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Abstract

It is known that design of elastic cloaks is much more challenging than that of
acoustic cloaks, cloaks of electromagnetic waves or scalar problems of anti-
plane shear. In this paper, we address fully the fourth-order problem and develop
a model of a broadband invisibility cloak for channelling flexural waves in thin
plates around finite inclusions. We also discuss an option to employ efficiently
an elastic pre-stress and body forces to achieve such a result. An asymptotic
derivation provides a rigorous link between the model in question and elastic
wave propagation in thin solids. This is discussed in detail to show connection
with non-symmetric formulations in vector elasticity studied in earlier work.

Keywords: cloaking, flexural waves, metamaterials, asymptotics, plates,
elasticity

1. Introduction

There is a theoretical and practical interest in wave cloaking in the context of metamaterials, as
outlined in [1-8]. Dynamic effects include anisotropy and localization [9, 10], which can be be
interpreted in the context of homogenization theory. In this regard, we would like to refer to the
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work [11-13] addressing the notion of an effective dynamic mass density in structured
composites and acoustic materials, as well as analytical studies of dynamic localization in
phononic crystals. The approach of dynamic homogenization has been systematically applied in
[14, 15] to vibrations of inertial lattice systems. The idea of a so-called ‘geometric optics’
transformation leading to a radially symmetric ‘push-out’ cloak is commonly used for
computational and experimental implementation [1, 16—19]. In scalar problems, where the
governing equation is reduced to Helmholtz form, such a transformation proves to be extremely
efficient, leading to a model of a specially designed highly anisotropic inhomogeneous material
occupying the cylindrical cloaking layer and channeling incident waves around a finite scatterer
(an inclusion or a void). The continuum model of an invisibility cloak leads to singular
behaviour of the theoretical material at the inner boundary of the cloaking region adjacent to the
scatterer. In a practical implementation, a continuum cloak is replaced by a micro-structured
composite, and examples of such implementation include water waves [8], flexural plates [18]
and acoustics [20]. This micro-structure makes the cloak approximate, and such an
approximation is frequency sensitive. A special challenge is presented for vector problems of
elasticity discussed in [4, 7, 16, 21].

The present paper addresses cloaking for flexural waves in Kirchhoff elastic plates. Firstly,
we show that the governing equations are not invariant with respect to the radial ‘push-out’
transformation [3, 22]. This observation implies that the cloaking design procedure, well
developed for acoustics, vibration of elastic membranes and anti-plane shear problems (see, for
example, [23, 24]), does not apply to problems of flexural vibrations of elastic plates. Elastic
Kirchhoff plates possess flexural rigidity and their out-of-plane vibrations are governed by a
fourth-order partial differential equation. One of the main challenges appears to be the presence
of propagating and evanescent waves representing solutions of the Helmholtz and modified
Helmbholtz equations, and the coupling of such waves via the boundary and interface contact
conditions. In numerical simulations, it is apparent that in many configurations the flexural
waves are led by their Helmholtz component (see, for example, [25, 26]). However, for
cloaking problems the multi-scale nature of a metamaterial makes the problem more
challenging and it is not apparent that such decoupling is possible.

There is strong experimental evidence, as published in [18] and also outlined in [27], that
within a predefined frequency range a by-pass system can be implemented around a finite
obstacle in a flexural Kirchhoff plate. Such a by-pass system is evidently an approximate cloak,
which would benefit strongly from an in-depth analysis paving the way to a broadening of the
frequency range for the cloaking effect.

We explain the derivation of such an approximate cloaking model and present illustrative
numerical examples which agree with the experimental evidence [18].

It was shown in [19], for a model of a square cloak, that a formulation for flexural waves in
a Kirchhoff plate, after the cloaking transformation, includes additional terms in the governing
equation; these may represent in-plane body forces and pre-stress. This approach provides a
consistent procedure justifying the additional terms in the governing equation and cloaking is
effective across the whole frequency range admissible for the plate model. Motivated by the
results of [19], we also develop the full cloaking model for the radial ‘push-out’ transformation,
and obtain an explicit closed-form representation for the pre-stress required to have a broadband
cloak for flexural waves.



New J. Phys. 16 (2014) 093020 M Brun et al

Finally, we present a detailed asymptotic analysis, which establishes a connection between
the transformed equations for the fourth-order model of flexural waves and those for a vector
problem of elasticity in thin solids.

2. Application of the radial ‘push-out’ transformation to a Kirchhoff-Love plate

We begin with a simple case of the equation governing the out-of-plane displacement amplitude
w(X) of an orthotropic homogeneous plate, in the absence of applied in-plane forces, under
pure bending. As in [28], the fourth-order partial differential equation is

ot , 2 ow L Lo 2, 0w 2 o L, ow
- 5 O~ 5 e . .y -~ . T 4 2] - Yo
Fort T R2 ™ 9R2902 RY00* R ToR3 R’ "°9Rro@> R® ° oR?
2 %w 1 ow
+ = (Do + Dro) 2 + D02 _ Shw?w = 0, 1
i (Do + Dro)o s + 5Desp = » M

where Dy, Dg and Dgg are the flexural rigidities, p and & are the mass density per unit volume
and thickness of the plate, respectively, and w is the angular frequency.
The constitutive relations that define the moments are

[ 2 1 1 2
Mg = —Dg 6w+y@( 6w+ aw)]’

OR2 ROR = R200°
1 ow 1 o*w 0w
Mo = —Do| 2% 4 — 2 4 2%
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0 (1 ow
Mro = —2Dx 2 [ =22, 2
RO KOR(R@@) (2)

where vz and vg are the values of the Poisson ratios in the radial and tangential directions,
respectively. We also note that Dg = %(DR@ — Dgug), and the rigidities Dg and Dy satisfy the
following symmetry relation:

DRI/@ = D@IJR. (3)

Further, if the plate is isotropic and homogeneous, then equation (1) will have
Dg = Dg = Dro = D© where D is the flexural rigidity of the isotropic plate, so that the
equation of motion (1) simplifies to

DYA%w — phw’w = 0. @)

Consider the radial ‘push-out’ transformation, introduced in [1-3, 22]. Within
R; < r < R, the transformation x = F (X) is given by
(R, — Ry)

2
where X = (R, )" and x = (r, ).

r=R; + R, 6=60, when O0<R<R,, 5)
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The Jacobi matrix F in cylindrical coordinates (r, #) has the form

R2—R1 Rz—Rl r
F=—¢ ®e¢ + ey R ey, 6
I R r_Rla 0 (6)

where {e, = eg, eg = eg} is the orthonormal basis and @ stands for the dyadic product.
By direct application of the transformation or alternatively a double application of [23,
lemma 2.1] the isotropic equation, in new polar coordinates, may be expressed as

(r— R1)2 o'w 2 d'w 1 o*w N 2(r — Ry) o%w B 2 3w
r> ot r?or’ad®  2(r—R,) 00 r* o r*(r—Ry)oro?
1 02 4 9 10 Ry (r — Ri)’
T2 V;+ 2 V;’+ 2 = - il J 4ha)2w=0. )
r* or r2(r — Ry)" 00 r’(r—R,) or DOr2(Ry — Ry)
Letting
2
r—R 2
D] = D<0>7( > ) . Djy=DY andDj=DO—"—— (®)
r (I’ — Rl)
equation (7) may be re-written as
4 4 4 3 3
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If we introduce the notation p’ = pR,' / (R, — R))* for the normalized mass density, then it
is tempting to assume that (9) represents an orthotropic inhomogenous plate with the stiffness
rigidities (8). The question is: can such an assumption be justified?

On one hand, the fourth-order terms in (9) agree with the structure of (1). On the other
hand, the additional lower-order terms have to be analysed.

We also note that, after the normalization, equation (7) can be written in the compact form

EA R,
le(vﬁlw) - P et =, (10)
DO(R, — Ry)
where the differential operator ﬁ,?l is defined as
~2 1 o 0 1 0?
Vg, = —[(r—Rl)—]+ — . (11)
r— Ry or or (F—Rl) 00

We would like to emphasize that for R; > 0, the operators &Ii and V? are not the same. The

operator ﬁ,?l will be referred to as the ‘shifted Laplace operator’, which becomes the classical
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Laplace operator only when R; = 0, i.e. in the absence of the cloak. Correspondingly, we will
use the terms ‘shifted Helmholtz’ and ‘shifted modified Helmholtz’ for the operators @,?1 + p?
and ﬁfi — B2, respectively.

Following the representation (10) we can express the transformed equation in the form

ﬁ,?l(ﬁ,flw) — fhw = (@,fl + ﬁz)(ﬁﬁl - ﬂ2)w 0, (12)
where
= ) 13
p Rz—Rl(D(O) (13)
has the physical dimension of [m™!]. The solution of equation (12) admits the representation
W(ra 9) = WHS(T", 9) + WMS(r’ 9), (14)
where
) ~ 2
(Fe+ 2 )wusr. 0= 0. (¥, = 2)wuss (. 0) =0, (15)

and hence w is the superposition of waves of shifted Helmholtz type wys and shifted modified
Helmholtz type wys. A semi-analytical solution can be found by implementing the series
representation

+ 00
w(r, 0) = Y wy(r)e"?, (16)
n=0

where
wa(r) = Ay [B(r = R) | + E,HO [B(r = Ri) ]
+Buly[B(r — Ri) | + EK,[B(r — Ri) ] (17)

In equation (17) J,, is the Bessel function, H,gl) is the Hankel function, and /,, and K,, are the
modified Bessel functions related to J, and H'" by
n.in+l

L(z) =i (z2), K,(z) = TH,?)(iz), (18)

respectively (see [29], equations 9.6.3 and 9.6.4). The coefficients of the expansion (16), (17)
are determined from the boundary and the interface conditions on the contour of the cloak.

3. Transformation cloaking for a membrane versus flexural plate

The radial ‘push-out’ transformation (5) can be used to design a cloak that will route an incident
wave around a finite-size obstacle in an elastic membrane. Norris [23] has discussed this
problem in detail. The governing equation for the time-harmonic out-of-plane displacement u of
an elastic membrane has the form

(V- uV + po?)u(X) =0, X R, (19)
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where u stands for the stiffness matrix and p and @ are the mass density and the radian
frequency, respectively. If an invertible mapping x = F(X) is applied within the cloaking
region, then the transformed equation becomes

2
V-ouCxV+ 22 lux) = o, (20)
J(x)
where
T
C= g F = Vxx, J=detF. 1)

It is important to note that equation (20), similar to (19), describes a vibrating membrane, but with
different elastic stiffness and a non-uniform distribution of mass across the transformed region.

In contrast, for the model of a flexural plate, equation (9), after the transformation (5), does
not preserve the physical interpretation, i.e. it is no longer the equation of free vibrations of a
plate. This suggests that the problem in hand is very different from the model of a cloak for a
membrane. It presents an additional challenge to identify the physical configuration consistent
with the new equation (9). This issue is discussed in the next section.

4. The cloaking transformation does not produce an orthotropic inhomogeneous plate

We make a direct comparison between the transformed equation (9), and the equation for an
inhomogeneous orthotropic plate. Firstly, we note that the moments M,, My and My, satisfy the
partial differential equation:

0°M,  20M, 20*My 2 0My 1 0°My 1M 02

+ 24 LA RS S e B SR ) (22)
or? r or r orof r2 00 r2 002 r or o2

For an orthotropic inhomogeneous plate, where rigidities and Poisson’s coefficients vary
radially, equation (22) has the form

o'w 20w 2D, o*w 1 0w 1 0w
D, + = + - — s

or# roor’ 2

2 o200 roro0® 2 00?
Do 10'w | 20w 9w _ low oD, o*w | 10%w
—| =+ =— - +——|+2 + —
r?2 00*  r? 00> or* ror or \ or® ror?
2 8Dre( Ow 182w) 19(Drvg) 0w 1 aDe[ w 1 02w)

J— + -
r2 or r or or? r2 or \ or r 002

r2

0rd0>  r 39>
0°D, 3*w 1 az(Drve)( ow 1 dzw) 02w
+ —+——— — + —— |+ ph

o2 a2 r o2 \or  r o2 o

= 0. (23)

Direct comparison of (23) and (9) shows that the fourth-order terms agree in the equation of the
orthotropic plate and the transformed equation within the cloaking region. However, a discrepancy
occurs in other lower-order terms, and hence the transformed equation (9) does not represent a
classical orthotropic Kirchhoff plate. Additional physical constraints are needed to complete the
model. This will be achieved through the approximation discussed in the next section.
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5. The cloaking approximation

Equation (23) can be rewritten after the substitution of flexural rigidity coefficients as in

(8):

(r=Ri\o*'w 2 o%w 1 otw 2(P=RY) w2 o
2 ﬁ_’_ﬁarzagz-'_( 2 r T 3 3 3 2
r—Ry)r? 00 r or*  r?orod
N r*Ri + 2R} — 6r°R? + 6rR* — > — 2R} — 20, 7R 0%w
(r=Ri)’r or?
2(r — Rl)(2r - Rl)(r2 - Ry + R12) + 1, r’R, (2r + Rl) 92w
+
(r— R1)4r4 00°
2_R2+ 2R (2r + R R (r—R\)
PR e 1(4” Jow _ e Relr= R 1)4w=0. (24)
F(I’—Rl) or 1’2(R2—R1)

Direct comparison with equation (7) shows the discrepancy in the third-order derivative terms
in addition to that in the lower-order terms. The difference between the left-hand sides of
equations (7) and (24) is
2R\(r — Ry) 93w 2R, ow
+
r or3 r3 (r - Rl) 0ro0?

Ri( 2R} + 2r* = 5r3Ry + TR — 61R{ + 21,14 2,

r4(r — R, )3 or?
2R1(21/rr3 + v, r’Ry — 3 + 4r’R, - 4rR12 + Rﬁ) 92w
+
(r - R1)4r4 00>
R1(41/,r2 + 2u,rR; — 4rRy + 31 + R12) ow
+ 2 —. (25)
rz(r - Rl) or

It is apparent that all coefficients in the above equation have the form f; (r)R,/r, with f; being
smooth functions when r > R;, and these coefficients are small when R,/r is considered as a
small parameter, in particular, when the penetration depth for the incident wave into the
cloaking region is small.

In the approximation implemented here, we chose the parameters of the cloak in such a
way that the interior diameter of the cloaking ring is sufficiently small compared to the diameter
of the whole cloaking region and compared to the wavelength of the incident wave, i.e. the
following non-dimensional quantities are small:

Rl/RQ <1, PRI,
where f is defined by (13). The material outside the cloak remains unaffected by the

transformation, whereas the interior material represents a radially orthotropic plate in the
framework of the approximation described here (see equations (24), (25)). Numerical
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Table 1. The normalized parameters used in the numerical simulations, see (8).

Value

Parameter Exterior of the cloak Interior of the cloak

DO 1 1
D 1 (r—R1)2
r rz
D 1 r
o (r—Ri
D,y 1 1
Ur 0.3 0.3
34
b0 03 10(r=Ry)*
4 2
1 R2 (F—Rl)
p VZ(RQ—RI)A
h 0.001 0.001

simulations below show the efficiency of our concept, which is also in agreement with the
experimental evidence published in [18].

5.1. Numerical illustration

The notion of an approximate cloak, introduced above, is used here in the numerical
illustrations. This approximation is valid for a certain choice of geometrical parameters and
frequency values.

Numerical simulations are produced for an elastic, isotropic Kirchhoff plate which
contains a radially orthotropic, inhomogeneous cloaking layer (the flexural displacement of the
plate on the interior of cloaking layer is governed by (24)). Without loss of generality, the
incident field is represented by a flexural plane wave propagating horizontally. Perfectly
matched layers (PML) are used on the exterior boundary of the computational domain. PML
conditions are ‘absorbing’ boundary conditions simulating a non-reflective exterior contour.
The parameters used for the numerical simulations are shown in table 1. The exterior of the
cloak corresponds to a homogeneous, isotropic plate, whereas the interior of the cloak is an
inhomogeneous, radially orthotropic plate. The numerical simulations were produced using
Comsol Multiphysics® (see the appendix for more details on the numerical implementation).

In figure 1, we consider the case of interior and exterior radii for the cloaking region
chosen as Ry = 0.2 and R, = 2. The normalized radian frequency is @ = 40. Part (a) of figure 1
shows the uncloaked inclusion, and part (b) of the same figure shows the cloaked coated
inclusion, where the shadow region has been significantly suppressed. Part (c) of figure 1 shows
the flexural displacement, for cases (a) and (b) together with the field in the absence of both
cloak and inclusion; here the field is plotted along a line passing through the centre of the
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M

I

(a) Uncloaked rigid inclusion (b) Cloaked rigid inclusion

-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8

—_

‘—Intact ---Uncloaked - - -Cloaked‘

w

¥ ‘

-8 -6 -4 -2 0 2 4 6 8
X

(c)

Figure 1. The flexural displacement w (x) generated by a line source in the far field.
Parts (a) and (b) show the field for an uncloaked and cloaked rigid inclusion
respectively. Part (c) shows the flexural displacement for cases (a) and (b) together with
the flexural displacement in the absence of both inclusion and cloak along a line passing
through the centre of the inclusion in the direction of the incident wave. The rigid
inclusion is indicated by the grey rectangle in part (c). The non-dimensional radian
frequency w = 40 and the radii of the cloak and inclusion are R, = 2 and R; = 0.2,
respectively.
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i

i

(a) Higher frequency regime (b) Larger R,/R; ratio

Figure 2. The displacement amplitude w(x) of a flexural wave generated by a line
source and scattered by the coated rigid inclusion. In the cases shown the coating does
not provide cloaking. In part (a), the incident wave has a larger frequency than in
figure 1: the non-dimensional radian frequency is w = 200. In part (b), the frequency of
the incident wave is the same as in figure 1 (w = 40), but the ratio of the interior and
exterior radii of the coating has doubled: in the present case R, =2 and R; = 0.4.
Cloaking has been affected in these two cases.

inclusion in the direction of the incident wave. For this choice of parameters, we observe good
cloaking of a finite object for the incident plane flexural wave.

It is also expected that the approximation is frequency sensitive, and the properties of the
approximate cloak may also change with the variation of the thickness of the cloak. This is
illustrated in figure 2. In part (a) of that figure, the simulation corresponds to the case of a higher
frequency (o = 200), and the cloaked obstacle shows a non-suppressed shadow. Similarly, in
part (b) of figure 2 we have non-suppressed shadow for a different reason. Although the
frequency of the incident wave remains the same as in figure 1, the size of the obstacle has
increased and the interior radius of the cloak is twice as large as the case in figure 1(b).
Consequently, in both diagrams shown in figure 2 the cloaking has been affected.

6. Alternative approach: plate subjected to in-plane forces and pre-stress

In this section we show that, by choosing a different normalization, it is possible to give a
physical interpretation of the transformed plate equations as a Kirchhoff plate subjected to in-
plane forces in addition to the usual flexural behavior. This can also lead to a broadband perfect
cloak. Here, we extend the cartesian formulation given recently in Colquitt et al [19] to the
cylindrical cloak configuration. In particular, equations (7) and (10) are normalized in the
following way:

10
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;2% _ lethW - 0. (26)
I’(I‘—R1> al’ }"(Rz—Rl)
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Then, introducing the following definition for the rigidity and inertial parameters:

3
Dr:D(O)r__Rl, Dy = D© r . Dy=DO_"__
r r— Ry r— Ry
2 4
R, (r — R
V6=Ur_l=( A )9 p/=L12’ (27)
r—R r(Ry — R)

the equations (22) and (23), for an inhomogeneous orthotropic plate, match all the terms
involving fourth-, third- and zeroth-order derivatives of the transverse displacements in
equation (26). The remaining terms (second- and first-order) can finally be matched by
considering additional pre-stress forces N and in-plane body forces S, having components

3r — 2R1 37‘R1
Ny=——"CR, Npg=-——""7 Ny=0,
r(r—Rl) (r—Rl)
S, = Ly Sy = 0. (28)
r(r— Rl)

These quantities are constrained to satisfy the in-plane balance equation
V.-N+S=0. (29)
The final form for the transformed equation is
V.- (V-M)+ N: VVw =S - Vw = — p'ho’*w (30)

leading to a consistent physical interpretation. In [19], for a different cloak geometry, we have
shown that such a pre-stressed elastic system leads to broadband cloaking.

We note the resemblance of the above computations in figures 1 and 2 with those in [18],
which shows results from an experimental study of a structured cloak and flexural waves. In
[18] the cloaking approximation is shown to be frequency sensitive, so that cloaking does not
occur for frequencies above a certain threshold. From (1)—(3), it is clear that four independent
elastic parameters D,, Dy, D,y, and v, are required to characterize a radially orthotropic plate
(also see the classic papers [30, 31]). Only Young’s moduli E, and E, appear to be given
in [18].

11
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The inertial properties are defined by the mass density which is also required when
implementing the cloak, both in computations and experiments. Different normalization of the
mass density can be applied; in particular, the mass density used in [18, 32] was constant. Here
we have defined all of the required parameters and explained how they fit into the configuration
approximating the flexural cloak. We have also given the range of validity of such an
approximation.

7. Asymptotic derivation of the transformed plate equation from the equations of
elasticity

In this section, the transformed equation of motion for the Kirchhoff plate (10) is deduced
directly from the transformed equations of motion of three-dimensional linear elasticity. An
asymptotic model is implemented in order to obtain the lower-dimensional plate model from the
analysis of a thin three-dimensional solid. It was shown in earlier works [4, 7, 16] that the
transformed equations of elasticity are subject to the choice of gauge. In particular, the resulting
material may lack the minor symmetries in the constitutive equations. This does not occur in the
case of flexural plates, as demonstrated below.

7.1. Transformed equations of elasticity

The Navier equations

0°U
ot?
describing the displacement field U = U(X, ¢) = (UR, Ug, UZ)T, withX = (R, O, Z)!,ina

linear elastic and isotropic medium can be conveniently expressed in cylindrical coordinates,
Le.

0 5 Uz 2aU@) 0%Ug
A+ ) —(Vx - U) + p| Valp - = - =2 = :
( ﬂ)aR( x - U) ﬂ( xUr = = 2150 p 0
ﬂ+ﬂ 0 2 U@ 2 ()UR) aQU@

Z (V- U) +pu| ViU, - =2 + =222 = ., Xey,

x a6 %Y ”(XQ R rRoe) " o
0 0%U.

G+ )~ (Vx - U) + uV5Uz = patf. (32)

In 32), y = Q2 X [-h/2, h/2], with 2 C R2, 1 and u are the Lamé moduli, p is the mass density
of the medium and zero body forces are assumed. Field equations (32) are accompanied by

homogeneous Neumann boundary conditions on the upper and lower external surfaces
Z =+ h/2:

12
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oUr . 0U,
ﬂ(—R+—Z)= 0,

0Z OR
oU. oU,
(l_Z + _@) — 0’
R 00 0z
ou, 1 90U, U, oU
(—R+——@+—R)+(/1+2ﬂ)—2= 0, (33)
OR R 00 R 0Z
where (R, @) € Q.
Now, we introduce a geometric transformation
(R2 = Ri)
r=Ri+ ——R, =06, z=Z7Z when 0<R<KR, (34)

2

Accordingly, the Jacobi matrix F (in cylindrical coordinates) and the Jacobian J are given
by

2
R,— Ry R,—-—R R, — R
2 1’ 2 1 r 1], :( 2 1) r (35)

F = dia , .
g[ R, R, r—R R2(r = Ry)

Then, the Navier equations (32) transform into

2 2 R, (r — Ry) 02
/1+2,u[(r_Rl)0u, ou, U, ]+/1+/4[8u9+ z(r 1) uZ]

+ —_
r or? or r—R r orod R, — R, oroz

r(r—Rl) 00 * r

A+ 3u Oug ,u[ 1 0%, N Ri(r—R) a%t,] 0%u,
or?

r — Ry 96? <R2 _ R1)2 azz =p s

A+2u 0%ug  A+3u au,+,1+ﬂ (32u,+ R, 0%,
r(r—Ry) 00>  r(r—Ry) 00 r | 0rd® R, — Ry 000z

d B (g Pt o w0 RS R)Oug | 0%
r or? or r—R; (Rz — R )2 07> or?

R3(r —Ry) 92 2 2
Gt 20) 2(r 1) uz+ﬂ+/4 R, [(r— l)au, 07Uy 0u,]

2 > + +
(Rz - Rl) r 07 r R, —R oroz 000z 0z

2 2 2
u 0“u, 1 OJ%wu, ou, _0°u,
+—|(r—R + +—|= ) 36
r[( ) o r—Rior o | o (30)

where p = p/J and R; < r < R;. These correspond to an extension to the three dimensional
case of the equations given in [16]. Note that the identity gauge has been considered, i.e.
u(x, t) = UX, t) where u = (u,, ug, u,)’ and x = (r, 6, z)'.
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Equations (36) are accompanied by transformed boundary conditions on the upper and
lower external surfaces z = + h/2:

ou, R, — Ry ou
ﬂ( u +#_z):0,

0z R> or
R, —R; 1 ou, + dug
R2 r — R1 00 dz

R2 - Rl du, 1 ()I/lg U,
—_ + +
Rz or r — R] 00 r — R]

=0, RI<r<R;

A

) +(d+ 2ﬂ)i—f = 0. 37)

7.2. Asymptotic model

In order to obtain the Kirchhoff plate model directly from the transformed equations of
elasticity (36) and (37) an asymptotic procedure for elliptic operators in thin domains is
developed [33, 34]. We introduce the scaled spatial variable & = z/¢, € < 1, and we also
assume that the transverse displacement component depends on the scaled time variable
T = ¢ t. Then, we consider the following asymptotic approximation for the displacement vector
u

00 3 1
u = Zek{e‘4Z€qv(‘1) + e‘ZZGqV@ + W(k)}, (38)
k=0

q=0 q=0
T
where v@ = (v,(q), ve?, vé’”) , g=0,1,2,3, are functions of (r,0,¢& T) and
T
V@ = (VSQ), Vi, ngq)) , g =0, 1, are functions of (r, 0, &, t). The two finite sums on the

right-hand side of equation (38) provide the solvability condition for W = ( W”, W, w? !
after substitution of the equations of motion (36) and boundary conditions (37). The solvability
condition for Wéo) constitutes a well-posed problem for the transverse displacement field véo)
describing the flexural behavior of a thin plate. The solvability conditions for W® and W
constitute a well-posed problem for the in-plane displacement field V¥ and V) describing the
behavior of a thin shell. Here interest is in the description of the plate model and we restrict attention
to the asymptotic procedure for vé(o) which will be indicated by v for ease of notation.

After the introduction of the scaled variables £ and 7, the equations of motion (36) and

boundary conditions (37) can be expressed in the form

2
(iﬁo +1e 4 Ez)u = 2598 (39)
€

€2 oT?

MR <r<R,0<K60<2n,—H/2<EL H/2), with H = h/e, and
(Lsesumo a0
€

on(Ri<r<R,0<0<2n,¢=+HJ/2).
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In equation (39)

02
U— 0
0&?
2
- R R 2
r Ry — Ry 0&?
62
0 0 “+ 2,u)—2
2
0 0 (r—R)2
OEor
R 2
£ =R AFH 0 0 I :
R2 - Rl r 6569
2
e e I
or ot | ocoo
el el 0
£, = I £[221] 5[222] 0 ’
r(r — Rl) a2
0 0 ,u(r - Rl) Vg

where

LR zﬂ){(r _ Rl)i[<r _ Rl)i] _ 1},
00?2 or 0

r

J 9?
ﬂm=—z+3——+z+ - R
) (ot 30—+ o+ w(r = Ri) 5
2
=1 +3 —~+ﬂ+ r—R :
A+ 30—+ O+ w(r = Ri)——

22 0* 0 J
=+ 2,u)— + ,u{( - Rl);[(” — RI)E] - 1},

and the differential operator VR1 is defined in equation (11).
For equation (40)

9 ) 0
o&
0
o= 0 — 0
0 ﬂag )
0 0 (A+2u—
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0
0 0 —
'udr
1 0
R, — R 9
=277 0 0 H Rl (43)

0 1 A 0
Al — + —
or r—Ry) r—R,00

7.2.1. Hierarchical system of equations. A hierarchical system of equations is obtained by
substituting the asymptotic representation (38) into transformed field equations (36)
complemented by the transformed boundary conditions (37).

To leading order, the equations

Lov® =0 (44)
with boundary conditions
Zov@ =0 (45)
are satisfied by
0
v = 0 , (46)
v(r, 0, T)

where v does not depend on £ and the solvability conditions are automatically satisfied.
To the next order, the field equations

Lov + L£v0 =0 (47)
and boundary conditions
Zovl) + Zv@ =0 (48)
admit the solution
v
or
R, — R
vih = — ZR o1 ovle (49)
> | r=Rio0
0

Note that vV, and v® and v® in the following, are complemented by the normalization
condition of zero average along the thickness.
Next, the field equations

Lov® + £,vD + £,vO =0 (50)
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and boundary conditions

Zov® 4+ Zvih =0 (51)

give
»f O
TS ) e .
R, Alg . A+2u\ 2 24
For the following order, we have the equations

Lov® + £v® 4+ £ovD =0 (33)
accompanied by the boundary conditions

Zovd + Zv@ =0 (54)

and the corresponding solution is

O(Az)
—\ Viev
or \ &

— 36 _ 2
VO = ( R, Rl) | i( ﬁzv) (BA + 4u)&3/6 /1 (1;/1 + 12p)EH?/24. 55)
RZ r — R1 00 R + H
0
Finally, the vector function W(© satisfies the equation
L0y
LoWO 4+ £,v® 4 £ovP =5 (56)
oT?
together with the boundary conditions
ZoWO 4+ 3v® = 0. (57)
In particular, W(O) solves the problem
22w 2 2 2
c a4 —a VRI(V2 )+ POV _p  El<HAR (58)
02 2 24 A+ 2u 0T?
with
Ry — R\ 32 + 2u Ry — R\ 1102 + 240 + 1242
A= , Ay = (59)
R, A+ 2u R> 4+ 2,Lt)2
subjected to boundary conditions
oW R, — R 3,
g .| X 1 ﬂ(/1+/1)2H V;](VRI ) p,. (60)
a‘f §_+H RZ (ﬂ + 2,M) 6
)

17



New J. Phys. 16 (2014) 093020 M Brun et al

The solvability condition

H/2

Fdé=p, —p (61)
-H/2

is the fourth-order differential equation

4
R, — R 3 R R 2
( 2 1) Eh Vﬁl(v,flv) + oY =0, (62)
R, 12(1 _ 1/2) or?

where E is Young’s modulus, v Poisson’s ratio and H and T have been replaced by h/e and € ¢,
respectively.

Identifying the flexural rigidity D@ with the coefficient ER/(12(1 — v?)), it is
straightforward to check that equations (10) and (62), restricted to time-harmonic regime, are
the same.

8. Conclusions

There are different ways of reducing the shadow generated by a scatterer. In particular, an
elementary example where a ‘heavy’ inclusion is surrounded by a ‘lighter’ isotropic coating was
discussed in [35]. That model requires the average mass density of the inclusion and coating
together to be the same as the mass density of the ambient matrix. Such examples have been
known for more than a century (see, for example, [36]). It is important to mention that a
combination of a heavy inclusion and a lighter coating cannot be associated with an ‘invisibility
cloak’, but instead can be used to reduce the monopole source term in the asymptotics at
infinity.

In [18] the use of micro-structured material for cloaking represented a substantial advance.
That work has demonstrated that cloaking of a flexural wave is possible, although such a
cloaking approximation is frequency dependent. In the present paper, we have provided a full
theoretical background for such an approximation and have also discussed the range of its
applicability.

Furthermore, by referring to pre-stressed elastic plates, we have resolved a long-standing
problem of creating an exact cloak for flexural waves. For the cloaking region obtained as a
result of a ‘push-out’ radially symmetric transformation, we have identified a full set of
parameters, including pre-stress and in-plane body forces. In the case when pre-stress and body
forces are not included in the model, an approximation of the cloak has been developed for
R/R, <1 and within the frequency range when PR, < 1. The illustrative numerical
computations show excellent agreement with the prediction of the theoretical model and the
existing experimental results.

The transformed equations of three-dimensional vector elasticity were analysed
asymptotically for a thin solid. The resulting lower-dimensional model agrees fully with the
outcome of the direct application of the radial ‘push-out’ transformation to the equation of
motion of a Kirchhoff plate. It is also noted that ‘transformed’ material in three-dimensional
elasticity has non-symmetric constitutive relations, as outlined in [16], but the lower-
dimensional model for the plate does not have such a feature. The physical nature of the
reduced model is fully explained, with the introduction of pre-stress and in-plane body forces,
which have been identified in explicit closed form. Implementation of the proposed model
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could lead to a new generation of lightweight and highly-efficient structured shields and
filtering devices.
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Appendix. Comsol implementation of the frequency response problem for a flexural plate

The commercial finite element software Comsol Multiphysics® was used to produce the
numerical simulations presented in section 5.1. In order to model thin plates and shells, Comsol
Multiphysics® uses elements of the Mindlin-Reissner type [37, 38]. Mindlin plate theory is an
extension of the Kirchhoff theory and accounts for the effect of shear deformation through the
thickness of the plate as well as rotational inertia. For our purpose, we require only the
transverse displacement as applicable to the Kirchhoff model, but we can use Comsol’s
capability, with the appropriate choice of parameters, as discussed below. Namely, thin plates
modelled by the Kirchhoff theory, as explained in section 7.2, can be accurately simulated using
Comsol finite element codes developed for the more general Mindlin element type. In table 1
we give the normalized material and geometrical parameters, which were used for the
simulations presented in section 5.1, that model an orthotropic inhomogeneous Kirchhoff plate
governed by (24). If the normalized shear modulus G is chosen to be sufficiently high and the
normalized thickness & of the plate is sufficiently small, the shear deformation across the
thickness of the plate as well as rotational inertia become small. This is also seen from the
equations below.

The equation governing the flexural displacement of a homogeneous isotropic Mindlin
plate is (see, for example, [37, 38])

p 02 ph? 92 0w
Vg Z—||DV? - ———|w+ ph— =0, A.l
[ G aﬂ)( 12 o012 o (A-D

where p is the density, G is the shear modulus, D is the flexural rigidity, £ is the thickness of
the plate, and w is the flexural displacement. On the other hand, the corresponding equation
for a Kirchhoff-Love plate is DV *w + ph# = 0; in this equation the shear modulus G does
not appear since the theory assumes that the transverse shear deformation is negligible. In
normalized variables, assuming that D ~ O(1) and ph~ O(1) we observe that
equation (A.l), approximately reduces to the governing equation for the Kirchhoff-Love
plate provided that p/G < 1 and ph’® < 1, i.e. the normalized shear modulus is large (such
that the transverse shear deformation is small) and the plate is thin. Thus, using a judicious
choice of parameters, the additional terms in (A.l) introduced by accounting for the
contribution of the shear deformation and rotational inertia can be neglected. In this way, the
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Figure 3. Benchmark example. The analytical solution for a radially orthotropic
Kirchhoff-Love plates (solid blue line) compared with the numerical solution for
Mindlin plates (dashed red line). The numerical values used were Dy = 12.3, D, = 1.25,
vg = 0.876, 1, = 0.0890, & = 0.001 and G =~ 10'°.

Kichhoff-Love plate equation may be simulated in the finite element code using the
Mindlin—Reissner Comsol package. For a detailed comparison of the dynamics of
Kirchhoff-Love and Mindlin plates we refer to [39].

A benchmark example is considered here to illustrate the choice of parameters in the
Comsol computational model. This involves a radially symmetric plate loaded by a point force
that is applied at the centre of the plate. This problem has a closed-form solution, and as
expected, the Comsol numerical scheme shows excellent agreement in the framework of the
Kirchhoff model.

For the purpose of the numerical simulations presented in section 5.1, the shear modulus
was chosen as G ~ 10'% and & = 1 x 1073, while all other parameters were chosen as unity. In
order to verify this approach, Comsol’s Mindlin plate model was used to compute a static
verification model. In particular, Green’s function for a homogeneous radially orthotropic
circular plate of radius R, with clamped boundaries was considered. This problem was
considered for Kirchhoff-Love plates in [40], section 82 (see also [31]), and subject to
correction of typographical mistakes, has the following analytical solution

2 2 147
WR) = K3 1—n+(1+n>(5) —2(5) ,
47zDR(1 - ;72)(1 +n | R> R,

1 rRY™
Mrp= —F—| (n+ve)| — — (1 +ve)|,
¥ 27[(1 - ’72) e RZ) ( °)
2 [ n—1
n R
Mog= ————— (1+an)(—) — (1 + vg) |,
27[(1 - ;72) I R
Mgo = O. (A.2)

where n = /Dg/Dg. Figure 3 shows the agreement between the analytical solution for
Kirchhoff-Love plates and the numerical solution produced using the Comsol element of
Mindlin type. As predicted above, with the required choice of the normalized shear modulus
and the plate thickness, the finite element model, that employs Mindlin’s element, accurately
reproduces the behaviour of Kirchhoff plates.
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