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Abstract

An order O(1/T) approximation is made to the bias in 2SLS estimation of a
dynamic simultaneous equation model, building on similar large-T moment
approximations for non-dynamic models. The expression is long because
it contains two distinct parts: a part due to the simultaneity which is di-
rectly related to the Nagar bias and a part due to the dynamics which has
many component terms. However, the analytically corrected 2SLS estima-
tors resulting from this approximation perform well in terms of remaining
estimation bias. The biases of these estimators are compared with the Que-
nouille half-sample jackknife and the residual bootstrap for 2SLS in dynamic
models, and are found to be competitive. The Monte Carlo and bias ap-
proximation also suggest that the bias in estimating endogenous variable co-
efficients in dynamic simultaneous equation models is non monotonic in the
sample size, contrary to the well known theoretical result for static models.
The effect of using weaker instruments on our numerical and Monte Carlo
results is explored.

Keywords: 2SLS, simultaneous equation model, time series, bias
approximation, bias correction, bootstrap, jackknife

1. Introduction

The issues of bias approximation and reduction have been previously
addressed in relation to static simultaneous equation models. Recent exam-
ples of bias approximation are Hahn & Hausman (2002), Hahn, Hausman &
Kuersteiner (2004), Phillips (2007), Iglesias & Phillips (2010), and Bun &
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Windmeijer (2011). On bias reduction see MacKinnon & Davidson (2006),
Dahlberg & Blomquist (2006), Davidson & MacKinnon (2007) and Acker-
berg & Devereux (2009), who consider the JIVE method and its variants,
Iglesias & Phillips (2012) who construct estimators that are unbiased up
to orders O(T−1) and O(T−2), where T is the sample size, and Hsu, Lau,
Fung & Ulveling (1986), who assess the bootstrap method due to Freedman
(1984) and the standard delete-1 jackknife for static models. The Freedman
(1984) method is asymptotically valid in the dynamic setting, and performs
well in Ip (1991) for dynamic models. Freedman & Peters (1984a,1984b)
use the method to obtain bootstrap estimates of the bias in GLS and 3SLS
coefficient estimators, respectively. Freedman & Peters (1984a) also conduct
a Monte Carlo simulation study to assess the performance of the bootstrap
in estimating standard errors, and MacKinnon (2002) presents Monte Carlo
evidence for its use in hypothesis testing in static models. Also in the context
of dynamic models, Kiviet & Phillips (1995) present a small-σ approxima-
tion to the 2SLS coefficient bias, where, following Kadane (1971), σ is a
small scalar multiple of the variance of the structural equation disturbance,
and examine its use in bias reduction, showing that certain results for the
static model do not carry over to the dynamic case.

Given a sample size T and an estimate α̂ of a coefficient vector α, the
large-T approach in Nagar (1959) starts by expanding the estimation error
as follows:

√
T (α̂− α) =

p∑
s=1

es

T
1
2
(s−1)

+
rp

T
1
2
p
, (1)

where es, for s = 1, ..., p, and rp are all Op(1) as T → ∞. The last term is
the remainder in an expansion of

√
T (α̂ − α) to order Op(T

1
2
(p−1)). In the

small-σ approach the general expansion is

1
σ

(α̂− α) =
p∑

s−1

σs−1ėp + σpṙp, (2)

where ės, for s = 1, ..., p, and ṙp are also bounded in probability, this time
as σ, the standard deviation of the equation disturbance, tends to zero. The
bias is then approximated to order O(T−1) or O(σ2) by calculating the first
moment of the approximate estimation error in each case.

Kadane (1971) shows that the large-T and small-σ approaches yield es-
sentially equivalent results for the static SEM. In particular, it is shown that
the large-T result in Nagar (1959) can be obtained by taking the limit of the
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small-σ result as T →∞. Kiviet & Phillips (1989) and Kiviet and Phillips
(1993) show that the same is not true in dynamic settings.

A large-T moment approximation for a dynamic simultaneous equation
model (”DSEM”) is presented here under a Normality assumption, building
on the above results for static models and on the small-σ approximations
for dynamic models. The simulation experiments in Section 3 investigate
the remaining bias and the mean squared error after using this for bias re-
duction. The performance of the analytically corrected estimator, C2SLS,
is compared with the bootstrap method due to Freedman (1984) and the
half-sample jackknife in Quenouille (1956). Though Freedman (1984) pro-
vides a consistency result for the bootstrap in DSEMs, there is no theoretical
result for bootstrap bias correction in this context, though the favourable
simulation results in Hsu, Lau, Fung, & Ulveling (1986) for bias-corrected
estimation of 2SLS estimation of static models suggest that a correction is
likely. Finally, the behaviour of the bias correction numerically is explored
as the instruments grow weak, and the three bias correction methods are
compared in a situation where the instruments are relatively weak.

The jackknife method considered is due to Quenouille (1956). Dhaene
& Jochmans (2010) find that it performs well in terms of bias correction
in large-T dynamic panel data modeling with fixed effects. It is referred
to as the Quenouille jackknife (QJ) here. Rather than creating subsamples
by deleting one observation at a time for each subsample, two subsamples
are obtained from the first and second halves of the whole sample with
the ordering intact. This has the benefit of retaining the dynamics of the
data, and it means that the 2SLS bias does not need to be monotonically
decreasing in the sample size for a bias correction to occur. The related
delete-d jackknife in Shao (1989) can be applied with d = dT/2e, but it does
not retain the dynamics and will not work here.

2. The model and bias approximation

The complete system is assumed to be as follows:

Y B + Y−1Λ +XC = Ū , (3)

where Y is a T ×G matrix of observations on G endogenous variables, Y−1

is a T × G matrix of observations on the endogenous variables lagged one
time period, X is a T ×K matrix of observations on K stationary exogenous
variables and Ū is a T ×G matrix of structural disturbances. The matrices
B, Λ and C are of dimension G×G, G×G and K×G, respectively, while B
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is assumed to be non-singular. The rows of Ū are assumed to be normally
and independently distributed with zero mean and fixed covariance matrix
Σ.

The reduced form of the model is

Y = −Y−1ΛB−1 −XCB−1 + ŪB−1

= Y−1Γ +XΠ + V̄ , (4)

where Γ = −ΛB−1, Π = −CB−1 and V̄ = ŪB−1. Here the rows of
V̄ are normally distributed with zero mean and covariance matrix Ω =
(B−1)′ΣB−1, and as a stationarity condition it is assumed that the eigen-
values of Γ are inside the unit circle.

It will be assumed that the rows of the Y matrix are generated from a
fixed value Y0,. at time t = 0 so that by successive substitution the matrix
may be separated into stochastic and non-stochastic parts. This is done by
noting that the t− th row of Y may be written as

yt,. = y0,.Γt +
t∑

i=1

Xi,.ΠΓt−i +
t∑

i=1

V̄i,.Γt−i, (5)

where Xi,. and V̄i,. are the i − th rows of X and V̄ , respectively, for i =
0, 1, ..., t and t = 1, 2, ..., T . With Y0,. taking a fixed value it is seen that the
non-stochastic part of Yt,. is given by the first two terms of (5), while the
last term represents the stochastic part. Therefore the following holds for
the non-stochastic part:

ȳt,. = y0,.Γt +
t∑

i=1

Xi,.ΠΓt−i, (6)

while the stochastic part is

w̄t,. =
t∑

i=1

V̄i,.Γt−i. (7)

Defining a T × T matrix D as

D =



0 0 . . . . 0
1 0 . . . . 0
0 1 0 . . . 0
0 0 1 0 . . 0
. . . . . . 0
. . . 0
0 . . . . 1 0


(8)
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where DT = 0 and where D0 is defined as IT , the stochastic part of Y =
Ȳ + W̄ is

W̄ =
T−1∑
t=1

DtV̄ Γt + V̄ =
T−1∑
t=0

DtV̄ Γt. (9)

Without loss of generality the estimation of the parameters of the first equa-
tion of the system in (3) is considered. This equation is assumed to be
over-identified and given by

y1 = Y2β1 + LY1λ1 +X1c1 + ū1

= Rδ1 + ū1, (10)

where

R = [Y2 : LY1 : X1], δ1 = (β′1, λ
′
1, c
′
1)′ and ū1 = σ1u1. (11)

Here Y1 = (y1 : Y2) is a T × (g+ 1) matrix of observations on g+ 1 included
endogenous variables, LY1 is the one period lagged version of Y1, X1 is a
T × k matrix of observations on k included exogenous variables, and σ1 is
the standard deviation of the structural disturbances.

Let

R̄ = [Ȳ2 : LȲ1 : X1] and F̄ = [W̄2 : LW̄1 : 0] (12)

denote the non-stochastic and stochastic parts of R, respectively, where use
has been made of (9), and where F̄ = σF , with F = (W2 : LW1 : 0). The
2SLS estimator of δ1 may be written as

δ?
1 = (R̂′R̂)−1R̂′y1

= δ1 + (R̂′R̂)−1R̂′ū1, (13)

where R̂ = [Ŷ2 : LY1 : X1] and Ŷ2 = LŶ Γ̂2 +XΠ̂2, and where Γ̂2 and Π̂2 are
obtained from OLS estimation of (4).

As with R, the term R̂ may be separated into non-stochastic and stochas-
tic parts:

R̂ = R̄+ (R̂− R̄). (14)

The stochastic part can be written as

R̂− R̄ = [LȲ (Γ̂2 − Γ) +X(Π̂2 −Π2) + LW̄Γ2 : LW̄1 : 0]

+ [LW̄ (Γ̂2 − Γ2) : 0 : 0]. (15)
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The first term in the above is of order Op(σ) while the second is Op(σ2).
The small-σ expansions for the OLS and 2SLS bias in the dynamic case (see
Kiviet & Phillips (1995)) are discussed below and given in Theorems 2 and
3.

The 2SLS estimation error is as follows, from (13)

δ?
1 − δ1 = (R̂′R̂)−1R̂′ū1, (16)

and one can rearrange (15) to give

R̂ = R̄+ ∆1 + ∆2, (17)

where

∆1 = [LW̄Γ2 : LW̄1 : 0], and ∆2 = [LȲ (Γ̂2 − Γ2) +X(Π̂2 −Π2)

+ LW̄ (Γ̂2 − Γ2) : 0 : 0]. (18)

Using these,

R̂′R̂ = R̄′R̄+ E[∆′1∆1] + (R̄′∆1 + ∆′1R̄) + (R̄′∆2 + ∆′2R̄) + (∆′1∆2 + ∆′2∆1)
+ (∆′1∆1 − E[∆′1∆1]) + ∆′2∆2, (19)

where R̄′R̄ + E[∆′1∆1] is O(T ), (R̄′∆1 + ∆′1R̄) and (∆′1∆1 − E[∆′1∆1]) are
Op(T

1
2 ), (R̄′∆2 + ∆′2R̄) and (∆′1∆2 + ∆′2∆1) are Op(1), and where ∆′2∆2 is

Op(1).
Also

R̂′ū1 = R̄′ū1 + ∆′1ū1 + ∆′2ū1, (20)

where R̄′ū1 and ∆′1ū1 are Op(T
1
2 ) and ∆′2ū1 is Op(1).

Defining

Q?−1 = R̄′R̄+ E[∆′1∆1] (21)

and writing the Op(T
1
2 ) component of R̂′R̂ as S1 with the Op(1) component

as S2, (19) gives

(R̂′R̂)−1 = (Q?−1 + S1 + S2)−1 = Q?(I + S1Q
? + S2Q

?)−1

= Q? −Q?S1Q
? +Op(T−

3
2 ). (22)

Combining (22) with (20) yields

(R̂′R̂)−1R̂′ū1 = Q?R̄u1 +Q?∆′1ū1 +Q?∆′2ū1 −Q?S1Q
?R̄ū1 −Q?S1Q

?∆′1ū1

+ op(T−1). (23)
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The expected value, taken term by term, yields the 2SLS bias. This
is presented in Theorem 1 below, where Θ is a vector of all the structural
coefficients in (3) along with the parameters in Σ and Ω. The bias expression

uses a G×(g+k) matrix I?
1 =

(
Ig 0
0 0

)
and a (G+K)×G matrix I?

2 =
(
IG
0

)
.

Moreover, let Z = (Y−1 : X), Z̄ = E[Z] = [LȲ : X], QZ = (E[Z ′Z])−1,
ϕ = E[ 1

T V̄
′ū1] = σ2φ, where φ is defined using the decomposition for V̄

in Nagar (1959), namely that V̄ = S + ū1φ
′, where ū1 and S are normally

distributed but independent. Additionally, let ψ = I?′
1 ϕ, Q?

Z = I?′
2 QZI

?
2 and

QW =
∑T−1

t=1 (T − t)Γt−1′ΩΓt−1. The following results from Nagar (1959)
are used for calulating the expected values of matrix quadratic forms in S.

Lemma 1. (Nagar (1959)) Given a conformable matrix N with appropriate
rank the following hold:

E[SNS′] = tr(C?
2N).I

E[S′NS] = {tr(N).I}C?
2

E[SNS] = N ′C?
2

E[S′N ′S′] = C?
2N

where C?
2 = Ω− σ2φφ′ and Ω = E[ 1

T V̄
′V̄ ].

Theorem 1. To order O(T−1) the bias in 2SLS estimation of δ1 in (10) is
E[δ?

1 − δ1] = b(Y,Z,Θ) + o(T−1) where

b(Y,Z,Θ) =
−Q?{R̄′Z̄QZZ̄

′R̄Q? + (tr{Z̄QZZ̄
′R̄Q?R̄′}.I)}ψ

+Q?(tr{Z̄QZZ̄
′}.I)ψ −Q?

T−1∑
t=1

{R̄′DtR̄Q? + (tr{R̄′DtR̄Q?}.I)}A′(Γt−1)′ϕ

−Q?
T−1∑
t,r=1

{R̄′DtDr′R̄Q? + (tr{DtDr′R̄Q?R̄′}.I)}(tr{ΩΓr−1Q?
ZΓt−1′}.I)ψ

−Q?
T−1∑
t,r=1

(tr{DtDr′Z̄QZI
?
2Γt−1′ΩΓr−1AQ?R̄′}.I)ψ

−Q?{(tr{QW I?′
2 QZZ̄

′R̄Q?A′}.I) + R̄′Z̄QZI
?
2QWAQ? +A′QW I?′

2 QZZ̄
′R̄Q?}ψ

−Q?
T−1∑
r,t=1

(tr{Z̄QZZ̄
′DtDr′}.I){(tr{ΩΓt−1AQ?A′Γr−1′}.I) +A′Γt−1′ΩΓr−1AQ?}ψ
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−Q?
T−1∑
r,t=1

A′Γt−1′ΩΓr−1I?′
2 QZZ̄

′DtDr′R̄Q?ψ

−Q?{A′QWQ?
ZQWAQ? + (tr{QWQ?

ZQWAQ?A′}.I)}ψ

−Q?R̄′
T−1∑
t,r=1

DtDrR̄Q?I?′
1 ΩΓt−1Q?

ZΓr−1′ϕ

−Q?
T−1∑
r,t=1

A′Γt−1′{ΩI?
1Q

?R̄′(Dr′Dt′ +Dr′Dt)Z̄QZI
?
2Γr−1′

+ (tr{Dt′DrZ̄QZI
?
2Γr−1′ΩI?

1Q
?R̄′}.I)}ϕ

−Q?A′
T−1∑
r,t=1

Γt−1′(tr{ΩI?
1Q

?A′Γr−1′}tr{Dt′Z̄QZZ̄
′Dr′}.I)ϕ

−Q?
T−1∑

r,t,s=1

A′Γt−1′ΩΓs−1AQ?A′Γr−1′{tr(Dt′DrDs).I}ψ

−Q?
T−1∑

r,t,s=1

A′Γt−1′tr(ΩΓr−1AQ?A′Γs−1′)tr(Dt′DrDs′)ψ

−Q?
T−1∑
r,t=1

I?′
1 ΩΓr−1{Q?

ZΓt−1′(tr{DtR̄Q?R′Dr}.I)

+AQ?A′Γt−1′(tr{Z̄QZZ̄
′DtDr}.I) +AQ?R̄′Dt′Dr′Z̄QZI

?
2Γt−1′}ϕ

The proof of Theorem 1 appears in Appendix A, and uses the results in
Lemma 1 obtained by Nagar under a Normality assumption. Twelve lengthy
but routine expected value calculations are collected in Appendix B. It is to
be noted that while the result is written in terms of true model parameters
and quantities such as QZ = (E[Z ′Z])−1 and ϕ = E[ 1

T V̄
′ū1] which require

knowledge about the whole system, these can be estimated for the purpose of
bias correction without having to specify the whole system, beyond deciding
the set of endogenous variables to include in Y and the exogenous variables
to include in X; the estimator θ̂(1)

C2SLS in Section 3 simply uses a 2SLS
estimate of the first structural equation and an OLS estimate of the reduced
form for the system to estimate ϕ.

The expression in Theorem 1 should reduce to the Nagar (1959) bias
approximation in static models when any terms that result from the inclusion
of lagged endogenous regressors are removed. This means that a reduction
of our result to that for the static case requires the removal of any terms
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involving the D matrix, including QW since the “T−t“ factor is from a trace
of products of D matrices. If the partitions of Z and R that involve lags of
the endogenous regressors are removed, then Z̄ = E[Z], QZ = (E[Z ′Z])−1,
R̄ = [Ȳ2 : X1] and Q? = (R̄′R̄)−1 = Q. After removing all terms involving
D the expression in Theorem 1 becomes

−Q?{R̄′Z̄QZZ̄
′R̄Q? + (tr{Z̄QZZ̄

′R̄Q?R̄′}.I)}ψ +Q?(tr{Z̄QZZ̄
′}.I)ψ.

These reduce as follows using the above along with the fact that our ψ is
the same as Nagar’s q when model is static:

−Q?{R̄′Z̄QZZ̄
′R̄Q?ψ = −(R̄′R̄)−1R̄′Z(Z ′−1Z ′R̄Qq = −Qq

−Q?{(tr{Z̄QZZ̄
′R̄Q?R̄′}.I)}ψ = −Q{tr(Z(Z ′−1Z ′R̄(R̄′R̄)−1R̄′).I}q

= −Q{tr(R̄(R̄′R̄)−1R̄′).I}q
= −(g + k)Qq

Q?(tr{Z̄QZZ̄
′}.I)ψ = Q{tr(Z̄(Z̄ ′Z̄)−1Z̄ ′).I}q

= KQq.

This gives the O(T−1) bias approximation for the static model:

(K − g − k − 1)Qq = (L− 1)Qq,

which agrees with Nagar, where L = K − g − k denotes the degree of
overidentification.

The result in Theorem 1 can be compared with the small-σ result in
Kiviet & Phillips (1995):

Theorem 2. (Kiviet & Phillips (1995)) Let Ht = R̄′DtR̄Q+tr{R̄DtR̄Q}.I,

ϕ = E[ 1
T F̄
′u1], ψ = E[ 1

T V̄
′u1] and A = (Γ2 : I1 : 0), where I1 =

(
Ig + 1

0

)
is a G × (g + 1) selection matrix and where the other terms are as defined
earlier. Then, to order O(σ2) the 2SLS bias is

E[δ?
1 − δ1] = (G+K − 2g − k − 2)Qψ −Q

T−1∑
t=1

Ht(Γt−1A)′ϕ.

Kiviet & Phillips (1989) provide an expansion of the estimation error
using both methods and note that the small-σ expression will not contain
all of the O(T−1) terms while the large-T expression will contain all the
O(σ2) terms. A result for the OLS estimator is given below:
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Theorem 3. (Kiviet & Phillips (1995)) To order O(σ2) the OLS bias is

E[δ?
1 − δ1] =(T − 2g − k − 2)Qψ −Q

T−1∑
t=1

Ht(Γt−1A)′ϕ.

Kiviet & Phillips (1995) show that a weighted average of OLS and 2SLS
due to Sawa (1973a), see also Sawa (1973b), which is unbiased to order
O(σ2) in static SEMs, is not unbiased to this order in the dynamic case.
Note that the expression for the small-σ bias expansion of 2SLS is very sim-
ilar to the expression for OLS. The terms involving dynamics are identical in
Theorems 2 and 3, and the first terms correspond to the 2SLS and OLS bias
approximations for the static model in Sawa (1973a). The Sawa estimator
eliminates the simultaneity component of the bias, but cannot remove bias
introduced by the dynamics.

3. Bias reduction simulations

The bias approximation in Theorem 1 is applicable to systems containing
G equations. Its performance is considered here, along with the bootstrap
and jackknife, in correcting the bias in 2SLS estimation of equation (10) in
a two-equation model where Y2 contains one endogenous variable:

y1 = y2β1 + y1,−1λ1 +X1c1 + ū1. (24)

The ith element of δ1 is denoted in the following by θ, and its 2SLS estimator
by θ̂2SLS .

The analytically bias-corrected estimator is denoted by θ̂C2SLS , and is
defined as follows, where ei is a vector with one in position i and zeros
elsewhere:

Definition 1. The C2SLS estimator of θ is given by

θ̂C2SLS = θ̂2SLS − e′ib̂(Y,Z,Θ). (25)

where b̂(Y,Z,Θ) is an estimate of the true bias b(Y, Z,Θ).

A Matlab implementation of the analytical correction is available from the
corresponding author. Monte Carlo results are presented below for two
different ways of estimating b(Y,Z,Θ), which correspond to two different
ways of estimating ϕ = E[V̄ ′ū1]. The first uses ϕ̂(1) = 1

T
ˆ̄V ′ ˆ̄u1 where ˆ̄V and
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ˆ̄u1 are residuals from OLS estimation of the reduced form and from 2SLS
estimation of the structural equation, and the estimator that results from
this is denoted by θ̂(1)

C2SLS . The second method, which is denoted by θ̂(2)
C2SLS ,

has ϕ̂(2) = (B̂−1)′(σ̂2, σ̂12)′, and uses estimates of the second structural
equation. It is based on

1
TE[V̄ ′ū1] = (B−1)′(σ2, σ12)′, where σ2 and σ12 are estimated by σ̂2 =

1
T

ˆ̄u′1 ˆ̄u1 and σ̂12 = 1
T

ˆ̄u′1 ˆ̄u2, and where B is estimated by 2SLS. The 2SLS
estimator has moments up to the order of overidentification L, therefore the
mean and MSE of θ̂(2)

C2SLS requires at least L = 2 and L = 4, respectively, for
both Equation 1 and 2, because of the use of σ̂2 and σ̂12 which are obtained
using the 2SLS estimates. The product of estimated terms in ϕ̂(2) is difficult
to analyse. We also recall that the relationship between moment existence
and order of overidentification for 2SLS, see for example Kinal (1980), was
obtained for static models, and it has yet to be shown that it applies to the
dynamic case. The standard degrees of freedom correction is made in both
cases when estimating the reduced form covariance matrix. Bias corrections
such as the one here can potentially be iterated, as discussed in MacKinnon
& Smith (1998), see in particular their equation (16), though convergence
would not be guaranteed in the present setting and conditions for this would
need to be established.

The bootstrap method due to Freedman requires pseudodata y?
1, y?

1,−1

and y?
2 to be generated iteratively from the 2SLS estimate of (24),

y1 = y2β̂1 + y1,−1λ̂1 +X1ĉ1 + ˆ̄u1 (26)

in conjunction with the OLS estimated reduced form for y2,

y2 = γ̂2y1,−1 +Xπ̂2 + ˆ̄v2. (27)

The disturbances are resampled from the rows of (ˆ̄u1, ˆ̄v2), and these
resample rows are denoted by (ˆ̄u?

1, ˆ̄v
?
2). Using a starting value for y1, which

here is the first observation in the sample, one can generate (y?
2)1 from (27)

then (y?
1)1 from (26), and (y?

2)2 from (27). Continuing in this way gives the
full vectors y?

1, y?
1,−1 and y?

2.
The vector y?

2 is regressed on (y?
1,−1 : X) to obtain fitted values ŷ?

2, then
y?
1 is regressed on (ŷ?

2 : y?
1,−1 : X) to give bootstrap 2SLS replicates β̂?

1,b, λ̂
?
1,b

and ĉ?1,b. The mean of the bootstrap estimates is denoted by θ̂b̃ = 1
B

∑B
b=1 θ̂

?
b .

The following defines the bias-corrected bootstrap for our model:

Definition 2. The bootstrap bias-corrected estimator θ̂b is given by

θ̂b = 2θ̂2SLS − θ̂b̃. (28)
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The following defines the QJ estimator when the sample size is even,
which is sufficient for our purpose.

Definition 3. (Assuming even T ) Let θ̂2SLS be the 2SLS estimator of θ1
as before, based on all T observations. Let θ̂1

1,2SLS and θ̂2
1,2SLS be the 2SLS

estimators using only the first and second T/2 observations in the sample,
respectively. The Quenouille jackknife estimator of θ is then

θ̂Q = 2θ̂2SLS −

(
θ̂1
2SLS + θ̂2

2SLS

2

)
(29)

There will be a bias correction from application of the QJ in (29) so
long as 2SLS estimation over the full sample is roughly half as biased as
2SLS estimation over each half-sample. The standard delete-1 jackknife,
in contrast, requires the estimator being jackknifed to have a bias that is
monotonically decreasing in sample size, something that is not guaranteed
for the 2SLS estimator of the dynamic simultaneous equation system. In
the context of static models, Owen (1976) shows that the bias and MSE
of the 2SLS estimator of the endogenous variable coefficients are monotoni-
cally non-increasing in the sample size, while Ip & Phillips (1998) find that
the same is not true for 2SLS estimators of exogenous variable coefficients.
What has been shown for endogenous variable coefficients in static models,
moreover, does not necessarily carry over to dynamic settings, in partic-
ular the bias in the endogenous variable coefficient estimates may not be
monotonically decreasing in sample size.

3.1. Estimation with L=2
Two models are considered where L = 2 for the equation being esti-

mated: Model 1 and Model 2. The Model 1 coefficient matrices are as
follows:

B =
(

1 −0.40
−β1 1

)
, Λ =

(
−λ1 0

0 0

)
,

and C =
(
−c11 −c12 0 0 0 −c13

−0.20 0 −0.30 0.20 −0.80 0

)′
,

where β1 = 0.20, c11 = 0.80, c12 = 0.30, c13 = 0.50 and λ1 = 0.10. The
maximum eigenvalue of Γ is τ = 0.11. A matrix of six exogenous variables
X = (x1, ..., x5, x6) is used in the following, where x1 is a constant and the
others are realisations from a Gaussian autoregressive processes with mean
zero and autoregressive coefficient 0.9.
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The reduced form of the structural model is given in (4), where V̄ =
(v̄1, v̄2) is a T ×2 matrix of reduced form disturbances. These are generated
using a matrix P from a Cholesky factorisation of Ω, so that(

v̄1,t

v̄2,t

)
= P

(
ε1,t

ε2,t

)
, (30)

where ε1,t and ε2,t denote the standardised disturbances. The distribution
of εt = (ε1,t, ε2,t)′ has mean 0 and covariance matrix I, and is i.i.d. Normal.
The distribution of the structural disturbances can be recovered from

B′v̄t = ūt ⇒ ūt
iid∼ (0,Σ), (31)

where Σ = B′ΩB. The structural covariance matrix is as follows:

Σ =
(

4 −2
−2 5

)
,

which implies the following reduced form covariance matrix:

Ω =
(

4.02 0.52
0.52 4.78

)
.

Figure 1 below plots the Monte Carlo simulated 2SLS bias and the O(T−1)
approximate bias for a number of sample sizes. The two are very close, and
it is clear that 2SLS estimation of the endogenous variable coefficient β1 is
not monotonically non increasing in the sample size, something that would
be the case for estimation of a static model.
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Figure 1: Approximate vs Simulated Bias in 2SLS estimation
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Table 1 presents empirical % bias and RMSE values for the parame-
terisation above at a sample size of T = 50. The studies by Hsu, Lau,
Fung, & Ulveling (1986) on static models and Ip (1991) on both static and
dynamic models, cited earlier, used 200 and 500 Monte Carlo replications
respectively when providing evidence for the 2SLS bootstrap bias correction.
The number of bootstrap replicates considered were 150 and 300 by Hsu,
Lau, Fung, & Ulveling (1986), and 200 by Ip (1991). It was found in our
own simulation experiments that a relatively large number of replications
were required, especially in cases with moderate or large 2SLS bias, and for
the parameterisations and exogenous data that are considered. 100,000 or
more Monte Carlo replications are used throughout when computing bias
and mean squared error values in this section, which enables an accurate
comparison of the three bias correction methods. 199 bootstrap replicates
were used when obtaining the bias-corrected bootstrap. It can be seen from
Table 1 that the 2SLS bias varies substantially across the parameters, with
relatively small biases of around 3.4-4.4% for the exogenous variable coeffi-
cients c11, c12 and c13, 1.8% for the endogenous variable coefficient β1, and
51% for the lagged endogenous variable coefficient λ1.

Both C2SLS(1) and C2SLS(2) do well in terms of bias reduction for the
model considered here, though C2SLS(2) is the only method that managed
to reduce the bias for every coefficient. C2SLS(1) and C2SLS(2) also have
reduced values for the empirical RMSE, though with L = 2 the estimator
C2SLS(2) will not have a second moment, as mentioned earlier. We report
the the empirical RMSE values anyway, as in Hahn, Hausman & Kuersteiner
(2004) for the LIML estimator under the conventional normalisation where
LIML does not have finite sample moments. It is worth noting that LIML
does have finite sample moments under an alternative normalisation, though,
as shown in Anderson (2010). See also Fuller (1977). Though the bootstrap
has inflated RMSE values for estimation of λ1 and c13 in Model 1, this is
not observed in the other models that follow, except to a much lesser extent
in Model 5, where there is a slight increase in RMSE for each parameter.
The Quenouille Jackknife has inflated RMSE throughout, as was the case in
Orcutt and Winokur (1969) and Liu-Evans and Phillips (2012) for estimation
of autoregressive models.
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Table 1. Model 1 % bias and RMSE, T = 50
2SLS QJ Boot C2SLS1 C2SLS2

% bias β1 1.760 8.282 -2.670 -2.790 0.9730
λ1 -50.70 -8.229 -7.043 -15.17 -13.89
c11 4.173 4.251 0.2588 0.6933 1.111
c12 4.448 0.7100 1.203 2.226 1.223
c13 3.379 -0.02648 0.7600 1.238 0.8096

RMSE β1 0.1786 0.2817 0.1735 0.1734 0.1755
λ1 0.1316 0.1461 0.4268 0.1270 0.1284
c11 0.3817 0.5215 0.3676 0.3666 0.3674
c12 0.2209 0.2484 0.2146 0.2191 0.2190
c13 0.1306 0.1489 0.4237 0.1284 0.1280

The original 2SLS bias in estimation of β1 is small in Model 1, and this
could make bias correction for it difficult, particularly given the much larger
bias in estimation of λ1; it may also explain the inflated RMSE values for
the bootstrap. Model 2 below, and Models 3-5 in the next subsection, have
original 2SLS biases of around 10-20% in absolute terms. Similar compar-
isons are made between the various bias correction methods. The Model 2
coefficient matrices are

B =
(

1 −0.31
−β1 1

)
, Λ =

(
−λ1 0

0 0

)
,

and C =
(
−c11 −c12 0 0 0 −c13

−0.31 0 −0.47 −0.16 −0.20 0

)′
,

where β1 = −0.43, c11 = 0.44, c12 = 0.40, c13 = 0.05 and λ1 = 0.59. The
maximum eigenvalue of Γ is τ = 0.52.

Table 2. Model 2 % bias and RMSE, T = 50
2SLS QJ Boot C2SLS1 C2SLS2

% bias β1 15.23 -9.081 -1.698 4.544 6.234
λ1 -13.31 -4.683 -3.324 -5.659 -5.180
c11 11.91 -2.178 1.5165 4.305 4.495
c12 9.687 3.371 -0.2232 3.224 3.895
c13 14.27 -15.40 1.002 4.538 4.833

RMSE β1 0.2901 0.5753 0.2740 0.2796 0.2710
λ1 0.1471 0.1964 0.1297 0.1287 0.1274
c11 0.4085 0.6465 0.3725 0.3789 0.3764
c12 0.2532 0.2966 0.2363 0.2451 0.2415
c13 0.1262 0.1603 0.1214 0.1219 0.1216
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The bootsrap does particularly well here, and is the least biased in every
case while also reducing the 2SLS RMSE. The Quenouille Jackknife and
C2SLS methods reduce the bias, except the Quenouille Jackknife in one
case.

3.2. Estimation with L=4
A further three models are considered, Models 3, 4, and 5, where L = 4

for the equation being estimated. An additional two exogenous variables are
added to Equation 2, so that X = x1, x2, . . . , x8. The estimator C2SLS(2)

does not have a second moment here still, as the order of overidentification
is only L = 2 for the second structural equation. The coefficient matrices in
our simulations are as follows:

Model 3

B =
(

1 −1.44
−β1 1

)
, Λ =

(
−λ1 0

0 0

)
,

C =
(
−c11 −c12 0 0 0 −c13 0 0
−0.11 0 −0.38 −1.08 0.82 0 −1.31 0.67

)′
β1 = 0.2, c11 = 0.85, c12 = 0.68, c13 = 0.67, λ1 = 0.63, and τ = 0.88

Model 4

B =
(

1 −0.73
−β1 1

)
, Λ =

(
−λ1 0

0 0

)
,

C =
(
−c11 −c12 0 0 0 −c13 0 0
0.08 0 1.33 0.38 −0.41 0 0.43 0.72

)′
β1 = 0.40, c11 = 0.62, c12 = 0.24, c13 = 0.20, λ1 = 0.54, and τ = 0.76

Model 5

B =
(

1 −1.19
−β1 1

)
, Λ =

(
−λ1 0

0 0

)
,

C =
(
−c11 −c12 0 0 0 −c13 0 0
1.23 0 −0.08 −0.35 1.22 0 −0.38 −0.20

)′
β1 = 0.43, c11 = −0.76, c12 = −1.47, c13 = 0.78, λ1 = 0.38, and τ = 0.78
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Estimation by Quenouille Jackknife is practically unbiased in some cases, for
example the bias is just 0.257% in estimation of λ1 in Model 3, and there
are even smaller remaining biases for Model 5. In estimation of c12 and c13

in Model 4, though, it does not reduce the bias as much as the bootstrap
and C2SLS methods. Moreover, the RMSE is inflated in every case. The
bootstrap performs well across Models 3 and 4, with both reduced bias and
RMSE in estimation of each parameter. The C2SLS methods also reduce
the bias, but not by as much, and the RMSE is marginally higher overall
than with the bootstrap. Model 5 tells a different story, with the bootstrap
reducing bias but not by as much as C2SLS, and with the RMSE slightly
inflated when compared with 2SLS and C2SLS.

Table 3. Model 3 % bias and RMSE, T = 50
2SLS QJ Boot C2SLS1 C2SLS2

% bias β1 19.44 1.291 -4.280 7.844 6.128
λ1 -10.34 0.257 2.233 -4.119 -3.239
c11 -14.63 4.718 2.177 -6.021 -4.850
c12 -13.08 -1.520 2.347 -5.401 -4.193
c13 -9.953 -0.289 2.069 -4.200 -3.328

RMSE β1 0.08017 0.09433 0.07459 0.07677 0.07715
λ1 0.1230 0.1405 0.1138 0.1154 0.1155
c11 0.4393 0.5145 0.4040 0.4208 0.4196
c12 0.2919 0.3214 0.2874 0.2948 0.2971
c13 0.1850 0.2143 0.1829 0.1827 0.1838

Table 4. Model 4 % bias and RMSE, T = 50
2SLS QJ Boot C2SLS1 C2SLS2

% bias β1 10.86 -0.2902 -2.779 4.204 4.956
λ1 -11.86 3.566 2.162 -4.988 -5.188
c11 10.38 -3.388 -2.078 4.120 3.940
c12 -13.22 -12.18 -2.028 -7.719 -6.406
c13 11.59 6.512 -1.470 4.951 4.904

RMSE β1 0.08608 0.1251 0.07699 0.07694 0.07957
λ1 0.11085 0.1361 0.09587 0.09580 0.09845
c11 0.39892 0.5924 0.3508 0.3711 0.3703
c12 0.22870 0.2422 0.2178 0.2244 0.2241
c13 0.12141 0.1386 0.1189 0.1191 0.1194
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Table 5. Model 5 % bias and RMSE, T = 50
2SLS QJ Boot C2SLS1 C2SLS2

% bias β1 13.05 -0.1020 -10.38 5.683 5.245
λ1 -18.53 -0.6889 14.40 -8.123 -7.411
c11 -12.61 1.243 8.973 -5.590 -5.110
c12 -10.49 1.037 8.685 -4.627 -4.360
c13 -14.95 -0.007210 11.47 -6.676 -6.223

RMSE β1 0.09646 0.1224 0.1037 0.09444 0.09541
λ1 0.1150 0.1375 0.1222 0.1111 0.1120
c11 0.3784 0.4272 0.3809 0.3750 0.3748
c12 0.3490 0.4416 0.3885 0.3534 0.3567
c13 0.2301 0.2799 0.2517 0.2302 0.2323

It seems clear that the C2SLS methods are competitive with the boot-
strap and jackknife. The C2SLS1 estimator reduces bias in all but one case,
β1 in Model 1, where the bootstrap and jackknife corrections also don’t seem
to work. The C2SLS2 estimator has a reduced bias in every case, perhaps
due to its use of overidentifying information. The RMSE of the C2SLS1 esti-
mator compares well with 2SLS in every case in our experiments. Moreover,
no substantial improvement in bias reduction has been observed from using
C2SLS(2) over C2SLS(1), indeed sometimes it is worse. While the success of
C2SLS(1) may depend on the correct specification of the reduced form for Y2,
the potential for mispecification to reduce the bias correction performance
also seems greater in the case of C2SLS(2), where each structural equation
needs to be estimated. The stronger requirement of having all equations
overidentified, and to a higher order, makes it unlikely that an investigator
would prefer C2SLS(2) over C2SLS(1), and it is therefore not investigated
further.

3.3. Estimation with weak instruments
When instrumental variables are weak, it is well known that the perfor-

mance of 2SLS can be very poor. Moreover, it has been shown by Hahn &
Hausman (2002), Hahn, Hausman & Kuersteiner (2004) for a static model
that the performance of 2SLS moment approximations can also be poor.
Moreira, Porter, & Suarez (2004) provide examples where the bootstrap
and higher order Edgeworth expansion are valid in weak instrument cases,
but it is still unknown how the bootstrap will work in the present context of
bias correction for 2SLS in dynamic models. Moreover, while the standard
delete-1 jackknife method appears to work well in weak instruments cases in
static models, see Hahn & Hausman (2002), Hahn, Hausman & Kuersteiner
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(2004), it is unknown how the Quenouille Jackknife, chosen for its potential
performance in dynamic models, will fare when there are weak instruments.

All three bias correction methods performed quite well for Model 4 in
terms of bias correction, particularly the bootstrap and Quenouille Jack-
knife. Estimation by the bootstrap and C2SLS also resulted in a RMSE
reduction. In order to consider cases with weaker instruments, new models
are formed starting from Model 4 by shrinking the reduced form coeffi-
cients towards zero while keeping the endogenous variable coefficients and
the structural covariance matrix unchanged in B and Σ, respectively. Multi-
plying Γ and Π by a constant s ∈ (0, 1) while holding B fixed is equivalent to
multplying Λ and C by s. As a measure of instrument weakness the expected
R2 from the first stage regression is used, namely ρ2 = 1−E[y′2My2/y

′
2Ny2]

where M = I − Z(Z ′Z)Z ′, N = I − 1
n ιι
′, and where ι is a T × 1 vector of

ones.
Figure 2 below plots the bias approximation in Theorem 1 and the simu-

lulated bias for the different ρ2 values achieved by using different values of
s. Smaller values of ρ correspond to smaller values of s; a value of ρ2 = 0.20
was achieved using s = 0.1. Over the interval of ρ2 values that have been
used in the figure, the bias approximation seems to do quite well in terms
of its closeness to the true bias. It is also suggested by the figures that
the bias approximation begins to break down as ρ2 is moved below 0.2 or,
equivalently, as s is reduced below 0.1, and this is indeed the case. For
sufficiently small values of s, the true bias can be in the thousands, and the
approximate bias is severely overstated.

Table 4 presents bias and RMSE values for 2SLS, QJ, bootstrap and
C2SLS estimation of the following model where s = 0.1:

Model 4*

B =
(

1 −0.73
−β1 1

)
, Λ =

(
−λ1 0

0 0

)
,

C =
(
−c11 −c12 0 0 0 −c13 0 0
0.08s 0 1.33s 0.38s −0.41s 0 0.43s 0.72s

)′
β1 = 0.40, c11 = 0.62s, c12 = 0.24s, c13 = 0.20s, λ1 = 0.54s, and τ = 0.076

Model 4* is a case with weaker instruments where the bias approximation
still appears to work, and this is reflected in the results for bias correction,
which strongly favour C2SLS over the other methods. The bootstrap also
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Figure 2: Approximate vs Simulated Bias given varying levels of instrument
quality

0.2 0.4 0.6 0.8 1.0

20
40

60
80

10
0

E(R2)

P
er

ce
nt

ag
e 

B
ia

s

β1

Approx
Simulated

0.2 0.4 0.6 0.8 1.0

−
20

0
−

15
0

−
10

0
−

50

E(R2)
P

er
ce

nt
ag

e 
B

ia
s

λ1

Approx
Simulated

0.2 0.4 0.6 0.8 1.0

6
8

10
12

E(R2)

P
er

ce
nt

ag
e 

B
ia

s

C11

Approx
Simulated

0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

E(R2)

P
er

ce
nt

ag
e 

B
ia

s

C12

Approx
Simulated

0.2 0.4 0.6 0.8 1.0

6
8

10
12

E(R2)

P
er

ce
nt

ag
e 

B
ia

s

C13

Approx
Simulated

21



corrects the bias in this case to some degree, but does not perform nearly
as well as C2SLS. The QJ corrects the bias in estimation of two out of
five coefficients, and substantially increases the bias in two cases. All three
methods inflate the RMSE, though for the bootstrap this increase in RMSE
is not substantial.

Table 6. Model 4* % bias and RMSE, T = 50
2SLS QJ Boot C2SLS1

% bias β1 38.90 30.63 -17.39 -1.182
λ1 -89.97 -24.21 -39.65 -43.68
c11 4.737 18.90 -1.100 -0.2420
c12 62.41 89.25 -27.34 0.3050
c13 4.371 5.17 -4.165 -0.9410

RMSE β1 0.3752 0.6427 0.3677 0.6131
λ1 0.1362 0.1751 0.1406 0.1652
c11 0.3791 0.5124 0.3957 0.4575
c12 0.2336 0.2998 0.2390 0.2907
c13 0.1271 0.1630 0.1333 0.1604

Though the main objective of this section has been to investigate the
ability to use the result in Theorem 1 for bias correction, and to compare this
with other approaches, it may also be interesting to see how the densities and
confidence sets for 2SLS and C2SLS compare in cases where the instruments
are strong verses cases where the instruments are relatively weak. Figure 3
depicts the estimated densities and 95% confidence sets for 2SLS and C2SLS
estimation of the Model 4 equation 1 structural coefficients. A Gaussian
kernel with bandwidth parameter 0.5 was used throughout, and a lower
number of Monte Carlo replications, 10000, was sufficient. It can be seen
that the confidence sets are marginally larger for C2SLS in the case of β1

and λ, and marginally smaller for c11, c12 and c13.
Figure 4 does the same for 2SLS and C2SLS estimation of Model 4*

coefficients, and the picture changes somewhat. As in Figure 3, the location
of the distribution appears substantially better in the case of C2SLS, though
the spread is worse. There does not appear to be a clear winner between
the bootstrap and C2SLS based on the results in Models 1-5 and 4*, though
it may be concluded that both perform well overall, while the Quenouille
jackknife fares less well.
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Figure 3: C2SLS vs 2SLS densities, Model 4 (ρ2 = 0.92)
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Figure 4: C2SLS vs 2SLS densities, Model 4* (ρ2 = 0.20)
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4. Conclusion

The O(T−1) bias approximation for 2SLS in Nagar (1959) is one of the
best known approximations in Econometrics and it has led not only to a
better understanding of simultaneous equation bias in static models but has
also provided a means of overcoming the problem through the development
of bias corrected estimators; however it is invalid when the model includes
lagged dependent endogenous variables anywhere in the system which is
clearly a significant limitation. There has been some earlier work noted,
based on the small-σ expansion, which has the attraction of relative sim-
plicity, but it is well known that such an approach does not often work well
in dynamic models; in particular the approximations may be less accurate
than those provided by the more complex large-T expansion. It has now
proved possible to extend the Nagar approximation to the dynamic case
based on the large-T approach which represents a significant advance. The
bias has two distinct parts; a part due to simultaneity and a part which
derives from the dynamics of the equation. While the bias expression is
long primarily due to the dynamic part, it has proved possible to use the
approximation for practical bias reduction and the resulting bias corrected
estimator is competitive with both the bootstrap and the Quenouille jack-
knife on a bias criterion. In addition it was found to be better overall in
terms of RMSE, as there is no inflation of the 2SLS RMSE. An example
has also been presented where the bias in an endogenous variable coefficient
does not appear to be monotonic in the sample size, suggesting that the
result in Owen (1976) for static models does not go through for dynamic
models.

The asymptotic approximation provided here has been obtained under a
Normality assumption and has used a Nagar expansion methodology. The
methodology in Phillips (2000) for 2SLS estimation of static models, or Bao
and Ullah (2007), see also Rilstone, Srivastava and Ullah (1996), for GMM
estimation of dynamic models, could potentially be used to extend the work
here to non Normal settings; the validity assumptions for these approaches,
stated in terms of smoothness conditions and the moments of model errors,
are also perhaps more acceptable than for the Nagar method.
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Appendix A
Calculating E[Q?R̄′ū1]
It is clear that E[Q?R̄′ū1] = 0

Calculating E[Q?∆′1ū1]
It is clear that E[Q?∆′1ū1] = 0 since E[W ′L′ū1] = 0

Calculating E[Q?∆′2ū1]
E[Q?∆′2ū1] = Q?E[∆′2ū1]. Note that

Q?∆′2ū1 = Q?{Z̄(Z ′Z)−1Z ′[V̄2 : 0 : 0] + [LW̄I?′
2 (Z ′Z)−1Z ′V̄2 : 0 : 0]}′ū1

= Q?{[V̄2 : 0 : 0]′Z(Z ′Z)−1Z̄ ′ + [V̄2 : 0 : 0]′Z(Z ′Z)−1I?
2W̄

′L′}′ū1

= {I?′
1 V̄

′Z̄(E[Z ′Z])−1Z̄ ′ + I?′
1 V̄

′Z̄(E[Z ′Z])−1I?
2W̄

′L′}ū1

+Q?I?′
1 V̄

′W̄ ?(E[Z ′Z])−1Z̄ ′ū1

+ op(T−1),

since(
Γ̂2 − Γ2

Π̂2 −Π2

)
= (Z ′Z)−1Z ′V̄2 = (E[Z ′Z])−1Z̄ ′V̄2 + (E[Z ′Z])−1W̄ ?′ V̄2 + op(T−1/2).

This gives

E[Q?∆′2ū1] = Q?I?′
1 E[V̄ ′Z̄(E[Z ′Z])−1Z̄ ′ū1]

(since the expectation of the last two terms is zero)

= Q?I?′
1 E[(S + ū1φ

′)′Z̄(E[Z ′Z])−1Z̄ ′u]

= Q?(tr{Z̄(E[Z ′Z])−1Z̄ ′I?′
1 }.I)(σ2φ).

Calculating -E[Q?S1Q
?R̄′ū1]

To order o(T−1),

−E[Q?S1Q
?R̄′ū1] = −E[Q?{(R̄′∆1 + ∆′1R̄) + (R̄′∆2 + ∆′2R̄) + (∆′1∆1 + ∆′2∆1)

+ (∆′1∆1 − E[∆′1∆1])}Q?R̄′ū1]

(ignoring the op(T−1) part of Q?S1Q
?R̄′ū1).
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This leads to

− E[Q?S1Q
?R̄′ū1] =

− E[Q?(R̄′LW̄A+A′W̄ ′L′R̄)Q?R̄′ū1]

− E[Q?R̄′[LȲ (Γ̂2 − Γ2) +X(Π̂2 −Π2) + LW̄ (Γ̂2 − Γ2) : 0 : 0]Q?R̄′ū1]

− E[Q?[LȲ (Γ̂2 − Γ2) +X(Π̂2 −Π2) + LW̄ (Γ̂2 − Γ2) : 0 : 0]′R̄Q?R̄′ū1]

− E[Q?[LW̄Γ2 : LW̄1 : 0]′[LȲ (Γ̂2 − Γ2) +X(Π̂2 −Π2) + LW̄ (Γ̂2 − Γ2) : 0 : 0]Q?R̄′ū1]

− E[Q?[LȲ (Γ̂2 − Γ2) +X(Π̂2 −Π2) + LW̄ (Γ̂2 − Γ2) : 0 : 0]′[LW̄Γ2 : LW̄1 : 0]Q?R̄′ū1]

Using(
Γ̂2 − Γ2

Π̂2 −Π2

)
= (Z ′Z)−1Z ′V̄2 = (E[Z ′Z])−1Z̄ ′V̄2 + (E[Z ′Z])−1W̄ ?′ V̄2 + op(T−1/2)

and

Γ̂2 − Γ2 = I?′
2 {(E[Z ′Z])−1Z̄ ′V̄2 + (E[Z ′Z])−1W̄ ?′ V̄2}+ op(T−1/2)

the non-zero terms become

− E[Q?R̄′LW̄AQ?R̄′ū1]− E[Q?A′W̄ ′L′R̄Q?R̄′ū1]

− E[Q?R̄′Z̄(E[Z ′Z])−1Z̄ ′V̄ I?
1Q

?R̄′ū1]− E[Q?R̄′LW̄I?′
2 (E[Z ′Z])−1W̄ ?′ V̄ I?

1Q
?R̄′ū1]

− E[Q?I?′
1 V̄

′Z̄(E[Z ′Z])−1Z̄ ′R̄Q?R̄′ū1]− E[Q?I?′
1 V̄

′W̄ ?(E[Z ′Z])−1I?
2W̄

′L′R̄Q?R̄′ū1]

− E[Q?[LW̄Γ2 : LW̄1 : 0]′Z̄(E[Z ′Z])−1W̄ ?′ V̄ I?
1Q

?R̄′ū1

− E[Q?I?′
1 V̄

′W̄ ?(E[Z ′Z])−1Z̄ ′LW̄AQ?R̄′ū1].

These are calculated in (a)-(i) below. For these calculations it is noted that

W̄ =
T−1∑
t=0

DtV̄ Γt and LW̄ =
T−1∑
t=1

DtV̄ Γt−1,

where V̄ = S + ū1φ
′.
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(a)

−E[Q?R̄′LW̄AQ?R̄′ū1] = −E[Q?R̄′
T−1∑
t=1

DtV̄ Γt−1AQ?R̄′ū1]

− E[Q?R̄′
T−1∑
t=1

Dtū1φ
′Γt−1AQ?R̄′ū1]

= −E[Q?R̄′
T−1∑
t=1

Dtū1ū
′
1R̄Q

?A′(Γt−1)′φ]

−Q?R̄′
T−1∑
t=1

DtR̄Q?A′(Γt−1)′(σ2φ)

(b)

−E[Q?A′W̄ ′L′R̄Q?R̄′ū1] = −E[Q?A′
T−1∑
t=1

Γt−1′ V̄ ′(Dt′R̄Q?R̄′ū1]

= −E[Q?A′
T−1∑
t=1

Γt−1′φū′1D
t′ ]R̄Q?R̄′ū1

= −σ2Q?A′
T−1∑
t=1

Γt−1′φtr{R̄′Dt′R̄Q?}

= −σ2Q?A′
T−1∑
t=1

Γt−1′φtr{R̄′Dt′R̄Q?}

= −Q?A′
T−1∑
t=1

Γt−1′(tr{R̄′DtR̄Q?}.I)(σ2φ)

(c)

−E[Q?R̄′Z̄(E[Z ′Z])−1Z̄ ′V̄ I?
1Q

?R̄′ū1] = −E[Q?R̄′Z̄(E[Z ′Z])−1Z̄ ′ū1φ
′I?

1Q
?R̄′ū1]

= −Q?R̄′Z̄(E[Z ′Z])−1Z̄ ′R̄Q?I?′
1 (σ2φ)

(d)

− E[Q?R̄′LW̄I?′
2 (E[Z ′Z])−1W̄ ?′ V̄ I?

1Q
?R̄′ū1] =

− E[Q?R̄′
T−1∑
t=1

DtV̄ Γt−1I?′
2 (E[Z ′Z])−1 ×

(∑T−1
r=1 Γr−1′ V̄ ′Dr′

0

)
V̄ I?

1Q
?R̄′ū1]
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In the final section of this Appendix, it is shown in Note 1 that

E[V̄ Γt−1I?′
2 (E[Z ′Z])−1

(∑T−1
r=1 Γr−1′ V̄ ′Dr′

0

)
V̄ I?

1Q
?R̄′ū1]

= σ2Dr′R̄Q?I?′
1 φtr{Ω[Γr−1 : 0](E[Z ′Z])−1I?

2Γt−1′}

+ σ2DrR̄Q?I?′
1 ΩΓt−1I?′

2 (E[Z ′Z])−1I?
2Γr−1′φ,

and therefore the final expression for (d) is

−Q?R̄′
T−1∑
t,r=1

DtDr′R̄Q?(tr{Ω[Γr−1 : 0](E[Z ′Z])−1I?
2Γt−1′}.I)I?′

1 (σ2φ)

−Q?R̄′
T−1∑
t,r=1

DtDrR̄Q?I?′
1 ΩΓt−1I?′

2 (E[Z ′Z])−1I?
2Γr−1′(σ2φ),

(e)

−E[Q?I?′
1 V̄

′Z̄(E[Z ′Z])−1Z̄ ′R̄Q?R̄′ū1] = −E[Q?I?′
1 φū

′
1Z̄(E[Z ′Z])−1Z̄ ′R̄Q?R̄′ū1]

= −Q?I?′
1 φσ

2tr{Z̄(E[Z ′Z])−1Z̄R̄Q?R̄′}

= −Q?(tr{Z̄(E[Z ′Z])−1Z̄ ′R̄Q?R̄′}.I)I?′
1 (σ2φ),

(f)

− E[Q?I?′
1 V̄

′W̄ ?′(E[Z ′Z])−1I?
2W̄

′L′R̄Q?R̄′ū1]

= −E[Q?I?′
1 V̄

′(
T−1∑
t=1

DtV̄ Γt−1 : 0)(E[Z ′Z])−1I?
2W̄

′L′R̄Q?R̄′ū1]

= −E[Q?I?′
1 V̄

′(
T−1∑
t=1

DtV̄ Γt−1 : 0)(E[Z ′Z])−1I?
2

T−1∑
r=1

Γr−1′ V̄ ′Dr′R̄Q?R̄′ū1].

In in the final section of this Appendix, it is shown in Note 2 that

E[V̄ ′DtV̄ Γt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′ V̄ ′Dr′R̄Q?R̄′ū1]

= σ2tr{ΩΓt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′}tr{DtDr′R̄Q?R̄′}φ

+ σ2tr{DtR̄Q?R′Dr}ΩΓr−1I?′
2 (E[Z ′Z])−1I?

2Γt−1′φ
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and therefore the final expression for (f) is

−Q?
T−1∑
r,t=1

(tr{ΩΓt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′}.I)(tr{DtDr′R̄Q?R̄′}.I)I?′
1 (σ2φ)

−Q?I?′
1

T−1∑
r,t=1

ΩΓr−1I?′
2 (E[Z ′Z])−1I?

2Γt−1′(tr{DtR̄Q?R′Dr}.I)(σ2φ)

(g)

− E[Q?A′W̄ ′L′Z̄(E[Z ′Z])−1W̄ ?′ V̄ I?
1Q

?R̄′ū1]

= −E[Q?A′
T1∑
t=1

Γt−1′ V̄ ′Dt′Z̄(E[Z ′Z])−1

(∑T−1
r=1 Γr−1′ V̄ ′Dr′

0′

)
V̄ I?

1Q
?R̄′ū1].

In in the final section of this Appendix, it is shown in Note 3 that

V̄ ′Dt′Z̄(E[Z ′Z])−1

(∑T−1
r=1 Γr−1′ V̄ ′Dr′

0′

)
V̄ I?

1Q
?R̄′ū1

= ΩΓr−1I?′
2 (E[Z ′Z])−1Z̄ ′DtDr′R̄Q?I?′

1 (σ2φ)

+ ΩI?
1Q

?R̄′Dr′Dt′Z̄(E[Z ′Z])−1I?
2Γr−1′(σ2φ)

and therefore the final expression for (g) is

−Q?A′
T−1∑
r,t=1

Γt−1′ΩΓr−1I?′
2 (E[Z ′Z])−1Z̄ ′DtDr′R̄Q?I?′

1 (σ2φ)

−Q?A′
T−1∑
r,t=1

Γt−1′ΩI?
1Q

?R̄′Dr′Dt′Z̄(E[Z ′Z])−1I?
2Γr−1′(σ2φ)

(h)

− E[Q?A′W̄ ′L′LW̄I?′
2 (E[Z ′Z])−1Z̄ ′V̄ I?

1Q
?R̄′ū1]

= −E[Q?A′
T−1∑
t=1

Γt−1′ V̄ ′Dt′
T−1∑
r=1

DrV̄ Γr−1′I?′
2 (E[Z ′Z])−1Z̄ ′V̄ I?

1Q
?R̄′ū1]

In in the final section of this Appendix, it is shown in Note 4 that

V̄ ′Dt′DrV̄ Γr−1′I?′
2 (E[Z ′Z])−1Z̄ ′V̄ I?

1Q
?R̄′ū1

= (tr{Dt′DrZ̄(E[Z ′Z])−1I?
2Γr−1′ΩI?

1Q
?R̄′}.I)(σ2φ)

+ ΩΓr−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?(tr{Dt′Dr}.I)I?′

1 σ
2φ

+ ΩI?
1Q

?R̄′Dr′DtZ̄(E[Z ′Z])−1I?
2Γr−1′(σ2φ)
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and therefore the final expression for (h) is

−Q?A′
T−1∑
t,r=1

Γt−1′(tr{Dt′DrZ̄(E[Z ′Z])−1I?
2Γr−1′ΩI?

1Q
?R̄′}.I)(σ2φ)

−Q?A′
T−1∑
t,r=1

Γt−1′ΩΓr−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?(tr{Dt′Dr}.I)I?′

1 σ
2φ

−Q?A′
T−1∑
t,r=1

Γt−1′ΩI?
1Q

?R̄′Dr′DtZ̄(E[Z ′Z])−1I?
2Γr−1′(σ2φ)

(i)

− E[Q?I?′
1 V̄

′W̄ ?(E[Z ′Z])−1Z̄ ′LW̄AQ?R̄′ū1]

− E[Q?I?′
1 V̄

′(
T−1∑
t=1

DtV̄ Γt−1 : 0)(E[Z ′Z])−1Z̄ ′
T−1∑
r=1

DrV̄ Γr−1AQ?R̄ū1]

In in the final section of this Appendix, it is shown in Note 5 that

E[V̄ ′(DtV̄ Γt−1 : 0)(E[Z ′Z])−1Z̄ ′DrV̄ Γr−1AQ?R̄ū1]

= −(tr{DtDr′Z̄(E[Z ′Z])−1I?
2Γt−1′ΩΓr−1AQ?R̄′}.I)(σ2φ)

− ΩΓr−1AQ?R̄′σ2Dt′Dr′Z̄(E[Z ′Z ′])−1I?
2Γt−1′(σ2φ)

and therefore the final expression for (i) is

−
T−1∑
r,t=1

Q?(tr{DtDr′Z̄(E[Z ′Z])−1I?
2Γt−1′ΩΓr−1AQ?R̄′}.I)I?′

1 (σ2φ)

−
T−1∑
r,t=1

Q?I?′
1 ΩΓr−1AQ?R̄′σ2Dt′Dr′Z̄(E[Z ′Z ′])−1I?

2Γt−1′(σ2φ)

Calculating -E[Q?S1Q
?R̄′ū1]

E[Q?S1Q
?∆′1ū1] = −E[Q?R̄′Z̄(E[Z ′Z])−1W̄ ?′ V̄ I?

1Q
?A′W̄ ′L′ū1]

− E[Q?I?′
1 V̄

′W̄ ?(E[Z ′Z])−1Z̄ ′R̄Q?A′W̄ ′L′ū1]

− E[Q?A′W̄ ′L′Z̄ ′(E[Z ′Z])−1Z̄ ′V̄ I?
1Q

?A′W̄ ′L′ū1]

− E[Q?A′W̄ ′L′LW̄L′LW̄I?′
2 (E[Z ′Z])−1W̄ ?′ V̄ I?

1Q
?A′W̄ ′L′ū1]

− E[Q?{A′W̄ ′L′LW̄A− E[A′W̄ ′L′LW̄A]}Q?A′W̄ ′L′ū1]

− E[Q?I?′
1 V̄

′Z̄(E[Z ′Z])−1Z̄ ′LWAQ?A′W̄ ′L′ū1]

− E[Q?I?′
1 V̄

′W̄ ?(E[Z ′Z])−1I?
2W̄

′L′LW̄AQ?A′W̄ ′L′ū1]
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These are calculated in (a’)-(g’) below.
(a’)

− E[Q?R̄′Z̄(E[Z ′Z])−1W̄ ?′ V̄ I?
1Q

?A′W̄ ′L′ū1]

= −E[Q?R̄′Z̄(E[Z ′Z])−1
T−1∑
t=1

(
Γt−1′ V̄ ′Dt′

0′

)
V̄ I?

1Q
?A′

T−1∑
r=1

Γr−1′ V̄ ′Dr′ ū1]

= −E[Q?R̄′Z̄(E[Z ′Z])−1
T−1∑
t=1

(
Γt−1′

0′

)
V̄ ′Dt′ V̄ I?

1Q
?A′

T−1∑
r=1

Γr−1′ V̄ ′Dr′ ū1]

In the final section of this Appendix, it is shown in Note 6 that

E[V̄ ′Dt′ V̄ I?
1Q

?A′Γr−1′ V̄ ′Dr′ ū1] = (tr{Dt′Dr}.I)ΩΓr−1AQ?I?′
1 (σ2φ)

and therefore the final expression for (a’) is

−Q?R̄′Z̄(E[Z ′Z])−1
T−1∑
r,t=1

I?
2Γt−1′(tr{Dt′Dr}.I)ΩΓr−1AQ?I?′

1 (σ2φ)

(b’)

− E[Q?I?′
1 V̄

′W̄ ?(E[Z ′Z])−1Z̄ ′R̄Q?A′W̄ ′L′ū1]

= −E[Q?I?′
1 V̄ (

T−1∑
t=1

DtV̄ Γt−1 : 0)(E[Z ′Z])−1Z̄ ′R̄Q?A′
T−1∑
r=1

Γr−1′ V̄ ′Dr′ ū1]

In in the final section of this Appendix, it is shown in Note 7 that

E[V̄ (DtV̄ Γt−1 : 0)(E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′ V̄ ′Dr′ ū1]

= tr{DtDr′}(tr{ΩΓt−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′}.I)(σ2φ)

and therefore the final expression for (b’) is

−Q?
T1∑

r,t=1

(tr{DtDr′}.I)(tr{ΩΓt−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′}.I)I?′

1 (σ2φ)

(c’)

− E[Q?A′W̄ ′L′Z̄(E[Z ′Z])−1Z̄ ′V̄ I?
1Q

?A′W̄ ′L′ū1]

= −E[Q?A′
T−1∑
t=1

Γt−1′ V̄ ′Dt′Z̄(E[Z ′Z])−1Z̄ ′V̄ I?
1Q

?A′
T−1∑
r=1

Γr−1′ V̄ ′Dr′ ū1].
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In in the final section of this Appendix, it is shown in Note 8 that

E[V̄ ′Dt′Z̄(E[Z ′Z])−1Z̄ ′V̄ I?
1Q

?A′
T−1∑
r=1

Γr−1′ V̄ ′Dr′ ū1]

= tr{ΩI?
1Q

?A′Γr−1′}(tr{Dt′Z̄(E[Z ′Z])−1Z̄ ′Dr′}.I)(σ2φ)

+ (tr{Dt′Z̄(E[Z ′Z])−1Z̄ ′Dr}.I)ΩΓr−1AQ?I?′
1 (σ2φ)

and therefore the final expression for (c’) is

−Q?A′
T−1∑
r,t=1

Γt−1′(tr{ΩI?
1Q

?A′Γr−1′}.I)(tr{Dt′Z̄(E[Z ′Z])−1Z̄ ′Dr′}.I)(σ2φ)

(d’)

− E[Q?A′W̄ ′L′LW̄I?′
2 (E[Z ′Z])−1W̄ ?′ V̄ I?

1Q
?A′W̄ ′L′ū1]

= −E[Q?A′E[W̄ ′L′LW̄ ]I?′
2 (E[Z ′Z])−1W̄ ?′ V̄ I?

1Q
?A′W̄ ′L′ū1]

to order Op(T−1). Therefore, to order Op(T−1),

− E[Q?A′W̄ ′L′LW̄I?
2 (E[Z ′Z])−1W̄ ?′ V̄ I?

1Q
?A′W̄ ′L′ū1]

= −E[Q?A′E[W̄ ′L′LW̄ ]I?′
2 (E[Z ′Z])−1

(∑T−1
t=1 Γt−1′ V̄ ′Dt′

0′

)
V̄ I?

1Q
?A′

T−1∑
t−1

Γr−1′ V̄ ′Dr′ ū1]

In in the final section of this Appendix, it is shown in Note 9 that

E[V̄ ′Dt′ V̄ I?
1Q

?A′Γr−1′ V̄ ′Dr′ ū1] = ΩΓr−1AQ?(tr{Dt′Dr}.I)I?′
1 (σ2φ)

and therefore the final expression for (d’) is

−Q?A′E[W̄ ′L′LW̄ ]I?′
2 (E[Z ′Z])−1

T−1∑
r,t=1

I?
2Γt−1′ΩΓr−1AQ?(tr{Dt′Dr}.I)I?′

1 (σ2φ)

(e’)

− E[Q?A′W̄ ′L′LW̄AQ?A′W̄ ′L′ū1] =

− E[Q?A′
T−1∑

r,t,s=1

Γt−1′ V̄ ′Dt′DrεΓr−1AQ?A′Γs−1′ V̄ ′Ds′ ū1].
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In in the final section of this Appendix, it is shown in Note 10 that

E[V̄ ′Dt′DrεΓr−1AQ?A′Γs−1′ V̄ ′Ds′ ū1] =

ΩΓs−1AQ?A′Γr−1′{tr(Dt′DrDs).I}(σ2φ)

+ tr(ΩΓr−1AQ?A′Γs−1′)tr(Dt′DrDs′)(σ2φ),

and therefore the final expression for (e’) is

−Q?
T−1∑

r,t,s=1

A′Γt−1′ΩΓs−1AQ?A′Γr−1′{tr(Dt′DrDs).I}(σ2φ)

−Q?
T−1∑

r,t,s=1

A′Γt−1′tr(ΩΓr−1AQ?A′Γs−1′)tr(Dt′DrDs′)(σ2φ)

(f ’)

− E[Q?I?′
1 V̄

′Z̄(E[Z ′Z])−1Z̄ ′LW̄AQ?A′W̄ ′L′ū1]

= −E[Q?I?′
1 V̄

′Z̄(E[Z ′Z])−1Z̄ ′
T−1∑
r,t

DtV̄ Γt−1AQ?A′Γr−1′ V̄ ′Dr′ ū1].

In in the final section of this Appendix, it is shown in Note 11 that

E[V̄ ′Z̄(E[Z ′Z])−1Z̄ ′DtV̄ Γt−1AQ?A′Γr−1′ V̄ ′Dr′ ū1]

= (tr{ΩΓt−1AQ?A′Γr−1′}.I)(tr{Z̄(E[Z ′Z])−1Z̄ ′DtDr′}.I)(σ2φ)

+ ΩΓr−1AQ?A′Γt−1′(tr{Z̄(E[Z ′Z])−1Z̄ ′DtDr}.I)(σ2φ)

and therefore the final expression for (f’) is

−
T−1∑
r,t=1

Q?(tr{ΩΓt−1AQ?A′Γr−1′}.I)(tr{Z̄(E[Z ′Z])−1I?
2W̄

′L′LW̄AQ?A′W̄ ′L′ū1}.I)I?′
1 (σ2φ)

−
T−1∑
r,t=1

Q?I?′
1 ΩΓr−1AQ?A′Γt−1′(tr{Z̄(E[Z ′Z])−1Z̄DtDr}.I)(σ2φ)

(g’)

− E[Q?I?′
1 V̄

′W̄ ?(E[Z ′Z])−1I?′
2 W̄

′L′LW̄AQ?A′W̄ ′L′ū1]

− E[Q?I?′
1 V̄

′W̄ ?(E[Z ′Z])−1I?′
2 E[W̄ ′L′LW̄ ]AQ?A′W̄ ′L′ū1]
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to order Op(T−1). Therefore, to order Op(T−1),

− E[Q?I?′
1 V̄

′W̄ ?(E[Z ′Z])−1I?′
2 W̄

′L′LW̄AQ?A′W̄ ′L′ū1]

= −E[Q?I?′
1 V̄

′(
T−1∑
t=1

DtV̄ Γt−1 : 0)(E[Z ′Z])−1I?′
2 E[W̄ ′L′LW̄ ]AQ?A′

T−1∑
r=1

Γr−1′ V̄ ′Dr′ ū1].

In in the final section of this Appendix, it is shown in Note 12 that

V̄ ′(DtV̄ Γt−1 : 0)(E[Z ′Z])−1I?′
2 E[W̄ ′L′LW̄ ]AQ?A′Γr−1′ V̄ ′Dr′ ū1

= tr{Ω(Γt−1 : 0)(E[Z ′Z])−1I?
2E[W ′L′LW ]AQ?A′Γr−1′}(tr{DtDr′}.I)(σ2φ)

and therefore the final expression for (g’) is

−
?∑

r,t=1

Q?(tr{Ω(Γt−1 : 0)(E[Z ′Z])−1I?
2E[W ′L′LW ]AQ?A′Γr−1′}(tr{DtDr′}.I)I?′

1 (σ2φ)

Rearranging for the final expression
In the following all the expectations calculations for the terms in equation
(23) are added together, in the order that they appear. Recall that QZ =
(E[Z ′Z])−1.

Q?(tr{Z̄QZZ̄
′}.I)I?′

1 (σ2φ)

−Q?R̄′
T−1∑
t=1

DtR̄Q?A′(Γt−1)′(σ2φ)

−Q?A′
T−1∑
t=1

Γt−1′(tr{R̄′DtR̄Q?}.I)(σ2φ)

−Q?R̄′Z̄QZZ̄
′R̄Q?I?′

1 (σ2φ)

−Q?R̄′
T−1∑
t,r=1

DtDr′R̄Q?(tr{ΩΓr−1I?′
2 QZI

?
2Γt−1′}.I)(σ2I?′

1 φ)

−Q?R̄′
T−1∑
t,r=1

DtDrR̄Q?I?′
1 ΩΓt−1I?′

2 QZI
?
2Γr−1′(σ2φ)

−Q?(tr{Z̄QZZ̄
′R̄Q?R̄′}.I)I?′

1 (σ2φ)

−Q?
T−1∑
r,t=1

(tr{ΩΓt−1I?′
2 QZI

?
2Γr−1′}.I)(tr{DtDr′R̄Q?R̄′}.I)I?′

1 (σ2φ)
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−Q?I?′
1

T−1∑
r,t=1

ΩΓr−1I?′
2 QZI

?
2Γt−1′(tr{DtR̄Q?R′Dr}.I)(σ2φ)

−Q?A′
T−1∑
r,t=1

Γt−1′ΩΓr−1I?′
2 QZZ̄

′DtDr′R̄Q?I?′
1 (σ2φ)

−Q?A′
T−1∑
r,t=1

Γt−1′ΩI?
1Q

?R̄′Dr′Dt′Z̄QZI
?
2Γr−1′(σ2φ)

−Q?A′
T−1∑
t,r=1

Γt−1′(tr{Dt′DrZ̄QZI
?
2Γr−1′ΩI?

1Q
?R̄′}.I)(σ2φ)

−Q?A′
T−1∑
t,r=1

Γt−1′ΩΓr−1I?′
2 QZZ̄

′R̄Q?(tr{Dt′Dr}.I)I?′
1 (σ2φ)

−Q?A′
T−1∑
t,r=1

Γt−1′ΩI?
1Q

?R̄′Dr′DtZ̄QZI
?
2Γr−1′(σ2φ)

−Q?
T−1∑
t,r=1

(tr{DtDr′Z̄QZI
?
2Γt−1′ΩΓr−1AQ?R̄′}.I)I?′

1 (σ2φ)

−Q?
T−1∑
t,r=1

I?′
1 ΩΓr−1AQ?R̄′σ2Dt′Dr′Z̄QZI

?
2Γt−1′(σ2φ)

−Q?R̄′Z̄QZ

T−1∑
r,t=1

I?
2Γt−1′(tr{Dt′Dr}.I)ΩΓr−1AQ?I?′

1 (σ2φ)

−Q?
T−1∑
r,t=1

(tr{DtDr′}.I)(tr{ΩΓt−1I?′
2 QZZ̄

′R̄Q?A′Γr−1′}.I)I?′
1 (σ2φ)

−Q?A′
T−1∑
r,t=1

Γt−1′(tr{ΩI?
1Q

?A′Γr−1′}tr{Dt′Z̄QZZ̄
′Dr′}.I)(σ2φ)

−Q?A′
T−1∑
r,t=1

Γt−1′(tr{Dt′Z̄QZZ̄
′Dr}.I)ΩΓr−1AQ?I?′

1 (σ2φ)

−Q?A′E[W̄ ′L′LW̄ ]I?′
2 QZ

T−1∑
r,t=1

I?
2Γt−1′ΩΓr−1AQ?(tr{Dt′Dr}.I)I?′

1 (σ2φ)
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−Q?
T−1∑

r,t,s=1

A′Γt−1′ΩΓs−1AQ?A′Γr−1′{tr(Dt′DrDs).I}(σ2φ)

−Q?
T−1∑

r,t,s=1

A′Γt−1′tr(ΩΓr−1AQ?A′Γs−1′)tr(Dt′DrDs′)(σ2φ)

−Q?
T−1∑
r,t=1

(tr{ΩΓt−1AQ?A′Γr−1′}.I)(tr{Z̄QZZ̄
′DtDr′}.I)I?′

1 (σ2φ)

−Q?I?′
1

T−1∑
r,t=1

ΩΓr−1AQ?A′Γt−1′(tr{Z̄QZZ̄
′DtDr}.I)(σ2φ)

−
T−1∑
r,t=1

Q?(tr{ΩΓt−1I?′
2 QZI

?′
2 E[W ′L′LW ]AQ?A′Γr−1′}.I)(tr{DtDr′}.I)I?′

1 (σ2φ)

Next recall that ϕ = σ2φ, ψ = I?′
1 ϕ, (Γr−1 : 0) = Γr−1I?′

2 , I?′
2 QZI

?
2 = Q?

Z ,
and QW =

∑T−1
t=1 (T − t)Γt−1′ΩΓt−1. Also, note that tr{Dt′Dr} = T − t

when t = r and 0 otherwise. The terms above can then be written (in the
same order) as follows:

Q?(tr{Z̄QZZ̄
′}.I)ψ

−Q?R̄′
T−1∑
t=1

DtR̄Q?A′(Γt−1)′ϕ

−Q?A′
T−1∑
t=1

Γt−1′(tr{R̄′DtR̄Q?}.I)ϕ

−Q?R̄′Z̄QZZ̄
′R̄Q?ψ

−Q?R̄′
T−1∑
t,r=1

DtDr′R̄Q?(tr{ΩΓr−1Q?
ZΓt−1′}.I)ψ

−Q?R̄′
T−1∑
t,r=1

DtDrR̄Q?I?′
1 ΩΓt−1Q?

ZΓr−1′ϕ

−Q?(tr{Z̄QZZ̄
′R̄Q?R̄′}.I)ψ

−Q?
T−1∑
r,t=1

(tr{Γr−1′ΩΓt−1Q?
Z}.I)(tr{DtDr′R̄Q?R̄′}.I)ψ
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−Q?I?′
1

T−1∑
r,t=1

ΩΓr−1Q?
ZΓt−1′(tr{DtR̄Q?R′Dr}.I)ϕ

−Q?A′
T−1∑
r,t=1

Γt−1′ΩΓr−1I?′
2 QZZ̄

′DtDr′R̄Q?ψ

−Q?A′
T−1∑
r,t=1

Γt−1′ΩI?
1Q

?R̄′Dr′Dt′Z̄QZI
?
2Γr−1′ϕ

−Q?A′
T−1∑
t,r=1

Γt−1′(tr{Dt′DrZ̄QZI
?
2Γr−1′ΩI?

1Q
?R̄′}.I)ϕ

−Q?A′QW I?′
2 QZZ̄

′R̄Q?ψ

−Q?A′
T−1∑
t,r=1

Γt−1′ΩI?
1Q

?R̄′Dr′DtZ̄QZI
?
2Γr−1′ϕ

−Q?
T−1∑
t,r=1

(tr{DtDr′Z̄QZI
?
2Γt−1′ΩΓr−1AQ?R̄′}.I)ψ

−Q?
T−1∑
t,r=1

I?′
1 ΩΓr−1AQ?R̄′Dt′Dr′Z̄QZI

?
2Γt−1′ϕ

−Q?R̄′Z̄QZI
?
2QWAQ?ψ

−Q?(tr{QW I?′
2 QZZ̄

′R̄Q?A′}.I)ψ

−Q?A′
T−1∑
r,t=1

Γt−1′(tr{ΩI?
1Q

?A′Γr−1′}tr{Dt′Z̄QZZ̄
′Dr′}.I)ϕ

−Q?A′
T−1∑
r,t=1

Γt−1′(tr{Dt′Z̄QZZ̄
′Dr}.I)ΩΓr−1AQ?ψ

−Q?A′QWQ?
ZQWAQ?ψ

−Q?
T−1∑

r,t,s=1

A′Γt−1′ΩΓs−1AQ?A′Γr−1′{tr(Dt′DrDs).I}ψ

−Q?
T−1∑

r,t,s=1

A′Γt−1′tr(ΩΓr−1AQ?A′Γs−1′)tr(Dt′DrDs′)ψ
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−Q?
T−1∑
r,t=1

(tr{ΩΓt−1AQ?A′Γr−1′}.I)(tr{Z̄QZZ̄
′DtDr′}.I)ψ

−Q?I?′
1

T−1∑
r,t=1

ΩΓr−1AQ?A′Γt−1′(tr{Z̄QZZ̄
′DtDr}.I)ϕ

−Q?(tr{QWQ?
ZQWAQ?A′}.I)ψ

The terms are then rearranged slightly.
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Appendix B
Note 1

E[V̄ Γt−1I?′
2 (E[Z ′Z])−1

(
Γr−1′ V̄ ′Dr′

0

)
V̄ I?

1Q
?R̄′ū1]

= E[ū1φ
′Γt−1I?′

2 (E[Z ′Z])−1I?
2Γr−1′φū′1D

r′ ū1φ
′I?

1Q
?R̄′ū1] (32)

+ E[SΓt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′S′Dr′ ū1φ
′I?

1Q
?R̄′ū1] (33)

+ E[ū1φ
′Γt−1I?′

2 (E[Z ′Z])−1I?
2Γr−1′S′Dr′SI?

1Q
?R̄′ū1] (34)

+ E[SΓt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′φū′1D
r′SI?

1Q
?R̄′ū1] (35)

(32) is calculated as follows:

E[ū1ū
′
1R̄Q

?′I?′
1 φφ

′Γt−1I?′
2 (E[Z ′Z])−1I?

2

(
Γr−1′

0

)
φū′1D

r′ ū1]

= σ4{tr(Dr).I +Dr +Dr′}R̄Q?′I?′
1 φφ

′Γt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′φ

= σ4{Dr +Dr′}R̄Q?′I?′
1 φφ

′Γt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′φ

(33) is calculated as follows:

E[SΓt−1I?′
2 (E[Z ′Z])−1

(
Γr−1′

0′

)
S′Dr′ ū1ū

′
1R̄Q

?′I?′
1 φ]

= (tr{C?
2Γt−1I?′

2 (E[Z ′Z])−1I?
2Γr−1′}Dr′σ2R̄Q?′I?′

1 φ,

using SNS′ = tr(C?
2N).I from Lemma 1.

(34) is calculated as follows:

E[ū1ū
′
1R̄Q

?′I?′
1 S
′DrS

(
Γr−1′

0

)′
(E[Z ′Z])−1I?

2Γt−1′φ]

= σ2R̄Q?I?′
1 E[S′DrS]Γr−1I?′

2 (E[Z ′Z])−1I?
2Γt−1′φ

= σ2R̄Q?I?′
1 {tr(Dr)}C?

2Γr−1I?′
2 (E[Z ′Z])−1I?

2Γt−1′φ

using E[S′NS] = {tr(N)}.C?
2 from Lemma 1.

(35) can be written as follows, recalling that S and ū1 are independent, and
recalling from Lemma 1 that SNS = N ′C?

2 :

E[SDrū1φ
′Γr−1I?′

2 (E[Z ′Z])−1I?
2Γt−1′C?

2I
?
1Q

?R̄′ū1].
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Then

E[SDrū1φ
′Γr−1I?′

2 (E[Z ′Z])−1I?
2Γt−1′C?

2I
?
1Q

?R̄′ū1]

= E[Drū1ū
′
1R̄Q

?I?′
1 C

?
2Γt−1I?′

2 (E[Z ′Z])−1I?
2Γr−1′φ]

= σ2DrR̄Q?I?′
1 C

?
2Γt−1I?′

2 (E[Z ′Z])−1I?
2Γr−1′φ

= σ2DrR̄Q?I?′
1 ΩΓt−1I?′

2 (E[Z ′Z])−1I?
2Γr−1′φ

− σ4DrR̄Q?I?′
1 φφ

′Γt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′φ

Putting these together gives

E[V̄ Γt−1I?′
2 (E[Z ′Z])−1

(
Γr−1′ V̄ ′Dr′

0

)
V̄ I?

1Q
?R̄′ū1]

= σ2Dr′R̄Q?I?′
1 φtr{ΩΓr−1I?′

2 (E[Z ′Z])−1I?
2Γt−1′}

+ σ2DrR̄Q?I?′
1 ΩΓt−1I?′

2 (E[Z ′Z])−1I?
2Γr−1′φ,

Note 2

E[V̄ ′DtV̄ Γt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′ V̄ ′Dr′R̄Q?R̄′ū1]

= E[φū′1D
tū1φ

′Γt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′φū′1D
r′R̄Q?R̄′ū1] (36)

+ E[φū′1D
tSΓt−1I?′

2 (E[Z ′Z])−1I?
2Γr−1′S′Dr′R̄Q?R̄′ū1] (37)

+ E[S′Dtū1φ
′Γt−1I?′

2 (E[Z ′Z])−1I?
2Γr−1′S′Dr′R̄Q?R̄′ū1] (38)

+ E[S′DtSΓt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′φū′1D
r′R̄Q?R̄′ū1] (39)

(36) becomes

φφ′Γt−1I?′
2 (E[Z ′Z])−1P ′2Γr−1′φtr{(Dt +Dt′)Dr′R̄Q?R̄′}

(37) becomes

σ2tr{ΩΓt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′}tr{DtDr′R̄Q?R̄′}φ

− σ4tr{φφ′Γt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′}tr{DtDr′R̄Q?R̄′}φ

(38) becomes

σ2tr(Dtr̄Q?R̄′Dr)ΩΓr−1I?′
2 (E[Z ′Z])−1I?

2Γt−1′φ

− σ4tr(Dtr̄Q?R̄′Dr)φφ′Γr−1I?′
2 (E[Z ′Z])−1I?

2Γt−1′φ
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(39) becomes zero, and putting these together gives

E[V̄ ′DtV̄ Γt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′ V̄ ′Dr′R̄Q?R̄′ū1]

= σ2tr{ΩΓt−1I?′
2 (E[Z ′Z])−1I?

2Γr−1′}tr{DtDr′R̄Q?R̄′}φ

+ σ2tr{DtR̄Q?R′Dr}ΩΓr−1I?′
2 (E[Z ′Z])−1I?

2Γt−1′φ

Note 3

E[V̄ ′Dt′Z̄(E[Z ′Z])−1

(
Γr−1′

0′

)
V̄ ′Dr′ V̄ I?

1Q
?R̄′ū1]

= E[φū′1D
t′Z̄(E[Z ′Z])−1I?

2Γr−1′φū′1D
r′ ū1φ

′I?
1Q

?R̄′ū1] (40)

+ E[φū′1D
t′Z̄(E[Z ′Z])−1I?

2Γr−1′S′Dr′SI?
1Q

?R̄′ū1] (41)

+ E[S′Dt′Z̄(E[Z ′Z])−1I?
2Γr−1′S′Dr′ ū1φ

′I?
1Q

?R̄′ū1] (42)

+ E[S′Dt′Z̄(E[Z ′Z])−1I?
2Γr−1′φū′1D

r′SI?
1Q

?R̄′ū1] (43)

(40) becomes

σ4φ′I?
1Q

?R̄′DrDt′Z̄(E[Z ′Z])−1I?
2Γr−1′φφ′

+σ4φ′I?
1Q

?R̄′Dr′DtZ̄(E[Z ′Z])−1I?
2Γr−1′φφ′

(41) is zero
(42) becomes

σ2ΩΓt−1I?′
2 (E[Z ′Z])−1Z ′DtDr′R̄Q?I?′

1 φ

− σ4φφ′I?
1Q

?R̄′DrDt′Z̄(EZ ′Z)−1I?
2Γt−1′φ

(43) becomes

σ2ΩI?
1Q

?R̄Dr′Dt′Z̄(EZ ′Z)−1I?
2Γr−1′φ

− σ4φφ′I?
1Q

?R̄Dr′Dt′Z̄(EZ ′Z)−1I?
2Γr−1′φ.

These reduce to

E[V̄ ′Dt′Z̄(E[Z ′Z])−1

(∑T−1
r=1 Γr−1′ V̄ ′Dr′

0′

)
V̄ I?

1Q
?R̄′ū1]

= ΩΓr−1I?′
2 (E[Z ′Z])−1Z̄ ′DtDr′R̄Q?I?′

1 (σ2φ)

+ ΩI?
1Q

?R̄′Dr′Dt′Z̄(E[Z ′Z])−1I?
2Γr−1′(σ2φ)
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Note 4

E[V̄ ′Dt′DrV̄ Γr−1′I?′
2 (E[Z ′Z])−1Z̄ ′V̄ I?

1Q
?R̄′ū1]

= E[φū′1D
t′Drū1φ

′Γr−1′I?′
2 (E[Z ′Z])−1Z̄ ′ū1φ

′I?
1Q

?R̄′ū1] (44)

+ E[φū′1D
t′DrSΓr−1′I?′

2 (E[Z ′Z])−1Z̄ ′SI?
1Q

?R̄′ū1] (45)

+ E[S′Dt′DrSΓr−1′I?′
2 (E[Z ′Z])−1Z̄ ′ū1φ

′I?
1Q

?R̄′ū1] (46)

+ E[S′Dt′Drū1φ
′Γr−1′I?′

2 (E[Z ′Z])−1Z̄ ′SI?
1Q

?R̄′ū1] (47)

(44) becomes

σ4φtr[
1
2
{Dt′Dr +Dr′Dt}]tr{R̄Q?I?′

1 φφ
′Γr−1I?′

2 (E[Z ′Z])−1Z̄ ′}

+ 2σ4φtr[
1
2
{Dt′Dr +Dr′Dt}R̄Q?I?′

1 φφ
′Γr−1I?′

2 (E[Z ′Z])−1Z̄ ′]

(45) becomes

σ2φtr[Dt′DrZ̄(E[Z ′Z])−1I?
2Γr−1′ΩI?

1Q
?R̄′]

− σ4φtr[Dt′DrZ̄(E[Z ′Z])−1I?
2Γr−1′φφ′I?

1Q
?R̄′]

(46) becomes

σ2tr{Dt′Dr}ΩΓr−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?I?′

1 φ

− σ4tr{Dt′Dr}φφ′Γr−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?I?′

1 φ

(47) becomes

σ2ΩI?
1Q

?R̄′Dr′DtZ̄(E[Z ′Z])−1I?
2Γr−1′φ

− σ2φφ′Γr−1I?′
2 (E[Z ′Z])−1Z̄ ′Dt′DrR̄Q?I?

1φ

Putting these together gives

E[V̄ ′Dt′DrV̄ Γr−1′I?′
2 (E[Z ′Z])−1Z̄ ′V̄ I?

1Q
?R̄′ū1]

= (tr{Dt′DrZ̄(E[Z ′Z])−1I?
2Γr−1′ΩI?

1Q
?R̄′}.I)(σ2φ)

+ ΩΓr−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?(tr{Dt′Dr}.I)I?′

1 σ
2φ

+ ΩI?
1Q

?R̄′Dr′DtZ̄(E[Z ′Z])−1I?
2Γr−1′(σ2φ)

43



Note 5

E[V̄ ′(DtV̄ Γt−1 : 0)(E[Z ′Z])−1Z̄ ′DrV̄ Γr−1AQ?R̄ū1]

= E[φū′1D
tū1φ

′Γt−1I?′
2 (E[Z ′Z])−1Z̄ ′Drū1φ

′Γr−1AQ?R̄ū1] (48)

+ E[φū′1D
tSΓt−1I?′

2 (E[Z ′Z])−1Z̄ ′DrSΓr−1AQ?R̄ū1] (49)

+ E[S′DtSΓt−1I?′
2 (E[Z ′Z])−1Z̄ ′Drū1φ

′Γr−1AQ?R̄ū1] (50)

+ E[S′Dtū1φ
′Γt−1I?

2 (E[Z ′Z])−1Z̄ ′DrSΓr−1AQ?R̄ū1] (51)

(48) becomes

2φσ4tr{1
2

(Dt +Dr′)Dr′Z̄(E[Z ′Z])−1I?
2Γt−1′φφ′Γr−1AQ?R̄′}

(49) becomes

σ2φtr{DtDr′Z̄(E[Z ′Z])−1I?
2Γr−1′ΩΓr−1AQ?R̄′}

− σ4φtr{DtDr′Z̄(E[Z ′Z])−1I?
2Γr−1′φφ′Γr−1AQ?R̄′}

(50) is zero
(51) becomes

σ2Ω{DtR̄Q?A′Γr−1′}′Dr′Z̄(E[Z ′Z])−1I?
2Γt−1′φ

− σ2φφ{DtR̄Q?A′Γr−1′}′Dr′Z̄(E[Z ′Z])−1I?
2Γt−1′φ

using E[W ′N ′W ′] = C?
2N (see Lemma 1). Putting these together gives

E[V̄ ′DtV̄ Γt−1I?′
2 (E[Z ′Z])−1Z̄ ′DrV̄ Γr−1AQ?R̄ū1]

= −(tr{DtDr′Z̄(E[Z ′Z])−1I?
2Γt−1′ΩΓr−1AQ?R̄′}.I)(σ2φ)

− ΩΓr−1AQ?R̄′σ2Dt′Dr′Z̄(E[Z ′Z ′])−1I?
2Γt−1′(σ2φ)

Note 6

E[V̄ ′Dt′ V̄ I?
1Q

?A′Γr−1′ V̄ ′Dr′ ū1]

= E[φū′1D
t′ ū1φ

′I?
1Q

?A′Γr−1′φū′1D
r′ ū1] (52)

+ E[φū′1D
t′SI?

1Q
?A′Γr−1′S′Dr′ ū1] (53)

+ E[S′Dt′SI?
1Q

?A′Γr−1′φū′1D
r′ ū1] (54)
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+ E[S′Dt′ ū1φ
′I?

1Q
?A′Γr−1′S′Dr′ ū1] (55)

(52) becomes

σ4φφ′I?
1Q

?A′Γr−1′φ[2tr{1
2

(Dt +Dt′)Dr′}]

(53) is zero
(54) is zero
(55) becomes

σ2tr(Dt′Dr)ΩΓr−1AQ?I?′
1 φ

− σ4tr(Dt′Dr)φφ′Γr−1AQ?I?′
1 φ

Putting these together gives

E[V̄ ′Dt′ V̄ I?
1Q

?A′Γr−1′ V̄ ′Dr′ ū1] = (tr{Dt′Dr}.I)ΩΓr−1AQ?I?′
1 (σ2φ)

Note 7

E[V̄ DtV̄ Γt−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′ V̄ ′Dr′ ū1]

= E[φū′1D
tū1φ

′Γt−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′φū′1D

r′ ū1] (56)

+ E[φū′1D
tSΓt−1I?′

2 (E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′S′Dr′ ū1] (57)

+ E[SDtū1φ
′Γt−1I?′

2 (E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′S′Dr′ ū1] (58)

+ E[SDtSΓt−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′φū′1D

r′ ū1] (59)

(56) becomes

σ4φφ′Γt−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′φtr{1

2
(Dt +Dt′)Dr′}

(57) and (58) are zero.
(59) becomes

σ2φtr(DtDr′)tr{ΩΓt−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′}

− σ4φtr(DtDr′)tr{φφ′Γt−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′}

Putting these together gives

E[V̄ (DtV̄ Γt−1 : 0)(E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′ V̄ ′Dr′ ū1]
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= tr{DtDr′}(tr{ΩΓt−1I?′
2 (E[Z ′Z])−1Z̄ ′R̄Q?A′Γr−1′}.I)(σ2φ)

Note 8

E[V̄ ′Dt′Z̄(E[Z ′Z])−1Z̄ ′V̄ I?
1Q

?A′
T−1∑
r=1

Γr−1′ V̄ ′Dr′ ū1]

= E[φū′1D
t′Z̄(E[Z ′Z])−1Z̄ ′ū1φ

′I?
1Q

?A′
T−1∑
r=1

Γr−1′φū′1D
r′ ū1] (60)

+ E[φū′1D
t′Z̄(E[Z ′Z])−1Z̄ ′SI?

1Q
?A′

T−1∑
r=1

Γr−1′S′Dr′ ū1] (61)

+ E[S′Dt′Z̄(E[Z ′Z])−1Z̄ ′ū1φ
′I?

1Q
?A′

T−1∑
r=1

Γr−1′S′Dr′ ū1] (62)

+ E[S′Dt′Z̄(E[Z ′Z])−1Z̄ ′SI?
1Q

?A′
T−1∑
r=1

Γr−1′φū′1D
r′ ū1] (63)

(60) becomes

σ4φφ′I?
1Q

?A′Γr−1′φtr{(Dr +Dr′)Dt′Z̄(E[Z ′Z])−1Z̄ ′}

(61) becomes

σ2φtr(ΩI?
1Q

?A′Γr−1′)tr{Dt′Z̄(E[Z ′Z])−1Z̄ ′Dr′}

− σ4φtr(φφ′I?
1Q

?A′Γr−1′)tr{Dt′Z̄(E[Z ′Z])−1Z̄ ′Dr′}

(62) becomes

σ2tr{Dt′Z̄(E[Z ′Z])−1Z̄ ′Dr}ΩΓr−1AQ?I?′
1 φ

− σ4tr{Dt′Z̄(E[Z ′Z])−1Z̄ ′Dr}φφ′Γr−1AQ?I?′
1 φ

(63) is zero. Putting these together gives

E[V̄ ′Dt′Z̄(E[Z ′Z])−1Z̄ ′V̄ I?
1Q

?A′
T−1∑
r=1

Γr−1′ V̄ ′Dr′ ū1]

= tr{ΩI?
1Q

?A′Γr−1′}(tr{Dt′Z̄(E[Z ′Z])−1Z̄ ′Dr′}.I)(σ2φ)
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+ (tr{Dt′Z̄(E[Z ′Z])−1Z̄ ′Dr}.I)ΩΓr−1AQ?I?′
1 (σ2φ)

Note 9

E[V̄ ′Dt′ V̄ I?
1Q

?A′Γr−1′ V̄ ′Dr′ ū1]

= E[φū′1D
t′ ū1φ

′I?
1Q

?A′Γr−1′φū′1D
r′ ū1] (64)

+ E[φū′1D
t′SI?

1Q
?A′Γr−1′S′Dr′ ū1] (65)

+ E[S′Dt′ ū1φ
′I?

1Q
?A′Γr−1′S′Dr′ ū1] (66)

+ E[S′Dt′SI?
1Q

?A′Γr−1′φū′1D
r′ ū1] (67)

(64) becomes

σ4φφ′I?
1Q

?A′Γr−1′φtr{(Dt +Dt′)Dr′}

(65) is zero
(66) becomes

σ2tr(Dt′Dr)ΩΓr−1AQ?I?′
1 φ− tr(Dt′Dr)φφ′Γr−1AQ?I?′

1 φ

(67) is zero.
Simplifying gives

E[V̄ ′Dt′ V̄ I?
1Q

?A′Γr−1′ V̄ ′Dr′ ū1] = ΩΓr−1AQ?(tr{Dt′Dr}.I)I?′
1 (σ2φ)

Note 10

E[V̄ ′Dt′DrV̄ Γr−1AQ?A′Γs−1′ V̄ ′Ds′ ū1]

= E[φū′1D
t′Drū1φ

′Γr−1AQ?A′Γs−1′φū′1D
s′ ū1] (68)

+ E[φū′1D
t′DrSΓr−1AQ?A′Γs−1′S′Ds′ ū1] (69)

+ E[S′Dt′Drū1φ
′Γr−1AQ?A′Γs−1′S′Ds′ ū1] (70)

+ E[S′Dt′DrSΓr−1AQ?A′Γs−1′φū′1D
s′ ū1] (71)

(68) becomes

σ4φφ′Γr−1AQ?A′Γs−1′φtr{(Ds +Ds′)Dt′Dr}.

(69) becomes

σ2φtr(ΩΓr−1AQ?A′Γs−1′)tr(Dt′DrDs′)
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− σ4φtr(φφ′Γr−1AQ?A′Γs−1′)tr(Dt′DrDs′).

(70) becomes

tr(Dt′DrDs)ΩΓs−1AQ?A′Γr−1′σ2φ

− σ4tr(Dt′DrDs)φφ′Γs−1AQ?A′Γr−1′φ.

(71) is zero.
Therefore

E[V̄ ′Dt′DrεΓr−1AQ?A′Γs−1′ V̄ ′Ds′ ū1] =

ΩΓs−1AQ?A′Γr−1′{tr(Dt′DrDs).I}(σ2φ)

+ tr(ΩΓr−1AQ?A′Γs−1′)tr(Dt′DrDs′)(σ2φ)

Note 11

E[V̄ ′Z̄(E[Z ′Z])−1Z̄ ′DtV̄ Γt−1AQ?A′Γr−1′ V̄ ′Dr′ ū1]

= E[φū′1Z̄(E[Z ′Z])−1Z̄ ′Dtū1φ
′Γt−1AQ?A′Γr−1′φū′1D

r′ ū1] (72)

+ E[φū′1Z̄(E[Z ′Z])−1Z̄ ′DtSΓt−1AQ?A′Γr−1′S′Dr′ ū1] (73)

+ E[S′Z̄(E[Z ′Z])−1Z̄ ′Dtū1φ
′Γt−1AQ?A′Γr−1′S′Dr′ ū1] (74)

+ E[S′Z̄(E[Z ′Z])−1Z̄ ′DtSΓt−1AQ?A′Γr−1′φū′1D
r′ ū1] (75)

(72) becomes

σ4φφ′Γt−1AQ?A′Γr−1′φtr{(Dr +Dr′)Z̄(E[Z ′Z])−1Z̄Dt}

(73) becomes

σ2φtr(ΩΓt−1AQ?A′Γr−1′)tr{Z̄(E[Z ′Z])−1Z̄ ′DtDr′}

− σ4φtr(φφ′Γt−1AQ?A′Γr−1′)tr{Z̄(E[Z ′Z])−1Z̄ ′DtDr′}

(74) becomes

σ2tr{Z̄(E[Z ′Z])−1Z̄ ′DtDr}ΩΓr−1AQ?A′Γt−1′φ

− σ4tr{Z̄(E[Z ′Z])−1Z̄ ′DtDr}φφ′Γr−1AQ?A′Γt−1′φ

(75) is zero.
Simplifying gives

E[V̄ ′Z̄(E[Z ′Z])−1Z̄ ′DtV̄ Γt−1AQ?A′Γr−1′ V̄ ′Dr′ ū1]
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= (tr{ΩΓt−1AQ?A′Γr−1′}.I)(tr{Z̄(E[Z ′Z])−1Z̄ ′DtDr′}.I)(σ2φ)

+ ΩΓr−1AQ?A′Γt−1′(tr{Z̄(E[Z ′Z])−1Z̄ ′DtDr}.I)(σ2φ)

Note 12

E[V̄ ′(DtV̄ Γt−1 : 0)(E[Z ′Z])−1I?′
2 E[W̄ ′L′LW̄ ]AQ?A′Γr−1′ V̄ ′Dr′ ū1]

= E[ū1φ
′(Dtū1φ

′Γt−1 : 0)(E[Z ′Z])−1I?′
2 E[W̄ ′L′LW̄ ]AQ?A′Γr−1′φū′1D

r′ ū1]
(76)

+ E[ū1φ
′(DtSΓt−1 : 0)(E[Z ′Z])−1I?′

2 E[W̄ ′L′LW̄ ]AQ?A′Γr−1′S′Dr′ ū1]
(77)

+ E[S′(DtSΓt−1 : 0)(E[Z ′Z])−1I?′
2 E[W̄ ′L′LW̄ ]AQ?A′Γr−1′φū′1D

r′ ū1]
(78)

+ E[S′(Dtū1φ
′Γt−1 : 0)(E[Z ′Z])−1I?′

2 E[W̄ ′L′LW̄ ]AQ?A′Γr−1′S′Dr′ ū1]
(79)

(76) becomes

σ4φφ′(Γt−1 : 0)(E[Z ′Z])−1I?
2E[W ′L′LW ]AQ?A′Γr−1′φtr{(Dt +Dt′)Dr′}

(77) becomes

σ2φtr{Ω(Γt−1 : 0)(E[Z ′Z])−1I?
2E[W ′L′LW ]AQ?A′Γr−1′}tr(DtDr′)

− σ4φtr{φφ′(Γt−1 : 0)(E[Z ′Z])−1I?
2E[W ′L′LW ]AQ?A′Γr−1′}tr(DtDr′)

(78) is zero.
(79) will have tr(DtDr) as a factor and is therefore zero.
Simplifying gives

E[V̄ ′(DtV̄ Γt−1 : 0)(E[Z ′Z])−1I?′
2 E[W̄ ′L′LW̄ ]AQ?A′Γr−1′ V̄ ′Dr′ ū1]

= tr{Ω(Γt−1 : 0)(E[Z ′Z])−1I?
2E[W ′L′LW ]AQ?A′Γr−1′}(tr{DtDr′}.I)(σ2φ)
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