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Abstract

In this thesis, we are interested in the asymptotic analysis of extremes and risks.

The heavy-tailed distribution function is used to model the extreme risks, which

is widely applied in insurance and is gradually penetrating in finance as well. We

also use various tools such as copula, to model dependence structures, and ex-

treme value theorem, to model rare events. We focus on modelling and analysing

of extreme risks as well as demonstrate how the derived results that can be used

in practice.

We start from a discrete-time risk model. More concretely, consider a discrete-

time annuity-immediate risk model in which the insurer is allowed to invest its

wealth into a risk-free or a risky portfolio under a certain regulation. Then the

insurer is said to be exposed to a stochastic economic environment that contains

two kinds of risk, the insurance risk and financial risk. The former is traditional

liability risk caused by insurance loss while the later is the asset risk resulting from

investment. Within each period, the insurance risk is denoted by a real-valued

random variable X, and the financial risk Y as a positive random variable fulfils

some constraints. We are interested in the ruin probability and the tail behaviour

of maximum of the stochastic present values of aggregate net loss with Sarmanov

or Farlie-Gumbel-Morgenstern (FGM) dependent insurance and financial risks.

We derive asymptotic formulas for the finite-ruin probability with lighted-tailed

or moderately heavy-tailed insurance risk for both risk-free investment and risky

investment. As an extension, we improve the result for extreme risks arising

from a rare event, combining simulation with asymptotics, to compute the ruin

probability more efficiently.

Next, we consider a similar risk model but a special case that insurance and

financial risks following the least risky FGM dependence structure with heavy-

tailed distribution. We follow the study of Chen (2011) that the finite-time

ruin probability in a discrete-time risk model in which insurance and financial

risks form a sequence of independent and identically distributed random pairs

following a common bivariate FGM distribution function with parameter −1 ≤
θ ≤ 1 governing the strength of dependence. For the subexponential case, when

−1 < θ ≤ 1, a general asymptotic formula for the finite-time ruin probability was
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derived. However, the derivation there is not valid for θ = −1. In this thesis,

we complete the study by extending Chen’s work to θ = −1 that the insurance

risk and financial risk are negatively dependent. We refer this situation as the

least risky FGM dependent insurance risk and financial risk. The new formulas

for θ = 1 look very different from, but are intrinsically consistent with, the

existing one for −1 < θ ≤ 1, and they offer a quantitative understanding on how

significantly the asymptotic ruin probability decreases when θ switches from its

normal range to its negative extremum.

Finally, we study a continuous-time risk model. Specifically, we consider a

renewal risk model with a constant premium and a constant force of interest

rate, where the claim sizes and inter-arrival times follow certain dependence

structures via some restriction on their copula function. The infinite-time ab-

solute ruin probabilities are studied instead of the traditional infinite-time ruin

probability with light-tailed or moderately heavy-tailed claim-size. Under the as-

sumption that the distribution of the claim-size belongs to the intersection of the

convolution-equivalent class and the rapid-varying tailed class, or a larger inter-

section class of O-subexponential distribution, the generalized exponential class

and the rapid-varying tailed class, the infinite-time absolute ruin probabilities are

derived.

ii



Contents

Abstract i

Contents v

List of Figures vi

Acknowledgement vii

I Introduction viii

1 General Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Conference presentations . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 7

2.1 Notations and Conventions . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Heavy-tailed and light-tailed distribution classes . . . . . . . . . . 8

2.2.1 Heavy-tailed distribution classes and related . . . . . . . . 8

2.2.2 Light-tailed Distribution Classes . . . . . . . . . . . . . . . 11

2.3 Extreme Value Theory in Insurance and Finance . . . . . . . . . . 12

2.4 Dependence structure . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

II Ruin Probabilities in a Discrete Time Risk Model
with Dependent Risks 20

3 Ruin with Dependent Insurance and Financial Risks in a Discrete-

time annuity-immediate Risk Model with a Risk-free or Risky

iii



investment 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 A bivariate Sarmanov distribution . . . . . . . . . . . . . . 25

3.2.2 A bivariate FGM distribution . . . . . . . . . . . . . . . . 26

3.2.3 Finite-time ruin with a risk-free investment . . . . . . . . . 26

3.2.4 Finite-time ruin with a moderately risky investment . . . . 28

3.2.5 Finite-time ruin with a most risky investment . . . . . . . 30

3.2.6 An extension: extreme risks in insurance and finance . . . 32

3.3 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Proof of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Proof of Theorem 3.2.2 . . . . . . . . . . . . . . . . . . . . 47

3.4.3 Proofs of Theorem 3.2.3 and Corollary 3.2.1 . . . . . . . . 50

3.4.4 Proof of Theorem 3.2.4 . . . . . . . . . . . . . . . . . . . . 51

3.4.5 Proof of Theorem 5.2.4 . . . . . . . . . . . . . . . . . . . . 53

3.4.6 Proof of Theorem 3.2.6 . . . . . . . . . . . . . . . . . . . 53

3.4.7 Proof of Theorem 3.2.7 . . . . . . . . . . . . . . . . . . . 54

3.4.8 Proof of Theorem 3.2.8 . . . . . . . . . . . . . . . . . . . . 56

3.4.9 Proof of Corollary 3.2.4 and Corollary 3.2.5 . . . . . . . . 57

4 Ruin with Insurance and Financial Risks Following the Least

Risky FGM Dependence Structure 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Proofs of Theorems 4.2.1–4.2.2 . . . . . . . . . . . . . . . . . . . . 63

4.3.1 General Derivations . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Proof of Theorem 4.2.2 . . . . . . . . . . . . . . . . . . . . 66

4.4 Proofs of Corollaries 4.2.1–4.2.4 . . . . . . . . . . . . . . . . . . . 70

4.4.1 Proof of Corollary 4.2.1 . . . . . . . . . . . . . . . . . . . 70

4.4.2 Proof of Corollary 4.2.2 . . . . . . . . . . . . . . . . . . . 71

4.4.3 Proof of Corollary 4.2.3 . . . . . . . . . . . . . . . . . . . 72

4.4.4 Proof of Corollary 4.2.4 . . . . . . . . . . . . . . . . . . . 73

III Ruin Probabilities in a continuous-time dependent

iv



risk model 75

5 Infinite-time Absolute Ruin in Dependent Renewal Risk Models

with Constant Force of Interest 76

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 An extension: Farlie-Gumbel-Morgenstern Copula . . . . . 80

5.3 Proofs of main results . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 Proof of Theorem 5.2.1 . . . . . . . . . . . . . . . . . . . . 81

5.3.2 Proof of Theorem 5.2.3 . . . . . . . . . . . . . . . . . . . . 85

5.3.3 Proof of Theorem 5.2.4 . . . . . . . . . . . . . . . . . . . . 87

A 93

Bibliography 108

Index 108

v



List of Figures

3.1 The values of ψ1(x;n) and ψ2(x;n) (N = 106) . . . . . . . . . . . 36

3.2 The ratio of ψ2(x;n)/ψ1(x;n) (N = 106) . . . . . . . . . . . . . . 36

3.3 The values of ψ1(x;n) and ψ2(x;n) (N = 107) . . . . . . . . . . . 37

3.4 The ratio of ψ2(x;n)/ψ1(x;n) (N = 107) . . . . . . . . . . . . . . 38

3.5 The values of ψ1(x;n) and ψ2(x;n) (N = 107) . . . . . . . . . . . 39

3.6 The ratio of ψ2(x;n)/ψ1(x;n) (N = 107) . . . . . . . . . . . . . . 40

3.7 The values of ψ1(x;n) and ψ2(x;n) (N = 107) . . . . . . . . . . . 40

3.8 The ratio of ψ2(x;n)/ψ1(x;n) (N = 107) . . . . . . . . . . . . . . 41

3.9 The values of ψ1(x;n) and ψ2(x;n) (N = 108) . . . . . . . . . . . 41

3.10 The ratio of ψ2(x;n)/ψ1(x;n) (N = 108) . . . . . . . . . . . . . . 42

3.11 The ratio of ψ3(x;n)/ψ2(x;n) . . . . . . . . . . . . . . . . . . . . 43

vi



Acknowledgement

This thesis is the achievement of 3 years of academic research, which contains a

section of research papers that I completed during my Ph.D. at the University of

Liverpool. A Ph.D. can never be undertaken on your own and I am indebted to

a great number of special people.

First and foremost, I would like to thank my first supervisor Dr. Yiqing Chen

(Univeristy of Liverpoool & Drake University). It is she who firstly led me to

research on actuarial science and guided me to find my own research interest. I

really appreciate Dr Yiqing Chen’s advice and encouragement from both academic

side and non-academic side in the past years. Without her help, this work would

not have been possible.

Next, my thankfulness should also go to supervisor Dr. Yi Zhang (Univer-

sity of Liverpool). I would like to thank him for his kind encouragement and

outstanding remarks on an earlier version of this thesis in my third year. His

stimulating and rigorous academic attitude has been an important effect for me

to perform research at the early age.

Special acknowledgements are also given to Prof. Yang Yang (Nanjing Au-

dit University). His cooperation, helpful remarks and sustained precision have

increased the quality of my work.

I am grateful to Prof. Qihe Tang for the fruitful and comprehensive discussions

and providing me the chance to visit the University of Iowa in 2015.

I am also very grateful to many of my colleagues and students who shared

their thoughts and knowledge with me during my Ph.D. study.

Finally, I want to thank my family members. Your unlimited and uncondi-

tional love has always been a driving force that keeps me moving forward.

vii



Part I

Introduction

viii



Chapter 1

General Introduction

This chapter plays a role to induce the problems studied in this thesis. It will

explain its motivation, background and how it contributes to the literature for

each part. Furthermore, the interconnection of each part will also be expounded.

1.1 Motivations

The prevalence of rare events such as earthquake, flood, wind-storm, or terror-

ism which are accompanied by disastrous economic and social consequence is

the so-called Black-Swan phenomenon that make today’s world far different from

decades ago. In recent years, some frequent occurrences of catastrophes include:

the 2008 Sichuan Earthquake in China which costs over $148 billion, the 2008 fi-

nancial crisis that directly result in the 2008-2012 global recession, the 2010 Haiti

Earthquake with estimated cost between $7.2–13.2 billion, 2011 Japan Earth-

quake, Tsunami and Nuclear Crisis with loss over $14.5-34.6 billion and world

Banks estimated economic cost over $235 billion, the 2013 Typhoon Haiyan with

damage over $1.5 billion. These catastrophes can lead to extremely large insur-

ance and financial losses, which can be followed by ruin of insurance industries or

bankruptcy of financial institutions that are suffering such losses. These natural

or man-made catastrophes, which make extreme losses or outliers” in statistical

data, are rare events which make them particularly difficult to prognosticate; see

Embrechts et al. (1997), Section 1.4 of McNeil et al. (2005), among many oth-

ers. These extremes and risks have increased awareness of the need to quantify

probabilities of large losses, and for helping risk management systems to control

such rare events.

Considering the grim consequences of extreme events, we carry out analysis

of extremes and risks in finance and insurance in this thesis. It is important to

realize that extreme losses and risks are controlled by the same economic factors

(such as global, national or regional economic growth), or affected by a common
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external event (such as flood, windstorm, forest fire, earthquake or terrorism).

Therefore, they should be strongly dependent on each other. Moreover, a strong

dependence among the losses can tend to make the losses jointly large. For

example, properties may be damaged in a hurricane, resulting in large claims to

an insurer, while they tend to be destroyed all together causes even more concern

to the insurer. In extreme risk analysis, it is of particular significance to model

both large individual losses and the dependence among them. To model such

extreme losses and risks that are potentially large, we use light-tailed distribution

and heavy-tailed distribution classes, while to model dependence, we use various

tools such as copulas and joint cumulative distribution functions.

When modeling extreme losses and risks, we focus on both discrete-time and

continuous-time risk models. In the first part of this thesis, we consider the ruin

probabilities in a discrete time risk model with dependent risks.

The insurance business is always described by a discrete-time risk model in

which the two risks that are usually called the insurance risk and the financial risk

are quantified by concrete random variables. The study of the probability of ruin

has become specially relevant for insurance business because of modern regulato-

ry frameworks (such as EU Solvency II) that require insurance company to hold

solvency capital so that the ruin probability can be taken control of. This risk

model was proposed by Nyrhinen (1990, 2001). There has been a vast amount of

literature in this aspect, including Norberg (1999), Tang and Tsitsiashvili (2003,

2004) and Goovaerts et al. (2005) among others. As discussed above, the insur-

ance risk is referred to the risk resulting from insurance claims and the financial

risk is referred to the risk of large losses from financial investments, classifying

as credit risk, market risk, operational risk, and so on. It has been commonly

assumed that the insurance and financial risks are independent. However, cer-

tain risks from the same policy of insurance during the successive periods or from

the different policies during the same period take place in a similar environment,

so that these two risks in the same time horizon should be dependent on each

other. Moreover, a large number of people start to securitize their insurance

risk and export it to capital market using insurance-linked securities, such as the

catastrophe bounds, to hedge against catastrophic risk. Thus the insurer who

invests in the capital market would like to re-insure its insurance risk, which has

interconnection between the insurance risk and financial risk.

Research also involves interesting dependent risk models. Goovaerts et al.

(2005) studied the problem of approximating the tail probability of random

weighted sum in the case when the losses have Pareto-like distributions and

the discount factors are mutually dependent. Laeven et al. (2005) investigat-

ed asymptotic results for sums of dependent random variables, in the presence of
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heavy-tailedness conditions. Tang and Vernic (2007) established an exact asymp-

totic formula for the ruin probability, in which the financial risks constitute a

stationary process with finite dimensional distributions of FGM copula. Chen

and Ng (2007) obtained a formula for the ruin probability of the renewal risk

model with constant interest force, in which the claims are pairwise negatively

dependent and extended regularly varying tailed. Zhang et al. (2009) considered

the problem of approximating the tail probability of randomly weighted sums

with assumptions that claims has no bivariate upper tail dependence along with

some other mild conditions. Weng et al. (2009) obtained asymptotic results for

both finite and infinite ruin probabilities in a discrete time risk model with con-

stant interest rates, in which the individual net losses have zero index of upper

tail dependence. Recently, Chen (2011) worked out a asymptotic formula for the

finite time ruin probability in a discrete time risk model with FGM dependent

insurance risk and financial risks and Yang and Wang (2013) extended the result

to a more general case that insurance risk and financial risk follow a bivariate

Sarmanov distribution, among many others.

In the second part of this thesis, we study the ruin probabilities in a continuous-

time dependent risk model. Thus far, the finite-ruin or infinite-time ruin prob-

ability in a continuous-time risk model has been widely investigated by many

researchers, see Asmussen (1998), Klüppelberg and Stadtmüller (1998), Konstan-

tinides et al. (2002) and Tang (2005, 2007), among many others. The standard

renewal risk model was first proposed by Andersen (1957), assuming that the

claim size and inter-arrival time were mutually independent, which is particular-

ly paid attention to by many other researchers. In the actuarial literature, the

probability of infinite-time ruin is defined to be the probability that the surplus

falls below zero, which plays an unrealistic role. Compared with the research on

the ordinary sense ruin probabilities, the absolute ruin probabilities have received

less attention than they deserve. Moreover, the independent and identically dis-

tributed (i.i.d.) assumption is for mathematical convenience but far away from

reality. It is obvious that the waiting time for a claim is dependent on the claim

size. Various dependence structures were introduced to the renewal risk model

by many researchers. For related discussions, we refer the reader to Chen and Ng

(2007), Yang and Wang (2010), Yang et al. (2013).

Apart from the proper choice of risk models, it is required to assess ruin

probabilities with sufficiently large risk reserve that is required by certain risk

reserve regulations such as EU Solvency II. However, the computation of ruin

probabilities for extreme risks with large initial capital is very difficult. It is

not possible to calculate the exact value of the ruin probabilities because of the

complex stochastic structures that we choose. The most common way is to do the
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Monte Carlo simulations. Then computation issues arise. It is quite often that

these simulations are not quite efficient when dealing with the extremely small

ruin probabilities; see e.g. Tang and Yuan (2012). In addition, these simulations

can not help us quantitatively understand tail behaviors of extreme losses and

risks. In this thesis, we study asymptotic behaviors for extremes and risks as

an alternative way to simulations. With asymptotic expressions, one can easily

compute the results and it takes almost no time to get such results. Furthermore,

the asymptotic expressions offer us insights that one can easily see the asymptotic

behaviors of risks and how they increase comparing to some well-known quantity.

For these reasons, we conduct the asymptotic tail probabilities of extreme and

risks.

1.2 Structure of the Thesis

In this thesis, we study the asymptotic tail probabilities of quantities of interest

in various risk models, from a discrete-time annuity-immediate risk model to a

renewal risk model with constant force of interest. We investigate the impact of

insurance and financial losses and how the regulations of investment affect them.

We consider both light-tailed and heavy-tailed losses in our models. It turns

out that the tail behavior of the loss distribution may vary in different types of

insurance business.

Chapter 2 serves as a brief introduction to the theory and tools we use in

this thesis.It includes notations and conventions, heavy-tailed and light-tailed

distribution classes, extreme value theory, and dependence structure.

In Chapter 3, we study a discrete-time risk model. More concretely, consider

a discrete-time annuity-immediate risk model in which the insurer is allowed to

invest its wealth into a risk-free or a risky portfolio under a certain regulation.

Then the insurer is said to be exposed to a stochastic economic environment that

contains two kinds of risks, the insurance risk and financial risk. The former is

the traditional liability risk caused by insurance losses, while the later is the asset

risk resulting from investments. Within each period, the insurance risk is denoted

by a real-valued random variable X, and the financial risk Y is a positive random

variable fulfilling some constraints. Sarmanov distribution which is built from

given marginals demonstrates the advantage of having a flexible structure which

can be widely used in modelling data dependencies. Particularly, it contains the

famous FGM distribution, whose correlation coefficients cannot exceed 1/3. N-

evertheless, this restriction is not specific to the general Sarmanov distribution,

see, e.g., Bairamov et al. (2001), Shubina and Lee (2004). We are interested

in the ruin probability and the tail behaviour of maximum of the stochastic dis-
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counted values of aggregate net loss with Sarmanov or FGM dependent insurance

and financial risks. We derive some asymptotic formulas for the finite-time ru-

in probability with lighted-tailed or moderately heavy-tailed insurance risk in a

discrete-time risk model with a risk-free or risky investment. As an extension, we

improve our results to the case of extreme risks, which arise from rare events, by

combining some simulation with asymptotics, to compute the ruin probabilities

more efficiently.

In Chapter 4, we consider a similar discrete-time risk model but a special case

that insurance and financial risks following the least risky FGM dependence struc-

ture with heavy-tailed distribution. We follow the study of Chen (2011) that the

finite-time ruin probability in a discrete-time risk model in which insurance and

financial risks form a sequence of independent and identically distributed random

pairs following a common bivariate FGM distribution function with parameter

−1 ≤ θ ≤ 1 governing the strength of dependence. For the subexponential case,

when −1 < θ ≤ 1, a general asymptotic formula for the finite-time ruin prob-

ability was derived by Chen (2011). However, the derivation there is not valid

for θ = −1. In this thesis, we complete the study by extending Chen’s work to

θ = −1 that the insurance risk and financial risk are negatively dependent. We

refer to this situation as the least risky FGM dependent insurance risk and fi-

nancial risk. It turns out that the finite-time ruin probability behaves essentially

differently for −1 < θ ≤ 1 and θ = −1.

In Chapter 5, we consider a renewal risk model with a constant premium and

a constant force of interest rate, where the claim sizes and inter-arrival times fol-

low certain dependence structures via some restriction on their copula function.

The infinite-time absolute ruin probabilities are studied instead of the traditional

infinite-time ruin probability with light-tailed or moderately heavy-tailed claim-

size. Many popular distributions such as the lognormal-like, the Weibull-like,

the exponential-like, and the generalized inverse Gaussian distributions are often

applied to model the claim size distributions in ruin theory, see, for example,

Asmussen (1998). These popular distributions are belong to the light-tailed or

moderately heavy-tailed distribution classes, such as the generalized exponential

class, convolution-equivalent class and the rapid-varying tailed class. Under the

assumption that the distribution of the claim-size belongs to the intersection of

the convolution-equivalent class and the rapid-varying tailed class, or a larger

intersection class of O-subexponential distribution, the generalized exponential

class and the rapid-varying tailed class, the infinite-time absolute ruin probabili-

ties are derived.
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Chapter 2

Preliminaries

In this chapter, some mathematical concepts and tools based on which the thesis

is built are provided.

2.1 Notations and Conventions

Throughout this thesis, all limit relationships are according to x → ∞ unless

otherwise stated. For two positive functions f1(·) and f2(·), we write f1(x) .

f2(x) or f2(x) & f1(x) if lim sup f1(x)/f2(x) ≤ 1 and write f1(x) ∼ f2(x) if

lim f1(x)/f2(x) = 1. We also write f1(x) � f2(x) if 0 < lim inf f1(x)/f2(x) ≤
lim sup f1(x)/f2(x) < ∞. For convenience, we introduce a real function a(·)
defined on R+ as an auxiliary function if it satisfies 0 ≤ a(x) < x/2, a(x) ↑ ∞
and a(x)/x ↓ 0.

Furthermore, for two positive bivariate functions f1(·, ·) and f2(·, ·), we say

the asymptotic relation f1(·, ·) ∼ f2(·, ·) holds uniformly for t and a non-empty

set ∆ if

lim
x→∞

sup
t∈∆

∣∣∣∣f1(x, t)

f2(x, t)
− 1

∣∣∣∣ = 0.

Clearly, the asymptotic relation f1(·, ·) ∼ f2(·, ·) holds uniformly for t ∈ ∆ if and

only if

lim
x→∞

sup
t∈∆

f1(x, t)

f2(x, t)
≤ 1 and lim

x→∞
sup
t∈∆

f1(x, t)

f2(x, t)
≥ 1,

which mean that f1(x) . f2(x) or f1(x) & f2(x) holds uniformly for t ∈ ∆,

respectively.

Let F denote the distribution function of a random variable X, whose tail is

denoted by F (x) = 1− F (x) = Pr(X > x).

For two independent random variables X∗ and Y ∗ with distributions F and

G, respectively, denote by F ∗ G the distribution of the sum X∗ + Y ∗ and by

F ⊗ G the distribution of the product X∗Y ∗. The former is often referred to

as the sum convolution of F and G, while the latter as the product convolution
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(or sometimes as the Mellin–Stieltjes convolution) of the distributions F and G.

Clearly, if F is supported on R and G on R, then the convolution of F and G is

defined as

F ∗G(x) =

∫ ∞
−∞

F (x− y)G(dy) =

∫ ∞
−∞

G(x− y)F (dy),

which is the distribution function of the sum X + Y . In particular, we write F 0∗

as a distribution degenerate at 0, F 1∗ = F , and F n∗ = F (n−1)∗ ∗F for n = 2, 3, ....

Moreover, if F is supported on R and G on R+, then

F ⊗G(x) =

∫ ∞
0

F

(
x

y

)
G(dy), x > 0. (2.1.1)

2.2 Heavy-tailed and light-tailed distribution class-

es

2.2.1 Heavy-tailed distribution classes and related

In this thesis, we follow the style of Embrechts et al. (1997) to categorize heavy-

tailed distribution, although there are many criteria to define heavy-tailed dis-

tribution functions in the literature. That is, a distribution function F on R is

said to belong to the (right) heavy tailed distribution class K, if it holds for every

ε > 0 that ∫ ∞
0

eεxdF (x) =∞.

All distribution functions not in K are known as light-tailed distributions.

In actuarial mathematics, distributions of risks or claim-size are often assumed

to belong to some subclass of the heavy-tailed distribution class K. Next we in-

troduce some distribution classes that will be mainly used, most being subclasses

of the class K.
A distribution function F on R is said to be long tailed, written as F ∈ L, if

F (x) > 0 for all x ∈ R+ and the relation

F (x+ y) ∼ F (x) (2.2.1)

holds for some (or, equivalently, for all) y 6= 0. For F ∈ L, automatically there

is some real function l(·) with 0 < l(x) ≤ x/2 and l(x) ↑ ∞ such that relation

(2.2.1) holds uniformly for y ∈ [x− l(x), x+ l(x)]; that is,

lim
x→∞

sup
x−l(x)≤y≤x+l(x)

∣∣∣∣F (x+ y)

F (x)
− 1

∣∣∣∣ = 0.

We then introduce the class of subexponential distribution functions, which

contains a lot of important distributions such as lognormal, heavy-tailed Weibull

and Pareto distributions.
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A distribution function F on R+ = [0,∞) is said to be subexponential, written

as F ∈ S, if F (x) > 0 for all x ∈ R+ and

F 2∗(x) ∼ 2F (x),

where F 2∗ denotes the two-fold convolution of F . More generally, a distribution

function F on R is still said to be subexponential if the distribution function

F+(x) = F (x)1(x≥0) is subexponential. It is well known that S ⊂ L; see, for

example, Lemma 1.3.5(a) of Embrechts et al. (1997). Subexponential distri-

bution functions follow the principle of a single big jump which underlies the

probabilistic behaviour of sums of independent subexponential distribution ran-

dom variables. For example, for real-valued i.i.d. random variables X1, ..., Xn

following a subexponential distribution, we have

Pr

(
n∑
i=1

Xi > x

)
∼ nF (x) ∼ Pr

(
max
1≤i≤n

Xi > x

)
.

This feature explicates why subexponential distributions have become popular

in modelling heavy-tailed phenomena in insurance and finance. Let F denote a

distribution function and f denote its density function. We list the following well-

known subexponential distributions (see Table 1.2.6 of Embrechts et al. (1997)):

• Benktander-type I: for α > 0, β > 0,

F (x) =

(
1 +

2β

α
lnx

)
exp{−β(lnx)2 − (α + 1) lnx}, x > 1;

• Benktander-type II: for α > 0, 0 < β < 1,

F (x) = eα/βx−(1−β) exp

{
−αx

β

β

}
, x > 1;

• Burr: for α > 0, κ > 0, τ > 0,

F (x) =

(
κ

κ+ xτ

)α
, x > 0;

• Loggamma: for α > 0, β > 0,

f(x) =
αβ

Γ(β)
(lnx)β−1x−α−1, x > 1

• Lognormal: for −∞ < µ <∞ and σ > 0,

f(x;µ, σ2) =
1√

2πσx
exp

{
−(lnx− µ)2

2σ2

}
, x > 0;
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• Pareto: for α > 0, κ > 0,

F =

(
κ

κ+ x

)α
, x > 0;

• Weibull: for a > 0, 0 < b < 1,

F (x) = exp
{
−axb

}
, x > 0.

A distribution function F on R is said to be dominatedly-varying tailed, written

as F ∈ D, if F (x) > 0 for all x ∈ R+ and the relation

F (xy) = O
(
F (x)

)
holds for some (or, equivalently, for all) 0 < y < 1. The intersection L∩D forms

a useful subclass of S; see Proposition 1.4.4(a) of Embrechts et al. (1997).

The intersection L∩D covers the class C of distributions with a consistently-

varying tail. By definition, for a distribution function F on R, we write F ∈ C if

F (x) > 0 for all x ∈ R+ and

lim
y↓1

lim inf
x→∞

F (xy)

F (x)
= 1.

Clearly, for F ∈ C it holds for every o(x) function that F (x+ o(x)) ∼ F (x).

A slightly smaller is the class R of distributions with a regularly-varying tail.

By definition, for a distribution function F on R, we write F ∈ R−α for some

0 ≤ α <∞ if F (x) > 0 for all x ∈ R+ and the relation

F (xy) ∼ y−αF (x)

holds for all y > 0, and we write R the union of R−α over 0 ≤ α <∞.

In summary, we have

R ⊂ C ⊂ L ∩ D ⊂ S ⊂ L.

Moreover, a distribution function F on R is said to be rapidly-varying tailed,

written as F ∈ R−∞, if the relation

F (xy) = o
(
F (x)

)
holds for all y > 1. This is a very broad class containing both heavy-tailed and

light-tailed distributions.
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Matuszewska Indices

For a distribution F with F (x) > 0 for all x ∈ R+, its upper and lower Ma-

tuszewska indices are defined as

M∗(F ) = inf

{
− logF ∗(y)

log y
: y > 1

}
and M∗(F ) = sup

{
− logF

∗
(y)

log y
: y > 1

}
,

respectively, where F ∗(y) = lim inf F (xy)/F (x) and F
∗
(y) = lim supF (xy)/F (x).

It is clear that F ∈ D if and only if 0 ≤ M∗(F ) < ∞, while if F ∈ R−α for

0 ≤ α ≤ ∞ then M∗(F ) = M∗(F ) = α.

2.2.2 Light-tailed Distribution Classes

A important subclass ofR−∞ is the generalized exponential class L(γ) with γ > 0,

as defined below.

A distribution F on R+ is said to be convolution-equivalent, denoted by F ∈
S(γ) for some γ ≥ 0 if

lim
x→∞

F (x− y)

F (x)
= eγy (2.2.2)

for every real number y and the limit

lim
x→∞

F 2∗(x)

F (x)
= 2

∫ ∞
0−

eγyF (dy) (2.2.3)

exists and is finite. A larger class L(γ) is defined by relation (2.2.2) alone. If

γ = 0, the classes L(0) = L and S(0) = S are defined in Section 2.2.1. A large

amount of distributions in the class S(0) such as the lognormal and the Weibull

distributions also belong to the class R−∞. We remark that if γ > 0, then all

distributions in L(γ) are light-tailed.

There are some easy-verified statements which can also be found in Tang and

Tsitsiashvili (2004).

(1) For a r.v. for any random variable X with its distribution belonging to

the class S(γ) with γ ≥ 0, the distribution of cX with any positive constant c

belongs to the class S(γ/c);

(2) For a r.v. for two distributions F1 ∈ L(γ1) and F2 ∈ L(γ2) with some

0 ≤ γ1 ≤ γ2 <∞, we have F 2(x) = o(F 1(x));

(3) For a r.v. for two distribution F1 and F2 satisfying F 1(x) ∼ cF 2(x) for

some positive constant c, then F1 is said belong to the class L(γ) or S(γ) with

γ ≥ 0 whenever F2 belongs to this class;

(4) For a r.v. For two distributions, F1 ∈ L(γ) and F2 ∈ L(γ), satisfying

0 < lim inf F1(x)/F2(x) ≤ lim supF1(x)/F2(x) <∞,
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it is known that F1 ∈ S(γ) if and only if F2 ∈ S(γ), see Klüppelberg (1988).

A distribution class wider than the one of all convolution-equivalent distribu-

tions is the class of O-subexponential distributions, which was firstly introduced

by Shimura and Watanabe (2005). A distribution F is said to belong the class

OS, if F (x) > 0 for x ∈ R and

F 2∗(x) = O
(
F (x)

)
. (2.2.4)

Klüppelberg and Villasenor (1991) presented examples to show that the inclusion

S(γ) ⊂ L(γ) ∩ OS is strict. Moreover, Lin and Wang (2012), Leslie (1989) have

constructed some new distributions which belong to L(γ) ∩ OS but not to S(γ)

for γ > 0 and for γ = 0, respectively.

2.3 Extreme Value Theory in Insurance and Fi-

nance

The prevalence of rare events such as earthquake, flood, windstorm, or terrorism

which are accompanied by disastrous economic and social consequence, is so-

called Black-Swan events that make today’s world far different from decades ago.

Apart from the mutual exterior event, a number of highly publicised catastrophic

incidents involving barings, orange county, daiwa bank, and long term capital

management, have made today’s financial systems more sophisticated. These ex-

tremes and risks have increased awareness of the need to quantify probabilities of

large losses, and for helping risk management systems to control such rare events.

There is a much longer history of using Extreme Value Theory in the insurance

industry, which provides the approach to characterise the tail behaviour of the

distribution without trying the analysis down to a parametric family fitted to the

whole distribution. It was first derived heuristically by Fisher and Tippett (1928),

which classifies distributions according to their maximum domain of attraction.

The distribution function F is said to belong to the max-domain of attraction of

a univariate extreme value distribution function F0, written F ∈ MDA(F0), if

lim
n→∞

sup
x∈R
|F n(anx+ bn)− F0(x)| = 0 (2.3.1)

holds for some suitable normalising constants an > 0, bn ∈ R, n ≥ 1. For more

details on univariate max-domains of attraction, see e.g., Reiss (1989), Embrechts

et al. (1997), Falk et al. (2004), De Haan and Ferreira (2006), or Resnick (2008).

A single generalised extreme value distribution was first proposed by von Miss

(1936) of the form

F0ξ(x) = exp
{
−(1 + ξx)

−1/ξ
+

}
12



where y+ = max{y, 0} and the right hand side is interpreted as exp{−e−x} when

ξ = 0. The regions ξ = 1/α > 0, ξ = 0 and ξ = −1/α < 0 correspond to the

Fréchet , Gumbel and Weibull cases, respectively.

The Fréchet distribution has the cumulative distribution function

Φα(x) = exp
{
−x−α

}
, α, x > 0

A distribution function F belongs to MDA(Φα) if only if F (·) is regularly varying

at infinity with index −α, that is,

lim
x→∞

F (xy)

F (x)
= y−α

holds for all y > 0; see Theorem 3.3.7 of Embrechts et al. (1997). We list the

following distributions of MDA(Φα) from Table 3.4.2 of Embrechts et al.(1997).

• Burr: for α > 0, κ > 0, τ > 0,

F (x) =

(
κ

κ+ xτ

)α
, x > 0;

• Cauchy: for x ∈ R,

f(x) =
(
π(1 + x2)

)−1
, x ∈ R;

• F-distribution: for d1 > 0 and d2 > 0,

f(x) =
1

B(d1/2, d2/2)

(
d1

d2

)d1/2
x
d1
2
−1

(
1 +

d1

d2

x

)− d1+d2
2

, x ≥ 0;

• Loggamma: for α > 0, β > 0,

f(x) =
αβ

Γ(β)
(lnx)β−1x−α−1, x > 1;

• Pareto: for α > 0, κ > 0,

F =

(
κ

κ+ x

)α
, x > 0;

• Student’s t: for v > 0,

f(x) =
Γ ((v + 1)/2)√
vπΓ(v/2)

(
1 +

x2

v

)−(v+1)/2

, x ∈ R.
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The Gumbel distribution has the cumulative distribution function

Λ(x) = exp
{
−e−x

}
, x ∈ R.

A distribution function F with an upper endpoint x̂ = sup{x ∈ R : F (x) <

1} ≤ ∞ belongs to MDA(Λ) if and only if the relation

lim
x↑x̂

F (x+ b(x)y)

F (x)
= e−y

holds for some positive auxiliary function b(·) and all y ∈ R, where the auxiliary

function b(·) can be chosen to be the mean excess loss function:

b(x) = E(X − x|X > x).

Moreover, every distribution F from MDA(Λ) with an infinite upper endpoint

also has a rapidly varying tail (see Embrechts et al. (1997), page 148). We provide

some examples of MDA(Λ) from Table 3.4.2 of Embrechts et al.(1997):

• Benktander-type I: for α > 0, β > 0,

F (x) =

(
1 +

2β

α
lnx

)
exp{−β(lnx)2 − (α + 1) lnx}, x > 1;

• Benktander-type II: for α > 0, 0 < β < 1,

F (x) = eα/βx−(1−β) exp

{
−αx

β

β

}
, x > 1;

• Gamma: for α > 0 and β > 0,

f(x) =
βα

Γ(α)
xα−1e−βx, x > 0;

• Lognormal: for −∞ < µ <∞ and σ > 0,

f(x;µ, σ2) =
1√

2πσx
exp

{
−(lnx− µ)2

2σ2

}
, x > 0;

• Weibull-like: for K > 0, α > 0, β > 0, and γ ∈ R

F (x) ∼ Kxγ exp
{
−αxβ

}
.

The Weibull distribution is in the form of

Ψα(x) = exp {−|x|α} , α > 0, x ≤ 0.
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Furthermore, a distribution function F belongs to MDA(Ψα) if only if its

endpoint x̂ is finite and the relation

lim
x→∞

F (x̂− y/x)

F (x̂− 1/x)
= yα

holds for all y > 0; see Theorem 3.3.12 of Embrechts et al. (1997). However,

MDA(Ψα) can only be applied to model the bounded risk variables. The following

examples are for MDA(Ψα):

• Beta: for a > 0 and b > 0,

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, 0 < x < 1;

• Uniform: on (a, b) for 0 < a < b.

2.4 Dependence structure

Recently, a new trend of research has been to introduce various dependence struc-

tures to the risk model. In this direction, we refer the reader to Goovaerts et al.

(2005), Tang (2006a), Zhang et al. (2009), Weng et al. (2009), Yi et al. (2011),

Chen (2011) and Yang and Wang (2013), among many others.

2.4.1 Copulas

It is very important to model dependence structures in insurance and finance.

The copula plays a significant role in measuring dependence. We refer the reader

to Chapter 5 of McNeil et al. (2005) or the monograph Nelsen (2006) for com-

prehensive applications of copulas, and see also Frees and Valdez (1998) for more

details in actuarial applications.

A copula is the joint distribution function that couple the multivariate dis-

tribution to standard uniform marginal distributions taking values in [0, 1]. By

Sklar’s theorem (Sklar (1959)), let F denote a joint distribution function with

margin distribution functions F1, ..., Fn, there exists a copula C: [0, 1]n → [0, 1]

such that for all xi ∈ R, i = 1, ..., n,

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)).

If the marginal distribution is continuous, then copula is unique; otherwise, it

is unique only on
∏n

i=1Ran(Fi), where Ran(Fi) denotes the range of Fi. More

details can be found in Section 5.1 of McNeil et al.(2005). On the other hand,

copulas draw the information of dependence from a joint distribution function.
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There are some commonly-used copulas such as t-copulas, FGM copulas, and

Archimedean copulas.

In the rest of this section, we introduce some dependence structure that mainly

used in this thesis.

A Bivariate Sarmanov Distribution

Sarmanov’s family of multivariate distributions presents the advantage of having

a flexible structure that is widely used to model a vast range of data dependencies.

A bivarite Sarmanov distribution was firstly introduced by Sarmanov (1966) and

then applied in physics by Cohen (1984) under a more general form. Lee (1996)

offered a multivariate version and also discussed several applications in medicine

afterwards. A more general class of bivariate distributions which includes Sar-

manovs distribution was introduced by Bairamov et al. (2001). Recently, a new

trend of the study is to incorporate Sarmanovs distribution in various models.

Schweidel et al. (2008) used the Sarmonov family of bivariate distributions to

capture the relationship between acquisition and retention. Hernández-Bastida

et al. (2009) focused on the collective and Bayes net premiums for the aggregate

amount of claims under a compound model with Sarmanov dependence between

the risk profiles. Danaher and Smith (2011) demonstrated how copula models

can be constructed and used in a variety of marketing applications. Hernández-

Bastida and Fernández-Sánchez (2012) developed a Sarmanov-Lee family with

gamma and beta marginal distributions to apply this family in a calculating

Bayes premium problem. Pelican and Vernic (2013) studied maximum-likelihood

procedures for estimating Sarmanovs distribution parameters for two different

models. Particularly, Vernic (2015) derived exact expressions for sums Sarmanov

distributed random variables, which are useful in solving, e.g., financial and ac-

tuarial problems.

Sarmanov distribution contains the popular FGM distribution. whose correla-

tion coefficients cannot excess 1/3. Nevertheless, this restriction is not specific to

the general Sarmanov distribution, see, e.g., Bairamov et al. (2001), Shubina and

Lee (2004). Tang and Vernic (2006a) derive the tail asymptotics for the product

of two random variables X and Y following a bivariate FGM distribution and the

distribution of X is regularly varying or rapidly-varying tailed. A more general

dependence structure is studied by Yang and Wang (2013), in which they assume

that (X, Y ) jointly follows a bivariate Sarmanov distribution of the form

Pr(X ∈ dx, Y ∈ dy) = (1 + θφ1(x)φ2(y))F (dx)G(dy), x ∈ R, y ≥ 0, (2.4.1)

where F and G are corresponding marginal distribution functions, φ1 and φ2 are
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kernels, and the parameter θ is a real constant, such that

Eφ1(X) = Eφ2(Y ) = 0, (2.4.2)

and

1 + θφ1(x)φ2(t) ≥ 0 for all x ∈ Dx, y ∈ Dy, (2.4.3)

where Dx = {x ∈ R : Pr(X ∈ (x − δ, x + δ)) > 0 for all δ > 0} and Dy = {y ∈
R : Pr(Y ∈ (y − δ, y + δ)) > 0 for all δ > 0}. For more details on multivariate

Sarmanov distribution, see Lee (1996) and Kotz et al. (2000). An advantage of

the form (2.4.1) is that it unifies both continuous and discrete Sarmanov distri-

butions. Note that if θ = 0 or φ1(x) ≡ 0, x ∈ Dx or φ2(y) ≡ 0, y ∈ Dy, then

X and Y are independent. Therefore, if θ 6= 0, and the kernels φ1 and φ2 are

not identical to 0 in DX and DY , we say that (X, Y ) follows a proper bivariate

Sarmanov distribution. There are some common choices for kernels φ1 and φ2:

(a) φ1(x) = 1 − 2F (x) and φ2(y) = 1 − 2G(y) for all x ∈ DX and y ∈ DY ,

leading to the well-known Farlie-Gumbel-Morgenstern distribution (2.4.8);

(b) φ1(x) = (e−x − c1)1{x≥0} with c1 = Ee−X1{X≥0}/Pr(X ≥ 0) and φ2(y) =

e−y − Ee−Y for all x ∈ DX and y ∈ DY , here, 1A is the indicator function

of an event A;

(c) φ1(x) = xα and φ2(y) = yα − EY α for some α > 0 and all x ∈ DX and

y ∈ DY .

The following lemma comes from Wang and Yang (2013), which claims that the

kernels for any proper bivariate Sarmanov distribution are bounded.

Lemma 2.4.1 Assume that (X, Y ) follows a proper bivariate Sarmanov distri-

bution of the form (2.4.1). Then there exist two positive constants b1 and b2 such

that |φ1(x)| ≤ b1 for all x ∈ DX and |φ2(y)| ≤ b2 for all y ∈ DY .

Hence, by Lemma 2.4.1, there exist two constant b1 > 1 and b2 > 1 such that

|φ1(x)| ≤ b1 − 1, |φ2(y)| ≤ b2 − 1 for all x ∈ DX and y ∈ DY . It is obvious

that d1 = limx↑x̂ φ1(x) < b1 with X’s upper endpoint x̂. As in Yang and Wang

(2013), introduce two independent r.v.s X̃∗ and Ỹ ∗, which are also independent

of X∗,Y ∗, with distributions F̃ and G̃, respectively, defined by

F̃ (dx) =

(
1− φ1(x)

b1

)
F (dx),

and

G̃(dy) =

(
1− φ2(y)

b2

)
G(dy), x ∈ DX , y ∈ DY , (2.4.4)
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here, X∗ and Y ∗ are two independent r.v.s with distributions F and G, respec-

tively.

Note that Lemma 2.4.1 motivates the following assumptions on the kernel

functions,

lim
x↑x̂

φ1(x) = d1 <∞ and lim
y↑ŷ

φ2(y) = d2 <∞, (2.4.5)

with x̂ and ŷ the upper endpoints of the distributions F and G, respectively. This

implies that for any b1 > d1 and b2 > d2,

F̃ (x) ∼
(

1− b1

d1

)
F (x), x ↑ x̂, (2.4.6)

and

G̃(y) ∼
(

1− b2

d2

)
G(x), y ↑ ŷ. (2.4.7)

A Bivariate Farlie-Gumbel-Morgenstern (FGM) Distribution

A brivariate Sarmanov distribution leads to the popular FGM distribution when

φ1(x) = 1− 2F (x) and φ2(y) = 1− 2G(y) are chosen with F on R and G on R+.

Even if there are a large number of copula families, the FGM copula is chosen

since it provides the advantage of being mathematically tractable as exemplified

in Cossette et al. (2009). Although the FGM copula only governs light depen-

dence, it covers some positive as well as negative dependence structures between

two r.v.s, and includes the independence when θ = 0. Moreover, the FGM copula

is a Taylor approximation of order one of the Frank copula, the Ali-Milkhail-Haq

copula and Plackett copula, see Nelsen (2006). A brivariate FGM distribution

was firstly introduced by Morgenstern (1956) and then investigated by Gumbel

(1960) for exponential marginal distributions. The subsequent generalization to

the current form (2.4.8) is due to Farlie (1960). For more recent discussions on

FGM distributions, The reader is referred to Huang and Kotz (1999), Drouet Mari

and Kotz (2001), Bairamov and Kotz (2002), Amblard and Girard (2002), and

Rodŕlguez-Lallena and úbeda-Flores (2004), among many others. Recently, Cos-

sette et al. (2008) offered an application of the generalized FGM distributions in

actuarial science. Bargés et al. (2009) carried out the problem of insurance capital

allocation by assuming that the insurance risks are exponentially distributed and

joined by a multivariate FGM distribution. The asymptotic behaviour of the ruin

probability ψ(x;n) in (3.1.1) was studied by Chen (2011) for the case with FGM

dependent insurance and financial risks. Concretely, assume that (Xi, Yi), i ∈ N,

form a sequence of i.i.d. random pairs with a generic random pair (X, Y ) whose

components are however dependent. A bivariate FGM distribution is used to

dissolve the dependence of (X, Y ), which is of the form

Π (x, y) = F (x)G(y)
(
1 + θF (x)G(y)

)
(2.4.8)
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where F on R and G on R+ are marginal distributions, and θ ∈ [−1, 1] is a

parameter governing the strength of the dependence, which is usually used to

control the correlation coefficient of X and Y . In the study of Chen (2011), a

general asymptotic result for ψ(x;n) was derived for the case θ ∈ (−1, 1] with the

assumptions that F is subexponential, and G fulfills some constraints, in order

that the product convolution of F and G is subexponential as well. However, the

derivation there is not valid for the case θ = −1. This difficulty has been solved

by Chen et al. (2015), showing that the finite-time ruin probability behaves

essentially differently for −1 < θ ≤ 1 and θ = −1. In this thesis, we consider

some results with θ ∈ [−1, 1] for the light-tailed or heavy-tailed cases under a

certain regulation.

As in Chen et al. (2014), see also Yang et al. (2011), for a r.v. X, introduce

two independent r.v.s X∗∨, identically distributed as X∗1 ∨X∗2 , and X∗∧, identically

distributed as X∗1 ∧X∗2 , which are independent of all other sources of randomness,

where X∗1 and X∗2 are two i.i.d. copies of X. Trivially, if X is distributed by F ,

then X∗∨ is distributed by F 2 and the tail of X∗∧ is F
2
.
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Chapter 3

Ruin with Dependent Insurance
and Financial Risks in a
Discrete-time annuity-immediate
Risk Model with a Risk-free or
Risky investment 1

3.1 Introduction

An abundance of relevant research in actuarial science involves sums of depen-

dent random variables. For instance, one may consider a renewal risk model with

dependent claim-sizes and claim arrival times, or a discrete-time risk model with

dependent insurance risks and financial risks, or the value-at-risk of a stochasti-

cally discounted life annuity. Whatever kind of the risk model it is, in actuarial

applications the tail distribution functions of the sums of some dependent r.v.s

are particularly paid attention to. By use of asymptotic relations, the tail

asymptotic behaviour of such sums can be derived in the case that the distribu-

tion of the increment is light-tailed or moderately heavy-tailed. The asymptotic

estimate always performs well, while some other approximations might perform

worse when the heavy-tailedness increases; see e.g., Section 4.3 of Tang and Yuan

(2012).

A rich amount of literature is available on the use of asymptotics in a discrete-

time risk model. Nyrhinen (1999) introduced a discrete-time model and estab-

lished large-deviation type estimates for the ruin probabilities. As concluded by

Norberg (1999), an insurer who invests his wealth in a financial market is exposed

to two kinds of risks, the insurance risk and financial risk. The former one is the

traditional liability risk caused by insurance claims while the later is the asset risk

1This chapter is based on Chen, Liu and Yang (2015).
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related to risky investments. Tang and Tsitsiashvili (2003, 2004) investigated the

finite- and infinite-time ruin probabilities in the presence of stochastic returns on

investments under the assumption that the claim-size r.v.s are i.i.d.. It is obvious

that the i.i.d. assumption is far unrealistic, for example, some certain risks from

the same policy of insurance during the successive periods or from the different

policies during the same period take place in a similar environment. Therefore,

these risks in the same time horizon should be dependent on each other, which

are dominated by the same economic factors (such as regional, national or global

economic growth), or impacted by a mutual exterior event (such as earthquake,

flood, windstorm, forest fire, or terrorism). These rare events have increased

awareness of the necessity to investigate ruin probabilities of large losses, and

for risk management systems to get rid of such events. Embrechts et al. (1997)

provided an exhaustive study of modelling extreme events via Extreme Value

Theory (EVT) to both insurance and financial risk management. Using EVT to

characterize the tail behaviour in either light-tailed or heavy-tailed case exposed

to an extreme environment can make the asymptotic result more exact, see e.g.

Tang et al. (2011) and Hashorva et al. (2010).

Specifically, consider a discrete-time annuity-immediate insurance risk model

with insurance and financial risks in an investment portfolio as in Nyrhinen (1990)

and Tang and Tsitsiashvili (2003). Within each period i, the total premium

income of an insurance company is denoted by Ai and the total claim amount

plus other daily costs is denoted by Bi. Both Ai and Bi are non-negative random

variables. We assume that the premiums are received at end of each period.

Suppose that the insurer positions himself in a stochastic economic environment.

To be specific, such a stochastic economic environment is referred to the financial

market constituted by a risk-free investment with a constant interest rate r > 0

and a risky investment with a stochastic periodic return rate Ri ≥ −1 during

each period i, which leads to an overall stochastic accumulation factor Zi over

each period i. Usually, in the beginning of each period i, the insurer invests a

proportion π ∈ [0, 1] of his/her current wealth in stock and keeps the remaining

in the bond. Thus, with the initial wealth W0 = x, the current wealth of insurer

at time n satisfies

Wn = x
n∏
j=1

Zj +
n∑
i=1

(Ai −Bi)
n∏

j=i+1

Zj,

where the stochastic accumulation factor Zi is

Zi = ((1− π)(1 + r) + π(1 +Ri)) .

Denote by a real-valued r.v. Xi = Bi − Ai, i ∈ N, the net loss (the total

amount of claims less premiums) within each period i, while the overall stochastic
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discount factor (the reciprocal of the stochastic accumulation factor) is denoted

by a positive r.v. Yi. In the terminology of Tang and Tsitsiashvili (2003, 2004),

{Xi, i ∈ N} and {Yi, i ∈ N} are called the insurance risks and financial risks,

respectively. In practice, under certain financial regulation, Yi takes value in the

interval (0, ŷ) with ŷ = [1 + (1 − π)r]−1 in a risk-free investment strategy (i.e.

Ri ≥ 0) or with ŷ = (1− π)−1(1 + r)−1 involving a risky investment strategy (i.e.

Ri > −1). In this framework, the probability of ruin with finite time is defined

ψ(x;n) = Pr

(
max

1≤m≤n

m∑
i=1

Xi

i∏
j=1

Yj > x

)
, n ∈ N. (3.1.1)

In insurance and finance applications, there are two contrary phenomena:

accumulating and discounting that we are often confronted with. The sum

Sn =
n∑
i=1

Xi

i∏
j=1

Yj, n ∈ N, (3.1.2)

represents the stochastic present value of aggregate net losses up to time n, which

are closely related to stochastic recurrence equations. Apart form the discrete-

time risk model, there are many other examples leading sum-product stochastic

structure. Theobald and Price (1984) presented the impact of nontrading effects

upon the measured means, variances, and autocovariances of the returns on an

index’ within a sum-product stochastic framework. Brealey and Myers (1988) of-

fered an introduction on this sum-product stochastic structure within the realm

of finance. Gerber (1990), Section 2.6, provided a brief introduction to perpetu-

ities on stochastic recurrence equations from a life insurance point of view. Large

deviations and ruin probabilities to stochastic recurrence equations with heavy-

tailed innovations were investigated by Konstantinides and Mikosch (2004), in

which they also claims that the stochastic recurrence equation approach has also

proved useful for the estimation of GARCH and related models. Then Straumann

and Mikosch (2006) studied the quasi-maximum-likelihood estimator in a general

conditionally heteroscedastic time series model, in which they give conditions for

existence and uniqueness of a strict stationary solution to the stochastic recur-

rence equation. The random wetting transition on the Cayley tree was studied

by Monthus and Garel(2009), which contains the specific structure of a Kesten

variable consisting in a sum of products of random variables. Blanchet et al.

(2013) focused on rare-event simulation for stochastic recurrence equations with

heavy-tailed innovations.

In this thesis, we aim to investigate the maximum of the stochastic discounted

values of aggregate net losses up to time n, specified as

Un = max
1≤m≤n

m∑
i=1

Xi

i∏
j=1

Yj, n ∈ N. (3.1.3)
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The insurer has to hold enough risk reserve x to avoid risk that one can not pay

its future liabilities, to be consistent with certain risk reserve regulations such as

EU Solvency II, which makes the research of ruin theory particularly relevant.

Inspired by the work of Tang and Tsitsiashvili (2003), there have been a large

number of papers studying the asymptotic behaviour of the ruin probability of

such a discrete-time risk model in the presence of heavy-tailed insurance and fi-

nancial risks. However, there is an obvious disadvantage that heavy-tailedness

restriction excludes many popular distributions such as the Weibull-like, the

exponential-like, the lognormal-like and the generalized inverse Gaussian distri-

butions, which have been widely used to model the risk or claim size distribution

in ruin theory, e.g. see Asmussen (1998). Furthermore, the distribution of the

product of two light-tailed r.v.s can also belong to the class of heavy-tailed dis-

tributions, e.g. see Tang (2008), Liu and Tang (2010), which is a basic element

of modelling in applied areas. Since the tail behaviour of a certain complicated

risk process can always be reduced to the tail behaviour of sums and products,

the distribution of Un in (3.1.3) can also belong to the class of heavy-tailed dis-

tributions, although each component is light-tailed. As remarked by Embrechts

et al. (1997), ruin is mainly caused by one large claim, so, corresponding to this

situation, it is almost dominated by one large product of a pair of insurance and

financial risks. In such circumstance, the financial risk Y builds a bridge between

light tails and heavy tails. Last but not least, light-tailed or moderately heavy-

tailed distributions are broadly used to modelling rare events, which merit some

further investigation.

In this thesis, we shall incorporate some dependence structures to this discrete-

time risk model where the distribution of insurance risk X belongs to a class of

light-tailed or moderately heavy-tailed distributions. At the same time, some

estimators of the ultimate ruin probability are derived for the case where the

insurance risk belongs to some selected class of heavy-tailed distributions. We

assume that (Xi, Yi), i ∈ N, form a sequence of i.i.d. random pairs with generic

random pair (X, Y ), whose components are however dependent. We firstly study

a more general situation where the insurance and financial risks are dependent

according to a bivariate Sarmanov distribution. Then a special case that the two

risks follow a bivariate FGM distribution, will be taken into consideration. For

both cases, we consider the situation that the insurer invests all his surplus into

a risk-free asset, or invests partly into a risk-free asset but the remaining into a

risky asset, of which the tail behaviours are essentially different in the light-tailed

and moderately heavy-tailed cases. Finally, we present an extension for extreme

risks through EVT to characterize the tail behaviour more exactly.

We are interested in the question how a regulation of investment affects the
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tail behaviour of the maximum of the stochastic discounted values of aggregate

net loss. We are particularly interested in the issue how dependence structure

affects the finite-time ruin probabilities. Section 3.2 contains the main results of

this chapter, immediately following a section on an extension of extreme risks in

insurance and finance. Section 3.3 performs some simulation studies to verify the

approximate relationships in our main results. Finally, all of the proofs are given

in Section 3.4.

3.2 Main Results

3.2.1 A bivariate Sarmanov distribution

We continue to use the notions and notation in Section 2.3. Furthermore, suppose

that (Xi, Yi), i ∈ N, form a sequence of i.i.d. random pairs with generic random

pair (X, Y ). The components of (X, Y ) are dependent and follow a joint bivariate

Sarmanov distribution (2.4.1). It is easy to see that the distribution H of XY

satisfies

H(x) =

∫ ∞
0

∫ ∞
x/v

(1 + θφ1(u)φ2(v))F (du)G(dv)

= (1 + θb1b2) Pr(X∗Y ∗ > x)− θb1b2 Pr(X̃∗Y ∗ > x)

−θb1b2 Pr(X∗Ỹ ∗ > x) + θb1b2 Pr(X̃∗Ỹ ∗ > x). (3.2.1)

Recall Un, n ∈ N, in (3.1.3). Alternatively, denote

Vn = max
1≤m≤n

m∑
i=1

Xi

m∏
j=i

Yj, n ∈ N. (3.2.2)

Due to the i.i.d. assumption on the sequence {(Xi, Yi), i ∈ N}, Vn defined in

(3.2.2) is identically distributed as Un in (3.1.3), which fulfills the recursive for-

mula

V0 = 0, Vn+1 = (Vn +Xn+1)+Yn+1, n ∈ N.

Similarly to (3.2.1), we can write Pr(Vn+1 > x) as

Pr (Vn+1 > x)

= (1 + θb1b2) Pr
(
(Vn +X∗)+ Y

∗ > x
)
− θb1b2 Pr

((
Vn + X̃∗

)
+
Y ∗ > x

)
−θb1b2 Pr

(
(Vn +X∗)+ Ỹ

∗ > x
)

+ θb1b2 Pr

((
Vn + X̃∗

)
+
Ỹ ∗ > x

)
= (1 + θb1b2) J1 − θb1b2J2 − θb1b2J3 + θb1b2J4. (3.2.3)

25



3.2.2 A bivariate FGM distribution

Assume that (Xi, Yi), i ∈ N, form a sequence of i.i.d. random pairs with generic

random pair (X, Y ). However, the components of (X, Y ) are dependent and follow

a joint bivariate FGM distribution of the form (2.4.8). The general derivations

will be mainly used in following proofs. Since the decomposition

Π = (1 + θ)FG− θF 2G− θFG2 + θF 2G2,

or, equivalently,

Π = (1 + θ)FG− θ(1− F 2
)G− θF (1−G2

) + θ(1− F 2
)(1−G2

), (3.2.4)

with the fact that X∗∧ is tail distributed by F
2

and Y ∗∧ by G
2
, it follows that

H(x) = (1 + θ) Pr (X∗Y ∗ > x)− θPr (X∗Y ∗∧ > x)

−θPr (X∗∧Y
∗ > x) + θPr (X∗∧Y

∗
∧ > x) . (3.2.5)

Applying the decomposition in (5.2.3), we have

Pr (Vn+1 > x)

= (1 + θ) Pr
(
(Vn +X∗)+ Y

∗ > x
)
− θPr

(
(Vn +X∗∧)+ Y

∗ > x
)

−θPr
(
(Vn +X∗)+ Y

∗
∧ > x

)
+ θPr

(
(Vn +X∗∧)+ Y

∗
∧ > x

)
= (1 + θ) I1 − θI2 − θI3 + θI4. (3.2.6)

3.2.3 Finite-time ruin with a risk-free investment

We recall that the financial risks Yi = ((1− π)(1 + r) + π(1 + Ri))
−1, i ∈ N. In

this subsection, we considered that the insurer as a risk-averse individual invests

all his surplus into an almost risk-free portfolio including a fixed proportion 1−π
of a risk-free asset with a constant interest rate r and a fixed proportion π of a

risk-free bond with the non-negative stochastic returns Ri ≥ 0, which indicates

that Yi takes value in the interval (0, ŷ) with ŷ = [1 + (1 − π)r]−1. This implies

that ŷ ∈ (0, 1].

In the first result, we consider a more general risk model with Sarmanov

dependent insurance and financial risks.

Theorem 3.2.1 Consider a discrete-time annuity-immediate risk model with a

risk-free investment. Suppose that (Xi, Yi), i ∈ N, constitute a sequence of i.i.d.

random pairs with generic random pair (X, Y ) following a bivariate Sarmanov

distribution of the form (2.4.1) with marginal distributions F ∈ S(γ) ∩ R−∞ for

some γ ≥ 0, and G with ŷ = [1 + (1− π)r]−1 satisfying (2.4.5). If 1 + θd1d2 > 0,

then it holds that for each n ∈ N,

ψ(x;n) ∼ EeγVn−1 Pr(X∗Y ∗r > x) ∼ EeγVn−1 Pr(XY > x), (3.2.7)
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where Y ∗r is distributed by Gr with Gr(dy) = (1+θd1φ2(y))G(dy), and independent

of X∗.

Remark 3.2.1 Note that one can extend (3.2.7) by directly applying Lemmas

3.4.4 and 3.4.3, which benefits the further numerical studies a lot, that is, ψ(x;n) ∼
(1 + θd1d2)EeγVn−1 Pr(X∗Y ∗ > x) holds for each n ∈ N.

Remark 3.2.2 It seems that the above result for the Sarmanov dependence case

is more general, which almost covers the FGM dependence with θ ∈ (−1, 1].

However, one needs to be aware that the right hand side of the first asymptotic

relation in (3.2.7) may reduce to o(Pr(X∗Y ∗ > x)). Once the distribution of the

insurance risk X has a rapidly-varying tail and relation (2.4.5) is satisfied, there

is a possibility that the limit in (3.2.7) can sometimes correspond to a probability

measure degenerate to 0 (in this case, 1 + θd1d2 = 0), see Remark 2.1 of Jiang

and Tang (2011), which is overcomed by the assumption of a proper bivariate

Sarmanov distribution. Actually, observe that in the FGM case, which is a special

Sarmanov case, the FGM parameter θ = −1 is excluded in Theorem 3.2.1.

In the next result, we consider the pair of dependent insurance and finan-

cial risks following a bivariate FGM distribution with parameter θ in the whole

interval [−1, 1].

Theorem 3.2.2 In a discrete-time annuity-immediate risk model with a risk-free

investment, assume that (Xi, Yi), i ∈ N, constitute a sequence of i.i.d. random

pairs with generic random pair (X, Y ) following a bivariate FGM distribution

(2.4.8) with θ ∈ [−1, 1]. If F ∈ S(γ) ∩ R−∞ for some γ ≥ 0 and ŷ = [1 + (1 −
π)r]−1 > 1

2
, then it holds that for each n ∈ N,

ψ(x;n) ∼ EeγVn−1 Pr(X∗Y ∗θ > x) ∼ EeγVn−1 Pr(XY > x), (3.2.8)

where Y ∗θ , independent of X∗, is distributed by Gθ with Gθ(y) = (1 − θ)G(y) +

θG2(y).

Remark 3.2.3 Note that ŷ = [1 + (1 − π)r]−1 > 1
2

is easily satisfied since

the interest rate r is always below 1 in practice. In case of a better result

for numerical studies, we can rewrite (3.2.8) by applying Lemmas 3.4.5 and

3.4.6 as ψ(x;n) ∼ (1 + θ(1 − p̂))EeγVn−1 Pr(X∗Y ∗ > x) for θ ∈ (−1, 1] and

ψ(x;n) ∼ EeγVn−1 Pr(X∗Y ∗∧ > x) for θ = −1. In this section, the risk-averse

investor only invests all his wealth into a risk-free portfolio, so that there is no

need to hedge the downside risks. Therefore, we reasonably assume that the in-

surance risk Y has no mass at its endpoint ŷ = [1 + (1− π)r]−1 in practice, that

is, p̂ = Pr(Y = ŷ) = 0, leading to ψ(x;n) ∼ (1 + θ)EeγVn−1 Pr(X∗Y ∗ > x) for

θ ∈ (−1, 1]. However, we refer θ = −1 as a least risky situation. This also

explains why Theorem 3.2.1 can not fully cover Theorem 3.2.2.
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In the following results, we generalize the above two results to the case that

the distribution of insurance risk belongs to a larger intersection class OS∩R−∞∩
L(γ).

Theorem 3.2.3 Consider a discrete-time annuity-immediate risk model with a

risk-free investment. Suppose that (Xi, Yi), i ∈ N, constitute a sequence of i.i.d.

random pairs with generic random pair (X, Y ) following a bivariate Sarmanov

distribution of the form (2.4.1) with marginal distributions F ∈ OS∩L(γ)∩R−∞
for some γ ≥ 0, and G with ŷ = [1+(1−π)r]−1 satisfying (2.4.5). If 1+θd1d2 > 0,

then relation (3.2.7) holds for each n ∈ N.

For the special case of FGM distributions, Theorem 3.2.3 yields that

Corollary 3.2.1 In a discrete-time annuity-immediate risk model with a risk-free

investment, assume that (Xi, Yi), i ∈ N, are a sequence of i.i.d. random pairs with

generic random pair (X, Y ) following a bivariate FGM distribution (2.4.8) with

θ ∈ (−1, 1]. If F ∈ OS ∩ L(γ) ∩R−∞ for some γ ≥ 0, and ŷ = [1 + (1− π)r]−1,

then relation (3.2.8) holds for each n ∈ N.

3.2.4 Finite-time ruin with a moderately risky investment

In this subsection, we consider a more realistic case that some negative investment

returns may be earned. The insurer keeps his wealth partly in a risk-free asset

and invests the remaining into a risky asset, which roughly means π ∈ (0, 1). It

is reasonable that the financial risk Y is modelled by a positive and bounded r.v.

Hence, assume that the underlying financial risk in the economic environment is

Ȳ ∈ (0,∞). In the meantime, in order to hedge the downside risks, the insurer

always considers to buy an option when he invests his surplus into a risky asset.

Therefore, the financial risk is revised by such a strategy as

Y = Ȳ 1{0<Ȳ <ŷ} + ŷ1{ŷ≤Ȳ <∞}

for some ŷ > 1. In this strategy, the insurance risk Y has a positive mass Pr(ŷ ≤
Ȳ <∞) at its endpoint ŷ. In particular, there is a economic regulation that the

insurer can only partly invest his surplus into a risky asset as a matter of fact,

which leads to a stochastic return rate Ri ∈ [−1,∞) with Pr(Ri = −1) = p̂ ≥ 0.

Thus, the overall return rate R̃i is in the form of

R̃i = (1− π)(1 + r) + π(1 +Ri)− 1.

However, a small proportion π ≤ r/(1 + r) with a low constant rate r invested

in a risky asset indicates R̃i ≥ 0. This is equivalent to a risk-free investment
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strategy, which has already been discussed in the previous subsection. Therefore,

in order to make it possible to obtain some negative overall investment returns,

the proportion π above the level r/(1 + r) is required in this subsection. Hence,

if the insurer losses all the money invested into the risky asset, then the default

risk is positive. Clearly, the financial risks are described as Yi = ((1−π)(1 + r) +

π(1 + Ri))
−1, i ∈ N, which are bounded from above by ŷ = (1 − π)−1(1 + r)−1

with Pr(Y = ŷ) = p̂ ≥ 0. Consequently, the financial risk Y has a finite endpoint

ŷ ∈ (1,∞) and might have a positive mass.

Now we consider a more realistic case when the insurance and financial risks

are Sarmanov dependent.

Theorem 3.2.4 Consider a discrete-time annuity-immediate risk model with a

moderately risky investment. Suppose that (Xi, Yi), i ∈ N, constitute a sequence

of i.i.d. random pairs with generic random pair (X, Y ) following a bivariate

Sarmanov distribution of the form (2.4.1) with marginal distributions F ∈ S(γ)∩
R−∞ for some γ ≥ 0 , and G, with a finite upper endpoint ŷ = (1−π)−1(1+r)−1 >

1, satisfying (2.4.5), respectively. If 1 + θd1d2 > 0, then it holds that for each

n ∈ N,

ψ(x;n) ∼ Bn−1(γ) Pr

(
X1

n∏
j=1

Yj > x

)

∼ (1 + θd1d2)Bn−1(γ) Pr

(
X∗

n∏
j=1

Y ∗j > x

)
, (3.2.9)

with

Bn−1(γ) =
n−1∏
i=1

E
{

(1 + θd2φ1(X∗))eγŷ
−iX∗

}
. (3.2.10)

Recall that the FGM copula is satisfied by the Sarmanov distribution as de-

scribed in the previous subsection. However, the case θ = −1 is still excluded in

Theorem 3.2.4 by a similar discussion as in Remark 3.2.2. Next we consider an

extension for the FGM case with parameter θ in the whole interval [−1, 1].

Theorem 3.2.5 In a discrete-time annuity-immediate risk model with a mod-

erately risky investment, assume that (Xi, Yi), i ∈ N, constitute a sequence of

i.i.d. random pairs with generic random pair (X, Y ) following a bivariate FGM

distribution (2.4.8) with θ ∈ [−1, 1]. If F ∈ S(γ) ∩R−∞ for some γ ≥ 0, and G

has a finite upper endpoint ŷ = (1−π)−1(1 + r)−1 > 1, then it holds that for each

n ∈ N,

ψ(x;n) ∼ Cn−1(γ) Pr

(
X1

n∏
j=1

Yj > x

)
, (3.2.11)
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with

Cn−1(γ) =
n−1∏
i=1

(
(1 + θ − θp̂) Eeγŷ

−iX∗ − θ (1− p̂) Eeγŷ
−iX∗∧

)
=

n−1∏
i=1

E
{

(1 + θ(1− p̂)(1− 2F (X∗)))eγŷ
−iX∗

}
. (3.2.12)

Remark 3.2.4 By Lemmas 3.4.5 and 3.4.6, we can further refine the probability

on the right hand side of relation (3.2.11) as

Pr

(
X1

n∏
j=1

Yj > x

)
∼ (1 + θ(1− p̂)) Pr

(
X∗

n∏
j=1

Y ∗j > x

)
, θ ∈ (−1, 1],

or

Pr

(
X1

n∏
j=1

Yj > x

)
∼ Pr

(
X∗Y ∗∧

n∏
j=2

Y ∗j > x

)
, θ = −1.

Next, we generalize the above two results under the condition that the distri-

bution of insurance risk belongs to a larger intersection.

Theorem 3.2.6 In a discrete-time annuity-immediate risk model with a moder-

ately risky investment, assume that (Xi, Yi), i ∈ N, constitute a sequence of i.i.d.

random pairs with generic random pair (X, Y ) following a bivariate Sarmanov

distribution of the form (2.4.1) with marginal distributions F ∈ L(γ)∩OS∩R−∞,

and G, with a finite upper endpoint ŷ = (1−π)−1(1+r)−1 > 1, satisfying (2.4.5),

respectively. If 1 + θd1d2 > 0, then for each n ∈ N, relation (3.2.9) holds.

Specially, the following result is a direct corollary of Theorem 3.2.6.

Corollary 3.2.2 In a discrete-time annuity-immediate risk model with a mod-

erately risky investment, assume that (Xi, Yi), i ∈ N, are a sequence of i.i.d.

random pairs with generic random pair (X, Y ) following a bivariate FGM distri-

bution (2.4.8) with θ ∈ (−1, 1]. If F ∈ L(γ)∩OS ∩R−∞ for some γ ≥ 0, and G

has a finite upper endpoint ŷ > 1, then relation (3.2.11) holds for each n ∈ N.

3.2.5 Finite-time ruin with a most risky investment

Consider that the insurer as a risk-seeking investor invests all his surplus into a

risky asset, which leads to a most risky case that the financial risk Y has an infinite

upper endpoint. It is unwise that insurer exposes himself to a most dangerous

environment. In such a case, the financial risk Y builds a bridge between light

tails and heavy tails, which leads to the heavy-tailedness of the distribution of

the maximum stochastic sum in (3.1.3), even if the insurance and financial risks

are both light-tailed.
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For simplicity, we assume that there exists an auxiliary function a(·) defined

on R+ such that a(x) ↑ ∞, a(x)/x ↓ 0 and

G(a(x)) = o(H∗(x)), (3.2.13)

where H∗ is the distribution of the product of two independent r.v.s X∗ and Y ∗.

Theorem 3.2.7 Consider a discrete-time annuity-immediate risk model with a

most risky investment. Suppose that (Xi, Yi), i ∈ N, constitute a sequence of i.i.d.

random pairs with generic random pair (X, Y ) following a bivariate Sarmanov

distribution of the form (2.4.1) with marginal distributions F ∈ L(γ) ∩ R−∞
for some γ > 0, and G, with the upper endpoint ŷ = ∞, satisfying (2.4.5). If

1 + θd1d2 > 0 and (3.2.13) is satisfied, then it holds that for each n ∈ N,

ψ(x;n) ∼ Pr

(
X1

n∏
j=1

Yj > x

)
∼ (1 + θd1d2) Pr

(
X∗

n∏
j=1

Y ∗j > x

)
. (3.2.14)

Corollary 3.2.3 In a discrete-time annuity-immediate risk model with a risky

investment, assume that (Xi, Yi), i ∈ N, are a sequence of i.i.d. random pairs

with generic random pair (X, Y ) following a bivariate FGM distribution (2.4.8)

with θ ∈ (−1, 1]. If F ∈ L(γ) ∩ R−∞ for some γ > 0 and (3.2.13) is satisfied,

then it holds that for each n ∈ N,

ψ(x;n) ∼ Pr

(
X1

n∏
j=1

Yj > x

)
∼ (1 + θ) Pr

(
X∗

n∏
j=1

Y ∗j > x

)
. (3.2.15)

The following result compliments Corollary 3.2.3 for θ = −1, and also provides

an example showing that (3.2.13) holds automatically.

Theorem 3.2.8 Consider a discrete-time annuity-immediate risk model with a

risky investment. Assume that (Xi, Yi), i ∈ N, constitute a sequence of i.i.d.

random pairs with generic random pair (X, Y ) following a bivariate FGM distri-

bution (2.4.8) with θ = −1. If F ∈ L(γ)∩R−∞ for some γ > 0 and F (x) ∼ cG(x)

for some c > 0, then it holds that for each n ∈ N,

ψ(x;n) ∼ (1 + c−1) Pr

(
X∗∧

n∏
j=1

Y ∗j > x

)
. (3.2.16)

Remark 3.2.5 Note that the condition F (x) ∼ cG(x) indicates that the tail of

the insurance risk is almost as heavy as that of the financial risk. In practice, it

is hard to distinguish which one of the insurance risk and the financial risk domi-

nates the other. The finite-time ruin probability can be mainly determined by any

one of such two kinds of risks. Tang and Tsitsiashvili (2003) gave two examples

illustrating as anticipated, the finite-time ruin probability is mainly determined

by the financial risk. Recently, Li and Tang (2014) provided a further treatment

that no dominating relationship exists between the insurance and financial risks.
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3.2.6 An extension: extreme risks in insurance and fi-
nance

Convolution equivalent distributions can be in two different maximum domains

of attraction MDA(Φα) and MDA(Λ), but MDA(Ψα) is excluded, since all dis-

tributions in MDA(Ψα) have bounded supports to the right. All distributions in

MDA(Φα) are subexponential, see Lemma 1.3.1 of Embrechts et al. (1997). Other

convolution equivalent distributions may belong to MDA(Λ). A typical example

in S ∩MDA(Λ) is the distribution with density function

f(x) ∼ kxβe−x
α

, x→∞,

for some k, β ∈ R, α ∈ (0, 1), like the heavy-tailed Weibull distributions. The

distribution, whose probability density satisfies

f(x) ∼ kxβ−1e−γx, x→∞,

for β < 0, belongs to the important subclass of S(γ)∩MDA(Λ), like the general-

ized inverse Gaussian distribution, the normal inverse Gaussian distribution and

the generalized hyperbolic distribution. For more details, see Cline (1986) and

Goldie and Resnick (1988).

The use of EVT to characterize the tail behaviour is a fairly recent innovation,

but there is a rich amount of investigations in the actuarial literature. Hashorva

et al. (2010) presented a result for ruin in presence of risky investment with F ∈
MDA(Φα) or F ∈ S ∩MDA(Λ) under the assumption of complete independence,

which is far unrealistic. Similar results can be found in Chen (2011) and Yang

and Wang (2013) with dependent insurance and financial risks. In this section,

we present a more general result when the insurance risk F ∈ S(γ) ∩MDA(Λ).

Corollary 3.2.4 Consider a discrete-time annuity-immediate risk model. Sup-

pose that (Xi, Yi), i ∈ N, are a sequence of i.i.d. random pairs with generic ran-

dom pair (X, Y ) following a bivariate Sarmanov distribution of the form (2.4.1)

with marginal distributions F ∈ S(γ) ∩MDA(Λ) with an auxiliary function b(·),

and G ∈ MDA(Ψα) for some γ ≥ 0 and α > 0.

(a) Under the conditions of Theorem 3.2.1, it holds that for each n ∈ N,

ψ(x;n) ∼ (1 + θd1d2)EeγVn−1F

(
x

ŷ

)
Γ(α+ 1)G

(
ŷ − ŷ2

x
b

(
x

ŷ

))
. (3.2.17)

(b) Under the conditions of Theorem 3.2.4, it holds that for each n ∈ N,

ψ(x;n) ∼ Bn−1(γ)(1+θd1d2))F

(
x

ŷn

)(
Γ(α + 1)G

(
ŷ − ŷn+1

x
b

(
x

ŷn

)))n
.

(3.2.18)
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Corollary 3.2.5 Consider a discrete-time annuity-immediate risk model. Sup-

pose that (Xi, Yi), i ∈ N, are a sequence of i.i.d. random pairs with generic ran-

dom pair (X, Y ) following a bivariate FGM distribution (2.4.8) with θ ∈ [−1, 1].

Assume that F ∈ S(γ) ∩ MDA(Λ) with an auxiliary function b(·), and G ∈
MDA(Ψα) for some γ ≥ 0 and α > 0 with an upper endpoint ŷ <∞.

(a) Under the conditions of Theorem 3.2.2, it holds that for each n ∈ N,

ψ(x;n) ∼ (1 + θ)EeγVn−1F

(
x

ŷ

)
Γ(α + 1)G

(
ŷ − ŷ2

x
b

(
x

ŷ

))
, (3.2.19)

or

ψ(x;n) ∼ EeγVn−1F

(
x

ŷ

)
Γ(α + 1)G

2
(
ŷ − ŷ2

x
b

(
x

ŷ

))
, (3.2.20)

for θ ∈ (−1, 1] or θ = −1, respectively.

(b) Under the conditions of Theorem 5.2.4, it holds that for each n ∈ N,

ψ(x;n) ∼ Cn−1(γ)(1 + θ(1− p̂))F
(
x

ŷn

)
(

Γ(α + 1)G

(
ŷ − ŷn+1

x
b

(
x

ŷn

)))n
, (3.2.21)

or

ψ(x;n) ∼ Cn−1(γ)F

(
x

ŷn

)
(Γ(α + 1))n

(
G

(
ŷ − ŷn

x
b

(
x

ŷn−1

)))n−1

G
2
(
ŷ − ŷ2

x
b

(
x

ŷ

))
, (3.2.22)

for θ ∈ (−1, 1] or θ = −1, respectively.

3.3 Numerical Studies

In this section, we conduct some numerical studies by using Matlab to estimate

the ruin probability in (3.1.1). Because of the complex stochastic structures

among underlying risk variables, it is not possible to obtain the exact value of the

ruin probability ψ(x;n) of (3.1.1) and an estimate is required. The most common

way to estimate the ruin probability ψ(x;n) is by using the crude Monte Carlo

(CMC) simulation, which gives an estimate as

ψ1(x;n) =
1

N

N∑
k=1

1{Lk>x},
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where Lk, k = 1, ..., N, are i.i.d. samples from

L = max
1≤m≤n

m∑
i=1

Xi

i∏
j=1

Yj.

The CMC simulation is considered as one of the most powerful methods wide-

ly used in many computational problems in insurance and finance. However,

the estimate ψ1(x;n) performs efficiently only when the true value of the ruin

probability ψ(x;n) is not too small, or say, the initial capital x is not too large.

Nevertheless, the large initial capital x is required by certain risk reserve regula-

tions such as EU Solvency II, which makes the value of ψ(x;n) extremely small.

For simulations of such a case, the extremely large sample size N is chosen to

offset the negative effect of ψ(x;n). As mentioned by Tang and Yuan (2012), for

some h > 0 close to 0 and 0 < p < 1 close to 1, in order to keep the simulated es-

timate ψ1(x;n) within 100h% of the true value of the ψ(x;n) with the probability

not smaller than p, i.e.

Pr
(
|ψ1(x;n)− ψ(x;n)| ≤ hψ(x;n)

)
≥ p,

the sample size N needed for the required accuracy is

N ≥
(zp
h

)2 1− ψ(x;n)

ψ(x;n)
,

where zp = Φ−1((1 + p)/2) is the quantile of the standard normal distribution

at (1 + p)/2. In this section, we choose h = 0.05 and p = 0.95. While for the

extremely large sample size N to obtain the required accuracy, some big issues

arise for both computational time and memory allocation. More details can be

found in Asmussen and Glynn (2007). Therefore, when the CMC method breaks

down for the large initial capital x, our asymptotic method might be an accurate

estimate for ψ(x;n) such that

lim
x→∞

ψ2(x;n)

ψ(x;n)
= 1,

here, our asymptotic estimate ψ2(x;n) is defined in (3.3.2) below.

Throughout the rest of this chapter, |ψ2(x;n)/ψ(x;n)− 1| ≤ 0.05 is stratified

when we work out the numerical studies to examine its accuracy by testing how

close to 1 the ratio ψ2(x;n)/ψ1(x;n) is by Matlab.

Starting from the case of heavy-tailed distributions, we assume that the in-

surance risk X follows the heavy-tailed Weibull distribution that belongs to the

class of the subexponential distributions,

F (x) = 1− e−(x/a)b , x ∈ R, a > 0, 0 < b < 1,
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and that the financial risk Y follows the uniform distribution with parameters c

and d. Then the various parameters are set to be:

n = 4,

r = 1.25%,

π = 0.8,

p̂ = 0.05,

θ = 0.6

a = 1, b = 0.5, c = 0, d = ŷ = 4.9383.

The following algorithm (see Johnson(1986)) is used to generate r.v.s X and Y

fulfilling the FGM copula:

a. Generate two independent uniform (0, 1) variables v1, v2;

b. Set a1 = 1 + θ(1− 2v1), a2 =
√
a2

1 − 4(a1 − 1)v2;

c. Set u1 = v1, u2 = v2/(a1 + a2);

d. Then (u1, u2) returns the outcome of two dependent variables following the

FGM copula.

It is easy to calculate that ŷ = 4.9383 by relation ŷ = (1− π)−1(1 + r)−1, which

indicates that risky investments are taken into consideration. Thus, by Theorem

5.2.4 and Remark 3.2.4, the asymptotic formula for the heavy-tailed case γ = 0

can certainly be simplified to

ψ(x;n) ∼ (1 + θ(1− p̂)) Pr

(
X∗

n∏
j=1

Y ∗j > x

)
. (3.3.1)

The probability on the right hand side of (3.3.2) is still estimated by the CMC

method, that is,

ψ2(x;n) = (1 + θ(1− p̂)) 1

N

N∑
k=1

1{Mk>x}, (3.3.2)

where Mk, k = 1, ..., N , are i.i.d. samples from

M = X∗
n∏
j=1

Y ∗j .

Both of the two estimates ψ1(x;n) and ψ2(x;n) have their advantage and disad-

vantage: the CMC simulated estimate ψ1(x;n) meets the accuracy for relative
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Figure 3.1: The values of ψ1(x;n) and ψ2(x;n) (N = 106)
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Figure 3.2: The ratio of ψ2(x;n)/ψ1(x;n) (N = 106)
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Figure 3.3: The values of ψ1(x;n) and ψ2(x;n) (N = 107)

large values of ψ(x;n), while the asymptotic estimate ψ2(x;n) performs well for

small values of ψ(x;n).

The sample size is chosen as N = 1, 000, 000, then the values of ψ1(x;n) and

ψ2(x;n) are shown in the Figures 3.1,3.2, in which we compare the two estimates

on the left and present their ratio on the right. These figures show that, although

ψ2(x;n) seems to converge to ψ1(x;n) as the initial wealth x increases on the

left, the ratio ψ2(x;n)/ψ1(x;n) fluctuates around 1 and fluctuates more as well.

Without surprise, the larger the initial capital is, the smaller the ruin probability

ψ(x;n) becomes and the more fluctuation the ratio ψ2(x;n)/ψ1(x;n) exhibits.

Actually, this is due to the poor performance of CMC, since the sample size is not

large enough. Hence, we repeat the simulation with the sample size N increasing

from 1, 000, 000 to 10, 000, 000 and draw Figures 3.3,3.4. Then we observe a much

improved convergence of ratio ψ2(x;n)/ψ1(x;n). Furthermore, we compare the

FGM parameter θ = 0.4, 0.5, 0.6, with sample size N = 10, 000, 000 in the next

Figures 3.5,3.6, in order to see how the parameter θ affects the convergence of

the ratio. It is easy to see that the two estimates ψ1(x;n) and ψ2(x;n) increase

as θ increases from 0.4 to 0.6. Moreover, for θ = 0.4, the ratio ψ2(x;n)/ψ1(x, n)

fluctuates dramatically and it does not seem to converge to 1. One possible

reason is that the ratio ψ2(x;n)/ψ1(x;n) converges with respect to the large

initial wealth. Another reason of accuracy might be due to the small value of the

ruin probability ψ(x;n), when the ratio ψ2(x;n)/ψ1(x;n) converges to 1. The

ratio ψ2(x;n)/ψ1(x;n) converges to 1 well for both the cases θ = 0.5 and θ = 0.6,

even if there is a little bit fluctuation that the ratio ψ2(x;n)/ψ1(x;n) does not

satisfy |ψ2(x;n)/ψ(x;n)− 1| ≤ 0.05 in the far right area.

Next, we assume that insurance riskX follows the light-tailed inverse Gaussian
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distribution, which belongs to the class S(γ) with γ > 0,

F (x) = Φ

(√
λ

x

(
x

µ
− 1

))
+ exp

{
2λ

µ

}
Φ

(
−
√
µ

x

(
x

µ
+ 1

))
, (3.3.3)

for x > 0, where Φ(·) is the standard normal distribution, µ > 0 is the expecta-

tion, and λ > 0 is the shape parameter. As presented by the main theorem of

Embrechts (1983), the inverse Gaussian distribution denoted by IG(µ, λ) belongs

to the class S(γ) with γ = λ/(2µ2). We still assume that the financial risk Y fol-

lows the uniform distribution with parameters c and d. For ease of computation,

we set the parameters as follows:

n = 4,

r = 1.25%,

π = 0.8,

p̂ = 0.05,

θ = 0.8,

λ = µ = 1, c = 0, d = ŷ = 4.9383.

Therefore, by Theorem 5.2.4 and Remark 3.2.4, the asymptotic formula for the

lighted-tailed case γ > 0 can be simplified to

ψ(x;n) ∼ (1 + θ(1− p̂))Cn−1(γ) Pr

(
X∗

n∏
j=1

Y ∗j > x

)
, (3.3.4)

with Cn−1(γ) defined in (3.2.12). Similarly to (3.3.2), the probability on the
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Figure 3.5: The values of ψ1(x;n) and ψ2(x;n) (N = 107)

right hand side of (3.3.4) is still estimated by the CMC method, that is,

ψ2(x;n) = (1 + θ(1− p̂))Cn−1(γ)
1

N

N∑
k=1

1{Mk>x}. (3.3.5)

For case of light-tailed distributions, we simulate with sample sizeN = 10, 000, 000

for both ψ1(x;n) and ψ2(x;n). We present the two estimates on the left and show

the ratio on the right in Figures 3.7,3.8. In this case, the figures show that the

ratio ψ2(x;n)/ψ1(x;n) converges to 1 quickly as the initial wealth increases. Af-

ter staying around 1 for a while, the ratio starts to fluctuate a lot and out of the

accuracy we set in the far right area. As we mentioned before, the ruin proba-

bility decreases very fast as the initial wealth becomes large, leading to the bad

performance of the CMC method, so that the ratio ψ2(x;n)/ψ1(x;n) fluctuates

dramatically. One way to improve this situation is that we repeat the simula-

tion with sample size N increasing from 10, 000, 000 to 100, 000, 000, see Figures

3.9,3.10.

For both the light-tailed and heavy-tailed cases, the true value of ψ(x;n)
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Figure 3.7: The values of ψ1(x;n) and ψ2(x;n) (N = 107)
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Figure 3.8: The ratio of ψ2(x;n)/ψ1(x;n) (N = 107)
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Figure 3.9: The values of ψ1(x;n) and ψ2(x;n) (N = 108)
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Figure 3.10: The ratio of ψ2(x;n)/ψ1(x;n) (N = 108)
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becomes too small as the initial wealth x increases. An extremely large sample size

N is needed to offset the negative effect of ψ(x;n). However, for the simulation

of such a scale, this will be a big issue for both computational time and memory

allocation despite a little improvement of the ψ2(x;n). One might consider to

use extreme value theorem to improve the asymptotic estimate ψ2(x;n), using

an example of the lighted-tailed distribution. Under the conditions of Corollary

3.2.5 (b), if θ ∈ (−1, 1], then (3.2.21) holds. By Theorem 3.3.12 of Embrechts et

al. (1997), a possible choice for the function b(x) is

b(x) =

∫ ∞
x

F (t)

F (x)
dt.

Thus, we have an improved asymptotic estimate

ψ3(x;n) = Cn−1(γ)(1 + θ(1− p̂))F
(
x

ŷn

)(
Γ(α + 1)G

(
ŷ − ŷn+1

x
b

(
x

ŷn

)))n
,

(3.3.6)

which is the best estimate that one can desire for in rare-event simulation. A

ratio test of ψ3(x;n)/ψ2(x;n) is provided in Figure 3.11 with sample size N =

100, 000, 000. In practice, we can choose a reasonably large simple size N to fulfil

the accuracy so that the ratio ψ2(x;n)/ψ1(x;n) or ψ3(x;n)/ψ1(x;n) starts to fall

into the strip between 0.95 and 1.05 with such a value as the threshold u0 or u′0.

One can define ψ̃(x;n) as a globally accurate estimate for ψ(x;n),

ψ̃(x;n) = ψ1(x;n)1{ψ1(x;n)≥u0} + ψ2(x;n)1{ψ1(x;n)<u0},

or

ψ̃(x;n) = ψ1(x;n)1{ψ1(x;n)≥u′0} + ψ3(x;n)1{ψ1(x;n)<u′0},

43



which is also called as the hybrid estimate for ψ(x;n) in Tang and Yuan (2012).

Hence, with this hybrid method, the insurer can make decision to optimize the

portfolio easily.

3.4 Proofs

The following result is a restatement of an important result in Rogozin and Sgib-

nev (1999).

Lemma 3.4.1 Let F ,F1, and F2 be three distributions. If F ∈ S(γ) with γ ≥ 0

and the limit

κi = lim
x→∞

F i(x)

F (x)

exists and is finite for i = 1, 2, then it holds that

lim
x→∞

F1 ∗ F2(x)

F (x)
= κ1

∫ ∞
−∞

eγxF2(dx) + κ2

∫ ∞
−∞

eγxF1(dx)

Motivated by Lemma 5.1 of Cai and Tang (2004), we obtain the following

lemma.

Lemma 3.4.2 Let F ∈ S(γ) be a distribution on [0,∞) with γ ≥ 0. Then it

holds that for any positive integer k ≥ 2,

lim
x→∞

(
F (x)

)k
F (kx)

= 0. (3.4.1)

Proof. Let Xi, i = 1, ..., k, be i.i.d. r.v.s with common distribution F . Then, it

is easy to see that for any x > 0,(
k∑
i=1

Xi > kx

)
⊃

(
k∑
i=1

Xi > kx,Xi > x for only one i = 1, ..., k

)
∪

(Xi > x for all i = 1, ..., k) .

For an arbitrary positive constant c and all x > c, it holds that

Pr

(
k∑
i=1

Xi > kx

)
≥ k Pr

(
k∑
i=1

Xi > kx,X1 > x,X2 ≤ x, ..., Xk ≤ x

)
+
(
F (x)

)k
≥ k Pr

(
k∑
i=1

Xi > kx,X2 ≤ c, ..., Xk ≤ c

)
+
(
F (x)

)k
= k

∫
· · ·
∫

0<xj≤c,j=2,...,k

F

(
kx−

k∑
j=2

xj

)
k∏
j=2

F (dxj) +
(
F (x)

)k
∼ kF (kx)

(
EeγX1{X≤c}

)k−1
+
(
F (x)

)k
.

44



It follows that

lim sup
x→∞

(
F (x)

)k
F (kx)

≤ lim sup
x→∞

Pr
(∑k

i=1 Xi > kx
)

F (kx)
− k

(
EeγX1{X≤c}

)k−1

= k
(
EeγX

)k−1 − k
(
EeγX1{X≤c}

)k−1
.

The desired result follows by the arbitrariness of c.

3.4.1 Proof of Theorem 3.2.1

Lemma 3.4.3 Let X∗, Y ∗ and Ỹ ∗ be three independent r.v.s with distributions

F, G and G̃, respectively. Assume that Y ∗ is nonnegative with its upper endpoint

0 < ŷ ≤ ∞ and G̃ is defined by (2.4.4). If F ∈ R−∞ and the second relation in

(2.4.5) is satisfied, then

lim
x→∞

Pr(X∗Ỹ ∗ > x)

Pr(X∗Y ∗ > x)
= 1− d2

b2

. (3.4.2)

Proof. By F ∈ R−∞ and Lemma 3.1 (ii) of Tang (2006), we have that for every

y0 ∈ (0, ŷ),

Pr(X∗Ỹ ∗ > x) ∼
∫ x/y0

x/ŷ

G̃
(x
u

)
F (du),

and

Pr(X∗Y ∗ > x) ∼
∫ x/y0

x/ŷ

G
(x
u

)
F (du).

Hence, we derive that

Pr(X∗Ỹ ∗ > x)

Pr(X∗Y ∗ > x)
∼

∫ x/y0
x/ŷ

G̃(x/u)F (du)∫ x/y0
x/ŷ

G(x/u)F (du)
=

∫ x/y0
x/ŷ

∫ ŷ
x/u

(1− φ2(u)
b2

)G(du)F (du)∫ x/y0
x/ŷ

G(x/u)F (du)
,

which leads to

inf
y0≤y<ŷ

∫ ŷ
y

(1− φ2(u)
b2

)G(du)

G(y)
.

Pr(X∗Ỹ ∗ > x)

Pr(X∗Y ∗ > x)
. sup

y0≤y<ŷ

∫ ŷ
y

(1− φ2(u)
b2

)G(du)

G(y)
.

For any ε > 0, there exists y0 close enough to ŷ such that for any u ∈ [y0, ŷ], by

the second relation of (2.4.5),

(1− ε)d2 ≤ φ2(u) ≤ (1 + ε)d2,

which implies

(1− ε)
(

1− d2

b2

)
G(y) ≤

∫ ŷ

y

(1− φ2(u)

b2

)G(du) ≤ (1 + ε)

(
1− d2

b2

)
G(y).

Letting y0 ↗ ŷ, the desired result follows by the arbitrariness of ε.
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Lemma 3.4.4 Assume that (X, Y ) follows a bivariate Sarmanov distribution of

the form (2.4.1). If (3.2.13), (2.4.5) and 1 + θd1d2 > 0 are satisfied, then

Pr(XY > x) ∼ (1 + θb2d1) Pr(X∗Y ∗ > x)− θb2d1 Pr(X∗Ỹ ∗ > x) (3.4.3)

or, equivalently,

Pr(XY > x) ∼
∫ ∞

0

(1 + θd1φ2(y))F

(
x

y

)
G(dy)

= Pr(X∗Y ∗r > x),

where Y ∗r is defined in Theorem 3.2.1.

Proof. In terms of the function a(·) defined in (3.2.13), and by (2.4.6) we have

that

Pr(X̃∗Y ∗ > x) =

∫ a(x)

0

F̃

(
x

y

)
G(dy) +O

(
G(a(x)

)
=

(
1− d1

b1

+ o(1)

)
H∗(x).

(3.4.4)

Similarly, we can obtain that

Pr(X̃∗Ỹ ∗ > x) =

∫ a(x)

0

F̃

(
x

y

)
G̃(dy) +O

(
G̃ (a(x))

)
=

(
1− d1

b1

+ o(1)

)
Pr(X∗Ỹ ∗ > x) + o

(
H∗(x)

)
, (3.4.5)

where the last step holds due to

G̃(a(x)) =

∫ ∞
a(x)

(
1− φ2(u)

b2

)
G(du) = O(G(a(x))) = o(H∗(x)).

Plugging the above (3.4.4) and (3.4.5) into relation (3.2.1), and by noting the

second relation of (2.4.5) and 1 + θd1d2 > 0, we derive that

H(x) = (1 + θb2d1 + o(1))H∗(x)− (θb2d1 + o(1)) Pr(X∗Ỹ ∗ > x)

= (1 + o(1))

∫ ∞
0

(1 + θd1φ2(y))F

(
x

y

)
G(dy).

It ends the proof of the lemma.

Now we turn to the proof of Theorem 3.2.1. For n = 1, it follows that

ψ(x; 1) = Pr(V1 > x) = Pr(X1+Y1 > x) = Pr(X1Y1 > x). (3.4.6)

Note ŷ = [1 + (1 − π)r]−1 < 1, then relation (3.2.13) holds automatically. By

applying Lemma 3.4.4, relation (3.2.7) holds for n = 1. Arguing inductively,
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assume that (3.2.7) holds for n and we are going to prove it for n+ 1. Thus, by

the inductive assumption, we have that

Pr(Vn > x) ∼ EeγVn−1

∫ 1

0

(1 + θd1φ2(y))F

(
x

y

)
G(dy)

≤ EeγVn−1(1 + |θd1|b2)

∫ 1

0

F

(
x

y

)
G(dy)

= o(F (x)), (3.4.7)

where the last step holds due to F ∈ R−∞. Recalling the decomposition relation

(3.2.3), by Lemma 5.3.1 we derive that

J1(x) =

∫ 1

0

Pr

(
Vn +X∗ >

x

y

)
Pr(Y ∗ ∈ dy)

= (1 + o(1))EeγVn
∫ 1

0

Pr

(
X∗ >

x

y

)
Pr(Y ∗ ∈ dy)

= (1 + o(1))EeγVn Pr(X∗Y ∗ > x). (3.4.8)

Similarly, we have

J3(x) = (1 + o(1))EeγVn Pr(X∗Ỹ ∗ > x). (3.4.9)

For J2(x), by (2.4.6) and (3.4.7), Pr(Vn > x) = o(F̃ (x)) holds. Then, by Lemma

5.3.1, we get that

J2(x) =

∫ 1

0

Pr

(
Vn + X̃∗ >

x

y

)
Pr(Y ∗ ∈ dy)

= (1 + o(1))EeγVn
∫ 1

0

Pr

(
X̃∗ >

x

y

)
Pr(Y ∗ ∈ dy)

= (1 + o(1))EeγVn Pr(X̃∗Y ∗ > x), (3.4.10)

and

J4(x) = (1 + o(1))EeγVn Pr(X̃∗Ỹ ∗ > x). (3.4.11)

Plugging (3.4.8)–(3.4.11) into (3.2.3), it follows that

Pr(Vn+1 > x) = (1 + θb2d1 + o(1))EeγVn Pr(X∗Y ∗ > x)− (θb2d1 + o(1))EeγVn Pr(X∗Ỹ ∗ > x)

= (1 + o(1))EeγVn Pr(X∗Y ∗r > x).

This completes the proof.

3.4.2 Proof of Theorem 3.2.2

Lemma 3.4.5 Assume that (X, Y ) follows a bivariate FGM distribution (2.4.8)

with marginal distributions F and G.
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(a) In the case θ ∈ (−1, 1], if (3.2.13) holds for some auxiliary function a(x)

with a(x) ↑ ∞ and a(x)/x ↓ 0, then it holds that

Pr(XY > x) ∼ (1 + θ) Pr (X∗Y ∗ > x)− θPr (X∗Y ∗∧ > x) . (3.4.12)

(b) In the case θ = −1, if F ∈ S(γ) for some γ ≥ 0 and G has a finite upper

endpoint 0 < ŷ <∞, then (3.4.12) holds.

Proof. Recall the decomposition (4.3.2) in Section 3.2.

In the case θ ∈ (−1, 1], by FX∗∧(x) = (F (x))2 and (3.2.13), we obtain that

Pr(X∗∧Y
∗ > x) =

∫ a(x)

0

Pr

(
X∗∧ >

x

y

)
G(dy) +G(a(x)) = o(1) Pr(X∗Y ∗ > x).

Similarly, it follows that Pr(X∗∧Y
∗
∧ > x) = o(1)(Pr(X∗Y ∗∧ > x) + Pr(X∗Y ∗ > x)).

Plugging these two estimates into (4.3.2), we have that

Pr(XY > x) = (1 + θ) Pr(X∗Y ∗ > x)− θPr(X∗Y ∗∧ > x)

+o(1)(Pr(X∗Y ∗ > x) + Pr(X∗Y ∗∧ > x)). (3.4.13)

By 0 ≤ Pr(X∗Y ∗∧ > x) ≤ Pr(X∗Y ∗ > x),

(1 + θ) Pr(X∗Y ∗ > x)− θPr(X∗Y ∗∧ > x) � Pr(X∗Y ∗ > x),

which implies that

Pr(X∗Y ∗ > x) + Pr(X∗Y ∗∧ > x) ≤ 2 Pr(X∗Y ∗ > x)

� (1 + θ) Pr(X∗Y ∗ > x)− θPr(X∗Y ∗∧ > x). (3.4.14)

Thus, (3.4.13) and (3.4.14) lead to the desired (3.4.12).

In the case θ = −1, relation (4.3.2) reduces to

Pr(XY > x) = Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y
∗ > x)− Pr (X∗∧Y

∗
∧ > x) .

Without loss of generality, assume ŷ = 1. Clearly, by Lemma 3.4.2,

Pr(X∗∧Y
∗ > x)

Pr(X∗Y ∗∧ > x)
≤ (F (x))2

Pr(X∗ > 2x, Y ∗∧ > 1/2)
=

1

(G(1/2))2

(F (x))2

F (2x)
→ 0,

which indicates that Pr (X∗∧Y
∗ > x) = o(1) Pr (X∗Y ∗∧ > x). Similarly,

Pr (X∗∧Y
∗
∧ > x) = o(1) Pr (X∗Y ∗∧ > x). Hence, it follows that

Pr(XY > x) ∼ Pr (X∗Y ∗∧ > x) .

The desired result (3.4.12) holds for all θ ∈ [−1, 1].
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Furthermore, this lemma provides the following insight. For θ ∈ [−1, 1],

introduce a positive r.v. Y ∗θ , independent of X∗, distributed by Gθ(·) : R+ 7→ R+

as

Gθ(y) = (1− θ)G(y) + θG2(y). (3.4.15)

Then relation (3.4.12) can be rewritten as

Pr(XY > x) ∼ Pr(X∗Y ∗θ > x). (3.4.16)

In this way, the dependence structure of (X, Y ) is dissolved.

Motivated by Lemma 3.3 of Tang (2006), we obtain the following lemma.

Lemma 3.4.6 Assume that X∗ and Y ∗ are two independent r.v.s with distribu-

tions F on R and G on R+. If F ∈ R−∞ and G has an upper endpoint 0 < ŷ ≤ ∞,

then

lim
x→∞

Pr(X∗Y ∗∧ > x)

Pr(X∗Y ∗ > x)
= Pr (Y ∗ = ŷ) . (3.4.17)

By convention, Pr(Y ∗ = ŷ) = 0 if ŷ =∞.

Proof. By Lemma 3.1(ii) of Tang(2006), for every y0 ∈ (0, ŷ), we have

Pr (X∗Y ∗∧ > x) ∼
∫ x/y0

x/ŷ

(
G
(x
u

))2

F (du),

and

Pr(X∗Y ∗ > x) ∼
∫ x/y0

x/ŷ

G
(x
u

)
F (du).

Hence,

Pr(X∗Y ∗∧ > x)

Pr(X∗Y ∗ > x)
∼

∫ x/y0
x/ŷ

G
2
(x/u)F (du)∫ x/y0

x/ŷ
G(x/u)F (du)

,

which yields that

inf
y0≤y<ŷ

G(y) .
Pr(X∗Y ∗∧ > x)

Pr(X∗Y ∗ > x)
. sup

y0≤y<ŷ
G(y).

Letting y0 ↗ ŷ yields the desired result.

Now we start to prove Theorem 3.2.2. It is easy to see that the FGM copula

is satisfied by Theorem 3.2.1 when θ ∈ (−1, 1]. Then, in this subsection we only

prove the case θ = −1. By (3.4.6), Lemma 3.4.5 and (3.4.15), relation (3.2.8)

holds for n = 1. Now we inductively assume that (3.2.8) holds for n and we are

going to prove it for n+ 1.

Recall the decomposition relation (3.2.6), since F ∈ S(γ) and G has a finite

upper endpoint ŷ ≤ 1, it is easy to verify that Gθ also has a finite upper endpoint

ŷ. By relation (3.2.8), Lemma 2.2 of Tang and Tsitsiashvili (2004) and Theorem
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1.1 of Tang (2006), the distribution of Vn belongs to R−∞ ∩ S(γ/ŷ). By the

inductive assumption and F ∈ R−∞, it follows that Pr(Vn > x) = o(F (x)).

Hence, by Lemma 5.3.1, we derive that

I3(x) = (1 + o(1))EeγVn Pr (X∗Y ∗∧ > x) . (3.4.18)

By ŷ = [1 + (1 − π)r]−1 > 1
2
, we know G(1

2
) > 0. Then, by (3.2.8) and Lemma

3.4.5, in the case θ = −1 it follows that

Pr (X∗∧ > x)

Pr (Vn > x)
≤ F

2
(x)

Pr(XY > x)
∼ F

2
(x)

Pr(X∗Y ∗∧ > x)
≤ F

2
(x)

(G(1/2))2F (2x)
,

which converges to 0 as x → ∞ by Lemma 3.4.2. This yields Pr(X∗∧ > x) =

o(Pr(Vn > x)). Hence, by FVn ∈ S(γ/ŷ), Lemma 5.3.1 and the inductive assump-

tion, we have that

Pr(Vn +X∗∧ > x) ∼ Eeγ/ŷX
∗
∧ Pr(Vn > x) ∼ Eeγ/ŷX

∗
∧EeγVn−1 Pr(X∗Y ∗∧ > x),

which indicates that

I2(x) =

∫ 1

0

Pr(Vn +X∗∧ > xy−1)G(dy)

∼ Eeγ/ŷX
∗
∧EeγVn−1 Pr(X∗Y ∗∧Y

∗ > x)

= o(Pr(X∗Y ∗∧ > x)), (3.4.19)

where that last step holds due to the fact that the distribution of X∗Y ∗∧ belongs

to R−∞, see Lemma 2.2 of Tang and Tsitsiashvili (2004). Similarly, we have

I4(x) = o(Pr(X∗Y ∗∧ > x)). (3.4.20)

Plugging (3.4.18)–(3.4.20) into (3.2.6), results in (3.2.8) holding for n + 1 in the

case θ = −1.

3.4.3 Proofs of Theorem 3.2.3 and Corollary 3.2.1

The following lemma comes from Cheng et al. (2012), which is mainly used in

the following proofs.

Lemma 3.4.7 Let F1 and F2 be two distributions on R with F1 ∈ L(γ)∩OS for

some γ ≥ 0. If F2(x) = o
(
F1(x)

)
, then

F1 ∗ F2(x) ∼ F1(x)

∫ ∞
0

eγuF2(du).
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Now we prove Theorem 3.2.3. Clearly, by (3.4.6) and Lemma 3.4.4, we know

(3.2.7) holds for n = 1. Arguing inductively, suppose that (3.2.7) holds for n

and we are going to prove it for n+ 1. Thus, we have

Pr(Vn > x) ∼ EeγVn−1

∫ 1

0

Pr

(
X >

x

y

)
Pr(Y ∗r ∈ dy) = o(F (x)),

where the last step is due to F ∈ R−∞. Note that Y ∗r also has a finite upper

endpoint, which indicates that (3.2.13) is satisfied automatically. Applying

Lemma 3.4.7, we obtain (3.4.8). By similar arguments to the proof of Theorem

3.2.1, we can derive (3.4.9),(3.4.10) and (3.4.11). Plugging them into (3.2.3),

relation (3.2.7) holds for n+ 1.

Moreover, choosing φ1(x) = 1− 2F (x) and φ2(y) = 1− 2G(y), and applying

Theorem 3.2.2, one can easily prove Corollary 3.2.1.

3.4.4 Proof of Theorem 3.2.4

Consider the model with a risky investment, which implies that the distribution

of financial risk Y has a finite upper endpoint 1 < ŷ <∞ and relation (3.2.13) is

satisfied. By F ∈ S(γ) ∩ R−∞, and applying Lemmas 3.4.3 and 3.4.4, we derive

that

H(x) ∼ (1 + θd1d2) Pr(X∗Y ∗ > x) (3.4.21)

Thus, by Lemma 2.2 of Tang and Tsitsiashvili (2004) and Theorem 1.1 of Tang

(2006), we have H ∈ S(γ/ŷ) ∩ R−∞. By (3.4.6) and (3.4.21), relation (3.2.9)

holds for n = 1. Arguing inductively, assume that (3.2.9) holds for n and we aim

to prove it for n+ 1. By the inductive assumption, we have that

Pr(Vn > x) ∼ Bn−1(γ) Pr

(
X1

n∏
j=1

Yj > x

)
∼ (1+θd1d2)Bn−1(γ) Pr(X∗

n∏
j=1

Y ∗j > x).

Applying Lemma 2.2 of Tang and Tsitsiashvili (2004) and Theorem 1.1 of Tang

(2006) again, we have FVn ∈ S(γŷ−n) ∩ R−∞. Hence, by the right continuity of

the distribution G, the condition G(1) > 0 implies that there is some y0 > 1 such

that G(y0) > 0. By F ∈ R−∞ we have that

F (x)

Pr(X∗
∏n

i=1 Y
∗ > x)

≤ F (x)

F (x/y0)(G(1))n−1G(y0)
→ 0,
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which indicates that F (x) = o(Pr(Vn > x)). Recall the decomposition (3.2.3).

Then, by Lemma 5.3.1 and F (x) = o(Pr(Vn > x)), we have

J1(x) =

∫ ŷ

0

Pr

(
Vn +X∗ >

x

y

)
Pr(Y ∗ ∈ dy)

= (1 + o(1))Eeγŷ
−nX∗

∫ ŷ

0

Pr

(
Vn >

x

y

)
Pr(Y ∗ ∈ dy)

= (1 + o(1))Eeγŷ
−nX∗ Pr(VnY

∗ > x). (3.4.22)

Moreover, Pr(X̃∗ > x) = o(Pr(Vn > x)) leads to

J2(x) =

∫ ŷ

0

Pr

(
Vn + X̃∗ >

x

y

)
Pr(Y ∗ ∈ dy)

= (1 + o(1))Eeγŷ
−nX̃∗

∫ ŷ

0

Pr

(
Vn >

x

y

)
Pr(Y ∗ ∈ dy)

= (1 + o(1))Eeγŷ
−nX̃∗ Pr(VnY

∗ > x). (3.4.23)

Similarly, by FVn ∈ R−∞ and Lemma 3.4.3, we derive that

J3(x) = (1 + o(1))Eeγŷ
−nX∗ Pr(VnỸ

∗ > x)

= (1 + o(1))

(
1− d2

b2

)
Eeγŷ

−nX∗ Pr(VnY
∗ > x), (3.4.24)

and

J4(x) = (1 + o(1))Eeγŷ
−nX̃∗ Pr(VnỸ

∗ > x)

= (1 + o(1))

(
1− d2

b2

)
Eeγŷ

−nX̃∗ Pr(VnY
∗ > x). (3.4.25)

Plugging (3.4.22)–(3.4.25) into (3.2.3), we derive that

Pr(Vn+1 > x) =
(

(1 + θb1d2)Eeγŷ
−nX∗ − θb1d2Eeγŷ

−nX̃∗ + o(1)
)
Bn−1(γ)

Pr

(
X1

n∏
j=1

Yj > x

)

∼ Bn(γ) Pr

(
X1

n∏
j=1

Yj > x

)
,

52



with

Bn(γ) =
n∏
i=1

(
(1 + θb1d2)Eeγŷ

−iX∗ − θb1d2Eeγŷ
−iX̃∗

)
=

n∏
i=1

(
(1 + θb1d2)

∫ ∞
−∞

eγŷ
−ixF (dx)

−θb1d2

∫ ∞
−∞

eγŷ
γ−ix

(
1− φ1(x)

b1

)
F (dx)

)
=

n∏
i=1

E
{

(1 + θd2φ1(X∗))eγŷ
−iX∗

}
.

This ends the proof of Theorem 3.2.4.

3.4.5 Proof of Theorem 5.2.4

Clearly, by Theorem 3.2.4, the desired Theorem 5.2.4 holds for θ ∈ (−1, 1]. Thus,

we next consider the case θ = −1. By (3.4.6) and Lemma 3.4.5, relation (3.2.11)

holds for n = 1.

Now we inductively assume that (3.2.11) holds for n and we aim to prove it for

n + 1. Since F ∈ S(γ), by relation (3.2.8), Lemma 2.2 of Tang and Tsitsiashvili

(2004) and Theorem 1.1 of Tang (2006), the distribution of Vn belongs to R−∞ ∩
S(γŷ−n). By the similar arguments as (3.4.22)–(3.4.25), and using Lemma 3.4.6

and the inductive assumption, we can obtain that

Pr(Vn+1 > x) ∼
(

(1 + θ − θp̂)Eeγŷ
−nX∗ + (θp̂− θ)Eeγŷ

−nX∗∧

)
Pr(VnY

∗ > x)

∼ Cn(γ) Pr

(
X1

n+1∏
j=1

Yj > x

)
,

with

Cn(γ) =
n∏
i=1

(
(1 + θ − θp̂)Eeγŷ

−iX∗ + (θp̂− θ)Eeγŷ
−iX∗∧

)
=

n∏
i=1

{
(1 + θ − θp̂)

∫ ∞
−∞

eγŷ
−ixF (dx) + (θp̂− θ)

∫ ∞
−∞

eγŷ
−ix Pr(X∗∧ ∈ dx)

}

=
n−1∏
i=1

E
{

(1 + θ(1− p̂)(1− 2F (X∗)))eγŷ
−iX∗

}
.

Thus, relation (3.2.11) holds for n+ 1.

3.4.6 Proof of Theorem 3.2.6

We firstly cite a lemma, which can be found in Cheng et al. (2012).
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Lemma 3.4.8 Assume that X∗ and Y ∗ are two independent r.v.s with distribu-

tions F on R and G on R+. If F ∈ OS and relation (3.2.13) is satisfied, then

H∗ ∈ OS.

Now we prove Theorem 3.2.6. By (3.4.6) and Lemma 3.4.4, relation (3.2.9)

holds for n = 1. Arguing inductively, assume that (3.2.9) holds for n and we aim

to prove it for n+ 1. By the inductive assumption,

Pr(Vn > x) ∼ (1 + θd1d2)Bn−1(γ) Pr

(
X∗

n∏
j=1

Y ∗j > x

)
,

which implies that F (x) = o(Pr(Vn > x)) by ŷ > 1 and F ∈ R−∞. Clearly, ŷ =

(1− π)−1(1 + r)−1 <∞ indicates that (3.2.13) is satisfied automatically. Hence,

by Lemma 2.2, Lemma A.4 of Tang and Tsitsiashvili (2004) and Lemma 3.4.8, we

have FVn ∈ R−∞ ∩ L(γ/ŷ) ∩OS by arguing inductively. Then, applying Lemma

3.4.7, we obtain (3.4.22). By the similar arguments to the proof of Theorem 3.2.4,

we can obtain (3.4.23)–(3.4.25). Plugging them into (3.2.3), relation (3.2.9) holds

for n+ 1.

3.4.7 Proof of Theorem 3.2.7

The following lemma comes from Pake (2004).

Lemma 3.4.9 Let F1 and F2 be two distributions on R. If F1 ∈ L(γ) for some

γ ≥ 0, satisfying F2(x) = o(F1(x)) and
∫∞
−∞ eυxF2(dx) <∞ for some υ > γ, then

F1 ∗ F2 ∈ L(γ) and

F1 ∗ F2(x) ∼ F1(x)

∫ ∞
−∞

eγxF2(dx).

Consider the strategy that the insurer invests all his surplus into a risky asset,

which leads to the financial risk Y has an infinite upper endpoint. By (3.4.6)

and Lemmas 3.4.3, 3.4.4, we derive that

ψ(x; 1) ∼ Pr(X1Y1 > x) ∼ (1 + θd1d2) Pr(X∗Y ∗ > x).

Thus, relation (3.2.14) holds for n = 1. Hence, by relation (3.2.13), Corollary 1.1

of Tang (2008) and Lemma 2.2. of Tang and Tsitsiashvili (2004), the distribution

of V1 belongs to L ∩R−∞, and the relation

G(a(x)) = o(Pr(V1 > x))

holds. Now we inductively assume that (3.2.14) holds for n and FVn ∈ L∩R−∞.

Then we are going to prove (3.2.14) for n+1. Thus, by the inductive assumption,
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F ∈ R−∞ and Fatou’s lemma, we have F (x) = o(Pr(Vn > x)), so by (2.4.6) it

holds that F̃ (x) = o(Pr(Vn > x)). Applying Lemma 3.4.9, and by γ > 0 (implying

F is light-tailed, so EevX
∗
<∞ for some v > 0), it follows that

Pr(Vn +X∗ > x) ∼ Pr(Vn > x),

and by (2.4.6),

Pr(Vn + X̃∗ > x) ∼ Pr(Vn > x).

By ŷ =∞, we have G(1) > 0, then by the inductive assumption,

Pr(VnY
∗ > x) ≥ Pr(Vn > x)G(1)

∼ (1 + θd1d2) Pr

(
X∗

n∏
j=1

Y ∗j > x

)
G(1)

≥ (1 + θd1d2)(G(1))nH∗(x),

which, together with (3.2.13), leads to

G(a(x)) = o(Pr(VnY
∗ > x)). (3.4.26)

By (3.4.26), for J1(x), we have

J1(x) =

(∫ a(x)

0

+

∫ ∞
a(x)

)
Pr

(
X∗ + Vn >

x

y

)
Pr(Y ∗ ∈ dy)

=

∫ a(x)

0

Pr

(
X∗ + Vn >

x

y

)
Pr(Y ∗ ∈ dy) +O

(
G(a(x))

)
= (1 + o(1)) Pr(VnY

∗ > x). (3.4.27)

Similarly, by (2.4.7) we have

J3(x) =

∫ a(x)

0

Pr

(
X∗ + Vn >

x

y

)
Pr(Ỹ ∗ ∈ dy) +O

(
G(a(x))

)
= (1 + o(1)) Pr(VnỸ

∗ > x) + o(Pr(VnY
∗ > x)). (3.4.28)

In the same way,

J2(x) = (1 + o(1)) Pr(VnY
∗ > x), (3.4.29)

and

J4(x) = (1 + o(1)) Pr(VnỸ
∗ > x). (3.4.30)

Note that by Lemma 3.4.3 with FVn ∈ R−∞,

lim
x→∞

Pr(VnỸ
∗ > x)

Pr(VnY ∗ > x)
= 1− d2

b2

.
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Plugging (3.4.27)–(3.4.30) into (3.2.3), and by the inductive assumption and

(3.4.26), we derive that

Pr(Vn+1 > x) ∼ Pr(VnY
∗ > x)

=

∫ a(x)

0

Pr

(
Vn >

x

y

)
G(dy) +O(G(a(x)))

= (1 + o(1))

∫ a(x)

0

Pr

(
X1

n∏
j=1

Yj >
x

y

)
G(dy) + o(Pr(VnY

∗ > x))

= (1 + o(1)) Pr

(
X1

n+1∏
j=1

Yj > x

)
+ o(Pr(VnY

∗ > x)),

which implies

Pr(Vn+1 > x) ∼ Pr(VnY
∗ > x) ∼ Pr

(
X1

n+1∏
j=1

Yj > x

)
. (3.4.31)

Therefore, relation (3.2.14) holds for n+ 1.

By FVn ∈ L(γ) ∩ R−∞, (3.4.31) and (3.4.26), applying Corollary 1.1 of Tang

(2008) and Lemma 2.2 of Tang and Tsitsiashvili (2004), we obtain FVn+1 ∈ L ∩
R−∞. This completes the proof of Theorem 3.2.7.

3.4.8 Proof of Theorem 3.2.8

The following Lemma is a restatement of Lemma 4.5 of Chen et al. (2014).

Lemma 3.4.10 Assume that (X,Y) follows a bivariate FGM distribution of the

form (2.4.8) with θ = −1. If ŷ = ∞ and relation (3.2.13) is satisfied, then it

holds that

Pr(XY > x) ∼ Pr(X∗Y ∗∧ > x) + Pr(X∗∧Y
∗ > x). (3.4.32)

Now we prove Theorem 3.2.8. By F ∈ R−∞ and F (x) ∼ cG(x), it holds that

for every b > 0,
G(bx)

H∗(x)
≤ G(bx)

F (2/b)G(bx/2)
→ 0, (3.4.33)

which is equivalent to (3.2.13). Furthermore, it is easy to show for every y > 1

that H∗(xy) = o(H∗(x)), implying H∗ ∈ R−∞. Moreover, by Lemma 3.4.10,

relation (3.4.32) holds. By F (x) ∼ cG(x), Lemma A.5 of Tang and Tsitsiashvili

(2004), we derive that

Pr(XY > x) ∼ Pr(X∗Y ∗∧ > x) + Pr(X∗∧Y
∗ > x) ∼ (1 + c−1) Pr(X∗∧Y

∗ > x).

Similarly to (3.4.33), for any b > 0,

G(bx) = o(Pr(X∗∧Y
∗ > x) = o(H(x)),
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which is equivalent to

G(a(x)) = o(H(x)), (3.4.34)

for some auxiliary function a(x) satisfying a(x) ↑ ∞ and a(x)/x ↓ 0. Note

that (3.2.13) is slightly weaker than (3.4.34), since, by (3.4.32), we have H(x) .

2H∗(x). Noting that FX∗∧ ∈ L(2γ)∩R−∞, then by (3.4.34), Corollary 1.1 of Tang

(2008) and Lemma 2.2 of Tang and Tsitsiashvili (2004), we get H ∈ L ∩ R−∞.

By (3.4.6), it is easy to see that relation (3.2.16) holds for n = 1. Now we assume

that (3.2.16) holds for n and we aim to prove it holding for n+ 1. Furthermore,

by the right continuity of the distribution G, the condition G(1) > 0 leads to

some y0 > 1 such that G(y0) > 0. It follows from F ∈ R−∞ that

Pr(X∗∧ > x)

Pr (X∗∧
∏n

i=1 Y
∗ > x)

≤ (F (x))2

(F (x/y0))2(G(1))n−1G(y0)
→ 0,

which, together with the inductive assumption, indicates FX∗∧(x) = o(Pr(Vn >

x)). Then the rest of the proof can be done along the lines of the proof of

Theorem 3.2.7.

3.4.9 Proof of Corollary 3.2.4 and Corollary 3.2.5

Note that the Corollary 3.2.4 and Corollary 3.2.5 are direct applications of Theo-

rem 3.2.2, Theorem 5.2.4 and Theorem 3.2.1, Theorem 3.2.4. Applying Theorem

3.2.2, Theorem 5.2.4 and Theorem 3.1 (a) of Hashorva et al. (2010), we can easily

prove the Corollary 3.2.4. The Corollary 3.2.5 can be proved similarly.
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Chapter 4

Ruin with Insurance and
Financial Risks Following the
Least Risky FGM Dependence
Structure 2

4.1 Introduction

Recently, Chen (2011) studied the asymptotic behavior of the ruin probability

ψ(x;n) in (3.1.1) for the case with dependent insurance and financial risks. Pre-

cisely, it was assumed that (Xi, Yi), i ∈ N, form a sequence of i.i.d. copies of

a generic random pair (X, Y ) whose components are however dependent. The

dependence between X and Y was realized via a bivariate FGM distribution of

the form

Π (x, y) = F (x)G(y)
(
1 + θF (x)G(y)

)
,

where F = 1− F on R = (−∞,∞) and G = 1−G on R+ = [0,∞) are marginal

distributions of (X, Y ), and θ ∈ [−1, 1] is a parameter governing the strength

of dependence. Under the assumptions that F is a subexponential distribution,

G fulfills some constraints in order for the product convolution of F and G (see

(2.1.1) below) to be a subexponential distribution too, and θ ∈ (−1, 1], Chen

(2011) derived a general asymptotic formula for ψ(x;n). Note that the assump-

tion θ 6= −1 was essentially applied there; see related discussions on Page 1041

of Chen (2011). Hence, the derivation of Chen (2011) is not valid for θ = −1.

The FGM distribution (2.4.8) describes an asymptotically independent situ-

ation. Recall that, for a copula function C(·, ·) on (0, 1)2, its survival copula is

defined as C(u, v) = u+ v − 1 + C(1− u, 1− v). For the FGM case, we have

C(u, v) = C(u, v) = uv (1 + θ(1− u)(1− v)) , (u, v) ∈ (0, 1)2.

2This chapter is based on Chen, Liu and Liu (2015).
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For every θ ∈ [−1, 1], the coefficient of upper tail dependence is

χ = lim
u↓0

C(u, u)

u
= 0.

See Section 5.2 of McNeil et al. (2005) for details of the concepts used here. Nev-

ertheless, asymptotically independent random variables may still exhibit different

degrees of dependence. In this regard, Coles et al. (1999) proposed to use

χ̂ = lim
u↓0

2 log u

logC(u, u)
− 1

to measure more subtly the strength of dependence in the asymptotic indepen-

dence case. There are many other measures, e.g. see Nadarajah (2015). With a

bit of calculation, we see that χ̂ = 0 for θ ∈ (−1, 1] while χ̂ = −1/3 for θ = −1.

This illustrates the essential difference between the cases −1 < θ ≤ 1 and θ = −1.

In this Chapter, we still look at the ruin probability (3.1.1) but for the case

θ = −1. It turns out that, not surprisingly though, the asymptotic behavior of

ψ(x;n) in the case θ = −1 is very different from that in the case −1 < θ ≤ 1. Due

to the distinction between the two cases, in the present study new technicalities

will be needed and more precise asymptotic analysis will be conducted. The

main difficulty exists in dealing with the tail behavior of the product of X and

Y following the FGM structure (2.4.8) with θ = −1. Recent related discussions

on the product of heavy-tailed (and dependent) random variables can be found

in Hashorva et al. (2010), Jiang and Tang (2011), Yang et al. (2011), Yang and

Hashorva (2013), and Yang and Wang (2013), among others.

While the scientific value of the present study is revealed during solving a se-

ries of technical problems to complement a previous study, we would like to stress

its practical relevance in insurance and finance. When the insurance business goes

insolvent, the insurer will of course become more conservative with investments.

Moreover, stock market crashes will certainly increase the prudence of not only

banking but also insurance regulators. These require the insurer to observantly

adjust between the insurance and financial markets, leading to negatively depen-

dent insurance and financial risks. Note that under the FGM framework θ = −1

exhibits an extremely negative, thus the least risky, scenario in which hypotheti-

cally the insurer complies with the most conservative self-adjustment mechanism.

The ruin probability for θ = −1 should be smaller, at least asymptotically, than

that for −1 < θ ≤ 1, as is confirmed by our main results in Section 4.2. Thus, the

present study devoted to the least risky scenario of the FGM framework offers

some new insight into the insolvency of the insurance business in the presence of

dependent insurance and financial risks.
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The rest of this chapter consists of four sections. Section 4.2 presents main

results and corollaries, and Sections 4.3, 4.4 prove the main results and corollaries,

respectively.

4.2 Main Results

For simplicity, we say that a real function a(·) defined on R+ is an auxiliary

function if it satisfies 0 ≤ a(x) < x/2, a(x) ↑ ∞ and a(x)/x ↓ 0.

We recall here some facts, which will be used tacitly for a few times in this

thesis. If F ∈ L and 0 < ŷ <∞, then by Theorem 2.2(iii) of Cline and Samorod-

nitsky (1994) we have F ⊗ G ∈ L. Moreover, if F ∈ S and 0 < ŷ < ∞, then

by Theorem 2.1 of Cline and Samorodnitsky (1994) as recalled in Lemma 4.3.4

below, F ⊗G ∈ S.

Recall that the dependence structure of (X, Y ) is described by the joint dis-

tribution (2.4.8) with θ = −1; that is

Π (x, y) = F (x)G(y)
(
1− F (x)G(y)

)
(4.2.1)

with F on R and G on R+. Introduce independent random variables X∗, Y ∗,

Y ∗1 , Y ∗2 , Y ∗3 , . . . , with the first identically distributed as X and others identically

distributed as Y . Also recall X∗∧ and Y ∗∧ introduced at the end of Section 2.4.

Denote by H the distribution of the product XY and, as in (2.1.1), denote by

H∗ = F ⊗ G the distribution of the product X∗Y ∗. As before, ŷ denotes the

essential upper bound of Y .

In the first result below, the condition 0 < ŷ ≤ 1 indicates that there are

risk-free investments only:

Theorem 4.2.1 Let the random pair (X, Y ) follow a bivariate FGM distribution

(4.2.1) with F ∈ S and 0 < ŷ ≤ 1. Then it holds for each n ∈ N that

ψ(x;n) ∼
n∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
, (4.2.2)

where, and throughout the thesis, the usual convention
∏1

j=2 Y
∗
j = 1 is in force.

In the second result below, the condition 1 ≤ ŷ ≤ ∞ means the presence of

risky investments:

Theorem 4.2.2 Let the random pair (X, Y ) follow a bivariate FGM distribution

(4.2.1) with F ∈ L, 1 ≤ ŷ ≤ ∞ and H ∈ S. Then the relation

ψ(x;n) ∼
n∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
+

n∑
i=1

Pr

(
X∗∧Y

∗
i∏

j=2

Y ∗j > x

)
(4.2.3)

holds for each n ∈ N under either of the following groups of conditions:
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(i) there is an auxiliary function a(·) such that G(a(x))=o
(
H(x)

)
and H(x−a(x))∼

H(x);

(ii) M∗(F ) > 0, and there is an auxiliary function a(·) such that G (a(x)) =

o
(
H(x)

)
.

Lemma 4.3.5 below gives an asymptotic expression (4.3.11) for H(x) in terms

of the tails of products of independent random variables. This expression can help

us easily verify the conditions G (a(x)) = o
(
H(x)

)
and H (x− a(x)) ∼ H(x) in

Theorem 4.2.2 in a given situation. We remark that the condition M∗(F ) > 0 in

Theorem 4.2.2(ii) is really mild and does not exclude any distribution of practical

interest. Under its help, however, we are able to get rid of the troublesome

condition H (x− a(x)) ∼ H(x).

Recall Theorem 3.1 of Chen (2011), which, for θ ∈ (−1, 1], shows the asymp-

totic formula

ψ(x;n) ∼
n∑
i=1

Pr

(
XY

i∏
j=2

Y ∗j > x

)
. (4.2.4)

The three formulas (4.2.2)–(4.2.4) look very different from each other but they

are intrinsically consistent. Actually, according to relation (4.3.11) for θ = −1,

(4.2.3) corresponds to (4.2.4) with the distribution of XY replaced by another dis-

tribution with tail asymptotically equivalent to Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y
∗ > x).

Subsequently, (4.2.2) is also consistent with (4.2.4) since, as Lemma 4.3.2 below

shows, we have Pr (X∗∧Y
∗ > x) = o (Pr (X∗Y ∗∧ > x)) when 0 < ŷ <∞.

Lemma 4.2 of Chen (2011) shows that, for θ ∈ (−1, 1],

Pr (XY > x) ∼ (1− θ) Pr (X∗Y ∗ > x) + θPr (X∗ (Y ∗1 ∨ Y ∗2 ) > x) . (4.2.5)

Notice that, as anticipated, the right-hand side of (4.2.5) increases in θ. By com-

paring (4.3.11) to (4.2.5), one can gain a quantitative understanding on how signif-

icantly the asymptotic ruin probability decreases when the parameter θ switches

from its normal range (−1, 1] to its extremum −1.

It is naturally asked if one of the two sums on the right-hand side of (4.2.3)

is negligible. The answer is diverse. Listed below are some important special

cases, showing that sometimes the second sum on the right-hand side of (4.2.3) is

negligible and, hence, relation (4.2.3) reduces to relation (4.2.2), but sometimes

not.

Corollary 4.2.1 Let the random pair (X, Y ) follow a bivariate FGM distribution

(4.2.1) with F ∈ S and 0 < ŷ <∞. Then relation (4.2.2) holds for each n ∈ N.

Corollary 4.2.1 extends Theorem 4.2.1 by relaxing the restriction on Y from

0 < ŷ ≤ 1 to 0 < ŷ <∞.
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Corollary 4.2.2 Let the random pair (X, Y ) follow a bivariate FGM distribution

(4.2.1). Then relation (4.2.2) holds for each n ∈ N under either of the following

groups of conditions:

(i) F ∈ C and E[Y p] <∞ for some p > M∗(F );

(ii) F ∈ L ∩ D with M∗(F ) > 0, and E[Y p] <∞ for some p > M∗(F ).

In Corollaries 4.2.1 and 4.2.2(i), if F ∈ R−α for some α ≥ 0, then applying

Breiman’s theorem (see Cline and Samorodnitsky (1994), who attributed it to

Breiman (1965)) to relation (4.2.2), we obtain

ψ(x;n) ∼ E [(Y ∗∧ )α]
1− (E [Y α])n

1− E [Y α]
F (x), (4.2.6)

where the ratio 1−(E[Y α])n

1−E[Y α]
is understood as n in the case α = 0. Relation (4.2.6)

confirms that relation (3.2) of Chen (2011) still holds for θ = −1. Comparing

both, one again gains a quantitative understanding on how the asymptotic ruin

probability decreases as the parameter θ decreases to its negative extremum.

In the next two corollaries we look at a critical situation with the same heavy-

tailed insurance and financial risks. The first one below addresses the regular

variation case:

Corollary 4.2.3 Let the random pair (X, Y ) follow a bivariate FGM distribution

(4.2.1). If F ∈ R−α for some α > 0, F (x) ∼ cG(x) for some c > 0, and

E[Y α] =∞, then it holds for each n ∈ N that

ψ(x;n) ∼
(
cE [(Y ∗∧ )α] + E

[(
X∗+∧

)α])
Pr

(
n∏
j=1

Y ∗j > x

)
, (4.2.7)

where X∗+∧ denotes the positive part of X∗∧.

The second one below addresses the rapid variation case:

Corollary 4.2.4 Let the random pair (X, Y ) follow a bivariate FGM distribution

(4.2.1). If F ∈ S ∩ R−∞ and F (x) ∼ cG(x) for some c > 0, then it holds for

each n ∈ N that

ψ(x;n) ∼ (1 + c) Pr

(
X∗Y ∗∧

n∏
j=2

Y ∗j > x

)
. (4.2.8)
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4.3 Proofs of Theorems 4.2.1–4.2.2

4.3.1 General Derivations

The following general derivations will be used in the proofs of both Theorems

4.2.1 and 4.2.2.

Notice the decomposition

Π = F 2G+ FG2 − F 2G2 (4.3.1)

and the obvious facts that X∗∨ is distributed by F 2 and Y ∗∨ by G2. It follows that

Pr (XY > x)

= Pr (X∗∨Y
∗ > x) + Pr (X∗Y ∗∨ > x)− Pr (X∗∨Y

∗
∨ > x)

= 2 Pr (X∗Y ∗ > x)− Pr (X∗∧Y
∗ > x)

+2 Pr (X∗Y ∗ > x)− Pr (X∗Y ∗∧ > x)

−4 Pr (X∗Y ∗ > x) + 2 Pr (X∗Y ∗∧ > x) + 2 Pr (X∗∧Y
∗ > x)− Pr (X∗∧Y

∗
∧ > x)

= Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y
∗ > x)− Pr (X∗∧Y

∗
∧ > x) . (4.3.2)

Define

Tn =
n∑
i=1

Xi

n∏
j=i

Yj, n ∈ N. (4.3.3)

Note that Tn is identically distributed as Sn in (3.1.2) due to the i.i.d.assumption

on the sequence {(Xi, Yi), i ∈ N}, and that it fulfills the recursive formula

Tn+1 = (Tn +Xn+1)Yn+1, n ∈ N. (4.3.4)

Similarly to the derivation of (4.3.2), starting from (4.3.4) and applying the de-

composition in (4.3.1) we have

Pr (Tn+1 > x)

= Pr ((Tn +X∗∨)Y
∗ > x) + Pr ((Tn +X∗)Y ∗∨ > x)− Pr ((Tn +X∗∨)Y

∗
∨ > x)

= Pr ((Tn +X∗)Y ∗∧ > x) + Pr ((Tn +X∗∧)Y
∗ > x)− Pr ((Tn +X∗∧)Y

∗
∧ > x)

= I1(x) + I2(x)− I3(x). (4.3.5)

The following lemma is well known and can be found in Embrechts and Goldie

(1980), Cline (1986, Corollary 1) and Tang and Tsitsiashvili (2003, Lemma 3.2):

Lemma 4.3.1 Let F1 and F2 be two distributions on R. If F1 ∈ S, F2 ∈ L and

F2(x) = O
(
F1(x)

)
, then F1 ∗ F2 ∈ S and F1 ∗ F2(x) ∼ F1(x) + F2(x).
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4.3.2 Proof of Theorem 4.2.1

In the proof of Theorem 4.2.1 we need the following two lemmas:

Lemma 4.3.2 Let (X, Y ) follow a bivariate FGM distribution (4.2.1). If F ∈ S
and 0 < ŷ <∞, then

Pr (X∗∧Y
∗ > x) = o (Pr (X∗Y ∗∧ > x)) , (4.3.6)

Pr (XY > x) ∼ Pr (X∗Y ∗∧ > x) . (4.3.7)

Proof. Without loss of generality, assume ŷ = 1. We have

Pr (X∗∧Y
∗ > x)

Pr (X∗Y ∗∧ > x)
≤ F

2
(x)

Pr (X∗ > 2x, Y ∗∧ > 1/2)
=

1

G
2
(1/2)

F
2
(x)

F (2x)
.

By Lemma 5.1 of Cai and Tang (2004), the right-hand side above converges to

0 as x → ∞. This proves relation (4.3.6). Looking at (4.3.2), relation (4.3.6)

implies that the second term on the right-hand side of (4.3.2) and, hence, the

third term there also, is negligible. Then relation (4.3.2) gives relation (4.3.7).

The following lemma will enable us to conduct an induction procedure in the

proof of Theorem 4.2.1:

Lemma 4.3.3 In addition to the conditions in Lemma 4.3.2, assume 0 < ŷ ≤ 1.

Then XY +X∗ follows a subexponential distribution with tail satisfying

Pr (XY +X∗ > x) ∼ Pr (XY > x) + Pr (X > x) .

Proof. As recalled in Chapter 2, the conditions F ∈ L and 0 < ŷ ≤ 1 imply that

Pr (X∗Y ∗∧ > x) is a long tail, and so is Pr (XY > x) due to relation (4.3.7). The

condition 0 < ŷ ≤ 1 implies that Pr (XY > x) ≤ Pr (X > x). Thus, the desired

results follow from Lemma 4.3.1.

Proof of Theorem 4.2.1. As analyzed by Chen (2011), it suffices to prove the

relation

Pr (Tn > x) ∼
n∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
. (4.3.8)

Note that the first term on the right-hand side of (4.3.8) is a subexponential tail

and the other terms are long tails and are not greater than the first. Thus, as in

Lemma 4.3.1, the right-hand side of (4.3.8) indeed gives a subexponential tail for

Tn.

We employ the method of induction to complete the proof of (4.3.8). Lemma

4.3.2 shows that relation (4.3.8) holds for n = 1. Now assume that relation (4.3.8)
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holds for some n and we are going to prove it for n + 1. Our proof is based on

the recursive formula (4.3.4).

First deal with I1(x) in (4.3.5). Since F ∈ S and 0 < ŷ ≤ 1, we have

Pr (Tn > x) ≤ Pr

(
n∑
i=1

Xi > x

)
∼ nF (x).

By Lemma 4.3.1,

I1(x) =

∫ 1

0

Pr

(
Tn +X∗ >

x

y

)
Pr (Y ∗∧ ∈ dy)

∼
∫ 1

0

(
Pr

(
Tn >

x

y

)
+ Pr

(
X∗ >

x

y

))
Pr (Y ∗∧ ∈ dy)

= Pr (TnY
∗
∧ > x) + Pr (X∗Y ∗∧ > x) .

Now we turn to I2(x) in (4.3.5). Note that X∗∧Y
∗, Tn and TnY

∗ are all long tailed,

one can choose some auxiliary function a(·) such that the following relations hold

simultaneously: 
Pr (X∗∧Y

∗ > x± a(x)) ∼ Pr (X∗∧Y
∗ > x) ,

Pr (Tn > x± a(x)) ∼ Pr (Tn > x) ,
Pr (TnY

∗ > x± a(x)) ∼ Pr (TnY
∗ > x) .

(4.3.9)

Also note that, by relation (4.3.6) and relation (4.3.8) for n,

Pr (X∗∧Y
∗ > x) = o(1) Pr (X∗Y ∗∧ > x) = o(1) Pr (Tn > x) . (4.3.10)

We derive

I2(x) ≤ Pr ((Tn +X∗∧)Y
∗ > x, TnY

∗ ≤ a(x))

+ Pr ((Tn +X∗∧)Y
∗ > x,X∗∧Y

∗ ≤ a(x))

+ Pr ((Tn +X∗∧)Y
∗ > x, TnY

∗ > a(x), X∗∧Y
∗ > a(x))

≤ Pr (X∗∧Y
∗ > x− a(x)) + Pr (TnY

∗ > x− a(x))

+ Pr ((Tn +X∗∧)Y
∗ > x,X∗∧Y

∗ > a(x))

≤ o(1) Pr (Tn > x) + (1 + o(1)) Pr (TnY
∗ > x)

+ Pr (Tn +X∗∧Y
∗ > x,X∗∧Y

∗ > a(x)) ,

where in the last step we used (4.3.9)–(4.3.10). For the last term on the right-hand

side above, we have

Pr (Tn +X∗∧Y
∗ > x,X∗∧Y

∗ > a(x))

≤ Pr (Tn +X∗∧Y
∗ > x)− Pr (Tn +X∗∧Y

∗ > x,−a(x) ≤ X∗∧Y
∗ ≤ a(x))

≤ (1 + o(1)) (Pr (Tn > x) + Pr (X∗∧Y
∗ > x))− (1 + o(1)) Pr (Tn > x+ a(x))

= o(1) Pr (Tn > x) ,
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where in the second step we used Lemma 4.3.1 and in the last step we used

(4.3.9)–(4.3.10). It follows that

I2(x) ≤ (1 + o(1)) Pr (TnY
∗ > x) + o(1) Pr (Tn > x) .

On the other hand, by (4.3.9),

I2(x) ≥ Pr ((Tn − a(x))Y ∗ > x,−a(x) ≤ X∗∧ ≤ a(x))

≥ Pr (TnY
∗ > x+ a(x)) Pr (−a(x) ≤ X∗∧ ≤ a(x))

≥ (1 + o(1)) Pr (TnY
∗ > x) .

For I3(x) in (4.3.5), by going along the same lines of the derivation for I2(x) and

changing every Y ∗ to Y ∗∧ , we obtain

(1 + o(1)) Pr (TnY
∗
∧ > x) ≤ I3(x) ≤ (1 + o(1)) Pr (TnY

∗
∧ > x) + o(1) Pr (Tn > x) .

Plugging all these estimates for I1(x), I2(x) and I3(x) into (4.3.5), we obtain

Pr (Tn+1 > x)

≤ (1 + o(1)) Pr (TnY
∗
∧ > x) + (1 + o(1)) Pr (X∗Y ∗∧ > x)

+ (1 + o(1)) Pr (TnY
∗ > x) + o(1) Pr (Tn > x)

− (1 + o(1)) Pr (TnY
∗
∧ > x)

= o(1) (Pr (TnY
∗
∧ > x) + Pr (Tn > x)) + (1 + o(1)) (Pr (X∗Y ∗∧ > x) + Pr (TnY

∗ > x))

= o(1) Pr (Tn > x) + (1 + o(1))

(
Pr (X∗Y ∗∧ > x) +

n∑
i=1

Pr

(
X∗Y ∗∧Y

∗
i∏

j=2

Y ∗j > x

))

= o(1)
n∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
+ (1 + o(1))

n+1∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)

∼
n+1∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
,

where in the third and fourth steps we used (4.3.8) for n. The lower asymptotic

bound can be derived similarly. Hence, (4.3.8) holds for n+ 1.

4.3.3 Proof of Theorem 4.2.2

The following lemma is a restatement of Theorem 2.1 of Cline and Samorodnitsky

(1994), which is crucial for establishing our Theorem 4.2.2(i):

Lemma 4.3.4 Let F be a distribution on R and G be a distribution on R+. We

have H∗ = F ⊗G ∈ S if F ∈ S and there is an auxiliary function a(·) such that

G (a(x)) = o
(
H∗(x)

)
and F (x− a(x)) ∼ F (x).
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The lemma below dismisses the dependence structure of X and Y :

Lemma 4.3.5 Let (X, Y ) follow a bivariate FGM distribution (4.2.1) with ŷ =

∞. If there is an auxiliary function a(·) such that G (a(x)) = o
(
H∗(x)

)
, then

Pr (XY > x) ∼ Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y
∗ > x) . (4.3.11)

Proof. By (4.3.2), we need only prove that the last term on its right-hand side

is negligible, namely,

Pr (X∗∧Y
∗
∧ > x) = o(1) (Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y

∗ > x)) . (4.3.12)

For this purpose, we do the split

Pr (X∗∧Y
∗
∧ > x) = Pr (X∗∧Y

∗
∧ > x, (Y ∗∧ ≤ a(x)) ∪ (Y ∗∧ > a(x))) = J1(x) + J2(x).

By conditioning on Y ∗∧ , we have

J1(x) ≤ F

(
x

a(x)

)∫ a(x)

0

F

(
x

y

)
Pr (Y ∗∧ ∈ dy) = o(1) Pr (X∗Y ∗∧ > x) .

It is easy to see that

J2(x) = o(1) Pr (X∗∧Y
∗ > x) . (4.3.13)

Actually, on the one hand, it is clear that

J2(x) ≤ Pr (Y ∗∧ > a(x)) = G
2
(a(x));

while on the other hand, by Jensen’s inequality we have

Pr (X∗∧Y
∗ > x) =

∫ ∞
0

F
2
(
x

y

)
Pr (Y ∗ ∈ dy) ≥ H∗

2
(x).

Relation (4.3.13) follows since G (a(x)) = o
(
H∗(x)

)
. Thus, relation (4.3.12)

holds.

With (X, Y ) following a bivariate FGM distribution (4.2.1), we see that

the condition G (a(x)) = o
(
H∗(x)

)
is slightly more general than the condition

G (a(x)) = o
(
H(x)

)
since H(x) . 2H∗(x) by (4.3.11).

The following lemma is a counterpart of Lemma 4.3.3:

Lemma 4.3.6 In addition to the conditions in Lemma 4.3.5, assume F ∈ L and

H ∈ S. Then XY +X∗ follows a subexponential distribution with tail satisfying

Pr (XY +X∗ > x) ∼ Pr (XY > x) + Pr (X > x) .
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Proof. By Lemma 4.3.5,

Pr (XY > x) & Pr (X∗Y ∗∧ > x) ≥ Pr (X∗ > x) Pr (Y ∗∧ ≥ 1) .

Thus, the result follows from Lemma 4.3.1.

Define

Vn =
n∑
i=1

XiYi

n∏
j=i+1

Y ∗j , n ∈ N.

Lemma 4.3.7 Let (X, Y ) follow a bivariate FGM distribution (4.2.1) with ŷ =

∞ and H ∈ S.

(i) If there is an auxiliary function a(·) such that G (a(x)) = o
(
H(x)

)
and

H (x− a(x)) ∼ H(x), then each Vn follows a subexponential distribution

with tail satisfying

Pr (Vn > x) ∼
n∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
+

n∑
i=1

Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
;

(ii) If M∗(F ) > 0, then the restriction H (x− a(x)) ∼ H(x) on the auxiliary

function a(·) is unnecessary.

Proof. For simplicity, write Zi = XiYi for i = 1, . . . , n. Notice that the sequence

{Vn, n ∈ N} fulfills the recursive equation

Vn+1 = VnY
∗
n+1 + Zn+1.

Applying Lemmas 4.3.4 and 4.3.1, we can conduct a standard induction procedure

to prove that, for each n ∈ N, the sum Vn follows a subexponential distribution

with tail satisfying

Pr (Vn > x) ∼
n∑
i=1

Pr

(
Zi

n∏
j=i+1

Y ∗j > x

)
=

n∑
i=1

Pr

(
Zi

i∏
j=2

Y ∗j > x

)
. (4.3.14)

For case (i), we refer the reader to the proofs of Theorem 3.1 of Tang (2006b),

Theorem 3.1 of Chen (2011) and, in particular, Theorem 1.2 of Zhou et al. (2012)

for similar discussions. For case (ii), see Theorem 4.1 of Tang (2006a).

We can also conduct a standard induction procedure to prove that, for each

i = 2, . . . , n and every a > 0,

Pr

(
i∏

j=2

Y ∗j > ax

)
= o(1) Pr

(
Zi

i∏
j=2

Y ∗j > x

)
.
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Consequently, it is easy to see that, for each i = 2, . . . , n, there is some auxiliary

function ai(·) such that

Pr

(
i∏

j=2

Y ∗j > ai(x)

)
= o(1) Pr

(
Zi

i∏
j=2

Y ∗j > x

)
. (4.3.15)

For each i = 2, . . . , n, we split each probability on the right-hand side of

(4.3.14) as

Pr

(
Zi

i∏
j=2

Y ∗j > x

)
= Pr

(
Zi

i∏
j=2

Y ∗j > x,
i∏

j=2

Y ∗j ≤ ai(x)

)
+O(1) Pr

(
i∏

j=2

Y ∗j > ai(x)

)
.

By conditioning on
∏i

j=2 Y
∗
j and applying Lemma 4.3.5, the first term on the

right-hand side above is asymptotically equivalent to

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x,
i∏

j=2

Y ∗j ≤ ai(x)

)
+ Pr

(
X∗∧Y

∗
i∏

j=2

Y ∗j > x,
i∏

j=2

Y ∗j ≤ ai(x)

)

= Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
+ Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
+O(1) Pr

(
i∏

j=2

Y ∗j > ai(x)

)
.

By (4.3.15), it follows that

Pr

(
Zi

i∏
j=2

Y ∗j > x

)
∼ Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
+ Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
.

Substituting this into (4.3.14) leads to the desired result.

Proof of Theorem 4.2.2. Recall Tn introduced in (4.3.3) and the recursive

formula (4.3.4). Same as before, it suffices to prove the relation

Pr (Tn > x) ∼
n∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
+

n∑
i=1

Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
. (4.3.16)

Lemma 4.3.7 shows that the right-hand side of (4.3.16) indeed gives a subexpo-

nential tail for Tn.

Similarly to the proof of Theorem 4.2.1, we employ the method of induction

to prove (4.3.16). Lemma 4.3.5 shows that relation (4.3.16) holds for n = 1. Now

assume that relation (4.3.16) holds for some n and we are going to prove it for

n+ 1.

For this purpose, we still start from the decomposition in (4.3.5). For I1(x),

since Tn is subexponential, X∗ is long tailed, and Pr (X∗ > x) = O (Pr (Tn > x)),
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by conditioning on Y ∗∧ and applying Lemma 4.3.1 we have

I1(x) =

(∫ a(x)

0

+

∫ ∞
a(x)

)
Pr

(
Tn +X∗ >

x

y

)
Pr (Y ∗∧ ∈ dy)

= (1 + o(1))

∫ a(x)

0

(
Pr

(
Tn >

x

y

)
+ Pr

(
X∗ >

x

y

))
Pr (Y ∗∧ ∈ dy)

+O(1)G
2
(a(x))

= (1 + o(1)) (Pr (TnY
∗
∧ > x) + Pr (X∗Y ∗∧ > x)) +O(1)G

2
(a(x)).

In the same way, we have

I2(x) = (1 + o(1)) (Pr (TnY
∗ > x) + Pr (X∗∧Y

∗ > x)) +O(1)G(a(x))

and

I3(x) = (1 + o(1)) (Pr (TnY
∗
∧ > x) + Pr (X∗∧Y

∗
∧ > x)) +O(1)G

2
(a(x)).

Plugging these estimates into (4.3.5) and using the condition G (a(x)) = o
(
H(x)

)
and relations (4.3.11)–(4.3.12), we obtain

Pr (Tn+1 > x) ∼ Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y
∗ > x) + Pr (TnY

∗ > x) .

For the last term above, by conditioning on Y ∗ and applying relation (4.3.16) for

n it is easy to show that

Pr (TnY
∗ > x) ∼

n∑
i=1

Pr

(
X∗Y ∗∧

i+1∏
j=2

Y ∗j > x

)
+

n∑
i=1

Pr

(
X∗∧

i+1∏
j=1

Y ∗j > x

)
.

Thus, relation (4.3.16) holds for n+ 1.

4.4 Proofs of Corollaries 4.2.1–4.2.4

4.4.1 Proof of Corollary 4.2.1

When 0 < ŷ ≤ 1, the result comes directly from Theorem 4.2.1. When 1 ≤ ŷ <

∞, by the condition F ∈ S and Lemma 4.3.2, we have H(x) ∼ Pr (X∗Y ∗∧ > x)

and, hence, H ∈ S. Furthermore, H ∈ S ⊂ L implies the existence of an aux-

iliary function a(·) satisfying H (x− a(x)) ∼ H(x). Since ŷ < ∞, the condition

G (a(x)) = o
(
H(x)

)
in Theorem 4.2.2(i) holds trivially for every such function

a(·). Thus, all conditions of Theorem 4.2.2(i) are fulfilled.
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For each i = 1, . . . , n, by conditioning on
∏i

j=2 Y
∗
j and using relation (4.3.6),

Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
=

∫ ŷi−1

0

Pr

(
X∗∧Y

∗
1 >

x

y

)
Pr

(
i∏

j=2

Y ∗j ∈ dy

)

= o(1)

∫ ŷi−1

0

Pr

(
X∗Y ∗∧ >

x

y

)
Pr

(
i∏

j=2

Y ∗j ∈ dy

)

= o(1) Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
.

Substituting this into relation (4.2.3) leads to relation (4.2.2).

4.4.2 Proof of Corollary 4.2.2

(i) By Theorem 3.3(iv) of Cline and Samorodnitsky (1994), the conditions F ∈ C
and E[Y p] < ∞ for some p > M∗(F ) imply that H∗(x) � F (x). By Lemma

3.5 of Tang and Tsitsiashvili (2003), the relation x−q = o
(
F (x)

)
holds for every

q > M∗(F ). Define an auxiliary function a(x) = xr for some r ∈ (M∗(F )/p, 1).

We have

G (xr) ≤ x−rpE[Y p] = o
(
H∗(x)

)
.

Thus, Lemma 4.3.5 is applicable and gives relation (4.3.11). For the two terms

on the right-hand side of (4.3.11), we have, respectively, Pr (X∗Y ∗∧ > x) � F (x)

and

Pr (X∗∧Y
∗ > x) ≤

∫ xr

0

F
2
(
x

y

)
G(dy) +G (xr)

≤ F
( x
xr

)
H∗(x) + o

(
F (x)

)
= o

(
F (x)

)
= o(1) Pr (X∗Y ∗∧ > x) . (4.4.1)

It follows from (4.3.11) that

H(x) ∼ Pr (X∗Y ∗∧ > x) � F (x). (4.4.2)

Thus, a(x) = xr satisfies the conditions G (a(x)) = o
(
H(x)

)
and H (x− a(x)) ∼

H(x) in Theorem 4.2.2(i) too. By the first relation in (4.4.2) and Theorem 3.4(ii)

of Cline and Samorodnitsky (1994), it is easy to see that H ∈ C ⊂ S. Thus, all

conditions of Theorem 4.2.2(i) are satisfied and we have relation (4.2.3). For each
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i = 2, . . . , n, similarly to (4.4.1), by conditioning on
∏i

j=2 Y
∗
j we obtain

Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
≤

∫ xr

0

Pr

(
X∗∧Y

∗ >
x

y

)
Pr

(
i∏

j=2

Y ∗j ∈ dy

)

+ Pr

(
i∏

j=2

Y ∗j > xr

)

= o(1)

∫ xr

0

Pr

(
X∗Y ∗∧ >

x

y

)
Pr

(
i∏

j=2

Y ∗j ∈ dy

)
+ o

(
F (x)

)
= o(1) Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
. (4.4.3)

Thus, the second sum on the right-hand side of relation (4.2.3) is negligible and

we finally obtain relation (4.2.2).

(ii) With a(x) = xr for some r ∈ (M∗(F )/p, 1), the verifications of the condi-

tions of Lemma 4.3.5 and Theorem 4.2.2(ii) are similar to those in the proof of

Corollary 4.2.2(i), and the proofs of relations (4.4.1)–(4.4.3) are also the same. A

major difference is that we need to apply Theorems 2.2(iii) and 3.3(ii) of Cline

and Samorodnitsky (1994) to the first relation in (4.4.2) to verify H ∈ L∩D ⊂ S.

4.4.3 Proof of Corollary 4.2.3

As in the proof of Corollary 2.1 of Chen and Xie (2005), by Fatou’s lemma we

have

lim inf
x→∞

H∗(x)

G(x)
≥
∫ ∞

0

lim inf
x→∞

G (x/y)

G(x)
F (dy) = E[Xα

+] =∞. (4.4.4)

It follows that G(x) = o(H∗(x)). By Lemma 3.2 of Chen and Xie (2005), there

is an auxiliary function a(·) such that G (a(x)) = o
(
H∗(x)

)
holds. By Lemma

4.3.5,

H(x) ∼ Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y
∗ > x)

∼ E [(Y ∗∧ )α]F (x) + E
[(
X∗+∧

)α]
G(x)

∼
(
cE [(Y ∗∧ )α] + E

[(
X∗+∧

)α])
G(x),

where the second step is due to Breiman’s theorem. Hence, H ∈ R−α and the

same auxiliary function a(·) satisfies G (a(x)) = o
(
H(x)

)
. Thus, relation (4.2.3)

holds by Theorem 4.2.2(ii).

Next we simplify (4.2.3) to (4.2.7). For each i = 2, . . . , n, by the Corollary

of Embrechts and Goldie (1980),
∏i

j=2 Y
∗
j follows a distribution belonging to the
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class R−α. Based on the same reasoning as above we see that there is some

auxiliary function ãi(·) such that

Pr

(
i∏

j=2

Y ∗j > ãi(x)

)
= o(1) Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
.

We have

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
∼

∫ ãi(x)

0

Pr

(
X∗Y ∗∧ >

x

y

)
Pr

(
i∏

j=2

Y ∗j ∈ dy

)

∼ cE [(Y ∗∧ )α]

∫ ãi(x)

0

Pr

(
Y ∗ >

x

y

)
Pr

(
i∏

j=2

Y ∗j ∈ dy

)

∼ cE [(Y ∗∧ )α] Pr

(
i∏

j=1

Y ∗j > x

)
,

where the second step is due to Breiman’s theorem. Similarly, for each i =

2, . . . , n,

Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
∼ E

[(
X∗+∧

)α]
Pr

(
i∏

j=1

Y ∗j > x

)
.

Substituting these asymptotic results into (4.2.3) gives

ψ(x;n) ∼
(
cE [(Y ∗∧ )α] + E

[(
X∗+∧

)α]) n∑
i=1

Pr

(
i∏

j=1

Y ∗j > x

)
.

Similarly to (4.4.4), Pr
(∏i

j=1 Y
∗
j > x

)
= o(1) Pr

(∏n
j=1 Y

∗
j > x

)
for every i =

1, . . . , n− 1. Then relation (4.2.7) follows.

4.4.4 Proof of Corollary 4.2.4

The following lemma will be needed in the proof of Corollary 4.2.4:

Lemma 4.4.1 For two distributions F on R and G on R+, if F ∈ R−∞ and

G ∈ R−∞, then H∗ = F ⊗G ∈ R−∞.

Proof. By (2.1.1), it holds for every a > 0 that

G(ax)

H∗(x)
≤ G(ax)

F (2/a)G(ax/2)
→ 0.

Thus, there is an auxiliary function a(·) such that G (a(x)) = o
(
H∗(x)

)
. By

(2.1.1) again, for every z > 1,

H∗(xz)

H∗(x)
≤
∫ a(x)

0
F (xz/y)G(dy)∫ a(x)

0
F (x/y)G(dy)

+
O
(
G(ax)

)
H∗(x)

≤ sup
0<y≤a(x)

F (xz/y)

F (x/y)
+ o(1)→ 0.
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Hence, H∗ ∈ R−∞.

Proof of Corollary 4.2.4. Since F (x) ∼ cG(x) and Pr (X∗∧ > x) ∼ c2 Pr (Y ∗∧ > x),

by Lemma A.5 of Tang and Tsitsiashvili (2004) we have

Pr (X∗∧Y
∗ > x) ∼ c2 Pr (Y ∗∧Y

∗ > x) ∼ cPr (X∗Y ∗∧ > x) . (4.4.5)

From the proof of Lemma 4.4.1, there is an auxiliary function ã(·) such that

G (ã(x)) = o
(
H∗(x)

)
. Then by Lemma 4.3.5, relation (4.3.11) holds. It follows

from relations (4.3.11) and (4.4.5) that

Pr (XY > x) ∼ Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y
∗ > x) ∼ (1 + c) Pr (X∗Y ∗∧ > x) .

By Corollary 2.1 of Tang (2006a), Pr (X∗Y ∗∧ > x) is a subexponential tail and,

hence, H ∈ S. Again from the proof of Lemma 4.4.1, there is an auxiliary function

a(·) such that

G (a(x)) ∼ 1

c
F (a(x)) = o(1) Pr (X∗Y ∗∧ > x) = o

(
H(x)

)
.

Thus, relation (4.2.3) holds by Theorem 4.2.2(ii).

Next we simplify (4.2.3) to (4.2.8). For each i = 1, . . . , n−1, sinceX∗∧Y
∗∏i

j=2 Y
∗
j

is rapidly-varying tailed by Lemma 4.4.1, we have

Pr

(
X∗∧Y

∗
i∏

j=2

Y ∗j > x

)
= o(1) Pr

(
X∗∧Y

∗
i∏

j=2

Y ∗j >
x

2n−i

)

= o(1) Pr

(
X∗∧Y

∗
i∏

j=2

Y ∗j >
x

2n−i
, Y ∗i+1 > 2, . . . , Y ∗n > 2

)

= o(1) Pr

(
X∗∧Y

∗
n∏
j=2

Y ∗j > x

)
.

Similarly, it holds for each i = 1, . . . , n− 1 that

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
= o(1) Pr

(
X∗Y ∗∧

n∏
j=2

Y ∗j > x

)
.

It follows from relation (4.2.3) that

ψ(x;n) ∼ Pr

(
X∗Y ∗∧

n∏
j=2

Y ∗j > x

)
+ Pr

(
X∗∧Y

∗
n∏
j=2

Y ∗j > x

)
.

Since by Lemma 4.4.1 the product
∏n

j=2 Y
∗
j is rapidly-varying tailed, applying

Lemma A.5 of Tang and Tsitsiashvili (2004) and relation (4.4.5) we obtain

Pr

(
X∗∧Y

∗
n∏
j=2

Y ∗j > x

)
∼ cPr

(
X∗Y ∗∧

n∏
j=2

Y ∗j > x

)
.

Relation (4.2.8) follows.
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continuous-time dependent risk

model

75



Chapter 5

Infinite-time Absolute Ruin in
Dependent Renewal Risk Models
with Constant Force of Interest 3

5.1 Introduction

Consider the following renewal risk model with constant premium rate and con-

stant force of interest. In this model, the claim sizes Xi, i ∈ N, arriving at

successive renewal epochs with inter-arrival times ϑi, i ∈ N, form a sequence of

i.i.d. copies of a generic random pair (X,ϑ) with common distribution F on [0,∞)

and Gϑ on (0,∞). The arrival times of the successive claims, τi =
∑i

j=1 ϑj, i ∈ N,

with τ0 = 0, construct a renewal counting process N(t) = sup{j ∈ N : τj ≤ t}.
Let x ≥ 0 be the initial reserve of an insurance company and let c > 0 and r > 0

be the constant premium rate and the constant force of interest rate, respectively.

Thus, the future value of a capital x after time t becomes xert. Denote by Wr(t),

the total reserve up to time t, and let it satisfy

Wr(t) = xert + c

∫ t

0

er(t−y)dy −
N(t)∑
i=1

Xie
r(t−τi), t ≥ 0.

Hence, the classical ruin probability by time T ≤ ∞ is defined by

ϕ(x, T ) = Pr

(
inf

0≤t≤T
Wr(t) < 0

∣∣∣∣Wr(0) = x

)
.

In the actuarial literature, the finite-time or infinite-time ruin probability was

defined as the probability of the surplus falling below zero, which has been wide-

ly investigated by many researchers, see, e.g. Asmussen (1998), Klüppelberg

and Stadtmüller (1998), Konstantinides et al. (2002) and Tang (2005). Tang

3This chapter is based on Liu and Yang (2015).
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(2007) established a tail asymptotic formula which holds uniformly in time. How-

ever, as commented by Embrechts et al. (1994) the threshold 0 above does

not make sense in reality since an insurance company will not be allowed to

proceed with its business when its wealth stays at a too low level. By intro-

ducing a default threshold ζ, the default probability by time T ≤ ∞ becomes

ψ(x, ζ, T ) = Pr (inf0≤t≤T Wr(t) < ζ|Wr(0) = x), which is referred to as the ab-

solute ruin probability when ζ = −c/r. The insurer will not be able to repay

it debts when the surplus process hits such boundary. Some investigations have

been made in absolute ruin probability; see, e.g. Embrechts et al. (1994), Cai

(2007), Konstantinides et al. (2010). Inspired by the literature, we define the

probability of infinite-time absolute ruin as

ψ(x,∞) = Pr

(
inf
t≥0

Wr(t) < −
c

r

∣∣∣∣Wr(0) = x

)
, x ≥ 0, (5.1.1)

which can also be rewritten as

ψ(x,∞) = Pr

(
∞∑
i=1

Xi

i∏
j=1

Yj > x+
c

r

)
, x ≥ 0, (5.1.2)

where Yi = e−rϑi , i ≥ 1, can be considered as discount factor according to the

constant force of interest r.

As shown by (5.1.2), the probability of infinite-time absolute ruin in (5.1.1) has

been transferred to the tail probability of all discounted future claims exceeding

the initial surplus plus the total discounted premium x+c/r. The standard renew-

al risk model was first proposed by Andersen (1957), assuming that {Xi, i ∈ N}
and {ϑi, i ∈ N} were mutually independent, which is for mathematical conve-

nience but far away from reality. Various dependence structures were introduced

to the risk model by many researchers. Chen and Yuen (2007) obtained a for-

mula for the ruin probability in a renewal risk model with constant interest force

in which the claims were pairwise negatively dependent and extended regularly

varying tailed. Yang and Wang (2010) obtained two weak asymptotic equivalent

formulae for the renewal risk model with a constant premium under the structure

of pairwise negatively quadrant dependent (NQD). Recently, Yang et al. (2013)

derived asymptotic results for the infinite-time absolute ruin probabilities in some

time-dependent renewal risk models.

Motivated by the researchers above, we allow the generic random pair (X,ϑ)

or (X, Y ) to follow a more general dependence structure in Section 2. This struc-

ture captures the impact of dependence between each pair of the claim size and

inter-arrival time prior to the claims. For example, the waiting time for a claim

is dependent on the claim size. Alternatively, the discount factor can be affected

indirectly by the changing of the waiting time. We firstly derive two asymptotic
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formulas for the infinite-time absolute ruin probabilities under the condition that

the distribution of the claim-size belongs to the intersection of the class of all

convolution-equivalent distributions and the class of rapidly-varying-tailed dis-

tributions. Then we extend the obtained results to a larger distribution class.

Finally, we consider an extension for the Farlie-Gumbel-Morgenstern case with

parameter in the whole interval [−1, 1]. All estimates achieved for the infinite-

time absolute ruin probabilities capture the impact of dependence structure of

(X,ϑ) or (X, Y ).

The rest of the present this chapter is organized as follows. In the next section,

we provide the main results. In Section 5.3, we prove them.

5.2 Main results

Now we turn to the dependence structure between the claim size and inter-arrival

time by a comprehensive treatment of copulas. Let (X,ϑ) be a random vector

with continuous marginal distribution F (x) andGϑ(t), then the dependence struc-

ture between X and ϑ is characterized in terms of a unique bivariate copula by

Sklar’s theorem, with its joint distribution V (x, t) = C (F (x), Gϑ(t)) . The reader

is referred to Nelsen (1998) or Joe (1997).

Clearly, such a bivariate function with respect to the copula C(u, v) can also

be described as

V (x, t) = C
(
F (x), Gϑ(t)

)
= Pr(X > x, ϑ > t).

Assume that the copula function C(u, v) is absolutely continuous, denote by

C1(u, v) := ∂
∂u
C(u, v), C2(u, v) := ∂

∂v
C(u, v), and C12(u, v) := ∂2

∂u∂v
C(u, v), then

C2(u, v) :=
∂

∂v
C(u, v) = 1− C2(1− u, 1− v),

C12(u, v) :=
∂2

∂u∂v
C(u, v) = C12(1− u, 1− v).

The following assumption we made can be attributed to Asimit and Badescu

(2010), which has also been used to illustrate the impact of the dependence on the

tail behaviour of the product of two random variables, recently. Similar assump-

tion related to Assumption 5.2.1 can also be found in Yang and Konstantinides

(2014).

Assumption 5.2.1 The relation

C2(u, v) ∼ uC12(0+, v), u ↓ 0,

holding uniformly on (0, 1].
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We remark that Assumption 5.2.1 is equivalent to

1− C2(u, v) ∼ (1− u)C12(1−, v), u ↑ 1,

holds uniformly on [0, 1). There are three commonly-used copula functions satis-

fying Assumption 5.2.1 given in Asimit and Badescu (2010).

1. The Ali-Mikhail-Haq copula is of the form

C(u, v) =
uv

1− θ(1− u)(1− v)
, θ ∈ (−1, 1),

with C12(0+, v) = 1 + θ(1− 2v).

2. The FGM copula is of the form

C(u, v) = uv + θuv(1− u)(1− v), θ ∈ (−1, 1),

with C12(0+, v) = 1 + θ(1− 2v).

3. The Frank copula is of the form

C(u, v) = −1

θ
log

(
1 +

(e−θu−1)(e−θv−1)

e−θ − 1

)
, θ 6= 0,

with C12(0+, v) = θeθ(1−v)/(eθ − 1).

Recall the renewal risk model with constant premium rate and constant force

of interest in Section 5.1. In the sequel, denote by F on [0,∞), Gϑ on (0,∞) and

G on (0, 1) the distributions of the claim size X, the inter-arrival time ϑ and the

discount factor Y , respectively.

In the following result, we allow the generic random pair (X,ϑ) to follow a

dependence structure with its joint distribution V (x, t) = C(F (x), Gϑ(t)), intro-

duced in Section 2, and establish an asymptotic relation for ψ(x,∞).

Theorem 5.2.1 In the renewal risk model with constant force of interest rate

r > 0, assume that (Xi, ϑi), i ∈ N, are a sequence of i.i.d. random pairs with

generic random pair (X,ϑ) satisfying Assumption 5.2.1 with F ∈ S(γ) ∩ R−∞
for some γ ≥ 0, then EeγS∞ <∞, where S∞ =

∑∞
i=1Xie

−rτi , and

ψ(x,∞) ∼ e−γc/rEeγS∞
∫ ∞

0

F (xert)Gϑc(dt), (5.2.1)

where Gϑc(dt) = C12 [1−, Gϑ(t)]Gϑ(dt).

As mentioned in Section 5.1, the discount factor can also be influenced by

the claim size. We assume that the generic pair (X, Y ) follows a dependence

structure via its joint distribution H(x, y) = C(F (x), G(y)). We will show in the

next subsection an example to explain our second result and extend it to case

that the generic pair (X, Y ) follows a bivariate FGM distribution.
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Theorem 5.2.2 In the renewal risk model with constant force of interest rate

r > 0, assume that (Xi, Yi), i ∈ N, are a sequence of i.i.d. random pairs with

generic random pair (X, Y ) under Assumption 5.2.1 with F ∈ S(γ) ∩ R−∞ for

some γ ≥ 0, then EeγS∞ <∞, where S∞ =
∑∞

i=1 Xi

∏i
j=1 Yj, Yj = e−rϑi, and

ψ(x,∞) ∼ EeγS∞ Pr(XYc > x+ c/r), (5.2.2)

where Yc is distributed by Gc(dy) = C1[1−, G(dy)] = C12[1−, G(y)]G(dy).

Next, we generalize the above two results under the condition that the distri-

bution of claim-size belongs to a larger intersection class of O-subexponential dis-

tributions, rapidly-varying-tailed distributions and the distributions in the class

L(γ).

Theorem 5.2.3 In the renewal risk model with constant force of interest rate

r > 0, assume that (X,ϑ) or (X, Y ) is dependent according to Assumption 5.2.1

with F ∈ L(γ)∩OS ∩R−∞ for some γ ≥ 0, then relation (5.2.1) or (5.2.2) holds

with EeγS∞ <∞.

5.2.1 An extension: Farlie-Gumbel-Morgenstern Copula

It is easy to see that the FGM copula is satisfied by the Assumption 5.2.1 when

θ ∈ (−1, 1). In this subsection, we only take θ = 1 and θ = −1 into consideration.

As done by Chen (2011), we assume that (Xi, Yi), i ∈ N, form a sequence of

i.i.d. random pairs with generic random pair (X, Y ). However, the components

of (X, Y ) are dependent and follow a joint bivariate FGM distribution (2.4.8).

The general derivations will be mainly used in following proof. We observe the

decomposition

Π = (1 + θ)FG− θF 2G− θFG2 + θF 2G2,

or, equivalently,

Π = (1 + θ)FG− θ(1− F 2
)G− θF (1−G2

) + θ(1− F 2
)(1−G2

). (5.2.3)

Moreover, for a random variable X, introduce two independent random variables

X∗∨ = X∗1 ∨ X∗2 and X∗∧ = X∗1 ∧ X∗2 , which are independent of all other source

of randomness, where X∗1 and X∗2 are two i.i.d. copies of X. Actually, if X is

distributed by F , then X∗∨ is distributed by F 2 and the tail of X∗∧ is F
2
, see

Yang et al. (2011). We allow the generic pair (X, Y ) to follow a bivariate FGM

distribution.
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Theorem 5.2.4 In the renewal risk model with constant force of interest rate

r > 0, assume that (Xi, Yi), i ∈ N, are a sequence of i.i.d. random pairs with

generic random pair (X, Y ) following a common bivariate FGM distribution func-

tion (2.4.8) with θ ∈ [−1, 1]. If F ∈ S(γ)∩R−∞ for some γ ≥ 0, then EeγS∞ <∞,
where S∞ =

∑∞
i=1Xi

∏i
j=1 Yj, and

ψ(x,∞) ∼ EeγS∞ Pr(XYθ > x+ c/r),

where Yθ is distributed by Gθ with Gθ(y) = (1− θ)G(y) + θG2(y).

5.3 Proofs of main results

Before we prove the first result, we introduce the following lemma, which is a

restatement of a result in Rogozin (1999).

Lemma 5.3.1 Let F , F1 and F2 be three distributions on [0,∞). Assume that

F ∈ S(γ), γ ≥ 0, and the limits ki = limFi(x)/F (x) exist and are finite, i = 1, 2.

Then, it holds that

lim
x→∞

F1 ∗ F2(x)

F (x)
= k1

∫ ∞
0−

eγtF2(dt) + k2

∫ ∞
0−

eγtF1(dt).

Motivated by Grey (1994) and Konstantinides et al. (2010), we complete the

proof of Theorem 5.2.1 below. The proof of Theorem 5.2.2 is similar to that of

Theorem 5.2.1, and we omit it.

5.3.1 Proof of Theorem 5.2.1

Introduce a random variable Z with distribution F , independent of {(X, Y ), (Xi, Yi), i ∈
N}. Then for sufficiently large x0 > 0 and all x ≥ x0 we have that

Pr ((Z +X)Y > x) =

∫ ∞
0

Pr
(
X + Z > xert|ϑ = t

)
Gϑ(dt)

≤
∫ ∞

0

∫ xert−x0

0

Pr
(
X > xert − u|ϑ = t

)
F (du)Gϑ(dt) +

∫ ∞
0

F
(
xert − x0

)
Gϑ(dt)

=

∫ ∞
0

∫ xert−x0

0

C2

[
F
(
xert − u

)
, Gϑ(t)

]
F (du)Gϑ(dt) +

∫ ∞
0

F
(
xert − x0

)
Gϑ(dt).

(5.3.1)

The Assumption 5.2.1 implies that for any ε > 0, there exists a positive number

x1 ≤ x0 such that for all x ≥ x1 and all t > 0,

(1− ε)C12[0+, Gϑ(t)]F (x) ≤ C2[F (x), Gϑ(t)] ≤ (1 + ε)C12[0+, Gϑ(t)]F (x).

(5.3.2)
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Thus, by (5.3.1) and (5.3.2) we have that for all x ≥ x0 ≥ x1,

Pr ((Z +X)Y > x)

≤ (1 + ε)

∫ ∞
0

∫ xert−x0

0

C12

[
0+, Gϑ(t)

]
F
(
xert − u

)
F (du)Gϑ(dt)

+

∫ ∞
0

F
(
xert − x0

)
Gϑ(dt)

≤ (1 + ε)

∫ ∞
0

(
F ∗2

(
xert

)
− F

(
xert

))
Gϑc(dt) +

∫ ∞
0

F
(
xert − x0

)
Gϑ(dt)

≤ (1 + ε)2

∫ ∞
0

(
2EeγX − 1

)
F (xert)Gϑc(dt) + (1 + ε)eγx0

∫ ∞
0

F
(
xert

)
Gϑ(dt)

= o(F (x)). (5.3.3)

Here, in the last step we used the dominated convergence theorem and F ∈
R−∞, which implies that F (xert) = o(F (x)). Therefore, by (5.3.3) there is some

sufficiently large x2 > 0 such that for all x > x2,

Pr ((X + Z)Y > x) ≤ F (x), (5.3.4)

Construct a new conditional random variable Z0 = (Z|Z > x2), whose distribu-

tion FZ0 still belongs to the class S(γ) ∩R−∞. It is easy to see that

(Z0 +X)Y
d

≤ Z0 (5.3.5)

holds for all x > 0, where the symbol
d

≤ denotes ‘stochastically not larger than’.

Actually, Pr(Z0 > x) = 1 for all x ≤ x2, while it still holds for all x ≤ x2 by

relation (5.3.4). Consequently, it holds equivalently for all x > 0,

Pr((Z0 +X)Y > x) ≤ FZ0(x).

Therefore, we have that (Z0 +X1)Y1

d

≤ Z0, (Z0 +X2)Y2

d

≤ Z0 and

((Z0 +X2)Y2 +X1)Y1

d

≤ Z0. Write

Sn =
n∑
i=1

Xi

i∏
j=1

Yj, n ≥ 1.

Hence, S1 = X1Y1

d

≤ Z0 and S2 = X1Y1 + X2Y2Y1

d

≤ Z0, which leads to Sn
d

≤ Z0

for all n ≥ 1. Moreover, as n → ∞, we get that S∞
d

≤ Z0, which implies that

EeγS∞ <∞. Let S̃∞, independent of {(Xn, Yn), n ≥ 1}, be a copy of S∞. Then,

for every n ≥ 1,

S∞
d
= Sn + S̃∞

n∏
j=1

Yj,
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where
d
= stands for the equality in distribution. Then,

S∞
d

≤ Sn + Z0

n∏
j=1

Yj. (5.3.6)

Clearly, for n ≥ 2,

Pr (S∞ > x) ≤ Pr

(
Sn + Z0

n∏
j=1

Yj > x

)

=

∫ ∞
0

Pr

(
X1 +

n∑
i=2

Xie
−r
∑i
j=2 ϑj

+Z0e−r
∑n
j=2 ϑj > xert

∣∣∣ϑ1 = t
)
Gϑ(dt).

(5.3.7)

Note that for some large x3, by Assumption 5.2.1 and (5.3.2) we have that for all

x ≥ x3,

Pr

(
X1 +

n∑
i=2

Xie
−r
∑i
j=2 ϑj + Z0e−r

∑n
j=2 ϑj > xert

∣∣∣∣∣ϑ1 = t

)

≤
∫ xert−x3

0−
Pr
(
X1 > xert − v

∣∣ϑ1 = t
)

Pr

(
n∑
i=2

Xie
−r
∑i
j=2 ϑj + Z0e−r

∑n
j=2 ϑj ∈ dv

)

+ Pr

(
n∑
i=2

Xie
−r
∑i
j=2 ϑj + Z0e−r

∑n
j=2 ϑj > xert − x3

)

=

∫ xert−x3

0−

(
C2

[
F
(
xert − v

)
, Gϑ(t)

])
Pr

(
n∑
i=2

Xie
−r
∑i
j=2 ϑj + Z0e−r

∑n
j=2 ϑj ∈ dv

)

+ Pr

(
n∑
i=2

Xie
−r
∑i
j=2 ϑj + Z0e−r

∑n
j=2 ϑj > xert − x3

)

≤ (1 + ε) Pr

(
X1 +

n∑
i=2

Xie
−r
∑i
j=2 ϑj + Z0e−r

∑n
j=2 ϑj > xert

)
C12 [1−, Gϑ(t)]

+ Pr

(
n∑
i=2

Xie
−r
∑i
j=2 ϑj + Z0e−r

∑n
j=2 ϑj > xert − x3

)
. (5.3.8)
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For all n ≥ 3 and some large x4 ≥ x3, again by Assumption 5.2.1, (5.3.2) and

F ∈ S(γ) ⊂ L(γ), we have that for all x ≥ x4,

Pr

(
n∑
i=2

Xie
−r
∑i
j=2 ϑj + Z0e−r

∑n
j=2 ϑj > x

)

≤
∫ ∞

0

Pr

(
n∑
i=2

Xi + Z0 > xert

∣∣∣∣∣ϑ2 = t

)
Gϑ(dt)

≤
∫ ∞

0

∫ xert−x4

0−
Pr
(
X2 > xert − v

∣∣ϑ2 = t
)

Pr

(
n∑
i=3

Xi + Z0 ∈ dv

)
Gϑ(dt)

+

∫ ∞
0

Pr

(
n∑
i=3

Xi + Z0 > xert − x4

)
Gϑ(dt)

≤ (1 + ε)2

∫ ∞
0

(
(n− 1)

(
EeγX

)n−2
EeγZ0 +

(
EeγX

)n−1

F (x2)

)
F (xert)Gϑc(dt)

+(1 + ε)

∫ ∞
0

(
(n− 1)

(
EeγX

)n−3
EeγZ0 +

(
EeγX

)n−2

F (x2)

)
eγx4F (xert)Gϑ(dt)

= o(F (x)). (5.3.9)

Plugging (5.3.8) and (5.3.9) into (5.3.7), by Lemma 5.3.1, leads to

Pr (S∞ > x) . (1 + ε)Ee
γ

(∑n
i=2Xie

−r
∑i
j=2 ϑj+Z0e

−r
∑n
j=2 ϑj

) ∫ ∞
0

F (xert)Gϑc(dt).

(5.3.10)

It is easy to see that
∑n

i=2 Xie
−r
∑i
j=2 ϑj +Z0e−r

∑n
j=2 ϑj converges to S∞ in distri-

bution as n → ∞. Therefore, the asymptotic upper bound can be obtained by

the dominated convergence theorem and the arbitrariness of ε > 0,

lim sup
x→∞

Pr(S∞ > x)∫∞
0
F (xert)Gϑc(dt)

≤ EeγS∞ . (5.3.11)

Similarly, for the lower bound, by Assumption 5.2.1 and (5.3.2), we have that
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for some sufficiently large x5 and all x ≥ x5,

Pr (S∞ > x) ≥ Pr (Sn > x)

=

∫ ∞
0

Pr

(
X1 +

n∑
k=2

Xie
−r
∑i
j=2 ϑj > xert

∣∣∣∣∣ϑ1 = t

)
Gϑ(dt)

≥
∫ ∞

0

∫ xert−x5

0−
C2

[
F (xert − u), Gϑ(t)

]
Pr

(
n∑
k=2

Xie
−r
∑i
j=2 ϑj ∈ du

)
Gϑ(dt)

≥ (1− ε)
∫ ∞

0

∫ xert−x5

0−
C12

[
0+, Gϑ(t)

]
F (xert − u)

Pr

(
n∑
k=2

Xie
−r
∑i
j=2 ϑj ∈ du

)
Gϑ(dt)

= (1− ε)
∫ ∞

0

(
Pr

(
X1 +

n∑
k=2

Xie
−r
∑i
j=2 ϑj > xert

)

− Pr

(
n∑
k=2

Xie
−r
∑i
j=2 ϑj > xert

)

−
∫ xert

xert−x5
Pr(X1 > xert − u) Pr

(
n∑
k=2

Xie
−r
∑i
j=2 ϑj ∈ du

))
Gϑc(dt)

≥ (1− ε)
∫ ∞

0

(
Pr

(
X1 +

n∑
k=2

Xie
−r
∑i
j=2 ϑj > xert

)

− 2 Pr

(
n∑
k=2

Xie
−r
∑i
j=2 ϑj > xert − x3

))
Gϑc(dt)

∼ (1− ε)Eeγ
∑n
k=2Xie

−r
∑i
j=2 ϑj

∫ ∞
0

F (xert)Gϑc(dt), (5.3.12)

where the last step holds due to Lemma 5.3.1 and (5.3.9).

Note that Eeγ
∑n
k=2Xie

−r
∑i
j=2 ϑj → EeγS∞ , n → ∞. Then, the lower bound is

derived

lim inf
x→∞

Pr(S∞ > x)∫∞
0
F (xert)Gϑc(dt)

≥ EeγS∞ . (5.3.13)

By Lemma 4.4 of Konstantinides et al. (2010), the distribution of the product

Xe−rϑc still belongs to the class S(γ). Therefore, the desired relation (5.2.1)

follows from (5.1.2), (5.3.11) and (5.3.13).

5.3.2 Proof of Theorem 5.2.3

It has been pointed out by Klüppelberg and Villasenor (1991) that the inclusion

S(γ) ⊂ L(γ)∩OS is strict. Furthermore, it is well known that all distributions in
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the class L(γ) with γ > 0 belong to the classR−∞. Consequently, the intersection

L(γ) ∩ OS ∩R−∞ is larger than S(γ) ∩R−∞, γ ≥ 0.

The following lemma comes from Cheng et al. (2012).

Lemma 5.3.2 Let F1 and F2 be two distributions on [0,∞) with F1 ∈ L(γ)∩OS,

γ ≥ 0. Let F = F1 ∗ F2, if F2(x) = o
(
F1(x)

)
, then for each n ≥ 1,

F1 ∗ F2(x) ∼ F1(x)

∫ ∞
0

eγuF2(du).

Now we turn to the proof of Theorem 5.2.3, which is a modification of that

of Theorem 5.2.1. We only give the sketch, and all of the random variables and

constants are the same as those in the proof of Theorem 5.2.1. As in (5.3.1) and

(5.3.3), for any ε > 0, by F ∈ OS ∩ L(γ) we have that

Pr ((Z +X)Y > x) =

∫ ∞
0

Pr
(
X + Z > xert|ϑ = t

)
Gϑ(dt)

≤ (1 + ε)

∫ ∞
0

(
F ∗2

(
xert

)
− F

(
xert

))
Gϑc(dt)

+

∫ ∞
0

F
(
xert − x0

)
Gϑ(dt)

≤ (1 + ε)

(∫ ∞
0

O
(
F
(
xert

))
Gϑc(dt)

+eγx0
∫ ∞

0

F
(
xert

)
Gϑ(dt)

)
= o(F (x)),

which implies that for some large x2, (5.3.4) holds for all x ≥ x2. Then, as above,

construct Z0 = (Z|Z > x2), whose distribution FZ0 still belongs to the class

L(γ) ∩ OS ∩ R−∞. Following the steps of proof of Theorem 5.2.1, similarly to

(5.3.9), for n ≥ 2, we can obtain from Assumption 5.2.1 and (5.3.2) that for all

x ≥ x4,

Pr

(
n∑
i=2

Xie
−r
∑i
j=2 ϑj + Z0e−r

∑n
j=2 ϑj > x

)

≤
∫ ∞

0

Pr

(
n∑
i=2

Xi + Z0 > xert

∣∣∣∣∣ϑ2 = t

)
Gϑ(dt)

≤ (1 + ε)

∫ ∞
0

Pr

(
n∑
i=2

Xi + Z0 > xert

)
Gϑc(dt)

+

∫ ∞
0

Pr

(
n∑
i=3

Xi + Z0 > xert − x4

)
Gϑ(dt).

(5.3.14)
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Note that for each i = 2, . . . , n,

Xi

d

≤ Z0,

which implies that for all t ≥ 0,

Pr

(
n∑
i=2

Xi + Z0 > xert

)
≤ F n∗

Z0
(x). (5.3.15)

By FZ0 ∈ OS and Proposition 2.4 of Shimura and Watanabe (2005), we know

that for all n ≥ 1 and x ≥ 0,

F n∗
Z0

(x)

FZ0(x)
≤ CKn, (5.3.16)

where C and K are two positive constants. Then, by (5.3.14) and the dominated

convergence theorem, in order to prove

Pr

(
n∑
i=2

Xie
−r
∑i
j=2 ϑj + Z0e−r

∑n
j=2 ϑj > x

)
= o(F (x)), (5.3.17)

it suffices to show that for any fixed t > 0,

Pr

(
n∑
i=2

Xi + Z0 > xert

)
= o(F (x)). (5.3.18)

Indeed, relation (5.3.18) holds because of (5.3.15), (5.3.16) and F ∈ OS ∩R−∞.

Therefore, along the lines of the proof of Theorem 5.2.1, the desired relations

(5.3.11) and (5.3.13) follow from (5.3.7), (5.3.8), (5.3.17), (5.3.10), (5.3.12) and

by applying Lemma 5.3.2.

5.3.3 Proof of Theorem 5.2.4

Recall that the FGM copula is satisfied by Assumption 5.2.1 for θ ∈ (−1, 1) as

described in Section 5.2. Therefore, applying Theorem 5.2.2, it is obvious to see

that Theorem 5.2.4 holds when θ ∈ (−1, 1). Thus, in this subsection, we only

prove the case θ = −1. One can easily prove the case θ = 1, by proceeding along

the same lines below.

Now we begin the proof of Theorem 5.2.4. Let X ′ be a random variable,

independent of {(X, Y )(Xi, Yi), i ∈ N}, with distribution F . Applying the de-

composition in (5.2.3),

Pr ((X +X ′)Y > x) = (1 + θ) Pr ((X∗ +X ′)Y ∗ > x)

−θPr ((X∗∧ +X ′)Y ∗ > x)− θPr ((X∗ +X ′)Y ∗∧ > x)

+θPr ((X∗∧ +X ′)Y ∗∧ > x)

= (1 + θ)I1(x)− θI2(x)− θI3(x) + θI4(x).
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When θ = −1, it reduces to

Pr ((X +X ′)Y > x) = I2(x) + I3(x)− I4(x). (5.3.19)

We derive from F ∈ S(γ) ∩R−∞ and Lemma 5.3.1 that

I2 =

∫ 1

0

Pr
(
X∗∧ +X ′ > xy−1

)
G(dy)

∼ EeγX
∗
∧

∫ 1

0

F (xy−1)G(dy)

= o(F (x)).

Here, we note that EeγX
∗
∧ < ∞ because of FX∗∧(x) = (F (x))2 = o(F (x)) and

EeγX < ∞. Similarly, I3 = o(F (x)) and I4 = o(F (x)). Thus, there exists some

large x6 > 0 such that, for all x > x6,

Pr ((X ′ +X)Y > x) ≤ F (x).

Let R0 = (X ′|X ′ > x6) be a new conditional random variable, whose distribution

still belongs to the intersection S(γ) ∩R−∞. As (5.3.5), we claim that

Y (X +R0)
d

≤ R0,

which implies that Sn
d

≤ R0 for all n ≥ 1. Letting n→∞ yields

S∞
d

≤ R0,

implying EeγS∞ <∞.

By F ∈ S(γ) and Lemma 3.4.2, we have that

Pr(X∗∧Y
∗ > x)

Pr(X∗Y ∗∧ > x)
≤ Pr(X∗∧ > x)

Pr(X∗Y ∗∧ > x)
≤ (F (x))2

(G(1/2))2F (2x)
→ 0, (5.3.20)

and, clearly,

Pr(X∗∧Y
∗
∧ > x) =

∫ 1

0

(
F (xy−1)

)2
Pr(Y ∗∧ ∈ dy) = o(Pr(X∗Y ∗∧ > x)). (5.3.21)

Thus, it follows from (5.2.3), (5.3.20) and (5.3.21) that

Pr(XY > x) ∼ Pr(X∗Y ∗∧ > x). (5.3.22)

Let Z ′ be a random variable, independent of {(X, Y )(Xi, Yi), i ∈ N}, with Pr(Z ′ >

x) ≤ F (x) for all x > 0, and

Pr(Z ′ > x) ∼ cPr(X∗Y ∗∧ > x), with c > EeγZ
′
,
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which implies that Pr(Z ′ > x) = o(F (x)) by F ∈ R−∞. Furthermore, it is easy to

see that Z ′
d

≤ R0 and EeγZ
′ ≤ EeγR0 <∞. Therefore, the positive c always exits.

For example, we can choose c > EeγR0 . Since Y ∗∧ has a finite upper endpoint 1,

by F ∈ S(γ) ∩ R−∞, Theorem 1.1 of Tang (2006) and Lemma 2.2 of Tang and

Tsitsiashvili (2004) show that the distribution of Z ′ also belongs to S(γ)∩R−∞.

Hence, applying the decomposition of (5.2.3) with θ = −1,

Pr ((X + Z ′)Y > x) = Pr ((X∗∧ + Z ′)Y ∗ > x) + Pr ((X∗ + Z ′)Y ∗∧ > x)

−Pr ((X∗∧ + Z ′)Y ∗∧ > x)

= J2(x) + J3(x)− J4(x). (5.3.23)

By Pr(Z ′ > x) = o(F (x)) and Lemma 5.3.1,

J3(x) =

∫ 1

0

Pr (X∗ + Z ′ > x) Pr(Y ∗∧ ∈ dy)

= EeγZ
′
Pr(X∗Y ∗∧ > x). (5.3.24)

By (5.3.20), Lemma 5.3.1 and FZ′ ∈ R−∞,

J2(x) =

∫ 1

0

Pr
(
X∗∧ + Z ′ > xy−1

)
Pr(Y ∗ ∈ dy)

∼ EeγX
∗
∧ Pr(Z ′Y ∗ > x)

= o (Pr(X∗Y ∗∧ > x)) . (5.3.25)

Similarly,

J4(x) = o(Pr(X∗Y ∗∧ > x)). (5.3.26)

From relations (5.3.23)–(5.3.26), we derive that

Pr ((X + Z ′)Y > x) ∼ EeγZ
′
Pr(X∗Y ∗∧ > x).

By c > EeγZ
′
, the inequality

Pr ((X + Z ′)Y > x) ≤ Pr(Z ′ > x)

holds for all x ≥ x7, where x7 is a sufficiently large constant. Hence, we can con-

struct a new conditional random variable Q0 = (Z ′|Z ′ > x7) whose distribution

also belongs to the intersection S(γ) ∩R−∞. By similar arguments as (5.3.5), it

follows that

(X +Q0)Y
d

≤ Q0, (5.3.27)

which indicates that Sn
d

≤ Q0 for all n ≥ 1. Letting n→∞ yields S∞
d

≤ Q0. By

similar arguments as (5.3.6), we have that

S∞
d
= Sn + S̃∞

n∏
j=1

Yj
d

≤ Sn +Q0

n∏
j=1

Yj,
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where S̃∞ is an independent copy of S∞. Therefore, for every n ≥ 1,

Pr(S∞ > x) ≤ Pr

(
Sn +Q0

n∏
j=1

Yj > x

)
. (5.3.28)

For each n ≥ 1, introduce

Un =
n∑
i=1

Xi

n∏
j=i

Yj +Q0

n∏
j=1

Yj
d
= Sn +Q0

n∏
j=1

Yj, U0 = Q0,

which satisfies the recursive equation

Un = (Un−1 +Xn)Yn.

Clearly,

Pr (Un > x) = Pr ((Un−1 +Xn)Yn > x)

= (1 + θ) Pr ((Un−1 +X∗)Y ∗ > x)− θPr ((Un−1 +X∗∧)Y
∗ > x)

−θPr ((Un−1 +X∗)Y ∗∧ > x) + θPr ((Un−1 +X∗∧)Y
∗
∧ > x)

= (1 + θ)K1(x)− θK2(x)− θK3(x) + θK4(x). (5.3.29)

In the following, we only consider the case θ = −1. The proof of the result for

θ = 1 is similar, and the case θ ∈ (−1, 1) has been investigated by Theorem 5.2.2.

We mainly prove that for each n ≥ 1,

Pr(Un > x) ∼ EeγUn−1 Pr(X∗Y ∗∧ > x) (5.3.30)

holds by induction. Using relation (5.3.1) for n = 1 and θ = −1, we can write

Pr(U1 > x) = Pr ((X1 + U0)Y1 > x)

= Pr ((U0 +X∗∧)Y
∗ > x) + Pr ((U0 +X∗)Y ∗∧ > x)

−Pr ((U0 +X∗)Y ∗∧ > x)

= K2(x) +K3(x)−K4(x). (5.3.31)

For K3(x), by Pr(U0 > x) = Pr(Q0 > x) = o(F (x)) and Lemma 5.3.1 we obtain

that

K3(x) =

∫ 1

0

Pr(U0 +X∗ > xy−1) Pr(Y ∗∧ ∈ dy)

∼ EeγU0 Pr(X∗Y ∗∧ > x). (5.3.32)

Similarly to (5.3.25), by (5.3.20) and Lemma 5.3.1 we have that

K2(x) =

∫ 1

0

Pr(U0 +X∗∧ > xy−1) Pr(Y ∗ ∈ dy)

∼ EeγX
∗
∧ Pr(U0Y

∗ > x)

= o ((X∗Y ∗∧ > x)) . (5.3.33)
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Similarly,

K4(x) = o ((X∗Y ∗∧ > x)) . (5.3.34)

Thus, it follows from (5.3.31)–(5.3.34) that

Pr(U1 > x) ∼ EeγU0 Pr(X∗Y ∗∧ > x),

which means that (5.3.30) holds for n = 1. Now we assume that relation (5.3.30)

holds for n− 1 and then we prove that it holds for n ≥ 2. Since F ∈ R−∞, by

our induction assumption, it is easy to show that

Pr (Un−1 > x) = o(F (x)). (5.3.35)

Moreover, by F ∈ S(γ), Theorem 1.1 of Tang (2006) gives that the product X∗Y ∗∧
follows a distribution in the class S(γ), and Y ∗∧ has an upper endpoint 1. This,

combined with the induction assumption, yields FUn−1 ∈ S(γ). Thus, by Lemma

5.3.1 we have that

Pr(Un−1 +X∗ > x) ∼ EeγUn−1F (x),

which implies that

K3(x) =

∫ 1

0

Pr(Un−1 +X∗ > xy−1) Pr(Y ∗∧ ∈ dy) ∼ EeγUn−1 Pr(X∗Y ∗∧ > x).

(5.3.36)

As for K2(x), similarly to (5.3.20), by F ∈ S(γ) and Lemma 3.4.2, we have that

Pr (X∗∧ > x)

Pr (Un−1 > x)
≤ (F (x))2

Pr(XY > x)
∼ (F (x))2

Pr(X∗Y ∗∧ > x)
→ 0.

Hence, by FUn−1 ∈ S(γ), Lemma 5.3.1 and the induction assumption, we have

that

Pr(Un−1 +X∗∧ > x) ∼ EeγX
∗
∧ Pr(Un−1 > x) ∼ EeγX

∗
∧EeγUn−2 Pr(X∗Y ∗∧ > x),

which implies that

K2(x) =

∫ 1

0

Pr(Un−1 +X∗∧ > xy−1)G(dy)

∼ EeγX
∗
∧EeγUn−2

∫ 1

0

Pr(X∗Y ∗∧ > xy−1)G(dy)

= EeγX
∗
∧EeγUn−2 Pr(X∗Y ∗∧Y

∗ > x)

= EeγX
∗
∧EeγUn−2

∫ 1

0

Pr(X∗Y ∗ > xy−1) Pr(Y ∗∧ ∈ dy)

= o(1)

∫ 1

0

F (xy−1) Pr(Y ∗∧ ∈ dy)

= o(Pr(X∗Y ∗∧ > x)), (5.3.37)
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where the fifth step holds because of the fact

Pr(X∗Y ∗ > x) =

∫ 1

0

F (xy−1)G(dy) = o(F (x)),

due to F ∈ R−∞ and the dominated convergence theorem. Similarly,

K4(x) = o(Pr(X∗Y ∗∧ > x)). (5.3.38)

Plugging (5.3.36)–(5.3.38) into (5.3.29) leads to (5.3.30) holding for n.

It follows from (5.3.28) and (5.3.30) that

Pr(S∞ > x) ≤ Pr(Un > x)

∼ EeγUn−1 Pr(X∗Y ∗∧ > x).

Note that Un−1
d
= Sn−1 +Q0

∏n−1
j=1 Yj converges to S∞ in distribution as n→∞.

Therefore, the asymptotic upper bound is established by

lim sup
x→∞

Pr(S∞ > x)

Pr(X∗Y ∗∧ > x)
≤ EeγS∞ .

As for the asymptotic lower bound, similarly to (5.3.30), we have that

Pr(S∞ > x) ≥ Pr(Sn > x)

∼ EeγTn−1 Pr(X∗Y ∗∧ > x),

where Tn =
∑n

i=1Xi

∏i
j=1 Yj

d
= Sn, n ≥ 1, satisfies the recursive equation

Tn = (Tn−1 +Xn)Yn.

Clearly, the sum Tn−1 converges to S∞ in distribution as n→∞ as well. There-

fore, we derive the lower bound

lim inf
x→∞

Pr(S∞ > x)

Pr(X∗Y ∗∧ > x)
≥ EeγS∞ .
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Appendix A

Below we provide the Matlab code used for numerical studies in Chapter 3.

Here is the Matlab code for Montle Carlo simulation of the finite time

ruin with light-tailed case :

% this is a script to simulate the finite ruin probability using Montle

% Carlo method.

clc;clear all;

%% Parameters

% Number of MC simulations, the N in the paper

NumberOfSims =10^7;

% Discrete time horizon, the n in the paper

TimeHorizon_n = 4;

% Risk free rate, the r_i in the paper

RiskFree_r = 0.0125;

% Proportion invested in the risky assets, the pi_i in the paper

Risky_pi = 0.8; p_hat = 0.05;

% Initial capital, the x in the paper

for Capital_x =3600:4000

% From the copula we choose, the following parameters stands

copula_theta = 0.8;

%% Generate two independent random uniform V1 and V2

% V_1

V1_i = unifrnd(0,1,[TimeHorizon_n,NumberOfSims]);

% V_2

V2_i = unifrnd(0,1,[TimeHorizon_n,NumberOfSims]);

temp_array_a = 1 + copula_theta .* (1 - 2 .* V1_i );

temp_array_b = sqrt ( temp_array_a .^2 - 4 .* (temp_array_a -1) .* V2_i);

% output U1_i, U2_i;

U1_i = V1_i ;
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U2_i = 2.* V2_i ./ (temp_array_a + temp_array_b);

%% Random number generation

% X_i: for the case r=0 we choose a light-tailed IG distribution

% for inverse gaussian distribution we need: mu and lambda

mu = 1; lambda = 1;

% generate a random variate from a normal distribution with mu=0 and sig=1

W_i = normrnd(0,1,[TimeHorizon_n,NumberOfSims]);

P_i = W_i .^2;

IG_i = mu + mu^2 .* P_i/(2*lambda)-mu/(2*lambda) * sqrt(4*mu*lambda

.*P_i+mu^2 *P_i.^2);

% genrate all needed random numbers in a matrix

if U1_i > mu *(mu + IG_i).^(-1);

X_i = IG_i;

else

X_i = mu^2 * IG_i .^(-1);

end

% Y_i: we use a uniform distribution range from 0 to y_hat

% details see: doc unifrnd

y_hat = 1 / ((1-Risky_pi) * (1 + RiskFree_r));

if U2_i > (1-p_hat);

Y_i = y_hat;

else Y_i = y_hat .* U2_i .* (1-p_hat);

end

% Cumprod_Y_i: the cum-product of Y_i as will be used in each scenario

Cumprod_Y_i = cumprod(Y_i);

% Cumprod_Y_i: the cum-product of Y_i as will be used in each scenario

Cumprod_Y_i = cumprod(Y_i);

%% Monte Carlo Simulation part

% For each simulation, we first calculate all the outcomes at each discrete

% time point, then do the summation, and find the maximum at last.

% outcomes_each: individual outcome at each discrete time point in a matrix

outcomes_each = X_i .* Cumprod_Y_i;

% outcomes_all: all the outcomes with summation at all possible time point

outcomes_all = cumsum(outcomes_each);
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% find the maximum of each simulation path, put in an array

outcoees_max = max(outcomes_all);

% if the maximum > initial capital take as 1, else as 0.

ruin_counts = sum(outcoees_max > Capital_x);

%% Out put the ruin probability

ruin_pro =ruin_counts / NumberOfSims;

z(Capital_x - 3599) = Capital_x;

y1(Capital_x - 3599) = ruin_pro;

fprintf(’The ruin probability within finite time is: %.12f.\n’,ruin_pro);

% plot(Capital_x,ruin_pro,’+’); hold on;

end;

plot(z, smooth(y1,0.25,’rloess’),’k’); hold on;

Here is the Matlab code for Montle Carlo simulation of the finite time

ruin on the asymptotic solutions with light-tailed case :

% this is a script to simulate the finite ruin probability using CMC on the

% asymptotic solutions.

clc;clear all;

%% Parameters

% Number of MC simulations, the N in the paper

NumberOfSims = 10^7;

% Discrete time horizon, the n in the paper

TimeHorizon_n = 4;

% Risk free rate, the r_i in the paper

RiskFree_r = 0.0125;

% Proportion invested in the risky assets, the pi_i in the paper

Risky_pi = 0.8;

% Initial capital, the x in the paper

for Capital_x =3600:4000

% From the copula we choose, the following parameters stands

copula_theta = 0.8; p_hat = 0.05;

% y_hat as in the paper

y_hat = 1 / ((1-Risky_pi) * (1 + RiskFree_r));

% for inverse gaussian distribution we need: mu and lambda

mu = 1; lambda = 1;

% gamma as a parameter
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gamma = lambda/(2*mu^2);

%% We estimate the asymptotic solutions in three parts:

% Ruin = constant * the C part * the probability part

% Since the independence of each part, we start with the C part

%% CMC on the C part

% simulation trials on the expectation estimation

% (to save time we set NumberOfSims and est_E_sims the same)

est_E_sims = NumberOfSims;

% Random number generations

%% Random number generation

% X_i: for the case r=0 we choose a light-tailed IG distribution

% for inverse gaussian distribution we need: mu and lambda

mu = 1; lambda = 1;

% generate a random variate from a normal distribution with mu=0 and sig=1

W_i = normrnd(0,1,[est_E_sims,1]);

P_i = W_i .^2;

IG_i = mu + mu^2 .* P_i/(2*lambda)-mu/(2*lambda) * sqrt(4*mu*lambda

.*P_i+mu^2 *P_i.^2);

% genrate all needed random numbers in a matrix

V1_i= unifrnd(0,1,[est_E_sims,1]);

% genrate all needed random numbers in a matrix

if V1_i > mu *(mu + IG_i).^(-1);

X_i = IG_i;

else

X_i = mu^2 * IG_i .^(-1);

end

% make a distribution for inverse guassian

pd = makedist(’inversegaussian’, ’mu’,mu,’lambda’, lambda);

% for inverse gaussian distribution

syms x

% calulation of what is inside of the expectation for all times

% a temporary row vector

for i=1:TimeHorizon_n-1
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fun_i = @(x) (1 + copula_theta * (1 - p_hat) * (1-2 .* cdf(pd,x))).* pdf(pd,x);

inside_exp_all_i = integral( fun_i,0,Inf);

end;

% % calulation all the expectations

% workout C_gamma the C part as in the paper

C_gamma = cumprod(inside_exp_all_i); C_gamma = C_gamma(end);

%% CMC on the probability part

% Random number generations

% to save time, we use the random X_i’s generated before

% Y_i: we use a uniform distribution range from 0 to y_hat

% details see: doc unifrnd

% V_2

V2_i = unifrnd(0,1,[TimeHorizon_n,NumberOfSims]);

% genrate all needed random numbers in a matrix

if V2_i > (1-p_hat);

Y_i = y_hat;

else

Y_i = y_hat .* V2_i .* (1-p_hat);

end

% Cumprod_Y_i: the cum-product of Y_i as will be used in each scenario

Cumprod_Y_i = cumprod(Y_i); Cumprod_Y_i = Cumprod_Y_i(end,:);

% if the X_i .* Cumprod_Y_i > Capital_x) capital take as 1, else as 0.

pro_part = sum(X_i .* Cumprod_Y_i’ > Capital_x) / NumberOfSims;

%% Out put the ruin probability

ruin_pro = (1 + copula_theta * (1 - p_hat)) * C_gamma * pro_part;

z(Capital_x - 3599) = Capital_x;

y2(Capital_x -3599) = ruin_pro;

fprintf(’The ruin probability within finite time is: %.12f.\n’,ruin_pro);

% plot(Capital_x,ruin_pro,’+’); hold on;

end;

plot(z, smooth(y2,0.25,’rloess’),’--k’); hold on;

Here is the Matlab code for simulation of the finite time ruin using

EVT with light-tailed case :

97



% this is a script to simulate the finite ruin probability using EVT on the

% asymptotic solutions.

clc;clear all;

%% Parameters

% Number of MC simulations, the N in the paper

NumberOfSims = 10^7;

% Discrete time horizon, the n in the paper

TimeHorizon_n = 4;

% Risk free rate, the r_i in the paper

RiskFree_r = 0.0125;

% Proportion invested in the risky assets, the pi_i in the paper

Risky_pi = 0.8;

% Initial capital, the x in the paper

for Capital_x =3200:3700

% From the copula we choose, the following parameters stands

copula_theta = 0.8; p_hat = 0.05;

% y_hat as in the paper

y_hat = 1 / ((1-Risky_pi) * (1 + RiskFree_r));

% for inverse gaussian distribution we need: mu and lambda

mu = 1; lambda = 1;

% gamma as a parameter

gamma = lambda/(2*mu^2);

%% CMC on the probability part

% Random number generations

% to save time, we use the random X_i’s generated before

% Y_i: we use a uniform distribution range from 0 to y_hat

% details see: doc unifrnd

% V_2

V2_i = unifrnd(0,1,[1,NumberOfSims]);

% genrate all needed random numbers in a matrix

if V2_i > (1-p_hat);

Y_i = y_hat;

else

Y_i = y_hat .* V2_i * (1-p_hat);

end
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%% We estimate the asymptotic solutions in three parts:

% Ruin = constant * the C part * the probability part

% Since the independence of each part, we start with the C part

% make a distribution for inverse guassian

pd = makedist(’inversegaussian’, ’mu’,mu,’lambda’, lambda);

% for inverse gaussian distribution

syms x

% calulation of what is inside of the expectation for all times

% a temporary row vector

for i=1:TimeHorizon_n-1

fun_i = @(x) (1 + copula_theta * (1 - p_hat) * (1-2 .* cdf(pd,x))).* pdf(pd,x);

inside_exp_all_i = integral( fun_i,0,Inf);

end;

% % calulation all the expectations

% workout C_gamma the C part as in the paper

C_gamma = cumprod(inside_exp_all_i); C_gamma = C_gamma(end);

% B_hat

Fun_B = @(x)(1-cdf(pd,x));

B_hat= integral(Fun_B,Capital_x/(y_hat^(TimeHorizon_n)),Inf)

/(1-cdf(pd,Capital_x/(y_hat^(TimeHorizon_n))));

pro_part1=1-cdf(pd,Capital_x/((y_hat)^(TimeHorizon_n)));

pro_counts=sum(Y_i>y_hat -(y_hat^(TimeHorizon_n+1)/Capital_x)* B_hat);

pro_part2=pro_counts/NumberOfSims;

%% Out put the ruin probability

ruin_pro = C_gamma*(1 + copula_theta * (1 - p_hat))

* pro_part1* (pro_part2^TimeHorizon_n);

z(Capital_x - 3199) = Capital_x;

y3(Capital_x - 3199) = ruin_pro;

fprintf(’The ruin probability within finite time is: %.12f.\n’,ruin_pro);

end;

plot(z, smooth(y3,0.25,’rloess’),’-.k’); hold on;
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[47] Klüppelberg, C.; Villasenor, J. A. The full solution of the convolution closure

problem for convolution-equivalent distributions. Journal of Mathematical

Analysis and Applications (1991), no. 160, 79-92.

[48] Konstantinides, D.; Tang, Q.; Tsitsiashvili, G. Estimates for the ruin proba-

bility in the classical risk model with constant interest force in the presence

of heavy tails. Insurance: Mathematics and Economics 31 (2002), no. 3,

447-460.

[49] Konstantinides, D. G.; Mikosch, T.. Annals of Probability 33 (2005), no.5,

1992-2035.

103



[50] Konstantinides, D. G.; Ng, K. W.; Tang, Q. The probabilities of absolute

ruin in the renewal risk model with constant force of interest. Journal of

Applied Probability 47 (2010), no. 2, 323-334.

[51] Kotz, S.; Balakrishnan, N.; Johnson, N. L. Continuous Multivariate Dis-

tributions. Vol.1. Models and Applications. Wiley-Interscience, New York,

2000.

[52] Laeven, R.J.A., Goovaerts, M.J., Hoedemakers, T., 2005. Some asymptotic

results for sums of dependent random variables, with actuarial applications.

Insurance: Mathematics and Economics 37 (2), 154-172.

[53] Lee, M. T. Properties and applications of the Sarmanov family of bivariate

distributions. Communications in Statistics-theory and Methods 25 (1996),

no. 6, 1207-1222.

[54] Leslie, J. R. On the non-closure under convolution of the subexponential

family. Journal of Applied Probability 26 (1989), 58-66.

[55] Li, J.; Tang, Q. Interplay of insurance and financial risks in a discrete-time

model with strongly regular variation. Bernoulli (2014), to appear.

[56] Lin, J.; Wang, Y. New examples of heavy-tailed O-subexponential distribu-

tions and related closure properties. Statistics and Probability Letters (2012),

no. 82, 427-432.

[57] Liu, J.; Yang, Y. Infinite-time absolute ruin in dependent renewal risk models

with constant force of interest. Submitted.

[58] Liu, Y.; Tang, Q. The subexponential product convolution of two Weibull-

type distributions. Journal of the Australian Mathematical Society 89 (2010),

no. 2, 277-288.

[59] McNeil, A. J.; Frey, R.; Embrechts, P. Quantitative Risk Management.

Concepts, Techniques and Tools. Princeton University Press, Princeton, NJ

(2005).

[60] Monthus,C.; Garel,T. Journal of Physics A Mathematical and Theoretical

42 (2009), no. 16, 1423-1424.

[61] Morgenstern, D. Einfache beispiele zweidimensionaler verteilungen. Mit-

teilungeblatt für mathematische statistik, Würzburg, (1965), 8, 234-235. (in

German).

104



[62] Mises, R.von , La distribution De la plus grande de n values (1936). Reprint-

ed in Selected Papers II, American Mathematical Society, Providence, R.I.

(1954), 271-294.

[63] Nadarajah, S. Expansions for bivariate copulas. Statistics and Probability

Letters (2015), 100, 77-84.

[64] Nelsen, R. B. An Introduction to Copulas. Springer, New York (1998).

[65] Norberg, R. Ruin problems with assets and liabilities of diffusion type. S-

tochastic Processes and Their Applications 81 (1999), no. 2, 255-269.

[66] Nyrhinen, H. On the ruin probabilities in a general economic environment.

Stochastic Processes and Their Applications 83 (1999), no. 2, 319-330.

[67] Nyrhinen, H. Finite and infinite time ruin probabilities in a stochastic eco-

nomic environment. Stochastic Processes and Their Applications 92 (2001),

no. 2, 265-285.

[68] Nyrhinen, H. On stochastic difference equations in insurance ruin theory.

Journal of Difference Equations and Applications 18 (2012), no. 8, 1345-

1353.

[69] Pakes, A. Convolution equivalence and infinite divisibility. Journal of Applied

Probability (2004), 41: 407-424.

[70] Pelican, E., Vernic, R.: Maximum-likelihood estimation for the multivariate

Sarmanov distribution: simulation study. International Journal of Computer

Mathematics 90 (2013), no. 9, 1958-1970.

[71] Reiss, R-D. (1989) Approximate Distributions of Order Statistics: With Ap-

plications to Nonparametric Statistics. Springer, New York.

[72] Resnick, S.I. (2008) Extreme Values, Regular Variation and Point Processes.

Springer, New York.
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