Numerical experiments

Steady-state SEA is used to calculate the steady-state vibration
level on the coupled reception plate using matrix SEA. The use of
matrix SEA is necessary for heavyweight buildings as it is rarely
accurate to determine steady-state sound and vibration levels
using a limited number of paths with SEA path analysis because
of the importance of the many long paths [7].

Transient SEA (TSEA) is used to calculate the structural decay
curves on the coupled reception plate. Previous results [6,8] indi-
cate that when a heavyweight test element is rigidly connected
to the transmission suite structure there are multiple-slope decay
curves which cause significant errors in the measured total loss
factor due to energy returning to the test element from the labora-
tory structure. Hopkins and Robinson [6] have shown with TSEA
that for structural reverberation time measurements on walls
and floors in transmission suites or flanking laboratories that T5

or T10 should be used to avoid significant errors in the calculated
total loss factor.

The SEA and TSEA models are used to calculate one-third octave
band data over the building acoustics frequency range from 50 to
5k Hz.

3.1. Steady-state and transient SEA models

Matrix SEA calculations to determine the subsystem energies
are carried out using

PN
n¼1g1n �g21 � � � �gN1

�g12
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where gij is the coupling loss factor from subsystem i to j, and gii is
the internal loss factor for subsystem i and Win(i) is the power input
into subsystem i.

Transient SEA (TSEA) uses power balance equations in the time
domain as described by Powell and Quartararo [9]. Using a finite
difference approach, the decay curve for a subsystem i can be cal-
culated using

Eiðtnþ1Þ ¼ EiðtnÞ

þ Dt W inðiÞðtnÞ þx
XN

jðj–iÞ
gjiEjðtnÞ � giEiðtnÞ

� �h i
ð4Þ

where Ei(tn+1) is the energy at the next time step in subsystem i,
Ei(tn) is the energy at the current time step in subsystem i, gji is
the coupling loss factor from subsystem j to subsystem i, gi is the
total loss factor of subsystem i and Dt is the time interval.
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To determine structural decay curves, the power input in TSEA
is used with an arbitrary power input of 1 W into the bending wave
subsystem representing the coupled reception plate over a single
time interval at t = 0. At t = 0 the energy in all subsystems is zero;
hence the energy in each subsystem rises and then begins to decay
as would the measured velocity level on the structure after tran-
sient excitation (such as would occur with a hammer hit). How-
ever, in a TSEA model there is no need to use backward-
integration as there would be with measurements using impulse
excitation.

The structure-borne sound power is always injected into bend-
ing wave subsystems, however SEA and TSEA are considered for
bending wave only models as well as bending and in-plane wave
models. This is because in-plane waves have been shown to be
important in large buildings, and particularly in the mid- to high
frequency range [10]. Structural and radiation coupling loss factors
are calculated as described in Hopkins [1].

3.2. Test constructions

Two scenarios for heavyweight buildings are considered; a lab-
oratory and a field situation. To facilitate comparison of these two
situations the coupled reception plates form the wall or the floor/
ceiling in identical rooms. The floor and ceiling are 150 mm cast
in situ concrete (qs = 330 kg/m2), two of the opposite walls are
215 mm dense aggregate blockwork walls (qs = 430 kg/m2) with
the other two opposite walls being 100 mm dense aggregate block-
work walls (qs = 200 kg/m2). The material properties are taken
from published data [1] for the longitudinal wavespeed (cL), Pois-
son’s ratio (m), and the internal loss factor (gint). For cast in situ con-
crete: cL = 3800 m/s, m = 0.2, gint = 0.005. For dense aggregate
blockwork: cL = 3200 m/s, m = 0.2, gint = 0.01. All walls and floors
are assumed to be homogeneous isotropic plates.

The room dimensions are 4 m � 3.5 m � 2.4 m with a fre-
quency-independent reverberation time for the room of 0.5 s. In
the field situation this reverberation time is typical of a furnished
room in a dwelling [1]. Note that room reverberation has been
shown to affect measured structural decay curves on heavyweight
walls/floors when using long evaluation ranges [6]. Hence the use
of 0.5 s in this paper ensures that room reverberation will have
negligible effect on the structural decay curves for evaluation
ranges up to 30 dB in both the laboratory and the field situation.
This choice of room is therefore appropriate for the test construc-
tions because the aim is to draw conclusions on energy returning
to the coupled reception plate from other connected plates rather
than the rooms.

The laboratory situation is represented by a single test room
such as a small reverberant chamber. The ground floor slab can
either be ‘earthed’ or ‘unearthed’. An unearthed model assumes
that the total loss factor of the ground floor slab equals the sum
of the coupling loss factors plus the internal loss factor for con-
crete. This would represent a laboratory which was mounted on
vibration isolators to reduce background noise. In the earthed
model, the ground floor slabs have additional damping because
they are in direct contact with the earth over their complete lower
surface; this is simulated by setting the internal loss factor of each
ground floor to f�0.5 which is justified by measurements on actual
concrete ground floors [1].

The field situation is represented by a large building comprising
27 rooms that are identical to the single room used for the labora-
tory situation. In this case the ground floors are all ‘earthed’.

In practice, most machinery will directly radiate some sound
into the room in which it is housed. The sound field in the room
could then subsequently excite the coupled reception plate and
potentially increase its measured vibration level. For this reason,
it is appropriate to question whether a coupled reception plate
with a resiliently-mounted machine might incur additional errors
when the radiated sound power is greater than the structure-borne
sound power. Numerical experiments have been carried out to ad-
dress this question by building SEA models for the constructions
considered in this paper. These show that the largest error incurred
due to an additional sound power input from machinery is in the
low-frequency range (50–200 Hz). However, this error is still less
than 1 dB even for ratios of sound power input to structure-borne
sound power input up to a factor of five. For this reason, the sound
power radiated by the machinery into the room is assumed to be
zero.
4. Results

The first stage is to use TSEA to predict the structural decay curves
on each wall or floor after excitation has ceased. Fig. 1 shows these
predicted decays at 100, 500 and 1k Hz. For the earthed and un-
earthed laboratories the decays become distinctly non-linear after
a drop in vibration level of between 5 and 10 dB with a clear second-
ary decay slope due to energy returning from the coupled walls and
floors. In the field situation each wall/floor is connected to many
more walls and floors than the walls/floors of the single isolated
room in the laboratory; hence the decays are significantly faster in
the field situation. In both the laboratory and field situations, the de-
cays have significant curvature due to energy returning to the ex-
cited subsystem from the other walls and floors in the building
which results in a secondary slope. The implication for the calcula-
tion of reverberation times is that long evaluation ranges which ex-
tend across significant curvature on the decay will result in incorrect
reverberation times (i.e. too long) which will subsequently lead to
underestimates of the total loss factor.

The next stage is to calculate the error for the structure-borne
sound power input in decibels. This is calculated from Eq. (3) by
using matrix SEA to determine the mean-square velocity on the
coupled reception plate with five different scenarios for the total
loss factor. Scenario (1) uses exactly the same total loss factor that
is used in matrix SEA; hence it is referred to as the ‘exact TLF’. Sce-
narios (2)–(5) use TSEA to determine the structural reverberation
time with evaluation ranges of (2) 5 dB, (3) 10 dB (4) 15 dB, and
(5) 20 dB which are then used in Eq. (2) to calculate the total loss
factor. Figs. 2 and 3 show the errors in the structure-borne sound
power input for the laboratory situation where the ground floor
is unearthed and earthed respectively. Fig. 4 shows the errors for
the field situation.

In Scenario (1) the errors in the structure-borne sound power
input in both laboratory and field situations show that use of the
exact TLF leads to an overestimate in the structure-borne sound
power input. This overestimate tends to be most significant in
the low- and mid-frequency ranges. Hence even when the struc-
tural reverberation times correspond exactly to the total loss factor
there is an error due to energy returning from other walls and
floors in the building that increases the steady-state vibration level
on the coupled reception plate. This is discussed further in
Section 4.1 using SEA theory to give greater insight into this error.

With Scenarios (2)–(5) it is expected that the total loss factors
will often be underestimated due to the evaluation of curved struc-
tural decays (refer back to Fig. 1). Figs. 2–4 show that the effect of
this error on the total loss factor is smallest with T5 and largest
with T20. Hence there is a general trend for the positive errors ini-
tially observed in Scenario (1) to become increasingly negative as
the evaluation range is increased from Scenario (2) to (5). For mod-
els where only bending waves are considered, the errors are largest
in the low- and mid-frequency ranges, and the errors reduce with
increasing frequency. However, for bending and in-plane wave
models the errors tend to increase at high frequencies.



Fig. 1. TSEA predicted structural decay curves for the ground and upper floors, the separating wall and the flanking wall. Laboratory situation – ‘Unearthed’ ground floor (left
column). Laboratory situation – ‘Earthed’ ground floor (middle column). Field situation – ‘Earthed’ ground floors (right column).
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Scenarios (2)–(5) simulate the practical situation that would be
used for measurements on coupled reception plates in the labora-
tory or field. Hence there will always be two errors that combine
together: the overestimate in the steady-state vibration level and
the underestimate in the total loss factor. These two errors will
either cancel each other out at some frequencies, or combine to
give underestimates or overestimates of the power input depend-
ing on the evaluation range that is used for the reverberation time.

The error in the steady-state vibration level on the coupled
reception plate in the low- and mid-frequency ranges is a system-
atic error that is specific to the building and the choice of coupled
reception plate in that building. The error in the total loss factor
can be minimised by using the evaluation procedure for structural
reverberation times that was recently proposed by Hopkins and
Robinson [6]. This approach maximises the part of the early decay
which can be used in the evaluation range and identifies when a
structural decay curve is, and is not, significantly affected by en-
ergy returning from the rest of the structure.
5. Discussion

In this section, SEA theory is used to indicate how coupled
reception plates can result in overestimates of the structure-borne
sound power input. This is under the assumption that the total loss
factor of the coupled reception plate that is used to calculate the
power input is devoid of error.

Assume that a machine has a structure-borne sound power in-
put, Pin, on a reception plate. For a power input into an isolated
reception plate (subsystem 1) as shown in Fig. 5 the power balance
equation is

Pin ¼ xg11E1 ð5Þ

Now consider power input into the same reception plate (sub-
system 1) when it is coupled to another plate (subsystem 2) so that
it becomes a coupled reception plate. In this situation, the energy
stored in subsystem 1 is denoted as E01 to distinguish it from the
isolated reception plate. The power balance equations are now gi-
ven by

Pin ¼ xðg11 þ g12ÞE
0
1 �xg21E2 ð6Þ

0 ¼ xðg22 þ g21ÞE2 �xg12E01 ð7Þ

Re-arranging Eq. (7) gives

E2 ¼
g12E01

g22 þ g21
ð8Þ



Fig. 2. Error in the structure-borne sound power input using walls/floors as a coupled reception plate. Laboratory situation – ‘Unearthed’ ground floor. Markers connected
with solid lines represent the bending only model (50–5k Hz). Markers without lines represent the bending and in-plane model (630–5k Hz).

Fig. 3. Error in the structure-borne sound power input using walls/floors as a coupled reception plate. Laboratory situation – ‘Earthed’ ground floor. Markers connected with
solid lines represent the bending only model (50–5k Hz). Markers without lines represent the bending and in-plane model (630–5k Hz).
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Fig. 4. Error in the structure-borne sound power input using walls/floors as a coupled reception plate. Field situation – ‘Earthed’ ground floors. Markers connected with solid
lines represent the bending only model (50–5k Hz). Markers without lines represent the bending and in-plane model (630–5k Hz).

(a) (b)

Fig. 5. (a) Isolated reception plate. (b) Coupled reception plate.
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Combining Eqs. (6) and (8) gives

Pin ¼ xðg11 þ g12ÞE
0
1 �

xg12g21E01
g22 þ g21

ð9Þ

Equating (5) and (9) gives the energy ratio

E01
E1
¼ g11

g11 þ g12 � ð
g12g21
g22þg21

Þ
ð10Þ

Now it is possible to calculate the power with the reception
plate approach using the steady-state energy levels on the plate
and the exact total loss factors used in the SEA model to give the
calculated power ratio

P01
P1
¼ xðg11 þ g12ÞE

0
1

xg11E1
¼ g2

11 þ g11g12

g2
11 þ g11g12 � ð

g11g12g21
g22þg21

Þ
ð11Þ

Eq. (11) shows that the coupled reception plate will overesti-
mate the structure-borne sound power input. This overestimate
tends to be most significant when the internal loss factors are very
small.
Note that by solving the power balance Eqs. (6) and (7) for the
coupled reception plate to determine E01, it is possible to retrieve
the correct power input using

Pin ¼ xðg11 þ g12ÞE
0
1 �xg21E2 ð12Þ

This is confirmed by substituting (8) into (12) as it gives the
same result as Eq. (9). Hence the general equation to retrieve the
correct power input for a coupled reception plate that is connected
to N subsystems is

Pin ¼ x g11 þ
XN

j¼1
g1j

� �
E01 �x

XN

j¼1
gj1Ej ð13Þ

The implication is that the correct power input can be recovered
from a coupled reception plate if accurate values are available for
(a) the reception plate’s total loss factor (i.e. the bracket term in
Eq. (13)) and (b) the coupling loss factors from all other plates that
are connected to it. However, as these will be determined from
measurements this is only possible if the measurement uncertain-
ties are negligible for coupling loss factors and total loss factors
with masonry/concrete walls or floors. To assess these measure-
ment uncertainties, Fig. 6 shows typical standard deviations from
measurements on a 140 mm cast in situ concrete floor that was
rigidly connected on each of its four edges to a 215 mm dense
aggregate wall across an L-junction. Total loss factors for the floor
and two of these walls are shown in Fig. 6a; these were measured
using the evaluation procedure for structural reverberation times
described by Hopkins and Robinson [6]. Four coupling loss factors
were measured between the floor and two of these walls (i.e. two
coupling loss factors from floor to wall and two coupling loss fac-
tors from wall to floor) using simplified ESEA [1] for which the
standard deviations are shown in Fig. 6b. Simplified ESEA effec-
tively ignores in-plane wave energy even though significant in-
plane wave generation often occurs at masonry/concrete plate
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Fig. 6. Example measured data from a 140 mm cast in situ concrete floor that was
rigidly connected on each of its four edges to a 215 mm dense aggregate wall: (a)
Standard deviation for the total loss factor of the 140 mm floor and two 215 mm
walls. (b) Standard deviation for four coupling loss factors between the floor and the
wall determined using simplified ESEA.
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junctions above 1k Hz. The importance of in-plane waves is diffi-
cult to identify with Experimental SEA and can result in unrepre-
sentative SEA models [11]. Hence it would rarely be suitable to
use measured coupling loss factors in Eq. (13) at frequencies above
1k Hz.

For all the loss factors shown in Fig. 6 the average value of the
standard deviation is �2 dB. Therefore the uncertainty associated
with these loss factors will often be similar or greater than the er-
ror in the structure-borne sound power input due to the coupled
reception plate shown in Figs. 2–4. This leads to the conclusion
that using Eq. (13) to improve the accuracy in the estimate of the
power input is not a viable approach.

6. Conclusions

If coupled reception plates that form walls or floors in heavy-
weight buildings are used to try and quantify the structure-borne
sound power input, there is the potential to incur significant errors
due to energy returning to the reception plate from other con-
nected plates. The problem is twofold. Firstly, in the low- and
mid-frequency ranges the steady-state vibration level on the cou-
pled reception plate is increased by energy returning from other
coupled plates. Secondly, the structural decays have significant
curvature due to the returning energy; hence short evaluation
ranges are needed to minimise the error when calculating the total
loss factors. This leads to the situation where the coupled reception
plate can give the ‘right answer for the wrong reason’ because the
error in the energy cancels out the error in the total loss factor. The
latter error can only be minimised using an evaluation range of
�5 dB for the structural reverberation time; note that smaller
ranges would be impractical to measure and increasingly prone
to error. Evaluation procedures have recently been published by
the authors [6] that are suitable for doing this.

It has been shown that in principle it is possible to recover the
correct power input from a coupled reception plate. However, this
requires accurate values for the reception plate’s total loss factor as
well as the coupling loss factors from all other plates that are con-
nected to the reception plate. This is only possible if the measure-
ment uncertainties are negligible for the measured coupling loss
factors and total loss factors. Measured data from a heavyweight
building indicate that they are not negligible for typical masonry/
concrete walls and floors; hence this corrective approach is not fea-
sible in practice.

The isolated reception plate remains a valuable engineering ap-
proach to characterise structure-borne sound sources in the labo-
ratory, but the results in this paper indicate that the method
should only be extended to coupled reception plates with some
caution unless an increase in the uncertainty is acceptable. An
alternative approach to avoid this problem could be to determine
the structure-borne sound power input on coupled reception
plates using a power substitution method with a ‘standard’ source
that has a known power input.
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